key.c revision 1.110 1 /* $NetBSD: key.c,v 1.110 2017/04/19 03:40:58 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.110 2017/04/19 03:40:58 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/malloc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sysctl.h>
59 #include <sys/errno.h>
60 #include <sys/proc.h>
61 #include <sys/queue.h>
62 #include <sys/syslog.h>
63 #include <sys/once.h>
64 #include <sys/cprng.h>
65 #include <sys/psref.h>
66 #include <sys/lwp.h>
67
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <net/raw_cb.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #ifdef INET
77 #include <netinet/ip_var.h>
78 #endif
79
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_var.h>
83 #include <netinet6/ip6_var.h>
84 #endif /* INET6 */
85
86 #ifdef INET
87 #include <netinet/in_pcb.h>
88 #endif
89 #ifdef INET6
90 #include <netinet6/in6_pcb.h>
91 #endif /* INET6 */
92
93 #include <net/pfkeyv2.h>
94 #include <netipsec/keydb.h>
95 #include <netipsec/key.h>
96 #include <netipsec/keysock.h>
97 #include <netipsec/key_debug.h>
98
99 #include <netipsec/ipsec.h>
100 #ifdef INET6
101 #include <netipsec/ipsec6.h>
102 #endif
103 #include <netipsec/ipsec_private.h>
104
105 #include <netipsec/xform.h>
106 #include <netipsec/ipcomp.h>
107
108
109 #include <net/net_osdep.h>
110
111 #define FULLMASK 0xff
112 #define _BITS(bytes) ((bytes) << 3)
113
114 #define PORT_NONE 0
115 #define PORT_LOOSE 1
116 #define PORT_STRICT 2
117
118 percpu_t *pfkeystat_percpu;
119
120 /*
121 * Note on SA reference counting:
122 * - SAs that are not in DEAD state will have (total external reference + 1)
123 * following value in reference count field. they cannot be freed and are
124 * referenced from SA header.
125 * - SAs that are in DEAD state will have (total external reference)
126 * in reference count field. they are ready to be freed. reference from
127 * SA header will be removed in key_delsav(), when the reference count
128 * field hits 0 (= no external reference other than from SA header.
129 */
130
131 u_int32_t key_debug_level = 0;
132 static u_int key_spi_trycnt = 1000;
133 static u_int32_t key_spi_minval = 0x100;
134 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
135 static u_int32_t policy_id = 0;
136 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
137 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
138 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
139 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
140 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
141
142 static u_int32_t acq_seq = 0;
143
144 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
145 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
146 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
147 /* registed list */
148 #ifndef IPSEC_NONBLOCK_ACQUIRE
149 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
150 #endif
151 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
152
153 /* search order for SAs */
154 /*
155 * This order is important because we must select the oldest SA
156 * for outbound processing. For inbound, This is not important.
157 */
158 static const u_int saorder_state_valid_prefer_old[] = {
159 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
160 };
161 static const u_int saorder_state_valid_prefer_new[] = {
162 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
163 };
164
165 static const u_int saorder_state_alive[] = {
166 /* except DEAD */
167 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
168 };
169 static const u_int saorder_state_any[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
172 };
173
174 static const int minsize[] = {
175 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
176 sizeof(struct sadb_sa), /* SADB_EXT_SA */
177 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
178 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
179 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
180 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
181 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
182 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
183 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
184 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
185 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
186 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
187 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
188 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
189 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
190 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
191 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
192 0, /* SADB_X_EXT_KMPRIVATE */
193 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
194 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
195 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
196 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
197 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
198 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
199 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
200 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
201 };
202 static const int maxsize[] = {
203 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
204 sizeof(struct sadb_sa), /* SADB_EXT_SA */
205 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
206 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
207 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
208 0, /* SADB_EXT_ADDRESS_SRC */
209 0, /* SADB_EXT_ADDRESS_DST */
210 0, /* SADB_EXT_ADDRESS_PROXY */
211 0, /* SADB_EXT_KEY_AUTH */
212 0, /* SADB_EXT_KEY_ENCRYPT */
213 0, /* SADB_EXT_IDENTITY_SRC */
214 0, /* SADB_EXT_IDENTITY_DST */
215 0, /* SADB_EXT_SENSITIVITY */
216 0, /* SADB_EXT_PROPOSAL */
217 0, /* SADB_EXT_SUPPORTED_AUTH */
218 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
219 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
220 0, /* SADB_X_EXT_KMPRIVATE */
221 0, /* SADB_X_EXT_POLICY */
222 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
223 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
224 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
225 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
226 0, /* SADB_X_EXT_NAT_T_OAI */
227 0, /* SADB_X_EXT_NAT_T_OAR */
228 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
229 };
230
231 static int ipsec_esp_keymin = 256;
232 static int ipsec_esp_auth = 0;
233 static int ipsec_ah_keymin = 128;
234
235 #ifdef SYSCTL_DECL
236 SYSCTL_DECL(_net_key);
237 #endif
238
239 #ifdef SYSCTL_INT
240 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
241 &key_debug_level, 0, "");
242
243 /* max count of trial for the decision of spi value */
244 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
245 &key_spi_trycnt, 0, "");
246
247 /* minimum spi value to allocate automatically. */
248 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
249 &key_spi_minval, 0, "");
250
251 /* maximun spi value to allocate automatically. */
252 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
253 &key_spi_maxval, 0, "");
254
255 /* interval to initialize randseed */
256 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
257 &key_int_random, 0, "");
258
259 /* lifetime for larval SA */
260 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
261 &key_larval_lifetime, 0, "");
262
263 /* counter for blocking to send SADB_ACQUIRE to IKEd */
264 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
265 &key_blockacq_count, 0, "");
266
267 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
268 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
269 &key_blockacq_lifetime, 0, "");
270
271 /* ESP auth */
272 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
273 &ipsec_esp_auth, 0, "");
274
275 /* minimum ESP key length */
276 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
277 &ipsec_esp_keymin, 0, "");
278
279 /* minimum AH key length */
280 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
281 &ipsec_ah_keymin, 0, "");
282
283 /* perfered old SA rather than new SA */
284 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
285 &key_prefered_oldsa, 0, "");
286 #endif /* SYSCTL_INT */
287
288 #ifndef LIST_FOREACH
289 #define LIST_FOREACH(elm, head, field) \
290 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
291 #endif
292 #define __LIST_CHAINED(elm) \
293 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
294 #define LIST_INSERT_TAIL(head, elm, type, field) \
295 do {\
296 struct type *curelm = LIST_FIRST(head); \
297 if (curelm == NULL) {\
298 LIST_INSERT_HEAD(head, elm, field); \
299 } else { \
300 while (LIST_NEXT(curelm, field)) \
301 curelm = LIST_NEXT(curelm, field);\
302 LIST_INSERT_AFTER(curelm, elm, field);\
303 }\
304 } while (0)
305
306 #define KEY_CHKSASTATE(head, sav, name) \
307 /* do */ { \
308 if ((head) != (sav)) { \
309 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
310 (name), (head), (sav))); \
311 continue; \
312 } \
313 } /* while (0) */
314
315 #define KEY_CHKSPDIR(head, sp, name) \
316 do { \
317 if ((head) != (sp)) { \
318 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
319 "anyway continue.\n", \
320 (name), (head), (sp))); \
321 } \
322 } while (0)
323
324 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
325
326 #if 1
327 #define KMALLOC(p, t, n) \
328 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
329 #define KFREE(p) \
330 free((p), M_SECA)
331 #else
332 #define KMALLOC(p, t, n) \
333 do { \
334 ((p) = malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
335 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
336 __FILE__, __LINE__, (p), #t, n); \
337 } while (0)
338
339 #define KFREE(p) \
340 do { \
341 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
342 free((p), M_SECA); \
343 } while (0)
344 #endif
345
346 /*
347 * set parameters into secpolicyindex buffer.
348 * Must allocate secpolicyindex buffer passed to this function.
349 */
350 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
351 do { \
352 memset((idx), 0, sizeof(struct secpolicyindex)); \
353 (idx)->dir = (_dir); \
354 (idx)->prefs = (ps); \
355 (idx)->prefd = (pd); \
356 (idx)->ul_proto = (ulp); \
357 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
358 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
359 } while (0)
360
361 /*
362 * set parameters into secasindex buffer.
363 * Must allocate secasindex buffer before calling this function.
364 */
365 static int
366 key_setsecasidx (int, int, int, const struct sadb_address *,
367 const struct sadb_address *, struct secasindex *);
368
369 /* key statistics */
370 struct _keystat {
371 u_long getspi_count; /* the avarage of count to try to get new SPI */
372 } keystat;
373
374 struct sadb_msghdr {
375 struct sadb_msg *msg;
376 struct sadb_ext *ext[SADB_EXT_MAX + 1];
377 int extoff[SADB_EXT_MAX + 1];
378 int extlen[SADB_EXT_MAX + 1];
379 };
380
381 static struct secasvar *key_allocsa_policy (const struct secasindex *);
382 static void key_freesp_so (struct secpolicy **);
383 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
384 static void key_delsp (struct secpolicy *);
385 static struct secpolicy *key_getsp (const struct secpolicyindex *);
386 static struct secpolicy *key_getspbyid (u_int32_t);
387 static u_int16_t key_newreqid (void);
388 static struct mbuf *key_gather_mbuf (struct mbuf *,
389 const struct sadb_msghdr *, int, int, ...);
390 static int key_spdadd (struct socket *, struct mbuf *,
391 const struct sadb_msghdr *);
392 static u_int32_t key_getnewspid (void);
393 static int key_spddelete (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spddelete2 (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static int key_spdget (struct socket *, struct mbuf *,
398 const struct sadb_msghdr *);
399 static int key_spdflush (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static int key_spddump (struct socket *, struct mbuf *,
402 const struct sadb_msghdr *);
403 static struct mbuf * key_setspddump (int *errorp, pid_t);
404 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
405 static int key_nat_map (struct socket *, struct mbuf *,
406 const struct sadb_msghdr *);
407 static struct mbuf *key_setdumpsp (struct secpolicy *,
408 u_int8_t, u_int32_t, pid_t);
409 static u_int key_getspreqmsglen (const struct secpolicy *);
410 static int key_spdexpire (struct secpolicy *);
411 static struct secashead *key_newsah (const struct secasindex *);
412 static void key_delsah (struct secashead *);
413 static struct secasvar *key_newsav (struct mbuf *,
414 const struct sadb_msghdr *, struct secashead *, int *,
415 const char*, int);
416 #define KEY_NEWSAV(m, sadb, sah, e) \
417 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
418 static void key_delsav (struct secasvar *);
419 static struct secashead *key_getsah (const struct secasindex *);
420 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
421 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
422 static int key_setsaval (struct secasvar *, struct mbuf *,
423 const struct sadb_msghdr *);
424 static int key_mature (struct secasvar *);
425 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
426 u_int8_t, u_int32_t, u_int32_t);
427 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
428 static struct mbuf *key_setsadbxtype (u_int16_t);
429 static struct mbuf *key_setsadbxfrag (u_int16_t);
430 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
431 static int key_checksalen (const union sockaddr_union *);
432 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
433 u_int32_t, pid_t, u_int16_t);
434 static struct mbuf *key_setsadbsa (struct secasvar *);
435 static struct mbuf *key_setsadbaddr (u_int16_t,
436 const struct sockaddr *, u_int8_t, u_int16_t);
437 #if 0
438 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
439 int, u_int64_t);
440 #endif
441 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
442 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
443 u_int32_t);
444 static void *key_newbuf (const void *, u_int);
445 #ifdef INET6
446 static int key_ismyaddr6 (const struct sockaddr_in6 *);
447 #endif
448
449 static void sysctl_net_keyv2_setup(struct sysctllog **);
450 static void sysctl_net_key_compat_setup(struct sysctllog **);
451
452 /* flags for key_cmpsaidx() */
453 #define CMP_HEAD 1 /* protocol, addresses. */
454 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
455 #define CMP_REQID 3 /* additionally HEAD, reaid. */
456 #define CMP_EXACTLY 4 /* all elements. */
457 static int key_cmpsaidx
458 (const struct secasindex *, const struct secasindex *, int);
459
460 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
461 static int key_bbcmp (const void *, const void *, u_int);
462 static u_int16_t key_satype2proto (u_int8_t);
463 static u_int8_t key_proto2satype (u_int16_t);
464
465 static int key_getspi (struct socket *, struct mbuf *,
466 const struct sadb_msghdr *);
467 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
468 const struct secasindex *);
469 static int key_handle_natt_info (struct secasvar *,
470 const struct sadb_msghdr *);
471 static int key_set_natt_ports (union sockaddr_union *,
472 union sockaddr_union *,
473 const struct sadb_msghdr *);
474 static int key_update (struct socket *, struct mbuf *,
475 const struct sadb_msghdr *);
476 #ifdef IPSEC_DOSEQCHECK
477 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
478 #endif
479 static int key_add (struct socket *, struct mbuf *,
480 const struct sadb_msghdr *);
481 static int key_setident (struct secashead *, struct mbuf *,
482 const struct sadb_msghdr *);
483 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
484 const struct sadb_msghdr *);
485 static int key_delete (struct socket *, struct mbuf *,
486 const struct sadb_msghdr *);
487 static int key_get (struct socket *, struct mbuf *,
488 const struct sadb_msghdr *);
489
490 static void key_getcomb_setlifetime (struct sadb_comb *);
491 static struct mbuf *key_getcomb_esp (void);
492 static struct mbuf *key_getcomb_ah (void);
493 static struct mbuf *key_getcomb_ipcomp (void);
494 static struct mbuf *key_getprop (const struct secasindex *);
495
496 static int key_acquire (const struct secasindex *, struct secpolicy *);
497 #ifndef IPSEC_NONBLOCK_ACQUIRE
498 static struct secacq *key_newacq (const struct secasindex *);
499 static struct secacq *key_getacq (const struct secasindex *);
500 static struct secacq *key_getacqbyseq (u_int32_t);
501 #endif
502 static struct secspacq *key_newspacq (const struct secpolicyindex *);
503 static struct secspacq *key_getspacq (const struct secpolicyindex *);
504 static int key_acquire2 (struct socket *, struct mbuf *,
505 const struct sadb_msghdr *);
506 static int key_register (struct socket *, struct mbuf *,
507 const struct sadb_msghdr *);
508 static int key_expire (struct secasvar *);
509 static int key_flush (struct socket *, struct mbuf *,
510 const struct sadb_msghdr *);
511 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
512 int *lenp, pid_t pid);
513 static int key_dump (struct socket *, struct mbuf *,
514 const struct sadb_msghdr *);
515 static int key_promisc (struct socket *, struct mbuf *,
516 const struct sadb_msghdr *);
517 static int key_senderror (struct socket *, struct mbuf *, int);
518 static int key_validate_ext (const struct sadb_ext *, int);
519 static int key_align (struct mbuf *, struct sadb_msghdr *);
520 #if 0
521 static const char *key_getfqdn (void);
522 static const char *key_getuserfqdn (void);
523 #endif
524 static void key_sa_chgstate (struct secasvar *, u_int8_t);
525 static inline void key_sp_dead (struct secpolicy *);
526 static void key_sp_unlink (struct secpolicy *sp);
527
528 static struct mbuf *key_alloc_mbuf (int);
529 struct callout key_timehandler_ch;
530
531 #define SA_ADDREF(p) do { \
532 (p)->refcnt++; \
533 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
534 } while (0)
535 #define SA_DELREF(p) do { \
536 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
537 (p)->refcnt--; \
538 } while (0)
539
540 #define SP_ADDREF(p) do { \
541 (p)->refcnt++; \
542 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
543 } while (0)
544 #define SP_DELREF(p) do { \
545 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
546 (p)->refcnt--; \
547 } while (0)
548
549
550 static inline void
551 key_sp_dead(struct secpolicy *sp)
552 {
553
554 /* mark the SP dead */
555 sp->state = IPSEC_SPSTATE_DEAD;
556 }
557
558 static void
559 key_sp_unlink(struct secpolicy *sp)
560 {
561
562 /* remove from SP index */
563 if (__LIST_CHAINED(sp)) {
564 LIST_REMOVE(sp, chain);
565 /* Release refcount held just for being on chain */
566 KEY_FREESP(&sp);
567 }
568 }
569
570
571 /*
572 * Return 0 when there are known to be no SP's for the specified
573 * direction. Otherwise return 1. This is used by IPsec code
574 * to optimize performance.
575 */
576 int
577 key_havesp(u_int dir)
578 {
579 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
580 LIST_FIRST(&sptree[dir]) != NULL : 1);
581 }
582
583 /* %%% IPsec policy management */
584 /*
585 * allocating a SP for OUTBOUND or INBOUND packet.
586 * Must call key_freesp() later.
587 * OUT: NULL: not found
588 * others: found and return the pointer.
589 */
590 struct secpolicy *
591 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
592 {
593 struct secpolicy *sp;
594 int s;
595
596 KASSERT(spidx != NULL);
597 KASSERTMSG(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
598 "invalid direction %u", dir);
599
600 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
601 printf("DP %s from %s:%u\n", __func__, where, tag));
602
603 /* get a SP entry */
604 s = splsoftnet(); /*called from softclock()*/
605 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
606 printf("*** objects\n");
607 kdebug_secpolicyindex(spidx));
608
609 LIST_FOREACH(sp, &sptree[dir], chain) {
610 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
611 printf("*** in SPD\n");
612 kdebug_secpolicyindex(&sp->spidx));
613
614 if (sp->state == IPSEC_SPSTATE_DEAD)
615 continue;
616 if (key_cmpspidx_withmask(&sp->spidx, spidx))
617 goto found;
618 }
619 sp = NULL;
620 found:
621 if (sp) {
622 /* sanity check */
623 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
624
625 /* found a SPD entry */
626 sp->lastused = time_uptime;
627 SP_ADDREF(sp);
628 }
629 splx(s);
630
631 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
632 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
633 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
634 return sp;
635 }
636
637 /*
638 * allocating a SP for OUTBOUND or INBOUND packet.
639 * Must call key_freesp() later.
640 * OUT: NULL: not found
641 * others: found and return the pointer.
642 */
643 struct secpolicy *
644 key_allocsp2(u_int32_t spi,
645 const union sockaddr_union *dst,
646 u_int8_t proto,
647 u_int dir,
648 const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
652
653 KASSERT(dst != NULL);
654 KASSERTMSG(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
655 "invalid direction %u", dir);
656
657 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
658 printf("DP %s from %s:%u\n", __func__, where, tag));
659
660 /* get a SP entry */
661 s = splsoftnet(); /*called from softclock()*/
662 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
663 printf("*** objects\n");
664 printf("spi %u proto %u dir %u\n", spi, proto, dir);
665 kdebug_sockaddr(&dst->sa));
666
667 LIST_FOREACH(sp, &sptree[dir], chain) {
668 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
669 printf("*** in SPD\n");
670 kdebug_secpolicyindex(&sp->spidx));
671
672 if (sp->state == IPSEC_SPSTATE_DEAD)
673 continue;
674 /* compare simple values, then dst address */
675 if (sp->spidx.ul_proto != proto)
676 continue;
677 /* NB: spi's must exist and match */
678 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
679 continue;
680 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT) == 0)
681 goto found;
682 }
683 sp = NULL;
684 found:
685 if (sp) {
686 /* sanity check */
687 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
688
689 /* found a SPD entry */
690 sp->lastused = time_uptime;
691 SP_ADDREF(sp);
692 }
693 splx(s);
694
695 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
696 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
697 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
698 return sp;
699 }
700
701 /*
702 * return a policy that matches this particular inbound packet.
703 * XXX slow
704 */
705 struct secpolicy *
706 key_gettunnel(const struct sockaddr *osrc,
707 const struct sockaddr *odst,
708 const struct sockaddr *isrc,
709 const struct sockaddr *idst,
710 const char* where, int tag)
711 {
712 struct secpolicy *sp;
713 const int dir = IPSEC_DIR_INBOUND;
714 int s;
715 struct ipsecrequest *r1, *r2, *p;
716 struct secpolicyindex spidx;
717
718 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
719 printf("DP %s from %s:%u\n", __func__, where, tag));
720
721 if (isrc->sa_family != idst->sa_family) {
722 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
723 isrc->sa_family, idst->sa_family));
724 sp = NULL;
725 goto done;
726 }
727
728 s = splsoftnet(); /*called from softclock()*/
729 LIST_FOREACH(sp, &sptree[dir], chain) {
730 if (sp->state == IPSEC_SPSTATE_DEAD)
731 continue;
732
733 r1 = r2 = NULL;
734 for (p = sp->req; p; p = p->next) {
735 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
736 continue;
737
738 r1 = r2;
739 r2 = p;
740
741 if (!r1) {
742 /* here we look at address matches only */
743 spidx = sp->spidx;
744 if (isrc->sa_len > sizeof(spidx.src) ||
745 idst->sa_len > sizeof(spidx.dst))
746 continue;
747 memcpy(&spidx.src, isrc, isrc->sa_len);
748 memcpy(&spidx.dst, idst, idst->sa_len);
749 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
750 continue;
751 } else {
752 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, PORT_NONE) ||
753 key_sockaddrcmp(&r1->saidx.dst.sa, idst, PORT_NONE))
754 continue;
755 }
756
757 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, PORT_NONE) ||
758 key_sockaddrcmp(&r2->saidx.dst.sa, odst, PORT_NONE))
759 continue;
760
761 goto found;
762 }
763 }
764 sp = NULL;
765 found:
766 if (sp) {
767 sp->lastused = time_uptime;
768 SP_ADDREF(sp);
769 }
770 splx(s);
771 done:
772 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
773 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
774 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
775 return sp;
776 }
777
778 /*
779 * allocating an SA entry for an *OUTBOUND* packet.
780 * checking each request entries in SP, and acquire an SA if need.
781 * OUT: 0: there are valid requests.
782 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
783 */
784 int
785 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
786 {
787 u_int level;
788 int error;
789
790 KASSERT(isr != NULL);
791 KASSERT(saidx != NULL);
792 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
793 saidx->mode == IPSEC_MODE_TUNNEL,
794 "unexpected policy %u", saidx->mode);
795
796 /* get current level */
797 level = ipsec_get_reqlevel(isr);
798
799 /*
800 * XXX guard against protocol callbacks from the crypto
801 * thread as they reference ipsecrequest.sav which we
802 * temporarily null out below. Need to rethink how we
803 * handle bundled SA's in the callback thread.
804 */
805 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
806 #if 0
807 /*
808 * We do allocate new SA only if the state of SA in the holder is
809 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
810 */
811 if (isr->sav != NULL) {
812 if (isr->sav->sah == NULL)
813 panic("key_checkrequest: sah is null");
814 if (isr->sav == (struct secasvar *)LIST_FIRST(
815 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
816 KEY_FREESAV(&isr->sav);
817 isr->sav = NULL;
818 }
819 }
820 #else
821 /*
822 * we free any SA stashed in the IPsec request because a different
823 * SA may be involved each time this request is checked, either
824 * because new SAs are being configured, or this request is
825 * associated with an unconnected datagram socket, or this request
826 * is associated with a system default policy.
827 *
828 * The operation may have negative impact to performance. We may
829 * want to check cached SA carefully, rather than picking new SA
830 * every time.
831 */
832 if (isr->sav != NULL) {
833 KEY_FREESAV(&isr->sav);
834 isr->sav = NULL;
835 }
836 #endif
837
838 /*
839 * new SA allocation if no SA found.
840 * key_allocsa_policy should allocate the oldest SA available.
841 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
842 */
843 if (isr->sav == NULL)
844 isr->sav = key_allocsa_policy(saidx);
845
846 /* When there is SA. */
847 if (isr->sav != NULL) {
848 if (isr->sav->state != SADB_SASTATE_MATURE &&
849 isr->sav->state != SADB_SASTATE_DYING)
850 return EINVAL;
851 return 0;
852 }
853
854 /* there is no SA */
855 error = key_acquire(saidx, isr->sp);
856 if (error != 0) {
857 /* XXX What should I do ? */
858 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
859 "from key_acquire.\n", error));
860 return error;
861 }
862
863 if (level != IPSEC_LEVEL_REQUIRE) {
864 /* XXX sigh, the interface to this routine is botched */
865 KASSERTMSG(isr->sav == NULL, "unexpected SA");
866 return 0;
867 } else {
868 return ENOENT;
869 }
870 }
871
872 /*
873 * allocating a SA for policy entry from SAD.
874 * NOTE: searching SAD of aliving state.
875 * OUT: NULL: not found.
876 * others: found and return the pointer.
877 */
878 static struct secasvar *
879 key_allocsa_policy(const struct secasindex *saidx)
880 {
881 struct secashead *sah;
882 struct secasvar *sav;
883 u_int stateidx, state;
884 const u_int *saorder_state_valid;
885 int arraysize;
886
887 LIST_FOREACH(sah, &sahtree, chain) {
888 if (sah->state == SADB_SASTATE_DEAD)
889 continue;
890 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
891 goto found;
892 }
893
894 return NULL;
895
896 found:
897
898 /*
899 * search a valid state list for outbound packet.
900 * This search order is important.
901 */
902 if (key_prefered_oldsa) {
903 saorder_state_valid = saorder_state_valid_prefer_old;
904 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
905 } else {
906 saorder_state_valid = saorder_state_valid_prefer_new;
907 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
908 }
909
910 /* search valid state */
911 for (stateidx = 0;
912 stateidx < arraysize;
913 stateidx++) {
914
915 state = saorder_state_valid[stateidx];
916
917 sav = key_do_allocsa_policy(sah, state);
918 if (sav != NULL)
919 return sav;
920 }
921
922 return NULL;
923 }
924
925 /*
926 * searching SAD with direction, protocol, mode and state.
927 * called by key_allocsa_policy().
928 * OUT:
929 * NULL : not found
930 * others : found, pointer to a SA.
931 */
932 static struct secasvar *
933 key_do_allocsa_policy(struct secashead *sah, u_int state)
934 {
935 struct secasvar *sav, *nextsav, *candidate, *d;
936
937 /* initilize */
938 candidate = NULL;
939
940 for (sav = LIST_FIRST(&sah->savtree[state]);
941 sav != NULL;
942 sav = nextsav) {
943
944 nextsav = LIST_NEXT(sav, chain);
945
946 /* sanity check */
947 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
948
949 /* initialize */
950 if (candidate == NULL) {
951 candidate = sav;
952 continue;
953 }
954
955 /* Which SA is the better ? */
956
957 /* sanity check 2 */
958 if (candidate->lft_c == NULL || sav->lft_c == NULL)
959 panic("key_do_allocsa_policy: "
960 "lifetime_current is NULL");
961
962 /* What the best method is to compare ? */
963 if (key_prefered_oldsa) {
964 if (candidate->lft_c->sadb_lifetime_addtime >
965 sav->lft_c->sadb_lifetime_addtime) {
966 candidate = sav;
967 }
968 continue;
969 /*NOTREACHED*/
970 }
971
972 /* prefered new sa rather than old sa */
973 if (candidate->lft_c->sadb_lifetime_addtime <
974 sav->lft_c->sadb_lifetime_addtime) {
975 d = candidate;
976 candidate = sav;
977 } else
978 d = sav;
979
980 /*
981 * prepared to delete the SA when there is more
982 * suitable candidate and the lifetime of the SA is not
983 * permanent.
984 */
985 if (d->lft_c->sadb_lifetime_addtime != 0) {
986 struct mbuf *m, *result = 0;
987 uint8_t satype;
988
989 key_sa_chgstate(d, SADB_SASTATE_DEAD);
990
991 KASSERT(d->refcnt > 0);
992
993 satype = key_proto2satype(d->sah->saidx.proto);
994 if (satype == 0)
995 goto msgfail;
996
997 m = key_setsadbmsg(SADB_DELETE, 0,
998 satype, 0, 0, d->refcnt - 1);
999 if (!m)
1000 goto msgfail;
1001 result = m;
1002
1003 /* set sadb_address for saidx's. */
1004 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1005 &d->sah->saidx.src.sa,
1006 d->sah->saidx.src.sa.sa_len << 3,
1007 IPSEC_ULPROTO_ANY);
1008 if (!m)
1009 goto msgfail;
1010 m_cat(result, m);
1011
1012 /* set sadb_address for saidx's. */
1013 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1014 &d->sah->saidx.src.sa,
1015 d->sah->saidx.src.sa.sa_len << 3,
1016 IPSEC_ULPROTO_ANY);
1017 if (!m)
1018 goto msgfail;
1019 m_cat(result, m);
1020
1021 /* create SA extension */
1022 m = key_setsadbsa(d);
1023 if (!m)
1024 goto msgfail;
1025 m_cat(result, m);
1026
1027 if (result->m_len < sizeof(struct sadb_msg)) {
1028 result = m_pullup(result,
1029 sizeof(struct sadb_msg));
1030 if (result == NULL)
1031 goto msgfail;
1032 }
1033
1034 result->m_pkthdr.len = 0;
1035 for (m = result; m; m = m->m_next)
1036 result->m_pkthdr.len += m->m_len;
1037 mtod(result, struct sadb_msg *)->sadb_msg_len =
1038 PFKEY_UNIT64(result->m_pkthdr.len);
1039
1040 key_sendup_mbuf(NULL, result,
1041 KEY_SENDUP_REGISTERED);
1042 result = 0;
1043 msgfail:
1044 if (result)
1045 m_freem(result);
1046 KEY_FREESAV(&d);
1047 }
1048 }
1049
1050 if (candidate) {
1051 SA_ADDREF(candidate);
1052 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1053 printf("DP %s cause refcnt++:%d SA:%p\n", __func__,
1054 candidate->refcnt, candidate));
1055 }
1056 return candidate;
1057 }
1058
1059 /*
1060 * allocating a usable SA entry for a *INBOUND* packet.
1061 * Must call key_freesav() later.
1062 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1063 * NULL: not found, or error occurred.
1064 *
1065 * In the comparison, no source address is used--for RFC2401 conformance.
1066 * To quote, from section 4.1:
1067 * A security association is uniquely identified by a triple consisting
1068 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1069 * security protocol (AH or ESP) identifier.
1070 * Note that, however, we do need to keep source address in IPsec SA.
1071 * IKE specification and PF_KEY specification do assume that we
1072 * keep source address in IPsec SA. We see a tricky situation here.
1073 *
1074 * sport and dport are used for NAT-T. network order is always used.
1075 */
1076 struct secasvar *
1077 key_allocsa(
1078 const union sockaddr_union *dst,
1079 u_int proto,
1080 u_int32_t spi,
1081 u_int16_t sport,
1082 u_int16_t dport,
1083 const char* where, int tag)
1084 {
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, state;
1088 const u_int *saorder_state_valid;
1089 int arraysize, chkport;
1090 int s;
1091
1092 int must_check_spi = 1;
1093 int must_check_alg = 0;
1094 u_int16_t cpi = 0;
1095 u_int8_t algo = 0;
1096
1097 if ((sport != 0) && (dport != 0))
1098 chkport = PORT_STRICT;
1099 else
1100 chkport = PORT_NONE;
1101
1102 KASSERT(dst != NULL);
1103
1104 /*
1105 * XXX IPCOMP case
1106 * We use cpi to define spi here. In the case where cpi <=
1107 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1108 * the real spi. In this case, don't check the spi but check the
1109 * algorithm
1110 */
1111
1112 if (proto == IPPROTO_IPCOMP) {
1113 u_int32_t tmp;
1114 tmp = ntohl(spi);
1115 cpi = (u_int16_t) tmp;
1116 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1117 algo = (u_int8_t) cpi;
1118 must_check_spi = 0;
1119 must_check_alg = 1;
1120 }
1121 }
1122 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1123 printf("DP %s from %s:%u check_spi=%d, check_alg=%d\n",
1124 __func__, where, tag, must_check_spi, must_check_alg));
1125
1126
1127 /*
1128 * searching SAD.
1129 * XXX: to be checked internal IP header somewhere. Also when
1130 * IPsec tunnel packet is received. But ESP tunnel mode is
1131 * encrypted so we can't check internal IP header.
1132 */
1133 s = splsoftnet(); /*called from softclock()*/
1134 if (key_prefered_oldsa) {
1135 saorder_state_valid = saorder_state_valid_prefer_old;
1136 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1137 } else {
1138 saorder_state_valid = saorder_state_valid_prefer_new;
1139 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1140 }
1141 LIST_FOREACH(sah, &sahtree, chain) {
1142 /* search valid state */
1143 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1144 state = saorder_state_valid[stateidx];
1145 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1146 KEYDEBUG(KEYDEBUG_MATCH,
1147 printf("try match spi %#x, %#x\n",
1148 ntohl(spi), ntohl(sav->spi)));
1149 /* sanity check */
1150 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1151 /* do not return entries w/ unusable state */
1152 if (sav->state != SADB_SASTATE_MATURE &&
1153 sav->state != SADB_SASTATE_DYING) {
1154 KEYDEBUG(KEYDEBUG_MATCH,
1155 printf("bad state %d\n",
1156 sav->state));
1157 continue;
1158 }
1159 if (proto != sav->sah->saidx.proto) {
1160 KEYDEBUG(KEYDEBUG_MATCH,
1161 printf("proto fail %d != %d\n",
1162 proto, sav->sah->saidx.proto));
1163 continue;
1164 }
1165 if (must_check_spi && spi != sav->spi) {
1166 KEYDEBUG(KEYDEBUG_MATCH,
1167 printf("spi fail %#x != %#x\n",
1168 ntohl(spi), ntohl(sav->spi)));
1169 continue;
1170 }
1171 /* XXX only on the ipcomp case */
1172 if (must_check_alg && algo != sav->alg_comp) {
1173 KEYDEBUG(KEYDEBUG_MATCH,
1174 printf("algo fail %d != %d\n",
1175 algo, sav->alg_comp));
1176 continue;
1177 }
1178
1179 #if 0 /* don't check src */
1180 /* Fix port in src->sa */
1181
1182 /* check src address */
1183 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE) != 0)
1184 continue;
1185 #endif
1186 /* fix port of dst address XXX*/
1187 key_porttosaddr(__UNCONST(dst), dport);
1188 /* check dst address */
1189 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1190 continue;
1191 SA_ADDREF(sav);
1192 goto done;
1193 }
1194 }
1195 }
1196 sav = NULL;
1197 done:
1198 splx(s);
1199
1200 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1201 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1202 sav, sav ? sav->refcnt : 0));
1203 return sav;
1204 }
1205
1206 /*
1207 * Must be called after calling key_allocsp().
1208 * For both the packet without socket and key_freeso().
1209 */
1210 void
1211 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1212 {
1213 struct secpolicy *sp = *spp;
1214
1215 KASSERT(sp != NULL);
1216
1217 SP_DELREF(sp);
1218
1219 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1220 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1221 __func__, sp, sp->id, where, tag, sp->refcnt));
1222
1223 if (sp->refcnt == 0) {
1224 *spp = NULL;
1225 key_delsp(sp);
1226 }
1227 }
1228
1229 /*
1230 * Must be called after calling key_allocsp().
1231 * For the packet with socket.
1232 */
1233 void
1234 key_freeso(struct socket *so)
1235 {
1236 /* sanity check */
1237 KASSERT(so != NULL);
1238
1239 switch (so->so_proto->pr_domain->dom_family) {
1240 #ifdef INET
1241 case PF_INET:
1242 {
1243 struct inpcb *pcb = sotoinpcb(so);
1244
1245 /* Does it have a PCB ? */
1246 if (pcb == NULL)
1247 return;
1248
1249 struct inpcbpolicy *sp = pcb->inp_sp;
1250 key_freesp_so(&sp->sp_in);
1251 key_freesp_so(&sp->sp_out);
1252 }
1253 break;
1254 #endif
1255 #ifdef INET6
1256 case PF_INET6:
1257 {
1258 #ifdef HAVE_NRL_INPCB
1259 struct inpcb *pcb = sotoinpcb(so);
1260 struct inpcbpolicy *sp = pcb->inp_sp;
1261
1262 /* Does it have a PCB ? */
1263 if (pcb == NULL)
1264 return;
1265 key_freesp_so(&sp->sp_in);
1266 key_freesp_so(&sp->sp_out);
1267 #else
1268 struct in6pcb *pcb = sotoin6pcb(so);
1269
1270 /* Does it have a PCB ? */
1271 if (pcb == NULL)
1272 return;
1273 key_freesp_so(&pcb->in6p_sp->sp_in);
1274 key_freesp_so(&pcb->in6p_sp->sp_out);
1275 #endif
1276 }
1277 break;
1278 #endif /* INET6 */
1279 default:
1280 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1281 so->so_proto->pr_domain->dom_family));
1282 return;
1283 }
1284 }
1285
1286 static void
1287 key_freesp_so(struct secpolicy **sp)
1288 {
1289
1290 KASSERT(sp != NULL);
1291 KASSERT(*sp != NULL);
1292
1293 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1294 (*sp)->policy == IPSEC_POLICY_BYPASS)
1295 return;
1296
1297 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1298 "invalid policy %u", (*sp)->policy);
1299 KEY_FREESP(sp);
1300 }
1301
1302 /*
1303 * Must be called after calling key_allocsa().
1304 * This function is called by key_freesp() to free some SA allocated
1305 * for a policy.
1306 */
1307 void
1308 key_freesav(struct secasvar **psav, const char* where, int tag)
1309 {
1310 struct secasvar *sav = *psav;
1311
1312 KASSERT(sav != NULL);
1313
1314 SA_DELREF(sav);
1315
1316 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1317 printf("DP %s SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1318 __func__, sav, (u_long)ntohl(sav->spi), where, tag,
1319 sav->refcnt));
1320
1321 if (sav->refcnt == 0) {
1322 *psav = NULL;
1323 key_delsav(sav);
1324 }
1325 }
1326
1327 /* %%% SPD management */
1328 /*
1329 * free security policy entry.
1330 */
1331 static void
1332 key_delsp(struct secpolicy *sp)
1333 {
1334 int s;
1335
1336 KASSERT(sp != NULL);
1337
1338 key_sp_dead(sp);
1339
1340 KASSERTMSG(sp->refcnt == 0,
1341 "SP with references deleted (refcnt %u)", sp->refcnt);
1342
1343 s = splsoftnet(); /*called from softclock()*/
1344
1345 {
1346 struct ipsecrequest *isr = sp->req, *nextisr;
1347
1348 while (isr != NULL) {
1349 if (isr->sav != NULL) {
1350 KEY_FREESAV(&isr->sav);
1351 isr->sav = NULL;
1352 }
1353
1354 nextisr = isr->next;
1355 KFREE(isr);
1356 isr = nextisr;
1357 }
1358 }
1359
1360 KFREE(sp);
1361
1362 splx(s);
1363 }
1364
1365 /*
1366 * search SPD
1367 * OUT: NULL : not found
1368 * others : found, pointer to a SP.
1369 */
1370 static struct secpolicy *
1371 key_getsp(const struct secpolicyindex *spidx)
1372 {
1373 struct secpolicy *sp;
1374
1375 KASSERT(spidx != NULL);
1376
1377 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1378 if (sp->state == IPSEC_SPSTATE_DEAD)
1379 continue;
1380 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1381 SP_ADDREF(sp);
1382 return sp;
1383 }
1384 }
1385
1386 return NULL;
1387 }
1388
1389 /*
1390 * get SP by index.
1391 * OUT: NULL : not found
1392 * others : found, pointer to a SP.
1393 */
1394 static struct secpolicy *
1395 key_getspbyid(u_int32_t id)
1396 {
1397 struct secpolicy *sp;
1398
1399 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1400 if (sp->state == IPSEC_SPSTATE_DEAD)
1401 continue;
1402 if (sp->id == id) {
1403 SP_ADDREF(sp);
1404 return sp;
1405 }
1406 }
1407
1408 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1409 if (sp->state == IPSEC_SPSTATE_DEAD)
1410 continue;
1411 if (sp->id == id) {
1412 SP_ADDREF(sp);
1413 return sp;
1414 }
1415 }
1416
1417 return NULL;
1418 }
1419
1420 struct secpolicy *
1421 key_newsp(const char* where, int tag)
1422 {
1423 struct secpolicy *newsp = NULL;
1424
1425 newsp = (struct secpolicy *)
1426 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1427 if (newsp) {
1428 newsp->refcnt = 1;
1429 newsp->req = NULL;
1430 }
1431
1432 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1433 printf("DP %s from %s:%u return SP:%p\n", __func__,
1434 where, tag, newsp));
1435 return newsp;
1436 }
1437
1438 /*
1439 * create secpolicy structure from sadb_x_policy structure.
1440 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1441 * so must be set properly later.
1442 */
1443 struct secpolicy *
1444 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1445 {
1446 struct secpolicy *newsp;
1447
1448 /* sanity check */
1449 if (xpl0 == NULL)
1450 panic("key_msg2sp: NULL pointer was passed");
1451 if (len < sizeof(*xpl0))
1452 panic("key_msg2sp: invalid length");
1453 if (len != PFKEY_EXTLEN(xpl0)) {
1454 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1455 *error = EINVAL;
1456 return NULL;
1457 }
1458
1459 if ((newsp = KEY_NEWSP()) == NULL) {
1460 *error = ENOBUFS;
1461 return NULL;
1462 }
1463
1464 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1465 newsp->policy = xpl0->sadb_x_policy_type;
1466
1467 /* check policy */
1468 switch (xpl0->sadb_x_policy_type) {
1469 case IPSEC_POLICY_DISCARD:
1470 case IPSEC_POLICY_NONE:
1471 case IPSEC_POLICY_ENTRUST:
1472 case IPSEC_POLICY_BYPASS:
1473 newsp->req = NULL;
1474 break;
1475
1476 case IPSEC_POLICY_IPSEC:
1477 {
1478 int tlen;
1479 const struct sadb_x_ipsecrequest *xisr;
1480 uint16_t xisr_reqid;
1481 struct ipsecrequest **p_isr = &newsp->req;
1482
1483 /* validity check */
1484 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1485 ipseclog((LOG_DEBUG,
1486 "key_msg2sp: Invalid msg length.\n"));
1487 KEY_FREESP(&newsp);
1488 *error = EINVAL;
1489 return NULL;
1490 }
1491
1492 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1493 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1494
1495 while (tlen > 0) {
1496 /* length check */
1497 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1498 ipseclog((LOG_DEBUG, "key_msg2sp: "
1499 "invalid ipsecrequest length.\n"));
1500 KEY_FREESP(&newsp);
1501 *error = EINVAL;
1502 return NULL;
1503 }
1504
1505 /* allocate request buffer */
1506 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1507 if ((*p_isr) == NULL) {
1508 ipseclog((LOG_DEBUG,
1509 "key_msg2sp: No more memory.\n"));
1510 KEY_FREESP(&newsp);
1511 *error = ENOBUFS;
1512 return NULL;
1513 }
1514 memset(*p_isr, 0, sizeof(**p_isr));
1515
1516 /* set values */
1517 (*p_isr)->next = NULL;
1518
1519 switch (xisr->sadb_x_ipsecrequest_proto) {
1520 case IPPROTO_ESP:
1521 case IPPROTO_AH:
1522 case IPPROTO_IPCOMP:
1523 break;
1524 default:
1525 ipseclog((LOG_DEBUG,
1526 "key_msg2sp: invalid proto type=%u\n",
1527 xisr->sadb_x_ipsecrequest_proto));
1528 KEY_FREESP(&newsp);
1529 *error = EPROTONOSUPPORT;
1530 return NULL;
1531 }
1532 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1533
1534 switch (xisr->sadb_x_ipsecrequest_mode) {
1535 case IPSEC_MODE_TRANSPORT:
1536 case IPSEC_MODE_TUNNEL:
1537 break;
1538 case IPSEC_MODE_ANY:
1539 default:
1540 ipseclog((LOG_DEBUG,
1541 "key_msg2sp: invalid mode=%u\n",
1542 xisr->sadb_x_ipsecrequest_mode));
1543 KEY_FREESP(&newsp);
1544 *error = EINVAL;
1545 return NULL;
1546 }
1547 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1548
1549 switch (xisr->sadb_x_ipsecrequest_level) {
1550 case IPSEC_LEVEL_DEFAULT:
1551 case IPSEC_LEVEL_USE:
1552 case IPSEC_LEVEL_REQUIRE:
1553 break;
1554 case IPSEC_LEVEL_UNIQUE:
1555 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1556 /* validity check */
1557 /*
1558 * If range violation of reqid, kernel will
1559 * update it, don't refuse it.
1560 */
1561 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1562 ipseclog((LOG_DEBUG,
1563 "key_msg2sp: reqid=%d range "
1564 "violation, updated by kernel.\n",
1565 xisr_reqid));
1566 xisr_reqid = 0;
1567 }
1568
1569 /* allocate new reqid id if reqid is zero. */
1570 if (xisr_reqid == 0) {
1571 u_int16_t reqid;
1572 if ((reqid = key_newreqid()) == 0) {
1573 KEY_FREESP(&newsp);
1574 *error = ENOBUFS;
1575 return NULL;
1576 }
1577 (*p_isr)->saidx.reqid = reqid;
1578 } else {
1579 /* set it for manual keying. */
1580 (*p_isr)->saidx.reqid = xisr_reqid;
1581 }
1582 break;
1583
1584 default:
1585 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1586 xisr->sadb_x_ipsecrequest_level));
1587 KEY_FREESP(&newsp);
1588 *error = EINVAL;
1589 return NULL;
1590 }
1591 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1592
1593 /* set IP addresses if there */
1594 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1595 const struct sockaddr *paddr;
1596
1597 paddr = (const struct sockaddr *)(xisr + 1);
1598
1599 /* validity check */
1600 if (paddr->sa_len
1601 > sizeof((*p_isr)->saidx.src)) {
1602 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1603 "address length.\n"));
1604 KEY_FREESP(&newsp);
1605 *error = EINVAL;
1606 return NULL;
1607 }
1608 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1609
1610 paddr = (const struct sockaddr *)((const char *)paddr
1611 + paddr->sa_len);
1612
1613 /* validity check */
1614 if (paddr->sa_len
1615 > sizeof((*p_isr)->saidx.dst)) {
1616 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1617 "address length.\n"));
1618 KEY_FREESP(&newsp);
1619 *error = EINVAL;
1620 return NULL;
1621 }
1622 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1623 }
1624
1625 (*p_isr)->sav = NULL;
1626 (*p_isr)->sp = newsp;
1627
1628 /* initialization for the next. */
1629 p_isr = &(*p_isr)->next;
1630 tlen -= xisr->sadb_x_ipsecrequest_len;
1631
1632 /* validity check */
1633 if (tlen < 0) {
1634 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1635 KEY_FREESP(&newsp);
1636 *error = EINVAL;
1637 return NULL;
1638 }
1639
1640 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1641 + xisr->sadb_x_ipsecrequest_len);
1642 }
1643 }
1644 break;
1645 default:
1646 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1647 KEY_FREESP(&newsp);
1648 *error = EINVAL;
1649 return NULL;
1650 }
1651
1652 *error = 0;
1653 return newsp;
1654 }
1655
1656 static u_int16_t
1657 key_newreqid(void)
1658 {
1659 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1660
1661 auto_reqid = (auto_reqid == 0xffff
1662 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1663
1664 /* XXX should be unique check */
1665
1666 return auto_reqid;
1667 }
1668
1669 /*
1670 * copy secpolicy struct to sadb_x_policy structure indicated.
1671 */
1672 struct mbuf *
1673 key_sp2msg(const struct secpolicy *sp)
1674 {
1675 struct sadb_x_policy *xpl;
1676 int tlen;
1677 char *p;
1678 struct mbuf *m;
1679
1680 /* sanity check. */
1681 if (sp == NULL)
1682 panic("key_sp2msg: NULL pointer was passed");
1683
1684 tlen = key_getspreqmsglen(sp);
1685
1686 m = key_alloc_mbuf(tlen);
1687 if (!m || m->m_next) { /*XXX*/
1688 if (m)
1689 m_freem(m);
1690 return NULL;
1691 }
1692
1693 m->m_len = tlen;
1694 m->m_next = NULL;
1695 xpl = mtod(m, struct sadb_x_policy *);
1696 memset(xpl, 0, tlen);
1697
1698 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1699 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1700 xpl->sadb_x_policy_type = sp->policy;
1701 xpl->sadb_x_policy_dir = sp->spidx.dir;
1702 xpl->sadb_x_policy_id = sp->id;
1703 p = (char *)xpl + sizeof(*xpl);
1704
1705 /* if is the policy for ipsec ? */
1706 if (sp->policy == IPSEC_POLICY_IPSEC) {
1707 struct sadb_x_ipsecrequest *xisr;
1708 struct ipsecrequest *isr;
1709
1710 for (isr = sp->req; isr != NULL; isr = isr->next) {
1711
1712 xisr = (struct sadb_x_ipsecrequest *)p;
1713
1714 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1715 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1716 xisr->sadb_x_ipsecrequest_level = isr->level;
1717 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1718
1719 p += sizeof(*xisr);
1720 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1721 p += isr->saidx.src.sa.sa_len;
1722 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1723 p += isr->saidx.src.sa.sa_len;
1724
1725 xisr->sadb_x_ipsecrequest_len =
1726 PFKEY_ALIGN8(sizeof(*xisr)
1727 + isr->saidx.src.sa.sa_len
1728 + isr->saidx.dst.sa.sa_len);
1729 }
1730 }
1731
1732 return m;
1733 }
1734
1735 /* m will not be freed nor modified */
1736 static struct mbuf *
1737 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1738 int ndeep, int nitem, ...)
1739 {
1740 va_list ap;
1741 int idx;
1742 int i;
1743 struct mbuf *result = NULL, *n;
1744 int len;
1745
1746 if (m == NULL || mhp == NULL)
1747 panic("null pointer passed to key_gather");
1748
1749 va_start(ap, nitem);
1750 for (i = 0; i < nitem; i++) {
1751 idx = va_arg(ap, int);
1752 if (idx < 0 || idx > SADB_EXT_MAX)
1753 goto fail;
1754 /* don't attempt to pull empty extension */
1755 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1756 continue;
1757 if (idx != SADB_EXT_RESERVED &&
1758 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1759 continue;
1760
1761 if (idx == SADB_EXT_RESERVED) {
1762 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1763 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1764 MGETHDR(n, M_DONTWAIT, MT_DATA);
1765 if (!n)
1766 goto fail;
1767 n->m_len = len;
1768 n->m_next = NULL;
1769 m_copydata(m, 0, sizeof(struct sadb_msg),
1770 mtod(n, void *));
1771 } else if (i < ndeep) {
1772 len = mhp->extlen[idx];
1773 n = key_alloc_mbuf(len);
1774 if (!n || n->m_next) { /*XXX*/
1775 if (n)
1776 m_freem(n);
1777 goto fail;
1778 }
1779 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1780 mtod(n, void *));
1781 } else {
1782 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1783 M_DONTWAIT);
1784 }
1785 if (n == NULL)
1786 goto fail;
1787
1788 if (result)
1789 m_cat(result, n);
1790 else
1791 result = n;
1792 }
1793 va_end(ap);
1794
1795 if (result && (result->m_flags & M_PKTHDR) != 0) {
1796 result->m_pkthdr.len = 0;
1797 for (n = result; n; n = n->m_next)
1798 result->m_pkthdr.len += n->m_len;
1799 }
1800
1801 return result;
1802
1803 fail:
1804 va_end(ap);
1805 m_freem(result);
1806 return NULL;
1807 }
1808
1809 /*
1810 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1811 * add an entry to SP database, when received
1812 * <base, address(SD), (lifetime(H),) policy>
1813 * from the user(?).
1814 * Adding to SP database,
1815 * and send
1816 * <base, address(SD), (lifetime(H),) policy>
1817 * to the socket which was send.
1818 *
1819 * SPDADD set a unique policy entry.
1820 * SPDSETIDX like SPDADD without a part of policy requests.
1821 * SPDUPDATE replace a unique policy entry.
1822 *
1823 * m will always be freed.
1824 */
1825 static int
1826 key_spdadd(struct socket *so, struct mbuf *m,
1827 const struct sadb_msghdr *mhp)
1828 {
1829 const struct sadb_address *src0, *dst0;
1830 const struct sadb_x_policy *xpl0;
1831 struct sadb_x_policy *xpl;
1832 const struct sadb_lifetime *lft = NULL;
1833 struct secpolicyindex spidx;
1834 struct secpolicy *newsp;
1835 int error;
1836
1837 /* sanity check */
1838 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1839 panic("key_spdadd: NULL pointer is passed");
1840
1841 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1842 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1843 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1844 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1845 return key_senderror(so, m, EINVAL);
1846 }
1847 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1848 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1849 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1850 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1851 return key_senderror(so, m, EINVAL);
1852 }
1853 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1854 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1855 < sizeof(struct sadb_lifetime)) {
1856 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1857 return key_senderror(so, m, EINVAL);
1858 }
1859 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1860 }
1861
1862 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1863 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1864 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1865
1866 /* make secindex */
1867 /* XXX boundary check against sa_len */
1868 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1869 src0 + 1,
1870 dst0 + 1,
1871 src0->sadb_address_prefixlen,
1872 dst0->sadb_address_prefixlen,
1873 src0->sadb_address_proto,
1874 &spidx);
1875
1876 /* checking the direciton. */
1877 switch (xpl0->sadb_x_policy_dir) {
1878 case IPSEC_DIR_INBOUND:
1879 case IPSEC_DIR_OUTBOUND:
1880 break;
1881 default:
1882 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1883 mhp->msg->sadb_msg_errno = EINVAL;
1884 return 0;
1885 }
1886
1887 /* check policy */
1888 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1889 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1890 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1891 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1892 return key_senderror(so, m, EINVAL);
1893 }
1894
1895 /* policy requests are mandatory when action is ipsec. */
1896 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1897 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1898 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1899 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1900 return key_senderror(so, m, EINVAL);
1901 }
1902
1903 /*
1904 * checking there is SP already or not.
1905 * SPDUPDATE doesn't depend on whether there is a SP or not.
1906 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1907 * then error.
1908 */
1909 newsp = key_getsp(&spidx);
1910 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1911 if (newsp) {
1912 key_sp_dead(newsp);
1913 key_sp_unlink(newsp); /* XXX jrs ordering */
1914 KEY_FREESP(&newsp);
1915 newsp = NULL;
1916 }
1917 } else {
1918 if (newsp != NULL) {
1919 KEY_FREESP(&newsp);
1920 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1921 return key_senderror(so, m, EEXIST);
1922 }
1923 }
1924
1925 /* allocation new SP entry */
1926 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1927 return key_senderror(so, m, error);
1928 }
1929
1930 if ((newsp->id = key_getnewspid()) == 0) {
1931 KFREE(newsp);
1932 return key_senderror(so, m, ENOBUFS);
1933 }
1934
1935 /* XXX boundary check against sa_len */
1936 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1937 src0 + 1,
1938 dst0 + 1,
1939 src0->sadb_address_prefixlen,
1940 dst0->sadb_address_prefixlen,
1941 src0->sadb_address_proto,
1942 &newsp->spidx);
1943
1944 /* sanity check on addr pair */
1945 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1946 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1947 KFREE(newsp);
1948 return key_senderror(so, m, EINVAL);
1949 }
1950 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1951 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1952 KFREE(newsp);
1953 return key_senderror(so, m, EINVAL);
1954 }
1955
1956 newsp->created = time_uptime;
1957 newsp->lastused = newsp->created;
1958 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1959 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1960
1961 newsp->refcnt = 1; /* do not reclaim until I say I do */
1962 newsp->state = IPSEC_SPSTATE_ALIVE;
1963 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1964
1965 /* delete the entry in spacqtree */
1966 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1967 struct secspacq *spacq;
1968 if ((spacq = key_getspacq(&spidx)) != NULL) {
1969 /* reset counter in order to deletion by timehandler. */
1970 spacq->created = time_uptime;
1971 spacq->count = 0;
1972 }
1973 }
1974
1975 /* Invalidate all cached SPD pointers in the PCBs. */
1976 ipsec_invalpcbcacheall();
1977
1978 #if defined(GATEWAY)
1979 /* Invalidate the ipflow cache, as well. */
1980 ipflow_invalidate_all(0);
1981 #ifdef INET6
1982 if (in6_present)
1983 ip6flow_invalidate_all(0);
1984 #endif /* INET6 */
1985 #endif /* GATEWAY */
1986
1987 {
1988 struct mbuf *n, *mpolicy;
1989 struct sadb_msg *newmsg;
1990 int off;
1991
1992 /* create new sadb_msg to reply. */
1993 if (lft) {
1994 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1995 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1996 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1997 } else {
1998 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1999 SADB_X_EXT_POLICY,
2000 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2001 }
2002 if (!n)
2003 return key_senderror(so, m, ENOBUFS);
2004
2005 if (n->m_len < sizeof(*newmsg)) {
2006 n = m_pullup(n, sizeof(*newmsg));
2007 if (!n)
2008 return key_senderror(so, m, ENOBUFS);
2009 }
2010 newmsg = mtod(n, struct sadb_msg *);
2011 newmsg->sadb_msg_errno = 0;
2012 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2013
2014 off = 0;
2015 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2016 sizeof(*xpl), &off);
2017 if (mpolicy == NULL) {
2018 /* n is already freed */
2019 return key_senderror(so, m, ENOBUFS);
2020 }
2021 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2022 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2023 m_freem(n);
2024 return key_senderror(so, m, EINVAL);
2025 }
2026 xpl->sadb_x_policy_id = newsp->id;
2027
2028 m_freem(m);
2029 key_update_used();
2030 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2031 }
2032 }
2033
2034 /*
2035 * get new policy id.
2036 * OUT:
2037 * 0: failure.
2038 * others: success.
2039 */
2040 static u_int32_t
2041 key_getnewspid(void)
2042 {
2043 u_int32_t newid = 0;
2044 int count = key_spi_trycnt; /* XXX */
2045 struct secpolicy *sp;
2046
2047 /* when requesting to allocate spi ranged */
2048 while (count--) {
2049 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2050
2051 if ((sp = key_getspbyid(newid)) == NULL)
2052 break;
2053
2054 KEY_FREESP(&sp);
2055 }
2056
2057 if (count == 0 || newid == 0) {
2058 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2059 return 0;
2060 }
2061
2062 return newid;
2063 }
2064
2065 /*
2066 * SADB_SPDDELETE processing
2067 * receive
2068 * <base, address(SD), policy(*)>
2069 * from the user(?), and set SADB_SASTATE_DEAD,
2070 * and send,
2071 * <base, address(SD), policy(*)>
2072 * to the ikmpd.
2073 * policy(*) including direction of policy.
2074 *
2075 * m will always be freed.
2076 */
2077 static int
2078 key_spddelete(struct socket *so, struct mbuf *m,
2079 const struct sadb_msghdr *mhp)
2080 {
2081 struct sadb_address *src0, *dst0;
2082 struct sadb_x_policy *xpl0;
2083 struct secpolicyindex spidx;
2084 struct secpolicy *sp;
2085
2086 /* sanity check */
2087 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2088 panic("key_spddelete: NULL pointer is passed");
2089
2090 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2091 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2092 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2093 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2094 return key_senderror(so, m, EINVAL);
2095 }
2096 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2097 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2098 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2099 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2100 return key_senderror(so, m, EINVAL);
2101 }
2102
2103 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2104 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2105 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2106
2107 /* make secindex */
2108 /* XXX boundary check against sa_len */
2109 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2110 src0 + 1,
2111 dst0 + 1,
2112 src0->sadb_address_prefixlen,
2113 dst0->sadb_address_prefixlen,
2114 src0->sadb_address_proto,
2115 &spidx);
2116
2117 /* checking the direciton. */
2118 switch (xpl0->sadb_x_policy_dir) {
2119 case IPSEC_DIR_INBOUND:
2120 case IPSEC_DIR_OUTBOUND:
2121 break;
2122 default:
2123 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2124 return key_senderror(so, m, EINVAL);
2125 }
2126
2127 /* Is there SP in SPD ? */
2128 if ((sp = key_getsp(&spidx)) == NULL) {
2129 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2130 return key_senderror(so, m, EINVAL);
2131 }
2132
2133 /* save policy id to buffer to be returned. */
2134 xpl0->sadb_x_policy_id = sp->id;
2135
2136 key_sp_dead(sp);
2137 key_sp_unlink(sp); /* XXX jrs ordering */
2138 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2139
2140 /* Invalidate all cached SPD pointers in the PCBs. */
2141 ipsec_invalpcbcacheall();
2142
2143 /* We're deleting policy; no need to invalidate the ipflow cache. */
2144
2145 {
2146 struct mbuf *n;
2147 struct sadb_msg *newmsg;
2148
2149 /* create new sadb_msg to reply. */
2150 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2151 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2152 if (!n)
2153 return key_senderror(so, m, ENOBUFS);
2154
2155 newmsg = mtod(n, struct sadb_msg *);
2156 newmsg->sadb_msg_errno = 0;
2157 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2158
2159 m_freem(m);
2160 key_update_used();
2161 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2162 }
2163 }
2164
2165 /*
2166 * SADB_SPDDELETE2 processing
2167 * receive
2168 * <base, policy(*)>
2169 * from the user(?), and set SADB_SASTATE_DEAD,
2170 * and send,
2171 * <base, policy(*)>
2172 * to the ikmpd.
2173 * policy(*) including direction of policy.
2174 *
2175 * m will always be freed.
2176 */
2177 static int
2178 key_spddelete2(struct socket *so, struct mbuf *m,
2179 const struct sadb_msghdr *mhp)
2180 {
2181 u_int32_t id;
2182 struct secpolicy *sp;
2183
2184 /* sanity check */
2185 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2186 panic("key_spddelete2: NULL pointer is passed");
2187
2188 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2189 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2190 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2191 key_senderror(so, m, EINVAL);
2192 return 0;
2193 }
2194
2195 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2196
2197 /* Is there SP in SPD ? */
2198 if ((sp = key_getspbyid(id)) == NULL) {
2199 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2200 return key_senderror(so, m, EINVAL);
2201 }
2202
2203 key_sp_dead(sp);
2204 key_sp_unlink(sp); /* XXX jrs ordering */
2205 KEY_FREESP(&sp); /* ref gained by key_getsp */
2206 sp = NULL;
2207
2208 /* Invalidate all cached SPD pointers in the PCBs. */
2209 ipsec_invalpcbcacheall();
2210
2211 /* We're deleting policy; no need to invalidate the ipflow cache. */
2212
2213 {
2214 struct mbuf *n, *nn;
2215 struct sadb_msg *newmsg;
2216 int off, len;
2217
2218 /* create new sadb_msg to reply. */
2219 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2220
2221 if (len > MCLBYTES)
2222 return key_senderror(so, m, ENOBUFS);
2223 MGETHDR(n, M_DONTWAIT, MT_DATA);
2224 if (n && len > MHLEN) {
2225 MCLGET(n, M_DONTWAIT);
2226 if ((n->m_flags & M_EXT) == 0) {
2227 m_freem(n);
2228 n = NULL;
2229 }
2230 }
2231 if (!n)
2232 return key_senderror(so, m, ENOBUFS);
2233
2234 n->m_len = len;
2235 n->m_next = NULL;
2236 off = 0;
2237
2238 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2239 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2240
2241 KASSERTMSG(off == len, "length inconsistency");
2242
2243 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2244 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2245 if (!n->m_next) {
2246 m_freem(n);
2247 return key_senderror(so, m, ENOBUFS);
2248 }
2249
2250 n->m_pkthdr.len = 0;
2251 for (nn = n; nn; nn = nn->m_next)
2252 n->m_pkthdr.len += nn->m_len;
2253
2254 newmsg = mtod(n, struct sadb_msg *);
2255 newmsg->sadb_msg_errno = 0;
2256 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2257
2258 m_freem(m);
2259 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2260 }
2261 }
2262
2263 /*
2264 * SADB_X_GET processing
2265 * receive
2266 * <base, policy(*)>
2267 * from the user(?),
2268 * and send,
2269 * <base, address(SD), policy>
2270 * to the ikmpd.
2271 * policy(*) including direction of policy.
2272 *
2273 * m will always be freed.
2274 */
2275 static int
2276 key_spdget(struct socket *so, struct mbuf *m,
2277 const struct sadb_msghdr *mhp)
2278 {
2279 u_int32_t id;
2280 struct secpolicy *sp;
2281 struct mbuf *n;
2282
2283 /* sanity check */
2284 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2285 panic("key_spdget: NULL pointer is passed");
2286
2287 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2288 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2289 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2290 return key_senderror(so, m, EINVAL);
2291 }
2292
2293 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2294
2295 /* Is there SP in SPD ? */
2296 if ((sp = key_getspbyid(id)) == NULL) {
2297 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2298 return key_senderror(so, m, ENOENT);
2299 }
2300
2301 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2302 mhp->msg->sadb_msg_pid);
2303 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2304 if (n != NULL) {
2305 m_freem(m);
2306 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2307 } else
2308 return key_senderror(so, m, ENOBUFS);
2309 }
2310
2311 /*
2312 * SADB_X_SPDACQUIRE processing.
2313 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2314 * send
2315 * <base, policy(*)>
2316 * to KMD, and expect to receive
2317 * <base> with SADB_X_SPDACQUIRE if error occurred,
2318 * or
2319 * <base, policy>
2320 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2321 * policy(*) is without policy requests.
2322 *
2323 * 0 : succeed
2324 * others: error number
2325 */
2326 int
2327 key_spdacquire(const struct secpolicy *sp)
2328 {
2329 struct mbuf *result = NULL, *m;
2330 struct secspacq *newspacq;
2331 int error;
2332
2333 /* sanity check */
2334 if (sp == NULL)
2335 panic("key_spdacquire: NULL pointer is passed");
2336 if (sp->req != NULL)
2337 panic("key_spdacquire: called but there is request");
2338 if (sp->policy != IPSEC_POLICY_IPSEC)
2339 panic("key_spdacquire: policy mismathed. IPsec is expected");
2340
2341 /* Get an entry to check whether sent message or not. */
2342 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2343 if (key_blockacq_count < newspacq->count) {
2344 /* reset counter and do send message. */
2345 newspacq->count = 0;
2346 } else {
2347 /* increment counter and do nothing. */
2348 newspacq->count++;
2349 return 0;
2350 }
2351 } else {
2352 /* make new entry for blocking to send SADB_ACQUIRE. */
2353 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2354 return ENOBUFS;
2355
2356 /* add to acqtree */
2357 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2358 }
2359
2360 /* create new sadb_msg to reply. */
2361 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2362 if (!m) {
2363 error = ENOBUFS;
2364 goto fail;
2365 }
2366 result = m;
2367
2368 result->m_pkthdr.len = 0;
2369 for (m = result; m; m = m->m_next)
2370 result->m_pkthdr.len += m->m_len;
2371
2372 mtod(result, struct sadb_msg *)->sadb_msg_len =
2373 PFKEY_UNIT64(result->m_pkthdr.len);
2374
2375 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2376
2377 fail:
2378 if (result)
2379 m_freem(result);
2380 return error;
2381 }
2382
2383 /*
2384 * SADB_SPDFLUSH processing
2385 * receive
2386 * <base>
2387 * from the user, and free all entries in secpctree.
2388 * and send,
2389 * <base>
2390 * to the user.
2391 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2392 *
2393 * m will always be freed.
2394 */
2395 static int
2396 key_spdflush(struct socket *so, struct mbuf *m,
2397 const struct sadb_msghdr *mhp)
2398 {
2399 struct sadb_msg *newmsg;
2400 struct secpolicy *sp;
2401 u_int dir;
2402
2403 /* sanity check */
2404 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2405 panic("key_spdflush: NULL pointer is passed");
2406
2407 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2408 return key_senderror(so, m, EINVAL);
2409
2410 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2411 struct secpolicy * nextsp;
2412 for (sp = LIST_FIRST(&sptree[dir]);
2413 sp != NULL;
2414 sp = nextsp) {
2415
2416 nextsp = LIST_NEXT(sp, chain);
2417 if (sp->state == IPSEC_SPSTATE_DEAD)
2418 continue;
2419 key_sp_dead(sp);
2420 key_sp_unlink(sp);
2421 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2422 continue;
2423 }
2424 }
2425
2426 /* Invalidate all cached SPD pointers in the PCBs. */
2427 ipsec_invalpcbcacheall();
2428
2429 /* We're deleting policy; no need to invalidate the ipflow cache. */
2430
2431 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2432 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2433 return key_senderror(so, m, ENOBUFS);
2434 }
2435
2436 if (m->m_next)
2437 m_freem(m->m_next);
2438 m->m_next = NULL;
2439 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2440 newmsg = mtod(m, struct sadb_msg *);
2441 newmsg->sadb_msg_errno = 0;
2442 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2443
2444 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2445 }
2446
2447 static struct sockaddr key_src = {
2448 .sa_len = 2,
2449 .sa_family = PF_KEY,
2450 };
2451
2452 static struct mbuf *
2453 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2454 {
2455 struct secpolicy *sp;
2456 int cnt;
2457 u_int dir;
2458 struct mbuf *m, *n, *prev;
2459 int totlen;
2460
2461 *lenp = 0;
2462
2463 /* search SPD entry and get buffer size. */
2464 cnt = 0;
2465 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2466 LIST_FOREACH(sp, &sptree[dir], chain) {
2467 cnt++;
2468 }
2469 }
2470
2471 if (cnt == 0) {
2472 *errorp = ENOENT;
2473 return (NULL);
2474 }
2475
2476 m = NULL;
2477 prev = m;
2478 totlen = 0;
2479 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2480 LIST_FOREACH(sp, &sptree[dir], chain) {
2481 --cnt;
2482 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2483
2484 if (!n) {
2485 *errorp = ENOBUFS;
2486 if (m) m_freem(m);
2487 return (NULL);
2488 }
2489
2490 totlen += n->m_pkthdr.len;
2491 if (!m) {
2492 m = n;
2493 } else {
2494 prev->m_nextpkt = n;
2495 }
2496 prev = n;
2497 }
2498 }
2499
2500 *lenp = totlen;
2501 *errorp = 0;
2502 return (m);
2503 }
2504
2505 /*
2506 * SADB_SPDDUMP processing
2507 * receive
2508 * <base>
2509 * from the user, and dump all SP leaves
2510 * and send,
2511 * <base> .....
2512 * to the ikmpd.
2513 *
2514 * m will always be freed.
2515 */
2516 static int
2517 key_spddump(struct socket *so, struct mbuf *m0,
2518 const struct sadb_msghdr *mhp)
2519 {
2520 struct mbuf *n;
2521 int error, len;
2522 int ok, s;
2523 pid_t pid;
2524
2525 /* sanity check */
2526 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2527 panic("key_spddump: NULL pointer is passed");
2528
2529
2530 pid = mhp->msg->sadb_msg_pid;
2531 /*
2532 * If the requestor has insufficient socket-buffer space
2533 * for the entire chain, nobody gets any response to the DUMP.
2534 * XXX For now, only the requestor ever gets anything.
2535 * Moreover, if the requestor has any space at all, they receive
2536 * the entire chain, otherwise the request is refused with ENOBUFS.
2537 */
2538 if (sbspace(&so->so_rcv) <= 0) {
2539 return key_senderror(so, m0, ENOBUFS);
2540 }
2541
2542 s = splsoftnet();
2543 n = key_setspddump_chain(&error, &len, pid);
2544 splx(s);
2545
2546 if (n == NULL) {
2547 return key_senderror(so, m0, ENOENT);
2548 }
2549 {
2550 uint64_t *ps = PFKEY_STAT_GETREF();
2551 ps[PFKEY_STAT_IN_TOTAL]++;
2552 ps[PFKEY_STAT_IN_BYTES] += len;
2553 PFKEY_STAT_PUTREF();
2554 }
2555
2556 /*
2557 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2558 * The requestor receives either the entire chain, or an
2559 * error message with ENOBUFS.
2560 */
2561
2562 /*
2563 * sbappendchainwith record takes the chain of entries, one
2564 * packet-record per SPD entry, prepends the key_src sockaddr
2565 * to each packet-record, links the sockaddr mbufs into a new
2566 * list of records, then appends the entire resulting
2567 * list to the requesting socket.
2568 */
2569 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2570 n, SB_PRIO_ONESHOT_OVERFLOW);
2571
2572 if (!ok) {
2573 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2574 m_freem(n);
2575 return key_senderror(so, m0, ENOBUFS);
2576 }
2577
2578 m_freem(m0);
2579 return error;
2580 }
2581
2582 /*
2583 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2584 */
2585 static int
2586 key_nat_map(struct socket *so, struct mbuf *m,
2587 const struct sadb_msghdr *mhp)
2588 {
2589 struct sadb_x_nat_t_type *type;
2590 struct sadb_x_nat_t_port *sport;
2591 struct sadb_x_nat_t_port *dport;
2592 struct sadb_address *iaddr, *raddr;
2593 struct sadb_x_nat_t_frag *frag;
2594
2595 /* sanity check */
2596 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2597 panic("key_nat_map: NULL pointer is passed.");
2598
2599 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2600 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2601 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2602 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2603 return key_senderror(so, m, EINVAL);
2604 }
2605 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2606 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2607 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2608 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2609 return key_senderror(so, m, EINVAL);
2610 }
2611
2612 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2613 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2614 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2615 return key_senderror(so, m, EINVAL);
2616 }
2617
2618 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2619 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2620 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2621 return key_senderror(so, m, EINVAL);
2622 }
2623
2624 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2625 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2626 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2627 return key_senderror(so, m, EINVAL);
2628 }
2629
2630 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2631 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2632 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2633 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2634 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2635 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2636
2637 /*
2638 * XXX handle that, it should also contain a SA, or anything
2639 * that enable to update the SA information.
2640 */
2641
2642 return 0;
2643 }
2644
2645 static struct mbuf *
2646 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2647 {
2648 struct mbuf *result = NULL, *m;
2649
2650 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2651 if (!m)
2652 goto fail;
2653 result = m;
2654
2655 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2656 &sp->spidx.src.sa, sp->spidx.prefs,
2657 sp->spidx.ul_proto);
2658 if (!m)
2659 goto fail;
2660 m_cat(result, m);
2661
2662 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2663 &sp->spidx.dst.sa, sp->spidx.prefd,
2664 sp->spidx.ul_proto);
2665 if (!m)
2666 goto fail;
2667 m_cat(result, m);
2668
2669 m = key_sp2msg(sp);
2670 if (!m)
2671 goto fail;
2672 m_cat(result, m);
2673
2674 if ((result->m_flags & M_PKTHDR) == 0)
2675 goto fail;
2676
2677 if (result->m_len < sizeof(struct sadb_msg)) {
2678 result = m_pullup(result, sizeof(struct sadb_msg));
2679 if (result == NULL)
2680 goto fail;
2681 }
2682
2683 result->m_pkthdr.len = 0;
2684 for (m = result; m; m = m->m_next)
2685 result->m_pkthdr.len += m->m_len;
2686
2687 mtod(result, struct sadb_msg *)->sadb_msg_len =
2688 PFKEY_UNIT64(result->m_pkthdr.len);
2689
2690 return result;
2691
2692 fail:
2693 m_freem(result);
2694 return NULL;
2695 }
2696
2697 /*
2698 * get PFKEY message length for security policy and request.
2699 */
2700 static u_int
2701 key_getspreqmsglen(const struct secpolicy *sp)
2702 {
2703 u_int tlen;
2704
2705 tlen = sizeof(struct sadb_x_policy);
2706
2707 /* if is the policy for ipsec ? */
2708 if (sp->policy != IPSEC_POLICY_IPSEC)
2709 return tlen;
2710
2711 /* get length of ipsec requests */
2712 {
2713 const struct ipsecrequest *isr;
2714 int len;
2715
2716 for (isr = sp->req; isr != NULL; isr = isr->next) {
2717 len = sizeof(struct sadb_x_ipsecrequest)
2718 + isr->saidx.src.sa.sa_len
2719 + isr->saidx.dst.sa.sa_len;
2720
2721 tlen += PFKEY_ALIGN8(len);
2722 }
2723 }
2724
2725 return tlen;
2726 }
2727
2728 /*
2729 * SADB_SPDEXPIRE processing
2730 * send
2731 * <base, address(SD), lifetime(CH), policy>
2732 * to KMD by PF_KEY.
2733 *
2734 * OUT: 0 : succeed
2735 * others : error number
2736 */
2737 static int
2738 key_spdexpire(struct secpolicy *sp)
2739 {
2740 int s;
2741 struct mbuf *result = NULL, *m;
2742 int len;
2743 int error = -1;
2744 struct sadb_lifetime *lt;
2745
2746 /* XXX: Why do we lock ? */
2747 s = splsoftnet(); /*called from softclock()*/
2748
2749 /* sanity check */
2750 if (sp == NULL)
2751 panic("key_spdexpire: NULL pointer is passed");
2752
2753 /* set msg header */
2754 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2755 if (!m) {
2756 error = ENOBUFS;
2757 goto fail;
2758 }
2759 result = m;
2760
2761 /* create lifetime extension (current and hard) */
2762 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2763 m = key_alloc_mbuf(len);
2764 if (!m || m->m_next) { /*XXX*/
2765 if (m)
2766 m_freem(m);
2767 error = ENOBUFS;
2768 goto fail;
2769 }
2770 memset(mtod(m, void *), 0, len);
2771 lt = mtod(m, struct sadb_lifetime *);
2772 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2773 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2774 lt->sadb_lifetime_allocations = 0;
2775 lt->sadb_lifetime_bytes = 0;
2776 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2777 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2778 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2779 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2780 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2781 lt->sadb_lifetime_allocations = 0;
2782 lt->sadb_lifetime_bytes = 0;
2783 lt->sadb_lifetime_addtime = sp->lifetime;
2784 lt->sadb_lifetime_usetime = sp->validtime;
2785 m_cat(result, m);
2786
2787 /* set sadb_address for source */
2788 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2789 &sp->spidx.src.sa,
2790 sp->spidx.prefs, sp->spidx.ul_proto);
2791 if (!m) {
2792 error = ENOBUFS;
2793 goto fail;
2794 }
2795 m_cat(result, m);
2796
2797 /* set sadb_address for destination */
2798 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2799 &sp->spidx.dst.sa,
2800 sp->spidx.prefd, sp->spidx.ul_proto);
2801 if (!m) {
2802 error = ENOBUFS;
2803 goto fail;
2804 }
2805 m_cat(result, m);
2806
2807 /* set secpolicy */
2808 m = key_sp2msg(sp);
2809 if (!m) {
2810 error = ENOBUFS;
2811 goto fail;
2812 }
2813 m_cat(result, m);
2814
2815 if ((result->m_flags & M_PKTHDR) == 0) {
2816 error = EINVAL;
2817 goto fail;
2818 }
2819
2820 if (result->m_len < sizeof(struct sadb_msg)) {
2821 result = m_pullup(result, sizeof(struct sadb_msg));
2822 if (result == NULL) {
2823 error = ENOBUFS;
2824 goto fail;
2825 }
2826 }
2827
2828 result->m_pkthdr.len = 0;
2829 for (m = result; m; m = m->m_next)
2830 result->m_pkthdr.len += m->m_len;
2831
2832 mtod(result, struct sadb_msg *)->sadb_msg_len =
2833 PFKEY_UNIT64(result->m_pkthdr.len);
2834
2835 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2836
2837 fail:
2838 if (result)
2839 m_freem(result);
2840 splx(s);
2841 return error;
2842 }
2843
2844 /* %%% SAD management */
2845 /*
2846 * allocating a memory for new SA head, and copy from the values of mhp.
2847 * OUT: NULL : failure due to the lack of memory.
2848 * others : pointer to new SA head.
2849 */
2850 static struct secashead *
2851 key_newsah(const struct secasindex *saidx)
2852 {
2853 struct secashead *newsah;
2854
2855 KASSERT(saidx != NULL);
2856
2857 newsah = (struct secashead *)
2858 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2859 if (newsah != NULL) {
2860 int i;
2861 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2862 LIST_INIT(&newsah->savtree[i]);
2863 newsah->saidx = *saidx;
2864
2865 /* add to saidxtree */
2866 newsah->state = SADB_SASTATE_MATURE;
2867 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2868 }
2869 return(newsah);
2870 }
2871
2872 /*
2873 * delete SA index and all SA registerd.
2874 */
2875 static void
2876 key_delsah(struct secashead *sah)
2877 {
2878 struct secasvar *sav, *nextsav;
2879 u_int stateidx, state;
2880 int s;
2881 int zombie = 0;
2882
2883 /* sanity check */
2884 if (sah == NULL)
2885 panic("key_delsah: NULL pointer is passed");
2886
2887 s = splsoftnet(); /*called from softclock()*/
2888
2889 /* searching all SA registerd in the secindex. */
2890 for (stateidx = 0;
2891 stateidx < _ARRAYLEN(saorder_state_any);
2892 stateidx++) {
2893
2894 state = saorder_state_any[stateidx];
2895 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2896 sav != NULL;
2897 sav = nextsav) {
2898
2899 nextsav = LIST_NEXT(sav, chain);
2900
2901 if (sav->refcnt == 0) {
2902 /* sanity check */
2903 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2904 KEY_FREESAV(&sav);
2905 } else {
2906 /* give up to delete this sa */
2907 zombie++;
2908 }
2909 }
2910 }
2911
2912 /* don't delete sah only if there are savs. */
2913 if (zombie) {
2914 splx(s);
2915 return;
2916 }
2917
2918 rtcache_free(&sah->sa_route);
2919
2920 /* remove from tree of SA index */
2921 if (__LIST_CHAINED(sah))
2922 LIST_REMOVE(sah, chain);
2923
2924 KFREE(sah);
2925
2926 splx(s);
2927 return;
2928 }
2929
2930 /*
2931 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2932 * and copy the values of mhp into new buffer.
2933 * When SAD message type is GETSPI:
2934 * to set sequence number from acq_seq++,
2935 * to set zero to SPI.
2936 * not to call key_setsava().
2937 * OUT: NULL : fail
2938 * others : pointer to new secasvar.
2939 *
2940 * does not modify mbuf. does not free mbuf on error.
2941 */
2942 static struct secasvar *
2943 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2944 struct secashead *sah, int *errp,
2945 const char* where, int tag)
2946 {
2947 struct secasvar *newsav;
2948 const struct sadb_sa *xsa;
2949
2950 /* sanity check */
2951 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2952 panic("key_newsa: NULL pointer is passed");
2953
2954 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2955 if (newsav == NULL) {
2956 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2957 *errp = ENOBUFS;
2958 goto done;
2959 }
2960 memset(newsav, 0, sizeof(struct secasvar));
2961
2962 switch (mhp->msg->sadb_msg_type) {
2963 case SADB_GETSPI:
2964 newsav->spi = 0;
2965
2966 #ifdef IPSEC_DOSEQCHECK
2967 /* sync sequence number */
2968 if (mhp->msg->sadb_msg_seq == 0)
2969 newsav->seq =
2970 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2971 else
2972 #endif
2973 newsav->seq = mhp->msg->sadb_msg_seq;
2974 break;
2975
2976 case SADB_ADD:
2977 /* sanity check */
2978 if (mhp->ext[SADB_EXT_SA] == NULL) {
2979 KFREE(newsav), newsav = NULL;
2980 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2981 *errp = EINVAL;
2982 goto done;
2983 }
2984 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2985 newsav->spi = xsa->sadb_sa_spi;
2986 newsav->seq = mhp->msg->sadb_msg_seq;
2987 break;
2988 default:
2989 KFREE(newsav), newsav = NULL;
2990 *errp = EINVAL;
2991 goto done;
2992 }
2993
2994 /* copy sav values */
2995 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2996 *errp = key_setsaval(newsav, m, mhp);
2997 if (*errp) {
2998 KFREE(newsav), newsav = NULL;
2999 goto done;
3000 }
3001 }
3002
3003 /* reset created */
3004 newsav->created = time_uptime;
3005 newsav->pid = mhp->msg->sadb_msg_pid;
3006
3007 /* add to satree */
3008 newsav->sah = sah;
3009 newsav->refcnt = 1;
3010 newsav->state = SADB_SASTATE_LARVAL;
3011 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3012 secasvar, chain);
3013 done:
3014 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3015 printf("DP %s from %s:%u return SP:%p\n", __func__,
3016 where, tag, newsav));
3017
3018 return newsav;
3019 }
3020
3021 /*
3022 * free() SA variable entry.
3023 */
3024 static void
3025 key_delsav(struct secasvar *sav)
3026 {
3027
3028 KASSERT(sav != NULL);
3029 KASSERTMSG(sav->refcnt == 0,
3030 "reference count %u > 0", sav->refcnt);
3031
3032 /* remove from SA header */
3033 if (__LIST_CHAINED(sav))
3034 LIST_REMOVE(sav, chain);
3035
3036 /*
3037 * Cleanup xform state. Note that zeroize'ing causes the
3038 * keys to be cleared; otherwise we must do it ourself.
3039 */
3040 if (sav->tdb_xform != NULL) {
3041 sav->tdb_xform->xf_zeroize(sav);
3042 sav->tdb_xform = NULL;
3043 } else {
3044 if (sav->key_auth != NULL)
3045 explicit_memset(_KEYBUF(sav->key_auth), 0,
3046 _KEYLEN(sav->key_auth));
3047 if (sav->key_enc != NULL)
3048 explicit_memset(_KEYBUF(sav->key_enc), 0,
3049 _KEYLEN(sav->key_enc));
3050 }
3051 if (sav->key_auth != NULL) {
3052 KFREE(sav->key_auth);
3053 sav->key_auth = NULL;
3054 }
3055 if (sav->key_enc != NULL) {
3056 KFREE(sav->key_enc);
3057 sav->key_enc = NULL;
3058 }
3059 if (sav->replay != NULL) {
3060 KFREE(sav->replay);
3061 sav->replay = NULL;
3062 }
3063 if (sav->lft_c != NULL) {
3064 KFREE(sav->lft_c);
3065 sav->lft_c = NULL;
3066 }
3067 if (sav->lft_h != NULL) {
3068 KFREE(sav->lft_h);
3069 sav->lft_h = NULL;
3070 }
3071 if (sav->lft_s != NULL) {
3072 KFREE(sav->lft_s);
3073 sav->lft_s = NULL;
3074 }
3075
3076 KFREE(sav);
3077
3078 return;
3079 }
3080
3081 /*
3082 * search SAD.
3083 * OUT:
3084 * NULL : not found
3085 * others : found, pointer to a SA.
3086 */
3087 static struct secashead *
3088 key_getsah(const struct secasindex *saidx)
3089 {
3090 struct secashead *sah;
3091
3092 LIST_FOREACH(sah, &sahtree, chain) {
3093 if (sah->state == SADB_SASTATE_DEAD)
3094 continue;
3095 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3096 return sah;
3097 }
3098
3099 return NULL;
3100 }
3101
3102 /*
3103 * check not to be duplicated SPI.
3104 * NOTE: this function is too slow due to searching all SAD.
3105 * OUT:
3106 * NULL : not found
3107 * others : found, pointer to a SA.
3108 */
3109 static struct secasvar *
3110 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3111 {
3112 struct secashead *sah;
3113 struct secasvar *sav;
3114
3115 /* check address family */
3116 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3117 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3118 return NULL;
3119 }
3120
3121 /* check all SAD */
3122 LIST_FOREACH(sah, &sahtree, chain) {
3123 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3124 continue;
3125 sav = key_getsavbyspi(sah, spi);
3126 if (sav != NULL)
3127 return sav;
3128 }
3129
3130 return NULL;
3131 }
3132
3133 /*
3134 * search SAD litmited alive SA, protocol, SPI.
3135 * OUT:
3136 * NULL : not found
3137 * others : found, pointer to a SA.
3138 */
3139 static struct secasvar *
3140 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3141 {
3142 struct secasvar *sav;
3143 u_int stateidx, state;
3144
3145 /* search all status */
3146 for (stateidx = 0;
3147 stateidx < _ARRAYLEN(saorder_state_alive);
3148 stateidx++) {
3149
3150 state = saorder_state_alive[stateidx];
3151 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3152
3153 /* sanity check */
3154 if (sav->state != state) {
3155 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3156 "invalid sav->state (queue: %d SA: %d)\n",
3157 state, sav->state));
3158 continue;
3159 }
3160
3161 if (sav->spi == spi)
3162 return sav;
3163 }
3164 }
3165
3166 return NULL;
3167 }
3168
3169 /*
3170 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3171 * You must update these if need.
3172 * OUT: 0: success.
3173 * !0: failure.
3174 *
3175 * does not modify mbuf. does not free mbuf on error.
3176 */
3177 static int
3178 key_setsaval(struct secasvar *sav, struct mbuf *m,
3179 const struct sadb_msghdr *mhp)
3180 {
3181 int error = 0;
3182
3183 /* sanity check */
3184 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3185 panic("key_setsaval: NULL pointer is passed");
3186
3187 /* initialization */
3188 sav->replay = NULL;
3189 sav->key_auth = NULL;
3190 sav->key_enc = NULL;
3191 sav->lft_c = NULL;
3192 sav->lft_h = NULL;
3193 sav->lft_s = NULL;
3194 sav->tdb_xform = NULL; /* transform */
3195 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3196 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3197 sav->tdb_compalgxform = NULL; /* compression algorithm */
3198 sav->natt_type = 0;
3199 sav->esp_frag = 0;
3200
3201 /* SA */
3202 if (mhp->ext[SADB_EXT_SA] != NULL) {
3203 const struct sadb_sa *sa0;
3204
3205 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3206 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3207 error = EINVAL;
3208 goto fail;
3209 }
3210
3211 sav->alg_auth = sa0->sadb_sa_auth;
3212 sav->alg_enc = sa0->sadb_sa_encrypt;
3213 sav->flags = sa0->sadb_sa_flags;
3214
3215 /* replay window */
3216 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3217 sav->replay = (struct secreplay *)
3218 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3219 if (sav->replay == NULL) {
3220 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3221 error = ENOBUFS;
3222 goto fail;
3223 }
3224 if (sa0->sadb_sa_replay != 0)
3225 sav->replay->bitmap = (char*)(sav->replay+1);
3226 sav->replay->wsize = sa0->sadb_sa_replay;
3227 }
3228 }
3229
3230 /* Authentication keys */
3231 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3232 const struct sadb_key *key0;
3233 int len;
3234
3235 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3236 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3237
3238 error = 0;
3239 if (len < sizeof(*key0)) {
3240 error = EINVAL;
3241 goto fail;
3242 }
3243 switch (mhp->msg->sadb_msg_satype) {
3244 case SADB_SATYPE_AH:
3245 case SADB_SATYPE_ESP:
3246 case SADB_X_SATYPE_TCPSIGNATURE:
3247 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3248 sav->alg_auth != SADB_X_AALG_NULL)
3249 error = EINVAL;
3250 break;
3251 case SADB_X_SATYPE_IPCOMP:
3252 default:
3253 error = EINVAL;
3254 break;
3255 }
3256 if (error) {
3257 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3258 goto fail;
3259 }
3260
3261 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3262 if (sav->key_auth == NULL) {
3263 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3264 error = ENOBUFS;
3265 goto fail;
3266 }
3267 }
3268
3269 /* Encryption key */
3270 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3271 const struct sadb_key *key0;
3272 int len;
3273
3274 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3275 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3276
3277 error = 0;
3278 if (len < sizeof(*key0)) {
3279 error = EINVAL;
3280 goto fail;
3281 }
3282 switch (mhp->msg->sadb_msg_satype) {
3283 case SADB_SATYPE_ESP:
3284 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3285 sav->alg_enc != SADB_EALG_NULL) {
3286 error = EINVAL;
3287 break;
3288 }
3289 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3290 if (sav->key_enc == NULL) {
3291 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3292 error = ENOBUFS;
3293 goto fail;
3294 }
3295 break;
3296 case SADB_X_SATYPE_IPCOMP:
3297 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3298 error = EINVAL;
3299 sav->key_enc = NULL; /*just in case*/
3300 break;
3301 case SADB_SATYPE_AH:
3302 case SADB_X_SATYPE_TCPSIGNATURE:
3303 default:
3304 error = EINVAL;
3305 break;
3306 }
3307 if (error) {
3308 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3309 goto fail;
3310 }
3311 }
3312
3313 /* set iv */
3314 sav->ivlen = 0;
3315
3316 switch (mhp->msg->sadb_msg_satype) {
3317 case SADB_SATYPE_AH:
3318 error = xform_init(sav, XF_AH);
3319 break;
3320 case SADB_SATYPE_ESP:
3321 error = xform_init(sav, XF_ESP);
3322 break;
3323 case SADB_X_SATYPE_IPCOMP:
3324 error = xform_init(sav, XF_IPCOMP);
3325 break;
3326 case SADB_X_SATYPE_TCPSIGNATURE:
3327 error = xform_init(sav, XF_TCPSIGNATURE);
3328 break;
3329 }
3330 if (error) {
3331 ipseclog((LOG_DEBUG,
3332 "key_setsaval: unable to initialize SA type %u.\n",
3333 mhp->msg->sadb_msg_satype));
3334 goto fail;
3335 }
3336
3337 /* reset created */
3338 sav->created = time_uptime;
3339
3340 /* make lifetime for CURRENT */
3341 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3342 sizeof(struct sadb_lifetime));
3343 if (sav->lft_c == NULL) {
3344 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3345 error = ENOBUFS;
3346 goto fail;
3347 }
3348
3349 sav->lft_c->sadb_lifetime_len =
3350 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3351 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3352 sav->lft_c->sadb_lifetime_allocations = 0;
3353 sav->lft_c->sadb_lifetime_bytes = 0;
3354 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3355 sav->lft_c->sadb_lifetime_usetime = 0;
3356
3357 /* lifetimes for HARD and SOFT */
3358 {
3359 const struct sadb_lifetime *lft0;
3360
3361 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3362 if (lft0 != NULL) {
3363 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3364 error = EINVAL;
3365 goto fail;
3366 }
3367 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3368 sizeof(*lft0));
3369 if (sav->lft_h == NULL) {
3370 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3371 error = ENOBUFS;
3372 goto fail;
3373 }
3374 /* to be initialize ? */
3375 }
3376
3377 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3378 if (lft0 != NULL) {
3379 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3380 error = EINVAL;
3381 goto fail;
3382 }
3383 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3384 sizeof(*lft0));
3385 if (sav->lft_s == NULL) {
3386 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3387 error = ENOBUFS;
3388 goto fail;
3389 }
3390 /* to be initialize ? */
3391 }
3392 }
3393
3394 return 0;
3395
3396 fail:
3397 /* initialization */
3398 if (sav->replay != NULL) {
3399 KFREE(sav->replay);
3400 sav->replay = NULL;
3401 }
3402 if (sav->key_auth != NULL) {
3403 KFREE(sav->key_auth);
3404 sav->key_auth = NULL;
3405 }
3406 if (sav->key_enc != NULL) {
3407 KFREE(sav->key_enc);
3408 sav->key_enc = NULL;
3409 }
3410 if (sav->lft_c != NULL) {
3411 KFREE(sav->lft_c);
3412 sav->lft_c = NULL;
3413 }
3414 if (sav->lft_h != NULL) {
3415 KFREE(sav->lft_h);
3416 sav->lft_h = NULL;
3417 }
3418 if (sav->lft_s != NULL) {
3419 KFREE(sav->lft_s);
3420 sav->lft_s = NULL;
3421 }
3422
3423 return error;
3424 }
3425
3426 /*
3427 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3428 * OUT: 0: valid
3429 * other: errno
3430 */
3431 static int
3432 key_mature(struct secasvar *sav)
3433 {
3434 int error;
3435
3436 /* check SPI value */
3437 switch (sav->sah->saidx.proto) {
3438 case IPPROTO_ESP:
3439 case IPPROTO_AH:
3440 if (ntohl(sav->spi) <= 255) {
3441 ipseclog((LOG_DEBUG,
3442 "key_mature: illegal range of SPI %u.\n",
3443 (u_int32_t)ntohl(sav->spi)));
3444 return EINVAL;
3445 }
3446 break;
3447 }
3448
3449 /* check satype */
3450 switch (sav->sah->saidx.proto) {
3451 case IPPROTO_ESP:
3452 /* check flags */
3453 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3454 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3455 ipseclog((LOG_DEBUG, "key_mature: "
3456 "invalid flag (derived) given to old-esp.\n"));
3457 return EINVAL;
3458 }
3459 error = xform_init(sav, XF_ESP);
3460 break;
3461 case IPPROTO_AH:
3462 /* check flags */
3463 if (sav->flags & SADB_X_EXT_DERIV) {
3464 ipseclog((LOG_DEBUG, "key_mature: "
3465 "invalid flag (derived) given to AH SA.\n"));
3466 return EINVAL;
3467 }
3468 if (sav->alg_enc != SADB_EALG_NONE) {
3469 ipseclog((LOG_DEBUG, "key_mature: "
3470 "protocol and algorithm mismated.\n"));
3471 return(EINVAL);
3472 }
3473 error = xform_init(sav, XF_AH);
3474 break;
3475 case IPPROTO_IPCOMP:
3476 if (sav->alg_auth != SADB_AALG_NONE) {
3477 ipseclog((LOG_DEBUG, "key_mature: "
3478 "protocol and algorithm mismated.\n"));
3479 return(EINVAL);
3480 }
3481 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3482 && ntohl(sav->spi) >= 0x10000) {
3483 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3484 return(EINVAL);
3485 }
3486 error = xform_init(sav, XF_IPCOMP);
3487 break;
3488 case IPPROTO_TCP:
3489 if (sav->alg_enc != SADB_EALG_NONE) {
3490 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3491 "mismated.\n", __func__));
3492 return(EINVAL);
3493 }
3494 error = xform_init(sav, XF_TCPSIGNATURE);
3495 break;
3496 default:
3497 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3498 error = EPROTONOSUPPORT;
3499 break;
3500 }
3501 if (error == 0)
3502 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3503 return (error);
3504 }
3505
3506 /*
3507 * subroutine for SADB_GET and SADB_DUMP.
3508 */
3509 static struct mbuf *
3510 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3511 u_int32_t seq, u_int32_t pid)
3512 {
3513 struct mbuf *result = NULL, *tres = NULL, *m;
3514 int l = 0;
3515 int i;
3516 void *p;
3517 struct sadb_lifetime lt;
3518 int dumporder[] = {
3519 SADB_EXT_SA, SADB_X_EXT_SA2,
3520 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3521 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3522 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3523 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3524 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3525 SADB_X_EXT_NAT_T_TYPE,
3526 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3527 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3528 SADB_X_EXT_NAT_T_FRAG,
3529
3530 };
3531
3532 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3533 if (m == NULL)
3534 goto fail;
3535 result = m;
3536
3537 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3538 m = NULL;
3539 p = NULL;
3540 switch (dumporder[i]) {
3541 case SADB_EXT_SA:
3542 m = key_setsadbsa(sav);
3543 break;
3544
3545 case SADB_X_EXT_SA2:
3546 m = key_setsadbxsa2(sav->sah->saidx.mode,
3547 sav->replay ? sav->replay->count : 0,
3548 sav->sah->saidx.reqid);
3549 break;
3550
3551 case SADB_EXT_ADDRESS_SRC:
3552 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3553 &sav->sah->saidx.src.sa,
3554 FULLMASK, IPSEC_ULPROTO_ANY);
3555 break;
3556
3557 case SADB_EXT_ADDRESS_DST:
3558 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3559 &sav->sah->saidx.dst.sa,
3560 FULLMASK, IPSEC_ULPROTO_ANY);
3561 break;
3562
3563 case SADB_EXT_KEY_AUTH:
3564 if (!sav->key_auth)
3565 continue;
3566 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3567 p = sav->key_auth;
3568 break;
3569
3570 case SADB_EXT_KEY_ENCRYPT:
3571 if (!sav->key_enc)
3572 continue;
3573 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3574 p = sav->key_enc;
3575 break;
3576
3577 case SADB_EXT_LIFETIME_CURRENT:
3578 if (!sav->lft_c)
3579 continue;
3580 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3581 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3582 lt.sadb_lifetime_addtime += time_second - time_uptime;
3583 lt.sadb_lifetime_usetime += time_second - time_uptime;
3584 p = <
3585 break;
3586
3587 case SADB_EXT_LIFETIME_HARD:
3588 if (!sav->lft_h)
3589 continue;
3590 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3591 p = sav->lft_h;
3592 break;
3593
3594 case SADB_EXT_LIFETIME_SOFT:
3595 if (!sav->lft_s)
3596 continue;
3597 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3598 p = sav->lft_s;
3599 break;
3600
3601 case SADB_X_EXT_NAT_T_TYPE:
3602 m = key_setsadbxtype(sav->natt_type);
3603 break;
3604
3605 case SADB_X_EXT_NAT_T_DPORT:
3606 if (sav->natt_type == 0)
3607 continue;
3608 m = key_setsadbxport(
3609 key_portfromsaddr(&sav->sah->saidx.dst),
3610 SADB_X_EXT_NAT_T_DPORT);
3611 break;
3612
3613 case SADB_X_EXT_NAT_T_SPORT:
3614 if (sav->natt_type == 0)
3615 continue;
3616 m = key_setsadbxport(
3617 key_portfromsaddr(&sav->sah->saidx.src),
3618 SADB_X_EXT_NAT_T_SPORT);
3619 break;
3620
3621 case SADB_X_EXT_NAT_T_FRAG:
3622 /* don't send frag info if not set */
3623 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3624 continue;
3625 m = key_setsadbxfrag(sav->esp_frag);
3626 break;
3627
3628 case SADB_X_EXT_NAT_T_OAI:
3629 case SADB_X_EXT_NAT_T_OAR:
3630 continue;
3631
3632 case SADB_EXT_ADDRESS_PROXY:
3633 case SADB_EXT_IDENTITY_SRC:
3634 case SADB_EXT_IDENTITY_DST:
3635 /* XXX: should we brought from SPD ? */
3636 case SADB_EXT_SENSITIVITY:
3637 default:
3638 continue;
3639 }
3640
3641 KASSERT(!(m && p));
3642 if (!m && !p)
3643 goto fail;
3644 if (p && tres) {
3645 M_PREPEND(tres, l, M_DONTWAIT);
3646 if (!tres)
3647 goto fail;
3648 memcpy(mtod(tres, void *), p, l);
3649 continue;
3650 }
3651 if (p) {
3652 m = key_alloc_mbuf(l);
3653 if (!m)
3654 goto fail;
3655 m_copyback(m, 0, l, p);
3656 }
3657
3658 if (tres)
3659 m_cat(m, tres);
3660 tres = m;
3661 }
3662
3663 m_cat(result, tres);
3664 tres = NULL; /* avoid free on error below */
3665
3666 if (result->m_len < sizeof(struct sadb_msg)) {
3667 result = m_pullup(result, sizeof(struct sadb_msg));
3668 if (result == NULL)
3669 goto fail;
3670 }
3671
3672 result->m_pkthdr.len = 0;
3673 for (m = result; m; m = m->m_next)
3674 result->m_pkthdr.len += m->m_len;
3675
3676 mtod(result, struct sadb_msg *)->sadb_msg_len =
3677 PFKEY_UNIT64(result->m_pkthdr.len);
3678
3679 return result;
3680
3681 fail:
3682 m_freem(result);
3683 m_freem(tres);
3684 return NULL;
3685 }
3686
3687
3688 /*
3689 * set a type in sadb_x_nat_t_type
3690 */
3691 static struct mbuf *
3692 key_setsadbxtype(u_int16_t type)
3693 {
3694 struct mbuf *m;
3695 size_t len;
3696 struct sadb_x_nat_t_type *p;
3697
3698 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3699
3700 m = key_alloc_mbuf(len);
3701 if (!m || m->m_next) { /*XXX*/
3702 if (m)
3703 m_freem(m);
3704 return NULL;
3705 }
3706
3707 p = mtod(m, struct sadb_x_nat_t_type *);
3708
3709 memset(p, 0, len);
3710 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3711 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3712 p->sadb_x_nat_t_type_type = type;
3713
3714 return m;
3715 }
3716 /*
3717 * set a port in sadb_x_nat_t_port. port is in network order
3718 */
3719 static struct mbuf *
3720 key_setsadbxport(u_int16_t port, u_int16_t type)
3721 {
3722 struct mbuf *m;
3723 size_t len;
3724 struct sadb_x_nat_t_port *p;
3725
3726 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3727
3728 m = key_alloc_mbuf(len);
3729 if (!m || m->m_next) { /*XXX*/
3730 if (m)
3731 m_freem(m);
3732 return NULL;
3733 }
3734
3735 p = mtod(m, struct sadb_x_nat_t_port *);
3736
3737 memset(p, 0, len);
3738 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3739 p->sadb_x_nat_t_port_exttype = type;
3740 p->sadb_x_nat_t_port_port = port;
3741
3742 return m;
3743 }
3744
3745 /*
3746 * set fragmentation info in sadb_x_nat_t_frag
3747 */
3748 static struct mbuf *
3749 key_setsadbxfrag(u_int16_t flen)
3750 {
3751 struct mbuf *m;
3752 size_t len;
3753 struct sadb_x_nat_t_frag *p;
3754
3755 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3756
3757 m = key_alloc_mbuf(len);
3758 if (!m || m->m_next) { /*XXX*/
3759 if (m)
3760 m_freem(m);
3761 return NULL;
3762 }
3763
3764 p = mtod(m, struct sadb_x_nat_t_frag *);
3765
3766 memset(p, 0, len);
3767 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3768 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3769 p->sadb_x_nat_t_frag_fraglen = flen;
3770
3771 return m;
3772 }
3773
3774 /*
3775 * Get port from sockaddr, port is in network order
3776 */
3777 u_int16_t
3778 key_portfromsaddr(const union sockaddr_union *saddr)
3779 {
3780 u_int16_t port;
3781
3782 switch (saddr->sa.sa_family) {
3783 case AF_INET: {
3784 port = saddr->sin.sin_port;
3785 break;
3786 }
3787 #ifdef INET6
3788 case AF_INET6: {
3789 port = saddr->sin6.sin6_port;
3790 break;
3791 }
3792 #endif
3793 default:
3794 printf("%s: unexpected address family\n", __func__);
3795 port = 0;
3796 break;
3797 }
3798
3799 return port;
3800 }
3801
3802
3803 /*
3804 * Set port is struct sockaddr. port is in network order
3805 */
3806 static void
3807 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3808 {
3809 switch (saddr->sa.sa_family) {
3810 case AF_INET: {
3811 saddr->sin.sin_port = port;
3812 break;
3813 }
3814 #ifdef INET6
3815 case AF_INET6: {
3816 saddr->sin6.sin6_port = port;
3817 break;
3818 }
3819 #endif
3820 default:
3821 printf("%s: unexpected address family %d\n", __func__,
3822 saddr->sa.sa_family);
3823 break;
3824 }
3825
3826 return;
3827 }
3828
3829 /*
3830 * Safety check sa_len
3831 */
3832 static int
3833 key_checksalen(const union sockaddr_union *saddr)
3834 {
3835 switch (saddr->sa.sa_family) {
3836 case AF_INET:
3837 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3838 return -1;
3839 break;
3840 #ifdef INET6
3841 case AF_INET6:
3842 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3843 return -1;
3844 break;
3845 #endif
3846 default:
3847 printf("%s: unexpected sa_family %d\n", __func__,
3848 saddr->sa.sa_family);
3849 return -1;
3850 break;
3851 }
3852 return 0;
3853 }
3854
3855
3856 /*
3857 * set data into sadb_msg.
3858 */
3859 static struct mbuf *
3860 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3861 u_int32_t seq, pid_t pid, u_int16_t reserved)
3862 {
3863 struct mbuf *m;
3864 struct sadb_msg *p;
3865 int len;
3866
3867 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3868 if (len > MCLBYTES)
3869 return NULL;
3870 MGETHDR(m, M_DONTWAIT, MT_DATA);
3871 if (m && len > MHLEN) {
3872 MCLGET(m, M_DONTWAIT);
3873 if ((m->m_flags & M_EXT) == 0) {
3874 m_freem(m);
3875 m = NULL;
3876 }
3877 }
3878 if (!m)
3879 return NULL;
3880 m->m_pkthdr.len = m->m_len = len;
3881 m->m_next = NULL;
3882
3883 p = mtod(m, struct sadb_msg *);
3884
3885 memset(p, 0, len);
3886 p->sadb_msg_version = PF_KEY_V2;
3887 p->sadb_msg_type = type;
3888 p->sadb_msg_errno = 0;
3889 p->sadb_msg_satype = satype;
3890 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3891 p->sadb_msg_reserved = reserved;
3892 p->sadb_msg_seq = seq;
3893 p->sadb_msg_pid = (u_int32_t)pid;
3894
3895 return m;
3896 }
3897
3898 /*
3899 * copy secasvar data into sadb_address.
3900 */
3901 static struct mbuf *
3902 key_setsadbsa(struct secasvar *sav)
3903 {
3904 struct mbuf *m;
3905 struct sadb_sa *p;
3906 int len;
3907
3908 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3909 m = key_alloc_mbuf(len);
3910 if (!m || m->m_next) { /*XXX*/
3911 if (m)
3912 m_freem(m);
3913 return NULL;
3914 }
3915
3916 p = mtod(m, struct sadb_sa *);
3917
3918 memset(p, 0, len);
3919 p->sadb_sa_len = PFKEY_UNIT64(len);
3920 p->sadb_sa_exttype = SADB_EXT_SA;
3921 p->sadb_sa_spi = sav->spi;
3922 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3923 p->sadb_sa_state = sav->state;
3924 p->sadb_sa_auth = sav->alg_auth;
3925 p->sadb_sa_encrypt = sav->alg_enc;
3926 p->sadb_sa_flags = sav->flags;
3927
3928 return m;
3929 }
3930
3931 /*
3932 * set data into sadb_address.
3933 */
3934 static struct mbuf *
3935 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3936 u_int8_t prefixlen, u_int16_t ul_proto)
3937 {
3938 struct mbuf *m;
3939 struct sadb_address *p;
3940 size_t len;
3941
3942 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3943 PFKEY_ALIGN8(saddr->sa_len);
3944 m = key_alloc_mbuf(len);
3945 if (!m || m->m_next) { /*XXX*/
3946 if (m)
3947 m_freem(m);
3948 return NULL;
3949 }
3950
3951 p = mtod(m, struct sadb_address *);
3952
3953 memset(p, 0, len);
3954 p->sadb_address_len = PFKEY_UNIT64(len);
3955 p->sadb_address_exttype = exttype;
3956 p->sadb_address_proto = ul_proto;
3957 if (prefixlen == FULLMASK) {
3958 switch (saddr->sa_family) {
3959 case AF_INET:
3960 prefixlen = sizeof(struct in_addr) << 3;
3961 break;
3962 case AF_INET6:
3963 prefixlen = sizeof(struct in6_addr) << 3;
3964 break;
3965 default:
3966 ; /*XXX*/
3967 }
3968 }
3969 p->sadb_address_prefixlen = prefixlen;
3970 p->sadb_address_reserved = 0;
3971
3972 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3973 saddr, saddr->sa_len);
3974
3975 return m;
3976 }
3977
3978 #if 0
3979 /*
3980 * set data into sadb_ident.
3981 */
3982 static struct mbuf *
3983 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3984 void *string, int stringlen, u_int64_t id)
3985 {
3986 struct mbuf *m;
3987 struct sadb_ident *p;
3988 size_t len;
3989
3990 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3991 m = key_alloc_mbuf(len);
3992 if (!m || m->m_next) { /*XXX*/
3993 if (m)
3994 m_freem(m);
3995 return NULL;
3996 }
3997
3998 p = mtod(m, struct sadb_ident *);
3999
4000 memset(p, 0, len);
4001 p->sadb_ident_len = PFKEY_UNIT64(len);
4002 p->sadb_ident_exttype = exttype;
4003 p->sadb_ident_type = idtype;
4004 p->sadb_ident_reserved = 0;
4005 p->sadb_ident_id = id;
4006
4007 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4008 string, stringlen);
4009
4010 return m;
4011 }
4012 #endif
4013
4014 /*
4015 * set data into sadb_x_sa2.
4016 */
4017 static struct mbuf *
4018 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4019 {
4020 struct mbuf *m;
4021 struct sadb_x_sa2 *p;
4022 size_t len;
4023
4024 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4025 m = key_alloc_mbuf(len);
4026 if (!m || m->m_next) { /*XXX*/
4027 if (m)
4028 m_freem(m);
4029 return NULL;
4030 }
4031
4032 p = mtod(m, struct sadb_x_sa2 *);
4033
4034 memset(p, 0, len);
4035 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4036 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4037 p->sadb_x_sa2_mode = mode;
4038 p->sadb_x_sa2_reserved1 = 0;
4039 p->sadb_x_sa2_reserved2 = 0;
4040 p->sadb_x_sa2_sequence = seq;
4041 p->sadb_x_sa2_reqid = reqid;
4042
4043 return m;
4044 }
4045
4046 /*
4047 * set data into sadb_x_policy
4048 */
4049 static struct mbuf *
4050 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4051 {
4052 struct mbuf *m;
4053 struct sadb_x_policy *p;
4054 size_t len;
4055
4056 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4057 m = key_alloc_mbuf(len);
4058 if (!m || m->m_next) { /*XXX*/
4059 if (m)
4060 m_freem(m);
4061 return NULL;
4062 }
4063
4064 p = mtod(m, struct sadb_x_policy *);
4065
4066 memset(p, 0, len);
4067 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4068 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4069 p->sadb_x_policy_type = type;
4070 p->sadb_x_policy_dir = dir;
4071 p->sadb_x_policy_id = id;
4072
4073 return m;
4074 }
4075
4076 /* %%% utilities */
4077 /*
4078 * copy a buffer into the new buffer allocated.
4079 */
4080 static void *
4081 key_newbuf(const void *src, u_int len)
4082 {
4083 void *new;
4084
4085 KMALLOC(new, void *, len);
4086 if (new == NULL) {
4087 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4088 return NULL;
4089 }
4090 memcpy(new, src, len);
4091
4092 return new;
4093 }
4094
4095 /* compare my own address
4096 * OUT: 1: true, i.e. my address.
4097 * 0: false
4098 */
4099 int
4100 key_ismyaddr(const struct sockaddr *sa)
4101 {
4102 #ifdef INET
4103 const struct sockaddr_in *sin;
4104 const struct in_ifaddr *ia;
4105 int s;
4106 #endif
4107
4108 /* sanity check */
4109 if (sa == NULL)
4110 panic("key_ismyaddr: NULL pointer is passed");
4111
4112 switch (sa->sa_family) {
4113 #ifdef INET
4114 case AF_INET:
4115 sin = (const struct sockaddr_in *)sa;
4116 s = pserialize_read_enter();
4117 IN_ADDRLIST_READER_FOREACH(ia) {
4118 if (sin->sin_family == ia->ia_addr.sin_family &&
4119 sin->sin_len == ia->ia_addr.sin_len &&
4120 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4121 {
4122 pserialize_read_exit(s);
4123 return 1;
4124 }
4125 }
4126 pserialize_read_exit(s);
4127 break;
4128 #endif
4129 #ifdef INET6
4130 case AF_INET6:
4131 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4132 #endif
4133 }
4134
4135 return 0;
4136 }
4137
4138 #ifdef INET6
4139 /*
4140 * compare my own address for IPv6.
4141 * 1: ours
4142 * 0: other
4143 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4144 */
4145 #include <netinet6/in6_var.h>
4146
4147 static int
4148 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4149 {
4150 struct in6_ifaddr *ia;
4151 int s;
4152 struct psref psref;
4153 int bound;
4154 int ours = 1;
4155
4156 bound = curlwp_bind();
4157 s = pserialize_read_enter();
4158 IN6_ADDRLIST_READER_FOREACH(ia) {
4159 bool ingroup;
4160
4161 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4162 (const struct sockaddr *)&ia->ia_addr, 0) == 0) {
4163 pserialize_read_exit(s);
4164 goto ours;
4165 }
4166 ia6_acquire(ia, &psref);
4167 pserialize_read_exit(s);
4168
4169 /*
4170 * XXX Multicast
4171 * XXX why do we care about multlicast here while we don't care
4172 * about IPv4 multicast??
4173 * XXX scope
4174 */
4175 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4176 if (ingroup) {
4177 ia6_release(ia, &psref);
4178 goto ours;
4179 }
4180
4181 s = pserialize_read_enter();
4182 ia6_release(ia, &psref);
4183 }
4184 pserialize_read_exit(s);
4185
4186 /* loopback, just for safety */
4187 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4188 goto ours;
4189
4190 ours = 0;
4191 ours:
4192 curlwp_bindx(bound);
4193
4194 return ours;
4195 }
4196 #endif /*INET6*/
4197
4198 /*
4199 * compare two secasindex structure.
4200 * flag can specify to compare 2 saidxes.
4201 * compare two secasindex structure without both mode and reqid.
4202 * don't compare port.
4203 * IN:
4204 * saidx0: source, it can be in SAD.
4205 * saidx1: object.
4206 * OUT:
4207 * 1 : equal
4208 * 0 : not equal
4209 */
4210 static int
4211 key_cmpsaidx(
4212 const struct secasindex *saidx0,
4213 const struct secasindex *saidx1,
4214 int flag)
4215 {
4216 int chkport;
4217 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4218
4219 /* sanity */
4220 if (saidx0 == NULL && saidx1 == NULL)
4221 return 1;
4222
4223 if (saidx0 == NULL || saidx1 == NULL)
4224 return 0;
4225
4226 if (saidx0->proto != saidx1->proto)
4227 return 0;
4228
4229 if (flag == CMP_EXACTLY) {
4230 if (saidx0->mode != saidx1->mode)
4231 return 0;
4232 if (saidx0->reqid != saidx1->reqid)
4233 return 0;
4234 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4235 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4236 return 0;
4237 } else {
4238
4239 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4240 if (flag == CMP_MODE_REQID
4241 ||flag == CMP_REQID) {
4242 /*
4243 * If reqid of SPD is non-zero, unique SA is required.
4244 * The result must be of same reqid in this case.
4245 */
4246 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4247 return 0;
4248 }
4249
4250 if (flag == CMP_MODE_REQID) {
4251 if (saidx0->mode != IPSEC_MODE_ANY
4252 && saidx0->mode != saidx1->mode)
4253 return 0;
4254 }
4255
4256
4257 sa0src = &saidx0->src.sa;
4258 sa0dst = &saidx0->dst.sa;
4259 sa1src = &saidx1->src.sa;
4260 sa1dst = &saidx1->dst.sa;
4261 /*
4262 * If NAT-T is enabled, check ports for tunnel mode.
4263 * Don't do it for transport mode, as there is no
4264 * port information available in the SP.
4265 * Also don't check ports if they are set to zero
4266 * in the SPD: This means we have a non-generated
4267 * SPD which can't know UDP ports.
4268 */
4269 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4270 chkport = PORT_LOOSE;
4271 else
4272 chkport = PORT_NONE;
4273
4274 if (key_sockaddrcmp(sa0src, sa1src, chkport) != 0) {
4275 return 0;
4276 }
4277 if (key_sockaddrcmp(sa0dst, sa1dst, chkport) != 0) {
4278 return 0;
4279 }
4280 }
4281
4282 return 1;
4283 }
4284
4285 /*
4286 * compare two secindex structure exactly.
4287 * IN:
4288 * spidx0: source, it is often in SPD.
4289 * spidx1: object, it is often from PFKEY message.
4290 * OUT:
4291 * 1 : equal
4292 * 0 : not equal
4293 */
4294 int
4295 key_cmpspidx_exactly(
4296 const struct secpolicyindex *spidx0,
4297 const struct secpolicyindex *spidx1)
4298 {
4299 /* sanity */
4300 if (spidx0 == NULL && spidx1 == NULL)
4301 return 1;
4302
4303 if (spidx0 == NULL || spidx1 == NULL)
4304 return 0;
4305
4306 if (spidx0->prefs != spidx1->prefs
4307 || spidx0->prefd != spidx1->prefd
4308 || spidx0->ul_proto != spidx1->ul_proto)
4309 return 0;
4310
4311 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) == 0 &&
4312 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT) == 0;
4313 }
4314
4315 /*
4316 * compare two secindex structure with mask.
4317 * IN:
4318 * spidx0: source, it is often in SPD.
4319 * spidx1: object, it is often from IP header.
4320 * OUT:
4321 * 1 : equal
4322 * 0 : not equal
4323 */
4324 int
4325 key_cmpspidx_withmask(
4326 const struct secpolicyindex *spidx0,
4327 const struct secpolicyindex *spidx1)
4328 {
4329 /* sanity */
4330 if (spidx0 == NULL && spidx1 == NULL)
4331 return 1;
4332
4333 if (spidx0 == NULL || spidx1 == NULL)
4334 return 0;
4335
4336 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4337 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4338 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4339 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4340 return 0;
4341
4342 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4343 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4344 && spidx0->ul_proto != spidx1->ul_proto)
4345 return 0;
4346
4347 switch (spidx0->src.sa.sa_family) {
4348 case AF_INET:
4349 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4350 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4351 return 0;
4352 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4353 &spidx1->src.sin.sin_addr, spidx0->prefs))
4354 return 0;
4355 break;
4356 case AF_INET6:
4357 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4358 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4359 return 0;
4360 /*
4361 * scope_id check. if sin6_scope_id is 0, we regard it
4362 * as a wildcard scope, which matches any scope zone ID.
4363 */
4364 if (spidx0->src.sin6.sin6_scope_id &&
4365 spidx1->src.sin6.sin6_scope_id &&
4366 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4367 return 0;
4368 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4369 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4370 return 0;
4371 break;
4372 default:
4373 /* XXX */
4374 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4375 return 0;
4376 break;
4377 }
4378
4379 switch (spidx0->dst.sa.sa_family) {
4380 case AF_INET:
4381 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4382 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4383 return 0;
4384 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4385 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4386 return 0;
4387 break;
4388 case AF_INET6:
4389 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4390 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4391 return 0;
4392 /*
4393 * scope_id check. if sin6_scope_id is 0, we regard it
4394 * as a wildcard scope, which matches any scope zone ID.
4395 */
4396 if (spidx0->src.sin6.sin6_scope_id &&
4397 spidx1->src.sin6.sin6_scope_id &&
4398 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4399 return 0;
4400 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4401 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4402 return 0;
4403 break;
4404 default:
4405 /* XXX */
4406 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4407 return 0;
4408 break;
4409 }
4410
4411 /* XXX Do we check other field ? e.g. flowinfo */
4412
4413 return 1;
4414 }
4415
4416 /* returns 0 on match */
4417 static int
4418 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4419 {
4420 switch (howport) {
4421 case PORT_NONE:
4422 return 0;
4423 case PORT_LOOSE:
4424 if (port1 == 0 || port2 == 0)
4425 return 0;
4426 /*FALLTHROUGH*/
4427 case PORT_STRICT:
4428 if (port1 != port2) {
4429 KEYDEBUG(KEYDEBUG_MATCH,
4430 printf("port fail %d != %d\n", port1, port2));
4431 return 1;
4432 }
4433 return 0;
4434 default:
4435 KASSERT(0);
4436 return 1;
4437 }
4438 }
4439
4440 /* returns 0 on match */
4441 static int
4442 key_sockaddrcmp(
4443 const struct sockaddr *sa1,
4444 const struct sockaddr *sa2,
4445 int howport)
4446 {
4447 const struct sockaddr_in *sin1, *sin2;
4448 const struct sockaddr_in6 *sin61, *sin62;
4449
4450 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4451 KEYDEBUG(KEYDEBUG_MATCH,
4452 printf("fam/len fail %d != %d || %d != %d\n",
4453 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4454 sa2->sa_len));
4455 return 1;
4456 }
4457
4458 switch (sa1->sa_family) {
4459 case AF_INET:
4460 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4461 KEYDEBUG(KEYDEBUG_MATCH,
4462 printf("len fail %d != %zu\n",
4463 sa1->sa_len, sizeof(struct sockaddr_in)));
4464 return 1;
4465 }
4466 sin1 = (const struct sockaddr_in *)sa1;
4467 sin2 = (const struct sockaddr_in *)sa2;
4468 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4469 KEYDEBUG(KEYDEBUG_MATCH,
4470 printf("addr fail %#x != %#x\n",
4471 sin1->sin_addr.s_addr,
4472 sin2->sin_addr.s_addr));
4473 return 1;
4474 }
4475 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4476 return 1;
4477 }
4478 KEYDEBUG(KEYDEBUG_MATCH,
4479 printf("addr success %#x[%d] == %#x[%d]\n",
4480 sin1->sin_addr.s_addr,
4481 sin1->sin_port,
4482 sin2->sin_addr.s_addr,
4483 sin2->sin_port));
4484 break;
4485 case AF_INET6:
4486 sin61 = (const struct sockaddr_in6 *)sa1;
4487 sin62 = (const struct sockaddr_in6 *)sa2;
4488 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4489 return 1; /*EINVAL*/
4490
4491 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4492 return 1;
4493 }
4494 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4495 return 1;
4496 }
4497 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4498 return 1;
4499 }
4500 break;
4501 default:
4502 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4503 return 1;
4504 break;
4505 }
4506
4507 return 0;
4508 }
4509
4510 /*
4511 * compare two buffers with mask.
4512 * IN:
4513 * addr1: source
4514 * addr2: object
4515 * bits: Number of bits to compare
4516 * OUT:
4517 * 1 : equal
4518 * 0 : not equal
4519 */
4520 static int
4521 key_bbcmp(const void *a1, const void *a2, u_int bits)
4522 {
4523 const unsigned char *p1 = a1;
4524 const unsigned char *p2 = a2;
4525
4526 /* XXX: This could be considerably faster if we compare a word
4527 * at a time, but it is complicated on LSB Endian machines */
4528
4529 /* Handle null pointers */
4530 if (p1 == NULL || p2 == NULL)
4531 return (p1 == p2);
4532
4533 while (bits >= 8) {
4534 if (*p1++ != *p2++)
4535 return 0;
4536 bits -= 8;
4537 }
4538
4539 if (bits > 0) {
4540 u_int8_t mask = ~((1<<(8-bits))-1);
4541 if ((*p1 & mask) != (*p2 & mask))
4542 return 0;
4543 }
4544 return 1; /* Match! */
4545 }
4546
4547 /*
4548 * time handler.
4549 * scanning SPD and SAD to check status for each entries,
4550 * and do to remove or to expire.
4551 */
4552 void
4553 key_timehandler(void* arg)
4554 {
4555 u_int dir;
4556 int s;
4557 time_t now = time_uptime;
4558
4559 s = splsoftnet(); /*called from softclock()*/
4560 mutex_enter(softnet_lock);
4561
4562 /* SPD */
4563 {
4564 struct secpolicy *sp, *nextsp;
4565
4566 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4567 for (sp = LIST_FIRST(&sptree[dir]);
4568 sp != NULL;
4569 sp = nextsp) {
4570
4571 nextsp = LIST_NEXT(sp, chain);
4572
4573 if (sp->state == IPSEC_SPSTATE_DEAD) {
4574 key_sp_unlink(sp); /*XXX*/
4575
4576 /* 'sp' dead; continue transfers to
4577 * 'sp = nextsp'
4578 */
4579 continue;
4580 }
4581
4582 if (sp->lifetime == 0 && sp->validtime == 0)
4583 continue;
4584
4585 /* the deletion will occur next time */
4586 if ((sp->lifetime && now - sp->created > sp->lifetime)
4587 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4588 key_sp_dead(sp);
4589 key_spdexpire(sp);
4590 continue;
4591 }
4592 }
4593 }
4594 }
4595
4596 /* SAD */
4597 {
4598 struct secashead *sah, *nextsah;
4599 struct secasvar *sav, *nextsav;
4600
4601 for (sah = LIST_FIRST(&sahtree);
4602 sah != NULL;
4603 sah = nextsah) {
4604
4605 nextsah = LIST_NEXT(sah, chain);
4606
4607 /* if sah has been dead, then delete it and process next sah. */
4608 if (sah->state == SADB_SASTATE_DEAD) {
4609 key_delsah(sah);
4610 continue;
4611 }
4612
4613 /* if LARVAL entry doesn't become MATURE, delete it. */
4614 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4615 sav != NULL;
4616 sav = nextsav) {
4617
4618 nextsav = LIST_NEXT(sav, chain);
4619
4620 if (now - sav->created > key_larval_lifetime) {
4621 KEY_FREESAV(&sav);
4622 }
4623 }
4624
4625 /*
4626 * check MATURE entry to start to send expire message
4627 * whether or not.
4628 */
4629 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4630 sav != NULL;
4631 sav = nextsav) {
4632
4633 nextsav = LIST_NEXT(sav, chain);
4634
4635 /* we don't need to check. */
4636 if (sav->lft_s == NULL)
4637 continue;
4638
4639 /* sanity check */
4640 if (sav->lft_c == NULL) {
4641 ipseclog((LOG_DEBUG,"key_timehandler: "
4642 "There is no CURRENT time, why?\n"));
4643 continue;
4644 }
4645
4646 /* check SOFT lifetime */
4647 if (sav->lft_s->sadb_lifetime_addtime != 0
4648 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4649 /*
4650 * check SA to be used whether or not.
4651 * when SA hasn't been used, delete it.
4652 */
4653 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4654 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4655 KEY_FREESAV(&sav);
4656 } else {
4657 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4658 /*
4659 * XXX If we keep to send expire
4660 * message in the status of
4661 * DYING. Do remove below code.
4662 */
4663 key_expire(sav);
4664 }
4665 }
4666 /* check SOFT lifetime by bytes */
4667 /*
4668 * XXX I don't know the way to delete this SA
4669 * when new SA is installed. Caution when it's
4670 * installed too big lifetime by time.
4671 */
4672 else if (sav->lft_s->sadb_lifetime_bytes != 0
4673 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4674
4675 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4676 /*
4677 * XXX If we keep to send expire
4678 * message in the status of
4679 * DYING. Do remove below code.
4680 */
4681 key_expire(sav);
4682 }
4683 }
4684
4685 /* check DYING entry to change status to DEAD. */
4686 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4687 sav != NULL;
4688 sav = nextsav) {
4689
4690 nextsav = LIST_NEXT(sav, chain);
4691
4692 /* we don't need to check. */
4693 if (sav->lft_h == NULL)
4694 continue;
4695
4696 /* sanity check */
4697 if (sav->lft_c == NULL) {
4698 ipseclog((LOG_DEBUG, "key_timehandler: "
4699 "There is no CURRENT time, why?\n"));
4700 continue;
4701 }
4702
4703 if (sav->lft_h->sadb_lifetime_addtime != 0
4704 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4705 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4706 KEY_FREESAV(&sav);
4707 }
4708 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4709 else if (sav->lft_s != NULL
4710 && sav->lft_s->sadb_lifetime_addtime != 0
4711 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4712 /*
4713 * XXX: should be checked to be
4714 * installed the valid SA.
4715 */
4716
4717 /*
4718 * If there is no SA then sending
4719 * expire message.
4720 */
4721 key_expire(sav);
4722 }
4723 #endif
4724 /* check HARD lifetime by bytes */
4725 else if (sav->lft_h->sadb_lifetime_bytes != 0
4726 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4727 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4728 KEY_FREESAV(&sav);
4729 }
4730 }
4731
4732 /* delete entry in DEAD */
4733 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4734 sav != NULL;
4735 sav = nextsav) {
4736
4737 nextsav = LIST_NEXT(sav, chain);
4738
4739 /* sanity check */
4740 if (sav->state != SADB_SASTATE_DEAD) {
4741 ipseclog((LOG_DEBUG, "key_timehandler: "
4742 "invalid sav->state "
4743 "(queue: %d SA: %d): "
4744 "kill it anyway\n",
4745 SADB_SASTATE_DEAD, sav->state));
4746 }
4747
4748 /*
4749 * do not call key_freesav() here.
4750 * sav should already be freed, and sav->refcnt
4751 * shows other references to sav
4752 * (such as from SPD).
4753 */
4754 }
4755 }
4756 }
4757
4758 #ifndef IPSEC_NONBLOCK_ACQUIRE
4759 /* ACQ tree */
4760 {
4761 struct secacq *acq, *nextacq;
4762
4763 for (acq = LIST_FIRST(&acqtree);
4764 acq != NULL;
4765 acq = nextacq) {
4766
4767 nextacq = LIST_NEXT(acq, chain);
4768
4769 if (now - acq->created > key_blockacq_lifetime
4770 && __LIST_CHAINED(acq)) {
4771 LIST_REMOVE(acq, chain);
4772 KFREE(acq);
4773 }
4774 }
4775 }
4776 #endif
4777
4778 /* SP ACQ tree */
4779 {
4780 struct secspacq *acq, *nextacq;
4781
4782 for (acq = LIST_FIRST(&spacqtree);
4783 acq != NULL;
4784 acq = nextacq) {
4785
4786 nextacq = LIST_NEXT(acq, chain);
4787
4788 if (now - acq->created > key_blockacq_lifetime
4789 && __LIST_CHAINED(acq)) {
4790 LIST_REMOVE(acq, chain);
4791 KFREE(acq);
4792 }
4793 }
4794 }
4795
4796 #ifndef IPSEC_DEBUG2
4797 /* do exchange to tick time !! */
4798 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4799 #endif /* IPSEC_DEBUG2 */
4800
4801 mutex_exit(softnet_lock);
4802 splx(s);
4803 return;
4804 }
4805
4806 u_long
4807 key_random(void)
4808 {
4809 u_long value;
4810
4811 key_randomfill(&value, sizeof(value));
4812 return value;
4813 }
4814
4815 void
4816 key_randomfill(void *p, size_t l)
4817 {
4818
4819 cprng_fast(p, l);
4820 }
4821
4822 /*
4823 * map SADB_SATYPE_* to IPPROTO_*.
4824 * if satype == SADB_SATYPE then satype is mapped to ~0.
4825 * OUT:
4826 * 0: invalid satype.
4827 */
4828 static u_int16_t
4829 key_satype2proto(u_int8_t satype)
4830 {
4831 switch (satype) {
4832 case SADB_SATYPE_UNSPEC:
4833 return IPSEC_PROTO_ANY;
4834 case SADB_SATYPE_AH:
4835 return IPPROTO_AH;
4836 case SADB_SATYPE_ESP:
4837 return IPPROTO_ESP;
4838 case SADB_X_SATYPE_IPCOMP:
4839 return IPPROTO_IPCOMP;
4840 case SADB_X_SATYPE_TCPSIGNATURE:
4841 return IPPROTO_TCP;
4842 default:
4843 return 0;
4844 }
4845 /* NOTREACHED */
4846 }
4847
4848 /*
4849 * map IPPROTO_* to SADB_SATYPE_*
4850 * OUT:
4851 * 0: invalid protocol type.
4852 */
4853 static u_int8_t
4854 key_proto2satype(u_int16_t proto)
4855 {
4856 switch (proto) {
4857 case IPPROTO_AH:
4858 return SADB_SATYPE_AH;
4859 case IPPROTO_ESP:
4860 return SADB_SATYPE_ESP;
4861 case IPPROTO_IPCOMP:
4862 return SADB_X_SATYPE_IPCOMP;
4863 case IPPROTO_TCP:
4864 return SADB_X_SATYPE_TCPSIGNATURE;
4865 default:
4866 return 0;
4867 }
4868 /* NOTREACHED */
4869 }
4870
4871 static int
4872 key_setsecasidx(int proto, int mode, int reqid,
4873 const struct sadb_address * src,
4874 const struct sadb_address * dst,
4875 struct secasindex * saidx)
4876 {
4877 const union sockaddr_union * src_u =
4878 (const union sockaddr_union *) src;
4879 const union sockaddr_union * dst_u =
4880 (const union sockaddr_union *) dst;
4881
4882 /* sa len safety check */
4883 if (key_checksalen(src_u) != 0)
4884 return -1;
4885 if (key_checksalen(dst_u) != 0)
4886 return -1;
4887
4888 memset(saidx, 0, sizeof(*saidx));
4889 saidx->proto = proto;
4890 saidx->mode = mode;
4891 saidx->reqid = reqid;
4892 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4893 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4894
4895 key_porttosaddr(&((saidx)->src),0);
4896 key_porttosaddr(&((saidx)->dst),0);
4897 return 0;
4898 }
4899
4900 /* %%% PF_KEY */
4901 /*
4902 * SADB_GETSPI processing is to receive
4903 * <base, (SA2), src address, dst address, (SPI range)>
4904 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4905 * tree with the status of LARVAL, and send
4906 * <base, SA(*), address(SD)>
4907 * to the IKMPd.
4908 *
4909 * IN: mhp: pointer to the pointer to each header.
4910 * OUT: NULL if fail.
4911 * other if success, return pointer to the message to send.
4912 */
4913 static int
4914 key_getspi(struct socket *so, struct mbuf *m,
4915 const struct sadb_msghdr *mhp)
4916 {
4917 struct sadb_address *src0, *dst0;
4918 struct secasindex saidx;
4919 struct secashead *newsah;
4920 struct secasvar *newsav;
4921 u_int8_t proto;
4922 u_int32_t spi;
4923 u_int8_t mode;
4924 u_int16_t reqid;
4925 int error;
4926
4927 /* sanity check */
4928 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4929 panic("key_getspi: NULL pointer is passed");
4930
4931 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4932 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4933 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4934 return key_senderror(so, m, EINVAL);
4935 }
4936 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4937 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4938 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4939 return key_senderror(so, m, EINVAL);
4940 }
4941 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4942 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4943 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4944 } else {
4945 mode = IPSEC_MODE_ANY;
4946 reqid = 0;
4947 }
4948
4949 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4950 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4951
4952 /* map satype to proto */
4953 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4954 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4955 return key_senderror(so, m, EINVAL);
4956 }
4957
4958
4959 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4960 dst0 + 1, &saidx)) != 0)
4961 return key_senderror(so, m, EINVAL);
4962
4963 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4964 return key_senderror(so, m, EINVAL);
4965
4966 /* SPI allocation */
4967 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4968 &saidx);
4969 if (spi == 0)
4970 return key_senderror(so, m, EINVAL);
4971
4972 /* get a SA index */
4973 if ((newsah = key_getsah(&saidx)) == NULL) {
4974 /* create a new SA index */
4975 if ((newsah = key_newsah(&saidx)) == NULL) {
4976 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4977 return key_senderror(so, m, ENOBUFS);
4978 }
4979 }
4980
4981 /* get a new SA */
4982 /* XXX rewrite */
4983 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4984 if (newsav == NULL) {
4985 /* XXX don't free new SA index allocated in above. */
4986 return key_senderror(so, m, error);
4987 }
4988
4989 /* set spi */
4990 newsav->spi = htonl(spi);
4991
4992 #ifndef IPSEC_NONBLOCK_ACQUIRE
4993 /* delete the entry in acqtree */
4994 if (mhp->msg->sadb_msg_seq != 0) {
4995 struct secacq *acq;
4996 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4997 /* reset counter in order to deletion by timehandler. */
4998 acq->created = time_uptime;
4999 acq->count = 0;
5000 }
5001 }
5002 #endif
5003
5004 {
5005 struct mbuf *n, *nn;
5006 struct sadb_sa *m_sa;
5007 struct sadb_msg *newmsg;
5008 int off, len;
5009
5010 /* create new sadb_msg to reply. */
5011 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5012 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5013 if (len > MCLBYTES)
5014 return key_senderror(so, m, ENOBUFS);
5015
5016 MGETHDR(n, M_DONTWAIT, MT_DATA);
5017 if (len > MHLEN) {
5018 MCLGET(n, M_DONTWAIT);
5019 if ((n->m_flags & M_EXT) == 0) {
5020 m_freem(n);
5021 n = NULL;
5022 }
5023 }
5024 if (!n)
5025 return key_senderror(so, m, ENOBUFS);
5026
5027 n->m_len = len;
5028 n->m_next = NULL;
5029 off = 0;
5030
5031 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5032 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5033
5034 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5035 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5036 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5037 m_sa->sadb_sa_spi = htonl(spi);
5038 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5039
5040 KASSERTMSG(off == len, "length inconsistency");
5041
5042 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5043 SADB_EXT_ADDRESS_DST);
5044 if (!n->m_next) {
5045 m_freem(n);
5046 return key_senderror(so, m, ENOBUFS);
5047 }
5048
5049 if (n->m_len < sizeof(struct sadb_msg)) {
5050 n = m_pullup(n, sizeof(struct sadb_msg));
5051 if (n == NULL)
5052 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5053 }
5054
5055 n->m_pkthdr.len = 0;
5056 for (nn = n; nn; nn = nn->m_next)
5057 n->m_pkthdr.len += nn->m_len;
5058
5059 newmsg = mtod(n, struct sadb_msg *);
5060 newmsg->sadb_msg_seq = newsav->seq;
5061 newmsg->sadb_msg_errno = 0;
5062 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5063
5064 m_freem(m);
5065 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5066 }
5067 }
5068
5069 /*
5070 * allocating new SPI
5071 * called by key_getspi().
5072 * OUT:
5073 * 0: failure.
5074 * others: success.
5075 */
5076 static u_int32_t
5077 key_do_getnewspi(const struct sadb_spirange *spirange,
5078 const struct secasindex *saidx)
5079 {
5080 u_int32_t newspi;
5081 u_int32_t spmin, spmax;
5082 int count = key_spi_trycnt;
5083
5084 /* set spi range to allocate */
5085 if (spirange != NULL) {
5086 spmin = spirange->sadb_spirange_min;
5087 spmax = spirange->sadb_spirange_max;
5088 } else {
5089 spmin = key_spi_minval;
5090 spmax = key_spi_maxval;
5091 }
5092 /* IPCOMP needs 2-byte SPI */
5093 if (saidx->proto == IPPROTO_IPCOMP) {
5094 u_int32_t t;
5095 if (spmin >= 0x10000)
5096 spmin = 0xffff;
5097 if (spmax >= 0x10000)
5098 spmax = 0xffff;
5099 if (spmin > spmax) {
5100 t = spmin; spmin = spmax; spmax = t;
5101 }
5102 }
5103
5104 if (spmin == spmax) {
5105 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5106 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5107 return 0;
5108 }
5109
5110 count--; /* taking one cost. */
5111 newspi = spmin;
5112
5113 } else {
5114
5115 /* init SPI */
5116 newspi = 0;
5117
5118 /* when requesting to allocate spi ranged */
5119 while (count--) {
5120 /* generate pseudo-random SPI value ranged. */
5121 newspi = spmin + (key_random() % (spmax - spmin + 1));
5122
5123 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5124 break;
5125 }
5126
5127 if (count == 0 || newspi == 0) {
5128 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5129 return 0;
5130 }
5131 }
5132
5133 /* statistics */
5134 keystat.getspi_count =
5135 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5136
5137 return newspi;
5138 }
5139
5140 static int
5141 key_handle_natt_info(struct secasvar *sav,
5142 const struct sadb_msghdr *mhp)
5143 {
5144 const char *msg = "?" ;
5145 struct sadb_x_nat_t_type *type;
5146 struct sadb_x_nat_t_port *sport, *dport;
5147 struct sadb_address *iaddr, *raddr;
5148 struct sadb_x_nat_t_frag *frag;
5149
5150 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5151 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5152 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5153 return 0;
5154
5155 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5156 msg = "TYPE";
5157 goto bad;
5158 }
5159
5160 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5161 msg = "SPORT";
5162 goto bad;
5163 }
5164
5165 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5166 msg = "DPORT";
5167 goto bad;
5168 }
5169
5170 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5171 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5172 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5173 msg = "OAI";
5174 goto bad;
5175 }
5176 }
5177
5178 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5179 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5180 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5181 msg = "OAR";
5182 goto bad;
5183 }
5184 }
5185
5186 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5187 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5188 msg = "FRAG";
5189 goto bad;
5190 }
5191 }
5192
5193 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5194 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5195 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5196 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5197 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5198 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5199
5200 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5201 __func__, type->sadb_x_nat_t_type_type,
5202 ntohs(sport->sadb_x_nat_t_port_port),
5203 ntohs(dport->sadb_x_nat_t_port_port)));
5204
5205 sav->natt_type = type->sadb_x_nat_t_type_type;
5206 key_porttosaddr(&sav->sah->saidx.src,
5207 sport->sadb_x_nat_t_port_port);
5208 key_porttosaddr(&sav->sah->saidx.dst,
5209 dport->sadb_x_nat_t_port_port);
5210 if (frag)
5211 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5212 else
5213 sav->esp_frag = IP_MAXPACKET;
5214
5215 return 0;
5216 bad:
5217 ipseclog((LOG_DEBUG, "%s: invalid message %s\n", __func__, msg));
5218 __USE(msg);
5219 return -1;
5220 }
5221
5222 /* Just update the IPSEC_NAT_T ports if present */
5223 static int
5224 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5225 const struct sadb_msghdr *mhp)
5226 {
5227 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5228 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5229 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5230 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5231
5232 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5233 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5234 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5235 struct sadb_x_nat_t_type *type;
5236 struct sadb_x_nat_t_port *sport;
5237 struct sadb_x_nat_t_port *dport;
5238
5239 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5240 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5241 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5242 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5243 __func__));
5244 return -1;
5245 }
5246
5247 type = (struct sadb_x_nat_t_type *)
5248 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5249 sport = (struct sadb_x_nat_t_port *)
5250 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5251 dport = (struct sadb_x_nat_t_port *)
5252 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5253
5254 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5255 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5256
5257 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5258 __func__, type->sadb_x_nat_t_type_type,
5259 ntohs(sport->sadb_x_nat_t_port_port),
5260 ntohs(dport->sadb_x_nat_t_port_port)));
5261 }
5262
5263 return 0;
5264 }
5265
5266
5267 /*
5268 * SADB_UPDATE processing
5269 * receive
5270 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5271 * key(AE), (identity(SD),) (sensitivity)>
5272 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5273 * and send
5274 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5275 * (identity(SD),) (sensitivity)>
5276 * to the ikmpd.
5277 *
5278 * m will always be freed.
5279 */
5280 static int
5281 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5282 {
5283 struct sadb_sa *sa0;
5284 struct sadb_address *src0, *dst0;
5285 struct secasindex saidx;
5286 struct secashead *sah;
5287 struct secasvar *sav;
5288 u_int16_t proto;
5289 u_int8_t mode;
5290 u_int16_t reqid;
5291 int error;
5292
5293 /* sanity check */
5294 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5295 panic("key_update: NULL pointer is passed");
5296
5297 /* map satype to proto */
5298 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5299 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5300 return key_senderror(so, m, EINVAL);
5301 }
5302
5303 if (mhp->ext[SADB_EXT_SA] == NULL ||
5304 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5305 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5306 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5307 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5308 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5309 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5310 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5311 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5312 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5313 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5314 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5315 return key_senderror(so, m, EINVAL);
5316 }
5317 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5318 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5319 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5320 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5321 return key_senderror(so, m, EINVAL);
5322 }
5323 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5324 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5325 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5326 } else {
5327 mode = IPSEC_MODE_ANY;
5328 reqid = 0;
5329 }
5330 /* XXX boundary checking for other extensions */
5331
5332 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5333 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5334 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5335
5336 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5337 dst0 + 1, &saidx)) != 0)
5338 return key_senderror(so, m, EINVAL);
5339
5340 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5341 return key_senderror(so, m, EINVAL);
5342
5343 /* get a SA header */
5344 if ((sah = key_getsah(&saidx)) == NULL) {
5345 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5346 return key_senderror(so, m, ENOENT);
5347 }
5348
5349 /* set spidx if there */
5350 /* XXX rewrite */
5351 error = key_setident(sah, m, mhp);
5352 if (error)
5353 return key_senderror(so, m, error);
5354
5355 /* find a SA with sequence number. */
5356 #ifdef IPSEC_DOSEQCHECK
5357 if (mhp->msg->sadb_msg_seq != 0
5358 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5359 ipseclog((LOG_DEBUG,
5360 "key_update: no larval SA with sequence %u exists.\n",
5361 mhp->msg->sadb_msg_seq));
5362 return key_senderror(so, m, ENOENT);
5363 }
5364 #else
5365 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5366 ipseclog((LOG_DEBUG,
5367 "key_update: no such a SA found (spi:%u)\n",
5368 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5369 return key_senderror(so, m, EINVAL);
5370 }
5371 #endif
5372
5373 /* validity check */
5374 if (sav->sah->saidx.proto != proto) {
5375 ipseclog((LOG_DEBUG,
5376 "key_update: protocol mismatched (DB=%u param=%u)\n",
5377 sav->sah->saidx.proto, proto));
5378 return key_senderror(so, m, EINVAL);
5379 }
5380 #ifdef IPSEC_DOSEQCHECK
5381 if (sav->spi != sa0->sadb_sa_spi) {
5382 ipseclog((LOG_DEBUG,
5383 "key_update: SPI mismatched (DB:%u param:%u)\n",
5384 (u_int32_t)ntohl(sav->spi),
5385 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5386 return key_senderror(so, m, EINVAL);
5387 }
5388 #endif
5389 if (sav->pid != mhp->msg->sadb_msg_pid) {
5390 ipseclog((LOG_DEBUG,
5391 "key_update: pid mismatched (DB:%u param:%u)\n",
5392 sav->pid, mhp->msg->sadb_msg_pid));
5393 return key_senderror(so, m, EINVAL);
5394 }
5395
5396 /* copy sav values */
5397 error = key_setsaval(sav, m, mhp);
5398 if (error) {
5399 KEY_FREESAV(&sav);
5400 return key_senderror(so, m, error);
5401 }
5402
5403 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5404 return key_senderror(so, m, EINVAL);
5405
5406 /* check SA values to be mature. */
5407 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5408 KEY_FREESAV(&sav);
5409 return key_senderror(so, m, 0);
5410 }
5411
5412 {
5413 struct mbuf *n;
5414
5415 /* set msg buf from mhp */
5416 n = key_getmsgbuf_x1(m, mhp);
5417 if (n == NULL) {
5418 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5419 return key_senderror(so, m, ENOBUFS);
5420 }
5421
5422 m_freem(m);
5423 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5424 }
5425 }
5426
5427 /*
5428 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5429 * only called by key_update().
5430 * OUT:
5431 * NULL : not found
5432 * others : found, pointer to a SA.
5433 */
5434 #ifdef IPSEC_DOSEQCHECK
5435 static struct secasvar *
5436 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5437 {
5438 struct secasvar *sav;
5439 u_int state;
5440
5441 state = SADB_SASTATE_LARVAL;
5442
5443 /* search SAD with sequence number ? */
5444 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5445
5446 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5447
5448 if (sav->seq == seq) {
5449 SA_ADDREF(sav);
5450 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5451 printf("DP %s cause refcnt++:%d SA:%p\n",
5452 __func__, sav->refcnt, sav));
5453 return sav;
5454 }
5455 }
5456
5457 return NULL;
5458 }
5459 #endif
5460
5461 /*
5462 * SADB_ADD processing
5463 * add an entry to SA database, when received
5464 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5465 * key(AE), (identity(SD),) (sensitivity)>
5466 * from the ikmpd,
5467 * and send
5468 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5469 * (identity(SD),) (sensitivity)>
5470 * to the ikmpd.
5471 *
5472 * IGNORE identity and sensitivity messages.
5473 *
5474 * m will always be freed.
5475 */
5476 static int
5477 key_add(struct socket *so, struct mbuf *m,
5478 const struct sadb_msghdr *mhp)
5479 {
5480 struct sadb_sa *sa0;
5481 struct sadb_address *src0, *dst0;
5482 struct secasindex saidx;
5483 struct secashead *newsah;
5484 struct secasvar *newsav;
5485 u_int16_t proto;
5486 u_int8_t mode;
5487 u_int16_t reqid;
5488 int error;
5489
5490 /* sanity check */
5491 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5492 panic("key_add: NULL pointer is passed");
5493
5494 /* map satype to proto */
5495 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5496 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5497 return key_senderror(so, m, EINVAL);
5498 }
5499
5500 if (mhp->ext[SADB_EXT_SA] == NULL ||
5501 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5502 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5503 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5504 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5505 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5506 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5507 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5508 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5509 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5510 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5511 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5512 return key_senderror(so, m, EINVAL);
5513 }
5514 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5515 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5516 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5517 /* XXX need more */
5518 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5519 return key_senderror(so, m, EINVAL);
5520 }
5521 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5522 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5523 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5524 } else {
5525 mode = IPSEC_MODE_ANY;
5526 reqid = 0;
5527 }
5528
5529 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5530 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5531 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5532
5533 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5534 dst0 + 1, &saidx)) != 0)
5535 return key_senderror(so, m, EINVAL);
5536
5537 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5538 return key_senderror(so, m, EINVAL);
5539
5540 /* get a SA header */
5541 if ((newsah = key_getsah(&saidx)) == NULL) {
5542 /* create a new SA header */
5543 if ((newsah = key_newsah(&saidx)) == NULL) {
5544 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5545 return key_senderror(so, m, ENOBUFS);
5546 }
5547 }
5548
5549 /* set spidx if there */
5550 /* XXX rewrite */
5551 error = key_setident(newsah, m, mhp);
5552 if (error) {
5553 return key_senderror(so, m, error);
5554 }
5555
5556 /* create new SA entry. */
5557 /* We can create new SA only if SPI is differenct. */
5558 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5559 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5560 return key_senderror(so, m, EEXIST);
5561 }
5562 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5563 if (newsav == NULL) {
5564 return key_senderror(so, m, error);
5565 }
5566
5567 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5568 return key_senderror(so, m, EINVAL);
5569
5570 /* check SA values to be mature. */
5571 if ((error = key_mature(newsav)) != 0) {
5572 KEY_FREESAV(&newsav);
5573 return key_senderror(so, m, error);
5574 }
5575
5576 /*
5577 * don't call key_freesav() here, as we would like to keep the SA
5578 * in the database on success.
5579 */
5580
5581 {
5582 struct mbuf *n;
5583
5584 /* set msg buf from mhp */
5585 n = key_getmsgbuf_x1(m, mhp);
5586 if (n == NULL) {
5587 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5588 return key_senderror(so, m, ENOBUFS);
5589 }
5590
5591 m_freem(m);
5592 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5593 }
5594 }
5595
5596 /* m is retained */
5597 static int
5598 key_setident(struct secashead *sah, struct mbuf *m,
5599 const struct sadb_msghdr *mhp)
5600 {
5601 const struct sadb_ident *idsrc, *iddst;
5602 int idsrclen, iddstlen;
5603
5604 /* sanity check */
5605 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5606 panic("key_setident: NULL pointer is passed");
5607
5608 /* don't make buffer if not there */
5609 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5610 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5611 sah->idents = NULL;
5612 sah->identd = NULL;
5613 return 0;
5614 }
5615
5616 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5617 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5618 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5619 return EINVAL;
5620 }
5621
5622 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5623 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5624 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5625 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5626
5627 /* validity check */
5628 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5629 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5630 return EINVAL;
5631 }
5632
5633 switch (idsrc->sadb_ident_type) {
5634 case SADB_IDENTTYPE_PREFIX:
5635 case SADB_IDENTTYPE_FQDN:
5636 case SADB_IDENTTYPE_USERFQDN:
5637 default:
5638 /* XXX do nothing */
5639 sah->idents = NULL;
5640 sah->identd = NULL;
5641 return 0;
5642 }
5643
5644 /* make structure */
5645 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5646 if (sah->idents == NULL) {
5647 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5648 return ENOBUFS;
5649 }
5650 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5651 if (sah->identd == NULL) {
5652 KFREE(sah->idents);
5653 sah->idents = NULL;
5654 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5655 return ENOBUFS;
5656 }
5657 memcpy(sah->idents, idsrc, idsrclen);
5658 memcpy(sah->identd, iddst, iddstlen);
5659
5660 return 0;
5661 }
5662
5663 /*
5664 * m will not be freed on return.
5665 * it is caller's responsibility to free the result.
5666 */
5667 static struct mbuf *
5668 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5669 {
5670 struct mbuf *n;
5671
5672 /* sanity check */
5673 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5674 panic("key_getmsgbuf_x1: NULL pointer is passed");
5675
5676 /* create new sadb_msg to reply. */
5677 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5678 SADB_EXT_SA, SADB_X_EXT_SA2,
5679 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5680 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5681 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5682 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5683 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5684 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5685 if (!n)
5686 return NULL;
5687
5688 if (n->m_len < sizeof(struct sadb_msg)) {
5689 n = m_pullup(n, sizeof(struct sadb_msg));
5690 if (n == NULL)
5691 return NULL;
5692 }
5693 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5694 mtod(n, struct sadb_msg *)->sadb_msg_len =
5695 PFKEY_UNIT64(n->m_pkthdr.len);
5696
5697 return n;
5698 }
5699
5700 static int key_delete_all (struct socket *, struct mbuf *,
5701 const struct sadb_msghdr *, u_int16_t);
5702
5703 /*
5704 * SADB_DELETE processing
5705 * receive
5706 * <base, SA(*), address(SD)>
5707 * from the ikmpd, and set SADB_SASTATE_DEAD,
5708 * and send,
5709 * <base, SA(*), address(SD)>
5710 * to the ikmpd.
5711 *
5712 * m will always be freed.
5713 */
5714 static int
5715 key_delete(struct socket *so, struct mbuf *m,
5716 const struct sadb_msghdr *mhp)
5717 {
5718 struct sadb_sa *sa0;
5719 struct sadb_address *src0, *dst0;
5720 struct secasindex saidx;
5721 struct secashead *sah;
5722 struct secasvar *sav = NULL;
5723 u_int16_t proto;
5724 int error;
5725
5726 /* sanity check */
5727 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5728 panic("key_delete: NULL pointer is passed");
5729
5730 /* map satype to proto */
5731 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5732 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5733 return key_senderror(so, m, EINVAL);
5734 }
5735
5736 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5737 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5738 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5739 return key_senderror(so, m, EINVAL);
5740 }
5741
5742 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5743 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5744 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5745 return key_senderror(so, m, EINVAL);
5746 }
5747
5748 if (mhp->ext[SADB_EXT_SA] == NULL) {
5749 /*
5750 * Caller wants us to delete all non-LARVAL SAs
5751 * that match the src/dst. This is used during
5752 * IKE INITIAL-CONTACT.
5753 */
5754 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5755 return key_delete_all(so, m, mhp, proto);
5756 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5757 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5758 return key_senderror(so, m, EINVAL);
5759 }
5760
5761 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5762 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5763 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5764
5765 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5766 dst0 + 1, &saidx)) != 0)
5767 return key_senderror(so, m, EINVAL);
5768
5769 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5770 return key_senderror(so, m, EINVAL);
5771
5772 /* get a SA header */
5773 LIST_FOREACH(sah, &sahtree, chain) {
5774 if (sah->state == SADB_SASTATE_DEAD)
5775 continue;
5776 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5777 continue;
5778
5779 /* get a SA with SPI. */
5780 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5781 if (sav)
5782 break;
5783 }
5784 if (sah == NULL) {
5785 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5786 return key_senderror(so, m, ENOENT);
5787 }
5788
5789 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5790 KEY_FREESAV(&sav);
5791
5792 {
5793 struct mbuf *n;
5794 struct sadb_msg *newmsg;
5795
5796 /* create new sadb_msg to reply. */
5797 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5798 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5799 if (!n)
5800 return key_senderror(so, m, ENOBUFS);
5801
5802 if (n->m_len < sizeof(struct sadb_msg)) {
5803 n = m_pullup(n, sizeof(struct sadb_msg));
5804 if (n == NULL)
5805 return key_senderror(so, m, ENOBUFS);
5806 }
5807 newmsg = mtod(n, struct sadb_msg *);
5808 newmsg->sadb_msg_errno = 0;
5809 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5810
5811 m_freem(m);
5812 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5813 }
5814 }
5815
5816 /*
5817 * delete all SAs for src/dst. Called from key_delete().
5818 */
5819 static int
5820 key_delete_all(struct socket *so, struct mbuf *m,
5821 const struct sadb_msghdr *mhp, u_int16_t proto)
5822 {
5823 struct sadb_address *src0, *dst0;
5824 struct secasindex saidx;
5825 struct secashead *sah;
5826 struct secasvar *sav, *nextsav;
5827 u_int stateidx, state;
5828 int error;
5829
5830 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5831 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5832
5833 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5834 dst0 + 1, &saidx)) != 0)
5835 return key_senderror(so, m, EINVAL);
5836
5837 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5838 return key_senderror(so, m, EINVAL);
5839
5840 LIST_FOREACH(sah, &sahtree, chain) {
5841 if (sah->state == SADB_SASTATE_DEAD)
5842 continue;
5843 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5844 continue;
5845
5846 /* Delete all non-LARVAL SAs. */
5847 for (stateidx = 0;
5848 stateidx < _ARRAYLEN(saorder_state_alive);
5849 stateidx++) {
5850 state = saorder_state_alive[stateidx];
5851 if (state == SADB_SASTATE_LARVAL)
5852 continue;
5853 for (sav = LIST_FIRST(&sah->savtree[state]);
5854 sav != NULL; sav = nextsav) {
5855 nextsav = LIST_NEXT(sav, chain);
5856 /* sanity check */
5857 if (sav->state != state) {
5858 ipseclog((LOG_DEBUG, "key_delete_all: "
5859 "invalid sav->state "
5860 "(queue: %d SA: %d)\n",
5861 state, sav->state));
5862 continue;
5863 }
5864
5865 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5866 KEY_FREESAV(&sav);
5867 }
5868 }
5869 }
5870 {
5871 struct mbuf *n;
5872 struct sadb_msg *newmsg;
5873
5874 /* create new sadb_msg to reply. */
5875 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5876 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5877 if (!n)
5878 return key_senderror(so, m, ENOBUFS);
5879
5880 if (n->m_len < sizeof(struct sadb_msg)) {
5881 n = m_pullup(n, sizeof(struct sadb_msg));
5882 if (n == NULL)
5883 return key_senderror(so, m, ENOBUFS);
5884 }
5885 newmsg = mtod(n, struct sadb_msg *);
5886 newmsg->sadb_msg_errno = 0;
5887 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5888
5889 m_freem(m);
5890 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5891 }
5892 }
5893
5894 /*
5895 * SADB_GET processing
5896 * receive
5897 * <base, SA(*), address(SD)>
5898 * from the ikmpd, and get a SP and a SA to respond,
5899 * and send,
5900 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5901 * (identity(SD),) (sensitivity)>
5902 * to the ikmpd.
5903 *
5904 * m will always be freed.
5905 */
5906 static int
5907 key_get(struct socket *so, struct mbuf *m,
5908 const struct sadb_msghdr *mhp)
5909 {
5910 struct sadb_sa *sa0;
5911 struct sadb_address *src0, *dst0;
5912 struct secasindex saidx;
5913 struct secashead *sah;
5914 struct secasvar *sav = NULL;
5915 u_int16_t proto;
5916 int error;
5917
5918 /* sanity check */
5919 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5920 panic("key_get: NULL pointer is passed");
5921
5922 /* map satype to proto */
5923 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5924 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5925 return key_senderror(so, m, EINVAL);
5926 }
5927
5928 if (mhp->ext[SADB_EXT_SA] == NULL ||
5929 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5930 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5931 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5932 return key_senderror(so, m, EINVAL);
5933 }
5934 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5935 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5936 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5937 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5938 return key_senderror(so, m, EINVAL);
5939 }
5940
5941 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5942 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5943 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5944
5945 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5946 dst0 + 1, &saidx)) != 0)
5947 return key_senderror(so, m, EINVAL);
5948
5949 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5950 return key_senderror(so, m, EINVAL);
5951
5952 /* get a SA header */
5953 LIST_FOREACH(sah, &sahtree, chain) {
5954 if (sah->state == SADB_SASTATE_DEAD)
5955 continue;
5956 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5957 continue;
5958
5959 /* get a SA with SPI. */
5960 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5961 if (sav)
5962 break;
5963 }
5964 if (sah == NULL) {
5965 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5966 return key_senderror(so, m, ENOENT);
5967 }
5968
5969 {
5970 struct mbuf *n;
5971 u_int8_t satype;
5972
5973 /* map proto to satype */
5974 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5975 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5976 return key_senderror(so, m, EINVAL);
5977 }
5978
5979 /* create new sadb_msg to reply. */
5980 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5981 mhp->msg->sadb_msg_pid);
5982 if (!n)
5983 return key_senderror(so, m, ENOBUFS);
5984
5985 m_freem(m);
5986 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5987 }
5988 }
5989
5990 /* XXX make it sysctl-configurable? */
5991 static void
5992 key_getcomb_setlifetime(struct sadb_comb *comb)
5993 {
5994
5995 comb->sadb_comb_soft_allocations = 1;
5996 comb->sadb_comb_hard_allocations = 1;
5997 comb->sadb_comb_soft_bytes = 0;
5998 comb->sadb_comb_hard_bytes = 0;
5999 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6000 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6001 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
6002 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6003 }
6004
6005 /*
6006 * XXX reorder combinations by preference
6007 * XXX no idea if the user wants ESP authentication or not
6008 */
6009 static struct mbuf *
6010 key_getcomb_esp(void)
6011 {
6012 struct sadb_comb *comb;
6013 const struct enc_xform *algo;
6014 struct mbuf *result = NULL, *m, *n;
6015 int encmin;
6016 int i, off, o;
6017 int totlen;
6018 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6019
6020 m = NULL;
6021 for (i = 1; i <= SADB_EALG_MAX; i++) {
6022 algo = esp_algorithm_lookup(i);
6023 if (algo == NULL)
6024 continue;
6025
6026 /* discard algorithms with key size smaller than system min */
6027 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6028 continue;
6029 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6030 encmin = ipsec_esp_keymin;
6031 else
6032 encmin = _BITS(algo->minkey);
6033
6034 if (ipsec_esp_auth)
6035 m = key_getcomb_ah();
6036 else {
6037 KASSERTMSG(l <= MLEN,
6038 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6039 MGET(m, M_DONTWAIT, MT_DATA);
6040 if (m) {
6041 M_ALIGN(m, l);
6042 m->m_len = l;
6043 m->m_next = NULL;
6044 memset(mtod(m, void *), 0, m->m_len);
6045 }
6046 }
6047 if (!m)
6048 goto fail;
6049
6050 totlen = 0;
6051 for (n = m; n; n = n->m_next)
6052 totlen += n->m_len;
6053 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6054
6055 for (off = 0; off < totlen; off += l) {
6056 n = m_pulldown(m, off, l, &o);
6057 if (!n) {
6058 /* m is already freed */
6059 goto fail;
6060 }
6061 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6062 memset(comb, 0, sizeof(*comb));
6063 key_getcomb_setlifetime(comb);
6064 comb->sadb_comb_encrypt = i;
6065 comb->sadb_comb_encrypt_minbits = encmin;
6066 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6067 }
6068
6069 if (!result)
6070 result = m;
6071 else
6072 m_cat(result, m);
6073 }
6074
6075 return result;
6076
6077 fail:
6078 if (result)
6079 m_freem(result);
6080 return NULL;
6081 }
6082
6083 static void
6084 key_getsizes_ah(const struct auth_hash *ah, int alg,
6085 u_int16_t* ksmin, u_int16_t* ksmax)
6086 {
6087 *ksmin = *ksmax = ah->keysize;
6088 if (ah->keysize == 0) {
6089 /*
6090 * Transform takes arbitrary key size but algorithm
6091 * key size is restricted. Enforce this here.
6092 */
6093 switch (alg) {
6094 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6095 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6096 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6097 default:
6098 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6099 alg));
6100 break;
6101 }
6102 }
6103 }
6104
6105 /*
6106 * XXX reorder combinations by preference
6107 */
6108 static struct mbuf *
6109 key_getcomb_ah(void)
6110 {
6111 struct sadb_comb *comb;
6112 const struct auth_hash *algo;
6113 struct mbuf *m;
6114 u_int16_t minkeysize, maxkeysize;
6115 int i;
6116 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6117
6118 m = NULL;
6119 for (i = 1; i <= SADB_AALG_MAX; i++) {
6120 #if 1
6121 /* we prefer HMAC algorithms, not old algorithms */
6122 if (i != SADB_AALG_SHA1HMAC &&
6123 i != SADB_AALG_MD5HMAC &&
6124 i != SADB_X_AALG_SHA2_256 &&
6125 i != SADB_X_AALG_SHA2_384 &&
6126 i != SADB_X_AALG_SHA2_512)
6127 continue;
6128 #endif
6129 algo = ah_algorithm_lookup(i);
6130 if (!algo)
6131 continue;
6132 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6133 /* discard algorithms with key size smaller than system min */
6134 if (_BITS(minkeysize) < ipsec_ah_keymin)
6135 continue;
6136
6137 if (!m) {
6138 KASSERTMSG(l <= MLEN,
6139 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6140 MGET(m, M_DONTWAIT, MT_DATA);
6141 if (m) {
6142 M_ALIGN(m, l);
6143 m->m_len = l;
6144 m->m_next = NULL;
6145 }
6146 } else
6147 M_PREPEND(m, l, M_DONTWAIT);
6148 if (!m)
6149 return NULL;
6150
6151 comb = mtod(m, struct sadb_comb *);
6152 memset(comb, 0, sizeof(*comb));
6153 key_getcomb_setlifetime(comb);
6154 comb->sadb_comb_auth = i;
6155 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6156 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6157 }
6158
6159 return m;
6160 }
6161
6162 /*
6163 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6164 * XXX reorder combinations by preference
6165 */
6166 static struct mbuf *
6167 key_getcomb_ipcomp(void)
6168 {
6169 struct sadb_comb *comb;
6170 const struct comp_algo *algo;
6171 struct mbuf *m;
6172 int i;
6173 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6174
6175 m = NULL;
6176 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6177 algo = ipcomp_algorithm_lookup(i);
6178 if (!algo)
6179 continue;
6180
6181 if (!m) {
6182 KASSERTMSG(l <= MLEN,
6183 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6184 MGET(m, M_DONTWAIT, MT_DATA);
6185 if (m) {
6186 M_ALIGN(m, l);
6187 m->m_len = l;
6188 m->m_next = NULL;
6189 }
6190 } else
6191 M_PREPEND(m, l, M_DONTWAIT);
6192 if (!m)
6193 return NULL;
6194
6195 comb = mtod(m, struct sadb_comb *);
6196 memset(comb, 0, sizeof(*comb));
6197 key_getcomb_setlifetime(comb);
6198 comb->sadb_comb_encrypt = i;
6199 /* what should we set into sadb_comb_*_{min,max}bits? */
6200 }
6201
6202 return m;
6203 }
6204
6205 /*
6206 * XXX no way to pass mode (transport/tunnel) to userland
6207 * XXX replay checking?
6208 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6209 */
6210 static struct mbuf *
6211 key_getprop(const struct secasindex *saidx)
6212 {
6213 struct sadb_prop *prop;
6214 struct mbuf *m, *n;
6215 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6216 int totlen;
6217
6218 switch (saidx->proto) {
6219 case IPPROTO_ESP:
6220 m = key_getcomb_esp();
6221 break;
6222 case IPPROTO_AH:
6223 m = key_getcomb_ah();
6224 break;
6225 case IPPROTO_IPCOMP:
6226 m = key_getcomb_ipcomp();
6227 break;
6228 default:
6229 return NULL;
6230 }
6231
6232 if (!m)
6233 return NULL;
6234 M_PREPEND(m, l, M_DONTWAIT);
6235 if (!m)
6236 return NULL;
6237
6238 totlen = 0;
6239 for (n = m; n; n = n->m_next)
6240 totlen += n->m_len;
6241
6242 prop = mtod(m, struct sadb_prop *);
6243 memset(prop, 0, sizeof(*prop));
6244 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6245 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6246 prop->sadb_prop_replay = 32; /* XXX */
6247
6248 return m;
6249 }
6250
6251 /*
6252 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6253 * send
6254 * <base, SA, address(SD), (address(P)), x_policy,
6255 * (identity(SD),) (sensitivity,) proposal>
6256 * to KMD, and expect to receive
6257 * <base> with SADB_ACQUIRE if error occurred,
6258 * or
6259 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6260 * from KMD by PF_KEY.
6261 *
6262 * XXX x_policy is outside of RFC2367 (KAME extension).
6263 * XXX sensitivity is not supported.
6264 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6265 * see comment for key_getcomb_ipcomp().
6266 *
6267 * OUT:
6268 * 0 : succeed
6269 * others: error number
6270 */
6271 static int
6272 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6273 {
6274 struct mbuf *result = NULL, *m;
6275 #ifndef IPSEC_NONBLOCK_ACQUIRE
6276 struct secacq *newacq;
6277 #endif
6278 u_int8_t satype;
6279 int error = -1;
6280 u_int32_t seq;
6281
6282 /* sanity check */
6283 KASSERT(saidx != NULL);
6284 satype = key_proto2satype(saidx->proto);
6285 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6286
6287 #ifndef IPSEC_NONBLOCK_ACQUIRE
6288 /*
6289 * We never do anything about acquirng SA. There is anather
6290 * solution that kernel blocks to send SADB_ACQUIRE message until
6291 * getting something message from IKEd. In later case, to be
6292 * managed with ACQUIRING list.
6293 */
6294 /* Get an entry to check whether sending message or not. */
6295 if ((newacq = key_getacq(saidx)) != NULL) {
6296 if (key_blockacq_count < newacq->count) {
6297 /* reset counter and do send message. */
6298 newacq->count = 0;
6299 } else {
6300 /* increment counter and do nothing. */
6301 newacq->count++;
6302 return 0;
6303 }
6304 } else {
6305 /* make new entry for blocking to send SADB_ACQUIRE. */
6306 if ((newacq = key_newacq(saidx)) == NULL)
6307 return ENOBUFS;
6308
6309 /* add to acqtree */
6310 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6311 }
6312 #endif
6313
6314
6315 #ifndef IPSEC_NONBLOCK_ACQUIRE
6316 seq = newacq->seq;
6317 #else
6318 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6319 #endif
6320 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6321 if (!m) {
6322 error = ENOBUFS;
6323 goto fail;
6324 }
6325 result = m;
6326
6327 /* set sadb_address for saidx's. */
6328 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6329 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6330 if (!m) {
6331 error = ENOBUFS;
6332 goto fail;
6333 }
6334 m_cat(result, m);
6335
6336 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6337 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6338 if (!m) {
6339 error = ENOBUFS;
6340 goto fail;
6341 }
6342 m_cat(result, m);
6343
6344 /* XXX proxy address (optional) */
6345
6346 /* set sadb_x_policy */
6347 if (sp) {
6348 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6349 if (!m) {
6350 error = ENOBUFS;
6351 goto fail;
6352 }
6353 m_cat(result, m);
6354 }
6355
6356 /* XXX identity (optional) */
6357 #if 0
6358 if (idexttype && fqdn) {
6359 /* create identity extension (FQDN) */
6360 struct sadb_ident *id;
6361 int fqdnlen;
6362
6363 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6364 id = (struct sadb_ident *)p;
6365 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6366 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6367 id->sadb_ident_exttype = idexttype;
6368 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6369 memcpy(id + 1, fqdn, fqdnlen);
6370 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6371 }
6372
6373 if (idexttype) {
6374 /* create identity extension (USERFQDN) */
6375 struct sadb_ident *id;
6376 int userfqdnlen;
6377
6378 if (userfqdn) {
6379 /* +1 for terminating-NUL */
6380 userfqdnlen = strlen(userfqdn) + 1;
6381 } else
6382 userfqdnlen = 0;
6383 id = (struct sadb_ident *)p;
6384 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6385 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6386 id->sadb_ident_exttype = idexttype;
6387 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6388 /* XXX is it correct? */
6389 if (curlwp)
6390 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6391 if (userfqdn && userfqdnlen)
6392 memcpy(id + 1, userfqdn, userfqdnlen);
6393 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6394 }
6395 #endif
6396
6397 /* XXX sensitivity (optional) */
6398
6399 /* create proposal/combination extension */
6400 m = key_getprop(saidx);
6401 #if 0
6402 /*
6403 * spec conformant: always attach proposal/combination extension,
6404 * the problem is that we have no way to attach it for ipcomp,
6405 * due to the way sadb_comb is declared in RFC2367.
6406 */
6407 if (!m) {
6408 error = ENOBUFS;
6409 goto fail;
6410 }
6411 m_cat(result, m);
6412 #else
6413 /*
6414 * outside of spec; make proposal/combination extension optional.
6415 */
6416 if (m)
6417 m_cat(result, m);
6418 #endif
6419
6420 if ((result->m_flags & M_PKTHDR) == 0) {
6421 error = EINVAL;
6422 goto fail;
6423 }
6424
6425 if (result->m_len < sizeof(struct sadb_msg)) {
6426 result = m_pullup(result, sizeof(struct sadb_msg));
6427 if (result == NULL) {
6428 error = ENOBUFS;
6429 goto fail;
6430 }
6431 }
6432
6433 result->m_pkthdr.len = 0;
6434 for (m = result; m; m = m->m_next)
6435 result->m_pkthdr.len += m->m_len;
6436
6437 mtod(result, struct sadb_msg *)->sadb_msg_len =
6438 PFKEY_UNIT64(result->m_pkthdr.len);
6439
6440 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6441
6442 fail:
6443 if (result)
6444 m_freem(result);
6445 return error;
6446 }
6447
6448 #ifndef IPSEC_NONBLOCK_ACQUIRE
6449 static struct secacq *
6450 key_newacq(const struct secasindex *saidx)
6451 {
6452 struct secacq *newacq;
6453
6454 /* get new entry */
6455 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6456 if (newacq == NULL) {
6457 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6458 return NULL;
6459 }
6460 memset(newacq, 0, sizeof(*newacq));
6461
6462 /* copy secindex */
6463 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6464 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6465 newacq->created = time_uptime;
6466 newacq->count = 0;
6467
6468 return newacq;
6469 }
6470
6471 static struct secacq *
6472 key_getacq(const struct secasindex *saidx)
6473 {
6474 struct secacq *acq;
6475
6476 LIST_FOREACH(acq, &acqtree, chain) {
6477 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6478 return acq;
6479 }
6480
6481 return NULL;
6482 }
6483
6484 static struct secacq *
6485 key_getacqbyseq(u_int32_t seq)
6486 {
6487 struct secacq *acq;
6488
6489 LIST_FOREACH(acq, &acqtree, chain) {
6490 if (acq->seq == seq)
6491 return acq;
6492 }
6493
6494 return NULL;
6495 }
6496 #endif
6497
6498 static struct secspacq *
6499 key_newspacq(const struct secpolicyindex *spidx)
6500 {
6501 struct secspacq *acq;
6502
6503 /* get new entry */
6504 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6505 if (acq == NULL) {
6506 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6507 return NULL;
6508 }
6509 memset(acq, 0, sizeof(*acq));
6510
6511 /* copy secindex */
6512 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6513 acq->created = time_uptime;
6514 acq->count = 0;
6515
6516 return acq;
6517 }
6518
6519 static struct secspacq *
6520 key_getspacq(const struct secpolicyindex *spidx)
6521 {
6522 struct secspacq *acq;
6523
6524 LIST_FOREACH(acq, &spacqtree, chain) {
6525 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6526 return acq;
6527 }
6528
6529 return NULL;
6530 }
6531
6532 /*
6533 * SADB_ACQUIRE processing,
6534 * in first situation, is receiving
6535 * <base>
6536 * from the ikmpd, and clear sequence of its secasvar entry.
6537 *
6538 * In second situation, is receiving
6539 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6540 * from a user land process, and return
6541 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6542 * to the socket.
6543 *
6544 * m will always be freed.
6545 */
6546 static int
6547 key_acquire2(struct socket *so, struct mbuf *m,
6548 const struct sadb_msghdr *mhp)
6549 {
6550 const struct sadb_address *src0, *dst0;
6551 struct secasindex saidx;
6552 struct secashead *sah;
6553 u_int16_t proto;
6554 int error;
6555
6556 /* sanity check */
6557 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6558 panic("key_acquire2: NULL pointer is passed");
6559
6560 /*
6561 * Error message from KMd.
6562 * We assume that if error was occurred in IKEd, the length of PFKEY
6563 * message is equal to the size of sadb_msg structure.
6564 * We do not raise error even if error occurred in this function.
6565 */
6566 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6567 #ifndef IPSEC_NONBLOCK_ACQUIRE
6568 struct secacq *acq;
6569
6570 /* check sequence number */
6571 if (mhp->msg->sadb_msg_seq == 0) {
6572 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6573 m_freem(m);
6574 return 0;
6575 }
6576
6577 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6578 /*
6579 * the specified larval SA is already gone, or we got
6580 * a bogus sequence number. we can silently ignore it.
6581 */
6582 m_freem(m);
6583 return 0;
6584 }
6585
6586 /* reset acq counter in order to deletion by timehander. */
6587 acq->created = time_uptime;
6588 acq->count = 0;
6589 #endif
6590 m_freem(m);
6591 return 0;
6592 }
6593
6594 /*
6595 * This message is from user land.
6596 */
6597
6598 /* map satype to proto */
6599 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6600 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6601 return key_senderror(so, m, EINVAL);
6602 }
6603
6604 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6605 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6606 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6607 /* error */
6608 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6609 return key_senderror(so, m, EINVAL);
6610 }
6611 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6612 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6613 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6614 /* error */
6615 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6616 return key_senderror(so, m, EINVAL);
6617 }
6618
6619 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6620 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6621
6622 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6623 dst0 + 1, &saidx)) != 0)
6624 return key_senderror(so, m, EINVAL);
6625
6626 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6627 return key_senderror(so, m, EINVAL);
6628
6629 /* get a SA index */
6630 LIST_FOREACH(sah, &sahtree, chain) {
6631 if (sah->state == SADB_SASTATE_DEAD)
6632 continue;
6633 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6634 break;
6635 }
6636 if (sah != NULL) {
6637 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6638 return key_senderror(so, m, EEXIST);
6639 }
6640
6641 error = key_acquire(&saidx, NULL);
6642 if (error != 0) {
6643 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6644 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6645 return key_senderror(so, m, error);
6646 }
6647
6648 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6649 }
6650
6651 /*
6652 * SADB_REGISTER processing.
6653 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6654 * receive
6655 * <base>
6656 * from the ikmpd, and register a socket to send PF_KEY messages,
6657 * and send
6658 * <base, supported>
6659 * to KMD by PF_KEY.
6660 * If socket is detached, must free from regnode.
6661 *
6662 * m will always be freed.
6663 */
6664 static int
6665 key_register(struct socket *so, struct mbuf *m,
6666 const struct sadb_msghdr *mhp)
6667 {
6668 struct secreg *reg, *newreg = 0;
6669
6670 /* sanity check */
6671 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6672 panic("key_register: NULL pointer is passed");
6673
6674 /* check for invalid register message */
6675 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6676 return key_senderror(so, m, EINVAL);
6677
6678 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6679 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6680 goto setmsg;
6681
6682 /* check whether existing or not */
6683 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6684 if (reg->so == so) {
6685 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6686 return key_senderror(so, m, EEXIST);
6687 }
6688 }
6689
6690 /* create regnode */
6691 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6692 if (newreg == NULL) {
6693 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6694 return key_senderror(so, m, ENOBUFS);
6695 }
6696 memset(newreg, 0, sizeof(*newreg));
6697
6698 newreg->so = so;
6699 ((struct keycb *)sotorawcb(so))->kp_registered++;
6700
6701 /* add regnode to regtree. */
6702 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6703
6704 setmsg:
6705 {
6706 struct mbuf *n;
6707 struct sadb_msg *newmsg;
6708 struct sadb_supported *sup;
6709 u_int len, alen, elen;
6710 int off;
6711 int i;
6712 struct sadb_alg *alg;
6713
6714 /* create new sadb_msg to reply. */
6715 alen = 0;
6716 for (i = 1; i <= SADB_AALG_MAX; i++) {
6717 if (ah_algorithm_lookup(i))
6718 alen += sizeof(struct sadb_alg);
6719 }
6720 if (alen)
6721 alen += sizeof(struct sadb_supported);
6722 elen = 0;
6723 for (i = 1; i <= SADB_EALG_MAX; i++) {
6724 if (esp_algorithm_lookup(i))
6725 elen += sizeof(struct sadb_alg);
6726 }
6727 if (elen)
6728 elen += sizeof(struct sadb_supported);
6729
6730 len = sizeof(struct sadb_msg) + alen + elen;
6731
6732 if (len > MCLBYTES)
6733 return key_senderror(so, m, ENOBUFS);
6734
6735 MGETHDR(n, M_DONTWAIT, MT_DATA);
6736 if (len > MHLEN) {
6737 MCLGET(n, M_DONTWAIT);
6738 if ((n->m_flags & M_EXT) == 0) {
6739 m_freem(n);
6740 n = NULL;
6741 }
6742 }
6743 if (!n)
6744 return key_senderror(so, m, ENOBUFS);
6745
6746 n->m_pkthdr.len = n->m_len = len;
6747 n->m_next = NULL;
6748 off = 0;
6749
6750 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6751 newmsg = mtod(n, struct sadb_msg *);
6752 newmsg->sadb_msg_errno = 0;
6753 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6754 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6755
6756 /* for authentication algorithm */
6757 if (alen) {
6758 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6759 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6760 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6761 off += PFKEY_ALIGN8(sizeof(*sup));
6762
6763 for (i = 1; i <= SADB_AALG_MAX; i++) {
6764 const struct auth_hash *aalgo;
6765 u_int16_t minkeysize, maxkeysize;
6766
6767 aalgo = ah_algorithm_lookup(i);
6768 if (!aalgo)
6769 continue;
6770 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6771 alg->sadb_alg_id = i;
6772 alg->sadb_alg_ivlen = 0;
6773 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6774 alg->sadb_alg_minbits = _BITS(minkeysize);
6775 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6776 off += PFKEY_ALIGN8(sizeof(*alg));
6777 }
6778 }
6779
6780 /* for encryption algorithm */
6781 if (elen) {
6782 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6783 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6784 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6785 off += PFKEY_ALIGN8(sizeof(*sup));
6786
6787 for (i = 1; i <= SADB_EALG_MAX; i++) {
6788 const struct enc_xform *ealgo;
6789
6790 ealgo = esp_algorithm_lookup(i);
6791 if (!ealgo)
6792 continue;
6793 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6794 alg->sadb_alg_id = i;
6795 alg->sadb_alg_ivlen = ealgo->blocksize;
6796 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6797 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6798 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6799 }
6800 }
6801
6802 KASSERTMSG(off == len, "length inconsistency");
6803
6804 m_freem(m);
6805 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6806 }
6807 }
6808
6809 /*
6810 * free secreg entry registered.
6811 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6812 */
6813 void
6814 key_freereg(struct socket *so)
6815 {
6816 struct secreg *reg;
6817 int i;
6818
6819 /* sanity check */
6820 if (so == NULL)
6821 panic("key_freereg: NULL pointer is passed");
6822
6823 /*
6824 * check whether existing or not.
6825 * check all type of SA, because there is a potential that
6826 * one socket is registered to multiple type of SA.
6827 */
6828 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6829 LIST_FOREACH(reg, ®tree[i], chain) {
6830 if (reg->so == so
6831 && __LIST_CHAINED(reg)) {
6832 LIST_REMOVE(reg, chain);
6833 KFREE(reg);
6834 break;
6835 }
6836 }
6837 }
6838
6839 return;
6840 }
6841
6842 /*
6843 * SADB_EXPIRE processing
6844 * send
6845 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6846 * to KMD by PF_KEY.
6847 * NOTE: We send only soft lifetime extension.
6848 *
6849 * OUT: 0 : succeed
6850 * others : error number
6851 */
6852 static int
6853 key_expire(struct secasvar *sav)
6854 {
6855 int s;
6856 int satype;
6857 struct mbuf *result = NULL, *m;
6858 int len;
6859 int error = -1;
6860 struct sadb_lifetime *lt;
6861
6862 /* XXX: Why do we lock ? */
6863 s = splsoftnet(); /*called from softclock()*/
6864
6865 /* sanity check */
6866 if (sav == NULL)
6867 panic("key_expire: NULL pointer is passed");
6868 if (sav->sah == NULL)
6869 panic("key_expire: Why was SA index in SA NULL");
6870 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6871 panic("key_expire: invalid proto is passed");
6872
6873 /* set msg header */
6874 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6875 if (!m) {
6876 error = ENOBUFS;
6877 goto fail;
6878 }
6879 result = m;
6880
6881 /* create SA extension */
6882 m = key_setsadbsa(sav);
6883 if (!m) {
6884 error = ENOBUFS;
6885 goto fail;
6886 }
6887 m_cat(result, m);
6888
6889 /* create SA extension */
6890 m = key_setsadbxsa2(sav->sah->saidx.mode,
6891 sav->replay ? sav->replay->count : 0,
6892 sav->sah->saidx.reqid);
6893 if (!m) {
6894 error = ENOBUFS;
6895 goto fail;
6896 }
6897 m_cat(result, m);
6898
6899 /* create lifetime extension (current and soft) */
6900 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6901 m = key_alloc_mbuf(len);
6902 if (!m || m->m_next) { /*XXX*/
6903 if (m)
6904 m_freem(m);
6905 error = ENOBUFS;
6906 goto fail;
6907 }
6908 memset(mtod(m, void *), 0, len);
6909 lt = mtod(m, struct sadb_lifetime *);
6910 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6911 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6912 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6913 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6914 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6915 + time_second - time_uptime;
6916 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6917 + time_second - time_uptime;
6918 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6919 memcpy(lt, sav->lft_s, sizeof(*lt));
6920 m_cat(result, m);
6921
6922 /* set sadb_address for source */
6923 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6924 &sav->sah->saidx.src.sa,
6925 FULLMASK, IPSEC_ULPROTO_ANY);
6926 if (!m) {
6927 error = ENOBUFS;
6928 goto fail;
6929 }
6930 m_cat(result, m);
6931
6932 /* set sadb_address for destination */
6933 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6934 &sav->sah->saidx.dst.sa,
6935 FULLMASK, IPSEC_ULPROTO_ANY);
6936 if (!m) {
6937 error = ENOBUFS;
6938 goto fail;
6939 }
6940 m_cat(result, m);
6941
6942 if ((result->m_flags & M_PKTHDR) == 0) {
6943 error = EINVAL;
6944 goto fail;
6945 }
6946
6947 if (result->m_len < sizeof(struct sadb_msg)) {
6948 result = m_pullup(result, sizeof(struct sadb_msg));
6949 if (result == NULL) {
6950 error = ENOBUFS;
6951 goto fail;
6952 }
6953 }
6954
6955 result->m_pkthdr.len = 0;
6956 for (m = result; m; m = m->m_next)
6957 result->m_pkthdr.len += m->m_len;
6958
6959 mtod(result, struct sadb_msg *)->sadb_msg_len =
6960 PFKEY_UNIT64(result->m_pkthdr.len);
6961
6962 splx(s);
6963 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6964
6965 fail:
6966 if (result)
6967 m_freem(result);
6968 splx(s);
6969 return error;
6970 }
6971
6972 /*
6973 * SADB_FLUSH processing
6974 * receive
6975 * <base>
6976 * from the ikmpd, and free all entries in secastree.
6977 * and send,
6978 * <base>
6979 * to the ikmpd.
6980 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6981 *
6982 * m will always be freed.
6983 */
6984 static int
6985 key_flush(struct socket *so, struct mbuf *m,
6986 const struct sadb_msghdr *mhp)
6987 {
6988 struct sadb_msg *newmsg;
6989 struct secashead *sah, *nextsah;
6990 struct secasvar *sav, *nextsav;
6991 u_int16_t proto;
6992 u_int8_t state;
6993 u_int stateidx;
6994
6995 /* sanity check */
6996 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6997 panic("key_flush: NULL pointer is passed");
6998
6999 /* map satype to proto */
7000 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7001 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
7002 return key_senderror(so, m, EINVAL);
7003 }
7004
7005 /* no SATYPE specified, i.e. flushing all SA. */
7006 for (sah = LIST_FIRST(&sahtree);
7007 sah != NULL;
7008 sah = nextsah) {
7009 nextsah = LIST_NEXT(sah, chain);
7010
7011 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7012 && proto != sah->saidx.proto)
7013 continue;
7014
7015 for (stateidx = 0;
7016 stateidx < _ARRAYLEN(saorder_state_alive);
7017 stateidx++) {
7018 state = saorder_state_any[stateidx];
7019 for (sav = LIST_FIRST(&sah->savtree[state]);
7020 sav != NULL;
7021 sav = nextsav) {
7022
7023 nextsav = LIST_NEXT(sav, chain);
7024
7025 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7026 KEY_FREESAV(&sav);
7027 }
7028 }
7029
7030 sah->state = SADB_SASTATE_DEAD;
7031 }
7032
7033 if (m->m_len < sizeof(struct sadb_msg) ||
7034 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7035 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
7036 return key_senderror(so, m, ENOBUFS);
7037 }
7038
7039 if (m->m_next)
7040 m_freem(m->m_next);
7041 m->m_next = NULL;
7042 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7043 newmsg = mtod(m, struct sadb_msg *);
7044 newmsg->sadb_msg_errno = 0;
7045 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7046
7047 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7048 }
7049
7050
7051 static struct mbuf *
7052 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7053 {
7054 struct secashead *sah;
7055 struct secasvar *sav;
7056 u_int16_t proto;
7057 u_int stateidx;
7058 u_int8_t satype;
7059 u_int8_t state;
7060 int cnt;
7061 struct mbuf *m, *n, *prev;
7062
7063 *lenp = 0;
7064
7065 /* map satype to proto */
7066 if ((proto = key_satype2proto(req_satype)) == 0) {
7067 *errorp = EINVAL;
7068 return (NULL);
7069 }
7070
7071 /* count sav entries to be sent to userland. */
7072 cnt = 0;
7073 LIST_FOREACH(sah, &sahtree, chain) {
7074 if (req_satype != SADB_SATYPE_UNSPEC &&
7075 proto != sah->saidx.proto)
7076 continue;
7077
7078 for (stateidx = 0;
7079 stateidx < _ARRAYLEN(saorder_state_any);
7080 stateidx++) {
7081 state = saorder_state_any[stateidx];
7082 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7083 cnt++;
7084 }
7085 }
7086 }
7087
7088 if (cnt == 0) {
7089 *errorp = ENOENT;
7090 return (NULL);
7091 }
7092
7093 /* send this to the userland, one at a time. */
7094 m = NULL;
7095 prev = m;
7096 LIST_FOREACH(sah, &sahtree, chain) {
7097 if (req_satype != SADB_SATYPE_UNSPEC &&
7098 proto != sah->saidx.proto)
7099 continue;
7100
7101 /* map proto to satype */
7102 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7103 m_freem(m);
7104 *errorp = EINVAL;
7105 return (NULL);
7106 }
7107
7108 for (stateidx = 0;
7109 stateidx < _ARRAYLEN(saorder_state_any);
7110 stateidx++) {
7111 state = saorder_state_any[stateidx];
7112 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7113 n = key_setdumpsa(sav, SADB_DUMP, satype,
7114 --cnt, pid);
7115 if (!n) {
7116 m_freem(m);
7117 *errorp = ENOBUFS;
7118 return (NULL);
7119 }
7120
7121 if (!m)
7122 m = n;
7123 else
7124 prev->m_nextpkt = n;
7125 prev = n;
7126 }
7127 }
7128 }
7129
7130 if (!m) {
7131 *errorp = EINVAL;
7132 return (NULL);
7133 }
7134
7135 if ((m->m_flags & M_PKTHDR) != 0) {
7136 m->m_pkthdr.len = 0;
7137 for (n = m; n; n = n->m_next)
7138 m->m_pkthdr.len += n->m_len;
7139 }
7140
7141 *errorp = 0;
7142 return (m);
7143 }
7144
7145 /*
7146 * SADB_DUMP processing
7147 * dump all entries including status of DEAD in SAD.
7148 * receive
7149 * <base>
7150 * from the ikmpd, and dump all secasvar leaves
7151 * and send,
7152 * <base> .....
7153 * to the ikmpd.
7154 *
7155 * m will always be freed.
7156 */
7157 static int
7158 key_dump(struct socket *so, struct mbuf *m0,
7159 const struct sadb_msghdr *mhp)
7160 {
7161 u_int16_t proto;
7162 u_int8_t satype;
7163 struct mbuf *n;
7164 int s;
7165 int error, len, ok;
7166
7167 /* sanity check */
7168 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
7169 panic("key_dump: NULL pointer is passed");
7170
7171 /* map satype to proto */
7172 satype = mhp->msg->sadb_msg_satype;
7173 if ((proto = key_satype2proto(satype)) == 0) {
7174 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7175 return key_senderror(so, m0, EINVAL);
7176 }
7177
7178 /*
7179 * If the requestor has insufficient socket-buffer space
7180 * for the entire chain, nobody gets any response to the DUMP.
7181 * XXX For now, only the requestor ever gets anything.
7182 * Moreover, if the requestor has any space at all, they receive
7183 * the entire chain, otherwise the request is refused with ENOBUFS.
7184 */
7185 if (sbspace(&so->so_rcv) <= 0) {
7186 return key_senderror(so, m0, ENOBUFS);
7187 }
7188
7189 s = splsoftnet();
7190 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7191 splx(s);
7192
7193 if (n == NULL) {
7194 return key_senderror(so, m0, ENOENT);
7195 }
7196 {
7197 uint64_t *ps = PFKEY_STAT_GETREF();
7198 ps[PFKEY_STAT_IN_TOTAL]++;
7199 ps[PFKEY_STAT_IN_BYTES] += len;
7200 PFKEY_STAT_PUTREF();
7201 }
7202
7203 /*
7204 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7205 * The requestor receives either the entire chain, or an
7206 * error message with ENOBUFS.
7207 *
7208 * sbappendaddrchain() takes the chain of entries, one
7209 * packet-record per SPD entry, prepends the key_src sockaddr
7210 * to each packet-record, links the sockaddr mbufs into a new
7211 * list of records, then appends the entire resulting
7212 * list to the requesting socket.
7213 */
7214 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7215 n, SB_PRIO_ONESHOT_OVERFLOW);
7216
7217 if (!ok) {
7218 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7219 m_freem(n);
7220 return key_senderror(so, m0, ENOBUFS);
7221 }
7222
7223 m_freem(m0);
7224 return 0;
7225 }
7226
7227 /*
7228 * SADB_X_PROMISC processing
7229 *
7230 * m will always be freed.
7231 */
7232 static int
7233 key_promisc(struct socket *so, struct mbuf *m,
7234 const struct sadb_msghdr *mhp)
7235 {
7236 int olen;
7237
7238 /* sanity check */
7239 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
7240 panic("key_promisc: NULL pointer is passed");
7241
7242 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7243
7244 if (olen < sizeof(struct sadb_msg)) {
7245 #if 1
7246 return key_senderror(so, m, EINVAL);
7247 #else
7248 m_freem(m);
7249 return 0;
7250 #endif
7251 } else if (olen == sizeof(struct sadb_msg)) {
7252 /* enable/disable promisc mode */
7253 struct keycb *kp;
7254
7255 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7256 return key_senderror(so, m, EINVAL);
7257 mhp->msg->sadb_msg_errno = 0;
7258 switch (mhp->msg->sadb_msg_satype) {
7259 case 0:
7260 case 1:
7261 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7262 break;
7263 default:
7264 return key_senderror(so, m, EINVAL);
7265 }
7266
7267 /* send the original message back to everyone */
7268 mhp->msg->sadb_msg_errno = 0;
7269 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7270 } else {
7271 /* send packet as is */
7272
7273 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7274
7275 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7276 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7277 }
7278 }
7279
7280 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7281 const struct sadb_msghdr *) = {
7282 NULL, /* SADB_RESERVED */
7283 key_getspi, /* SADB_GETSPI */
7284 key_update, /* SADB_UPDATE */
7285 key_add, /* SADB_ADD */
7286 key_delete, /* SADB_DELETE */
7287 key_get, /* SADB_GET */
7288 key_acquire2, /* SADB_ACQUIRE */
7289 key_register, /* SADB_REGISTER */
7290 NULL, /* SADB_EXPIRE */
7291 key_flush, /* SADB_FLUSH */
7292 key_dump, /* SADB_DUMP */
7293 key_promisc, /* SADB_X_PROMISC */
7294 NULL, /* SADB_X_PCHANGE */
7295 key_spdadd, /* SADB_X_SPDUPDATE */
7296 key_spdadd, /* SADB_X_SPDADD */
7297 key_spddelete, /* SADB_X_SPDDELETE */
7298 key_spdget, /* SADB_X_SPDGET */
7299 NULL, /* SADB_X_SPDACQUIRE */
7300 key_spddump, /* SADB_X_SPDDUMP */
7301 key_spdflush, /* SADB_X_SPDFLUSH */
7302 key_spdadd, /* SADB_X_SPDSETIDX */
7303 NULL, /* SADB_X_SPDEXPIRE */
7304 key_spddelete2, /* SADB_X_SPDDELETE2 */
7305 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7306 };
7307
7308 /*
7309 * parse sadb_msg buffer to process PFKEYv2,
7310 * and create a data to response if needed.
7311 * I think to be dealed with mbuf directly.
7312 * IN:
7313 * msgp : pointer to pointer to a received buffer pulluped.
7314 * This is rewrited to response.
7315 * so : pointer to socket.
7316 * OUT:
7317 * length for buffer to send to user process.
7318 */
7319 int
7320 key_parse(struct mbuf *m, struct socket *so)
7321 {
7322 struct sadb_msg *msg;
7323 struct sadb_msghdr mh;
7324 u_int orglen;
7325 int error;
7326 int target;
7327
7328 /* sanity check */
7329 if (m == NULL || so == NULL)
7330 panic("key_parse: NULL pointer is passed");
7331
7332 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7333 KEYDEBUG(KEYDEBUG_KEY_DUMP,
7334 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7335 kdebug_sadb(msg));
7336 #endif
7337
7338 if (m->m_len < sizeof(struct sadb_msg)) {
7339 m = m_pullup(m, sizeof(struct sadb_msg));
7340 if (!m)
7341 return ENOBUFS;
7342 }
7343 msg = mtod(m, struct sadb_msg *);
7344 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7345 target = KEY_SENDUP_ONE;
7346
7347 if ((m->m_flags & M_PKTHDR) == 0 ||
7348 m->m_pkthdr.len != orglen) {
7349 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7350 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7351 error = EINVAL;
7352 goto senderror;
7353 }
7354
7355 if (msg->sadb_msg_version != PF_KEY_V2) {
7356 ipseclog((LOG_DEBUG,
7357 "key_parse: PF_KEY version %u is mismatched.\n",
7358 msg->sadb_msg_version));
7359 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7360 error = EINVAL;
7361 goto senderror;
7362 }
7363
7364 if (msg->sadb_msg_type > SADB_MAX) {
7365 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7366 msg->sadb_msg_type));
7367 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7368 error = EINVAL;
7369 goto senderror;
7370 }
7371
7372 /* for old-fashioned code - should be nuked */
7373 if (m->m_pkthdr.len > MCLBYTES) {
7374 m_freem(m);
7375 return ENOBUFS;
7376 }
7377 if (m->m_next) {
7378 struct mbuf *n;
7379
7380 MGETHDR(n, M_DONTWAIT, MT_DATA);
7381 if (n && m->m_pkthdr.len > MHLEN) {
7382 MCLGET(n, M_DONTWAIT);
7383 if ((n->m_flags & M_EXT) == 0) {
7384 m_free(n);
7385 n = NULL;
7386 }
7387 }
7388 if (!n) {
7389 m_freem(m);
7390 return ENOBUFS;
7391 }
7392 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7393 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7394 n->m_next = NULL;
7395 m_freem(m);
7396 m = n;
7397 }
7398
7399 /* align the mbuf chain so that extensions are in contiguous region. */
7400 error = key_align(m, &mh);
7401 if (error)
7402 return error;
7403
7404 if (m->m_next) { /*XXX*/
7405 m_freem(m);
7406 return ENOBUFS;
7407 }
7408
7409 msg = mh.msg;
7410
7411 /* check SA type */
7412 switch (msg->sadb_msg_satype) {
7413 case SADB_SATYPE_UNSPEC:
7414 switch (msg->sadb_msg_type) {
7415 case SADB_GETSPI:
7416 case SADB_UPDATE:
7417 case SADB_ADD:
7418 case SADB_DELETE:
7419 case SADB_GET:
7420 case SADB_ACQUIRE:
7421 case SADB_EXPIRE:
7422 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7423 "when msg type=%u.\n", msg->sadb_msg_type));
7424 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7425 error = EINVAL;
7426 goto senderror;
7427 }
7428 break;
7429 case SADB_SATYPE_AH:
7430 case SADB_SATYPE_ESP:
7431 case SADB_X_SATYPE_IPCOMP:
7432 case SADB_X_SATYPE_TCPSIGNATURE:
7433 switch (msg->sadb_msg_type) {
7434 case SADB_X_SPDADD:
7435 case SADB_X_SPDDELETE:
7436 case SADB_X_SPDGET:
7437 case SADB_X_SPDDUMP:
7438 case SADB_X_SPDFLUSH:
7439 case SADB_X_SPDSETIDX:
7440 case SADB_X_SPDUPDATE:
7441 case SADB_X_SPDDELETE2:
7442 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7443 msg->sadb_msg_type));
7444 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7445 error = EINVAL;
7446 goto senderror;
7447 }
7448 break;
7449 case SADB_SATYPE_RSVP:
7450 case SADB_SATYPE_OSPFV2:
7451 case SADB_SATYPE_RIPV2:
7452 case SADB_SATYPE_MIP:
7453 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7454 msg->sadb_msg_satype));
7455 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7456 error = EOPNOTSUPP;
7457 goto senderror;
7458 case 1: /* XXX: What does it do? */
7459 if (msg->sadb_msg_type == SADB_X_PROMISC)
7460 break;
7461 /*FALLTHROUGH*/
7462 default:
7463 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7464 msg->sadb_msg_satype));
7465 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7466 error = EINVAL;
7467 goto senderror;
7468 }
7469
7470 /* check field of upper layer protocol and address family */
7471 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7472 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7473 struct sadb_address *src0, *dst0;
7474 u_int plen;
7475
7476 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7477 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7478
7479 /* check upper layer protocol */
7480 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7481 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7482 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7483 error = EINVAL;
7484 goto senderror;
7485 }
7486
7487 /* check family */
7488 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7489 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7490 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7491 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7492 error = EINVAL;
7493 goto senderror;
7494 }
7495 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7496 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7497 ipseclog((LOG_DEBUG,
7498 "key_parse: address struct size mismatched.\n"));
7499 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7500 error = EINVAL;
7501 goto senderror;
7502 }
7503
7504 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7505 case AF_INET:
7506 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7507 sizeof(struct sockaddr_in)) {
7508 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7509 error = EINVAL;
7510 goto senderror;
7511 }
7512 break;
7513 case AF_INET6:
7514 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7515 sizeof(struct sockaddr_in6)) {
7516 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7517 error = EINVAL;
7518 goto senderror;
7519 }
7520 break;
7521 default:
7522 ipseclog((LOG_DEBUG,
7523 "key_parse: unsupported address family.\n"));
7524 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7525 error = EAFNOSUPPORT;
7526 goto senderror;
7527 }
7528
7529 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7530 case AF_INET:
7531 plen = sizeof(struct in_addr) << 3;
7532 break;
7533 case AF_INET6:
7534 plen = sizeof(struct in6_addr) << 3;
7535 break;
7536 default:
7537 plen = 0; /*fool gcc*/
7538 break;
7539 }
7540
7541 /* check max prefix length */
7542 if (src0->sadb_address_prefixlen > plen ||
7543 dst0->sadb_address_prefixlen > plen) {
7544 ipseclog((LOG_DEBUG,
7545 "key_parse: illegal prefixlen.\n"));
7546 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7547 error = EINVAL;
7548 goto senderror;
7549 }
7550
7551 /*
7552 * prefixlen == 0 is valid because there can be a case when
7553 * all addresses are matched.
7554 */
7555 }
7556
7557 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7558 key_typesw[msg->sadb_msg_type] == NULL) {
7559 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7560 error = EINVAL;
7561 goto senderror;
7562 }
7563
7564 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7565
7566 senderror:
7567 msg->sadb_msg_errno = error;
7568 return key_sendup_mbuf(so, m, target);
7569 }
7570
7571 static int
7572 key_senderror(struct socket *so, struct mbuf *m, int code)
7573 {
7574 struct sadb_msg *msg;
7575
7576 if (m->m_len < sizeof(struct sadb_msg))
7577 panic("invalid mbuf passed to key_senderror");
7578
7579 msg = mtod(m, struct sadb_msg *);
7580 msg->sadb_msg_errno = code;
7581 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7582 }
7583
7584 /*
7585 * set the pointer to each header into message buffer.
7586 * m will be freed on error.
7587 * XXX larger-than-MCLBYTES extension?
7588 */
7589 static int
7590 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7591 {
7592 struct mbuf *n;
7593 struct sadb_ext *ext;
7594 size_t off, end;
7595 int extlen;
7596 int toff;
7597
7598 /* sanity check */
7599 if (m == NULL || mhp == NULL)
7600 panic("key_align: NULL pointer is passed");
7601 if (m->m_len < sizeof(struct sadb_msg))
7602 panic("invalid mbuf passed to key_align");
7603
7604 /* initialize */
7605 memset(mhp, 0, sizeof(*mhp));
7606
7607 mhp->msg = mtod(m, struct sadb_msg *);
7608 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7609
7610 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7611 extlen = end; /*just in case extlen is not updated*/
7612 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7613 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7614 if (!n) {
7615 /* m is already freed */
7616 return ENOBUFS;
7617 }
7618 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7619
7620 /* set pointer */
7621 switch (ext->sadb_ext_type) {
7622 case SADB_EXT_SA:
7623 case SADB_EXT_ADDRESS_SRC:
7624 case SADB_EXT_ADDRESS_DST:
7625 case SADB_EXT_ADDRESS_PROXY:
7626 case SADB_EXT_LIFETIME_CURRENT:
7627 case SADB_EXT_LIFETIME_HARD:
7628 case SADB_EXT_LIFETIME_SOFT:
7629 case SADB_EXT_KEY_AUTH:
7630 case SADB_EXT_KEY_ENCRYPT:
7631 case SADB_EXT_IDENTITY_SRC:
7632 case SADB_EXT_IDENTITY_DST:
7633 case SADB_EXT_SENSITIVITY:
7634 case SADB_EXT_PROPOSAL:
7635 case SADB_EXT_SUPPORTED_AUTH:
7636 case SADB_EXT_SUPPORTED_ENCRYPT:
7637 case SADB_EXT_SPIRANGE:
7638 case SADB_X_EXT_POLICY:
7639 case SADB_X_EXT_SA2:
7640 case SADB_X_EXT_NAT_T_TYPE:
7641 case SADB_X_EXT_NAT_T_SPORT:
7642 case SADB_X_EXT_NAT_T_DPORT:
7643 case SADB_X_EXT_NAT_T_OAI:
7644 case SADB_X_EXT_NAT_T_OAR:
7645 case SADB_X_EXT_NAT_T_FRAG:
7646 /* duplicate check */
7647 /*
7648 * XXX Are there duplication payloads of either
7649 * KEY_AUTH or KEY_ENCRYPT ?
7650 */
7651 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7652 ipseclog((LOG_DEBUG,
7653 "key_align: duplicate ext_type %u "
7654 "is passed.\n", ext->sadb_ext_type));
7655 m_freem(m);
7656 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7657 return EINVAL;
7658 }
7659 break;
7660 default:
7661 ipseclog((LOG_DEBUG,
7662 "key_align: invalid ext_type %u is passed.\n",
7663 ext->sadb_ext_type));
7664 m_freem(m);
7665 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7666 return EINVAL;
7667 }
7668
7669 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7670
7671 if (key_validate_ext(ext, extlen)) {
7672 m_freem(m);
7673 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7674 return EINVAL;
7675 }
7676
7677 n = m_pulldown(m, off, extlen, &toff);
7678 if (!n) {
7679 /* m is already freed */
7680 return ENOBUFS;
7681 }
7682 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7683
7684 mhp->ext[ext->sadb_ext_type] = ext;
7685 mhp->extoff[ext->sadb_ext_type] = off;
7686 mhp->extlen[ext->sadb_ext_type] = extlen;
7687 }
7688
7689 if (off != end) {
7690 m_freem(m);
7691 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7692 return EINVAL;
7693 }
7694
7695 return 0;
7696 }
7697
7698 static int
7699 key_validate_ext(const struct sadb_ext *ext, int len)
7700 {
7701 const struct sockaddr *sa;
7702 enum { NONE, ADDR } checktype = NONE;
7703 int baselen = 0;
7704 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7705
7706 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7707 return EINVAL;
7708
7709 /* if it does not match minimum/maximum length, bail */
7710 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7711 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7712 return EINVAL;
7713 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7714 return EINVAL;
7715 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7716 return EINVAL;
7717
7718 /* more checks based on sadb_ext_type XXX need more */
7719 switch (ext->sadb_ext_type) {
7720 case SADB_EXT_ADDRESS_SRC:
7721 case SADB_EXT_ADDRESS_DST:
7722 case SADB_EXT_ADDRESS_PROXY:
7723 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7724 checktype = ADDR;
7725 break;
7726 case SADB_EXT_IDENTITY_SRC:
7727 case SADB_EXT_IDENTITY_DST:
7728 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7729 SADB_X_IDENTTYPE_ADDR) {
7730 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7731 checktype = ADDR;
7732 } else
7733 checktype = NONE;
7734 break;
7735 default:
7736 checktype = NONE;
7737 break;
7738 }
7739
7740 switch (checktype) {
7741 case NONE:
7742 break;
7743 case ADDR:
7744 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7745 if (len < baselen + sal)
7746 return EINVAL;
7747 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7748 return EINVAL;
7749 break;
7750 }
7751
7752 return 0;
7753 }
7754
7755 static int
7756 key_do_init(void)
7757 {
7758 int i;
7759
7760 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7761
7762 callout_init(&key_timehandler_ch, 0);
7763
7764 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7765 LIST_INIT(&sptree[i]);
7766 }
7767
7768 LIST_INIT(&sahtree);
7769
7770 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7771 LIST_INIT(®tree[i]);
7772 }
7773
7774 #ifndef IPSEC_NONBLOCK_ACQUIRE
7775 LIST_INIT(&acqtree);
7776 #endif
7777 LIST_INIT(&spacqtree);
7778
7779 /* system default */
7780 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7781 ip4_def_policy.refcnt++; /*never reclaim this*/
7782
7783 #ifdef INET6
7784 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7785 ip6_def_policy.refcnt++; /*never reclaim this*/
7786 #endif
7787
7788
7789 #ifndef IPSEC_DEBUG2
7790 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7791 #endif /*IPSEC_DEBUG2*/
7792
7793 /* initialize key statistics */
7794 keystat.getspi_count = 1;
7795
7796 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7797
7798 return (0);
7799 }
7800
7801 void
7802 key_init(void)
7803 {
7804 static ONCE_DECL(key_init_once);
7805
7806 sysctl_net_keyv2_setup(NULL);
7807 sysctl_net_key_compat_setup(NULL);
7808
7809 RUN_ONCE(&key_init_once, key_do_init);
7810 }
7811
7812 /*
7813 * XXX: maybe This function is called after INBOUND IPsec processing.
7814 *
7815 * Special check for tunnel-mode packets.
7816 * We must make some checks for consistency between inner and outer IP header.
7817 *
7818 * xxx more checks to be provided
7819 */
7820 int
7821 key_checktunnelsanity(
7822 struct secasvar *sav,
7823 u_int family,
7824 void *src,
7825 void *dst
7826 )
7827 {
7828 /* sanity check */
7829 if (sav->sah == NULL)
7830 panic("sav->sah == NULL at key_checktunnelsanity");
7831
7832 /* XXX: check inner IP header */
7833
7834 return 1;
7835 }
7836
7837 #if 0
7838 #define hostnamelen strlen(hostname)
7839
7840 /*
7841 * Get FQDN for the host.
7842 * If the administrator configured hostname (by hostname(1)) without
7843 * domain name, returns nothing.
7844 */
7845 static const char *
7846 key_getfqdn(void)
7847 {
7848 int i;
7849 int hasdot;
7850 static char fqdn[MAXHOSTNAMELEN + 1];
7851
7852 if (!hostnamelen)
7853 return NULL;
7854
7855 /* check if it comes with domain name. */
7856 hasdot = 0;
7857 for (i = 0; i < hostnamelen; i++) {
7858 if (hostname[i] == '.')
7859 hasdot++;
7860 }
7861 if (!hasdot)
7862 return NULL;
7863
7864 /* NOTE: hostname may not be NUL-terminated. */
7865 memset(fqdn, 0, sizeof(fqdn));
7866 memcpy(fqdn, hostname, hostnamelen);
7867 fqdn[hostnamelen] = '\0';
7868 return fqdn;
7869 }
7870
7871 /*
7872 * get username@FQDN for the host/user.
7873 */
7874 static const char *
7875 key_getuserfqdn(void)
7876 {
7877 const char *host;
7878 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7879 struct proc *p = curproc;
7880 char *q;
7881
7882 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7883 return NULL;
7884 if (!(host = key_getfqdn()))
7885 return NULL;
7886
7887 /* NOTE: s_login may not be-NUL terminated. */
7888 memset(userfqdn, 0, sizeof(userfqdn));
7889 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7890 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7891 q = userfqdn + strlen(userfqdn);
7892 *q++ = '@';
7893 memcpy(q, host, strlen(host));
7894 q += strlen(host);
7895 *q++ = '\0';
7896
7897 return userfqdn;
7898 }
7899 #endif
7900
7901 /* record data transfer on SA, and update timestamps */
7902 void
7903 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7904 {
7905
7906 KASSERT(sav != NULL);
7907 KASSERT(m != NULL);
7908 if (!sav->lft_c)
7909 return;
7910
7911 /*
7912 * XXX Currently, there is a difference of bytes size
7913 * between inbound and outbound processing.
7914 */
7915 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7916 /* to check bytes lifetime is done in key_timehandler(). */
7917
7918 /*
7919 * We use the number of packets as the unit of
7920 * sadb_lifetime_allocations. We increment the variable
7921 * whenever {esp,ah}_{in,out}put is called.
7922 */
7923 sav->lft_c->sadb_lifetime_allocations++;
7924 /* XXX check for expires? */
7925
7926 /*
7927 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7928 * in seconds. HARD and SOFT lifetime are measured by the time
7929 * difference (again in seconds) from sadb_lifetime_usetime.
7930 *
7931 * usetime
7932 * v expire expire
7933 * -----+-----+--------+---> t
7934 * <--------------> HARD
7935 * <-----> SOFT
7936 */
7937 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7938 /* XXX check for expires? */
7939
7940 return;
7941 }
7942
7943 /* dumb version */
7944 void
7945 key_sa_routechange(struct sockaddr *dst)
7946 {
7947 struct secashead *sah;
7948 struct route *ro;
7949 const struct sockaddr *sa;
7950
7951 LIST_FOREACH(sah, &sahtree, chain) {
7952 ro = &sah->sa_route;
7953 sa = rtcache_getdst(ro);
7954 if (sa != NULL && dst->sa_len == sa->sa_len &&
7955 memcmp(dst, sa, dst->sa_len) == 0)
7956 rtcache_free(ro);
7957 }
7958
7959 return;
7960 }
7961
7962 static void
7963 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7964 {
7965 if (sav == NULL)
7966 panic("key_sa_chgstate called with sav == NULL");
7967
7968 if (sav->state == state)
7969 return;
7970
7971 if (__LIST_CHAINED(sav))
7972 LIST_REMOVE(sav, chain);
7973
7974 sav->state = state;
7975 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7976 }
7977
7978 /* XXX too much? */
7979 static struct mbuf *
7980 key_alloc_mbuf(int l)
7981 {
7982 struct mbuf *m = NULL, *n;
7983 int len, t;
7984
7985 len = l;
7986 while (len > 0) {
7987 MGET(n, M_DONTWAIT, MT_DATA);
7988 if (n && len > MLEN)
7989 MCLGET(n, M_DONTWAIT);
7990 if (!n) {
7991 m_freem(m);
7992 return NULL;
7993 }
7994
7995 n->m_next = NULL;
7996 n->m_len = 0;
7997 n->m_len = M_TRAILINGSPACE(n);
7998 /* use the bottom of mbuf, hoping we can prepend afterwards */
7999 if (n->m_len > len) {
8000 t = (n->m_len - len) & ~(sizeof(long) - 1);
8001 n->m_data += t;
8002 n->m_len = len;
8003 }
8004
8005 len -= n->m_len;
8006
8007 if (m)
8008 m_cat(m, n);
8009 else
8010 m = n;
8011 }
8012
8013 return m;
8014 }
8015
8016 static struct mbuf *
8017 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8018 {
8019 struct secashead *sah;
8020 struct secasvar *sav;
8021 u_int16_t proto;
8022 u_int stateidx;
8023 u_int8_t satype;
8024 u_int8_t state;
8025 int cnt;
8026 struct mbuf *m, *n;
8027
8028 /* map satype to proto */
8029 if ((proto = key_satype2proto(req_satype)) == 0) {
8030 *errorp = EINVAL;
8031 return (NULL);
8032 }
8033
8034 /* count sav entries to be sent to the userland. */
8035 cnt = 0;
8036 LIST_FOREACH(sah, &sahtree, chain) {
8037 if (req_satype != SADB_SATYPE_UNSPEC &&
8038 proto != sah->saidx.proto)
8039 continue;
8040
8041 for (stateidx = 0;
8042 stateidx < _ARRAYLEN(saorder_state_any);
8043 stateidx++) {
8044 state = saorder_state_any[stateidx];
8045 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8046 cnt++;
8047 }
8048 }
8049 }
8050
8051 if (cnt == 0) {
8052 *errorp = ENOENT;
8053 return (NULL);
8054 }
8055
8056 /* send this to the userland, one at a time. */
8057 m = NULL;
8058 LIST_FOREACH(sah, &sahtree, chain) {
8059 if (req_satype != SADB_SATYPE_UNSPEC &&
8060 proto != sah->saidx.proto)
8061 continue;
8062
8063 /* map proto to satype */
8064 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8065 m_freem(m);
8066 *errorp = EINVAL;
8067 return (NULL);
8068 }
8069
8070 for (stateidx = 0;
8071 stateidx < _ARRAYLEN(saorder_state_any);
8072 stateidx++) {
8073 state = saorder_state_any[stateidx];
8074 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8075 n = key_setdumpsa(sav, SADB_DUMP, satype,
8076 --cnt, pid);
8077 if (!n) {
8078 m_freem(m);
8079 *errorp = ENOBUFS;
8080 return (NULL);
8081 }
8082
8083 if (!m)
8084 m = n;
8085 else
8086 m_cat(m, n);
8087 }
8088 }
8089 }
8090
8091 if (!m) {
8092 *errorp = EINVAL;
8093 return (NULL);
8094 }
8095
8096 if ((m->m_flags & M_PKTHDR) != 0) {
8097 m->m_pkthdr.len = 0;
8098 for (n = m; n; n = n->m_next)
8099 m->m_pkthdr.len += n->m_len;
8100 }
8101
8102 *errorp = 0;
8103 return (m);
8104 }
8105
8106 static struct mbuf *
8107 key_setspddump(int *errorp, pid_t pid)
8108 {
8109 struct secpolicy *sp;
8110 int cnt;
8111 u_int dir;
8112 struct mbuf *m, *n;
8113
8114 /* search SPD entry and get buffer size. */
8115 cnt = 0;
8116 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8117 LIST_FOREACH(sp, &sptree[dir], chain) {
8118 cnt++;
8119 }
8120 }
8121
8122 if (cnt == 0) {
8123 *errorp = ENOENT;
8124 return (NULL);
8125 }
8126
8127 m = NULL;
8128 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8129 LIST_FOREACH(sp, &sptree[dir], chain) {
8130 --cnt;
8131 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8132
8133 if (!n) {
8134 *errorp = ENOBUFS;
8135 m_freem(m);
8136 return (NULL);
8137 }
8138 if (!m)
8139 m = n;
8140 else {
8141 m->m_pkthdr.len += n->m_pkthdr.len;
8142 m_cat(m, n);
8143 }
8144 }
8145 }
8146
8147 *errorp = 0;
8148 return (m);
8149 }
8150
8151 int
8152 key_get_used(void) {
8153 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8154 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8155 }
8156
8157 void
8158 key_update_used(void)
8159 {
8160 switch (ipsec_enabled) {
8161 default:
8162 case 0:
8163 #ifdef notyet
8164 /* XXX: racy */
8165 ipsec_used = 0;
8166 #endif
8167 break;
8168 case 1:
8169 #ifndef notyet
8170 /* XXX: racy */
8171 if (!ipsec_used)
8172 #endif
8173 ipsec_used = key_get_used();
8174 break;
8175 case 2:
8176 ipsec_used = 1;
8177 break;
8178 }
8179 }
8180
8181 static int
8182 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8183 {
8184 struct mbuf *m, *n;
8185 int err2 = 0;
8186 char *p, *ep;
8187 size_t len;
8188 int s, error;
8189
8190 if (newp)
8191 return (EPERM);
8192 if (namelen != 1)
8193 return (EINVAL);
8194
8195 s = splsoftnet();
8196 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8197 splx(s);
8198 if (!m)
8199 return (error);
8200 if (!oldp)
8201 *oldlenp = m->m_pkthdr.len;
8202 else {
8203 p = oldp;
8204 if (*oldlenp < m->m_pkthdr.len) {
8205 err2 = ENOMEM;
8206 ep = p + *oldlenp;
8207 } else {
8208 *oldlenp = m->m_pkthdr.len;
8209 ep = p + m->m_pkthdr.len;
8210 }
8211 for (n = m; n; n = n->m_next) {
8212 len = (ep - p < n->m_len) ?
8213 ep - p : n->m_len;
8214 error = copyout(mtod(n, const void *), p, len);
8215 p += len;
8216 if (error)
8217 break;
8218 }
8219 if (error == 0)
8220 error = err2;
8221 }
8222 m_freem(m);
8223
8224 return (error);
8225 }
8226
8227 static int
8228 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8229 {
8230 struct mbuf *m, *n;
8231 int err2 = 0;
8232 char *p, *ep;
8233 size_t len;
8234 int s, error;
8235
8236 if (newp)
8237 return (EPERM);
8238 if (namelen != 0)
8239 return (EINVAL);
8240
8241 s = splsoftnet();
8242 m = key_setspddump(&error, l->l_proc->p_pid);
8243 splx(s);
8244 if (!m)
8245 return (error);
8246 if (!oldp)
8247 *oldlenp = m->m_pkthdr.len;
8248 else {
8249 p = oldp;
8250 if (*oldlenp < m->m_pkthdr.len) {
8251 err2 = ENOMEM;
8252 ep = p + *oldlenp;
8253 } else {
8254 *oldlenp = m->m_pkthdr.len;
8255 ep = p + m->m_pkthdr.len;
8256 }
8257 for (n = m; n; n = n->m_next) {
8258 len = (ep - p < n->m_len) ?
8259 ep - p : n->m_len;
8260 error = copyout(mtod(n, const void *), p, len);
8261 p += len;
8262 if (error)
8263 break;
8264 }
8265 if (error == 0)
8266 error = err2;
8267 }
8268 m_freem(m);
8269
8270 return (error);
8271 }
8272
8273 /*
8274 * Create sysctl tree for native IPSEC key knobs, originally
8275 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8276 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8277 * and in any case the part of our sysctl namespace used for dumping the
8278 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8279 * namespace, for API reasons.
8280 *
8281 * Pending a consensus on the right way to fix this, add a level of
8282 * indirection in how we number the `native' IPSEC key nodes;
8283 * and (as requested by Andrew Brown) move registration of the
8284 * KAME-compatible names to a separate function.
8285 */
8286 #if 0
8287 # define IPSEC_PFKEY PF_KEY_V2
8288 # define IPSEC_PFKEY_NAME "keyv2"
8289 #else
8290 # define IPSEC_PFKEY PF_KEY
8291 # define IPSEC_PFKEY_NAME "key"
8292 #endif
8293
8294 static int
8295 sysctl_net_key_stats(SYSCTLFN_ARGS)
8296 {
8297
8298 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8299 }
8300
8301 static void
8302 sysctl_net_keyv2_setup(struct sysctllog **clog)
8303 {
8304
8305 sysctl_createv(clog, 0, NULL, NULL,
8306 CTLFLAG_PERMANENT,
8307 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8308 NULL, 0, NULL, 0,
8309 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8310
8311 sysctl_createv(clog, 0, NULL, NULL,
8312 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8313 CTLTYPE_INT, "debug", NULL,
8314 NULL, 0, &key_debug_level, 0,
8315 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8316 sysctl_createv(clog, 0, NULL, NULL,
8317 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8318 CTLTYPE_INT, "spi_try", NULL,
8319 NULL, 0, &key_spi_trycnt, 0,
8320 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8321 sysctl_createv(clog, 0, NULL, NULL,
8322 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8323 CTLTYPE_INT, "spi_min_value", NULL,
8324 NULL, 0, &key_spi_minval, 0,
8325 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8326 sysctl_createv(clog, 0, NULL, NULL,
8327 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8328 CTLTYPE_INT, "spi_max_value", NULL,
8329 NULL, 0, &key_spi_maxval, 0,
8330 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8331 sysctl_createv(clog, 0, NULL, NULL,
8332 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8333 CTLTYPE_INT, "random_int", NULL,
8334 NULL, 0, &key_int_random, 0,
8335 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8336 sysctl_createv(clog, 0, NULL, NULL,
8337 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8338 CTLTYPE_INT, "larval_lifetime", NULL,
8339 NULL, 0, &key_larval_lifetime, 0,
8340 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8341 sysctl_createv(clog, 0, NULL, NULL,
8342 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8343 CTLTYPE_INT, "blockacq_count", NULL,
8344 NULL, 0, &key_blockacq_count, 0,
8345 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8346 sysctl_createv(clog, 0, NULL, NULL,
8347 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8348 CTLTYPE_INT, "blockacq_lifetime", NULL,
8349 NULL, 0, &key_blockacq_lifetime, 0,
8350 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8351 sysctl_createv(clog, 0, NULL, NULL,
8352 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8353 CTLTYPE_INT, "esp_keymin", NULL,
8354 NULL, 0, &ipsec_esp_keymin, 0,
8355 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8356 sysctl_createv(clog, 0, NULL, NULL,
8357 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8358 CTLTYPE_INT, "prefered_oldsa", NULL,
8359 NULL, 0, &key_prefered_oldsa, 0,
8360 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8361 sysctl_createv(clog, 0, NULL, NULL,
8362 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8363 CTLTYPE_INT, "esp_auth", NULL,
8364 NULL, 0, &ipsec_esp_auth, 0,
8365 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8366 sysctl_createv(clog, 0, NULL, NULL,
8367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8368 CTLTYPE_INT, "ah_keymin", NULL,
8369 NULL, 0, &ipsec_ah_keymin, 0,
8370 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8371 sysctl_createv(clog, 0, NULL, NULL,
8372 CTLFLAG_PERMANENT,
8373 CTLTYPE_STRUCT, "stats",
8374 SYSCTL_DESCR("PF_KEY statistics"),
8375 sysctl_net_key_stats, 0, NULL, 0,
8376 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8377 }
8378
8379 /*
8380 * Register sysctl names used by setkey(8). For historical reasons,
8381 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8382 * for both IPSEC and KAME IPSEC.
8383 */
8384 static void
8385 sysctl_net_key_compat_setup(struct sysctllog **clog)
8386 {
8387
8388 sysctl_createv(clog, 0, NULL, NULL,
8389 CTLFLAG_PERMANENT,
8390 CTLTYPE_NODE, "key", NULL,
8391 NULL, 0, NULL, 0,
8392 CTL_NET, PF_KEY, CTL_EOL);
8393
8394 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8395 sysctl_createv(clog, 0, NULL, NULL,
8396 CTLFLAG_PERMANENT,
8397 CTLTYPE_STRUCT, "dumpsa", NULL,
8398 sysctl_net_key_dumpsa, 0, NULL, 0,
8399 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8400 sysctl_createv(clog, 0, NULL, NULL,
8401 CTLFLAG_PERMANENT,
8402 CTLTYPE_STRUCT, "dumpsp", NULL,
8403 sysctl_net_key_dumpsp, 0, NULL, 0,
8404 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8405 }
8406