key.c revision 1.128 1 /* $NetBSD: key.c,v 1.128 2017/05/16 07:25:57 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.128 2017/05/16 07:25:57 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/malloc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sysctl.h>
59 #include <sys/errno.h>
60 #include <sys/proc.h>
61 #include <sys/queue.h>
62 #include <sys/syslog.h>
63 #include <sys/once.h>
64 #include <sys/cprng.h>
65 #include <sys/psref.h>
66 #include <sys/lwp.h>
67 #include <sys/workqueue.h>
68 #include <sys/kmem.h>
69 #include <sys/cpu.h>
70
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <net/raw_cb.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/in_var.h>
79 #ifdef INET
80 #include <netinet/ip_var.h>
81 #endif
82
83 #ifdef INET6
84 #include <netinet/ip6.h>
85 #include <netinet6/in6_var.h>
86 #include <netinet6/ip6_var.h>
87 #endif /* INET6 */
88
89 #ifdef INET
90 #include <netinet/in_pcb.h>
91 #endif
92 #ifdef INET6
93 #include <netinet6/in6_pcb.h>
94 #endif /* INET6 */
95
96 #include <net/pfkeyv2.h>
97 #include <netipsec/keydb.h>
98 #include <netipsec/key.h>
99 #include <netipsec/keysock.h>
100 #include <netipsec/key_debug.h>
101
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/ipsec_private.h>
107
108 #include <netipsec/xform.h>
109 #include <netipsec/ipcomp.h>
110
111
112 #include <net/net_osdep.h>
113
114 #define FULLMASK 0xff
115 #define _BITS(bytes) ((bytes) << 3)
116
117 #define PORT_NONE 0
118 #define PORT_LOOSE 1
119 #define PORT_STRICT 2
120
121 percpu_t *pfkeystat_percpu;
122
123 /*
124 * Note on SA reference counting:
125 * - SAs that are not in DEAD state will have (total external reference + 1)
126 * following value in reference count field. they cannot be freed and are
127 * referenced from SA header.
128 * - SAs that are in DEAD state will have (total external reference)
129 * in reference count field. they are ready to be freed. reference from
130 * SA header will be removed in key_delsav(), when the reference count
131 * field hits 0 (= no external reference other than from SA header.
132 */
133
134 u_int32_t key_debug_level = 0;
135 static u_int key_spi_trycnt = 1000;
136 static u_int32_t key_spi_minval = 0x100;
137 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
138 static u_int32_t policy_id = 0;
139 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
140 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
141 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
142 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
143 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
144
145 static u_int32_t acq_seq = 0;
146
147 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
148 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
149 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
150 /* registed list */
151 #ifndef IPSEC_NONBLOCK_ACQUIRE
152 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
153 #endif
154 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
155
156 /* search order for SAs */
157 /*
158 * This order is important because we must select the oldest SA
159 * for outbound processing. For inbound, This is not important.
160 */
161 static const u_int saorder_state_valid_prefer_old[] = {
162 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
163 };
164 static const u_int saorder_state_valid_prefer_new[] = {
165 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
166 };
167
168 static const u_int saorder_state_alive[] = {
169 /* except DEAD */
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
171 };
172 static const u_int saorder_state_any[] = {
173 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
174 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
175 };
176
177 #define SASTATE_ALIVE_FOREACH(s) \
178 for (int _i = 0; \
179 _i < __arraycount(saorder_state_alive) ? \
180 (s) = saorder_state_alive[_i], true : false; \
181 _i++)
182 #define SASTATE_ANY_FOREACH(s) \
183 for (int _i = 0; \
184 _i < __arraycount(saorder_state_any) ? \
185 (s) = saorder_state_any[_i], true : false; \
186 _i++)
187
188 static const int minsize[] = {
189 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
190 sizeof(struct sadb_sa), /* SADB_EXT_SA */
191 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
192 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
193 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
194 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
195 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
196 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
197 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
198 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
199 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
200 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
201 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
202 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
203 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
204 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
205 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
206 0, /* SADB_X_EXT_KMPRIVATE */
207 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
208 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
209 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
210 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
211 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
212 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
213 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
214 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
215 };
216 static const int maxsize[] = {
217 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
218 sizeof(struct sadb_sa), /* SADB_EXT_SA */
219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
221 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
222 0, /* SADB_EXT_ADDRESS_SRC */
223 0, /* SADB_EXT_ADDRESS_DST */
224 0, /* SADB_EXT_ADDRESS_PROXY */
225 0, /* SADB_EXT_KEY_AUTH */
226 0, /* SADB_EXT_KEY_ENCRYPT */
227 0, /* SADB_EXT_IDENTITY_SRC */
228 0, /* SADB_EXT_IDENTITY_DST */
229 0, /* SADB_EXT_SENSITIVITY */
230 0, /* SADB_EXT_PROPOSAL */
231 0, /* SADB_EXT_SUPPORTED_AUTH */
232 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
233 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
234 0, /* SADB_X_EXT_KMPRIVATE */
235 0, /* SADB_X_EXT_POLICY */
236 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
237 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
238 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
239 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
240 0, /* SADB_X_EXT_NAT_T_OAI */
241 0, /* SADB_X_EXT_NAT_T_OAR */
242 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
243 };
244
245 static int ipsec_esp_keymin = 256;
246 static int ipsec_esp_auth = 0;
247 static int ipsec_ah_keymin = 128;
248
249 #ifdef SYSCTL_DECL
250 SYSCTL_DECL(_net_key);
251 #endif
252
253 #ifdef SYSCTL_INT
254 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
255 &key_debug_level, 0, "");
256
257 /* max count of trial for the decision of spi value */
258 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
259 &key_spi_trycnt, 0, "");
260
261 /* minimum spi value to allocate automatically. */
262 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
263 &key_spi_minval, 0, "");
264
265 /* maximun spi value to allocate automatically. */
266 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
267 &key_spi_maxval, 0, "");
268
269 /* interval to initialize randseed */
270 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
271 &key_int_random, 0, "");
272
273 /* lifetime for larval SA */
274 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
275 &key_larval_lifetime, 0, "");
276
277 /* counter for blocking to send SADB_ACQUIRE to IKEd */
278 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
279 &key_blockacq_count, 0, "");
280
281 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
282 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
283 &key_blockacq_lifetime, 0, "");
284
285 /* ESP auth */
286 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
287 &ipsec_esp_auth, 0, "");
288
289 /* minimum ESP key length */
290 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
291 &ipsec_esp_keymin, 0, "");
292
293 /* minimum AH key length */
294 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
295 &ipsec_ah_keymin, 0, "");
296
297 /* perfered old SA rather than new SA */
298 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
299 &key_prefered_oldsa, 0, "");
300 #endif /* SYSCTL_INT */
301
302 #define __LIST_CHAINED(elm) \
303 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
304 #define LIST_INSERT_TAIL(head, elm, type, field) \
305 do {\
306 struct type *curelm = LIST_FIRST(head); \
307 if (curelm == NULL) {\
308 LIST_INSERT_HEAD(head, elm, field); \
309 } else { \
310 while (LIST_NEXT(curelm, field)) \
311 curelm = LIST_NEXT(curelm, field);\
312 LIST_INSERT_AFTER(curelm, elm, field);\
313 }\
314 } while (0)
315
316 #define KEY_CHKSASTATE(head, sav, name) \
317 /* do */ { \
318 if ((head) != (sav)) { \
319 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
320 (name), (head), (sav))); \
321 continue; \
322 } \
323 } /* while (0) */
324
325 #define KEY_CHKSPDIR(head, sp, name) \
326 do { \
327 if ((head) != (sp)) { \
328 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
329 "anyway continue.\n", \
330 (name), (head), (sp))); \
331 } \
332 } while (0)
333
334 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
335
336 #if 1
337 #define KMALLOC(p, t, n) \
338 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
339 #define KFREE(p) \
340 free((p), M_SECA)
341 #else
342 #define KMALLOC(p, t, n) \
343 do { \
344 ((p) = malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
345 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
346 __func__, __LINE__, (p), #t, n); \
347 } while (0)
348
349 #define KFREE(p) \
350 do { \
351 printf("%s %d: %p -> KFREE()\n", __func__, __LINE__, (p)); \
352 free((p), M_SECA); \
353 } while (0)
354 #endif
355
356 /*
357 * set parameters into secpolicyindex buffer.
358 * Must allocate secpolicyindex buffer passed to this function.
359 */
360 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
361 do { \
362 memset((idx), 0, sizeof(struct secpolicyindex)); \
363 (idx)->dir = (_dir); \
364 (idx)->prefs = (ps); \
365 (idx)->prefd = (pd); \
366 (idx)->ul_proto = (ulp); \
367 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
368 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
369 } while (0)
370
371 /*
372 * set parameters into secasindex buffer.
373 * Must allocate secasindex buffer before calling this function.
374 */
375 static int
376 key_setsecasidx (int, int, int, const struct sadb_address *,
377 const struct sadb_address *, struct secasindex *);
378
379 /* key statistics */
380 struct _keystat {
381 u_long getspi_count; /* the avarage of count to try to get new SPI */
382 } keystat;
383
384 struct sadb_msghdr {
385 struct sadb_msg *msg;
386 struct sadb_ext *ext[SADB_EXT_MAX + 1];
387 int extoff[SADB_EXT_MAX + 1];
388 int extlen[SADB_EXT_MAX + 1];
389 };
390
391 static struct secasvar *key_allocsa_policy (const struct secasindex *);
392 static void key_freesp_so (struct secpolicy **);
393 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
394 static void key_delsp (struct secpolicy *);
395 static struct secpolicy *key_getsp (const struct secpolicyindex *);
396 static struct secpolicy *key_getspbyid (u_int32_t);
397 static u_int16_t key_newreqid (void);
398 static struct mbuf *key_gather_mbuf (struct mbuf *,
399 const struct sadb_msghdr *, int, int, ...);
400 static int key_spdadd (struct socket *, struct mbuf *,
401 const struct sadb_msghdr *);
402 static u_int32_t key_getnewspid (void);
403 static int key_spddelete (struct socket *, struct mbuf *,
404 const struct sadb_msghdr *);
405 static int key_spddelete2 (struct socket *, struct mbuf *,
406 const struct sadb_msghdr *);
407 static int key_spdget (struct socket *, struct mbuf *,
408 const struct sadb_msghdr *);
409 static int key_spdflush (struct socket *, struct mbuf *,
410 const struct sadb_msghdr *);
411 static int key_spddump (struct socket *, struct mbuf *,
412 const struct sadb_msghdr *);
413 static struct mbuf * key_setspddump (int *errorp, pid_t);
414 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
415 static int key_nat_map (struct socket *, struct mbuf *,
416 const struct sadb_msghdr *);
417 static struct mbuf *key_setdumpsp (struct secpolicy *,
418 u_int8_t, u_int32_t, pid_t);
419 static u_int key_getspreqmsglen (const struct secpolicy *);
420 static int key_spdexpire (struct secpolicy *);
421 static struct secashead *key_newsah (const struct secasindex *);
422 static void key_delsah (struct secashead *);
423 static struct secasvar *key_newsav (struct mbuf *,
424 const struct sadb_msghdr *, struct secashead *, int *,
425 const char*, int);
426 #define KEY_NEWSAV(m, sadb, sah, e) \
427 key_newsav(m, sadb, sah, e, __func__, __LINE__)
428 static void key_delsav (struct secasvar *);
429 static struct secashead *key_getsah (const struct secasindex *);
430 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
431 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
432 static int key_setsaval (struct secasvar *, struct mbuf *,
433 const struct sadb_msghdr *);
434 static int key_mature (struct secasvar *);
435 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
436 u_int8_t, u_int32_t, u_int32_t);
437 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
438 static struct mbuf *key_setsadbxtype (u_int16_t);
439 static struct mbuf *key_setsadbxfrag (u_int16_t);
440 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
441 static int key_checksalen (const union sockaddr_union *);
442 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
443 u_int32_t, pid_t, u_int16_t);
444 static struct mbuf *key_setsadbsa (struct secasvar *);
445 static struct mbuf *key_setsadbaddr (u_int16_t,
446 const struct sockaddr *, u_int8_t, u_int16_t);
447 #if 0
448 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
449 int, u_int64_t);
450 #endif
451 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
452 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
453 u_int32_t);
454 static void *key_newbuf (const void *, u_int);
455 #ifdef INET6
456 static int key_ismyaddr6 (const struct sockaddr_in6 *);
457 #endif
458
459 static void sysctl_net_keyv2_setup(struct sysctllog **);
460 static void sysctl_net_key_compat_setup(struct sysctllog **);
461
462 /* flags for key_cmpsaidx() */
463 #define CMP_HEAD 1 /* protocol, addresses. */
464 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
465 #define CMP_REQID 3 /* additionally HEAD, reaid. */
466 #define CMP_EXACTLY 4 /* all elements. */
467 static int key_cmpsaidx
468 (const struct secasindex *, const struct secasindex *, int);
469
470 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
471 static int key_bbcmp (const void *, const void *, u_int);
472 static u_int16_t key_satype2proto (u_int8_t);
473 static u_int8_t key_proto2satype (u_int16_t);
474
475 static int key_getspi (struct socket *, struct mbuf *,
476 const struct sadb_msghdr *);
477 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
478 const struct secasindex *);
479 static int key_handle_natt_info (struct secasvar *,
480 const struct sadb_msghdr *);
481 static int key_set_natt_ports (union sockaddr_union *,
482 union sockaddr_union *,
483 const struct sadb_msghdr *);
484 static int key_update (struct socket *, struct mbuf *,
485 const struct sadb_msghdr *);
486 #ifdef IPSEC_DOSEQCHECK
487 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
488 #endif
489 static int key_add (struct socket *, struct mbuf *,
490 const struct sadb_msghdr *);
491 static int key_setident (struct secashead *, struct mbuf *,
492 const struct sadb_msghdr *);
493 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
494 const struct sadb_msghdr *);
495 static int key_delete (struct socket *, struct mbuf *,
496 const struct sadb_msghdr *);
497 static int key_get (struct socket *, struct mbuf *,
498 const struct sadb_msghdr *);
499
500 static void key_getcomb_setlifetime (struct sadb_comb *);
501 static struct mbuf *key_getcomb_esp (void);
502 static struct mbuf *key_getcomb_ah (void);
503 static struct mbuf *key_getcomb_ipcomp (void);
504 static struct mbuf *key_getprop (const struct secasindex *);
505
506 static int key_acquire (const struct secasindex *, struct secpolicy *);
507 #ifndef IPSEC_NONBLOCK_ACQUIRE
508 static struct secacq *key_newacq (const struct secasindex *);
509 static struct secacq *key_getacq (const struct secasindex *);
510 static struct secacq *key_getacqbyseq (u_int32_t);
511 #endif
512 static struct secspacq *key_newspacq (const struct secpolicyindex *);
513 static struct secspacq *key_getspacq (const struct secpolicyindex *);
514 static int key_acquire2 (struct socket *, struct mbuf *,
515 const struct sadb_msghdr *);
516 static int key_register (struct socket *, struct mbuf *,
517 const struct sadb_msghdr *);
518 static int key_expire (struct secasvar *);
519 static int key_flush (struct socket *, struct mbuf *,
520 const struct sadb_msghdr *);
521 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
522 int *lenp, pid_t pid);
523 static int key_dump (struct socket *, struct mbuf *,
524 const struct sadb_msghdr *);
525 static int key_promisc (struct socket *, struct mbuf *,
526 const struct sadb_msghdr *);
527 static int key_senderror (struct socket *, struct mbuf *, int);
528 static int key_validate_ext (const struct sadb_ext *, int);
529 static int key_align (struct mbuf *, struct sadb_msghdr *);
530 #if 0
531 static const char *key_getfqdn (void);
532 static const char *key_getuserfqdn (void);
533 #endif
534 static void key_sa_chgstate (struct secasvar *, u_int8_t);
535 static inline void key_sp_dead (struct secpolicy *);
536 static void key_sp_unlink (struct secpolicy *sp);
537
538 static struct mbuf *key_alloc_mbuf (int);
539
540 static void key_timehandler(void *);
541 static void key_timehandler_work(struct work *, void *);
542 static struct callout key_timehandler_ch;
543 static struct workqueue *key_timehandler_wq;
544 static struct work key_timehandler_wk;
545
546 #ifdef IPSEC_REF_DEBUG
547 #define REFLOG(label, p, where, tag) \
548 ipseclog((LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
549 (where), (tag), (p)->refcnt, (p)))
550 #else
551 #define REFLOG(label, p, where, tag) do {} while (0)
552 #endif
553
554 #define SA_ADDREF(p) do { \
555 (p)->refcnt++; \
556 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
557 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
558 } while (0)
559 #define SA_ADDREF2(p, where, tag) do { \
560 (p)->refcnt++; \
561 REFLOG("SA_ADDREF", (p), (where), (tag)); \
562 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
563 } while (0)
564 #define SA_DELREF(p) do { \
565 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
566 (p)->refcnt--; \
567 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
568 } while (0)
569 #define SA_DELREF2(p, where, tag) do { \
570 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
571 (p)->refcnt--; \
572 REFLOG("SA_DELREF", (p), (where), (tag)); \
573 } while (0)
574
575 #define SP_ADDREF(p) do { \
576 (p)->refcnt++; \
577 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
578 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
579 } while (0)
580 #define SP_ADDREF2(p, where, tag) do { \
581 (p)->refcnt++; \
582 REFLOG("SP_ADDREF", (p), (where), (tag)); \
583 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
584 } while (0)
585 #define SP_DELREF(p) do { \
586 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
587 (p)->refcnt--; \
588 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
589 } while (0)
590 #define SP_DELREF2(p, where, tag) do { \
591 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
592 (p)->refcnt--; \
593 REFLOG("SP_DELREF", (p), (where), (tag)); \
594 } while (0)
595
596
597 static inline void
598 key_sp_dead(struct secpolicy *sp)
599 {
600
601 /* mark the SP dead */
602 sp->state = IPSEC_SPSTATE_DEAD;
603 }
604
605 static void
606 key_sp_unlink(struct secpolicy *sp)
607 {
608
609 /* remove from SP index */
610 if (__LIST_CHAINED(sp)) {
611 LIST_REMOVE(sp, chain);
612 /* Release refcount held just for being on chain */
613 KEY_FREESP(&sp);
614 }
615 }
616
617
618 /*
619 * Return 0 when there are known to be no SP's for the specified
620 * direction. Otherwise return 1. This is used by IPsec code
621 * to optimize performance.
622 */
623 int
624 key_havesp(u_int dir)
625 {
626 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
627 !LIST_EMPTY(&sptree[dir]) : 1);
628 }
629
630 /* %%% IPsec policy management */
631 /*
632 * allocating a SP for OUTBOUND or INBOUND packet.
633 * Must call key_freesp() later.
634 * OUT: NULL: not found
635 * others: found and return the pointer.
636 */
637 struct secpolicy *
638 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
639 {
640 struct secpolicy *sp;
641 int s;
642
643 KASSERT(spidx != NULL);
644 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
645
646 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
647
648 /* get a SP entry */
649 s = splsoftnet(); /*called from softclock()*/
650 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
651 printf("*** objects\n");
652 kdebug_secpolicyindex(spidx);
653 }
654
655 LIST_FOREACH(sp, &sptree[dir], chain) {
656 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
657 printf("*** in SPD\n");
658 kdebug_secpolicyindex(&sp->spidx);
659 }
660
661 if (sp->state == IPSEC_SPSTATE_DEAD)
662 continue;
663 if (key_cmpspidx_withmask(&sp->spidx, spidx))
664 goto found;
665 }
666 sp = NULL;
667 found:
668 if (sp) {
669 /* sanity check */
670 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
671
672 /* found a SPD entry */
673 sp->lastused = time_uptime;
674 SP_ADDREF2(sp, where, tag);
675 }
676 splx(s);
677
678 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
679 "DP return SP:%p (ID=%u) refcnt %u\n",
680 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
681 return sp;
682 }
683
684 /*
685 * allocating a SP for OUTBOUND or INBOUND packet.
686 * Must call key_freesp() later.
687 * OUT: NULL: not found
688 * others: found and return the pointer.
689 */
690 struct secpolicy *
691 key_allocsp2(u_int32_t spi,
692 const union sockaddr_union *dst,
693 u_int8_t proto,
694 u_int dir,
695 const char* where, int tag)
696 {
697 struct secpolicy *sp;
698 int s;
699
700 KASSERT(dst != NULL);
701 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
702
703 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
704
705 /* get a SP entry */
706 s = splsoftnet(); /*called from softclock()*/
707 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
708 printf("*** objects\n");
709 printf("spi %u proto %u dir %u\n", spi, proto, dir);
710 kdebug_sockaddr(&dst->sa);
711 }
712
713 LIST_FOREACH(sp, &sptree[dir], chain) {
714 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
715 printf("*** in SPD\n");
716 kdebug_secpolicyindex(&sp->spidx);
717 }
718
719 if (sp->state == IPSEC_SPSTATE_DEAD)
720 continue;
721 /* compare simple values, then dst address */
722 if (sp->spidx.ul_proto != proto)
723 continue;
724 /* NB: spi's must exist and match */
725 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
726 continue;
727 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT) == 0)
728 goto found;
729 }
730 sp = NULL;
731 found:
732 if (sp) {
733 /* sanity check */
734 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
735
736 /* found a SPD entry */
737 sp->lastused = time_uptime;
738 SP_ADDREF2(sp, where, tag);
739 }
740 splx(s);
741
742 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
743 "DP return SP:%p (ID=%u) refcnt %u\n",
744 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
745 return sp;
746 }
747
748 /*
749 * return a policy that matches this particular inbound packet.
750 * XXX slow
751 */
752 struct secpolicy *
753 key_gettunnel(const struct sockaddr *osrc,
754 const struct sockaddr *odst,
755 const struct sockaddr *isrc,
756 const struct sockaddr *idst,
757 const char* where, int tag)
758 {
759 struct secpolicy *sp;
760 const int dir = IPSEC_DIR_INBOUND;
761 int s;
762 struct ipsecrequest *r1, *r2, *p;
763 struct secpolicyindex spidx;
764
765 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
766
767 if (isrc->sa_family != idst->sa_family) {
768 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
769 isrc->sa_family, idst->sa_family));
770 sp = NULL;
771 goto done;
772 }
773
774 s = splsoftnet(); /*called from softclock()*/
775 LIST_FOREACH(sp, &sptree[dir], chain) {
776 if (sp->state == IPSEC_SPSTATE_DEAD)
777 continue;
778
779 r1 = r2 = NULL;
780 for (p = sp->req; p; p = p->next) {
781 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
782 continue;
783
784 r1 = r2;
785 r2 = p;
786
787 if (!r1) {
788 /* here we look at address matches only */
789 spidx = sp->spidx;
790 if (isrc->sa_len > sizeof(spidx.src) ||
791 idst->sa_len > sizeof(spidx.dst))
792 continue;
793 memcpy(&spidx.src, isrc, isrc->sa_len);
794 memcpy(&spidx.dst, idst, idst->sa_len);
795 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
796 continue;
797 } else {
798 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, PORT_NONE) ||
799 key_sockaddrcmp(&r1->saidx.dst.sa, idst, PORT_NONE))
800 continue;
801 }
802
803 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, PORT_NONE) ||
804 key_sockaddrcmp(&r2->saidx.dst.sa, odst, PORT_NONE))
805 continue;
806
807 goto found;
808 }
809 }
810 sp = NULL;
811 found:
812 if (sp) {
813 sp->lastused = time_uptime;
814 SP_ADDREF2(sp, where, tag);
815 }
816 splx(s);
817 done:
818 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
819 "DP return SP:%p (ID=%u) refcnt %u\n",
820 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
821 return sp;
822 }
823
824 /*
825 * allocating an SA entry for an *OUTBOUND* packet.
826 * checking each request entries in SP, and acquire an SA if need.
827 * OUT: 0: there are valid requests.
828 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
829 */
830 int
831 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
832 {
833 u_int level;
834 int error;
835
836 KASSERT(isr != NULL);
837 KASSERT(saidx != NULL);
838 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
839 saidx->mode == IPSEC_MODE_TUNNEL,
840 "unexpected policy %u", saidx->mode);
841
842 /* get current level */
843 level = ipsec_get_reqlevel(isr);
844
845 /*
846 * XXX guard against protocol callbacks from the crypto
847 * thread as they reference ipsecrequest.sav which we
848 * temporarily null out below. Need to rethink how we
849 * handle bundled SA's in the callback thread.
850 */
851 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
852 #if 0
853 /*
854 * We do allocate new SA only if the state of SA in the holder is
855 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
856 */
857 if (isr->sav != NULL) {
858 if (isr->sav->sah == NULL)
859 panic("key_checkrequest: sah is null");
860 if (isr->sav == (struct secasvar *)LIST_FIRST(
861 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
862 KEY_FREESAV(&isr->sav);
863 isr->sav = NULL;
864 }
865 }
866 #else
867 /*
868 * we free any SA stashed in the IPsec request because a different
869 * SA may be involved each time this request is checked, either
870 * because new SAs are being configured, or this request is
871 * associated with an unconnected datagram socket, or this request
872 * is associated with a system default policy.
873 *
874 * The operation may have negative impact to performance. We may
875 * want to check cached SA carefully, rather than picking new SA
876 * every time.
877 */
878 if (isr->sav != NULL) {
879 KEY_FREESAV(&isr->sav);
880 isr->sav = NULL;
881 }
882 #endif
883
884 /*
885 * new SA allocation if no SA found.
886 * key_allocsa_policy should allocate the oldest SA available.
887 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
888 */
889 if (isr->sav == NULL)
890 isr->sav = key_allocsa_policy(saidx);
891
892 /* When there is SA. */
893 if (isr->sav != NULL) {
894 if (isr->sav->state != SADB_SASTATE_MATURE &&
895 isr->sav->state != SADB_SASTATE_DYING)
896 return EINVAL;
897 return 0;
898 }
899
900 /* there is no SA */
901 error = key_acquire(saidx, isr->sp);
902 if (error != 0) {
903 /* XXX What should I do ? */
904 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
905 "from key_acquire.\n", error));
906 return error;
907 }
908
909 if (level != IPSEC_LEVEL_REQUIRE) {
910 /* XXX sigh, the interface to this routine is botched */
911 KASSERTMSG(isr->sav == NULL, "unexpected SA");
912 return 0;
913 } else {
914 return ENOENT;
915 }
916 }
917
918 /*
919 * allocating a SA for policy entry from SAD.
920 * NOTE: searching SAD of aliving state.
921 * OUT: NULL: not found.
922 * others: found and return the pointer.
923 */
924 static struct secasvar *
925 key_allocsa_policy(const struct secasindex *saidx)
926 {
927 struct secashead *sah;
928 struct secasvar *sav;
929 u_int stateidx, state;
930 const u_int *saorder_state_valid;
931 int arraysize;
932
933 LIST_FOREACH(sah, &sahtree, chain) {
934 if (sah->state == SADB_SASTATE_DEAD)
935 continue;
936 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
937 goto found;
938 }
939
940 return NULL;
941
942 found:
943
944 /*
945 * search a valid state list for outbound packet.
946 * This search order is important.
947 */
948 if (key_prefered_oldsa) {
949 saorder_state_valid = saorder_state_valid_prefer_old;
950 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
951 } else {
952 saorder_state_valid = saorder_state_valid_prefer_new;
953 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
954 }
955
956 /* search valid state */
957 for (stateidx = 0;
958 stateidx < arraysize;
959 stateidx++) {
960
961 state = saorder_state_valid[stateidx];
962
963 sav = key_do_allocsa_policy(sah, state);
964 if (sav != NULL)
965 return sav;
966 }
967
968 return NULL;
969 }
970
971 /*
972 * searching SAD with direction, protocol, mode and state.
973 * called by key_allocsa_policy().
974 * OUT:
975 * NULL : not found
976 * others : found, pointer to a SA.
977 */
978 static struct secasvar *
979 key_do_allocsa_policy(struct secashead *sah, u_int state)
980 {
981 struct secasvar *sav, *candidate, *d;
982
983 /* initilize */
984 candidate = NULL;
985
986 LIST_FOREACH(sav, &sah->savtree[state], chain) {
987 /* sanity check */
988 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
989
990 /* initialize */
991 if (candidate == NULL) {
992 candidate = sav;
993 continue;
994 }
995
996 /* Which SA is the better ? */
997
998 /* sanity check 2 */
999 KASSERT(candidate->lft_c != NULL);
1000 KASSERT(sav->lft_c != NULL);
1001
1002 /* What the best method is to compare ? */
1003 if (key_prefered_oldsa) {
1004 if (candidate->lft_c->sadb_lifetime_addtime >
1005 sav->lft_c->sadb_lifetime_addtime) {
1006 candidate = sav;
1007 }
1008 continue;
1009 /*NOTREACHED*/
1010 }
1011
1012 /* prefered new sa rather than old sa */
1013 if (candidate->lft_c->sadb_lifetime_addtime <
1014 sav->lft_c->sadb_lifetime_addtime) {
1015 d = candidate;
1016 candidate = sav;
1017 } else
1018 d = sav;
1019
1020 /*
1021 * prepared to delete the SA when there is more
1022 * suitable candidate and the lifetime of the SA is not
1023 * permanent.
1024 */
1025 if (d->lft_c->sadb_lifetime_addtime != 0) {
1026 struct mbuf *m, *result = 0;
1027 uint8_t satype;
1028
1029 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1030
1031 KASSERT(d->refcnt > 0);
1032
1033 satype = key_proto2satype(d->sah->saidx.proto);
1034 if (satype == 0)
1035 goto msgfail;
1036
1037 m = key_setsadbmsg(SADB_DELETE, 0,
1038 satype, 0, 0, d->refcnt - 1);
1039 if (!m)
1040 goto msgfail;
1041 result = m;
1042
1043 /* set sadb_address for saidx's. */
1044 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1045 &d->sah->saidx.src.sa,
1046 d->sah->saidx.src.sa.sa_len << 3,
1047 IPSEC_ULPROTO_ANY);
1048 if (!m)
1049 goto msgfail;
1050 m_cat(result, m);
1051
1052 /* set sadb_address for saidx's. */
1053 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1054 &d->sah->saidx.src.sa,
1055 d->sah->saidx.src.sa.sa_len << 3,
1056 IPSEC_ULPROTO_ANY);
1057 if (!m)
1058 goto msgfail;
1059 m_cat(result, m);
1060
1061 /* create SA extension */
1062 m = key_setsadbsa(d);
1063 if (!m)
1064 goto msgfail;
1065 m_cat(result, m);
1066
1067 if (result->m_len < sizeof(struct sadb_msg)) {
1068 result = m_pullup(result,
1069 sizeof(struct sadb_msg));
1070 if (result == NULL)
1071 goto msgfail;
1072 }
1073
1074 result->m_pkthdr.len = 0;
1075 for (m = result; m; m = m->m_next)
1076 result->m_pkthdr.len += m->m_len;
1077 mtod(result, struct sadb_msg *)->sadb_msg_len =
1078 PFKEY_UNIT64(result->m_pkthdr.len);
1079
1080 key_sendup_mbuf(NULL, result,
1081 KEY_SENDUP_REGISTERED);
1082 result = 0;
1083 msgfail:
1084 if (result)
1085 m_freem(result);
1086 KEY_FREESAV(&d);
1087 }
1088 }
1089
1090 if (candidate) {
1091 SA_ADDREF(candidate);
1092 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1093 "DP cause refcnt++:%d SA:%p\n",
1094 candidate->refcnt, candidate);
1095 }
1096 return candidate;
1097 }
1098
1099 /*
1100 * allocating a usable SA entry for a *INBOUND* packet.
1101 * Must call key_freesav() later.
1102 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1103 * NULL: not found, or error occurred.
1104 *
1105 * In the comparison, no source address is used--for RFC2401 conformance.
1106 * To quote, from section 4.1:
1107 * A security association is uniquely identified by a triple consisting
1108 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1109 * security protocol (AH or ESP) identifier.
1110 * Note that, however, we do need to keep source address in IPsec SA.
1111 * IKE specification and PF_KEY specification do assume that we
1112 * keep source address in IPsec SA. We see a tricky situation here.
1113 *
1114 * sport and dport are used for NAT-T. network order is always used.
1115 */
1116 struct secasvar *
1117 key_allocsa(
1118 const union sockaddr_union *dst,
1119 u_int proto,
1120 u_int32_t spi,
1121 u_int16_t sport,
1122 u_int16_t dport,
1123 const char* where, int tag)
1124 {
1125 struct secashead *sah;
1126 struct secasvar *sav;
1127 u_int stateidx, state;
1128 const u_int *saorder_state_valid;
1129 int arraysize, chkport;
1130 int s;
1131
1132 int must_check_spi = 1;
1133 int must_check_alg = 0;
1134 u_int16_t cpi = 0;
1135 u_int8_t algo = 0;
1136
1137 if ((sport != 0) && (dport != 0))
1138 chkport = PORT_STRICT;
1139 else
1140 chkport = PORT_NONE;
1141
1142 KASSERT(dst != NULL);
1143
1144 /*
1145 * XXX IPCOMP case
1146 * We use cpi to define spi here. In the case where cpi <=
1147 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1148 * the real spi. In this case, don't check the spi but check the
1149 * algorithm
1150 */
1151
1152 if (proto == IPPROTO_IPCOMP) {
1153 u_int32_t tmp;
1154 tmp = ntohl(spi);
1155 cpi = (u_int16_t) tmp;
1156 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1157 algo = (u_int8_t) cpi;
1158 must_check_spi = 0;
1159 must_check_alg = 1;
1160 }
1161 }
1162 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1163 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1164 where, tag, must_check_spi, must_check_alg);
1165
1166
1167 /*
1168 * searching SAD.
1169 * XXX: to be checked internal IP header somewhere. Also when
1170 * IPsec tunnel packet is received. But ESP tunnel mode is
1171 * encrypted so we can't check internal IP header.
1172 */
1173 s = splsoftnet(); /*called from softclock()*/
1174 if (key_prefered_oldsa) {
1175 saorder_state_valid = saorder_state_valid_prefer_old;
1176 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1177 } else {
1178 saorder_state_valid = saorder_state_valid_prefer_new;
1179 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1180 }
1181 LIST_FOREACH(sah, &sahtree, chain) {
1182 /* search valid state */
1183 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1184 state = saorder_state_valid[stateidx];
1185 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1186 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1187 "try match spi %#x, %#x\n",
1188 ntohl(spi), ntohl(sav->spi));
1189 /* sanity check */
1190 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1191 /* do not return entries w/ unusable state */
1192 if (sav->state != SADB_SASTATE_MATURE &&
1193 sav->state != SADB_SASTATE_DYING) {
1194 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1195 "bad state %d\n", sav->state);
1196 continue;
1197 }
1198 if (proto != sav->sah->saidx.proto) {
1199 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1200 "proto fail %d != %d\n",
1201 proto, sav->sah->saidx.proto);
1202 continue;
1203 }
1204 if (must_check_spi && spi != sav->spi) {
1205 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1206 "spi fail %#x != %#x\n",
1207 ntohl(spi), ntohl(sav->spi));
1208 continue;
1209 }
1210 /* XXX only on the ipcomp case */
1211 if (must_check_alg && algo != sav->alg_comp) {
1212 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1213 "algo fail %d != %d\n",
1214 algo, sav->alg_comp);
1215 continue;
1216 }
1217
1218 #if 0 /* don't check src */
1219 /* Fix port in src->sa */
1220
1221 /* check src address */
1222 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE) != 0)
1223 continue;
1224 #endif
1225 /* fix port of dst address XXX*/
1226 key_porttosaddr(__UNCONST(dst), dport);
1227 /* check dst address */
1228 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1229 continue;
1230 SA_ADDREF2(sav, where, tag);
1231 goto done;
1232 }
1233 }
1234 }
1235 sav = NULL;
1236 done:
1237 splx(s);
1238
1239 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1240 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1241 return sav;
1242 }
1243
1244 /*
1245 * Must be called after calling key_allocsp().
1246 * For both the packet without socket and key_freeso().
1247 */
1248 void
1249 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1250 {
1251 struct secpolicy *sp = *spp;
1252
1253 KASSERT(sp != NULL);
1254
1255 SP_DELREF2(sp, where, tag);
1256
1257 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1258 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1259 sp, sp->id, where, tag, sp->refcnt);
1260
1261 if (sp->refcnt == 0) {
1262 *spp = NULL;
1263 key_delsp(sp);
1264 }
1265 }
1266
1267 /*
1268 * Must be called after calling key_allocsp().
1269 * For the packet with socket.
1270 */
1271 void
1272 key_freeso(struct socket *so)
1273 {
1274 /* sanity check */
1275 KASSERT(so != NULL);
1276
1277 switch (so->so_proto->pr_domain->dom_family) {
1278 #ifdef INET
1279 case PF_INET:
1280 {
1281 struct inpcb *pcb = sotoinpcb(so);
1282
1283 /* Does it have a PCB ? */
1284 if (pcb == NULL)
1285 return;
1286
1287 struct inpcbpolicy *sp = pcb->inp_sp;
1288 key_freesp_so(&sp->sp_in);
1289 key_freesp_so(&sp->sp_out);
1290 }
1291 break;
1292 #endif
1293 #ifdef INET6
1294 case PF_INET6:
1295 {
1296 #ifdef HAVE_NRL_INPCB
1297 struct inpcb *pcb = sotoinpcb(so);
1298 struct inpcbpolicy *sp = pcb->inp_sp;
1299
1300 /* Does it have a PCB ? */
1301 if (pcb == NULL)
1302 return;
1303 key_freesp_so(&sp->sp_in);
1304 key_freesp_so(&sp->sp_out);
1305 #else
1306 struct in6pcb *pcb = sotoin6pcb(so);
1307
1308 /* Does it have a PCB ? */
1309 if (pcb == NULL)
1310 return;
1311 key_freesp_so(&pcb->in6p_sp->sp_in);
1312 key_freesp_so(&pcb->in6p_sp->sp_out);
1313 #endif
1314 }
1315 break;
1316 #endif /* INET6 */
1317 default:
1318 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1319 so->so_proto->pr_domain->dom_family));
1320 return;
1321 }
1322 }
1323
1324 static void
1325 key_freesp_so(struct secpolicy **sp)
1326 {
1327
1328 KASSERT(sp != NULL);
1329 KASSERT(*sp != NULL);
1330
1331 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1332 (*sp)->policy == IPSEC_POLICY_BYPASS)
1333 return;
1334
1335 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1336 "invalid policy %u", (*sp)->policy);
1337 KEY_FREESP(sp);
1338 }
1339
1340 /*
1341 * Must be called after calling key_allocsa().
1342 * This function is called by key_freesp() to free some SA allocated
1343 * for a policy.
1344 */
1345 void
1346 key_freesav(struct secasvar **psav, const char* where, int tag)
1347 {
1348 struct secasvar *sav = *psav;
1349
1350 KASSERT(sav != NULL);
1351
1352 SA_DELREF2(sav, where, tag);
1353
1354 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1355 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1356 sav, (u_long)ntohl(sav->spi), where, tag, sav->refcnt);
1357
1358 if (sav->refcnt == 0) {
1359 *psav = NULL;
1360 key_delsav(sav);
1361 }
1362 }
1363
1364 /* %%% SPD management */
1365 /*
1366 * free security policy entry.
1367 */
1368 static void
1369 key_delsp(struct secpolicy *sp)
1370 {
1371 int s;
1372
1373 KASSERT(sp != NULL);
1374
1375 key_sp_dead(sp);
1376
1377 KASSERTMSG(sp->refcnt == 0,
1378 "SP with references deleted (refcnt %u)", sp->refcnt);
1379
1380 s = splsoftnet(); /*called from softclock()*/
1381
1382 {
1383 struct ipsecrequest *isr = sp->req, *nextisr;
1384
1385 while (isr != NULL) {
1386 if (isr->sav != NULL) {
1387 KEY_FREESAV(&isr->sav);
1388 isr->sav = NULL;
1389 }
1390
1391 nextisr = isr->next;
1392 kmem_intr_free(isr, sizeof(*isr));
1393 isr = nextisr;
1394 }
1395 }
1396
1397 kmem_intr_free(sp, sizeof(*sp));
1398
1399 splx(s);
1400 }
1401
1402 /*
1403 * search SPD
1404 * OUT: NULL : not found
1405 * others : found, pointer to a SP.
1406 */
1407 static struct secpolicy *
1408 key_getsp(const struct secpolicyindex *spidx)
1409 {
1410 struct secpolicy *sp;
1411
1412 KASSERT(spidx != NULL);
1413
1414 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1415 if (sp->state == IPSEC_SPSTATE_DEAD)
1416 continue;
1417 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1418 SP_ADDREF(sp);
1419 return sp;
1420 }
1421 }
1422
1423 return NULL;
1424 }
1425
1426 /*
1427 * get SP by index.
1428 * OUT: NULL : not found
1429 * others : found, pointer to a SP.
1430 */
1431 static struct secpolicy *
1432 key_getspbyid(u_int32_t id)
1433 {
1434 struct secpolicy *sp;
1435
1436 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1437 if (sp->state == IPSEC_SPSTATE_DEAD)
1438 continue;
1439 if (sp->id == id) {
1440 SP_ADDREF(sp);
1441 return sp;
1442 }
1443 }
1444
1445 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1446 if (sp->state == IPSEC_SPSTATE_DEAD)
1447 continue;
1448 if (sp->id == id) {
1449 SP_ADDREF(sp);
1450 return sp;
1451 }
1452 }
1453
1454 return NULL;
1455 }
1456
1457 struct secpolicy *
1458 key_newsp(const char* where, int tag)
1459 {
1460 struct secpolicy *newsp = NULL;
1461
1462 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1463 if (newsp != NULL)
1464 newsp->refcnt = 1;
1465
1466 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1467 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1468 return newsp;
1469 }
1470
1471 /*
1472 * create secpolicy structure from sadb_x_policy structure.
1473 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1474 * so must be set properly later.
1475 */
1476 struct secpolicy *
1477 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1478 {
1479 struct secpolicy *newsp;
1480
1481 KASSERT(!cpu_softintr_p());
1482 KASSERT(xpl0 != NULL);
1483 KASSERT(len >= sizeof(*xpl0));
1484
1485 if (len != PFKEY_EXTLEN(xpl0)) {
1486 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1487 *error = EINVAL;
1488 return NULL;
1489 }
1490
1491 if ((newsp = KEY_NEWSP()) == NULL) {
1492 *error = ENOBUFS;
1493 return NULL;
1494 }
1495
1496 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1497 newsp->policy = xpl0->sadb_x_policy_type;
1498
1499 /* check policy */
1500 switch (xpl0->sadb_x_policy_type) {
1501 case IPSEC_POLICY_DISCARD:
1502 case IPSEC_POLICY_NONE:
1503 case IPSEC_POLICY_ENTRUST:
1504 case IPSEC_POLICY_BYPASS:
1505 newsp->req = NULL;
1506 *error = 0;
1507 return newsp;
1508
1509 case IPSEC_POLICY_IPSEC:
1510 /* Continued */
1511 break;
1512 default:
1513 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1514 KEY_FREESP(&newsp);
1515 *error = EINVAL;
1516 return NULL;
1517 }
1518
1519 /* IPSEC_POLICY_IPSEC */
1520 {
1521 int tlen;
1522 const struct sadb_x_ipsecrequest *xisr;
1523 uint16_t xisr_reqid;
1524 struct ipsecrequest **p_isr = &newsp->req;
1525
1526 /* validity check */
1527 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1528 ipseclog((LOG_DEBUG,
1529 "key_msg2sp: Invalid msg length.\n"));
1530 *error = EINVAL;
1531 goto free_exit;
1532 }
1533
1534 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1535 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1536
1537 while (tlen > 0) {
1538 /* length check */
1539 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1540 ipseclog((LOG_DEBUG, "key_msg2sp: "
1541 "invalid ipsecrequest length.\n"));
1542 *error = EINVAL;
1543 goto free_exit;
1544 }
1545
1546 /* allocate request buffer */
1547 *p_isr = kmem_alloc(sizeof(**p_isr), KM_SLEEP);
1548 memset(*p_isr, 0, sizeof(**p_isr));
1549
1550 /* set values */
1551 (*p_isr)->next = NULL;
1552
1553 switch (xisr->sadb_x_ipsecrequest_proto) {
1554 case IPPROTO_ESP:
1555 case IPPROTO_AH:
1556 case IPPROTO_IPCOMP:
1557 break;
1558 default:
1559 ipseclog((LOG_DEBUG,
1560 "key_msg2sp: invalid proto type=%u\n",
1561 xisr->sadb_x_ipsecrequest_proto));
1562 *error = EPROTONOSUPPORT;
1563 goto free_exit;
1564 }
1565 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1566
1567 switch (xisr->sadb_x_ipsecrequest_mode) {
1568 case IPSEC_MODE_TRANSPORT:
1569 case IPSEC_MODE_TUNNEL:
1570 break;
1571 case IPSEC_MODE_ANY:
1572 default:
1573 ipseclog((LOG_DEBUG,
1574 "key_msg2sp: invalid mode=%u\n",
1575 xisr->sadb_x_ipsecrequest_mode));
1576 *error = EINVAL;
1577 goto free_exit;
1578 }
1579 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1580
1581 switch (xisr->sadb_x_ipsecrequest_level) {
1582 case IPSEC_LEVEL_DEFAULT:
1583 case IPSEC_LEVEL_USE:
1584 case IPSEC_LEVEL_REQUIRE:
1585 break;
1586 case IPSEC_LEVEL_UNIQUE:
1587 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1588 /* validity check */
1589 /*
1590 * If range violation of reqid, kernel will
1591 * update it, don't refuse it.
1592 */
1593 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1594 ipseclog((LOG_DEBUG,
1595 "key_msg2sp: reqid=%d range "
1596 "violation, updated by kernel.\n",
1597 xisr_reqid));
1598 xisr_reqid = 0;
1599 }
1600
1601 /* allocate new reqid id if reqid is zero. */
1602 if (xisr_reqid == 0) {
1603 u_int16_t reqid;
1604 if ((reqid = key_newreqid()) == 0) {
1605 *error = ENOBUFS;
1606 goto free_exit;
1607 }
1608 (*p_isr)->saidx.reqid = reqid;
1609 } else {
1610 /* set it for manual keying. */
1611 (*p_isr)->saidx.reqid = xisr_reqid;
1612 }
1613 break;
1614
1615 default:
1616 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1617 xisr->sadb_x_ipsecrequest_level));
1618 *error = EINVAL;
1619 goto free_exit;
1620 }
1621 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1622
1623 /* set IP addresses if there */
1624 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1625 const struct sockaddr *paddr;
1626
1627 paddr = (const struct sockaddr *)(xisr + 1);
1628
1629 /* validity check */
1630 if (paddr->sa_len
1631 > sizeof((*p_isr)->saidx.src)) {
1632 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1633 "address length.\n"));
1634 *error = EINVAL;
1635 goto free_exit;
1636 }
1637 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1638
1639 paddr = (const struct sockaddr *)((const char *)paddr
1640 + paddr->sa_len);
1641
1642 /* validity check */
1643 if (paddr->sa_len
1644 > sizeof((*p_isr)->saidx.dst)) {
1645 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1646 "address length.\n"));
1647 *error = EINVAL;
1648 goto free_exit;
1649 }
1650 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1651 }
1652
1653 (*p_isr)->sav = NULL;
1654 (*p_isr)->sp = newsp;
1655
1656 /* initialization for the next. */
1657 p_isr = &(*p_isr)->next;
1658 tlen -= xisr->sadb_x_ipsecrequest_len;
1659
1660 /* validity check */
1661 if (tlen < 0) {
1662 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1663 *error = EINVAL;
1664 goto free_exit;
1665 }
1666
1667 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1668 + xisr->sadb_x_ipsecrequest_len);
1669 }
1670 }
1671
1672 *error = 0;
1673 return newsp;
1674
1675 free_exit:
1676 KEY_FREESP(&newsp);
1677 return NULL;
1678 }
1679
1680 static u_int16_t
1681 key_newreqid(void)
1682 {
1683 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1684
1685 auto_reqid = (auto_reqid == 0xffff
1686 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1687
1688 /* XXX should be unique check */
1689
1690 return auto_reqid;
1691 }
1692
1693 /*
1694 * copy secpolicy struct to sadb_x_policy structure indicated.
1695 */
1696 struct mbuf *
1697 key_sp2msg(const struct secpolicy *sp)
1698 {
1699 struct sadb_x_policy *xpl;
1700 int tlen;
1701 char *p;
1702 struct mbuf *m;
1703
1704 KASSERT(sp != NULL);
1705
1706 tlen = key_getspreqmsglen(sp);
1707
1708 m = key_alloc_mbuf(tlen);
1709 if (!m || m->m_next) { /*XXX*/
1710 if (m)
1711 m_freem(m);
1712 return NULL;
1713 }
1714
1715 m->m_len = tlen;
1716 m->m_next = NULL;
1717 xpl = mtod(m, struct sadb_x_policy *);
1718 memset(xpl, 0, tlen);
1719
1720 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1721 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1722 xpl->sadb_x_policy_type = sp->policy;
1723 xpl->sadb_x_policy_dir = sp->spidx.dir;
1724 xpl->sadb_x_policy_id = sp->id;
1725 p = (char *)xpl + sizeof(*xpl);
1726
1727 /* if is the policy for ipsec ? */
1728 if (sp->policy == IPSEC_POLICY_IPSEC) {
1729 struct sadb_x_ipsecrequest *xisr;
1730 struct ipsecrequest *isr;
1731
1732 for (isr = sp->req; isr != NULL; isr = isr->next) {
1733
1734 xisr = (struct sadb_x_ipsecrequest *)p;
1735
1736 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1737 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1738 xisr->sadb_x_ipsecrequest_level = isr->level;
1739 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1740
1741 p += sizeof(*xisr);
1742 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1743 p += isr->saidx.src.sa.sa_len;
1744 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1745 p += isr->saidx.src.sa.sa_len;
1746
1747 xisr->sadb_x_ipsecrequest_len =
1748 PFKEY_ALIGN8(sizeof(*xisr)
1749 + isr->saidx.src.sa.sa_len
1750 + isr->saidx.dst.sa.sa_len);
1751 }
1752 }
1753
1754 return m;
1755 }
1756
1757 /* m will not be freed nor modified */
1758 static struct mbuf *
1759 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1760 int ndeep, int nitem, ...)
1761 {
1762 va_list ap;
1763 int idx;
1764 int i;
1765 struct mbuf *result = NULL, *n;
1766 int len;
1767
1768 KASSERT(m != NULL);
1769 KASSERT(mhp != NULL);
1770
1771 va_start(ap, nitem);
1772 for (i = 0; i < nitem; i++) {
1773 idx = va_arg(ap, int);
1774 if (idx < 0 || idx > SADB_EXT_MAX)
1775 goto fail;
1776 /* don't attempt to pull empty extension */
1777 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1778 continue;
1779 if (idx != SADB_EXT_RESERVED &&
1780 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1781 continue;
1782
1783 if (idx == SADB_EXT_RESERVED) {
1784 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1785 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1786 MGETHDR(n, M_DONTWAIT, MT_DATA);
1787 if (!n)
1788 goto fail;
1789 n->m_len = len;
1790 n->m_next = NULL;
1791 m_copydata(m, 0, sizeof(struct sadb_msg),
1792 mtod(n, void *));
1793 } else if (i < ndeep) {
1794 len = mhp->extlen[idx];
1795 n = key_alloc_mbuf(len);
1796 if (!n || n->m_next) { /*XXX*/
1797 if (n)
1798 m_freem(n);
1799 goto fail;
1800 }
1801 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1802 mtod(n, void *));
1803 } else {
1804 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1805 M_DONTWAIT);
1806 }
1807 if (n == NULL)
1808 goto fail;
1809
1810 if (result)
1811 m_cat(result, n);
1812 else
1813 result = n;
1814 }
1815 va_end(ap);
1816
1817 if (result && (result->m_flags & M_PKTHDR) != 0) {
1818 result->m_pkthdr.len = 0;
1819 for (n = result; n; n = n->m_next)
1820 result->m_pkthdr.len += n->m_len;
1821 }
1822
1823 return result;
1824
1825 fail:
1826 va_end(ap);
1827 m_freem(result);
1828 return NULL;
1829 }
1830
1831 /*
1832 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1833 * add an entry to SP database, when received
1834 * <base, address(SD), (lifetime(H),) policy>
1835 * from the user(?).
1836 * Adding to SP database,
1837 * and send
1838 * <base, address(SD), (lifetime(H),) policy>
1839 * to the socket which was send.
1840 *
1841 * SPDADD set a unique policy entry.
1842 * SPDSETIDX like SPDADD without a part of policy requests.
1843 * SPDUPDATE replace a unique policy entry.
1844 *
1845 * m will always be freed.
1846 */
1847 static int
1848 key_spdadd(struct socket *so, struct mbuf *m,
1849 const struct sadb_msghdr *mhp)
1850 {
1851 const struct sadb_address *src0, *dst0;
1852 const struct sadb_x_policy *xpl0;
1853 struct sadb_x_policy *xpl;
1854 const struct sadb_lifetime *lft = NULL;
1855 struct secpolicyindex spidx;
1856 struct secpolicy *newsp;
1857 int error;
1858
1859 KASSERT(!cpu_softintr_p());
1860 KASSERT(so != NULL);
1861 KASSERT(m != NULL);
1862 KASSERT(mhp != NULL);
1863 KASSERT(mhp->msg != NULL);
1864
1865 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1866 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1867 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1868 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1869 return key_senderror(so, m, EINVAL);
1870 }
1871 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1872 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1873 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1874 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1875 return key_senderror(so, m, EINVAL);
1876 }
1877 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1878 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1879 < sizeof(struct sadb_lifetime)) {
1880 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1881 return key_senderror(so, m, EINVAL);
1882 }
1883 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1884 }
1885
1886 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1887 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1888 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1889
1890 /* make secindex */
1891 /* XXX boundary check against sa_len */
1892 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1893 src0 + 1,
1894 dst0 + 1,
1895 src0->sadb_address_prefixlen,
1896 dst0->sadb_address_prefixlen,
1897 src0->sadb_address_proto,
1898 &spidx);
1899
1900 /* checking the direciton. */
1901 switch (xpl0->sadb_x_policy_dir) {
1902 case IPSEC_DIR_INBOUND:
1903 case IPSEC_DIR_OUTBOUND:
1904 break;
1905 default:
1906 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1907 mhp->msg->sadb_msg_errno = EINVAL;
1908 return 0;
1909 }
1910
1911 /* check policy */
1912 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1913 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1914 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1915 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1916 return key_senderror(so, m, EINVAL);
1917 }
1918
1919 /* policy requests are mandatory when action is ipsec. */
1920 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1921 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1922 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1923 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1924 return key_senderror(so, m, EINVAL);
1925 }
1926
1927 /*
1928 * checking there is SP already or not.
1929 * SPDUPDATE doesn't depend on whether there is a SP or not.
1930 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1931 * then error.
1932 */
1933 newsp = key_getsp(&spidx);
1934 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1935 if (newsp) {
1936 key_sp_dead(newsp);
1937 key_sp_unlink(newsp); /* XXX jrs ordering */
1938 KEY_FREESP(&newsp);
1939 newsp = NULL;
1940 }
1941 } else {
1942 if (newsp != NULL) {
1943 KEY_FREESP(&newsp);
1944 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1945 return key_senderror(so, m, EEXIST);
1946 }
1947 }
1948
1949 /* allocation new SP entry */
1950 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1951 return key_senderror(so, m, error);
1952 }
1953
1954 if ((newsp->id = key_getnewspid()) == 0) {
1955 kmem_free(newsp, sizeof(*newsp));
1956 return key_senderror(so, m, ENOBUFS);
1957 }
1958
1959 /* XXX boundary check against sa_len */
1960 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1961 src0 + 1,
1962 dst0 + 1,
1963 src0->sadb_address_prefixlen,
1964 dst0->sadb_address_prefixlen,
1965 src0->sadb_address_proto,
1966 &newsp->spidx);
1967
1968 /* sanity check on addr pair */
1969 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1970 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1971 kmem_free(newsp, sizeof(*newsp));
1972 return key_senderror(so, m, EINVAL);
1973 }
1974 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1975 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1976 kmem_free(newsp, sizeof(*newsp));
1977 return key_senderror(so, m, EINVAL);
1978 }
1979
1980 newsp->created = time_uptime;
1981 newsp->lastused = newsp->created;
1982 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1983 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1984
1985 newsp->refcnt = 1; /* do not reclaim until I say I do */
1986 newsp->state = IPSEC_SPSTATE_ALIVE;
1987 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1988
1989 /* delete the entry in spacqtree */
1990 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1991 struct secspacq *spacq;
1992 if ((spacq = key_getspacq(&spidx)) != NULL) {
1993 /* reset counter in order to deletion by timehandler. */
1994 spacq->created = time_uptime;
1995 spacq->count = 0;
1996 }
1997 }
1998
1999 /* Invalidate all cached SPD pointers in the PCBs. */
2000 ipsec_invalpcbcacheall();
2001
2002 #if defined(GATEWAY)
2003 /* Invalidate the ipflow cache, as well. */
2004 ipflow_invalidate_all(0);
2005 #ifdef INET6
2006 if (in6_present)
2007 ip6flow_invalidate_all(0);
2008 #endif /* INET6 */
2009 #endif /* GATEWAY */
2010
2011 {
2012 struct mbuf *n, *mpolicy;
2013 struct sadb_msg *newmsg;
2014 int off;
2015
2016 /* create new sadb_msg to reply. */
2017 if (lft) {
2018 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2019 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2020 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2021 } else {
2022 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2023 SADB_X_EXT_POLICY,
2024 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2025 }
2026 if (!n)
2027 return key_senderror(so, m, ENOBUFS);
2028
2029 if (n->m_len < sizeof(*newmsg)) {
2030 n = m_pullup(n, sizeof(*newmsg));
2031 if (!n)
2032 return key_senderror(so, m, ENOBUFS);
2033 }
2034 newmsg = mtod(n, struct sadb_msg *);
2035 newmsg->sadb_msg_errno = 0;
2036 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2037
2038 off = 0;
2039 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2040 sizeof(*xpl), &off);
2041 if (mpolicy == NULL) {
2042 /* n is already freed */
2043 return key_senderror(so, m, ENOBUFS);
2044 }
2045 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2046 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2047 m_freem(n);
2048 return key_senderror(so, m, EINVAL);
2049 }
2050 xpl->sadb_x_policy_id = newsp->id;
2051
2052 m_freem(m);
2053 key_update_used();
2054 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2055 }
2056 }
2057
2058 /*
2059 * get new policy id.
2060 * OUT:
2061 * 0: failure.
2062 * others: success.
2063 */
2064 static u_int32_t
2065 key_getnewspid(void)
2066 {
2067 u_int32_t newid = 0;
2068 int count = key_spi_trycnt; /* XXX */
2069 struct secpolicy *sp;
2070
2071 /* when requesting to allocate spi ranged */
2072 while (count--) {
2073 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2074
2075 if ((sp = key_getspbyid(newid)) == NULL)
2076 break;
2077
2078 KEY_FREESP(&sp);
2079 }
2080
2081 if (count == 0 || newid == 0) {
2082 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2083 return 0;
2084 }
2085
2086 return newid;
2087 }
2088
2089 /*
2090 * SADB_SPDDELETE processing
2091 * receive
2092 * <base, address(SD), policy(*)>
2093 * from the user(?), and set SADB_SASTATE_DEAD,
2094 * and send,
2095 * <base, address(SD), policy(*)>
2096 * to the ikmpd.
2097 * policy(*) including direction of policy.
2098 *
2099 * m will always be freed.
2100 */
2101 static int
2102 key_spddelete(struct socket *so, struct mbuf *m,
2103 const struct sadb_msghdr *mhp)
2104 {
2105 struct sadb_address *src0, *dst0;
2106 struct sadb_x_policy *xpl0;
2107 struct secpolicyindex spidx;
2108 struct secpolicy *sp;
2109
2110 KASSERT(so != NULL);
2111 KASSERT(m != NULL);
2112 KASSERT(mhp != NULL);
2113 KASSERT(mhp->msg != NULL);
2114
2115 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2116 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2117 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2118 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2119 return key_senderror(so, m, EINVAL);
2120 }
2121 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2122 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2123 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2124 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2125 return key_senderror(so, m, EINVAL);
2126 }
2127
2128 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2129 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2130 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2131
2132 /* make secindex */
2133 /* XXX boundary check against sa_len */
2134 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2135 src0 + 1,
2136 dst0 + 1,
2137 src0->sadb_address_prefixlen,
2138 dst0->sadb_address_prefixlen,
2139 src0->sadb_address_proto,
2140 &spidx);
2141
2142 /* checking the direciton. */
2143 switch (xpl0->sadb_x_policy_dir) {
2144 case IPSEC_DIR_INBOUND:
2145 case IPSEC_DIR_OUTBOUND:
2146 break;
2147 default:
2148 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2149 return key_senderror(so, m, EINVAL);
2150 }
2151
2152 /* Is there SP in SPD ? */
2153 if ((sp = key_getsp(&spidx)) == NULL) {
2154 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2155 return key_senderror(so, m, EINVAL);
2156 }
2157
2158 /* save policy id to buffer to be returned. */
2159 xpl0->sadb_x_policy_id = sp->id;
2160
2161 key_sp_dead(sp);
2162 key_sp_unlink(sp); /* XXX jrs ordering */
2163 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2164
2165 /* Invalidate all cached SPD pointers in the PCBs. */
2166 ipsec_invalpcbcacheall();
2167
2168 /* We're deleting policy; no need to invalidate the ipflow cache. */
2169
2170 {
2171 struct mbuf *n;
2172 struct sadb_msg *newmsg;
2173
2174 /* create new sadb_msg to reply. */
2175 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2176 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2177 if (!n)
2178 return key_senderror(so, m, ENOBUFS);
2179
2180 newmsg = mtod(n, struct sadb_msg *);
2181 newmsg->sadb_msg_errno = 0;
2182 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2183
2184 m_freem(m);
2185 key_update_used();
2186 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2187 }
2188 }
2189
2190 /*
2191 * SADB_SPDDELETE2 processing
2192 * receive
2193 * <base, policy(*)>
2194 * from the user(?), and set SADB_SASTATE_DEAD,
2195 * and send,
2196 * <base, policy(*)>
2197 * to the ikmpd.
2198 * policy(*) including direction of policy.
2199 *
2200 * m will always be freed.
2201 */
2202 static int
2203 key_spddelete2(struct socket *so, struct mbuf *m,
2204 const struct sadb_msghdr *mhp)
2205 {
2206 u_int32_t id;
2207 struct secpolicy *sp;
2208
2209 KASSERT(so != NULL);
2210 KASSERT(m != NULL);
2211 KASSERT(mhp != NULL);
2212 KASSERT(mhp->msg != NULL);
2213
2214 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2215 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2216 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2217 key_senderror(so, m, EINVAL);
2218 return 0;
2219 }
2220
2221 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2222
2223 /* Is there SP in SPD ? */
2224 if ((sp = key_getspbyid(id)) == NULL) {
2225 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2226 return key_senderror(so, m, EINVAL);
2227 }
2228
2229 key_sp_dead(sp);
2230 key_sp_unlink(sp); /* XXX jrs ordering */
2231 KEY_FREESP(&sp); /* ref gained by key_getsp */
2232 sp = NULL;
2233
2234 /* Invalidate all cached SPD pointers in the PCBs. */
2235 ipsec_invalpcbcacheall();
2236
2237 /* We're deleting policy; no need to invalidate the ipflow cache. */
2238
2239 {
2240 struct mbuf *n, *nn;
2241 struct sadb_msg *newmsg;
2242 int off, len;
2243
2244 /* create new sadb_msg to reply. */
2245 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2246
2247 if (len > MCLBYTES)
2248 return key_senderror(so, m, ENOBUFS);
2249 MGETHDR(n, M_DONTWAIT, MT_DATA);
2250 if (n && len > MHLEN) {
2251 MCLGET(n, M_DONTWAIT);
2252 if ((n->m_flags & M_EXT) == 0) {
2253 m_freem(n);
2254 n = NULL;
2255 }
2256 }
2257 if (!n)
2258 return key_senderror(so, m, ENOBUFS);
2259
2260 n->m_len = len;
2261 n->m_next = NULL;
2262 off = 0;
2263
2264 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2265 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2266
2267 KASSERTMSG(off == len, "length inconsistency");
2268
2269 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2270 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2271 if (!n->m_next) {
2272 m_freem(n);
2273 return key_senderror(so, m, ENOBUFS);
2274 }
2275
2276 n->m_pkthdr.len = 0;
2277 for (nn = n; nn; nn = nn->m_next)
2278 n->m_pkthdr.len += nn->m_len;
2279
2280 newmsg = mtod(n, struct sadb_msg *);
2281 newmsg->sadb_msg_errno = 0;
2282 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2283
2284 m_freem(m);
2285 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2286 }
2287 }
2288
2289 /*
2290 * SADB_X_GET processing
2291 * receive
2292 * <base, policy(*)>
2293 * from the user(?),
2294 * and send,
2295 * <base, address(SD), policy>
2296 * to the ikmpd.
2297 * policy(*) including direction of policy.
2298 *
2299 * m will always be freed.
2300 */
2301 static int
2302 key_spdget(struct socket *so, struct mbuf *m,
2303 const struct sadb_msghdr *mhp)
2304 {
2305 u_int32_t id;
2306 struct secpolicy *sp;
2307 struct mbuf *n;
2308
2309 KASSERT(so != NULL);
2310 KASSERT(m != NULL);
2311 KASSERT(mhp != NULL);
2312 KASSERT(mhp->msg != NULL);
2313
2314 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2315 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2316 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2317 return key_senderror(so, m, EINVAL);
2318 }
2319
2320 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2321
2322 /* Is there SP in SPD ? */
2323 if ((sp = key_getspbyid(id)) == NULL) {
2324 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2325 return key_senderror(so, m, ENOENT);
2326 }
2327
2328 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2329 mhp->msg->sadb_msg_pid);
2330 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2331 if (n != NULL) {
2332 m_freem(m);
2333 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2334 } else
2335 return key_senderror(so, m, ENOBUFS);
2336 }
2337
2338 /*
2339 * SADB_X_SPDACQUIRE processing.
2340 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2341 * send
2342 * <base, policy(*)>
2343 * to KMD, and expect to receive
2344 * <base> with SADB_X_SPDACQUIRE if error occurred,
2345 * or
2346 * <base, policy>
2347 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2348 * policy(*) is without policy requests.
2349 *
2350 * 0 : succeed
2351 * others: error number
2352 */
2353 int
2354 key_spdacquire(const struct secpolicy *sp)
2355 {
2356 struct mbuf *result = NULL, *m;
2357 struct secspacq *newspacq;
2358 int error;
2359
2360 KASSERT(sp != NULL);
2361 KASSERTMSG(sp->req == NULL, "called but there is request");
2362 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2363 "policy mismathed. IPsec is expected");
2364
2365 /* Get an entry to check whether sent message or not. */
2366 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2367 if (key_blockacq_count < newspacq->count) {
2368 /* reset counter and do send message. */
2369 newspacq->count = 0;
2370 } else {
2371 /* increment counter and do nothing. */
2372 newspacq->count++;
2373 return 0;
2374 }
2375 } else {
2376 /* make new entry for blocking to send SADB_ACQUIRE. */
2377 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2378 return ENOBUFS;
2379
2380 /* add to acqtree */
2381 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2382 }
2383
2384 /* create new sadb_msg to reply. */
2385 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2386 if (!m) {
2387 error = ENOBUFS;
2388 goto fail;
2389 }
2390 result = m;
2391
2392 result->m_pkthdr.len = 0;
2393 for (m = result; m; m = m->m_next)
2394 result->m_pkthdr.len += m->m_len;
2395
2396 mtod(result, struct sadb_msg *)->sadb_msg_len =
2397 PFKEY_UNIT64(result->m_pkthdr.len);
2398
2399 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2400
2401 fail:
2402 if (result)
2403 m_freem(result);
2404 return error;
2405 }
2406
2407 /*
2408 * SADB_SPDFLUSH processing
2409 * receive
2410 * <base>
2411 * from the user, and free all entries in secpctree.
2412 * and send,
2413 * <base>
2414 * to the user.
2415 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2416 *
2417 * m will always be freed.
2418 */
2419 static int
2420 key_spdflush(struct socket *so, struct mbuf *m,
2421 const struct sadb_msghdr *mhp)
2422 {
2423 struct sadb_msg *newmsg;
2424 struct secpolicy *sp;
2425 u_int dir;
2426
2427 KASSERT(so != NULL);
2428 KASSERT(m != NULL);
2429 KASSERT(mhp != NULL);
2430 KASSERT(mhp->msg != NULL);
2431
2432 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2433 return key_senderror(so, m, EINVAL);
2434
2435 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2436 struct secpolicy * nextsp;
2437 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2438 if (sp->state == IPSEC_SPSTATE_DEAD)
2439 continue;
2440 key_sp_dead(sp);
2441 key_sp_unlink(sp);
2442 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2443 continue;
2444 }
2445 }
2446
2447 /* Invalidate all cached SPD pointers in the PCBs. */
2448 ipsec_invalpcbcacheall();
2449
2450 /* We're deleting policy; no need to invalidate the ipflow cache. */
2451
2452 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2453 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2454 return key_senderror(so, m, ENOBUFS);
2455 }
2456
2457 if (m->m_next)
2458 m_freem(m->m_next);
2459 m->m_next = NULL;
2460 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2461 newmsg = mtod(m, struct sadb_msg *);
2462 newmsg->sadb_msg_errno = 0;
2463 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2464
2465 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2466 }
2467
2468 static struct sockaddr key_src = {
2469 .sa_len = 2,
2470 .sa_family = PF_KEY,
2471 };
2472
2473 static struct mbuf *
2474 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2475 {
2476 struct secpolicy *sp;
2477 int cnt;
2478 u_int dir;
2479 struct mbuf *m, *n, *prev;
2480 int totlen;
2481
2482 *lenp = 0;
2483
2484 /* search SPD entry and get buffer size. */
2485 cnt = 0;
2486 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2487 LIST_FOREACH(sp, &sptree[dir], chain) {
2488 cnt++;
2489 }
2490 }
2491
2492 if (cnt == 0) {
2493 *errorp = ENOENT;
2494 return (NULL);
2495 }
2496
2497 m = NULL;
2498 prev = m;
2499 totlen = 0;
2500 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2501 LIST_FOREACH(sp, &sptree[dir], chain) {
2502 --cnt;
2503 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2504
2505 if (!n) {
2506 *errorp = ENOBUFS;
2507 if (m) m_freem(m);
2508 return (NULL);
2509 }
2510
2511 totlen += n->m_pkthdr.len;
2512 if (!m) {
2513 m = n;
2514 } else {
2515 prev->m_nextpkt = n;
2516 }
2517 prev = n;
2518 }
2519 }
2520
2521 *lenp = totlen;
2522 *errorp = 0;
2523 return (m);
2524 }
2525
2526 /*
2527 * SADB_SPDDUMP processing
2528 * receive
2529 * <base>
2530 * from the user, and dump all SP leaves
2531 * and send,
2532 * <base> .....
2533 * to the ikmpd.
2534 *
2535 * m will always be freed.
2536 */
2537 static int
2538 key_spddump(struct socket *so, struct mbuf *m0,
2539 const struct sadb_msghdr *mhp)
2540 {
2541 struct mbuf *n;
2542 int error, len;
2543 int ok, s;
2544 pid_t pid;
2545
2546 KASSERT(so != NULL);
2547 KASSERT(m0 != NULL);
2548 KASSERT(mhp != NULL);
2549 KASSERT(mhp->msg != NULL);
2550
2551 pid = mhp->msg->sadb_msg_pid;
2552 /*
2553 * If the requestor has insufficient socket-buffer space
2554 * for the entire chain, nobody gets any response to the DUMP.
2555 * XXX For now, only the requestor ever gets anything.
2556 * Moreover, if the requestor has any space at all, they receive
2557 * the entire chain, otherwise the request is refused with ENOBUFS.
2558 */
2559 if (sbspace(&so->so_rcv) <= 0) {
2560 return key_senderror(so, m0, ENOBUFS);
2561 }
2562
2563 s = splsoftnet();
2564 n = key_setspddump_chain(&error, &len, pid);
2565 splx(s);
2566
2567 if (n == NULL) {
2568 return key_senderror(so, m0, ENOENT);
2569 }
2570 {
2571 uint64_t *ps = PFKEY_STAT_GETREF();
2572 ps[PFKEY_STAT_IN_TOTAL]++;
2573 ps[PFKEY_STAT_IN_BYTES] += len;
2574 PFKEY_STAT_PUTREF();
2575 }
2576
2577 /*
2578 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2579 * The requestor receives either the entire chain, or an
2580 * error message with ENOBUFS.
2581 */
2582
2583 /*
2584 * sbappendchainwith record takes the chain of entries, one
2585 * packet-record per SPD entry, prepends the key_src sockaddr
2586 * to each packet-record, links the sockaddr mbufs into a new
2587 * list of records, then appends the entire resulting
2588 * list to the requesting socket.
2589 */
2590 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2591 n, SB_PRIO_ONESHOT_OVERFLOW);
2592
2593 if (!ok) {
2594 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2595 m_freem(n);
2596 return key_senderror(so, m0, ENOBUFS);
2597 }
2598
2599 m_freem(m0);
2600 return error;
2601 }
2602
2603 /*
2604 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2605 */
2606 static int
2607 key_nat_map(struct socket *so, struct mbuf *m,
2608 const struct sadb_msghdr *mhp)
2609 {
2610 struct sadb_x_nat_t_type *type;
2611 struct sadb_x_nat_t_port *sport;
2612 struct sadb_x_nat_t_port *dport;
2613 struct sadb_address *iaddr, *raddr;
2614 struct sadb_x_nat_t_frag *frag;
2615
2616 KASSERT(so != NULL);
2617 KASSERT(m != NULL);
2618 KASSERT(mhp != NULL);
2619 KASSERT(mhp->msg != NULL);
2620
2621 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2622 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2623 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2624 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2625 return key_senderror(so, m, EINVAL);
2626 }
2627 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2628 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2629 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2630 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2631 return key_senderror(so, m, EINVAL);
2632 }
2633
2634 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2635 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2636 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2637 return key_senderror(so, m, EINVAL);
2638 }
2639
2640 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2641 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2642 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2643 return key_senderror(so, m, EINVAL);
2644 }
2645
2646 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2647 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2648 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2649 return key_senderror(so, m, EINVAL);
2650 }
2651
2652 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2653 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2654 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2655 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2656 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2657 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2658
2659 /*
2660 * XXX handle that, it should also contain a SA, or anything
2661 * that enable to update the SA information.
2662 */
2663
2664 return 0;
2665 }
2666
2667 static struct mbuf *
2668 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2669 {
2670 struct mbuf *result = NULL, *m;
2671
2672 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2673 if (!m)
2674 goto fail;
2675 result = m;
2676
2677 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2678 &sp->spidx.src.sa, sp->spidx.prefs,
2679 sp->spidx.ul_proto);
2680 if (!m)
2681 goto fail;
2682 m_cat(result, m);
2683
2684 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2685 &sp->spidx.dst.sa, sp->spidx.prefd,
2686 sp->spidx.ul_proto);
2687 if (!m)
2688 goto fail;
2689 m_cat(result, m);
2690
2691 m = key_sp2msg(sp);
2692 if (!m)
2693 goto fail;
2694 m_cat(result, m);
2695
2696 if ((result->m_flags & M_PKTHDR) == 0)
2697 goto fail;
2698
2699 if (result->m_len < sizeof(struct sadb_msg)) {
2700 result = m_pullup(result, sizeof(struct sadb_msg));
2701 if (result == NULL)
2702 goto fail;
2703 }
2704
2705 result->m_pkthdr.len = 0;
2706 for (m = result; m; m = m->m_next)
2707 result->m_pkthdr.len += m->m_len;
2708
2709 mtod(result, struct sadb_msg *)->sadb_msg_len =
2710 PFKEY_UNIT64(result->m_pkthdr.len);
2711
2712 return result;
2713
2714 fail:
2715 m_freem(result);
2716 return NULL;
2717 }
2718
2719 /*
2720 * get PFKEY message length for security policy and request.
2721 */
2722 static u_int
2723 key_getspreqmsglen(const struct secpolicy *sp)
2724 {
2725 u_int tlen;
2726
2727 tlen = sizeof(struct sadb_x_policy);
2728
2729 /* if is the policy for ipsec ? */
2730 if (sp->policy != IPSEC_POLICY_IPSEC)
2731 return tlen;
2732
2733 /* get length of ipsec requests */
2734 {
2735 const struct ipsecrequest *isr;
2736 int len;
2737
2738 for (isr = sp->req; isr != NULL; isr = isr->next) {
2739 len = sizeof(struct sadb_x_ipsecrequest)
2740 + isr->saidx.src.sa.sa_len
2741 + isr->saidx.dst.sa.sa_len;
2742
2743 tlen += PFKEY_ALIGN8(len);
2744 }
2745 }
2746
2747 return tlen;
2748 }
2749
2750 /*
2751 * SADB_SPDEXPIRE processing
2752 * send
2753 * <base, address(SD), lifetime(CH), policy>
2754 * to KMD by PF_KEY.
2755 *
2756 * OUT: 0 : succeed
2757 * others : error number
2758 */
2759 static int
2760 key_spdexpire(struct secpolicy *sp)
2761 {
2762 int s;
2763 struct mbuf *result = NULL, *m;
2764 int len;
2765 int error = -1;
2766 struct sadb_lifetime *lt;
2767
2768 /* XXX: Why do we lock ? */
2769 s = splsoftnet(); /*called from softclock()*/
2770
2771 KASSERT(sp != NULL);
2772
2773 /* set msg header */
2774 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2775 if (!m) {
2776 error = ENOBUFS;
2777 goto fail;
2778 }
2779 result = m;
2780
2781 /* create lifetime extension (current and hard) */
2782 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2783 m = key_alloc_mbuf(len);
2784 if (!m || m->m_next) { /*XXX*/
2785 if (m)
2786 m_freem(m);
2787 error = ENOBUFS;
2788 goto fail;
2789 }
2790 memset(mtod(m, void *), 0, len);
2791 lt = mtod(m, struct sadb_lifetime *);
2792 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2793 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2794 lt->sadb_lifetime_allocations = 0;
2795 lt->sadb_lifetime_bytes = 0;
2796 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2797 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2798 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2799 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2800 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2801 lt->sadb_lifetime_allocations = 0;
2802 lt->sadb_lifetime_bytes = 0;
2803 lt->sadb_lifetime_addtime = sp->lifetime;
2804 lt->sadb_lifetime_usetime = sp->validtime;
2805 m_cat(result, m);
2806
2807 /* set sadb_address for source */
2808 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2809 &sp->spidx.src.sa,
2810 sp->spidx.prefs, sp->spidx.ul_proto);
2811 if (!m) {
2812 error = ENOBUFS;
2813 goto fail;
2814 }
2815 m_cat(result, m);
2816
2817 /* set sadb_address for destination */
2818 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2819 &sp->spidx.dst.sa,
2820 sp->spidx.prefd, sp->spidx.ul_proto);
2821 if (!m) {
2822 error = ENOBUFS;
2823 goto fail;
2824 }
2825 m_cat(result, m);
2826
2827 /* set secpolicy */
2828 m = key_sp2msg(sp);
2829 if (!m) {
2830 error = ENOBUFS;
2831 goto fail;
2832 }
2833 m_cat(result, m);
2834
2835 if ((result->m_flags & M_PKTHDR) == 0) {
2836 error = EINVAL;
2837 goto fail;
2838 }
2839
2840 if (result->m_len < sizeof(struct sadb_msg)) {
2841 result = m_pullup(result, sizeof(struct sadb_msg));
2842 if (result == NULL) {
2843 error = ENOBUFS;
2844 goto fail;
2845 }
2846 }
2847
2848 result->m_pkthdr.len = 0;
2849 for (m = result; m; m = m->m_next)
2850 result->m_pkthdr.len += m->m_len;
2851
2852 mtod(result, struct sadb_msg *)->sadb_msg_len =
2853 PFKEY_UNIT64(result->m_pkthdr.len);
2854
2855 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2856
2857 fail:
2858 if (result)
2859 m_freem(result);
2860 splx(s);
2861 return error;
2862 }
2863
2864 /* %%% SAD management */
2865 /*
2866 * allocating a memory for new SA head, and copy from the values of mhp.
2867 * OUT: NULL : failure due to the lack of memory.
2868 * others : pointer to new SA head.
2869 */
2870 static struct secashead *
2871 key_newsah(const struct secasindex *saidx)
2872 {
2873 struct secashead *newsah;
2874 int i;
2875
2876 KASSERT(saidx != NULL);
2877
2878 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2879 for (i = 0; i < __arraycount(newsah->savtree); i++)
2880 LIST_INIT(&newsah->savtree[i]);
2881 newsah->saidx = *saidx;
2882
2883 /* add to saidxtree */
2884 newsah->state = SADB_SASTATE_MATURE;
2885 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2886
2887 return newsah;
2888 }
2889
2890 /*
2891 * delete SA index and all SA registerd.
2892 */
2893 static void
2894 key_delsah(struct secashead *sah)
2895 {
2896 struct secasvar *sav, *nextsav;
2897 u_int state;
2898 int s;
2899 int zombie = 0;
2900
2901 KASSERT(!cpu_softintr_p());
2902 KASSERT(sah != NULL);
2903
2904 s = splsoftnet();
2905
2906 /* searching all SA registerd in the secindex. */
2907 SASTATE_ANY_FOREACH(state) {
2908 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2909 if (sav->refcnt == 0) {
2910 /* sanity check */
2911 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2912 KEY_FREESAV(&sav);
2913 } else {
2914 /* give up to delete this sa */
2915 zombie++;
2916 }
2917 }
2918 }
2919
2920 /* don't delete sah only if there are savs. */
2921 if (zombie) {
2922 splx(s);
2923 return;
2924 }
2925
2926 rtcache_free(&sah->sa_route);
2927
2928 /* remove from tree of SA index */
2929 if (__LIST_CHAINED(sah))
2930 LIST_REMOVE(sah, chain);
2931
2932 kmem_free(sah, sizeof(*sah));
2933
2934 splx(s);
2935 return;
2936 }
2937
2938 /*
2939 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2940 * and copy the values of mhp into new buffer.
2941 * When SAD message type is GETSPI:
2942 * to set sequence number from acq_seq++,
2943 * to set zero to SPI.
2944 * not to call key_setsava().
2945 * OUT: NULL : fail
2946 * others : pointer to new secasvar.
2947 *
2948 * does not modify mbuf. does not free mbuf on error.
2949 */
2950 static struct secasvar *
2951 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2952 struct secashead *sah, int *errp,
2953 const char* where, int tag)
2954 {
2955 struct secasvar *newsav;
2956 const struct sadb_sa *xsa;
2957
2958 KASSERT(!cpu_softintr_p());
2959 KASSERT(m != NULL);
2960 KASSERT(mhp != NULL);
2961 KASSERT(mhp->msg != NULL);
2962 KASSERT(sah != NULL);
2963
2964 newsav = kmem_alloc(sizeof(struct secasvar), KM_SLEEP);
2965 memset(newsav, 0, sizeof(struct secasvar));
2966
2967 switch (mhp->msg->sadb_msg_type) {
2968 case SADB_GETSPI:
2969 newsav->spi = 0;
2970
2971 #ifdef IPSEC_DOSEQCHECK
2972 /* sync sequence number */
2973 if (mhp->msg->sadb_msg_seq == 0)
2974 newsav->seq =
2975 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2976 else
2977 #endif
2978 newsav->seq = mhp->msg->sadb_msg_seq;
2979 break;
2980
2981 case SADB_ADD:
2982 /* sanity check */
2983 if (mhp->ext[SADB_EXT_SA] == NULL) {
2984 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2985 *errp = EINVAL;
2986 goto error;
2987 }
2988 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2989 newsav->spi = xsa->sadb_sa_spi;
2990 newsav->seq = mhp->msg->sadb_msg_seq;
2991 break;
2992 default:
2993 *errp = EINVAL;
2994 goto error;
2995 }
2996
2997 /* copy sav values */
2998 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2999 *errp = key_setsaval(newsav, m, mhp);
3000 if (*errp)
3001 goto error;
3002 }
3003
3004 /* reset created */
3005 newsav->created = time_uptime;
3006 newsav->pid = mhp->msg->sadb_msg_pid;
3007
3008 /* add to satree */
3009 newsav->sah = sah;
3010 newsav->refcnt = 1;
3011 newsav->state = SADB_SASTATE_LARVAL;
3012 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3013 secasvar, chain);
3014 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3015 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3016 return newsav;
3017
3018 error:
3019 KASSERT(*errp != 0);
3020 kmem_free(newsav, sizeof(*newsav));
3021 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3022 "DP from %s:%u return SA:NULL\n", where, tag);
3023 return NULL;
3024 }
3025
3026 /*
3027 * free() SA variable entry.
3028 */
3029 static void
3030 key_delsav(struct secasvar *sav)
3031 {
3032
3033 KASSERT(sav != NULL);
3034 KASSERTMSG(sav->refcnt == 0,
3035 "reference count %u > 0", sav->refcnt);
3036
3037 /* remove from SA header */
3038 if (__LIST_CHAINED(sav))
3039 LIST_REMOVE(sav, chain);
3040
3041 /*
3042 * Cleanup xform state. Note that zeroize'ing causes the
3043 * keys to be cleared; otherwise we must do it ourself.
3044 */
3045 if (sav->tdb_xform != NULL) {
3046 sav->tdb_xform->xf_zeroize(sav);
3047 sav->tdb_xform = NULL;
3048 } else {
3049 if (sav->key_auth != NULL)
3050 explicit_memset(_KEYBUF(sav->key_auth), 0,
3051 _KEYLEN(sav->key_auth));
3052 if (sav->key_enc != NULL)
3053 explicit_memset(_KEYBUF(sav->key_enc), 0,
3054 _KEYLEN(sav->key_enc));
3055 }
3056 if (sav->key_auth != NULL) {
3057 KFREE(sav->key_auth);
3058 sav->key_auth = NULL;
3059 }
3060 if (sav->key_enc != NULL) {
3061 KFREE(sav->key_enc);
3062 sav->key_enc = NULL;
3063 }
3064 if (sav->replay != NULL) {
3065 KFREE(sav->replay);
3066 sav->replay = NULL;
3067 }
3068 if (sav->lft_c != NULL) {
3069 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3070 sav->lft_c = NULL;
3071 }
3072 if (sav->lft_h != NULL) {
3073 KFREE(sav->lft_h);
3074 sav->lft_h = NULL;
3075 }
3076 if (sav->lft_s != NULL) {
3077 KFREE(sav->lft_s);
3078 sav->lft_s = NULL;
3079 }
3080
3081 kmem_intr_free(sav, sizeof(*sav));
3082
3083 return;
3084 }
3085
3086 /*
3087 * search SAD.
3088 * OUT:
3089 * NULL : not found
3090 * others : found, pointer to a SA.
3091 */
3092 static struct secashead *
3093 key_getsah(const struct secasindex *saidx)
3094 {
3095 struct secashead *sah;
3096
3097 LIST_FOREACH(sah, &sahtree, chain) {
3098 if (sah->state == SADB_SASTATE_DEAD)
3099 continue;
3100 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3101 return sah;
3102 }
3103
3104 return NULL;
3105 }
3106
3107 /*
3108 * check not to be duplicated SPI.
3109 * NOTE: this function is too slow due to searching all SAD.
3110 * OUT:
3111 * NULL : not found
3112 * others : found, pointer to a SA.
3113 */
3114 static struct secasvar *
3115 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3116 {
3117 struct secashead *sah;
3118 struct secasvar *sav;
3119
3120 /* check address family */
3121 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3122 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3123 return NULL;
3124 }
3125
3126 /* check all SAD */
3127 LIST_FOREACH(sah, &sahtree, chain) {
3128 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3129 continue;
3130 sav = key_getsavbyspi(sah, spi);
3131 if (sav != NULL)
3132 return sav;
3133 }
3134
3135 return NULL;
3136 }
3137
3138 /*
3139 * search SAD litmited alive SA, protocol, SPI.
3140 * OUT:
3141 * NULL : not found
3142 * others : found, pointer to a SA.
3143 */
3144 static struct secasvar *
3145 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3146 {
3147 struct secasvar *sav;
3148 u_int state;
3149
3150 /* search all status */
3151 SASTATE_ALIVE_FOREACH(state) {
3152 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3153
3154 /* sanity check */
3155 if (sav->state != state) {
3156 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3157 "invalid sav->state (queue: %d SA: %d)\n",
3158 state, sav->state));
3159 continue;
3160 }
3161
3162 if (sav->spi == spi)
3163 return sav;
3164 }
3165 }
3166
3167 return NULL;
3168 }
3169
3170 /*
3171 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3172 * You must update these if need.
3173 * OUT: 0: success.
3174 * !0: failure.
3175 *
3176 * does not modify mbuf. does not free mbuf on error.
3177 */
3178 static int
3179 key_setsaval(struct secasvar *sav, struct mbuf *m,
3180 const struct sadb_msghdr *mhp)
3181 {
3182 int error = 0;
3183
3184 KASSERT(!cpu_softintr_p());
3185 KASSERT(m != NULL);
3186 KASSERT(mhp != NULL);
3187 KASSERT(mhp->msg != NULL);
3188
3189 /* initialization */
3190 sav->replay = NULL;
3191 sav->key_auth = NULL;
3192 sav->key_enc = NULL;
3193 sav->lft_c = NULL;
3194 sav->lft_h = NULL;
3195 sav->lft_s = NULL;
3196 sav->tdb_xform = NULL; /* transform */
3197 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3198 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3199 sav->tdb_compalgxform = NULL; /* compression algorithm */
3200 sav->natt_type = 0;
3201 sav->esp_frag = 0;
3202
3203 /* SA */
3204 if (mhp->ext[SADB_EXT_SA] != NULL) {
3205 const struct sadb_sa *sa0;
3206
3207 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3208 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3209 error = EINVAL;
3210 goto fail;
3211 }
3212
3213 sav->alg_auth = sa0->sadb_sa_auth;
3214 sav->alg_enc = sa0->sadb_sa_encrypt;
3215 sav->flags = sa0->sadb_sa_flags;
3216
3217 /* replay window */
3218 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3219 sav->replay = (struct secreplay *)
3220 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3221 if (sav->replay == NULL) {
3222 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3223 error = ENOBUFS;
3224 goto fail;
3225 }
3226 if (sa0->sadb_sa_replay != 0)
3227 sav->replay->bitmap = (char*)(sav->replay+1);
3228 sav->replay->wsize = sa0->sadb_sa_replay;
3229 }
3230 }
3231
3232 /* Authentication keys */
3233 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3234 const struct sadb_key *key0;
3235 int len;
3236
3237 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3238 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3239
3240 error = 0;
3241 if (len < sizeof(*key0)) {
3242 error = EINVAL;
3243 goto fail;
3244 }
3245 switch (mhp->msg->sadb_msg_satype) {
3246 case SADB_SATYPE_AH:
3247 case SADB_SATYPE_ESP:
3248 case SADB_X_SATYPE_TCPSIGNATURE:
3249 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3250 sav->alg_auth != SADB_X_AALG_NULL)
3251 error = EINVAL;
3252 break;
3253 case SADB_X_SATYPE_IPCOMP:
3254 default:
3255 error = EINVAL;
3256 break;
3257 }
3258 if (error) {
3259 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3260 goto fail;
3261 }
3262
3263 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3264 if (sav->key_auth == NULL) {
3265 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3266 error = ENOBUFS;
3267 goto fail;
3268 }
3269 }
3270
3271 /* Encryption key */
3272 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3273 const struct sadb_key *key0;
3274 int len;
3275
3276 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3277 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3278
3279 error = 0;
3280 if (len < sizeof(*key0)) {
3281 error = EINVAL;
3282 goto fail;
3283 }
3284 switch (mhp->msg->sadb_msg_satype) {
3285 case SADB_SATYPE_ESP:
3286 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3287 sav->alg_enc != SADB_EALG_NULL) {
3288 error = EINVAL;
3289 break;
3290 }
3291 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3292 if (sav->key_enc == NULL) {
3293 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3294 error = ENOBUFS;
3295 goto fail;
3296 }
3297 break;
3298 case SADB_X_SATYPE_IPCOMP:
3299 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3300 error = EINVAL;
3301 sav->key_enc = NULL; /*just in case*/
3302 break;
3303 case SADB_SATYPE_AH:
3304 case SADB_X_SATYPE_TCPSIGNATURE:
3305 default:
3306 error = EINVAL;
3307 break;
3308 }
3309 if (error) {
3310 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3311 goto fail;
3312 }
3313 }
3314
3315 /* set iv */
3316 sav->ivlen = 0;
3317
3318 switch (mhp->msg->sadb_msg_satype) {
3319 case SADB_SATYPE_AH:
3320 error = xform_init(sav, XF_AH);
3321 break;
3322 case SADB_SATYPE_ESP:
3323 error = xform_init(sav, XF_ESP);
3324 break;
3325 case SADB_X_SATYPE_IPCOMP:
3326 error = xform_init(sav, XF_IPCOMP);
3327 break;
3328 case SADB_X_SATYPE_TCPSIGNATURE:
3329 error = xform_init(sav, XF_TCPSIGNATURE);
3330 break;
3331 }
3332 if (error) {
3333 ipseclog((LOG_DEBUG,
3334 "key_setsaval: unable to initialize SA type %u.\n",
3335 mhp->msg->sadb_msg_satype));
3336 goto fail;
3337 }
3338
3339 /* reset created */
3340 sav->created = time_uptime;
3341
3342 /* make lifetime for CURRENT */
3343 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3344
3345 sav->lft_c->sadb_lifetime_len =
3346 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3347 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3348 sav->lft_c->sadb_lifetime_allocations = 0;
3349 sav->lft_c->sadb_lifetime_bytes = 0;
3350 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3351 sav->lft_c->sadb_lifetime_usetime = 0;
3352
3353 /* lifetimes for HARD and SOFT */
3354 {
3355 const struct sadb_lifetime *lft0;
3356
3357 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3358 if (lft0 != NULL) {
3359 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3360 error = EINVAL;
3361 goto fail;
3362 }
3363 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3364 sizeof(*lft0));
3365 if (sav->lft_h == NULL) {
3366 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3367 error = ENOBUFS;
3368 goto fail;
3369 }
3370 /* to be initialize ? */
3371 }
3372
3373 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3374 if (lft0 != NULL) {
3375 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3376 error = EINVAL;
3377 goto fail;
3378 }
3379 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3380 sizeof(*lft0));
3381 if (sav->lft_s == NULL) {
3382 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3383 error = ENOBUFS;
3384 goto fail;
3385 }
3386 /* to be initialize ? */
3387 }
3388 }
3389
3390 return 0;
3391
3392 fail:
3393 /* initialization */
3394 if (sav->replay != NULL) {
3395 KFREE(sav->replay);
3396 sav->replay = NULL;
3397 }
3398 if (sav->key_auth != NULL) {
3399 KFREE(sav->key_auth);
3400 sav->key_auth = NULL;
3401 }
3402 if (sav->key_enc != NULL) {
3403 KFREE(sav->key_enc);
3404 sav->key_enc = NULL;
3405 }
3406 if (sav->lft_c != NULL) {
3407 kmem_free(sav->lft_c, sizeof(*(sav->lft_c)));
3408 sav->lft_c = NULL;
3409 }
3410 if (sav->lft_h != NULL) {
3411 KFREE(sav->lft_h);
3412 sav->lft_h = NULL;
3413 }
3414 if (sav->lft_s != NULL) {
3415 KFREE(sav->lft_s);
3416 sav->lft_s = NULL;
3417 }
3418
3419 return error;
3420 }
3421
3422 /*
3423 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3424 * OUT: 0: valid
3425 * other: errno
3426 */
3427 static int
3428 key_mature(struct secasvar *sav)
3429 {
3430 int error;
3431
3432 /* check SPI value */
3433 switch (sav->sah->saidx.proto) {
3434 case IPPROTO_ESP:
3435 case IPPROTO_AH:
3436 if (ntohl(sav->spi) <= 255) {
3437 ipseclog((LOG_DEBUG,
3438 "key_mature: illegal range of SPI %u.\n",
3439 (u_int32_t)ntohl(sav->spi)));
3440 return EINVAL;
3441 }
3442 break;
3443 }
3444
3445 /* check satype */
3446 switch (sav->sah->saidx.proto) {
3447 case IPPROTO_ESP:
3448 /* check flags */
3449 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3450 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3451 ipseclog((LOG_DEBUG, "key_mature: "
3452 "invalid flag (derived) given to old-esp.\n"));
3453 return EINVAL;
3454 }
3455 error = xform_init(sav, XF_ESP);
3456 break;
3457 case IPPROTO_AH:
3458 /* check flags */
3459 if (sav->flags & SADB_X_EXT_DERIV) {
3460 ipseclog((LOG_DEBUG, "key_mature: "
3461 "invalid flag (derived) given to AH SA.\n"));
3462 return EINVAL;
3463 }
3464 if (sav->alg_enc != SADB_EALG_NONE) {
3465 ipseclog((LOG_DEBUG, "key_mature: "
3466 "protocol and algorithm mismated.\n"));
3467 return(EINVAL);
3468 }
3469 error = xform_init(sav, XF_AH);
3470 break;
3471 case IPPROTO_IPCOMP:
3472 if (sav->alg_auth != SADB_AALG_NONE) {
3473 ipseclog((LOG_DEBUG, "key_mature: "
3474 "protocol and algorithm mismated.\n"));
3475 return(EINVAL);
3476 }
3477 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3478 && ntohl(sav->spi) >= 0x10000) {
3479 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3480 return(EINVAL);
3481 }
3482 error = xform_init(sav, XF_IPCOMP);
3483 break;
3484 case IPPROTO_TCP:
3485 if (sav->alg_enc != SADB_EALG_NONE) {
3486 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3487 "mismated.\n", __func__));
3488 return(EINVAL);
3489 }
3490 error = xform_init(sav, XF_TCPSIGNATURE);
3491 break;
3492 default:
3493 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3494 error = EPROTONOSUPPORT;
3495 break;
3496 }
3497 if (error == 0)
3498 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3499 return (error);
3500 }
3501
3502 /*
3503 * subroutine for SADB_GET and SADB_DUMP.
3504 */
3505 static struct mbuf *
3506 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3507 u_int32_t seq, u_int32_t pid)
3508 {
3509 struct mbuf *result = NULL, *tres = NULL, *m;
3510 int l = 0;
3511 int i;
3512 void *p;
3513 struct sadb_lifetime lt;
3514 int dumporder[] = {
3515 SADB_EXT_SA, SADB_X_EXT_SA2,
3516 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3517 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3518 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3519 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3520 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3521 SADB_X_EXT_NAT_T_TYPE,
3522 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3523 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3524 SADB_X_EXT_NAT_T_FRAG,
3525
3526 };
3527
3528 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3529 if (m == NULL)
3530 goto fail;
3531 result = m;
3532
3533 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3534 m = NULL;
3535 p = NULL;
3536 switch (dumporder[i]) {
3537 case SADB_EXT_SA:
3538 m = key_setsadbsa(sav);
3539 break;
3540
3541 case SADB_X_EXT_SA2:
3542 m = key_setsadbxsa2(sav->sah->saidx.mode,
3543 sav->replay ? sav->replay->count : 0,
3544 sav->sah->saidx.reqid);
3545 break;
3546
3547 case SADB_EXT_ADDRESS_SRC:
3548 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3549 &sav->sah->saidx.src.sa,
3550 FULLMASK, IPSEC_ULPROTO_ANY);
3551 break;
3552
3553 case SADB_EXT_ADDRESS_DST:
3554 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3555 &sav->sah->saidx.dst.sa,
3556 FULLMASK, IPSEC_ULPROTO_ANY);
3557 break;
3558
3559 case SADB_EXT_KEY_AUTH:
3560 if (!sav->key_auth)
3561 continue;
3562 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3563 p = sav->key_auth;
3564 break;
3565
3566 case SADB_EXT_KEY_ENCRYPT:
3567 if (!sav->key_enc)
3568 continue;
3569 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3570 p = sav->key_enc;
3571 break;
3572
3573 case SADB_EXT_LIFETIME_CURRENT:
3574 if (!sav->lft_c)
3575 continue;
3576 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3577 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3578 lt.sadb_lifetime_addtime += time_second - time_uptime;
3579 lt.sadb_lifetime_usetime += time_second - time_uptime;
3580 p = <
3581 break;
3582
3583 case SADB_EXT_LIFETIME_HARD:
3584 if (!sav->lft_h)
3585 continue;
3586 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3587 p = sav->lft_h;
3588 break;
3589
3590 case SADB_EXT_LIFETIME_SOFT:
3591 if (!sav->lft_s)
3592 continue;
3593 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3594 p = sav->lft_s;
3595 break;
3596
3597 case SADB_X_EXT_NAT_T_TYPE:
3598 m = key_setsadbxtype(sav->natt_type);
3599 break;
3600
3601 case SADB_X_EXT_NAT_T_DPORT:
3602 if (sav->natt_type == 0)
3603 continue;
3604 m = key_setsadbxport(
3605 key_portfromsaddr(&sav->sah->saidx.dst),
3606 SADB_X_EXT_NAT_T_DPORT);
3607 break;
3608
3609 case SADB_X_EXT_NAT_T_SPORT:
3610 if (sav->natt_type == 0)
3611 continue;
3612 m = key_setsadbxport(
3613 key_portfromsaddr(&sav->sah->saidx.src),
3614 SADB_X_EXT_NAT_T_SPORT);
3615 break;
3616
3617 case SADB_X_EXT_NAT_T_FRAG:
3618 /* don't send frag info if not set */
3619 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3620 continue;
3621 m = key_setsadbxfrag(sav->esp_frag);
3622 break;
3623
3624 case SADB_X_EXT_NAT_T_OAI:
3625 case SADB_X_EXT_NAT_T_OAR:
3626 continue;
3627
3628 case SADB_EXT_ADDRESS_PROXY:
3629 case SADB_EXT_IDENTITY_SRC:
3630 case SADB_EXT_IDENTITY_DST:
3631 /* XXX: should we brought from SPD ? */
3632 case SADB_EXT_SENSITIVITY:
3633 default:
3634 continue;
3635 }
3636
3637 KASSERT(!(m && p));
3638 if (!m && !p)
3639 goto fail;
3640 if (p && tres) {
3641 M_PREPEND(tres, l, M_DONTWAIT);
3642 if (!tres)
3643 goto fail;
3644 memcpy(mtod(tres, void *), p, l);
3645 continue;
3646 }
3647 if (p) {
3648 m = key_alloc_mbuf(l);
3649 if (!m)
3650 goto fail;
3651 m_copyback(m, 0, l, p);
3652 }
3653
3654 if (tres)
3655 m_cat(m, tres);
3656 tres = m;
3657 }
3658
3659 m_cat(result, tres);
3660 tres = NULL; /* avoid free on error below */
3661
3662 if (result->m_len < sizeof(struct sadb_msg)) {
3663 result = m_pullup(result, sizeof(struct sadb_msg));
3664 if (result == NULL)
3665 goto fail;
3666 }
3667
3668 result->m_pkthdr.len = 0;
3669 for (m = result; m; m = m->m_next)
3670 result->m_pkthdr.len += m->m_len;
3671
3672 mtod(result, struct sadb_msg *)->sadb_msg_len =
3673 PFKEY_UNIT64(result->m_pkthdr.len);
3674
3675 return result;
3676
3677 fail:
3678 m_freem(result);
3679 m_freem(tres);
3680 return NULL;
3681 }
3682
3683
3684 /*
3685 * set a type in sadb_x_nat_t_type
3686 */
3687 static struct mbuf *
3688 key_setsadbxtype(u_int16_t type)
3689 {
3690 struct mbuf *m;
3691 size_t len;
3692 struct sadb_x_nat_t_type *p;
3693
3694 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3695
3696 m = key_alloc_mbuf(len);
3697 if (!m || m->m_next) { /*XXX*/
3698 if (m)
3699 m_freem(m);
3700 return NULL;
3701 }
3702
3703 p = mtod(m, struct sadb_x_nat_t_type *);
3704
3705 memset(p, 0, len);
3706 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3707 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3708 p->sadb_x_nat_t_type_type = type;
3709
3710 return m;
3711 }
3712 /*
3713 * set a port in sadb_x_nat_t_port. port is in network order
3714 */
3715 static struct mbuf *
3716 key_setsadbxport(u_int16_t port, u_int16_t type)
3717 {
3718 struct mbuf *m;
3719 size_t len;
3720 struct sadb_x_nat_t_port *p;
3721
3722 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3723
3724 m = key_alloc_mbuf(len);
3725 if (!m || m->m_next) { /*XXX*/
3726 if (m)
3727 m_freem(m);
3728 return NULL;
3729 }
3730
3731 p = mtod(m, struct sadb_x_nat_t_port *);
3732
3733 memset(p, 0, len);
3734 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3735 p->sadb_x_nat_t_port_exttype = type;
3736 p->sadb_x_nat_t_port_port = port;
3737
3738 return m;
3739 }
3740
3741 /*
3742 * set fragmentation info in sadb_x_nat_t_frag
3743 */
3744 static struct mbuf *
3745 key_setsadbxfrag(u_int16_t flen)
3746 {
3747 struct mbuf *m;
3748 size_t len;
3749 struct sadb_x_nat_t_frag *p;
3750
3751 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3752
3753 m = key_alloc_mbuf(len);
3754 if (!m || m->m_next) { /*XXX*/
3755 if (m)
3756 m_freem(m);
3757 return NULL;
3758 }
3759
3760 p = mtod(m, struct sadb_x_nat_t_frag *);
3761
3762 memset(p, 0, len);
3763 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3764 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3765 p->sadb_x_nat_t_frag_fraglen = flen;
3766
3767 return m;
3768 }
3769
3770 /*
3771 * Get port from sockaddr, port is in network order
3772 */
3773 u_int16_t
3774 key_portfromsaddr(const union sockaddr_union *saddr)
3775 {
3776 u_int16_t port;
3777
3778 switch (saddr->sa.sa_family) {
3779 case AF_INET: {
3780 port = saddr->sin.sin_port;
3781 break;
3782 }
3783 #ifdef INET6
3784 case AF_INET6: {
3785 port = saddr->sin6.sin6_port;
3786 break;
3787 }
3788 #endif
3789 default:
3790 printf("%s: unexpected address family\n", __func__);
3791 port = 0;
3792 break;
3793 }
3794
3795 return port;
3796 }
3797
3798
3799 /*
3800 * Set port is struct sockaddr. port is in network order
3801 */
3802 static void
3803 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3804 {
3805 switch (saddr->sa.sa_family) {
3806 case AF_INET: {
3807 saddr->sin.sin_port = port;
3808 break;
3809 }
3810 #ifdef INET6
3811 case AF_INET6: {
3812 saddr->sin6.sin6_port = port;
3813 break;
3814 }
3815 #endif
3816 default:
3817 printf("%s: unexpected address family %d\n", __func__,
3818 saddr->sa.sa_family);
3819 break;
3820 }
3821
3822 return;
3823 }
3824
3825 /*
3826 * Safety check sa_len
3827 */
3828 static int
3829 key_checksalen(const union sockaddr_union *saddr)
3830 {
3831 switch (saddr->sa.sa_family) {
3832 case AF_INET:
3833 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3834 return -1;
3835 break;
3836 #ifdef INET6
3837 case AF_INET6:
3838 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3839 return -1;
3840 break;
3841 #endif
3842 default:
3843 printf("%s: unexpected sa_family %d\n", __func__,
3844 saddr->sa.sa_family);
3845 return -1;
3846 break;
3847 }
3848 return 0;
3849 }
3850
3851
3852 /*
3853 * set data into sadb_msg.
3854 */
3855 static struct mbuf *
3856 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3857 u_int32_t seq, pid_t pid, u_int16_t reserved)
3858 {
3859 struct mbuf *m;
3860 struct sadb_msg *p;
3861 int len;
3862
3863 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3864 if (len > MCLBYTES)
3865 return NULL;
3866 MGETHDR(m, M_DONTWAIT, MT_DATA);
3867 if (m && len > MHLEN) {
3868 MCLGET(m, M_DONTWAIT);
3869 if ((m->m_flags & M_EXT) == 0) {
3870 m_freem(m);
3871 m = NULL;
3872 }
3873 }
3874 if (!m)
3875 return NULL;
3876 m->m_pkthdr.len = m->m_len = len;
3877 m->m_next = NULL;
3878
3879 p = mtod(m, struct sadb_msg *);
3880
3881 memset(p, 0, len);
3882 p->sadb_msg_version = PF_KEY_V2;
3883 p->sadb_msg_type = type;
3884 p->sadb_msg_errno = 0;
3885 p->sadb_msg_satype = satype;
3886 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3887 p->sadb_msg_reserved = reserved;
3888 p->sadb_msg_seq = seq;
3889 p->sadb_msg_pid = (u_int32_t)pid;
3890
3891 return m;
3892 }
3893
3894 /*
3895 * copy secasvar data into sadb_address.
3896 */
3897 static struct mbuf *
3898 key_setsadbsa(struct secasvar *sav)
3899 {
3900 struct mbuf *m;
3901 struct sadb_sa *p;
3902 int len;
3903
3904 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3905 m = key_alloc_mbuf(len);
3906 if (!m || m->m_next) { /*XXX*/
3907 if (m)
3908 m_freem(m);
3909 return NULL;
3910 }
3911
3912 p = mtod(m, struct sadb_sa *);
3913
3914 memset(p, 0, len);
3915 p->sadb_sa_len = PFKEY_UNIT64(len);
3916 p->sadb_sa_exttype = SADB_EXT_SA;
3917 p->sadb_sa_spi = sav->spi;
3918 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3919 p->sadb_sa_state = sav->state;
3920 p->sadb_sa_auth = sav->alg_auth;
3921 p->sadb_sa_encrypt = sav->alg_enc;
3922 p->sadb_sa_flags = sav->flags;
3923
3924 return m;
3925 }
3926
3927 /*
3928 * set data into sadb_address.
3929 */
3930 static struct mbuf *
3931 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3932 u_int8_t prefixlen, u_int16_t ul_proto)
3933 {
3934 struct mbuf *m;
3935 struct sadb_address *p;
3936 size_t len;
3937
3938 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3939 PFKEY_ALIGN8(saddr->sa_len);
3940 m = key_alloc_mbuf(len);
3941 if (!m || m->m_next) { /*XXX*/
3942 if (m)
3943 m_freem(m);
3944 return NULL;
3945 }
3946
3947 p = mtod(m, struct sadb_address *);
3948
3949 memset(p, 0, len);
3950 p->sadb_address_len = PFKEY_UNIT64(len);
3951 p->sadb_address_exttype = exttype;
3952 p->sadb_address_proto = ul_proto;
3953 if (prefixlen == FULLMASK) {
3954 switch (saddr->sa_family) {
3955 case AF_INET:
3956 prefixlen = sizeof(struct in_addr) << 3;
3957 break;
3958 case AF_INET6:
3959 prefixlen = sizeof(struct in6_addr) << 3;
3960 break;
3961 default:
3962 ; /*XXX*/
3963 }
3964 }
3965 p->sadb_address_prefixlen = prefixlen;
3966 p->sadb_address_reserved = 0;
3967
3968 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3969 saddr, saddr->sa_len);
3970
3971 return m;
3972 }
3973
3974 #if 0
3975 /*
3976 * set data into sadb_ident.
3977 */
3978 static struct mbuf *
3979 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3980 void *string, int stringlen, u_int64_t id)
3981 {
3982 struct mbuf *m;
3983 struct sadb_ident *p;
3984 size_t len;
3985
3986 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3987 m = key_alloc_mbuf(len);
3988 if (!m || m->m_next) { /*XXX*/
3989 if (m)
3990 m_freem(m);
3991 return NULL;
3992 }
3993
3994 p = mtod(m, struct sadb_ident *);
3995
3996 memset(p, 0, len);
3997 p->sadb_ident_len = PFKEY_UNIT64(len);
3998 p->sadb_ident_exttype = exttype;
3999 p->sadb_ident_type = idtype;
4000 p->sadb_ident_reserved = 0;
4001 p->sadb_ident_id = id;
4002
4003 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4004 string, stringlen);
4005
4006 return m;
4007 }
4008 #endif
4009
4010 /*
4011 * set data into sadb_x_sa2.
4012 */
4013 static struct mbuf *
4014 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4015 {
4016 struct mbuf *m;
4017 struct sadb_x_sa2 *p;
4018 size_t len;
4019
4020 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4021 m = key_alloc_mbuf(len);
4022 if (!m || m->m_next) { /*XXX*/
4023 if (m)
4024 m_freem(m);
4025 return NULL;
4026 }
4027
4028 p = mtod(m, struct sadb_x_sa2 *);
4029
4030 memset(p, 0, len);
4031 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4032 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4033 p->sadb_x_sa2_mode = mode;
4034 p->sadb_x_sa2_reserved1 = 0;
4035 p->sadb_x_sa2_reserved2 = 0;
4036 p->sadb_x_sa2_sequence = seq;
4037 p->sadb_x_sa2_reqid = reqid;
4038
4039 return m;
4040 }
4041
4042 /*
4043 * set data into sadb_x_policy
4044 */
4045 static struct mbuf *
4046 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4047 {
4048 struct mbuf *m;
4049 struct sadb_x_policy *p;
4050 size_t len;
4051
4052 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4053 m = key_alloc_mbuf(len);
4054 if (!m || m->m_next) { /*XXX*/
4055 if (m)
4056 m_freem(m);
4057 return NULL;
4058 }
4059
4060 p = mtod(m, struct sadb_x_policy *);
4061
4062 memset(p, 0, len);
4063 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4064 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4065 p->sadb_x_policy_type = type;
4066 p->sadb_x_policy_dir = dir;
4067 p->sadb_x_policy_id = id;
4068
4069 return m;
4070 }
4071
4072 /* %%% utilities */
4073 /*
4074 * copy a buffer into the new buffer allocated.
4075 */
4076 static void *
4077 key_newbuf(const void *src, u_int len)
4078 {
4079 void *new;
4080
4081 KMALLOC(new, void *, len);
4082 if (new == NULL) {
4083 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4084 return NULL;
4085 }
4086 memcpy(new, src, len);
4087
4088 return new;
4089 }
4090
4091 /* compare my own address
4092 * OUT: 1: true, i.e. my address.
4093 * 0: false
4094 */
4095 int
4096 key_ismyaddr(const struct sockaddr *sa)
4097 {
4098 #ifdef INET
4099 const struct sockaddr_in *sin;
4100 const struct in_ifaddr *ia;
4101 int s;
4102 #endif
4103
4104 KASSERT(sa != NULL);
4105
4106 switch (sa->sa_family) {
4107 #ifdef INET
4108 case AF_INET:
4109 sin = (const struct sockaddr_in *)sa;
4110 s = pserialize_read_enter();
4111 IN_ADDRLIST_READER_FOREACH(ia) {
4112 if (sin->sin_family == ia->ia_addr.sin_family &&
4113 sin->sin_len == ia->ia_addr.sin_len &&
4114 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4115 {
4116 pserialize_read_exit(s);
4117 return 1;
4118 }
4119 }
4120 pserialize_read_exit(s);
4121 break;
4122 #endif
4123 #ifdef INET6
4124 case AF_INET6:
4125 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4126 #endif
4127 }
4128
4129 return 0;
4130 }
4131
4132 #ifdef INET6
4133 /*
4134 * compare my own address for IPv6.
4135 * 1: ours
4136 * 0: other
4137 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4138 */
4139 #include <netinet6/in6_var.h>
4140
4141 static int
4142 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4143 {
4144 struct in6_ifaddr *ia;
4145 int s;
4146 struct psref psref;
4147 int bound;
4148 int ours = 1;
4149
4150 bound = curlwp_bind();
4151 s = pserialize_read_enter();
4152 IN6_ADDRLIST_READER_FOREACH(ia) {
4153 bool ingroup;
4154
4155 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4156 (const struct sockaddr *)&ia->ia_addr, 0) == 0) {
4157 pserialize_read_exit(s);
4158 goto ours;
4159 }
4160 ia6_acquire(ia, &psref);
4161 pserialize_read_exit(s);
4162
4163 /*
4164 * XXX Multicast
4165 * XXX why do we care about multlicast here while we don't care
4166 * about IPv4 multicast??
4167 * XXX scope
4168 */
4169 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4170 if (ingroup) {
4171 ia6_release(ia, &psref);
4172 goto ours;
4173 }
4174
4175 s = pserialize_read_enter();
4176 ia6_release(ia, &psref);
4177 }
4178 pserialize_read_exit(s);
4179
4180 /* loopback, just for safety */
4181 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4182 goto ours;
4183
4184 ours = 0;
4185 ours:
4186 curlwp_bindx(bound);
4187
4188 return ours;
4189 }
4190 #endif /*INET6*/
4191
4192 /*
4193 * compare two secasindex structure.
4194 * flag can specify to compare 2 saidxes.
4195 * compare two secasindex structure without both mode and reqid.
4196 * don't compare port.
4197 * IN:
4198 * saidx0: source, it can be in SAD.
4199 * saidx1: object.
4200 * OUT:
4201 * 1 : equal
4202 * 0 : not equal
4203 */
4204 static int
4205 key_cmpsaidx(
4206 const struct secasindex *saidx0,
4207 const struct secasindex *saidx1,
4208 int flag)
4209 {
4210 int chkport;
4211 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4212
4213 /* sanity */
4214 if (saidx0 == NULL && saidx1 == NULL)
4215 return 1;
4216
4217 if (saidx0 == NULL || saidx1 == NULL)
4218 return 0;
4219
4220 if (saidx0->proto != saidx1->proto)
4221 return 0;
4222
4223 if (flag == CMP_EXACTLY) {
4224 if (saidx0->mode != saidx1->mode)
4225 return 0;
4226 if (saidx0->reqid != saidx1->reqid)
4227 return 0;
4228 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4229 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4230 return 0;
4231 } else {
4232
4233 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4234 if (flag == CMP_MODE_REQID
4235 ||flag == CMP_REQID) {
4236 /*
4237 * If reqid of SPD is non-zero, unique SA is required.
4238 * The result must be of same reqid in this case.
4239 */
4240 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4241 return 0;
4242 }
4243
4244 if (flag == CMP_MODE_REQID) {
4245 if (saidx0->mode != IPSEC_MODE_ANY
4246 && saidx0->mode != saidx1->mode)
4247 return 0;
4248 }
4249
4250
4251 sa0src = &saidx0->src.sa;
4252 sa0dst = &saidx0->dst.sa;
4253 sa1src = &saidx1->src.sa;
4254 sa1dst = &saidx1->dst.sa;
4255 /*
4256 * If NAT-T is enabled, check ports for tunnel mode.
4257 * Don't do it for transport mode, as there is no
4258 * port information available in the SP.
4259 * Also don't check ports if they are set to zero
4260 * in the SPD: This means we have a non-generated
4261 * SPD which can't know UDP ports.
4262 */
4263 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4264 chkport = PORT_LOOSE;
4265 else
4266 chkport = PORT_NONE;
4267
4268 if (key_sockaddrcmp(sa0src, sa1src, chkport) != 0) {
4269 return 0;
4270 }
4271 if (key_sockaddrcmp(sa0dst, sa1dst, chkport) != 0) {
4272 return 0;
4273 }
4274 }
4275
4276 return 1;
4277 }
4278
4279 /*
4280 * compare two secindex structure exactly.
4281 * IN:
4282 * spidx0: source, it is often in SPD.
4283 * spidx1: object, it is often from PFKEY message.
4284 * OUT:
4285 * 1 : equal
4286 * 0 : not equal
4287 */
4288 int
4289 key_cmpspidx_exactly(
4290 const struct secpolicyindex *spidx0,
4291 const struct secpolicyindex *spidx1)
4292 {
4293 /* sanity */
4294 if (spidx0 == NULL && spidx1 == NULL)
4295 return 1;
4296
4297 if (spidx0 == NULL || spidx1 == NULL)
4298 return 0;
4299
4300 if (spidx0->prefs != spidx1->prefs
4301 || spidx0->prefd != spidx1->prefd
4302 || spidx0->ul_proto != spidx1->ul_proto)
4303 return 0;
4304
4305 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) == 0 &&
4306 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT) == 0;
4307 }
4308
4309 /*
4310 * compare two secindex structure with mask.
4311 * IN:
4312 * spidx0: source, it is often in SPD.
4313 * spidx1: object, it is often from IP header.
4314 * OUT:
4315 * 1 : equal
4316 * 0 : not equal
4317 */
4318 int
4319 key_cmpspidx_withmask(
4320 const struct secpolicyindex *spidx0,
4321 const struct secpolicyindex *spidx1)
4322 {
4323 /* sanity */
4324 if (spidx0 == NULL && spidx1 == NULL)
4325 return 1;
4326
4327 if (spidx0 == NULL || spidx1 == NULL)
4328 return 0;
4329
4330 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4331 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4332 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4333 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4334 return 0;
4335
4336 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4337 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4338 && spidx0->ul_proto != spidx1->ul_proto)
4339 return 0;
4340
4341 switch (spidx0->src.sa.sa_family) {
4342 case AF_INET:
4343 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4344 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4345 return 0;
4346 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4347 &spidx1->src.sin.sin_addr, spidx0->prefs))
4348 return 0;
4349 break;
4350 case AF_INET6:
4351 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4352 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4353 return 0;
4354 /*
4355 * scope_id check. if sin6_scope_id is 0, we regard it
4356 * as a wildcard scope, which matches any scope zone ID.
4357 */
4358 if (spidx0->src.sin6.sin6_scope_id &&
4359 spidx1->src.sin6.sin6_scope_id &&
4360 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4361 return 0;
4362 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4363 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4364 return 0;
4365 break;
4366 default:
4367 /* XXX */
4368 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4369 return 0;
4370 break;
4371 }
4372
4373 switch (spidx0->dst.sa.sa_family) {
4374 case AF_INET:
4375 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4376 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4377 return 0;
4378 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4379 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4380 return 0;
4381 break;
4382 case AF_INET6:
4383 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4384 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4385 return 0;
4386 /*
4387 * scope_id check. if sin6_scope_id is 0, we regard it
4388 * as a wildcard scope, which matches any scope zone ID.
4389 */
4390 if (spidx0->src.sin6.sin6_scope_id &&
4391 spidx1->src.sin6.sin6_scope_id &&
4392 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4393 return 0;
4394 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4395 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4396 return 0;
4397 break;
4398 default:
4399 /* XXX */
4400 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4401 return 0;
4402 break;
4403 }
4404
4405 /* XXX Do we check other field ? e.g. flowinfo */
4406
4407 return 1;
4408 }
4409
4410 /* returns 0 on match */
4411 static int
4412 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4413 {
4414 switch (howport) {
4415 case PORT_NONE:
4416 return 0;
4417 case PORT_LOOSE:
4418 if (port1 == 0 || port2 == 0)
4419 return 0;
4420 /*FALLTHROUGH*/
4421 case PORT_STRICT:
4422 if (port1 != port2) {
4423 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4424 "port fail %d != %d\n", port1, port2);
4425 return 1;
4426 }
4427 return 0;
4428 default:
4429 KASSERT(0);
4430 return 1;
4431 }
4432 }
4433
4434 /* returns 0 on match */
4435 static int
4436 key_sockaddrcmp(
4437 const struct sockaddr *sa1,
4438 const struct sockaddr *sa2,
4439 int howport)
4440 {
4441 const struct sockaddr_in *sin1, *sin2;
4442 const struct sockaddr_in6 *sin61, *sin62;
4443
4444 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4445 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4446 "fam/len fail %d != %d || %d != %d\n",
4447 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4448 sa2->sa_len);
4449 return 1;
4450 }
4451
4452 switch (sa1->sa_family) {
4453 case AF_INET:
4454 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4455 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4456 "len fail %d != %zu\n",
4457 sa1->sa_len, sizeof(struct sockaddr_in));
4458 return 1;
4459 }
4460 sin1 = (const struct sockaddr_in *)sa1;
4461 sin2 = (const struct sockaddr_in *)sa2;
4462 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4463 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4464 "addr fail %#x != %#x\n",
4465 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4466 return 1;
4467 }
4468 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4469 return 1;
4470 }
4471 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4472 "addr success %#x[%d] == %#x[%d]\n",
4473 sin1->sin_addr.s_addr, sin1->sin_port,
4474 sin2->sin_addr.s_addr, sin2->sin_port);
4475 break;
4476 case AF_INET6:
4477 sin61 = (const struct sockaddr_in6 *)sa1;
4478 sin62 = (const struct sockaddr_in6 *)sa2;
4479 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4480 return 1; /*EINVAL*/
4481
4482 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4483 return 1;
4484 }
4485 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4486 return 1;
4487 }
4488 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4489 return 1;
4490 }
4491 break;
4492 default:
4493 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4494 return 1;
4495 break;
4496 }
4497
4498 return 0;
4499 }
4500
4501 /*
4502 * compare two buffers with mask.
4503 * IN:
4504 * addr1: source
4505 * addr2: object
4506 * bits: Number of bits to compare
4507 * OUT:
4508 * 1 : equal
4509 * 0 : not equal
4510 */
4511 static int
4512 key_bbcmp(const void *a1, const void *a2, u_int bits)
4513 {
4514 const unsigned char *p1 = a1;
4515 const unsigned char *p2 = a2;
4516
4517 /* XXX: This could be considerably faster if we compare a word
4518 * at a time, but it is complicated on LSB Endian machines */
4519
4520 /* Handle null pointers */
4521 if (p1 == NULL || p2 == NULL)
4522 return (p1 == p2);
4523
4524 while (bits >= 8) {
4525 if (*p1++ != *p2++)
4526 return 0;
4527 bits -= 8;
4528 }
4529
4530 if (bits > 0) {
4531 u_int8_t mask = ~((1<<(8-bits))-1);
4532 if ((*p1 & mask) != (*p2 & mask))
4533 return 0;
4534 }
4535 return 1; /* Match! */
4536 }
4537
4538 /*
4539 * time handler.
4540 * scanning SPD and SAD to check status for each entries,
4541 * and do to remove or to expire.
4542 */
4543 static void
4544 key_timehandler_work(struct work *wk, void *arg)
4545 {
4546 u_int dir;
4547 int s;
4548 time_t now = time_uptime;
4549
4550 s = splsoftnet();
4551 mutex_enter(softnet_lock);
4552
4553 /* SPD */
4554 {
4555 struct secpolicy *sp, *nextsp;
4556
4557 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4558 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4559 if (sp->state == IPSEC_SPSTATE_DEAD) {
4560 key_sp_unlink(sp); /*XXX*/
4561
4562 /* 'sp' dead; continue transfers to
4563 * 'sp = nextsp'
4564 */
4565 continue;
4566 }
4567
4568 if (sp->lifetime == 0 && sp->validtime == 0)
4569 continue;
4570
4571 /* the deletion will occur next time */
4572 if ((sp->lifetime && now - sp->created > sp->lifetime)
4573 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4574 key_sp_dead(sp);
4575 key_spdexpire(sp);
4576 continue;
4577 }
4578 }
4579 }
4580 }
4581
4582 /* SAD */
4583 {
4584 struct secashead *sah, *nextsah;
4585 struct secasvar *sav, *nextsav;
4586
4587 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4588 /* if sah has been dead, then delete it and process next sah. */
4589 if (sah->state == SADB_SASTATE_DEAD) {
4590 key_delsah(sah);
4591 continue;
4592 }
4593
4594 /* if LARVAL entry doesn't become MATURE, delete it. */
4595 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4596 chain, nextsav) {
4597 if (now - sav->created > key_larval_lifetime) {
4598 KEY_FREESAV(&sav);
4599 }
4600 }
4601
4602 /*
4603 * check MATURE entry to start to send expire message
4604 * whether or not.
4605 */
4606 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4607 chain, nextsav) {
4608 /* we don't need to check. */
4609 if (sav->lft_s == NULL)
4610 continue;
4611
4612 /* sanity check */
4613 if (sav->lft_c == NULL) {
4614 ipseclog((LOG_DEBUG,"key_timehandler: "
4615 "There is no CURRENT time, why?\n"));
4616 continue;
4617 }
4618
4619 /* check SOFT lifetime */
4620 if (sav->lft_s->sadb_lifetime_addtime != 0
4621 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4622 /*
4623 * check SA to be used whether or not.
4624 * when SA hasn't been used, delete it.
4625 */
4626 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4627 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4628 KEY_FREESAV(&sav);
4629 } else {
4630 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4631 /*
4632 * XXX If we keep to send expire
4633 * message in the status of
4634 * DYING. Do remove below code.
4635 */
4636 key_expire(sav);
4637 }
4638 }
4639 /* check SOFT lifetime by bytes */
4640 /*
4641 * XXX I don't know the way to delete this SA
4642 * when new SA is installed. Caution when it's
4643 * installed too big lifetime by time.
4644 */
4645 else if (sav->lft_s->sadb_lifetime_bytes != 0
4646 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4647
4648 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4649 /*
4650 * XXX If we keep to send expire
4651 * message in the status of
4652 * DYING. Do remove below code.
4653 */
4654 key_expire(sav);
4655 }
4656 }
4657
4658 /* check DYING entry to change status to DEAD. */
4659 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4660 chain, nextsav) {
4661 /* we don't need to check. */
4662 if (sav->lft_h == NULL)
4663 continue;
4664
4665 /* sanity check */
4666 if (sav->lft_c == NULL) {
4667 ipseclog((LOG_DEBUG, "key_timehandler: "
4668 "There is no CURRENT time, why?\n"));
4669 continue;
4670 }
4671
4672 if (sav->lft_h->sadb_lifetime_addtime != 0
4673 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4674 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4675 KEY_FREESAV(&sav);
4676 }
4677 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4678 else if (sav->lft_s != NULL
4679 && sav->lft_s->sadb_lifetime_addtime != 0
4680 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4681 /*
4682 * XXX: should be checked to be
4683 * installed the valid SA.
4684 */
4685
4686 /*
4687 * If there is no SA then sending
4688 * expire message.
4689 */
4690 key_expire(sav);
4691 }
4692 #endif
4693 /* check HARD lifetime by bytes */
4694 else if (sav->lft_h->sadb_lifetime_bytes != 0
4695 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4696 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4697 KEY_FREESAV(&sav);
4698 }
4699 }
4700
4701 /* delete entry in DEAD */
4702 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4703 chain, nextsav) {
4704 /* sanity check */
4705 if (sav->state != SADB_SASTATE_DEAD) {
4706 ipseclog((LOG_DEBUG, "key_timehandler: "
4707 "invalid sav->state "
4708 "(queue: %d SA: %d): "
4709 "kill it anyway\n",
4710 SADB_SASTATE_DEAD, sav->state));
4711 }
4712
4713 /*
4714 * do not call key_freesav() here.
4715 * sav should already be freed, and sav->refcnt
4716 * shows other references to sav
4717 * (such as from SPD).
4718 */
4719 }
4720 }
4721 }
4722
4723 #ifndef IPSEC_NONBLOCK_ACQUIRE
4724 /* ACQ tree */
4725 {
4726 struct secacq *acq, *nextacq;
4727
4728 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4729 if (now - acq->created > key_blockacq_lifetime
4730 && __LIST_CHAINED(acq)) {
4731 LIST_REMOVE(acq, chain);
4732 kmem_free(acq, sizeof(*acq));
4733 }
4734 }
4735 }
4736 #endif
4737
4738 /* SP ACQ tree */
4739 {
4740 struct secspacq *acq, *nextacq;
4741
4742 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4743 if (now - acq->created > key_blockacq_lifetime
4744 && __LIST_CHAINED(acq)) {
4745 LIST_REMOVE(acq, chain);
4746 kmem_free(acq, sizeof(*acq));
4747 }
4748 }
4749 }
4750
4751 /* do exchange to tick time !! */
4752 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4753
4754 mutex_exit(softnet_lock);
4755 splx(s);
4756 return;
4757 }
4758
4759 static void
4760 key_timehandler(void *arg)
4761 {
4762
4763 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4764 }
4765
4766 u_long
4767 key_random(void)
4768 {
4769 u_long value;
4770
4771 key_randomfill(&value, sizeof(value));
4772 return value;
4773 }
4774
4775 void
4776 key_randomfill(void *p, size_t l)
4777 {
4778
4779 cprng_fast(p, l);
4780 }
4781
4782 /*
4783 * map SADB_SATYPE_* to IPPROTO_*.
4784 * if satype == SADB_SATYPE then satype is mapped to ~0.
4785 * OUT:
4786 * 0: invalid satype.
4787 */
4788 static u_int16_t
4789 key_satype2proto(u_int8_t satype)
4790 {
4791 switch (satype) {
4792 case SADB_SATYPE_UNSPEC:
4793 return IPSEC_PROTO_ANY;
4794 case SADB_SATYPE_AH:
4795 return IPPROTO_AH;
4796 case SADB_SATYPE_ESP:
4797 return IPPROTO_ESP;
4798 case SADB_X_SATYPE_IPCOMP:
4799 return IPPROTO_IPCOMP;
4800 case SADB_X_SATYPE_TCPSIGNATURE:
4801 return IPPROTO_TCP;
4802 default:
4803 return 0;
4804 }
4805 /* NOTREACHED */
4806 }
4807
4808 /*
4809 * map IPPROTO_* to SADB_SATYPE_*
4810 * OUT:
4811 * 0: invalid protocol type.
4812 */
4813 static u_int8_t
4814 key_proto2satype(u_int16_t proto)
4815 {
4816 switch (proto) {
4817 case IPPROTO_AH:
4818 return SADB_SATYPE_AH;
4819 case IPPROTO_ESP:
4820 return SADB_SATYPE_ESP;
4821 case IPPROTO_IPCOMP:
4822 return SADB_X_SATYPE_IPCOMP;
4823 case IPPROTO_TCP:
4824 return SADB_X_SATYPE_TCPSIGNATURE;
4825 default:
4826 return 0;
4827 }
4828 /* NOTREACHED */
4829 }
4830
4831 static int
4832 key_setsecasidx(int proto, int mode, int reqid,
4833 const struct sadb_address * src,
4834 const struct sadb_address * dst,
4835 struct secasindex * saidx)
4836 {
4837 const union sockaddr_union * src_u =
4838 (const union sockaddr_union *) src;
4839 const union sockaddr_union * dst_u =
4840 (const union sockaddr_union *) dst;
4841
4842 /* sa len safety check */
4843 if (key_checksalen(src_u) != 0)
4844 return -1;
4845 if (key_checksalen(dst_u) != 0)
4846 return -1;
4847
4848 memset(saidx, 0, sizeof(*saidx));
4849 saidx->proto = proto;
4850 saidx->mode = mode;
4851 saidx->reqid = reqid;
4852 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4853 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4854
4855 key_porttosaddr(&((saidx)->src),0);
4856 key_porttosaddr(&((saidx)->dst),0);
4857 return 0;
4858 }
4859
4860 /* %%% PF_KEY */
4861 /*
4862 * SADB_GETSPI processing is to receive
4863 * <base, (SA2), src address, dst address, (SPI range)>
4864 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4865 * tree with the status of LARVAL, and send
4866 * <base, SA(*), address(SD)>
4867 * to the IKMPd.
4868 *
4869 * IN: mhp: pointer to the pointer to each header.
4870 * OUT: NULL if fail.
4871 * other if success, return pointer to the message to send.
4872 */
4873 static int
4874 key_getspi(struct socket *so, struct mbuf *m,
4875 const struct sadb_msghdr *mhp)
4876 {
4877 struct sadb_address *src0, *dst0;
4878 struct secasindex saidx;
4879 struct secashead *newsah;
4880 struct secasvar *newsav;
4881 u_int8_t proto;
4882 u_int32_t spi;
4883 u_int8_t mode;
4884 u_int16_t reqid;
4885 int error;
4886
4887 KASSERT(!cpu_softintr_p());
4888 KASSERT(so != NULL);
4889 KASSERT(m != NULL);
4890 KASSERT(mhp != NULL);
4891 KASSERT(mhp->msg != NULL);
4892
4893 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4894 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4895 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4896 return key_senderror(so, m, EINVAL);
4897 }
4898 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4899 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4900 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4901 return key_senderror(so, m, EINVAL);
4902 }
4903 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4904 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4905 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4906 } else {
4907 mode = IPSEC_MODE_ANY;
4908 reqid = 0;
4909 }
4910
4911 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4912 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4913
4914 /* map satype to proto */
4915 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4916 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4917 return key_senderror(so, m, EINVAL);
4918 }
4919
4920
4921 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4922 dst0 + 1, &saidx)) != 0)
4923 return key_senderror(so, m, EINVAL);
4924
4925 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4926 return key_senderror(so, m, EINVAL);
4927
4928 /* SPI allocation */
4929 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4930 &saidx);
4931 if (spi == 0)
4932 return key_senderror(so, m, EINVAL);
4933
4934 /* get a SA index */
4935 if ((newsah = key_getsah(&saidx)) == NULL) {
4936 /* create a new SA index */
4937 if ((newsah = key_newsah(&saidx)) == NULL) {
4938 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4939 return key_senderror(so, m, ENOBUFS);
4940 }
4941 }
4942
4943 /* get a new SA */
4944 /* XXX rewrite */
4945 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4946 if (newsav == NULL) {
4947 /* XXX don't free new SA index allocated in above. */
4948 return key_senderror(so, m, error);
4949 }
4950
4951 /* set spi */
4952 newsav->spi = htonl(spi);
4953
4954 #ifndef IPSEC_NONBLOCK_ACQUIRE
4955 /* delete the entry in acqtree */
4956 if (mhp->msg->sadb_msg_seq != 0) {
4957 struct secacq *acq;
4958 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4959 /* reset counter in order to deletion by timehandler. */
4960 acq->created = time_uptime;
4961 acq->count = 0;
4962 }
4963 }
4964 #endif
4965
4966 {
4967 struct mbuf *n, *nn;
4968 struct sadb_sa *m_sa;
4969 struct sadb_msg *newmsg;
4970 int off, len;
4971
4972 /* create new sadb_msg to reply. */
4973 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4974 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4975 if (len > MCLBYTES)
4976 return key_senderror(so, m, ENOBUFS);
4977
4978 MGETHDR(n, M_DONTWAIT, MT_DATA);
4979 if (len > MHLEN) {
4980 MCLGET(n, M_DONTWAIT);
4981 if ((n->m_flags & M_EXT) == 0) {
4982 m_freem(n);
4983 n = NULL;
4984 }
4985 }
4986 if (!n)
4987 return key_senderror(so, m, ENOBUFS);
4988
4989 n->m_len = len;
4990 n->m_next = NULL;
4991 off = 0;
4992
4993 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4994 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4995
4996 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4997 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4998 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4999 m_sa->sadb_sa_spi = htonl(spi);
5000 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5001
5002 KASSERTMSG(off == len, "length inconsistency");
5003
5004 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5005 SADB_EXT_ADDRESS_DST);
5006 if (!n->m_next) {
5007 m_freem(n);
5008 return key_senderror(so, m, ENOBUFS);
5009 }
5010
5011 if (n->m_len < sizeof(struct sadb_msg)) {
5012 n = m_pullup(n, sizeof(struct sadb_msg));
5013 if (n == NULL)
5014 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5015 }
5016
5017 n->m_pkthdr.len = 0;
5018 for (nn = n; nn; nn = nn->m_next)
5019 n->m_pkthdr.len += nn->m_len;
5020
5021 newmsg = mtod(n, struct sadb_msg *);
5022 newmsg->sadb_msg_seq = newsav->seq;
5023 newmsg->sadb_msg_errno = 0;
5024 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5025
5026 m_freem(m);
5027 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5028 }
5029 }
5030
5031 /*
5032 * allocating new SPI
5033 * called by key_getspi().
5034 * OUT:
5035 * 0: failure.
5036 * others: success.
5037 */
5038 static u_int32_t
5039 key_do_getnewspi(const struct sadb_spirange *spirange,
5040 const struct secasindex *saidx)
5041 {
5042 u_int32_t newspi;
5043 u_int32_t spmin, spmax;
5044 int count = key_spi_trycnt;
5045
5046 /* set spi range to allocate */
5047 if (spirange != NULL) {
5048 spmin = spirange->sadb_spirange_min;
5049 spmax = spirange->sadb_spirange_max;
5050 } else {
5051 spmin = key_spi_minval;
5052 spmax = key_spi_maxval;
5053 }
5054 /* IPCOMP needs 2-byte SPI */
5055 if (saidx->proto == IPPROTO_IPCOMP) {
5056 u_int32_t t;
5057 if (spmin >= 0x10000)
5058 spmin = 0xffff;
5059 if (spmax >= 0x10000)
5060 spmax = 0xffff;
5061 if (spmin > spmax) {
5062 t = spmin; spmin = spmax; spmax = t;
5063 }
5064 }
5065
5066 if (spmin == spmax) {
5067 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5068 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5069 return 0;
5070 }
5071
5072 count--; /* taking one cost. */
5073 newspi = spmin;
5074
5075 } else {
5076
5077 /* init SPI */
5078 newspi = 0;
5079
5080 /* when requesting to allocate spi ranged */
5081 while (count--) {
5082 /* generate pseudo-random SPI value ranged. */
5083 newspi = spmin + (key_random() % (spmax - spmin + 1));
5084
5085 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5086 break;
5087 }
5088
5089 if (count == 0 || newspi == 0) {
5090 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5091 return 0;
5092 }
5093 }
5094
5095 /* statistics */
5096 keystat.getspi_count =
5097 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5098
5099 return newspi;
5100 }
5101
5102 static int
5103 key_handle_natt_info(struct secasvar *sav,
5104 const struct sadb_msghdr *mhp)
5105 {
5106 const char *msg = "?" ;
5107 struct sadb_x_nat_t_type *type;
5108 struct sadb_x_nat_t_port *sport, *dport;
5109 struct sadb_address *iaddr, *raddr;
5110 struct sadb_x_nat_t_frag *frag;
5111
5112 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5113 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5114 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5115 return 0;
5116
5117 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5118 msg = "TYPE";
5119 goto bad;
5120 }
5121
5122 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5123 msg = "SPORT";
5124 goto bad;
5125 }
5126
5127 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5128 msg = "DPORT";
5129 goto bad;
5130 }
5131
5132 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5133 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5134 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5135 msg = "OAI";
5136 goto bad;
5137 }
5138 }
5139
5140 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5141 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5142 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5143 msg = "OAR";
5144 goto bad;
5145 }
5146 }
5147
5148 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5149 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5150 msg = "FRAG";
5151 goto bad;
5152 }
5153 }
5154
5155 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5156 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5157 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5158 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5159 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5160 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5161
5162 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5163 __func__, type->sadb_x_nat_t_type_type,
5164 ntohs(sport->sadb_x_nat_t_port_port),
5165 ntohs(dport->sadb_x_nat_t_port_port)));
5166
5167 sav->natt_type = type->sadb_x_nat_t_type_type;
5168 key_porttosaddr(&sav->sah->saidx.src,
5169 sport->sadb_x_nat_t_port_port);
5170 key_porttosaddr(&sav->sah->saidx.dst,
5171 dport->sadb_x_nat_t_port_port);
5172 if (frag)
5173 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5174 else
5175 sav->esp_frag = IP_MAXPACKET;
5176
5177 return 0;
5178 bad:
5179 ipseclog((LOG_DEBUG, "%s: invalid message %s\n", __func__, msg));
5180 __USE(msg);
5181 return -1;
5182 }
5183
5184 /* Just update the IPSEC_NAT_T ports if present */
5185 static int
5186 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5187 const struct sadb_msghdr *mhp)
5188 {
5189 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5190 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5191 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5192 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5193
5194 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5195 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5196 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5197 struct sadb_x_nat_t_type *type;
5198 struct sadb_x_nat_t_port *sport;
5199 struct sadb_x_nat_t_port *dport;
5200
5201 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5202 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5203 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5204 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5205 __func__));
5206 return -1;
5207 }
5208
5209 type = (struct sadb_x_nat_t_type *)
5210 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5211 sport = (struct sadb_x_nat_t_port *)
5212 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5213 dport = (struct sadb_x_nat_t_port *)
5214 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5215
5216 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5217 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5218
5219 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5220 __func__, type->sadb_x_nat_t_type_type,
5221 ntohs(sport->sadb_x_nat_t_port_port),
5222 ntohs(dport->sadb_x_nat_t_port_port)));
5223 }
5224
5225 return 0;
5226 }
5227
5228
5229 /*
5230 * SADB_UPDATE processing
5231 * receive
5232 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5233 * key(AE), (identity(SD),) (sensitivity)>
5234 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5235 * and send
5236 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5237 * (identity(SD),) (sensitivity)>
5238 * to the ikmpd.
5239 *
5240 * m will always be freed.
5241 */
5242 static int
5243 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5244 {
5245 struct sadb_sa *sa0;
5246 struct sadb_address *src0, *dst0;
5247 struct secasindex saidx;
5248 struct secashead *sah;
5249 struct secasvar *sav;
5250 u_int16_t proto;
5251 u_int8_t mode;
5252 u_int16_t reqid;
5253 int error;
5254
5255 KASSERT(!cpu_softintr_p());
5256 KASSERT(so != NULL);
5257 KASSERT(m != NULL);
5258 KASSERT(mhp != NULL);
5259 KASSERT(mhp->msg != NULL);
5260
5261 /* map satype to proto */
5262 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5263 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5264 return key_senderror(so, m, EINVAL);
5265 }
5266
5267 if (mhp->ext[SADB_EXT_SA] == NULL ||
5268 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5269 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5270 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5271 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5272 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5273 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5274 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5275 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5276 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5277 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5278 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5279 return key_senderror(so, m, EINVAL);
5280 }
5281 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5282 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5283 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5284 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5285 return key_senderror(so, m, EINVAL);
5286 }
5287 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5288 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5289 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5290 } else {
5291 mode = IPSEC_MODE_ANY;
5292 reqid = 0;
5293 }
5294 /* XXX boundary checking for other extensions */
5295
5296 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5297 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5298 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5299
5300 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5301 dst0 + 1, &saidx)) != 0)
5302 return key_senderror(so, m, EINVAL);
5303
5304 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5305 return key_senderror(so, m, EINVAL);
5306
5307 /* get a SA header */
5308 if ((sah = key_getsah(&saidx)) == NULL) {
5309 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5310 return key_senderror(so, m, ENOENT);
5311 }
5312
5313 /* set spidx if there */
5314 /* XXX rewrite */
5315 error = key_setident(sah, m, mhp);
5316 if (error)
5317 return key_senderror(so, m, error);
5318
5319 /* find a SA with sequence number. */
5320 #ifdef IPSEC_DOSEQCHECK
5321 if (mhp->msg->sadb_msg_seq != 0
5322 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5323 ipseclog((LOG_DEBUG,
5324 "key_update: no larval SA with sequence %u exists.\n",
5325 mhp->msg->sadb_msg_seq));
5326 return key_senderror(so, m, ENOENT);
5327 }
5328 #else
5329 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5330 ipseclog((LOG_DEBUG,
5331 "key_update: no such a SA found (spi:%u)\n",
5332 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5333 return key_senderror(so, m, EINVAL);
5334 }
5335 #endif
5336
5337 /* validity check */
5338 if (sav->sah->saidx.proto != proto) {
5339 ipseclog((LOG_DEBUG,
5340 "key_update: protocol mismatched (DB=%u param=%u)\n",
5341 sav->sah->saidx.proto, proto));
5342 return key_senderror(so, m, EINVAL);
5343 }
5344 #ifdef IPSEC_DOSEQCHECK
5345 if (sav->spi != sa0->sadb_sa_spi) {
5346 ipseclog((LOG_DEBUG,
5347 "key_update: SPI mismatched (DB:%u param:%u)\n",
5348 (u_int32_t)ntohl(sav->spi),
5349 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5350 return key_senderror(so, m, EINVAL);
5351 }
5352 #endif
5353 if (sav->pid != mhp->msg->sadb_msg_pid) {
5354 ipseclog((LOG_DEBUG,
5355 "key_update: pid mismatched (DB:%u param:%u)\n",
5356 sav->pid, mhp->msg->sadb_msg_pid));
5357 return key_senderror(so, m, EINVAL);
5358 }
5359
5360 /* copy sav values */
5361 error = key_setsaval(sav, m, mhp);
5362 if (error) {
5363 KEY_FREESAV(&sav);
5364 return key_senderror(so, m, error);
5365 }
5366
5367 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5368 return key_senderror(so, m, EINVAL);
5369
5370 /* check SA values to be mature. */
5371 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5372 KEY_FREESAV(&sav);
5373 return key_senderror(so, m, 0);
5374 }
5375
5376 {
5377 struct mbuf *n;
5378
5379 /* set msg buf from mhp */
5380 n = key_getmsgbuf_x1(m, mhp);
5381 if (n == NULL) {
5382 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5383 return key_senderror(so, m, ENOBUFS);
5384 }
5385
5386 m_freem(m);
5387 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5388 }
5389 }
5390
5391 /*
5392 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5393 * only called by key_update().
5394 * OUT:
5395 * NULL : not found
5396 * others : found, pointer to a SA.
5397 */
5398 #ifdef IPSEC_DOSEQCHECK
5399 static struct secasvar *
5400 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5401 {
5402 struct secasvar *sav;
5403 u_int state;
5404
5405 state = SADB_SASTATE_LARVAL;
5406
5407 /* search SAD with sequence number ? */
5408 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5409
5410 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5411
5412 if (sav->seq == seq) {
5413 SA_ADDREF(sav);
5414 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5415 "DP cause refcnt++:%d SA:%p\n",
5416 sav->refcnt, sav);
5417 return sav;
5418 }
5419 }
5420
5421 return NULL;
5422 }
5423 #endif
5424
5425 /*
5426 * SADB_ADD processing
5427 * add an entry to SA database, when received
5428 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5429 * key(AE), (identity(SD),) (sensitivity)>
5430 * from the ikmpd,
5431 * and send
5432 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5433 * (identity(SD),) (sensitivity)>
5434 * to the ikmpd.
5435 *
5436 * IGNORE identity and sensitivity messages.
5437 *
5438 * m will always be freed.
5439 */
5440 static int
5441 key_add(struct socket *so, struct mbuf *m,
5442 const struct sadb_msghdr *mhp)
5443 {
5444 struct sadb_sa *sa0;
5445 struct sadb_address *src0, *dst0;
5446 struct secasindex saidx;
5447 struct secashead *newsah;
5448 struct secasvar *newsav;
5449 u_int16_t proto;
5450 u_int8_t mode;
5451 u_int16_t reqid;
5452 int error;
5453
5454 KASSERT(so != NULL);
5455 KASSERT(m != NULL);
5456 KASSERT(mhp != NULL);
5457 KASSERT(mhp->msg != NULL);
5458
5459 /* map satype to proto */
5460 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5461 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5462 return key_senderror(so, m, EINVAL);
5463 }
5464
5465 if (mhp->ext[SADB_EXT_SA] == NULL ||
5466 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5467 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5468 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5469 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5470 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5471 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5472 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5473 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5474 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5475 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5476 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5477 return key_senderror(so, m, EINVAL);
5478 }
5479 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5480 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5481 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5482 /* XXX need more */
5483 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5484 return key_senderror(so, m, EINVAL);
5485 }
5486 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5487 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5488 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5489 } else {
5490 mode = IPSEC_MODE_ANY;
5491 reqid = 0;
5492 }
5493
5494 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5495 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5496 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5497
5498 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5499 dst0 + 1, &saidx)) != 0)
5500 return key_senderror(so, m, EINVAL);
5501
5502 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5503 return key_senderror(so, m, EINVAL);
5504
5505 /* get a SA header */
5506 if ((newsah = key_getsah(&saidx)) == NULL) {
5507 /* create a new SA header */
5508 if ((newsah = key_newsah(&saidx)) == NULL) {
5509 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5510 return key_senderror(so, m, ENOBUFS);
5511 }
5512 }
5513
5514 /* set spidx if there */
5515 /* XXX rewrite */
5516 error = key_setident(newsah, m, mhp);
5517 if (error) {
5518 return key_senderror(so, m, error);
5519 }
5520
5521 /* create new SA entry. */
5522 /* We can create new SA only if SPI is differenct. */
5523 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5524 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5525 return key_senderror(so, m, EEXIST);
5526 }
5527 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5528 if (newsav == NULL) {
5529 return key_senderror(so, m, error);
5530 }
5531
5532 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5533 return key_senderror(so, m, EINVAL);
5534
5535 /* check SA values to be mature. */
5536 if ((error = key_mature(newsav)) != 0) {
5537 KEY_FREESAV(&newsav);
5538 return key_senderror(so, m, error);
5539 }
5540
5541 /*
5542 * don't call key_freesav() here, as we would like to keep the SA
5543 * in the database on success.
5544 */
5545
5546 {
5547 struct mbuf *n;
5548
5549 /* set msg buf from mhp */
5550 n = key_getmsgbuf_x1(m, mhp);
5551 if (n == NULL) {
5552 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5553 return key_senderror(so, m, ENOBUFS);
5554 }
5555
5556 m_freem(m);
5557 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5558 }
5559 }
5560
5561 /* m is retained */
5562 static int
5563 key_setident(struct secashead *sah, struct mbuf *m,
5564 const struct sadb_msghdr *mhp)
5565 {
5566 const struct sadb_ident *idsrc, *iddst;
5567 int idsrclen, iddstlen;
5568
5569 KASSERT(sah != NULL);
5570 KASSERT(m != NULL);
5571 KASSERT(mhp != NULL);
5572 KASSERT(mhp->msg != NULL);
5573
5574 /* don't make buffer if not there */
5575 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5576 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5577 sah->idents = NULL;
5578 sah->identd = NULL;
5579 return 0;
5580 }
5581
5582 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5583 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5584 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5585 return EINVAL;
5586 }
5587
5588 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5589 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5590 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5591 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5592
5593 /* validity check */
5594 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5595 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5596 return EINVAL;
5597 }
5598
5599 switch (idsrc->sadb_ident_type) {
5600 case SADB_IDENTTYPE_PREFIX:
5601 case SADB_IDENTTYPE_FQDN:
5602 case SADB_IDENTTYPE_USERFQDN:
5603 default:
5604 /* XXX do nothing */
5605 sah->idents = NULL;
5606 sah->identd = NULL;
5607 return 0;
5608 }
5609
5610 /* make structure */
5611 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5612 if (sah->idents == NULL) {
5613 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5614 return ENOBUFS;
5615 }
5616 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5617 if (sah->identd == NULL) {
5618 KFREE(sah->idents);
5619 sah->idents = NULL;
5620 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5621 return ENOBUFS;
5622 }
5623 memcpy(sah->idents, idsrc, idsrclen);
5624 memcpy(sah->identd, iddst, iddstlen);
5625
5626 return 0;
5627 }
5628
5629 /*
5630 * m will not be freed on return.
5631 * it is caller's responsibility to free the result.
5632 */
5633 static struct mbuf *
5634 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5635 {
5636 struct mbuf *n;
5637
5638 KASSERT(m != NULL);
5639 KASSERT(mhp != NULL);
5640 KASSERT(mhp->msg != NULL);
5641
5642 /* create new sadb_msg to reply. */
5643 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5644 SADB_EXT_SA, SADB_X_EXT_SA2,
5645 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5646 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5647 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5648 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5649 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5650 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5651 if (!n)
5652 return NULL;
5653
5654 if (n->m_len < sizeof(struct sadb_msg)) {
5655 n = m_pullup(n, sizeof(struct sadb_msg));
5656 if (n == NULL)
5657 return NULL;
5658 }
5659 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5660 mtod(n, struct sadb_msg *)->sadb_msg_len =
5661 PFKEY_UNIT64(n->m_pkthdr.len);
5662
5663 return n;
5664 }
5665
5666 static int key_delete_all (struct socket *, struct mbuf *,
5667 const struct sadb_msghdr *, u_int16_t);
5668
5669 /*
5670 * SADB_DELETE processing
5671 * receive
5672 * <base, SA(*), address(SD)>
5673 * from the ikmpd, and set SADB_SASTATE_DEAD,
5674 * and send,
5675 * <base, SA(*), address(SD)>
5676 * to the ikmpd.
5677 *
5678 * m will always be freed.
5679 */
5680 static int
5681 key_delete(struct socket *so, struct mbuf *m,
5682 const struct sadb_msghdr *mhp)
5683 {
5684 struct sadb_sa *sa0;
5685 struct sadb_address *src0, *dst0;
5686 struct secasindex saidx;
5687 struct secashead *sah;
5688 struct secasvar *sav = NULL;
5689 u_int16_t proto;
5690 int error;
5691
5692 KASSERT(so != NULL);
5693 KASSERT(m != NULL);
5694 KASSERT(mhp != NULL);
5695 KASSERT(mhp->msg != NULL);
5696
5697 /* map satype to proto */
5698 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5699 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5700 return key_senderror(so, m, EINVAL);
5701 }
5702
5703 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5704 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5705 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5706 return key_senderror(so, m, EINVAL);
5707 }
5708
5709 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5710 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5711 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5712 return key_senderror(so, m, EINVAL);
5713 }
5714
5715 if (mhp->ext[SADB_EXT_SA] == NULL) {
5716 /*
5717 * Caller wants us to delete all non-LARVAL SAs
5718 * that match the src/dst. This is used during
5719 * IKE INITIAL-CONTACT.
5720 */
5721 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5722 return key_delete_all(so, m, mhp, proto);
5723 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5724 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5725 return key_senderror(so, m, EINVAL);
5726 }
5727
5728 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5729 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5730 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5731
5732 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5733 dst0 + 1, &saidx)) != 0)
5734 return key_senderror(so, m, EINVAL);
5735
5736 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5737 return key_senderror(so, m, EINVAL);
5738
5739 /* get a SA header */
5740 LIST_FOREACH(sah, &sahtree, chain) {
5741 if (sah->state == SADB_SASTATE_DEAD)
5742 continue;
5743 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5744 continue;
5745
5746 /* get a SA with SPI. */
5747 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5748 if (sav)
5749 break;
5750 }
5751 if (sah == NULL) {
5752 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5753 return key_senderror(so, m, ENOENT);
5754 }
5755
5756 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5757 KEY_FREESAV(&sav);
5758
5759 {
5760 struct mbuf *n;
5761 struct sadb_msg *newmsg;
5762
5763 /* create new sadb_msg to reply. */
5764 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5765 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5766 if (!n)
5767 return key_senderror(so, m, ENOBUFS);
5768
5769 if (n->m_len < sizeof(struct sadb_msg)) {
5770 n = m_pullup(n, sizeof(struct sadb_msg));
5771 if (n == NULL)
5772 return key_senderror(so, m, ENOBUFS);
5773 }
5774 newmsg = mtod(n, struct sadb_msg *);
5775 newmsg->sadb_msg_errno = 0;
5776 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5777
5778 m_freem(m);
5779 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5780 }
5781 }
5782
5783 /*
5784 * delete all SAs for src/dst. Called from key_delete().
5785 */
5786 static int
5787 key_delete_all(struct socket *so, struct mbuf *m,
5788 const struct sadb_msghdr *mhp, u_int16_t proto)
5789 {
5790 struct sadb_address *src0, *dst0;
5791 struct secasindex saidx;
5792 struct secashead *sah;
5793 struct secasvar *sav, *nextsav;
5794 u_int state;
5795 int error;
5796
5797 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5798 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5799
5800 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5801 dst0 + 1, &saidx)) != 0)
5802 return key_senderror(so, m, EINVAL);
5803
5804 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5805 return key_senderror(so, m, EINVAL);
5806
5807 LIST_FOREACH(sah, &sahtree, chain) {
5808 if (sah->state == SADB_SASTATE_DEAD)
5809 continue;
5810 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5811 continue;
5812
5813 /* Delete all non-LARVAL SAs. */
5814 SASTATE_ALIVE_FOREACH(state) {
5815 if (state == SADB_SASTATE_LARVAL)
5816 continue;
5817 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5818 nextsav) {
5819 /* sanity check */
5820 if (sav->state != state) {
5821 ipseclog((LOG_DEBUG, "key_delete_all: "
5822 "invalid sav->state "
5823 "(queue: %d SA: %d)\n",
5824 state, sav->state));
5825 continue;
5826 }
5827
5828 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5829 KEY_FREESAV(&sav);
5830 }
5831 }
5832 }
5833 {
5834 struct mbuf *n;
5835 struct sadb_msg *newmsg;
5836
5837 /* create new sadb_msg to reply. */
5838 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5839 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5840 if (!n)
5841 return key_senderror(so, m, ENOBUFS);
5842
5843 if (n->m_len < sizeof(struct sadb_msg)) {
5844 n = m_pullup(n, sizeof(struct sadb_msg));
5845 if (n == NULL)
5846 return key_senderror(so, m, ENOBUFS);
5847 }
5848 newmsg = mtod(n, struct sadb_msg *);
5849 newmsg->sadb_msg_errno = 0;
5850 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5851
5852 m_freem(m);
5853 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5854 }
5855 }
5856
5857 /*
5858 * SADB_GET processing
5859 * receive
5860 * <base, SA(*), address(SD)>
5861 * from the ikmpd, and get a SP and a SA to respond,
5862 * and send,
5863 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5864 * (identity(SD),) (sensitivity)>
5865 * to the ikmpd.
5866 *
5867 * m will always be freed.
5868 */
5869 static int
5870 key_get(struct socket *so, struct mbuf *m,
5871 const struct sadb_msghdr *mhp)
5872 {
5873 struct sadb_sa *sa0;
5874 struct sadb_address *src0, *dst0;
5875 struct secasindex saidx;
5876 struct secashead *sah;
5877 struct secasvar *sav = NULL;
5878 u_int16_t proto;
5879 int error;
5880
5881 KASSERT(so != NULL);
5882 KASSERT(m != NULL);
5883 KASSERT(mhp != NULL);
5884 KASSERT(mhp->msg != NULL);
5885
5886 /* map satype to proto */
5887 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5888 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5889 return key_senderror(so, m, EINVAL);
5890 }
5891
5892 if (mhp->ext[SADB_EXT_SA] == NULL ||
5893 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5894 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5895 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5896 return key_senderror(so, m, EINVAL);
5897 }
5898 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5899 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5900 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5901 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5902 return key_senderror(so, m, EINVAL);
5903 }
5904
5905 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5906 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5907 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5908
5909 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5910 dst0 + 1, &saidx)) != 0)
5911 return key_senderror(so, m, EINVAL);
5912
5913 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5914 return key_senderror(so, m, EINVAL);
5915
5916 /* get a SA header */
5917 LIST_FOREACH(sah, &sahtree, chain) {
5918 if (sah->state == SADB_SASTATE_DEAD)
5919 continue;
5920 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5921 continue;
5922
5923 /* get a SA with SPI. */
5924 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5925 if (sav)
5926 break;
5927 }
5928 if (sah == NULL) {
5929 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5930 return key_senderror(so, m, ENOENT);
5931 }
5932
5933 {
5934 struct mbuf *n;
5935 u_int8_t satype;
5936
5937 /* map proto to satype */
5938 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5939 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5940 return key_senderror(so, m, EINVAL);
5941 }
5942
5943 /* create new sadb_msg to reply. */
5944 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5945 mhp->msg->sadb_msg_pid);
5946 if (!n)
5947 return key_senderror(so, m, ENOBUFS);
5948
5949 m_freem(m);
5950 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5951 }
5952 }
5953
5954 /* XXX make it sysctl-configurable? */
5955 static void
5956 key_getcomb_setlifetime(struct sadb_comb *comb)
5957 {
5958
5959 comb->sadb_comb_soft_allocations = 1;
5960 comb->sadb_comb_hard_allocations = 1;
5961 comb->sadb_comb_soft_bytes = 0;
5962 comb->sadb_comb_hard_bytes = 0;
5963 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5964 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5965 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5966 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5967 }
5968
5969 /*
5970 * XXX reorder combinations by preference
5971 * XXX no idea if the user wants ESP authentication or not
5972 */
5973 static struct mbuf *
5974 key_getcomb_esp(void)
5975 {
5976 struct sadb_comb *comb;
5977 const struct enc_xform *algo;
5978 struct mbuf *result = NULL, *m, *n;
5979 int encmin;
5980 int i, off, o;
5981 int totlen;
5982 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5983
5984 m = NULL;
5985 for (i = 1; i <= SADB_EALG_MAX; i++) {
5986 algo = esp_algorithm_lookup(i);
5987 if (algo == NULL)
5988 continue;
5989
5990 /* discard algorithms with key size smaller than system min */
5991 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5992 continue;
5993 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5994 encmin = ipsec_esp_keymin;
5995 else
5996 encmin = _BITS(algo->minkey);
5997
5998 if (ipsec_esp_auth)
5999 m = key_getcomb_ah();
6000 else {
6001 KASSERTMSG(l <= MLEN,
6002 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6003 MGET(m, M_DONTWAIT, MT_DATA);
6004 if (m) {
6005 M_ALIGN(m, l);
6006 m->m_len = l;
6007 m->m_next = NULL;
6008 memset(mtod(m, void *), 0, m->m_len);
6009 }
6010 }
6011 if (!m)
6012 goto fail;
6013
6014 totlen = 0;
6015 for (n = m; n; n = n->m_next)
6016 totlen += n->m_len;
6017 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6018
6019 for (off = 0; off < totlen; off += l) {
6020 n = m_pulldown(m, off, l, &o);
6021 if (!n) {
6022 /* m is already freed */
6023 goto fail;
6024 }
6025 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6026 memset(comb, 0, sizeof(*comb));
6027 key_getcomb_setlifetime(comb);
6028 comb->sadb_comb_encrypt = i;
6029 comb->sadb_comb_encrypt_minbits = encmin;
6030 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6031 }
6032
6033 if (!result)
6034 result = m;
6035 else
6036 m_cat(result, m);
6037 }
6038
6039 return result;
6040
6041 fail:
6042 if (result)
6043 m_freem(result);
6044 return NULL;
6045 }
6046
6047 static void
6048 key_getsizes_ah(const struct auth_hash *ah, int alg,
6049 u_int16_t* ksmin, u_int16_t* ksmax)
6050 {
6051 *ksmin = *ksmax = ah->keysize;
6052 if (ah->keysize == 0) {
6053 /*
6054 * Transform takes arbitrary key size but algorithm
6055 * key size is restricted. Enforce this here.
6056 */
6057 switch (alg) {
6058 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6059 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6060 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6061 default:
6062 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6063 alg));
6064 break;
6065 }
6066 }
6067 }
6068
6069 /*
6070 * XXX reorder combinations by preference
6071 */
6072 static struct mbuf *
6073 key_getcomb_ah(void)
6074 {
6075 struct sadb_comb *comb;
6076 const struct auth_hash *algo;
6077 struct mbuf *m;
6078 u_int16_t minkeysize, maxkeysize;
6079 int i;
6080 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6081
6082 m = NULL;
6083 for (i = 1; i <= SADB_AALG_MAX; i++) {
6084 #if 1
6085 /* we prefer HMAC algorithms, not old algorithms */
6086 if (i != SADB_AALG_SHA1HMAC &&
6087 i != SADB_AALG_MD5HMAC &&
6088 i != SADB_X_AALG_SHA2_256 &&
6089 i != SADB_X_AALG_SHA2_384 &&
6090 i != SADB_X_AALG_SHA2_512)
6091 continue;
6092 #endif
6093 algo = ah_algorithm_lookup(i);
6094 if (!algo)
6095 continue;
6096 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6097 /* discard algorithms with key size smaller than system min */
6098 if (_BITS(minkeysize) < ipsec_ah_keymin)
6099 continue;
6100
6101 if (!m) {
6102 KASSERTMSG(l <= MLEN,
6103 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6104 MGET(m, M_DONTWAIT, MT_DATA);
6105 if (m) {
6106 M_ALIGN(m, l);
6107 m->m_len = l;
6108 m->m_next = NULL;
6109 }
6110 } else
6111 M_PREPEND(m, l, M_DONTWAIT);
6112 if (!m)
6113 return NULL;
6114
6115 comb = mtod(m, struct sadb_comb *);
6116 memset(comb, 0, sizeof(*comb));
6117 key_getcomb_setlifetime(comb);
6118 comb->sadb_comb_auth = i;
6119 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6120 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6121 }
6122
6123 return m;
6124 }
6125
6126 /*
6127 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6128 * XXX reorder combinations by preference
6129 */
6130 static struct mbuf *
6131 key_getcomb_ipcomp(void)
6132 {
6133 struct sadb_comb *comb;
6134 const struct comp_algo *algo;
6135 struct mbuf *m;
6136 int i;
6137 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6138
6139 m = NULL;
6140 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6141 algo = ipcomp_algorithm_lookup(i);
6142 if (!algo)
6143 continue;
6144
6145 if (!m) {
6146 KASSERTMSG(l <= MLEN,
6147 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6148 MGET(m, M_DONTWAIT, MT_DATA);
6149 if (m) {
6150 M_ALIGN(m, l);
6151 m->m_len = l;
6152 m->m_next = NULL;
6153 }
6154 } else
6155 M_PREPEND(m, l, M_DONTWAIT);
6156 if (!m)
6157 return NULL;
6158
6159 comb = mtod(m, struct sadb_comb *);
6160 memset(comb, 0, sizeof(*comb));
6161 key_getcomb_setlifetime(comb);
6162 comb->sadb_comb_encrypt = i;
6163 /* what should we set into sadb_comb_*_{min,max}bits? */
6164 }
6165
6166 return m;
6167 }
6168
6169 /*
6170 * XXX no way to pass mode (transport/tunnel) to userland
6171 * XXX replay checking?
6172 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6173 */
6174 static struct mbuf *
6175 key_getprop(const struct secasindex *saidx)
6176 {
6177 struct sadb_prop *prop;
6178 struct mbuf *m, *n;
6179 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6180 int totlen;
6181
6182 switch (saidx->proto) {
6183 case IPPROTO_ESP:
6184 m = key_getcomb_esp();
6185 break;
6186 case IPPROTO_AH:
6187 m = key_getcomb_ah();
6188 break;
6189 case IPPROTO_IPCOMP:
6190 m = key_getcomb_ipcomp();
6191 break;
6192 default:
6193 return NULL;
6194 }
6195
6196 if (!m)
6197 return NULL;
6198 M_PREPEND(m, l, M_DONTWAIT);
6199 if (!m)
6200 return NULL;
6201
6202 totlen = 0;
6203 for (n = m; n; n = n->m_next)
6204 totlen += n->m_len;
6205
6206 prop = mtod(m, struct sadb_prop *);
6207 memset(prop, 0, sizeof(*prop));
6208 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6209 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6210 prop->sadb_prop_replay = 32; /* XXX */
6211
6212 return m;
6213 }
6214
6215 /*
6216 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6217 * send
6218 * <base, SA, address(SD), (address(P)), x_policy,
6219 * (identity(SD),) (sensitivity,) proposal>
6220 * to KMD, and expect to receive
6221 * <base> with SADB_ACQUIRE if error occurred,
6222 * or
6223 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6224 * from KMD by PF_KEY.
6225 *
6226 * XXX x_policy is outside of RFC2367 (KAME extension).
6227 * XXX sensitivity is not supported.
6228 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6229 * see comment for key_getcomb_ipcomp().
6230 *
6231 * OUT:
6232 * 0 : succeed
6233 * others: error number
6234 */
6235 static int
6236 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6237 {
6238 struct mbuf *result = NULL, *m;
6239 #ifndef IPSEC_NONBLOCK_ACQUIRE
6240 struct secacq *newacq;
6241 #endif
6242 u_int8_t satype;
6243 int error = -1;
6244 u_int32_t seq;
6245
6246 /* sanity check */
6247 KASSERT(saidx != NULL);
6248 satype = key_proto2satype(saidx->proto);
6249 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6250
6251 #ifndef IPSEC_NONBLOCK_ACQUIRE
6252 /*
6253 * We never do anything about acquirng SA. There is anather
6254 * solution that kernel blocks to send SADB_ACQUIRE message until
6255 * getting something message from IKEd. In later case, to be
6256 * managed with ACQUIRING list.
6257 */
6258 /* Get an entry to check whether sending message or not. */
6259 if ((newacq = key_getacq(saidx)) != NULL) {
6260 if (key_blockacq_count < newacq->count) {
6261 /* reset counter and do send message. */
6262 newacq->count = 0;
6263 } else {
6264 /* increment counter and do nothing. */
6265 newacq->count++;
6266 return 0;
6267 }
6268 } else {
6269 /* make new entry for blocking to send SADB_ACQUIRE. */
6270 if ((newacq = key_newacq(saidx)) == NULL)
6271 return ENOBUFS;
6272
6273 /* add to acqtree */
6274 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6275 }
6276 #endif
6277
6278
6279 #ifndef IPSEC_NONBLOCK_ACQUIRE
6280 seq = newacq->seq;
6281 #else
6282 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6283 #endif
6284 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6285 if (!m) {
6286 error = ENOBUFS;
6287 goto fail;
6288 }
6289 result = m;
6290
6291 /* set sadb_address for saidx's. */
6292 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6293 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6294 if (!m) {
6295 error = ENOBUFS;
6296 goto fail;
6297 }
6298 m_cat(result, m);
6299
6300 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6301 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6302 if (!m) {
6303 error = ENOBUFS;
6304 goto fail;
6305 }
6306 m_cat(result, m);
6307
6308 /* XXX proxy address (optional) */
6309
6310 /* set sadb_x_policy */
6311 if (sp) {
6312 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6313 if (!m) {
6314 error = ENOBUFS;
6315 goto fail;
6316 }
6317 m_cat(result, m);
6318 }
6319
6320 /* XXX identity (optional) */
6321 #if 0
6322 if (idexttype && fqdn) {
6323 /* create identity extension (FQDN) */
6324 struct sadb_ident *id;
6325 int fqdnlen;
6326
6327 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6328 id = (struct sadb_ident *)p;
6329 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6330 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6331 id->sadb_ident_exttype = idexttype;
6332 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6333 memcpy(id + 1, fqdn, fqdnlen);
6334 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6335 }
6336
6337 if (idexttype) {
6338 /* create identity extension (USERFQDN) */
6339 struct sadb_ident *id;
6340 int userfqdnlen;
6341
6342 if (userfqdn) {
6343 /* +1 for terminating-NUL */
6344 userfqdnlen = strlen(userfqdn) + 1;
6345 } else
6346 userfqdnlen = 0;
6347 id = (struct sadb_ident *)p;
6348 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6349 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6350 id->sadb_ident_exttype = idexttype;
6351 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6352 /* XXX is it correct? */
6353 if (curlwp)
6354 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6355 if (userfqdn && userfqdnlen)
6356 memcpy(id + 1, userfqdn, userfqdnlen);
6357 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6358 }
6359 #endif
6360
6361 /* XXX sensitivity (optional) */
6362
6363 /* create proposal/combination extension */
6364 m = key_getprop(saidx);
6365 #if 0
6366 /*
6367 * spec conformant: always attach proposal/combination extension,
6368 * the problem is that we have no way to attach it for ipcomp,
6369 * due to the way sadb_comb is declared in RFC2367.
6370 */
6371 if (!m) {
6372 error = ENOBUFS;
6373 goto fail;
6374 }
6375 m_cat(result, m);
6376 #else
6377 /*
6378 * outside of spec; make proposal/combination extension optional.
6379 */
6380 if (m)
6381 m_cat(result, m);
6382 #endif
6383
6384 if ((result->m_flags & M_PKTHDR) == 0) {
6385 error = EINVAL;
6386 goto fail;
6387 }
6388
6389 if (result->m_len < sizeof(struct sadb_msg)) {
6390 result = m_pullup(result, sizeof(struct sadb_msg));
6391 if (result == NULL) {
6392 error = ENOBUFS;
6393 goto fail;
6394 }
6395 }
6396
6397 result->m_pkthdr.len = 0;
6398 for (m = result; m; m = m->m_next)
6399 result->m_pkthdr.len += m->m_len;
6400
6401 mtod(result, struct sadb_msg *)->sadb_msg_len =
6402 PFKEY_UNIT64(result->m_pkthdr.len);
6403
6404 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6405
6406 fail:
6407 if (result)
6408 m_freem(result);
6409 return error;
6410 }
6411
6412 #ifndef IPSEC_NONBLOCK_ACQUIRE
6413 static struct secacq *
6414 key_newacq(const struct secasindex *saidx)
6415 {
6416 struct secacq *newacq;
6417
6418 /* get new entry */
6419 newacq = kmem_intr_alloc(sizeof(struct secacq), KM_NOSLEEP);
6420 if (newacq == NULL) {
6421 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6422 return NULL;
6423 }
6424 memset(newacq, 0, sizeof(*newacq));
6425
6426 /* copy secindex */
6427 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6428 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6429 newacq->created = time_uptime;
6430 newacq->count = 0;
6431
6432 return newacq;
6433 }
6434
6435 static struct secacq *
6436 key_getacq(const struct secasindex *saidx)
6437 {
6438 struct secacq *acq;
6439
6440 LIST_FOREACH(acq, &acqtree, chain) {
6441 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6442 return acq;
6443 }
6444
6445 return NULL;
6446 }
6447
6448 static struct secacq *
6449 key_getacqbyseq(u_int32_t seq)
6450 {
6451 struct secacq *acq;
6452
6453 LIST_FOREACH(acq, &acqtree, chain) {
6454 if (acq->seq == seq)
6455 return acq;
6456 }
6457
6458 return NULL;
6459 }
6460 #endif
6461
6462 static struct secspacq *
6463 key_newspacq(const struct secpolicyindex *spidx)
6464 {
6465 struct secspacq *acq;
6466
6467 /* get new entry */
6468 acq = kmem_intr_alloc(sizeof(struct secspacq), KM_NOSLEEP);
6469 if (acq == NULL) {
6470 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6471 return NULL;
6472 }
6473 memset(acq, 0, sizeof(*acq));
6474
6475 /* copy secindex */
6476 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6477 acq->created = time_uptime;
6478 acq->count = 0;
6479
6480 return acq;
6481 }
6482
6483 static struct secspacq *
6484 key_getspacq(const struct secpolicyindex *spidx)
6485 {
6486 struct secspacq *acq;
6487
6488 LIST_FOREACH(acq, &spacqtree, chain) {
6489 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6490 return acq;
6491 }
6492
6493 return NULL;
6494 }
6495
6496 /*
6497 * SADB_ACQUIRE processing,
6498 * in first situation, is receiving
6499 * <base>
6500 * from the ikmpd, and clear sequence of its secasvar entry.
6501 *
6502 * In second situation, is receiving
6503 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6504 * from a user land process, and return
6505 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6506 * to the socket.
6507 *
6508 * m will always be freed.
6509 */
6510 static int
6511 key_acquire2(struct socket *so, struct mbuf *m,
6512 const struct sadb_msghdr *mhp)
6513 {
6514 const struct sadb_address *src0, *dst0;
6515 struct secasindex saidx;
6516 struct secashead *sah;
6517 u_int16_t proto;
6518 int error;
6519
6520 KASSERT(so != NULL);
6521 KASSERT(m != NULL);
6522 KASSERT(mhp != NULL);
6523 KASSERT(mhp->msg != NULL);
6524
6525 /*
6526 * Error message from KMd.
6527 * We assume that if error was occurred in IKEd, the length of PFKEY
6528 * message is equal to the size of sadb_msg structure.
6529 * We do not raise error even if error occurred in this function.
6530 */
6531 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6532 #ifndef IPSEC_NONBLOCK_ACQUIRE
6533 struct secacq *acq;
6534
6535 /* check sequence number */
6536 if (mhp->msg->sadb_msg_seq == 0) {
6537 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6538 m_freem(m);
6539 return 0;
6540 }
6541
6542 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6543 /*
6544 * the specified larval SA is already gone, or we got
6545 * a bogus sequence number. we can silently ignore it.
6546 */
6547 m_freem(m);
6548 return 0;
6549 }
6550
6551 /* reset acq counter in order to deletion by timehander. */
6552 acq->created = time_uptime;
6553 acq->count = 0;
6554 #endif
6555 m_freem(m);
6556 return 0;
6557 }
6558
6559 /*
6560 * This message is from user land.
6561 */
6562
6563 /* map satype to proto */
6564 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6565 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6566 return key_senderror(so, m, EINVAL);
6567 }
6568
6569 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6570 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6571 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6572 /* error */
6573 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6574 return key_senderror(so, m, EINVAL);
6575 }
6576 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6577 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6578 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6579 /* error */
6580 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6581 return key_senderror(so, m, EINVAL);
6582 }
6583
6584 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6585 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6586
6587 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6588 dst0 + 1, &saidx)) != 0)
6589 return key_senderror(so, m, EINVAL);
6590
6591 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6592 return key_senderror(so, m, EINVAL);
6593
6594 /* get a SA index */
6595 LIST_FOREACH(sah, &sahtree, chain) {
6596 if (sah->state == SADB_SASTATE_DEAD)
6597 continue;
6598 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6599 break;
6600 }
6601 if (sah != NULL) {
6602 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6603 return key_senderror(so, m, EEXIST);
6604 }
6605
6606 error = key_acquire(&saidx, NULL);
6607 if (error != 0) {
6608 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6609 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6610 return key_senderror(so, m, error);
6611 }
6612
6613 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6614 }
6615
6616 /*
6617 * SADB_REGISTER processing.
6618 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6619 * receive
6620 * <base>
6621 * from the ikmpd, and register a socket to send PF_KEY messages,
6622 * and send
6623 * <base, supported>
6624 * to KMD by PF_KEY.
6625 * If socket is detached, must free from regnode.
6626 *
6627 * m will always be freed.
6628 */
6629 static int
6630 key_register(struct socket *so, struct mbuf *m,
6631 const struct sadb_msghdr *mhp)
6632 {
6633 struct secreg *reg, *newreg = 0;
6634
6635 KASSERT(!cpu_softintr_p());
6636 KASSERT(so != NULL);
6637 KASSERT(m != NULL);
6638 KASSERT(mhp != NULL);
6639 KASSERT(mhp->msg != NULL);
6640
6641 /* check for invalid register message */
6642 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6643 return key_senderror(so, m, EINVAL);
6644
6645 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6646 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6647 goto setmsg;
6648
6649 /* check whether existing or not */
6650 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6651 if (reg->so == so) {
6652 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6653 return key_senderror(so, m, EEXIST);
6654 }
6655 }
6656
6657 /* create regnode */
6658 newreg = kmem_alloc(sizeof(*newreg), KM_SLEEP);
6659 memset(newreg, 0, sizeof(*newreg));
6660
6661 newreg->so = so;
6662 ((struct keycb *)sotorawcb(so))->kp_registered++;
6663
6664 /* add regnode to regtree. */
6665 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6666
6667 setmsg:
6668 {
6669 struct mbuf *n;
6670 struct sadb_msg *newmsg;
6671 struct sadb_supported *sup;
6672 u_int len, alen, elen;
6673 int off;
6674 int i;
6675 struct sadb_alg *alg;
6676
6677 /* create new sadb_msg to reply. */
6678 alen = 0;
6679 for (i = 1; i <= SADB_AALG_MAX; i++) {
6680 if (ah_algorithm_lookup(i))
6681 alen += sizeof(struct sadb_alg);
6682 }
6683 if (alen)
6684 alen += sizeof(struct sadb_supported);
6685 elen = 0;
6686 for (i = 1; i <= SADB_EALG_MAX; i++) {
6687 if (esp_algorithm_lookup(i))
6688 elen += sizeof(struct sadb_alg);
6689 }
6690 if (elen)
6691 elen += sizeof(struct sadb_supported);
6692
6693 len = sizeof(struct sadb_msg) + alen + elen;
6694
6695 if (len > MCLBYTES)
6696 return key_senderror(so, m, ENOBUFS);
6697
6698 MGETHDR(n, M_DONTWAIT, MT_DATA);
6699 if (len > MHLEN) {
6700 MCLGET(n, M_DONTWAIT);
6701 if ((n->m_flags & M_EXT) == 0) {
6702 m_freem(n);
6703 n = NULL;
6704 }
6705 }
6706 if (!n)
6707 return key_senderror(so, m, ENOBUFS);
6708
6709 n->m_pkthdr.len = n->m_len = len;
6710 n->m_next = NULL;
6711 off = 0;
6712
6713 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6714 newmsg = mtod(n, struct sadb_msg *);
6715 newmsg->sadb_msg_errno = 0;
6716 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6717 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6718
6719 /* for authentication algorithm */
6720 if (alen) {
6721 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6722 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6723 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6724 off += PFKEY_ALIGN8(sizeof(*sup));
6725
6726 for (i = 1; i <= SADB_AALG_MAX; i++) {
6727 const struct auth_hash *aalgo;
6728 u_int16_t minkeysize, maxkeysize;
6729
6730 aalgo = ah_algorithm_lookup(i);
6731 if (!aalgo)
6732 continue;
6733 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6734 alg->sadb_alg_id = i;
6735 alg->sadb_alg_ivlen = 0;
6736 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6737 alg->sadb_alg_minbits = _BITS(minkeysize);
6738 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6739 off += PFKEY_ALIGN8(sizeof(*alg));
6740 }
6741 }
6742
6743 /* for encryption algorithm */
6744 if (elen) {
6745 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6746 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6747 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6748 off += PFKEY_ALIGN8(sizeof(*sup));
6749
6750 for (i = 1; i <= SADB_EALG_MAX; i++) {
6751 const struct enc_xform *ealgo;
6752
6753 ealgo = esp_algorithm_lookup(i);
6754 if (!ealgo)
6755 continue;
6756 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6757 alg->sadb_alg_id = i;
6758 alg->sadb_alg_ivlen = ealgo->blocksize;
6759 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6760 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6761 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6762 }
6763 }
6764
6765 KASSERTMSG(off == len, "length inconsistency");
6766
6767 m_freem(m);
6768 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6769 }
6770 }
6771
6772 /*
6773 * free secreg entry registered.
6774 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6775 */
6776 void
6777 key_freereg(struct socket *so)
6778 {
6779 struct secreg *reg;
6780 int i;
6781
6782 KASSERT(!cpu_softintr_p());
6783 KASSERT(so != NULL);
6784
6785 /*
6786 * check whether existing or not.
6787 * check all type of SA, because there is a potential that
6788 * one socket is registered to multiple type of SA.
6789 */
6790 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6791 LIST_FOREACH(reg, ®tree[i], chain) {
6792 if (reg->so == so
6793 && __LIST_CHAINED(reg)) {
6794 LIST_REMOVE(reg, chain);
6795 kmem_free(reg, sizeof(*reg));
6796 break;
6797 }
6798 }
6799 }
6800
6801 return;
6802 }
6803
6804 /*
6805 * SADB_EXPIRE processing
6806 * send
6807 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6808 * to KMD by PF_KEY.
6809 * NOTE: We send only soft lifetime extension.
6810 *
6811 * OUT: 0 : succeed
6812 * others : error number
6813 */
6814 static int
6815 key_expire(struct secasvar *sav)
6816 {
6817 int s;
6818 int satype;
6819 struct mbuf *result = NULL, *m;
6820 int len;
6821 int error = -1;
6822 struct sadb_lifetime *lt;
6823
6824 /* XXX: Why do we lock ? */
6825 s = splsoftnet(); /*called from softclock()*/
6826
6827 KASSERT(sav != NULL);
6828 KASSERT(sav->sah != NULL);
6829
6830 satype = key_proto2satype(sav->sah->saidx.proto);
6831 KASSERTMSG(satype != 0, "invalid proto is passed");
6832
6833 /* set msg header */
6834 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6835 if (!m) {
6836 error = ENOBUFS;
6837 goto fail;
6838 }
6839 result = m;
6840
6841 /* create SA extension */
6842 m = key_setsadbsa(sav);
6843 if (!m) {
6844 error = ENOBUFS;
6845 goto fail;
6846 }
6847 m_cat(result, m);
6848
6849 /* create SA extension */
6850 m = key_setsadbxsa2(sav->sah->saidx.mode,
6851 sav->replay ? sav->replay->count : 0,
6852 sav->sah->saidx.reqid);
6853 if (!m) {
6854 error = ENOBUFS;
6855 goto fail;
6856 }
6857 m_cat(result, m);
6858
6859 /* create lifetime extension (current and soft) */
6860 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6861 m = key_alloc_mbuf(len);
6862 if (!m || m->m_next) { /*XXX*/
6863 if (m)
6864 m_freem(m);
6865 error = ENOBUFS;
6866 goto fail;
6867 }
6868 memset(mtod(m, void *), 0, len);
6869 lt = mtod(m, struct sadb_lifetime *);
6870 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6871 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6872 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6873 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6874 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6875 + time_second - time_uptime;
6876 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6877 + time_second - time_uptime;
6878 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6879 memcpy(lt, sav->lft_s, sizeof(*lt));
6880 m_cat(result, m);
6881
6882 /* set sadb_address for source */
6883 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6884 &sav->sah->saidx.src.sa,
6885 FULLMASK, IPSEC_ULPROTO_ANY);
6886 if (!m) {
6887 error = ENOBUFS;
6888 goto fail;
6889 }
6890 m_cat(result, m);
6891
6892 /* set sadb_address for destination */
6893 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6894 &sav->sah->saidx.dst.sa,
6895 FULLMASK, IPSEC_ULPROTO_ANY);
6896 if (!m) {
6897 error = ENOBUFS;
6898 goto fail;
6899 }
6900 m_cat(result, m);
6901
6902 if ((result->m_flags & M_PKTHDR) == 0) {
6903 error = EINVAL;
6904 goto fail;
6905 }
6906
6907 if (result->m_len < sizeof(struct sadb_msg)) {
6908 result = m_pullup(result, sizeof(struct sadb_msg));
6909 if (result == NULL) {
6910 error = ENOBUFS;
6911 goto fail;
6912 }
6913 }
6914
6915 result->m_pkthdr.len = 0;
6916 for (m = result; m; m = m->m_next)
6917 result->m_pkthdr.len += m->m_len;
6918
6919 mtod(result, struct sadb_msg *)->sadb_msg_len =
6920 PFKEY_UNIT64(result->m_pkthdr.len);
6921
6922 splx(s);
6923 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6924
6925 fail:
6926 if (result)
6927 m_freem(result);
6928 splx(s);
6929 return error;
6930 }
6931
6932 /*
6933 * SADB_FLUSH processing
6934 * receive
6935 * <base>
6936 * from the ikmpd, and free all entries in secastree.
6937 * and send,
6938 * <base>
6939 * to the ikmpd.
6940 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6941 *
6942 * m will always be freed.
6943 */
6944 static int
6945 key_flush(struct socket *so, struct mbuf *m,
6946 const struct sadb_msghdr *mhp)
6947 {
6948 struct sadb_msg *newmsg;
6949 struct secashead *sah;
6950 struct secasvar *sav, *nextsav;
6951 u_int16_t proto;
6952 u_int8_t state;
6953
6954 KASSERT(so != NULL);
6955 KASSERT(mhp != NULL);
6956 KASSERT(mhp->msg != NULL);
6957
6958 /* map satype to proto */
6959 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6960 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6961 return key_senderror(so, m, EINVAL);
6962 }
6963
6964 /* no SATYPE specified, i.e. flushing all SA. */
6965 LIST_FOREACH(sah, &sahtree, chain) {
6966 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6967 && proto != sah->saidx.proto)
6968 continue;
6969
6970 SASTATE_ALIVE_FOREACH(state) {
6971 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6972 nextsav) {
6973 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6974 KEY_FREESAV(&sav);
6975 }
6976 }
6977
6978 sah->state = SADB_SASTATE_DEAD;
6979 }
6980
6981 if (m->m_len < sizeof(struct sadb_msg) ||
6982 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6983 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
6984 return key_senderror(so, m, ENOBUFS);
6985 }
6986
6987 if (m->m_next)
6988 m_freem(m->m_next);
6989 m->m_next = NULL;
6990 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6991 newmsg = mtod(m, struct sadb_msg *);
6992 newmsg->sadb_msg_errno = 0;
6993 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6994
6995 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6996 }
6997
6998
6999 static struct mbuf *
7000 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7001 {
7002 struct secashead *sah;
7003 struct secasvar *sav;
7004 u_int16_t proto;
7005 u_int8_t satype;
7006 u_int8_t state;
7007 int cnt;
7008 struct mbuf *m, *n, *prev;
7009
7010 *lenp = 0;
7011
7012 /* map satype to proto */
7013 if ((proto = key_satype2proto(req_satype)) == 0) {
7014 *errorp = EINVAL;
7015 return (NULL);
7016 }
7017
7018 /* count sav entries to be sent to userland. */
7019 cnt = 0;
7020 LIST_FOREACH(sah, &sahtree, chain) {
7021 if (req_satype != SADB_SATYPE_UNSPEC &&
7022 proto != sah->saidx.proto)
7023 continue;
7024
7025 SASTATE_ANY_FOREACH(state) {
7026 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7027 cnt++;
7028 }
7029 }
7030 }
7031
7032 if (cnt == 0) {
7033 *errorp = ENOENT;
7034 return (NULL);
7035 }
7036
7037 /* send this to the userland, one at a time. */
7038 m = NULL;
7039 prev = m;
7040 LIST_FOREACH(sah, &sahtree, chain) {
7041 if (req_satype != SADB_SATYPE_UNSPEC &&
7042 proto != sah->saidx.proto)
7043 continue;
7044
7045 /* map proto to satype */
7046 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7047 m_freem(m);
7048 *errorp = EINVAL;
7049 return (NULL);
7050 }
7051
7052 SASTATE_ANY_FOREACH(state) {
7053 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7054 n = key_setdumpsa(sav, SADB_DUMP, satype,
7055 --cnt, pid);
7056 if (!n) {
7057 m_freem(m);
7058 *errorp = ENOBUFS;
7059 return (NULL);
7060 }
7061
7062 if (!m)
7063 m = n;
7064 else
7065 prev->m_nextpkt = n;
7066 prev = n;
7067 }
7068 }
7069 }
7070
7071 if (!m) {
7072 *errorp = EINVAL;
7073 return (NULL);
7074 }
7075
7076 if ((m->m_flags & M_PKTHDR) != 0) {
7077 m->m_pkthdr.len = 0;
7078 for (n = m; n; n = n->m_next)
7079 m->m_pkthdr.len += n->m_len;
7080 }
7081
7082 *errorp = 0;
7083 return (m);
7084 }
7085
7086 /*
7087 * SADB_DUMP processing
7088 * dump all entries including status of DEAD in SAD.
7089 * receive
7090 * <base>
7091 * from the ikmpd, and dump all secasvar leaves
7092 * and send,
7093 * <base> .....
7094 * to the ikmpd.
7095 *
7096 * m will always be freed.
7097 */
7098 static int
7099 key_dump(struct socket *so, struct mbuf *m0,
7100 const struct sadb_msghdr *mhp)
7101 {
7102 u_int16_t proto;
7103 u_int8_t satype;
7104 struct mbuf *n;
7105 int s;
7106 int error, len, ok;
7107
7108 KASSERT(so != NULL);
7109 KASSERT(m0 != NULL);
7110 KASSERT(mhp != NULL);
7111 KASSERT(mhp->msg != NULL);
7112
7113 /* map satype to proto */
7114 satype = mhp->msg->sadb_msg_satype;
7115 if ((proto = key_satype2proto(satype)) == 0) {
7116 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7117 return key_senderror(so, m0, EINVAL);
7118 }
7119
7120 /*
7121 * If the requestor has insufficient socket-buffer space
7122 * for the entire chain, nobody gets any response to the DUMP.
7123 * XXX For now, only the requestor ever gets anything.
7124 * Moreover, if the requestor has any space at all, they receive
7125 * the entire chain, otherwise the request is refused with ENOBUFS.
7126 */
7127 if (sbspace(&so->so_rcv) <= 0) {
7128 return key_senderror(so, m0, ENOBUFS);
7129 }
7130
7131 s = splsoftnet();
7132 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7133 splx(s);
7134
7135 if (n == NULL) {
7136 return key_senderror(so, m0, ENOENT);
7137 }
7138 {
7139 uint64_t *ps = PFKEY_STAT_GETREF();
7140 ps[PFKEY_STAT_IN_TOTAL]++;
7141 ps[PFKEY_STAT_IN_BYTES] += len;
7142 PFKEY_STAT_PUTREF();
7143 }
7144
7145 /*
7146 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7147 * The requestor receives either the entire chain, or an
7148 * error message with ENOBUFS.
7149 *
7150 * sbappendaddrchain() takes the chain of entries, one
7151 * packet-record per SPD entry, prepends the key_src sockaddr
7152 * to each packet-record, links the sockaddr mbufs into a new
7153 * list of records, then appends the entire resulting
7154 * list to the requesting socket.
7155 */
7156 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7157 n, SB_PRIO_ONESHOT_OVERFLOW);
7158
7159 if (!ok) {
7160 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7161 m_freem(n);
7162 return key_senderror(so, m0, ENOBUFS);
7163 }
7164
7165 m_freem(m0);
7166 return 0;
7167 }
7168
7169 /*
7170 * SADB_X_PROMISC processing
7171 *
7172 * m will always be freed.
7173 */
7174 static int
7175 key_promisc(struct socket *so, struct mbuf *m,
7176 const struct sadb_msghdr *mhp)
7177 {
7178 int olen;
7179
7180 KASSERT(so != NULL);
7181 KASSERT(m != NULL);
7182 KASSERT(mhp != NULL);
7183 KASSERT(mhp->msg != NULL);
7184
7185 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7186
7187 if (olen < sizeof(struct sadb_msg)) {
7188 #if 1
7189 return key_senderror(so, m, EINVAL);
7190 #else
7191 m_freem(m);
7192 return 0;
7193 #endif
7194 } else if (olen == sizeof(struct sadb_msg)) {
7195 /* enable/disable promisc mode */
7196 struct keycb *kp;
7197
7198 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7199 return key_senderror(so, m, EINVAL);
7200 mhp->msg->sadb_msg_errno = 0;
7201 switch (mhp->msg->sadb_msg_satype) {
7202 case 0:
7203 case 1:
7204 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7205 break;
7206 default:
7207 return key_senderror(so, m, EINVAL);
7208 }
7209
7210 /* send the original message back to everyone */
7211 mhp->msg->sadb_msg_errno = 0;
7212 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7213 } else {
7214 /* send packet as is */
7215
7216 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7217
7218 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7219 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7220 }
7221 }
7222
7223 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7224 const struct sadb_msghdr *) = {
7225 NULL, /* SADB_RESERVED */
7226 key_getspi, /* SADB_GETSPI */
7227 key_update, /* SADB_UPDATE */
7228 key_add, /* SADB_ADD */
7229 key_delete, /* SADB_DELETE */
7230 key_get, /* SADB_GET */
7231 key_acquire2, /* SADB_ACQUIRE */
7232 key_register, /* SADB_REGISTER */
7233 NULL, /* SADB_EXPIRE */
7234 key_flush, /* SADB_FLUSH */
7235 key_dump, /* SADB_DUMP */
7236 key_promisc, /* SADB_X_PROMISC */
7237 NULL, /* SADB_X_PCHANGE */
7238 key_spdadd, /* SADB_X_SPDUPDATE */
7239 key_spdadd, /* SADB_X_SPDADD */
7240 key_spddelete, /* SADB_X_SPDDELETE */
7241 key_spdget, /* SADB_X_SPDGET */
7242 NULL, /* SADB_X_SPDACQUIRE */
7243 key_spddump, /* SADB_X_SPDDUMP */
7244 key_spdflush, /* SADB_X_SPDFLUSH */
7245 key_spdadd, /* SADB_X_SPDSETIDX */
7246 NULL, /* SADB_X_SPDEXPIRE */
7247 key_spddelete2, /* SADB_X_SPDDELETE2 */
7248 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7249 };
7250
7251 /*
7252 * parse sadb_msg buffer to process PFKEYv2,
7253 * and create a data to response if needed.
7254 * I think to be dealed with mbuf directly.
7255 * IN:
7256 * msgp : pointer to pointer to a received buffer pulluped.
7257 * This is rewrited to response.
7258 * so : pointer to socket.
7259 * OUT:
7260 * length for buffer to send to user process.
7261 */
7262 int
7263 key_parse(struct mbuf *m, struct socket *so)
7264 {
7265 struct sadb_msg *msg;
7266 struct sadb_msghdr mh;
7267 u_int orglen;
7268 int error;
7269 int target;
7270
7271 KASSERT(m != NULL);
7272 KASSERT(so != NULL);
7273
7274 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7275 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7276 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7277 kdebug_sadb(msg);
7278 }
7279 #endif
7280
7281 if (m->m_len < sizeof(struct sadb_msg)) {
7282 m = m_pullup(m, sizeof(struct sadb_msg));
7283 if (!m)
7284 return ENOBUFS;
7285 }
7286 msg = mtod(m, struct sadb_msg *);
7287 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7288 target = KEY_SENDUP_ONE;
7289
7290 if ((m->m_flags & M_PKTHDR) == 0 ||
7291 m->m_pkthdr.len != orglen) {
7292 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7293 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7294 error = EINVAL;
7295 goto senderror;
7296 }
7297
7298 if (msg->sadb_msg_version != PF_KEY_V2) {
7299 ipseclog((LOG_DEBUG,
7300 "key_parse: PF_KEY version %u is mismatched.\n",
7301 msg->sadb_msg_version));
7302 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7303 error = EINVAL;
7304 goto senderror;
7305 }
7306
7307 if (msg->sadb_msg_type > SADB_MAX) {
7308 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7309 msg->sadb_msg_type));
7310 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7311 error = EINVAL;
7312 goto senderror;
7313 }
7314
7315 /* for old-fashioned code - should be nuked */
7316 if (m->m_pkthdr.len > MCLBYTES) {
7317 m_freem(m);
7318 return ENOBUFS;
7319 }
7320 if (m->m_next) {
7321 struct mbuf *n;
7322
7323 MGETHDR(n, M_DONTWAIT, MT_DATA);
7324 if (n && m->m_pkthdr.len > MHLEN) {
7325 MCLGET(n, M_DONTWAIT);
7326 if ((n->m_flags & M_EXT) == 0) {
7327 m_free(n);
7328 n = NULL;
7329 }
7330 }
7331 if (!n) {
7332 m_freem(m);
7333 return ENOBUFS;
7334 }
7335 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7336 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7337 n->m_next = NULL;
7338 m_freem(m);
7339 m = n;
7340 }
7341
7342 /* align the mbuf chain so that extensions are in contiguous region. */
7343 error = key_align(m, &mh);
7344 if (error)
7345 return error;
7346
7347 if (m->m_next) { /*XXX*/
7348 m_freem(m);
7349 return ENOBUFS;
7350 }
7351
7352 msg = mh.msg;
7353
7354 /* check SA type */
7355 switch (msg->sadb_msg_satype) {
7356 case SADB_SATYPE_UNSPEC:
7357 switch (msg->sadb_msg_type) {
7358 case SADB_GETSPI:
7359 case SADB_UPDATE:
7360 case SADB_ADD:
7361 case SADB_DELETE:
7362 case SADB_GET:
7363 case SADB_ACQUIRE:
7364 case SADB_EXPIRE:
7365 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7366 "when msg type=%u.\n", msg->sadb_msg_type));
7367 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7368 error = EINVAL;
7369 goto senderror;
7370 }
7371 break;
7372 case SADB_SATYPE_AH:
7373 case SADB_SATYPE_ESP:
7374 case SADB_X_SATYPE_IPCOMP:
7375 case SADB_X_SATYPE_TCPSIGNATURE:
7376 switch (msg->sadb_msg_type) {
7377 case SADB_X_SPDADD:
7378 case SADB_X_SPDDELETE:
7379 case SADB_X_SPDGET:
7380 case SADB_X_SPDDUMP:
7381 case SADB_X_SPDFLUSH:
7382 case SADB_X_SPDSETIDX:
7383 case SADB_X_SPDUPDATE:
7384 case SADB_X_SPDDELETE2:
7385 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7386 msg->sadb_msg_type));
7387 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7388 error = EINVAL;
7389 goto senderror;
7390 }
7391 break;
7392 case SADB_SATYPE_RSVP:
7393 case SADB_SATYPE_OSPFV2:
7394 case SADB_SATYPE_RIPV2:
7395 case SADB_SATYPE_MIP:
7396 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7397 msg->sadb_msg_satype));
7398 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7399 error = EOPNOTSUPP;
7400 goto senderror;
7401 case 1: /* XXX: What does it do? */
7402 if (msg->sadb_msg_type == SADB_X_PROMISC)
7403 break;
7404 /*FALLTHROUGH*/
7405 default:
7406 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7407 msg->sadb_msg_satype));
7408 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7409 error = EINVAL;
7410 goto senderror;
7411 }
7412
7413 /* check field of upper layer protocol and address family */
7414 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7415 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7416 struct sadb_address *src0, *dst0;
7417 u_int plen;
7418
7419 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7420 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7421
7422 /* check upper layer protocol */
7423 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7424 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7425 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7426 error = EINVAL;
7427 goto senderror;
7428 }
7429
7430 /* check family */
7431 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7432 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7433 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7434 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7435 error = EINVAL;
7436 goto senderror;
7437 }
7438 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7439 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7440 ipseclog((LOG_DEBUG,
7441 "key_parse: address struct size mismatched.\n"));
7442 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7443 error = EINVAL;
7444 goto senderror;
7445 }
7446
7447 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7448 case AF_INET:
7449 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7450 sizeof(struct sockaddr_in)) {
7451 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7452 error = EINVAL;
7453 goto senderror;
7454 }
7455 break;
7456 case AF_INET6:
7457 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7458 sizeof(struct sockaddr_in6)) {
7459 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7460 error = EINVAL;
7461 goto senderror;
7462 }
7463 break;
7464 default:
7465 ipseclog((LOG_DEBUG,
7466 "key_parse: unsupported address family.\n"));
7467 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7468 error = EAFNOSUPPORT;
7469 goto senderror;
7470 }
7471
7472 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7473 case AF_INET:
7474 plen = sizeof(struct in_addr) << 3;
7475 break;
7476 case AF_INET6:
7477 plen = sizeof(struct in6_addr) << 3;
7478 break;
7479 default:
7480 plen = 0; /*fool gcc*/
7481 break;
7482 }
7483
7484 /* check max prefix length */
7485 if (src0->sadb_address_prefixlen > plen ||
7486 dst0->sadb_address_prefixlen > plen) {
7487 ipseclog((LOG_DEBUG,
7488 "key_parse: illegal prefixlen.\n"));
7489 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7490 error = EINVAL;
7491 goto senderror;
7492 }
7493
7494 /*
7495 * prefixlen == 0 is valid because there can be a case when
7496 * all addresses are matched.
7497 */
7498 }
7499
7500 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7501 key_typesw[msg->sadb_msg_type] == NULL) {
7502 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7503 error = EINVAL;
7504 goto senderror;
7505 }
7506
7507 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7508
7509 senderror:
7510 msg->sadb_msg_errno = error;
7511 return key_sendup_mbuf(so, m, target);
7512 }
7513
7514 static int
7515 key_senderror(struct socket *so, struct mbuf *m, int code)
7516 {
7517 struct sadb_msg *msg;
7518
7519 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7520
7521 msg = mtod(m, struct sadb_msg *);
7522 msg->sadb_msg_errno = code;
7523 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7524 }
7525
7526 /*
7527 * set the pointer to each header into message buffer.
7528 * m will be freed on error.
7529 * XXX larger-than-MCLBYTES extension?
7530 */
7531 static int
7532 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7533 {
7534 struct mbuf *n;
7535 struct sadb_ext *ext;
7536 size_t off, end;
7537 int extlen;
7538 int toff;
7539
7540 KASSERT(m != NULL);
7541 KASSERT(mhp != NULL);
7542 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7543
7544 /* initialize */
7545 memset(mhp, 0, sizeof(*mhp));
7546
7547 mhp->msg = mtod(m, struct sadb_msg *);
7548 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7549
7550 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7551 extlen = end; /*just in case extlen is not updated*/
7552 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7553 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7554 if (!n) {
7555 /* m is already freed */
7556 return ENOBUFS;
7557 }
7558 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7559
7560 /* set pointer */
7561 switch (ext->sadb_ext_type) {
7562 case SADB_EXT_SA:
7563 case SADB_EXT_ADDRESS_SRC:
7564 case SADB_EXT_ADDRESS_DST:
7565 case SADB_EXT_ADDRESS_PROXY:
7566 case SADB_EXT_LIFETIME_CURRENT:
7567 case SADB_EXT_LIFETIME_HARD:
7568 case SADB_EXT_LIFETIME_SOFT:
7569 case SADB_EXT_KEY_AUTH:
7570 case SADB_EXT_KEY_ENCRYPT:
7571 case SADB_EXT_IDENTITY_SRC:
7572 case SADB_EXT_IDENTITY_DST:
7573 case SADB_EXT_SENSITIVITY:
7574 case SADB_EXT_PROPOSAL:
7575 case SADB_EXT_SUPPORTED_AUTH:
7576 case SADB_EXT_SUPPORTED_ENCRYPT:
7577 case SADB_EXT_SPIRANGE:
7578 case SADB_X_EXT_POLICY:
7579 case SADB_X_EXT_SA2:
7580 case SADB_X_EXT_NAT_T_TYPE:
7581 case SADB_X_EXT_NAT_T_SPORT:
7582 case SADB_X_EXT_NAT_T_DPORT:
7583 case SADB_X_EXT_NAT_T_OAI:
7584 case SADB_X_EXT_NAT_T_OAR:
7585 case SADB_X_EXT_NAT_T_FRAG:
7586 /* duplicate check */
7587 /*
7588 * XXX Are there duplication payloads of either
7589 * KEY_AUTH or KEY_ENCRYPT ?
7590 */
7591 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7592 ipseclog((LOG_DEBUG,
7593 "key_align: duplicate ext_type %u "
7594 "is passed.\n", ext->sadb_ext_type));
7595 m_freem(m);
7596 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7597 return EINVAL;
7598 }
7599 break;
7600 default:
7601 ipseclog((LOG_DEBUG,
7602 "key_align: invalid ext_type %u is passed.\n",
7603 ext->sadb_ext_type));
7604 m_freem(m);
7605 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7606 return EINVAL;
7607 }
7608
7609 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7610
7611 if (key_validate_ext(ext, extlen)) {
7612 m_freem(m);
7613 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7614 return EINVAL;
7615 }
7616
7617 n = m_pulldown(m, off, extlen, &toff);
7618 if (!n) {
7619 /* m is already freed */
7620 return ENOBUFS;
7621 }
7622 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7623
7624 mhp->ext[ext->sadb_ext_type] = ext;
7625 mhp->extoff[ext->sadb_ext_type] = off;
7626 mhp->extlen[ext->sadb_ext_type] = extlen;
7627 }
7628
7629 if (off != end) {
7630 m_freem(m);
7631 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7632 return EINVAL;
7633 }
7634
7635 return 0;
7636 }
7637
7638 static int
7639 key_validate_ext(const struct sadb_ext *ext, int len)
7640 {
7641 const struct sockaddr *sa;
7642 enum { NONE, ADDR } checktype = NONE;
7643 int baselen = 0;
7644 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7645
7646 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7647 return EINVAL;
7648
7649 /* if it does not match minimum/maximum length, bail */
7650 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7651 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7652 return EINVAL;
7653 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7654 return EINVAL;
7655 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7656 return EINVAL;
7657
7658 /* more checks based on sadb_ext_type XXX need more */
7659 switch (ext->sadb_ext_type) {
7660 case SADB_EXT_ADDRESS_SRC:
7661 case SADB_EXT_ADDRESS_DST:
7662 case SADB_EXT_ADDRESS_PROXY:
7663 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7664 checktype = ADDR;
7665 break;
7666 case SADB_EXT_IDENTITY_SRC:
7667 case SADB_EXT_IDENTITY_DST:
7668 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7669 SADB_X_IDENTTYPE_ADDR) {
7670 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7671 checktype = ADDR;
7672 } else
7673 checktype = NONE;
7674 break;
7675 default:
7676 checktype = NONE;
7677 break;
7678 }
7679
7680 switch (checktype) {
7681 case NONE:
7682 break;
7683 case ADDR:
7684 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7685 if (len < baselen + sal)
7686 return EINVAL;
7687 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7688 return EINVAL;
7689 break;
7690 }
7691
7692 return 0;
7693 }
7694
7695 static int
7696 key_do_init(void)
7697 {
7698 int i, error;
7699
7700 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7701
7702 callout_init(&key_timehandler_ch, 0);
7703 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7704 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7705 if (error != 0)
7706 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7707
7708 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7709 LIST_INIT(&sptree[i]);
7710 }
7711
7712 LIST_INIT(&sahtree);
7713
7714 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7715 LIST_INIT(®tree[i]);
7716 }
7717
7718 #ifndef IPSEC_NONBLOCK_ACQUIRE
7719 LIST_INIT(&acqtree);
7720 #endif
7721 LIST_INIT(&spacqtree);
7722
7723 /* system default */
7724 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7725 ip4_def_policy.refcnt++; /*never reclaim this*/
7726
7727 #ifdef INET6
7728 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7729 ip6_def_policy.refcnt++; /*never reclaim this*/
7730 #endif
7731
7732 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7733
7734 /* initialize key statistics */
7735 keystat.getspi_count = 1;
7736
7737 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7738
7739 return (0);
7740 }
7741
7742 void
7743 key_init(void)
7744 {
7745 static ONCE_DECL(key_init_once);
7746
7747 sysctl_net_keyv2_setup(NULL);
7748 sysctl_net_key_compat_setup(NULL);
7749
7750 RUN_ONCE(&key_init_once, key_do_init);
7751 }
7752
7753 /*
7754 * XXX: maybe This function is called after INBOUND IPsec processing.
7755 *
7756 * Special check for tunnel-mode packets.
7757 * We must make some checks for consistency between inner and outer IP header.
7758 *
7759 * xxx more checks to be provided
7760 */
7761 int
7762 key_checktunnelsanity(
7763 struct secasvar *sav,
7764 u_int family,
7765 void *src,
7766 void *dst
7767 )
7768 {
7769
7770 KASSERT(sav->sah != NULL);
7771
7772 /* XXX: check inner IP header */
7773
7774 return 1;
7775 }
7776
7777 #if 0
7778 #define hostnamelen strlen(hostname)
7779
7780 /*
7781 * Get FQDN for the host.
7782 * If the administrator configured hostname (by hostname(1)) without
7783 * domain name, returns nothing.
7784 */
7785 static const char *
7786 key_getfqdn(void)
7787 {
7788 int i;
7789 int hasdot;
7790 static char fqdn[MAXHOSTNAMELEN + 1];
7791
7792 if (!hostnamelen)
7793 return NULL;
7794
7795 /* check if it comes with domain name. */
7796 hasdot = 0;
7797 for (i = 0; i < hostnamelen; i++) {
7798 if (hostname[i] == '.')
7799 hasdot++;
7800 }
7801 if (!hasdot)
7802 return NULL;
7803
7804 /* NOTE: hostname may not be NUL-terminated. */
7805 memset(fqdn, 0, sizeof(fqdn));
7806 memcpy(fqdn, hostname, hostnamelen);
7807 fqdn[hostnamelen] = '\0';
7808 return fqdn;
7809 }
7810
7811 /*
7812 * get username@FQDN for the host/user.
7813 */
7814 static const char *
7815 key_getuserfqdn(void)
7816 {
7817 const char *host;
7818 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7819 struct proc *p = curproc;
7820 char *q;
7821
7822 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7823 return NULL;
7824 if (!(host = key_getfqdn()))
7825 return NULL;
7826
7827 /* NOTE: s_login may not be-NUL terminated. */
7828 memset(userfqdn, 0, sizeof(userfqdn));
7829 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7830 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7831 q = userfqdn + strlen(userfqdn);
7832 *q++ = '@';
7833 memcpy(q, host, strlen(host));
7834 q += strlen(host);
7835 *q++ = '\0';
7836
7837 return userfqdn;
7838 }
7839 #endif
7840
7841 /* record data transfer on SA, and update timestamps */
7842 void
7843 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7844 {
7845
7846 KASSERT(sav != NULL);
7847 KASSERT(m != NULL);
7848 if (!sav->lft_c)
7849 return;
7850
7851 /*
7852 * XXX Currently, there is a difference of bytes size
7853 * between inbound and outbound processing.
7854 */
7855 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7856 /* to check bytes lifetime is done in key_timehandler(). */
7857
7858 /*
7859 * We use the number of packets as the unit of
7860 * sadb_lifetime_allocations. We increment the variable
7861 * whenever {esp,ah}_{in,out}put is called.
7862 */
7863 sav->lft_c->sadb_lifetime_allocations++;
7864 /* XXX check for expires? */
7865
7866 /*
7867 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7868 * in seconds. HARD and SOFT lifetime are measured by the time
7869 * difference (again in seconds) from sadb_lifetime_usetime.
7870 *
7871 * usetime
7872 * v expire expire
7873 * -----+-----+--------+---> t
7874 * <--------------> HARD
7875 * <-----> SOFT
7876 */
7877 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7878 /* XXX check for expires? */
7879
7880 return;
7881 }
7882
7883 /* dumb version */
7884 void
7885 key_sa_routechange(struct sockaddr *dst)
7886 {
7887 struct secashead *sah;
7888 struct route *ro;
7889 const struct sockaddr *sa;
7890
7891 LIST_FOREACH(sah, &sahtree, chain) {
7892 ro = &sah->sa_route;
7893 sa = rtcache_getdst(ro);
7894 if (sa != NULL && dst->sa_len == sa->sa_len &&
7895 memcmp(dst, sa, dst->sa_len) == 0)
7896 rtcache_free(ro);
7897 }
7898
7899 return;
7900 }
7901
7902 static void
7903 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7904 {
7905
7906 KASSERT(sav != NULL);
7907
7908 if (sav->state == state)
7909 return;
7910
7911 if (__LIST_CHAINED(sav))
7912 LIST_REMOVE(sav, chain);
7913
7914 sav->state = state;
7915 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7916 }
7917
7918 /* XXX too much? */
7919 static struct mbuf *
7920 key_alloc_mbuf(int l)
7921 {
7922 struct mbuf *m = NULL, *n;
7923 int len, t;
7924
7925 len = l;
7926 while (len > 0) {
7927 MGET(n, M_DONTWAIT, MT_DATA);
7928 if (n && len > MLEN)
7929 MCLGET(n, M_DONTWAIT);
7930 if (!n) {
7931 m_freem(m);
7932 return NULL;
7933 }
7934
7935 n->m_next = NULL;
7936 n->m_len = 0;
7937 n->m_len = M_TRAILINGSPACE(n);
7938 /* use the bottom of mbuf, hoping we can prepend afterwards */
7939 if (n->m_len > len) {
7940 t = (n->m_len - len) & ~(sizeof(long) - 1);
7941 n->m_data += t;
7942 n->m_len = len;
7943 }
7944
7945 len -= n->m_len;
7946
7947 if (m)
7948 m_cat(m, n);
7949 else
7950 m = n;
7951 }
7952
7953 return m;
7954 }
7955
7956 static struct mbuf *
7957 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7958 {
7959 struct secashead *sah;
7960 struct secasvar *sav;
7961 u_int16_t proto;
7962 u_int8_t satype;
7963 u_int8_t state;
7964 int cnt;
7965 struct mbuf *m, *n;
7966
7967 /* map satype to proto */
7968 if ((proto = key_satype2proto(req_satype)) == 0) {
7969 *errorp = EINVAL;
7970 return (NULL);
7971 }
7972
7973 /* count sav entries to be sent to the userland. */
7974 cnt = 0;
7975 LIST_FOREACH(sah, &sahtree, chain) {
7976 if (req_satype != SADB_SATYPE_UNSPEC &&
7977 proto != sah->saidx.proto)
7978 continue;
7979
7980 SASTATE_ANY_FOREACH(state) {
7981 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7982 cnt++;
7983 }
7984 }
7985 }
7986
7987 if (cnt == 0) {
7988 *errorp = ENOENT;
7989 return (NULL);
7990 }
7991
7992 /* send this to the userland, one at a time. */
7993 m = NULL;
7994 LIST_FOREACH(sah, &sahtree, chain) {
7995 if (req_satype != SADB_SATYPE_UNSPEC &&
7996 proto != sah->saidx.proto)
7997 continue;
7998
7999 /* map proto to satype */
8000 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8001 m_freem(m);
8002 *errorp = EINVAL;
8003 return (NULL);
8004 }
8005
8006 SASTATE_ANY_FOREACH(state) {
8007 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8008 n = key_setdumpsa(sav, SADB_DUMP, satype,
8009 --cnt, pid);
8010 if (!n) {
8011 m_freem(m);
8012 *errorp = ENOBUFS;
8013 return (NULL);
8014 }
8015
8016 if (!m)
8017 m = n;
8018 else
8019 m_cat(m, n);
8020 }
8021 }
8022 }
8023
8024 if (!m) {
8025 *errorp = EINVAL;
8026 return (NULL);
8027 }
8028
8029 if ((m->m_flags & M_PKTHDR) != 0) {
8030 m->m_pkthdr.len = 0;
8031 for (n = m; n; n = n->m_next)
8032 m->m_pkthdr.len += n->m_len;
8033 }
8034
8035 *errorp = 0;
8036 return (m);
8037 }
8038
8039 static struct mbuf *
8040 key_setspddump(int *errorp, pid_t pid)
8041 {
8042 struct secpolicy *sp;
8043 int cnt;
8044 u_int dir;
8045 struct mbuf *m, *n;
8046
8047 /* search SPD entry and get buffer size. */
8048 cnt = 0;
8049 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8050 LIST_FOREACH(sp, &sptree[dir], chain) {
8051 cnt++;
8052 }
8053 }
8054
8055 if (cnt == 0) {
8056 *errorp = ENOENT;
8057 return (NULL);
8058 }
8059
8060 m = NULL;
8061 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8062 LIST_FOREACH(sp, &sptree[dir], chain) {
8063 --cnt;
8064 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8065
8066 if (!n) {
8067 *errorp = ENOBUFS;
8068 m_freem(m);
8069 return (NULL);
8070 }
8071 if (!m)
8072 m = n;
8073 else {
8074 m->m_pkthdr.len += n->m_pkthdr.len;
8075 m_cat(m, n);
8076 }
8077 }
8078 }
8079
8080 *errorp = 0;
8081 return (m);
8082 }
8083
8084 int
8085 key_get_used(void) {
8086 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8087 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8088 }
8089
8090 void
8091 key_update_used(void)
8092 {
8093 switch (ipsec_enabled) {
8094 default:
8095 case 0:
8096 #ifdef notyet
8097 /* XXX: racy */
8098 ipsec_used = 0;
8099 #endif
8100 break;
8101 case 1:
8102 #ifndef notyet
8103 /* XXX: racy */
8104 if (!ipsec_used)
8105 #endif
8106 ipsec_used = key_get_used();
8107 break;
8108 case 2:
8109 ipsec_used = 1;
8110 break;
8111 }
8112 }
8113
8114 static int
8115 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8116 {
8117 struct mbuf *m, *n;
8118 int err2 = 0;
8119 char *p, *ep;
8120 size_t len;
8121 int s, error;
8122
8123 if (newp)
8124 return (EPERM);
8125 if (namelen != 1)
8126 return (EINVAL);
8127
8128 s = splsoftnet();
8129 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8130 splx(s);
8131 if (!m)
8132 return (error);
8133 if (!oldp)
8134 *oldlenp = m->m_pkthdr.len;
8135 else {
8136 p = oldp;
8137 if (*oldlenp < m->m_pkthdr.len) {
8138 err2 = ENOMEM;
8139 ep = p + *oldlenp;
8140 } else {
8141 *oldlenp = m->m_pkthdr.len;
8142 ep = p + m->m_pkthdr.len;
8143 }
8144 for (n = m; n; n = n->m_next) {
8145 len = (ep - p < n->m_len) ?
8146 ep - p : n->m_len;
8147 error = copyout(mtod(n, const void *), p, len);
8148 p += len;
8149 if (error)
8150 break;
8151 }
8152 if (error == 0)
8153 error = err2;
8154 }
8155 m_freem(m);
8156
8157 return (error);
8158 }
8159
8160 static int
8161 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8162 {
8163 struct mbuf *m, *n;
8164 int err2 = 0;
8165 char *p, *ep;
8166 size_t len;
8167 int s, error;
8168
8169 if (newp)
8170 return (EPERM);
8171 if (namelen != 0)
8172 return (EINVAL);
8173
8174 s = splsoftnet();
8175 m = key_setspddump(&error, l->l_proc->p_pid);
8176 splx(s);
8177 if (!m)
8178 return (error);
8179 if (!oldp)
8180 *oldlenp = m->m_pkthdr.len;
8181 else {
8182 p = oldp;
8183 if (*oldlenp < m->m_pkthdr.len) {
8184 err2 = ENOMEM;
8185 ep = p + *oldlenp;
8186 } else {
8187 *oldlenp = m->m_pkthdr.len;
8188 ep = p + m->m_pkthdr.len;
8189 }
8190 for (n = m; n; n = n->m_next) {
8191 len = (ep - p < n->m_len) ?
8192 ep - p : n->m_len;
8193 error = copyout(mtod(n, const void *), p, len);
8194 p += len;
8195 if (error)
8196 break;
8197 }
8198 if (error == 0)
8199 error = err2;
8200 }
8201 m_freem(m);
8202
8203 return (error);
8204 }
8205
8206 /*
8207 * Create sysctl tree for native IPSEC key knobs, originally
8208 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8209 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8210 * and in any case the part of our sysctl namespace used for dumping the
8211 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8212 * namespace, for API reasons.
8213 *
8214 * Pending a consensus on the right way to fix this, add a level of
8215 * indirection in how we number the `native' IPSEC key nodes;
8216 * and (as requested by Andrew Brown) move registration of the
8217 * KAME-compatible names to a separate function.
8218 */
8219 #if 0
8220 # define IPSEC_PFKEY PF_KEY_V2
8221 # define IPSEC_PFKEY_NAME "keyv2"
8222 #else
8223 # define IPSEC_PFKEY PF_KEY
8224 # define IPSEC_PFKEY_NAME "key"
8225 #endif
8226
8227 static int
8228 sysctl_net_key_stats(SYSCTLFN_ARGS)
8229 {
8230
8231 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8232 }
8233
8234 static void
8235 sysctl_net_keyv2_setup(struct sysctllog **clog)
8236 {
8237
8238 sysctl_createv(clog, 0, NULL, NULL,
8239 CTLFLAG_PERMANENT,
8240 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8241 NULL, 0, NULL, 0,
8242 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8243
8244 sysctl_createv(clog, 0, NULL, NULL,
8245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8246 CTLTYPE_INT, "debug", NULL,
8247 NULL, 0, &key_debug_level, 0,
8248 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8249 sysctl_createv(clog, 0, NULL, NULL,
8250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8251 CTLTYPE_INT, "spi_try", NULL,
8252 NULL, 0, &key_spi_trycnt, 0,
8253 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8254 sysctl_createv(clog, 0, NULL, NULL,
8255 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8256 CTLTYPE_INT, "spi_min_value", NULL,
8257 NULL, 0, &key_spi_minval, 0,
8258 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8259 sysctl_createv(clog, 0, NULL, NULL,
8260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8261 CTLTYPE_INT, "spi_max_value", NULL,
8262 NULL, 0, &key_spi_maxval, 0,
8263 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8264 sysctl_createv(clog, 0, NULL, NULL,
8265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8266 CTLTYPE_INT, "random_int", NULL,
8267 NULL, 0, &key_int_random, 0,
8268 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8269 sysctl_createv(clog, 0, NULL, NULL,
8270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8271 CTLTYPE_INT, "larval_lifetime", NULL,
8272 NULL, 0, &key_larval_lifetime, 0,
8273 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8274 sysctl_createv(clog, 0, NULL, NULL,
8275 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8276 CTLTYPE_INT, "blockacq_count", NULL,
8277 NULL, 0, &key_blockacq_count, 0,
8278 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8279 sysctl_createv(clog, 0, NULL, NULL,
8280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8281 CTLTYPE_INT, "blockacq_lifetime", NULL,
8282 NULL, 0, &key_blockacq_lifetime, 0,
8283 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8284 sysctl_createv(clog, 0, NULL, NULL,
8285 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8286 CTLTYPE_INT, "esp_keymin", NULL,
8287 NULL, 0, &ipsec_esp_keymin, 0,
8288 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8289 sysctl_createv(clog, 0, NULL, NULL,
8290 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8291 CTLTYPE_INT, "prefered_oldsa", NULL,
8292 NULL, 0, &key_prefered_oldsa, 0,
8293 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8294 sysctl_createv(clog, 0, NULL, NULL,
8295 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8296 CTLTYPE_INT, "esp_auth", NULL,
8297 NULL, 0, &ipsec_esp_auth, 0,
8298 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8299 sysctl_createv(clog, 0, NULL, NULL,
8300 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8301 CTLTYPE_INT, "ah_keymin", NULL,
8302 NULL, 0, &ipsec_ah_keymin, 0,
8303 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8304 sysctl_createv(clog, 0, NULL, NULL,
8305 CTLFLAG_PERMANENT,
8306 CTLTYPE_STRUCT, "stats",
8307 SYSCTL_DESCR("PF_KEY statistics"),
8308 sysctl_net_key_stats, 0, NULL, 0,
8309 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8310 }
8311
8312 /*
8313 * Register sysctl names used by setkey(8). For historical reasons,
8314 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8315 * for both IPSEC and KAME IPSEC.
8316 */
8317 static void
8318 sysctl_net_key_compat_setup(struct sysctllog **clog)
8319 {
8320
8321 sysctl_createv(clog, 0, NULL, NULL,
8322 CTLFLAG_PERMANENT,
8323 CTLTYPE_NODE, "key", NULL,
8324 NULL, 0, NULL, 0,
8325 CTL_NET, PF_KEY, CTL_EOL);
8326
8327 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8328 sysctl_createv(clog, 0, NULL, NULL,
8329 CTLFLAG_PERMANENT,
8330 CTLTYPE_STRUCT, "dumpsa", NULL,
8331 sysctl_net_key_dumpsa, 0, NULL, 0,
8332 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8333 sysctl_createv(clog, 0, NULL, NULL,
8334 CTLFLAG_PERMANENT,
8335 CTLTYPE_STRUCT, "dumpsp", NULL,
8336 sysctl_net_key_dumpsp, 0, NULL, 0,
8337 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8338 }
8339