ipsec.c revision 1.174 1 /* $NetBSD: ipsec.c,v 1.174 2022/10/28 05:18:39 ozaki-r Exp $ */
2 /* $FreeBSD: ipsec.c,v 1.2.2.2 2003/07/01 01:38:13 sam Exp $ */
3 /* $KAME: ipsec.c,v 1.103 2001/05/24 07:14:18 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: ipsec.c,v 1.174 2022/10/28 05:18:39 ozaki-r Exp $");
36
37 /*
38 * IPsec controller part.
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #endif
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/mbuf.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/errno.h>
54 #include <sys/time.h>
55 #include <sys/kernel.h>
56 #include <sys/syslog.h>
57 #include <sys/sysctl.h>
58 #include <sys/proc.h>
59 #include <sys/kauth.h>
60 #include <sys/cpu.h>
61 #include <sys/kmem.h>
62 #include <sys/pserialize.h>
63
64 #include <net/if.h>
65 #include <net/route.h>
66
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/in_var.h>
72 #include <netinet/udp.h>
73 #include <netinet/udp_var.h>
74 #include <netinet/tcp.h>
75 #include <netinet/udp.h>
76 #include <netinet/ip_icmp.h>
77 #include <netinet/ip_private.h>
78
79 #include <netinet/ip6.h>
80 #ifdef INET6
81 #include <netinet6/ip6_var.h>
82 #endif
83 #include <netinet/in_pcb.h>
84 #include <netinet/in_offload.h>
85 #ifdef INET6
86 #include <netinet6/in6_pcb.h>
87 #include <netinet/icmp6.h>
88 #endif
89
90 #include <netipsec/ipsec.h>
91 #include <netipsec/ipsec_var.h>
92 #include <netipsec/ipsec_private.h>
93 #ifdef INET6
94 #include <netipsec/ipsec6.h>
95 #endif
96 #include <netipsec/ah_var.h>
97 #include <netipsec/esp_var.h>
98 #include <netipsec/ipcomp.h> /*XXX*/
99 #include <netipsec/ipcomp_var.h>
100
101 #include <netipsec/key.h>
102 #include <netipsec/keydb.h>
103 #include <netipsec/key_debug.h>
104
105 #include <netipsec/xform.h>
106
107 int ipsec_used = 0;
108 int ipsec_enabled = 1;
109
110 #ifdef IPSEC_DEBUG
111 int ipsec_debug = 1;
112
113 /*
114 * When set to 1, IPsec will send packets with the same sequence number.
115 * This allows to verify if the other side has proper replay attacks detection.
116 */
117 int ipsec_replay = 0;
118
119 /*
120 * When set 1, IPsec will send packets with corrupted HMAC.
121 * This allows to verify if the other side properly detects modified packets.
122 */
123 int ipsec_integrity = 0;
124 #else
125 int ipsec_debug = 0;
126 #endif
127
128 percpu_t *ipsecstat_percpu;
129
130 int ip4_ah_offsetmask = 0; /* maybe IP_DF? */
131 int ip4_ipsec_dfbit = 2; /* DF bit on encap. 0: clear 1: set 2: copy */
132 int ip4_esp_trans_deflev = IPSEC_LEVEL_USE;
133 int ip4_esp_net_deflev = IPSEC_LEVEL_USE;
134 int ip4_ah_trans_deflev = IPSEC_LEVEL_USE;
135 int ip4_ah_net_deflev = IPSEC_LEVEL_USE;
136 struct secpolicy ip4_def_policy;
137 int ip4_ipsec_ecn = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
138
139 u_int ipsec_spdgen = 1; /* SPD generation # */
140
141 static struct secpolicy ipsec_dummy_sp __read_mostly = {
142 .state = IPSEC_SPSTATE_ALIVE,
143 /* If ENTRUST, the dummy SP never be used. See ipsec_getpolicybysock. */
144 .policy = IPSEC_POLICY_ENTRUST,
145 };
146
147 static struct secpolicy *ipsec_checkpcbcache(struct mbuf *,
148 struct inpcbpolicy *, int);
149 static int ipsec_fillpcbcache(struct inpcbpolicy *, struct mbuf *,
150 struct secpolicy *, int);
151 static int ipsec_invalpcbcache(struct inpcbpolicy *, int);
152
153 /*
154 * Crypto support requirements:
155 *
156 * 1 require hardware support
157 * -1 require software support
158 * 0 take anything
159 */
160 int crypto_support = 0;
161
162 static struct secpolicy *ipsec_getpolicybysock(struct mbuf *, u_int,
163 struct inpcb *, int *);
164
165 #ifdef INET6
166 int ip6_esp_trans_deflev = IPSEC_LEVEL_USE;
167 int ip6_esp_net_deflev = IPSEC_LEVEL_USE;
168 int ip6_ah_trans_deflev = IPSEC_LEVEL_USE;
169 int ip6_ah_net_deflev = IPSEC_LEVEL_USE;
170 struct secpolicy ip6_def_policy;
171 int ip6_ipsec_ecn = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
172 #endif
173
174 static int ipsec_setspidx_inpcb(struct mbuf *, struct inpcb *);
175 static int ipsec_setspidx(struct mbuf *, struct secpolicyindex *, int, int);
176 static void ipsec4_get_ulp(struct mbuf *m, struct secpolicyindex *, int);
177 static int ipsec4_setspidx_ipaddr(struct mbuf *, struct secpolicyindex *);
178 #ifdef INET6
179 static void ipsec6_get_ulp(struct mbuf *m, struct secpolicyindex *, int);
180 static int ipsec6_setspidx_ipaddr(struct mbuf *, struct secpolicyindex *);
181 #endif
182 static void ipsec_delpcbpolicy(struct inpcbpolicy *);
183 static void ipsec_destroy_policy(struct secpolicy *);
184 static int ipsec_sp_reject(const struct secpolicy *, const struct mbuf *);
185 static void vshiftl(unsigned char *, int, int);
186 static size_t ipsec_sp_hdrsiz(const struct secpolicy *, const struct mbuf *);
187
188 /*
189 * Try to validate and use cached policy on a PCB.
190 */
191 static struct secpolicy *
192 ipsec_checkpcbcache(struct mbuf *m, struct inpcbpolicy *pcbsp, int dir)
193 {
194 struct secpolicyindex spidx;
195 struct secpolicy *sp = NULL;
196 int s;
197
198 KASSERT(IPSEC_DIR_IS_VALID(dir));
199 KASSERT(pcbsp != NULL);
200 KASSERT(dir < __arraycount(pcbsp->sp_cache));
201 KASSERT(inp_locked(pcbsp->sp_inp));
202
203 /*
204 * Checking the generation and sp->state and taking a reference to an SP
205 * must be in a critical section of pserialize. See key_unlink_sp.
206 */
207 s = pserialize_read_enter();
208 /* SPD table change invalidate all the caches. */
209 if (ipsec_spdgen != pcbsp->sp_cache[dir].cachegen) {
210 ipsec_invalpcbcache(pcbsp, dir);
211 goto out;
212 }
213 sp = pcbsp->sp_cache[dir].cachesp;
214 if (sp == NULL)
215 goto out;
216 if (sp->state != IPSEC_SPSTATE_ALIVE) {
217 sp = NULL;
218 ipsec_invalpcbcache(pcbsp, dir);
219 goto out;
220 }
221 if ((pcbsp->sp_cacheflags & IPSEC_PCBSP_CONNECTED) == 0) {
222 /* NB: assume ipsec_setspidx never sleep */
223 if (ipsec_setspidx(m, &spidx, dir, 1) != 0) {
224 sp = NULL;
225 goto out;
226 }
227
228 /*
229 * We have to make an exact match here since the cached rule
230 * might have lower priority than a rule that would otherwise
231 * have matched the packet.
232 */
233 if (memcmp(&pcbsp->sp_cache[dir].cacheidx, &spidx,
234 sizeof(spidx))) {
235 sp = NULL;
236 goto out;
237 }
238 } else {
239 /*
240 * The pcb is connected, and the L4 code is sure that:
241 * - outgoing side uses inp_[lf]addr
242 * - incoming side looks up policy after inpcb lookup
243 * and address pair is know to be stable. We do not need
244 * to generate spidx again, nor check the address match again.
245 *
246 * For IPv4/v6 SOCK_STREAM sockets, this assumptions holds
247 * and there are calls to ipsec_pcbconn() from in_pcbconnect().
248 */
249 }
250
251 sp->lastused = time_second;
252 KEY_SP_REF(sp);
253 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
254 "DP cause refcnt++:%d SP:%p\n",
255 key_sp_refcnt(sp), pcbsp->sp_cache[dir].cachesp);
256 out:
257 pserialize_read_exit(s);
258 return sp;
259 }
260
261 static int
262 ipsec_fillpcbcache(struct inpcbpolicy *pcbsp, struct mbuf *m,
263 struct secpolicy *sp, int dir)
264 {
265
266 KASSERT(IPSEC_DIR_IS_INOROUT(dir));
267 KASSERT(dir < __arraycount(pcbsp->sp_cache));
268 KASSERT(inp_locked(pcbsp->sp_inp));
269
270 pcbsp->sp_cache[dir].cachesp = NULL;
271 pcbsp->sp_cache[dir].cachehint = IPSEC_PCBHINT_UNKNOWN;
272 if (ipsec_setspidx(m, &pcbsp->sp_cache[dir].cacheidx, dir, 1) != 0) {
273 return EINVAL;
274 }
275 pcbsp->sp_cache[dir].cachesp = sp;
276 if (pcbsp->sp_cache[dir].cachesp) {
277 /*
278 * If the PCB is connected, we can remember a hint to
279 * possibly short-circuit IPsec processing in other places.
280 */
281 if (pcbsp->sp_cacheflags & IPSEC_PCBSP_CONNECTED) {
282 switch (pcbsp->sp_cache[dir].cachesp->policy) {
283 case IPSEC_POLICY_NONE:
284 case IPSEC_POLICY_BYPASS:
285 pcbsp->sp_cache[dir].cachehint =
286 IPSEC_PCBHINT_NO;
287 break;
288 default:
289 pcbsp->sp_cache[dir].cachehint =
290 IPSEC_PCBHINT_YES;
291 }
292 }
293 }
294 pcbsp->sp_cache[dir].cachegen = ipsec_spdgen;
295
296 return 0;
297 }
298
299 static int
300 ipsec_invalpcbcache(struct inpcbpolicy *pcbsp, int dir)
301 {
302 int i;
303
304 KASSERT(inp_locked(pcbsp->sp_inp));
305
306 for (i = IPSEC_DIR_INBOUND; i <= IPSEC_DIR_OUTBOUND; i++) {
307 if (dir != IPSEC_DIR_ANY && i != dir)
308 continue;
309 pcbsp->sp_cache[i].cachesp = NULL;
310 pcbsp->sp_cache[i].cachehint = IPSEC_PCBHINT_UNKNOWN;
311 pcbsp->sp_cache[i].cachegen = 0;
312 memset(&pcbsp->sp_cache[i].cacheidx, 0,
313 sizeof(pcbsp->sp_cache[i].cacheidx));
314 }
315 return 0;
316 }
317
318 void
319 ipsec_pcbconn(struct inpcbpolicy *pcbsp)
320 {
321
322 KASSERT(inp_locked(pcbsp->sp_inp));
323
324 pcbsp->sp_cacheflags |= IPSEC_PCBSP_CONNECTED;
325 ipsec_invalpcbcache(pcbsp, IPSEC_DIR_ANY);
326 }
327
328 void
329 ipsec_pcbdisconn(struct inpcbpolicy *pcbsp)
330 {
331
332 KASSERT(inp_locked(pcbsp->sp_inp));
333
334 pcbsp->sp_cacheflags &= ~IPSEC_PCBSP_CONNECTED;
335 ipsec_invalpcbcache(pcbsp, IPSEC_DIR_ANY);
336 }
337
338 void
339 ipsec_invalpcbcacheall(void)
340 {
341
342 if (ipsec_spdgen == UINT_MAX)
343 ipsec_spdgen = 1;
344 else
345 ipsec_spdgen++;
346 }
347
348 /*
349 * Return a held reference to the default SP.
350 */
351 static struct secpolicy *
352 key_get_default_sp(int af, const char *where, int tag)
353 {
354 struct secpolicy *sp;
355
356 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
357
358 switch(af) {
359 case AF_INET:
360 sp = &ip4_def_policy;
361 break;
362 #ifdef INET6
363 case AF_INET6:
364 sp = &ip6_def_policy;
365 break;
366 #endif
367 default:
368 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
369 "unexpected protocol family %u\n", af);
370 return NULL;
371 }
372
373 if (sp->policy != IPSEC_POLICY_DISCARD &&
374 sp->policy != IPSEC_POLICY_NONE) {
375 IPSECLOG(LOG_INFO, "fixed system default policy: %d->%d\n",
376 sp->policy, IPSEC_POLICY_NONE);
377 sp->policy = IPSEC_POLICY_NONE;
378 }
379 KEY_SP_REF(sp);
380
381 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP returns SP:%p (%u)\n",
382 sp, key_sp_refcnt(sp));
383 return sp;
384 }
385
386 #define KEY_GET_DEFAULT_SP(af) \
387 key_get_default_sp((af), __func__, __LINE__)
388
389 /*
390 * For OUTBOUND packet having a socket. Searching SPD for packet,
391 * and return a pointer to SP.
392 * OUT: NULL: no appropriate SP found, the following value is set to error.
393 * 0 : bypass
394 * EACCES : discard packet.
395 * ENOENT : ipsec_acquire() in progress, maybe.
396 * others : error occurred.
397 * others: a pointer to SP
398 *
399 * NOTE: IPv6 mapped address concern is implemented here.
400 */
401 static struct secpolicy *
402 ipsec_getpolicybysock(struct mbuf *m, u_int dir, struct inpcb *inp,
403 int *error)
404 {
405 struct inpcbpolicy *pcbsp = NULL;
406 struct secpolicy *currsp = NULL; /* policy on socket */
407 struct secpolicy *sp;
408 int af;
409
410 KASSERT(m != NULL);
411 KASSERT(inp != NULL);
412 KASSERT(error != NULL);
413 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
414
415 KASSERT(inp->inp_socket != NULL);
416 KASSERT(inp_locked(inp));
417
418 /* XXX FIXME inpcb vs socket*/
419 af = inp->inp_af;
420 KASSERTMSG(af == AF_INET || af == AF_INET6,
421 "unexpected protocol family %u", af);
422
423 KASSERT(inp->inp_sp != NULL);
424 /* If we have a cached entry, and if it is still valid, use it. */
425 IPSEC_STATINC(IPSEC_STAT_SPDCACHELOOKUP);
426 currsp = ipsec_checkpcbcache(m, inp->inp_sp, dir);
427 if (currsp) {
428 *error = 0;
429 return currsp;
430 }
431 IPSEC_STATINC(IPSEC_STAT_SPDCACHEMISS);
432
433 switch (af) {
434 case AF_INET:
435 #if defined(INET6)
436 case AF_INET6:
437 #endif
438 *error = ipsec_setspidx_inpcb(m, inp);
439 pcbsp = inp->inp_sp;
440 break;
441 default:
442 *error = EPFNOSUPPORT;
443 break;
444 }
445 if (*error)
446 return NULL;
447
448 KASSERT(pcbsp != NULL);
449 switch (dir) {
450 case IPSEC_DIR_INBOUND:
451 currsp = pcbsp->sp_in;
452 break;
453 case IPSEC_DIR_OUTBOUND:
454 currsp = pcbsp->sp_out;
455 break;
456 }
457 KASSERT(currsp != NULL);
458
459 if (pcbsp->priv) { /* when privileged socket */
460 switch (currsp->policy) {
461 case IPSEC_POLICY_BYPASS:
462 case IPSEC_POLICY_IPSEC:
463 KEY_SP_REF(currsp);
464 sp = currsp;
465 break;
466
467 case IPSEC_POLICY_ENTRUST:
468 /* look for a policy in SPD */
469 if (key_havesp(dir))
470 sp = KEY_LOOKUP_SP_BYSPIDX(&currsp->spidx, dir);
471 else
472 sp = NULL;
473 if (sp == NULL) /* no SP found */
474 sp = KEY_GET_DEFAULT_SP(af);
475 break;
476
477 default:
478 IPSECLOG(LOG_ERR, "Invalid policy for PCB %d\n",
479 currsp->policy);
480 *error = EINVAL;
481 return NULL;
482 }
483 } else { /* unpriv, SPD has policy */
484 if (key_havesp(dir))
485 sp = KEY_LOOKUP_SP_BYSPIDX(&currsp->spidx, dir);
486 else
487 sp = NULL;
488 if (sp == NULL) { /* no SP found */
489 switch (currsp->policy) {
490 case IPSEC_POLICY_BYPASS:
491 IPSECLOG(LOG_ERR, "Illegal policy for "
492 "non-priviliged defined %d\n",
493 currsp->policy);
494 *error = EINVAL;
495 return NULL;
496
497 case IPSEC_POLICY_ENTRUST:
498 sp = KEY_GET_DEFAULT_SP(af);
499 break;
500
501 case IPSEC_POLICY_IPSEC:
502 KEY_SP_REF(currsp);
503 sp = currsp;
504 break;
505
506 default:
507 IPSECLOG(LOG_ERR, "Invalid policy for "
508 "PCB %d\n", currsp->policy);
509 *error = EINVAL;
510 return NULL;
511 }
512 }
513 }
514 KASSERTMSG(sp != NULL, "null SP (priv %u policy %u", pcbsp->priv,
515 currsp->policy);
516 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
517 "DP (priv %u policy %u) allocates SP:%p (refcnt %u)\n",
518 pcbsp->priv, currsp->policy, sp, key_sp_refcnt(sp));
519 ipsec_fillpcbcache(pcbsp, m, sp, dir);
520 return sp;
521 }
522
523 /*
524 * For FORWARDING packet or OUTBOUND without a socket. Searching SPD for packet,
525 * and return a pointer to SP.
526 * OUT: positive: a pointer to the entry for security policy leaf matched.
527 * NULL: no appropriate SP found, the following value is set to error.
528 * 0 : bypass
529 * EACCES : discard packet.
530 * ENOENT : ipsec_acquire() in progress, maybe.
531 * others : error occurred.
532 */
533 static struct secpolicy *
534 ipsec_getpolicybyaddr(struct mbuf *m, u_int dir, int flag, int *error)
535 {
536 struct secpolicyindex spidx;
537 struct secpolicy *sp;
538
539 KASSERT(m != NULL);
540 KASSERT(error != NULL);
541 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
542
543 sp = NULL;
544
545 /* Make an index to look for a policy. */
546 *error = ipsec_setspidx(m, &spidx, dir, (flag & IP_FORWARDING) ? 0 : 1);
547 if (*error != 0) {
548 IPSECLOG(LOG_DEBUG, "setpidx failed, dir %u flag %u\n", dir, flag);
549 memset(&spidx, 0, sizeof(spidx));
550 return NULL;
551 }
552
553 spidx.dir = dir;
554
555 if (key_havesp(dir)) {
556 sp = KEY_LOOKUP_SP_BYSPIDX(&spidx, dir);
557 }
558 if (sp == NULL) {
559 /* no SP found, use system default */
560 sp = KEY_GET_DEFAULT_SP(spidx.dst.sa.sa_family);
561 }
562
563 KASSERT(sp != NULL);
564 return sp;
565 }
566
567 static struct secpolicy *
568 ipsec_checkpolicy(struct mbuf *m, u_int dir, u_int flag, int *error,
569 struct inpcb *inp)
570 {
571 struct secpolicy *sp;
572
573 *error = 0;
574
575 if (inp == NULL) {
576 sp = ipsec_getpolicybyaddr(m, dir, flag, error);
577 } else {
578 KASSERT(inp->inp_socket != NULL);
579 sp = ipsec_getpolicybysock(m, dir, inp, error);
580 }
581 if (sp == NULL) {
582 KASSERTMSG(*error != 0, "getpolicy failed w/o error");
583 IPSEC_STATINC(IPSEC_STAT_OUT_INVAL);
584 return NULL;
585 }
586 KASSERTMSG(*error == 0, "sp w/ error set to %u", *error);
587
588 switch (sp->policy) {
589 case IPSEC_POLICY_ENTRUST:
590 default:
591 printf("%s: invalid policy %u\n", __func__, sp->policy);
592 /* fall thru... */
593 case IPSEC_POLICY_DISCARD:
594 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
595 *error = -EINVAL; /* packet is discarded by caller */
596 break;
597 case IPSEC_POLICY_BYPASS:
598 case IPSEC_POLICY_NONE:
599 KEY_SP_UNREF(&sp);
600 sp = NULL; /* NB: force NULL result */
601 break;
602 case IPSEC_POLICY_IPSEC:
603 KASSERT(sp->req != NULL);
604 break;
605 }
606
607 if (*error != 0) {
608 KEY_SP_UNREF(&sp);
609 sp = NULL;
610 IPSECLOG(LOG_DEBUG, "done, error %d\n", *error);
611 }
612
613 return sp;
614 }
615
616 int
617 ipsec4_output(struct mbuf *m, struct inpcb *inp, int flags,
618 u_long *mtu, bool *natt_frag, bool *done, bool *count_drop)
619 {
620 struct secpolicy *sp = NULL;
621 u_long _mtu = 0;
622 int error, s;
623
624 /*
625 * Check the security policy (SP) for the packet and, if required,
626 * do IPsec-related processing. There are two cases here; the first
627 * time a packet is sent through it will be untagged and handled by
628 * ipsec_checkpolicy(). If the packet is resubmitted to ip_output
629 * (e.g. after AH, ESP, etc. processing), there will be a tag to
630 * bypass the lookup and related policy checking.
631 */
632 if (ipsec_outdone(m)) {
633 return 0;
634 }
635 s = splsoftnet();
636 if (inp && ipsec_pcb_skip_ipsec(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
637 splx(s);
638 return 0;
639 }
640 sp = ipsec_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, &error, inp);
641
642 /*
643 * There are four return cases:
644 * sp != NULL apply IPsec policy
645 * sp == NULL, error == 0 no IPsec handling needed
646 * sp == NULL, error == -EINVAL discard packet w/o error
647 * sp == NULL, error != 0 discard packet, report error
648 */
649 if (sp == NULL) {
650 splx(s);
651 if (error) {
652 /*
653 * Hack: -EINVAL is used to signal that a packet
654 * should be silently discarded. This is typically
655 * because we asked key management for an SA and
656 * it was delayed (e.g. kicked up to IKE).
657 */
658 if (error == -EINVAL)
659 error = 0;
660 m_freem(m);
661 *done = true;
662 *count_drop = true;
663 return error;
664 }
665 /* No IPsec processing for this packet. */
666 return 0;
667 }
668
669 /*
670 * Do delayed checksums now because we send before
671 * this is done in the normal processing path.
672 */
673 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
674 in_undefer_cksum_tcpudp(m);
675 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
676 }
677
678 error = ipsec4_process_packet(m, sp->req, &_mtu);
679 if (error == 0 && _mtu != 0) {
680 /*
681 * NAT-T ESP fragmentation: do not do IPSec processing
682 * now, we will do it on each fragmented packet.
683 */
684 *mtu = _mtu;
685 *natt_frag = true;
686 KEY_SP_UNREF(&sp);
687 splx(s);
688 return 0;
689 }
690
691 /*
692 * Preserve KAME behaviour: ENOENT can be returned
693 * when an SA acquire is in progress. Don't propagate
694 * this to user-level; it confuses applications.
695 *
696 * XXX this will go away when the SADB is redone.
697 */
698 if (error == ENOENT)
699 error = 0;
700 KEY_SP_UNREF(&sp);
701 splx(s);
702 *done = true;
703 return error;
704 }
705
706 int
707 ipsec_ip_input_checkpolicy(struct mbuf *m, bool forward)
708 {
709 struct secpolicy *sp;
710 int error, s;
711
712 s = splsoftnet();
713 error = ipsec_in_reject(m, NULL);
714 splx(s);
715 if (error) {
716 return EINVAL;
717 }
718
719 if (!forward || !(m->m_flags & M_CANFASTFWD)) {
720 return 0;
721 }
722
723 /*
724 * Peek at the outbound SP for this packet to determine if
725 * it is a Fast Forward candidate.
726 */
727 s = splsoftnet();
728 sp = ipsec_checkpolicy(m, IPSEC_DIR_OUTBOUND, IP_FORWARDING,
729 &error, NULL);
730 if (sp != NULL) {
731 m->m_flags &= ~M_CANFASTFWD;
732 KEY_SP_UNREF(&sp);
733 }
734 splx(s);
735
736 return 0;
737 }
738
739 /*
740 * If the packet is routed over IPsec tunnel, tell the originator the
741 * tunnel MTU.
742 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
743 *
744 * XXX: Quick hack!!!
745 *
746 * XXX: And what if the MTU goes negative?
747 */
748 void
749 ipsec_mtu(struct mbuf *m, int *destmtu)
750 {
751 struct secpolicy *sp;
752 size_t ipsechdr;
753 int error;
754
755 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, IP_FORWARDING,
756 &error);
757 if (sp == NULL) {
758 return;
759 }
760
761 /* Count IPsec header size. */
762 ipsechdr = ipsec_sp_hdrsiz(sp, m);
763
764 /*
765 * Find the correct route for outer IP header, compute tunnel MTU.
766 */
767 if (sp->req) {
768 struct secasvar *sav;
769
770 sav = ipsec_lookup_sa(sp->req, m);
771 if (sav != NULL) {
772 struct route *ro;
773 struct rtentry *rt;
774
775 ro = &sav->sah->sa_route;
776 rt = rtcache_validate(ro);
777 if (rt && rt->rt_ifp) {
778 *destmtu = rt->rt_rmx.rmx_mtu ?
779 rt->rt_rmx.rmx_mtu : rt->rt_ifp->if_mtu;
780 *destmtu -= ipsechdr;
781 }
782 rtcache_unref(rt, ro);
783 KEY_SA_UNREF(&sav);
784 }
785 }
786 KEY_SP_UNREF(&sp);
787 }
788
789 static int
790 ipsec_setspidx_inpcb(struct mbuf *m, struct inpcb *inp)
791 {
792 int error;
793
794 KASSERT(inp != NULL);
795 KASSERT(inp->inp_sp != NULL);
796 KASSERT(inp->inp_sp->sp_out != NULL);
797 KASSERT(inp->inp_sp->sp_in != NULL);
798
799 error = ipsec_setspidx(m, &inp->inp_sp->sp_in->spidx,
800 IPSEC_DIR_INBOUND, 1);
801 if (error == 0) {
802 inp->inp_sp->sp_out->spidx = inp->inp_sp->sp_in->spidx;
803 inp->inp_sp->sp_out->spidx.dir = IPSEC_DIR_OUTBOUND;
804 } else {
805 memset(&inp->inp_sp->sp_in->spidx, 0,
806 sizeof(inp->inp_sp->sp_in->spidx));
807 memset(&inp->inp_sp->sp_out->spidx, 0,
808 sizeof(inp->inp_sp->sp_out->spidx));
809 }
810 return error;
811 }
812
813 /*
814 * configure security policy index (src/dst/proto/sport/dport)
815 * by looking at the content of mbuf.
816 * the caller is responsible for error recovery (like clearing up spidx).
817 */
818 static int
819 ipsec_setspidx(struct mbuf *m, struct secpolicyindex *spidx, int dir,
820 int needport)
821 {
822 struct ip *ip = NULL;
823 struct ip ipbuf;
824 u_int v;
825 int error;
826
827 KASSERT(m != NULL);
828 M_VERIFY_PACKET(m);
829
830 if (m->m_pkthdr.len < sizeof(struct ip)) {
831 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
832 "pkthdr.len(%d) < sizeof(struct ip), ignored.\n",
833 m->m_pkthdr.len);
834 return EINVAL;
835 }
836
837 memset(spidx, 0, sizeof(*spidx));
838 spidx->dir = dir;
839
840 if (m->m_len >= sizeof(*ip)) {
841 ip = mtod(m, struct ip *);
842 } else {
843 m_copydata(m, 0, sizeof(ipbuf), &ipbuf);
844 ip = &ipbuf;
845 }
846 v = ip->ip_v;
847 switch (v) {
848 case 4:
849 error = ipsec4_setspidx_ipaddr(m, spidx);
850 if (error)
851 return error;
852 ipsec4_get_ulp(m, spidx, needport);
853 return 0;
854 #ifdef INET6
855 case 6:
856 if (m->m_pkthdr.len < sizeof(struct ip6_hdr)) {
857 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
858 "pkthdr.len(%d) < sizeof(struct ip6_hdr), "
859 "ignored.\n", m->m_pkthdr.len);
860 return EINVAL;
861 }
862 error = ipsec6_setspidx_ipaddr(m, spidx);
863 if (error)
864 return error;
865 ipsec6_get_ulp(m, spidx, needport);
866 return 0;
867 #endif
868 default:
869 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
870 "unknown IP version %u, ignored.\n", v);
871 return EINVAL;
872 }
873 }
874
875 static void
876 ipsec4_get_ulp(struct mbuf *m, struct secpolicyindex *spidx, int needport)
877 {
878 u_int8_t nxt;
879 int off;
880
881 KASSERT(m != NULL);
882 KASSERTMSG(m->m_pkthdr.len >= sizeof(struct ip), "packet too short");
883
884 /* NB: ip_input() flips it into host endian XXX need more checking */
885 if (m->m_len >= sizeof(struct ip)) {
886 struct ip *ip = mtod(m, struct ip *);
887 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
888 goto done;
889 off = ip->ip_hl << 2;
890 nxt = ip->ip_p;
891 } else {
892 struct ip ih;
893
894 m_copydata(m, 0, sizeof(struct ip), &ih);
895 if (ih.ip_off & htons(IP_MF | IP_OFFMASK))
896 goto done;
897 off = ih.ip_hl << 2;
898 nxt = ih.ip_p;
899 }
900
901 while (off < m->m_pkthdr.len) {
902 struct ip6_ext ip6e;
903 struct tcphdr th;
904 struct udphdr uh;
905 struct icmp icmph;
906
907 switch (nxt) {
908 case IPPROTO_TCP:
909 spidx->ul_proto = nxt;
910 if (!needport)
911 goto done_proto;
912 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
913 goto done;
914 m_copydata(m, off, sizeof(th), &th);
915 spidx->src.sin.sin_port = th.th_sport;
916 spidx->dst.sin.sin_port = th.th_dport;
917 return;
918 case IPPROTO_UDP:
919 spidx->ul_proto = nxt;
920 if (!needport)
921 goto done_proto;
922 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
923 goto done;
924 m_copydata(m, off, sizeof(uh), &uh);
925 spidx->src.sin.sin_port = uh.uh_sport;
926 spidx->dst.sin.sin_port = uh.uh_dport;
927 return;
928 case IPPROTO_AH:
929 if (off + sizeof(ip6e) > m->m_pkthdr.len)
930 goto done;
931 /* XXX sigh, this works but is totally bogus */
932 m_copydata(m, off, sizeof(ip6e), &ip6e);
933 off += (ip6e.ip6e_len + 2) << 2;
934 nxt = ip6e.ip6e_nxt;
935 break;
936 case IPPROTO_ICMP:
937 spidx->ul_proto = nxt;
938 if (off + sizeof(struct icmp) > m->m_pkthdr.len)
939 goto done;
940 m_copydata(m, off, sizeof(icmph), &icmph);
941 ((struct sockaddr_in *)&spidx->src)->sin_port =
942 htons((uint16_t)icmph.icmp_type);
943 ((struct sockaddr_in *)&spidx->dst)->sin_port =
944 htons((uint16_t)icmph.icmp_code);
945 return;
946 default:
947 /* XXX intermediate headers??? */
948 spidx->ul_proto = nxt;
949 goto done_proto;
950 }
951 }
952 done:
953 spidx->ul_proto = IPSEC_ULPROTO_ANY;
954 done_proto:
955 spidx->src.sin.sin_port = IPSEC_PORT_ANY;
956 spidx->dst.sin.sin_port = IPSEC_PORT_ANY;
957 }
958
959 static int
960 ipsec4_setspidx_ipaddr(struct mbuf *m, struct secpolicyindex *spidx)
961 {
962 static const struct sockaddr_in template = {
963 sizeof(struct sockaddr_in),
964 AF_INET,
965 0, { 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }
966 };
967
968 spidx->src.sin = template;
969 spidx->dst.sin = template;
970
971 if (m->m_len < sizeof(struct ip)) {
972 m_copydata(m, offsetof(struct ip, ip_src),
973 sizeof(struct in_addr), &spidx->src.sin.sin_addr);
974 m_copydata(m, offsetof(struct ip, ip_dst),
975 sizeof(struct in_addr), &spidx->dst.sin.sin_addr);
976 } else {
977 struct ip *ip = mtod(m, struct ip *);
978 spidx->src.sin.sin_addr = ip->ip_src;
979 spidx->dst.sin.sin_addr = ip->ip_dst;
980 }
981
982 spidx->prefs = sizeof(struct in_addr) << 3;
983 spidx->prefd = sizeof(struct in_addr) << 3;
984
985 return 0;
986 }
987
988 #ifdef INET6
989 static void
990 ipsec6_get_ulp(struct mbuf *m, struct secpolicyindex *spidx, int needport)
991 {
992 int off, nxt;
993 struct tcphdr th;
994 struct udphdr uh;
995 struct icmp6_hdr icmph;
996
997 KASSERT(m != NULL);
998
999 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1000 kdebug_mbuf(__func__, m);
1001 }
1002
1003 /* set default */
1004 spidx->ul_proto = IPSEC_ULPROTO_ANY;
1005 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = IPSEC_PORT_ANY;
1006 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = IPSEC_PORT_ANY;
1007
1008 nxt = -1;
1009 off = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
1010 if (off < 0 || m->m_pkthdr.len < off)
1011 return;
1012
1013 switch (nxt) {
1014 case IPPROTO_TCP:
1015 spidx->ul_proto = nxt;
1016 if (!needport)
1017 break;
1018 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
1019 break;
1020 m_copydata(m, off, sizeof(th), &th);
1021 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = th.th_sport;
1022 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = th.th_dport;
1023 break;
1024 case IPPROTO_UDP:
1025 spidx->ul_proto = nxt;
1026 if (!needport)
1027 break;
1028 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
1029 break;
1030 m_copydata(m, off, sizeof(uh), &uh);
1031 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = uh.uh_sport;
1032 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = uh.uh_dport;
1033 break;
1034 case IPPROTO_ICMPV6:
1035 spidx->ul_proto = nxt;
1036 if (off + sizeof(struct icmp6_hdr) > m->m_pkthdr.len)
1037 break;
1038 m_copydata(m, off, sizeof(icmph), &icmph);
1039 ((struct sockaddr_in6 *)&spidx->src)->sin6_port =
1040 htons((uint16_t)icmph.icmp6_type);
1041 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port =
1042 htons((uint16_t)icmph.icmp6_code);
1043 break;
1044 default:
1045 /* XXX intermediate headers??? */
1046 spidx->ul_proto = nxt;
1047 break;
1048 }
1049 }
1050
1051 static int
1052 ipsec6_setspidx_ipaddr(struct mbuf *m, struct secpolicyindex *spidx)
1053 {
1054 struct ip6_hdr *ip6 = NULL;
1055 struct ip6_hdr ip6buf;
1056 struct sockaddr_in6 *sin6;
1057
1058 if (m->m_len >= sizeof(*ip6)) {
1059 ip6 = mtod(m, struct ip6_hdr *);
1060 } else {
1061 m_copydata(m, 0, sizeof(ip6buf), &ip6buf);
1062 ip6 = &ip6buf;
1063 }
1064
1065 sin6 = (struct sockaddr_in6 *)&spidx->src;
1066 memset(sin6, 0, sizeof(*sin6));
1067 sin6->sin6_family = AF_INET6;
1068 sin6->sin6_len = sizeof(struct sockaddr_in6);
1069 memcpy(&sin6->sin6_addr, &ip6->ip6_src, sizeof(ip6->ip6_src));
1070 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
1071 sin6->sin6_addr.s6_addr16[1] = 0;
1072 sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]);
1073 }
1074 spidx->prefs = sizeof(struct in6_addr) << 3;
1075
1076 sin6 = (struct sockaddr_in6 *)&spidx->dst;
1077 memset(sin6, 0, sizeof(*sin6));
1078 sin6->sin6_family = AF_INET6;
1079 sin6->sin6_len = sizeof(struct sockaddr_in6);
1080 memcpy(&sin6->sin6_addr, &ip6->ip6_dst, sizeof(ip6->ip6_dst));
1081 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
1082 sin6->sin6_addr.s6_addr16[1] = 0;
1083 sin6->sin6_scope_id = ntohs(ip6->ip6_dst.s6_addr16[1]);
1084 }
1085 spidx->prefd = sizeof(struct in6_addr) << 3;
1086
1087 return 0;
1088 }
1089 #endif
1090
1091 static void
1092 ipsec_delpcbpolicy(struct inpcbpolicy *p)
1093 {
1094
1095 kmem_intr_free(p, sizeof(*p));
1096 }
1097
1098 int
1099 ipsec_init_pcbpolicy(struct socket *so, struct inpcbpolicy **policy)
1100 {
1101 struct inpcbpolicy *new;
1102
1103 KASSERT(so != NULL);
1104 KASSERT(policy != NULL);
1105
1106 new = kmem_intr_zalloc(sizeof(*new), KM_NOSLEEP);
1107 if (new == NULL) {
1108 IPSECLOG(LOG_DEBUG, "No more memory.\n");
1109 return ENOBUFS;
1110 }
1111
1112 if (IPSEC_PRIVILEGED_SO(so))
1113 new->priv = 1;
1114 else
1115 new->priv = 0;
1116
1117 /*
1118 * Set dummy SPs. Actual SPs will be allocated later if needed.
1119 */
1120 new->sp_in = &ipsec_dummy_sp;
1121 new->sp_out = &ipsec_dummy_sp;
1122
1123 *policy = new;
1124
1125 return 0;
1126 }
1127
1128 static void
1129 ipsec_destroy_policy(struct secpolicy *sp)
1130 {
1131
1132 if (sp == &ipsec_dummy_sp) {
1133 ; /* It's dummy. No need to free it. */
1134 } else {
1135 /*
1136 * We cannot destroy here because it can be called in
1137 * softint. So mark the SP as DEAD and let the timer
1138 * destroy it. See key_timehandler_spd.
1139 */
1140 sp->state = IPSEC_SPSTATE_DEAD;
1141 }
1142 }
1143
1144 int
1145 ipsec_set_policy(struct inpcb *inp, const void *request, size_t len,
1146 kauth_cred_t cred)
1147 {
1148 const struct sadb_x_policy *xpl;
1149 struct secpolicy *newsp, *oldsp;
1150 struct secpolicy **policy;
1151 int error;
1152
1153 KASSERT(!cpu_softintr_p());
1154 KASSERT(inp != NULL);
1155 KASSERT(inp_locked(inp));
1156 KASSERT(request != NULL);
1157
1158 if (len < sizeof(*xpl))
1159 return EINVAL;
1160 xpl = (const struct sadb_x_policy *)request;
1161
1162 KASSERT(inp->inp_sp != NULL);
1163
1164 /* select direction */
1165 switch (xpl->sadb_x_policy_dir) {
1166 case IPSEC_DIR_INBOUND:
1167 policy = &inp->inp_sp->sp_in;
1168 break;
1169 case IPSEC_DIR_OUTBOUND:
1170 policy = &inp->inp_sp->sp_out;
1171 break;
1172 default:
1173 IPSECLOG(LOG_ERR, "invalid direction=%u\n",
1174 xpl->sadb_x_policy_dir);
1175 return EINVAL;
1176 }
1177
1178 /* sanity check. */
1179 if (policy == NULL || *policy == NULL)
1180 return EINVAL;
1181
1182 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1183 kdebug_sadb_xpolicy("set passed policy", request);
1184 }
1185
1186 /* check policy type */
1187 /* ipsec_set_policy() accepts IPSEC, ENTRUST and BYPASS. */
1188 if (xpl->sadb_x_policy_type == IPSEC_POLICY_DISCARD ||
1189 xpl->sadb_x_policy_type == IPSEC_POLICY_NONE)
1190 return EINVAL;
1191
1192 /* check privileged socket */
1193 if (xpl->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1194 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPSEC,
1195 KAUTH_REQ_NETWORK_IPSEC_BYPASS, NULL, NULL, NULL);
1196 if (error)
1197 return error;
1198 }
1199
1200 /* allocation new SP entry */
1201 if ((newsp = key_msg2sp(xpl, len, &error)) == NULL)
1202 return error;
1203
1204 key_init_sp(newsp);
1205 newsp->created = time_uptime;
1206 /* Insert the global list for SPs for sockets */
1207 key_socksplist_add(newsp);
1208
1209 /* clear old SP and set new SP */
1210 oldsp = *policy;
1211 *policy = newsp;
1212 ipsec_destroy_policy(oldsp);
1213
1214 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1215 printf("%s: new policy\n", __func__);
1216 kdebug_secpolicy(newsp);
1217 }
1218
1219 return 0;
1220 }
1221
1222 int
1223 ipsec_get_policy(struct inpcb *inp, const void *request, size_t len,
1224 struct mbuf **mp)
1225 {
1226 const struct sadb_x_policy *xpl;
1227 struct secpolicy *policy;
1228
1229 /* sanity check. */
1230 if (inp == NULL || request == NULL || mp == NULL)
1231 return EINVAL;
1232 KASSERT(inp->inp_sp != NULL);
1233 if (len < sizeof(*xpl))
1234 return EINVAL;
1235 xpl = (const struct sadb_x_policy *)request;
1236
1237 /* select direction */
1238 switch (xpl->sadb_x_policy_dir) {
1239 case IPSEC_DIR_INBOUND:
1240 policy = inp->inp_sp->sp_in;
1241 break;
1242 case IPSEC_DIR_OUTBOUND:
1243 policy = inp->inp_sp->sp_out;
1244 break;
1245 default:
1246 IPSECLOG(LOG_ERR, "invalid direction=%u\n",
1247 xpl->sadb_x_policy_dir);
1248 return EINVAL;
1249 }
1250
1251 if (policy == NULL)
1252 return EINVAL;
1253
1254 *mp = key_sp2msg(policy, M_NOWAIT);
1255 if (!*mp) {
1256 IPSECLOG(LOG_DEBUG, "No more memory.\n");
1257 return ENOBUFS;
1258 }
1259
1260 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1261 kdebug_mbuf(__func__, *mp);
1262 }
1263
1264 return 0;
1265 }
1266
1267 int
1268 ipsec_delete_pcbpolicy(struct inpcb *inp)
1269 {
1270
1271 KASSERT(inp != NULL);
1272
1273 if (inp->inp_sp == NULL)
1274 return 0;
1275
1276 if (inp->inp_sp->sp_in != NULL)
1277 ipsec_destroy_policy(inp->inp_sp->sp_in);
1278
1279 if (inp->inp_sp->sp_out != NULL)
1280 ipsec_destroy_policy(inp->inp_sp->sp_out);
1281
1282 ipsec_invalpcbcache(inp->inp_sp, IPSEC_DIR_ANY);
1283
1284 ipsec_delpcbpolicy(inp->inp_sp);
1285 inp->inp_sp = NULL;
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Return the current level (either IPSEC_LEVEL_USE or IPSEC_LEVEL_REQUIRE).
1292 */
1293 u_int
1294 ipsec_get_reqlevel(const struct ipsecrequest *isr)
1295 {
1296 u_int level = 0;
1297 u_int esp_trans_deflev, esp_net_deflev;
1298 u_int ah_trans_deflev, ah_net_deflev;
1299
1300 KASSERT(isr != NULL);
1301 KASSERT(isr->sp != NULL);
1302 KASSERTMSG(
1303 isr->sp->spidx.src.sa.sa_family == isr->sp->spidx.dst.sa.sa_family,
1304 "af family mismatch, src %u, dst %u",
1305 isr->sp->spidx.src.sa.sa_family, isr->sp->spidx.dst.sa.sa_family);
1306
1307 /* XXX note that we have ipseclog() expanded here - code sync issue */
1308 #define IPSEC_CHECK_DEFAULT(lev) \
1309 (((lev) != IPSEC_LEVEL_USE && (lev) != IPSEC_LEVEL_REQUIRE \
1310 && (lev) != IPSEC_LEVEL_UNIQUE) ? \
1311 (ipsec_debug ? log(LOG_INFO, "fixed system default level " #lev \
1312 ":%d->%d\n", (lev), IPSEC_LEVEL_REQUIRE) : (void)0), \
1313 (lev) = IPSEC_LEVEL_REQUIRE, (lev) \
1314 : (lev))
1315
1316 /* set default level */
1317 switch (((struct sockaddr *)&isr->sp->spidx.src)->sa_family) {
1318 #ifdef INET
1319 case AF_INET:
1320 esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_trans_deflev);
1321 esp_net_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_net_deflev);
1322 ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_trans_deflev);
1323 ah_net_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_net_deflev);
1324 break;
1325 #endif
1326 #ifdef INET6
1327 case AF_INET6:
1328 esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_trans_deflev);
1329 esp_net_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_net_deflev);
1330 ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_trans_deflev);
1331 ah_net_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_net_deflev);
1332 break;
1333 #endif
1334 default:
1335 panic("%s: unknown af %u", __func__,
1336 isr->sp->spidx.src.sa.sa_family);
1337 }
1338
1339 #undef IPSEC_CHECK_DEFAULT
1340
1341 /* set level */
1342 switch (isr->level) {
1343 case IPSEC_LEVEL_DEFAULT:
1344 switch (isr->saidx.proto) {
1345 case IPPROTO_ESP:
1346 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
1347 level = esp_net_deflev;
1348 else
1349 level = esp_trans_deflev;
1350 break;
1351 case IPPROTO_AH:
1352 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
1353 level = ah_net_deflev;
1354 else
1355 level = ah_trans_deflev;
1356 break;
1357 case IPPROTO_IPCOMP:
1358 /*
1359 * we don't really care, as IPcomp document says that
1360 * we shouldn't compress small packets
1361 */
1362 level = IPSEC_LEVEL_USE;
1363 break;
1364 default:
1365 panic("%s: Illegal protocol defined %u", __func__,
1366 isr->saidx.proto);
1367 }
1368 break;
1369
1370 case IPSEC_LEVEL_USE:
1371 case IPSEC_LEVEL_REQUIRE:
1372 level = isr->level;
1373 break;
1374 case IPSEC_LEVEL_UNIQUE:
1375 level = IPSEC_LEVEL_REQUIRE;
1376 break;
1377
1378 default:
1379 panic("%s: Illegal IPsec level %u", __func__, isr->level);
1380 }
1381
1382 return level;
1383 }
1384
1385 /*
1386 * Check security policy requirements against the actual packet contents.
1387 *
1388 * If the SP requires an IPsec packet, and the packet was neither AH nor ESP,
1389 * then kick it.
1390 */
1391 static int
1392 ipsec_sp_reject(const struct secpolicy *sp, const struct mbuf *m)
1393 {
1394 struct ipsecrequest *isr;
1395
1396 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
1397 printf("%s: using SP\n", __func__);
1398 kdebug_secpolicy(sp);
1399 }
1400
1401 /* check policy */
1402 switch (sp->policy) {
1403 case IPSEC_POLICY_DISCARD:
1404 return 1;
1405 case IPSEC_POLICY_BYPASS:
1406 case IPSEC_POLICY_NONE:
1407 return 0;
1408 }
1409
1410 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
1411 "invalid policy %u", sp->policy);
1412
1413 /* XXX should compare policy against ipsec header history */
1414
1415 for (isr = sp->req; isr != NULL; isr = isr->next) {
1416 if (ipsec_get_reqlevel(isr) != IPSEC_LEVEL_REQUIRE)
1417 continue;
1418 switch (isr->saidx.proto) {
1419 case IPPROTO_ESP:
1420 if ((m->m_flags & M_DECRYPTED) == 0) {
1421 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1422 "ESP m_flags:%x\n", m->m_flags);
1423 return 1;
1424 }
1425 break;
1426 case IPPROTO_AH:
1427 if ((m->m_flags & M_AUTHIPHDR) == 0) {
1428 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1429 "AH m_flags:%x\n", m->m_flags);
1430 return 1;
1431 }
1432 break;
1433 case IPPROTO_IPCOMP:
1434 /*
1435 * We don't really care, as IPcomp document
1436 * says that we shouldn't compress small
1437 * packets, IPComp policy should always be
1438 * treated as being in "use" level.
1439 */
1440 break;
1441 }
1442 }
1443
1444 return 0;
1445 }
1446
1447 /*
1448 * Check security policy requirements.
1449 */
1450 int
1451 ipsec_in_reject(struct mbuf *m, struct inpcb *inp)
1452 {
1453 struct secpolicy *sp;
1454 int error;
1455 int result;
1456
1457 KASSERT(m != NULL);
1458
1459 if (inp == NULL)
1460 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1461 IP_FORWARDING, &error);
1462 else
1463 sp = ipsec_getpolicybysock(m, IPSEC_DIR_INBOUND,
1464 inp, &error);
1465
1466 if (sp != NULL) {
1467 result = ipsec_sp_reject(sp, m);
1468 if (result)
1469 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1470 KEY_SP_UNREF(&sp);
1471 } else {
1472 result = 0;
1473 }
1474 return result;
1475 }
1476
1477 /*
1478 * Compute the byte size to be occupied by the IPsec header. If it is
1479 * tunneled, it includes the size of outer IP header.
1480 */
1481 static size_t
1482 ipsec_sp_hdrsiz(const struct secpolicy *sp, const struct mbuf *m)
1483 {
1484 struct ipsecrequest *isr;
1485 size_t siz;
1486
1487 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
1488 printf("%s: using SP\n", __func__);
1489 kdebug_secpolicy(sp);
1490 }
1491
1492 switch (sp->policy) {
1493 case IPSEC_POLICY_DISCARD:
1494 case IPSEC_POLICY_BYPASS:
1495 case IPSEC_POLICY_NONE:
1496 return 0;
1497 }
1498
1499 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
1500 "invalid policy %u", sp->policy);
1501
1502 siz = 0;
1503 for (isr = sp->req; isr != NULL; isr = isr->next) {
1504 size_t clen = 0;
1505 struct secasvar *sav;
1506
1507 switch (isr->saidx.proto) {
1508 case IPPROTO_ESP:
1509 sav = ipsec_lookup_sa(isr, m);
1510 if (sav != NULL) {
1511 clen = esp_hdrsiz(sav);
1512 KEY_SA_UNREF(&sav);
1513 } else
1514 clen = esp_hdrsiz(NULL);
1515 break;
1516 case IPPROTO_AH:
1517 sav = ipsec_lookup_sa(isr, m);
1518 if (sav != NULL) {
1519 clen = ah_hdrsiz(sav);
1520 KEY_SA_UNREF(&sav);
1521 } else
1522 clen = ah_hdrsiz(NULL);
1523 break;
1524 case IPPROTO_IPCOMP:
1525 clen = sizeof(struct ipcomp);
1526 break;
1527 }
1528
1529 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1530 switch (isr->saidx.dst.sa.sa_family) {
1531 case AF_INET:
1532 clen += sizeof(struct ip);
1533 break;
1534 #ifdef INET6
1535 case AF_INET6:
1536 clen += sizeof(struct ip6_hdr);
1537 break;
1538 #endif
1539 default:
1540 IPSECLOG(LOG_ERR, "unknown AF %d in "
1541 "IPsec tunnel SA\n",
1542 ((const struct sockaddr *)&isr->saidx.dst)
1543 ->sa_family);
1544 break;
1545 }
1546 }
1547 siz += clen;
1548 }
1549
1550 return siz;
1551 }
1552
1553 size_t
1554 ipsec_hdrsiz(struct mbuf *m, u_int dir, struct inpcb *inp)
1555 {
1556 struct secpolicy *sp;
1557 int error;
1558 size_t size;
1559
1560 KASSERT(m != NULL);
1561 KASSERTMSG(inp == NULL || inp->inp_socket != NULL,
1562 "socket w/o inpcb");
1563
1564 if (inp == NULL)
1565 sp = ipsec_getpolicybyaddr(m, dir, IP_FORWARDING, &error);
1566 else
1567 sp = ipsec_getpolicybysock(m, dir, inp, &error);
1568
1569 if (sp != NULL) {
1570 size = ipsec_sp_hdrsiz(sp, m);
1571 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DATA, "size:%zu.\n", size);
1572 KEY_SP_UNREF(&sp);
1573 } else {
1574 size = 0;
1575 }
1576
1577 return size;
1578 }
1579
1580 /*
1581 * Check the variable replay window.
1582 * ipsec_chkreplay() performs replay check before ICV verification.
1583 * ipsec_updatereplay() updates replay bitmap. This must be called after
1584 * ICV verification (it also performs replay check, which is usually done
1585 * beforehand).
1586 * 0 (zero) is returned if packet disallowed, 1 if packet permitted.
1587 *
1588 * based on RFC 2401.
1589 */
1590 int
1591 ipsec_chkreplay(u_int32_t seq, const struct secasvar *sav)
1592 {
1593 const struct secreplay *replay;
1594 u_int32_t diff;
1595 int fr;
1596 u_int32_t wsizeb; /* constant: bits of window size */
1597 int frlast; /* constant: last frame */
1598
1599 KASSERT(sav != NULL);
1600 KASSERT(sav->replay != NULL);
1601
1602 replay = sav->replay;
1603
1604 if (replay->wsize == 0)
1605 return 1; /* no need to check replay. */
1606
1607 /* constant */
1608 frlast = replay->wsize - 1;
1609 wsizeb = replay->wsize << 3;
1610
1611 /* sequence number of 0 is invalid */
1612 if (seq == 0)
1613 return 0;
1614
1615 /* first time is always okay */
1616 if (replay->count == 0)
1617 return 1;
1618
1619 if (seq > replay->lastseq) {
1620 /* larger sequences are okay */
1621 return 1;
1622 } else {
1623 /* seq is equal or less than lastseq. */
1624 diff = replay->lastseq - seq;
1625
1626 /* over range to check, i.e. too old or wrapped */
1627 if (diff >= wsizeb)
1628 return 0;
1629
1630 fr = frlast - diff / 8;
1631
1632 /* this packet already seen ? */
1633 if ((replay->bitmap)[fr] & (1 << (diff % 8)))
1634 return 0;
1635
1636 /* out of order but good */
1637 return 1;
1638 }
1639 }
1640
1641 /*
1642 * check replay counter whether to update or not.
1643 * OUT: 0: OK
1644 * 1: NG
1645 */
1646 int
1647 ipsec_updatereplay(u_int32_t seq, const struct secasvar *sav)
1648 {
1649 struct secreplay *replay;
1650 u_int32_t diff;
1651 int fr;
1652 u_int32_t wsizeb; /* constant: bits of window size */
1653 int frlast; /* constant: last frame */
1654
1655 KASSERT(sav != NULL);
1656 KASSERT(sav->replay != NULL);
1657
1658 replay = sav->replay;
1659
1660 if (replay->wsize == 0)
1661 goto ok; /* no need to check replay. */
1662
1663 /* constant */
1664 frlast = replay->wsize - 1;
1665 wsizeb = replay->wsize << 3;
1666
1667 /* sequence number of 0 is invalid */
1668 if (seq == 0)
1669 return 1;
1670
1671 /* first time */
1672 if (replay->count == 0) {
1673 replay->lastseq = seq;
1674 memset(replay->bitmap, 0, replay->wsize);
1675 (replay->bitmap)[frlast] = 1;
1676 goto ok;
1677 }
1678
1679 if (seq > replay->lastseq) {
1680 /* seq is larger than lastseq. */
1681 diff = seq - replay->lastseq;
1682
1683 /* new larger sequence number */
1684 if (diff < wsizeb) {
1685 /* In window */
1686 /* set bit for this packet */
1687 vshiftl(replay->bitmap, diff, replay->wsize);
1688 (replay->bitmap)[frlast] |= 1;
1689 } else {
1690 /* this packet has a "way larger" */
1691 memset(replay->bitmap, 0, replay->wsize);
1692 (replay->bitmap)[frlast] = 1;
1693 }
1694 replay->lastseq = seq;
1695
1696 /* larger is good */
1697 } else {
1698 /* seq is equal or less than lastseq. */
1699 diff = replay->lastseq - seq;
1700
1701 /* over range to check, i.e. too old or wrapped */
1702 if (diff >= wsizeb)
1703 return 1;
1704
1705 fr = frlast - diff / 8;
1706
1707 /* this packet already seen ? */
1708 if ((replay->bitmap)[fr] & (1 << (diff % 8)))
1709 return 1;
1710
1711 /* mark as seen */
1712 (replay->bitmap)[fr] |= (1 << (diff % 8));
1713
1714 /* out of order but good */
1715 }
1716
1717 ok:
1718 if (replay->count == ~0) {
1719 char buf[IPSEC_LOGSASTRLEN];
1720
1721 /* set overflow flag */
1722 replay->overflow++;
1723
1724 /* don't increment, no more packets accepted */
1725 if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0)
1726 return 1;
1727
1728 IPSECLOG(LOG_WARNING, "replay counter made %d cycle. %s\n",
1729 replay->overflow, ipsec_logsastr(sav, buf, sizeof(buf)));
1730 }
1731
1732 replay->count++;
1733
1734 return 0;
1735 }
1736
1737 /*
1738 * shift variable length buffer to left.
1739 * IN: bitmap: pointer to the buffer
1740 * nbit: the number of to shift.
1741 * wsize: buffer size (bytes).
1742 */
1743 static void
1744 vshiftl(unsigned char *bitmap, int nbit, int wsize)
1745 {
1746 int s, j, i;
1747 unsigned char over;
1748
1749 for (j = 0; j < nbit; j += 8) {
1750 s = (nbit - j < 8) ? (nbit - j): 8;
1751 bitmap[0] <<= s;
1752 for (i = 1; i < wsize; i++) {
1753 over = (bitmap[i] >> (8 - s));
1754 bitmap[i] <<= s;
1755 bitmap[i-1] |= over;
1756 }
1757 }
1758
1759 return;
1760 }
1761
1762 /* Return a printable string for the address. */
1763 const char *
1764 ipsec_address(const union sockaddr_union *sa, char *buf, size_t size)
1765 {
1766 switch (sa->sa.sa_family) {
1767 case AF_INET:
1768 in_print(buf, size, &sa->sin.sin_addr);
1769 return buf;
1770 #if INET6
1771 case AF_INET6:
1772 in6_print(buf, size, &sa->sin6.sin6_addr);
1773 return buf;
1774 #endif
1775 default:
1776 return "(unknown address family)";
1777 }
1778 }
1779
1780 const char *
1781 ipsec_logsastr(const struct secasvar *sav, char *buf, size_t size)
1782 {
1783 const struct secasindex *saidx = &sav->sah->saidx;
1784 char sbuf[IPSEC_ADDRSTRLEN], dbuf[IPSEC_ADDRSTRLEN];
1785
1786 KASSERTMSG(saidx->src.sa.sa_family == saidx->dst.sa.sa_family,
1787 "af family mismatch, src %u, dst %u",
1788 saidx->src.sa.sa_family, saidx->dst.sa.sa_family);
1789
1790 snprintf(buf, size, "SA(SPI=%u src=%s dst=%s)",
1791 (u_int32_t)ntohl(sav->spi),
1792 ipsec_address(&saidx->src, sbuf, sizeof(sbuf)),
1793 ipsec_address(&saidx->dst, dbuf, sizeof(dbuf)));
1794
1795 return buf;
1796 }
1797
1798 #ifdef INET6
1799 struct secpolicy *
1800 ipsec6_check_policy(struct mbuf *m, struct inpcb *inp, int flags,
1801 int *needipsecp, int *errorp)
1802 {
1803 struct secpolicy *sp = NULL;
1804 int s;
1805 int error = 0;
1806 int needipsec = 0;
1807
1808 if (ipsec_outdone(m)) {
1809 goto skippolicycheck;
1810 }
1811 s = splsoftnet();
1812 if (inp && ipsec_pcb_skip_ipsec(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
1813 splx(s);
1814 goto skippolicycheck;
1815 }
1816 sp = ipsec_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, &error, inp);
1817 splx(s);
1818
1819 /*
1820 * There are four return cases:
1821 * sp != NULL apply IPsec policy
1822 * sp == NULL, error == 0 no IPsec handling needed
1823 * sp == NULL, error == -EINVAL discard packet w/o error
1824 * sp == NULL, error != 0 discard packet, report error
1825 */
1826 if (sp == NULL) {
1827 needipsec = 0;
1828 } else {
1829 needipsec = 1;
1830 }
1831
1832 skippolicycheck:
1833 *errorp = error;
1834 *needipsecp = needipsec;
1835 return sp;
1836 }
1837
1838 /*
1839 * calculate UDP checksum for UDP encapsulated ESP for IPv6.
1840 *
1841 * RFC2460(Internet Protocol, Version 6 Specification) says:
1842 *
1843 * IPv6 receivers MUST discard UDP packets with a zero checksum.
1844 *
1845 * There is more relaxed specification RFC6935(IPv6 and UDP Checksums for
1846 * Tunneled Packets). The document allows zero checksum. It's too
1847 * late to publish, there are a lot of interoperability problems...
1848 */
1849 void
1850 ipsec6_udp_cksum(struct mbuf *m)
1851 {
1852 struct ip6_hdr *ip6;
1853 uint16_t plen, uh_sum;
1854 int off;
1855
1856 /* must called after m_pullup() */
1857 KASSERT(m->m_len >= sizeof(struct ip6_hdr));
1858
1859 ip6 = mtod(m, struct ip6_hdr *);
1860 KASSERT(ip6->ip6_nxt == IPPROTO_UDP);
1861
1862 /* ip6->ip6_plen can not be updated before ip6_output() */
1863 plen = m->m_pkthdr.len - sizeof(*ip6);
1864 KASSERT(plen >= sizeof(struct udphdr));
1865
1866 uh_sum = in6_cksum(m, IPPROTO_UDP, sizeof(*ip6), plen);
1867 if (uh_sum == 0)
1868 uh_sum = 0xffff;
1869
1870 off = sizeof(*ip6) + offsetof(struct udphdr, uh_sum);
1871 m_copyback(m, off, sizeof(uh_sum), (void *)&uh_sum);
1872 }
1873 #endif /* INET6 */
1874
1875 /*
1876 * -----------------------------------------------------------------------------
1877 */
1878
1879 /* XXX this stuff doesn't belong here... */
1880
1881 static struct xformsw *xforms = NULL;
1882
1883 /*
1884 * Register a transform; typically at system startup.
1885 */
1886 void
1887 xform_register(struct xformsw *xsp)
1888 {
1889 xsp->xf_next = xforms;
1890 xforms = xsp;
1891 }
1892
1893 /*
1894 * Initialize transform support in an sav.
1895 */
1896 int
1897 xform_init(struct secasvar *sav, int xftype)
1898 {
1899 struct xformsw *xsp;
1900
1901 if (sav->tdb_xform != NULL) /* previously initialized */
1902 return 0;
1903 for (xsp = xforms; xsp; xsp = xsp->xf_next)
1904 if (xsp->xf_type == xftype)
1905 return (*xsp->xf_init)(sav, xsp);
1906
1907 IPSECLOG(LOG_DEBUG, "no match for xform type %d\n", xftype);
1908 return EINVAL;
1909 }
1910
1911 /*
1912 * XXXJRT This should be done as a protosw init call.
1913 */
1914 void
1915 ipsec_attach(void)
1916 {
1917
1918 ipsec_output_init();
1919
1920 ipsecstat_percpu = percpu_alloc(sizeof(uint64_t) * IPSEC_NSTATS);
1921
1922 sysctl_net_inet_ipsec_setup(NULL);
1923 #ifdef INET6
1924 sysctl_net_inet6_ipsec6_setup(NULL);
1925 #endif
1926
1927 ah_attach();
1928 esp_attach();
1929 ipcomp_attach();
1930 ipe4_attach();
1931 #ifdef TCP_SIGNATURE
1932 tcpsignature_attach();
1933 #endif
1934 }
1935