ipsec.c revision 1.164.2.2 1 /* $NetBSD: ipsec.c,v 1.164.2.2 2020/04/13 08:05:17 martin Exp $ */
2 /* $FreeBSD: ipsec.c,v 1.2.2.2 2003/07/01 01:38:13 sam Exp $ */
3 /* $KAME: ipsec.c,v 1.103 2001/05/24 07:14:18 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: ipsec.c,v 1.164.2.2 2020/04/13 08:05:17 martin Exp $");
36
37 /*
38 * IPsec controller part.
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #endif
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/mbuf.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/errno.h>
54 #include <sys/time.h>
55 #include <sys/kernel.h>
56 #include <sys/syslog.h>
57 #include <sys/sysctl.h>
58 #include <sys/proc.h>
59 #include <sys/kauth.h>
60 #include <sys/cpu.h>
61 #include <sys/kmem.h>
62 #include <sys/pserialize.h>
63
64 #include <net/if.h>
65 #include <net/route.h>
66
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/in_var.h>
72 #include <netinet/udp.h>
73 #include <netinet/udp_var.h>
74 #include <netinet/tcp.h>
75 #include <netinet/udp.h>
76 #include <netinet/ip_icmp.h>
77 #include <netinet/ip_private.h>
78
79 #include <netinet/ip6.h>
80 #ifdef INET6
81 #include <netinet6/ip6_var.h>
82 #endif
83 #include <netinet/in_pcb.h>
84 #include <netinet/in_offload.h>
85 #ifdef INET6
86 #include <netinet6/in6_pcb.h>
87 #include <netinet/icmp6.h>
88 #endif
89
90 #include <netipsec/ipsec.h>
91 #include <netipsec/ipsec_var.h>
92 #include <netipsec/ipsec_private.h>
93 #ifdef INET6
94 #include <netipsec/ipsec6.h>
95 #endif
96 #include <netipsec/ah_var.h>
97 #include <netipsec/esp_var.h>
98 #include <netipsec/ipcomp.h> /*XXX*/
99 #include <netipsec/ipcomp_var.h>
100
101 #include <netipsec/key.h>
102 #include <netipsec/keydb.h>
103 #include <netipsec/key_debug.h>
104
105 #include <netipsec/xform.h>
106
107 int ipsec_used = 0;
108 int ipsec_enabled = 1;
109
110 #ifdef IPSEC_DEBUG
111 int ipsec_debug = 1;
112
113 /*
114 * When set to 1, IPsec will send packets with the same sequence number.
115 * This allows to verify if the other side has proper replay attacks detection.
116 */
117 int ipsec_replay = 0;
118
119 /*
120 * When set 1, IPsec will send packets with corrupted HMAC.
121 * This allows to verify if the other side properly detects modified packets.
122 */
123 int ipsec_integrity = 0;
124 #else
125 int ipsec_debug = 0;
126 #endif
127
128 percpu_t *ipsecstat_percpu;
129
130 int ip4_ah_offsetmask = 0; /* maybe IP_DF? */
131 int ip4_ipsec_dfbit = 2; /* DF bit on encap. 0: clear 1: set 2: copy */
132 int ip4_esp_trans_deflev = IPSEC_LEVEL_USE;
133 int ip4_esp_net_deflev = IPSEC_LEVEL_USE;
134 int ip4_ah_trans_deflev = IPSEC_LEVEL_USE;
135 int ip4_ah_net_deflev = IPSEC_LEVEL_USE;
136 struct secpolicy ip4_def_policy;
137 int ip4_ipsec_ecn = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
138
139 u_int ipsec_spdgen = 1; /* SPD generation # */
140
141 static struct secpolicy ipsec_dummy_sp __read_mostly = {
142 .state = IPSEC_SPSTATE_ALIVE,
143 /* If ENTRUST, the dummy SP never be used. See ipsec_getpolicybysock. */
144 .policy = IPSEC_POLICY_ENTRUST,
145 };
146
147 static struct secpolicy *ipsec_checkpcbcache(struct mbuf *,
148 struct inpcbpolicy *, int);
149 static int ipsec_fillpcbcache(struct inpcbpolicy *, struct mbuf *,
150 struct secpolicy *, int);
151 static int ipsec_invalpcbcache(struct inpcbpolicy *, int);
152
153 /*
154 * Crypto support requirements:
155 *
156 * 1 require hardware support
157 * -1 require software support
158 * 0 take anything
159 */
160 int crypto_support = 0;
161
162 static struct secpolicy *ipsec_getpolicybysock(struct mbuf *, u_int,
163 struct inpcb_hdr *, int *);
164
165 #ifdef INET6
166 int ip6_esp_trans_deflev = IPSEC_LEVEL_USE;
167 int ip6_esp_net_deflev = IPSEC_LEVEL_USE;
168 int ip6_ah_trans_deflev = IPSEC_LEVEL_USE;
169 int ip6_ah_net_deflev = IPSEC_LEVEL_USE;
170 struct secpolicy ip6_def_policy;
171 int ip6_ipsec_ecn = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
172 #endif
173
174 static int ipsec_setspidx_inpcb(struct mbuf *, void *);
175 static int ipsec_setspidx(struct mbuf *, struct secpolicyindex *, int, int);
176 static void ipsec4_get_ulp(struct mbuf *m, struct secpolicyindex *, int);
177 static int ipsec4_setspidx_ipaddr(struct mbuf *, struct secpolicyindex *);
178 #ifdef INET6
179 static void ipsec6_get_ulp(struct mbuf *m, struct secpolicyindex *, int);
180 static int ipsec6_setspidx_ipaddr(struct mbuf *, struct secpolicyindex *);
181 #endif
182 static void ipsec_delpcbpolicy(struct inpcbpolicy *);
183 static void ipsec_destroy_policy(struct secpolicy *);
184 static int ipsec_sp_reject(const struct secpolicy *, const struct mbuf *);
185 static void vshiftl(unsigned char *, int, int);
186 static size_t ipsec_sp_hdrsiz(const struct secpolicy *, const struct mbuf *);
187
188 /*
189 * Try to validate and use cached policy on a PCB.
190 */
191 static struct secpolicy *
192 ipsec_checkpcbcache(struct mbuf *m, struct inpcbpolicy *pcbsp, int dir)
193 {
194 struct secpolicyindex spidx;
195 struct secpolicy *sp = NULL;
196 int s;
197
198 KASSERT(IPSEC_DIR_IS_VALID(dir));
199 KASSERT(pcbsp != NULL);
200 KASSERT(dir < __arraycount(pcbsp->sp_cache));
201 KASSERT(inph_locked(pcbsp->sp_inph));
202
203 /*
204 * Checking the generation and sp->state and taking a reference to an SP
205 * must be in a critical section of pserialize. See key_unlink_sp.
206 */
207 s = pserialize_read_enter();
208 /* SPD table change invalidate all the caches. */
209 if (ipsec_spdgen != pcbsp->sp_cache[dir].cachegen) {
210 ipsec_invalpcbcache(pcbsp, dir);
211 goto out;
212 }
213 sp = pcbsp->sp_cache[dir].cachesp;
214 if (sp == NULL)
215 goto out;
216 if (sp->state != IPSEC_SPSTATE_ALIVE) {
217 sp = NULL;
218 ipsec_invalpcbcache(pcbsp, dir);
219 goto out;
220 }
221 if ((pcbsp->sp_cacheflags & IPSEC_PCBSP_CONNECTED) == 0) {
222 /* NB: assume ipsec_setspidx never sleep */
223 if (ipsec_setspidx(m, &spidx, dir, 1) != 0) {
224 sp = NULL;
225 goto out;
226 }
227
228 /*
229 * We have to make an exact match here since the cached rule
230 * might have lower priority than a rule that would otherwise
231 * have matched the packet.
232 */
233 if (memcmp(&pcbsp->sp_cache[dir].cacheidx, &spidx,
234 sizeof(spidx))) {
235 sp = NULL;
236 goto out;
237 }
238 } else {
239 /*
240 * The pcb is connected, and the L4 code is sure that:
241 * - outgoing side uses inp_[lf]addr
242 * - incoming side looks up policy after inpcb lookup
243 * and address pair is know to be stable. We do not need
244 * to generate spidx again, nor check the address match again.
245 *
246 * For IPv4/v6 SOCK_STREAM sockets, this assumptions holds
247 * and there are calls to ipsec_pcbconn() from in_pcbconnect().
248 */
249 }
250
251 sp->lastused = time_second;
252 KEY_SP_REF(sp);
253 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
254 "DP cause refcnt++:%d SP:%p\n",
255 key_sp_refcnt(sp), pcbsp->sp_cache[dir].cachesp);
256 out:
257 pserialize_read_exit(s);
258 return sp;
259 }
260
261 static int
262 ipsec_fillpcbcache(struct inpcbpolicy *pcbsp, struct mbuf *m,
263 struct secpolicy *sp, int dir)
264 {
265
266 KASSERT(IPSEC_DIR_IS_INOROUT(dir));
267 KASSERT(dir < __arraycount(pcbsp->sp_cache));
268 KASSERT(inph_locked(pcbsp->sp_inph));
269
270 pcbsp->sp_cache[dir].cachesp = NULL;
271 pcbsp->sp_cache[dir].cachehint = IPSEC_PCBHINT_UNKNOWN;
272 if (ipsec_setspidx(m, &pcbsp->sp_cache[dir].cacheidx, dir, 1) != 0) {
273 return EINVAL;
274 }
275 pcbsp->sp_cache[dir].cachesp = sp;
276 if (pcbsp->sp_cache[dir].cachesp) {
277 /*
278 * If the PCB is connected, we can remember a hint to
279 * possibly short-circuit IPsec processing in other places.
280 */
281 if (pcbsp->sp_cacheflags & IPSEC_PCBSP_CONNECTED) {
282 switch (pcbsp->sp_cache[dir].cachesp->policy) {
283 case IPSEC_POLICY_NONE:
284 case IPSEC_POLICY_BYPASS:
285 pcbsp->sp_cache[dir].cachehint =
286 IPSEC_PCBHINT_NO;
287 break;
288 default:
289 pcbsp->sp_cache[dir].cachehint =
290 IPSEC_PCBHINT_YES;
291 }
292 }
293 }
294 pcbsp->sp_cache[dir].cachegen = ipsec_spdgen;
295
296 return 0;
297 }
298
299 static int
300 ipsec_invalpcbcache(struct inpcbpolicy *pcbsp, int dir)
301 {
302 int i;
303
304 KASSERT(inph_locked(pcbsp->sp_inph));
305
306 for (i = IPSEC_DIR_INBOUND; i <= IPSEC_DIR_OUTBOUND; i++) {
307 if (dir != IPSEC_DIR_ANY && i != dir)
308 continue;
309 pcbsp->sp_cache[i].cachesp = NULL;
310 pcbsp->sp_cache[i].cachehint = IPSEC_PCBHINT_UNKNOWN;
311 pcbsp->sp_cache[i].cachegen = 0;
312 memset(&pcbsp->sp_cache[i].cacheidx, 0,
313 sizeof(pcbsp->sp_cache[i].cacheidx));
314 }
315 return 0;
316 }
317
318 void
319 ipsec_pcbconn(struct inpcbpolicy *pcbsp)
320 {
321
322 KASSERT(inph_locked(pcbsp->sp_inph));
323
324 pcbsp->sp_cacheflags |= IPSEC_PCBSP_CONNECTED;
325 ipsec_invalpcbcache(pcbsp, IPSEC_DIR_ANY);
326 }
327
328 void
329 ipsec_pcbdisconn(struct inpcbpolicy *pcbsp)
330 {
331
332 KASSERT(inph_locked(pcbsp->sp_inph));
333
334 pcbsp->sp_cacheflags &= ~IPSEC_PCBSP_CONNECTED;
335 ipsec_invalpcbcache(pcbsp, IPSEC_DIR_ANY);
336 }
337
338 void
339 ipsec_invalpcbcacheall(void)
340 {
341
342 if (ipsec_spdgen == UINT_MAX)
343 ipsec_spdgen = 1;
344 else
345 ipsec_spdgen++;
346 }
347
348 /*
349 * Return a held reference to the default SP.
350 */
351 static struct secpolicy *
352 key_get_default_sp(int af, const char *where, int tag)
353 {
354 struct secpolicy *sp;
355
356 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
357
358 switch(af) {
359 case AF_INET:
360 sp = &ip4_def_policy;
361 break;
362 #ifdef INET6
363 case AF_INET6:
364 sp = &ip6_def_policy;
365 break;
366 #endif
367 default:
368 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
369 "unexpected protocol family %u\n", af);
370 return NULL;
371 }
372
373 if (sp->policy != IPSEC_POLICY_DISCARD &&
374 sp->policy != IPSEC_POLICY_NONE) {
375 IPSECLOG(LOG_INFO, "fixed system default policy: %d->%d\n",
376 sp->policy, IPSEC_POLICY_NONE);
377 sp->policy = IPSEC_POLICY_NONE;
378 }
379 KEY_SP_REF(sp);
380
381 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP returns SP:%p (%u)\n",
382 sp, key_sp_refcnt(sp));
383 return sp;
384 }
385
386 #define KEY_GET_DEFAULT_SP(af) \
387 key_get_default_sp((af), __func__, __LINE__)
388
389 /*
390 * For OUTBOUND packet having a socket. Searching SPD for packet,
391 * and return a pointer to SP.
392 * OUT: NULL: no appropriate SP found, the following value is set to error.
393 * 0 : bypass
394 * EACCES : discard packet.
395 * ENOENT : ipsec_acquire() in progress, maybe.
396 * others : error occurred.
397 * others: a pointer to SP
398 *
399 * NOTE: IPv6 mapped address concern is implemented here.
400 */
401 static struct secpolicy *
402 ipsec_getpolicybysock(struct mbuf *m, u_int dir, struct inpcb_hdr *inph,
403 int *error)
404 {
405 struct inpcbpolicy *pcbsp = NULL;
406 struct secpolicy *currsp = NULL; /* policy on socket */
407 struct secpolicy *sp;
408 int af;
409
410 KASSERT(m != NULL);
411 KASSERT(inph != NULL);
412 KASSERT(error != NULL);
413 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
414
415 KASSERT(inph->inph_socket != NULL);
416 KASSERT(inph_locked(inph));
417
418 /* XXX FIXME inpcb/in6pcb vs socket*/
419 af = inph->inph_af;
420 KASSERTMSG(af == AF_INET || af == AF_INET6,
421 "unexpected protocol family %u", af);
422
423 KASSERT(inph->inph_sp != NULL);
424 /* If we have a cached entry, and if it is still valid, use it. */
425 IPSEC_STATINC(IPSEC_STAT_SPDCACHELOOKUP);
426 currsp = ipsec_checkpcbcache(m, inph->inph_sp, dir);
427 if (currsp) {
428 *error = 0;
429 return currsp;
430 }
431 IPSEC_STATINC(IPSEC_STAT_SPDCACHEMISS);
432
433 switch (af) {
434 case AF_INET:
435 #if defined(INET6)
436 case AF_INET6:
437 #endif
438 *error = ipsec_setspidx_inpcb(m, inph);
439 pcbsp = inph->inph_sp;
440 break;
441 default:
442 *error = EPFNOSUPPORT;
443 break;
444 }
445 if (*error)
446 return NULL;
447
448 KASSERT(pcbsp != NULL);
449 switch (dir) {
450 case IPSEC_DIR_INBOUND:
451 currsp = pcbsp->sp_in;
452 break;
453 case IPSEC_DIR_OUTBOUND:
454 currsp = pcbsp->sp_out;
455 break;
456 }
457 KASSERT(currsp != NULL);
458
459 if (pcbsp->priv) { /* when privileged socket */
460 switch (currsp->policy) {
461 case IPSEC_POLICY_BYPASS:
462 case IPSEC_POLICY_IPSEC:
463 KEY_SP_REF(currsp);
464 sp = currsp;
465 break;
466
467 case IPSEC_POLICY_ENTRUST:
468 /* look for a policy in SPD */
469 if (key_havesp(dir))
470 sp = KEY_LOOKUP_SP_BYSPIDX(&currsp->spidx, dir);
471 else
472 sp = NULL;
473 if (sp == NULL) /* no SP found */
474 sp = KEY_GET_DEFAULT_SP(af);
475 break;
476
477 default:
478 IPSECLOG(LOG_ERR, "Invalid policy for PCB %d\n",
479 currsp->policy);
480 *error = EINVAL;
481 return NULL;
482 }
483 } else { /* unpriv, SPD has policy */
484 if (key_havesp(dir))
485 sp = KEY_LOOKUP_SP_BYSPIDX(&currsp->spidx, dir);
486 else
487 sp = NULL;
488 if (sp == NULL) { /* no SP found */
489 switch (currsp->policy) {
490 case IPSEC_POLICY_BYPASS:
491 IPSECLOG(LOG_ERR, "Illegal policy for "
492 "non-priviliged defined %d\n",
493 currsp->policy);
494 *error = EINVAL;
495 return NULL;
496
497 case IPSEC_POLICY_ENTRUST:
498 sp = KEY_GET_DEFAULT_SP(af);
499 break;
500
501 case IPSEC_POLICY_IPSEC:
502 KEY_SP_REF(currsp);
503 sp = currsp;
504 break;
505
506 default:
507 IPSECLOG(LOG_ERR, "Invalid policy for "
508 "PCB %d\n", currsp->policy);
509 *error = EINVAL;
510 return NULL;
511 }
512 }
513 }
514 KASSERTMSG(sp != NULL, "null SP (priv %u policy %u", pcbsp->priv,
515 currsp->policy);
516 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
517 "DP (priv %u policy %u) allocates SP:%p (refcnt %u)\n",
518 pcbsp->priv, currsp->policy, sp, key_sp_refcnt(sp));
519 ipsec_fillpcbcache(pcbsp, m, sp, dir);
520 return sp;
521 }
522
523 /*
524 * For FORWARDING packet or OUTBOUND without a socket. Searching SPD for packet,
525 * and return a pointer to SP.
526 * OUT: positive: a pointer to the entry for security policy leaf matched.
527 * NULL: no appropriate SP found, the following value is set to error.
528 * 0 : bypass
529 * EACCES : discard packet.
530 * ENOENT : ipsec_acquire() in progress, maybe.
531 * others : error occurred.
532 */
533 static struct secpolicy *
534 ipsec_getpolicybyaddr(struct mbuf *m, u_int dir, int flag, int *error)
535 {
536 struct secpolicyindex spidx;
537 struct secpolicy *sp;
538
539 KASSERT(m != NULL);
540 KASSERT(error != NULL);
541 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
542
543 sp = NULL;
544
545 /* Make an index to look for a policy. */
546 *error = ipsec_setspidx(m, &spidx, dir, (flag & IP_FORWARDING) ? 0 : 1);
547 if (*error != 0) {
548 IPSECLOG(LOG_DEBUG, "setpidx failed, dir %u flag %u\n", dir, flag);
549 memset(&spidx, 0, sizeof(spidx));
550 return NULL;
551 }
552
553 spidx.dir = dir;
554
555 if (key_havesp(dir)) {
556 sp = KEY_LOOKUP_SP_BYSPIDX(&spidx, dir);
557 }
558 if (sp == NULL) {
559 /* no SP found, use system default */
560 sp = KEY_GET_DEFAULT_SP(spidx.dst.sa.sa_family);
561 }
562
563 KASSERT(sp != NULL);
564 return sp;
565 }
566
567 static struct secpolicy *
568 ipsec_checkpolicy(struct mbuf *m, u_int dir, u_int flag, int *error,
569 void *inp)
570 {
571 struct secpolicy *sp;
572
573 *error = 0;
574
575 if (inp == NULL) {
576 sp = ipsec_getpolicybyaddr(m, dir, flag, error);
577 } else {
578 struct inpcb_hdr *inph = (struct inpcb_hdr *)inp;
579 KASSERT(inph->inph_socket != NULL);
580 sp = ipsec_getpolicybysock(m, dir, inph, error);
581 }
582 if (sp == NULL) {
583 KASSERTMSG(*error != 0, "getpolicy failed w/o error");
584 IPSEC_STATINC(IPSEC_STAT_OUT_INVAL);
585 return NULL;
586 }
587 KASSERTMSG(*error == 0, "sp w/ error set to %u", *error);
588
589 switch (sp->policy) {
590 case IPSEC_POLICY_ENTRUST:
591 default:
592 printf("%s: invalid policy %u\n", __func__, sp->policy);
593 /* fall thru... */
594 case IPSEC_POLICY_DISCARD:
595 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
596 *error = -EINVAL; /* packet is discarded by caller */
597 break;
598 case IPSEC_POLICY_BYPASS:
599 case IPSEC_POLICY_NONE:
600 KEY_SP_UNREF(&sp);
601 sp = NULL; /* NB: force NULL result */
602 break;
603 case IPSEC_POLICY_IPSEC:
604 KASSERT(sp->req != NULL);
605 break;
606 }
607
608 if (*error != 0) {
609 KEY_SP_UNREF(&sp);
610 sp = NULL;
611 IPSECLOG(LOG_DEBUG, "done, error %d\n", *error);
612 }
613
614 return sp;
615 }
616
617 int
618 ipsec4_output(struct mbuf *m, struct inpcb *inp, int flags,
619 u_long *mtu, bool *natt_frag, bool *done)
620 {
621 struct secpolicy *sp = NULL;
622 u_long _mtu = 0;
623 int error, s;
624
625 /*
626 * Check the security policy (SP) for the packet and, if required,
627 * do IPsec-related processing. There are two cases here; the first
628 * time a packet is sent through it will be untagged and handled by
629 * ipsec_checkpolicy(). If the packet is resubmitted to ip_output
630 * (e.g. after AH, ESP, etc. processing), there will be a tag to
631 * bypass the lookup and related policy checking.
632 */
633 if (ipsec_outdone(m)) {
634 return 0;
635 }
636 s = splsoftnet();
637 if (inp && ipsec_pcb_skip_ipsec(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
638 splx(s);
639 return 0;
640 }
641 sp = ipsec_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, &error, inp);
642
643 /*
644 * There are four return cases:
645 * sp != NULL apply IPsec policy
646 * sp == NULL, error == 0 no IPsec handling needed
647 * sp == NULL, error == -EINVAL discard packet w/o error
648 * sp == NULL, error != 0 discard packet, report error
649 */
650 if (sp == NULL) {
651 splx(s);
652 if (error) {
653 /*
654 * Hack: -EINVAL is used to signal that a packet
655 * should be silently discarded. This is typically
656 * because we asked key management for an SA and
657 * it was delayed (e.g. kicked up to IKE).
658 */
659 if (error == -EINVAL)
660 error = 0;
661 m_freem(m);
662 *done = true;
663 return error;
664 }
665 /* No IPsec processing for this packet. */
666 return 0;
667 }
668
669 /*
670 * Do delayed checksums now because we send before
671 * this is done in the normal processing path.
672 */
673 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
674 in_undefer_cksum_tcpudp(m);
675 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
676 }
677
678 error = ipsec4_process_packet(m, sp->req, &_mtu);
679 if (error == 0 && _mtu != 0) {
680 /*
681 * NAT-T ESP fragmentation: do not do IPSec processing
682 * now, we will do it on each fragmented packet.
683 */
684 *mtu = _mtu;
685 *natt_frag = true;
686 KEY_SP_UNREF(&sp);
687 splx(s);
688 return 0;
689 }
690
691 /*
692 * Preserve KAME behaviour: ENOENT can be returned
693 * when an SA acquire is in progress. Don't propagate
694 * this to user-level; it confuses applications.
695 *
696 * XXX this will go away when the SADB is redone.
697 */
698 if (error == ENOENT)
699 error = 0;
700 KEY_SP_UNREF(&sp);
701 splx(s);
702 *done = true;
703 return error;
704 }
705
706 int
707 ipsec_ip_input(struct mbuf *m, bool forward)
708 {
709 struct secpolicy *sp;
710 int error, s;
711
712 s = splsoftnet();
713 error = ipsec_in_reject(m, NULL);
714 splx(s);
715 if (error) {
716 return EINVAL;
717 }
718
719 if (!forward || !(m->m_flags & M_CANFASTFWD)) {
720 return 0;
721 }
722
723 /*
724 * Peek at the outbound SP for this packet to determine if
725 * it is a Fast Forward candidate.
726 */
727 s = splsoftnet();
728 sp = ipsec_checkpolicy(m, IPSEC_DIR_OUTBOUND, IP_FORWARDING,
729 &error, NULL);
730 if (sp != NULL) {
731 m->m_flags &= ~M_CANFASTFWD;
732 KEY_SP_UNREF(&sp);
733 }
734 splx(s);
735
736 return 0;
737 }
738
739 /*
740 * If the packet is routed over IPsec tunnel, tell the originator the
741 * tunnel MTU.
742 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
743 *
744 * XXX: Quick hack!!!
745 *
746 * XXX: And what if the MTU goes negative?
747 */
748 void
749 ipsec_mtu(struct mbuf *m, int *destmtu)
750 {
751 struct secpolicy *sp;
752 size_t ipsechdr;
753 int error;
754
755 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, IP_FORWARDING,
756 &error);
757 if (sp == NULL) {
758 return;
759 }
760
761 /* Count IPsec header size. */
762 ipsechdr = ipsec_sp_hdrsiz(sp, m);
763
764 /*
765 * Find the correct route for outer IP header, compute tunnel MTU.
766 */
767 if (sp->req) {
768 struct secasvar *sav;
769
770 sav = ipsec_lookup_sa(sp->req, m);
771 if (sav != NULL) {
772 struct route *ro;
773 struct rtentry *rt;
774
775 ro = &sav->sah->sa_route;
776 rt = rtcache_validate(ro);
777 if (rt && rt->rt_ifp) {
778 *destmtu = rt->rt_rmx.rmx_mtu ?
779 rt->rt_rmx.rmx_mtu : rt->rt_ifp->if_mtu;
780 *destmtu -= ipsechdr;
781 }
782 rtcache_unref(rt, ro);
783 KEY_SA_UNREF(&sav);
784 }
785 }
786 KEY_SP_UNREF(&sp);
787 }
788
789 static int
790 ipsec_setspidx_inpcb(struct mbuf *m, void *pcb)
791 {
792 struct inpcb_hdr *inph = (struct inpcb_hdr *)pcb;
793 int error;
794
795 KASSERT(inph != NULL);
796 KASSERT(inph->inph_sp != NULL);
797 KASSERT(inph->inph_sp->sp_out != NULL);
798 KASSERT(inph->inph_sp->sp_in != NULL);
799
800 error = ipsec_setspidx(m, &inph->inph_sp->sp_in->spidx,
801 IPSEC_DIR_INBOUND, 1);
802 if (error == 0) {
803 inph->inph_sp->sp_out->spidx = inph->inph_sp->sp_in->spidx;
804 inph->inph_sp->sp_out->spidx.dir = IPSEC_DIR_OUTBOUND;
805 } else {
806 memset(&inph->inph_sp->sp_in->spidx, 0,
807 sizeof(inph->inph_sp->sp_in->spidx));
808 memset(&inph->inph_sp->sp_out->spidx, 0,
809 sizeof(inph->inph_sp->sp_out->spidx));
810 }
811 return error;
812 }
813
814 /*
815 * configure security policy index (src/dst/proto/sport/dport)
816 * by looking at the content of mbuf.
817 * the caller is responsible for error recovery (like clearing up spidx).
818 */
819 static int
820 ipsec_setspidx(struct mbuf *m, struct secpolicyindex *spidx, int dir,
821 int needport)
822 {
823 struct ip *ip = NULL;
824 struct ip ipbuf;
825 u_int v;
826 int error;
827
828 KASSERT(m != NULL);
829 M_VERIFY_PACKET(m);
830
831 if (m->m_pkthdr.len < sizeof(struct ip)) {
832 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
833 "pkthdr.len(%d) < sizeof(struct ip), ignored.\n",
834 m->m_pkthdr.len);
835 return EINVAL;
836 }
837
838 memset(spidx, 0, sizeof(*spidx));
839 spidx->dir = dir;
840
841 if (m->m_len >= sizeof(*ip)) {
842 ip = mtod(m, struct ip *);
843 } else {
844 m_copydata(m, 0, sizeof(ipbuf), &ipbuf);
845 ip = &ipbuf;
846 }
847 v = ip->ip_v;
848 switch (v) {
849 case 4:
850 error = ipsec4_setspidx_ipaddr(m, spidx);
851 if (error)
852 return error;
853 ipsec4_get_ulp(m, spidx, needport);
854 return 0;
855 #ifdef INET6
856 case 6:
857 if (m->m_pkthdr.len < sizeof(struct ip6_hdr)) {
858 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
859 "pkthdr.len(%d) < sizeof(struct ip6_hdr), "
860 "ignored.\n", m->m_pkthdr.len);
861 return EINVAL;
862 }
863 error = ipsec6_setspidx_ipaddr(m, spidx);
864 if (error)
865 return error;
866 ipsec6_get_ulp(m, spidx, needport);
867 return 0;
868 #endif
869 default:
870 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
871 "unknown IP version %u, ignored.\n", v);
872 return EINVAL;
873 }
874 }
875
876 static void
877 ipsec4_get_ulp(struct mbuf *m, struct secpolicyindex *spidx, int needport)
878 {
879 u_int8_t nxt;
880 int off;
881
882 KASSERT(m != NULL);
883 KASSERTMSG(m->m_pkthdr.len >= sizeof(struct ip), "packet too short");
884
885 /* NB: ip_input() flips it into host endian XXX need more checking */
886 if (m->m_len >= sizeof(struct ip)) {
887 struct ip *ip = mtod(m, struct ip *);
888 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
889 goto done;
890 off = ip->ip_hl << 2;
891 nxt = ip->ip_p;
892 } else {
893 struct ip ih;
894
895 m_copydata(m, 0, sizeof(struct ip), &ih);
896 if (ih.ip_off & htons(IP_MF | IP_OFFMASK))
897 goto done;
898 off = ih.ip_hl << 2;
899 nxt = ih.ip_p;
900 }
901
902 while (off < m->m_pkthdr.len) {
903 struct ip6_ext ip6e;
904 struct tcphdr th;
905 struct udphdr uh;
906 struct icmp icmph;
907
908 switch (nxt) {
909 case IPPROTO_TCP:
910 spidx->ul_proto = nxt;
911 if (!needport)
912 goto done_proto;
913 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
914 goto done;
915 m_copydata(m, off, sizeof(th), &th);
916 spidx->src.sin.sin_port = th.th_sport;
917 spidx->dst.sin.sin_port = th.th_dport;
918 return;
919 case IPPROTO_UDP:
920 spidx->ul_proto = nxt;
921 if (!needport)
922 goto done_proto;
923 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
924 goto done;
925 m_copydata(m, off, sizeof(uh), &uh);
926 spidx->src.sin.sin_port = uh.uh_sport;
927 spidx->dst.sin.sin_port = uh.uh_dport;
928 return;
929 case IPPROTO_AH:
930 if (off + sizeof(ip6e) > m->m_pkthdr.len)
931 goto done;
932 /* XXX sigh, this works but is totally bogus */
933 m_copydata(m, off, sizeof(ip6e), &ip6e);
934 off += (ip6e.ip6e_len + 2) << 2;
935 nxt = ip6e.ip6e_nxt;
936 break;
937 case IPPROTO_ICMP:
938 spidx->ul_proto = nxt;
939 if (off + sizeof(struct icmp) > m->m_pkthdr.len)
940 goto done;
941 m_copydata(m, off, sizeof(icmph), &icmph);
942 ((struct sockaddr_in *)&spidx->src)->sin_port =
943 htons((uint16_t)icmph.icmp_type);
944 ((struct sockaddr_in *)&spidx->dst)->sin_port =
945 htons((uint16_t)icmph.icmp_code);
946 return;
947 default:
948 /* XXX intermediate headers??? */
949 spidx->ul_proto = nxt;
950 goto done_proto;
951 }
952 }
953 done:
954 spidx->ul_proto = IPSEC_ULPROTO_ANY;
955 done_proto:
956 spidx->src.sin.sin_port = IPSEC_PORT_ANY;
957 spidx->dst.sin.sin_port = IPSEC_PORT_ANY;
958 }
959
960 static int
961 ipsec4_setspidx_ipaddr(struct mbuf *m, struct secpolicyindex *spidx)
962 {
963 static const struct sockaddr_in template = {
964 sizeof(struct sockaddr_in),
965 AF_INET,
966 0, { 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }
967 };
968
969 spidx->src.sin = template;
970 spidx->dst.sin = template;
971
972 if (m->m_len < sizeof(struct ip)) {
973 m_copydata(m, offsetof(struct ip, ip_src),
974 sizeof(struct in_addr), &spidx->src.sin.sin_addr);
975 m_copydata(m, offsetof(struct ip, ip_dst),
976 sizeof(struct in_addr), &spidx->dst.sin.sin_addr);
977 } else {
978 struct ip *ip = mtod(m, struct ip *);
979 spidx->src.sin.sin_addr = ip->ip_src;
980 spidx->dst.sin.sin_addr = ip->ip_dst;
981 }
982
983 spidx->prefs = sizeof(struct in_addr) << 3;
984 spidx->prefd = sizeof(struct in_addr) << 3;
985
986 return 0;
987 }
988
989 #ifdef INET6
990 static void
991 ipsec6_get_ulp(struct mbuf *m, struct secpolicyindex *spidx, int needport)
992 {
993 int off, nxt;
994 struct tcphdr th;
995 struct udphdr uh;
996 struct icmp6_hdr icmph;
997
998 KASSERT(m != NULL);
999
1000 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1001 kdebug_mbuf(__func__, m);
1002 }
1003
1004 /* set default */
1005 spidx->ul_proto = IPSEC_ULPROTO_ANY;
1006 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = IPSEC_PORT_ANY;
1007 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = IPSEC_PORT_ANY;
1008
1009 nxt = -1;
1010 off = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
1011 if (off < 0 || m->m_pkthdr.len < off)
1012 return;
1013
1014 switch (nxt) {
1015 case IPPROTO_TCP:
1016 spidx->ul_proto = nxt;
1017 if (!needport)
1018 break;
1019 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
1020 break;
1021 m_copydata(m, off, sizeof(th), &th);
1022 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = th.th_sport;
1023 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = th.th_dport;
1024 break;
1025 case IPPROTO_UDP:
1026 spidx->ul_proto = nxt;
1027 if (!needport)
1028 break;
1029 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
1030 break;
1031 m_copydata(m, off, sizeof(uh), &uh);
1032 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = uh.uh_sport;
1033 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = uh.uh_dport;
1034 break;
1035 case IPPROTO_ICMPV6:
1036 spidx->ul_proto = nxt;
1037 if (off + sizeof(struct icmp6_hdr) > m->m_pkthdr.len)
1038 break;
1039 m_copydata(m, off, sizeof(icmph), &icmph);
1040 ((struct sockaddr_in6 *)&spidx->src)->sin6_port =
1041 htons((uint16_t)icmph.icmp6_type);
1042 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port =
1043 htons((uint16_t)icmph.icmp6_code);
1044 break;
1045 default:
1046 /* XXX intermediate headers??? */
1047 spidx->ul_proto = nxt;
1048 break;
1049 }
1050 }
1051
1052 static int
1053 ipsec6_setspidx_ipaddr(struct mbuf *m, struct secpolicyindex *spidx)
1054 {
1055 struct ip6_hdr *ip6 = NULL;
1056 struct ip6_hdr ip6buf;
1057 struct sockaddr_in6 *sin6;
1058
1059 if (m->m_len >= sizeof(*ip6)) {
1060 ip6 = mtod(m, struct ip6_hdr *);
1061 } else {
1062 m_copydata(m, 0, sizeof(ip6buf), &ip6buf);
1063 ip6 = &ip6buf;
1064 }
1065
1066 sin6 = (struct sockaddr_in6 *)&spidx->src;
1067 memset(sin6, 0, sizeof(*sin6));
1068 sin6->sin6_family = AF_INET6;
1069 sin6->sin6_len = sizeof(struct sockaddr_in6);
1070 memcpy(&sin6->sin6_addr, &ip6->ip6_src, sizeof(ip6->ip6_src));
1071 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
1072 sin6->sin6_addr.s6_addr16[1] = 0;
1073 sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]);
1074 }
1075 spidx->prefs = sizeof(struct in6_addr) << 3;
1076
1077 sin6 = (struct sockaddr_in6 *)&spidx->dst;
1078 memset(sin6, 0, sizeof(*sin6));
1079 sin6->sin6_family = AF_INET6;
1080 sin6->sin6_len = sizeof(struct sockaddr_in6);
1081 memcpy(&sin6->sin6_addr, &ip6->ip6_dst, sizeof(ip6->ip6_dst));
1082 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
1083 sin6->sin6_addr.s6_addr16[1] = 0;
1084 sin6->sin6_scope_id = ntohs(ip6->ip6_dst.s6_addr16[1]);
1085 }
1086 spidx->prefd = sizeof(struct in6_addr) << 3;
1087
1088 return 0;
1089 }
1090 #endif
1091
1092 static void
1093 ipsec_delpcbpolicy(struct inpcbpolicy *p)
1094 {
1095
1096 kmem_intr_free(p, sizeof(*p));
1097 }
1098
1099 int
1100 ipsec_init_pcbpolicy(struct socket *so, struct inpcbpolicy **policy)
1101 {
1102 struct inpcbpolicy *new;
1103
1104 KASSERT(so != NULL);
1105 KASSERT(policy != NULL);
1106
1107 new = kmem_intr_zalloc(sizeof(*new), KM_NOSLEEP);
1108 if (new == NULL) {
1109 IPSECLOG(LOG_DEBUG, "No more memory.\n");
1110 return ENOBUFS;
1111 }
1112
1113 if (IPSEC_PRIVILEGED_SO(so))
1114 new->priv = 1;
1115 else
1116 new->priv = 0;
1117
1118 /*
1119 * Set dummy SPs. Actual SPs will be allocated later if needed.
1120 */
1121 new->sp_in = &ipsec_dummy_sp;
1122 new->sp_out = &ipsec_dummy_sp;
1123
1124 *policy = new;
1125
1126 return 0;
1127 }
1128
1129 static void
1130 ipsec_destroy_policy(struct secpolicy *sp)
1131 {
1132
1133 if (sp == &ipsec_dummy_sp) {
1134 ; /* It's dummy. No need to free it. */
1135 } else {
1136 /*
1137 * We cannot destroy here because it can be called in
1138 * softint. So mark the SP as DEAD and let the timer
1139 * destroy it. See key_timehandler_spd.
1140 */
1141 sp->state = IPSEC_SPSTATE_DEAD;
1142 }
1143 }
1144
1145 int
1146 ipsec_set_policy(void *inp, const void *request, size_t len,
1147 kauth_cred_t cred)
1148 {
1149 struct inpcb_hdr *inph = (struct inpcb_hdr *)inp;
1150 const struct sadb_x_policy *xpl;
1151 struct secpolicy *newsp, *oldsp;
1152 struct secpolicy **policy;
1153 int error;
1154
1155 KASSERT(!cpu_softintr_p());
1156 KASSERT(inph != NULL);
1157 KASSERT(inph_locked(inph));
1158 KASSERT(request != NULL);
1159
1160 if (len < sizeof(*xpl))
1161 return EINVAL;
1162 xpl = (const struct sadb_x_policy *)request;
1163
1164 KASSERT(inph->inph_sp != NULL);
1165
1166 /* select direction */
1167 switch (xpl->sadb_x_policy_dir) {
1168 case IPSEC_DIR_INBOUND:
1169 policy = &inph->inph_sp->sp_in;
1170 break;
1171 case IPSEC_DIR_OUTBOUND:
1172 policy = &inph->inph_sp->sp_out;
1173 break;
1174 default:
1175 IPSECLOG(LOG_ERR, "invalid direction=%u\n",
1176 xpl->sadb_x_policy_dir);
1177 return EINVAL;
1178 }
1179
1180 /* sanity check. */
1181 if (policy == NULL || *policy == NULL)
1182 return EINVAL;
1183
1184 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1185 kdebug_sadb_xpolicy("set passed policy", request);
1186 }
1187
1188 /* check policy type */
1189 /* ipsec_set_policy() accepts IPSEC, ENTRUST and BYPASS. */
1190 if (xpl->sadb_x_policy_type == IPSEC_POLICY_DISCARD ||
1191 xpl->sadb_x_policy_type == IPSEC_POLICY_NONE)
1192 return EINVAL;
1193
1194 /* check privileged socket */
1195 if (xpl->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1196 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPSEC,
1197 KAUTH_REQ_NETWORK_IPSEC_BYPASS, NULL, NULL, NULL);
1198 if (error)
1199 return error;
1200 }
1201
1202 /* allocation new SP entry */
1203 if ((newsp = key_msg2sp(xpl, len, &error)) == NULL)
1204 return error;
1205
1206 key_init_sp(newsp);
1207 newsp->created = time_uptime;
1208 /* Insert the global list for SPs for sockets */
1209 key_socksplist_add(newsp);
1210
1211 /* clear old SP and set new SP */
1212 oldsp = *policy;
1213 *policy = newsp;
1214 ipsec_destroy_policy(oldsp);
1215
1216 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1217 printf("%s: new policy\n", __func__);
1218 kdebug_secpolicy(newsp);
1219 }
1220
1221 return 0;
1222 }
1223
1224 int
1225 ipsec_get_policy(void *inp, const void *request, size_t len,
1226 struct mbuf **mp)
1227 {
1228 struct inpcb_hdr *inph = (struct inpcb_hdr *)inp;
1229 const struct sadb_x_policy *xpl;
1230 struct secpolicy *policy;
1231
1232 /* sanity check. */
1233 if (inph == NULL || request == NULL || mp == NULL)
1234 return EINVAL;
1235 KASSERT(inph->inph_sp != NULL);
1236 if (len < sizeof(*xpl))
1237 return EINVAL;
1238 xpl = (const struct sadb_x_policy *)request;
1239
1240 /* select direction */
1241 switch (xpl->sadb_x_policy_dir) {
1242 case IPSEC_DIR_INBOUND:
1243 policy = inph->inph_sp->sp_in;
1244 break;
1245 case IPSEC_DIR_OUTBOUND:
1246 policy = inph->inph_sp->sp_out;
1247 break;
1248 default:
1249 IPSECLOG(LOG_ERR, "invalid direction=%u\n",
1250 xpl->sadb_x_policy_dir);
1251 return EINVAL;
1252 }
1253
1254 if (policy == NULL)
1255 return EINVAL;
1256
1257 *mp = key_sp2msg(policy, M_NOWAIT);
1258 if (!*mp) {
1259 IPSECLOG(LOG_DEBUG, "No more memory.\n");
1260 return ENOBUFS;
1261 }
1262
1263 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1264 kdebug_mbuf(__func__, *mp);
1265 }
1266
1267 return 0;
1268 }
1269
1270 int
1271 ipsec_delete_pcbpolicy(void *inp)
1272 {
1273 struct inpcb_hdr *inph = (struct inpcb_hdr *)inp;
1274
1275 KASSERT(inph != NULL);
1276
1277 if (inph->inph_sp == NULL)
1278 return 0;
1279
1280 if (inph->inph_sp->sp_in != NULL)
1281 ipsec_destroy_policy(inph->inph_sp->sp_in);
1282
1283 if (inph->inph_sp->sp_out != NULL)
1284 ipsec_destroy_policy(inph->inph_sp->sp_out);
1285
1286 ipsec_invalpcbcache(inph->inph_sp, IPSEC_DIR_ANY);
1287
1288 ipsec_delpcbpolicy(inph->inph_sp);
1289 inph->inph_sp = NULL;
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Return the current level (either IPSEC_LEVEL_USE or IPSEC_LEVEL_REQUIRE).
1296 */
1297 u_int
1298 ipsec_get_reqlevel(const struct ipsecrequest *isr)
1299 {
1300 u_int level = 0;
1301 u_int esp_trans_deflev, esp_net_deflev;
1302 u_int ah_trans_deflev, ah_net_deflev;
1303
1304 KASSERT(isr != NULL);
1305 KASSERT(isr->sp != NULL);
1306 KASSERTMSG(
1307 isr->sp->spidx.src.sa.sa_family == isr->sp->spidx.dst.sa.sa_family,
1308 "af family mismatch, src %u, dst %u",
1309 isr->sp->spidx.src.sa.sa_family, isr->sp->spidx.dst.sa.sa_family);
1310
1311 /* XXX note that we have ipseclog() expanded here - code sync issue */
1312 #define IPSEC_CHECK_DEFAULT(lev) \
1313 (((lev) != IPSEC_LEVEL_USE && (lev) != IPSEC_LEVEL_REQUIRE \
1314 && (lev) != IPSEC_LEVEL_UNIQUE) ? \
1315 (ipsec_debug ? log(LOG_INFO, "fixed system default level " #lev \
1316 ":%d->%d\n", (lev), IPSEC_LEVEL_REQUIRE) : (void)0), \
1317 (lev) = IPSEC_LEVEL_REQUIRE, (lev) \
1318 : (lev))
1319
1320 /* set default level */
1321 switch (((struct sockaddr *)&isr->sp->spidx.src)->sa_family) {
1322 #ifdef INET
1323 case AF_INET:
1324 esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_trans_deflev);
1325 esp_net_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_net_deflev);
1326 ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_trans_deflev);
1327 ah_net_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_net_deflev);
1328 break;
1329 #endif
1330 #ifdef INET6
1331 case AF_INET6:
1332 esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_trans_deflev);
1333 esp_net_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_net_deflev);
1334 ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_trans_deflev);
1335 ah_net_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_net_deflev);
1336 break;
1337 #endif
1338 default:
1339 panic("%s: unknown af %u", __func__,
1340 isr->sp->spidx.src.sa.sa_family);
1341 }
1342
1343 #undef IPSEC_CHECK_DEFAULT
1344
1345 /* set level */
1346 switch (isr->level) {
1347 case IPSEC_LEVEL_DEFAULT:
1348 switch (isr->saidx.proto) {
1349 case IPPROTO_ESP:
1350 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
1351 level = esp_net_deflev;
1352 else
1353 level = esp_trans_deflev;
1354 break;
1355 case IPPROTO_AH:
1356 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
1357 level = ah_net_deflev;
1358 else
1359 level = ah_trans_deflev;
1360 break;
1361 case IPPROTO_IPCOMP:
1362 /*
1363 * we don't really care, as IPcomp document says that
1364 * we shouldn't compress small packets
1365 */
1366 level = IPSEC_LEVEL_USE;
1367 break;
1368 default:
1369 panic("%s: Illegal protocol defined %u", __func__,
1370 isr->saidx.proto);
1371 }
1372 break;
1373
1374 case IPSEC_LEVEL_USE:
1375 case IPSEC_LEVEL_REQUIRE:
1376 level = isr->level;
1377 break;
1378 case IPSEC_LEVEL_UNIQUE:
1379 level = IPSEC_LEVEL_REQUIRE;
1380 break;
1381
1382 default:
1383 panic("%s: Illegal IPsec level %u", __func__, isr->level);
1384 }
1385
1386 return level;
1387 }
1388
1389 /*
1390 * Check security policy requirements against the actual packet contents.
1391 *
1392 * If the SP requires an IPsec packet, and the packet was neither AH nor ESP,
1393 * then kick it.
1394 */
1395 static int
1396 ipsec_sp_reject(const struct secpolicy *sp, const struct mbuf *m)
1397 {
1398 struct ipsecrequest *isr;
1399
1400 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
1401 printf("%s: using SP\n", __func__);
1402 kdebug_secpolicy(sp);
1403 }
1404
1405 /* check policy */
1406 switch (sp->policy) {
1407 case IPSEC_POLICY_DISCARD:
1408 return 1;
1409 case IPSEC_POLICY_BYPASS:
1410 case IPSEC_POLICY_NONE:
1411 return 0;
1412 }
1413
1414 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
1415 "invalid policy %u", sp->policy);
1416
1417 /* XXX should compare policy against ipsec header history */
1418
1419 for (isr = sp->req; isr != NULL; isr = isr->next) {
1420 if (ipsec_get_reqlevel(isr) != IPSEC_LEVEL_REQUIRE)
1421 continue;
1422 switch (isr->saidx.proto) {
1423 case IPPROTO_ESP:
1424 if ((m->m_flags & M_DECRYPTED) == 0) {
1425 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1426 "ESP m_flags:%x\n", m->m_flags);
1427 return 1;
1428 }
1429 break;
1430 case IPPROTO_AH:
1431 if ((m->m_flags & M_AUTHIPHDR) == 0) {
1432 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1433 "AH m_flags:%x\n", m->m_flags);
1434 return 1;
1435 }
1436 break;
1437 case IPPROTO_IPCOMP:
1438 /*
1439 * We don't really care, as IPcomp document
1440 * says that we shouldn't compress small
1441 * packets, IPComp policy should always be
1442 * treated as being in "use" level.
1443 */
1444 break;
1445 }
1446 }
1447
1448 return 0;
1449 }
1450
1451 /*
1452 * Check security policy requirements.
1453 */
1454 int
1455 ipsec_in_reject(struct mbuf *m, void *inp)
1456 {
1457 struct inpcb_hdr *inph = (struct inpcb_hdr *)inp;
1458 struct secpolicy *sp;
1459 int error;
1460 int result;
1461
1462 KASSERT(m != NULL);
1463
1464 if (inph == NULL)
1465 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1466 IP_FORWARDING, &error);
1467 else
1468 sp = ipsec_getpolicybysock(m, IPSEC_DIR_INBOUND,
1469 inph, &error);
1470
1471 if (sp != NULL) {
1472 result = ipsec_sp_reject(sp, m);
1473 if (result)
1474 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1475 KEY_SP_UNREF(&sp);
1476 } else {
1477 result = 0;
1478 }
1479 return result;
1480 }
1481
1482 /*
1483 * Compute the byte size to be occupied by the IPsec header. If it is
1484 * tunneled, it includes the size of outer IP header.
1485 */
1486 static size_t
1487 ipsec_sp_hdrsiz(const struct secpolicy *sp, const struct mbuf *m)
1488 {
1489 struct ipsecrequest *isr;
1490 size_t siz;
1491
1492 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
1493 printf("%s: using SP\n", __func__);
1494 kdebug_secpolicy(sp);
1495 }
1496
1497 switch (sp->policy) {
1498 case IPSEC_POLICY_DISCARD:
1499 case IPSEC_POLICY_BYPASS:
1500 case IPSEC_POLICY_NONE:
1501 return 0;
1502 }
1503
1504 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
1505 "invalid policy %u", sp->policy);
1506
1507 siz = 0;
1508 for (isr = sp->req; isr != NULL; isr = isr->next) {
1509 size_t clen = 0;
1510 struct secasvar *sav;
1511
1512 switch (isr->saidx.proto) {
1513 case IPPROTO_ESP:
1514 sav = ipsec_lookup_sa(isr, m);
1515 if (sav != NULL) {
1516 clen = esp_hdrsiz(sav);
1517 KEY_SA_UNREF(&sav);
1518 } else
1519 clen = esp_hdrsiz(NULL);
1520 break;
1521 case IPPROTO_AH:
1522 sav = ipsec_lookup_sa(isr, m);
1523 if (sav != NULL) {
1524 clen = ah_hdrsiz(sav);
1525 KEY_SA_UNREF(&sav);
1526 } else
1527 clen = ah_hdrsiz(NULL);
1528 break;
1529 case IPPROTO_IPCOMP:
1530 clen = sizeof(struct ipcomp);
1531 break;
1532 }
1533
1534 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1535 switch (isr->saidx.dst.sa.sa_family) {
1536 case AF_INET:
1537 clen += sizeof(struct ip);
1538 break;
1539 #ifdef INET6
1540 case AF_INET6:
1541 clen += sizeof(struct ip6_hdr);
1542 break;
1543 #endif
1544 default:
1545 IPSECLOG(LOG_ERR, "unknown AF %d in "
1546 "IPsec tunnel SA\n",
1547 ((const struct sockaddr *)&isr->saidx.dst)
1548 ->sa_family);
1549 break;
1550 }
1551 }
1552 siz += clen;
1553 }
1554
1555 return siz;
1556 }
1557
1558 size_t
1559 ipsec_hdrsiz(struct mbuf *m, u_int dir, void *inp)
1560 {
1561 struct inpcb_hdr *inph = (struct inpcb_hdr *)inp;
1562 struct secpolicy *sp;
1563 int error;
1564 size_t size;
1565
1566 KASSERT(m != NULL);
1567 KASSERTMSG(inph == NULL || inph->inph_socket != NULL,
1568 "socket w/o inpcb");
1569
1570 if (inph == NULL)
1571 sp = ipsec_getpolicybyaddr(m, dir, IP_FORWARDING, &error);
1572 else
1573 sp = ipsec_getpolicybysock(m, dir, inph, &error);
1574
1575 if (sp != NULL) {
1576 size = ipsec_sp_hdrsiz(sp, m);
1577 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DATA, "size:%zu.\n", size);
1578 KEY_SP_UNREF(&sp);
1579 } else {
1580 size = 0;
1581 }
1582
1583 return size;
1584 }
1585
1586 /*
1587 * Check the variable replay window.
1588 * ipsec_chkreplay() performs replay check before ICV verification.
1589 * ipsec_updatereplay() updates replay bitmap. This must be called after
1590 * ICV verification (it also performs replay check, which is usually done
1591 * beforehand).
1592 * 0 (zero) is returned if packet disallowed, 1 if packet permitted.
1593 *
1594 * based on RFC 2401.
1595 */
1596 int
1597 ipsec_chkreplay(u_int32_t seq, const struct secasvar *sav)
1598 {
1599 const struct secreplay *replay;
1600 u_int32_t diff;
1601 int fr;
1602 u_int32_t wsizeb; /* constant: bits of window size */
1603 int frlast; /* constant: last frame */
1604
1605 KASSERT(sav != NULL);
1606 KASSERT(sav->replay != NULL);
1607
1608 replay = sav->replay;
1609
1610 if (replay->wsize == 0)
1611 return 1; /* no need to check replay. */
1612
1613 /* constant */
1614 frlast = replay->wsize - 1;
1615 wsizeb = replay->wsize << 3;
1616
1617 /* sequence number of 0 is invalid */
1618 if (seq == 0)
1619 return 0;
1620
1621 /* first time is always okay */
1622 if (replay->count == 0)
1623 return 1;
1624
1625 if (seq > replay->lastseq) {
1626 /* larger sequences are okay */
1627 return 1;
1628 } else {
1629 /* seq is equal or less than lastseq. */
1630 diff = replay->lastseq - seq;
1631
1632 /* over range to check, i.e. too old or wrapped */
1633 if (diff >= wsizeb)
1634 return 0;
1635
1636 fr = frlast - diff / 8;
1637
1638 /* this packet already seen ? */
1639 if ((replay->bitmap)[fr] & (1 << (diff % 8)))
1640 return 0;
1641
1642 /* out of order but good */
1643 return 1;
1644 }
1645 }
1646
1647 /*
1648 * check replay counter whether to update or not.
1649 * OUT: 0: OK
1650 * 1: NG
1651 */
1652 int
1653 ipsec_updatereplay(u_int32_t seq, const struct secasvar *sav)
1654 {
1655 struct secreplay *replay;
1656 u_int32_t diff;
1657 int fr;
1658 u_int32_t wsizeb; /* constant: bits of window size */
1659 int frlast; /* constant: last frame */
1660
1661 KASSERT(sav != NULL);
1662 KASSERT(sav->replay != NULL);
1663
1664 replay = sav->replay;
1665
1666 if (replay->wsize == 0)
1667 goto ok; /* no need to check replay. */
1668
1669 /* constant */
1670 frlast = replay->wsize - 1;
1671 wsizeb = replay->wsize << 3;
1672
1673 /* sequence number of 0 is invalid */
1674 if (seq == 0)
1675 return 1;
1676
1677 /* first time */
1678 if (replay->count == 0) {
1679 replay->lastseq = seq;
1680 memset(replay->bitmap, 0, replay->wsize);
1681 (replay->bitmap)[frlast] = 1;
1682 goto ok;
1683 }
1684
1685 if (seq > replay->lastseq) {
1686 /* seq is larger than lastseq. */
1687 diff = seq - replay->lastseq;
1688
1689 /* new larger sequence number */
1690 if (diff < wsizeb) {
1691 /* In window */
1692 /* set bit for this packet */
1693 vshiftl(replay->bitmap, diff, replay->wsize);
1694 (replay->bitmap)[frlast] |= 1;
1695 } else {
1696 /* this packet has a "way larger" */
1697 memset(replay->bitmap, 0, replay->wsize);
1698 (replay->bitmap)[frlast] = 1;
1699 }
1700 replay->lastseq = seq;
1701
1702 /* larger is good */
1703 } else {
1704 /* seq is equal or less than lastseq. */
1705 diff = replay->lastseq - seq;
1706
1707 /* over range to check, i.e. too old or wrapped */
1708 if (diff >= wsizeb)
1709 return 1;
1710
1711 fr = frlast - diff / 8;
1712
1713 /* this packet already seen ? */
1714 if ((replay->bitmap)[fr] & (1 << (diff % 8)))
1715 return 1;
1716
1717 /* mark as seen */
1718 (replay->bitmap)[fr] |= (1 << (diff % 8));
1719
1720 /* out of order but good */
1721 }
1722
1723 ok:
1724 if (replay->count == ~0) {
1725 char buf[IPSEC_LOGSASTRLEN];
1726
1727 /* set overflow flag */
1728 replay->overflow++;
1729
1730 /* don't increment, no more packets accepted */
1731 if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0)
1732 return 1;
1733
1734 IPSECLOG(LOG_WARNING, "replay counter made %d cycle. %s\n",
1735 replay->overflow, ipsec_logsastr(sav, buf, sizeof(buf)));
1736 }
1737
1738 replay->count++;
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * shift variable length buffer to left.
1745 * IN: bitmap: pointer to the buffer
1746 * nbit: the number of to shift.
1747 * wsize: buffer size (bytes).
1748 */
1749 static void
1750 vshiftl(unsigned char *bitmap, int nbit, int wsize)
1751 {
1752 int s, j, i;
1753 unsigned char over;
1754
1755 for (j = 0; j < nbit; j += 8) {
1756 s = (nbit - j < 8) ? (nbit - j): 8;
1757 bitmap[0] <<= s;
1758 for (i = 1; i < wsize; i++) {
1759 over = (bitmap[i] >> (8 - s));
1760 bitmap[i] <<= s;
1761 bitmap[i-1] |= over;
1762 }
1763 }
1764
1765 return;
1766 }
1767
1768 /* Return a printable string for the address. */
1769 const char *
1770 ipsec_address(const union sockaddr_union *sa, char *buf, size_t size)
1771 {
1772 switch (sa->sa.sa_family) {
1773 case AF_INET:
1774 in_print(buf, size, &sa->sin.sin_addr);
1775 return buf;
1776 #if INET6
1777 case AF_INET6:
1778 in6_print(buf, size, &sa->sin6.sin6_addr);
1779 return buf;
1780 #endif
1781 default:
1782 return "(unknown address family)";
1783 }
1784 }
1785
1786 const char *
1787 ipsec_logsastr(const struct secasvar *sav, char *buf, size_t size)
1788 {
1789 const struct secasindex *saidx = &sav->sah->saidx;
1790 char sbuf[IPSEC_ADDRSTRLEN], dbuf[IPSEC_ADDRSTRLEN];
1791
1792 KASSERTMSG(saidx->src.sa.sa_family == saidx->dst.sa.sa_family,
1793 "af family mismatch, src %u, dst %u",
1794 saidx->src.sa.sa_family, saidx->dst.sa.sa_family);
1795
1796 snprintf(buf, size, "SA(SPI=%u src=%s dst=%s)",
1797 (u_int32_t)ntohl(sav->spi),
1798 ipsec_address(&saidx->src, sbuf, sizeof(sbuf)),
1799 ipsec_address(&saidx->dst, dbuf, sizeof(dbuf)));
1800
1801 return buf;
1802 }
1803
1804 #ifdef INET6
1805 struct secpolicy *
1806 ipsec6_check_policy(struct mbuf *m, struct in6pcb *in6p, int flags,
1807 int *needipsecp, int *errorp)
1808 {
1809 struct secpolicy *sp = NULL;
1810 int s;
1811 int error = 0;
1812 int needipsec = 0;
1813
1814 if (ipsec_outdone(m)) {
1815 goto skippolicycheck;
1816 }
1817 s = splsoftnet();
1818 if (in6p && ipsec_pcb_skip_ipsec(in6p->in6p_sp, IPSEC_DIR_OUTBOUND)) {
1819 splx(s);
1820 goto skippolicycheck;
1821 }
1822 sp = ipsec_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, &error, in6p);
1823 splx(s);
1824
1825 /*
1826 * There are four return cases:
1827 * sp != NULL apply IPsec policy
1828 * sp == NULL, error == 0 no IPsec handling needed
1829 * sp == NULL, error == -EINVAL discard packet w/o error
1830 * sp == NULL, error != 0 discard packet, report error
1831 */
1832 if (sp == NULL) {
1833 needipsec = 0;
1834 } else {
1835 needipsec = 1;
1836 }
1837
1838 skippolicycheck:
1839 *errorp = error;
1840 *needipsecp = needipsec;
1841 return sp;
1842 }
1843
1844 /*
1845 * calculate UDP checksum for UDP encapsulated ESP for IPv6.
1846 *
1847 * RFC2460(Internet Protocol, Version 6 Specification) says:
1848 *
1849 * IPv6 receivers MUST discard UDP packets with a zero checksum.
1850 *
1851 * There is more relaxed speficication RFC6935(IPv6 and UDP Checksums for
1852 * Tunneled Packets). The document allows zero checksum. It's too
1853 * late to publish, there are a lot of interoperability problems...
1854 */
1855 void
1856 ipsec6_udp_cksum(struct mbuf *m)
1857 {
1858 struct ip6_hdr *ip6;
1859 uint16_t plen, uh_sum;
1860 int off;
1861
1862 /* must called after m_pullup() */
1863 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
1864
1865 ip6 = mtod(m, struct ip6_hdr *);
1866 KASSERT(ip6->ip6_nxt == IPPROTO_UDP);
1867
1868 /* ip6->ip6_plen can not be updated before ip6_output() */
1869 plen = m->m_pkthdr.len - sizeof(*ip6);
1870 KASSERT(plen >= sizeof(struct udphdr));
1871
1872 uh_sum = in6_cksum(m, IPPROTO_UDP, sizeof(*ip6), plen);
1873 if (uh_sum == 0)
1874 uh_sum = 0xffff;
1875
1876 off = sizeof(*ip6) + offsetof(struct udphdr, uh_sum);
1877 m_copyback(m, off, sizeof(uh_sum), (void *)&uh_sum);
1878 }
1879 #endif /* INET6 */
1880
1881 /*
1882 * -----------------------------------------------------------------------------
1883 */
1884
1885 /* XXX this stuff doesn't belong here... */
1886
1887 static struct xformsw *xforms = NULL;
1888
1889 /*
1890 * Register a transform; typically at system startup.
1891 */
1892 void
1893 xform_register(struct xformsw *xsp)
1894 {
1895 xsp->xf_next = xforms;
1896 xforms = xsp;
1897 }
1898
1899 /*
1900 * Initialize transform support in an sav.
1901 */
1902 int
1903 xform_init(struct secasvar *sav, int xftype)
1904 {
1905 struct xformsw *xsp;
1906
1907 if (sav->tdb_xform != NULL) /* previously initialized */
1908 return 0;
1909 for (xsp = xforms; xsp; xsp = xsp->xf_next)
1910 if (xsp->xf_type == xftype)
1911 return (*xsp->xf_init)(sav, xsp);
1912
1913 IPSECLOG(LOG_DEBUG, "no match for xform type %d\n", xftype);
1914 return EINVAL;
1915 }
1916
1917 /*
1918 * XXXJRT This should be done as a protosw init call.
1919 */
1920 void
1921 ipsec_attach(void)
1922 {
1923
1924 ipsec_output_init();
1925
1926 ipsecstat_percpu = percpu_alloc(sizeof(uint64_t) * IPSEC_NSTATS);
1927
1928 sysctl_net_inet_ipsec_setup(NULL);
1929 #ifdef INET6
1930 sysctl_net_inet6_ipsec6_setup(NULL);
1931 #endif
1932
1933 ah_attach();
1934 esp_attach();
1935 ipcomp_attach();
1936 ipe4_attach();
1937 #ifdef TCP_SIGNATURE
1938 tcpsignature_attach();
1939 #endif
1940 }
1941