key.c revision 1.114 1 /* $NetBSD: key.c,v 1.114 2017/04/19 09:23:19 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.114 2017/04/19 09:23:19 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/malloc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sysctl.h>
59 #include <sys/errno.h>
60 #include <sys/proc.h>
61 #include <sys/queue.h>
62 #include <sys/syslog.h>
63 #include <sys/once.h>
64 #include <sys/cprng.h>
65 #include <sys/psref.h>
66 #include <sys/lwp.h>
67
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <net/raw_cb.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #ifdef INET
77 #include <netinet/ip_var.h>
78 #endif
79
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_var.h>
83 #include <netinet6/ip6_var.h>
84 #endif /* INET6 */
85
86 #ifdef INET
87 #include <netinet/in_pcb.h>
88 #endif
89 #ifdef INET6
90 #include <netinet6/in6_pcb.h>
91 #endif /* INET6 */
92
93 #include <net/pfkeyv2.h>
94 #include <netipsec/keydb.h>
95 #include <netipsec/key.h>
96 #include <netipsec/keysock.h>
97 #include <netipsec/key_debug.h>
98
99 #include <netipsec/ipsec.h>
100 #ifdef INET6
101 #include <netipsec/ipsec6.h>
102 #endif
103 #include <netipsec/ipsec_private.h>
104
105 #include <netipsec/xform.h>
106 #include <netipsec/ipcomp.h>
107
108
109 #include <net/net_osdep.h>
110
111 #define FULLMASK 0xff
112 #define _BITS(bytes) ((bytes) << 3)
113
114 #define PORT_NONE 0
115 #define PORT_LOOSE 1
116 #define PORT_STRICT 2
117
118 percpu_t *pfkeystat_percpu;
119
120 /*
121 * Note on SA reference counting:
122 * - SAs that are not in DEAD state will have (total external reference + 1)
123 * following value in reference count field. they cannot be freed and are
124 * referenced from SA header.
125 * - SAs that are in DEAD state will have (total external reference)
126 * in reference count field. they are ready to be freed. reference from
127 * SA header will be removed in key_delsav(), when the reference count
128 * field hits 0 (= no external reference other than from SA header.
129 */
130
131 u_int32_t key_debug_level = 0;
132 static u_int key_spi_trycnt = 1000;
133 static u_int32_t key_spi_minval = 0x100;
134 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
135 static u_int32_t policy_id = 0;
136 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
137 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
138 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
139 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
140 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
141
142 static u_int32_t acq_seq = 0;
143
144 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
145 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
146 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
147 /* registed list */
148 #ifndef IPSEC_NONBLOCK_ACQUIRE
149 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
150 #endif
151 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
152
153 /* search order for SAs */
154 /*
155 * This order is important because we must select the oldest SA
156 * for outbound processing. For inbound, This is not important.
157 */
158 static const u_int saorder_state_valid_prefer_old[] = {
159 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
160 };
161 static const u_int saorder_state_valid_prefer_new[] = {
162 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
163 };
164
165 static const u_int saorder_state_alive[] = {
166 /* except DEAD */
167 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
168 };
169 static const u_int saorder_state_any[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
172 };
173
174 static const int minsize[] = {
175 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
176 sizeof(struct sadb_sa), /* SADB_EXT_SA */
177 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
178 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
179 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
180 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
181 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
182 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
183 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
184 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
185 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
186 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
187 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
188 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
189 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
190 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
191 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
192 0, /* SADB_X_EXT_KMPRIVATE */
193 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
194 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
195 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
196 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
197 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
198 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
199 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
200 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
201 };
202 static const int maxsize[] = {
203 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
204 sizeof(struct sadb_sa), /* SADB_EXT_SA */
205 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
206 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
207 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
208 0, /* SADB_EXT_ADDRESS_SRC */
209 0, /* SADB_EXT_ADDRESS_DST */
210 0, /* SADB_EXT_ADDRESS_PROXY */
211 0, /* SADB_EXT_KEY_AUTH */
212 0, /* SADB_EXT_KEY_ENCRYPT */
213 0, /* SADB_EXT_IDENTITY_SRC */
214 0, /* SADB_EXT_IDENTITY_DST */
215 0, /* SADB_EXT_SENSITIVITY */
216 0, /* SADB_EXT_PROPOSAL */
217 0, /* SADB_EXT_SUPPORTED_AUTH */
218 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
219 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
220 0, /* SADB_X_EXT_KMPRIVATE */
221 0, /* SADB_X_EXT_POLICY */
222 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
223 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
224 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
225 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
226 0, /* SADB_X_EXT_NAT_T_OAI */
227 0, /* SADB_X_EXT_NAT_T_OAR */
228 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
229 };
230
231 static int ipsec_esp_keymin = 256;
232 static int ipsec_esp_auth = 0;
233 static int ipsec_ah_keymin = 128;
234
235 #ifdef SYSCTL_DECL
236 SYSCTL_DECL(_net_key);
237 #endif
238
239 #ifdef SYSCTL_INT
240 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
241 &key_debug_level, 0, "");
242
243 /* max count of trial for the decision of spi value */
244 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
245 &key_spi_trycnt, 0, "");
246
247 /* minimum spi value to allocate automatically. */
248 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
249 &key_spi_minval, 0, "");
250
251 /* maximun spi value to allocate automatically. */
252 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
253 &key_spi_maxval, 0, "");
254
255 /* interval to initialize randseed */
256 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
257 &key_int_random, 0, "");
258
259 /* lifetime for larval SA */
260 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
261 &key_larval_lifetime, 0, "");
262
263 /* counter for blocking to send SADB_ACQUIRE to IKEd */
264 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
265 &key_blockacq_count, 0, "");
266
267 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
268 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
269 &key_blockacq_lifetime, 0, "");
270
271 /* ESP auth */
272 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
273 &ipsec_esp_auth, 0, "");
274
275 /* minimum ESP key length */
276 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
277 &ipsec_esp_keymin, 0, "");
278
279 /* minimum AH key length */
280 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
281 &ipsec_ah_keymin, 0, "");
282
283 /* perfered old SA rather than new SA */
284 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
285 &key_prefered_oldsa, 0, "");
286 #endif /* SYSCTL_INT */
287
288 #ifndef LIST_FOREACH
289 #define LIST_FOREACH(elm, head, field) \
290 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
291 #endif
292 #define __LIST_CHAINED(elm) \
293 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
294 #define LIST_INSERT_TAIL(head, elm, type, field) \
295 do {\
296 struct type *curelm = LIST_FIRST(head); \
297 if (curelm == NULL) {\
298 LIST_INSERT_HEAD(head, elm, field); \
299 } else { \
300 while (LIST_NEXT(curelm, field)) \
301 curelm = LIST_NEXT(curelm, field);\
302 LIST_INSERT_AFTER(curelm, elm, field);\
303 }\
304 } while (0)
305
306 #define KEY_CHKSASTATE(head, sav, name) \
307 /* do */ { \
308 if ((head) != (sav)) { \
309 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
310 (name), (head), (sav))); \
311 continue; \
312 } \
313 } /* while (0) */
314
315 #define KEY_CHKSPDIR(head, sp, name) \
316 do { \
317 if ((head) != (sp)) { \
318 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
319 "anyway continue.\n", \
320 (name), (head), (sp))); \
321 } \
322 } while (0)
323
324 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
325
326 #if 1
327 #define KMALLOC(p, t, n) \
328 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
329 #define KFREE(p) \
330 free((p), M_SECA)
331 #else
332 #define KMALLOC(p, t, n) \
333 do { \
334 ((p) = malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
335 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
336 __FILE__, __LINE__, (p), #t, n); \
337 } while (0)
338
339 #define KFREE(p) \
340 do { \
341 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
342 free((p), M_SECA); \
343 } while (0)
344 #endif
345
346 /*
347 * set parameters into secpolicyindex buffer.
348 * Must allocate secpolicyindex buffer passed to this function.
349 */
350 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
351 do { \
352 memset((idx), 0, sizeof(struct secpolicyindex)); \
353 (idx)->dir = (_dir); \
354 (idx)->prefs = (ps); \
355 (idx)->prefd = (pd); \
356 (idx)->ul_proto = (ulp); \
357 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
358 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
359 } while (0)
360
361 /*
362 * set parameters into secasindex buffer.
363 * Must allocate secasindex buffer before calling this function.
364 */
365 static int
366 key_setsecasidx (int, int, int, const struct sadb_address *,
367 const struct sadb_address *, struct secasindex *);
368
369 /* key statistics */
370 struct _keystat {
371 u_long getspi_count; /* the avarage of count to try to get new SPI */
372 } keystat;
373
374 struct sadb_msghdr {
375 struct sadb_msg *msg;
376 struct sadb_ext *ext[SADB_EXT_MAX + 1];
377 int extoff[SADB_EXT_MAX + 1];
378 int extlen[SADB_EXT_MAX + 1];
379 };
380
381 static struct secasvar *key_allocsa_policy (const struct secasindex *);
382 static void key_freesp_so (struct secpolicy **);
383 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
384 static void key_delsp (struct secpolicy *);
385 static struct secpolicy *key_getsp (const struct secpolicyindex *);
386 static struct secpolicy *key_getspbyid (u_int32_t);
387 static u_int16_t key_newreqid (void);
388 static struct mbuf *key_gather_mbuf (struct mbuf *,
389 const struct sadb_msghdr *, int, int, ...);
390 static int key_spdadd (struct socket *, struct mbuf *,
391 const struct sadb_msghdr *);
392 static u_int32_t key_getnewspid (void);
393 static int key_spddelete (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spddelete2 (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static int key_spdget (struct socket *, struct mbuf *,
398 const struct sadb_msghdr *);
399 static int key_spdflush (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static int key_spddump (struct socket *, struct mbuf *,
402 const struct sadb_msghdr *);
403 static struct mbuf * key_setspddump (int *errorp, pid_t);
404 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
405 static int key_nat_map (struct socket *, struct mbuf *,
406 const struct sadb_msghdr *);
407 static struct mbuf *key_setdumpsp (struct secpolicy *,
408 u_int8_t, u_int32_t, pid_t);
409 static u_int key_getspreqmsglen (const struct secpolicy *);
410 static int key_spdexpire (struct secpolicy *);
411 static struct secashead *key_newsah (const struct secasindex *);
412 static void key_delsah (struct secashead *);
413 static struct secasvar *key_newsav (struct mbuf *,
414 const struct sadb_msghdr *, struct secashead *, int *,
415 const char*, int);
416 #define KEY_NEWSAV(m, sadb, sah, e) \
417 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
418 static void key_delsav (struct secasvar *);
419 static struct secashead *key_getsah (const struct secasindex *);
420 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
421 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
422 static int key_setsaval (struct secasvar *, struct mbuf *,
423 const struct sadb_msghdr *);
424 static int key_mature (struct secasvar *);
425 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
426 u_int8_t, u_int32_t, u_int32_t);
427 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
428 static struct mbuf *key_setsadbxtype (u_int16_t);
429 static struct mbuf *key_setsadbxfrag (u_int16_t);
430 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
431 static int key_checksalen (const union sockaddr_union *);
432 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
433 u_int32_t, pid_t, u_int16_t);
434 static struct mbuf *key_setsadbsa (struct secasvar *);
435 static struct mbuf *key_setsadbaddr (u_int16_t,
436 const struct sockaddr *, u_int8_t, u_int16_t);
437 #if 0
438 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
439 int, u_int64_t);
440 #endif
441 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
442 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
443 u_int32_t);
444 static void *key_newbuf (const void *, u_int);
445 #ifdef INET6
446 static int key_ismyaddr6 (const struct sockaddr_in6 *);
447 #endif
448
449 static void sysctl_net_keyv2_setup(struct sysctllog **);
450 static void sysctl_net_key_compat_setup(struct sysctllog **);
451
452 /* flags for key_cmpsaidx() */
453 #define CMP_HEAD 1 /* protocol, addresses. */
454 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
455 #define CMP_REQID 3 /* additionally HEAD, reaid. */
456 #define CMP_EXACTLY 4 /* all elements. */
457 static int key_cmpsaidx
458 (const struct secasindex *, const struct secasindex *, int);
459
460 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
461 static int key_bbcmp (const void *, const void *, u_int);
462 static u_int16_t key_satype2proto (u_int8_t);
463 static u_int8_t key_proto2satype (u_int16_t);
464
465 static int key_getspi (struct socket *, struct mbuf *,
466 const struct sadb_msghdr *);
467 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
468 const struct secasindex *);
469 static int key_handle_natt_info (struct secasvar *,
470 const struct sadb_msghdr *);
471 static int key_set_natt_ports (union sockaddr_union *,
472 union sockaddr_union *,
473 const struct sadb_msghdr *);
474 static int key_update (struct socket *, struct mbuf *,
475 const struct sadb_msghdr *);
476 #ifdef IPSEC_DOSEQCHECK
477 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
478 #endif
479 static int key_add (struct socket *, struct mbuf *,
480 const struct sadb_msghdr *);
481 static int key_setident (struct secashead *, struct mbuf *,
482 const struct sadb_msghdr *);
483 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
484 const struct sadb_msghdr *);
485 static int key_delete (struct socket *, struct mbuf *,
486 const struct sadb_msghdr *);
487 static int key_get (struct socket *, struct mbuf *,
488 const struct sadb_msghdr *);
489
490 static void key_getcomb_setlifetime (struct sadb_comb *);
491 static struct mbuf *key_getcomb_esp (void);
492 static struct mbuf *key_getcomb_ah (void);
493 static struct mbuf *key_getcomb_ipcomp (void);
494 static struct mbuf *key_getprop (const struct secasindex *);
495
496 static int key_acquire (const struct secasindex *, struct secpolicy *);
497 #ifndef IPSEC_NONBLOCK_ACQUIRE
498 static struct secacq *key_newacq (const struct secasindex *);
499 static struct secacq *key_getacq (const struct secasindex *);
500 static struct secacq *key_getacqbyseq (u_int32_t);
501 #endif
502 static struct secspacq *key_newspacq (const struct secpolicyindex *);
503 static struct secspacq *key_getspacq (const struct secpolicyindex *);
504 static int key_acquire2 (struct socket *, struct mbuf *,
505 const struct sadb_msghdr *);
506 static int key_register (struct socket *, struct mbuf *,
507 const struct sadb_msghdr *);
508 static int key_expire (struct secasvar *);
509 static int key_flush (struct socket *, struct mbuf *,
510 const struct sadb_msghdr *);
511 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
512 int *lenp, pid_t pid);
513 static int key_dump (struct socket *, struct mbuf *,
514 const struct sadb_msghdr *);
515 static int key_promisc (struct socket *, struct mbuf *,
516 const struct sadb_msghdr *);
517 static int key_senderror (struct socket *, struct mbuf *, int);
518 static int key_validate_ext (const struct sadb_ext *, int);
519 static int key_align (struct mbuf *, struct sadb_msghdr *);
520 #if 0
521 static const char *key_getfqdn (void);
522 static const char *key_getuserfqdn (void);
523 #endif
524 static void key_sa_chgstate (struct secasvar *, u_int8_t);
525 static inline void key_sp_dead (struct secpolicy *);
526 static void key_sp_unlink (struct secpolicy *sp);
527
528 static struct mbuf *key_alloc_mbuf (int);
529 struct callout key_timehandler_ch;
530
531 #define SA_ADDREF(p) do { \
532 (p)->refcnt++; \
533 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
534 } while (0)
535 #define SA_DELREF(p) do { \
536 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
537 (p)->refcnt--; \
538 } while (0)
539
540 #define SP_ADDREF(p) do { \
541 (p)->refcnt++; \
542 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
543 } while (0)
544 #define SP_DELREF(p) do { \
545 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
546 (p)->refcnt--; \
547 } while (0)
548
549
550 static inline void
551 key_sp_dead(struct secpolicy *sp)
552 {
553
554 /* mark the SP dead */
555 sp->state = IPSEC_SPSTATE_DEAD;
556 }
557
558 static void
559 key_sp_unlink(struct secpolicy *sp)
560 {
561
562 /* remove from SP index */
563 if (__LIST_CHAINED(sp)) {
564 LIST_REMOVE(sp, chain);
565 /* Release refcount held just for being on chain */
566 KEY_FREESP(&sp);
567 }
568 }
569
570
571 /*
572 * Return 0 when there are known to be no SP's for the specified
573 * direction. Otherwise return 1. This is used by IPsec code
574 * to optimize performance.
575 */
576 int
577 key_havesp(u_int dir)
578 {
579 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
580 LIST_FIRST(&sptree[dir]) != NULL : 1);
581 }
582
583 /* %%% IPsec policy management */
584 /*
585 * allocating a SP for OUTBOUND or INBOUND packet.
586 * Must call key_freesp() later.
587 * OUT: NULL: not found
588 * others: found and return the pointer.
589 */
590 struct secpolicy *
591 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
592 {
593 struct secpolicy *sp;
594 int s;
595
596 KASSERT(spidx != NULL);
597 KASSERTMSG(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
598 "invalid direction %u", dir);
599
600 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
601
602 /* get a SP entry */
603 s = splsoftnet(); /*called from softclock()*/
604 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
605 printf("*** objects\n");
606 kdebug_secpolicyindex(spidx);
607 }
608
609 LIST_FOREACH(sp, &sptree[dir], chain) {
610 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
611 printf("*** in SPD\n");
612 kdebug_secpolicyindex(&sp->spidx);
613 }
614
615 if (sp->state == IPSEC_SPSTATE_DEAD)
616 continue;
617 if (key_cmpspidx_withmask(&sp->spidx, spidx))
618 goto found;
619 }
620 sp = NULL;
621 found:
622 if (sp) {
623 /* sanity check */
624 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
625
626 /* found a SPD entry */
627 sp->lastused = time_uptime;
628 SP_ADDREF(sp);
629 }
630 splx(s);
631
632 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
633 "DP return SP:%p (ID=%u) refcnt %u\n",
634 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
635 return sp;
636 }
637
638 /*
639 * allocating a SP for OUTBOUND or INBOUND packet.
640 * Must call key_freesp() later.
641 * OUT: NULL: not found
642 * others: found and return the pointer.
643 */
644 struct secpolicy *
645 key_allocsp2(u_int32_t spi,
646 const union sockaddr_union *dst,
647 u_int8_t proto,
648 u_int dir,
649 const char* where, int tag)
650 {
651 struct secpolicy *sp;
652 int s;
653
654 KASSERT(dst != NULL);
655 KASSERTMSG(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
656 "invalid direction %u", dir);
657
658 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
659
660 /* get a SP entry */
661 s = splsoftnet(); /*called from softclock()*/
662 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
663 printf("*** objects\n");
664 printf("spi %u proto %u dir %u\n", spi, proto, dir);
665 kdebug_sockaddr(&dst->sa);
666 }
667
668 LIST_FOREACH(sp, &sptree[dir], chain) {
669 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
670 printf("*** in SPD\n");
671 kdebug_secpolicyindex(&sp->spidx);
672 }
673
674 if (sp->state == IPSEC_SPSTATE_DEAD)
675 continue;
676 /* compare simple values, then dst address */
677 if (sp->spidx.ul_proto != proto)
678 continue;
679 /* NB: spi's must exist and match */
680 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
681 continue;
682 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT) == 0)
683 goto found;
684 }
685 sp = NULL;
686 found:
687 if (sp) {
688 /* sanity check */
689 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
690
691 /* found a SPD entry */
692 sp->lastused = time_uptime;
693 SP_ADDREF(sp);
694 }
695 splx(s);
696
697 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
698 "DP return SP:%p (ID=%u) refcnt %u\n",
699 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
700 return sp;
701 }
702
703 /*
704 * return a policy that matches this particular inbound packet.
705 * XXX slow
706 */
707 struct secpolicy *
708 key_gettunnel(const struct sockaddr *osrc,
709 const struct sockaddr *odst,
710 const struct sockaddr *isrc,
711 const struct sockaddr *idst,
712 const char* where, int tag)
713 {
714 struct secpolicy *sp;
715 const int dir = IPSEC_DIR_INBOUND;
716 int s;
717 struct ipsecrequest *r1, *r2, *p;
718 struct secpolicyindex spidx;
719
720 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
721
722 if (isrc->sa_family != idst->sa_family) {
723 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
724 isrc->sa_family, idst->sa_family));
725 sp = NULL;
726 goto done;
727 }
728
729 s = splsoftnet(); /*called from softclock()*/
730 LIST_FOREACH(sp, &sptree[dir], chain) {
731 if (sp->state == IPSEC_SPSTATE_DEAD)
732 continue;
733
734 r1 = r2 = NULL;
735 for (p = sp->req; p; p = p->next) {
736 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
737 continue;
738
739 r1 = r2;
740 r2 = p;
741
742 if (!r1) {
743 /* here we look at address matches only */
744 spidx = sp->spidx;
745 if (isrc->sa_len > sizeof(spidx.src) ||
746 idst->sa_len > sizeof(spidx.dst))
747 continue;
748 memcpy(&spidx.src, isrc, isrc->sa_len);
749 memcpy(&spidx.dst, idst, idst->sa_len);
750 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
751 continue;
752 } else {
753 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, PORT_NONE) ||
754 key_sockaddrcmp(&r1->saidx.dst.sa, idst, PORT_NONE))
755 continue;
756 }
757
758 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, PORT_NONE) ||
759 key_sockaddrcmp(&r2->saidx.dst.sa, odst, PORT_NONE))
760 continue;
761
762 goto found;
763 }
764 }
765 sp = NULL;
766 found:
767 if (sp) {
768 sp->lastused = time_uptime;
769 SP_ADDREF(sp);
770 }
771 splx(s);
772 done:
773 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
774 "DP return SP:%p (ID=%u) refcnt %u\n",
775 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
776 return sp;
777 }
778
779 /*
780 * allocating an SA entry for an *OUTBOUND* packet.
781 * checking each request entries in SP, and acquire an SA if need.
782 * OUT: 0: there are valid requests.
783 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
784 */
785 int
786 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
787 {
788 u_int level;
789 int error;
790
791 KASSERT(isr != NULL);
792 KASSERT(saidx != NULL);
793 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
794 saidx->mode == IPSEC_MODE_TUNNEL,
795 "unexpected policy %u", saidx->mode);
796
797 /* get current level */
798 level = ipsec_get_reqlevel(isr);
799
800 /*
801 * XXX guard against protocol callbacks from the crypto
802 * thread as they reference ipsecrequest.sav which we
803 * temporarily null out below. Need to rethink how we
804 * handle bundled SA's in the callback thread.
805 */
806 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
807 #if 0
808 /*
809 * We do allocate new SA only if the state of SA in the holder is
810 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
811 */
812 if (isr->sav != NULL) {
813 if (isr->sav->sah == NULL)
814 panic("key_checkrequest: sah is null");
815 if (isr->sav == (struct secasvar *)LIST_FIRST(
816 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
817 KEY_FREESAV(&isr->sav);
818 isr->sav = NULL;
819 }
820 }
821 #else
822 /*
823 * we free any SA stashed in the IPsec request because a different
824 * SA may be involved each time this request is checked, either
825 * because new SAs are being configured, or this request is
826 * associated with an unconnected datagram socket, or this request
827 * is associated with a system default policy.
828 *
829 * The operation may have negative impact to performance. We may
830 * want to check cached SA carefully, rather than picking new SA
831 * every time.
832 */
833 if (isr->sav != NULL) {
834 KEY_FREESAV(&isr->sav);
835 isr->sav = NULL;
836 }
837 #endif
838
839 /*
840 * new SA allocation if no SA found.
841 * key_allocsa_policy should allocate the oldest SA available.
842 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
843 */
844 if (isr->sav == NULL)
845 isr->sav = key_allocsa_policy(saidx);
846
847 /* When there is SA. */
848 if (isr->sav != NULL) {
849 if (isr->sav->state != SADB_SASTATE_MATURE &&
850 isr->sav->state != SADB_SASTATE_DYING)
851 return EINVAL;
852 return 0;
853 }
854
855 /* there is no SA */
856 error = key_acquire(saidx, isr->sp);
857 if (error != 0) {
858 /* XXX What should I do ? */
859 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
860 "from key_acquire.\n", error));
861 return error;
862 }
863
864 if (level != IPSEC_LEVEL_REQUIRE) {
865 /* XXX sigh, the interface to this routine is botched */
866 KASSERTMSG(isr->sav == NULL, "unexpected SA");
867 return 0;
868 } else {
869 return ENOENT;
870 }
871 }
872
873 /*
874 * allocating a SA for policy entry from SAD.
875 * NOTE: searching SAD of aliving state.
876 * OUT: NULL: not found.
877 * others: found and return the pointer.
878 */
879 static struct secasvar *
880 key_allocsa_policy(const struct secasindex *saidx)
881 {
882 struct secashead *sah;
883 struct secasvar *sav;
884 u_int stateidx, state;
885 const u_int *saorder_state_valid;
886 int arraysize;
887
888 LIST_FOREACH(sah, &sahtree, chain) {
889 if (sah->state == SADB_SASTATE_DEAD)
890 continue;
891 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
892 goto found;
893 }
894
895 return NULL;
896
897 found:
898
899 /*
900 * search a valid state list for outbound packet.
901 * This search order is important.
902 */
903 if (key_prefered_oldsa) {
904 saorder_state_valid = saorder_state_valid_prefer_old;
905 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
906 } else {
907 saorder_state_valid = saorder_state_valid_prefer_new;
908 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
909 }
910
911 /* search valid state */
912 for (stateidx = 0;
913 stateidx < arraysize;
914 stateidx++) {
915
916 state = saorder_state_valid[stateidx];
917
918 sav = key_do_allocsa_policy(sah, state);
919 if (sav != NULL)
920 return sav;
921 }
922
923 return NULL;
924 }
925
926 /*
927 * searching SAD with direction, protocol, mode and state.
928 * called by key_allocsa_policy().
929 * OUT:
930 * NULL : not found
931 * others : found, pointer to a SA.
932 */
933 static struct secasvar *
934 key_do_allocsa_policy(struct secashead *sah, u_int state)
935 {
936 struct secasvar *sav, *nextsav, *candidate, *d;
937
938 /* initilize */
939 candidate = NULL;
940
941 for (sav = LIST_FIRST(&sah->savtree[state]);
942 sav != NULL;
943 sav = nextsav) {
944
945 nextsav = LIST_NEXT(sav, chain);
946
947 /* sanity check */
948 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
949
950 /* initialize */
951 if (candidate == NULL) {
952 candidate = sav;
953 continue;
954 }
955
956 /* Which SA is the better ? */
957
958 /* sanity check 2 */
959 KASSERT(candidate->lft_c != NULL);
960 KASSERT(sav->lft_c != NULL);
961
962 /* What the best method is to compare ? */
963 if (key_prefered_oldsa) {
964 if (candidate->lft_c->sadb_lifetime_addtime >
965 sav->lft_c->sadb_lifetime_addtime) {
966 candidate = sav;
967 }
968 continue;
969 /*NOTREACHED*/
970 }
971
972 /* prefered new sa rather than old sa */
973 if (candidate->lft_c->sadb_lifetime_addtime <
974 sav->lft_c->sadb_lifetime_addtime) {
975 d = candidate;
976 candidate = sav;
977 } else
978 d = sav;
979
980 /*
981 * prepared to delete the SA when there is more
982 * suitable candidate and the lifetime of the SA is not
983 * permanent.
984 */
985 if (d->lft_c->sadb_lifetime_addtime != 0) {
986 struct mbuf *m, *result = 0;
987 uint8_t satype;
988
989 key_sa_chgstate(d, SADB_SASTATE_DEAD);
990
991 KASSERT(d->refcnt > 0);
992
993 satype = key_proto2satype(d->sah->saidx.proto);
994 if (satype == 0)
995 goto msgfail;
996
997 m = key_setsadbmsg(SADB_DELETE, 0,
998 satype, 0, 0, d->refcnt - 1);
999 if (!m)
1000 goto msgfail;
1001 result = m;
1002
1003 /* set sadb_address for saidx's. */
1004 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1005 &d->sah->saidx.src.sa,
1006 d->sah->saidx.src.sa.sa_len << 3,
1007 IPSEC_ULPROTO_ANY);
1008 if (!m)
1009 goto msgfail;
1010 m_cat(result, m);
1011
1012 /* set sadb_address for saidx's. */
1013 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1014 &d->sah->saidx.src.sa,
1015 d->sah->saidx.src.sa.sa_len << 3,
1016 IPSEC_ULPROTO_ANY);
1017 if (!m)
1018 goto msgfail;
1019 m_cat(result, m);
1020
1021 /* create SA extension */
1022 m = key_setsadbsa(d);
1023 if (!m)
1024 goto msgfail;
1025 m_cat(result, m);
1026
1027 if (result->m_len < sizeof(struct sadb_msg)) {
1028 result = m_pullup(result,
1029 sizeof(struct sadb_msg));
1030 if (result == NULL)
1031 goto msgfail;
1032 }
1033
1034 result->m_pkthdr.len = 0;
1035 for (m = result; m; m = m->m_next)
1036 result->m_pkthdr.len += m->m_len;
1037 mtod(result, struct sadb_msg *)->sadb_msg_len =
1038 PFKEY_UNIT64(result->m_pkthdr.len);
1039
1040 key_sendup_mbuf(NULL, result,
1041 KEY_SENDUP_REGISTERED);
1042 result = 0;
1043 msgfail:
1044 if (result)
1045 m_freem(result);
1046 KEY_FREESAV(&d);
1047 }
1048 }
1049
1050 if (candidate) {
1051 SA_ADDREF(candidate);
1052 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1053 "DP cause refcnt++:%d SA:%p\n",
1054 candidate->refcnt, candidate);
1055 }
1056 return candidate;
1057 }
1058
1059 /*
1060 * allocating a usable SA entry for a *INBOUND* packet.
1061 * Must call key_freesav() later.
1062 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1063 * NULL: not found, or error occurred.
1064 *
1065 * In the comparison, no source address is used--for RFC2401 conformance.
1066 * To quote, from section 4.1:
1067 * A security association is uniquely identified by a triple consisting
1068 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1069 * security protocol (AH or ESP) identifier.
1070 * Note that, however, we do need to keep source address in IPsec SA.
1071 * IKE specification and PF_KEY specification do assume that we
1072 * keep source address in IPsec SA. We see a tricky situation here.
1073 *
1074 * sport and dport are used for NAT-T. network order is always used.
1075 */
1076 struct secasvar *
1077 key_allocsa(
1078 const union sockaddr_union *dst,
1079 u_int proto,
1080 u_int32_t spi,
1081 u_int16_t sport,
1082 u_int16_t dport,
1083 const char* where, int tag)
1084 {
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, state;
1088 const u_int *saorder_state_valid;
1089 int arraysize, chkport;
1090 int s;
1091
1092 int must_check_spi = 1;
1093 int must_check_alg = 0;
1094 u_int16_t cpi = 0;
1095 u_int8_t algo = 0;
1096
1097 if ((sport != 0) && (dport != 0))
1098 chkport = PORT_STRICT;
1099 else
1100 chkport = PORT_NONE;
1101
1102 KASSERT(dst != NULL);
1103
1104 /*
1105 * XXX IPCOMP case
1106 * We use cpi to define spi here. In the case where cpi <=
1107 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1108 * the real spi. In this case, don't check the spi but check the
1109 * algorithm
1110 */
1111
1112 if (proto == IPPROTO_IPCOMP) {
1113 u_int32_t tmp;
1114 tmp = ntohl(spi);
1115 cpi = (u_int16_t) tmp;
1116 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1117 algo = (u_int8_t) cpi;
1118 must_check_spi = 0;
1119 must_check_alg = 1;
1120 }
1121 }
1122 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1123 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1124 where, tag, must_check_spi, must_check_alg);
1125
1126
1127 /*
1128 * searching SAD.
1129 * XXX: to be checked internal IP header somewhere. Also when
1130 * IPsec tunnel packet is received. But ESP tunnel mode is
1131 * encrypted so we can't check internal IP header.
1132 */
1133 s = splsoftnet(); /*called from softclock()*/
1134 if (key_prefered_oldsa) {
1135 saorder_state_valid = saorder_state_valid_prefer_old;
1136 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1137 } else {
1138 saorder_state_valid = saorder_state_valid_prefer_new;
1139 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1140 }
1141 LIST_FOREACH(sah, &sahtree, chain) {
1142 /* search valid state */
1143 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1144 state = saorder_state_valid[stateidx];
1145 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1146 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1147 "try match spi %#x, %#x\n",
1148 ntohl(spi), ntohl(sav->spi));
1149 /* sanity check */
1150 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1151 /* do not return entries w/ unusable state */
1152 if (sav->state != SADB_SASTATE_MATURE &&
1153 sav->state != SADB_SASTATE_DYING) {
1154 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1155 "bad state %d\n", sav->state);
1156 continue;
1157 }
1158 if (proto != sav->sah->saidx.proto) {
1159 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1160 "proto fail %d != %d\n",
1161 proto, sav->sah->saidx.proto);
1162 continue;
1163 }
1164 if (must_check_spi && spi != sav->spi) {
1165 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1166 "spi fail %#x != %#x\n",
1167 ntohl(spi), ntohl(sav->spi));
1168 continue;
1169 }
1170 /* XXX only on the ipcomp case */
1171 if (must_check_alg && algo != sav->alg_comp) {
1172 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1173 "algo fail %d != %d\n",
1174 algo, sav->alg_comp);
1175 continue;
1176 }
1177
1178 #if 0 /* don't check src */
1179 /* Fix port in src->sa */
1180
1181 /* check src address */
1182 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE) != 0)
1183 continue;
1184 #endif
1185 /* fix port of dst address XXX*/
1186 key_porttosaddr(__UNCONST(dst), dport);
1187 /* check dst address */
1188 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1189 continue;
1190 SA_ADDREF(sav);
1191 goto done;
1192 }
1193 }
1194 }
1195 sav = NULL;
1196 done:
1197 splx(s);
1198
1199 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1200 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1201 return sav;
1202 }
1203
1204 /*
1205 * Must be called after calling key_allocsp().
1206 * For both the packet without socket and key_freeso().
1207 */
1208 void
1209 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1210 {
1211 struct secpolicy *sp = *spp;
1212
1213 KASSERT(sp != NULL);
1214
1215 SP_DELREF(sp);
1216
1217 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1218 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1219 sp, sp->id, where, tag, sp->refcnt);
1220
1221 if (sp->refcnt == 0) {
1222 *spp = NULL;
1223 key_delsp(sp);
1224 }
1225 }
1226
1227 /*
1228 * Must be called after calling key_allocsp().
1229 * For the packet with socket.
1230 */
1231 void
1232 key_freeso(struct socket *so)
1233 {
1234 /* sanity check */
1235 KASSERT(so != NULL);
1236
1237 switch (so->so_proto->pr_domain->dom_family) {
1238 #ifdef INET
1239 case PF_INET:
1240 {
1241 struct inpcb *pcb = sotoinpcb(so);
1242
1243 /* Does it have a PCB ? */
1244 if (pcb == NULL)
1245 return;
1246
1247 struct inpcbpolicy *sp = pcb->inp_sp;
1248 key_freesp_so(&sp->sp_in);
1249 key_freesp_so(&sp->sp_out);
1250 }
1251 break;
1252 #endif
1253 #ifdef INET6
1254 case PF_INET6:
1255 {
1256 #ifdef HAVE_NRL_INPCB
1257 struct inpcb *pcb = sotoinpcb(so);
1258 struct inpcbpolicy *sp = pcb->inp_sp;
1259
1260 /* Does it have a PCB ? */
1261 if (pcb == NULL)
1262 return;
1263 key_freesp_so(&sp->sp_in);
1264 key_freesp_so(&sp->sp_out);
1265 #else
1266 struct in6pcb *pcb = sotoin6pcb(so);
1267
1268 /* Does it have a PCB ? */
1269 if (pcb == NULL)
1270 return;
1271 key_freesp_so(&pcb->in6p_sp->sp_in);
1272 key_freesp_so(&pcb->in6p_sp->sp_out);
1273 #endif
1274 }
1275 break;
1276 #endif /* INET6 */
1277 default:
1278 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1279 so->so_proto->pr_domain->dom_family));
1280 return;
1281 }
1282 }
1283
1284 static void
1285 key_freesp_so(struct secpolicy **sp)
1286 {
1287
1288 KASSERT(sp != NULL);
1289 KASSERT(*sp != NULL);
1290
1291 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1292 (*sp)->policy == IPSEC_POLICY_BYPASS)
1293 return;
1294
1295 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1296 "invalid policy %u", (*sp)->policy);
1297 KEY_FREESP(sp);
1298 }
1299
1300 /*
1301 * Must be called after calling key_allocsa().
1302 * This function is called by key_freesp() to free some SA allocated
1303 * for a policy.
1304 */
1305 void
1306 key_freesav(struct secasvar **psav, const char* where, int tag)
1307 {
1308 struct secasvar *sav = *psav;
1309
1310 KASSERT(sav != NULL);
1311
1312 SA_DELREF(sav);
1313
1314 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1315 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1316 sav, (u_long)ntohl(sav->spi), where, tag, sav->refcnt);
1317
1318 if (sav->refcnt == 0) {
1319 *psav = NULL;
1320 key_delsav(sav);
1321 }
1322 }
1323
1324 /* %%% SPD management */
1325 /*
1326 * free security policy entry.
1327 */
1328 static void
1329 key_delsp(struct secpolicy *sp)
1330 {
1331 int s;
1332
1333 KASSERT(sp != NULL);
1334
1335 key_sp_dead(sp);
1336
1337 KASSERTMSG(sp->refcnt == 0,
1338 "SP with references deleted (refcnt %u)", sp->refcnt);
1339
1340 s = splsoftnet(); /*called from softclock()*/
1341
1342 {
1343 struct ipsecrequest *isr = sp->req, *nextisr;
1344
1345 while (isr != NULL) {
1346 if (isr->sav != NULL) {
1347 KEY_FREESAV(&isr->sav);
1348 isr->sav = NULL;
1349 }
1350
1351 nextisr = isr->next;
1352 KFREE(isr);
1353 isr = nextisr;
1354 }
1355 }
1356
1357 KFREE(sp);
1358
1359 splx(s);
1360 }
1361
1362 /*
1363 * search SPD
1364 * OUT: NULL : not found
1365 * others : found, pointer to a SP.
1366 */
1367 static struct secpolicy *
1368 key_getsp(const struct secpolicyindex *spidx)
1369 {
1370 struct secpolicy *sp;
1371
1372 KASSERT(spidx != NULL);
1373
1374 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1375 if (sp->state == IPSEC_SPSTATE_DEAD)
1376 continue;
1377 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1378 SP_ADDREF(sp);
1379 return sp;
1380 }
1381 }
1382
1383 return NULL;
1384 }
1385
1386 /*
1387 * get SP by index.
1388 * OUT: NULL : not found
1389 * others : found, pointer to a SP.
1390 */
1391 static struct secpolicy *
1392 key_getspbyid(u_int32_t id)
1393 {
1394 struct secpolicy *sp;
1395
1396 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1397 if (sp->state == IPSEC_SPSTATE_DEAD)
1398 continue;
1399 if (sp->id == id) {
1400 SP_ADDREF(sp);
1401 return sp;
1402 }
1403 }
1404
1405 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1406 if (sp->state == IPSEC_SPSTATE_DEAD)
1407 continue;
1408 if (sp->id == id) {
1409 SP_ADDREF(sp);
1410 return sp;
1411 }
1412 }
1413
1414 return NULL;
1415 }
1416
1417 struct secpolicy *
1418 key_newsp(const char* where, int tag)
1419 {
1420 struct secpolicy *newsp = NULL;
1421
1422 newsp = (struct secpolicy *)
1423 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1424 if (newsp) {
1425 newsp->refcnt = 1;
1426 newsp->req = NULL;
1427 }
1428
1429 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1430 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1431 return newsp;
1432 }
1433
1434 /*
1435 * create secpolicy structure from sadb_x_policy structure.
1436 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1437 * so must be set properly later.
1438 */
1439 struct secpolicy *
1440 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1441 {
1442 struct secpolicy *newsp;
1443
1444 KASSERT(xpl0 != NULL);
1445 KASSERT(len >= sizeof(*xpl0));
1446
1447 if (len != PFKEY_EXTLEN(xpl0)) {
1448 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1449 *error = EINVAL;
1450 return NULL;
1451 }
1452
1453 if ((newsp = KEY_NEWSP()) == NULL) {
1454 *error = ENOBUFS;
1455 return NULL;
1456 }
1457
1458 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1459 newsp->policy = xpl0->sadb_x_policy_type;
1460
1461 /* check policy */
1462 switch (xpl0->sadb_x_policy_type) {
1463 case IPSEC_POLICY_DISCARD:
1464 case IPSEC_POLICY_NONE:
1465 case IPSEC_POLICY_ENTRUST:
1466 case IPSEC_POLICY_BYPASS:
1467 newsp->req = NULL;
1468 *error = 0;
1469 return newsp;
1470
1471 case IPSEC_POLICY_IPSEC:
1472 /* Continued */
1473 break;
1474 default:
1475 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1476 KEY_FREESP(&newsp);
1477 *error = EINVAL;
1478 return NULL;
1479 }
1480
1481 /* IPSEC_POLICY_IPSEC */
1482 {
1483 int tlen;
1484 const struct sadb_x_ipsecrequest *xisr;
1485 uint16_t xisr_reqid;
1486 struct ipsecrequest **p_isr = &newsp->req;
1487
1488 /* validity check */
1489 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1490 ipseclog((LOG_DEBUG,
1491 "key_msg2sp: Invalid msg length.\n"));
1492 *error = EINVAL;
1493 goto free_exit;
1494 }
1495
1496 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1497 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1498
1499 while (tlen > 0) {
1500 /* length check */
1501 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1502 ipseclog((LOG_DEBUG, "key_msg2sp: "
1503 "invalid ipsecrequest length.\n"));
1504 *error = EINVAL;
1505 goto free_exit;
1506 }
1507
1508 /* allocate request buffer */
1509 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1510 if ((*p_isr) == NULL) {
1511 ipseclog((LOG_DEBUG,
1512 "key_msg2sp: No more memory.\n"));
1513 *error = ENOBUFS;
1514 goto free_exit;
1515 }
1516 memset(*p_isr, 0, sizeof(**p_isr));
1517
1518 /* set values */
1519 (*p_isr)->next = NULL;
1520
1521 switch (xisr->sadb_x_ipsecrequest_proto) {
1522 case IPPROTO_ESP:
1523 case IPPROTO_AH:
1524 case IPPROTO_IPCOMP:
1525 break;
1526 default:
1527 ipseclog((LOG_DEBUG,
1528 "key_msg2sp: invalid proto type=%u\n",
1529 xisr->sadb_x_ipsecrequest_proto));
1530 *error = EPROTONOSUPPORT;
1531 goto free_exit;
1532 }
1533 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1534
1535 switch (xisr->sadb_x_ipsecrequest_mode) {
1536 case IPSEC_MODE_TRANSPORT:
1537 case IPSEC_MODE_TUNNEL:
1538 break;
1539 case IPSEC_MODE_ANY:
1540 default:
1541 ipseclog((LOG_DEBUG,
1542 "key_msg2sp: invalid mode=%u\n",
1543 xisr->sadb_x_ipsecrequest_mode));
1544 *error = EINVAL;
1545 goto free_exit;
1546 }
1547 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1548
1549 switch (xisr->sadb_x_ipsecrequest_level) {
1550 case IPSEC_LEVEL_DEFAULT:
1551 case IPSEC_LEVEL_USE:
1552 case IPSEC_LEVEL_REQUIRE:
1553 break;
1554 case IPSEC_LEVEL_UNIQUE:
1555 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1556 /* validity check */
1557 /*
1558 * If range violation of reqid, kernel will
1559 * update it, don't refuse it.
1560 */
1561 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1562 ipseclog((LOG_DEBUG,
1563 "key_msg2sp: reqid=%d range "
1564 "violation, updated by kernel.\n",
1565 xisr_reqid));
1566 xisr_reqid = 0;
1567 }
1568
1569 /* allocate new reqid id if reqid is zero. */
1570 if (xisr_reqid == 0) {
1571 u_int16_t reqid;
1572 if ((reqid = key_newreqid()) == 0) {
1573 *error = ENOBUFS;
1574 goto free_exit;
1575 }
1576 (*p_isr)->saidx.reqid = reqid;
1577 } else {
1578 /* set it for manual keying. */
1579 (*p_isr)->saidx.reqid = xisr_reqid;
1580 }
1581 break;
1582
1583 default:
1584 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1585 xisr->sadb_x_ipsecrequest_level));
1586 *error = EINVAL;
1587 goto free_exit;
1588 }
1589 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1590
1591 /* set IP addresses if there */
1592 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1593 const struct sockaddr *paddr;
1594
1595 paddr = (const struct sockaddr *)(xisr + 1);
1596
1597 /* validity check */
1598 if (paddr->sa_len
1599 > sizeof((*p_isr)->saidx.src)) {
1600 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1601 "address length.\n"));
1602 *error = EINVAL;
1603 goto free_exit;
1604 }
1605 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1606
1607 paddr = (const struct sockaddr *)((const char *)paddr
1608 + paddr->sa_len);
1609
1610 /* validity check */
1611 if (paddr->sa_len
1612 > sizeof((*p_isr)->saidx.dst)) {
1613 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1614 "address length.\n"));
1615 *error = EINVAL;
1616 goto free_exit;
1617 }
1618 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1619 }
1620
1621 (*p_isr)->sav = NULL;
1622 (*p_isr)->sp = newsp;
1623
1624 /* initialization for the next. */
1625 p_isr = &(*p_isr)->next;
1626 tlen -= xisr->sadb_x_ipsecrequest_len;
1627
1628 /* validity check */
1629 if (tlen < 0) {
1630 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1631 *error = EINVAL;
1632 goto free_exit;
1633 }
1634
1635 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1636 + xisr->sadb_x_ipsecrequest_len);
1637 }
1638 }
1639
1640 *error = 0;
1641 return newsp;
1642
1643 free_exit:
1644 KEY_FREESP(&newsp);
1645 return NULL;
1646 }
1647
1648 static u_int16_t
1649 key_newreqid(void)
1650 {
1651 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1652
1653 auto_reqid = (auto_reqid == 0xffff
1654 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1655
1656 /* XXX should be unique check */
1657
1658 return auto_reqid;
1659 }
1660
1661 /*
1662 * copy secpolicy struct to sadb_x_policy structure indicated.
1663 */
1664 struct mbuf *
1665 key_sp2msg(const struct secpolicy *sp)
1666 {
1667 struct sadb_x_policy *xpl;
1668 int tlen;
1669 char *p;
1670 struct mbuf *m;
1671
1672 KASSERT(sp != NULL);
1673
1674 tlen = key_getspreqmsglen(sp);
1675
1676 m = key_alloc_mbuf(tlen);
1677 if (!m || m->m_next) { /*XXX*/
1678 if (m)
1679 m_freem(m);
1680 return NULL;
1681 }
1682
1683 m->m_len = tlen;
1684 m->m_next = NULL;
1685 xpl = mtod(m, struct sadb_x_policy *);
1686 memset(xpl, 0, tlen);
1687
1688 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1689 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1690 xpl->sadb_x_policy_type = sp->policy;
1691 xpl->sadb_x_policy_dir = sp->spidx.dir;
1692 xpl->sadb_x_policy_id = sp->id;
1693 p = (char *)xpl + sizeof(*xpl);
1694
1695 /* if is the policy for ipsec ? */
1696 if (sp->policy == IPSEC_POLICY_IPSEC) {
1697 struct sadb_x_ipsecrequest *xisr;
1698 struct ipsecrequest *isr;
1699
1700 for (isr = sp->req; isr != NULL; isr = isr->next) {
1701
1702 xisr = (struct sadb_x_ipsecrequest *)p;
1703
1704 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1705 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1706 xisr->sadb_x_ipsecrequest_level = isr->level;
1707 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1708
1709 p += sizeof(*xisr);
1710 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1711 p += isr->saidx.src.sa.sa_len;
1712 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1713 p += isr->saidx.src.sa.sa_len;
1714
1715 xisr->sadb_x_ipsecrequest_len =
1716 PFKEY_ALIGN8(sizeof(*xisr)
1717 + isr->saidx.src.sa.sa_len
1718 + isr->saidx.dst.sa.sa_len);
1719 }
1720 }
1721
1722 return m;
1723 }
1724
1725 /* m will not be freed nor modified */
1726 static struct mbuf *
1727 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1728 int ndeep, int nitem, ...)
1729 {
1730 va_list ap;
1731 int idx;
1732 int i;
1733 struct mbuf *result = NULL, *n;
1734 int len;
1735
1736 KASSERT(m != NULL);
1737 KASSERT(mhp != NULL);
1738
1739 va_start(ap, nitem);
1740 for (i = 0; i < nitem; i++) {
1741 idx = va_arg(ap, int);
1742 if (idx < 0 || idx > SADB_EXT_MAX)
1743 goto fail;
1744 /* don't attempt to pull empty extension */
1745 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1746 continue;
1747 if (idx != SADB_EXT_RESERVED &&
1748 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1749 continue;
1750
1751 if (idx == SADB_EXT_RESERVED) {
1752 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1753 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1754 MGETHDR(n, M_DONTWAIT, MT_DATA);
1755 if (!n)
1756 goto fail;
1757 n->m_len = len;
1758 n->m_next = NULL;
1759 m_copydata(m, 0, sizeof(struct sadb_msg),
1760 mtod(n, void *));
1761 } else if (i < ndeep) {
1762 len = mhp->extlen[idx];
1763 n = key_alloc_mbuf(len);
1764 if (!n || n->m_next) { /*XXX*/
1765 if (n)
1766 m_freem(n);
1767 goto fail;
1768 }
1769 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1770 mtod(n, void *));
1771 } else {
1772 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1773 M_DONTWAIT);
1774 }
1775 if (n == NULL)
1776 goto fail;
1777
1778 if (result)
1779 m_cat(result, n);
1780 else
1781 result = n;
1782 }
1783 va_end(ap);
1784
1785 if (result && (result->m_flags & M_PKTHDR) != 0) {
1786 result->m_pkthdr.len = 0;
1787 for (n = result; n; n = n->m_next)
1788 result->m_pkthdr.len += n->m_len;
1789 }
1790
1791 return result;
1792
1793 fail:
1794 va_end(ap);
1795 m_freem(result);
1796 return NULL;
1797 }
1798
1799 /*
1800 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1801 * add an entry to SP database, when received
1802 * <base, address(SD), (lifetime(H),) policy>
1803 * from the user(?).
1804 * Adding to SP database,
1805 * and send
1806 * <base, address(SD), (lifetime(H),) policy>
1807 * to the socket which was send.
1808 *
1809 * SPDADD set a unique policy entry.
1810 * SPDSETIDX like SPDADD without a part of policy requests.
1811 * SPDUPDATE replace a unique policy entry.
1812 *
1813 * m will always be freed.
1814 */
1815 static int
1816 key_spdadd(struct socket *so, struct mbuf *m,
1817 const struct sadb_msghdr *mhp)
1818 {
1819 const struct sadb_address *src0, *dst0;
1820 const struct sadb_x_policy *xpl0;
1821 struct sadb_x_policy *xpl;
1822 const struct sadb_lifetime *lft = NULL;
1823 struct secpolicyindex spidx;
1824 struct secpolicy *newsp;
1825 int error;
1826
1827 KASSERT(so != NULL);
1828 KASSERT(m != NULL);
1829 KASSERT(mhp != NULL);
1830 KASSERT(mhp->msg != NULL);
1831
1832 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1833 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1834 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1835 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1836 return key_senderror(so, m, EINVAL);
1837 }
1838 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1839 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1840 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1841 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1842 return key_senderror(so, m, EINVAL);
1843 }
1844 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1845 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1846 < sizeof(struct sadb_lifetime)) {
1847 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1848 return key_senderror(so, m, EINVAL);
1849 }
1850 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1851 }
1852
1853 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1854 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1855 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1856
1857 /* make secindex */
1858 /* XXX boundary check against sa_len */
1859 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1860 src0 + 1,
1861 dst0 + 1,
1862 src0->sadb_address_prefixlen,
1863 dst0->sadb_address_prefixlen,
1864 src0->sadb_address_proto,
1865 &spidx);
1866
1867 /* checking the direciton. */
1868 switch (xpl0->sadb_x_policy_dir) {
1869 case IPSEC_DIR_INBOUND:
1870 case IPSEC_DIR_OUTBOUND:
1871 break;
1872 default:
1873 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1874 mhp->msg->sadb_msg_errno = EINVAL;
1875 return 0;
1876 }
1877
1878 /* check policy */
1879 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1880 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1881 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1882 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1883 return key_senderror(so, m, EINVAL);
1884 }
1885
1886 /* policy requests are mandatory when action is ipsec. */
1887 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1888 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1889 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1890 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1891 return key_senderror(so, m, EINVAL);
1892 }
1893
1894 /*
1895 * checking there is SP already or not.
1896 * SPDUPDATE doesn't depend on whether there is a SP or not.
1897 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1898 * then error.
1899 */
1900 newsp = key_getsp(&spidx);
1901 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1902 if (newsp) {
1903 key_sp_dead(newsp);
1904 key_sp_unlink(newsp); /* XXX jrs ordering */
1905 KEY_FREESP(&newsp);
1906 newsp = NULL;
1907 }
1908 } else {
1909 if (newsp != NULL) {
1910 KEY_FREESP(&newsp);
1911 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1912 return key_senderror(so, m, EEXIST);
1913 }
1914 }
1915
1916 /* allocation new SP entry */
1917 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1918 return key_senderror(so, m, error);
1919 }
1920
1921 if ((newsp->id = key_getnewspid()) == 0) {
1922 KFREE(newsp);
1923 return key_senderror(so, m, ENOBUFS);
1924 }
1925
1926 /* XXX boundary check against sa_len */
1927 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1928 src0 + 1,
1929 dst0 + 1,
1930 src0->sadb_address_prefixlen,
1931 dst0->sadb_address_prefixlen,
1932 src0->sadb_address_proto,
1933 &newsp->spidx);
1934
1935 /* sanity check on addr pair */
1936 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1937 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1938 KFREE(newsp);
1939 return key_senderror(so, m, EINVAL);
1940 }
1941 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1942 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1943 KFREE(newsp);
1944 return key_senderror(so, m, EINVAL);
1945 }
1946
1947 newsp->created = time_uptime;
1948 newsp->lastused = newsp->created;
1949 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1950 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1951
1952 newsp->refcnt = 1; /* do not reclaim until I say I do */
1953 newsp->state = IPSEC_SPSTATE_ALIVE;
1954 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1955
1956 /* delete the entry in spacqtree */
1957 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1958 struct secspacq *spacq;
1959 if ((spacq = key_getspacq(&spidx)) != NULL) {
1960 /* reset counter in order to deletion by timehandler. */
1961 spacq->created = time_uptime;
1962 spacq->count = 0;
1963 }
1964 }
1965
1966 /* Invalidate all cached SPD pointers in the PCBs. */
1967 ipsec_invalpcbcacheall();
1968
1969 #if defined(GATEWAY)
1970 /* Invalidate the ipflow cache, as well. */
1971 ipflow_invalidate_all(0);
1972 #ifdef INET6
1973 if (in6_present)
1974 ip6flow_invalidate_all(0);
1975 #endif /* INET6 */
1976 #endif /* GATEWAY */
1977
1978 {
1979 struct mbuf *n, *mpolicy;
1980 struct sadb_msg *newmsg;
1981 int off;
1982
1983 /* create new sadb_msg to reply. */
1984 if (lft) {
1985 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1986 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1987 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1988 } else {
1989 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1990 SADB_X_EXT_POLICY,
1991 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1992 }
1993 if (!n)
1994 return key_senderror(so, m, ENOBUFS);
1995
1996 if (n->m_len < sizeof(*newmsg)) {
1997 n = m_pullup(n, sizeof(*newmsg));
1998 if (!n)
1999 return key_senderror(so, m, ENOBUFS);
2000 }
2001 newmsg = mtod(n, struct sadb_msg *);
2002 newmsg->sadb_msg_errno = 0;
2003 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2004
2005 off = 0;
2006 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2007 sizeof(*xpl), &off);
2008 if (mpolicy == NULL) {
2009 /* n is already freed */
2010 return key_senderror(so, m, ENOBUFS);
2011 }
2012 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2013 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2014 m_freem(n);
2015 return key_senderror(so, m, EINVAL);
2016 }
2017 xpl->sadb_x_policy_id = newsp->id;
2018
2019 m_freem(m);
2020 key_update_used();
2021 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2022 }
2023 }
2024
2025 /*
2026 * get new policy id.
2027 * OUT:
2028 * 0: failure.
2029 * others: success.
2030 */
2031 static u_int32_t
2032 key_getnewspid(void)
2033 {
2034 u_int32_t newid = 0;
2035 int count = key_spi_trycnt; /* XXX */
2036 struct secpolicy *sp;
2037
2038 /* when requesting to allocate spi ranged */
2039 while (count--) {
2040 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2041
2042 if ((sp = key_getspbyid(newid)) == NULL)
2043 break;
2044
2045 KEY_FREESP(&sp);
2046 }
2047
2048 if (count == 0 || newid == 0) {
2049 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2050 return 0;
2051 }
2052
2053 return newid;
2054 }
2055
2056 /*
2057 * SADB_SPDDELETE processing
2058 * receive
2059 * <base, address(SD), policy(*)>
2060 * from the user(?), and set SADB_SASTATE_DEAD,
2061 * and send,
2062 * <base, address(SD), policy(*)>
2063 * to the ikmpd.
2064 * policy(*) including direction of policy.
2065 *
2066 * m will always be freed.
2067 */
2068 static int
2069 key_spddelete(struct socket *so, struct mbuf *m,
2070 const struct sadb_msghdr *mhp)
2071 {
2072 struct sadb_address *src0, *dst0;
2073 struct sadb_x_policy *xpl0;
2074 struct secpolicyindex spidx;
2075 struct secpolicy *sp;
2076
2077 KASSERT(so != NULL);
2078 KASSERT(m != NULL);
2079 KASSERT(mhp != NULL);
2080 KASSERT(mhp->msg != NULL);
2081
2082 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2083 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2084 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2085 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2086 return key_senderror(so, m, EINVAL);
2087 }
2088 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2089 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2090 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2091 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2092 return key_senderror(so, m, EINVAL);
2093 }
2094
2095 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2096 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2097 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2098
2099 /* make secindex */
2100 /* XXX boundary check against sa_len */
2101 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2102 src0 + 1,
2103 dst0 + 1,
2104 src0->sadb_address_prefixlen,
2105 dst0->sadb_address_prefixlen,
2106 src0->sadb_address_proto,
2107 &spidx);
2108
2109 /* checking the direciton. */
2110 switch (xpl0->sadb_x_policy_dir) {
2111 case IPSEC_DIR_INBOUND:
2112 case IPSEC_DIR_OUTBOUND:
2113 break;
2114 default:
2115 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2116 return key_senderror(so, m, EINVAL);
2117 }
2118
2119 /* Is there SP in SPD ? */
2120 if ((sp = key_getsp(&spidx)) == NULL) {
2121 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2122 return key_senderror(so, m, EINVAL);
2123 }
2124
2125 /* save policy id to buffer to be returned. */
2126 xpl0->sadb_x_policy_id = sp->id;
2127
2128 key_sp_dead(sp);
2129 key_sp_unlink(sp); /* XXX jrs ordering */
2130 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2131
2132 /* Invalidate all cached SPD pointers in the PCBs. */
2133 ipsec_invalpcbcacheall();
2134
2135 /* We're deleting policy; no need to invalidate the ipflow cache. */
2136
2137 {
2138 struct mbuf *n;
2139 struct sadb_msg *newmsg;
2140
2141 /* create new sadb_msg to reply. */
2142 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2143 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2144 if (!n)
2145 return key_senderror(so, m, ENOBUFS);
2146
2147 newmsg = mtod(n, struct sadb_msg *);
2148 newmsg->sadb_msg_errno = 0;
2149 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2150
2151 m_freem(m);
2152 key_update_used();
2153 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2154 }
2155 }
2156
2157 /*
2158 * SADB_SPDDELETE2 processing
2159 * receive
2160 * <base, policy(*)>
2161 * from the user(?), and set SADB_SASTATE_DEAD,
2162 * and send,
2163 * <base, policy(*)>
2164 * to the ikmpd.
2165 * policy(*) including direction of policy.
2166 *
2167 * m will always be freed.
2168 */
2169 static int
2170 key_spddelete2(struct socket *so, struct mbuf *m,
2171 const struct sadb_msghdr *mhp)
2172 {
2173 u_int32_t id;
2174 struct secpolicy *sp;
2175
2176 KASSERT(so != NULL);
2177 KASSERT(m != NULL);
2178 KASSERT(mhp != NULL);
2179 KASSERT(mhp->msg != NULL);
2180
2181 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2182 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2183 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2184 key_senderror(so, m, EINVAL);
2185 return 0;
2186 }
2187
2188 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2189
2190 /* Is there SP in SPD ? */
2191 if ((sp = key_getspbyid(id)) == NULL) {
2192 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2193 return key_senderror(so, m, EINVAL);
2194 }
2195
2196 key_sp_dead(sp);
2197 key_sp_unlink(sp); /* XXX jrs ordering */
2198 KEY_FREESP(&sp); /* ref gained by key_getsp */
2199 sp = NULL;
2200
2201 /* Invalidate all cached SPD pointers in the PCBs. */
2202 ipsec_invalpcbcacheall();
2203
2204 /* We're deleting policy; no need to invalidate the ipflow cache. */
2205
2206 {
2207 struct mbuf *n, *nn;
2208 struct sadb_msg *newmsg;
2209 int off, len;
2210
2211 /* create new sadb_msg to reply. */
2212 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2213
2214 if (len > MCLBYTES)
2215 return key_senderror(so, m, ENOBUFS);
2216 MGETHDR(n, M_DONTWAIT, MT_DATA);
2217 if (n && len > MHLEN) {
2218 MCLGET(n, M_DONTWAIT);
2219 if ((n->m_flags & M_EXT) == 0) {
2220 m_freem(n);
2221 n = NULL;
2222 }
2223 }
2224 if (!n)
2225 return key_senderror(so, m, ENOBUFS);
2226
2227 n->m_len = len;
2228 n->m_next = NULL;
2229 off = 0;
2230
2231 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2232 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2233
2234 KASSERTMSG(off == len, "length inconsistency");
2235
2236 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2237 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2238 if (!n->m_next) {
2239 m_freem(n);
2240 return key_senderror(so, m, ENOBUFS);
2241 }
2242
2243 n->m_pkthdr.len = 0;
2244 for (nn = n; nn; nn = nn->m_next)
2245 n->m_pkthdr.len += nn->m_len;
2246
2247 newmsg = mtod(n, struct sadb_msg *);
2248 newmsg->sadb_msg_errno = 0;
2249 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2250
2251 m_freem(m);
2252 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2253 }
2254 }
2255
2256 /*
2257 * SADB_X_GET processing
2258 * receive
2259 * <base, policy(*)>
2260 * from the user(?),
2261 * and send,
2262 * <base, address(SD), policy>
2263 * to the ikmpd.
2264 * policy(*) including direction of policy.
2265 *
2266 * m will always be freed.
2267 */
2268 static int
2269 key_spdget(struct socket *so, struct mbuf *m,
2270 const struct sadb_msghdr *mhp)
2271 {
2272 u_int32_t id;
2273 struct secpolicy *sp;
2274 struct mbuf *n;
2275
2276 KASSERT(so != NULL);
2277 KASSERT(m != NULL);
2278 KASSERT(mhp != NULL);
2279 KASSERT(mhp->msg != NULL);
2280
2281 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2282 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2283 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2284 return key_senderror(so, m, EINVAL);
2285 }
2286
2287 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2288
2289 /* Is there SP in SPD ? */
2290 if ((sp = key_getspbyid(id)) == NULL) {
2291 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2292 return key_senderror(so, m, ENOENT);
2293 }
2294
2295 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2296 mhp->msg->sadb_msg_pid);
2297 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2298 if (n != NULL) {
2299 m_freem(m);
2300 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2301 } else
2302 return key_senderror(so, m, ENOBUFS);
2303 }
2304
2305 /*
2306 * SADB_X_SPDACQUIRE processing.
2307 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2308 * send
2309 * <base, policy(*)>
2310 * to KMD, and expect to receive
2311 * <base> with SADB_X_SPDACQUIRE if error occurred,
2312 * or
2313 * <base, policy>
2314 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2315 * policy(*) is without policy requests.
2316 *
2317 * 0 : succeed
2318 * others: error number
2319 */
2320 int
2321 key_spdacquire(const struct secpolicy *sp)
2322 {
2323 struct mbuf *result = NULL, *m;
2324 struct secspacq *newspacq;
2325 int error;
2326
2327 KASSERT(sp != NULL);
2328 KASSERTMSG(sp->req == NULL, "called but there is request");
2329 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2330 "policy mismathed. IPsec is expected");
2331
2332 /* Get an entry to check whether sent message or not. */
2333 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2334 if (key_blockacq_count < newspacq->count) {
2335 /* reset counter and do send message. */
2336 newspacq->count = 0;
2337 } else {
2338 /* increment counter and do nothing. */
2339 newspacq->count++;
2340 return 0;
2341 }
2342 } else {
2343 /* make new entry for blocking to send SADB_ACQUIRE. */
2344 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2345 return ENOBUFS;
2346
2347 /* add to acqtree */
2348 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2349 }
2350
2351 /* create new sadb_msg to reply. */
2352 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2353 if (!m) {
2354 error = ENOBUFS;
2355 goto fail;
2356 }
2357 result = m;
2358
2359 result->m_pkthdr.len = 0;
2360 for (m = result; m; m = m->m_next)
2361 result->m_pkthdr.len += m->m_len;
2362
2363 mtod(result, struct sadb_msg *)->sadb_msg_len =
2364 PFKEY_UNIT64(result->m_pkthdr.len);
2365
2366 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2367
2368 fail:
2369 if (result)
2370 m_freem(result);
2371 return error;
2372 }
2373
2374 /*
2375 * SADB_SPDFLUSH processing
2376 * receive
2377 * <base>
2378 * from the user, and free all entries in secpctree.
2379 * and send,
2380 * <base>
2381 * to the user.
2382 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2383 *
2384 * m will always be freed.
2385 */
2386 static int
2387 key_spdflush(struct socket *so, struct mbuf *m,
2388 const struct sadb_msghdr *mhp)
2389 {
2390 struct sadb_msg *newmsg;
2391 struct secpolicy *sp;
2392 u_int dir;
2393
2394 KASSERT(so != NULL);
2395 KASSERT(m != NULL);
2396 KASSERT(mhp != NULL);
2397 KASSERT(mhp->msg != NULL);
2398
2399 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2400 return key_senderror(so, m, EINVAL);
2401
2402 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2403 struct secpolicy * nextsp;
2404 for (sp = LIST_FIRST(&sptree[dir]);
2405 sp != NULL;
2406 sp = nextsp) {
2407
2408 nextsp = LIST_NEXT(sp, chain);
2409 if (sp->state == IPSEC_SPSTATE_DEAD)
2410 continue;
2411 key_sp_dead(sp);
2412 key_sp_unlink(sp);
2413 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2414 continue;
2415 }
2416 }
2417
2418 /* Invalidate all cached SPD pointers in the PCBs. */
2419 ipsec_invalpcbcacheall();
2420
2421 /* We're deleting policy; no need to invalidate the ipflow cache. */
2422
2423 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2424 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2425 return key_senderror(so, m, ENOBUFS);
2426 }
2427
2428 if (m->m_next)
2429 m_freem(m->m_next);
2430 m->m_next = NULL;
2431 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2432 newmsg = mtod(m, struct sadb_msg *);
2433 newmsg->sadb_msg_errno = 0;
2434 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2435
2436 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2437 }
2438
2439 static struct sockaddr key_src = {
2440 .sa_len = 2,
2441 .sa_family = PF_KEY,
2442 };
2443
2444 static struct mbuf *
2445 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2446 {
2447 struct secpolicy *sp;
2448 int cnt;
2449 u_int dir;
2450 struct mbuf *m, *n, *prev;
2451 int totlen;
2452
2453 *lenp = 0;
2454
2455 /* search SPD entry and get buffer size. */
2456 cnt = 0;
2457 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2458 LIST_FOREACH(sp, &sptree[dir], chain) {
2459 cnt++;
2460 }
2461 }
2462
2463 if (cnt == 0) {
2464 *errorp = ENOENT;
2465 return (NULL);
2466 }
2467
2468 m = NULL;
2469 prev = m;
2470 totlen = 0;
2471 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2472 LIST_FOREACH(sp, &sptree[dir], chain) {
2473 --cnt;
2474 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2475
2476 if (!n) {
2477 *errorp = ENOBUFS;
2478 if (m) m_freem(m);
2479 return (NULL);
2480 }
2481
2482 totlen += n->m_pkthdr.len;
2483 if (!m) {
2484 m = n;
2485 } else {
2486 prev->m_nextpkt = n;
2487 }
2488 prev = n;
2489 }
2490 }
2491
2492 *lenp = totlen;
2493 *errorp = 0;
2494 return (m);
2495 }
2496
2497 /*
2498 * SADB_SPDDUMP processing
2499 * receive
2500 * <base>
2501 * from the user, and dump all SP leaves
2502 * and send,
2503 * <base> .....
2504 * to the ikmpd.
2505 *
2506 * m will always be freed.
2507 */
2508 static int
2509 key_spddump(struct socket *so, struct mbuf *m0,
2510 const struct sadb_msghdr *mhp)
2511 {
2512 struct mbuf *n;
2513 int error, len;
2514 int ok, s;
2515 pid_t pid;
2516
2517 KASSERT(so != NULL);
2518 KASSERT(m0 != NULL);
2519 KASSERT(mhp != NULL);
2520 KASSERT(mhp->msg != NULL);
2521
2522 pid = mhp->msg->sadb_msg_pid;
2523 /*
2524 * If the requestor has insufficient socket-buffer space
2525 * for the entire chain, nobody gets any response to the DUMP.
2526 * XXX For now, only the requestor ever gets anything.
2527 * Moreover, if the requestor has any space at all, they receive
2528 * the entire chain, otherwise the request is refused with ENOBUFS.
2529 */
2530 if (sbspace(&so->so_rcv) <= 0) {
2531 return key_senderror(so, m0, ENOBUFS);
2532 }
2533
2534 s = splsoftnet();
2535 n = key_setspddump_chain(&error, &len, pid);
2536 splx(s);
2537
2538 if (n == NULL) {
2539 return key_senderror(so, m0, ENOENT);
2540 }
2541 {
2542 uint64_t *ps = PFKEY_STAT_GETREF();
2543 ps[PFKEY_STAT_IN_TOTAL]++;
2544 ps[PFKEY_STAT_IN_BYTES] += len;
2545 PFKEY_STAT_PUTREF();
2546 }
2547
2548 /*
2549 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2550 * The requestor receives either the entire chain, or an
2551 * error message with ENOBUFS.
2552 */
2553
2554 /*
2555 * sbappendchainwith record takes the chain of entries, one
2556 * packet-record per SPD entry, prepends the key_src sockaddr
2557 * to each packet-record, links the sockaddr mbufs into a new
2558 * list of records, then appends the entire resulting
2559 * list to the requesting socket.
2560 */
2561 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2562 n, SB_PRIO_ONESHOT_OVERFLOW);
2563
2564 if (!ok) {
2565 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2566 m_freem(n);
2567 return key_senderror(so, m0, ENOBUFS);
2568 }
2569
2570 m_freem(m0);
2571 return error;
2572 }
2573
2574 /*
2575 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2576 */
2577 static int
2578 key_nat_map(struct socket *so, struct mbuf *m,
2579 const struct sadb_msghdr *mhp)
2580 {
2581 struct sadb_x_nat_t_type *type;
2582 struct sadb_x_nat_t_port *sport;
2583 struct sadb_x_nat_t_port *dport;
2584 struct sadb_address *iaddr, *raddr;
2585 struct sadb_x_nat_t_frag *frag;
2586
2587 KASSERT(so != NULL);
2588 KASSERT(m != NULL);
2589 KASSERT(mhp != NULL);
2590 KASSERT(mhp->msg != NULL);
2591
2592 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2593 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2594 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2595 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2596 return key_senderror(so, m, EINVAL);
2597 }
2598 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2599 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2600 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2601 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2602 return key_senderror(so, m, EINVAL);
2603 }
2604
2605 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2606 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2607 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2608 return key_senderror(so, m, EINVAL);
2609 }
2610
2611 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2612 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2613 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2614 return key_senderror(so, m, EINVAL);
2615 }
2616
2617 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2618 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2619 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2620 return key_senderror(so, m, EINVAL);
2621 }
2622
2623 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2624 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2625 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2626 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2627 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2628 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2629
2630 /*
2631 * XXX handle that, it should also contain a SA, or anything
2632 * that enable to update the SA information.
2633 */
2634
2635 return 0;
2636 }
2637
2638 static struct mbuf *
2639 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2640 {
2641 struct mbuf *result = NULL, *m;
2642
2643 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2644 if (!m)
2645 goto fail;
2646 result = m;
2647
2648 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2649 &sp->spidx.src.sa, sp->spidx.prefs,
2650 sp->spidx.ul_proto);
2651 if (!m)
2652 goto fail;
2653 m_cat(result, m);
2654
2655 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2656 &sp->spidx.dst.sa, sp->spidx.prefd,
2657 sp->spidx.ul_proto);
2658 if (!m)
2659 goto fail;
2660 m_cat(result, m);
2661
2662 m = key_sp2msg(sp);
2663 if (!m)
2664 goto fail;
2665 m_cat(result, m);
2666
2667 if ((result->m_flags & M_PKTHDR) == 0)
2668 goto fail;
2669
2670 if (result->m_len < sizeof(struct sadb_msg)) {
2671 result = m_pullup(result, sizeof(struct sadb_msg));
2672 if (result == NULL)
2673 goto fail;
2674 }
2675
2676 result->m_pkthdr.len = 0;
2677 for (m = result; m; m = m->m_next)
2678 result->m_pkthdr.len += m->m_len;
2679
2680 mtod(result, struct sadb_msg *)->sadb_msg_len =
2681 PFKEY_UNIT64(result->m_pkthdr.len);
2682
2683 return result;
2684
2685 fail:
2686 m_freem(result);
2687 return NULL;
2688 }
2689
2690 /*
2691 * get PFKEY message length for security policy and request.
2692 */
2693 static u_int
2694 key_getspreqmsglen(const struct secpolicy *sp)
2695 {
2696 u_int tlen;
2697
2698 tlen = sizeof(struct sadb_x_policy);
2699
2700 /* if is the policy for ipsec ? */
2701 if (sp->policy != IPSEC_POLICY_IPSEC)
2702 return tlen;
2703
2704 /* get length of ipsec requests */
2705 {
2706 const struct ipsecrequest *isr;
2707 int len;
2708
2709 for (isr = sp->req; isr != NULL; isr = isr->next) {
2710 len = sizeof(struct sadb_x_ipsecrequest)
2711 + isr->saidx.src.sa.sa_len
2712 + isr->saidx.dst.sa.sa_len;
2713
2714 tlen += PFKEY_ALIGN8(len);
2715 }
2716 }
2717
2718 return tlen;
2719 }
2720
2721 /*
2722 * SADB_SPDEXPIRE processing
2723 * send
2724 * <base, address(SD), lifetime(CH), policy>
2725 * to KMD by PF_KEY.
2726 *
2727 * OUT: 0 : succeed
2728 * others : error number
2729 */
2730 static int
2731 key_spdexpire(struct secpolicy *sp)
2732 {
2733 int s;
2734 struct mbuf *result = NULL, *m;
2735 int len;
2736 int error = -1;
2737 struct sadb_lifetime *lt;
2738
2739 /* XXX: Why do we lock ? */
2740 s = splsoftnet(); /*called from softclock()*/
2741
2742 KASSERT(sp != NULL);
2743
2744 /* set msg header */
2745 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2746 if (!m) {
2747 error = ENOBUFS;
2748 goto fail;
2749 }
2750 result = m;
2751
2752 /* create lifetime extension (current and hard) */
2753 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2754 m = key_alloc_mbuf(len);
2755 if (!m || m->m_next) { /*XXX*/
2756 if (m)
2757 m_freem(m);
2758 error = ENOBUFS;
2759 goto fail;
2760 }
2761 memset(mtod(m, void *), 0, len);
2762 lt = mtod(m, struct sadb_lifetime *);
2763 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2764 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2765 lt->sadb_lifetime_allocations = 0;
2766 lt->sadb_lifetime_bytes = 0;
2767 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2768 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2769 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2770 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2771 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2772 lt->sadb_lifetime_allocations = 0;
2773 lt->sadb_lifetime_bytes = 0;
2774 lt->sadb_lifetime_addtime = sp->lifetime;
2775 lt->sadb_lifetime_usetime = sp->validtime;
2776 m_cat(result, m);
2777
2778 /* set sadb_address for source */
2779 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2780 &sp->spidx.src.sa,
2781 sp->spidx.prefs, sp->spidx.ul_proto);
2782 if (!m) {
2783 error = ENOBUFS;
2784 goto fail;
2785 }
2786 m_cat(result, m);
2787
2788 /* set sadb_address for destination */
2789 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2790 &sp->spidx.dst.sa,
2791 sp->spidx.prefd, sp->spidx.ul_proto);
2792 if (!m) {
2793 error = ENOBUFS;
2794 goto fail;
2795 }
2796 m_cat(result, m);
2797
2798 /* set secpolicy */
2799 m = key_sp2msg(sp);
2800 if (!m) {
2801 error = ENOBUFS;
2802 goto fail;
2803 }
2804 m_cat(result, m);
2805
2806 if ((result->m_flags & M_PKTHDR) == 0) {
2807 error = EINVAL;
2808 goto fail;
2809 }
2810
2811 if (result->m_len < sizeof(struct sadb_msg)) {
2812 result = m_pullup(result, sizeof(struct sadb_msg));
2813 if (result == NULL) {
2814 error = ENOBUFS;
2815 goto fail;
2816 }
2817 }
2818
2819 result->m_pkthdr.len = 0;
2820 for (m = result; m; m = m->m_next)
2821 result->m_pkthdr.len += m->m_len;
2822
2823 mtod(result, struct sadb_msg *)->sadb_msg_len =
2824 PFKEY_UNIT64(result->m_pkthdr.len);
2825
2826 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2827
2828 fail:
2829 if (result)
2830 m_freem(result);
2831 splx(s);
2832 return error;
2833 }
2834
2835 /* %%% SAD management */
2836 /*
2837 * allocating a memory for new SA head, and copy from the values of mhp.
2838 * OUT: NULL : failure due to the lack of memory.
2839 * others : pointer to new SA head.
2840 */
2841 static struct secashead *
2842 key_newsah(const struct secasindex *saidx)
2843 {
2844 struct secashead *newsah;
2845
2846 KASSERT(saidx != NULL);
2847
2848 newsah = (struct secashead *)
2849 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2850 if (newsah != NULL) {
2851 int i;
2852 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2853 LIST_INIT(&newsah->savtree[i]);
2854 newsah->saidx = *saidx;
2855
2856 /* add to saidxtree */
2857 newsah->state = SADB_SASTATE_MATURE;
2858 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2859 }
2860 return(newsah);
2861 }
2862
2863 /*
2864 * delete SA index and all SA registerd.
2865 */
2866 static void
2867 key_delsah(struct secashead *sah)
2868 {
2869 struct secasvar *sav, *nextsav;
2870 u_int stateidx, state;
2871 int s;
2872 int zombie = 0;
2873
2874 KASSERT(sah != NULL);
2875
2876 s = splsoftnet(); /*called from softclock()*/
2877
2878 /* searching all SA registerd in the secindex. */
2879 for (stateidx = 0;
2880 stateidx < _ARRAYLEN(saorder_state_any);
2881 stateidx++) {
2882
2883 state = saorder_state_any[stateidx];
2884 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2885 sav != NULL;
2886 sav = nextsav) {
2887
2888 nextsav = LIST_NEXT(sav, chain);
2889
2890 if (sav->refcnt == 0) {
2891 /* sanity check */
2892 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2893 KEY_FREESAV(&sav);
2894 } else {
2895 /* give up to delete this sa */
2896 zombie++;
2897 }
2898 }
2899 }
2900
2901 /* don't delete sah only if there are savs. */
2902 if (zombie) {
2903 splx(s);
2904 return;
2905 }
2906
2907 rtcache_free(&sah->sa_route);
2908
2909 /* remove from tree of SA index */
2910 if (__LIST_CHAINED(sah))
2911 LIST_REMOVE(sah, chain);
2912
2913 KFREE(sah);
2914
2915 splx(s);
2916 return;
2917 }
2918
2919 /*
2920 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2921 * and copy the values of mhp into new buffer.
2922 * When SAD message type is GETSPI:
2923 * to set sequence number from acq_seq++,
2924 * to set zero to SPI.
2925 * not to call key_setsava().
2926 * OUT: NULL : fail
2927 * others : pointer to new secasvar.
2928 *
2929 * does not modify mbuf. does not free mbuf on error.
2930 */
2931 static struct secasvar *
2932 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2933 struct secashead *sah, int *errp,
2934 const char* where, int tag)
2935 {
2936 struct secasvar *newsav;
2937 const struct sadb_sa *xsa;
2938
2939 KASSERT(m != NULL);
2940 KASSERT(mhp != NULL);
2941 KASSERT(mhp->msg != NULL);
2942 KASSERT(sah != NULL);
2943
2944 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2945 if (newsav == NULL) {
2946 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2947 *errp = ENOBUFS;
2948 goto done;
2949 }
2950 memset(newsav, 0, sizeof(struct secasvar));
2951
2952 switch (mhp->msg->sadb_msg_type) {
2953 case SADB_GETSPI:
2954 newsav->spi = 0;
2955
2956 #ifdef IPSEC_DOSEQCHECK
2957 /* sync sequence number */
2958 if (mhp->msg->sadb_msg_seq == 0)
2959 newsav->seq =
2960 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2961 else
2962 #endif
2963 newsav->seq = mhp->msg->sadb_msg_seq;
2964 break;
2965
2966 case SADB_ADD:
2967 /* sanity check */
2968 if (mhp->ext[SADB_EXT_SA] == NULL) {
2969 KFREE(newsav), newsav = NULL;
2970 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2971 *errp = EINVAL;
2972 goto done;
2973 }
2974 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2975 newsav->spi = xsa->sadb_sa_spi;
2976 newsav->seq = mhp->msg->sadb_msg_seq;
2977 break;
2978 default:
2979 KFREE(newsav), newsav = NULL;
2980 *errp = EINVAL;
2981 goto done;
2982 }
2983
2984 /* copy sav values */
2985 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2986 *errp = key_setsaval(newsav, m, mhp);
2987 if (*errp) {
2988 KFREE(newsav), newsav = NULL;
2989 goto done;
2990 }
2991 }
2992
2993 /* reset created */
2994 newsav->created = time_uptime;
2995 newsav->pid = mhp->msg->sadb_msg_pid;
2996
2997 /* add to satree */
2998 newsav->sah = sah;
2999 newsav->refcnt = 1;
3000 newsav->state = SADB_SASTATE_LARVAL;
3001 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3002 secasvar, chain);
3003 done:
3004 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3005 "DP from %s:%u return SP:%p\n", where, tag, newsav);
3006
3007 return newsav;
3008 }
3009
3010 /*
3011 * free() SA variable entry.
3012 */
3013 static void
3014 key_delsav(struct secasvar *sav)
3015 {
3016
3017 KASSERT(sav != NULL);
3018 KASSERTMSG(sav->refcnt == 0,
3019 "reference count %u > 0", sav->refcnt);
3020
3021 /* remove from SA header */
3022 if (__LIST_CHAINED(sav))
3023 LIST_REMOVE(sav, chain);
3024
3025 /*
3026 * Cleanup xform state. Note that zeroize'ing causes the
3027 * keys to be cleared; otherwise we must do it ourself.
3028 */
3029 if (sav->tdb_xform != NULL) {
3030 sav->tdb_xform->xf_zeroize(sav);
3031 sav->tdb_xform = NULL;
3032 } else {
3033 if (sav->key_auth != NULL)
3034 explicit_memset(_KEYBUF(sav->key_auth), 0,
3035 _KEYLEN(sav->key_auth));
3036 if (sav->key_enc != NULL)
3037 explicit_memset(_KEYBUF(sav->key_enc), 0,
3038 _KEYLEN(sav->key_enc));
3039 }
3040 if (sav->key_auth != NULL) {
3041 KFREE(sav->key_auth);
3042 sav->key_auth = NULL;
3043 }
3044 if (sav->key_enc != NULL) {
3045 KFREE(sav->key_enc);
3046 sav->key_enc = NULL;
3047 }
3048 if (sav->replay != NULL) {
3049 KFREE(sav->replay);
3050 sav->replay = NULL;
3051 }
3052 if (sav->lft_c != NULL) {
3053 KFREE(sav->lft_c);
3054 sav->lft_c = NULL;
3055 }
3056 if (sav->lft_h != NULL) {
3057 KFREE(sav->lft_h);
3058 sav->lft_h = NULL;
3059 }
3060 if (sav->lft_s != NULL) {
3061 KFREE(sav->lft_s);
3062 sav->lft_s = NULL;
3063 }
3064
3065 KFREE(sav);
3066
3067 return;
3068 }
3069
3070 /*
3071 * search SAD.
3072 * OUT:
3073 * NULL : not found
3074 * others : found, pointer to a SA.
3075 */
3076 static struct secashead *
3077 key_getsah(const struct secasindex *saidx)
3078 {
3079 struct secashead *sah;
3080
3081 LIST_FOREACH(sah, &sahtree, chain) {
3082 if (sah->state == SADB_SASTATE_DEAD)
3083 continue;
3084 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3085 return sah;
3086 }
3087
3088 return NULL;
3089 }
3090
3091 /*
3092 * check not to be duplicated SPI.
3093 * NOTE: this function is too slow due to searching all SAD.
3094 * OUT:
3095 * NULL : not found
3096 * others : found, pointer to a SA.
3097 */
3098 static struct secasvar *
3099 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3100 {
3101 struct secashead *sah;
3102 struct secasvar *sav;
3103
3104 /* check address family */
3105 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3106 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3107 return NULL;
3108 }
3109
3110 /* check all SAD */
3111 LIST_FOREACH(sah, &sahtree, chain) {
3112 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3113 continue;
3114 sav = key_getsavbyspi(sah, spi);
3115 if (sav != NULL)
3116 return sav;
3117 }
3118
3119 return NULL;
3120 }
3121
3122 /*
3123 * search SAD litmited alive SA, protocol, SPI.
3124 * OUT:
3125 * NULL : not found
3126 * others : found, pointer to a SA.
3127 */
3128 static struct secasvar *
3129 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3130 {
3131 struct secasvar *sav;
3132 u_int stateidx, state;
3133
3134 /* search all status */
3135 for (stateidx = 0;
3136 stateidx < _ARRAYLEN(saorder_state_alive);
3137 stateidx++) {
3138
3139 state = saorder_state_alive[stateidx];
3140 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3141
3142 /* sanity check */
3143 if (sav->state != state) {
3144 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3145 "invalid sav->state (queue: %d SA: %d)\n",
3146 state, sav->state));
3147 continue;
3148 }
3149
3150 if (sav->spi == spi)
3151 return sav;
3152 }
3153 }
3154
3155 return NULL;
3156 }
3157
3158 /*
3159 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3160 * You must update these if need.
3161 * OUT: 0: success.
3162 * !0: failure.
3163 *
3164 * does not modify mbuf. does not free mbuf on error.
3165 */
3166 static int
3167 key_setsaval(struct secasvar *sav, struct mbuf *m,
3168 const struct sadb_msghdr *mhp)
3169 {
3170 int error = 0;
3171
3172 KASSERT(m != NULL);
3173 KASSERT(mhp != NULL);
3174 KASSERT(mhp->msg != NULL);
3175
3176 /* initialization */
3177 sav->replay = NULL;
3178 sav->key_auth = NULL;
3179 sav->key_enc = NULL;
3180 sav->lft_c = NULL;
3181 sav->lft_h = NULL;
3182 sav->lft_s = NULL;
3183 sav->tdb_xform = NULL; /* transform */
3184 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3185 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3186 sav->tdb_compalgxform = NULL; /* compression algorithm */
3187 sav->natt_type = 0;
3188 sav->esp_frag = 0;
3189
3190 /* SA */
3191 if (mhp->ext[SADB_EXT_SA] != NULL) {
3192 const struct sadb_sa *sa0;
3193
3194 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3195 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3196 error = EINVAL;
3197 goto fail;
3198 }
3199
3200 sav->alg_auth = sa0->sadb_sa_auth;
3201 sav->alg_enc = sa0->sadb_sa_encrypt;
3202 sav->flags = sa0->sadb_sa_flags;
3203
3204 /* replay window */
3205 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3206 sav->replay = (struct secreplay *)
3207 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3208 if (sav->replay == NULL) {
3209 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3210 error = ENOBUFS;
3211 goto fail;
3212 }
3213 if (sa0->sadb_sa_replay != 0)
3214 sav->replay->bitmap = (char*)(sav->replay+1);
3215 sav->replay->wsize = sa0->sadb_sa_replay;
3216 }
3217 }
3218
3219 /* Authentication keys */
3220 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3221 const struct sadb_key *key0;
3222 int len;
3223
3224 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3225 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3226
3227 error = 0;
3228 if (len < sizeof(*key0)) {
3229 error = EINVAL;
3230 goto fail;
3231 }
3232 switch (mhp->msg->sadb_msg_satype) {
3233 case SADB_SATYPE_AH:
3234 case SADB_SATYPE_ESP:
3235 case SADB_X_SATYPE_TCPSIGNATURE:
3236 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3237 sav->alg_auth != SADB_X_AALG_NULL)
3238 error = EINVAL;
3239 break;
3240 case SADB_X_SATYPE_IPCOMP:
3241 default:
3242 error = EINVAL;
3243 break;
3244 }
3245 if (error) {
3246 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3247 goto fail;
3248 }
3249
3250 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3251 if (sav->key_auth == NULL) {
3252 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3253 error = ENOBUFS;
3254 goto fail;
3255 }
3256 }
3257
3258 /* Encryption key */
3259 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3260 const struct sadb_key *key0;
3261 int len;
3262
3263 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3264 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3265
3266 error = 0;
3267 if (len < sizeof(*key0)) {
3268 error = EINVAL;
3269 goto fail;
3270 }
3271 switch (mhp->msg->sadb_msg_satype) {
3272 case SADB_SATYPE_ESP:
3273 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3274 sav->alg_enc != SADB_EALG_NULL) {
3275 error = EINVAL;
3276 break;
3277 }
3278 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3279 if (sav->key_enc == NULL) {
3280 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3281 error = ENOBUFS;
3282 goto fail;
3283 }
3284 break;
3285 case SADB_X_SATYPE_IPCOMP:
3286 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3287 error = EINVAL;
3288 sav->key_enc = NULL; /*just in case*/
3289 break;
3290 case SADB_SATYPE_AH:
3291 case SADB_X_SATYPE_TCPSIGNATURE:
3292 default:
3293 error = EINVAL;
3294 break;
3295 }
3296 if (error) {
3297 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3298 goto fail;
3299 }
3300 }
3301
3302 /* set iv */
3303 sav->ivlen = 0;
3304
3305 switch (mhp->msg->sadb_msg_satype) {
3306 case SADB_SATYPE_AH:
3307 error = xform_init(sav, XF_AH);
3308 break;
3309 case SADB_SATYPE_ESP:
3310 error = xform_init(sav, XF_ESP);
3311 break;
3312 case SADB_X_SATYPE_IPCOMP:
3313 error = xform_init(sav, XF_IPCOMP);
3314 break;
3315 case SADB_X_SATYPE_TCPSIGNATURE:
3316 error = xform_init(sav, XF_TCPSIGNATURE);
3317 break;
3318 }
3319 if (error) {
3320 ipseclog((LOG_DEBUG,
3321 "key_setsaval: unable to initialize SA type %u.\n",
3322 mhp->msg->sadb_msg_satype));
3323 goto fail;
3324 }
3325
3326 /* reset created */
3327 sav->created = time_uptime;
3328
3329 /* make lifetime for CURRENT */
3330 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3331 sizeof(struct sadb_lifetime));
3332 if (sav->lft_c == NULL) {
3333 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3334 error = ENOBUFS;
3335 goto fail;
3336 }
3337
3338 sav->lft_c->sadb_lifetime_len =
3339 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3340 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3341 sav->lft_c->sadb_lifetime_allocations = 0;
3342 sav->lft_c->sadb_lifetime_bytes = 0;
3343 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3344 sav->lft_c->sadb_lifetime_usetime = 0;
3345
3346 /* lifetimes for HARD and SOFT */
3347 {
3348 const struct sadb_lifetime *lft0;
3349
3350 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3351 if (lft0 != NULL) {
3352 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3353 error = EINVAL;
3354 goto fail;
3355 }
3356 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3357 sizeof(*lft0));
3358 if (sav->lft_h == NULL) {
3359 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3360 error = ENOBUFS;
3361 goto fail;
3362 }
3363 /* to be initialize ? */
3364 }
3365
3366 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3367 if (lft0 != NULL) {
3368 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3369 error = EINVAL;
3370 goto fail;
3371 }
3372 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3373 sizeof(*lft0));
3374 if (sav->lft_s == NULL) {
3375 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3376 error = ENOBUFS;
3377 goto fail;
3378 }
3379 /* to be initialize ? */
3380 }
3381 }
3382
3383 return 0;
3384
3385 fail:
3386 /* initialization */
3387 if (sav->replay != NULL) {
3388 KFREE(sav->replay);
3389 sav->replay = NULL;
3390 }
3391 if (sav->key_auth != NULL) {
3392 KFREE(sav->key_auth);
3393 sav->key_auth = NULL;
3394 }
3395 if (sav->key_enc != NULL) {
3396 KFREE(sav->key_enc);
3397 sav->key_enc = NULL;
3398 }
3399 if (sav->lft_c != NULL) {
3400 KFREE(sav->lft_c);
3401 sav->lft_c = NULL;
3402 }
3403 if (sav->lft_h != NULL) {
3404 KFREE(sav->lft_h);
3405 sav->lft_h = NULL;
3406 }
3407 if (sav->lft_s != NULL) {
3408 KFREE(sav->lft_s);
3409 sav->lft_s = NULL;
3410 }
3411
3412 return error;
3413 }
3414
3415 /*
3416 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3417 * OUT: 0: valid
3418 * other: errno
3419 */
3420 static int
3421 key_mature(struct secasvar *sav)
3422 {
3423 int error;
3424
3425 /* check SPI value */
3426 switch (sav->sah->saidx.proto) {
3427 case IPPROTO_ESP:
3428 case IPPROTO_AH:
3429 if (ntohl(sav->spi) <= 255) {
3430 ipseclog((LOG_DEBUG,
3431 "key_mature: illegal range of SPI %u.\n",
3432 (u_int32_t)ntohl(sav->spi)));
3433 return EINVAL;
3434 }
3435 break;
3436 }
3437
3438 /* check satype */
3439 switch (sav->sah->saidx.proto) {
3440 case IPPROTO_ESP:
3441 /* check flags */
3442 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3443 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3444 ipseclog((LOG_DEBUG, "key_mature: "
3445 "invalid flag (derived) given to old-esp.\n"));
3446 return EINVAL;
3447 }
3448 error = xform_init(sav, XF_ESP);
3449 break;
3450 case IPPROTO_AH:
3451 /* check flags */
3452 if (sav->flags & SADB_X_EXT_DERIV) {
3453 ipseclog((LOG_DEBUG, "key_mature: "
3454 "invalid flag (derived) given to AH SA.\n"));
3455 return EINVAL;
3456 }
3457 if (sav->alg_enc != SADB_EALG_NONE) {
3458 ipseclog((LOG_DEBUG, "key_mature: "
3459 "protocol and algorithm mismated.\n"));
3460 return(EINVAL);
3461 }
3462 error = xform_init(sav, XF_AH);
3463 break;
3464 case IPPROTO_IPCOMP:
3465 if (sav->alg_auth != SADB_AALG_NONE) {
3466 ipseclog((LOG_DEBUG, "key_mature: "
3467 "protocol and algorithm mismated.\n"));
3468 return(EINVAL);
3469 }
3470 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3471 && ntohl(sav->spi) >= 0x10000) {
3472 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3473 return(EINVAL);
3474 }
3475 error = xform_init(sav, XF_IPCOMP);
3476 break;
3477 case IPPROTO_TCP:
3478 if (sav->alg_enc != SADB_EALG_NONE) {
3479 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3480 "mismated.\n", __func__));
3481 return(EINVAL);
3482 }
3483 error = xform_init(sav, XF_TCPSIGNATURE);
3484 break;
3485 default:
3486 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3487 error = EPROTONOSUPPORT;
3488 break;
3489 }
3490 if (error == 0)
3491 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3492 return (error);
3493 }
3494
3495 /*
3496 * subroutine for SADB_GET and SADB_DUMP.
3497 */
3498 static struct mbuf *
3499 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3500 u_int32_t seq, u_int32_t pid)
3501 {
3502 struct mbuf *result = NULL, *tres = NULL, *m;
3503 int l = 0;
3504 int i;
3505 void *p;
3506 struct sadb_lifetime lt;
3507 int dumporder[] = {
3508 SADB_EXT_SA, SADB_X_EXT_SA2,
3509 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3510 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3511 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3512 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3513 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3514 SADB_X_EXT_NAT_T_TYPE,
3515 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3516 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3517 SADB_X_EXT_NAT_T_FRAG,
3518
3519 };
3520
3521 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3522 if (m == NULL)
3523 goto fail;
3524 result = m;
3525
3526 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3527 m = NULL;
3528 p = NULL;
3529 switch (dumporder[i]) {
3530 case SADB_EXT_SA:
3531 m = key_setsadbsa(sav);
3532 break;
3533
3534 case SADB_X_EXT_SA2:
3535 m = key_setsadbxsa2(sav->sah->saidx.mode,
3536 sav->replay ? sav->replay->count : 0,
3537 sav->sah->saidx.reqid);
3538 break;
3539
3540 case SADB_EXT_ADDRESS_SRC:
3541 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3542 &sav->sah->saidx.src.sa,
3543 FULLMASK, IPSEC_ULPROTO_ANY);
3544 break;
3545
3546 case SADB_EXT_ADDRESS_DST:
3547 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3548 &sav->sah->saidx.dst.sa,
3549 FULLMASK, IPSEC_ULPROTO_ANY);
3550 break;
3551
3552 case SADB_EXT_KEY_AUTH:
3553 if (!sav->key_auth)
3554 continue;
3555 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3556 p = sav->key_auth;
3557 break;
3558
3559 case SADB_EXT_KEY_ENCRYPT:
3560 if (!sav->key_enc)
3561 continue;
3562 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3563 p = sav->key_enc;
3564 break;
3565
3566 case SADB_EXT_LIFETIME_CURRENT:
3567 if (!sav->lft_c)
3568 continue;
3569 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3570 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3571 lt.sadb_lifetime_addtime += time_second - time_uptime;
3572 lt.sadb_lifetime_usetime += time_second - time_uptime;
3573 p = <
3574 break;
3575
3576 case SADB_EXT_LIFETIME_HARD:
3577 if (!sav->lft_h)
3578 continue;
3579 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3580 p = sav->lft_h;
3581 break;
3582
3583 case SADB_EXT_LIFETIME_SOFT:
3584 if (!sav->lft_s)
3585 continue;
3586 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3587 p = sav->lft_s;
3588 break;
3589
3590 case SADB_X_EXT_NAT_T_TYPE:
3591 m = key_setsadbxtype(sav->natt_type);
3592 break;
3593
3594 case SADB_X_EXT_NAT_T_DPORT:
3595 if (sav->natt_type == 0)
3596 continue;
3597 m = key_setsadbxport(
3598 key_portfromsaddr(&sav->sah->saidx.dst),
3599 SADB_X_EXT_NAT_T_DPORT);
3600 break;
3601
3602 case SADB_X_EXT_NAT_T_SPORT:
3603 if (sav->natt_type == 0)
3604 continue;
3605 m = key_setsadbxport(
3606 key_portfromsaddr(&sav->sah->saidx.src),
3607 SADB_X_EXT_NAT_T_SPORT);
3608 break;
3609
3610 case SADB_X_EXT_NAT_T_FRAG:
3611 /* don't send frag info if not set */
3612 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3613 continue;
3614 m = key_setsadbxfrag(sav->esp_frag);
3615 break;
3616
3617 case SADB_X_EXT_NAT_T_OAI:
3618 case SADB_X_EXT_NAT_T_OAR:
3619 continue;
3620
3621 case SADB_EXT_ADDRESS_PROXY:
3622 case SADB_EXT_IDENTITY_SRC:
3623 case SADB_EXT_IDENTITY_DST:
3624 /* XXX: should we brought from SPD ? */
3625 case SADB_EXT_SENSITIVITY:
3626 default:
3627 continue;
3628 }
3629
3630 KASSERT(!(m && p));
3631 if (!m && !p)
3632 goto fail;
3633 if (p && tres) {
3634 M_PREPEND(tres, l, M_DONTWAIT);
3635 if (!tres)
3636 goto fail;
3637 memcpy(mtod(tres, void *), p, l);
3638 continue;
3639 }
3640 if (p) {
3641 m = key_alloc_mbuf(l);
3642 if (!m)
3643 goto fail;
3644 m_copyback(m, 0, l, p);
3645 }
3646
3647 if (tres)
3648 m_cat(m, tres);
3649 tres = m;
3650 }
3651
3652 m_cat(result, tres);
3653 tres = NULL; /* avoid free on error below */
3654
3655 if (result->m_len < sizeof(struct sadb_msg)) {
3656 result = m_pullup(result, sizeof(struct sadb_msg));
3657 if (result == NULL)
3658 goto fail;
3659 }
3660
3661 result->m_pkthdr.len = 0;
3662 for (m = result; m; m = m->m_next)
3663 result->m_pkthdr.len += m->m_len;
3664
3665 mtod(result, struct sadb_msg *)->sadb_msg_len =
3666 PFKEY_UNIT64(result->m_pkthdr.len);
3667
3668 return result;
3669
3670 fail:
3671 m_freem(result);
3672 m_freem(tres);
3673 return NULL;
3674 }
3675
3676
3677 /*
3678 * set a type in sadb_x_nat_t_type
3679 */
3680 static struct mbuf *
3681 key_setsadbxtype(u_int16_t type)
3682 {
3683 struct mbuf *m;
3684 size_t len;
3685 struct sadb_x_nat_t_type *p;
3686
3687 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3688
3689 m = key_alloc_mbuf(len);
3690 if (!m || m->m_next) { /*XXX*/
3691 if (m)
3692 m_freem(m);
3693 return NULL;
3694 }
3695
3696 p = mtod(m, struct sadb_x_nat_t_type *);
3697
3698 memset(p, 0, len);
3699 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3700 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3701 p->sadb_x_nat_t_type_type = type;
3702
3703 return m;
3704 }
3705 /*
3706 * set a port in sadb_x_nat_t_port. port is in network order
3707 */
3708 static struct mbuf *
3709 key_setsadbxport(u_int16_t port, u_int16_t type)
3710 {
3711 struct mbuf *m;
3712 size_t len;
3713 struct sadb_x_nat_t_port *p;
3714
3715 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3716
3717 m = key_alloc_mbuf(len);
3718 if (!m || m->m_next) { /*XXX*/
3719 if (m)
3720 m_freem(m);
3721 return NULL;
3722 }
3723
3724 p = mtod(m, struct sadb_x_nat_t_port *);
3725
3726 memset(p, 0, len);
3727 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3728 p->sadb_x_nat_t_port_exttype = type;
3729 p->sadb_x_nat_t_port_port = port;
3730
3731 return m;
3732 }
3733
3734 /*
3735 * set fragmentation info in sadb_x_nat_t_frag
3736 */
3737 static struct mbuf *
3738 key_setsadbxfrag(u_int16_t flen)
3739 {
3740 struct mbuf *m;
3741 size_t len;
3742 struct sadb_x_nat_t_frag *p;
3743
3744 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3745
3746 m = key_alloc_mbuf(len);
3747 if (!m || m->m_next) { /*XXX*/
3748 if (m)
3749 m_freem(m);
3750 return NULL;
3751 }
3752
3753 p = mtod(m, struct sadb_x_nat_t_frag *);
3754
3755 memset(p, 0, len);
3756 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3757 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3758 p->sadb_x_nat_t_frag_fraglen = flen;
3759
3760 return m;
3761 }
3762
3763 /*
3764 * Get port from sockaddr, port is in network order
3765 */
3766 u_int16_t
3767 key_portfromsaddr(const union sockaddr_union *saddr)
3768 {
3769 u_int16_t port;
3770
3771 switch (saddr->sa.sa_family) {
3772 case AF_INET: {
3773 port = saddr->sin.sin_port;
3774 break;
3775 }
3776 #ifdef INET6
3777 case AF_INET6: {
3778 port = saddr->sin6.sin6_port;
3779 break;
3780 }
3781 #endif
3782 default:
3783 printf("%s: unexpected address family\n", __func__);
3784 port = 0;
3785 break;
3786 }
3787
3788 return port;
3789 }
3790
3791
3792 /*
3793 * Set port is struct sockaddr. port is in network order
3794 */
3795 static void
3796 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3797 {
3798 switch (saddr->sa.sa_family) {
3799 case AF_INET: {
3800 saddr->sin.sin_port = port;
3801 break;
3802 }
3803 #ifdef INET6
3804 case AF_INET6: {
3805 saddr->sin6.sin6_port = port;
3806 break;
3807 }
3808 #endif
3809 default:
3810 printf("%s: unexpected address family %d\n", __func__,
3811 saddr->sa.sa_family);
3812 break;
3813 }
3814
3815 return;
3816 }
3817
3818 /*
3819 * Safety check sa_len
3820 */
3821 static int
3822 key_checksalen(const union sockaddr_union *saddr)
3823 {
3824 switch (saddr->sa.sa_family) {
3825 case AF_INET:
3826 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3827 return -1;
3828 break;
3829 #ifdef INET6
3830 case AF_INET6:
3831 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3832 return -1;
3833 break;
3834 #endif
3835 default:
3836 printf("%s: unexpected sa_family %d\n", __func__,
3837 saddr->sa.sa_family);
3838 return -1;
3839 break;
3840 }
3841 return 0;
3842 }
3843
3844
3845 /*
3846 * set data into sadb_msg.
3847 */
3848 static struct mbuf *
3849 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3850 u_int32_t seq, pid_t pid, u_int16_t reserved)
3851 {
3852 struct mbuf *m;
3853 struct sadb_msg *p;
3854 int len;
3855
3856 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3857 if (len > MCLBYTES)
3858 return NULL;
3859 MGETHDR(m, M_DONTWAIT, MT_DATA);
3860 if (m && len > MHLEN) {
3861 MCLGET(m, M_DONTWAIT);
3862 if ((m->m_flags & M_EXT) == 0) {
3863 m_freem(m);
3864 m = NULL;
3865 }
3866 }
3867 if (!m)
3868 return NULL;
3869 m->m_pkthdr.len = m->m_len = len;
3870 m->m_next = NULL;
3871
3872 p = mtod(m, struct sadb_msg *);
3873
3874 memset(p, 0, len);
3875 p->sadb_msg_version = PF_KEY_V2;
3876 p->sadb_msg_type = type;
3877 p->sadb_msg_errno = 0;
3878 p->sadb_msg_satype = satype;
3879 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3880 p->sadb_msg_reserved = reserved;
3881 p->sadb_msg_seq = seq;
3882 p->sadb_msg_pid = (u_int32_t)pid;
3883
3884 return m;
3885 }
3886
3887 /*
3888 * copy secasvar data into sadb_address.
3889 */
3890 static struct mbuf *
3891 key_setsadbsa(struct secasvar *sav)
3892 {
3893 struct mbuf *m;
3894 struct sadb_sa *p;
3895 int len;
3896
3897 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3898 m = key_alloc_mbuf(len);
3899 if (!m || m->m_next) { /*XXX*/
3900 if (m)
3901 m_freem(m);
3902 return NULL;
3903 }
3904
3905 p = mtod(m, struct sadb_sa *);
3906
3907 memset(p, 0, len);
3908 p->sadb_sa_len = PFKEY_UNIT64(len);
3909 p->sadb_sa_exttype = SADB_EXT_SA;
3910 p->sadb_sa_spi = sav->spi;
3911 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3912 p->sadb_sa_state = sav->state;
3913 p->sadb_sa_auth = sav->alg_auth;
3914 p->sadb_sa_encrypt = sav->alg_enc;
3915 p->sadb_sa_flags = sav->flags;
3916
3917 return m;
3918 }
3919
3920 /*
3921 * set data into sadb_address.
3922 */
3923 static struct mbuf *
3924 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3925 u_int8_t prefixlen, u_int16_t ul_proto)
3926 {
3927 struct mbuf *m;
3928 struct sadb_address *p;
3929 size_t len;
3930
3931 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3932 PFKEY_ALIGN8(saddr->sa_len);
3933 m = key_alloc_mbuf(len);
3934 if (!m || m->m_next) { /*XXX*/
3935 if (m)
3936 m_freem(m);
3937 return NULL;
3938 }
3939
3940 p = mtod(m, struct sadb_address *);
3941
3942 memset(p, 0, len);
3943 p->sadb_address_len = PFKEY_UNIT64(len);
3944 p->sadb_address_exttype = exttype;
3945 p->sadb_address_proto = ul_proto;
3946 if (prefixlen == FULLMASK) {
3947 switch (saddr->sa_family) {
3948 case AF_INET:
3949 prefixlen = sizeof(struct in_addr) << 3;
3950 break;
3951 case AF_INET6:
3952 prefixlen = sizeof(struct in6_addr) << 3;
3953 break;
3954 default:
3955 ; /*XXX*/
3956 }
3957 }
3958 p->sadb_address_prefixlen = prefixlen;
3959 p->sadb_address_reserved = 0;
3960
3961 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3962 saddr, saddr->sa_len);
3963
3964 return m;
3965 }
3966
3967 #if 0
3968 /*
3969 * set data into sadb_ident.
3970 */
3971 static struct mbuf *
3972 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3973 void *string, int stringlen, u_int64_t id)
3974 {
3975 struct mbuf *m;
3976 struct sadb_ident *p;
3977 size_t len;
3978
3979 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3980 m = key_alloc_mbuf(len);
3981 if (!m || m->m_next) { /*XXX*/
3982 if (m)
3983 m_freem(m);
3984 return NULL;
3985 }
3986
3987 p = mtod(m, struct sadb_ident *);
3988
3989 memset(p, 0, len);
3990 p->sadb_ident_len = PFKEY_UNIT64(len);
3991 p->sadb_ident_exttype = exttype;
3992 p->sadb_ident_type = idtype;
3993 p->sadb_ident_reserved = 0;
3994 p->sadb_ident_id = id;
3995
3996 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3997 string, stringlen);
3998
3999 return m;
4000 }
4001 #endif
4002
4003 /*
4004 * set data into sadb_x_sa2.
4005 */
4006 static struct mbuf *
4007 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4008 {
4009 struct mbuf *m;
4010 struct sadb_x_sa2 *p;
4011 size_t len;
4012
4013 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4014 m = key_alloc_mbuf(len);
4015 if (!m || m->m_next) { /*XXX*/
4016 if (m)
4017 m_freem(m);
4018 return NULL;
4019 }
4020
4021 p = mtod(m, struct sadb_x_sa2 *);
4022
4023 memset(p, 0, len);
4024 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4025 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4026 p->sadb_x_sa2_mode = mode;
4027 p->sadb_x_sa2_reserved1 = 0;
4028 p->sadb_x_sa2_reserved2 = 0;
4029 p->sadb_x_sa2_sequence = seq;
4030 p->sadb_x_sa2_reqid = reqid;
4031
4032 return m;
4033 }
4034
4035 /*
4036 * set data into sadb_x_policy
4037 */
4038 static struct mbuf *
4039 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4040 {
4041 struct mbuf *m;
4042 struct sadb_x_policy *p;
4043 size_t len;
4044
4045 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4046 m = key_alloc_mbuf(len);
4047 if (!m || m->m_next) { /*XXX*/
4048 if (m)
4049 m_freem(m);
4050 return NULL;
4051 }
4052
4053 p = mtod(m, struct sadb_x_policy *);
4054
4055 memset(p, 0, len);
4056 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4057 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4058 p->sadb_x_policy_type = type;
4059 p->sadb_x_policy_dir = dir;
4060 p->sadb_x_policy_id = id;
4061
4062 return m;
4063 }
4064
4065 /* %%% utilities */
4066 /*
4067 * copy a buffer into the new buffer allocated.
4068 */
4069 static void *
4070 key_newbuf(const void *src, u_int len)
4071 {
4072 void *new;
4073
4074 KMALLOC(new, void *, len);
4075 if (new == NULL) {
4076 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4077 return NULL;
4078 }
4079 memcpy(new, src, len);
4080
4081 return new;
4082 }
4083
4084 /* compare my own address
4085 * OUT: 1: true, i.e. my address.
4086 * 0: false
4087 */
4088 int
4089 key_ismyaddr(const struct sockaddr *sa)
4090 {
4091 #ifdef INET
4092 const struct sockaddr_in *sin;
4093 const struct in_ifaddr *ia;
4094 int s;
4095 #endif
4096
4097 KASSERT(sa != NULL);
4098
4099 switch (sa->sa_family) {
4100 #ifdef INET
4101 case AF_INET:
4102 sin = (const struct sockaddr_in *)sa;
4103 s = pserialize_read_enter();
4104 IN_ADDRLIST_READER_FOREACH(ia) {
4105 if (sin->sin_family == ia->ia_addr.sin_family &&
4106 sin->sin_len == ia->ia_addr.sin_len &&
4107 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4108 {
4109 pserialize_read_exit(s);
4110 return 1;
4111 }
4112 }
4113 pserialize_read_exit(s);
4114 break;
4115 #endif
4116 #ifdef INET6
4117 case AF_INET6:
4118 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4119 #endif
4120 }
4121
4122 return 0;
4123 }
4124
4125 #ifdef INET6
4126 /*
4127 * compare my own address for IPv6.
4128 * 1: ours
4129 * 0: other
4130 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4131 */
4132 #include <netinet6/in6_var.h>
4133
4134 static int
4135 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4136 {
4137 struct in6_ifaddr *ia;
4138 int s;
4139 struct psref psref;
4140 int bound;
4141 int ours = 1;
4142
4143 bound = curlwp_bind();
4144 s = pserialize_read_enter();
4145 IN6_ADDRLIST_READER_FOREACH(ia) {
4146 bool ingroup;
4147
4148 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4149 (const struct sockaddr *)&ia->ia_addr, 0) == 0) {
4150 pserialize_read_exit(s);
4151 goto ours;
4152 }
4153 ia6_acquire(ia, &psref);
4154 pserialize_read_exit(s);
4155
4156 /*
4157 * XXX Multicast
4158 * XXX why do we care about multlicast here while we don't care
4159 * about IPv4 multicast??
4160 * XXX scope
4161 */
4162 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4163 if (ingroup) {
4164 ia6_release(ia, &psref);
4165 goto ours;
4166 }
4167
4168 s = pserialize_read_enter();
4169 ia6_release(ia, &psref);
4170 }
4171 pserialize_read_exit(s);
4172
4173 /* loopback, just for safety */
4174 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4175 goto ours;
4176
4177 ours = 0;
4178 ours:
4179 curlwp_bindx(bound);
4180
4181 return ours;
4182 }
4183 #endif /*INET6*/
4184
4185 /*
4186 * compare two secasindex structure.
4187 * flag can specify to compare 2 saidxes.
4188 * compare two secasindex structure without both mode and reqid.
4189 * don't compare port.
4190 * IN:
4191 * saidx0: source, it can be in SAD.
4192 * saidx1: object.
4193 * OUT:
4194 * 1 : equal
4195 * 0 : not equal
4196 */
4197 static int
4198 key_cmpsaidx(
4199 const struct secasindex *saidx0,
4200 const struct secasindex *saidx1,
4201 int flag)
4202 {
4203 int chkport;
4204 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4205
4206 /* sanity */
4207 if (saidx0 == NULL && saidx1 == NULL)
4208 return 1;
4209
4210 if (saidx0 == NULL || saidx1 == NULL)
4211 return 0;
4212
4213 if (saidx0->proto != saidx1->proto)
4214 return 0;
4215
4216 if (flag == CMP_EXACTLY) {
4217 if (saidx0->mode != saidx1->mode)
4218 return 0;
4219 if (saidx0->reqid != saidx1->reqid)
4220 return 0;
4221 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4222 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4223 return 0;
4224 } else {
4225
4226 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4227 if (flag == CMP_MODE_REQID
4228 ||flag == CMP_REQID) {
4229 /*
4230 * If reqid of SPD is non-zero, unique SA is required.
4231 * The result must be of same reqid in this case.
4232 */
4233 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4234 return 0;
4235 }
4236
4237 if (flag == CMP_MODE_REQID) {
4238 if (saidx0->mode != IPSEC_MODE_ANY
4239 && saidx0->mode != saidx1->mode)
4240 return 0;
4241 }
4242
4243
4244 sa0src = &saidx0->src.sa;
4245 sa0dst = &saidx0->dst.sa;
4246 sa1src = &saidx1->src.sa;
4247 sa1dst = &saidx1->dst.sa;
4248 /*
4249 * If NAT-T is enabled, check ports for tunnel mode.
4250 * Don't do it for transport mode, as there is no
4251 * port information available in the SP.
4252 * Also don't check ports if they are set to zero
4253 * in the SPD: This means we have a non-generated
4254 * SPD which can't know UDP ports.
4255 */
4256 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4257 chkport = PORT_LOOSE;
4258 else
4259 chkport = PORT_NONE;
4260
4261 if (key_sockaddrcmp(sa0src, sa1src, chkport) != 0) {
4262 return 0;
4263 }
4264 if (key_sockaddrcmp(sa0dst, sa1dst, chkport) != 0) {
4265 return 0;
4266 }
4267 }
4268
4269 return 1;
4270 }
4271
4272 /*
4273 * compare two secindex structure exactly.
4274 * IN:
4275 * spidx0: source, it is often in SPD.
4276 * spidx1: object, it is often from PFKEY message.
4277 * OUT:
4278 * 1 : equal
4279 * 0 : not equal
4280 */
4281 int
4282 key_cmpspidx_exactly(
4283 const struct secpolicyindex *spidx0,
4284 const struct secpolicyindex *spidx1)
4285 {
4286 /* sanity */
4287 if (spidx0 == NULL && spidx1 == NULL)
4288 return 1;
4289
4290 if (spidx0 == NULL || spidx1 == NULL)
4291 return 0;
4292
4293 if (spidx0->prefs != spidx1->prefs
4294 || spidx0->prefd != spidx1->prefd
4295 || spidx0->ul_proto != spidx1->ul_proto)
4296 return 0;
4297
4298 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) == 0 &&
4299 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT) == 0;
4300 }
4301
4302 /*
4303 * compare two secindex structure with mask.
4304 * IN:
4305 * spidx0: source, it is often in SPD.
4306 * spidx1: object, it is often from IP header.
4307 * OUT:
4308 * 1 : equal
4309 * 0 : not equal
4310 */
4311 int
4312 key_cmpspidx_withmask(
4313 const struct secpolicyindex *spidx0,
4314 const struct secpolicyindex *spidx1)
4315 {
4316 /* sanity */
4317 if (spidx0 == NULL && spidx1 == NULL)
4318 return 1;
4319
4320 if (spidx0 == NULL || spidx1 == NULL)
4321 return 0;
4322
4323 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4324 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4325 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4326 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4327 return 0;
4328
4329 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4330 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4331 && spidx0->ul_proto != spidx1->ul_proto)
4332 return 0;
4333
4334 switch (spidx0->src.sa.sa_family) {
4335 case AF_INET:
4336 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4337 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4338 return 0;
4339 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4340 &spidx1->src.sin.sin_addr, spidx0->prefs))
4341 return 0;
4342 break;
4343 case AF_INET6:
4344 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4345 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4346 return 0;
4347 /*
4348 * scope_id check. if sin6_scope_id is 0, we regard it
4349 * as a wildcard scope, which matches any scope zone ID.
4350 */
4351 if (spidx0->src.sin6.sin6_scope_id &&
4352 spidx1->src.sin6.sin6_scope_id &&
4353 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4354 return 0;
4355 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4356 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4357 return 0;
4358 break;
4359 default:
4360 /* XXX */
4361 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4362 return 0;
4363 break;
4364 }
4365
4366 switch (spidx0->dst.sa.sa_family) {
4367 case AF_INET:
4368 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4369 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4370 return 0;
4371 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4372 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4373 return 0;
4374 break;
4375 case AF_INET6:
4376 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4377 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4378 return 0;
4379 /*
4380 * scope_id check. if sin6_scope_id is 0, we regard it
4381 * as a wildcard scope, which matches any scope zone ID.
4382 */
4383 if (spidx0->src.sin6.sin6_scope_id &&
4384 spidx1->src.sin6.sin6_scope_id &&
4385 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4386 return 0;
4387 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4388 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4389 return 0;
4390 break;
4391 default:
4392 /* XXX */
4393 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4394 return 0;
4395 break;
4396 }
4397
4398 /* XXX Do we check other field ? e.g. flowinfo */
4399
4400 return 1;
4401 }
4402
4403 /* returns 0 on match */
4404 static int
4405 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4406 {
4407 switch (howport) {
4408 case PORT_NONE:
4409 return 0;
4410 case PORT_LOOSE:
4411 if (port1 == 0 || port2 == 0)
4412 return 0;
4413 /*FALLTHROUGH*/
4414 case PORT_STRICT:
4415 if (port1 != port2) {
4416 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4417 "port fail %d != %d\n", port1, port2);
4418 return 1;
4419 }
4420 return 0;
4421 default:
4422 KASSERT(0);
4423 return 1;
4424 }
4425 }
4426
4427 /* returns 0 on match */
4428 static int
4429 key_sockaddrcmp(
4430 const struct sockaddr *sa1,
4431 const struct sockaddr *sa2,
4432 int howport)
4433 {
4434 const struct sockaddr_in *sin1, *sin2;
4435 const struct sockaddr_in6 *sin61, *sin62;
4436
4437 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4438 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4439 "fam/len fail %d != %d || %d != %d\n",
4440 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4441 sa2->sa_len);
4442 return 1;
4443 }
4444
4445 switch (sa1->sa_family) {
4446 case AF_INET:
4447 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4448 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4449 "len fail %d != %zu\n",
4450 sa1->sa_len, sizeof(struct sockaddr_in));
4451 return 1;
4452 }
4453 sin1 = (const struct sockaddr_in *)sa1;
4454 sin2 = (const struct sockaddr_in *)sa2;
4455 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4456 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4457 "addr fail %#x != %#x\n",
4458 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4459 return 1;
4460 }
4461 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4462 return 1;
4463 }
4464 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4465 "addr success %#x[%d] == %#x[%d]\n",
4466 sin1->sin_addr.s_addr, sin1->sin_port,
4467 sin2->sin_addr.s_addr, sin2->sin_port);
4468 break;
4469 case AF_INET6:
4470 sin61 = (const struct sockaddr_in6 *)sa1;
4471 sin62 = (const struct sockaddr_in6 *)sa2;
4472 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4473 return 1; /*EINVAL*/
4474
4475 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4476 return 1;
4477 }
4478 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4479 return 1;
4480 }
4481 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4482 return 1;
4483 }
4484 break;
4485 default:
4486 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4487 return 1;
4488 break;
4489 }
4490
4491 return 0;
4492 }
4493
4494 /*
4495 * compare two buffers with mask.
4496 * IN:
4497 * addr1: source
4498 * addr2: object
4499 * bits: Number of bits to compare
4500 * OUT:
4501 * 1 : equal
4502 * 0 : not equal
4503 */
4504 static int
4505 key_bbcmp(const void *a1, const void *a2, u_int bits)
4506 {
4507 const unsigned char *p1 = a1;
4508 const unsigned char *p2 = a2;
4509
4510 /* XXX: This could be considerably faster if we compare a word
4511 * at a time, but it is complicated on LSB Endian machines */
4512
4513 /* Handle null pointers */
4514 if (p1 == NULL || p2 == NULL)
4515 return (p1 == p2);
4516
4517 while (bits >= 8) {
4518 if (*p1++ != *p2++)
4519 return 0;
4520 bits -= 8;
4521 }
4522
4523 if (bits > 0) {
4524 u_int8_t mask = ~((1<<(8-bits))-1);
4525 if ((*p1 & mask) != (*p2 & mask))
4526 return 0;
4527 }
4528 return 1; /* Match! */
4529 }
4530
4531 /*
4532 * time handler.
4533 * scanning SPD and SAD to check status for each entries,
4534 * and do to remove or to expire.
4535 */
4536 void
4537 key_timehandler(void* arg)
4538 {
4539 u_int dir;
4540 int s;
4541 time_t now = time_uptime;
4542
4543 s = splsoftnet(); /*called from softclock()*/
4544 mutex_enter(softnet_lock);
4545
4546 /* SPD */
4547 {
4548 struct secpolicy *sp, *nextsp;
4549
4550 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4551 for (sp = LIST_FIRST(&sptree[dir]);
4552 sp != NULL;
4553 sp = nextsp) {
4554
4555 nextsp = LIST_NEXT(sp, chain);
4556
4557 if (sp->state == IPSEC_SPSTATE_DEAD) {
4558 key_sp_unlink(sp); /*XXX*/
4559
4560 /* 'sp' dead; continue transfers to
4561 * 'sp = nextsp'
4562 */
4563 continue;
4564 }
4565
4566 if (sp->lifetime == 0 && sp->validtime == 0)
4567 continue;
4568
4569 /* the deletion will occur next time */
4570 if ((sp->lifetime && now - sp->created > sp->lifetime)
4571 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4572 key_sp_dead(sp);
4573 key_spdexpire(sp);
4574 continue;
4575 }
4576 }
4577 }
4578 }
4579
4580 /* SAD */
4581 {
4582 struct secashead *sah, *nextsah;
4583 struct secasvar *sav, *nextsav;
4584
4585 for (sah = LIST_FIRST(&sahtree);
4586 sah != NULL;
4587 sah = nextsah) {
4588
4589 nextsah = LIST_NEXT(sah, chain);
4590
4591 /* if sah has been dead, then delete it and process next sah. */
4592 if (sah->state == SADB_SASTATE_DEAD) {
4593 key_delsah(sah);
4594 continue;
4595 }
4596
4597 /* if LARVAL entry doesn't become MATURE, delete it. */
4598 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4599 sav != NULL;
4600 sav = nextsav) {
4601
4602 nextsav = LIST_NEXT(sav, chain);
4603
4604 if (now - sav->created > key_larval_lifetime) {
4605 KEY_FREESAV(&sav);
4606 }
4607 }
4608
4609 /*
4610 * check MATURE entry to start to send expire message
4611 * whether or not.
4612 */
4613 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4614 sav != NULL;
4615 sav = nextsav) {
4616
4617 nextsav = LIST_NEXT(sav, chain);
4618
4619 /* we don't need to check. */
4620 if (sav->lft_s == NULL)
4621 continue;
4622
4623 /* sanity check */
4624 if (sav->lft_c == NULL) {
4625 ipseclog((LOG_DEBUG,"key_timehandler: "
4626 "There is no CURRENT time, why?\n"));
4627 continue;
4628 }
4629
4630 /* check SOFT lifetime */
4631 if (sav->lft_s->sadb_lifetime_addtime != 0
4632 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4633 /*
4634 * check SA to be used whether or not.
4635 * when SA hasn't been used, delete it.
4636 */
4637 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4638 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4639 KEY_FREESAV(&sav);
4640 } else {
4641 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4642 /*
4643 * XXX If we keep to send expire
4644 * message in the status of
4645 * DYING. Do remove below code.
4646 */
4647 key_expire(sav);
4648 }
4649 }
4650 /* check SOFT lifetime by bytes */
4651 /*
4652 * XXX I don't know the way to delete this SA
4653 * when new SA is installed. Caution when it's
4654 * installed too big lifetime by time.
4655 */
4656 else if (sav->lft_s->sadb_lifetime_bytes != 0
4657 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4658
4659 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4660 /*
4661 * XXX If we keep to send expire
4662 * message in the status of
4663 * DYING. Do remove below code.
4664 */
4665 key_expire(sav);
4666 }
4667 }
4668
4669 /* check DYING entry to change status to DEAD. */
4670 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4671 sav != NULL;
4672 sav = nextsav) {
4673
4674 nextsav = LIST_NEXT(sav, chain);
4675
4676 /* we don't need to check. */
4677 if (sav->lft_h == NULL)
4678 continue;
4679
4680 /* sanity check */
4681 if (sav->lft_c == NULL) {
4682 ipseclog((LOG_DEBUG, "key_timehandler: "
4683 "There is no CURRENT time, why?\n"));
4684 continue;
4685 }
4686
4687 if (sav->lft_h->sadb_lifetime_addtime != 0
4688 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4689 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4690 KEY_FREESAV(&sav);
4691 }
4692 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4693 else if (sav->lft_s != NULL
4694 && sav->lft_s->sadb_lifetime_addtime != 0
4695 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4696 /*
4697 * XXX: should be checked to be
4698 * installed the valid SA.
4699 */
4700
4701 /*
4702 * If there is no SA then sending
4703 * expire message.
4704 */
4705 key_expire(sav);
4706 }
4707 #endif
4708 /* check HARD lifetime by bytes */
4709 else if (sav->lft_h->sadb_lifetime_bytes != 0
4710 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4711 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4712 KEY_FREESAV(&sav);
4713 }
4714 }
4715
4716 /* delete entry in DEAD */
4717 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4718 sav != NULL;
4719 sav = nextsav) {
4720
4721 nextsav = LIST_NEXT(sav, chain);
4722
4723 /* sanity check */
4724 if (sav->state != SADB_SASTATE_DEAD) {
4725 ipseclog((LOG_DEBUG, "key_timehandler: "
4726 "invalid sav->state "
4727 "(queue: %d SA: %d): "
4728 "kill it anyway\n",
4729 SADB_SASTATE_DEAD, sav->state));
4730 }
4731
4732 /*
4733 * do not call key_freesav() here.
4734 * sav should already be freed, and sav->refcnt
4735 * shows other references to sav
4736 * (such as from SPD).
4737 */
4738 }
4739 }
4740 }
4741
4742 #ifndef IPSEC_NONBLOCK_ACQUIRE
4743 /* ACQ tree */
4744 {
4745 struct secacq *acq, *nextacq;
4746
4747 for (acq = LIST_FIRST(&acqtree);
4748 acq != NULL;
4749 acq = nextacq) {
4750
4751 nextacq = LIST_NEXT(acq, chain);
4752
4753 if (now - acq->created > key_blockacq_lifetime
4754 && __LIST_CHAINED(acq)) {
4755 LIST_REMOVE(acq, chain);
4756 KFREE(acq);
4757 }
4758 }
4759 }
4760 #endif
4761
4762 /* SP ACQ tree */
4763 {
4764 struct secspacq *acq, *nextacq;
4765
4766 for (acq = LIST_FIRST(&spacqtree);
4767 acq != NULL;
4768 acq = nextacq) {
4769
4770 nextacq = LIST_NEXT(acq, chain);
4771
4772 if (now - acq->created > key_blockacq_lifetime
4773 && __LIST_CHAINED(acq)) {
4774 LIST_REMOVE(acq, chain);
4775 KFREE(acq);
4776 }
4777 }
4778 }
4779
4780 #ifndef IPSEC_DEBUG2
4781 /* do exchange to tick time !! */
4782 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4783 #endif /* IPSEC_DEBUG2 */
4784
4785 mutex_exit(softnet_lock);
4786 splx(s);
4787 return;
4788 }
4789
4790 u_long
4791 key_random(void)
4792 {
4793 u_long value;
4794
4795 key_randomfill(&value, sizeof(value));
4796 return value;
4797 }
4798
4799 void
4800 key_randomfill(void *p, size_t l)
4801 {
4802
4803 cprng_fast(p, l);
4804 }
4805
4806 /*
4807 * map SADB_SATYPE_* to IPPROTO_*.
4808 * if satype == SADB_SATYPE then satype is mapped to ~0.
4809 * OUT:
4810 * 0: invalid satype.
4811 */
4812 static u_int16_t
4813 key_satype2proto(u_int8_t satype)
4814 {
4815 switch (satype) {
4816 case SADB_SATYPE_UNSPEC:
4817 return IPSEC_PROTO_ANY;
4818 case SADB_SATYPE_AH:
4819 return IPPROTO_AH;
4820 case SADB_SATYPE_ESP:
4821 return IPPROTO_ESP;
4822 case SADB_X_SATYPE_IPCOMP:
4823 return IPPROTO_IPCOMP;
4824 case SADB_X_SATYPE_TCPSIGNATURE:
4825 return IPPROTO_TCP;
4826 default:
4827 return 0;
4828 }
4829 /* NOTREACHED */
4830 }
4831
4832 /*
4833 * map IPPROTO_* to SADB_SATYPE_*
4834 * OUT:
4835 * 0: invalid protocol type.
4836 */
4837 static u_int8_t
4838 key_proto2satype(u_int16_t proto)
4839 {
4840 switch (proto) {
4841 case IPPROTO_AH:
4842 return SADB_SATYPE_AH;
4843 case IPPROTO_ESP:
4844 return SADB_SATYPE_ESP;
4845 case IPPROTO_IPCOMP:
4846 return SADB_X_SATYPE_IPCOMP;
4847 case IPPROTO_TCP:
4848 return SADB_X_SATYPE_TCPSIGNATURE;
4849 default:
4850 return 0;
4851 }
4852 /* NOTREACHED */
4853 }
4854
4855 static int
4856 key_setsecasidx(int proto, int mode, int reqid,
4857 const struct sadb_address * src,
4858 const struct sadb_address * dst,
4859 struct secasindex * saidx)
4860 {
4861 const union sockaddr_union * src_u =
4862 (const union sockaddr_union *) src;
4863 const union sockaddr_union * dst_u =
4864 (const union sockaddr_union *) dst;
4865
4866 /* sa len safety check */
4867 if (key_checksalen(src_u) != 0)
4868 return -1;
4869 if (key_checksalen(dst_u) != 0)
4870 return -1;
4871
4872 memset(saidx, 0, sizeof(*saidx));
4873 saidx->proto = proto;
4874 saidx->mode = mode;
4875 saidx->reqid = reqid;
4876 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4877 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4878
4879 key_porttosaddr(&((saidx)->src),0);
4880 key_porttosaddr(&((saidx)->dst),0);
4881 return 0;
4882 }
4883
4884 /* %%% PF_KEY */
4885 /*
4886 * SADB_GETSPI processing is to receive
4887 * <base, (SA2), src address, dst address, (SPI range)>
4888 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4889 * tree with the status of LARVAL, and send
4890 * <base, SA(*), address(SD)>
4891 * to the IKMPd.
4892 *
4893 * IN: mhp: pointer to the pointer to each header.
4894 * OUT: NULL if fail.
4895 * other if success, return pointer to the message to send.
4896 */
4897 static int
4898 key_getspi(struct socket *so, struct mbuf *m,
4899 const struct sadb_msghdr *mhp)
4900 {
4901 struct sadb_address *src0, *dst0;
4902 struct secasindex saidx;
4903 struct secashead *newsah;
4904 struct secasvar *newsav;
4905 u_int8_t proto;
4906 u_int32_t spi;
4907 u_int8_t mode;
4908 u_int16_t reqid;
4909 int error;
4910
4911 KASSERT(so != NULL);
4912 KASSERT(m != NULL);
4913 KASSERT(mhp != NULL);
4914 KASSERT(mhp->msg != NULL);
4915
4916 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4917 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4918 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4919 return key_senderror(so, m, EINVAL);
4920 }
4921 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4922 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4923 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4924 return key_senderror(so, m, EINVAL);
4925 }
4926 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4927 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4928 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4929 } else {
4930 mode = IPSEC_MODE_ANY;
4931 reqid = 0;
4932 }
4933
4934 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4935 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4936
4937 /* map satype to proto */
4938 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4939 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4940 return key_senderror(so, m, EINVAL);
4941 }
4942
4943
4944 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4945 dst0 + 1, &saidx)) != 0)
4946 return key_senderror(so, m, EINVAL);
4947
4948 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4949 return key_senderror(so, m, EINVAL);
4950
4951 /* SPI allocation */
4952 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4953 &saidx);
4954 if (spi == 0)
4955 return key_senderror(so, m, EINVAL);
4956
4957 /* get a SA index */
4958 if ((newsah = key_getsah(&saidx)) == NULL) {
4959 /* create a new SA index */
4960 if ((newsah = key_newsah(&saidx)) == NULL) {
4961 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4962 return key_senderror(so, m, ENOBUFS);
4963 }
4964 }
4965
4966 /* get a new SA */
4967 /* XXX rewrite */
4968 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4969 if (newsav == NULL) {
4970 /* XXX don't free new SA index allocated in above. */
4971 return key_senderror(so, m, error);
4972 }
4973
4974 /* set spi */
4975 newsav->spi = htonl(spi);
4976
4977 #ifndef IPSEC_NONBLOCK_ACQUIRE
4978 /* delete the entry in acqtree */
4979 if (mhp->msg->sadb_msg_seq != 0) {
4980 struct secacq *acq;
4981 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4982 /* reset counter in order to deletion by timehandler. */
4983 acq->created = time_uptime;
4984 acq->count = 0;
4985 }
4986 }
4987 #endif
4988
4989 {
4990 struct mbuf *n, *nn;
4991 struct sadb_sa *m_sa;
4992 struct sadb_msg *newmsg;
4993 int off, len;
4994
4995 /* create new sadb_msg to reply. */
4996 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4997 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4998 if (len > MCLBYTES)
4999 return key_senderror(so, m, ENOBUFS);
5000
5001 MGETHDR(n, M_DONTWAIT, MT_DATA);
5002 if (len > MHLEN) {
5003 MCLGET(n, M_DONTWAIT);
5004 if ((n->m_flags & M_EXT) == 0) {
5005 m_freem(n);
5006 n = NULL;
5007 }
5008 }
5009 if (!n)
5010 return key_senderror(so, m, ENOBUFS);
5011
5012 n->m_len = len;
5013 n->m_next = NULL;
5014 off = 0;
5015
5016 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5017 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5018
5019 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5020 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5021 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5022 m_sa->sadb_sa_spi = htonl(spi);
5023 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5024
5025 KASSERTMSG(off == len, "length inconsistency");
5026
5027 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5028 SADB_EXT_ADDRESS_DST);
5029 if (!n->m_next) {
5030 m_freem(n);
5031 return key_senderror(so, m, ENOBUFS);
5032 }
5033
5034 if (n->m_len < sizeof(struct sadb_msg)) {
5035 n = m_pullup(n, sizeof(struct sadb_msg));
5036 if (n == NULL)
5037 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5038 }
5039
5040 n->m_pkthdr.len = 0;
5041 for (nn = n; nn; nn = nn->m_next)
5042 n->m_pkthdr.len += nn->m_len;
5043
5044 newmsg = mtod(n, struct sadb_msg *);
5045 newmsg->sadb_msg_seq = newsav->seq;
5046 newmsg->sadb_msg_errno = 0;
5047 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5048
5049 m_freem(m);
5050 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5051 }
5052 }
5053
5054 /*
5055 * allocating new SPI
5056 * called by key_getspi().
5057 * OUT:
5058 * 0: failure.
5059 * others: success.
5060 */
5061 static u_int32_t
5062 key_do_getnewspi(const struct sadb_spirange *spirange,
5063 const struct secasindex *saidx)
5064 {
5065 u_int32_t newspi;
5066 u_int32_t spmin, spmax;
5067 int count = key_spi_trycnt;
5068
5069 /* set spi range to allocate */
5070 if (spirange != NULL) {
5071 spmin = spirange->sadb_spirange_min;
5072 spmax = spirange->sadb_spirange_max;
5073 } else {
5074 spmin = key_spi_minval;
5075 spmax = key_spi_maxval;
5076 }
5077 /* IPCOMP needs 2-byte SPI */
5078 if (saidx->proto == IPPROTO_IPCOMP) {
5079 u_int32_t t;
5080 if (spmin >= 0x10000)
5081 spmin = 0xffff;
5082 if (spmax >= 0x10000)
5083 spmax = 0xffff;
5084 if (spmin > spmax) {
5085 t = spmin; spmin = spmax; spmax = t;
5086 }
5087 }
5088
5089 if (spmin == spmax) {
5090 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5091 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5092 return 0;
5093 }
5094
5095 count--; /* taking one cost. */
5096 newspi = spmin;
5097
5098 } else {
5099
5100 /* init SPI */
5101 newspi = 0;
5102
5103 /* when requesting to allocate spi ranged */
5104 while (count--) {
5105 /* generate pseudo-random SPI value ranged. */
5106 newspi = spmin + (key_random() % (spmax - spmin + 1));
5107
5108 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5109 break;
5110 }
5111
5112 if (count == 0 || newspi == 0) {
5113 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5114 return 0;
5115 }
5116 }
5117
5118 /* statistics */
5119 keystat.getspi_count =
5120 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5121
5122 return newspi;
5123 }
5124
5125 static int
5126 key_handle_natt_info(struct secasvar *sav,
5127 const struct sadb_msghdr *mhp)
5128 {
5129 const char *msg = "?" ;
5130 struct sadb_x_nat_t_type *type;
5131 struct sadb_x_nat_t_port *sport, *dport;
5132 struct sadb_address *iaddr, *raddr;
5133 struct sadb_x_nat_t_frag *frag;
5134
5135 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5136 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5137 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5138 return 0;
5139
5140 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5141 msg = "TYPE";
5142 goto bad;
5143 }
5144
5145 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5146 msg = "SPORT";
5147 goto bad;
5148 }
5149
5150 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5151 msg = "DPORT";
5152 goto bad;
5153 }
5154
5155 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5156 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5157 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5158 msg = "OAI";
5159 goto bad;
5160 }
5161 }
5162
5163 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5164 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5165 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5166 msg = "OAR";
5167 goto bad;
5168 }
5169 }
5170
5171 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5172 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5173 msg = "FRAG";
5174 goto bad;
5175 }
5176 }
5177
5178 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5179 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5180 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5181 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5182 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5183 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5184
5185 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5186 __func__, type->sadb_x_nat_t_type_type,
5187 ntohs(sport->sadb_x_nat_t_port_port),
5188 ntohs(dport->sadb_x_nat_t_port_port)));
5189
5190 sav->natt_type = type->sadb_x_nat_t_type_type;
5191 key_porttosaddr(&sav->sah->saidx.src,
5192 sport->sadb_x_nat_t_port_port);
5193 key_porttosaddr(&sav->sah->saidx.dst,
5194 dport->sadb_x_nat_t_port_port);
5195 if (frag)
5196 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5197 else
5198 sav->esp_frag = IP_MAXPACKET;
5199
5200 return 0;
5201 bad:
5202 ipseclog((LOG_DEBUG, "%s: invalid message %s\n", __func__, msg));
5203 __USE(msg);
5204 return -1;
5205 }
5206
5207 /* Just update the IPSEC_NAT_T ports if present */
5208 static int
5209 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5210 const struct sadb_msghdr *mhp)
5211 {
5212 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5213 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5214 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5215 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5216
5217 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5218 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5219 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5220 struct sadb_x_nat_t_type *type;
5221 struct sadb_x_nat_t_port *sport;
5222 struct sadb_x_nat_t_port *dport;
5223
5224 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5225 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5226 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5227 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5228 __func__));
5229 return -1;
5230 }
5231
5232 type = (struct sadb_x_nat_t_type *)
5233 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5234 sport = (struct sadb_x_nat_t_port *)
5235 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5236 dport = (struct sadb_x_nat_t_port *)
5237 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5238
5239 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5240 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5241
5242 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5243 __func__, type->sadb_x_nat_t_type_type,
5244 ntohs(sport->sadb_x_nat_t_port_port),
5245 ntohs(dport->sadb_x_nat_t_port_port)));
5246 }
5247
5248 return 0;
5249 }
5250
5251
5252 /*
5253 * SADB_UPDATE processing
5254 * receive
5255 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5256 * key(AE), (identity(SD),) (sensitivity)>
5257 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5258 * and send
5259 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5260 * (identity(SD),) (sensitivity)>
5261 * to the ikmpd.
5262 *
5263 * m will always be freed.
5264 */
5265 static int
5266 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5267 {
5268 struct sadb_sa *sa0;
5269 struct sadb_address *src0, *dst0;
5270 struct secasindex saidx;
5271 struct secashead *sah;
5272 struct secasvar *sav;
5273 u_int16_t proto;
5274 u_int8_t mode;
5275 u_int16_t reqid;
5276 int error;
5277
5278 KASSERT(so != NULL);
5279 KASSERT(m != NULL);
5280 KASSERT(mhp != NULL);
5281 KASSERT(mhp->msg != NULL);
5282
5283 /* map satype to proto */
5284 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5285 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5286 return key_senderror(so, m, EINVAL);
5287 }
5288
5289 if (mhp->ext[SADB_EXT_SA] == NULL ||
5290 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5291 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5292 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5293 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5294 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5295 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5296 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5297 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5298 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5299 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5300 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5301 return key_senderror(so, m, EINVAL);
5302 }
5303 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5304 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5305 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5306 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5307 return key_senderror(so, m, EINVAL);
5308 }
5309 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5310 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5311 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5312 } else {
5313 mode = IPSEC_MODE_ANY;
5314 reqid = 0;
5315 }
5316 /* XXX boundary checking for other extensions */
5317
5318 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5319 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5320 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5321
5322 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5323 dst0 + 1, &saidx)) != 0)
5324 return key_senderror(so, m, EINVAL);
5325
5326 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5327 return key_senderror(so, m, EINVAL);
5328
5329 /* get a SA header */
5330 if ((sah = key_getsah(&saidx)) == NULL) {
5331 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5332 return key_senderror(so, m, ENOENT);
5333 }
5334
5335 /* set spidx if there */
5336 /* XXX rewrite */
5337 error = key_setident(sah, m, mhp);
5338 if (error)
5339 return key_senderror(so, m, error);
5340
5341 /* find a SA with sequence number. */
5342 #ifdef IPSEC_DOSEQCHECK
5343 if (mhp->msg->sadb_msg_seq != 0
5344 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5345 ipseclog((LOG_DEBUG,
5346 "key_update: no larval SA with sequence %u exists.\n",
5347 mhp->msg->sadb_msg_seq));
5348 return key_senderror(so, m, ENOENT);
5349 }
5350 #else
5351 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5352 ipseclog((LOG_DEBUG,
5353 "key_update: no such a SA found (spi:%u)\n",
5354 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5355 return key_senderror(so, m, EINVAL);
5356 }
5357 #endif
5358
5359 /* validity check */
5360 if (sav->sah->saidx.proto != proto) {
5361 ipseclog((LOG_DEBUG,
5362 "key_update: protocol mismatched (DB=%u param=%u)\n",
5363 sav->sah->saidx.proto, proto));
5364 return key_senderror(so, m, EINVAL);
5365 }
5366 #ifdef IPSEC_DOSEQCHECK
5367 if (sav->spi != sa0->sadb_sa_spi) {
5368 ipseclog((LOG_DEBUG,
5369 "key_update: SPI mismatched (DB:%u param:%u)\n",
5370 (u_int32_t)ntohl(sav->spi),
5371 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5372 return key_senderror(so, m, EINVAL);
5373 }
5374 #endif
5375 if (sav->pid != mhp->msg->sadb_msg_pid) {
5376 ipseclog((LOG_DEBUG,
5377 "key_update: pid mismatched (DB:%u param:%u)\n",
5378 sav->pid, mhp->msg->sadb_msg_pid));
5379 return key_senderror(so, m, EINVAL);
5380 }
5381
5382 /* copy sav values */
5383 error = key_setsaval(sav, m, mhp);
5384 if (error) {
5385 KEY_FREESAV(&sav);
5386 return key_senderror(so, m, error);
5387 }
5388
5389 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5390 return key_senderror(so, m, EINVAL);
5391
5392 /* check SA values to be mature. */
5393 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5394 KEY_FREESAV(&sav);
5395 return key_senderror(so, m, 0);
5396 }
5397
5398 {
5399 struct mbuf *n;
5400
5401 /* set msg buf from mhp */
5402 n = key_getmsgbuf_x1(m, mhp);
5403 if (n == NULL) {
5404 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5405 return key_senderror(so, m, ENOBUFS);
5406 }
5407
5408 m_freem(m);
5409 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5410 }
5411 }
5412
5413 /*
5414 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5415 * only called by key_update().
5416 * OUT:
5417 * NULL : not found
5418 * others : found, pointer to a SA.
5419 */
5420 #ifdef IPSEC_DOSEQCHECK
5421 static struct secasvar *
5422 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5423 {
5424 struct secasvar *sav;
5425 u_int state;
5426
5427 state = SADB_SASTATE_LARVAL;
5428
5429 /* search SAD with sequence number ? */
5430 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5431
5432 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5433
5434 if (sav->seq == seq) {
5435 SA_ADDREF(sav);
5436 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5437 "DP cause refcnt++:%d SA:%p\n",
5438 sav->refcnt, sav);
5439 return sav;
5440 }
5441 }
5442
5443 return NULL;
5444 }
5445 #endif
5446
5447 /*
5448 * SADB_ADD processing
5449 * add an entry to SA database, when received
5450 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5451 * key(AE), (identity(SD),) (sensitivity)>
5452 * from the ikmpd,
5453 * and send
5454 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5455 * (identity(SD),) (sensitivity)>
5456 * to the ikmpd.
5457 *
5458 * IGNORE identity and sensitivity messages.
5459 *
5460 * m will always be freed.
5461 */
5462 static int
5463 key_add(struct socket *so, struct mbuf *m,
5464 const struct sadb_msghdr *mhp)
5465 {
5466 struct sadb_sa *sa0;
5467 struct sadb_address *src0, *dst0;
5468 struct secasindex saidx;
5469 struct secashead *newsah;
5470 struct secasvar *newsav;
5471 u_int16_t proto;
5472 u_int8_t mode;
5473 u_int16_t reqid;
5474 int error;
5475
5476 KASSERT(so != NULL);
5477 KASSERT(m != NULL);
5478 KASSERT(mhp != NULL);
5479 KASSERT(mhp->msg != NULL);
5480
5481 /* map satype to proto */
5482 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5483 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5484 return key_senderror(so, m, EINVAL);
5485 }
5486
5487 if (mhp->ext[SADB_EXT_SA] == NULL ||
5488 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5489 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5490 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5491 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5492 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5493 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5494 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5495 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5496 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5497 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5498 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5499 return key_senderror(so, m, EINVAL);
5500 }
5501 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5502 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5503 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5504 /* XXX need more */
5505 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5506 return key_senderror(so, m, EINVAL);
5507 }
5508 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5509 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5510 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5511 } else {
5512 mode = IPSEC_MODE_ANY;
5513 reqid = 0;
5514 }
5515
5516 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5517 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5518 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5519
5520 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5521 dst0 + 1, &saidx)) != 0)
5522 return key_senderror(so, m, EINVAL);
5523
5524 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5525 return key_senderror(so, m, EINVAL);
5526
5527 /* get a SA header */
5528 if ((newsah = key_getsah(&saidx)) == NULL) {
5529 /* create a new SA header */
5530 if ((newsah = key_newsah(&saidx)) == NULL) {
5531 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5532 return key_senderror(so, m, ENOBUFS);
5533 }
5534 }
5535
5536 /* set spidx if there */
5537 /* XXX rewrite */
5538 error = key_setident(newsah, m, mhp);
5539 if (error) {
5540 return key_senderror(so, m, error);
5541 }
5542
5543 /* create new SA entry. */
5544 /* We can create new SA only if SPI is differenct. */
5545 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5546 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5547 return key_senderror(so, m, EEXIST);
5548 }
5549 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5550 if (newsav == NULL) {
5551 return key_senderror(so, m, error);
5552 }
5553
5554 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5555 return key_senderror(so, m, EINVAL);
5556
5557 /* check SA values to be mature. */
5558 if ((error = key_mature(newsav)) != 0) {
5559 KEY_FREESAV(&newsav);
5560 return key_senderror(so, m, error);
5561 }
5562
5563 /*
5564 * don't call key_freesav() here, as we would like to keep the SA
5565 * in the database on success.
5566 */
5567
5568 {
5569 struct mbuf *n;
5570
5571 /* set msg buf from mhp */
5572 n = key_getmsgbuf_x1(m, mhp);
5573 if (n == NULL) {
5574 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5575 return key_senderror(so, m, ENOBUFS);
5576 }
5577
5578 m_freem(m);
5579 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5580 }
5581 }
5582
5583 /* m is retained */
5584 static int
5585 key_setident(struct secashead *sah, struct mbuf *m,
5586 const struct sadb_msghdr *mhp)
5587 {
5588 const struct sadb_ident *idsrc, *iddst;
5589 int idsrclen, iddstlen;
5590
5591 KASSERT(sah != NULL);
5592 KASSERT(m != NULL);
5593 KASSERT(mhp != NULL);
5594 KASSERT(mhp->msg != NULL);
5595
5596 /* don't make buffer if not there */
5597 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5598 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5599 sah->idents = NULL;
5600 sah->identd = NULL;
5601 return 0;
5602 }
5603
5604 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5605 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5606 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5607 return EINVAL;
5608 }
5609
5610 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5611 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5612 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5613 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5614
5615 /* validity check */
5616 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5617 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5618 return EINVAL;
5619 }
5620
5621 switch (idsrc->sadb_ident_type) {
5622 case SADB_IDENTTYPE_PREFIX:
5623 case SADB_IDENTTYPE_FQDN:
5624 case SADB_IDENTTYPE_USERFQDN:
5625 default:
5626 /* XXX do nothing */
5627 sah->idents = NULL;
5628 sah->identd = NULL;
5629 return 0;
5630 }
5631
5632 /* make structure */
5633 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5634 if (sah->idents == NULL) {
5635 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5636 return ENOBUFS;
5637 }
5638 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5639 if (sah->identd == NULL) {
5640 KFREE(sah->idents);
5641 sah->idents = NULL;
5642 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5643 return ENOBUFS;
5644 }
5645 memcpy(sah->idents, idsrc, idsrclen);
5646 memcpy(sah->identd, iddst, iddstlen);
5647
5648 return 0;
5649 }
5650
5651 /*
5652 * m will not be freed on return.
5653 * it is caller's responsibility to free the result.
5654 */
5655 static struct mbuf *
5656 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5657 {
5658 struct mbuf *n;
5659
5660 KASSERT(m != NULL);
5661 KASSERT(mhp != NULL);
5662 KASSERT(mhp->msg != NULL);
5663
5664 /* create new sadb_msg to reply. */
5665 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5666 SADB_EXT_SA, SADB_X_EXT_SA2,
5667 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5668 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5669 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5670 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5671 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5672 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5673 if (!n)
5674 return NULL;
5675
5676 if (n->m_len < sizeof(struct sadb_msg)) {
5677 n = m_pullup(n, sizeof(struct sadb_msg));
5678 if (n == NULL)
5679 return NULL;
5680 }
5681 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5682 mtod(n, struct sadb_msg *)->sadb_msg_len =
5683 PFKEY_UNIT64(n->m_pkthdr.len);
5684
5685 return n;
5686 }
5687
5688 static int key_delete_all (struct socket *, struct mbuf *,
5689 const struct sadb_msghdr *, u_int16_t);
5690
5691 /*
5692 * SADB_DELETE processing
5693 * receive
5694 * <base, SA(*), address(SD)>
5695 * from the ikmpd, and set SADB_SASTATE_DEAD,
5696 * and send,
5697 * <base, SA(*), address(SD)>
5698 * to the ikmpd.
5699 *
5700 * m will always be freed.
5701 */
5702 static int
5703 key_delete(struct socket *so, struct mbuf *m,
5704 const struct sadb_msghdr *mhp)
5705 {
5706 struct sadb_sa *sa0;
5707 struct sadb_address *src0, *dst0;
5708 struct secasindex saidx;
5709 struct secashead *sah;
5710 struct secasvar *sav = NULL;
5711 u_int16_t proto;
5712 int error;
5713
5714 KASSERT(so != NULL);
5715 KASSERT(m != NULL);
5716 KASSERT(mhp != NULL);
5717 KASSERT(mhp->msg != NULL);
5718
5719 /* map satype to proto */
5720 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5721 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5722 return key_senderror(so, m, EINVAL);
5723 }
5724
5725 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5726 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5727 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5728 return key_senderror(so, m, EINVAL);
5729 }
5730
5731 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5732 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5733 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5734 return key_senderror(so, m, EINVAL);
5735 }
5736
5737 if (mhp->ext[SADB_EXT_SA] == NULL) {
5738 /*
5739 * Caller wants us to delete all non-LARVAL SAs
5740 * that match the src/dst. This is used during
5741 * IKE INITIAL-CONTACT.
5742 */
5743 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5744 return key_delete_all(so, m, mhp, proto);
5745 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5746 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5747 return key_senderror(so, m, EINVAL);
5748 }
5749
5750 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5751 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5752 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5753
5754 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5755 dst0 + 1, &saidx)) != 0)
5756 return key_senderror(so, m, EINVAL);
5757
5758 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5759 return key_senderror(so, m, EINVAL);
5760
5761 /* get a SA header */
5762 LIST_FOREACH(sah, &sahtree, chain) {
5763 if (sah->state == SADB_SASTATE_DEAD)
5764 continue;
5765 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5766 continue;
5767
5768 /* get a SA with SPI. */
5769 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5770 if (sav)
5771 break;
5772 }
5773 if (sah == NULL) {
5774 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5775 return key_senderror(so, m, ENOENT);
5776 }
5777
5778 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5779 KEY_FREESAV(&sav);
5780
5781 {
5782 struct mbuf *n;
5783 struct sadb_msg *newmsg;
5784
5785 /* create new sadb_msg to reply. */
5786 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5787 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5788 if (!n)
5789 return key_senderror(so, m, ENOBUFS);
5790
5791 if (n->m_len < sizeof(struct sadb_msg)) {
5792 n = m_pullup(n, sizeof(struct sadb_msg));
5793 if (n == NULL)
5794 return key_senderror(so, m, ENOBUFS);
5795 }
5796 newmsg = mtod(n, struct sadb_msg *);
5797 newmsg->sadb_msg_errno = 0;
5798 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5799
5800 m_freem(m);
5801 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5802 }
5803 }
5804
5805 /*
5806 * delete all SAs for src/dst. Called from key_delete().
5807 */
5808 static int
5809 key_delete_all(struct socket *so, struct mbuf *m,
5810 const struct sadb_msghdr *mhp, u_int16_t proto)
5811 {
5812 struct sadb_address *src0, *dst0;
5813 struct secasindex saidx;
5814 struct secashead *sah;
5815 struct secasvar *sav, *nextsav;
5816 u_int stateidx, state;
5817 int error;
5818
5819 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5820 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5821
5822 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5823 dst0 + 1, &saidx)) != 0)
5824 return key_senderror(so, m, EINVAL);
5825
5826 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5827 return key_senderror(so, m, EINVAL);
5828
5829 LIST_FOREACH(sah, &sahtree, chain) {
5830 if (sah->state == SADB_SASTATE_DEAD)
5831 continue;
5832 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5833 continue;
5834
5835 /* Delete all non-LARVAL SAs. */
5836 for (stateidx = 0;
5837 stateidx < _ARRAYLEN(saorder_state_alive);
5838 stateidx++) {
5839 state = saorder_state_alive[stateidx];
5840 if (state == SADB_SASTATE_LARVAL)
5841 continue;
5842 for (sav = LIST_FIRST(&sah->savtree[state]);
5843 sav != NULL; sav = nextsav) {
5844 nextsav = LIST_NEXT(sav, chain);
5845 /* sanity check */
5846 if (sav->state != state) {
5847 ipseclog((LOG_DEBUG, "key_delete_all: "
5848 "invalid sav->state "
5849 "(queue: %d SA: %d)\n",
5850 state, sav->state));
5851 continue;
5852 }
5853
5854 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5855 KEY_FREESAV(&sav);
5856 }
5857 }
5858 }
5859 {
5860 struct mbuf *n;
5861 struct sadb_msg *newmsg;
5862
5863 /* create new sadb_msg to reply. */
5864 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5865 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5866 if (!n)
5867 return key_senderror(so, m, ENOBUFS);
5868
5869 if (n->m_len < sizeof(struct sadb_msg)) {
5870 n = m_pullup(n, sizeof(struct sadb_msg));
5871 if (n == NULL)
5872 return key_senderror(so, m, ENOBUFS);
5873 }
5874 newmsg = mtod(n, struct sadb_msg *);
5875 newmsg->sadb_msg_errno = 0;
5876 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5877
5878 m_freem(m);
5879 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5880 }
5881 }
5882
5883 /*
5884 * SADB_GET processing
5885 * receive
5886 * <base, SA(*), address(SD)>
5887 * from the ikmpd, and get a SP and a SA to respond,
5888 * and send,
5889 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5890 * (identity(SD),) (sensitivity)>
5891 * to the ikmpd.
5892 *
5893 * m will always be freed.
5894 */
5895 static int
5896 key_get(struct socket *so, struct mbuf *m,
5897 const struct sadb_msghdr *mhp)
5898 {
5899 struct sadb_sa *sa0;
5900 struct sadb_address *src0, *dst0;
5901 struct secasindex saidx;
5902 struct secashead *sah;
5903 struct secasvar *sav = NULL;
5904 u_int16_t proto;
5905 int error;
5906
5907 KASSERT(so != NULL);
5908 KASSERT(m != NULL);
5909 KASSERT(mhp != NULL);
5910 KASSERT(mhp->msg != NULL);
5911
5912 /* map satype to proto */
5913 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5914 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5915 return key_senderror(so, m, EINVAL);
5916 }
5917
5918 if (mhp->ext[SADB_EXT_SA] == NULL ||
5919 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5920 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5921 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5922 return key_senderror(so, m, EINVAL);
5923 }
5924 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5925 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5926 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5927 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5928 return key_senderror(so, m, EINVAL);
5929 }
5930
5931 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5932 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5933 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5934
5935 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5936 dst0 + 1, &saidx)) != 0)
5937 return key_senderror(so, m, EINVAL);
5938
5939 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5940 return key_senderror(so, m, EINVAL);
5941
5942 /* get a SA header */
5943 LIST_FOREACH(sah, &sahtree, chain) {
5944 if (sah->state == SADB_SASTATE_DEAD)
5945 continue;
5946 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5947 continue;
5948
5949 /* get a SA with SPI. */
5950 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5951 if (sav)
5952 break;
5953 }
5954 if (sah == NULL) {
5955 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5956 return key_senderror(so, m, ENOENT);
5957 }
5958
5959 {
5960 struct mbuf *n;
5961 u_int8_t satype;
5962
5963 /* map proto to satype */
5964 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5965 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5966 return key_senderror(so, m, EINVAL);
5967 }
5968
5969 /* create new sadb_msg to reply. */
5970 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5971 mhp->msg->sadb_msg_pid);
5972 if (!n)
5973 return key_senderror(so, m, ENOBUFS);
5974
5975 m_freem(m);
5976 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5977 }
5978 }
5979
5980 /* XXX make it sysctl-configurable? */
5981 static void
5982 key_getcomb_setlifetime(struct sadb_comb *comb)
5983 {
5984
5985 comb->sadb_comb_soft_allocations = 1;
5986 comb->sadb_comb_hard_allocations = 1;
5987 comb->sadb_comb_soft_bytes = 0;
5988 comb->sadb_comb_hard_bytes = 0;
5989 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5990 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5991 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5992 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5993 }
5994
5995 /*
5996 * XXX reorder combinations by preference
5997 * XXX no idea if the user wants ESP authentication or not
5998 */
5999 static struct mbuf *
6000 key_getcomb_esp(void)
6001 {
6002 struct sadb_comb *comb;
6003 const struct enc_xform *algo;
6004 struct mbuf *result = NULL, *m, *n;
6005 int encmin;
6006 int i, off, o;
6007 int totlen;
6008 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6009
6010 m = NULL;
6011 for (i = 1; i <= SADB_EALG_MAX; i++) {
6012 algo = esp_algorithm_lookup(i);
6013 if (algo == NULL)
6014 continue;
6015
6016 /* discard algorithms with key size smaller than system min */
6017 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6018 continue;
6019 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6020 encmin = ipsec_esp_keymin;
6021 else
6022 encmin = _BITS(algo->minkey);
6023
6024 if (ipsec_esp_auth)
6025 m = key_getcomb_ah();
6026 else {
6027 KASSERTMSG(l <= MLEN,
6028 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6029 MGET(m, M_DONTWAIT, MT_DATA);
6030 if (m) {
6031 M_ALIGN(m, l);
6032 m->m_len = l;
6033 m->m_next = NULL;
6034 memset(mtod(m, void *), 0, m->m_len);
6035 }
6036 }
6037 if (!m)
6038 goto fail;
6039
6040 totlen = 0;
6041 for (n = m; n; n = n->m_next)
6042 totlen += n->m_len;
6043 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6044
6045 for (off = 0; off < totlen; off += l) {
6046 n = m_pulldown(m, off, l, &o);
6047 if (!n) {
6048 /* m is already freed */
6049 goto fail;
6050 }
6051 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6052 memset(comb, 0, sizeof(*comb));
6053 key_getcomb_setlifetime(comb);
6054 comb->sadb_comb_encrypt = i;
6055 comb->sadb_comb_encrypt_minbits = encmin;
6056 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6057 }
6058
6059 if (!result)
6060 result = m;
6061 else
6062 m_cat(result, m);
6063 }
6064
6065 return result;
6066
6067 fail:
6068 if (result)
6069 m_freem(result);
6070 return NULL;
6071 }
6072
6073 static void
6074 key_getsizes_ah(const struct auth_hash *ah, int alg,
6075 u_int16_t* ksmin, u_int16_t* ksmax)
6076 {
6077 *ksmin = *ksmax = ah->keysize;
6078 if (ah->keysize == 0) {
6079 /*
6080 * Transform takes arbitrary key size but algorithm
6081 * key size is restricted. Enforce this here.
6082 */
6083 switch (alg) {
6084 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6085 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6086 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6087 default:
6088 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6089 alg));
6090 break;
6091 }
6092 }
6093 }
6094
6095 /*
6096 * XXX reorder combinations by preference
6097 */
6098 static struct mbuf *
6099 key_getcomb_ah(void)
6100 {
6101 struct sadb_comb *comb;
6102 const struct auth_hash *algo;
6103 struct mbuf *m;
6104 u_int16_t minkeysize, maxkeysize;
6105 int i;
6106 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6107
6108 m = NULL;
6109 for (i = 1; i <= SADB_AALG_MAX; i++) {
6110 #if 1
6111 /* we prefer HMAC algorithms, not old algorithms */
6112 if (i != SADB_AALG_SHA1HMAC &&
6113 i != SADB_AALG_MD5HMAC &&
6114 i != SADB_X_AALG_SHA2_256 &&
6115 i != SADB_X_AALG_SHA2_384 &&
6116 i != SADB_X_AALG_SHA2_512)
6117 continue;
6118 #endif
6119 algo = ah_algorithm_lookup(i);
6120 if (!algo)
6121 continue;
6122 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6123 /* discard algorithms with key size smaller than system min */
6124 if (_BITS(minkeysize) < ipsec_ah_keymin)
6125 continue;
6126
6127 if (!m) {
6128 KASSERTMSG(l <= MLEN,
6129 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6130 MGET(m, M_DONTWAIT, MT_DATA);
6131 if (m) {
6132 M_ALIGN(m, l);
6133 m->m_len = l;
6134 m->m_next = NULL;
6135 }
6136 } else
6137 M_PREPEND(m, l, M_DONTWAIT);
6138 if (!m)
6139 return NULL;
6140
6141 comb = mtod(m, struct sadb_comb *);
6142 memset(comb, 0, sizeof(*comb));
6143 key_getcomb_setlifetime(comb);
6144 comb->sadb_comb_auth = i;
6145 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6146 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6147 }
6148
6149 return m;
6150 }
6151
6152 /*
6153 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6154 * XXX reorder combinations by preference
6155 */
6156 static struct mbuf *
6157 key_getcomb_ipcomp(void)
6158 {
6159 struct sadb_comb *comb;
6160 const struct comp_algo *algo;
6161 struct mbuf *m;
6162 int i;
6163 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6164
6165 m = NULL;
6166 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6167 algo = ipcomp_algorithm_lookup(i);
6168 if (!algo)
6169 continue;
6170
6171 if (!m) {
6172 KASSERTMSG(l <= MLEN,
6173 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6174 MGET(m, M_DONTWAIT, MT_DATA);
6175 if (m) {
6176 M_ALIGN(m, l);
6177 m->m_len = l;
6178 m->m_next = NULL;
6179 }
6180 } else
6181 M_PREPEND(m, l, M_DONTWAIT);
6182 if (!m)
6183 return NULL;
6184
6185 comb = mtod(m, struct sadb_comb *);
6186 memset(comb, 0, sizeof(*comb));
6187 key_getcomb_setlifetime(comb);
6188 comb->sadb_comb_encrypt = i;
6189 /* what should we set into sadb_comb_*_{min,max}bits? */
6190 }
6191
6192 return m;
6193 }
6194
6195 /*
6196 * XXX no way to pass mode (transport/tunnel) to userland
6197 * XXX replay checking?
6198 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6199 */
6200 static struct mbuf *
6201 key_getprop(const struct secasindex *saidx)
6202 {
6203 struct sadb_prop *prop;
6204 struct mbuf *m, *n;
6205 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6206 int totlen;
6207
6208 switch (saidx->proto) {
6209 case IPPROTO_ESP:
6210 m = key_getcomb_esp();
6211 break;
6212 case IPPROTO_AH:
6213 m = key_getcomb_ah();
6214 break;
6215 case IPPROTO_IPCOMP:
6216 m = key_getcomb_ipcomp();
6217 break;
6218 default:
6219 return NULL;
6220 }
6221
6222 if (!m)
6223 return NULL;
6224 M_PREPEND(m, l, M_DONTWAIT);
6225 if (!m)
6226 return NULL;
6227
6228 totlen = 0;
6229 for (n = m; n; n = n->m_next)
6230 totlen += n->m_len;
6231
6232 prop = mtod(m, struct sadb_prop *);
6233 memset(prop, 0, sizeof(*prop));
6234 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6235 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6236 prop->sadb_prop_replay = 32; /* XXX */
6237
6238 return m;
6239 }
6240
6241 /*
6242 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6243 * send
6244 * <base, SA, address(SD), (address(P)), x_policy,
6245 * (identity(SD),) (sensitivity,) proposal>
6246 * to KMD, and expect to receive
6247 * <base> with SADB_ACQUIRE if error occurred,
6248 * or
6249 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6250 * from KMD by PF_KEY.
6251 *
6252 * XXX x_policy is outside of RFC2367 (KAME extension).
6253 * XXX sensitivity is not supported.
6254 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6255 * see comment for key_getcomb_ipcomp().
6256 *
6257 * OUT:
6258 * 0 : succeed
6259 * others: error number
6260 */
6261 static int
6262 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6263 {
6264 struct mbuf *result = NULL, *m;
6265 #ifndef IPSEC_NONBLOCK_ACQUIRE
6266 struct secacq *newacq;
6267 #endif
6268 u_int8_t satype;
6269 int error = -1;
6270 u_int32_t seq;
6271
6272 /* sanity check */
6273 KASSERT(saidx != NULL);
6274 satype = key_proto2satype(saidx->proto);
6275 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6276
6277 #ifndef IPSEC_NONBLOCK_ACQUIRE
6278 /*
6279 * We never do anything about acquirng SA. There is anather
6280 * solution that kernel blocks to send SADB_ACQUIRE message until
6281 * getting something message from IKEd. In later case, to be
6282 * managed with ACQUIRING list.
6283 */
6284 /* Get an entry to check whether sending message or not. */
6285 if ((newacq = key_getacq(saidx)) != NULL) {
6286 if (key_blockacq_count < newacq->count) {
6287 /* reset counter and do send message. */
6288 newacq->count = 0;
6289 } else {
6290 /* increment counter and do nothing. */
6291 newacq->count++;
6292 return 0;
6293 }
6294 } else {
6295 /* make new entry for blocking to send SADB_ACQUIRE. */
6296 if ((newacq = key_newacq(saidx)) == NULL)
6297 return ENOBUFS;
6298
6299 /* add to acqtree */
6300 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6301 }
6302 #endif
6303
6304
6305 #ifndef IPSEC_NONBLOCK_ACQUIRE
6306 seq = newacq->seq;
6307 #else
6308 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6309 #endif
6310 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6311 if (!m) {
6312 error = ENOBUFS;
6313 goto fail;
6314 }
6315 result = m;
6316
6317 /* set sadb_address for saidx's. */
6318 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6319 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6320 if (!m) {
6321 error = ENOBUFS;
6322 goto fail;
6323 }
6324 m_cat(result, m);
6325
6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6327 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6328 if (!m) {
6329 error = ENOBUFS;
6330 goto fail;
6331 }
6332 m_cat(result, m);
6333
6334 /* XXX proxy address (optional) */
6335
6336 /* set sadb_x_policy */
6337 if (sp) {
6338 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6339 if (!m) {
6340 error = ENOBUFS;
6341 goto fail;
6342 }
6343 m_cat(result, m);
6344 }
6345
6346 /* XXX identity (optional) */
6347 #if 0
6348 if (idexttype && fqdn) {
6349 /* create identity extension (FQDN) */
6350 struct sadb_ident *id;
6351 int fqdnlen;
6352
6353 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6354 id = (struct sadb_ident *)p;
6355 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6356 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6357 id->sadb_ident_exttype = idexttype;
6358 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6359 memcpy(id + 1, fqdn, fqdnlen);
6360 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6361 }
6362
6363 if (idexttype) {
6364 /* create identity extension (USERFQDN) */
6365 struct sadb_ident *id;
6366 int userfqdnlen;
6367
6368 if (userfqdn) {
6369 /* +1 for terminating-NUL */
6370 userfqdnlen = strlen(userfqdn) + 1;
6371 } else
6372 userfqdnlen = 0;
6373 id = (struct sadb_ident *)p;
6374 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6375 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6376 id->sadb_ident_exttype = idexttype;
6377 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6378 /* XXX is it correct? */
6379 if (curlwp)
6380 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6381 if (userfqdn && userfqdnlen)
6382 memcpy(id + 1, userfqdn, userfqdnlen);
6383 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6384 }
6385 #endif
6386
6387 /* XXX sensitivity (optional) */
6388
6389 /* create proposal/combination extension */
6390 m = key_getprop(saidx);
6391 #if 0
6392 /*
6393 * spec conformant: always attach proposal/combination extension,
6394 * the problem is that we have no way to attach it for ipcomp,
6395 * due to the way sadb_comb is declared in RFC2367.
6396 */
6397 if (!m) {
6398 error = ENOBUFS;
6399 goto fail;
6400 }
6401 m_cat(result, m);
6402 #else
6403 /*
6404 * outside of spec; make proposal/combination extension optional.
6405 */
6406 if (m)
6407 m_cat(result, m);
6408 #endif
6409
6410 if ((result->m_flags & M_PKTHDR) == 0) {
6411 error = EINVAL;
6412 goto fail;
6413 }
6414
6415 if (result->m_len < sizeof(struct sadb_msg)) {
6416 result = m_pullup(result, sizeof(struct sadb_msg));
6417 if (result == NULL) {
6418 error = ENOBUFS;
6419 goto fail;
6420 }
6421 }
6422
6423 result->m_pkthdr.len = 0;
6424 for (m = result; m; m = m->m_next)
6425 result->m_pkthdr.len += m->m_len;
6426
6427 mtod(result, struct sadb_msg *)->sadb_msg_len =
6428 PFKEY_UNIT64(result->m_pkthdr.len);
6429
6430 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6431
6432 fail:
6433 if (result)
6434 m_freem(result);
6435 return error;
6436 }
6437
6438 #ifndef IPSEC_NONBLOCK_ACQUIRE
6439 static struct secacq *
6440 key_newacq(const struct secasindex *saidx)
6441 {
6442 struct secacq *newacq;
6443
6444 /* get new entry */
6445 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6446 if (newacq == NULL) {
6447 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6448 return NULL;
6449 }
6450 memset(newacq, 0, sizeof(*newacq));
6451
6452 /* copy secindex */
6453 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6454 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6455 newacq->created = time_uptime;
6456 newacq->count = 0;
6457
6458 return newacq;
6459 }
6460
6461 static struct secacq *
6462 key_getacq(const struct secasindex *saidx)
6463 {
6464 struct secacq *acq;
6465
6466 LIST_FOREACH(acq, &acqtree, chain) {
6467 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6468 return acq;
6469 }
6470
6471 return NULL;
6472 }
6473
6474 static struct secacq *
6475 key_getacqbyseq(u_int32_t seq)
6476 {
6477 struct secacq *acq;
6478
6479 LIST_FOREACH(acq, &acqtree, chain) {
6480 if (acq->seq == seq)
6481 return acq;
6482 }
6483
6484 return NULL;
6485 }
6486 #endif
6487
6488 static struct secspacq *
6489 key_newspacq(const struct secpolicyindex *spidx)
6490 {
6491 struct secspacq *acq;
6492
6493 /* get new entry */
6494 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6495 if (acq == NULL) {
6496 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6497 return NULL;
6498 }
6499 memset(acq, 0, sizeof(*acq));
6500
6501 /* copy secindex */
6502 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6503 acq->created = time_uptime;
6504 acq->count = 0;
6505
6506 return acq;
6507 }
6508
6509 static struct secspacq *
6510 key_getspacq(const struct secpolicyindex *spidx)
6511 {
6512 struct secspacq *acq;
6513
6514 LIST_FOREACH(acq, &spacqtree, chain) {
6515 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6516 return acq;
6517 }
6518
6519 return NULL;
6520 }
6521
6522 /*
6523 * SADB_ACQUIRE processing,
6524 * in first situation, is receiving
6525 * <base>
6526 * from the ikmpd, and clear sequence of its secasvar entry.
6527 *
6528 * In second situation, is receiving
6529 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6530 * from a user land process, and return
6531 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6532 * to the socket.
6533 *
6534 * m will always be freed.
6535 */
6536 static int
6537 key_acquire2(struct socket *so, struct mbuf *m,
6538 const struct sadb_msghdr *mhp)
6539 {
6540 const struct sadb_address *src0, *dst0;
6541 struct secasindex saidx;
6542 struct secashead *sah;
6543 u_int16_t proto;
6544 int error;
6545
6546 KASSERT(so != NULL);
6547 KASSERT(m != NULL);
6548 KASSERT(mhp != NULL);
6549 KASSERT(mhp->msg != NULL);
6550
6551 /*
6552 * Error message from KMd.
6553 * We assume that if error was occurred in IKEd, the length of PFKEY
6554 * message is equal to the size of sadb_msg structure.
6555 * We do not raise error even if error occurred in this function.
6556 */
6557 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6558 #ifndef IPSEC_NONBLOCK_ACQUIRE
6559 struct secacq *acq;
6560
6561 /* check sequence number */
6562 if (mhp->msg->sadb_msg_seq == 0) {
6563 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6564 m_freem(m);
6565 return 0;
6566 }
6567
6568 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6569 /*
6570 * the specified larval SA is already gone, or we got
6571 * a bogus sequence number. we can silently ignore it.
6572 */
6573 m_freem(m);
6574 return 0;
6575 }
6576
6577 /* reset acq counter in order to deletion by timehander. */
6578 acq->created = time_uptime;
6579 acq->count = 0;
6580 #endif
6581 m_freem(m);
6582 return 0;
6583 }
6584
6585 /*
6586 * This message is from user land.
6587 */
6588
6589 /* map satype to proto */
6590 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6591 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6592 return key_senderror(so, m, EINVAL);
6593 }
6594
6595 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6596 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6597 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6598 /* error */
6599 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6600 return key_senderror(so, m, EINVAL);
6601 }
6602 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6603 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6604 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6605 /* error */
6606 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6607 return key_senderror(so, m, EINVAL);
6608 }
6609
6610 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6611 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6612
6613 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6614 dst0 + 1, &saidx)) != 0)
6615 return key_senderror(so, m, EINVAL);
6616
6617 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6618 return key_senderror(so, m, EINVAL);
6619
6620 /* get a SA index */
6621 LIST_FOREACH(sah, &sahtree, chain) {
6622 if (sah->state == SADB_SASTATE_DEAD)
6623 continue;
6624 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6625 break;
6626 }
6627 if (sah != NULL) {
6628 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6629 return key_senderror(so, m, EEXIST);
6630 }
6631
6632 error = key_acquire(&saidx, NULL);
6633 if (error != 0) {
6634 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6635 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6636 return key_senderror(so, m, error);
6637 }
6638
6639 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6640 }
6641
6642 /*
6643 * SADB_REGISTER processing.
6644 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6645 * receive
6646 * <base>
6647 * from the ikmpd, and register a socket to send PF_KEY messages,
6648 * and send
6649 * <base, supported>
6650 * to KMD by PF_KEY.
6651 * If socket is detached, must free from regnode.
6652 *
6653 * m will always be freed.
6654 */
6655 static int
6656 key_register(struct socket *so, struct mbuf *m,
6657 const struct sadb_msghdr *mhp)
6658 {
6659 struct secreg *reg, *newreg = 0;
6660
6661 KASSERT(so != NULL);
6662 KASSERT(m != NULL);
6663 KASSERT(mhp != NULL);
6664 KASSERT(mhp->msg != NULL);
6665
6666 /* check for invalid register message */
6667 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6668 return key_senderror(so, m, EINVAL);
6669
6670 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6671 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6672 goto setmsg;
6673
6674 /* check whether existing or not */
6675 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6676 if (reg->so == so) {
6677 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6678 return key_senderror(so, m, EEXIST);
6679 }
6680 }
6681
6682 /* create regnode */
6683 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6684 if (newreg == NULL) {
6685 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6686 return key_senderror(so, m, ENOBUFS);
6687 }
6688 memset(newreg, 0, sizeof(*newreg));
6689
6690 newreg->so = so;
6691 ((struct keycb *)sotorawcb(so))->kp_registered++;
6692
6693 /* add regnode to regtree. */
6694 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6695
6696 setmsg:
6697 {
6698 struct mbuf *n;
6699 struct sadb_msg *newmsg;
6700 struct sadb_supported *sup;
6701 u_int len, alen, elen;
6702 int off;
6703 int i;
6704 struct sadb_alg *alg;
6705
6706 /* create new sadb_msg to reply. */
6707 alen = 0;
6708 for (i = 1; i <= SADB_AALG_MAX; i++) {
6709 if (ah_algorithm_lookup(i))
6710 alen += sizeof(struct sadb_alg);
6711 }
6712 if (alen)
6713 alen += sizeof(struct sadb_supported);
6714 elen = 0;
6715 for (i = 1; i <= SADB_EALG_MAX; i++) {
6716 if (esp_algorithm_lookup(i))
6717 elen += sizeof(struct sadb_alg);
6718 }
6719 if (elen)
6720 elen += sizeof(struct sadb_supported);
6721
6722 len = sizeof(struct sadb_msg) + alen + elen;
6723
6724 if (len > MCLBYTES)
6725 return key_senderror(so, m, ENOBUFS);
6726
6727 MGETHDR(n, M_DONTWAIT, MT_DATA);
6728 if (len > MHLEN) {
6729 MCLGET(n, M_DONTWAIT);
6730 if ((n->m_flags & M_EXT) == 0) {
6731 m_freem(n);
6732 n = NULL;
6733 }
6734 }
6735 if (!n)
6736 return key_senderror(so, m, ENOBUFS);
6737
6738 n->m_pkthdr.len = n->m_len = len;
6739 n->m_next = NULL;
6740 off = 0;
6741
6742 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6743 newmsg = mtod(n, struct sadb_msg *);
6744 newmsg->sadb_msg_errno = 0;
6745 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6746 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6747
6748 /* for authentication algorithm */
6749 if (alen) {
6750 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6751 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6752 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6753 off += PFKEY_ALIGN8(sizeof(*sup));
6754
6755 for (i = 1; i <= SADB_AALG_MAX; i++) {
6756 const struct auth_hash *aalgo;
6757 u_int16_t minkeysize, maxkeysize;
6758
6759 aalgo = ah_algorithm_lookup(i);
6760 if (!aalgo)
6761 continue;
6762 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6763 alg->sadb_alg_id = i;
6764 alg->sadb_alg_ivlen = 0;
6765 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6766 alg->sadb_alg_minbits = _BITS(minkeysize);
6767 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6768 off += PFKEY_ALIGN8(sizeof(*alg));
6769 }
6770 }
6771
6772 /* for encryption algorithm */
6773 if (elen) {
6774 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6775 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6776 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6777 off += PFKEY_ALIGN8(sizeof(*sup));
6778
6779 for (i = 1; i <= SADB_EALG_MAX; i++) {
6780 const struct enc_xform *ealgo;
6781
6782 ealgo = esp_algorithm_lookup(i);
6783 if (!ealgo)
6784 continue;
6785 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6786 alg->sadb_alg_id = i;
6787 alg->sadb_alg_ivlen = ealgo->blocksize;
6788 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6789 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6790 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6791 }
6792 }
6793
6794 KASSERTMSG(off == len, "length inconsistency");
6795
6796 m_freem(m);
6797 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6798 }
6799 }
6800
6801 /*
6802 * free secreg entry registered.
6803 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6804 */
6805 void
6806 key_freereg(struct socket *so)
6807 {
6808 struct secreg *reg;
6809 int i;
6810
6811 KASSERT(so != NULL);
6812
6813 /*
6814 * check whether existing or not.
6815 * check all type of SA, because there is a potential that
6816 * one socket is registered to multiple type of SA.
6817 */
6818 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6819 LIST_FOREACH(reg, ®tree[i], chain) {
6820 if (reg->so == so
6821 && __LIST_CHAINED(reg)) {
6822 LIST_REMOVE(reg, chain);
6823 KFREE(reg);
6824 break;
6825 }
6826 }
6827 }
6828
6829 return;
6830 }
6831
6832 /*
6833 * SADB_EXPIRE processing
6834 * send
6835 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6836 * to KMD by PF_KEY.
6837 * NOTE: We send only soft lifetime extension.
6838 *
6839 * OUT: 0 : succeed
6840 * others : error number
6841 */
6842 static int
6843 key_expire(struct secasvar *sav)
6844 {
6845 int s;
6846 int satype;
6847 struct mbuf *result = NULL, *m;
6848 int len;
6849 int error = -1;
6850 struct sadb_lifetime *lt;
6851
6852 /* XXX: Why do we lock ? */
6853 s = splsoftnet(); /*called from softclock()*/
6854
6855 KASSERT(sav != NULL);
6856 KASSERT(sav->sah != NULL);
6857
6858 satype = key_proto2satype(sav->sah->saidx.proto);
6859 KASSERTMSG(satype != 0, "invalid proto is passed");
6860
6861 /* set msg header */
6862 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6863 if (!m) {
6864 error = ENOBUFS;
6865 goto fail;
6866 }
6867 result = m;
6868
6869 /* create SA extension */
6870 m = key_setsadbsa(sav);
6871 if (!m) {
6872 error = ENOBUFS;
6873 goto fail;
6874 }
6875 m_cat(result, m);
6876
6877 /* create SA extension */
6878 m = key_setsadbxsa2(sav->sah->saidx.mode,
6879 sav->replay ? sav->replay->count : 0,
6880 sav->sah->saidx.reqid);
6881 if (!m) {
6882 error = ENOBUFS;
6883 goto fail;
6884 }
6885 m_cat(result, m);
6886
6887 /* create lifetime extension (current and soft) */
6888 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6889 m = key_alloc_mbuf(len);
6890 if (!m || m->m_next) { /*XXX*/
6891 if (m)
6892 m_freem(m);
6893 error = ENOBUFS;
6894 goto fail;
6895 }
6896 memset(mtod(m, void *), 0, len);
6897 lt = mtod(m, struct sadb_lifetime *);
6898 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6899 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6900 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6901 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6902 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6903 + time_second - time_uptime;
6904 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6905 + time_second - time_uptime;
6906 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6907 memcpy(lt, sav->lft_s, sizeof(*lt));
6908 m_cat(result, m);
6909
6910 /* set sadb_address for source */
6911 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6912 &sav->sah->saidx.src.sa,
6913 FULLMASK, IPSEC_ULPROTO_ANY);
6914 if (!m) {
6915 error = ENOBUFS;
6916 goto fail;
6917 }
6918 m_cat(result, m);
6919
6920 /* set sadb_address for destination */
6921 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6922 &sav->sah->saidx.dst.sa,
6923 FULLMASK, IPSEC_ULPROTO_ANY);
6924 if (!m) {
6925 error = ENOBUFS;
6926 goto fail;
6927 }
6928 m_cat(result, m);
6929
6930 if ((result->m_flags & M_PKTHDR) == 0) {
6931 error = EINVAL;
6932 goto fail;
6933 }
6934
6935 if (result->m_len < sizeof(struct sadb_msg)) {
6936 result = m_pullup(result, sizeof(struct sadb_msg));
6937 if (result == NULL) {
6938 error = ENOBUFS;
6939 goto fail;
6940 }
6941 }
6942
6943 result->m_pkthdr.len = 0;
6944 for (m = result; m; m = m->m_next)
6945 result->m_pkthdr.len += m->m_len;
6946
6947 mtod(result, struct sadb_msg *)->sadb_msg_len =
6948 PFKEY_UNIT64(result->m_pkthdr.len);
6949
6950 splx(s);
6951 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6952
6953 fail:
6954 if (result)
6955 m_freem(result);
6956 splx(s);
6957 return error;
6958 }
6959
6960 /*
6961 * SADB_FLUSH processing
6962 * receive
6963 * <base>
6964 * from the ikmpd, and free all entries in secastree.
6965 * and send,
6966 * <base>
6967 * to the ikmpd.
6968 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6969 *
6970 * m will always be freed.
6971 */
6972 static int
6973 key_flush(struct socket *so, struct mbuf *m,
6974 const struct sadb_msghdr *mhp)
6975 {
6976 struct sadb_msg *newmsg;
6977 struct secashead *sah, *nextsah;
6978 struct secasvar *sav, *nextsav;
6979 u_int16_t proto;
6980 u_int8_t state;
6981 u_int stateidx;
6982
6983 KASSERT(so != NULL);
6984 KASSERT(mhp != NULL);
6985 KASSERT(mhp->msg != NULL);
6986
6987 /* map satype to proto */
6988 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6989 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6990 return key_senderror(so, m, EINVAL);
6991 }
6992
6993 /* no SATYPE specified, i.e. flushing all SA. */
6994 for (sah = LIST_FIRST(&sahtree);
6995 sah != NULL;
6996 sah = nextsah) {
6997 nextsah = LIST_NEXT(sah, chain);
6998
6999 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7000 && proto != sah->saidx.proto)
7001 continue;
7002
7003 for (stateidx = 0;
7004 stateidx < _ARRAYLEN(saorder_state_alive);
7005 stateidx++) {
7006 state = saorder_state_any[stateidx];
7007 for (sav = LIST_FIRST(&sah->savtree[state]);
7008 sav != NULL;
7009 sav = nextsav) {
7010
7011 nextsav = LIST_NEXT(sav, chain);
7012
7013 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7014 KEY_FREESAV(&sav);
7015 }
7016 }
7017
7018 sah->state = SADB_SASTATE_DEAD;
7019 }
7020
7021 if (m->m_len < sizeof(struct sadb_msg) ||
7022 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7023 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
7024 return key_senderror(so, m, ENOBUFS);
7025 }
7026
7027 if (m->m_next)
7028 m_freem(m->m_next);
7029 m->m_next = NULL;
7030 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7031 newmsg = mtod(m, struct sadb_msg *);
7032 newmsg->sadb_msg_errno = 0;
7033 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7034
7035 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7036 }
7037
7038
7039 static struct mbuf *
7040 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7041 {
7042 struct secashead *sah;
7043 struct secasvar *sav;
7044 u_int16_t proto;
7045 u_int stateidx;
7046 u_int8_t satype;
7047 u_int8_t state;
7048 int cnt;
7049 struct mbuf *m, *n, *prev;
7050
7051 *lenp = 0;
7052
7053 /* map satype to proto */
7054 if ((proto = key_satype2proto(req_satype)) == 0) {
7055 *errorp = EINVAL;
7056 return (NULL);
7057 }
7058
7059 /* count sav entries to be sent to userland. */
7060 cnt = 0;
7061 LIST_FOREACH(sah, &sahtree, chain) {
7062 if (req_satype != SADB_SATYPE_UNSPEC &&
7063 proto != sah->saidx.proto)
7064 continue;
7065
7066 for (stateidx = 0;
7067 stateidx < _ARRAYLEN(saorder_state_any);
7068 stateidx++) {
7069 state = saorder_state_any[stateidx];
7070 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7071 cnt++;
7072 }
7073 }
7074 }
7075
7076 if (cnt == 0) {
7077 *errorp = ENOENT;
7078 return (NULL);
7079 }
7080
7081 /* send this to the userland, one at a time. */
7082 m = NULL;
7083 prev = m;
7084 LIST_FOREACH(sah, &sahtree, chain) {
7085 if (req_satype != SADB_SATYPE_UNSPEC &&
7086 proto != sah->saidx.proto)
7087 continue;
7088
7089 /* map proto to satype */
7090 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7091 m_freem(m);
7092 *errorp = EINVAL;
7093 return (NULL);
7094 }
7095
7096 for (stateidx = 0;
7097 stateidx < _ARRAYLEN(saorder_state_any);
7098 stateidx++) {
7099 state = saorder_state_any[stateidx];
7100 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7101 n = key_setdumpsa(sav, SADB_DUMP, satype,
7102 --cnt, pid);
7103 if (!n) {
7104 m_freem(m);
7105 *errorp = ENOBUFS;
7106 return (NULL);
7107 }
7108
7109 if (!m)
7110 m = n;
7111 else
7112 prev->m_nextpkt = n;
7113 prev = n;
7114 }
7115 }
7116 }
7117
7118 if (!m) {
7119 *errorp = EINVAL;
7120 return (NULL);
7121 }
7122
7123 if ((m->m_flags & M_PKTHDR) != 0) {
7124 m->m_pkthdr.len = 0;
7125 for (n = m; n; n = n->m_next)
7126 m->m_pkthdr.len += n->m_len;
7127 }
7128
7129 *errorp = 0;
7130 return (m);
7131 }
7132
7133 /*
7134 * SADB_DUMP processing
7135 * dump all entries including status of DEAD in SAD.
7136 * receive
7137 * <base>
7138 * from the ikmpd, and dump all secasvar leaves
7139 * and send,
7140 * <base> .....
7141 * to the ikmpd.
7142 *
7143 * m will always be freed.
7144 */
7145 static int
7146 key_dump(struct socket *so, struct mbuf *m0,
7147 const struct sadb_msghdr *mhp)
7148 {
7149 u_int16_t proto;
7150 u_int8_t satype;
7151 struct mbuf *n;
7152 int s;
7153 int error, len, ok;
7154
7155 KASSERT(so != NULL);
7156 KASSERT(m0 != NULL);
7157 KASSERT(mhp != NULL);
7158 KASSERT(mhp->msg != NULL);
7159
7160 /* map satype to proto */
7161 satype = mhp->msg->sadb_msg_satype;
7162 if ((proto = key_satype2proto(satype)) == 0) {
7163 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7164 return key_senderror(so, m0, EINVAL);
7165 }
7166
7167 /*
7168 * If the requestor has insufficient socket-buffer space
7169 * for the entire chain, nobody gets any response to the DUMP.
7170 * XXX For now, only the requestor ever gets anything.
7171 * Moreover, if the requestor has any space at all, they receive
7172 * the entire chain, otherwise the request is refused with ENOBUFS.
7173 */
7174 if (sbspace(&so->so_rcv) <= 0) {
7175 return key_senderror(so, m0, ENOBUFS);
7176 }
7177
7178 s = splsoftnet();
7179 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7180 splx(s);
7181
7182 if (n == NULL) {
7183 return key_senderror(so, m0, ENOENT);
7184 }
7185 {
7186 uint64_t *ps = PFKEY_STAT_GETREF();
7187 ps[PFKEY_STAT_IN_TOTAL]++;
7188 ps[PFKEY_STAT_IN_BYTES] += len;
7189 PFKEY_STAT_PUTREF();
7190 }
7191
7192 /*
7193 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7194 * The requestor receives either the entire chain, or an
7195 * error message with ENOBUFS.
7196 *
7197 * sbappendaddrchain() takes the chain of entries, one
7198 * packet-record per SPD entry, prepends the key_src sockaddr
7199 * to each packet-record, links the sockaddr mbufs into a new
7200 * list of records, then appends the entire resulting
7201 * list to the requesting socket.
7202 */
7203 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7204 n, SB_PRIO_ONESHOT_OVERFLOW);
7205
7206 if (!ok) {
7207 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7208 m_freem(n);
7209 return key_senderror(so, m0, ENOBUFS);
7210 }
7211
7212 m_freem(m0);
7213 return 0;
7214 }
7215
7216 /*
7217 * SADB_X_PROMISC processing
7218 *
7219 * m will always be freed.
7220 */
7221 static int
7222 key_promisc(struct socket *so, struct mbuf *m,
7223 const struct sadb_msghdr *mhp)
7224 {
7225 int olen;
7226
7227 KASSERT(so != NULL);
7228 KASSERT(m != NULL);
7229 KASSERT(mhp != NULL);
7230 KASSERT(mhp->msg != NULL);
7231
7232 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7233
7234 if (olen < sizeof(struct sadb_msg)) {
7235 #if 1
7236 return key_senderror(so, m, EINVAL);
7237 #else
7238 m_freem(m);
7239 return 0;
7240 #endif
7241 } else if (olen == sizeof(struct sadb_msg)) {
7242 /* enable/disable promisc mode */
7243 struct keycb *kp;
7244
7245 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7246 return key_senderror(so, m, EINVAL);
7247 mhp->msg->sadb_msg_errno = 0;
7248 switch (mhp->msg->sadb_msg_satype) {
7249 case 0:
7250 case 1:
7251 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7252 break;
7253 default:
7254 return key_senderror(so, m, EINVAL);
7255 }
7256
7257 /* send the original message back to everyone */
7258 mhp->msg->sadb_msg_errno = 0;
7259 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7260 } else {
7261 /* send packet as is */
7262
7263 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7264
7265 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7266 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7267 }
7268 }
7269
7270 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7271 const struct sadb_msghdr *) = {
7272 NULL, /* SADB_RESERVED */
7273 key_getspi, /* SADB_GETSPI */
7274 key_update, /* SADB_UPDATE */
7275 key_add, /* SADB_ADD */
7276 key_delete, /* SADB_DELETE */
7277 key_get, /* SADB_GET */
7278 key_acquire2, /* SADB_ACQUIRE */
7279 key_register, /* SADB_REGISTER */
7280 NULL, /* SADB_EXPIRE */
7281 key_flush, /* SADB_FLUSH */
7282 key_dump, /* SADB_DUMP */
7283 key_promisc, /* SADB_X_PROMISC */
7284 NULL, /* SADB_X_PCHANGE */
7285 key_spdadd, /* SADB_X_SPDUPDATE */
7286 key_spdadd, /* SADB_X_SPDADD */
7287 key_spddelete, /* SADB_X_SPDDELETE */
7288 key_spdget, /* SADB_X_SPDGET */
7289 NULL, /* SADB_X_SPDACQUIRE */
7290 key_spddump, /* SADB_X_SPDDUMP */
7291 key_spdflush, /* SADB_X_SPDFLUSH */
7292 key_spdadd, /* SADB_X_SPDSETIDX */
7293 NULL, /* SADB_X_SPDEXPIRE */
7294 key_spddelete2, /* SADB_X_SPDDELETE2 */
7295 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7296 };
7297
7298 /*
7299 * parse sadb_msg buffer to process PFKEYv2,
7300 * and create a data to response if needed.
7301 * I think to be dealed with mbuf directly.
7302 * IN:
7303 * msgp : pointer to pointer to a received buffer pulluped.
7304 * This is rewrited to response.
7305 * so : pointer to socket.
7306 * OUT:
7307 * length for buffer to send to user process.
7308 */
7309 int
7310 key_parse(struct mbuf *m, struct socket *so)
7311 {
7312 struct sadb_msg *msg;
7313 struct sadb_msghdr mh;
7314 u_int orglen;
7315 int error;
7316 int target;
7317
7318 KASSERT(m != NULL);
7319 KASSERT(so != NULL);
7320
7321 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7322 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7323 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7324 kdebug_sadb(msg);
7325 }
7326 #endif
7327
7328 if (m->m_len < sizeof(struct sadb_msg)) {
7329 m = m_pullup(m, sizeof(struct sadb_msg));
7330 if (!m)
7331 return ENOBUFS;
7332 }
7333 msg = mtod(m, struct sadb_msg *);
7334 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7335 target = KEY_SENDUP_ONE;
7336
7337 if ((m->m_flags & M_PKTHDR) == 0 ||
7338 m->m_pkthdr.len != orglen) {
7339 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7340 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7341 error = EINVAL;
7342 goto senderror;
7343 }
7344
7345 if (msg->sadb_msg_version != PF_KEY_V2) {
7346 ipseclog((LOG_DEBUG,
7347 "key_parse: PF_KEY version %u is mismatched.\n",
7348 msg->sadb_msg_version));
7349 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7350 error = EINVAL;
7351 goto senderror;
7352 }
7353
7354 if (msg->sadb_msg_type > SADB_MAX) {
7355 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7356 msg->sadb_msg_type));
7357 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7358 error = EINVAL;
7359 goto senderror;
7360 }
7361
7362 /* for old-fashioned code - should be nuked */
7363 if (m->m_pkthdr.len > MCLBYTES) {
7364 m_freem(m);
7365 return ENOBUFS;
7366 }
7367 if (m->m_next) {
7368 struct mbuf *n;
7369
7370 MGETHDR(n, M_DONTWAIT, MT_DATA);
7371 if (n && m->m_pkthdr.len > MHLEN) {
7372 MCLGET(n, M_DONTWAIT);
7373 if ((n->m_flags & M_EXT) == 0) {
7374 m_free(n);
7375 n = NULL;
7376 }
7377 }
7378 if (!n) {
7379 m_freem(m);
7380 return ENOBUFS;
7381 }
7382 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7383 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7384 n->m_next = NULL;
7385 m_freem(m);
7386 m = n;
7387 }
7388
7389 /* align the mbuf chain so that extensions are in contiguous region. */
7390 error = key_align(m, &mh);
7391 if (error)
7392 return error;
7393
7394 if (m->m_next) { /*XXX*/
7395 m_freem(m);
7396 return ENOBUFS;
7397 }
7398
7399 msg = mh.msg;
7400
7401 /* check SA type */
7402 switch (msg->sadb_msg_satype) {
7403 case SADB_SATYPE_UNSPEC:
7404 switch (msg->sadb_msg_type) {
7405 case SADB_GETSPI:
7406 case SADB_UPDATE:
7407 case SADB_ADD:
7408 case SADB_DELETE:
7409 case SADB_GET:
7410 case SADB_ACQUIRE:
7411 case SADB_EXPIRE:
7412 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7413 "when msg type=%u.\n", msg->sadb_msg_type));
7414 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7415 error = EINVAL;
7416 goto senderror;
7417 }
7418 break;
7419 case SADB_SATYPE_AH:
7420 case SADB_SATYPE_ESP:
7421 case SADB_X_SATYPE_IPCOMP:
7422 case SADB_X_SATYPE_TCPSIGNATURE:
7423 switch (msg->sadb_msg_type) {
7424 case SADB_X_SPDADD:
7425 case SADB_X_SPDDELETE:
7426 case SADB_X_SPDGET:
7427 case SADB_X_SPDDUMP:
7428 case SADB_X_SPDFLUSH:
7429 case SADB_X_SPDSETIDX:
7430 case SADB_X_SPDUPDATE:
7431 case SADB_X_SPDDELETE2:
7432 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7433 msg->sadb_msg_type));
7434 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7435 error = EINVAL;
7436 goto senderror;
7437 }
7438 break;
7439 case SADB_SATYPE_RSVP:
7440 case SADB_SATYPE_OSPFV2:
7441 case SADB_SATYPE_RIPV2:
7442 case SADB_SATYPE_MIP:
7443 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7444 msg->sadb_msg_satype));
7445 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7446 error = EOPNOTSUPP;
7447 goto senderror;
7448 case 1: /* XXX: What does it do? */
7449 if (msg->sadb_msg_type == SADB_X_PROMISC)
7450 break;
7451 /*FALLTHROUGH*/
7452 default:
7453 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7454 msg->sadb_msg_satype));
7455 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7456 error = EINVAL;
7457 goto senderror;
7458 }
7459
7460 /* check field of upper layer protocol and address family */
7461 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7462 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7463 struct sadb_address *src0, *dst0;
7464 u_int plen;
7465
7466 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7467 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7468
7469 /* check upper layer protocol */
7470 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7471 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7472 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7473 error = EINVAL;
7474 goto senderror;
7475 }
7476
7477 /* check family */
7478 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7479 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7480 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7481 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7482 error = EINVAL;
7483 goto senderror;
7484 }
7485 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7486 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7487 ipseclog((LOG_DEBUG,
7488 "key_parse: address struct size mismatched.\n"));
7489 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7490 error = EINVAL;
7491 goto senderror;
7492 }
7493
7494 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7495 case AF_INET:
7496 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7497 sizeof(struct sockaddr_in)) {
7498 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7499 error = EINVAL;
7500 goto senderror;
7501 }
7502 break;
7503 case AF_INET6:
7504 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7505 sizeof(struct sockaddr_in6)) {
7506 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7507 error = EINVAL;
7508 goto senderror;
7509 }
7510 break;
7511 default:
7512 ipseclog((LOG_DEBUG,
7513 "key_parse: unsupported address family.\n"));
7514 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7515 error = EAFNOSUPPORT;
7516 goto senderror;
7517 }
7518
7519 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7520 case AF_INET:
7521 plen = sizeof(struct in_addr) << 3;
7522 break;
7523 case AF_INET6:
7524 plen = sizeof(struct in6_addr) << 3;
7525 break;
7526 default:
7527 plen = 0; /*fool gcc*/
7528 break;
7529 }
7530
7531 /* check max prefix length */
7532 if (src0->sadb_address_prefixlen > plen ||
7533 dst0->sadb_address_prefixlen > plen) {
7534 ipseclog((LOG_DEBUG,
7535 "key_parse: illegal prefixlen.\n"));
7536 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7537 error = EINVAL;
7538 goto senderror;
7539 }
7540
7541 /*
7542 * prefixlen == 0 is valid because there can be a case when
7543 * all addresses are matched.
7544 */
7545 }
7546
7547 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7548 key_typesw[msg->sadb_msg_type] == NULL) {
7549 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7550 error = EINVAL;
7551 goto senderror;
7552 }
7553
7554 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7555
7556 senderror:
7557 msg->sadb_msg_errno = error;
7558 return key_sendup_mbuf(so, m, target);
7559 }
7560
7561 static int
7562 key_senderror(struct socket *so, struct mbuf *m, int code)
7563 {
7564 struct sadb_msg *msg;
7565
7566 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7567
7568 msg = mtod(m, struct sadb_msg *);
7569 msg->sadb_msg_errno = code;
7570 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7571 }
7572
7573 /*
7574 * set the pointer to each header into message buffer.
7575 * m will be freed on error.
7576 * XXX larger-than-MCLBYTES extension?
7577 */
7578 static int
7579 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7580 {
7581 struct mbuf *n;
7582 struct sadb_ext *ext;
7583 size_t off, end;
7584 int extlen;
7585 int toff;
7586
7587 KASSERT(m != NULL);
7588 KASSERT(mhp != NULL);
7589 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7590
7591 /* initialize */
7592 memset(mhp, 0, sizeof(*mhp));
7593
7594 mhp->msg = mtod(m, struct sadb_msg *);
7595 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7596
7597 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7598 extlen = end; /*just in case extlen is not updated*/
7599 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7600 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7601 if (!n) {
7602 /* m is already freed */
7603 return ENOBUFS;
7604 }
7605 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7606
7607 /* set pointer */
7608 switch (ext->sadb_ext_type) {
7609 case SADB_EXT_SA:
7610 case SADB_EXT_ADDRESS_SRC:
7611 case SADB_EXT_ADDRESS_DST:
7612 case SADB_EXT_ADDRESS_PROXY:
7613 case SADB_EXT_LIFETIME_CURRENT:
7614 case SADB_EXT_LIFETIME_HARD:
7615 case SADB_EXT_LIFETIME_SOFT:
7616 case SADB_EXT_KEY_AUTH:
7617 case SADB_EXT_KEY_ENCRYPT:
7618 case SADB_EXT_IDENTITY_SRC:
7619 case SADB_EXT_IDENTITY_DST:
7620 case SADB_EXT_SENSITIVITY:
7621 case SADB_EXT_PROPOSAL:
7622 case SADB_EXT_SUPPORTED_AUTH:
7623 case SADB_EXT_SUPPORTED_ENCRYPT:
7624 case SADB_EXT_SPIRANGE:
7625 case SADB_X_EXT_POLICY:
7626 case SADB_X_EXT_SA2:
7627 case SADB_X_EXT_NAT_T_TYPE:
7628 case SADB_X_EXT_NAT_T_SPORT:
7629 case SADB_X_EXT_NAT_T_DPORT:
7630 case SADB_X_EXT_NAT_T_OAI:
7631 case SADB_X_EXT_NAT_T_OAR:
7632 case SADB_X_EXT_NAT_T_FRAG:
7633 /* duplicate check */
7634 /*
7635 * XXX Are there duplication payloads of either
7636 * KEY_AUTH or KEY_ENCRYPT ?
7637 */
7638 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7639 ipseclog((LOG_DEBUG,
7640 "key_align: duplicate ext_type %u "
7641 "is passed.\n", ext->sadb_ext_type));
7642 m_freem(m);
7643 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7644 return EINVAL;
7645 }
7646 break;
7647 default:
7648 ipseclog((LOG_DEBUG,
7649 "key_align: invalid ext_type %u is passed.\n",
7650 ext->sadb_ext_type));
7651 m_freem(m);
7652 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7653 return EINVAL;
7654 }
7655
7656 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7657
7658 if (key_validate_ext(ext, extlen)) {
7659 m_freem(m);
7660 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7661 return EINVAL;
7662 }
7663
7664 n = m_pulldown(m, off, extlen, &toff);
7665 if (!n) {
7666 /* m is already freed */
7667 return ENOBUFS;
7668 }
7669 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7670
7671 mhp->ext[ext->sadb_ext_type] = ext;
7672 mhp->extoff[ext->sadb_ext_type] = off;
7673 mhp->extlen[ext->sadb_ext_type] = extlen;
7674 }
7675
7676 if (off != end) {
7677 m_freem(m);
7678 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7679 return EINVAL;
7680 }
7681
7682 return 0;
7683 }
7684
7685 static int
7686 key_validate_ext(const struct sadb_ext *ext, int len)
7687 {
7688 const struct sockaddr *sa;
7689 enum { NONE, ADDR } checktype = NONE;
7690 int baselen = 0;
7691 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7692
7693 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7694 return EINVAL;
7695
7696 /* if it does not match minimum/maximum length, bail */
7697 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7698 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7699 return EINVAL;
7700 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7701 return EINVAL;
7702 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7703 return EINVAL;
7704
7705 /* more checks based on sadb_ext_type XXX need more */
7706 switch (ext->sadb_ext_type) {
7707 case SADB_EXT_ADDRESS_SRC:
7708 case SADB_EXT_ADDRESS_DST:
7709 case SADB_EXT_ADDRESS_PROXY:
7710 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7711 checktype = ADDR;
7712 break;
7713 case SADB_EXT_IDENTITY_SRC:
7714 case SADB_EXT_IDENTITY_DST:
7715 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7716 SADB_X_IDENTTYPE_ADDR) {
7717 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7718 checktype = ADDR;
7719 } else
7720 checktype = NONE;
7721 break;
7722 default:
7723 checktype = NONE;
7724 break;
7725 }
7726
7727 switch (checktype) {
7728 case NONE:
7729 break;
7730 case ADDR:
7731 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7732 if (len < baselen + sal)
7733 return EINVAL;
7734 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7735 return EINVAL;
7736 break;
7737 }
7738
7739 return 0;
7740 }
7741
7742 static int
7743 key_do_init(void)
7744 {
7745 int i;
7746
7747 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7748
7749 callout_init(&key_timehandler_ch, 0);
7750
7751 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7752 LIST_INIT(&sptree[i]);
7753 }
7754
7755 LIST_INIT(&sahtree);
7756
7757 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7758 LIST_INIT(®tree[i]);
7759 }
7760
7761 #ifndef IPSEC_NONBLOCK_ACQUIRE
7762 LIST_INIT(&acqtree);
7763 #endif
7764 LIST_INIT(&spacqtree);
7765
7766 /* system default */
7767 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7768 ip4_def_policy.refcnt++; /*never reclaim this*/
7769
7770 #ifdef INET6
7771 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7772 ip6_def_policy.refcnt++; /*never reclaim this*/
7773 #endif
7774
7775
7776 #ifndef IPSEC_DEBUG2
7777 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7778 #endif /*IPSEC_DEBUG2*/
7779
7780 /* initialize key statistics */
7781 keystat.getspi_count = 1;
7782
7783 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7784
7785 return (0);
7786 }
7787
7788 void
7789 key_init(void)
7790 {
7791 static ONCE_DECL(key_init_once);
7792
7793 sysctl_net_keyv2_setup(NULL);
7794 sysctl_net_key_compat_setup(NULL);
7795
7796 RUN_ONCE(&key_init_once, key_do_init);
7797 }
7798
7799 /*
7800 * XXX: maybe This function is called after INBOUND IPsec processing.
7801 *
7802 * Special check for tunnel-mode packets.
7803 * We must make some checks for consistency between inner and outer IP header.
7804 *
7805 * xxx more checks to be provided
7806 */
7807 int
7808 key_checktunnelsanity(
7809 struct secasvar *sav,
7810 u_int family,
7811 void *src,
7812 void *dst
7813 )
7814 {
7815
7816 KASSERT(sav->sah != NULL);
7817
7818 /* XXX: check inner IP header */
7819
7820 return 1;
7821 }
7822
7823 #if 0
7824 #define hostnamelen strlen(hostname)
7825
7826 /*
7827 * Get FQDN for the host.
7828 * If the administrator configured hostname (by hostname(1)) without
7829 * domain name, returns nothing.
7830 */
7831 static const char *
7832 key_getfqdn(void)
7833 {
7834 int i;
7835 int hasdot;
7836 static char fqdn[MAXHOSTNAMELEN + 1];
7837
7838 if (!hostnamelen)
7839 return NULL;
7840
7841 /* check if it comes with domain name. */
7842 hasdot = 0;
7843 for (i = 0; i < hostnamelen; i++) {
7844 if (hostname[i] == '.')
7845 hasdot++;
7846 }
7847 if (!hasdot)
7848 return NULL;
7849
7850 /* NOTE: hostname may not be NUL-terminated. */
7851 memset(fqdn, 0, sizeof(fqdn));
7852 memcpy(fqdn, hostname, hostnamelen);
7853 fqdn[hostnamelen] = '\0';
7854 return fqdn;
7855 }
7856
7857 /*
7858 * get username@FQDN for the host/user.
7859 */
7860 static const char *
7861 key_getuserfqdn(void)
7862 {
7863 const char *host;
7864 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7865 struct proc *p = curproc;
7866 char *q;
7867
7868 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7869 return NULL;
7870 if (!(host = key_getfqdn()))
7871 return NULL;
7872
7873 /* NOTE: s_login may not be-NUL terminated. */
7874 memset(userfqdn, 0, sizeof(userfqdn));
7875 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7876 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7877 q = userfqdn + strlen(userfqdn);
7878 *q++ = '@';
7879 memcpy(q, host, strlen(host));
7880 q += strlen(host);
7881 *q++ = '\0';
7882
7883 return userfqdn;
7884 }
7885 #endif
7886
7887 /* record data transfer on SA, and update timestamps */
7888 void
7889 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7890 {
7891
7892 KASSERT(sav != NULL);
7893 KASSERT(m != NULL);
7894 if (!sav->lft_c)
7895 return;
7896
7897 /*
7898 * XXX Currently, there is a difference of bytes size
7899 * between inbound and outbound processing.
7900 */
7901 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7902 /* to check bytes lifetime is done in key_timehandler(). */
7903
7904 /*
7905 * We use the number of packets as the unit of
7906 * sadb_lifetime_allocations. We increment the variable
7907 * whenever {esp,ah}_{in,out}put is called.
7908 */
7909 sav->lft_c->sadb_lifetime_allocations++;
7910 /* XXX check for expires? */
7911
7912 /*
7913 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7914 * in seconds. HARD and SOFT lifetime are measured by the time
7915 * difference (again in seconds) from sadb_lifetime_usetime.
7916 *
7917 * usetime
7918 * v expire expire
7919 * -----+-----+--------+---> t
7920 * <--------------> HARD
7921 * <-----> SOFT
7922 */
7923 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7924 /* XXX check for expires? */
7925
7926 return;
7927 }
7928
7929 /* dumb version */
7930 void
7931 key_sa_routechange(struct sockaddr *dst)
7932 {
7933 struct secashead *sah;
7934 struct route *ro;
7935 const struct sockaddr *sa;
7936
7937 LIST_FOREACH(sah, &sahtree, chain) {
7938 ro = &sah->sa_route;
7939 sa = rtcache_getdst(ro);
7940 if (sa != NULL && dst->sa_len == sa->sa_len &&
7941 memcmp(dst, sa, dst->sa_len) == 0)
7942 rtcache_free(ro);
7943 }
7944
7945 return;
7946 }
7947
7948 static void
7949 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7950 {
7951
7952 KASSERT(sav != NULL);
7953
7954 if (sav->state == state)
7955 return;
7956
7957 if (__LIST_CHAINED(sav))
7958 LIST_REMOVE(sav, chain);
7959
7960 sav->state = state;
7961 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7962 }
7963
7964 /* XXX too much? */
7965 static struct mbuf *
7966 key_alloc_mbuf(int l)
7967 {
7968 struct mbuf *m = NULL, *n;
7969 int len, t;
7970
7971 len = l;
7972 while (len > 0) {
7973 MGET(n, M_DONTWAIT, MT_DATA);
7974 if (n && len > MLEN)
7975 MCLGET(n, M_DONTWAIT);
7976 if (!n) {
7977 m_freem(m);
7978 return NULL;
7979 }
7980
7981 n->m_next = NULL;
7982 n->m_len = 0;
7983 n->m_len = M_TRAILINGSPACE(n);
7984 /* use the bottom of mbuf, hoping we can prepend afterwards */
7985 if (n->m_len > len) {
7986 t = (n->m_len - len) & ~(sizeof(long) - 1);
7987 n->m_data += t;
7988 n->m_len = len;
7989 }
7990
7991 len -= n->m_len;
7992
7993 if (m)
7994 m_cat(m, n);
7995 else
7996 m = n;
7997 }
7998
7999 return m;
8000 }
8001
8002 static struct mbuf *
8003 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8004 {
8005 struct secashead *sah;
8006 struct secasvar *sav;
8007 u_int16_t proto;
8008 u_int stateidx;
8009 u_int8_t satype;
8010 u_int8_t state;
8011 int cnt;
8012 struct mbuf *m, *n;
8013
8014 /* map satype to proto */
8015 if ((proto = key_satype2proto(req_satype)) == 0) {
8016 *errorp = EINVAL;
8017 return (NULL);
8018 }
8019
8020 /* count sav entries to be sent to the userland. */
8021 cnt = 0;
8022 LIST_FOREACH(sah, &sahtree, chain) {
8023 if (req_satype != SADB_SATYPE_UNSPEC &&
8024 proto != sah->saidx.proto)
8025 continue;
8026
8027 for (stateidx = 0;
8028 stateidx < _ARRAYLEN(saorder_state_any);
8029 stateidx++) {
8030 state = saorder_state_any[stateidx];
8031 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8032 cnt++;
8033 }
8034 }
8035 }
8036
8037 if (cnt == 0) {
8038 *errorp = ENOENT;
8039 return (NULL);
8040 }
8041
8042 /* send this to the userland, one at a time. */
8043 m = NULL;
8044 LIST_FOREACH(sah, &sahtree, chain) {
8045 if (req_satype != SADB_SATYPE_UNSPEC &&
8046 proto != sah->saidx.proto)
8047 continue;
8048
8049 /* map proto to satype */
8050 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8051 m_freem(m);
8052 *errorp = EINVAL;
8053 return (NULL);
8054 }
8055
8056 for (stateidx = 0;
8057 stateidx < _ARRAYLEN(saorder_state_any);
8058 stateidx++) {
8059 state = saorder_state_any[stateidx];
8060 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8061 n = key_setdumpsa(sav, SADB_DUMP, satype,
8062 --cnt, pid);
8063 if (!n) {
8064 m_freem(m);
8065 *errorp = ENOBUFS;
8066 return (NULL);
8067 }
8068
8069 if (!m)
8070 m = n;
8071 else
8072 m_cat(m, n);
8073 }
8074 }
8075 }
8076
8077 if (!m) {
8078 *errorp = EINVAL;
8079 return (NULL);
8080 }
8081
8082 if ((m->m_flags & M_PKTHDR) != 0) {
8083 m->m_pkthdr.len = 0;
8084 for (n = m; n; n = n->m_next)
8085 m->m_pkthdr.len += n->m_len;
8086 }
8087
8088 *errorp = 0;
8089 return (m);
8090 }
8091
8092 static struct mbuf *
8093 key_setspddump(int *errorp, pid_t pid)
8094 {
8095 struct secpolicy *sp;
8096 int cnt;
8097 u_int dir;
8098 struct mbuf *m, *n;
8099
8100 /* search SPD entry and get buffer size. */
8101 cnt = 0;
8102 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8103 LIST_FOREACH(sp, &sptree[dir], chain) {
8104 cnt++;
8105 }
8106 }
8107
8108 if (cnt == 0) {
8109 *errorp = ENOENT;
8110 return (NULL);
8111 }
8112
8113 m = NULL;
8114 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8115 LIST_FOREACH(sp, &sptree[dir], chain) {
8116 --cnt;
8117 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8118
8119 if (!n) {
8120 *errorp = ENOBUFS;
8121 m_freem(m);
8122 return (NULL);
8123 }
8124 if (!m)
8125 m = n;
8126 else {
8127 m->m_pkthdr.len += n->m_pkthdr.len;
8128 m_cat(m, n);
8129 }
8130 }
8131 }
8132
8133 *errorp = 0;
8134 return (m);
8135 }
8136
8137 int
8138 key_get_used(void) {
8139 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8140 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8141 }
8142
8143 void
8144 key_update_used(void)
8145 {
8146 switch (ipsec_enabled) {
8147 default:
8148 case 0:
8149 #ifdef notyet
8150 /* XXX: racy */
8151 ipsec_used = 0;
8152 #endif
8153 break;
8154 case 1:
8155 #ifndef notyet
8156 /* XXX: racy */
8157 if (!ipsec_used)
8158 #endif
8159 ipsec_used = key_get_used();
8160 break;
8161 case 2:
8162 ipsec_used = 1;
8163 break;
8164 }
8165 }
8166
8167 static int
8168 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8169 {
8170 struct mbuf *m, *n;
8171 int err2 = 0;
8172 char *p, *ep;
8173 size_t len;
8174 int s, error;
8175
8176 if (newp)
8177 return (EPERM);
8178 if (namelen != 1)
8179 return (EINVAL);
8180
8181 s = splsoftnet();
8182 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8183 splx(s);
8184 if (!m)
8185 return (error);
8186 if (!oldp)
8187 *oldlenp = m->m_pkthdr.len;
8188 else {
8189 p = oldp;
8190 if (*oldlenp < m->m_pkthdr.len) {
8191 err2 = ENOMEM;
8192 ep = p + *oldlenp;
8193 } else {
8194 *oldlenp = m->m_pkthdr.len;
8195 ep = p + m->m_pkthdr.len;
8196 }
8197 for (n = m; n; n = n->m_next) {
8198 len = (ep - p < n->m_len) ?
8199 ep - p : n->m_len;
8200 error = copyout(mtod(n, const void *), p, len);
8201 p += len;
8202 if (error)
8203 break;
8204 }
8205 if (error == 0)
8206 error = err2;
8207 }
8208 m_freem(m);
8209
8210 return (error);
8211 }
8212
8213 static int
8214 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8215 {
8216 struct mbuf *m, *n;
8217 int err2 = 0;
8218 char *p, *ep;
8219 size_t len;
8220 int s, error;
8221
8222 if (newp)
8223 return (EPERM);
8224 if (namelen != 0)
8225 return (EINVAL);
8226
8227 s = splsoftnet();
8228 m = key_setspddump(&error, l->l_proc->p_pid);
8229 splx(s);
8230 if (!m)
8231 return (error);
8232 if (!oldp)
8233 *oldlenp = m->m_pkthdr.len;
8234 else {
8235 p = oldp;
8236 if (*oldlenp < m->m_pkthdr.len) {
8237 err2 = ENOMEM;
8238 ep = p + *oldlenp;
8239 } else {
8240 *oldlenp = m->m_pkthdr.len;
8241 ep = p + m->m_pkthdr.len;
8242 }
8243 for (n = m; n; n = n->m_next) {
8244 len = (ep - p < n->m_len) ?
8245 ep - p : n->m_len;
8246 error = copyout(mtod(n, const void *), p, len);
8247 p += len;
8248 if (error)
8249 break;
8250 }
8251 if (error == 0)
8252 error = err2;
8253 }
8254 m_freem(m);
8255
8256 return (error);
8257 }
8258
8259 /*
8260 * Create sysctl tree for native IPSEC key knobs, originally
8261 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8262 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8263 * and in any case the part of our sysctl namespace used for dumping the
8264 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8265 * namespace, for API reasons.
8266 *
8267 * Pending a consensus on the right way to fix this, add a level of
8268 * indirection in how we number the `native' IPSEC key nodes;
8269 * and (as requested by Andrew Brown) move registration of the
8270 * KAME-compatible names to a separate function.
8271 */
8272 #if 0
8273 # define IPSEC_PFKEY PF_KEY_V2
8274 # define IPSEC_PFKEY_NAME "keyv2"
8275 #else
8276 # define IPSEC_PFKEY PF_KEY
8277 # define IPSEC_PFKEY_NAME "key"
8278 #endif
8279
8280 static int
8281 sysctl_net_key_stats(SYSCTLFN_ARGS)
8282 {
8283
8284 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8285 }
8286
8287 static void
8288 sysctl_net_keyv2_setup(struct sysctllog **clog)
8289 {
8290
8291 sysctl_createv(clog, 0, NULL, NULL,
8292 CTLFLAG_PERMANENT,
8293 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8294 NULL, 0, NULL, 0,
8295 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8296
8297 sysctl_createv(clog, 0, NULL, NULL,
8298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8299 CTLTYPE_INT, "debug", NULL,
8300 NULL, 0, &key_debug_level, 0,
8301 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8302 sysctl_createv(clog, 0, NULL, NULL,
8303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8304 CTLTYPE_INT, "spi_try", NULL,
8305 NULL, 0, &key_spi_trycnt, 0,
8306 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8307 sysctl_createv(clog, 0, NULL, NULL,
8308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8309 CTLTYPE_INT, "spi_min_value", NULL,
8310 NULL, 0, &key_spi_minval, 0,
8311 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8312 sysctl_createv(clog, 0, NULL, NULL,
8313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8314 CTLTYPE_INT, "spi_max_value", NULL,
8315 NULL, 0, &key_spi_maxval, 0,
8316 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8317 sysctl_createv(clog, 0, NULL, NULL,
8318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8319 CTLTYPE_INT, "random_int", NULL,
8320 NULL, 0, &key_int_random, 0,
8321 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8322 sysctl_createv(clog, 0, NULL, NULL,
8323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8324 CTLTYPE_INT, "larval_lifetime", NULL,
8325 NULL, 0, &key_larval_lifetime, 0,
8326 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8327 sysctl_createv(clog, 0, NULL, NULL,
8328 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8329 CTLTYPE_INT, "blockacq_count", NULL,
8330 NULL, 0, &key_blockacq_count, 0,
8331 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8332 sysctl_createv(clog, 0, NULL, NULL,
8333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8334 CTLTYPE_INT, "blockacq_lifetime", NULL,
8335 NULL, 0, &key_blockacq_lifetime, 0,
8336 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8337 sysctl_createv(clog, 0, NULL, NULL,
8338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8339 CTLTYPE_INT, "esp_keymin", NULL,
8340 NULL, 0, &ipsec_esp_keymin, 0,
8341 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8342 sysctl_createv(clog, 0, NULL, NULL,
8343 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8344 CTLTYPE_INT, "prefered_oldsa", NULL,
8345 NULL, 0, &key_prefered_oldsa, 0,
8346 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8347 sysctl_createv(clog, 0, NULL, NULL,
8348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8349 CTLTYPE_INT, "esp_auth", NULL,
8350 NULL, 0, &ipsec_esp_auth, 0,
8351 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8352 sysctl_createv(clog, 0, NULL, NULL,
8353 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8354 CTLTYPE_INT, "ah_keymin", NULL,
8355 NULL, 0, &ipsec_ah_keymin, 0,
8356 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8357 sysctl_createv(clog, 0, NULL, NULL,
8358 CTLFLAG_PERMANENT,
8359 CTLTYPE_STRUCT, "stats",
8360 SYSCTL_DESCR("PF_KEY statistics"),
8361 sysctl_net_key_stats, 0, NULL, 0,
8362 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8363 }
8364
8365 /*
8366 * Register sysctl names used by setkey(8). For historical reasons,
8367 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8368 * for both IPSEC and KAME IPSEC.
8369 */
8370 static void
8371 sysctl_net_key_compat_setup(struct sysctllog **clog)
8372 {
8373
8374 sysctl_createv(clog, 0, NULL, NULL,
8375 CTLFLAG_PERMANENT,
8376 CTLTYPE_NODE, "key", NULL,
8377 NULL, 0, NULL, 0,
8378 CTL_NET, PF_KEY, CTL_EOL);
8379
8380 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8381 sysctl_createv(clog, 0, NULL, NULL,
8382 CTLFLAG_PERMANENT,
8383 CTLTYPE_STRUCT, "dumpsa", NULL,
8384 sysctl_net_key_dumpsa, 0, NULL, 0,
8385 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8386 sysctl_createv(clog, 0, NULL, NULL,
8387 CTLFLAG_PERMANENT,
8388 CTLTYPE_STRUCT, "dumpsp", NULL,
8389 sysctl_net_key_dumpsp, 0, NULL, 0,
8390 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8391 }
8392