ipsec.c revision 1.84 1 /* $NetBSD: ipsec.c,v 1.84 2017/04/25 05:44:11 ozaki-r Exp $ */
2 /* $FreeBSD: /usr/local/www/cvsroot/FreeBSD/src/sys/netipsec/ipsec.c,v 1.2.2.2 2003/07/01 01:38:13 sam Exp $ */
3 /* $KAME: ipsec.c,v 1.103 2001/05/24 07:14:18 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: ipsec.c,v 1.84 2017/04/25 05:44:11 ozaki-r Exp $");
36
37 /*
38 * IPsec controller part.
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #endif
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/domain.h>
51 #include <sys/protosw.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/errno.h>
55 #include <sys/time.h>
56 #include <sys/kernel.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 #include <sys/proc.h>
60 #include <sys/kauth.h>
61
62 #include <net/if.h>
63 #include <net/route.h>
64
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/in_var.h>
70 #include <netinet/udp.h>
71 #include <netinet/udp_var.h>
72 #include <netinet/tcp.h>
73 #include <netinet/udp.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_private.h>
76
77 #include <netinet/ip6.h>
78 #ifdef INET6
79 #include <netinet6/ip6_var.h>
80 #endif
81 #include <netinet/in_pcb.h>
82 #ifdef INET6
83 #include <netinet6/in6_pcb.h>
84 #include <netinet/icmp6.h>
85 #endif
86
87 #include <netipsec/ipsec.h>
88 #include <netipsec/ipsec_var.h>
89 #include <netipsec/ipsec_private.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 #include <netipsec/ah_var.h>
94 #include <netipsec/esp_var.h>
95 #include <netipsec/ipcomp.h> /*XXX*/
96 #include <netipsec/ipcomp_var.h>
97
98 #include <netipsec/key.h>
99 #include <netipsec/keydb.h>
100 #include <netipsec/key_debug.h>
101
102 #include <netipsec/xform.h>
103
104 #include <net/net_osdep.h>
105
106 int ipsec_used = 0;
107 int ipsec_enabled = 1;
108
109 #ifdef IPSEC_DEBUG
110 int ipsec_debug = 1;
111
112 /*
113 * When set to 1, IPsec will send packets with the same sequence number.
114 * This allows to verify if the other side has proper replay attacks detection.
115 */
116 int ipsec_replay = 0;
117
118 /*
119 * When set 1, IPsec will send packets with corrupted HMAC.
120 * This allows to verify if the other side properly detects modified packets.
121 */
122 int ipsec_integrity = 0;
123 #else
124 int ipsec_debug = 0;
125 #endif
126
127 percpu_t *ipsecstat_percpu;
128 int ip4_ah_offsetmask = 0; /* maybe IP_DF? */
129 int ip4_ipsec_dfbit = 2; /* DF bit on encap. 0: clear 1: set 2: copy */
130 int ip4_esp_trans_deflev = IPSEC_LEVEL_USE;
131 int ip4_esp_net_deflev = IPSEC_LEVEL_USE;
132 int ip4_ah_trans_deflev = IPSEC_LEVEL_USE;
133 int ip4_ah_net_deflev = IPSEC_LEVEL_USE;
134 struct secpolicy ip4_def_policy;
135 int ip4_ipsec_ecn = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
136 int ip4_esp_randpad = -1;
137
138 u_int ipsec_spdgen = 1; /* SPD generation # */
139
140 static struct secpolicy *ipsec_checkpcbcache (struct mbuf *,
141 struct inpcbpolicy *, int);
142 static int ipsec_fillpcbcache (struct inpcbpolicy *, struct mbuf *,
143 struct secpolicy *, int);
144 static int ipsec_invalpcbcache (struct inpcbpolicy *, int);
145
146 /*
147 * Crypto support requirements:
148 *
149 * 1 require hardware support
150 * -1 require software support
151 * 0 take anything
152 */
153 int crypto_support = 0;
154
155 static struct secpolicy *ipsec_getpolicybysock(struct mbuf *, u_int,
156 struct inpcb_hdr *, int *);
157
158 #ifdef __FreeBSD__
159 /* net.inet.ipsec */
160 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_ESP_RANDPAD,
161 esp_randpad, CTLFLAG_RW, &ip4_esp_randpad, 0, "");
162 SYSCTL_INT(_net_inet_ipsec, OID_AUTO,
163 crypto_support, CTLFLAG_RW, &crypto_support,0, "");
164 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_replay, CTLFLAG_RW, &ipsec_replay, 0,
165 "Emulate replay attack");
166 SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_integrity, CTLFLAG_RW,
167 &ipsec_integrity, 0, "Emulate man-in-the-middle attack");
168 #endif /* __FreeBSD__ */
169
170 #ifdef INET6
171 int ip6_esp_trans_deflev = IPSEC_LEVEL_USE;
172 int ip6_esp_net_deflev = IPSEC_LEVEL_USE;
173 int ip6_ah_trans_deflev = IPSEC_LEVEL_USE;
174 int ip6_ah_net_deflev = IPSEC_LEVEL_USE;
175 struct secpolicy ip6_def_policy;
176 int ip6_ipsec_ecn = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */
177 int ip6_esp_randpad = -1;
178
179
180 #ifdef __FreeBSD__
181 /* net.inet6.ipsec6 */
182 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_ESP_RANDPAD,
183 esp_randpad, CTLFLAG_RW, &ip6_esp_randpad, 0, "");
184 #endif /* __FreeBSD__ */
185 #endif /* INET6 */
186
187 static int ipsec4_setspidx_inpcb (struct mbuf *, struct inpcb *);
188 #ifdef INET6
189 static int ipsec6_setspidx_in6pcb (struct mbuf *, struct in6pcb *);
190 #endif
191 static int ipsec_setspidx (struct mbuf *, struct secpolicyindex *, int);
192 static void ipsec4_get_ulp (struct mbuf *m, struct secpolicyindex *, int);
193 static int ipsec4_setspidx_ipaddr (struct mbuf *, struct secpolicyindex *);
194 #ifdef INET6
195 static void ipsec6_get_ulp (struct mbuf *m, struct secpolicyindex *, int);
196 static int ipsec6_setspidx_ipaddr (struct mbuf *, struct secpolicyindex *);
197 #endif
198 static void ipsec_delpcbpolicy (struct inpcbpolicy *);
199 static struct secpolicy *ipsec_deepcopy_policy (const struct secpolicy *);
200 static int ipsec_set_policy (struct secpolicy **, int, const void *, size_t,
201 kauth_cred_t);
202 static int ipsec_get_policy (struct secpolicy *, struct mbuf **);
203 static void vshiftl (unsigned char *, int, int);
204 static size_t ipsec_hdrsiz (const struct secpolicy *);
205
206 /*
207 * Try to validate and use cached policy on a PCB.
208 */
209 static struct secpolicy *
210 ipsec_checkpcbcache(struct mbuf *m, struct inpcbpolicy *pcbsp, int dir)
211 {
212 struct secpolicyindex spidx;
213
214 KASSERT(IPSEC_DIR_IS_VALID(dir));
215 KASSERT(pcbsp != NULL);
216 KASSERT(dir < sizeof(pcbsp->sp_cache)/sizeof(pcbsp->sp_cache[0]));
217 KASSERT(inph_locked(pcbsp->sp_inph));
218
219 /* SPD table change invalidate all the caches. */
220 if (ipsec_spdgen != pcbsp->sp_cache[dir].cachegen) {
221 ipsec_invalpcbcache(pcbsp, dir);
222 return NULL;
223 }
224 if (!pcbsp->sp_cache[dir].cachesp)
225 return NULL;
226 if (pcbsp->sp_cache[dir].cachesp->state != IPSEC_SPSTATE_ALIVE) {
227 ipsec_invalpcbcache(pcbsp, dir);
228 return NULL;
229 }
230 if ((pcbsp->sp_cacheflags & IPSEC_PCBSP_CONNECTED) == 0) {
231 if (!pcbsp->sp_cache[dir].cachesp)
232 return NULL;
233 if (ipsec_setspidx(m, &spidx, 1) != 0)
234 return NULL;
235
236 /*
237 * We have to make an exact match here since the cached rule
238 * might have lower priority than a rule that would otherwise
239 * have matched the packet.
240 */
241
242 if (memcmp(&pcbsp->sp_cache[dir].cacheidx, &spidx, sizeof(spidx)))
243 return NULL;
244
245 } else {
246 /*
247 * The pcb is connected, and the L4 code is sure that:
248 * - outgoing side uses inp_[lf]addr
249 * - incoming side looks up policy after inpcb lookup
250 * and address pair is know to be stable. We do not need
251 * to generate spidx again, nor check the address match again.
252 *
253 * For IPv4/v6 SOCK_STREAM sockets, this assumptions holds
254 * and there are calls to ipsec_pcbconn() from in_pcbconnect().
255 */
256 }
257
258 pcbsp->sp_cache[dir].cachesp->lastused = time_second;
259 pcbsp->sp_cache[dir].cachesp->refcnt++;
260 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
261 "DP cause refcnt++:%d SP:%p\n",
262 pcbsp->sp_cache[dir].cachesp->refcnt,
263 pcbsp->sp_cache[dir].cachesp);
264 return pcbsp->sp_cache[dir].cachesp;
265 }
266
267 static int
268 ipsec_fillpcbcache(struct inpcbpolicy *pcbsp, struct mbuf *m,
269 struct secpolicy *sp, int dir)
270 {
271
272 KASSERT(IPSEC_DIR_IS_INOROUT(dir));
273 KASSERT(dir < sizeof(pcbsp->sp_cache)/sizeof(pcbsp->sp_cache[0]));
274 KASSERT(inph_locked(pcbsp->sp_inph));
275
276 if (pcbsp->sp_cache[dir].cachesp)
277 KEY_FREESP(&pcbsp->sp_cache[dir].cachesp);
278 pcbsp->sp_cache[dir].cachesp = NULL;
279 pcbsp->sp_cache[dir].cachehint = IPSEC_PCBHINT_MAYBE;
280 if (ipsec_setspidx(m, &pcbsp->sp_cache[dir].cacheidx, 1) != 0) {
281 return EINVAL;
282 }
283 pcbsp->sp_cache[dir].cachesp = sp;
284 if (pcbsp->sp_cache[dir].cachesp) {
285 pcbsp->sp_cache[dir].cachesp->refcnt++;
286 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
287 "DP cause refcnt++:%d SP:%p\n",
288 pcbsp->sp_cache[dir].cachesp->refcnt,
289 pcbsp->sp_cache[dir].cachesp);
290
291 /*
292 * If the PCB is connected, we can remember a hint to
293 * possibly short-circuit IPsec processing in other places.
294 */
295 if (pcbsp->sp_cacheflags & IPSEC_PCBSP_CONNECTED) {
296 switch (pcbsp->sp_cache[dir].cachesp->policy) {
297 case IPSEC_POLICY_NONE:
298 case IPSEC_POLICY_BYPASS:
299 pcbsp->sp_cache[dir].cachehint =
300 IPSEC_PCBHINT_NO;
301 break;
302 default:
303 pcbsp->sp_cache[dir].cachehint =
304 IPSEC_PCBHINT_YES;
305 }
306 }
307 }
308 pcbsp->sp_cache[dir].cachegen = ipsec_spdgen;
309
310 return 0;
311 }
312
313 static int
314 ipsec_invalpcbcache(struct inpcbpolicy *pcbsp, int dir)
315 {
316 int i;
317
318 KASSERT(inph_locked(pcbsp->sp_inph));
319
320 for (i = IPSEC_DIR_INBOUND; i <= IPSEC_DIR_OUTBOUND; i++) {
321 if (dir != IPSEC_DIR_ANY && i != dir)
322 continue;
323 if (pcbsp->sp_cache[i].cachesp)
324 KEY_FREESP(&pcbsp->sp_cache[i].cachesp);
325 pcbsp->sp_cache[i].cachesp = NULL;
326 pcbsp->sp_cache[i].cachehint = IPSEC_PCBHINT_MAYBE;
327 pcbsp->sp_cache[i].cachegen = 0;
328 memset(&pcbsp->sp_cache[i].cacheidx, 0,
329 sizeof(pcbsp->sp_cache[i].cacheidx));
330 }
331 return 0;
332 }
333
334 void
335 ipsec_pcbconn(struct inpcbpolicy *pcbsp)
336 {
337
338 KASSERT(inph_locked(pcbsp->sp_inph));
339
340 pcbsp->sp_cacheflags |= IPSEC_PCBSP_CONNECTED;
341 ipsec_invalpcbcache(pcbsp, IPSEC_DIR_ANY);
342 }
343
344 void
345 ipsec_pcbdisconn(struct inpcbpolicy *pcbsp)
346 {
347
348 KASSERT(inph_locked(pcbsp->sp_inph));
349
350 pcbsp->sp_cacheflags &= ~IPSEC_PCBSP_CONNECTED;
351 ipsec_invalpcbcache(pcbsp, IPSEC_DIR_ANY);
352 }
353
354 void
355 ipsec_invalpcbcacheall(void)
356 {
357
358 if (ipsec_spdgen == UINT_MAX)
359 ipsec_spdgen = 1;
360 else
361 ipsec_spdgen++;
362 }
363
364 /*
365 * Return a held reference to the default SP.
366 */
367 static struct secpolicy *
368 key_allocsp_default(int af, const char *where, int tag)
369 {
370 struct secpolicy *sp;
371
372 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
373
374 switch(af) {
375 case AF_INET:
376 sp = &ip4_def_policy;
377 break;
378 #ifdef INET6
379 case AF_INET6:
380 sp = &ip6_def_policy;
381 break;
382 #endif
383 default:
384 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
385 "unexpected protocol family %u\n", af);
386 return NULL;
387 }
388
389 if (sp->policy != IPSEC_POLICY_DISCARD &&
390 sp->policy != IPSEC_POLICY_NONE) {
391 ipseclog((LOG_INFO, "fixed system default policy: %d->%d\n",
392 sp->policy, IPSEC_POLICY_NONE));
393 sp->policy = IPSEC_POLICY_NONE;
394 }
395 sp->refcnt++;
396
397 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP returns SP:%p (%u)\n",
398 sp, sp->refcnt);
399 return sp;
400 }
401 #define KEY_ALLOCSP_DEFAULT(af) \
402 key_allocsp_default((af),__FILE__, __LINE__)
403
404 /*
405 * For OUTBOUND packet having a socket. Searching SPD for packet,
406 * and return a pointer to SP.
407 * OUT: NULL: no apropreate SP found, the following value is set to error.
408 * 0 : bypass
409 * EACCES : discard packet.
410 * ENOENT : ipsec_acquire() in progress, maybe.
411 * others : error occurred.
412 * others: a pointer to SP
413 *
414 * NOTE: IPv6 mapped address concern is implemented here.
415 */
416 struct secpolicy *
417 ipsec_getpolicy(const struct tdb_ident *tdbi, u_int dir)
418 {
419 struct secpolicy *sp;
420
421 KASSERT(tdbi != NULL);
422 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
423
424 sp = KEY_ALLOCSP2(tdbi->spi, &tdbi->dst, tdbi->proto, dir);
425 if (sp == NULL) /*XXX????*/
426 sp = KEY_ALLOCSP_DEFAULT(tdbi->dst.sa.sa_family);
427 KASSERT(sp != NULL);
428 return sp;
429 }
430
431 /*
432 * For OUTBOUND packet having a socket. Searching SPD for packet,
433 * and return a pointer to SP.
434 * OUT: NULL: no apropreate SP found, the following value is set to error.
435 * 0 : bypass
436 * EACCES : discard packet.
437 * ENOENT : ipsec_acquire() in progress, maybe.
438 * others : error occurred.
439 * others: a pointer to SP
440 *
441 * NOTE: IPv6 mapped address concern is implemented here.
442 */
443 static struct secpolicy *
444 ipsec_getpolicybysock(struct mbuf *m, u_int dir, struct inpcb_hdr *inph,
445 int *error)
446 {
447 struct inpcbpolicy *pcbsp = NULL;
448 struct secpolicy *currsp = NULL; /* policy on socket */
449 struct secpolicy *sp;
450 int af;
451
452 KASSERT(m != NULL);
453 KASSERT(inph != NULL);
454 KASSERT(error != NULL);
455 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
456
457 KASSERT(inph->inph_socket != NULL);
458 KASSERT(inph_locked(inph));
459
460 /* XXX FIXME inpcb/in6pcb vs socket*/
461 af = inph->inph_af;
462 KASSERTMSG(af == AF_INET || af == AF_INET6,
463 "unexpected protocol family %u", af);
464
465 KASSERT(inph->inph_sp != NULL);
466 /* If we have a cached entry, and if it is still valid, use it. */
467 IPSEC_STATINC(IPSEC_STAT_SPDCACHELOOKUP);
468 currsp = ipsec_checkpcbcache(m, inph->inph_sp, dir);
469 if (currsp) {
470 *error = 0;
471 return currsp;
472 }
473 IPSEC_STATINC(IPSEC_STAT_SPDCACHEMISS);
474
475 switch (af) {
476 case AF_INET: {
477 struct inpcb *in4p = (struct inpcb *)inph;
478 /* set spidx in pcb */
479 *error = ipsec4_setspidx_inpcb(m, in4p);
480 pcbsp = in4p->inp_sp;
481 break;
482 }
483
484 #if defined(INET6)
485 case AF_INET6: {
486 struct in6pcb *in6p = (struct in6pcb *)inph;
487 /* set spidx in pcb */
488 *error = ipsec6_setspidx_in6pcb(m, in6p);
489 pcbsp = in6p->in6p_sp;
490 break;
491 }
492 #endif
493 default:
494 *error = EPFNOSUPPORT;
495 break;
496 }
497 if (*error)
498 return NULL;
499
500 KASSERT(pcbsp != NULL);
501 switch (dir) {
502 case IPSEC_DIR_INBOUND:
503 currsp = pcbsp->sp_in;
504 break;
505 case IPSEC_DIR_OUTBOUND:
506 currsp = pcbsp->sp_out;
507 break;
508 }
509 KASSERT(currsp != NULL);
510
511 if (pcbsp->priv) { /* when privilieged socket */
512 switch (currsp->policy) {
513 case IPSEC_POLICY_BYPASS:
514 case IPSEC_POLICY_IPSEC:
515 currsp->refcnt++;
516 sp = currsp;
517 break;
518
519 case IPSEC_POLICY_ENTRUST:
520 /* look for a policy in SPD */
521 sp = KEY_ALLOCSP(&currsp->spidx, dir);
522 if (sp == NULL) /* no SP found */
523 sp = KEY_ALLOCSP_DEFAULT(af);
524 break;
525
526 default:
527 ipseclog((LOG_ERR, "%s: Invalid policy for PCB %d\n",
528 __func__, currsp->policy));
529 *error = EINVAL;
530 return NULL;
531 }
532 } else { /* unpriv, SPD has policy */
533 sp = KEY_ALLOCSP(&currsp->spidx, dir);
534 if (sp == NULL) { /* no SP found */
535 switch (currsp->policy) {
536 case IPSEC_POLICY_BYPASS:
537 ipseclog((LOG_ERR, "%s: Illegal policy for "
538 "non-priviliged defined %d\n", __func__,
539 currsp->policy));
540 *error = EINVAL;
541 return NULL;
542
543 case IPSEC_POLICY_ENTRUST:
544 sp = KEY_ALLOCSP_DEFAULT(af);
545 break;
546
547 case IPSEC_POLICY_IPSEC:
548 currsp->refcnt++;
549 sp = currsp;
550 break;
551
552 default:
553 ipseclog((LOG_ERR, "%s: Invalid policy for "
554 "PCB %d\n", __func__, currsp->policy));
555 *error = EINVAL;
556 return NULL;
557 }
558 }
559 }
560 KASSERTMSG(sp != NULL, "null SP (priv %u policy %u", pcbsp->priv,
561 currsp->policy);
562 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
563 "DP (priv %u policy %u) allocates SP:%p (refcnt %u)\n",
564 pcbsp->priv, currsp->policy, sp, sp->refcnt);
565 ipsec_fillpcbcache(pcbsp, m, sp, dir);
566 return sp;
567 }
568
569 /*
570 * For FORWADING packet or OUTBOUND without a socket. Searching SPD for packet,
571 * and return a pointer to SP.
572 * OUT: positive: a pointer to the entry for security policy leaf matched.
573 * NULL: no apropreate SP found, the following value is set to error.
574 * 0 : bypass
575 * EACCES : discard packet.
576 * ENOENT : ipsec_acquire() in progress, maybe.
577 * others : error occurred.
578 */
579 struct secpolicy *
580 ipsec_getpolicybyaddr(struct mbuf *m, u_int dir, int flag, int *error)
581 {
582 struct secpolicyindex spidx;
583 struct secpolicy *sp;
584
585 KASSERT(m != NULL);
586 KASSERT(error != NULL);
587 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
588
589 sp = NULL;
590
591 /* Make an index to look for a policy. */
592 *error = ipsec_setspidx(m, &spidx, (flag & IP_FORWARDING) ? 0 : 1);
593 if (*error != 0) {
594 DPRINTF(("%s: setpidx failed, dir %u flag %u\n", __func__,
595 dir, flag));
596 memset(&spidx, 0, sizeof (spidx));
597 return NULL;
598 }
599
600 spidx.dir = dir;
601
602 if (key_havesp(dir)) {
603 sp = KEY_ALLOCSP(&spidx, dir);
604 }
605
606 if (sp == NULL) /* no SP found, use system default */
607 sp = KEY_ALLOCSP_DEFAULT(spidx.dst.sa.sa_family);
608 KASSERT(sp != NULL);
609 return sp;
610 }
611
612 struct secpolicy *
613 ipsec4_checkpolicy(struct mbuf *m, u_int dir, u_int flag, int *error,
614 struct inpcb *inp)
615 {
616 struct secpolicy *sp;
617
618 *error = 0;
619
620 if (inp == NULL) {
621 sp = ipsec_getpolicybyaddr(m, dir, flag, error);
622 } else {
623 KASSERT(inp->inp_socket != NULL);
624 sp = ipsec_getpolicybysock(m, dir, (struct inpcb_hdr *)inp, error);
625 }
626 if (sp == NULL) {
627 KASSERTMSG(*error != 0, "getpolicy failed w/o error");
628 IPSEC_STATINC(IPSEC_STAT_OUT_INVAL);
629 return NULL;
630 }
631 KASSERTMSG(*error == 0, "sp w/ error set to %u", *error);
632 switch (sp->policy) {
633 case IPSEC_POLICY_ENTRUST:
634 default:
635 printf("%s: invalid policy %u\n", __func__, sp->policy);
636 /* fall thru... */
637 case IPSEC_POLICY_DISCARD:
638 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
639 *error = -EINVAL; /* packet is discarded by caller */
640 break;
641 case IPSEC_POLICY_BYPASS:
642 case IPSEC_POLICY_NONE:
643 KEY_FREESP(&sp);
644 sp = NULL; /* NB: force NULL result */
645 break;
646 case IPSEC_POLICY_IPSEC:
647 if (sp->req == NULL) /* acquire an SA */
648 *error = key_spdacquire(sp);
649 break;
650 }
651 if (*error != 0) {
652 KEY_FREESP(&sp);
653 sp = NULL;
654 DPRINTF(("%s: done, error %d\n", __func__, *error));
655 }
656 return sp;
657 }
658
659 int
660 ipsec4_output(struct mbuf *m, struct inpcb *inp, int flags,
661 struct secpolicy **sp_out, u_long *mtu, bool *natt_frag, bool *done)
662 {
663 const struct ip *ip = mtod(m, const struct ip *);
664 struct secpolicy *sp = NULL;
665 int error, s;
666
667 /*
668 * Check the security policy (SP) for the packet and, if required,
669 * do IPsec-related processing. There are two cases here; the first
670 * time a packet is sent through it will be untagged and handled by
671 * ipsec4_checkpolicy(). If the packet is resubmitted to ip_output
672 * (e.g. after AH, ESP, etc. processing), there will be a tag to
673 * bypass the lookup and related policy checking.
674 */
675 if (ipsec_outdone(m)) {
676 return 0;
677 }
678 s = splsoftnet();
679 if (inp && IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
680 splx(s);
681 return 0;
682 }
683 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, &error, inp);
684
685 /*
686 * There are four return cases:
687 * sp != NULL apply IPsec policy
688 * sp == NULL, error == 0 no IPsec handling needed
689 * sp == NULL, error == -EINVAL discard packet w/o error
690 * sp == NULL, error != 0 discard packet, report error
691 */
692 if (sp == NULL) {
693 splx(s);
694 if (error) {
695 /*
696 * Hack: -EINVAL is used to signal that a packet
697 * should be silently discarded. This is typically
698 * because we asked key management for an SA and
699 * it was delayed (e.g. kicked up to IKE).
700 */
701 if (error == -EINVAL)
702 error = 0;
703 m_freem(m);
704 *done = true;
705 return error;
706 }
707 /* No IPsec processing for this packet. */
708 return 0;
709 }
710 *sp_out = sp;
711
712 /*
713 * NAT-T ESP fragmentation: do not do IPSec processing now,
714 * we will do it on each fragmented packet.
715 */
716 if (sp->req->sav && (sp->req->sav->natt_type &
717 (UDP_ENCAP_ESPINUDP|UDP_ENCAP_ESPINUDP_NON_IKE))) {
718 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
719 *mtu = sp->req->sav->esp_frag;
720 *natt_frag = true;
721 splx(s);
722 return 0;
723 }
724 }
725
726 /*
727 * Do delayed checksums now because we send before
728 * this is done in the normal processing path.
729 */
730 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
731 in_delayed_cksum(m);
732 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
733 }
734
735 /* Note: callee frees mbuf */
736 error = ipsec4_process_packet(m, sp->req, flags, 0);
737 /*
738 * Preserve KAME behaviour: ENOENT can be returned
739 * when an SA acquire is in progress. Don't propagate
740 * this to user-level; it confuses applications.
741 *
742 * XXX this will go away when the SADB is redone.
743 */
744 if (error == ENOENT)
745 error = 0;
746 splx(s);
747 *done = true;
748 return error;
749 }
750
751 int
752 ipsec4_input(struct mbuf *m, int flags)
753 {
754 struct m_tag *mtag;
755 struct tdb_ident *tdbi;
756 struct secpolicy *sp;
757 int error, s;
758
759 /*
760 * Check if the packet has already had IPsec processing done.
761 * If so, then just pass it along. This tag gets set during AH,
762 * ESP, etc. input handling, before the packet is returned to
763 * the IP input queue for delivery.
764 */
765 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
766 s = splsoftnet();
767 if (mtag != NULL) {
768 tdbi = (struct tdb_ident *)(mtag + 1);
769 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
770 } else {
771 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
772 IP_FORWARDING, &error);
773 }
774 if (sp == NULL) {
775 splx(s);
776 return EINVAL;
777 }
778
779 /*
780 * Check security policy against packet attributes.
781 */
782 error = ipsec_in_reject(sp, m);
783 KEY_FREESP(&sp);
784 splx(s);
785 if (error) {
786 return error;
787 }
788
789 if (flags == 0) {
790 /* We are done. */
791 return 0;
792 }
793
794 /*
795 * Peek at the outbound SP for this packet to determine if
796 * it is a Fast Forward candidate.
797 */
798 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
799 if (mtag != NULL) {
800 m->m_flags &= ~M_CANFASTFWD;
801 return 0;
802 }
803
804 s = splsoftnet();
805 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, &error, NULL);
806 if (sp != NULL) {
807 m->m_flags &= ~M_CANFASTFWD;
808 KEY_FREESP(&sp);
809 }
810 splx(s);
811 return 0;
812 }
813
814 int
815 ipsec4_forward(struct mbuf *m, int *destmtu)
816 {
817 /*
818 * If the packet is routed over IPsec tunnel, tell the
819 * originator the tunnel MTU.
820 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
821 * XXX quickhack!!!
822 */
823 struct secpolicy *sp;
824 size_t ipsechdr;
825 int error;
826
827 sp = ipsec4_getpolicybyaddr(m,
828 IPSEC_DIR_OUTBOUND, IP_FORWARDING, &error);
829 if (sp == NULL) {
830 return EINVAL;
831 }
832
833 /* Count IPsec header size. */
834 ipsechdr = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, NULL);
835
836 /*
837 * Find the correct route for outer IPv4 header, compute tunnel MTU.
838 */
839 if (sp->req && sp->req->sav && sp->req->sav->sah) {
840 struct route *ro;
841 struct rtentry *rt;
842
843 ro = &sp->req->sav->sah->sa_route;
844 rt = rtcache_validate(ro);
845 if (rt && rt->rt_ifp) {
846 *destmtu = rt->rt_rmx.rmx_mtu ?
847 rt->rt_rmx.rmx_mtu : rt->rt_ifp->if_mtu;
848 *destmtu -= ipsechdr;
849 }
850 rtcache_unref(rt, ro);
851 }
852 KEY_FREESP(&sp);
853 return 0;
854 }
855
856 #ifdef INET6
857 struct secpolicy *
858 ipsec6_checkpolicy(struct mbuf *m, u_int dir, u_int flag, int *error,
859 struct in6pcb *in6p)
860 {
861 struct secpolicy *sp;
862
863 *error = 0;
864
865 if (in6p == NULL) {
866 sp = ipsec_getpolicybyaddr(m, dir, flag, error);
867 } else {
868 KASSERT(in6p->in6p_socket != NULL);
869 sp = ipsec_getpolicybysock(m, dir, (struct inpcb_hdr *)in6p, error);
870 }
871 if (sp == NULL) {
872 KASSERTMSG(*error != 0, "getpolicy failed w/o error");
873 IPSEC_STATINC(IPSEC_STAT_OUT_INVAL);
874 return NULL;
875 }
876 KASSERTMSG(*error == 0, "sp w/ error set to %u", *error);
877 switch (sp->policy) {
878 case IPSEC_POLICY_ENTRUST:
879 default:
880 printf("%s: invalid policy %u\n", __func__, sp->policy);
881 /* fall thru... */
882 case IPSEC_POLICY_DISCARD:
883 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
884 *error = -EINVAL; /* packet is discarded by caller */
885 break;
886 case IPSEC_POLICY_BYPASS:
887 case IPSEC_POLICY_NONE:
888 KEY_FREESP(&sp);
889 sp = NULL; /* NB: force NULL result */
890 break;
891 case IPSEC_POLICY_IPSEC:
892 if (sp->req == NULL) /* acquire an SA */
893 *error = key_spdacquire(sp);
894 break;
895 }
896 if (*error != 0) {
897 KEY_FREESP(&sp);
898 sp = NULL;
899 DPRINTF(("%s: done, error %d\n", __func__, *error));
900 }
901 return sp;
902 }
903 #endif /* INET6 */
904
905 static int
906 ipsec4_setspidx_inpcb(struct mbuf *m, struct inpcb *pcb)
907 {
908 int error;
909
910 KASSERT(pcb != NULL);
911 KASSERT(pcb->inp_sp != NULL);
912 KASSERT(pcb->inp_sp->sp_out != NULL);
913 KASSERT(pcb->inp_sp->sp_in != NULL);
914
915 error = ipsec_setspidx(m, &pcb->inp_sp->sp_in->spidx, 1);
916 if (error == 0) {
917 pcb->inp_sp->sp_in->spidx.dir = IPSEC_DIR_INBOUND;
918 pcb->inp_sp->sp_out->spidx = pcb->inp_sp->sp_in->spidx;
919 pcb->inp_sp->sp_out->spidx.dir = IPSEC_DIR_OUTBOUND;
920 } else {
921 memset(&pcb->inp_sp->sp_in->spidx, 0,
922 sizeof (pcb->inp_sp->sp_in->spidx));
923 memset(&pcb->inp_sp->sp_out->spidx, 0,
924 sizeof (pcb->inp_sp->sp_in->spidx));
925 }
926 return error;
927 }
928
929 #ifdef INET6
930 static int
931 ipsec6_setspidx_in6pcb(struct mbuf *m, struct in6pcb *pcb)
932 {
933 struct secpolicyindex *spidx;
934 int error;
935
936 KASSERT(pcb != NULL);
937 KASSERT(pcb->in6p_sp != NULL);
938 KASSERT(pcb->in6p_sp->sp_out != NULL);
939 KASSERT(pcb->in6p_sp->sp_in != NULL);
940
941 memset(&pcb->in6p_sp->sp_in->spidx, 0, sizeof(*spidx));
942 memset(&pcb->in6p_sp->sp_out->spidx, 0, sizeof(*spidx));
943
944 spidx = &pcb->in6p_sp->sp_in->spidx;
945 error = ipsec_setspidx(m, spidx, 1);
946 if (error)
947 goto bad;
948 spidx->dir = IPSEC_DIR_INBOUND;
949
950 spidx = &pcb->in6p_sp->sp_out->spidx;
951 error = ipsec_setspidx(m, spidx, 1);
952 if (error)
953 goto bad;
954 spidx->dir = IPSEC_DIR_OUTBOUND;
955
956 return 0;
957
958 bad:
959 memset(&pcb->in6p_sp->sp_in->spidx, 0, sizeof(*spidx));
960 memset(&pcb->in6p_sp->sp_out->spidx, 0, sizeof(*spidx));
961 return error;
962 }
963 #endif
964
965 /*
966 * configure security policy index (src/dst/proto/sport/dport)
967 * by looking at the content of mbuf.
968 * the caller is responsible for error recovery (like clearing up spidx).
969 */
970 static int
971 ipsec_setspidx(struct mbuf *m, struct secpolicyindex *spidx, int needport)
972 {
973 struct ip *ip = NULL;
974 struct ip ipbuf;
975 u_int v;
976 struct mbuf *n;
977 int len;
978 int error;
979
980 KASSERT(m != NULL);
981
982 /*
983 * validate m->m_pkthdr.len. we see incorrect length if we
984 * mistakenly call this function with inconsistent mbuf chain
985 * (like 4.4BSD tcp/udp processing). XXX should we panic here?
986 */
987 len = 0;
988 for (n = m; n; n = n->m_next)
989 len += n->m_len;
990 if (m->m_pkthdr.len != len) {
991 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
992 "total of m_len(%d) != pkthdr.len(%d), ignored.\n",
993 len, m->m_pkthdr.len);
994 return EINVAL;
995 }
996
997 if (m->m_pkthdr.len < sizeof(struct ip)) {
998 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
999 "pkthdr.len(%d) < sizeof(struct ip), ignored.\n",
1000 m->m_pkthdr.len);
1001 return EINVAL;
1002 }
1003
1004 if (m->m_len >= sizeof(*ip))
1005 ip = mtod(m, struct ip *);
1006 else {
1007 m_copydata(m, 0, sizeof(ipbuf), &ipbuf);
1008 ip = &ipbuf;
1009 }
1010 v = ip->ip_v;
1011 switch (v) {
1012 case 4:
1013 error = ipsec4_setspidx_ipaddr(m, spidx);
1014 if (error)
1015 return error;
1016 ipsec4_get_ulp(m, spidx, needport);
1017 return 0;
1018 #ifdef INET6
1019 case 6:
1020 if (m->m_pkthdr.len < sizeof(struct ip6_hdr)) {
1021 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1022 "pkthdr.len(%d) < sizeof(struct ip6_hdr), "
1023 "ignored.\n", m->m_pkthdr.len);
1024 return EINVAL;
1025 }
1026 error = ipsec6_setspidx_ipaddr(m, spidx);
1027 if (error)
1028 return error;
1029 ipsec6_get_ulp(m, spidx, needport);
1030 return 0;
1031 #endif
1032 default:
1033 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1034 "unknown IP version %u, ignored.\n", v);
1035 return EINVAL;
1036 }
1037 }
1038
1039 static void
1040 ipsec4_get_ulp(struct mbuf *m, struct secpolicyindex *spidx, int needport)
1041 {
1042 u_int8_t nxt;
1043 int off;
1044
1045 /* sanity check */
1046 KASSERT(m != NULL);
1047 KASSERTMSG(m->m_pkthdr.len >= sizeof(struct ip), "packet too short");
1048
1049 /* NB: ip_input() flips it into host endian XXX need more checking */
1050 if (m->m_len >= sizeof(struct ip)) {
1051 struct ip *ip = mtod(m, struct ip *);
1052 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1053 goto done;
1054 off = ip->ip_hl << 2;
1055 nxt = ip->ip_p;
1056 } else {
1057 struct ip ih;
1058
1059 m_copydata(m, 0, sizeof (struct ip), &ih);
1060 if (ih.ip_off & htons(IP_MF | IP_OFFMASK))
1061 goto done;
1062 off = ih.ip_hl << 2;
1063 nxt = ih.ip_p;
1064 }
1065
1066 while (off < m->m_pkthdr.len) {
1067 struct ip6_ext ip6e;
1068 struct tcphdr th;
1069 struct udphdr uh;
1070 struct icmp icmph;
1071
1072 switch (nxt) {
1073 case IPPROTO_TCP:
1074 spidx->ul_proto = nxt;
1075 if (!needport)
1076 goto done_proto;
1077 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
1078 goto done;
1079 m_copydata(m, off, sizeof (th), &th);
1080 spidx->src.sin.sin_port = th.th_sport;
1081 spidx->dst.sin.sin_port = th.th_dport;
1082 return;
1083 case IPPROTO_UDP:
1084 spidx->ul_proto = nxt;
1085 if (!needport)
1086 goto done_proto;
1087 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
1088 goto done;
1089 m_copydata(m, off, sizeof (uh), &uh);
1090 spidx->src.sin.sin_port = uh.uh_sport;
1091 spidx->dst.sin.sin_port = uh.uh_dport;
1092 return;
1093 case IPPROTO_AH:
1094 if (m->m_pkthdr.len > off + sizeof(ip6e))
1095 goto done;
1096 /* XXX sigh, this works but is totally bogus */
1097 m_copydata(m, off, sizeof(ip6e), &ip6e);
1098 off += (ip6e.ip6e_len + 2) << 2;
1099 nxt = ip6e.ip6e_nxt;
1100 break;
1101 case IPPROTO_ICMP:
1102 spidx->ul_proto = nxt;
1103 if (off + sizeof(struct icmp) > m->m_pkthdr.len)
1104 return;
1105 m_copydata(m, off, sizeof(icmph), &icmph);
1106 ((struct sockaddr_in *)&spidx->src)->sin_port =
1107 htons((uint16_t)icmph.icmp_type);
1108 ((struct sockaddr_in *)&spidx->dst)->sin_port =
1109 htons((uint16_t)icmph.icmp_code);
1110 return;
1111 default:
1112 /* XXX intermediate headers??? */
1113 spidx->ul_proto = nxt;
1114 goto done_proto;
1115 }
1116 }
1117 done:
1118 spidx->ul_proto = IPSEC_ULPROTO_ANY;
1119 done_proto:
1120 spidx->src.sin.sin_port = IPSEC_PORT_ANY;
1121 spidx->dst.sin.sin_port = IPSEC_PORT_ANY;
1122 }
1123
1124 /* assumes that m is sane */
1125 static int
1126 ipsec4_setspidx_ipaddr(struct mbuf *m, struct secpolicyindex *spidx)
1127 {
1128 static const struct sockaddr_in template = {
1129 sizeof (struct sockaddr_in),
1130 AF_INET,
1131 0, { 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }
1132 };
1133
1134 spidx->src.sin = template;
1135 spidx->dst.sin = template;
1136
1137 if (m->m_len < sizeof (struct ip)) {
1138 m_copydata(m, offsetof(struct ip, ip_src),
1139 sizeof (struct in_addr),
1140 &spidx->src.sin.sin_addr);
1141 m_copydata(m, offsetof(struct ip, ip_dst),
1142 sizeof (struct in_addr),
1143 &spidx->dst.sin.sin_addr);
1144 } else {
1145 struct ip *ip = mtod(m, struct ip *);
1146 spidx->src.sin.sin_addr = ip->ip_src;
1147 spidx->dst.sin.sin_addr = ip->ip_dst;
1148 }
1149
1150 spidx->prefs = sizeof(struct in_addr) << 3;
1151 spidx->prefd = sizeof(struct in_addr) << 3;
1152
1153 return 0;
1154 }
1155
1156 #ifdef INET6
1157 static void
1158 ipsec6_get_ulp(struct mbuf *m, struct secpolicyindex *spidx,
1159 int needport)
1160 {
1161 int off, nxt;
1162 struct tcphdr th;
1163 struct udphdr uh;
1164 struct icmp6_hdr icmph;
1165
1166 KASSERT(m != NULL);
1167
1168 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1169 printf("%s:\n", __func__);
1170 kdebug_mbuf(m);
1171 }
1172
1173 /* set default */
1174 spidx->ul_proto = IPSEC_ULPROTO_ANY;
1175 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = IPSEC_PORT_ANY;
1176 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = IPSEC_PORT_ANY;
1177
1178 nxt = -1;
1179 off = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
1180 if (off < 0 || m->m_pkthdr.len < off)
1181 return;
1182
1183 switch (nxt) {
1184 case IPPROTO_TCP:
1185 spidx->ul_proto = nxt;
1186 if (!needport)
1187 break;
1188 if (off + sizeof(struct tcphdr) > m->m_pkthdr.len)
1189 break;
1190 m_copydata(m, off, sizeof(th), &th);
1191 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = th.th_sport;
1192 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = th.th_dport;
1193 break;
1194 case IPPROTO_UDP:
1195 spidx->ul_proto = nxt;
1196 if (!needport)
1197 break;
1198 if (off + sizeof(struct udphdr) > m->m_pkthdr.len)
1199 break;
1200 m_copydata(m, off, sizeof(uh), &uh);
1201 ((struct sockaddr_in6 *)&spidx->src)->sin6_port = uh.uh_sport;
1202 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = uh.uh_dport;
1203 break;
1204 case IPPROTO_ICMPV6:
1205 spidx->ul_proto = nxt;
1206 if (off + sizeof(struct icmp6_hdr) > m->m_pkthdr.len)
1207 break;
1208 m_copydata(m, off, sizeof(icmph), &icmph);
1209 ((struct sockaddr_in6 *)&spidx->src)->sin6_port =
1210 htons((uint16_t)icmph.icmp6_type);
1211 ((struct sockaddr_in6 *)&spidx->dst)->sin6_port =
1212 htons((uint16_t)icmph.icmp6_code);
1213 break;
1214 default:
1215 /* XXX intermediate headers??? */
1216 spidx->ul_proto = nxt;
1217 break;
1218 }
1219 }
1220
1221 /* assumes that m is sane */
1222 static int
1223 ipsec6_setspidx_ipaddr(struct mbuf *m, struct secpolicyindex *spidx)
1224 {
1225 struct ip6_hdr *ip6 = NULL;
1226 struct ip6_hdr ip6buf;
1227 struct sockaddr_in6 *sin6;
1228
1229 if (m->m_len >= sizeof(*ip6))
1230 ip6 = mtod(m, struct ip6_hdr *);
1231 else {
1232 m_copydata(m, 0, sizeof(ip6buf), &ip6buf);
1233 ip6 = &ip6buf;
1234 }
1235
1236 sin6 = (struct sockaddr_in6 *)&spidx->src;
1237 memset(sin6, 0, sizeof(*sin6));
1238 sin6->sin6_family = AF_INET6;
1239 sin6->sin6_len = sizeof(struct sockaddr_in6);
1240 memcpy(&sin6->sin6_addr, &ip6->ip6_src, sizeof(ip6->ip6_src));
1241 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
1242 sin6->sin6_addr.s6_addr16[1] = 0;
1243 sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]);
1244 }
1245 spidx->prefs = sizeof(struct in6_addr) << 3;
1246
1247 sin6 = (struct sockaddr_in6 *)&spidx->dst;
1248 memset(sin6, 0, sizeof(*sin6));
1249 sin6->sin6_family = AF_INET6;
1250 sin6->sin6_len = sizeof(struct sockaddr_in6);
1251 memcpy(&sin6->sin6_addr, &ip6->ip6_dst, sizeof(ip6->ip6_dst));
1252 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) {
1253 sin6->sin6_addr.s6_addr16[1] = 0;
1254 sin6->sin6_scope_id = ntohs(ip6->ip6_dst.s6_addr16[1]);
1255 }
1256 spidx->prefd = sizeof(struct in6_addr) << 3;
1257
1258 return 0;
1259 }
1260 #endif
1261
1262 static void
1263 ipsec_delpcbpolicy(struct inpcbpolicy *p)
1264 {
1265 free(p, M_SECA);
1266 }
1267
1268 /* initialize policy in PCB */
1269 int
1270 ipsec_init_policy(struct socket *so, struct inpcbpolicy **policy)
1271 {
1272 struct inpcbpolicy *new;
1273
1274 KASSERT(so != NULL);
1275 KASSERT(policy != NULL);
1276
1277 new = malloc(sizeof(*new), M_SECA, M_NOWAIT|M_ZERO);
1278 if (new == NULL) {
1279 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
1280 return ENOBUFS;
1281 }
1282
1283 if (IPSEC_PRIVILEGED_SO(so))
1284 new->priv = 1;
1285 else
1286 new->priv = 0;
1287
1288 if ((new->sp_in = KEY_NEWSP()) == NULL) {
1289 ipsec_delpcbpolicy(new);
1290 return ENOBUFS;
1291 }
1292 new->sp_in->state = IPSEC_SPSTATE_ALIVE;
1293 new->sp_in->policy = IPSEC_POLICY_ENTRUST;
1294
1295 if ((new->sp_out = KEY_NEWSP()) == NULL) {
1296 KEY_FREESP(&new->sp_in);
1297 ipsec_delpcbpolicy(new);
1298 return ENOBUFS;
1299 }
1300 new->sp_out->state = IPSEC_SPSTATE_ALIVE;
1301 new->sp_out->policy = IPSEC_POLICY_ENTRUST;
1302
1303 *policy = new;
1304
1305 return 0;
1306 }
1307
1308 /* copy old ipsec policy into new */
1309 int
1310 ipsec_copy_policy(const struct inpcbpolicy *old, struct inpcbpolicy *new)
1311 {
1312 struct secpolicy *sp;
1313
1314 sp = ipsec_deepcopy_policy(old->sp_in);
1315 if (sp) {
1316 KEY_FREESP(&new->sp_in);
1317 new->sp_in = sp;
1318 } else
1319 return ENOBUFS;
1320
1321 sp = ipsec_deepcopy_policy(old->sp_out);
1322 if (sp) {
1323 KEY_FREESP(&new->sp_out);
1324 new->sp_out = sp;
1325 } else
1326 return ENOBUFS;
1327
1328 new->priv = old->priv;
1329
1330 return 0;
1331 }
1332
1333 /* deep-copy a policy in PCB */
1334 static struct secpolicy *
1335 ipsec_deepcopy_policy(const struct secpolicy *src)
1336 {
1337 struct ipsecrequest *newchain = NULL;
1338 const struct ipsecrequest *p;
1339 struct ipsecrequest **q;
1340 struct ipsecrequest *r;
1341 struct secpolicy *dst;
1342
1343 if (src == NULL)
1344 return NULL;
1345 dst = KEY_NEWSP();
1346 if (dst == NULL)
1347 return NULL;
1348
1349 /*
1350 * deep-copy IPsec request chain. This is required since struct
1351 * ipsecrequest is not reference counted.
1352 */
1353 q = &newchain;
1354 for (p = src->req; p; p = p->next) {
1355 *q = malloc(sizeof(**q), M_SECA, M_NOWAIT|M_ZERO);
1356 if (*q == NULL)
1357 goto fail;
1358 (*q)->next = NULL;
1359
1360 (*q)->saidx.proto = p->saidx.proto;
1361 (*q)->saidx.mode = p->saidx.mode;
1362 (*q)->level = p->level;
1363 (*q)->saidx.reqid = p->saidx.reqid;
1364
1365 memcpy(&(*q)->saidx.src, &p->saidx.src, sizeof((*q)->saidx.src));
1366 memcpy(&(*q)->saidx.dst, &p->saidx.dst, sizeof((*q)->saidx.dst));
1367
1368 (*q)->sav = NULL;
1369 (*q)->sp = dst;
1370
1371 q = &((*q)->next);
1372 }
1373
1374 dst->req = newchain;
1375 dst->state = src->state;
1376 dst->policy = src->policy;
1377 /* do not touch the refcnt fields */
1378
1379 return dst;
1380
1381 fail:
1382 for (q = &newchain; *q; q = &r) {
1383 r = (*q)->next;
1384 free(*q, M_SECA);
1385 }
1386 return NULL;
1387 }
1388
1389 /* set policy and ipsec request if present. */
1390 static int
1391 ipsec_set_policy(
1392 struct secpolicy **policy,
1393 int optname,
1394 const void *request,
1395 size_t len,
1396 kauth_cred_t cred
1397 )
1398 {
1399 const struct sadb_x_policy *xpl;
1400 struct secpolicy *newsp = NULL;
1401 int error;
1402
1403 /* sanity check. */
1404 if (policy == NULL || *policy == NULL || request == NULL)
1405 return EINVAL;
1406 if (len < sizeof(*xpl))
1407 return EINVAL;
1408 xpl = (const struct sadb_x_policy *)request;
1409
1410 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1411 printf("%s: passed policy\n", __func__);
1412 kdebug_sadb_x_policy((const struct sadb_ext *)xpl);
1413 }
1414
1415 /* check policy type */
1416 /* ipsec_set_policy() accepts IPSEC, ENTRUST and BYPASS. */
1417 if (xpl->sadb_x_policy_type == IPSEC_POLICY_DISCARD
1418 || xpl->sadb_x_policy_type == IPSEC_POLICY_NONE)
1419 return EINVAL;
1420
1421 /* check privileged socket */
1422 if (xpl->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1423 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPSEC,
1424 KAUTH_REQ_NETWORK_IPSEC_BYPASS, NULL, NULL, NULL);
1425 if (error)
1426 return (error);
1427 }
1428
1429 /* allocation new SP entry */
1430 if ((newsp = key_msg2sp(xpl, len, &error)) == NULL)
1431 return error;
1432
1433 newsp->state = IPSEC_SPSTATE_ALIVE;
1434
1435 /* clear old SP and set new SP */
1436 KEY_FREESP(policy);
1437 *policy = newsp;
1438 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1439 printf("%s: new policy\n", __func__);
1440 kdebug_secpolicy(newsp);
1441 }
1442
1443 return 0;
1444 }
1445
1446 static int
1447 ipsec_get_policy(struct secpolicy *policy, struct mbuf **mp)
1448 {
1449
1450 /* sanity check. */
1451 if (policy == NULL || mp == NULL)
1452 return EINVAL;
1453
1454 *mp = key_sp2msg(policy);
1455 if (!*mp) {
1456 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
1457 return ENOBUFS;
1458 }
1459
1460 (*mp)->m_type = MT_DATA;
1461 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DUMP)) {
1462 printf("%s:\n", __func__);
1463 kdebug_mbuf(*mp);
1464 }
1465
1466 return 0;
1467 }
1468
1469 int
1470 ipsec4_set_policy(struct inpcb *inp, int optname, const void *request,
1471 size_t len, kauth_cred_t cred)
1472 {
1473 const struct sadb_x_policy *xpl;
1474 struct secpolicy **policy;
1475
1476 /* sanity check. */
1477 if (inp == NULL || request == NULL)
1478 return EINVAL;
1479 if (len < sizeof(*xpl))
1480 return EINVAL;
1481 xpl = (const struct sadb_x_policy *)request;
1482
1483 KASSERT(inp->inp_sp != NULL);
1484
1485 /* select direction */
1486 switch (xpl->sadb_x_policy_dir) {
1487 case IPSEC_DIR_INBOUND:
1488 policy = &inp->inp_sp->sp_in;
1489 break;
1490 case IPSEC_DIR_OUTBOUND:
1491 policy = &inp->inp_sp->sp_out;
1492 break;
1493 default:
1494 ipseclog((LOG_ERR, "%s: invalid direction=%u\n", __func__,
1495 xpl->sadb_x_policy_dir));
1496 return EINVAL;
1497 }
1498
1499 return ipsec_set_policy(policy, optname, request, len, cred);
1500 }
1501
1502 int
1503 ipsec4_get_policy(struct inpcb *inp, const void *request, size_t len,
1504 struct mbuf **mp)
1505 {
1506 const struct sadb_x_policy *xpl;
1507 struct secpolicy *policy;
1508
1509 /* sanity check. */
1510 if (inp == NULL || request == NULL || mp == NULL)
1511 return EINVAL;
1512 KASSERT(inp->inp_sp != NULL);
1513 if (len < sizeof(*xpl))
1514 return EINVAL;
1515 xpl = (const struct sadb_x_policy *)request;
1516
1517 /* select direction */
1518 switch (xpl->sadb_x_policy_dir) {
1519 case IPSEC_DIR_INBOUND:
1520 policy = inp->inp_sp->sp_in;
1521 break;
1522 case IPSEC_DIR_OUTBOUND:
1523 policy = inp->inp_sp->sp_out;
1524 break;
1525 default:
1526 ipseclog((LOG_ERR, "%s: invalid direction=%u\n", __func__,
1527 xpl->sadb_x_policy_dir));
1528 return EINVAL;
1529 }
1530
1531 return ipsec_get_policy(policy, mp);
1532 }
1533
1534 /* delete policy in PCB */
1535 int
1536 ipsec4_delete_pcbpolicy(struct inpcb *inp)
1537 {
1538
1539 KASSERT(inp != NULL);
1540
1541 if (inp->inp_sp == NULL)
1542 return 0;
1543
1544 if (inp->inp_sp->sp_in != NULL)
1545 KEY_FREESP(&inp->inp_sp->sp_in);
1546
1547 if (inp->inp_sp->sp_out != NULL)
1548 KEY_FREESP(&inp->inp_sp->sp_out);
1549
1550 ipsec_invalpcbcache(inp->inp_sp, IPSEC_DIR_ANY);
1551
1552 ipsec_delpcbpolicy(inp->inp_sp);
1553 inp->inp_sp = NULL;
1554
1555 return 0;
1556 }
1557
1558 #ifdef INET6
1559 int
1560 ipsec6_set_policy(struct in6pcb *in6p, int optname, const void *request,
1561 size_t len, kauth_cred_t cred)
1562 {
1563 const struct sadb_x_policy *xpl;
1564 struct secpolicy **policy;
1565
1566 /* sanity check. */
1567 if (in6p == NULL || request == NULL)
1568 return EINVAL;
1569 if (len < sizeof(*xpl))
1570 return EINVAL;
1571 xpl = (const struct sadb_x_policy *)request;
1572
1573 /* select direction */
1574 switch (xpl->sadb_x_policy_dir) {
1575 case IPSEC_DIR_INBOUND:
1576 policy = &in6p->in6p_sp->sp_in;
1577 break;
1578 case IPSEC_DIR_OUTBOUND:
1579 policy = &in6p->in6p_sp->sp_out;
1580 break;
1581 default:
1582 ipseclog((LOG_ERR, "%s: invalid direction=%u\n", __func__,
1583 xpl->sadb_x_policy_dir));
1584 return EINVAL;
1585 }
1586
1587 return ipsec_set_policy(policy, optname, request, len, cred);
1588 }
1589
1590 int
1591 ipsec6_get_policy(struct in6pcb *in6p, const void *request, size_t len,
1592 struct mbuf **mp)
1593 {
1594 const struct sadb_x_policy *xpl;
1595 struct secpolicy *policy;
1596
1597 /* sanity check. */
1598 if (in6p == NULL || request == NULL || mp == NULL)
1599 return EINVAL;
1600 KASSERT(in6p->in6p_sp != NULL);
1601 if (len < sizeof(*xpl))
1602 return EINVAL;
1603 xpl = (const struct sadb_x_policy *)request;
1604
1605 /* select direction */
1606 switch (xpl->sadb_x_policy_dir) {
1607 case IPSEC_DIR_INBOUND:
1608 policy = in6p->in6p_sp->sp_in;
1609 break;
1610 case IPSEC_DIR_OUTBOUND:
1611 policy = in6p->in6p_sp->sp_out;
1612 break;
1613 default:
1614 ipseclog((LOG_ERR, "%s: invalid direction=%u\n", __func__,
1615 xpl->sadb_x_policy_dir));
1616 return EINVAL;
1617 }
1618
1619 return ipsec_get_policy(policy, mp);
1620 }
1621
1622 int
1623 ipsec6_delete_pcbpolicy(struct in6pcb *in6p)
1624 {
1625
1626 KASSERT(in6p != NULL);
1627
1628 if (in6p->in6p_sp == NULL)
1629 return 0;
1630
1631 if (in6p->in6p_sp->sp_in != NULL)
1632 KEY_FREESP(&in6p->in6p_sp->sp_in);
1633
1634 if (in6p->in6p_sp->sp_out != NULL)
1635 KEY_FREESP(&in6p->in6p_sp->sp_out);
1636
1637 ipsec_invalpcbcache(in6p->in6p_sp, IPSEC_DIR_ANY);
1638
1639 ipsec_delpcbpolicy(in6p->in6p_sp);
1640 in6p->in6p_sp = NULL;
1641
1642 return 0;
1643 }
1644 #endif
1645
1646 /*
1647 * return current level.
1648 * Either IPSEC_LEVEL_USE or IPSEC_LEVEL_REQUIRE are always returned.
1649 */
1650 u_int
1651 ipsec_get_reqlevel(const struct ipsecrequest *isr)
1652 {
1653 u_int level = 0;
1654 u_int esp_trans_deflev, esp_net_deflev;
1655 u_int ah_trans_deflev, ah_net_deflev;
1656
1657 KASSERT(isr != NULL);
1658 KASSERT(isr->sp != NULL);
1659 KASSERTMSG(
1660 isr->sp->spidx.src.sa.sa_family == isr->sp->spidx.dst.sa.sa_family,
1661 "af family mismatch, src %u, dst %u",
1662 isr->sp->spidx.src.sa.sa_family, isr->sp->spidx.dst.sa.sa_family);
1663
1664 /* XXX note that we have ipseclog() expanded here - code sync issue */
1665 #define IPSEC_CHECK_DEFAULT(lev) \
1666 (((lev) != IPSEC_LEVEL_USE && (lev) != IPSEC_LEVEL_REQUIRE \
1667 && (lev) != IPSEC_LEVEL_UNIQUE) ? \
1668 (ipsec_debug ? log(LOG_INFO, "fixed system default level " #lev \
1669 ":%d->%d\n", (lev), IPSEC_LEVEL_REQUIRE) : (void)0), \
1670 (lev) = IPSEC_LEVEL_REQUIRE, (lev) \
1671 : (lev))
1672
1673 /* set default level */
1674 switch (((struct sockaddr *)&isr->sp->spidx.src)->sa_family) {
1675 #ifdef INET
1676 case AF_INET:
1677 esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_trans_deflev);
1678 esp_net_deflev = IPSEC_CHECK_DEFAULT(ip4_esp_net_deflev);
1679 ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_trans_deflev);
1680 ah_net_deflev = IPSEC_CHECK_DEFAULT(ip4_ah_net_deflev);
1681 break;
1682 #endif
1683 #ifdef INET6
1684 case AF_INET6:
1685 esp_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_trans_deflev);
1686 esp_net_deflev = IPSEC_CHECK_DEFAULT(ip6_esp_net_deflev);
1687 ah_trans_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_trans_deflev);
1688 ah_net_deflev = IPSEC_CHECK_DEFAULT(ip6_ah_net_deflev);
1689 break;
1690 #endif /* INET6 */
1691 default:
1692 panic("%s: unknown af %u", __func__,
1693 isr->sp->spidx.src.sa.sa_family);
1694 }
1695
1696 #undef IPSEC_CHECK_DEFAULT
1697
1698 /* set level */
1699 switch (isr->level) {
1700 case IPSEC_LEVEL_DEFAULT:
1701 switch (isr->saidx.proto) {
1702 case IPPROTO_ESP:
1703 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
1704 level = esp_net_deflev;
1705 else
1706 level = esp_trans_deflev;
1707 break;
1708 case IPPROTO_AH:
1709 if (isr->saidx.mode == IPSEC_MODE_TUNNEL)
1710 level = ah_net_deflev;
1711 else
1712 level = ah_trans_deflev;
1713 break;
1714 case IPPROTO_IPCOMP:
1715 /*
1716 * we don't really care, as IPcomp document says that
1717 * we shouldn't compress small packets
1718 */
1719 level = IPSEC_LEVEL_USE;
1720 break;
1721 default:
1722 panic("%s: Illegal protocol defined %u", __func__,
1723 isr->saidx.proto);
1724 }
1725 break;
1726
1727 case IPSEC_LEVEL_USE:
1728 case IPSEC_LEVEL_REQUIRE:
1729 level = isr->level;
1730 break;
1731 case IPSEC_LEVEL_UNIQUE:
1732 level = IPSEC_LEVEL_REQUIRE;
1733 break;
1734
1735 default:
1736 panic("%s: Illegal IPsec level %u", __func__, isr->level);
1737 }
1738
1739 return level;
1740 }
1741
1742 /*
1743 * Check security policy requirements against the actual
1744 * packet contents. Return one if the packet should be
1745 * reject as "invalid"; otherwiser return zero to have the
1746 * packet treated as "valid".
1747 *
1748 * OUT:
1749 * 0: valid
1750 * 1: invalid
1751 */
1752 int
1753 ipsec_in_reject(const struct secpolicy *sp, const struct mbuf *m)
1754 {
1755 struct ipsecrequest *isr;
1756 int need_auth;
1757
1758 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
1759 printf("%s: using SP\n", __func__);
1760 kdebug_secpolicy(sp);
1761 }
1762
1763 /* check policy */
1764 switch (sp->policy) {
1765 case IPSEC_POLICY_DISCARD:
1766 return 1;
1767 case IPSEC_POLICY_BYPASS:
1768 case IPSEC_POLICY_NONE:
1769 return 0;
1770 }
1771
1772 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
1773 "invalid policy %u", sp->policy);
1774
1775 /* XXX should compare policy against ipsec header history */
1776
1777 need_auth = 0;
1778 for (isr = sp->req; isr != NULL; isr = isr->next) {
1779 if (ipsec_get_reqlevel(isr) != IPSEC_LEVEL_REQUIRE)
1780 continue;
1781 switch (isr->saidx.proto) {
1782 case IPPROTO_ESP:
1783 if ((m->m_flags & M_DECRYPTED) == 0) {
1784 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1785 "ESP m_flags:%x\n", m->m_flags);
1786 return 1;
1787 }
1788
1789 if (!need_auth &&
1790 isr->sav != NULL &&
1791 isr->sav->tdb_authalgxform != NULL &&
1792 (m->m_flags & M_AUTHIPDGM) == 0) {
1793 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1794 "ESP/AH m_flags:%x\n", m->m_flags);
1795 return 1;
1796 }
1797 break;
1798 case IPPROTO_AH:
1799 need_auth = 1;
1800 if ((m->m_flags & M_AUTHIPHDR) == 0) {
1801 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DUMP,
1802 "AH m_flags:%x\n", m->m_flags);
1803 return 1;
1804 }
1805 break;
1806 case IPPROTO_IPCOMP:
1807 /*
1808 * we don't really care, as IPcomp document
1809 * says that we shouldn't compress small
1810 * packets, IPComp policy should always be
1811 * treated as being in "use" level.
1812 */
1813 break;
1814 }
1815 }
1816 return 0; /* valid */
1817 }
1818
1819 /*
1820 * Check AH/ESP integrity.
1821 * This function is called from tcp_input(), udp_input(),
1822 * and {ah,esp}4_input for tunnel mode
1823 */
1824 int
1825 ipsec4_in_reject(struct mbuf *m, struct inpcb *inp)
1826 {
1827 struct secpolicy *sp;
1828 int error;
1829 int result;
1830
1831 KASSERT(m != NULL);
1832
1833 /* get SP for this packet.
1834 * When we are called from ip_forward(), we call
1835 * ipsec_getpolicybyaddr() with IP_FORWARDING flag.
1836 */
1837 if (inp == NULL)
1838 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, IP_FORWARDING, &error);
1839 else
1840 sp = ipsec_getpolicybysock(m, IPSEC_DIR_INBOUND,
1841 (struct inpcb_hdr *)inp, &error);
1842
1843 if (sp != NULL) {
1844 result = ipsec_in_reject(sp, m);
1845 if (result)
1846 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1847 KEY_FREESP(&sp);
1848 } else {
1849 result = 0; /* XXX should be panic ?
1850 * -> No, there may be error. */
1851 }
1852 return result;
1853 }
1854
1855
1856 #ifdef INET6
1857 /*
1858 * Check AH/ESP integrity.
1859 * This function is called from tcp6_input(), udp6_input(),
1860 * and {ah,esp}6_input for tunnel mode
1861 */
1862 int
1863 ipsec6_in_reject(struct mbuf *m, struct in6pcb *in6p)
1864 {
1865 struct secpolicy *sp = NULL;
1866 int error;
1867 int result;
1868
1869 KASSERT(m != NULL);
1870
1871 /* get SP for this packet.
1872 * When we are called from ip_forward(), we call
1873 * ipsec_getpolicybyaddr() with IP_FORWARDING flag.
1874 */
1875 if (in6p == NULL)
1876 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, IP_FORWARDING, &error);
1877 else
1878 sp = ipsec_getpolicybysock(m, IPSEC_DIR_INBOUND,
1879 (struct inpcb_hdr *)in6p,
1880 &error);
1881
1882 if (sp != NULL) {
1883 result = ipsec_in_reject(sp, m);
1884 if (result)
1885 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1886 KEY_FREESP(&sp);
1887 } else {
1888 result = 0;
1889 }
1890 return result;
1891 }
1892 #endif
1893
1894 /*
1895 * compute the byte size to be occupied by IPsec header.
1896 * in case it is tunneled, it includes the size of outer IP header.
1897 * NOTE: SP passed is free in this function.
1898 */
1899 static size_t
1900 ipsec_hdrsiz(const struct secpolicy *sp)
1901 {
1902 const struct ipsecrequest *isr;
1903 size_t siz;
1904
1905 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
1906 printf("%s: using SP\n", __func__);
1907 kdebug_secpolicy(sp);
1908 }
1909
1910 switch (sp->policy) {
1911 case IPSEC_POLICY_DISCARD:
1912 case IPSEC_POLICY_BYPASS:
1913 case IPSEC_POLICY_NONE:
1914 return 0;
1915 }
1916
1917 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
1918 "invalid policy %u", sp->policy);
1919
1920 siz = 0;
1921 for (isr = sp->req; isr != NULL; isr = isr->next) {
1922 size_t clen = 0;
1923
1924 switch (isr->saidx.proto) {
1925 case IPPROTO_ESP:
1926 clen = esp_hdrsiz(isr->sav);
1927 break;
1928 case IPPROTO_AH:
1929 clen = ah_hdrsiz(isr->sav);
1930 break;
1931 case IPPROTO_IPCOMP:
1932 clen = sizeof(struct ipcomp);
1933 break;
1934 }
1935
1936 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1937 switch (isr->saidx.dst.sa.sa_family) {
1938 case AF_INET:
1939 clen += sizeof(struct ip);
1940 break;
1941 #ifdef INET6
1942 case AF_INET6:
1943 clen += sizeof(struct ip6_hdr);
1944 break;
1945 #endif
1946 default:
1947 ipseclog((LOG_ERR, "%s: unknown AF %d in "
1948 "IPsec tunnel SA\n", __func__,
1949 ((const struct sockaddr *)&isr->saidx.dst)
1950 ->sa_family));
1951 break;
1952 }
1953 }
1954 siz += clen;
1955 }
1956
1957 return siz;
1958 }
1959
1960 /* This function is called from ip_forward() and ipsec4_hdrsize_tcp(). */
1961 size_t
1962 ipsec4_hdrsiz(struct mbuf *m, u_int dir, struct inpcb *inp)
1963 {
1964 struct secpolicy *sp;
1965 int error;
1966 size_t size;
1967
1968 KASSERT(m != NULL);
1969 KASSERTMSG(inp == NULL || inp->inp_socket != NULL, "socket w/o inpcb");
1970
1971 /* get SP for this packet.
1972 * When we are called from ip_forward(), we call
1973 * ipsec_getpolicybyaddr() with IP_FORWARDING flag.
1974 */
1975 if (inp == NULL)
1976 sp = ipsec_getpolicybyaddr(m, dir, IP_FORWARDING, &error);
1977 else
1978 sp = ipsec_getpolicybysock(m, dir,
1979 (struct inpcb_hdr *)inp, &error);
1980
1981 if (sp != NULL) {
1982 size = ipsec_hdrsiz(sp);
1983 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DATA, "size:%lu.\n",
1984 (unsigned long)size);
1985
1986 KEY_FREESP(&sp);
1987 } else {
1988 size = 0; /* XXX should be panic ? */
1989 }
1990 return size;
1991 }
1992
1993 #ifdef INET6
1994 /* This function is called from ipsec6_hdrsize_tcp(),
1995 * and maybe from ip6_forward.()
1996 */
1997 size_t
1998 ipsec6_hdrsiz(struct mbuf *m, u_int dir, struct in6pcb *in6p)
1999 {
2000 struct secpolicy *sp;
2001 int error;
2002 size_t size;
2003
2004 KASSERT(m != NULL);
2005 KASSERTMSG(in6p == NULL || in6p->in6p_socket != NULL,
2006 "socket w/o inpcb");
2007
2008 /* get SP for this packet */
2009 /* XXX Is it right to call with IP_FORWARDING. */
2010 if (in6p == NULL)
2011 sp = ipsec_getpolicybyaddr(m, dir, IP_FORWARDING, &error);
2012 else
2013 sp = ipsec_getpolicybysock(m, dir,
2014 (struct inpcb_hdr *)in6p,
2015 &error);
2016
2017 if (sp == NULL)
2018 return 0;
2019 size = ipsec_hdrsiz(sp);
2020 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_DATA, "size:%zu.\n", size);
2021 KEY_FREESP(&sp);
2022
2023 return size;
2024 }
2025 #endif /*INET6*/
2026
2027 /*
2028 * Check the variable replay window.
2029 * ipsec_chkreplay() performs replay check before ICV verification.
2030 * ipsec_updatereplay() updates replay bitmap. This must be called after
2031 * ICV verification (it also performs replay check, which is usually done
2032 * beforehand).
2033 * 0 (zero) is returned if packet disallowed, 1 if packet permitted.
2034 *
2035 * based on RFC 2401.
2036 */
2037 int
2038 ipsec_chkreplay(u_int32_t seq, const struct secasvar *sav)
2039 {
2040 const struct secreplay *replay;
2041 u_int32_t diff;
2042 int fr;
2043 u_int32_t wsizeb; /* constant: bits of window size */
2044 int frlast; /* constant: last frame */
2045
2046 IPSEC_SPLASSERT_SOFTNET(__func__);
2047
2048 KASSERT(sav != NULL);
2049 KASSERT(sav->replay != NULL);
2050
2051 replay = sav->replay;
2052
2053 if (replay->wsize == 0)
2054 return 1; /* no need to check replay. */
2055
2056 /* constant */
2057 frlast = replay->wsize - 1;
2058 wsizeb = replay->wsize << 3;
2059
2060 /* sequence number of 0 is invalid */
2061 if (seq == 0)
2062 return 0;
2063
2064 /* first time is always okay */
2065 if (replay->count == 0)
2066 return 1;
2067
2068 if (seq > replay->lastseq) {
2069 /* larger sequences are okay */
2070 return 1;
2071 } else {
2072 /* seq is equal or less than lastseq. */
2073 diff = replay->lastseq - seq;
2074
2075 /* over range to check, i.e. too old or wrapped */
2076 if (diff >= wsizeb)
2077 return 0;
2078
2079 fr = frlast - diff / 8;
2080
2081 /* this packet already seen ? */
2082 if ((replay->bitmap)[fr] & (1 << (diff % 8)))
2083 return 0;
2084
2085 /* out of order but good */
2086 return 1;
2087 }
2088 }
2089
2090 /*
2091 * check replay counter whether to update or not.
2092 * OUT: 0: OK
2093 * 1: NG
2094 */
2095 int
2096 ipsec_updatereplay(u_int32_t seq, const struct secasvar *sav)
2097 {
2098 struct secreplay *replay;
2099 u_int32_t diff;
2100 int fr;
2101 u_int32_t wsizeb; /* constant: bits of window size */
2102 int frlast; /* constant: last frame */
2103
2104 IPSEC_SPLASSERT_SOFTNET(__func__);
2105
2106 KASSERT(sav != NULL);
2107 KASSERT(sav->replay != NULL);
2108
2109 replay = sav->replay;
2110
2111 if (replay->wsize == 0)
2112 goto ok; /* no need to check replay. */
2113
2114 /* constant */
2115 frlast = replay->wsize - 1;
2116 wsizeb = replay->wsize << 3;
2117
2118 /* sequence number of 0 is invalid */
2119 if (seq == 0)
2120 return 1;
2121
2122 /* first time */
2123 if (replay->count == 0) {
2124 replay->lastseq = seq;
2125 memset(replay->bitmap, 0, replay->wsize);
2126 (replay->bitmap)[frlast] = 1;
2127 goto ok;
2128 }
2129
2130 if (seq > replay->lastseq) {
2131 /* seq is larger than lastseq. */
2132 diff = seq - replay->lastseq;
2133
2134 /* new larger sequence number */
2135 if (diff < wsizeb) {
2136 /* In window */
2137 /* set bit for this packet */
2138 vshiftl(replay->bitmap, diff, replay->wsize);
2139 (replay->bitmap)[frlast] |= 1;
2140 } else {
2141 /* this packet has a "way larger" */
2142 memset(replay->bitmap, 0, replay->wsize);
2143 (replay->bitmap)[frlast] = 1;
2144 }
2145 replay->lastseq = seq;
2146
2147 /* larger is good */
2148 } else {
2149 /* seq is equal or less than lastseq. */
2150 diff = replay->lastseq - seq;
2151
2152 /* over range to check, i.e. too old or wrapped */
2153 if (diff >= wsizeb)
2154 return 1;
2155
2156 fr = frlast - diff / 8;
2157
2158 /* this packet already seen ? */
2159 if ((replay->bitmap)[fr] & (1 << (diff % 8)))
2160 return 1;
2161
2162 /* mark as seen */
2163 (replay->bitmap)[fr] |= (1 << (diff % 8));
2164
2165 /* out of order but good */
2166 }
2167
2168 ok:
2169 if (replay->count == ~0) {
2170
2171 /* set overflow flag */
2172 replay->overflow++;
2173
2174 /* don't increment, no more packets accepted */
2175 if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0)
2176 return 1;
2177
2178 ipseclog((LOG_WARNING, "replay counter made %d cycle. %s\n",
2179 replay->overflow, ipsec_logsastr(sav)));
2180 }
2181
2182 replay->count++;
2183
2184 return 0;
2185 }
2186
2187 /*
2188 * shift variable length bunffer to left.
2189 * IN: bitmap: pointer to the buffer
2190 * nbit: the number of to shift.
2191 * wsize: buffer size (bytes).
2192 */
2193 static void
2194 vshiftl(unsigned char *bitmap, int nbit, int wsize)
2195 {
2196 int s, j, i;
2197 unsigned char over;
2198
2199 for (j = 0; j < nbit; j += 8) {
2200 s = (nbit - j < 8) ? (nbit - j): 8;
2201 bitmap[0] <<= s;
2202 for (i = 1; i < wsize; i++) {
2203 over = (bitmap[i] >> (8 - s));
2204 bitmap[i] <<= s;
2205 bitmap[i-1] |= over;
2206 }
2207 }
2208
2209 return;
2210 }
2211
2212 /* Return a printable string for the IPv4 address. */
2213 static char *
2214 inet_ntoa4(struct in_addr ina)
2215 {
2216 static char buf[4][4 * sizeof "123" + 4];
2217 unsigned char *ucp = (unsigned char *) &ina;
2218 static int i = 3;
2219
2220 i = (i + 1) % 4;
2221 snprintf(buf[i], sizeof(buf[i]), "%d.%d.%d.%d",
2222 ucp[0] & 0xff, ucp[1] & 0xff, ucp[2] & 0xff, ucp[3] & 0xff);
2223 return (buf[i]);
2224 }
2225
2226 /* Return a printable string for the address. */
2227 const char *
2228 ipsec_address(const union sockaddr_union *sa)
2229 {
2230 #if INET6
2231 static char ip6buf[INET6_ADDRSTRLEN]; /* XXX: NOMPSAFE */
2232 #endif
2233
2234 switch (sa->sa.sa_family) {
2235 #if INET
2236 case AF_INET:
2237 return inet_ntoa4(sa->sin.sin_addr);
2238 #endif /* INET */
2239
2240 #if INET6
2241 case AF_INET6:
2242 return IN6_PRINT(ip6buf, &sa->sin6.sin6_addr);
2243 #endif /* INET6 */
2244
2245 default:
2246 return "(unknown address family)";
2247 }
2248 }
2249
2250 const char *
2251 ipsec_logsastr(const struct secasvar *sav)
2252 {
2253 static char buf[256];
2254 char *p;
2255 const struct secasindex *saidx = &sav->sah->saidx;
2256
2257 KASSERTMSG(saidx->src.sa.sa_family == saidx->dst.sa.sa_family,
2258 "af family mismatch, src %u, dst %u",
2259 saidx->src.sa.sa_family, saidx->dst.sa.sa_family);
2260
2261 p = buf;
2262 snprintf(buf, sizeof(buf), "SA(SPI=%u ", (u_int32_t)ntohl(sav->spi));
2263 while (p && *p)
2264 p++;
2265 /* NB: only use ipsec_address on one address at a time */
2266 snprintf(p, sizeof (buf) - (p - buf), "src=%s ",
2267 ipsec_address(&saidx->src));
2268 while (p && *p)
2269 p++;
2270 snprintf(p, sizeof (buf) - (p - buf), "dst=%s)",
2271 ipsec_address(&saidx->dst));
2272
2273 return buf;
2274 }
2275
2276 void
2277 ipsec_dumpmbuf(struct mbuf *m)
2278 {
2279 int totlen;
2280 int i;
2281 u_char *p;
2282
2283 totlen = 0;
2284 printf("---\n");
2285 while (m) {
2286 p = mtod(m, u_char *);
2287 for (i = 0; i < m->m_len; i++) {
2288 printf("%02x ", p[i]);
2289 totlen++;
2290 if (totlen % 16 == 0)
2291 printf("\n");
2292 }
2293 m = m->m_next;
2294 }
2295 if (totlen % 16 != 0)
2296 printf("\n");
2297 printf("---\n");
2298 }
2299
2300 #ifdef INET6
2301 struct secpolicy *
2302 ipsec6_check_policy(struct mbuf *m, struct in6pcb *in6p,
2303 int flags, int *needipsecp, int *errorp)
2304 {
2305 struct secpolicy *sp = NULL;
2306 int s;
2307 int error = 0;
2308 int needipsec = 0;
2309
2310 if (!ipsec_outdone(m)) {
2311 s = splsoftnet();
2312 if (in6p != NULL &&
2313 IPSEC_PCB_SKIP_IPSEC(in6p->in6p_sp, IPSEC_DIR_OUTBOUND)) {
2314 splx(s);
2315 goto skippolicycheck;
2316 }
2317 sp = ipsec6_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, &error,in6p);
2318
2319 /*
2320 * There are four return cases:
2321 * sp != NULL apply IPsec policy
2322 * sp == NULL, error == 0 no IPsec handling needed
2323 * sp == NULL, error == -EINVAL discard packet w/o error
2324 * sp == NULL, error != 0 discard packet, report error
2325 */
2326
2327 splx(s);
2328 if (sp == NULL) {
2329 /*
2330 * Caller must check the error return to see if it needs to discard
2331 * the packet.
2332 */
2333 needipsec = 0;
2334 } else {
2335 needipsec = 1;
2336 }
2337 }
2338 skippolicycheck:;
2339
2340 *errorp = error;
2341 *needipsecp = needipsec;
2342 return sp;
2343 }
2344
2345 int
2346 ipsec6_input(struct mbuf *m)
2347 {
2348 struct m_tag *mtag;
2349 struct tdb_ident *tdbi;
2350 struct secpolicy *sp;
2351 int s, error;
2352
2353 /*
2354 * Check if the packet has already had IPsec
2355 * processing done. If so, then just pass it
2356 * along. This tag gets set during AH, ESP,
2357 * etc. input handling, before the packet is
2358 * returned to the ip input queue for delivery.
2359 */
2360 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE,
2361 NULL);
2362 s = splsoftnet();
2363 if (mtag != NULL) {
2364 tdbi = (struct tdb_ident *)(mtag + 1);
2365 sp = ipsec_getpolicy(tdbi,
2366 IPSEC_DIR_INBOUND);
2367 } else {
2368 sp = ipsec_getpolicybyaddr(m,
2369 IPSEC_DIR_INBOUND, IP_FORWARDING,
2370 &error);
2371 }
2372 if (sp != NULL) {
2373 /*
2374 * Check security policy against packet
2375 * attributes.
2376 */
2377 error = ipsec_in_reject(sp, m);
2378 KEY_FREESP(&sp);
2379 } else {
2380 /* XXX error stat??? */
2381 error = EINVAL;
2382 DPRINTF(("ip6_input: no SP, packet"
2383 " discarded\n"));/*XXX*/
2384 }
2385 splx(s);
2386
2387 return error;
2388 }
2389 #endif /* INET6 */
2390
2391
2392
2393 /* XXX this stuff doesn't belong here... */
2394
2395 static struct xformsw *xforms = NULL;
2396
2397 /*
2398 * Register a transform; typically at system startup.
2399 */
2400 void
2401 xform_register(struct xformsw *xsp)
2402 {
2403 xsp->xf_next = xforms;
2404 xforms = xsp;
2405 }
2406
2407 /*
2408 * Initialize transform support in an sav.
2409 */
2410 int
2411 xform_init(struct secasvar *sav, int xftype)
2412 {
2413 struct xformsw *xsp;
2414
2415 if (sav->tdb_xform != NULL) /* previously initialized */
2416 return 0;
2417 for (xsp = xforms; xsp; xsp = xsp->xf_next)
2418 if (xsp->xf_type == xftype)
2419 return (*xsp->xf_init)(sav, xsp);
2420
2421 DPRINTF(("%s: no match for xform type %d\n", __func__, xftype));
2422 return EINVAL;
2423 }
2424
2425 void
2426 nat_t_ports_get(struct mbuf *m, u_int16_t *dport, u_int16_t *sport) {
2427 struct m_tag *tag;
2428
2429 if ((tag = m_tag_find(m, PACKET_TAG_IPSEC_NAT_T_PORTS, NULL))) {
2430 *sport = ((u_int16_t *)(tag + 1))[0];
2431 *dport = ((u_int16_t *)(tag + 1))[1];
2432 } else
2433 *sport = *dport = 0;
2434 }
2435
2436 /*
2437 * XXXJRT This should be done as a protosw init call.
2438 */
2439 void
2440 ipsec_attach(void)
2441 {
2442
2443 ipsecstat_percpu = percpu_alloc(sizeof(uint64_t) * IPSEC_NSTATS);
2444
2445 sysctl_net_inet_ipsec_setup(NULL);
2446 #ifdef INET6
2447 sysctl_net_inet6_ipsec6_setup(NULL);
2448 #endif
2449
2450 ah_attach();
2451 esp_attach();
2452 ipcomp_attach();
2453 ipe4_attach();
2454 #ifdef TCP_SIGNATURE
2455 tcpsignature_attach();
2456 #endif
2457 }
2458