key.c revision 1.113 1 /* $NetBSD: key.c,v 1.113 2017/04/19 09:22:17 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.113 2017/04/19 09:22:17 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/malloc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sysctl.h>
59 #include <sys/errno.h>
60 #include <sys/proc.h>
61 #include <sys/queue.h>
62 #include <sys/syslog.h>
63 #include <sys/once.h>
64 #include <sys/cprng.h>
65 #include <sys/psref.h>
66 #include <sys/lwp.h>
67
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <net/raw_cb.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #ifdef INET
77 #include <netinet/ip_var.h>
78 #endif
79
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_var.h>
83 #include <netinet6/ip6_var.h>
84 #endif /* INET6 */
85
86 #ifdef INET
87 #include <netinet/in_pcb.h>
88 #endif
89 #ifdef INET6
90 #include <netinet6/in6_pcb.h>
91 #endif /* INET6 */
92
93 #include <net/pfkeyv2.h>
94 #include <netipsec/keydb.h>
95 #include <netipsec/key.h>
96 #include <netipsec/keysock.h>
97 #include <netipsec/key_debug.h>
98
99 #include <netipsec/ipsec.h>
100 #ifdef INET6
101 #include <netipsec/ipsec6.h>
102 #endif
103 #include <netipsec/ipsec_private.h>
104
105 #include <netipsec/xform.h>
106 #include <netipsec/ipcomp.h>
107
108
109 #include <net/net_osdep.h>
110
111 #define FULLMASK 0xff
112 #define _BITS(bytes) ((bytes) << 3)
113
114 #define PORT_NONE 0
115 #define PORT_LOOSE 1
116 #define PORT_STRICT 2
117
118 percpu_t *pfkeystat_percpu;
119
120 /*
121 * Note on SA reference counting:
122 * - SAs that are not in DEAD state will have (total external reference + 1)
123 * following value in reference count field. they cannot be freed and are
124 * referenced from SA header.
125 * - SAs that are in DEAD state will have (total external reference)
126 * in reference count field. they are ready to be freed. reference from
127 * SA header will be removed in key_delsav(), when the reference count
128 * field hits 0 (= no external reference other than from SA header.
129 */
130
131 u_int32_t key_debug_level = 0;
132 static u_int key_spi_trycnt = 1000;
133 static u_int32_t key_spi_minval = 0x100;
134 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
135 static u_int32_t policy_id = 0;
136 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
137 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
138 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
139 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
140 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
141
142 static u_int32_t acq_seq = 0;
143
144 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
145 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
146 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
147 /* registed list */
148 #ifndef IPSEC_NONBLOCK_ACQUIRE
149 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
150 #endif
151 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
152
153 /* search order for SAs */
154 /*
155 * This order is important because we must select the oldest SA
156 * for outbound processing. For inbound, This is not important.
157 */
158 static const u_int saorder_state_valid_prefer_old[] = {
159 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
160 };
161 static const u_int saorder_state_valid_prefer_new[] = {
162 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
163 };
164
165 static const u_int saorder_state_alive[] = {
166 /* except DEAD */
167 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
168 };
169 static const u_int saorder_state_any[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
172 };
173
174 static const int minsize[] = {
175 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
176 sizeof(struct sadb_sa), /* SADB_EXT_SA */
177 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
178 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
179 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
180 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
181 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
182 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
183 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
184 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
185 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
186 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
187 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
188 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
189 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
190 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
191 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
192 0, /* SADB_X_EXT_KMPRIVATE */
193 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
194 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
195 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
196 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
197 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
198 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
199 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
200 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
201 };
202 static const int maxsize[] = {
203 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
204 sizeof(struct sadb_sa), /* SADB_EXT_SA */
205 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
206 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
207 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
208 0, /* SADB_EXT_ADDRESS_SRC */
209 0, /* SADB_EXT_ADDRESS_DST */
210 0, /* SADB_EXT_ADDRESS_PROXY */
211 0, /* SADB_EXT_KEY_AUTH */
212 0, /* SADB_EXT_KEY_ENCRYPT */
213 0, /* SADB_EXT_IDENTITY_SRC */
214 0, /* SADB_EXT_IDENTITY_DST */
215 0, /* SADB_EXT_SENSITIVITY */
216 0, /* SADB_EXT_PROPOSAL */
217 0, /* SADB_EXT_SUPPORTED_AUTH */
218 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
219 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
220 0, /* SADB_X_EXT_KMPRIVATE */
221 0, /* SADB_X_EXT_POLICY */
222 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
223 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
224 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
225 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
226 0, /* SADB_X_EXT_NAT_T_OAI */
227 0, /* SADB_X_EXT_NAT_T_OAR */
228 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
229 };
230
231 static int ipsec_esp_keymin = 256;
232 static int ipsec_esp_auth = 0;
233 static int ipsec_ah_keymin = 128;
234
235 #ifdef SYSCTL_DECL
236 SYSCTL_DECL(_net_key);
237 #endif
238
239 #ifdef SYSCTL_INT
240 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
241 &key_debug_level, 0, "");
242
243 /* max count of trial for the decision of spi value */
244 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
245 &key_spi_trycnt, 0, "");
246
247 /* minimum spi value to allocate automatically. */
248 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
249 &key_spi_minval, 0, "");
250
251 /* maximun spi value to allocate automatically. */
252 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
253 &key_spi_maxval, 0, "");
254
255 /* interval to initialize randseed */
256 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
257 &key_int_random, 0, "");
258
259 /* lifetime for larval SA */
260 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
261 &key_larval_lifetime, 0, "");
262
263 /* counter for blocking to send SADB_ACQUIRE to IKEd */
264 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
265 &key_blockacq_count, 0, "");
266
267 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
268 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
269 &key_blockacq_lifetime, 0, "");
270
271 /* ESP auth */
272 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
273 &ipsec_esp_auth, 0, "");
274
275 /* minimum ESP key length */
276 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
277 &ipsec_esp_keymin, 0, "");
278
279 /* minimum AH key length */
280 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
281 &ipsec_ah_keymin, 0, "");
282
283 /* perfered old SA rather than new SA */
284 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
285 &key_prefered_oldsa, 0, "");
286 #endif /* SYSCTL_INT */
287
288 #ifndef LIST_FOREACH
289 #define LIST_FOREACH(elm, head, field) \
290 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
291 #endif
292 #define __LIST_CHAINED(elm) \
293 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
294 #define LIST_INSERT_TAIL(head, elm, type, field) \
295 do {\
296 struct type *curelm = LIST_FIRST(head); \
297 if (curelm == NULL) {\
298 LIST_INSERT_HEAD(head, elm, field); \
299 } else { \
300 while (LIST_NEXT(curelm, field)) \
301 curelm = LIST_NEXT(curelm, field);\
302 LIST_INSERT_AFTER(curelm, elm, field);\
303 }\
304 } while (0)
305
306 #define KEY_CHKSASTATE(head, sav, name) \
307 /* do */ { \
308 if ((head) != (sav)) { \
309 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
310 (name), (head), (sav))); \
311 continue; \
312 } \
313 } /* while (0) */
314
315 #define KEY_CHKSPDIR(head, sp, name) \
316 do { \
317 if ((head) != (sp)) { \
318 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
319 "anyway continue.\n", \
320 (name), (head), (sp))); \
321 } \
322 } while (0)
323
324 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
325
326 #if 1
327 #define KMALLOC(p, t, n) \
328 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
329 #define KFREE(p) \
330 free((p), M_SECA)
331 #else
332 #define KMALLOC(p, t, n) \
333 do { \
334 ((p) = malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
335 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
336 __FILE__, __LINE__, (p), #t, n); \
337 } while (0)
338
339 #define KFREE(p) \
340 do { \
341 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
342 free((p), M_SECA); \
343 } while (0)
344 #endif
345
346 /*
347 * set parameters into secpolicyindex buffer.
348 * Must allocate secpolicyindex buffer passed to this function.
349 */
350 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
351 do { \
352 memset((idx), 0, sizeof(struct secpolicyindex)); \
353 (idx)->dir = (_dir); \
354 (idx)->prefs = (ps); \
355 (idx)->prefd = (pd); \
356 (idx)->ul_proto = (ulp); \
357 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
358 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
359 } while (0)
360
361 /*
362 * set parameters into secasindex buffer.
363 * Must allocate secasindex buffer before calling this function.
364 */
365 static int
366 key_setsecasidx (int, int, int, const struct sadb_address *,
367 const struct sadb_address *, struct secasindex *);
368
369 /* key statistics */
370 struct _keystat {
371 u_long getspi_count; /* the avarage of count to try to get new SPI */
372 } keystat;
373
374 struct sadb_msghdr {
375 struct sadb_msg *msg;
376 struct sadb_ext *ext[SADB_EXT_MAX + 1];
377 int extoff[SADB_EXT_MAX + 1];
378 int extlen[SADB_EXT_MAX + 1];
379 };
380
381 static struct secasvar *key_allocsa_policy (const struct secasindex *);
382 static void key_freesp_so (struct secpolicy **);
383 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
384 static void key_delsp (struct secpolicy *);
385 static struct secpolicy *key_getsp (const struct secpolicyindex *);
386 static struct secpolicy *key_getspbyid (u_int32_t);
387 static u_int16_t key_newreqid (void);
388 static struct mbuf *key_gather_mbuf (struct mbuf *,
389 const struct sadb_msghdr *, int, int, ...);
390 static int key_spdadd (struct socket *, struct mbuf *,
391 const struct sadb_msghdr *);
392 static u_int32_t key_getnewspid (void);
393 static int key_spddelete (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spddelete2 (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static int key_spdget (struct socket *, struct mbuf *,
398 const struct sadb_msghdr *);
399 static int key_spdflush (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static int key_spddump (struct socket *, struct mbuf *,
402 const struct sadb_msghdr *);
403 static struct mbuf * key_setspddump (int *errorp, pid_t);
404 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
405 static int key_nat_map (struct socket *, struct mbuf *,
406 const struct sadb_msghdr *);
407 static struct mbuf *key_setdumpsp (struct secpolicy *,
408 u_int8_t, u_int32_t, pid_t);
409 static u_int key_getspreqmsglen (const struct secpolicy *);
410 static int key_spdexpire (struct secpolicy *);
411 static struct secashead *key_newsah (const struct secasindex *);
412 static void key_delsah (struct secashead *);
413 static struct secasvar *key_newsav (struct mbuf *,
414 const struct sadb_msghdr *, struct secashead *, int *,
415 const char*, int);
416 #define KEY_NEWSAV(m, sadb, sah, e) \
417 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
418 static void key_delsav (struct secasvar *);
419 static struct secashead *key_getsah (const struct secasindex *);
420 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
421 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
422 static int key_setsaval (struct secasvar *, struct mbuf *,
423 const struct sadb_msghdr *);
424 static int key_mature (struct secasvar *);
425 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
426 u_int8_t, u_int32_t, u_int32_t);
427 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
428 static struct mbuf *key_setsadbxtype (u_int16_t);
429 static struct mbuf *key_setsadbxfrag (u_int16_t);
430 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
431 static int key_checksalen (const union sockaddr_union *);
432 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
433 u_int32_t, pid_t, u_int16_t);
434 static struct mbuf *key_setsadbsa (struct secasvar *);
435 static struct mbuf *key_setsadbaddr (u_int16_t,
436 const struct sockaddr *, u_int8_t, u_int16_t);
437 #if 0
438 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
439 int, u_int64_t);
440 #endif
441 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
442 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
443 u_int32_t);
444 static void *key_newbuf (const void *, u_int);
445 #ifdef INET6
446 static int key_ismyaddr6 (const struct sockaddr_in6 *);
447 #endif
448
449 static void sysctl_net_keyv2_setup(struct sysctllog **);
450 static void sysctl_net_key_compat_setup(struct sysctllog **);
451
452 /* flags for key_cmpsaidx() */
453 #define CMP_HEAD 1 /* protocol, addresses. */
454 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
455 #define CMP_REQID 3 /* additionally HEAD, reaid. */
456 #define CMP_EXACTLY 4 /* all elements. */
457 static int key_cmpsaidx
458 (const struct secasindex *, const struct secasindex *, int);
459
460 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
461 static int key_bbcmp (const void *, const void *, u_int);
462 static u_int16_t key_satype2proto (u_int8_t);
463 static u_int8_t key_proto2satype (u_int16_t);
464
465 static int key_getspi (struct socket *, struct mbuf *,
466 const struct sadb_msghdr *);
467 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
468 const struct secasindex *);
469 static int key_handle_natt_info (struct secasvar *,
470 const struct sadb_msghdr *);
471 static int key_set_natt_ports (union sockaddr_union *,
472 union sockaddr_union *,
473 const struct sadb_msghdr *);
474 static int key_update (struct socket *, struct mbuf *,
475 const struct sadb_msghdr *);
476 #ifdef IPSEC_DOSEQCHECK
477 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
478 #endif
479 static int key_add (struct socket *, struct mbuf *,
480 const struct sadb_msghdr *);
481 static int key_setident (struct secashead *, struct mbuf *,
482 const struct sadb_msghdr *);
483 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
484 const struct sadb_msghdr *);
485 static int key_delete (struct socket *, struct mbuf *,
486 const struct sadb_msghdr *);
487 static int key_get (struct socket *, struct mbuf *,
488 const struct sadb_msghdr *);
489
490 static void key_getcomb_setlifetime (struct sadb_comb *);
491 static struct mbuf *key_getcomb_esp (void);
492 static struct mbuf *key_getcomb_ah (void);
493 static struct mbuf *key_getcomb_ipcomp (void);
494 static struct mbuf *key_getprop (const struct secasindex *);
495
496 static int key_acquire (const struct secasindex *, struct secpolicy *);
497 #ifndef IPSEC_NONBLOCK_ACQUIRE
498 static struct secacq *key_newacq (const struct secasindex *);
499 static struct secacq *key_getacq (const struct secasindex *);
500 static struct secacq *key_getacqbyseq (u_int32_t);
501 #endif
502 static struct secspacq *key_newspacq (const struct secpolicyindex *);
503 static struct secspacq *key_getspacq (const struct secpolicyindex *);
504 static int key_acquire2 (struct socket *, struct mbuf *,
505 const struct sadb_msghdr *);
506 static int key_register (struct socket *, struct mbuf *,
507 const struct sadb_msghdr *);
508 static int key_expire (struct secasvar *);
509 static int key_flush (struct socket *, struct mbuf *,
510 const struct sadb_msghdr *);
511 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
512 int *lenp, pid_t pid);
513 static int key_dump (struct socket *, struct mbuf *,
514 const struct sadb_msghdr *);
515 static int key_promisc (struct socket *, struct mbuf *,
516 const struct sadb_msghdr *);
517 static int key_senderror (struct socket *, struct mbuf *, int);
518 static int key_validate_ext (const struct sadb_ext *, int);
519 static int key_align (struct mbuf *, struct sadb_msghdr *);
520 #if 0
521 static const char *key_getfqdn (void);
522 static const char *key_getuserfqdn (void);
523 #endif
524 static void key_sa_chgstate (struct secasvar *, u_int8_t);
525 static inline void key_sp_dead (struct secpolicy *);
526 static void key_sp_unlink (struct secpolicy *sp);
527
528 static struct mbuf *key_alloc_mbuf (int);
529 struct callout key_timehandler_ch;
530
531 #define SA_ADDREF(p) do { \
532 (p)->refcnt++; \
533 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
534 } while (0)
535 #define SA_DELREF(p) do { \
536 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
537 (p)->refcnt--; \
538 } while (0)
539
540 #define SP_ADDREF(p) do { \
541 (p)->refcnt++; \
542 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
543 } while (0)
544 #define SP_DELREF(p) do { \
545 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
546 (p)->refcnt--; \
547 } while (0)
548
549
550 static inline void
551 key_sp_dead(struct secpolicy *sp)
552 {
553
554 /* mark the SP dead */
555 sp->state = IPSEC_SPSTATE_DEAD;
556 }
557
558 static void
559 key_sp_unlink(struct secpolicy *sp)
560 {
561
562 /* remove from SP index */
563 if (__LIST_CHAINED(sp)) {
564 LIST_REMOVE(sp, chain);
565 /* Release refcount held just for being on chain */
566 KEY_FREESP(&sp);
567 }
568 }
569
570
571 /*
572 * Return 0 when there are known to be no SP's for the specified
573 * direction. Otherwise return 1. This is used by IPsec code
574 * to optimize performance.
575 */
576 int
577 key_havesp(u_int dir)
578 {
579 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
580 LIST_FIRST(&sptree[dir]) != NULL : 1);
581 }
582
583 /* %%% IPsec policy management */
584 /*
585 * allocating a SP for OUTBOUND or INBOUND packet.
586 * Must call key_freesp() later.
587 * OUT: NULL: not found
588 * others: found and return the pointer.
589 */
590 struct secpolicy *
591 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
592 {
593 struct secpolicy *sp;
594 int s;
595
596 KASSERT(spidx != NULL);
597 KASSERTMSG(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
598 "invalid direction %u", dir);
599
600 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
601
602 /* get a SP entry */
603 s = splsoftnet(); /*called from softclock()*/
604 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
605 printf("*** objects\n");
606 kdebug_secpolicyindex(spidx);
607 }
608
609 LIST_FOREACH(sp, &sptree[dir], chain) {
610 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
611 printf("*** in SPD\n");
612 kdebug_secpolicyindex(&sp->spidx);
613 }
614
615 if (sp->state == IPSEC_SPSTATE_DEAD)
616 continue;
617 if (key_cmpspidx_withmask(&sp->spidx, spidx))
618 goto found;
619 }
620 sp = NULL;
621 found:
622 if (sp) {
623 /* sanity check */
624 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
625
626 /* found a SPD entry */
627 sp->lastused = time_uptime;
628 SP_ADDREF(sp);
629 }
630 splx(s);
631
632 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
633 "DP return SP:%p (ID=%u) refcnt %u\n",
634 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
635 return sp;
636 }
637
638 /*
639 * allocating a SP for OUTBOUND or INBOUND packet.
640 * Must call key_freesp() later.
641 * OUT: NULL: not found
642 * others: found and return the pointer.
643 */
644 struct secpolicy *
645 key_allocsp2(u_int32_t spi,
646 const union sockaddr_union *dst,
647 u_int8_t proto,
648 u_int dir,
649 const char* where, int tag)
650 {
651 struct secpolicy *sp;
652 int s;
653
654 KASSERT(dst != NULL);
655 KASSERTMSG(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
656 "invalid direction %u", dir);
657
658 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
659
660 /* get a SP entry */
661 s = splsoftnet(); /*called from softclock()*/
662 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
663 printf("*** objects\n");
664 printf("spi %u proto %u dir %u\n", spi, proto, dir);
665 kdebug_sockaddr(&dst->sa);
666 }
667
668 LIST_FOREACH(sp, &sptree[dir], chain) {
669 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
670 printf("*** in SPD\n");
671 kdebug_secpolicyindex(&sp->spidx);
672 }
673
674 if (sp->state == IPSEC_SPSTATE_DEAD)
675 continue;
676 /* compare simple values, then dst address */
677 if (sp->spidx.ul_proto != proto)
678 continue;
679 /* NB: spi's must exist and match */
680 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
681 continue;
682 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT) == 0)
683 goto found;
684 }
685 sp = NULL;
686 found:
687 if (sp) {
688 /* sanity check */
689 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
690
691 /* found a SPD entry */
692 sp->lastused = time_uptime;
693 SP_ADDREF(sp);
694 }
695 splx(s);
696
697 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
698 "DP return SP:%p (ID=%u) refcnt %u\n",
699 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
700 return sp;
701 }
702
703 /*
704 * return a policy that matches this particular inbound packet.
705 * XXX slow
706 */
707 struct secpolicy *
708 key_gettunnel(const struct sockaddr *osrc,
709 const struct sockaddr *odst,
710 const struct sockaddr *isrc,
711 const struct sockaddr *idst,
712 const char* where, int tag)
713 {
714 struct secpolicy *sp;
715 const int dir = IPSEC_DIR_INBOUND;
716 int s;
717 struct ipsecrequest *r1, *r2, *p;
718 struct secpolicyindex spidx;
719
720 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
721
722 if (isrc->sa_family != idst->sa_family) {
723 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
724 isrc->sa_family, idst->sa_family));
725 sp = NULL;
726 goto done;
727 }
728
729 s = splsoftnet(); /*called from softclock()*/
730 LIST_FOREACH(sp, &sptree[dir], chain) {
731 if (sp->state == IPSEC_SPSTATE_DEAD)
732 continue;
733
734 r1 = r2 = NULL;
735 for (p = sp->req; p; p = p->next) {
736 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
737 continue;
738
739 r1 = r2;
740 r2 = p;
741
742 if (!r1) {
743 /* here we look at address matches only */
744 spidx = sp->spidx;
745 if (isrc->sa_len > sizeof(spidx.src) ||
746 idst->sa_len > sizeof(spidx.dst))
747 continue;
748 memcpy(&spidx.src, isrc, isrc->sa_len);
749 memcpy(&spidx.dst, idst, idst->sa_len);
750 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
751 continue;
752 } else {
753 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, PORT_NONE) ||
754 key_sockaddrcmp(&r1->saidx.dst.sa, idst, PORT_NONE))
755 continue;
756 }
757
758 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, PORT_NONE) ||
759 key_sockaddrcmp(&r2->saidx.dst.sa, odst, PORT_NONE))
760 continue;
761
762 goto found;
763 }
764 }
765 sp = NULL;
766 found:
767 if (sp) {
768 sp->lastused = time_uptime;
769 SP_ADDREF(sp);
770 }
771 splx(s);
772 done:
773 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
774 "DP return SP:%p (ID=%u) refcnt %u\n",
775 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
776 return sp;
777 }
778
779 /*
780 * allocating an SA entry for an *OUTBOUND* packet.
781 * checking each request entries in SP, and acquire an SA if need.
782 * OUT: 0: there are valid requests.
783 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
784 */
785 int
786 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
787 {
788 u_int level;
789 int error;
790
791 KASSERT(isr != NULL);
792 KASSERT(saidx != NULL);
793 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
794 saidx->mode == IPSEC_MODE_TUNNEL,
795 "unexpected policy %u", saidx->mode);
796
797 /* get current level */
798 level = ipsec_get_reqlevel(isr);
799
800 /*
801 * XXX guard against protocol callbacks from the crypto
802 * thread as they reference ipsecrequest.sav which we
803 * temporarily null out below. Need to rethink how we
804 * handle bundled SA's in the callback thread.
805 */
806 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
807 #if 0
808 /*
809 * We do allocate new SA only if the state of SA in the holder is
810 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
811 */
812 if (isr->sav != NULL) {
813 if (isr->sav->sah == NULL)
814 panic("key_checkrequest: sah is null");
815 if (isr->sav == (struct secasvar *)LIST_FIRST(
816 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
817 KEY_FREESAV(&isr->sav);
818 isr->sav = NULL;
819 }
820 }
821 #else
822 /*
823 * we free any SA stashed in the IPsec request because a different
824 * SA may be involved each time this request is checked, either
825 * because new SAs are being configured, or this request is
826 * associated with an unconnected datagram socket, or this request
827 * is associated with a system default policy.
828 *
829 * The operation may have negative impact to performance. We may
830 * want to check cached SA carefully, rather than picking new SA
831 * every time.
832 */
833 if (isr->sav != NULL) {
834 KEY_FREESAV(&isr->sav);
835 isr->sav = NULL;
836 }
837 #endif
838
839 /*
840 * new SA allocation if no SA found.
841 * key_allocsa_policy should allocate the oldest SA available.
842 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
843 */
844 if (isr->sav == NULL)
845 isr->sav = key_allocsa_policy(saidx);
846
847 /* When there is SA. */
848 if (isr->sav != NULL) {
849 if (isr->sav->state != SADB_SASTATE_MATURE &&
850 isr->sav->state != SADB_SASTATE_DYING)
851 return EINVAL;
852 return 0;
853 }
854
855 /* there is no SA */
856 error = key_acquire(saidx, isr->sp);
857 if (error != 0) {
858 /* XXX What should I do ? */
859 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
860 "from key_acquire.\n", error));
861 return error;
862 }
863
864 if (level != IPSEC_LEVEL_REQUIRE) {
865 /* XXX sigh, the interface to this routine is botched */
866 KASSERTMSG(isr->sav == NULL, "unexpected SA");
867 return 0;
868 } else {
869 return ENOENT;
870 }
871 }
872
873 /*
874 * allocating a SA for policy entry from SAD.
875 * NOTE: searching SAD of aliving state.
876 * OUT: NULL: not found.
877 * others: found and return the pointer.
878 */
879 static struct secasvar *
880 key_allocsa_policy(const struct secasindex *saidx)
881 {
882 struct secashead *sah;
883 struct secasvar *sav;
884 u_int stateidx, state;
885 const u_int *saorder_state_valid;
886 int arraysize;
887
888 LIST_FOREACH(sah, &sahtree, chain) {
889 if (sah->state == SADB_SASTATE_DEAD)
890 continue;
891 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
892 goto found;
893 }
894
895 return NULL;
896
897 found:
898
899 /*
900 * search a valid state list for outbound packet.
901 * This search order is important.
902 */
903 if (key_prefered_oldsa) {
904 saorder_state_valid = saorder_state_valid_prefer_old;
905 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
906 } else {
907 saorder_state_valid = saorder_state_valid_prefer_new;
908 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
909 }
910
911 /* search valid state */
912 for (stateidx = 0;
913 stateidx < arraysize;
914 stateidx++) {
915
916 state = saorder_state_valid[stateidx];
917
918 sav = key_do_allocsa_policy(sah, state);
919 if (sav != NULL)
920 return sav;
921 }
922
923 return NULL;
924 }
925
926 /*
927 * searching SAD with direction, protocol, mode and state.
928 * called by key_allocsa_policy().
929 * OUT:
930 * NULL : not found
931 * others : found, pointer to a SA.
932 */
933 static struct secasvar *
934 key_do_allocsa_policy(struct secashead *sah, u_int state)
935 {
936 struct secasvar *sav, *nextsav, *candidate, *d;
937
938 /* initilize */
939 candidate = NULL;
940
941 for (sav = LIST_FIRST(&sah->savtree[state]);
942 sav != NULL;
943 sav = nextsav) {
944
945 nextsav = LIST_NEXT(sav, chain);
946
947 /* sanity check */
948 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
949
950 /* initialize */
951 if (candidate == NULL) {
952 candidate = sav;
953 continue;
954 }
955
956 /* Which SA is the better ? */
957
958 /* sanity check 2 */
959 KASSERT(candidate->lft_c != NULL);
960 KASSERT(sav->lft_c != NULL);
961
962 /* What the best method is to compare ? */
963 if (key_prefered_oldsa) {
964 if (candidate->lft_c->sadb_lifetime_addtime >
965 sav->lft_c->sadb_lifetime_addtime) {
966 candidate = sav;
967 }
968 continue;
969 /*NOTREACHED*/
970 }
971
972 /* prefered new sa rather than old sa */
973 if (candidate->lft_c->sadb_lifetime_addtime <
974 sav->lft_c->sadb_lifetime_addtime) {
975 d = candidate;
976 candidate = sav;
977 } else
978 d = sav;
979
980 /*
981 * prepared to delete the SA when there is more
982 * suitable candidate and the lifetime of the SA is not
983 * permanent.
984 */
985 if (d->lft_c->sadb_lifetime_addtime != 0) {
986 struct mbuf *m, *result = 0;
987 uint8_t satype;
988
989 key_sa_chgstate(d, SADB_SASTATE_DEAD);
990
991 KASSERT(d->refcnt > 0);
992
993 satype = key_proto2satype(d->sah->saidx.proto);
994 if (satype == 0)
995 goto msgfail;
996
997 m = key_setsadbmsg(SADB_DELETE, 0,
998 satype, 0, 0, d->refcnt - 1);
999 if (!m)
1000 goto msgfail;
1001 result = m;
1002
1003 /* set sadb_address for saidx's. */
1004 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1005 &d->sah->saidx.src.sa,
1006 d->sah->saidx.src.sa.sa_len << 3,
1007 IPSEC_ULPROTO_ANY);
1008 if (!m)
1009 goto msgfail;
1010 m_cat(result, m);
1011
1012 /* set sadb_address for saidx's. */
1013 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1014 &d->sah->saidx.src.sa,
1015 d->sah->saidx.src.sa.sa_len << 3,
1016 IPSEC_ULPROTO_ANY);
1017 if (!m)
1018 goto msgfail;
1019 m_cat(result, m);
1020
1021 /* create SA extension */
1022 m = key_setsadbsa(d);
1023 if (!m)
1024 goto msgfail;
1025 m_cat(result, m);
1026
1027 if (result->m_len < sizeof(struct sadb_msg)) {
1028 result = m_pullup(result,
1029 sizeof(struct sadb_msg));
1030 if (result == NULL)
1031 goto msgfail;
1032 }
1033
1034 result->m_pkthdr.len = 0;
1035 for (m = result; m; m = m->m_next)
1036 result->m_pkthdr.len += m->m_len;
1037 mtod(result, struct sadb_msg *)->sadb_msg_len =
1038 PFKEY_UNIT64(result->m_pkthdr.len);
1039
1040 key_sendup_mbuf(NULL, result,
1041 KEY_SENDUP_REGISTERED);
1042 result = 0;
1043 msgfail:
1044 if (result)
1045 m_freem(result);
1046 KEY_FREESAV(&d);
1047 }
1048 }
1049
1050 if (candidate) {
1051 SA_ADDREF(candidate);
1052 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1053 "DP cause refcnt++:%d SA:%p\n",
1054 candidate->refcnt, candidate);
1055 }
1056 return candidate;
1057 }
1058
1059 /*
1060 * allocating a usable SA entry for a *INBOUND* packet.
1061 * Must call key_freesav() later.
1062 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1063 * NULL: not found, or error occurred.
1064 *
1065 * In the comparison, no source address is used--for RFC2401 conformance.
1066 * To quote, from section 4.1:
1067 * A security association is uniquely identified by a triple consisting
1068 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1069 * security protocol (AH or ESP) identifier.
1070 * Note that, however, we do need to keep source address in IPsec SA.
1071 * IKE specification and PF_KEY specification do assume that we
1072 * keep source address in IPsec SA. We see a tricky situation here.
1073 *
1074 * sport and dport are used for NAT-T. network order is always used.
1075 */
1076 struct secasvar *
1077 key_allocsa(
1078 const union sockaddr_union *dst,
1079 u_int proto,
1080 u_int32_t spi,
1081 u_int16_t sport,
1082 u_int16_t dport,
1083 const char* where, int tag)
1084 {
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, state;
1088 const u_int *saorder_state_valid;
1089 int arraysize, chkport;
1090 int s;
1091
1092 int must_check_spi = 1;
1093 int must_check_alg = 0;
1094 u_int16_t cpi = 0;
1095 u_int8_t algo = 0;
1096
1097 if ((sport != 0) && (dport != 0))
1098 chkport = PORT_STRICT;
1099 else
1100 chkport = PORT_NONE;
1101
1102 KASSERT(dst != NULL);
1103
1104 /*
1105 * XXX IPCOMP case
1106 * We use cpi to define spi here. In the case where cpi <=
1107 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1108 * the real spi. In this case, don't check the spi but check the
1109 * algorithm
1110 */
1111
1112 if (proto == IPPROTO_IPCOMP) {
1113 u_int32_t tmp;
1114 tmp = ntohl(spi);
1115 cpi = (u_int16_t) tmp;
1116 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1117 algo = (u_int8_t) cpi;
1118 must_check_spi = 0;
1119 must_check_alg = 1;
1120 }
1121 }
1122 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1123 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1124 where, tag, must_check_spi, must_check_alg);
1125
1126
1127 /*
1128 * searching SAD.
1129 * XXX: to be checked internal IP header somewhere. Also when
1130 * IPsec tunnel packet is received. But ESP tunnel mode is
1131 * encrypted so we can't check internal IP header.
1132 */
1133 s = splsoftnet(); /*called from softclock()*/
1134 if (key_prefered_oldsa) {
1135 saorder_state_valid = saorder_state_valid_prefer_old;
1136 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1137 } else {
1138 saorder_state_valid = saorder_state_valid_prefer_new;
1139 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1140 }
1141 LIST_FOREACH(sah, &sahtree, chain) {
1142 /* search valid state */
1143 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1144 state = saorder_state_valid[stateidx];
1145 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1146 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1147 "try match spi %#x, %#x\n",
1148 ntohl(spi), ntohl(sav->spi));
1149 /* sanity check */
1150 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1151 /* do not return entries w/ unusable state */
1152 if (sav->state != SADB_SASTATE_MATURE &&
1153 sav->state != SADB_SASTATE_DYING) {
1154 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1155 "bad state %d\n", sav->state);
1156 continue;
1157 }
1158 if (proto != sav->sah->saidx.proto) {
1159 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1160 "proto fail %d != %d\n",
1161 proto, sav->sah->saidx.proto);
1162 continue;
1163 }
1164 if (must_check_spi && spi != sav->spi) {
1165 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1166 "spi fail %#x != %#x\n",
1167 ntohl(spi), ntohl(sav->spi));
1168 continue;
1169 }
1170 /* XXX only on the ipcomp case */
1171 if (must_check_alg && algo != sav->alg_comp) {
1172 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1173 "algo fail %d != %d\n",
1174 algo, sav->alg_comp);
1175 continue;
1176 }
1177
1178 #if 0 /* don't check src */
1179 /* Fix port in src->sa */
1180
1181 /* check src address */
1182 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE) != 0)
1183 continue;
1184 #endif
1185 /* fix port of dst address XXX*/
1186 key_porttosaddr(__UNCONST(dst), dport);
1187 /* check dst address */
1188 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1189 continue;
1190 SA_ADDREF(sav);
1191 goto done;
1192 }
1193 }
1194 }
1195 sav = NULL;
1196 done:
1197 splx(s);
1198
1199 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1200 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1201 return sav;
1202 }
1203
1204 /*
1205 * Must be called after calling key_allocsp().
1206 * For both the packet without socket and key_freeso().
1207 */
1208 void
1209 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1210 {
1211 struct secpolicy *sp = *spp;
1212
1213 KASSERT(sp != NULL);
1214
1215 SP_DELREF(sp);
1216
1217 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1218 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1219 sp, sp->id, where, tag, sp->refcnt);
1220
1221 if (sp->refcnt == 0) {
1222 *spp = NULL;
1223 key_delsp(sp);
1224 }
1225 }
1226
1227 /*
1228 * Must be called after calling key_allocsp().
1229 * For the packet with socket.
1230 */
1231 void
1232 key_freeso(struct socket *so)
1233 {
1234 /* sanity check */
1235 KASSERT(so != NULL);
1236
1237 switch (so->so_proto->pr_domain->dom_family) {
1238 #ifdef INET
1239 case PF_INET:
1240 {
1241 struct inpcb *pcb = sotoinpcb(so);
1242
1243 /* Does it have a PCB ? */
1244 if (pcb == NULL)
1245 return;
1246
1247 struct inpcbpolicy *sp = pcb->inp_sp;
1248 key_freesp_so(&sp->sp_in);
1249 key_freesp_so(&sp->sp_out);
1250 }
1251 break;
1252 #endif
1253 #ifdef INET6
1254 case PF_INET6:
1255 {
1256 #ifdef HAVE_NRL_INPCB
1257 struct inpcb *pcb = sotoinpcb(so);
1258 struct inpcbpolicy *sp = pcb->inp_sp;
1259
1260 /* Does it have a PCB ? */
1261 if (pcb == NULL)
1262 return;
1263 key_freesp_so(&sp->sp_in);
1264 key_freesp_so(&sp->sp_out);
1265 #else
1266 struct in6pcb *pcb = sotoin6pcb(so);
1267
1268 /* Does it have a PCB ? */
1269 if (pcb == NULL)
1270 return;
1271 key_freesp_so(&pcb->in6p_sp->sp_in);
1272 key_freesp_so(&pcb->in6p_sp->sp_out);
1273 #endif
1274 }
1275 break;
1276 #endif /* INET6 */
1277 default:
1278 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1279 so->so_proto->pr_domain->dom_family));
1280 return;
1281 }
1282 }
1283
1284 static void
1285 key_freesp_so(struct secpolicy **sp)
1286 {
1287
1288 KASSERT(sp != NULL);
1289 KASSERT(*sp != NULL);
1290
1291 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1292 (*sp)->policy == IPSEC_POLICY_BYPASS)
1293 return;
1294
1295 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1296 "invalid policy %u", (*sp)->policy);
1297 KEY_FREESP(sp);
1298 }
1299
1300 /*
1301 * Must be called after calling key_allocsa().
1302 * This function is called by key_freesp() to free some SA allocated
1303 * for a policy.
1304 */
1305 void
1306 key_freesav(struct secasvar **psav, const char* where, int tag)
1307 {
1308 struct secasvar *sav = *psav;
1309
1310 KASSERT(sav != NULL);
1311
1312 SA_DELREF(sav);
1313
1314 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1315 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1316 sav, (u_long)ntohl(sav->spi), where, tag, sav->refcnt);
1317
1318 if (sav->refcnt == 0) {
1319 *psav = NULL;
1320 key_delsav(sav);
1321 }
1322 }
1323
1324 /* %%% SPD management */
1325 /*
1326 * free security policy entry.
1327 */
1328 static void
1329 key_delsp(struct secpolicy *sp)
1330 {
1331 int s;
1332
1333 KASSERT(sp != NULL);
1334
1335 key_sp_dead(sp);
1336
1337 KASSERTMSG(sp->refcnt == 0,
1338 "SP with references deleted (refcnt %u)", sp->refcnt);
1339
1340 s = splsoftnet(); /*called from softclock()*/
1341
1342 {
1343 struct ipsecrequest *isr = sp->req, *nextisr;
1344
1345 while (isr != NULL) {
1346 if (isr->sav != NULL) {
1347 KEY_FREESAV(&isr->sav);
1348 isr->sav = NULL;
1349 }
1350
1351 nextisr = isr->next;
1352 KFREE(isr);
1353 isr = nextisr;
1354 }
1355 }
1356
1357 KFREE(sp);
1358
1359 splx(s);
1360 }
1361
1362 /*
1363 * search SPD
1364 * OUT: NULL : not found
1365 * others : found, pointer to a SP.
1366 */
1367 static struct secpolicy *
1368 key_getsp(const struct secpolicyindex *spidx)
1369 {
1370 struct secpolicy *sp;
1371
1372 KASSERT(spidx != NULL);
1373
1374 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1375 if (sp->state == IPSEC_SPSTATE_DEAD)
1376 continue;
1377 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1378 SP_ADDREF(sp);
1379 return sp;
1380 }
1381 }
1382
1383 return NULL;
1384 }
1385
1386 /*
1387 * get SP by index.
1388 * OUT: NULL : not found
1389 * others : found, pointer to a SP.
1390 */
1391 static struct secpolicy *
1392 key_getspbyid(u_int32_t id)
1393 {
1394 struct secpolicy *sp;
1395
1396 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1397 if (sp->state == IPSEC_SPSTATE_DEAD)
1398 continue;
1399 if (sp->id == id) {
1400 SP_ADDREF(sp);
1401 return sp;
1402 }
1403 }
1404
1405 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1406 if (sp->state == IPSEC_SPSTATE_DEAD)
1407 continue;
1408 if (sp->id == id) {
1409 SP_ADDREF(sp);
1410 return sp;
1411 }
1412 }
1413
1414 return NULL;
1415 }
1416
1417 struct secpolicy *
1418 key_newsp(const char* where, int tag)
1419 {
1420 struct secpolicy *newsp = NULL;
1421
1422 newsp = (struct secpolicy *)
1423 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1424 if (newsp) {
1425 newsp->refcnt = 1;
1426 newsp->req = NULL;
1427 }
1428
1429 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1430 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1431 return newsp;
1432 }
1433
1434 /*
1435 * create secpolicy structure from sadb_x_policy structure.
1436 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1437 * so must be set properly later.
1438 */
1439 struct secpolicy *
1440 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1441 {
1442 struct secpolicy *newsp;
1443
1444 KASSERT(xpl0 != NULL);
1445 KASSERT(len >= sizeof(*xpl0));
1446
1447 if (len != PFKEY_EXTLEN(xpl0)) {
1448 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1449 *error = EINVAL;
1450 return NULL;
1451 }
1452
1453 if ((newsp = KEY_NEWSP()) == NULL) {
1454 *error = ENOBUFS;
1455 return NULL;
1456 }
1457
1458 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1459 newsp->policy = xpl0->sadb_x_policy_type;
1460
1461 /* check policy */
1462 switch (xpl0->sadb_x_policy_type) {
1463 case IPSEC_POLICY_DISCARD:
1464 case IPSEC_POLICY_NONE:
1465 case IPSEC_POLICY_ENTRUST:
1466 case IPSEC_POLICY_BYPASS:
1467 newsp->req = NULL;
1468 *error = 0;
1469 return newsp;
1470
1471 case IPSEC_POLICY_IPSEC:
1472 /* Continued */
1473 break;
1474 default:
1475 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1476 KEY_FREESP(&newsp);
1477 *error = EINVAL;
1478 return NULL;
1479 }
1480
1481 /* IPSEC_POLICY_IPSEC */
1482 {
1483 int tlen;
1484 const struct sadb_x_ipsecrequest *xisr;
1485 uint16_t xisr_reqid;
1486 struct ipsecrequest **p_isr = &newsp->req;
1487
1488 /* validity check */
1489 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1490 ipseclog((LOG_DEBUG,
1491 "key_msg2sp: Invalid msg length.\n"));
1492 KEY_FREESP(&newsp);
1493 *error = EINVAL;
1494 return NULL;
1495 }
1496
1497 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1498 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1499
1500 while (tlen > 0) {
1501 /* length check */
1502 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1503 ipseclog((LOG_DEBUG, "key_msg2sp: "
1504 "invalid ipsecrequest length.\n"));
1505 KEY_FREESP(&newsp);
1506 *error = EINVAL;
1507 return NULL;
1508 }
1509
1510 /* allocate request buffer */
1511 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1512 if ((*p_isr) == NULL) {
1513 ipseclog((LOG_DEBUG,
1514 "key_msg2sp: No more memory.\n"));
1515 KEY_FREESP(&newsp);
1516 *error = ENOBUFS;
1517 return NULL;
1518 }
1519 memset(*p_isr, 0, sizeof(**p_isr));
1520
1521 /* set values */
1522 (*p_isr)->next = NULL;
1523
1524 switch (xisr->sadb_x_ipsecrequest_proto) {
1525 case IPPROTO_ESP:
1526 case IPPROTO_AH:
1527 case IPPROTO_IPCOMP:
1528 break;
1529 default:
1530 ipseclog((LOG_DEBUG,
1531 "key_msg2sp: invalid proto type=%u\n",
1532 xisr->sadb_x_ipsecrequest_proto));
1533 KEY_FREESP(&newsp);
1534 *error = EPROTONOSUPPORT;
1535 return NULL;
1536 }
1537 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1538
1539 switch (xisr->sadb_x_ipsecrequest_mode) {
1540 case IPSEC_MODE_TRANSPORT:
1541 case IPSEC_MODE_TUNNEL:
1542 break;
1543 case IPSEC_MODE_ANY:
1544 default:
1545 ipseclog((LOG_DEBUG,
1546 "key_msg2sp: invalid mode=%u\n",
1547 xisr->sadb_x_ipsecrequest_mode));
1548 KEY_FREESP(&newsp);
1549 *error = EINVAL;
1550 return NULL;
1551 }
1552 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1553
1554 switch (xisr->sadb_x_ipsecrequest_level) {
1555 case IPSEC_LEVEL_DEFAULT:
1556 case IPSEC_LEVEL_USE:
1557 case IPSEC_LEVEL_REQUIRE:
1558 break;
1559 case IPSEC_LEVEL_UNIQUE:
1560 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1561 /* validity check */
1562 /*
1563 * If range violation of reqid, kernel will
1564 * update it, don't refuse it.
1565 */
1566 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1567 ipseclog((LOG_DEBUG,
1568 "key_msg2sp: reqid=%d range "
1569 "violation, updated by kernel.\n",
1570 xisr_reqid));
1571 xisr_reqid = 0;
1572 }
1573
1574 /* allocate new reqid id if reqid is zero. */
1575 if (xisr_reqid == 0) {
1576 u_int16_t reqid;
1577 if ((reqid = key_newreqid()) == 0) {
1578 KEY_FREESP(&newsp);
1579 *error = ENOBUFS;
1580 return NULL;
1581 }
1582 (*p_isr)->saidx.reqid = reqid;
1583 } else {
1584 /* set it for manual keying. */
1585 (*p_isr)->saidx.reqid = xisr_reqid;
1586 }
1587 break;
1588
1589 default:
1590 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1591 xisr->sadb_x_ipsecrequest_level));
1592 KEY_FREESP(&newsp);
1593 *error = EINVAL;
1594 return NULL;
1595 }
1596 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1597
1598 /* set IP addresses if there */
1599 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1600 const struct sockaddr *paddr;
1601
1602 paddr = (const struct sockaddr *)(xisr + 1);
1603
1604 /* validity check */
1605 if (paddr->sa_len
1606 > sizeof((*p_isr)->saidx.src)) {
1607 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1608 "address length.\n"));
1609 KEY_FREESP(&newsp);
1610 *error = EINVAL;
1611 return NULL;
1612 }
1613 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1614
1615 paddr = (const struct sockaddr *)((const char *)paddr
1616 + paddr->sa_len);
1617
1618 /* validity check */
1619 if (paddr->sa_len
1620 > sizeof((*p_isr)->saidx.dst)) {
1621 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1622 "address length.\n"));
1623 KEY_FREESP(&newsp);
1624 *error = EINVAL;
1625 return NULL;
1626 }
1627 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1628 }
1629
1630 (*p_isr)->sav = NULL;
1631 (*p_isr)->sp = newsp;
1632
1633 /* initialization for the next. */
1634 p_isr = &(*p_isr)->next;
1635 tlen -= xisr->sadb_x_ipsecrequest_len;
1636
1637 /* validity check */
1638 if (tlen < 0) {
1639 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1640 KEY_FREESP(&newsp);
1641 *error = EINVAL;
1642 return NULL;
1643 }
1644
1645 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1646 + xisr->sadb_x_ipsecrequest_len);
1647 }
1648 }
1649
1650 *error = 0;
1651 return newsp;
1652 }
1653
1654 static u_int16_t
1655 key_newreqid(void)
1656 {
1657 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1658
1659 auto_reqid = (auto_reqid == 0xffff
1660 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1661
1662 /* XXX should be unique check */
1663
1664 return auto_reqid;
1665 }
1666
1667 /*
1668 * copy secpolicy struct to sadb_x_policy structure indicated.
1669 */
1670 struct mbuf *
1671 key_sp2msg(const struct secpolicy *sp)
1672 {
1673 struct sadb_x_policy *xpl;
1674 int tlen;
1675 char *p;
1676 struct mbuf *m;
1677
1678 KASSERT(sp != NULL);
1679
1680 tlen = key_getspreqmsglen(sp);
1681
1682 m = key_alloc_mbuf(tlen);
1683 if (!m || m->m_next) { /*XXX*/
1684 if (m)
1685 m_freem(m);
1686 return NULL;
1687 }
1688
1689 m->m_len = tlen;
1690 m->m_next = NULL;
1691 xpl = mtod(m, struct sadb_x_policy *);
1692 memset(xpl, 0, tlen);
1693
1694 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1695 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1696 xpl->sadb_x_policy_type = sp->policy;
1697 xpl->sadb_x_policy_dir = sp->spidx.dir;
1698 xpl->sadb_x_policy_id = sp->id;
1699 p = (char *)xpl + sizeof(*xpl);
1700
1701 /* if is the policy for ipsec ? */
1702 if (sp->policy == IPSEC_POLICY_IPSEC) {
1703 struct sadb_x_ipsecrequest *xisr;
1704 struct ipsecrequest *isr;
1705
1706 for (isr = sp->req; isr != NULL; isr = isr->next) {
1707
1708 xisr = (struct sadb_x_ipsecrequest *)p;
1709
1710 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1711 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1712 xisr->sadb_x_ipsecrequest_level = isr->level;
1713 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1714
1715 p += sizeof(*xisr);
1716 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1717 p += isr->saidx.src.sa.sa_len;
1718 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1719 p += isr->saidx.src.sa.sa_len;
1720
1721 xisr->sadb_x_ipsecrequest_len =
1722 PFKEY_ALIGN8(sizeof(*xisr)
1723 + isr->saidx.src.sa.sa_len
1724 + isr->saidx.dst.sa.sa_len);
1725 }
1726 }
1727
1728 return m;
1729 }
1730
1731 /* m will not be freed nor modified */
1732 static struct mbuf *
1733 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1734 int ndeep, int nitem, ...)
1735 {
1736 va_list ap;
1737 int idx;
1738 int i;
1739 struct mbuf *result = NULL, *n;
1740 int len;
1741
1742 KASSERT(m != NULL);
1743 KASSERT(mhp != NULL);
1744
1745 va_start(ap, nitem);
1746 for (i = 0; i < nitem; i++) {
1747 idx = va_arg(ap, int);
1748 if (idx < 0 || idx > SADB_EXT_MAX)
1749 goto fail;
1750 /* don't attempt to pull empty extension */
1751 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1752 continue;
1753 if (idx != SADB_EXT_RESERVED &&
1754 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1755 continue;
1756
1757 if (idx == SADB_EXT_RESERVED) {
1758 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1759 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1760 MGETHDR(n, M_DONTWAIT, MT_DATA);
1761 if (!n)
1762 goto fail;
1763 n->m_len = len;
1764 n->m_next = NULL;
1765 m_copydata(m, 0, sizeof(struct sadb_msg),
1766 mtod(n, void *));
1767 } else if (i < ndeep) {
1768 len = mhp->extlen[idx];
1769 n = key_alloc_mbuf(len);
1770 if (!n || n->m_next) { /*XXX*/
1771 if (n)
1772 m_freem(n);
1773 goto fail;
1774 }
1775 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1776 mtod(n, void *));
1777 } else {
1778 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1779 M_DONTWAIT);
1780 }
1781 if (n == NULL)
1782 goto fail;
1783
1784 if (result)
1785 m_cat(result, n);
1786 else
1787 result = n;
1788 }
1789 va_end(ap);
1790
1791 if (result && (result->m_flags & M_PKTHDR) != 0) {
1792 result->m_pkthdr.len = 0;
1793 for (n = result; n; n = n->m_next)
1794 result->m_pkthdr.len += n->m_len;
1795 }
1796
1797 return result;
1798
1799 fail:
1800 va_end(ap);
1801 m_freem(result);
1802 return NULL;
1803 }
1804
1805 /*
1806 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1807 * add an entry to SP database, when received
1808 * <base, address(SD), (lifetime(H),) policy>
1809 * from the user(?).
1810 * Adding to SP database,
1811 * and send
1812 * <base, address(SD), (lifetime(H),) policy>
1813 * to the socket which was send.
1814 *
1815 * SPDADD set a unique policy entry.
1816 * SPDSETIDX like SPDADD without a part of policy requests.
1817 * SPDUPDATE replace a unique policy entry.
1818 *
1819 * m will always be freed.
1820 */
1821 static int
1822 key_spdadd(struct socket *so, struct mbuf *m,
1823 const struct sadb_msghdr *mhp)
1824 {
1825 const struct sadb_address *src0, *dst0;
1826 const struct sadb_x_policy *xpl0;
1827 struct sadb_x_policy *xpl;
1828 const struct sadb_lifetime *lft = NULL;
1829 struct secpolicyindex spidx;
1830 struct secpolicy *newsp;
1831 int error;
1832
1833 KASSERT(so != NULL);
1834 KASSERT(m != NULL);
1835 KASSERT(mhp != NULL);
1836 KASSERT(mhp->msg != NULL);
1837
1838 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1839 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1840 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1841 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1842 return key_senderror(so, m, EINVAL);
1843 }
1844 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1845 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1846 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1847 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1848 return key_senderror(so, m, EINVAL);
1849 }
1850 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1851 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1852 < sizeof(struct sadb_lifetime)) {
1853 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1854 return key_senderror(so, m, EINVAL);
1855 }
1856 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1857 }
1858
1859 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1860 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1861 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1862
1863 /* make secindex */
1864 /* XXX boundary check against sa_len */
1865 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1866 src0 + 1,
1867 dst0 + 1,
1868 src0->sadb_address_prefixlen,
1869 dst0->sadb_address_prefixlen,
1870 src0->sadb_address_proto,
1871 &spidx);
1872
1873 /* checking the direciton. */
1874 switch (xpl0->sadb_x_policy_dir) {
1875 case IPSEC_DIR_INBOUND:
1876 case IPSEC_DIR_OUTBOUND:
1877 break;
1878 default:
1879 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1880 mhp->msg->sadb_msg_errno = EINVAL;
1881 return 0;
1882 }
1883
1884 /* check policy */
1885 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1886 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1887 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1888 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1889 return key_senderror(so, m, EINVAL);
1890 }
1891
1892 /* policy requests are mandatory when action is ipsec. */
1893 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1894 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1895 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1896 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1897 return key_senderror(so, m, EINVAL);
1898 }
1899
1900 /*
1901 * checking there is SP already or not.
1902 * SPDUPDATE doesn't depend on whether there is a SP or not.
1903 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1904 * then error.
1905 */
1906 newsp = key_getsp(&spidx);
1907 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1908 if (newsp) {
1909 key_sp_dead(newsp);
1910 key_sp_unlink(newsp); /* XXX jrs ordering */
1911 KEY_FREESP(&newsp);
1912 newsp = NULL;
1913 }
1914 } else {
1915 if (newsp != NULL) {
1916 KEY_FREESP(&newsp);
1917 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1918 return key_senderror(so, m, EEXIST);
1919 }
1920 }
1921
1922 /* allocation new SP entry */
1923 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1924 return key_senderror(so, m, error);
1925 }
1926
1927 if ((newsp->id = key_getnewspid()) == 0) {
1928 KFREE(newsp);
1929 return key_senderror(so, m, ENOBUFS);
1930 }
1931
1932 /* XXX boundary check against sa_len */
1933 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1934 src0 + 1,
1935 dst0 + 1,
1936 src0->sadb_address_prefixlen,
1937 dst0->sadb_address_prefixlen,
1938 src0->sadb_address_proto,
1939 &newsp->spidx);
1940
1941 /* sanity check on addr pair */
1942 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1943 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1944 KFREE(newsp);
1945 return key_senderror(so, m, EINVAL);
1946 }
1947 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1948 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1949 KFREE(newsp);
1950 return key_senderror(so, m, EINVAL);
1951 }
1952
1953 newsp->created = time_uptime;
1954 newsp->lastused = newsp->created;
1955 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1956 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1957
1958 newsp->refcnt = 1; /* do not reclaim until I say I do */
1959 newsp->state = IPSEC_SPSTATE_ALIVE;
1960 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1961
1962 /* delete the entry in spacqtree */
1963 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1964 struct secspacq *spacq;
1965 if ((spacq = key_getspacq(&spidx)) != NULL) {
1966 /* reset counter in order to deletion by timehandler. */
1967 spacq->created = time_uptime;
1968 spacq->count = 0;
1969 }
1970 }
1971
1972 /* Invalidate all cached SPD pointers in the PCBs. */
1973 ipsec_invalpcbcacheall();
1974
1975 #if defined(GATEWAY)
1976 /* Invalidate the ipflow cache, as well. */
1977 ipflow_invalidate_all(0);
1978 #ifdef INET6
1979 if (in6_present)
1980 ip6flow_invalidate_all(0);
1981 #endif /* INET6 */
1982 #endif /* GATEWAY */
1983
1984 {
1985 struct mbuf *n, *mpolicy;
1986 struct sadb_msg *newmsg;
1987 int off;
1988
1989 /* create new sadb_msg to reply. */
1990 if (lft) {
1991 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1992 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1993 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1994 } else {
1995 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1996 SADB_X_EXT_POLICY,
1997 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1998 }
1999 if (!n)
2000 return key_senderror(so, m, ENOBUFS);
2001
2002 if (n->m_len < sizeof(*newmsg)) {
2003 n = m_pullup(n, sizeof(*newmsg));
2004 if (!n)
2005 return key_senderror(so, m, ENOBUFS);
2006 }
2007 newmsg = mtod(n, struct sadb_msg *);
2008 newmsg->sadb_msg_errno = 0;
2009 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2010
2011 off = 0;
2012 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2013 sizeof(*xpl), &off);
2014 if (mpolicy == NULL) {
2015 /* n is already freed */
2016 return key_senderror(so, m, ENOBUFS);
2017 }
2018 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2019 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2020 m_freem(n);
2021 return key_senderror(so, m, EINVAL);
2022 }
2023 xpl->sadb_x_policy_id = newsp->id;
2024
2025 m_freem(m);
2026 key_update_used();
2027 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2028 }
2029 }
2030
2031 /*
2032 * get new policy id.
2033 * OUT:
2034 * 0: failure.
2035 * others: success.
2036 */
2037 static u_int32_t
2038 key_getnewspid(void)
2039 {
2040 u_int32_t newid = 0;
2041 int count = key_spi_trycnt; /* XXX */
2042 struct secpolicy *sp;
2043
2044 /* when requesting to allocate spi ranged */
2045 while (count--) {
2046 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2047
2048 if ((sp = key_getspbyid(newid)) == NULL)
2049 break;
2050
2051 KEY_FREESP(&sp);
2052 }
2053
2054 if (count == 0 || newid == 0) {
2055 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2056 return 0;
2057 }
2058
2059 return newid;
2060 }
2061
2062 /*
2063 * SADB_SPDDELETE processing
2064 * receive
2065 * <base, address(SD), policy(*)>
2066 * from the user(?), and set SADB_SASTATE_DEAD,
2067 * and send,
2068 * <base, address(SD), policy(*)>
2069 * to the ikmpd.
2070 * policy(*) including direction of policy.
2071 *
2072 * m will always be freed.
2073 */
2074 static int
2075 key_spddelete(struct socket *so, struct mbuf *m,
2076 const struct sadb_msghdr *mhp)
2077 {
2078 struct sadb_address *src0, *dst0;
2079 struct sadb_x_policy *xpl0;
2080 struct secpolicyindex spidx;
2081 struct secpolicy *sp;
2082
2083 KASSERT(so != NULL);
2084 KASSERT(m != NULL);
2085 KASSERT(mhp != NULL);
2086 KASSERT(mhp->msg != NULL);
2087
2088 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2089 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2090 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2091 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2092 return key_senderror(so, m, EINVAL);
2093 }
2094 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2095 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2096 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2097 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2098 return key_senderror(so, m, EINVAL);
2099 }
2100
2101 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2102 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2103 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2104
2105 /* make secindex */
2106 /* XXX boundary check against sa_len */
2107 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2108 src0 + 1,
2109 dst0 + 1,
2110 src0->sadb_address_prefixlen,
2111 dst0->sadb_address_prefixlen,
2112 src0->sadb_address_proto,
2113 &spidx);
2114
2115 /* checking the direciton. */
2116 switch (xpl0->sadb_x_policy_dir) {
2117 case IPSEC_DIR_INBOUND:
2118 case IPSEC_DIR_OUTBOUND:
2119 break;
2120 default:
2121 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2122 return key_senderror(so, m, EINVAL);
2123 }
2124
2125 /* Is there SP in SPD ? */
2126 if ((sp = key_getsp(&spidx)) == NULL) {
2127 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2128 return key_senderror(so, m, EINVAL);
2129 }
2130
2131 /* save policy id to buffer to be returned. */
2132 xpl0->sadb_x_policy_id = sp->id;
2133
2134 key_sp_dead(sp);
2135 key_sp_unlink(sp); /* XXX jrs ordering */
2136 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2137
2138 /* Invalidate all cached SPD pointers in the PCBs. */
2139 ipsec_invalpcbcacheall();
2140
2141 /* We're deleting policy; no need to invalidate the ipflow cache. */
2142
2143 {
2144 struct mbuf *n;
2145 struct sadb_msg *newmsg;
2146
2147 /* create new sadb_msg to reply. */
2148 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2149 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2150 if (!n)
2151 return key_senderror(so, m, ENOBUFS);
2152
2153 newmsg = mtod(n, struct sadb_msg *);
2154 newmsg->sadb_msg_errno = 0;
2155 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2156
2157 m_freem(m);
2158 key_update_used();
2159 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2160 }
2161 }
2162
2163 /*
2164 * SADB_SPDDELETE2 processing
2165 * receive
2166 * <base, policy(*)>
2167 * from the user(?), and set SADB_SASTATE_DEAD,
2168 * and send,
2169 * <base, policy(*)>
2170 * to the ikmpd.
2171 * policy(*) including direction of policy.
2172 *
2173 * m will always be freed.
2174 */
2175 static int
2176 key_spddelete2(struct socket *so, struct mbuf *m,
2177 const struct sadb_msghdr *mhp)
2178 {
2179 u_int32_t id;
2180 struct secpolicy *sp;
2181
2182 KASSERT(so != NULL);
2183 KASSERT(m != NULL);
2184 KASSERT(mhp != NULL);
2185 KASSERT(mhp->msg != NULL);
2186
2187 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2188 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2189 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2190 key_senderror(so, m, EINVAL);
2191 return 0;
2192 }
2193
2194 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2195
2196 /* Is there SP in SPD ? */
2197 if ((sp = key_getspbyid(id)) == NULL) {
2198 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2199 return key_senderror(so, m, EINVAL);
2200 }
2201
2202 key_sp_dead(sp);
2203 key_sp_unlink(sp); /* XXX jrs ordering */
2204 KEY_FREESP(&sp); /* ref gained by key_getsp */
2205 sp = NULL;
2206
2207 /* Invalidate all cached SPD pointers in the PCBs. */
2208 ipsec_invalpcbcacheall();
2209
2210 /* We're deleting policy; no need to invalidate the ipflow cache. */
2211
2212 {
2213 struct mbuf *n, *nn;
2214 struct sadb_msg *newmsg;
2215 int off, len;
2216
2217 /* create new sadb_msg to reply. */
2218 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2219
2220 if (len > MCLBYTES)
2221 return key_senderror(so, m, ENOBUFS);
2222 MGETHDR(n, M_DONTWAIT, MT_DATA);
2223 if (n && len > MHLEN) {
2224 MCLGET(n, M_DONTWAIT);
2225 if ((n->m_flags & M_EXT) == 0) {
2226 m_freem(n);
2227 n = NULL;
2228 }
2229 }
2230 if (!n)
2231 return key_senderror(so, m, ENOBUFS);
2232
2233 n->m_len = len;
2234 n->m_next = NULL;
2235 off = 0;
2236
2237 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2238 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2239
2240 KASSERTMSG(off == len, "length inconsistency");
2241
2242 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2243 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2244 if (!n->m_next) {
2245 m_freem(n);
2246 return key_senderror(so, m, ENOBUFS);
2247 }
2248
2249 n->m_pkthdr.len = 0;
2250 for (nn = n; nn; nn = nn->m_next)
2251 n->m_pkthdr.len += nn->m_len;
2252
2253 newmsg = mtod(n, struct sadb_msg *);
2254 newmsg->sadb_msg_errno = 0;
2255 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2256
2257 m_freem(m);
2258 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2259 }
2260 }
2261
2262 /*
2263 * SADB_X_GET processing
2264 * receive
2265 * <base, policy(*)>
2266 * from the user(?),
2267 * and send,
2268 * <base, address(SD), policy>
2269 * to the ikmpd.
2270 * policy(*) including direction of policy.
2271 *
2272 * m will always be freed.
2273 */
2274 static int
2275 key_spdget(struct socket *so, struct mbuf *m,
2276 const struct sadb_msghdr *mhp)
2277 {
2278 u_int32_t id;
2279 struct secpolicy *sp;
2280 struct mbuf *n;
2281
2282 KASSERT(so != NULL);
2283 KASSERT(m != NULL);
2284 KASSERT(mhp != NULL);
2285 KASSERT(mhp->msg != NULL);
2286
2287 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2288 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2289 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2290 return key_senderror(so, m, EINVAL);
2291 }
2292
2293 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2294
2295 /* Is there SP in SPD ? */
2296 if ((sp = key_getspbyid(id)) == NULL) {
2297 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2298 return key_senderror(so, m, ENOENT);
2299 }
2300
2301 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2302 mhp->msg->sadb_msg_pid);
2303 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2304 if (n != NULL) {
2305 m_freem(m);
2306 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2307 } else
2308 return key_senderror(so, m, ENOBUFS);
2309 }
2310
2311 /*
2312 * SADB_X_SPDACQUIRE processing.
2313 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2314 * send
2315 * <base, policy(*)>
2316 * to KMD, and expect to receive
2317 * <base> with SADB_X_SPDACQUIRE if error occurred,
2318 * or
2319 * <base, policy>
2320 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2321 * policy(*) is without policy requests.
2322 *
2323 * 0 : succeed
2324 * others: error number
2325 */
2326 int
2327 key_spdacquire(const struct secpolicy *sp)
2328 {
2329 struct mbuf *result = NULL, *m;
2330 struct secspacq *newspacq;
2331 int error;
2332
2333 KASSERT(sp != NULL);
2334 KASSERTMSG(sp->req == NULL, "called but there is request");
2335 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2336 "policy mismathed. IPsec is expected");
2337
2338 /* Get an entry to check whether sent message or not. */
2339 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2340 if (key_blockacq_count < newspacq->count) {
2341 /* reset counter and do send message. */
2342 newspacq->count = 0;
2343 } else {
2344 /* increment counter and do nothing. */
2345 newspacq->count++;
2346 return 0;
2347 }
2348 } else {
2349 /* make new entry for blocking to send SADB_ACQUIRE. */
2350 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2351 return ENOBUFS;
2352
2353 /* add to acqtree */
2354 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2355 }
2356
2357 /* create new sadb_msg to reply. */
2358 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2359 if (!m) {
2360 error = ENOBUFS;
2361 goto fail;
2362 }
2363 result = m;
2364
2365 result->m_pkthdr.len = 0;
2366 for (m = result; m; m = m->m_next)
2367 result->m_pkthdr.len += m->m_len;
2368
2369 mtod(result, struct sadb_msg *)->sadb_msg_len =
2370 PFKEY_UNIT64(result->m_pkthdr.len);
2371
2372 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2373
2374 fail:
2375 if (result)
2376 m_freem(result);
2377 return error;
2378 }
2379
2380 /*
2381 * SADB_SPDFLUSH processing
2382 * receive
2383 * <base>
2384 * from the user, and free all entries in secpctree.
2385 * and send,
2386 * <base>
2387 * to the user.
2388 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2389 *
2390 * m will always be freed.
2391 */
2392 static int
2393 key_spdflush(struct socket *so, struct mbuf *m,
2394 const struct sadb_msghdr *mhp)
2395 {
2396 struct sadb_msg *newmsg;
2397 struct secpolicy *sp;
2398 u_int dir;
2399
2400 KASSERT(so != NULL);
2401 KASSERT(m != NULL);
2402 KASSERT(mhp != NULL);
2403 KASSERT(mhp->msg != NULL);
2404
2405 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2406 return key_senderror(so, m, EINVAL);
2407
2408 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2409 struct secpolicy * nextsp;
2410 for (sp = LIST_FIRST(&sptree[dir]);
2411 sp != NULL;
2412 sp = nextsp) {
2413
2414 nextsp = LIST_NEXT(sp, chain);
2415 if (sp->state == IPSEC_SPSTATE_DEAD)
2416 continue;
2417 key_sp_dead(sp);
2418 key_sp_unlink(sp);
2419 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2420 continue;
2421 }
2422 }
2423
2424 /* Invalidate all cached SPD pointers in the PCBs. */
2425 ipsec_invalpcbcacheall();
2426
2427 /* We're deleting policy; no need to invalidate the ipflow cache. */
2428
2429 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2430 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2431 return key_senderror(so, m, ENOBUFS);
2432 }
2433
2434 if (m->m_next)
2435 m_freem(m->m_next);
2436 m->m_next = NULL;
2437 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2438 newmsg = mtod(m, struct sadb_msg *);
2439 newmsg->sadb_msg_errno = 0;
2440 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2441
2442 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2443 }
2444
2445 static struct sockaddr key_src = {
2446 .sa_len = 2,
2447 .sa_family = PF_KEY,
2448 };
2449
2450 static struct mbuf *
2451 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2452 {
2453 struct secpolicy *sp;
2454 int cnt;
2455 u_int dir;
2456 struct mbuf *m, *n, *prev;
2457 int totlen;
2458
2459 *lenp = 0;
2460
2461 /* search SPD entry and get buffer size. */
2462 cnt = 0;
2463 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2464 LIST_FOREACH(sp, &sptree[dir], chain) {
2465 cnt++;
2466 }
2467 }
2468
2469 if (cnt == 0) {
2470 *errorp = ENOENT;
2471 return (NULL);
2472 }
2473
2474 m = NULL;
2475 prev = m;
2476 totlen = 0;
2477 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2478 LIST_FOREACH(sp, &sptree[dir], chain) {
2479 --cnt;
2480 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2481
2482 if (!n) {
2483 *errorp = ENOBUFS;
2484 if (m) m_freem(m);
2485 return (NULL);
2486 }
2487
2488 totlen += n->m_pkthdr.len;
2489 if (!m) {
2490 m = n;
2491 } else {
2492 prev->m_nextpkt = n;
2493 }
2494 prev = n;
2495 }
2496 }
2497
2498 *lenp = totlen;
2499 *errorp = 0;
2500 return (m);
2501 }
2502
2503 /*
2504 * SADB_SPDDUMP processing
2505 * receive
2506 * <base>
2507 * from the user, and dump all SP leaves
2508 * and send,
2509 * <base> .....
2510 * to the ikmpd.
2511 *
2512 * m will always be freed.
2513 */
2514 static int
2515 key_spddump(struct socket *so, struct mbuf *m0,
2516 const struct sadb_msghdr *mhp)
2517 {
2518 struct mbuf *n;
2519 int error, len;
2520 int ok, s;
2521 pid_t pid;
2522
2523 KASSERT(so != NULL);
2524 KASSERT(m0 != NULL);
2525 KASSERT(mhp != NULL);
2526 KASSERT(mhp->msg != NULL);
2527
2528 pid = mhp->msg->sadb_msg_pid;
2529 /*
2530 * If the requestor has insufficient socket-buffer space
2531 * for the entire chain, nobody gets any response to the DUMP.
2532 * XXX For now, only the requestor ever gets anything.
2533 * Moreover, if the requestor has any space at all, they receive
2534 * the entire chain, otherwise the request is refused with ENOBUFS.
2535 */
2536 if (sbspace(&so->so_rcv) <= 0) {
2537 return key_senderror(so, m0, ENOBUFS);
2538 }
2539
2540 s = splsoftnet();
2541 n = key_setspddump_chain(&error, &len, pid);
2542 splx(s);
2543
2544 if (n == NULL) {
2545 return key_senderror(so, m0, ENOENT);
2546 }
2547 {
2548 uint64_t *ps = PFKEY_STAT_GETREF();
2549 ps[PFKEY_STAT_IN_TOTAL]++;
2550 ps[PFKEY_STAT_IN_BYTES] += len;
2551 PFKEY_STAT_PUTREF();
2552 }
2553
2554 /*
2555 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2556 * The requestor receives either the entire chain, or an
2557 * error message with ENOBUFS.
2558 */
2559
2560 /*
2561 * sbappendchainwith record takes the chain of entries, one
2562 * packet-record per SPD entry, prepends the key_src sockaddr
2563 * to each packet-record, links the sockaddr mbufs into a new
2564 * list of records, then appends the entire resulting
2565 * list to the requesting socket.
2566 */
2567 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2568 n, SB_PRIO_ONESHOT_OVERFLOW);
2569
2570 if (!ok) {
2571 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2572 m_freem(n);
2573 return key_senderror(so, m0, ENOBUFS);
2574 }
2575
2576 m_freem(m0);
2577 return error;
2578 }
2579
2580 /*
2581 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2582 */
2583 static int
2584 key_nat_map(struct socket *so, struct mbuf *m,
2585 const struct sadb_msghdr *mhp)
2586 {
2587 struct sadb_x_nat_t_type *type;
2588 struct sadb_x_nat_t_port *sport;
2589 struct sadb_x_nat_t_port *dport;
2590 struct sadb_address *iaddr, *raddr;
2591 struct sadb_x_nat_t_frag *frag;
2592
2593 KASSERT(so != NULL);
2594 KASSERT(m != NULL);
2595 KASSERT(mhp != NULL);
2596 KASSERT(mhp->msg != NULL);
2597
2598 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2599 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2600 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2601 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2602 return key_senderror(so, m, EINVAL);
2603 }
2604 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2605 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2606 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2607 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2608 return key_senderror(so, m, EINVAL);
2609 }
2610
2611 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2612 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2613 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2614 return key_senderror(so, m, EINVAL);
2615 }
2616
2617 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2618 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2619 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2620 return key_senderror(so, m, EINVAL);
2621 }
2622
2623 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2624 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2625 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2626 return key_senderror(so, m, EINVAL);
2627 }
2628
2629 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2630 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2631 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2632 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2633 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2634 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2635
2636 /*
2637 * XXX handle that, it should also contain a SA, or anything
2638 * that enable to update the SA information.
2639 */
2640
2641 return 0;
2642 }
2643
2644 static struct mbuf *
2645 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2646 {
2647 struct mbuf *result = NULL, *m;
2648
2649 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2650 if (!m)
2651 goto fail;
2652 result = m;
2653
2654 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2655 &sp->spidx.src.sa, sp->spidx.prefs,
2656 sp->spidx.ul_proto);
2657 if (!m)
2658 goto fail;
2659 m_cat(result, m);
2660
2661 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2662 &sp->spidx.dst.sa, sp->spidx.prefd,
2663 sp->spidx.ul_proto);
2664 if (!m)
2665 goto fail;
2666 m_cat(result, m);
2667
2668 m = key_sp2msg(sp);
2669 if (!m)
2670 goto fail;
2671 m_cat(result, m);
2672
2673 if ((result->m_flags & M_PKTHDR) == 0)
2674 goto fail;
2675
2676 if (result->m_len < sizeof(struct sadb_msg)) {
2677 result = m_pullup(result, sizeof(struct sadb_msg));
2678 if (result == NULL)
2679 goto fail;
2680 }
2681
2682 result->m_pkthdr.len = 0;
2683 for (m = result; m; m = m->m_next)
2684 result->m_pkthdr.len += m->m_len;
2685
2686 mtod(result, struct sadb_msg *)->sadb_msg_len =
2687 PFKEY_UNIT64(result->m_pkthdr.len);
2688
2689 return result;
2690
2691 fail:
2692 m_freem(result);
2693 return NULL;
2694 }
2695
2696 /*
2697 * get PFKEY message length for security policy and request.
2698 */
2699 static u_int
2700 key_getspreqmsglen(const struct secpolicy *sp)
2701 {
2702 u_int tlen;
2703
2704 tlen = sizeof(struct sadb_x_policy);
2705
2706 /* if is the policy for ipsec ? */
2707 if (sp->policy != IPSEC_POLICY_IPSEC)
2708 return tlen;
2709
2710 /* get length of ipsec requests */
2711 {
2712 const struct ipsecrequest *isr;
2713 int len;
2714
2715 for (isr = sp->req; isr != NULL; isr = isr->next) {
2716 len = sizeof(struct sadb_x_ipsecrequest)
2717 + isr->saidx.src.sa.sa_len
2718 + isr->saidx.dst.sa.sa_len;
2719
2720 tlen += PFKEY_ALIGN8(len);
2721 }
2722 }
2723
2724 return tlen;
2725 }
2726
2727 /*
2728 * SADB_SPDEXPIRE processing
2729 * send
2730 * <base, address(SD), lifetime(CH), policy>
2731 * to KMD by PF_KEY.
2732 *
2733 * OUT: 0 : succeed
2734 * others : error number
2735 */
2736 static int
2737 key_spdexpire(struct secpolicy *sp)
2738 {
2739 int s;
2740 struct mbuf *result = NULL, *m;
2741 int len;
2742 int error = -1;
2743 struct sadb_lifetime *lt;
2744
2745 /* XXX: Why do we lock ? */
2746 s = splsoftnet(); /*called from softclock()*/
2747
2748 KASSERT(sp != NULL);
2749
2750 /* set msg header */
2751 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2752 if (!m) {
2753 error = ENOBUFS;
2754 goto fail;
2755 }
2756 result = m;
2757
2758 /* create lifetime extension (current and hard) */
2759 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2760 m = key_alloc_mbuf(len);
2761 if (!m || m->m_next) { /*XXX*/
2762 if (m)
2763 m_freem(m);
2764 error = ENOBUFS;
2765 goto fail;
2766 }
2767 memset(mtod(m, void *), 0, len);
2768 lt = mtod(m, struct sadb_lifetime *);
2769 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2770 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2771 lt->sadb_lifetime_allocations = 0;
2772 lt->sadb_lifetime_bytes = 0;
2773 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2774 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2775 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2776 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2777 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2778 lt->sadb_lifetime_allocations = 0;
2779 lt->sadb_lifetime_bytes = 0;
2780 lt->sadb_lifetime_addtime = sp->lifetime;
2781 lt->sadb_lifetime_usetime = sp->validtime;
2782 m_cat(result, m);
2783
2784 /* set sadb_address for source */
2785 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2786 &sp->spidx.src.sa,
2787 sp->spidx.prefs, sp->spidx.ul_proto);
2788 if (!m) {
2789 error = ENOBUFS;
2790 goto fail;
2791 }
2792 m_cat(result, m);
2793
2794 /* set sadb_address for destination */
2795 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2796 &sp->spidx.dst.sa,
2797 sp->spidx.prefd, sp->spidx.ul_proto);
2798 if (!m) {
2799 error = ENOBUFS;
2800 goto fail;
2801 }
2802 m_cat(result, m);
2803
2804 /* set secpolicy */
2805 m = key_sp2msg(sp);
2806 if (!m) {
2807 error = ENOBUFS;
2808 goto fail;
2809 }
2810 m_cat(result, m);
2811
2812 if ((result->m_flags & M_PKTHDR) == 0) {
2813 error = EINVAL;
2814 goto fail;
2815 }
2816
2817 if (result->m_len < sizeof(struct sadb_msg)) {
2818 result = m_pullup(result, sizeof(struct sadb_msg));
2819 if (result == NULL) {
2820 error = ENOBUFS;
2821 goto fail;
2822 }
2823 }
2824
2825 result->m_pkthdr.len = 0;
2826 for (m = result; m; m = m->m_next)
2827 result->m_pkthdr.len += m->m_len;
2828
2829 mtod(result, struct sadb_msg *)->sadb_msg_len =
2830 PFKEY_UNIT64(result->m_pkthdr.len);
2831
2832 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2833
2834 fail:
2835 if (result)
2836 m_freem(result);
2837 splx(s);
2838 return error;
2839 }
2840
2841 /* %%% SAD management */
2842 /*
2843 * allocating a memory for new SA head, and copy from the values of mhp.
2844 * OUT: NULL : failure due to the lack of memory.
2845 * others : pointer to new SA head.
2846 */
2847 static struct secashead *
2848 key_newsah(const struct secasindex *saidx)
2849 {
2850 struct secashead *newsah;
2851
2852 KASSERT(saidx != NULL);
2853
2854 newsah = (struct secashead *)
2855 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2856 if (newsah != NULL) {
2857 int i;
2858 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2859 LIST_INIT(&newsah->savtree[i]);
2860 newsah->saidx = *saidx;
2861
2862 /* add to saidxtree */
2863 newsah->state = SADB_SASTATE_MATURE;
2864 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2865 }
2866 return(newsah);
2867 }
2868
2869 /*
2870 * delete SA index and all SA registerd.
2871 */
2872 static void
2873 key_delsah(struct secashead *sah)
2874 {
2875 struct secasvar *sav, *nextsav;
2876 u_int stateidx, state;
2877 int s;
2878 int zombie = 0;
2879
2880 KASSERT(sah != NULL);
2881
2882 s = splsoftnet(); /*called from softclock()*/
2883
2884 /* searching all SA registerd in the secindex. */
2885 for (stateidx = 0;
2886 stateidx < _ARRAYLEN(saorder_state_any);
2887 stateidx++) {
2888
2889 state = saorder_state_any[stateidx];
2890 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2891 sav != NULL;
2892 sav = nextsav) {
2893
2894 nextsav = LIST_NEXT(sav, chain);
2895
2896 if (sav->refcnt == 0) {
2897 /* sanity check */
2898 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2899 KEY_FREESAV(&sav);
2900 } else {
2901 /* give up to delete this sa */
2902 zombie++;
2903 }
2904 }
2905 }
2906
2907 /* don't delete sah only if there are savs. */
2908 if (zombie) {
2909 splx(s);
2910 return;
2911 }
2912
2913 rtcache_free(&sah->sa_route);
2914
2915 /* remove from tree of SA index */
2916 if (__LIST_CHAINED(sah))
2917 LIST_REMOVE(sah, chain);
2918
2919 KFREE(sah);
2920
2921 splx(s);
2922 return;
2923 }
2924
2925 /*
2926 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2927 * and copy the values of mhp into new buffer.
2928 * When SAD message type is GETSPI:
2929 * to set sequence number from acq_seq++,
2930 * to set zero to SPI.
2931 * not to call key_setsava().
2932 * OUT: NULL : fail
2933 * others : pointer to new secasvar.
2934 *
2935 * does not modify mbuf. does not free mbuf on error.
2936 */
2937 static struct secasvar *
2938 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2939 struct secashead *sah, int *errp,
2940 const char* where, int tag)
2941 {
2942 struct secasvar *newsav;
2943 const struct sadb_sa *xsa;
2944
2945 KASSERT(m != NULL);
2946 KASSERT(mhp != NULL);
2947 KASSERT(mhp->msg != NULL);
2948 KASSERT(sah != NULL);
2949
2950 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2951 if (newsav == NULL) {
2952 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2953 *errp = ENOBUFS;
2954 goto done;
2955 }
2956 memset(newsav, 0, sizeof(struct secasvar));
2957
2958 switch (mhp->msg->sadb_msg_type) {
2959 case SADB_GETSPI:
2960 newsav->spi = 0;
2961
2962 #ifdef IPSEC_DOSEQCHECK
2963 /* sync sequence number */
2964 if (mhp->msg->sadb_msg_seq == 0)
2965 newsav->seq =
2966 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2967 else
2968 #endif
2969 newsav->seq = mhp->msg->sadb_msg_seq;
2970 break;
2971
2972 case SADB_ADD:
2973 /* sanity check */
2974 if (mhp->ext[SADB_EXT_SA] == NULL) {
2975 KFREE(newsav), newsav = NULL;
2976 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2977 *errp = EINVAL;
2978 goto done;
2979 }
2980 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2981 newsav->spi = xsa->sadb_sa_spi;
2982 newsav->seq = mhp->msg->sadb_msg_seq;
2983 break;
2984 default:
2985 KFREE(newsav), newsav = NULL;
2986 *errp = EINVAL;
2987 goto done;
2988 }
2989
2990 /* copy sav values */
2991 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2992 *errp = key_setsaval(newsav, m, mhp);
2993 if (*errp) {
2994 KFREE(newsav), newsav = NULL;
2995 goto done;
2996 }
2997 }
2998
2999 /* reset created */
3000 newsav->created = time_uptime;
3001 newsav->pid = mhp->msg->sadb_msg_pid;
3002
3003 /* add to satree */
3004 newsav->sah = sah;
3005 newsav->refcnt = 1;
3006 newsav->state = SADB_SASTATE_LARVAL;
3007 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3008 secasvar, chain);
3009 done:
3010 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3011 "DP from %s:%u return SP:%p\n", where, tag, newsav);
3012
3013 return newsav;
3014 }
3015
3016 /*
3017 * free() SA variable entry.
3018 */
3019 static void
3020 key_delsav(struct secasvar *sav)
3021 {
3022
3023 KASSERT(sav != NULL);
3024 KASSERTMSG(sav->refcnt == 0,
3025 "reference count %u > 0", sav->refcnt);
3026
3027 /* remove from SA header */
3028 if (__LIST_CHAINED(sav))
3029 LIST_REMOVE(sav, chain);
3030
3031 /*
3032 * Cleanup xform state. Note that zeroize'ing causes the
3033 * keys to be cleared; otherwise we must do it ourself.
3034 */
3035 if (sav->tdb_xform != NULL) {
3036 sav->tdb_xform->xf_zeroize(sav);
3037 sav->tdb_xform = NULL;
3038 } else {
3039 if (sav->key_auth != NULL)
3040 explicit_memset(_KEYBUF(sav->key_auth), 0,
3041 _KEYLEN(sav->key_auth));
3042 if (sav->key_enc != NULL)
3043 explicit_memset(_KEYBUF(sav->key_enc), 0,
3044 _KEYLEN(sav->key_enc));
3045 }
3046 if (sav->key_auth != NULL) {
3047 KFREE(sav->key_auth);
3048 sav->key_auth = NULL;
3049 }
3050 if (sav->key_enc != NULL) {
3051 KFREE(sav->key_enc);
3052 sav->key_enc = NULL;
3053 }
3054 if (sav->replay != NULL) {
3055 KFREE(sav->replay);
3056 sav->replay = NULL;
3057 }
3058 if (sav->lft_c != NULL) {
3059 KFREE(sav->lft_c);
3060 sav->lft_c = NULL;
3061 }
3062 if (sav->lft_h != NULL) {
3063 KFREE(sav->lft_h);
3064 sav->lft_h = NULL;
3065 }
3066 if (sav->lft_s != NULL) {
3067 KFREE(sav->lft_s);
3068 sav->lft_s = NULL;
3069 }
3070
3071 KFREE(sav);
3072
3073 return;
3074 }
3075
3076 /*
3077 * search SAD.
3078 * OUT:
3079 * NULL : not found
3080 * others : found, pointer to a SA.
3081 */
3082 static struct secashead *
3083 key_getsah(const struct secasindex *saidx)
3084 {
3085 struct secashead *sah;
3086
3087 LIST_FOREACH(sah, &sahtree, chain) {
3088 if (sah->state == SADB_SASTATE_DEAD)
3089 continue;
3090 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3091 return sah;
3092 }
3093
3094 return NULL;
3095 }
3096
3097 /*
3098 * check not to be duplicated SPI.
3099 * NOTE: this function is too slow due to searching all SAD.
3100 * OUT:
3101 * NULL : not found
3102 * others : found, pointer to a SA.
3103 */
3104 static struct secasvar *
3105 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3106 {
3107 struct secashead *sah;
3108 struct secasvar *sav;
3109
3110 /* check address family */
3111 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3112 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3113 return NULL;
3114 }
3115
3116 /* check all SAD */
3117 LIST_FOREACH(sah, &sahtree, chain) {
3118 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3119 continue;
3120 sav = key_getsavbyspi(sah, spi);
3121 if (sav != NULL)
3122 return sav;
3123 }
3124
3125 return NULL;
3126 }
3127
3128 /*
3129 * search SAD litmited alive SA, protocol, SPI.
3130 * OUT:
3131 * NULL : not found
3132 * others : found, pointer to a SA.
3133 */
3134 static struct secasvar *
3135 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3136 {
3137 struct secasvar *sav;
3138 u_int stateidx, state;
3139
3140 /* search all status */
3141 for (stateidx = 0;
3142 stateidx < _ARRAYLEN(saorder_state_alive);
3143 stateidx++) {
3144
3145 state = saorder_state_alive[stateidx];
3146 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3147
3148 /* sanity check */
3149 if (sav->state != state) {
3150 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3151 "invalid sav->state (queue: %d SA: %d)\n",
3152 state, sav->state));
3153 continue;
3154 }
3155
3156 if (sav->spi == spi)
3157 return sav;
3158 }
3159 }
3160
3161 return NULL;
3162 }
3163
3164 /*
3165 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3166 * You must update these if need.
3167 * OUT: 0: success.
3168 * !0: failure.
3169 *
3170 * does not modify mbuf. does not free mbuf on error.
3171 */
3172 static int
3173 key_setsaval(struct secasvar *sav, struct mbuf *m,
3174 const struct sadb_msghdr *mhp)
3175 {
3176 int error = 0;
3177
3178 KASSERT(m != NULL);
3179 KASSERT(mhp != NULL);
3180 KASSERT(mhp->msg != NULL);
3181
3182 /* initialization */
3183 sav->replay = NULL;
3184 sav->key_auth = NULL;
3185 sav->key_enc = NULL;
3186 sav->lft_c = NULL;
3187 sav->lft_h = NULL;
3188 sav->lft_s = NULL;
3189 sav->tdb_xform = NULL; /* transform */
3190 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3191 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3192 sav->tdb_compalgxform = NULL; /* compression algorithm */
3193 sav->natt_type = 0;
3194 sav->esp_frag = 0;
3195
3196 /* SA */
3197 if (mhp->ext[SADB_EXT_SA] != NULL) {
3198 const struct sadb_sa *sa0;
3199
3200 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3201 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3202 error = EINVAL;
3203 goto fail;
3204 }
3205
3206 sav->alg_auth = sa0->sadb_sa_auth;
3207 sav->alg_enc = sa0->sadb_sa_encrypt;
3208 sav->flags = sa0->sadb_sa_flags;
3209
3210 /* replay window */
3211 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3212 sav->replay = (struct secreplay *)
3213 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3214 if (sav->replay == NULL) {
3215 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3216 error = ENOBUFS;
3217 goto fail;
3218 }
3219 if (sa0->sadb_sa_replay != 0)
3220 sav->replay->bitmap = (char*)(sav->replay+1);
3221 sav->replay->wsize = sa0->sadb_sa_replay;
3222 }
3223 }
3224
3225 /* Authentication keys */
3226 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3227 const struct sadb_key *key0;
3228 int len;
3229
3230 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3231 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3232
3233 error = 0;
3234 if (len < sizeof(*key0)) {
3235 error = EINVAL;
3236 goto fail;
3237 }
3238 switch (mhp->msg->sadb_msg_satype) {
3239 case SADB_SATYPE_AH:
3240 case SADB_SATYPE_ESP:
3241 case SADB_X_SATYPE_TCPSIGNATURE:
3242 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3243 sav->alg_auth != SADB_X_AALG_NULL)
3244 error = EINVAL;
3245 break;
3246 case SADB_X_SATYPE_IPCOMP:
3247 default:
3248 error = EINVAL;
3249 break;
3250 }
3251 if (error) {
3252 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3253 goto fail;
3254 }
3255
3256 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3257 if (sav->key_auth == NULL) {
3258 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3259 error = ENOBUFS;
3260 goto fail;
3261 }
3262 }
3263
3264 /* Encryption key */
3265 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3266 const struct sadb_key *key0;
3267 int len;
3268
3269 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3270 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3271
3272 error = 0;
3273 if (len < sizeof(*key0)) {
3274 error = EINVAL;
3275 goto fail;
3276 }
3277 switch (mhp->msg->sadb_msg_satype) {
3278 case SADB_SATYPE_ESP:
3279 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3280 sav->alg_enc != SADB_EALG_NULL) {
3281 error = EINVAL;
3282 break;
3283 }
3284 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3285 if (sav->key_enc == NULL) {
3286 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3287 error = ENOBUFS;
3288 goto fail;
3289 }
3290 break;
3291 case SADB_X_SATYPE_IPCOMP:
3292 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3293 error = EINVAL;
3294 sav->key_enc = NULL; /*just in case*/
3295 break;
3296 case SADB_SATYPE_AH:
3297 case SADB_X_SATYPE_TCPSIGNATURE:
3298 default:
3299 error = EINVAL;
3300 break;
3301 }
3302 if (error) {
3303 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3304 goto fail;
3305 }
3306 }
3307
3308 /* set iv */
3309 sav->ivlen = 0;
3310
3311 switch (mhp->msg->sadb_msg_satype) {
3312 case SADB_SATYPE_AH:
3313 error = xform_init(sav, XF_AH);
3314 break;
3315 case SADB_SATYPE_ESP:
3316 error = xform_init(sav, XF_ESP);
3317 break;
3318 case SADB_X_SATYPE_IPCOMP:
3319 error = xform_init(sav, XF_IPCOMP);
3320 break;
3321 case SADB_X_SATYPE_TCPSIGNATURE:
3322 error = xform_init(sav, XF_TCPSIGNATURE);
3323 break;
3324 }
3325 if (error) {
3326 ipseclog((LOG_DEBUG,
3327 "key_setsaval: unable to initialize SA type %u.\n",
3328 mhp->msg->sadb_msg_satype));
3329 goto fail;
3330 }
3331
3332 /* reset created */
3333 sav->created = time_uptime;
3334
3335 /* make lifetime for CURRENT */
3336 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3337 sizeof(struct sadb_lifetime));
3338 if (sav->lft_c == NULL) {
3339 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3340 error = ENOBUFS;
3341 goto fail;
3342 }
3343
3344 sav->lft_c->sadb_lifetime_len =
3345 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3346 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3347 sav->lft_c->sadb_lifetime_allocations = 0;
3348 sav->lft_c->sadb_lifetime_bytes = 0;
3349 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3350 sav->lft_c->sadb_lifetime_usetime = 0;
3351
3352 /* lifetimes for HARD and SOFT */
3353 {
3354 const struct sadb_lifetime *lft0;
3355
3356 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3357 if (lft0 != NULL) {
3358 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3359 error = EINVAL;
3360 goto fail;
3361 }
3362 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3363 sizeof(*lft0));
3364 if (sav->lft_h == NULL) {
3365 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3366 error = ENOBUFS;
3367 goto fail;
3368 }
3369 /* to be initialize ? */
3370 }
3371
3372 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3373 if (lft0 != NULL) {
3374 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3375 error = EINVAL;
3376 goto fail;
3377 }
3378 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3379 sizeof(*lft0));
3380 if (sav->lft_s == NULL) {
3381 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3382 error = ENOBUFS;
3383 goto fail;
3384 }
3385 /* to be initialize ? */
3386 }
3387 }
3388
3389 return 0;
3390
3391 fail:
3392 /* initialization */
3393 if (sav->replay != NULL) {
3394 KFREE(sav->replay);
3395 sav->replay = NULL;
3396 }
3397 if (sav->key_auth != NULL) {
3398 KFREE(sav->key_auth);
3399 sav->key_auth = NULL;
3400 }
3401 if (sav->key_enc != NULL) {
3402 KFREE(sav->key_enc);
3403 sav->key_enc = NULL;
3404 }
3405 if (sav->lft_c != NULL) {
3406 KFREE(sav->lft_c);
3407 sav->lft_c = NULL;
3408 }
3409 if (sav->lft_h != NULL) {
3410 KFREE(sav->lft_h);
3411 sav->lft_h = NULL;
3412 }
3413 if (sav->lft_s != NULL) {
3414 KFREE(sav->lft_s);
3415 sav->lft_s = NULL;
3416 }
3417
3418 return error;
3419 }
3420
3421 /*
3422 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3423 * OUT: 0: valid
3424 * other: errno
3425 */
3426 static int
3427 key_mature(struct secasvar *sav)
3428 {
3429 int error;
3430
3431 /* check SPI value */
3432 switch (sav->sah->saidx.proto) {
3433 case IPPROTO_ESP:
3434 case IPPROTO_AH:
3435 if (ntohl(sav->spi) <= 255) {
3436 ipseclog((LOG_DEBUG,
3437 "key_mature: illegal range of SPI %u.\n",
3438 (u_int32_t)ntohl(sav->spi)));
3439 return EINVAL;
3440 }
3441 break;
3442 }
3443
3444 /* check satype */
3445 switch (sav->sah->saidx.proto) {
3446 case IPPROTO_ESP:
3447 /* check flags */
3448 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3449 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3450 ipseclog((LOG_DEBUG, "key_mature: "
3451 "invalid flag (derived) given to old-esp.\n"));
3452 return EINVAL;
3453 }
3454 error = xform_init(sav, XF_ESP);
3455 break;
3456 case IPPROTO_AH:
3457 /* check flags */
3458 if (sav->flags & SADB_X_EXT_DERIV) {
3459 ipseclog((LOG_DEBUG, "key_mature: "
3460 "invalid flag (derived) given to AH SA.\n"));
3461 return EINVAL;
3462 }
3463 if (sav->alg_enc != SADB_EALG_NONE) {
3464 ipseclog((LOG_DEBUG, "key_mature: "
3465 "protocol and algorithm mismated.\n"));
3466 return(EINVAL);
3467 }
3468 error = xform_init(sav, XF_AH);
3469 break;
3470 case IPPROTO_IPCOMP:
3471 if (sav->alg_auth != SADB_AALG_NONE) {
3472 ipseclog((LOG_DEBUG, "key_mature: "
3473 "protocol and algorithm mismated.\n"));
3474 return(EINVAL);
3475 }
3476 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3477 && ntohl(sav->spi) >= 0x10000) {
3478 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3479 return(EINVAL);
3480 }
3481 error = xform_init(sav, XF_IPCOMP);
3482 break;
3483 case IPPROTO_TCP:
3484 if (sav->alg_enc != SADB_EALG_NONE) {
3485 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3486 "mismated.\n", __func__));
3487 return(EINVAL);
3488 }
3489 error = xform_init(sav, XF_TCPSIGNATURE);
3490 break;
3491 default:
3492 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3493 error = EPROTONOSUPPORT;
3494 break;
3495 }
3496 if (error == 0)
3497 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3498 return (error);
3499 }
3500
3501 /*
3502 * subroutine for SADB_GET and SADB_DUMP.
3503 */
3504 static struct mbuf *
3505 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3506 u_int32_t seq, u_int32_t pid)
3507 {
3508 struct mbuf *result = NULL, *tres = NULL, *m;
3509 int l = 0;
3510 int i;
3511 void *p;
3512 struct sadb_lifetime lt;
3513 int dumporder[] = {
3514 SADB_EXT_SA, SADB_X_EXT_SA2,
3515 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3516 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3517 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3518 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3519 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3520 SADB_X_EXT_NAT_T_TYPE,
3521 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3522 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3523 SADB_X_EXT_NAT_T_FRAG,
3524
3525 };
3526
3527 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3528 if (m == NULL)
3529 goto fail;
3530 result = m;
3531
3532 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3533 m = NULL;
3534 p = NULL;
3535 switch (dumporder[i]) {
3536 case SADB_EXT_SA:
3537 m = key_setsadbsa(sav);
3538 break;
3539
3540 case SADB_X_EXT_SA2:
3541 m = key_setsadbxsa2(sav->sah->saidx.mode,
3542 sav->replay ? sav->replay->count : 0,
3543 sav->sah->saidx.reqid);
3544 break;
3545
3546 case SADB_EXT_ADDRESS_SRC:
3547 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3548 &sav->sah->saidx.src.sa,
3549 FULLMASK, IPSEC_ULPROTO_ANY);
3550 break;
3551
3552 case SADB_EXT_ADDRESS_DST:
3553 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3554 &sav->sah->saidx.dst.sa,
3555 FULLMASK, IPSEC_ULPROTO_ANY);
3556 break;
3557
3558 case SADB_EXT_KEY_AUTH:
3559 if (!sav->key_auth)
3560 continue;
3561 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3562 p = sav->key_auth;
3563 break;
3564
3565 case SADB_EXT_KEY_ENCRYPT:
3566 if (!sav->key_enc)
3567 continue;
3568 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3569 p = sav->key_enc;
3570 break;
3571
3572 case SADB_EXT_LIFETIME_CURRENT:
3573 if (!sav->lft_c)
3574 continue;
3575 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3576 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3577 lt.sadb_lifetime_addtime += time_second - time_uptime;
3578 lt.sadb_lifetime_usetime += time_second - time_uptime;
3579 p = <
3580 break;
3581
3582 case SADB_EXT_LIFETIME_HARD:
3583 if (!sav->lft_h)
3584 continue;
3585 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3586 p = sav->lft_h;
3587 break;
3588
3589 case SADB_EXT_LIFETIME_SOFT:
3590 if (!sav->lft_s)
3591 continue;
3592 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3593 p = sav->lft_s;
3594 break;
3595
3596 case SADB_X_EXT_NAT_T_TYPE:
3597 m = key_setsadbxtype(sav->natt_type);
3598 break;
3599
3600 case SADB_X_EXT_NAT_T_DPORT:
3601 if (sav->natt_type == 0)
3602 continue;
3603 m = key_setsadbxport(
3604 key_portfromsaddr(&sav->sah->saidx.dst),
3605 SADB_X_EXT_NAT_T_DPORT);
3606 break;
3607
3608 case SADB_X_EXT_NAT_T_SPORT:
3609 if (sav->natt_type == 0)
3610 continue;
3611 m = key_setsadbxport(
3612 key_portfromsaddr(&sav->sah->saidx.src),
3613 SADB_X_EXT_NAT_T_SPORT);
3614 break;
3615
3616 case SADB_X_EXT_NAT_T_FRAG:
3617 /* don't send frag info if not set */
3618 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3619 continue;
3620 m = key_setsadbxfrag(sav->esp_frag);
3621 break;
3622
3623 case SADB_X_EXT_NAT_T_OAI:
3624 case SADB_X_EXT_NAT_T_OAR:
3625 continue;
3626
3627 case SADB_EXT_ADDRESS_PROXY:
3628 case SADB_EXT_IDENTITY_SRC:
3629 case SADB_EXT_IDENTITY_DST:
3630 /* XXX: should we brought from SPD ? */
3631 case SADB_EXT_SENSITIVITY:
3632 default:
3633 continue;
3634 }
3635
3636 KASSERT(!(m && p));
3637 if (!m && !p)
3638 goto fail;
3639 if (p && tres) {
3640 M_PREPEND(tres, l, M_DONTWAIT);
3641 if (!tres)
3642 goto fail;
3643 memcpy(mtod(tres, void *), p, l);
3644 continue;
3645 }
3646 if (p) {
3647 m = key_alloc_mbuf(l);
3648 if (!m)
3649 goto fail;
3650 m_copyback(m, 0, l, p);
3651 }
3652
3653 if (tres)
3654 m_cat(m, tres);
3655 tres = m;
3656 }
3657
3658 m_cat(result, tres);
3659 tres = NULL; /* avoid free on error below */
3660
3661 if (result->m_len < sizeof(struct sadb_msg)) {
3662 result = m_pullup(result, sizeof(struct sadb_msg));
3663 if (result == NULL)
3664 goto fail;
3665 }
3666
3667 result->m_pkthdr.len = 0;
3668 for (m = result; m; m = m->m_next)
3669 result->m_pkthdr.len += m->m_len;
3670
3671 mtod(result, struct sadb_msg *)->sadb_msg_len =
3672 PFKEY_UNIT64(result->m_pkthdr.len);
3673
3674 return result;
3675
3676 fail:
3677 m_freem(result);
3678 m_freem(tres);
3679 return NULL;
3680 }
3681
3682
3683 /*
3684 * set a type in sadb_x_nat_t_type
3685 */
3686 static struct mbuf *
3687 key_setsadbxtype(u_int16_t type)
3688 {
3689 struct mbuf *m;
3690 size_t len;
3691 struct sadb_x_nat_t_type *p;
3692
3693 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3694
3695 m = key_alloc_mbuf(len);
3696 if (!m || m->m_next) { /*XXX*/
3697 if (m)
3698 m_freem(m);
3699 return NULL;
3700 }
3701
3702 p = mtod(m, struct sadb_x_nat_t_type *);
3703
3704 memset(p, 0, len);
3705 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3706 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3707 p->sadb_x_nat_t_type_type = type;
3708
3709 return m;
3710 }
3711 /*
3712 * set a port in sadb_x_nat_t_port. port is in network order
3713 */
3714 static struct mbuf *
3715 key_setsadbxport(u_int16_t port, u_int16_t type)
3716 {
3717 struct mbuf *m;
3718 size_t len;
3719 struct sadb_x_nat_t_port *p;
3720
3721 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3722
3723 m = key_alloc_mbuf(len);
3724 if (!m || m->m_next) { /*XXX*/
3725 if (m)
3726 m_freem(m);
3727 return NULL;
3728 }
3729
3730 p = mtod(m, struct sadb_x_nat_t_port *);
3731
3732 memset(p, 0, len);
3733 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3734 p->sadb_x_nat_t_port_exttype = type;
3735 p->sadb_x_nat_t_port_port = port;
3736
3737 return m;
3738 }
3739
3740 /*
3741 * set fragmentation info in sadb_x_nat_t_frag
3742 */
3743 static struct mbuf *
3744 key_setsadbxfrag(u_int16_t flen)
3745 {
3746 struct mbuf *m;
3747 size_t len;
3748 struct sadb_x_nat_t_frag *p;
3749
3750 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3751
3752 m = key_alloc_mbuf(len);
3753 if (!m || m->m_next) { /*XXX*/
3754 if (m)
3755 m_freem(m);
3756 return NULL;
3757 }
3758
3759 p = mtod(m, struct sadb_x_nat_t_frag *);
3760
3761 memset(p, 0, len);
3762 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3763 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3764 p->sadb_x_nat_t_frag_fraglen = flen;
3765
3766 return m;
3767 }
3768
3769 /*
3770 * Get port from sockaddr, port is in network order
3771 */
3772 u_int16_t
3773 key_portfromsaddr(const union sockaddr_union *saddr)
3774 {
3775 u_int16_t port;
3776
3777 switch (saddr->sa.sa_family) {
3778 case AF_INET: {
3779 port = saddr->sin.sin_port;
3780 break;
3781 }
3782 #ifdef INET6
3783 case AF_INET6: {
3784 port = saddr->sin6.sin6_port;
3785 break;
3786 }
3787 #endif
3788 default:
3789 printf("%s: unexpected address family\n", __func__);
3790 port = 0;
3791 break;
3792 }
3793
3794 return port;
3795 }
3796
3797
3798 /*
3799 * Set port is struct sockaddr. port is in network order
3800 */
3801 static void
3802 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3803 {
3804 switch (saddr->sa.sa_family) {
3805 case AF_INET: {
3806 saddr->sin.sin_port = port;
3807 break;
3808 }
3809 #ifdef INET6
3810 case AF_INET6: {
3811 saddr->sin6.sin6_port = port;
3812 break;
3813 }
3814 #endif
3815 default:
3816 printf("%s: unexpected address family %d\n", __func__,
3817 saddr->sa.sa_family);
3818 break;
3819 }
3820
3821 return;
3822 }
3823
3824 /*
3825 * Safety check sa_len
3826 */
3827 static int
3828 key_checksalen(const union sockaddr_union *saddr)
3829 {
3830 switch (saddr->sa.sa_family) {
3831 case AF_INET:
3832 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3833 return -1;
3834 break;
3835 #ifdef INET6
3836 case AF_INET6:
3837 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3838 return -1;
3839 break;
3840 #endif
3841 default:
3842 printf("%s: unexpected sa_family %d\n", __func__,
3843 saddr->sa.sa_family);
3844 return -1;
3845 break;
3846 }
3847 return 0;
3848 }
3849
3850
3851 /*
3852 * set data into sadb_msg.
3853 */
3854 static struct mbuf *
3855 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3856 u_int32_t seq, pid_t pid, u_int16_t reserved)
3857 {
3858 struct mbuf *m;
3859 struct sadb_msg *p;
3860 int len;
3861
3862 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3863 if (len > MCLBYTES)
3864 return NULL;
3865 MGETHDR(m, M_DONTWAIT, MT_DATA);
3866 if (m && len > MHLEN) {
3867 MCLGET(m, M_DONTWAIT);
3868 if ((m->m_flags & M_EXT) == 0) {
3869 m_freem(m);
3870 m = NULL;
3871 }
3872 }
3873 if (!m)
3874 return NULL;
3875 m->m_pkthdr.len = m->m_len = len;
3876 m->m_next = NULL;
3877
3878 p = mtod(m, struct sadb_msg *);
3879
3880 memset(p, 0, len);
3881 p->sadb_msg_version = PF_KEY_V2;
3882 p->sadb_msg_type = type;
3883 p->sadb_msg_errno = 0;
3884 p->sadb_msg_satype = satype;
3885 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3886 p->sadb_msg_reserved = reserved;
3887 p->sadb_msg_seq = seq;
3888 p->sadb_msg_pid = (u_int32_t)pid;
3889
3890 return m;
3891 }
3892
3893 /*
3894 * copy secasvar data into sadb_address.
3895 */
3896 static struct mbuf *
3897 key_setsadbsa(struct secasvar *sav)
3898 {
3899 struct mbuf *m;
3900 struct sadb_sa *p;
3901 int len;
3902
3903 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3904 m = key_alloc_mbuf(len);
3905 if (!m || m->m_next) { /*XXX*/
3906 if (m)
3907 m_freem(m);
3908 return NULL;
3909 }
3910
3911 p = mtod(m, struct sadb_sa *);
3912
3913 memset(p, 0, len);
3914 p->sadb_sa_len = PFKEY_UNIT64(len);
3915 p->sadb_sa_exttype = SADB_EXT_SA;
3916 p->sadb_sa_spi = sav->spi;
3917 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3918 p->sadb_sa_state = sav->state;
3919 p->sadb_sa_auth = sav->alg_auth;
3920 p->sadb_sa_encrypt = sav->alg_enc;
3921 p->sadb_sa_flags = sav->flags;
3922
3923 return m;
3924 }
3925
3926 /*
3927 * set data into sadb_address.
3928 */
3929 static struct mbuf *
3930 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3931 u_int8_t prefixlen, u_int16_t ul_proto)
3932 {
3933 struct mbuf *m;
3934 struct sadb_address *p;
3935 size_t len;
3936
3937 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3938 PFKEY_ALIGN8(saddr->sa_len);
3939 m = key_alloc_mbuf(len);
3940 if (!m || m->m_next) { /*XXX*/
3941 if (m)
3942 m_freem(m);
3943 return NULL;
3944 }
3945
3946 p = mtod(m, struct sadb_address *);
3947
3948 memset(p, 0, len);
3949 p->sadb_address_len = PFKEY_UNIT64(len);
3950 p->sadb_address_exttype = exttype;
3951 p->sadb_address_proto = ul_proto;
3952 if (prefixlen == FULLMASK) {
3953 switch (saddr->sa_family) {
3954 case AF_INET:
3955 prefixlen = sizeof(struct in_addr) << 3;
3956 break;
3957 case AF_INET6:
3958 prefixlen = sizeof(struct in6_addr) << 3;
3959 break;
3960 default:
3961 ; /*XXX*/
3962 }
3963 }
3964 p->sadb_address_prefixlen = prefixlen;
3965 p->sadb_address_reserved = 0;
3966
3967 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3968 saddr, saddr->sa_len);
3969
3970 return m;
3971 }
3972
3973 #if 0
3974 /*
3975 * set data into sadb_ident.
3976 */
3977 static struct mbuf *
3978 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3979 void *string, int stringlen, u_int64_t id)
3980 {
3981 struct mbuf *m;
3982 struct sadb_ident *p;
3983 size_t len;
3984
3985 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3986 m = key_alloc_mbuf(len);
3987 if (!m || m->m_next) { /*XXX*/
3988 if (m)
3989 m_freem(m);
3990 return NULL;
3991 }
3992
3993 p = mtod(m, struct sadb_ident *);
3994
3995 memset(p, 0, len);
3996 p->sadb_ident_len = PFKEY_UNIT64(len);
3997 p->sadb_ident_exttype = exttype;
3998 p->sadb_ident_type = idtype;
3999 p->sadb_ident_reserved = 0;
4000 p->sadb_ident_id = id;
4001
4002 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4003 string, stringlen);
4004
4005 return m;
4006 }
4007 #endif
4008
4009 /*
4010 * set data into sadb_x_sa2.
4011 */
4012 static struct mbuf *
4013 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4014 {
4015 struct mbuf *m;
4016 struct sadb_x_sa2 *p;
4017 size_t len;
4018
4019 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4020 m = key_alloc_mbuf(len);
4021 if (!m || m->m_next) { /*XXX*/
4022 if (m)
4023 m_freem(m);
4024 return NULL;
4025 }
4026
4027 p = mtod(m, struct sadb_x_sa2 *);
4028
4029 memset(p, 0, len);
4030 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4031 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4032 p->sadb_x_sa2_mode = mode;
4033 p->sadb_x_sa2_reserved1 = 0;
4034 p->sadb_x_sa2_reserved2 = 0;
4035 p->sadb_x_sa2_sequence = seq;
4036 p->sadb_x_sa2_reqid = reqid;
4037
4038 return m;
4039 }
4040
4041 /*
4042 * set data into sadb_x_policy
4043 */
4044 static struct mbuf *
4045 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4046 {
4047 struct mbuf *m;
4048 struct sadb_x_policy *p;
4049 size_t len;
4050
4051 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4052 m = key_alloc_mbuf(len);
4053 if (!m || m->m_next) { /*XXX*/
4054 if (m)
4055 m_freem(m);
4056 return NULL;
4057 }
4058
4059 p = mtod(m, struct sadb_x_policy *);
4060
4061 memset(p, 0, len);
4062 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4063 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4064 p->sadb_x_policy_type = type;
4065 p->sadb_x_policy_dir = dir;
4066 p->sadb_x_policy_id = id;
4067
4068 return m;
4069 }
4070
4071 /* %%% utilities */
4072 /*
4073 * copy a buffer into the new buffer allocated.
4074 */
4075 static void *
4076 key_newbuf(const void *src, u_int len)
4077 {
4078 void *new;
4079
4080 KMALLOC(new, void *, len);
4081 if (new == NULL) {
4082 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4083 return NULL;
4084 }
4085 memcpy(new, src, len);
4086
4087 return new;
4088 }
4089
4090 /* compare my own address
4091 * OUT: 1: true, i.e. my address.
4092 * 0: false
4093 */
4094 int
4095 key_ismyaddr(const struct sockaddr *sa)
4096 {
4097 #ifdef INET
4098 const struct sockaddr_in *sin;
4099 const struct in_ifaddr *ia;
4100 int s;
4101 #endif
4102
4103 KASSERT(sa != NULL);
4104
4105 switch (sa->sa_family) {
4106 #ifdef INET
4107 case AF_INET:
4108 sin = (const struct sockaddr_in *)sa;
4109 s = pserialize_read_enter();
4110 IN_ADDRLIST_READER_FOREACH(ia) {
4111 if (sin->sin_family == ia->ia_addr.sin_family &&
4112 sin->sin_len == ia->ia_addr.sin_len &&
4113 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4114 {
4115 pserialize_read_exit(s);
4116 return 1;
4117 }
4118 }
4119 pserialize_read_exit(s);
4120 break;
4121 #endif
4122 #ifdef INET6
4123 case AF_INET6:
4124 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4125 #endif
4126 }
4127
4128 return 0;
4129 }
4130
4131 #ifdef INET6
4132 /*
4133 * compare my own address for IPv6.
4134 * 1: ours
4135 * 0: other
4136 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4137 */
4138 #include <netinet6/in6_var.h>
4139
4140 static int
4141 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4142 {
4143 struct in6_ifaddr *ia;
4144 int s;
4145 struct psref psref;
4146 int bound;
4147 int ours = 1;
4148
4149 bound = curlwp_bind();
4150 s = pserialize_read_enter();
4151 IN6_ADDRLIST_READER_FOREACH(ia) {
4152 bool ingroup;
4153
4154 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4155 (const struct sockaddr *)&ia->ia_addr, 0) == 0) {
4156 pserialize_read_exit(s);
4157 goto ours;
4158 }
4159 ia6_acquire(ia, &psref);
4160 pserialize_read_exit(s);
4161
4162 /*
4163 * XXX Multicast
4164 * XXX why do we care about multlicast here while we don't care
4165 * about IPv4 multicast??
4166 * XXX scope
4167 */
4168 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4169 if (ingroup) {
4170 ia6_release(ia, &psref);
4171 goto ours;
4172 }
4173
4174 s = pserialize_read_enter();
4175 ia6_release(ia, &psref);
4176 }
4177 pserialize_read_exit(s);
4178
4179 /* loopback, just for safety */
4180 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4181 goto ours;
4182
4183 ours = 0;
4184 ours:
4185 curlwp_bindx(bound);
4186
4187 return ours;
4188 }
4189 #endif /*INET6*/
4190
4191 /*
4192 * compare two secasindex structure.
4193 * flag can specify to compare 2 saidxes.
4194 * compare two secasindex structure without both mode and reqid.
4195 * don't compare port.
4196 * IN:
4197 * saidx0: source, it can be in SAD.
4198 * saidx1: object.
4199 * OUT:
4200 * 1 : equal
4201 * 0 : not equal
4202 */
4203 static int
4204 key_cmpsaidx(
4205 const struct secasindex *saidx0,
4206 const struct secasindex *saidx1,
4207 int flag)
4208 {
4209 int chkport;
4210 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4211
4212 /* sanity */
4213 if (saidx0 == NULL && saidx1 == NULL)
4214 return 1;
4215
4216 if (saidx0 == NULL || saidx1 == NULL)
4217 return 0;
4218
4219 if (saidx0->proto != saidx1->proto)
4220 return 0;
4221
4222 if (flag == CMP_EXACTLY) {
4223 if (saidx0->mode != saidx1->mode)
4224 return 0;
4225 if (saidx0->reqid != saidx1->reqid)
4226 return 0;
4227 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4228 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4229 return 0;
4230 } else {
4231
4232 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4233 if (flag == CMP_MODE_REQID
4234 ||flag == CMP_REQID) {
4235 /*
4236 * If reqid of SPD is non-zero, unique SA is required.
4237 * The result must be of same reqid in this case.
4238 */
4239 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4240 return 0;
4241 }
4242
4243 if (flag == CMP_MODE_REQID) {
4244 if (saidx0->mode != IPSEC_MODE_ANY
4245 && saidx0->mode != saidx1->mode)
4246 return 0;
4247 }
4248
4249
4250 sa0src = &saidx0->src.sa;
4251 sa0dst = &saidx0->dst.sa;
4252 sa1src = &saidx1->src.sa;
4253 sa1dst = &saidx1->dst.sa;
4254 /*
4255 * If NAT-T is enabled, check ports for tunnel mode.
4256 * Don't do it for transport mode, as there is no
4257 * port information available in the SP.
4258 * Also don't check ports if they are set to zero
4259 * in the SPD: This means we have a non-generated
4260 * SPD which can't know UDP ports.
4261 */
4262 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4263 chkport = PORT_LOOSE;
4264 else
4265 chkport = PORT_NONE;
4266
4267 if (key_sockaddrcmp(sa0src, sa1src, chkport) != 0) {
4268 return 0;
4269 }
4270 if (key_sockaddrcmp(sa0dst, sa1dst, chkport) != 0) {
4271 return 0;
4272 }
4273 }
4274
4275 return 1;
4276 }
4277
4278 /*
4279 * compare two secindex structure exactly.
4280 * IN:
4281 * spidx0: source, it is often in SPD.
4282 * spidx1: object, it is often from PFKEY message.
4283 * OUT:
4284 * 1 : equal
4285 * 0 : not equal
4286 */
4287 int
4288 key_cmpspidx_exactly(
4289 const struct secpolicyindex *spidx0,
4290 const struct secpolicyindex *spidx1)
4291 {
4292 /* sanity */
4293 if (spidx0 == NULL && spidx1 == NULL)
4294 return 1;
4295
4296 if (spidx0 == NULL || spidx1 == NULL)
4297 return 0;
4298
4299 if (spidx0->prefs != spidx1->prefs
4300 || spidx0->prefd != spidx1->prefd
4301 || spidx0->ul_proto != spidx1->ul_proto)
4302 return 0;
4303
4304 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) == 0 &&
4305 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT) == 0;
4306 }
4307
4308 /*
4309 * compare two secindex structure with mask.
4310 * IN:
4311 * spidx0: source, it is often in SPD.
4312 * spidx1: object, it is often from IP header.
4313 * OUT:
4314 * 1 : equal
4315 * 0 : not equal
4316 */
4317 int
4318 key_cmpspidx_withmask(
4319 const struct secpolicyindex *spidx0,
4320 const struct secpolicyindex *spidx1)
4321 {
4322 /* sanity */
4323 if (spidx0 == NULL && spidx1 == NULL)
4324 return 1;
4325
4326 if (spidx0 == NULL || spidx1 == NULL)
4327 return 0;
4328
4329 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4330 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4331 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4332 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4333 return 0;
4334
4335 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4336 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4337 && spidx0->ul_proto != spidx1->ul_proto)
4338 return 0;
4339
4340 switch (spidx0->src.sa.sa_family) {
4341 case AF_INET:
4342 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4343 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4344 return 0;
4345 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4346 &spidx1->src.sin.sin_addr, spidx0->prefs))
4347 return 0;
4348 break;
4349 case AF_INET6:
4350 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4351 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4352 return 0;
4353 /*
4354 * scope_id check. if sin6_scope_id is 0, we regard it
4355 * as a wildcard scope, which matches any scope zone ID.
4356 */
4357 if (spidx0->src.sin6.sin6_scope_id &&
4358 spidx1->src.sin6.sin6_scope_id &&
4359 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4360 return 0;
4361 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4362 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4363 return 0;
4364 break;
4365 default:
4366 /* XXX */
4367 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4368 return 0;
4369 break;
4370 }
4371
4372 switch (spidx0->dst.sa.sa_family) {
4373 case AF_INET:
4374 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4375 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4376 return 0;
4377 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4378 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4379 return 0;
4380 break;
4381 case AF_INET6:
4382 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4383 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4384 return 0;
4385 /*
4386 * scope_id check. if sin6_scope_id is 0, we regard it
4387 * as a wildcard scope, which matches any scope zone ID.
4388 */
4389 if (spidx0->src.sin6.sin6_scope_id &&
4390 spidx1->src.sin6.sin6_scope_id &&
4391 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4392 return 0;
4393 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4394 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4395 return 0;
4396 break;
4397 default:
4398 /* XXX */
4399 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4400 return 0;
4401 break;
4402 }
4403
4404 /* XXX Do we check other field ? e.g. flowinfo */
4405
4406 return 1;
4407 }
4408
4409 /* returns 0 on match */
4410 static int
4411 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4412 {
4413 switch (howport) {
4414 case PORT_NONE:
4415 return 0;
4416 case PORT_LOOSE:
4417 if (port1 == 0 || port2 == 0)
4418 return 0;
4419 /*FALLTHROUGH*/
4420 case PORT_STRICT:
4421 if (port1 != port2) {
4422 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4423 "port fail %d != %d\n", port1, port2);
4424 return 1;
4425 }
4426 return 0;
4427 default:
4428 KASSERT(0);
4429 return 1;
4430 }
4431 }
4432
4433 /* returns 0 on match */
4434 static int
4435 key_sockaddrcmp(
4436 const struct sockaddr *sa1,
4437 const struct sockaddr *sa2,
4438 int howport)
4439 {
4440 const struct sockaddr_in *sin1, *sin2;
4441 const struct sockaddr_in6 *sin61, *sin62;
4442
4443 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4444 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4445 "fam/len fail %d != %d || %d != %d\n",
4446 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4447 sa2->sa_len);
4448 return 1;
4449 }
4450
4451 switch (sa1->sa_family) {
4452 case AF_INET:
4453 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4454 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4455 "len fail %d != %zu\n",
4456 sa1->sa_len, sizeof(struct sockaddr_in));
4457 return 1;
4458 }
4459 sin1 = (const struct sockaddr_in *)sa1;
4460 sin2 = (const struct sockaddr_in *)sa2;
4461 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4462 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4463 "addr fail %#x != %#x\n",
4464 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4465 return 1;
4466 }
4467 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4468 return 1;
4469 }
4470 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4471 "addr success %#x[%d] == %#x[%d]\n",
4472 sin1->sin_addr.s_addr, sin1->sin_port,
4473 sin2->sin_addr.s_addr, sin2->sin_port);
4474 break;
4475 case AF_INET6:
4476 sin61 = (const struct sockaddr_in6 *)sa1;
4477 sin62 = (const struct sockaddr_in6 *)sa2;
4478 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4479 return 1; /*EINVAL*/
4480
4481 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4482 return 1;
4483 }
4484 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4485 return 1;
4486 }
4487 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4488 return 1;
4489 }
4490 break;
4491 default:
4492 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4493 return 1;
4494 break;
4495 }
4496
4497 return 0;
4498 }
4499
4500 /*
4501 * compare two buffers with mask.
4502 * IN:
4503 * addr1: source
4504 * addr2: object
4505 * bits: Number of bits to compare
4506 * OUT:
4507 * 1 : equal
4508 * 0 : not equal
4509 */
4510 static int
4511 key_bbcmp(const void *a1, const void *a2, u_int bits)
4512 {
4513 const unsigned char *p1 = a1;
4514 const unsigned char *p2 = a2;
4515
4516 /* XXX: This could be considerably faster if we compare a word
4517 * at a time, but it is complicated on LSB Endian machines */
4518
4519 /* Handle null pointers */
4520 if (p1 == NULL || p2 == NULL)
4521 return (p1 == p2);
4522
4523 while (bits >= 8) {
4524 if (*p1++ != *p2++)
4525 return 0;
4526 bits -= 8;
4527 }
4528
4529 if (bits > 0) {
4530 u_int8_t mask = ~((1<<(8-bits))-1);
4531 if ((*p1 & mask) != (*p2 & mask))
4532 return 0;
4533 }
4534 return 1; /* Match! */
4535 }
4536
4537 /*
4538 * time handler.
4539 * scanning SPD and SAD to check status for each entries,
4540 * and do to remove or to expire.
4541 */
4542 void
4543 key_timehandler(void* arg)
4544 {
4545 u_int dir;
4546 int s;
4547 time_t now = time_uptime;
4548
4549 s = splsoftnet(); /*called from softclock()*/
4550 mutex_enter(softnet_lock);
4551
4552 /* SPD */
4553 {
4554 struct secpolicy *sp, *nextsp;
4555
4556 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4557 for (sp = LIST_FIRST(&sptree[dir]);
4558 sp != NULL;
4559 sp = nextsp) {
4560
4561 nextsp = LIST_NEXT(sp, chain);
4562
4563 if (sp->state == IPSEC_SPSTATE_DEAD) {
4564 key_sp_unlink(sp); /*XXX*/
4565
4566 /* 'sp' dead; continue transfers to
4567 * 'sp = nextsp'
4568 */
4569 continue;
4570 }
4571
4572 if (sp->lifetime == 0 && sp->validtime == 0)
4573 continue;
4574
4575 /* the deletion will occur next time */
4576 if ((sp->lifetime && now - sp->created > sp->lifetime)
4577 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4578 key_sp_dead(sp);
4579 key_spdexpire(sp);
4580 continue;
4581 }
4582 }
4583 }
4584 }
4585
4586 /* SAD */
4587 {
4588 struct secashead *sah, *nextsah;
4589 struct secasvar *sav, *nextsav;
4590
4591 for (sah = LIST_FIRST(&sahtree);
4592 sah != NULL;
4593 sah = nextsah) {
4594
4595 nextsah = LIST_NEXT(sah, chain);
4596
4597 /* if sah has been dead, then delete it and process next sah. */
4598 if (sah->state == SADB_SASTATE_DEAD) {
4599 key_delsah(sah);
4600 continue;
4601 }
4602
4603 /* if LARVAL entry doesn't become MATURE, delete it. */
4604 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4605 sav != NULL;
4606 sav = nextsav) {
4607
4608 nextsav = LIST_NEXT(sav, chain);
4609
4610 if (now - sav->created > key_larval_lifetime) {
4611 KEY_FREESAV(&sav);
4612 }
4613 }
4614
4615 /*
4616 * check MATURE entry to start to send expire message
4617 * whether or not.
4618 */
4619 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4620 sav != NULL;
4621 sav = nextsav) {
4622
4623 nextsav = LIST_NEXT(sav, chain);
4624
4625 /* we don't need to check. */
4626 if (sav->lft_s == NULL)
4627 continue;
4628
4629 /* sanity check */
4630 if (sav->lft_c == NULL) {
4631 ipseclog((LOG_DEBUG,"key_timehandler: "
4632 "There is no CURRENT time, why?\n"));
4633 continue;
4634 }
4635
4636 /* check SOFT lifetime */
4637 if (sav->lft_s->sadb_lifetime_addtime != 0
4638 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4639 /*
4640 * check SA to be used whether or not.
4641 * when SA hasn't been used, delete it.
4642 */
4643 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4644 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4645 KEY_FREESAV(&sav);
4646 } else {
4647 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4648 /*
4649 * XXX If we keep to send expire
4650 * message in the status of
4651 * DYING. Do remove below code.
4652 */
4653 key_expire(sav);
4654 }
4655 }
4656 /* check SOFT lifetime by bytes */
4657 /*
4658 * XXX I don't know the way to delete this SA
4659 * when new SA is installed. Caution when it's
4660 * installed too big lifetime by time.
4661 */
4662 else if (sav->lft_s->sadb_lifetime_bytes != 0
4663 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4664
4665 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4666 /*
4667 * XXX If we keep to send expire
4668 * message in the status of
4669 * DYING. Do remove below code.
4670 */
4671 key_expire(sav);
4672 }
4673 }
4674
4675 /* check DYING entry to change status to DEAD. */
4676 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4677 sav != NULL;
4678 sav = nextsav) {
4679
4680 nextsav = LIST_NEXT(sav, chain);
4681
4682 /* we don't need to check. */
4683 if (sav->lft_h == NULL)
4684 continue;
4685
4686 /* sanity check */
4687 if (sav->lft_c == NULL) {
4688 ipseclog((LOG_DEBUG, "key_timehandler: "
4689 "There is no CURRENT time, why?\n"));
4690 continue;
4691 }
4692
4693 if (sav->lft_h->sadb_lifetime_addtime != 0
4694 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4695 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4696 KEY_FREESAV(&sav);
4697 }
4698 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4699 else if (sav->lft_s != NULL
4700 && sav->lft_s->sadb_lifetime_addtime != 0
4701 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4702 /*
4703 * XXX: should be checked to be
4704 * installed the valid SA.
4705 */
4706
4707 /*
4708 * If there is no SA then sending
4709 * expire message.
4710 */
4711 key_expire(sav);
4712 }
4713 #endif
4714 /* check HARD lifetime by bytes */
4715 else if (sav->lft_h->sadb_lifetime_bytes != 0
4716 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4717 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4718 KEY_FREESAV(&sav);
4719 }
4720 }
4721
4722 /* delete entry in DEAD */
4723 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4724 sav != NULL;
4725 sav = nextsav) {
4726
4727 nextsav = LIST_NEXT(sav, chain);
4728
4729 /* sanity check */
4730 if (sav->state != SADB_SASTATE_DEAD) {
4731 ipseclog((LOG_DEBUG, "key_timehandler: "
4732 "invalid sav->state "
4733 "(queue: %d SA: %d): "
4734 "kill it anyway\n",
4735 SADB_SASTATE_DEAD, sav->state));
4736 }
4737
4738 /*
4739 * do not call key_freesav() here.
4740 * sav should already be freed, and sav->refcnt
4741 * shows other references to sav
4742 * (such as from SPD).
4743 */
4744 }
4745 }
4746 }
4747
4748 #ifndef IPSEC_NONBLOCK_ACQUIRE
4749 /* ACQ tree */
4750 {
4751 struct secacq *acq, *nextacq;
4752
4753 for (acq = LIST_FIRST(&acqtree);
4754 acq != NULL;
4755 acq = nextacq) {
4756
4757 nextacq = LIST_NEXT(acq, chain);
4758
4759 if (now - acq->created > key_blockacq_lifetime
4760 && __LIST_CHAINED(acq)) {
4761 LIST_REMOVE(acq, chain);
4762 KFREE(acq);
4763 }
4764 }
4765 }
4766 #endif
4767
4768 /* SP ACQ tree */
4769 {
4770 struct secspacq *acq, *nextacq;
4771
4772 for (acq = LIST_FIRST(&spacqtree);
4773 acq != NULL;
4774 acq = nextacq) {
4775
4776 nextacq = LIST_NEXT(acq, chain);
4777
4778 if (now - acq->created > key_blockacq_lifetime
4779 && __LIST_CHAINED(acq)) {
4780 LIST_REMOVE(acq, chain);
4781 KFREE(acq);
4782 }
4783 }
4784 }
4785
4786 #ifndef IPSEC_DEBUG2
4787 /* do exchange to tick time !! */
4788 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4789 #endif /* IPSEC_DEBUG2 */
4790
4791 mutex_exit(softnet_lock);
4792 splx(s);
4793 return;
4794 }
4795
4796 u_long
4797 key_random(void)
4798 {
4799 u_long value;
4800
4801 key_randomfill(&value, sizeof(value));
4802 return value;
4803 }
4804
4805 void
4806 key_randomfill(void *p, size_t l)
4807 {
4808
4809 cprng_fast(p, l);
4810 }
4811
4812 /*
4813 * map SADB_SATYPE_* to IPPROTO_*.
4814 * if satype == SADB_SATYPE then satype is mapped to ~0.
4815 * OUT:
4816 * 0: invalid satype.
4817 */
4818 static u_int16_t
4819 key_satype2proto(u_int8_t satype)
4820 {
4821 switch (satype) {
4822 case SADB_SATYPE_UNSPEC:
4823 return IPSEC_PROTO_ANY;
4824 case SADB_SATYPE_AH:
4825 return IPPROTO_AH;
4826 case SADB_SATYPE_ESP:
4827 return IPPROTO_ESP;
4828 case SADB_X_SATYPE_IPCOMP:
4829 return IPPROTO_IPCOMP;
4830 case SADB_X_SATYPE_TCPSIGNATURE:
4831 return IPPROTO_TCP;
4832 default:
4833 return 0;
4834 }
4835 /* NOTREACHED */
4836 }
4837
4838 /*
4839 * map IPPROTO_* to SADB_SATYPE_*
4840 * OUT:
4841 * 0: invalid protocol type.
4842 */
4843 static u_int8_t
4844 key_proto2satype(u_int16_t proto)
4845 {
4846 switch (proto) {
4847 case IPPROTO_AH:
4848 return SADB_SATYPE_AH;
4849 case IPPROTO_ESP:
4850 return SADB_SATYPE_ESP;
4851 case IPPROTO_IPCOMP:
4852 return SADB_X_SATYPE_IPCOMP;
4853 case IPPROTO_TCP:
4854 return SADB_X_SATYPE_TCPSIGNATURE;
4855 default:
4856 return 0;
4857 }
4858 /* NOTREACHED */
4859 }
4860
4861 static int
4862 key_setsecasidx(int proto, int mode, int reqid,
4863 const struct sadb_address * src,
4864 const struct sadb_address * dst,
4865 struct secasindex * saidx)
4866 {
4867 const union sockaddr_union * src_u =
4868 (const union sockaddr_union *) src;
4869 const union sockaddr_union * dst_u =
4870 (const union sockaddr_union *) dst;
4871
4872 /* sa len safety check */
4873 if (key_checksalen(src_u) != 0)
4874 return -1;
4875 if (key_checksalen(dst_u) != 0)
4876 return -1;
4877
4878 memset(saidx, 0, sizeof(*saidx));
4879 saidx->proto = proto;
4880 saidx->mode = mode;
4881 saidx->reqid = reqid;
4882 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4883 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4884
4885 key_porttosaddr(&((saidx)->src),0);
4886 key_porttosaddr(&((saidx)->dst),0);
4887 return 0;
4888 }
4889
4890 /* %%% PF_KEY */
4891 /*
4892 * SADB_GETSPI processing is to receive
4893 * <base, (SA2), src address, dst address, (SPI range)>
4894 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4895 * tree with the status of LARVAL, and send
4896 * <base, SA(*), address(SD)>
4897 * to the IKMPd.
4898 *
4899 * IN: mhp: pointer to the pointer to each header.
4900 * OUT: NULL if fail.
4901 * other if success, return pointer to the message to send.
4902 */
4903 static int
4904 key_getspi(struct socket *so, struct mbuf *m,
4905 const struct sadb_msghdr *mhp)
4906 {
4907 struct sadb_address *src0, *dst0;
4908 struct secasindex saidx;
4909 struct secashead *newsah;
4910 struct secasvar *newsav;
4911 u_int8_t proto;
4912 u_int32_t spi;
4913 u_int8_t mode;
4914 u_int16_t reqid;
4915 int error;
4916
4917 KASSERT(so != NULL);
4918 KASSERT(m != NULL);
4919 KASSERT(mhp != NULL);
4920 KASSERT(mhp->msg != NULL);
4921
4922 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4923 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4924 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4925 return key_senderror(so, m, EINVAL);
4926 }
4927 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4928 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4929 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4930 return key_senderror(so, m, EINVAL);
4931 }
4932 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4933 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4934 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4935 } else {
4936 mode = IPSEC_MODE_ANY;
4937 reqid = 0;
4938 }
4939
4940 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4941 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4942
4943 /* map satype to proto */
4944 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4945 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4946 return key_senderror(so, m, EINVAL);
4947 }
4948
4949
4950 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4951 dst0 + 1, &saidx)) != 0)
4952 return key_senderror(so, m, EINVAL);
4953
4954 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4955 return key_senderror(so, m, EINVAL);
4956
4957 /* SPI allocation */
4958 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4959 &saidx);
4960 if (spi == 0)
4961 return key_senderror(so, m, EINVAL);
4962
4963 /* get a SA index */
4964 if ((newsah = key_getsah(&saidx)) == NULL) {
4965 /* create a new SA index */
4966 if ((newsah = key_newsah(&saidx)) == NULL) {
4967 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4968 return key_senderror(so, m, ENOBUFS);
4969 }
4970 }
4971
4972 /* get a new SA */
4973 /* XXX rewrite */
4974 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4975 if (newsav == NULL) {
4976 /* XXX don't free new SA index allocated in above. */
4977 return key_senderror(so, m, error);
4978 }
4979
4980 /* set spi */
4981 newsav->spi = htonl(spi);
4982
4983 #ifndef IPSEC_NONBLOCK_ACQUIRE
4984 /* delete the entry in acqtree */
4985 if (mhp->msg->sadb_msg_seq != 0) {
4986 struct secacq *acq;
4987 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4988 /* reset counter in order to deletion by timehandler. */
4989 acq->created = time_uptime;
4990 acq->count = 0;
4991 }
4992 }
4993 #endif
4994
4995 {
4996 struct mbuf *n, *nn;
4997 struct sadb_sa *m_sa;
4998 struct sadb_msg *newmsg;
4999 int off, len;
5000
5001 /* create new sadb_msg to reply. */
5002 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5003 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5004 if (len > MCLBYTES)
5005 return key_senderror(so, m, ENOBUFS);
5006
5007 MGETHDR(n, M_DONTWAIT, MT_DATA);
5008 if (len > MHLEN) {
5009 MCLGET(n, M_DONTWAIT);
5010 if ((n->m_flags & M_EXT) == 0) {
5011 m_freem(n);
5012 n = NULL;
5013 }
5014 }
5015 if (!n)
5016 return key_senderror(so, m, ENOBUFS);
5017
5018 n->m_len = len;
5019 n->m_next = NULL;
5020 off = 0;
5021
5022 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5023 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5024
5025 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5026 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5027 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5028 m_sa->sadb_sa_spi = htonl(spi);
5029 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5030
5031 KASSERTMSG(off == len, "length inconsistency");
5032
5033 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5034 SADB_EXT_ADDRESS_DST);
5035 if (!n->m_next) {
5036 m_freem(n);
5037 return key_senderror(so, m, ENOBUFS);
5038 }
5039
5040 if (n->m_len < sizeof(struct sadb_msg)) {
5041 n = m_pullup(n, sizeof(struct sadb_msg));
5042 if (n == NULL)
5043 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5044 }
5045
5046 n->m_pkthdr.len = 0;
5047 for (nn = n; nn; nn = nn->m_next)
5048 n->m_pkthdr.len += nn->m_len;
5049
5050 newmsg = mtod(n, struct sadb_msg *);
5051 newmsg->sadb_msg_seq = newsav->seq;
5052 newmsg->sadb_msg_errno = 0;
5053 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5054
5055 m_freem(m);
5056 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5057 }
5058 }
5059
5060 /*
5061 * allocating new SPI
5062 * called by key_getspi().
5063 * OUT:
5064 * 0: failure.
5065 * others: success.
5066 */
5067 static u_int32_t
5068 key_do_getnewspi(const struct sadb_spirange *spirange,
5069 const struct secasindex *saidx)
5070 {
5071 u_int32_t newspi;
5072 u_int32_t spmin, spmax;
5073 int count = key_spi_trycnt;
5074
5075 /* set spi range to allocate */
5076 if (spirange != NULL) {
5077 spmin = spirange->sadb_spirange_min;
5078 spmax = spirange->sadb_spirange_max;
5079 } else {
5080 spmin = key_spi_minval;
5081 spmax = key_spi_maxval;
5082 }
5083 /* IPCOMP needs 2-byte SPI */
5084 if (saidx->proto == IPPROTO_IPCOMP) {
5085 u_int32_t t;
5086 if (spmin >= 0x10000)
5087 spmin = 0xffff;
5088 if (spmax >= 0x10000)
5089 spmax = 0xffff;
5090 if (spmin > spmax) {
5091 t = spmin; spmin = spmax; spmax = t;
5092 }
5093 }
5094
5095 if (spmin == spmax) {
5096 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5097 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5098 return 0;
5099 }
5100
5101 count--; /* taking one cost. */
5102 newspi = spmin;
5103
5104 } else {
5105
5106 /* init SPI */
5107 newspi = 0;
5108
5109 /* when requesting to allocate spi ranged */
5110 while (count--) {
5111 /* generate pseudo-random SPI value ranged. */
5112 newspi = spmin + (key_random() % (spmax - spmin + 1));
5113
5114 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5115 break;
5116 }
5117
5118 if (count == 0 || newspi == 0) {
5119 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5120 return 0;
5121 }
5122 }
5123
5124 /* statistics */
5125 keystat.getspi_count =
5126 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5127
5128 return newspi;
5129 }
5130
5131 static int
5132 key_handle_natt_info(struct secasvar *sav,
5133 const struct sadb_msghdr *mhp)
5134 {
5135 const char *msg = "?" ;
5136 struct sadb_x_nat_t_type *type;
5137 struct sadb_x_nat_t_port *sport, *dport;
5138 struct sadb_address *iaddr, *raddr;
5139 struct sadb_x_nat_t_frag *frag;
5140
5141 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5142 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5143 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5144 return 0;
5145
5146 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5147 msg = "TYPE";
5148 goto bad;
5149 }
5150
5151 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5152 msg = "SPORT";
5153 goto bad;
5154 }
5155
5156 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5157 msg = "DPORT";
5158 goto bad;
5159 }
5160
5161 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5162 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5163 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5164 msg = "OAI";
5165 goto bad;
5166 }
5167 }
5168
5169 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5170 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5171 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5172 msg = "OAR";
5173 goto bad;
5174 }
5175 }
5176
5177 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5178 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5179 msg = "FRAG";
5180 goto bad;
5181 }
5182 }
5183
5184 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5185 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5186 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5187 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5188 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5189 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5190
5191 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5192 __func__, type->sadb_x_nat_t_type_type,
5193 ntohs(sport->sadb_x_nat_t_port_port),
5194 ntohs(dport->sadb_x_nat_t_port_port)));
5195
5196 sav->natt_type = type->sadb_x_nat_t_type_type;
5197 key_porttosaddr(&sav->sah->saidx.src,
5198 sport->sadb_x_nat_t_port_port);
5199 key_porttosaddr(&sav->sah->saidx.dst,
5200 dport->sadb_x_nat_t_port_port);
5201 if (frag)
5202 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5203 else
5204 sav->esp_frag = IP_MAXPACKET;
5205
5206 return 0;
5207 bad:
5208 ipseclog((LOG_DEBUG, "%s: invalid message %s\n", __func__, msg));
5209 __USE(msg);
5210 return -1;
5211 }
5212
5213 /* Just update the IPSEC_NAT_T ports if present */
5214 static int
5215 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5216 const struct sadb_msghdr *mhp)
5217 {
5218 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5219 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5220 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5221 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5222
5223 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5224 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5225 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5226 struct sadb_x_nat_t_type *type;
5227 struct sadb_x_nat_t_port *sport;
5228 struct sadb_x_nat_t_port *dport;
5229
5230 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5231 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5232 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5233 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5234 __func__));
5235 return -1;
5236 }
5237
5238 type = (struct sadb_x_nat_t_type *)
5239 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5240 sport = (struct sadb_x_nat_t_port *)
5241 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5242 dport = (struct sadb_x_nat_t_port *)
5243 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5244
5245 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5246 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5247
5248 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5249 __func__, type->sadb_x_nat_t_type_type,
5250 ntohs(sport->sadb_x_nat_t_port_port),
5251 ntohs(dport->sadb_x_nat_t_port_port)));
5252 }
5253
5254 return 0;
5255 }
5256
5257
5258 /*
5259 * SADB_UPDATE processing
5260 * receive
5261 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5262 * key(AE), (identity(SD),) (sensitivity)>
5263 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5264 * and send
5265 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5266 * (identity(SD),) (sensitivity)>
5267 * to the ikmpd.
5268 *
5269 * m will always be freed.
5270 */
5271 static int
5272 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5273 {
5274 struct sadb_sa *sa0;
5275 struct sadb_address *src0, *dst0;
5276 struct secasindex saidx;
5277 struct secashead *sah;
5278 struct secasvar *sav;
5279 u_int16_t proto;
5280 u_int8_t mode;
5281 u_int16_t reqid;
5282 int error;
5283
5284 KASSERT(so != NULL);
5285 KASSERT(m != NULL);
5286 KASSERT(mhp != NULL);
5287 KASSERT(mhp->msg != NULL);
5288
5289 /* map satype to proto */
5290 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5291 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5292 return key_senderror(so, m, EINVAL);
5293 }
5294
5295 if (mhp->ext[SADB_EXT_SA] == NULL ||
5296 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5297 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5298 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5299 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5300 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5301 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5302 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5303 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5304 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5305 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5306 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5307 return key_senderror(so, m, EINVAL);
5308 }
5309 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5310 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5311 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5312 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5313 return key_senderror(so, m, EINVAL);
5314 }
5315 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5316 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5317 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5318 } else {
5319 mode = IPSEC_MODE_ANY;
5320 reqid = 0;
5321 }
5322 /* XXX boundary checking for other extensions */
5323
5324 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5325 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5326 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5327
5328 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5329 dst0 + 1, &saidx)) != 0)
5330 return key_senderror(so, m, EINVAL);
5331
5332 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5333 return key_senderror(so, m, EINVAL);
5334
5335 /* get a SA header */
5336 if ((sah = key_getsah(&saidx)) == NULL) {
5337 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5338 return key_senderror(so, m, ENOENT);
5339 }
5340
5341 /* set spidx if there */
5342 /* XXX rewrite */
5343 error = key_setident(sah, m, mhp);
5344 if (error)
5345 return key_senderror(so, m, error);
5346
5347 /* find a SA with sequence number. */
5348 #ifdef IPSEC_DOSEQCHECK
5349 if (mhp->msg->sadb_msg_seq != 0
5350 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5351 ipseclog((LOG_DEBUG,
5352 "key_update: no larval SA with sequence %u exists.\n",
5353 mhp->msg->sadb_msg_seq));
5354 return key_senderror(so, m, ENOENT);
5355 }
5356 #else
5357 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5358 ipseclog((LOG_DEBUG,
5359 "key_update: no such a SA found (spi:%u)\n",
5360 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5361 return key_senderror(so, m, EINVAL);
5362 }
5363 #endif
5364
5365 /* validity check */
5366 if (sav->sah->saidx.proto != proto) {
5367 ipseclog((LOG_DEBUG,
5368 "key_update: protocol mismatched (DB=%u param=%u)\n",
5369 sav->sah->saidx.proto, proto));
5370 return key_senderror(so, m, EINVAL);
5371 }
5372 #ifdef IPSEC_DOSEQCHECK
5373 if (sav->spi != sa0->sadb_sa_spi) {
5374 ipseclog((LOG_DEBUG,
5375 "key_update: SPI mismatched (DB:%u param:%u)\n",
5376 (u_int32_t)ntohl(sav->spi),
5377 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5378 return key_senderror(so, m, EINVAL);
5379 }
5380 #endif
5381 if (sav->pid != mhp->msg->sadb_msg_pid) {
5382 ipseclog((LOG_DEBUG,
5383 "key_update: pid mismatched (DB:%u param:%u)\n",
5384 sav->pid, mhp->msg->sadb_msg_pid));
5385 return key_senderror(so, m, EINVAL);
5386 }
5387
5388 /* copy sav values */
5389 error = key_setsaval(sav, m, mhp);
5390 if (error) {
5391 KEY_FREESAV(&sav);
5392 return key_senderror(so, m, error);
5393 }
5394
5395 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5396 return key_senderror(so, m, EINVAL);
5397
5398 /* check SA values to be mature. */
5399 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5400 KEY_FREESAV(&sav);
5401 return key_senderror(so, m, 0);
5402 }
5403
5404 {
5405 struct mbuf *n;
5406
5407 /* set msg buf from mhp */
5408 n = key_getmsgbuf_x1(m, mhp);
5409 if (n == NULL) {
5410 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5411 return key_senderror(so, m, ENOBUFS);
5412 }
5413
5414 m_freem(m);
5415 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5416 }
5417 }
5418
5419 /*
5420 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5421 * only called by key_update().
5422 * OUT:
5423 * NULL : not found
5424 * others : found, pointer to a SA.
5425 */
5426 #ifdef IPSEC_DOSEQCHECK
5427 static struct secasvar *
5428 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5429 {
5430 struct secasvar *sav;
5431 u_int state;
5432
5433 state = SADB_SASTATE_LARVAL;
5434
5435 /* search SAD with sequence number ? */
5436 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5437
5438 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5439
5440 if (sav->seq == seq) {
5441 SA_ADDREF(sav);
5442 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5443 "DP cause refcnt++:%d SA:%p\n",
5444 sav->refcnt, sav);
5445 return sav;
5446 }
5447 }
5448
5449 return NULL;
5450 }
5451 #endif
5452
5453 /*
5454 * SADB_ADD processing
5455 * add an entry to SA database, when received
5456 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5457 * key(AE), (identity(SD),) (sensitivity)>
5458 * from the ikmpd,
5459 * and send
5460 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5461 * (identity(SD),) (sensitivity)>
5462 * to the ikmpd.
5463 *
5464 * IGNORE identity and sensitivity messages.
5465 *
5466 * m will always be freed.
5467 */
5468 static int
5469 key_add(struct socket *so, struct mbuf *m,
5470 const struct sadb_msghdr *mhp)
5471 {
5472 struct sadb_sa *sa0;
5473 struct sadb_address *src0, *dst0;
5474 struct secasindex saidx;
5475 struct secashead *newsah;
5476 struct secasvar *newsav;
5477 u_int16_t proto;
5478 u_int8_t mode;
5479 u_int16_t reqid;
5480 int error;
5481
5482 KASSERT(so != NULL);
5483 KASSERT(m != NULL);
5484 KASSERT(mhp != NULL);
5485 KASSERT(mhp->msg != NULL);
5486
5487 /* map satype to proto */
5488 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5489 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5490 return key_senderror(so, m, EINVAL);
5491 }
5492
5493 if (mhp->ext[SADB_EXT_SA] == NULL ||
5494 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5495 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5496 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5497 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5498 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5499 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5500 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5501 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5502 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5503 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5504 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5505 return key_senderror(so, m, EINVAL);
5506 }
5507 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5508 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5509 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5510 /* XXX need more */
5511 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5512 return key_senderror(so, m, EINVAL);
5513 }
5514 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5515 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5516 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5517 } else {
5518 mode = IPSEC_MODE_ANY;
5519 reqid = 0;
5520 }
5521
5522 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5523 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5524 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5525
5526 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5527 dst0 + 1, &saidx)) != 0)
5528 return key_senderror(so, m, EINVAL);
5529
5530 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5531 return key_senderror(so, m, EINVAL);
5532
5533 /* get a SA header */
5534 if ((newsah = key_getsah(&saidx)) == NULL) {
5535 /* create a new SA header */
5536 if ((newsah = key_newsah(&saidx)) == NULL) {
5537 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5538 return key_senderror(so, m, ENOBUFS);
5539 }
5540 }
5541
5542 /* set spidx if there */
5543 /* XXX rewrite */
5544 error = key_setident(newsah, m, mhp);
5545 if (error) {
5546 return key_senderror(so, m, error);
5547 }
5548
5549 /* create new SA entry. */
5550 /* We can create new SA only if SPI is differenct. */
5551 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5552 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5553 return key_senderror(so, m, EEXIST);
5554 }
5555 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5556 if (newsav == NULL) {
5557 return key_senderror(so, m, error);
5558 }
5559
5560 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5561 return key_senderror(so, m, EINVAL);
5562
5563 /* check SA values to be mature. */
5564 if ((error = key_mature(newsav)) != 0) {
5565 KEY_FREESAV(&newsav);
5566 return key_senderror(so, m, error);
5567 }
5568
5569 /*
5570 * don't call key_freesav() here, as we would like to keep the SA
5571 * in the database on success.
5572 */
5573
5574 {
5575 struct mbuf *n;
5576
5577 /* set msg buf from mhp */
5578 n = key_getmsgbuf_x1(m, mhp);
5579 if (n == NULL) {
5580 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5581 return key_senderror(so, m, ENOBUFS);
5582 }
5583
5584 m_freem(m);
5585 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5586 }
5587 }
5588
5589 /* m is retained */
5590 static int
5591 key_setident(struct secashead *sah, struct mbuf *m,
5592 const struct sadb_msghdr *mhp)
5593 {
5594 const struct sadb_ident *idsrc, *iddst;
5595 int idsrclen, iddstlen;
5596
5597 KASSERT(sah != NULL);
5598 KASSERT(m != NULL);
5599 KASSERT(mhp != NULL);
5600 KASSERT(mhp->msg != NULL);
5601
5602 /* don't make buffer if not there */
5603 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5604 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5605 sah->idents = NULL;
5606 sah->identd = NULL;
5607 return 0;
5608 }
5609
5610 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5611 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5612 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5613 return EINVAL;
5614 }
5615
5616 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5617 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5618 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5619 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5620
5621 /* validity check */
5622 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5623 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5624 return EINVAL;
5625 }
5626
5627 switch (idsrc->sadb_ident_type) {
5628 case SADB_IDENTTYPE_PREFIX:
5629 case SADB_IDENTTYPE_FQDN:
5630 case SADB_IDENTTYPE_USERFQDN:
5631 default:
5632 /* XXX do nothing */
5633 sah->idents = NULL;
5634 sah->identd = NULL;
5635 return 0;
5636 }
5637
5638 /* make structure */
5639 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5640 if (sah->idents == NULL) {
5641 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5642 return ENOBUFS;
5643 }
5644 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5645 if (sah->identd == NULL) {
5646 KFREE(sah->idents);
5647 sah->idents = NULL;
5648 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5649 return ENOBUFS;
5650 }
5651 memcpy(sah->idents, idsrc, idsrclen);
5652 memcpy(sah->identd, iddst, iddstlen);
5653
5654 return 0;
5655 }
5656
5657 /*
5658 * m will not be freed on return.
5659 * it is caller's responsibility to free the result.
5660 */
5661 static struct mbuf *
5662 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5663 {
5664 struct mbuf *n;
5665
5666 KASSERT(m != NULL);
5667 KASSERT(mhp != NULL);
5668 KASSERT(mhp->msg != NULL);
5669
5670 /* create new sadb_msg to reply. */
5671 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5672 SADB_EXT_SA, SADB_X_EXT_SA2,
5673 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5674 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5675 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5676 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5677 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5678 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5679 if (!n)
5680 return NULL;
5681
5682 if (n->m_len < sizeof(struct sadb_msg)) {
5683 n = m_pullup(n, sizeof(struct sadb_msg));
5684 if (n == NULL)
5685 return NULL;
5686 }
5687 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5688 mtod(n, struct sadb_msg *)->sadb_msg_len =
5689 PFKEY_UNIT64(n->m_pkthdr.len);
5690
5691 return n;
5692 }
5693
5694 static int key_delete_all (struct socket *, struct mbuf *,
5695 const struct sadb_msghdr *, u_int16_t);
5696
5697 /*
5698 * SADB_DELETE processing
5699 * receive
5700 * <base, SA(*), address(SD)>
5701 * from the ikmpd, and set SADB_SASTATE_DEAD,
5702 * and send,
5703 * <base, SA(*), address(SD)>
5704 * to the ikmpd.
5705 *
5706 * m will always be freed.
5707 */
5708 static int
5709 key_delete(struct socket *so, struct mbuf *m,
5710 const struct sadb_msghdr *mhp)
5711 {
5712 struct sadb_sa *sa0;
5713 struct sadb_address *src0, *dst0;
5714 struct secasindex saidx;
5715 struct secashead *sah;
5716 struct secasvar *sav = NULL;
5717 u_int16_t proto;
5718 int error;
5719
5720 KASSERT(so != NULL);
5721 KASSERT(m != NULL);
5722 KASSERT(mhp != NULL);
5723 KASSERT(mhp->msg != NULL);
5724
5725 /* map satype to proto */
5726 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5727 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5728 return key_senderror(so, m, EINVAL);
5729 }
5730
5731 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5732 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5733 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5734 return key_senderror(so, m, EINVAL);
5735 }
5736
5737 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5738 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5739 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5740 return key_senderror(so, m, EINVAL);
5741 }
5742
5743 if (mhp->ext[SADB_EXT_SA] == NULL) {
5744 /*
5745 * Caller wants us to delete all non-LARVAL SAs
5746 * that match the src/dst. This is used during
5747 * IKE INITIAL-CONTACT.
5748 */
5749 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5750 return key_delete_all(so, m, mhp, proto);
5751 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5752 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5753 return key_senderror(so, m, EINVAL);
5754 }
5755
5756 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5757 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5758 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5759
5760 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5761 dst0 + 1, &saidx)) != 0)
5762 return key_senderror(so, m, EINVAL);
5763
5764 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5765 return key_senderror(so, m, EINVAL);
5766
5767 /* get a SA header */
5768 LIST_FOREACH(sah, &sahtree, chain) {
5769 if (sah->state == SADB_SASTATE_DEAD)
5770 continue;
5771 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5772 continue;
5773
5774 /* get a SA with SPI. */
5775 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5776 if (sav)
5777 break;
5778 }
5779 if (sah == NULL) {
5780 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5781 return key_senderror(so, m, ENOENT);
5782 }
5783
5784 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5785 KEY_FREESAV(&sav);
5786
5787 {
5788 struct mbuf *n;
5789 struct sadb_msg *newmsg;
5790
5791 /* create new sadb_msg to reply. */
5792 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5793 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5794 if (!n)
5795 return key_senderror(so, m, ENOBUFS);
5796
5797 if (n->m_len < sizeof(struct sadb_msg)) {
5798 n = m_pullup(n, sizeof(struct sadb_msg));
5799 if (n == NULL)
5800 return key_senderror(so, m, ENOBUFS);
5801 }
5802 newmsg = mtod(n, struct sadb_msg *);
5803 newmsg->sadb_msg_errno = 0;
5804 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5805
5806 m_freem(m);
5807 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5808 }
5809 }
5810
5811 /*
5812 * delete all SAs for src/dst. Called from key_delete().
5813 */
5814 static int
5815 key_delete_all(struct socket *so, struct mbuf *m,
5816 const struct sadb_msghdr *mhp, u_int16_t proto)
5817 {
5818 struct sadb_address *src0, *dst0;
5819 struct secasindex saidx;
5820 struct secashead *sah;
5821 struct secasvar *sav, *nextsav;
5822 u_int stateidx, state;
5823 int error;
5824
5825 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5826 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5827
5828 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5829 dst0 + 1, &saidx)) != 0)
5830 return key_senderror(so, m, EINVAL);
5831
5832 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5833 return key_senderror(so, m, EINVAL);
5834
5835 LIST_FOREACH(sah, &sahtree, chain) {
5836 if (sah->state == SADB_SASTATE_DEAD)
5837 continue;
5838 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5839 continue;
5840
5841 /* Delete all non-LARVAL SAs. */
5842 for (stateidx = 0;
5843 stateidx < _ARRAYLEN(saorder_state_alive);
5844 stateidx++) {
5845 state = saorder_state_alive[stateidx];
5846 if (state == SADB_SASTATE_LARVAL)
5847 continue;
5848 for (sav = LIST_FIRST(&sah->savtree[state]);
5849 sav != NULL; sav = nextsav) {
5850 nextsav = LIST_NEXT(sav, chain);
5851 /* sanity check */
5852 if (sav->state != state) {
5853 ipseclog((LOG_DEBUG, "key_delete_all: "
5854 "invalid sav->state "
5855 "(queue: %d SA: %d)\n",
5856 state, sav->state));
5857 continue;
5858 }
5859
5860 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5861 KEY_FREESAV(&sav);
5862 }
5863 }
5864 }
5865 {
5866 struct mbuf *n;
5867 struct sadb_msg *newmsg;
5868
5869 /* create new sadb_msg to reply. */
5870 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5871 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5872 if (!n)
5873 return key_senderror(so, m, ENOBUFS);
5874
5875 if (n->m_len < sizeof(struct sadb_msg)) {
5876 n = m_pullup(n, sizeof(struct sadb_msg));
5877 if (n == NULL)
5878 return key_senderror(so, m, ENOBUFS);
5879 }
5880 newmsg = mtod(n, struct sadb_msg *);
5881 newmsg->sadb_msg_errno = 0;
5882 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5883
5884 m_freem(m);
5885 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5886 }
5887 }
5888
5889 /*
5890 * SADB_GET processing
5891 * receive
5892 * <base, SA(*), address(SD)>
5893 * from the ikmpd, and get a SP and a SA to respond,
5894 * and send,
5895 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5896 * (identity(SD),) (sensitivity)>
5897 * to the ikmpd.
5898 *
5899 * m will always be freed.
5900 */
5901 static int
5902 key_get(struct socket *so, struct mbuf *m,
5903 const struct sadb_msghdr *mhp)
5904 {
5905 struct sadb_sa *sa0;
5906 struct sadb_address *src0, *dst0;
5907 struct secasindex saidx;
5908 struct secashead *sah;
5909 struct secasvar *sav = NULL;
5910 u_int16_t proto;
5911 int error;
5912
5913 KASSERT(so != NULL);
5914 KASSERT(m != NULL);
5915 KASSERT(mhp != NULL);
5916 KASSERT(mhp->msg != NULL);
5917
5918 /* map satype to proto */
5919 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5920 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5921 return key_senderror(so, m, EINVAL);
5922 }
5923
5924 if (mhp->ext[SADB_EXT_SA] == NULL ||
5925 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5926 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5927 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5928 return key_senderror(so, m, EINVAL);
5929 }
5930 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5931 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5932 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5933 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5934 return key_senderror(so, m, EINVAL);
5935 }
5936
5937 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5938 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5939 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5940
5941 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5942 dst0 + 1, &saidx)) != 0)
5943 return key_senderror(so, m, EINVAL);
5944
5945 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5946 return key_senderror(so, m, EINVAL);
5947
5948 /* get a SA header */
5949 LIST_FOREACH(sah, &sahtree, chain) {
5950 if (sah->state == SADB_SASTATE_DEAD)
5951 continue;
5952 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5953 continue;
5954
5955 /* get a SA with SPI. */
5956 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5957 if (sav)
5958 break;
5959 }
5960 if (sah == NULL) {
5961 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5962 return key_senderror(so, m, ENOENT);
5963 }
5964
5965 {
5966 struct mbuf *n;
5967 u_int8_t satype;
5968
5969 /* map proto to satype */
5970 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5971 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5972 return key_senderror(so, m, EINVAL);
5973 }
5974
5975 /* create new sadb_msg to reply. */
5976 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5977 mhp->msg->sadb_msg_pid);
5978 if (!n)
5979 return key_senderror(so, m, ENOBUFS);
5980
5981 m_freem(m);
5982 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5983 }
5984 }
5985
5986 /* XXX make it sysctl-configurable? */
5987 static void
5988 key_getcomb_setlifetime(struct sadb_comb *comb)
5989 {
5990
5991 comb->sadb_comb_soft_allocations = 1;
5992 comb->sadb_comb_hard_allocations = 1;
5993 comb->sadb_comb_soft_bytes = 0;
5994 comb->sadb_comb_hard_bytes = 0;
5995 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5996 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5997 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5998 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5999 }
6000
6001 /*
6002 * XXX reorder combinations by preference
6003 * XXX no idea if the user wants ESP authentication or not
6004 */
6005 static struct mbuf *
6006 key_getcomb_esp(void)
6007 {
6008 struct sadb_comb *comb;
6009 const struct enc_xform *algo;
6010 struct mbuf *result = NULL, *m, *n;
6011 int encmin;
6012 int i, off, o;
6013 int totlen;
6014 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6015
6016 m = NULL;
6017 for (i = 1; i <= SADB_EALG_MAX; i++) {
6018 algo = esp_algorithm_lookup(i);
6019 if (algo == NULL)
6020 continue;
6021
6022 /* discard algorithms with key size smaller than system min */
6023 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6024 continue;
6025 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6026 encmin = ipsec_esp_keymin;
6027 else
6028 encmin = _BITS(algo->minkey);
6029
6030 if (ipsec_esp_auth)
6031 m = key_getcomb_ah();
6032 else {
6033 KASSERTMSG(l <= MLEN,
6034 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6035 MGET(m, M_DONTWAIT, MT_DATA);
6036 if (m) {
6037 M_ALIGN(m, l);
6038 m->m_len = l;
6039 m->m_next = NULL;
6040 memset(mtod(m, void *), 0, m->m_len);
6041 }
6042 }
6043 if (!m)
6044 goto fail;
6045
6046 totlen = 0;
6047 for (n = m; n; n = n->m_next)
6048 totlen += n->m_len;
6049 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6050
6051 for (off = 0; off < totlen; off += l) {
6052 n = m_pulldown(m, off, l, &o);
6053 if (!n) {
6054 /* m is already freed */
6055 goto fail;
6056 }
6057 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6058 memset(comb, 0, sizeof(*comb));
6059 key_getcomb_setlifetime(comb);
6060 comb->sadb_comb_encrypt = i;
6061 comb->sadb_comb_encrypt_minbits = encmin;
6062 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6063 }
6064
6065 if (!result)
6066 result = m;
6067 else
6068 m_cat(result, m);
6069 }
6070
6071 return result;
6072
6073 fail:
6074 if (result)
6075 m_freem(result);
6076 return NULL;
6077 }
6078
6079 static void
6080 key_getsizes_ah(const struct auth_hash *ah, int alg,
6081 u_int16_t* ksmin, u_int16_t* ksmax)
6082 {
6083 *ksmin = *ksmax = ah->keysize;
6084 if (ah->keysize == 0) {
6085 /*
6086 * Transform takes arbitrary key size but algorithm
6087 * key size is restricted. Enforce this here.
6088 */
6089 switch (alg) {
6090 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6091 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6092 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6093 default:
6094 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6095 alg));
6096 break;
6097 }
6098 }
6099 }
6100
6101 /*
6102 * XXX reorder combinations by preference
6103 */
6104 static struct mbuf *
6105 key_getcomb_ah(void)
6106 {
6107 struct sadb_comb *comb;
6108 const struct auth_hash *algo;
6109 struct mbuf *m;
6110 u_int16_t minkeysize, maxkeysize;
6111 int i;
6112 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6113
6114 m = NULL;
6115 for (i = 1; i <= SADB_AALG_MAX; i++) {
6116 #if 1
6117 /* we prefer HMAC algorithms, not old algorithms */
6118 if (i != SADB_AALG_SHA1HMAC &&
6119 i != SADB_AALG_MD5HMAC &&
6120 i != SADB_X_AALG_SHA2_256 &&
6121 i != SADB_X_AALG_SHA2_384 &&
6122 i != SADB_X_AALG_SHA2_512)
6123 continue;
6124 #endif
6125 algo = ah_algorithm_lookup(i);
6126 if (!algo)
6127 continue;
6128 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6129 /* discard algorithms with key size smaller than system min */
6130 if (_BITS(minkeysize) < ipsec_ah_keymin)
6131 continue;
6132
6133 if (!m) {
6134 KASSERTMSG(l <= MLEN,
6135 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6136 MGET(m, M_DONTWAIT, MT_DATA);
6137 if (m) {
6138 M_ALIGN(m, l);
6139 m->m_len = l;
6140 m->m_next = NULL;
6141 }
6142 } else
6143 M_PREPEND(m, l, M_DONTWAIT);
6144 if (!m)
6145 return NULL;
6146
6147 comb = mtod(m, struct sadb_comb *);
6148 memset(comb, 0, sizeof(*comb));
6149 key_getcomb_setlifetime(comb);
6150 comb->sadb_comb_auth = i;
6151 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6152 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6153 }
6154
6155 return m;
6156 }
6157
6158 /*
6159 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6160 * XXX reorder combinations by preference
6161 */
6162 static struct mbuf *
6163 key_getcomb_ipcomp(void)
6164 {
6165 struct sadb_comb *comb;
6166 const struct comp_algo *algo;
6167 struct mbuf *m;
6168 int i;
6169 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6170
6171 m = NULL;
6172 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6173 algo = ipcomp_algorithm_lookup(i);
6174 if (!algo)
6175 continue;
6176
6177 if (!m) {
6178 KASSERTMSG(l <= MLEN,
6179 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6180 MGET(m, M_DONTWAIT, MT_DATA);
6181 if (m) {
6182 M_ALIGN(m, l);
6183 m->m_len = l;
6184 m->m_next = NULL;
6185 }
6186 } else
6187 M_PREPEND(m, l, M_DONTWAIT);
6188 if (!m)
6189 return NULL;
6190
6191 comb = mtod(m, struct sadb_comb *);
6192 memset(comb, 0, sizeof(*comb));
6193 key_getcomb_setlifetime(comb);
6194 comb->sadb_comb_encrypt = i;
6195 /* what should we set into sadb_comb_*_{min,max}bits? */
6196 }
6197
6198 return m;
6199 }
6200
6201 /*
6202 * XXX no way to pass mode (transport/tunnel) to userland
6203 * XXX replay checking?
6204 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6205 */
6206 static struct mbuf *
6207 key_getprop(const struct secasindex *saidx)
6208 {
6209 struct sadb_prop *prop;
6210 struct mbuf *m, *n;
6211 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6212 int totlen;
6213
6214 switch (saidx->proto) {
6215 case IPPROTO_ESP:
6216 m = key_getcomb_esp();
6217 break;
6218 case IPPROTO_AH:
6219 m = key_getcomb_ah();
6220 break;
6221 case IPPROTO_IPCOMP:
6222 m = key_getcomb_ipcomp();
6223 break;
6224 default:
6225 return NULL;
6226 }
6227
6228 if (!m)
6229 return NULL;
6230 M_PREPEND(m, l, M_DONTWAIT);
6231 if (!m)
6232 return NULL;
6233
6234 totlen = 0;
6235 for (n = m; n; n = n->m_next)
6236 totlen += n->m_len;
6237
6238 prop = mtod(m, struct sadb_prop *);
6239 memset(prop, 0, sizeof(*prop));
6240 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6241 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6242 prop->sadb_prop_replay = 32; /* XXX */
6243
6244 return m;
6245 }
6246
6247 /*
6248 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6249 * send
6250 * <base, SA, address(SD), (address(P)), x_policy,
6251 * (identity(SD),) (sensitivity,) proposal>
6252 * to KMD, and expect to receive
6253 * <base> with SADB_ACQUIRE if error occurred,
6254 * or
6255 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6256 * from KMD by PF_KEY.
6257 *
6258 * XXX x_policy is outside of RFC2367 (KAME extension).
6259 * XXX sensitivity is not supported.
6260 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6261 * see comment for key_getcomb_ipcomp().
6262 *
6263 * OUT:
6264 * 0 : succeed
6265 * others: error number
6266 */
6267 static int
6268 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6269 {
6270 struct mbuf *result = NULL, *m;
6271 #ifndef IPSEC_NONBLOCK_ACQUIRE
6272 struct secacq *newacq;
6273 #endif
6274 u_int8_t satype;
6275 int error = -1;
6276 u_int32_t seq;
6277
6278 /* sanity check */
6279 KASSERT(saidx != NULL);
6280 satype = key_proto2satype(saidx->proto);
6281 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6282
6283 #ifndef IPSEC_NONBLOCK_ACQUIRE
6284 /*
6285 * We never do anything about acquirng SA. There is anather
6286 * solution that kernel blocks to send SADB_ACQUIRE message until
6287 * getting something message from IKEd. In later case, to be
6288 * managed with ACQUIRING list.
6289 */
6290 /* Get an entry to check whether sending message or not. */
6291 if ((newacq = key_getacq(saidx)) != NULL) {
6292 if (key_blockacq_count < newacq->count) {
6293 /* reset counter and do send message. */
6294 newacq->count = 0;
6295 } else {
6296 /* increment counter and do nothing. */
6297 newacq->count++;
6298 return 0;
6299 }
6300 } else {
6301 /* make new entry for blocking to send SADB_ACQUIRE. */
6302 if ((newacq = key_newacq(saidx)) == NULL)
6303 return ENOBUFS;
6304
6305 /* add to acqtree */
6306 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6307 }
6308 #endif
6309
6310
6311 #ifndef IPSEC_NONBLOCK_ACQUIRE
6312 seq = newacq->seq;
6313 #else
6314 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6315 #endif
6316 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6317 if (!m) {
6318 error = ENOBUFS;
6319 goto fail;
6320 }
6321 result = m;
6322
6323 /* set sadb_address for saidx's. */
6324 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6325 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6326 if (!m) {
6327 error = ENOBUFS;
6328 goto fail;
6329 }
6330 m_cat(result, m);
6331
6332 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6333 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6334 if (!m) {
6335 error = ENOBUFS;
6336 goto fail;
6337 }
6338 m_cat(result, m);
6339
6340 /* XXX proxy address (optional) */
6341
6342 /* set sadb_x_policy */
6343 if (sp) {
6344 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6345 if (!m) {
6346 error = ENOBUFS;
6347 goto fail;
6348 }
6349 m_cat(result, m);
6350 }
6351
6352 /* XXX identity (optional) */
6353 #if 0
6354 if (idexttype && fqdn) {
6355 /* create identity extension (FQDN) */
6356 struct sadb_ident *id;
6357 int fqdnlen;
6358
6359 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6360 id = (struct sadb_ident *)p;
6361 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6362 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6363 id->sadb_ident_exttype = idexttype;
6364 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6365 memcpy(id + 1, fqdn, fqdnlen);
6366 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6367 }
6368
6369 if (idexttype) {
6370 /* create identity extension (USERFQDN) */
6371 struct sadb_ident *id;
6372 int userfqdnlen;
6373
6374 if (userfqdn) {
6375 /* +1 for terminating-NUL */
6376 userfqdnlen = strlen(userfqdn) + 1;
6377 } else
6378 userfqdnlen = 0;
6379 id = (struct sadb_ident *)p;
6380 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6381 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6382 id->sadb_ident_exttype = idexttype;
6383 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6384 /* XXX is it correct? */
6385 if (curlwp)
6386 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6387 if (userfqdn && userfqdnlen)
6388 memcpy(id + 1, userfqdn, userfqdnlen);
6389 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6390 }
6391 #endif
6392
6393 /* XXX sensitivity (optional) */
6394
6395 /* create proposal/combination extension */
6396 m = key_getprop(saidx);
6397 #if 0
6398 /*
6399 * spec conformant: always attach proposal/combination extension,
6400 * the problem is that we have no way to attach it for ipcomp,
6401 * due to the way sadb_comb is declared in RFC2367.
6402 */
6403 if (!m) {
6404 error = ENOBUFS;
6405 goto fail;
6406 }
6407 m_cat(result, m);
6408 #else
6409 /*
6410 * outside of spec; make proposal/combination extension optional.
6411 */
6412 if (m)
6413 m_cat(result, m);
6414 #endif
6415
6416 if ((result->m_flags & M_PKTHDR) == 0) {
6417 error = EINVAL;
6418 goto fail;
6419 }
6420
6421 if (result->m_len < sizeof(struct sadb_msg)) {
6422 result = m_pullup(result, sizeof(struct sadb_msg));
6423 if (result == NULL) {
6424 error = ENOBUFS;
6425 goto fail;
6426 }
6427 }
6428
6429 result->m_pkthdr.len = 0;
6430 for (m = result; m; m = m->m_next)
6431 result->m_pkthdr.len += m->m_len;
6432
6433 mtod(result, struct sadb_msg *)->sadb_msg_len =
6434 PFKEY_UNIT64(result->m_pkthdr.len);
6435
6436 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6437
6438 fail:
6439 if (result)
6440 m_freem(result);
6441 return error;
6442 }
6443
6444 #ifndef IPSEC_NONBLOCK_ACQUIRE
6445 static struct secacq *
6446 key_newacq(const struct secasindex *saidx)
6447 {
6448 struct secacq *newacq;
6449
6450 /* get new entry */
6451 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6452 if (newacq == NULL) {
6453 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6454 return NULL;
6455 }
6456 memset(newacq, 0, sizeof(*newacq));
6457
6458 /* copy secindex */
6459 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6460 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6461 newacq->created = time_uptime;
6462 newacq->count = 0;
6463
6464 return newacq;
6465 }
6466
6467 static struct secacq *
6468 key_getacq(const struct secasindex *saidx)
6469 {
6470 struct secacq *acq;
6471
6472 LIST_FOREACH(acq, &acqtree, chain) {
6473 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6474 return acq;
6475 }
6476
6477 return NULL;
6478 }
6479
6480 static struct secacq *
6481 key_getacqbyseq(u_int32_t seq)
6482 {
6483 struct secacq *acq;
6484
6485 LIST_FOREACH(acq, &acqtree, chain) {
6486 if (acq->seq == seq)
6487 return acq;
6488 }
6489
6490 return NULL;
6491 }
6492 #endif
6493
6494 static struct secspacq *
6495 key_newspacq(const struct secpolicyindex *spidx)
6496 {
6497 struct secspacq *acq;
6498
6499 /* get new entry */
6500 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6501 if (acq == NULL) {
6502 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6503 return NULL;
6504 }
6505 memset(acq, 0, sizeof(*acq));
6506
6507 /* copy secindex */
6508 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6509 acq->created = time_uptime;
6510 acq->count = 0;
6511
6512 return acq;
6513 }
6514
6515 static struct secspacq *
6516 key_getspacq(const struct secpolicyindex *spidx)
6517 {
6518 struct secspacq *acq;
6519
6520 LIST_FOREACH(acq, &spacqtree, chain) {
6521 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6522 return acq;
6523 }
6524
6525 return NULL;
6526 }
6527
6528 /*
6529 * SADB_ACQUIRE processing,
6530 * in first situation, is receiving
6531 * <base>
6532 * from the ikmpd, and clear sequence of its secasvar entry.
6533 *
6534 * In second situation, is receiving
6535 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6536 * from a user land process, and return
6537 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6538 * to the socket.
6539 *
6540 * m will always be freed.
6541 */
6542 static int
6543 key_acquire2(struct socket *so, struct mbuf *m,
6544 const struct sadb_msghdr *mhp)
6545 {
6546 const struct sadb_address *src0, *dst0;
6547 struct secasindex saidx;
6548 struct secashead *sah;
6549 u_int16_t proto;
6550 int error;
6551
6552 KASSERT(so != NULL);
6553 KASSERT(m != NULL);
6554 KASSERT(mhp != NULL);
6555 KASSERT(mhp->msg != NULL);
6556
6557 /*
6558 * Error message from KMd.
6559 * We assume that if error was occurred in IKEd, the length of PFKEY
6560 * message is equal to the size of sadb_msg structure.
6561 * We do not raise error even if error occurred in this function.
6562 */
6563 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6564 #ifndef IPSEC_NONBLOCK_ACQUIRE
6565 struct secacq *acq;
6566
6567 /* check sequence number */
6568 if (mhp->msg->sadb_msg_seq == 0) {
6569 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6570 m_freem(m);
6571 return 0;
6572 }
6573
6574 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6575 /*
6576 * the specified larval SA is already gone, or we got
6577 * a bogus sequence number. we can silently ignore it.
6578 */
6579 m_freem(m);
6580 return 0;
6581 }
6582
6583 /* reset acq counter in order to deletion by timehander. */
6584 acq->created = time_uptime;
6585 acq->count = 0;
6586 #endif
6587 m_freem(m);
6588 return 0;
6589 }
6590
6591 /*
6592 * This message is from user land.
6593 */
6594
6595 /* map satype to proto */
6596 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6597 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6598 return key_senderror(so, m, EINVAL);
6599 }
6600
6601 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6602 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6603 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6604 /* error */
6605 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6606 return key_senderror(so, m, EINVAL);
6607 }
6608 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6609 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6610 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6611 /* error */
6612 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6613 return key_senderror(so, m, EINVAL);
6614 }
6615
6616 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6617 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6618
6619 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6620 dst0 + 1, &saidx)) != 0)
6621 return key_senderror(so, m, EINVAL);
6622
6623 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6624 return key_senderror(so, m, EINVAL);
6625
6626 /* get a SA index */
6627 LIST_FOREACH(sah, &sahtree, chain) {
6628 if (sah->state == SADB_SASTATE_DEAD)
6629 continue;
6630 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6631 break;
6632 }
6633 if (sah != NULL) {
6634 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6635 return key_senderror(so, m, EEXIST);
6636 }
6637
6638 error = key_acquire(&saidx, NULL);
6639 if (error != 0) {
6640 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6641 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6642 return key_senderror(so, m, error);
6643 }
6644
6645 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6646 }
6647
6648 /*
6649 * SADB_REGISTER processing.
6650 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6651 * receive
6652 * <base>
6653 * from the ikmpd, and register a socket to send PF_KEY messages,
6654 * and send
6655 * <base, supported>
6656 * to KMD by PF_KEY.
6657 * If socket is detached, must free from regnode.
6658 *
6659 * m will always be freed.
6660 */
6661 static int
6662 key_register(struct socket *so, struct mbuf *m,
6663 const struct sadb_msghdr *mhp)
6664 {
6665 struct secreg *reg, *newreg = 0;
6666
6667 KASSERT(so != NULL);
6668 KASSERT(m != NULL);
6669 KASSERT(mhp != NULL);
6670 KASSERT(mhp->msg != NULL);
6671
6672 /* check for invalid register message */
6673 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6674 return key_senderror(so, m, EINVAL);
6675
6676 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6677 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6678 goto setmsg;
6679
6680 /* check whether existing or not */
6681 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6682 if (reg->so == so) {
6683 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6684 return key_senderror(so, m, EEXIST);
6685 }
6686 }
6687
6688 /* create regnode */
6689 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6690 if (newreg == NULL) {
6691 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6692 return key_senderror(so, m, ENOBUFS);
6693 }
6694 memset(newreg, 0, sizeof(*newreg));
6695
6696 newreg->so = so;
6697 ((struct keycb *)sotorawcb(so))->kp_registered++;
6698
6699 /* add regnode to regtree. */
6700 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6701
6702 setmsg:
6703 {
6704 struct mbuf *n;
6705 struct sadb_msg *newmsg;
6706 struct sadb_supported *sup;
6707 u_int len, alen, elen;
6708 int off;
6709 int i;
6710 struct sadb_alg *alg;
6711
6712 /* create new sadb_msg to reply. */
6713 alen = 0;
6714 for (i = 1; i <= SADB_AALG_MAX; i++) {
6715 if (ah_algorithm_lookup(i))
6716 alen += sizeof(struct sadb_alg);
6717 }
6718 if (alen)
6719 alen += sizeof(struct sadb_supported);
6720 elen = 0;
6721 for (i = 1; i <= SADB_EALG_MAX; i++) {
6722 if (esp_algorithm_lookup(i))
6723 elen += sizeof(struct sadb_alg);
6724 }
6725 if (elen)
6726 elen += sizeof(struct sadb_supported);
6727
6728 len = sizeof(struct sadb_msg) + alen + elen;
6729
6730 if (len > MCLBYTES)
6731 return key_senderror(so, m, ENOBUFS);
6732
6733 MGETHDR(n, M_DONTWAIT, MT_DATA);
6734 if (len > MHLEN) {
6735 MCLGET(n, M_DONTWAIT);
6736 if ((n->m_flags & M_EXT) == 0) {
6737 m_freem(n);
6738 n = NULL;
6739 }
6740 }
6741 if (!n)
6742 return key_senderror(so, m, ENOBUFS);
6743
6744 n->m_pkthdr.len = n->m_len = len;
6745 n->m_next = NULL;
6746 off = 0;
6747
6748 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6749 newmsg = mtod(n, struct sadb_msg *);
6750 newmsg->sadb_msg_errno = 0;
6751 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6752 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6753
6754 /* for authentication algorithm */
6755 if (alen) {
6756 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6757 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6758 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6759 off += PFKEY_ALIGN8(sizeof(*sup));
6760
6761 for (i = 1; i <= SADB_AALG_MAX; i++) {
6762 const struct auth_hash *aalgo;
6763 u_int16_t minkeysize, maxkeysize;
6764
6765 aalgo = ah_algorithm_lookup(i);
6766 if (!aalgo)
6767 continue;
6768 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6769 alg->sadb_alg_id = i;
6770 alg->sadb_alg_ivlen = 0;
6771 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6772 alg->sadb_alg_minbits = _BITS(minkeysize);
6773 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6774 off += PFKEY_ALIGN8(sizeof(*alg));
6775 }
6776 }
6777
6778 /* for encryption algorithm */
6779 if (elen) {
6780 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6781 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6782 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6783 off += PFKEY_ALIGN8(sizeof(*sup));
6784
6785 for (i = 1; i <= SADB_EALG_MAX; i++) {
6786 const struct enc_xform *ealgo;
6787
6788 ealgo = esp_algorithm_lookup(i);
6789 if (!ealgo)
6790 continue;
6791 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6792 alg->sadb_alg_id = i;
6793 alg->sadb_alg_ivlen = ealgo->blocksize;
6794 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6795 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6796 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6797 }
6798 }
6799
6800 KASSERTMSG(off == len, "length inconsistency");
6801
6802 m_freem(m);
6803 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6804 }
6805 }
6806
6807 /*
6808 * free secreg entry registered.
6809 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6810 */
6811 void
6812 key_freereg(struct socket *so)
6813 {
6814 struct secreg *reg;
6815 int i;
6816
6817 KASSERT(so != NULL);
6818
6819 /*
6820 * check whether existing or not.
6821 * check all type of SA, because there is a potential that
6822 * one socket is registered to multiple type of SA.
6823 */
6824 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6825 LIST_FOREACH(reg, ®tree[i], chain) {
6826 if (reg->so == so
6827 && __LIST_CHAINED(reg)) {
6828 LIST_REMOVE(reg, chain);
6829 KFREE(reg);
6830 break;
6831 }
6832 }
6833 }
6834
6835 return;
6836 }
6837
6838 /*
6839 * SADB_EXPIRE processing
6840 * send
6841 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6842 * to KMD by PF_KEY.
6843 * NOTE: We send only soft lifetime extension.
6844 *
6845 * OUT: 0 : succeed
6846 * others : error number
6847 */
6848 static int
6849 key_expire(struct secasvar *sav)
6850 {
6851 int s;
6852 int satype;
6853 struct mbuf *result = NULL, *m;
6854 int len;
6855 int error = -1;
6856 struct sadb_lifetime *lt;
6857
6858 /* XXX: Why do we lock ? */
6859 s = splsoftnet(); /*called from softclock()*/
6860
6861 KASSERT(sav != NULL);
6862 KASSERT(sav->sah != NULL);
6863
6864 satype = key_proto2satype(sav->sah->saidx.proto);
6865 KASSERTMSG(satype != 0, "invalid proto is passed");
6866
6867 /* set msg header */
6868 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6869 if (!m) {
6870 error = ENOBUFS;
6871 goto fail;
6872 }
6873 result = m;
6874
6875 /* create SA extension */
6876 m = key_setsadbsa(sav);
6877 if (!m) {
6878 error = ENOBUFS;
6879 goto fail;
6880 }
6881 m_cat(result, m);
6882
6883 /* create SA extension */
6884 m = key_setsadbxsa2(sav->sah->saidx.mode,
6885 sav->replay ? sav->replay->count : 0,
6886 sav->sah->saidx.reqid);
6887 if (!m) {
6888 error = ENOBUFS;
6889 goto fail;
6890 }
6891 m_cat(result, m);
6892
6893 /* create lifetime extension (current and soft) */
6894 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6895 m = key_alloc_mbuf(len);
6896 if (!m || m->m_next) { /*XXX*/
6897 if (m)
6898 m_freem(m);
6899 error = ENOBUFS;
6900 goto fail;
6901 }
6902 memset(mtod(m, void *), 0, len);
6903 lt = mtod(m, struct sadb_lifetime *);
6904 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6905 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6906 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6907 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6908 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6909 + time_second - time_uptime;
6910 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6911 + time_second - time_uptime;
6912 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6913 memcpy(lt, sav->lft_s, sizeof(*lt));
6914 m_cat(result, m);
6915
6916 /* set sadb_address for source */
6917 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6918 &sav->sah->saidx.src.sa,
6919 FULLMASK, IPSEC_ULPROTO_ANY);
6920 if (!m) {
6921 error = ENOBUFS;
6922 goto fail;
6923 }
6924 m_cat(result, m);
6925
6926 /* set sadb_address for destination */
6927 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6928 &sav->sah->saidx.dst.sa,
6929 FULLMASK, IPSEC_ULPROTO_ANY);
6930 if (!m) {
6931 error = ENOBUFS;
6932 goto fail;
6933 }
6934 m_cat(result, m);
6935
6936 if ((result->m_flags & M_PKTHDR) == 0) {
6937 error = EINVAL;
6938 goto fail;
6939 }
6940
6941 if (result->m_len < sizeof(struct sadb_msg)) {
6942 result = m_pullup(result, sizeof(struct sadb_msg));
6943 if (result == NULL) {
6944 error = ENOBUFS;
6945 goto fail;
6946 }
6947 }
6948
6949 result->m_pkthdr.len = 0;
6950 for (m = result; m; m = m->m_next)
6951 result->m_pkthdr.len += m->m_len;
6952
6953 mtod(result, struct sadb_msg *)->sadb_msg_len =
6954 PFKEY_UNIT64(result->m_pkthdr.len);
6955
6956 splx(s);
6957 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6958
6959 fail:
6960 if (result)
6961 m_freem(result);
6962 splx(s);
6963 return error;
6964 }
6965
6966 /*
6967 * SADB_FLUSH processing
6968 * receive
6969 * <base>
6970 * from the ikmpd, and free all entries in secastree.
6971 * and send,
6972 * <base>
6973 * to the ikmpd.
6974 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6975 *
6976 * m will always be freed.
6977 */
6978 static int
6979 key_flush(struct socket *so, struct mbuf *m,
6980 const struct sadb_msghdr *mhp)
6981 {
6982 struct sadb_msg *newmsg;
6983 struct secashead *sah, *nextsah;
6984 struct secasvar *sav, *nextsav;
6985 u_int16_t proto;
6986 u_int8_t state;
6987 u_int stateidx;
6988
6989 KASSERT(so != NULL);
6990 KASSERT(mhp != NULL);
6991 KASSERT(mhp->msg != NULL);
6992
6993 /* map satype to proto */
6994 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6995 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6996 return key_senderror(so, m, EINVAL);
6997 }
6998
6999 /* no SATYPE specified, i.e. flushing all SA. */
7000 for (sah = LIST_FIRST(&sahtree);
7001 sah != NULL;
7002 sah = nextsah) {
7003 nextsah = LIST_NEXT(sah, chain);
7004
7005 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7006 && proto != sah->saidx.proto)
7007 continue;
7008
7009 for (stateidx = 0;
7010 stateidx < _ARRAYLEN(saorder_state_alive);
7011 stateidx++) {
7012 state = saorder_state_any[stateidx];
7013 for (sav = LIST_FIRST(&sah->savtree[state]);
7014 sav != NULL;
7015 sav = nextsav) {
7016
7017 nextsav = LIST_NEXT(sav, chain);
7018
7019 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7020 KEY_FREESAV(&sav);
7021 }
7022 }
7023
7024 sah->state = SADB_SASTATE_DEAD;
7025 }
7026
7027 if (m->m_len < sizeof(struct sadb_msg) ||
7028 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7029 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
7030 return key_senderror(so, m, ENOBUFS);
7031 }
7032
7033 if (m->m_next)
7034 m_freem(m->m_next);
7035 m->m_next = NULL;
7036 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7037 newmsg = mtod(m, struct sadb_msg *);
7038 newmsg->sadb_msg_errno = 0;
7039 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7040
7041 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7042 }
7043
7044
7045 static struct mbuf *
7046 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7047 {
7048 struct secashead *sah;
7049 struct secasvar *sav;
7050 u_int16_t proto;
7051 u_int stateidx;
7052 u_int8_t satype;
7053 u_int8_t state;
7054 int cnt;
7055 struct mbuf *m, *n, *prev;
7056
7057 *lenp = 0;
7058
7059 /* map satype to proto */
7060 if ((proto = key_satype2proto(req_satype)) == 0) {
7061 *errorp = EINVAL;
7062 return (NULL);
7063 }
7064
7065 /* count sav entries to be sent to userland. */
7066 cnt = 0;
7067 LIST_FOREACH(sah, &sahtree, chain) {
7068 if (req_satype != SADB_SATYPE_UNSPEC &&
7069 proto != sah->saidx.proto)
7070 continue;
7071
7072 for (stateidx = 0;
7073 stateidx < _ARRAYLEN(saorder_state_any);
7074 stateidx++) {
7075 state = saorder_state_any[stateidx];
7076 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7077 cnt++;
7078 }
7079 }
7080 }
7081
7082 if (cnt == 0) {
7083 *errorp = ENOENT;
7084 return (NULL);
7085 }
7086
7087 /* send this to the userland, one at a time. */
7088 m = NULL;
7089 prev = m;
7090 LIST_FOREACH(sah, &sahtree, chain) {
7091 if (req_satype != SADB_SATYPE_UNSPEC &&
7092 proto != sah->saidx.proto)
7093 continue;
7094
7095 /* map proto to satype */
7096 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7097 m_freem(m);
7098 *errorp = EINVAL;
7099 return (NULL);
7100 }
7101
7102 for (stateidx = 0;
7103 stateidx < _ARRAYLEN(saorder_state_any);
7104 stateidx++) {
7105 state = saorder_state_any[stateidx];
7106 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7107 n = key_setdumpsa(sav, SADB_DUMP, satype,
7108 --cnt, pid);
7109 if (!n) {
7110 m_freem(m);
7111 *errorp = ENOBUFS;
7112 return (NULL);
7113 }
7114
7115 if (!m)
7116 m = n;
7117 else
7118 prev->m_nextpkt = n;
7119 prev = n;
7120 }
7121 }
7122 }
7123
7124 if (!m) {
7125 *errorp = EINVAL;
7126 return (NULL);
7127 }
7128
7129 if ((m->m_flags & M_PKTHDR) != 0) {
7130 m->m_pkthdr.len = 0;
7131 for (n = m; n; n = n->m_next)
7132 m->m_pkthdr.len += n->m_len;
7133 }
7134
7135 *errorp = 0;
7136 return (m);
7137 }
7138
7139 /*
7140 * SADB_DUMP processing
7141 * dump all entries including status of DEAD in SAD.
7142 * receive
7143 * <base>
7144 * from the ikmpd, and dump all secasvar leaves
7145 * and send,
7146 * <base> .....
7147 * to the ikmpd.
7148 *
7149 * m will always be freed.
7150 */
7151 static int
7152 key_dump(struct socket *so, struct mbuf *m0,
7153 const struct sadb_msghdr *mhp)
7154 {
7155 u_int16_t proto;
7156 u_int8_t satype;
7157 struct mbuf *n;
7158 int s;
7159 int error, len, ok;
7160
7161 KASSERT(so != NULL);
7162 KASSERT(m0 != NULL);
7163 KASSERT(mhp != NULL);
7164 KASSERT(mhp->msg != NULL);
7165
7166 /* map satype to proto */
7167 satype = mhp->msg->sadb_msg_satype;
7168 if ((proto = key_satype2proto(satype)) == 0) {
7169 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7170 return key_senderror(so, m0, EINVAL);
7171 }
7172
7173 /*
7174 * If the requestor has insufficient socket-buffer space
7175 * for the entire chain, nobody gets any response to the DUMP.
7176 * XXX For now, only the requestor ever gets anything.
7177 * Moreover, if the requestor has any space at all, they receive
7178 * the entire chain, otherwise the request is refused with ENOBUFS.
7179 */
7180 if (sbspace(&so->so_rcv) <= 0) {
7181 return key_senderror(so, m0, ENOBUFS);
7182 }
7183
7184 s = splsoftnet();
7185 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7186 splx(s);
7187
7188 if (n == NULL) {
7189 return key_senderror(so, m0, ENOENT);
7190 }
7191 {
7192 uint64_t *ps = PFKEY_STAT_GETREF();
7193 ps[PFKEY_STAT_IN_TOTAL]++;
7194 ps[PFKEY_STAT_IN_BYTES] += len;
7195 PFKEY_STAT_PUTREF();
7196 }
7197
7198 /*
7199 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7200 * The requestor receives either the entire chain, or an
7201 * error message with ENOBUFS.
7202 *
7203 * sbappendaddrchain() takes the chain of entries, one
7204 * packet-record per SPD entry, prepends the key_src sockaddr
7205 * to each packet-record, links the sockaddr mbufs into a new
7206 * list of records, then appends the entire resulting
7207 * list to the requesting socket.
7208 */
7209 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7210 n, SB_PRIO_ONESHOT_OVERFLOW);
7211
7212 if (!ok) {
7213 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7214 m_freem(n);
7215 return key_senderror(so, m0, ENOBUFS);
7216 }
7217
7218 m_freem(m0);
7219 return 0;
7220 }
7221
7222 /*
7223 * SADB_X_PROMISC processing
7224 *
7225 * m will always be freed.
7226 */
7227 static int
7228 key_promisc(struct socket *so, struct mbuf *m,
7229 const struct sadb_msghdr *mhp)
7230 {
7231 int olen;
7232
7233 KASSERT(so != NULL);
7234 KASSERT(m != NULL);
7235 KASSERT(mhp != NULL);
7236 KASSERT(mhp->msg != NULL);
7237
7238 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7239
7240 if (olen < sizeof(struct sadb_msg)) {
7241 #if 1
7242 return key_senderror(so, m, EINVAL);
7243 #else
7244 m_freem(m);
7245 return 0;
7246 #endif
7247 } else if (olen == sizeof(struct sadb_msg)) {
7248 /* enable/disable promisc mode */
7249 struct keycb *kp;
7250
7251 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7252 return key_senderror(so, m, EINVAL);
7253 mhp->msg->sadb_msg_errno = 0;
7254 switch (mhp->msg->sadb_msg_satype) {
7255 case 0:
7256 case 1:
7257 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7258 break;
7259 default:
7260 return key_senderror(so, m, EINVAL);
7261 }
7262
7263 /* send the original message back to everyone */
7264 mhp->msg->sadb_msg_errno = 0;
7265 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7266 } else {
7267 /* send packet as is */
7268
7269 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7270
7271 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7272 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7273 }
7274 }
7275
7276 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7277 const struct sadb_msghdr *) = {
7278 NULL, /* SADB_RESERVED */
7279 key_getspi, /* SADB_GETSPI */
7280 key_update, /* SADB_UPDATE */
7281 key_add, /* SADB_ADD */
7282 key_delete, /* SADB_DELETE */
7283 key_get, /* SADB_GET */
7284 key_acquire2, /* SADB_ACQUIRE */
7285 key_register, /* SADB_REGISTER */
7286 NULL, /* SADB_EXPIRE */
7287 key_flush, /* SADB_FLUSH */
7288 key_dump, /* SADB_DUMP */
7289 key_promisc, /* SADB_X_PROMISC */
7290 NULL, /* SADB_X_PCHANGE */
7291 key_spdadd, /* SADB_X_SPDUPDATE */
7292 key_spdadd, /* SADB_X_SPDADD */
7293 key_spddelete, /* SADB_X_SPDDELETE */
7294 key_spdget, /* SADB_X_SPDGET */
7295 NULL, /* SADB_X_SPDACQUIRE */
7296 key_spddump, /* SADB_X_SPDDUMP */
7297 key_spdflush, /* SADB_X_SPDFLUSH */
7298 key_spdadd, /* SADB_X_SPDSETIDX */
7299 NULL, /* SADB_X_SPDEXPIRE */
7300 key_spddelete2, /* SADB_X_SPDDELETE2 */
7301 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7302 };
7303
7304 /*
7305 * parse sadb_msg buffer to process PFKEYv2,
7306 * and create a data to response if needed.
7307 * I think to be dealed with mbuf directly.
7308 * IN:
7309 * msgp : pointer to pointer to a received buffer pulluped.
7310 * This is rewrited to response.
7311 * so : pointer to socket.
7312 * OUT:
7313 * length for buffer to send to user process.
7314 */
7315 int
7316 key_parse(struct mbuf *m, struct socket *so)
7317 {
7318 struct sadb_msg *msg;
7319 struct sadb_msghdr mh;
7320 u_int orglen;
7321 int error;
7322 int target;
7323
7324 KASSERT(m != NULL);
7325 KASSERT(so != NULL);
7326
7327 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7328 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7329 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7330 kdebug_sadb(msg);
7331 }
7332 #endif
7333
7334 if (m->m_len < sizeof(struct sadb_msg)) {
7335 m = m_pullup(m, sizeof(struct sadb_msg));
7336 if (!m)
7337 return ENOBUFS;
7338 }
7339 msg = mtod(m, struct sadb_msg *);
7340 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7341 target = KEY_SENDUP_ONE;
7342
7343 if ((m->m_flags & M_PKTHDR) == 0 ||
7344 m->m_pkthdr.len != orglen) {
7345 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7346 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7347 error = EINVAL;
7348 goto senderror;
7349 }
7350
7351 if (msg->sadb_msg_version != PF_KEY_V2) {
7352 ipseclog((LOG_DEBUG,
7353 "key_parse: PF_KEY version %u is mismatched.\n",
7354 msg->sadb_msg_version));
7355 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7356 error = EINVAL;
7357 goto senderror;
7358 }
7359
7360 if (msg->sadb_msg_type > SADB_MAX) {
7361 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7362 msg->sadb_msg_type));
7363 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7364 error = EINVAL;
7365 goto senderror;
7366 }
7367
7368 /* for old-fashioned code - should be nuked */
7369 if (m->m_pkthdr.len > MCLBYTES) {
7370 m_freem(m);
7371 return ENOBUFS;
7372 }
7373 if (m->m_next) {
7374 struct mbuf *n;
7375
7376 MGETHDR(n, M_DONTWAIT, MT_DATA);
7377 if (n && m->m_pkthdr.len > MHLEN) {
7378 MCLGET(n, M_DONTWAIT);
7379 if ((n->m_flags & M_EXT) == 0) {
7380 m_free(n);
7381 n = NULL;
7382 }
7383 }
7384 if (!n) {
7385 m_freem(m);
7386 return ENOBUFS;
7387 }
7388 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7389 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7390 n->m_next = NULL;
7391 m_freem(m);
7392 m = n;
7393 }
7394
7395 /* align the mbuf chain so that extensions are in contiguous region. */
7396 error = key_align(m, &mh);
7397 if (error)
7398 return error;
7399
7400 if (m->m_next) { /*XXX*/
7401 m_freem(m);
7402 return ENOBUFS;
7403 }
7404
7405 msg = mh.msg;
7406
7407 /* check SA type */
7408 switch (msg->sadb_msg_satype) {
7409 case SADB_SATYPE_UNSPEC:
7410 switch (msg->sadb_msg_type) {
7411 case SADB_GETSPI:
7412 case SADB_UPDATE:
7413 case SADB_ADD:
7414 case SADB_DELETE:
7415 case SADB_GET:
7416 case SADB_ACQUIRE:
7417 case SADB_EXPIRE:
7418 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7419 "when msg type=%u.\n", msg->sadb_msg_type));
7420 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7421 error = EINVAL;
7422 goto senderror;
7423 }
7424 break;
7425 case SADB_SATYPE_AH:
7426 case SADB_SATYPE_ESP:
7427 case SADB_X_SATYPE_IPCOMP:
7428 case SADB_X_SATYPE_TCPSIGNATURE:
7429 switch (msg->sadb_msg_type) {
7430 case SADB_X_SPDADD:
7431 case SADB_X_SPDDELETE:
7432 case SADB_X_SPDGET:
7433 case SADB_X_SPDDUMP:
7434 case SADB_X_SPDFLUSH:
7435 case SADB_X_SPDSETIDX:
7436 case SADB_X_SPDUPDATE:
7437 case SADB_X_SPDDELETE2:
7438 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7439 msg->sadb_msg_type));
7440 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7441 error = EINVAL;
7442 goto senderror;
7443 }
7444 break;
7445 case SADB_SATYPE_RSVP:
7446 case SADB_SATYPE_OSPFV2:
7447 case SADB_SATYPE_RIPV2:
7448 case SADB_SATYPE_MIP:
7449 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7450 msg->sadb_msg_satype));
7451 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7452 error = EOPNOTSUPP;
7453 goto senderror;
7454 case 1: /* XXX: What does it do? */
7455 if (msg->sadb_msg_type == SADB_X_PROMISC)
7456 break;
7457 /*FALLTHROUGH*/
7458 default:
7459 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7460 msg->sadb_msg_satype));
7461 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7462 error = EINVAL;
7463 goto senderror;
7464 }
7465
7466 /* check field of upper layer protocol and address family */
7467 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7468 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7469 struct sadb_address *src0, *dst0;
7470 u_int plen;
7471
7472 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7473 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7474
7475 /* check upper layer protocol */
7476 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7477 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7478 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7479 error = EINVAL;
7480 goto senderror;
7481 }
7482
7483 /* check family */
7484 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7485 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7486 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7487 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7488 error = EINVAL;
7489 goto senderror;
7490 }
7491 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7492 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7493 ipseclog((LOG_DEBUG,
7494 "key_parse: address struct size mismatched.\n"));
7495 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7496 error = EINVAL;
7497 goto senderror;
7498 }
7499
7500 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7501 case AF_INET:
7502 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7503 sizeof(struct sockaddr_in)) {
7504 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7505 error = EINVAL;
7506 goto senderror;
7507 }
7508 break;
7509 case AF_INET6:
7510 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7511 sizeof(struct sockaddr_in6)) {
7512 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7513 error = EINVAL;
7514 goto senderror;
7515 }
7516 break;
7517 default:
7518 ipseclog((LOG_DEBUG,
7519 "key_parse: unsupported address family.\n"));
7520 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7521 error = EAFNOSUPPORT;
7522 goto senderror;
7523 }
7524
7525 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7526 case AF_INET:
7527 plen = sizeof(struct in_addr) << 3;
7528 break;
7529 case AF_INET6:
7530 plen = sizeof(struct in6_addr) << 3;
7531 break;
7532 default:
7533 plen = 0; /*fool gcc*/
7534 break;
7535 }
7536
7537 /* check max prefix length */
7538 if (src0->sadb_address_prefixlen > plen ||
7539 dst0->sadb_address_prefixlen > plen) {
7540 ipseclog((LOG_DEBUG,
7541 "key_parse: illegal prefixlen.\n"));
7542 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7543 error = EINVAL;
7544 goto senderror;
7545 }
7546
7547 /*
7548 * prefixlen == 0 is valid because there can be a case when
7549 * all addresses are matched.
7550 */
7551 }
7552
7553 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7554 key_typesw[msg->sadb_msg_type] == NULL) {
7555 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7556 error = EINVAL;
7557 goto senderror;
7558 }
7559
7560 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7561
7562 senderror:
7563 msg->sadb_msg_errno = error;
7564 return key_sendup_mbuf(so, m, target);
7565 }
7566
7567 static int
7568 key_senderror(struct socket *so, struct mbuf *m, int code)
7569 {
7570 struct sadb_msg *msg;
7571
7572 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7573
7574 msg = mtod(m, struct sadb_msg *);
7575 msg->sadb_msg_errno = code;
7576 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7577 }
7578
7579 /*
7580 * set the pointer to each header into message buffer.
7581 * m will be freed on error.
7582 * XXX larger-than-MCLBYTES extension?
7583 */
7584 static int
7585 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7586 {
7587 struct mbuf *n;
7588 struct sadb_ext *ext;
7589 size_t off, end;
7590 int extlen;
7591 int toff;
7592
7593 KASSERT(m != NULL);
7594 KASSERT(mhp != NULL);
7595 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7596
7597 /* initialize */
7598 memset(mhp, 0, sizeof(*mhp));
7599
7600 mhp->msg = mtod(m, struct sadb_msg *);
7601 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7602
7603 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7604 extlen = end; /*just in case extlen is not updated*/
7605 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7606 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7607 if (!n) {
7608 /* m is already freed */
7609 return ENOBUFS;
7610 }
7611 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7612
7613 /* set pointer */
7614 switch (ext->sadb_ext_type) {
7615 case SADB_EXT_SA:
7616 case SADB_EXT_ADDRESS_SRC:
7617 case SADB_EXT_ADDRESS_DST:
7618 case SADB_EXT_ADDRESS_PROXY:
7619 case SADB_EXT_LIFETIME_CURRENT:
7620 case SADB_EXT_LIFETIME_HARD:
7621 case SADB_EXT_LIFETIME_SOFT:
7622 case SADB_EXT_KEY_AUTH:
7623 case SADB_EXT_KEY_ENCRYPT:
7624 case SADB_EXT_IDENTITY_SRC:
7625 case SADB_EXT_IDENTITY_DST:
7626 case SADB_EXT_SENSITIVITY:
7627 case SADB_EXT_PROPOSAL:
7628 case SADB_EXT_SUPPORTED_AUTH:
7629 case SADB_EXT_SUPPORTED_ENCRYPT:
7630 case SADB_EXT_SPIRANGE:
7631 case SADB_X_EXT_POLICY:
7632 case SADB_X_EXT_SA2:
7633 case SADB_X_EXT_NAT_T_TYPE:
7634 case SADB_X_EXT_NAT_T_SPORT:
7635 case SADB_X_EXT_NAT_T_DPORT:
7636 case SADB_X_EXT_NAT_T_OAI:
7637 case SADB_X_EXT_NAT_T_OAR:
7638 case SADB_X_EXT_NAT_T_FRAG:
7639 /* duplicate check */
7640 /*
7641 * XXX Are there duplication payloads of either
7642 * KEY_AUTH or KEY_ENCRYPT ?
7643 */
7644 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7645 ipseclog((LOG_DEBUG,
7646 "key_align: duplicate ext_type %u "
7647 "is passed.\n", ext->sadb_ext_type));
7648 m_freem(m);
7649 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7650 return EINVAL;
7651 }
7652 break;
7653 default:
7654 ipseclog((LOG_DEBUG,
7655 "key_align: invalid ext_type %u is passed.\n",
7656 ext->sadb_ext_type));
7657 m_freem(m);
7658 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7659 return EINVAL;
7660 }
7661
7662 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7663
7664 if (key_validate_ext(ext, extlen)) {
7665 m_freem(m);
7666 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7667 return EINVAL;
7668 }
7669
7670 n = m_pulldown(m, off, extlen, &toff);
7671 if (!n) {
7672 /* m is already freed */
7673 return ENOBUFS;
7674 }
7675 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7676
7677 mhp->ext[ext->sadb_ext_type] = ext;
7678 mhp->extoff[ext->sadb_ext_type] = off;
7679 mhp->extlen[ext->sadb_ext_type] = extlen;
7680 }
7681
7682 if (off != end) {
7683 m_freem(m);
7684 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7685 return EINVAL;
7686 }
7687
7688 return 0;
7689 }
7690
7691 static int
7692 key_validate_ext(const struct sadb_ext *ext, int len)
7693 {
7694 const struct sockaddr *sa;
7695 enum { NONE, ADDR } checktype = NONE;
7696 int baselen = 0;
7697 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7698
7699 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7700 return EINVAL;
7701
7702 /* if it does not match minimum/maximum length, bail */
7703 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7704 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7705 return EINVAL;
7706 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7707 return EINVAL;
7708 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7709 return EINVAL;
7710
7711 /* more checks based on sadb_ext_type XXX need more */
7712 switch (ext->sadb_ext_type) {
7713 case SADB_EXT_ADDRESS_SRC:
7714 case SADB_EXT_ADDRESS_DST:
7715 case SADB_EXT_ADDRESS_PROXY:
7716 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7717 checktype = ADDR;
7718 break;
7719 case SADB_EXT_IDENTITY_SRC:
7720 case SADB_EXT_IDENTITY_DST:
7721 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7722 SADB_X_IDENTTYPE_ADDR) {
7723 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7724 checktype = ADDR;
7725 } else
7726 checktype = NONE;
7727 break;
7728 default:
7729 checktype = NONE;
7730 break;
7731 }
7732
7733 switch (checktype) {
7734 case NONE:
7735 break;
7736 case ADDR:
7737 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7738 if (len < baselen + sal)
7739 return EINVAL;
7740 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7741 return EINVAL;
7742 break;
7743 }
7744
7745 return 0;
7746 }
7747
7748 static int
7749 key_do_init(void)
7750 {
7751 int i;
7752
7753 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7754
7755 callout_init(&key_timehandler_ch, 0);
7756
7757 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7758 LIST_INIT(&sptree[i]);
7759 }
7760
7761 LIST_INIT(&sahtree);
7762
7763 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7764 LIST_INIT(®tree[i]);
7765 }
7766
7767 #ifndef IPSEC_NONBLOCK_ACQUIRE
7768 LIST_INIT(&acqtree);
7769 #endif
7770 LIST_INIT(&spacqtree);
7771
7772 /* system default */
7773 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7774 ip4_def_policy.refcnt++; /*never reclaim this*/
7775
7776 #ifdef INET6
7777 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7778 ip6_def_policy.refcnt++; /*never reclaim this*/
7779 #endif
7780
7781
7782 #ifndef IPSEC_DEBUG2
7783 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7784 #endif /*IPSEC_DEBUG2*/
7785
7786 /* initialize key statistics */
7787 keystat.getspi_count = 1;
7788
7789 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7790
7791 return (0);
7792 }
7793
7794 void
7795 key_init(void)
7796 {
7797 static ONCE_DECL(key_init_once);
7798
7799 sysctl_net_keyv2_setup(NULL);
7800 sysctl_net_key_compat_setup(NULL);
7801
7802 RUN_ONCE(&key_init_once, key_do_init);
7803 }
7804
7805 /*
7806 * XXX: maybe This function is called after INBOUND IPsec processing.
7807 *
7808 * Special check for tunnel-mode packets.
7809 * We must make some checks for consistency between inner and outer IP header.
7810 *
7811 * xxx more checks to be provided
7812 */
7813 int
7814 key_checktunnelsanity(
7815 struct secasvar *sav,
7816 u_int family,
7817 void *src,
7818 void *dst
7819 )
7820 {
7821
7822 KASSERT(sav->sah != NULL);
7823
7824 /* XXX: check inner IP header */
7825
7826 return 1;
7827 }
7828
7829 #if 0
7830 #define hostnamelen strlen(hostname)
7831
7832 /*
7833 * Get FQDN for the host.
7834 * If the administrator configured hostname (by hostname(1)) without
7835 * domain name, returns nothing.
7836 */
7837 static const char *
7838 key_getfqdn(void)
7839 {
7840 int i;
7841 int hasdot;
7842 static char fqdn[MAXHOSTNAMELEN + 1];
7843
7844 if (!hostnamelen)
7845 return NULL;
7846
7847 /* check if it comes with domain name. */
7848 hasdot = 0;
7849 for (i = 0; i < hostnamelen; i++) {
7850 if (hostname[i] == '.')
7851 hasdot++;
7852 }
7853 if (!hasdot)
7854 return NULL;
7855
7856 /* NOTE: hostname may not be NUL-terminated. */
7857 memset(fqdn, 0, sizeof(fqdn));
7858 memcpy(fqdn, hostname, hostnamelen);
7859 fqdn[hostnamelen] = '\0';
7860 return fqdn;
7861 }
7862
7863 /*
7864 * get username@FQDN for the host/user.
7865 */
7866 static const char *
7867 key_getuserfqdn(void)
7868 {
7869 const char *host;
7870 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7871 struct proc *p = curproc;
7872 char *q;
7873
7874 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7875 return NULL;
7876 if (!(host = key_getfqdn()))
7877 return NULL;
7878
7879 /* NOTE: s_login may not be-NUL terminated. */
7880 memset(userfqdn, 0, sizeof(userfqdn));
7881 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7882 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7883 q = userfqdn + strlen(userfqdn);
7884 *q++ = '@';
7885 memcpy(q, host, strlen(host));
7886 q += strlen(host);
7887 *q++ = '\0';
7888
7889 return userfqdn;
7890 }
7891 #endif
7892
7893 /* record data transfer on SA, and update timestamps */
7894 void
7895 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7896 {
7897
7898 KASSERT(sav != NULL);
7899 KASSERT(m != NULL);
7900 if (!sav->lft_c)
7901 return;
7902
7903 /*
7904 * XXX Currently, there is a difference of bytes size
7905 * between inbound and outbound processing.
7906 */
7907 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7908 /* to check bytes lifetime is done in key_timehandler(). */
7909
7910 /*
7911 * We use the number of packets as the unit of
7912 * sadb_lifetime_allocations. We increment the variable
7913 * whenever {esp,ah}_{in,out}put is called.
7914 */
7915 sav->lft_c->sadb_lifetime_allocations++;
7916 /* XXX check for expires? */
7917
7918 /*
7919 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7920 * in seconds. HARD and SOFT lifetime are measured by the time
7921 * difference (again in seconds) from sadb_lifetime_usetime.
7922 *
7923 * usetime
7924 * v expire expire
7925 * -----+-----+--------+---> t
7926 * <--------------> HARD
7927 * <-----> SOFT
7928 */
7929 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7930 /* XXX check for expires? */
7931
7932 return;
7933 }
7934
7935 /* dumb version */
7936 void
7937 key_sa_routechange(struct sockaddr *dst)
7938 {
7939 struct secashead *sah;
7940 struct route *ro;
7941 const struct sockaddr *sa;
7942
7943 LIST_FOREACH(sah, &sahtree, chain) {
7944 ro = &sah->sa_route;
7945 sa = rtcache_getdst(ro);
7946 if (sa != NULL && dst->sa_len == sa->sa_len &&
7947 memcmp(dst, sa, dst->sa_len) == 0)
7948 rtcache_free(ro);
7949 }
7950
7951 return;
7952 }
7953
7954 static void
7955 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7956 {
7957
7958 KASSERT(sav != NULL);
7959
7960 if (sav->state == state)
7961 return;
7962
7963 if (__LIST_CHAINED(sav))
7964 LIST_REMOVE(sav, chain);
7965
7966 sav->state = state;
7967 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7968 }
7969
7970 /* XXX too much? */
7971 static struct mbuf *
7972 key_alloc_mbuf(int l)
7973 {
7974 struct mbuf *m = NULL, *n;
7975 int len, t;
7976
7977 len = l;
7978 while (len > 0) {
7979 MGET(n, M_DONTWAIT, MT_DATA);
7980 if (n && len > MLEN)
7981 MCLGET(n, M_DONTWAIT);
7982 if (!n) {
7983 m_freem(m);
7984 return NULL;
7985 }
7986
7987 n->m_next = NULL;
7988 n->m_len = 0;
7989 n->m_len = M_TRAILINGSPACE(n);
7990 /* use the bottom of mbuf, hoping we can prepend afterwards */
7991 if (n->m_len > len) {
7992 t = (n->m_len - len) & ~(sizeof(long) - 1);
7993 n->m_data += t;
7994 n->m_len = len;
7995 }
7996
7997 len -= n->m_len;
7998
7999 if (m)
8000 m_cat(m, n);
8001 else
8002 m = n;
8003 }
8004
8005 return m;
8006 }
8007
8008 static struct mbuf *
8009 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8010 {
8011 struct secashead *sah;
8012 struct secasvar *sav;
8013 u_int16_t proto;
8014 u_int stateidx;
8015 u_int8_t satype;
8016 u_int8_t state;
8017 int cnt;
8018 struct mbuf *m, *n;
8019
8020 /* map satype to proto */
8021 if ((proto = key_satype2proto(req_satype)) == 0) {
8022 *errorp = EINVAL;
8023 return (NULL);
8024 }
8025
8026 /* count sav entries to be sent to the userland. */
8027 cnt = 0;
8028 LIST_FOREACH(sah, &sahtree, chain) {
8029 if (req_satype != SADB_SATYPE_UNSPEC &&
8030 proto != sah->saidx.proto)
8031 continue;
8032
8033 for (stateidx = 0;
8034 stateidx < _ARRAYLEN(saorder_state_any);
8035 stateidx++) {
8036 state = saorder_state_any[stateidx];
8037 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8038 cnt++;
8039 }
8040 }
8041 }
8042
8043 if (cnt == 0) {
8044 *errorp = ENOENT;
8045 return (NULL);
8046 }
8047
8048 /* send this to the userland, one at a time. */
8049 m = NULL;
8050 LIST_FOREACH(sah, &sahtree, chain) {
8051 if (req_satype != SADB_SATYPE_UNSPEC &&
8052 proto != sah->saidx.proto)
8053 continue;
8054
8055 /* map proto to satype */
8056 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8057 m_freem(m);
8058 *errorp = EINVAL;
8059 return (NULL);
8060 }
8061
8062 for (stateidx = 0;
8063 stateidx < _ARRAYLEN(saorder_state_any);
8064 stateidx++) {
8065 state = saorder_state_any[stateidx];
8066 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8067 n = key_setdumpsa(sav, SADB_DUMP, satype,
8068 --cnt, pid);
8069 if (!n) {
8070 m_freem(m);
8071 *errorp = ENOBUFS;
8072 return (NULL);
8073 }
8074
8075 if (!m)
8076 m = n;
8077 else
8078 m_cat(m, n);
8079 }
8080 }
8081 }
8082
8083 if (!m) {
8084 *errorp = EINVAL;
8085 return (NULL);
8086 }
8087
8088 if ((m->m_flags & M_PKTHDR) != 0) {
8089 m->m_pkthdr.len = 0;
8090 for (n = m; n; n = n->m_next)
8091 m->m_pkthdr.len += n->m_len;
8092 }
8093
8094 *errorp = 0;
8095 return (m);
8096 }
8097
8098 static struct mbuf *
8099 key_setspddump(int *errorp, pid_t pid)
8100 {
8101 struct secpolicy *sp;
8102 int cnt;
8103 u_int dir;
8104 struct mbuf *m, *n;
8105
8106 /* search SPD entry and get buffer size. */
8107 cnt = 0;
8108 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8109 LIST_FOREACH(sp, &sptree[dir], chain) {
8110 cnt++;
8111 }
8112 }
8113
8114 if (cnt == 0) {
8115 *errorp = ENOENT;
8116 return (NULL);
8117 }
8118
8119 m = NULL;
8120 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8121 LIST_FOREACH(sp, &sptree[dir], chain) {
8122 --cnt;
8123 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8124
8125 if (!n) {
8126 *errorp = ENOBUFS;
8127 m_freem(m);
8128 return (NULL);
8129 }
8130 if (!m)
8131 m = n;
8132 else {
8133 m->m_pkthdr.len += n->m_pkthdr.len;
8134 m_cat(m, n);
8135 }
8136 }
8137 }
8138
8139 *errorp = 0;
8140 return (m);
8141 }
8142
8143 int
8144 key_get_used(void) {
8145 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8146 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8147 }
8148
8149 void
8150 key_update_used(void)
8151 {
8152 switch (ipsec_enabled) {
8153 default:
8154 case 0:
8155 #ifdef notyet
8156 /* XXX: racy */
8157 ipsec_used = 0;
8158 #endif
8159 break;
8160 case 1:
8161 #ifndef notyet
8162 /* XXX: racy */
8163 if (!ipsec_used)
8164 #endif
8165 ipsec_used = key_get_used();
8166 break;
8167 case 2:
8168 ipsec_used = 1;
8169 break;
8170 }
8171 }
8172
8173 static int
8174 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8175 {
8176 struct mbuf *m, *n;
8177 int err2 = 0;
8178 char *p, *ep;
8179 size_t len;
8180 int s, error;
8181
8182 if (newp)
8183 return (EPERM);
8184 if (namelen != 1)
8185 return (EINVAL);
8186
8187 s = splsoftnet();
8188 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8189 splx(s);
8190 if (!m)
8191 return (error);
8192 if (!oldp)
8193 *oldlenp = m->m_pkthdr.len;
8194 else {
8195 p = oldp;
8196 if (*oldlenp < m->m_pkthdr.len) {
8197 err2 = ENOMEM;
8198 ep = p + *oldlenp;
8199 } else {
8200 *oldlenp = m->m_pkthdr.len;
8201 ep = p + m->m_pkthdr.len;
8202 }
8203 for (n = m; n; n = n->m_next) {
8204 len = (ep - p < n->m_len) ?
8205 ep - p : n->m_len;
8206 error = copyout(mtod(n, const void *), p, len);
8207 p += len;
8208 if (error)
8209 break;
8210 }
8211 if (error == 0)
8212 error = err2;
8213 }
8214 m_freem(m);
8215
8216 return (error);
8217 }
8218
8219 static int
8220 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8221 {
8222 struct mbuf *m, *n;
8223 int err2 = 0;
8224 char *p, *ep;
8225 size_t len;
8226 int s, error;
8227
8228 if (newp)
8229 return (EPERM);
8230 if (namelen != 0)
8231 return (EINVAL);
8232
8233 s = splsoftnet();
8234 m = key_setspddump(&error, l->l_proc->p_pid);
8235 splx(s);
8236 if (!m)
8237 return (error);
8238 if (!oldp)
8239 *oldlenp = m->m_pkthdr.len;
8240 else {
8241 p = oldp;
8242 if (*oldlenp < m->m_pkthdr.len) {
8243 err2 = ENOMEM;
8244 ep = p + *oldlenp;
8245 } else {
8246 *oldlenp = m->m_pkthdr.len;
8247 ep = p + m->m_pkthdr.len;
8248 }
8249 for (n = m; n; n = n->m_next) {
8250 len = (ep - p < n->m_len) ?
8251 ep - p : n->m_len;
8252 error = copyout(mtod(n, const void *), p, len);
8253 p += len;
8254 if (error)
8255 break;
8256 }
8257 if (error == 0)
8258 error = err2;
8259 }
8260 m_freem(m);
8261
8262 return (error);
8263 }
8264
8265 /*
8266 * Create sysctl tree for native IPSEC key knobs, originally
8267 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8268 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8269 * and in any case the part of our sysctl namespace used for dumping the
8270 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8271 * namespace, for API reasons.
8272 *
8273 * Pending a consensus on the right way to fix this, add a level of
8274 * indirection in how we number the `native' IPSEC key nodes;
8275 * and (as requested by Andrew Brown) move registration of the
8276 * KAME-compatible names to a separate function.
8277 */
8278 #if 0
8279 # define IPSEC_PFKEY PF_KEY_V2
8280 # define IPSEC_PFKEY_NAME "keyv2"
8281 #else
8282 # define IPSEC_PFKEY PF_KEY
8283 # define IPSEC_PFKEY_NAME "key"
8284 #endif
8285
8286 static int
8287 sysctl_net_key_stats(SYSCTLFN_ARGS)
8288 {
8289
8290 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8291 }
8292
8293 static void
8294 sysctl_net_keyv2_setup(struct sysctllog **clog)
8295 {
8296
8297 sysctl_createv(clog, 0, NULL, NULL,
8298 CTLFLAG_PERMANENT,
8299 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8300 NULL, 0, NULL, 0,
8301 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8302
8303 sysctl_createv(clog, 0, NULL, NULL,
8304 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8305 CTLTYPE_INT, "debug", NULL,
8306 NULL, 0, &key_debug_level, 0,
8307 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8308 sysctl_createv(clog, 0, NULL, NULL,
8309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8310 CTLTYPE_INT, "spi_try", NULL,
8311 NULL, 0, &key_spi_trycnt, 0,
8312 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8313 sysctl_createv(clog, 0, NULL, NULL,
8314 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8315 CTLTYPE_INT, "spi_min_value", NULL,
8316 NULL, 0, &key_spi_minval, 0,
8317 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8318 sysctl_createv(clog, 0, NULL, NULL,
8319 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8320 CTLTYPE_INT, "spi_max_value", NULL,
8321 NULL, 0, &key_spi_maxval, 0,
8322 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8323 sysctl_createv(clog, 0, NULL, NULL,
8324 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8325 CTLTYPE_INT, "random_int", NULL,
8326 NULL, 0, &key_int_random, 0,
8327 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8328 sysctl_createv(clog, 0, NULL, NULL,
8329 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8330 CTLTYPE_INT, "larval_lifetime", NULL,
8331 NULL, 0, &key_larval_lifetime, 0,
8332 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8333 sysctl_createv(clog, 0, NULL, NULL,
8334 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8335 CTLTYPE_INT, "blockacq_count", NULL,
8336 NULL, 0, &key_blockacq_count, 0,
8337 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8338 sysctl_createv(clog, 0, NULL, NULL,
8339 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8340 CTLTYPE_INT, "blockacq_lifetime", NULL,
8341 NULL, 0, &key_blockacq_lifetime, 0,
8342 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8343 sysctl_createv(clog, 0, NULL, NULL,
8344 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8345 CTLTYPE_INT, "esp_keymin", NULL,
8346 NULL, 0, &ipsec_esp_keymin, 0,
8347 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8348 sysctl_createv(clog, 0, NULL, NULL,
8349 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8350 CTLTYPE_INT, "prefered_oldsa", NULL,
8351 NULL, 0, &key_prefered_oldsa, 0,
8352 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8353 sysctl_createv(clog, 0, NULL, NULL,
8354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8355 CTLTYPE_INT, "esp_auth", NULL,
8356 NULL, 0, &ipsec_esp_auth, 0,
8357 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8358 sysctl_createv(clog, 0, NULL, NULL,
8359 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8360 CTLTYPE_INT, "ah_keymin", NULL,
8361 NULL, 0, &ipsec_ah_keymin, 0,
8362 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8363 sysctl_createv(clog, 0, NULL, NULL,
8364 CTLFLAG_PERMANENT,
8365 CTLTYPE_STRUCT, "stats",
8366 SYSCTL_DESCR("PF_KEY statistics"),
8367 sysctl_net_key_stats, 0, NULL, 0,
8368 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8369 }
8370
8371 /*
8372 * Register sysctl names used by setkey(8). For historical reasons,
8373 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8374 * for both IPSEC and KAME IPSEC.
8375 */
8376 static void
8377 sysctl_net_key_compat_setup(struct sysctllog **clog)
8378 {
8379
8380 sysctl_createv(clog, 0, NULL, NULL,
8381 CTLFLAG_PERMANENT,
8382 CTLTYPE_NODE, "key", NULL,
8383 NULL, 0, NULL, 0,
8384 CTL_NET, PF_KEY, CTL_EOL);
8385
8386 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8387 sysctl_createv(clog, 0, NULL, NULL,
8388 CTLFLAG_PERMANENT,
8389 CTLTYPE_STRUCT, "dumpsa", NULL,
8390 sysctl_net_key_dumpsa, 0, NULL, 0,
8391 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8392 sysctl_createv(clog, 0, NULL, NULL,
8393 CTLFLAG_PERMANENT,
8394 CTLTYPE_STRUCT, "dumpsp", NULL,
8395 sysctl_net_key_dumpsp, 0, NULL, 0,
8396 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8397 }
8398