key.c revision 1.133 1 /* $NetBSD: key.c,v 1.133 2017/05/19 04:39:25 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.133 2017/05/19 04:39:25 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72 #include <net/raw_cb.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/in_var.h>
78 #ifdef INET
79 #include <netinet/ip_var.h>
80 #endif
81
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #include <netinet6/in6_var.h>
85 #include <netinet6/ip6_var.h>
86 #endif /* INET6 */
87
88 #ifdef INET
89 #include <netinet/in_pcb.h>
90 #endif
91 #ifdef INET6
92 #include <netinet6/in6_pcb.h>
93 #endif /* INET6 */
94
95 #include <net/pfkeyv2.h>
96 #include <netipsec/keydb.h>
97 #include <netipsec/key.h>
98 #include <netipsec/keysock.h>
99 #include <netipsec/key_debug.h>
100
101 #include <netipsec/ipsec.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/ipsec_private.h>
106
107 #include <netipsec/xform.h>
108 #include <netipsec/ipcomp.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 #define PORT_NONE 0
117 #define PORT_LOOSE 1
118 #define PORT_STRICT 2
119
120 percpu_t *pfkeystat_percpu;
121
122 /*
123 * Note on SA reference counting:
124 * - SAs that are not in DEAD state will have (total external reference + 1)
125 * following value in reference count field. they cannot be freed and are
126 * referenced from SA header.
127 * - SAs that are in DEAD state will have (total external reference)
128 * in reference count field. they are ready to be freed. reference from
129 * SA header will be removed in key_delsav(), when the reference count
130 * field hits 0 (= no external reference other than from SA header.
131 */
132
133 u_int32_t key_debug_level = 0;
134 static u_int key_spi_trycnt = 1000;
135 static u_int32_t key_spi_minval = 0x100;
136 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
137 static u_int32_t policy_id = 0;
138 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
139 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
140 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
141 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
142 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
143
144 static u_int32_t acq_seq = 0;
145
146 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
147 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
149 /* registed list */
150 #ifndef IPSEC_NONBLOCK_ACQUIRE
151 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
152 #endif
153 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
154
155 /* search order for SAs */
156 /*
157 * This order is important because we must select the oldest SA
158 * for outbound processing. For inbound, This is not important.
159 */
160 static const u_int saorder_state_valid_prefer_old[] = {
161 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
162 };
163 static const u_int saorder_state_valid_prefer_new[] = {
164 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
165 };
166
167 static const u_int saorder_state_alive[] = {
168 /* except DEAD */
169 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
170 };
171 static const u_int saorder_state_any[] = {
172 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
173 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
174 };
175
176 #define SASTATE_ALIVE_FOREACH(s) \
177 for (int _i = 0; \
178 _i < __arraycount(saorder_state_alive) ? \
179 (s) = saorder_state_alive[_i], true : false; \
180 _i++)
181 #define SASTATE_ANY_FOREACH(s) \
182 for (int _i = 0; \
183 _i < __arraycount(saorder_state_any) ? \
184 (s) = saorder_state_any[_i], true : false; \
185 _i++)
186
187 static const int minsize[] = {
188 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
189 sizeof(struct sadb_sa), /* SADB_EXT_SA */
190 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
191 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
192 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
193 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
194 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
195 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
196 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
197 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
198 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
199 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
200 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
201 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
202 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
203 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
204 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
205 0, /* SADB_X_EXT_KMPRIVATE */
206 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
207 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
208 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
209 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
210 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
211 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
212 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
213 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
214 };
215 static const int maxsize[] = {
216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
217 sizeof(struct sadb_sa), /* SADB_EXT_SA */
218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
221 0, /* SADB_EXT_ADDRESS_SRC */
222 0, /* SADB_EXT_ADDRESS_DST */
223 0, /* SADB_EXT_ADDRESS_PROXY */
224 0, /* SADB_EXT_KEY_AUTH */
225 0, /* SADB_EXT_KEY_ENCRYPT */
226 0, /* SADB_EXT_IDENTITY_SRC */
227 0, /* SADB_EXT_IDENTITY_DST */
228 0, /* SADB_EXT_SENSITIVITY */
229 0, /* SADB_EXT_PROPOSAL */
230 0, /* SADB_EXT_SUPPORTED_AUTH */
231 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
233 0, /* SADB_X_EXT_KMPRIVATE */
234 0, /* SADB_X_EXT_POLICY */
235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
236 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
237 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
238 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
239 0, /* SADB_X_EXT_NAT_T_OAI */
240 0, /* SADB_X_EXT_NAT_T_OAR */
241 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
242 };
243
244 static int ipsec_esp_keymin = 256;
245 static int ipsec_esp_auth = 0;
246 static int ipsec_ah_keymin = 128;
247
248 #ifdef SYSCTL_DECL
249 SYSCTL_DECL(_net_key);
250 #endif
251
252 #ifdef SYSCTL_INT
253 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
254 &key_debug_level, 0, "");
255
256 /* max count of trial for the decision of spi value */
257 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
258 &key_spi_trycnt, 0, "");
259
260 /* minimum spi value to allocate automatically. */
261 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
262 &key_spi_minval, 0, "");
263
264 /* maximun spi value to allocate automatically. */
265 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
266 &key_spi_maxval, 0, "");
267
268 /* interval to initialize randseed */
269 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
270 &key_int_random, 0, "");
271
272 /* lifetime for larval SA */
273 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
274 &key_larval_lifetime, 0, "");
275
276 /* counter for blocking to send SADB_ACQUIRE to IKEd */
277 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
278 &key_blockacq_count, 0, "");
279
280 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
281 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
282 &key_blockacq_lifetime, 0, "");
283
284 /* ESP auth */
285 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
286 &ipsec_esp_auth, 0, "");
287
288 /* minimum ESP key length */
289 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
290 &ipsec_esp_keymin, 0, "");
291
292 /* minimum AH key length */
293 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
294 &ipsec_ah_keymin, 0, "");
295
296 /* perfered old SA rather than new SA */
297 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
298 &key_prefered_oldsa, 0, "");
299 #endif /* SYSCTL_INT */
300
301 #define __LIST_CHAINED(elm) \
302 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
303 #define LIST_INSERT_TAIL(head, elm, type, field) \
304 do {\
305 struct type *curelm = LIST_FIRST(head); \
306 if (curelm == NULL) {\
307 LIST_INSERT_HEAD(head, elm, field); \
308 } else { \
309 while (LIST_NEXT(curelm, field)) \
310 curelm = LIST_NEXT(curelm, field);\
311 LIST_INSERT_AFTER(curelm, elm, field);\
312 }\
313 } while (0)
314
315 #define KEY_CHKSASTATE(head, sav, name) \
316 /* do */ { \
317 if ((head) != (sav)) { \
318 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
319 (name), (head), (sav))); \
320 continue; \
321 } \
322 } /* while (0) */
323
324 #define KEY_CHKSPDIR(head, sp, name) \
325 do { \
326 if ((head) != (sp)) { \
327 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
328 "anyway continue.\n", \
329 (name), (head), (sp))); \
330 } \
331 } while (0)
332
333 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
334
335 /*
336 * set parameters into secpolicyindex buffer.
337 * Must allocate secpolicyindex buffer passed to this function.
338 */
339 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
340 do { \
341 memset((idx), 0, sizeof(struct secpolicyindex)); \
342 (idx)->dir = (_dir); \
343 (idx)->prefs = (ps); \
344 (idx)->prefd = (pd); \
345 (idx)->ul_proto = (ulp); \
346 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
347 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
348 } while (0)
349
350 /*
351 * set parameters into secasindex buffer.
352 * Must allocate secasindex buffer before calling this function.
353 */
354 static int
355 key_setsecasidx (int, int, int, const struct sadb_address *,
356 const struct sadb_address *, struct secasindex *);
357
358 /* key statistics */
359 struct _keystat {
360 u_long getspi_count; /* the avarage of count to try to get new SPI */
361 } keystat;
362
363 struct sadb_msghdr {
364 struct sadb_msg *msg;
365 struct sadb_ext *ext[SADB_EXT_MAX + 1];
366 int extoff[SADB_EXT_MAX + 1];
367 int extlen[SADB_EXT_MAX + 1];
368 };
369
370 static struct secasvar *key_allocsa_policy (const struct secasindex *);
371 static void key_freesp_so (struct secpolicy **);
372 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
373 static void key_delsp (struct secpolicy *);
374 static struct secpolicy *key_getsp (const struct secpolicyindex *);
375 static struct secpolicy *key_getspbyid (u_int32_t);
376 static u_int16_t key_newreqid (void);
377 static struct mbuf *key_gather_mbuf (struct mbuf *,
378 const struct sadb_msghdr *, int, int, ...);
379 static int key_spdadd (struct socket *, struct mbuf *,
380 const struct sadb_msghdr *);
381 static u_int32_t key_getnewspid (void);
382 static int key_spddelete (struct socket *, struct mbuf *,
383 const struct sadb_msghdr *);
384 static int key_spddelete2 (struct socket *, struct mbuf *,
385 const struct sadb_msghdr *);
386 static int key_spdget (struct socket *, struct mbuf *,
387 const struct sadb_msghdr *);
388 static int key_spdflush (struct socket *, struct mbuf *,
389 const struct sadb_msghdr *);
390 static int key_spddump (struct socket *, struct mbuf *,
391 const struct sadb_msghdr *);
392 static struct mbuf * key_setspddump (int *errorp, pid_t);
393 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
394 static int key_nat_map (struct socket *, struct mbuf *,
395 const struct sadb_msghdr *);
396 static struct mbuf *key_setdumpsp (struct secpolicy *,
397 u_int8_t, u_int32_t, pid_t);
398 static u_int key_getspreqmsglen (const struct secpolicy *);
399 static int key_spdexpire (struct secpolicy *);
400 static struct secashead *key_newsah (const struct secasindex *);
401 static void key_delsah (struct secashead *);
402 static struct secasvar *key_newsav (struct mbuf *,
403 const struct sadb_msghdr *, struct secashead *, int *,
404 const char*, int);
405 #define KEY_NEWSAV(m, sadb, sah, e) \
406 key_newsav(m, sadb, sah, e, __func__, __LINE__)
407 static void key_delsav (struct secasvar *);
408 static struct secashead *key_getsah (const struct secasindex *);
409 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
410 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
411 static int key_setsaval (struct secasvar *, struct mbuf *,
412 const struct sadb_msghdr *);
413 static void key_freesaval(struct secasvar *);
414 static int key_mature (struct secasvar *);
415 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
416 u_int8_t, u_int32_t, u_int32_t);
417 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
418 static struct mbuf *key_setsadbxtype (u_int16_t);
419 static struct mbuf *key_setsadbxfrag (u_int16_t);
420 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
421 static int key_checksalen (const union sockaddr_union *);
422 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
423 u_int32_t, pid_t, u_int16_t);
424 static struct mbuf *key_setsadbsa (struct secasvar *);
425 static struct mbuf *key_setsadbaddr (u_int16_t,
426 const struct sockaddr *, u_int8_t, u_int16_t);
427 #if 0
428 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
429 int, u_int64_t);
430 #endif
431 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
432 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
433 u_int32_t);
434 static void *key_newbuf (const void *, u_int);
435 #ifdef INET6
436 static int key_ismyaddr6 (const struct sockaddr_in6 *);
437 #endif
438
439 static void sysctl_net_keyv2_setup(struct sysctllog **);
440 static void sysctl_net_key_compat_setup(struct sysctllog **);
441
442 /* flags for key_cmpsaidx() */
443 #define CMP_HEAD 1 /* protocol, addresses. */
444 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
445 #define CMP_REQID 3 /* additionally HEAD, reaid. */
446 #define CMP_EXACTLY 4 /* all elements. */
447 static int key_cmpsaidx
448 (const struct secasindex *, const struct secasindex *, int);
449
450 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
451 static int key_bbcmp (const void *, const void *, u_int);
452 static u_int16_t key_satype2proto (u_int8_t);
453 static u_int8_t key_proto2satype (u_int16_t);
454
455 static int key_getspi (struct socket *, struct mbuf *,
456 const struct sadb_msghdr *);
457 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
458 const struct secasindex *);
459 static int key_handle_natt_info (struct secasvar *,
460 const struct sadb_msghdr *);
461 static int key_set_natt_ports (union sockaddr_union *,
462 union sockaddr_union *,
463 const struct sadb_msghdr *);
464 static int key_update (struct socket *, struct mbuf *,
465 const struct sadb_msghdr *);
466 #ifdef IPSEC_DOSEQCHECK
467 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
468 #endif
469 static int key_add (struct socket *, struct mbuf *,
470 const struct sadb_msghdr *);
471 static int key_setident (struct secashead *, struct mbuf *,
472 const struct sadb_msghdr *);
473 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
474 const struct sadb_msghdr *);
475 static int key_delete (struct socket *, struct mbuf *,
476 const struct sadb_msghdr *);
477 static int key_get (struct socket *, struct mbuf *,
478 const struct sadb_msghdr *);
479
480 static void key_getcomb_setlifetime (struct sadb_comb *);
481 static struct mbuf *key_getcomb_esp (void);
482 static struct mbuf *key_getcomb_ah (void);
483 static struct mbuf *key_getcomb_ipcomp (void);
484 static struct mbuf *key_getprop (const struct secasindex *);
485
486 static int key_acquire (const struct secasindex *, struct secpolicy *);
487 #ifndef IPSEC_NONBLOCK_ACQUIRE
488 static struct secacq *key_newacq (const struct secasindex *);
489 static struct secacq *key_getacq (const struct secasindex *);
490 static struct secacq *key_getacqbyseq (u_int32_t);
491 #endif
492 static struct secspacq *key_newspacq (const struct secpolicyindex *);
493 static struct secspacq *key_getspacq (const struct secpolicyindex *);
494 static int key_acquire2 (struct socket *, struct mbuf *,
495 const struct sadb_msghdr *);
496 static int key_register (struct socket *, struct mbuf *,
497 const struct sadb_msghdr *);
498 static int key_expire (struct secasvar *);
499 static int key_flush (struct socket *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
502 int *lenp, pid_t pid);
503 static int key_dump (struct socket *, struct mbuf *,
504 const struct sadb_msghdr *);
505 static int key_promisc (struct socket *, struct mbuf *,
506 const struct sadb_msghdr *);
507 static int key_senderror (struct socket *, struct mbuf *, int);
508 static int key_validate_ext (const struct sadb_ext *, int);
509 static int key_align (struct mbuf *, struct sadb_msghdr *);
510 #if 0
511 static const char *key_getfqdn (void);
512 static const char *key_getuserfqdn (void);
513 #endif
514 static void key_sa_chgstate (struct secasvar *, u_int8_t);
515 static inline void key_sp_dead (struct secpolicy *);
516 static void key_sp_unlink (struct secpolicy *sp);
517
518 static struct mbuf *key_alloc_mbuf (int);
519
520 static void key_timehandler(void *);
521 static void key_timehandler_work(struct work *, void *);
522 static struct callout key_timehandler_ch;
523 static struct workqueue *key_timehandler_wq;
524 static struct work key_timehandler_wk;
525
526 #ifdef IPSEC_REF_DEBUG
527 #define REFLOG(label, p, where, tag) \
528 ipseclog((LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
529 (where), (tag), (p)->refcnt, (p)))
530 #else
531 #define REFLOG(label, p, where, tag) do {} while (0)
532 #endif
533
534 #define SA_ADDREF(p) do { \
535 (p)->refcnt++; \
536 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
537 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
538 } while (0)
539 #define SA_ADDREF2(p, where, tag) do { \
540 (p)->refcnt++; \
541 REFLOG("SA_ADDREF", (p), (where), (tag)); \
542 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
543 } while (0)
544 #define SA_DELREF(p) do { \
545 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
546 (p)->refcnt--; \
547 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
548 } while (0)
549 #define SA_DELREF2(p, where, tag) do { \
550 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
551 (p)->refcnt--; \
552 REFLOG("SA_DELREF", (p), (where), (tag)); \
553 } while (0)
554
555 #define SP_ADDREF(p) do { \
556 (p)->refcnt++; \
557 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
558 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
559 } while (0)
560 #define SP_ADDREF2(p, where, tag) do { \
561 (p)->refcnt++; \
562 REFLOG("SP_ADDREF", (p), (where), (tag)); \
563 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
564 } while (0)
565 #define SP_DELREF(p) do { \
566 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
567 (p)->refcnt--; \
568 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
569 } while (0)
570 #define SP_DELREF2(p, where, tag) do { \
571 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
572 (p)->refcnt--; \
573 REFLOG("SP_DELREF", (p), (where), (tag)); \
574 } while (0)
575
576
577 static inline void
578 key_sp_dead(struct secpolicy *sp)
579 {
580
581 /* mark the SP dead */
582 sp->state = IPSEC_SPSTATE_DEAD;
583 }
584
585 static void
586 key_sp_unlink(struct secpolicy *sp)
587 {
588
589 /* remove from SP index */
590 if (__LIST_CHAINED(sp)) {
591 LIST_REMOVE(sp, chain);
592 /* Release refcount held just for being on chain */
593 KEY_FREESP(&sp);
594 }
595 }
596
597
598 /*
599 * Return 0 when there are known to be no SP's for the specified
600 * direction. Otherwise return 1. This is used by IPsec code
601 * to optimize performance.
602 */
603 int
604 key_havesp(u_int dir)
605 {
606 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
607 !LIST_EMPTY(&sptree[dir]) : 1);
608 }
609
610 /* %%% IPsec policy management */
611 /*
612 * allocating a SP for OUTBOUND or INBOUND packet.
613 * Must call key_freesp() later.
614 * OUT: NULL: not found
615 * others: found and return the pointer.
616 */
617 struct secpolicy *
618 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
619 {
620 struct secpolicy *sp;
621 int s;
622
623 KASSERT(spidx != NULL);
624 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
625
626 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
627
628 /* get a SP entry */
629 s = splsoftnet(); /*called from softclock()*/
630 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
631 printf("*** objects\n");
632 kdebug_secpolicyindex(spidx);
633 }
634
635 LIST_FOREACH(sp, &sptree[dir], chain) {
636 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
637 printf("*** in SPD\n");
638 kdebug_secpolicyindex(&sp->spidx);
639 }
640
641 if (sp->state == IPSEC_SPSTATE_DEAD)
642 continue;
643 if (key_cmpspidx_withmask(&sp->spidx, spidx))
644 goto found;
645 }
646 sp = NULL;
647 found:
648 if (sp) {
649 /* sanity check */
650 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
651
652 /* found a SPD entry */
653 sp->lastused = time_uptime;
654 SP_ADDREF2(sp, where, tag);
655 }
656 splx(s);
657
658 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
659 "DP return SP:%p (ID=%u) refcnt %u\n",
660 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
661 return sp;
662 }
663
664 /*
665 * allocating a SP for OUTBOUND or INBOUND packet.
666 * Must call key_freesp() later.
667 * OUT: NULL: not found
668 * others: found and return the pointer.
669 */
670 struct secpolicy *
671 key_allocsp2(u_int32_t spi,
672 const union sockaddr_union *dst,
673 u_int8_t proto,
674 u_int dir,
675 const char* where, int tag)
676 {
677 struct secpolicy *sp;
678 int s;
679
680 KASSERT(dst != NULL);
681 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
682
683 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
684
685 /* get a SP entry */
686 s = splsoftnet(); /*called from softclock()*/
687 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
688 printf("*** objects\n");
689 printf("spi %u proto %u dir %u\n", spi, proto, dir);
690 kdebug_sockaddr(&dst->sa);
691 }
692
693 LIST_FOREACH(sp, &sptree[dir], chain) {
694 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
695 printf("*** in SPD\n");
696 kdebug_secpolicyindex(&sp->spidx);
697 }
698
699 if (sp->state == IPSEC_SPSTATE_DEAD)
700 continue;
701 /* compare simple values, then dst address */
702 if (sp->spidx.ul_proto != proto)
703 continue;
704 /* NB: spi's must exist and match */
705 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
706 continue;
707 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT) == 0)
708 goto found;
709 }
710 sp = NULL;
711 found:
712 if (sp) {
713 /* sanity check */
714 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
715
716 /* found a SPD entry */
717 sp->lastused = time_uptime;
718 SP_ADDREF2(sp, where, tag);
719 }
720 splx(s);
721
722 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
723 "DP return SP:%p (ID=%u) refcnt %u\n",
724 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
725 return sp;
726 }
727
728 /*
729 * return a policy that matches this particular inbound packet.
730 * XXX slow
731 */
732 struct secpolicy *
733 key_gettunnel(const struct sockaddr *osrc,
734 const struct sockaddr *odst,
735 const struct sockaddr *isrc,
736 const struct sockaddr *idst,
737 const char* where, int tag)
738 {
739 struct secpolicy *sp;
740 const int dir = IPSEC_DIR_INBOUND;
741 int s;
742 struct ipsecrequest *r1, *r2, *p;
743 struct secpolicyindex spidx;
744
745 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
746
747 if (isrc->sa_family != idst->sa_family) {
748 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
749 isrc->sa_family, idst->sa_family));
750 sp = NULL;
751 goto done;
752 }
753
754 s = splsoftnet(); /*called from softclock()*/
755 LIST_FOREACH(sp, &sptree[dir], chain) {
756 if (sp->state == IPSEC_SPSTATE_DEAD)
757 continue;
758
759 r1 = r2 = NULL;
760 for (p = sp->req; p; p = p->next) {
761 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
762 continue;
763
764 r1 = r2;
765 r2 = p;
766
767 if (!r1) {
768 /* here we look at address matches only */
769 spidx = sp->spidx;
770 if (isrc->sa_len > sizeof(spidx.src) ||
771 idst->sa_len > sizeof(spidx.dst))
772 continue;
773 memcpy(&spidx.src, isrc, isrc->sa_len);
774 memcpy(&spidx.dst, idst, idst->sa_len);
775 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
776 continue;
777 } else {
778 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, PORT_NONE) ||
779 key_sockaddrcmp(&r1->saidx.dst.sa, idst, PORT_NONE))
780 continue;
781 }
782
783 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, PORT_NONE) ||
784 key_sockaddrcmp(&r2->saidx.dst.sa, odst, PORT_NONE))
785 continue;
786
787 goto found;
788 }
789 }
790 sp = NULL;
791 found:
792 if (sp) {
793 sp->lastused = time_uptime;
794 SP_ADDREF2(sp, where, tag);
795 }
796 splx(s);
797 done:
798 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
799 "DP return SP:%p (ID=%u) refcnt %u\n",
800 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
801 return sp;
802 }
803
804 /*
805 * allocating an SA entry for an *OUTBOUND* packet.
806 * checking each request entries in SP, and acquire an SA if need.
807 * OUT: 0: there are valid requests.
808 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
809 */
810 int
811 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
812 {
813 u_int level;
814 int error;
815
816 KASSERT(isr != NULL);
817 KASSERT(saidx != NULL);
818 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
819 saidx->mode == IPSEC_MODE_TUNNEL,
820 "unexpected policy %u", saidx->mode);
821
822 /* get current level */
823 level = ipsec_get_reqlevel(isr);
824
825 /*
826 * XXX guard against protocol callbacks from the crypto
827 * thread as they reference ipsecrequest.sav which we
828 * temporarily null out below. Need to rethink how we
829 * handle bundled SA's in the callback thread.
830 */
831 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
832 #if 0
833 /*
834 * We do allocate new SA only if the state of SA in the holder is
835 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
836 */
837 if (isr->sav != NULL) {
838 if (isr->sav->sah == NULL)
839 panic("key_checkrequest: sah is null");
840 if (isr->sav == (struct secasvar *)LIST_FIRST(
841 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
842 KEY_FREESAV(&isr->sav);
843 isr->sav = NULL;
844 }
845 }
846 #else
847 /*
848 * we free any SA stashed in the IPsec request because a different
849 * SA may be involved each time this request is checked, either
850 * because new SAs are being configured, or this request is
851 * associated with an unconnected datagram socket, or this request
852 * is associated with a system default policy.
853 *
854 * The operation may have negative impact to performance. We may
855 * want to check cached SA carefully, rather than picking new SA
856 * every time.
857 */
858 if (isr->sav != NULL) {
859 KEY_FREESAV(&isr->sav);
860 isr->sav = NULL;
861 }
862 #endif
863
864 /*
865 * new SA allocation if no SA found.
866 * key_allocsa_policy should allocate the oldest SA available.
867 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
868 */
869 if (isr->sav == NULL)
870 isr->sav = key_allocsa_policy(saidx);
871
872 /* When there is SA. */
873 if (isr->sav != NULL) {
874 if (isr->sav->state != SADB_SASTATE_MATURE &&
875 isr->sav->state != SADB_SASTATE_DYING)
876 return EINVAL;
877 return 0;
878 }
879
880 /* there is no SA */
881 error = key_acquire(saidx, isr->sp);
882 if (error != 0) {
883 /* XXX What should I do ? */
884 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
885 "from key_acquire.\n", error));
886 return error;
887 }
888
889 if (level != IPSEC_LEVEL_REQUIRE) {
890 /* XXX sigh, the interface to this routine is botched */
891 KASSERTMSG(isr->sav == NULL, "unexpected SA");
892 return 0;
893 } else {
894 return ENOENT;
895 }
896 }
897
898 /*
899 * allocating a SA for policy entry from SAD.
900 * NOTE: searching SAD of aliving state.
901 * OUT: NULL: not found.
902 * others: found and return the pointer.
903 */
904 static struct secasvar *
905 key_allocsa_policy(const struct secasindex *saidx)
906 {
907 struct secashead *sah;
908 struct secasvar *sav;
909 u_int stateidx, state;
910 const u_int *saorder_state_valid;
911 int arraysize;
912
913 LIST_FOREACH(sah, &sahtree, chain) {
914 if (sah->state == SADB_SASTATE_DEAD)
915 continue;
916 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
917 goto found;
918 }
919
920 return NULL;
921
922 found:
923
924 /*
925 * search a valid state list for outbound packet.
926 * This search order is important.
927 */
928 if (key_prefered_oldsa) {
929 saorder_state_valid = saorder_state_valid_prefer_old;
930 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
931 } else {
932 saorder_state_valid = saorder_state_valid_prefer_new;
933 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
934 }
935
936 /* search valid state */
937 for (stateidx = 0;
938 stateidx < arraysize;
939 stateidx++) {
940
941 state = saorder_state_valid[stateidx];
942
943 sav = key_do_allocsa_policy(sah, state);
944 if (sav != NULL)
945 return sav;
946 }
947
948 return NULL;
949 }
950
951 /*
952 * searching SAD with direction, protocol, mode and state.
953 * called by key_allocsa_policy().
954 * OUT:
955 * NULL : not found
956 * others : found, pointer to a SA.
957 */
958 static struct secasvar *
959 key_do_allocsa_policy(struct secashead *sah, u_int state)
960 {
961 struct secasvar *sav, *candidate, *d;
962
963 /* initilize */
964 candidate = NULL;
965
966 LIST_FOREACH(sav, &sah->savtree[state], chain) {
967 /* sanity check */
968 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
969
970 /* initialize */
971 if (candidate == NULL) {
972 candidate = sav;
973 continue;
974 }
975
976 /* Which SA is the better ? */
977
978 /* sanity check 2 */
979 KASSERT(candidate->lft_c != NULL);
980 KASSERT(sav->lft_c != NULL);
981
982 /* What the best method is to compare ? */
983 if (key_prefered_oldsa) {
984 if (candidate->lft_c->sadb_lifetime_addtime >
985 sav->lft_c->sadb_lifetime_addtime) {
986 candidate = sav;
987 }
988 continue;
989 /*NOTREACHED*/
990 }
991
992 /* prefered new sa rather than old sa */
993 if (candidate->lft_c->sadb_lifetime_addtime <
994 sav->lft_c->sadb_lifetime_addtime) {
995 d = candidate;
996 candidate = sav;
997 } else
998 d = sav;
999
1000 /*
1001 * prepared to delete the SA when there is more
1002 * suitable candidate and the lifetime of the SA is not
1003 * permanent.
1004 */
1005 if (d->lft_c->sadb_lifetime_addtime != 0) {
1006 struct mbuf *m, *result = 0;
1007 uint8_t satype;
1008
1009 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1010
1011 KASSERT(d->refcnt > 0);
1012
1013 satype = key_proto2satype(d->sah->saidx.proto);
1014 if (satype == 0)
1015 goto msgfail;
1016
1017 m = key_setsadbmsg(SADB_DELETE, 0,
1018 satype, 0, 0, d->refcnt - 1);
1019 if (!m)
1020 goto msgfail;
1021 result = m;
1022
1023 /* set sadb_address for saidx's. */
1024 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1025 &d->sah->saidx.src.sa,
1026 d->sah->saidx.src.sa.sa_len << 3,
1027 IPSEC_ULPROTO_ANY);
1028 if (!m)
1029 goto msgfail;
1030 m_cat(result, m);
1031
1032 /* set sadb_address for saidx's. */
1033 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1034 &d->sah->saidx.src.sa,
1035 d->sah->saidx.src.sa.sa_len << 3,
1036 IPSEC_ULPROTO_ANY);
1037 if (!m)
1038 goto msgfail;
1039 m_cat(result, m);
1040
1041 /* create SA extension */
1042 m = key_setsadbsa(d);
1043 if (!m)
1044 goto msgfail;
1045 m_cat(result, m);
1046
1047 if (result->m_len < sizeof(struct sadb_msg)) {
1048 result = m_pullup(result,
1049 sizeof(struct sadb_msg));
1050 if (result == NULL)
1051 goto msgfail;
1052 }
1053
1054 result->m_pkthdr.len = 0;
1055 for (m = result; m; m = m->m_next)
1056 result->m_pkthdr.len += m->m_len;
1057 mtod(result, struct sadb_msg *)->sadb_msg_len =
1058 PFKEY_UNIT64(result->m_pkthdr.len);
1059
1060 key_sendup_mbuf(NULL, result,
1061 KEY_SENDUP_REGISTERED);
1062 result = 0;
1063 msgfail:
1064 if (result)
1065 m_freem(result);
1066 KEY_FREESAV(&d);
1067 }
1068 }
1069
1070 if (candidate) {
1071 SA_ADDREF(candidate);
1072 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1073 "DP cause refcnt++:%d SA:%p\n",
1074 candidate->refcnt, candidate);
1075 }
1076 return candidate;
1077 }
1078
1079 /*
1080 * allocating a usable SA entry for a *INBOUND* packet.
1081 * Must call key_freesav() later.
1082 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1083 * NULL: not found, or error occurred.
1084 *
1085 * In the comparison, no source address is used--for RFC2401 conformance.
1086 * To quote, from section 4.1:
1087 * A security association is uniquely identified by a triple consisting
1088 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1089 * security protocol (AH or ESP) identifier.
1090 * Note that, however, we do need to keep source address in IPsec SA.
1091 * IKE specification and PF_KEY specification do assume that we
1092 * keep source address in IPsec SA. We see a tricky situation here.
1093 *
1094 * sport and dport are used for NAT-T. network order is always used.
1095 */
1096 struct secasvar *
1097 key_allocsa(
1098 const union sockaddr_union *dst,
1099 u_int proto,
1100 u_int32_t spi,
1101 u_int16_t sport,
1102 u_int16_t dport,
1103 const char* where, int tag)
1104 {
1105 struct secashead *sah;
1106 struct secasvar *sav;
1107 u_int stateidx, state;
1108 const u_int *saorder_state_valid;
1109 int arraysize, chkport;
1110 int s;
1111
1112 int must_check_spi = 1;
1113 int must_check_alg = 0;
1114 u_int16_t cpi = 0;
1115 u_int8_t algo = 0;
1116
1117 if ((sport != 0) && (dport != 0))
1118 chkport = PORT_STRICT;
1119 else
1120 chkport = PORT_NONE;
1121
1122 KASSERT(dst != NULL);
1123
1124 /*
1125 * XXX IPCOMP case
1126 * We use cpi to define spi here. In the case where cpi <=
1127 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1128 * the real spi. In this case, don't check the spi but check the
1129 * algorithm
1130 */
1131
1132 if (proto == IPPROTO_IPCOMP) {
1133 u_int32_t tmp;
1134 tmp = ntohl(spi);
1135 cpi = (u_int16_t) tmp;
1136 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1137 algo = (u_int8_t) cpi;
1138 must_check_spi = 0;
1139 must_check_alg = 1;
1140 }
1141 }
1142 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1143 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1144 where, tag, must_check_spi, must_check_alg);
1145
1146
1147 /*
1148 * searching SAD.
1149 * XXX: to be checked internal IP header somewhere. Also when
1150 * IPsec tunnel packet is received. But ESP tunnel mode is
1151 * encrypted so we can't check internal IP header.
1152 */
1153 s = splsoftnet(); /*called from softclock()*/
1154 if (key_prefered_oldsa) {
1155 saorder_state_valid = saorder_state_valid_prefer_old;
1156 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1157 } else {
1158 saorder_state_valid = saorder_state_valid_prefer_new;
1159 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1160 }
1161 LIST_FOREACH(sah, &sahtree, chain) {
1162 /* search valid state */
1163 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1164 state = saorder_state_valid[stateidx];
1165 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1166 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1167 "try match spi %#x, %#x\n",
1168 ntohl(spi), ntohl(sav->spi));
1169 /* sanity check */
1170 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1171 /* do not return entries w/ unusable state */
1172 if (sav->state != SADB_SASTATE_MATURE &&
1173 sav->state != SADB_SASTATE_DYING) {
1174 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1175 "bad state %d\n", sav->state);
1176 continue;
1177 }
1178 if (proto != sav->sah->saidx.proto) {
1179 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1180 "proto fail %d != %d\n",
1181 proto, sav->sah->saidx.proto);
1182 continue;
1183 }
1184 if (must_check_spi && spi != sav->spi) {
1185 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1186 "spi fail %#x != %#x\n",
1187 ntohl(spi), ntohl(sav->spi));
1188 continue;
1189 }
1190 /* XXX only on the ipcomp case */
1191 if (must_check_alg && algo != sav->alg_comp) {
1192 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1193 "algo fail %d != %d\n",
1194 algo, sav->alg_comp);
1195 continue;
1196 }
1197
1198 #if 0 /* don't check src */
1199 /* Fix port in src->sa */
1200
1201 /* check src address */
1202 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE) != 0)
1203 continue;
1204 #endif
1205 /* fix port of dst address XXX*/
1206 key_porttosaddr(__UNCONST(dst), dport);
1207 /* check dst address */
1208 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1209 continue;
1210 SA_ADDREF2(sav, where, tag);
1211 goto done;
1212 }
1213 }
1214 }
1215 sav = NULL;
1216 done:
1217 splx(s);
1218
1219 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1220 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1221 return sav;
1222 }
1223
1224 /*
1225 * Must be called after calling key_allocsp().
1226 * For both the packet without socket and key_freeso().
1227 */
1228 void
1229 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1230 {
1231 struct secpolicy *sp = *spp;
1232
1233 KASSERT(sp != NULL);
1234
1235 SP_DELREF2(sp, where, tag);
1236
1237 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1238 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1239 sp, sp->id, where, tag, sp->refcnt);
1240
1241 if (sp->refcnt == 0) {
1242 *spp = NULL;
1243 key_delsp(sp);
1244 }
1245 }
1246
1247 /*
1248 * Must be called after calling key_allocsp().
1249 * For the packet with socket.
1250 */
1251 void
1252 key_freeso(struct socket *so)
1253 {
1254 /* sanity check */
1255 KASSERT(so != NULL);
1256
1257 switch (so->so_proto->pr_domain->dom_family) {
1258 #ifdef INET
1259 case PF_INET:
1260 {
1261 struct inpcb *pcb = sotoinpcb(so);
1262
1263 /* Does it have a PCB ? */
1264 if (pcb == NULL)
1265 return;
1266
1267 struct inpcbpolicy *sp = pcb->inp_sp;
1268 key_freesp_so(&sp->sp_in);
1269 key_freesp_so(&sp->sp_out);
1270 }
1271 break;
1272 #endif
1273 #ifdef INET6
1274 case PF_INET6:
1275 {
1276 #ifdef HAVE_NRL_INPCB
1277 struct inpcb *pcb = sotoinpcb(so);
1278 struct inpcbpolicy *sp = pcb->inp_sp;
1279
1280 /* Does it have a PCB ? */
1281 if (pcb == NULL)
1282 return;
1283 key_freesp_so(&sp->sp_in);
1284 key_freesp_so(&sp->sp_out);
1285 #else
1286 struct in6pcb *pcb = sotoin6pcb(so);
1287
1288 /* Does it have a PCB ? */
1289 if (pcb == NULL)
1290 return;
1291 key_freesp_so(&pcb->in6p_sp->sp_in);
1292 key_freesp_so(&pcb->in6p_sp->sp_out);
1293 #endif
1294 }
1295 break;
1296 #endif /* INET6 */
1297 default:
1298 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1299 so->so_proto->pr_domain->dom_family));
1300 return;
1301 }
1302 }
1303
1304 static void
1305 key_freesp_so(struct secpolicy **sp)
1306 {
1307
1308 KASSERT(sp != NULL);
1309 KASSERT(*sp != NULL);
1310
1311 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1312 (*sp)->policy == IPSEC_POLICY_BYPASS)
1313 return;
1314
1315 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1316 "invalid policy %u", (*sp)->policy);
1317 KEY_FREESP(sp);
1318 }
1319
1320 /*
1321 * Must be called after calling key_allocsa().
1322 * This function is called by key_freesp() to free some SA allocated
1323 * for a policy.
1324 */
1325 void
1326 key_freesav(struct secasvar **psav, const char* where, int tag)
1327 {
1328 struct secasvar *sav = *psav;
1329
1330 KASSERT(sav != NULL);
1331
1332 SA_DELREF2(sav, where, tag);
1333
1334 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1335 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1336 sav, (u_long)ntohl(sav->spi), where, tag, sav->refcnt);
1337
1338 if (sav->refcnt == 0) {
1339 *psav = NULL;
1340 key_delsav(sav);
1341 }
1342 }
1343
1344 /* %%% SPD management */
1345 /*
1346 * free security policy entry.
1347 */
1348 static void
1349 key_delsp(struct secpolicy *sp)
1350 {
1351 int s;
1352
1353 KASSERT(sp != NULL);
1354
1355 key_sp_dead(sp);
1356
1357 KASSERTMSG(sp->refcnt == 0,
1358 "SP with references deleted (refcnt %u)", sp->refcnt);
1359
1360 s = splsoftnet(); /*called from softclock()*/
1361
1362 {
1363 struct ipsecrequest *isr = sp->req, *nextisr;
1364
1365 while (isr != NULL) {
1366 if (isr->sav != NULL) {
1367 KEY_FREESAV(&isr->sav);
1368 isr->sav = NULL;
1369 }
1370
1371 nextisr = isr->next;
1372 kmem_intr_free(isr, sizeof(*isr));
1373 isr = nextisr;
1374 }
1375 }
1376
1377 kmem_intr_free(sp, sizeof(*sp));
1378
1379 splx(s);
1380 }
1381
1382 /*
1383 * search SPD
1384 * OUT: NULL : not found
1385 * others : found, pointer to a SP.
1386 */
1387 static struct secpolicy *
1388 key_getsp(const struct secpolicyindex *spidx)
1389 {
1390 struct secpolicy *sp;
1391
1392 KASSERT(spidx != NULL);
1393
1394 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1395 if (sp->state == IPSEC_SPSTATE_DEAD)
1396 continue;
1397 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1398 SP_ADDREF(sp);
1399 return sp;
1400 }
1401 }
1402
1403 return NULL;
1404 }
1405
1406 /*
1407 * get SP by index.
1408 * OUT: NULL : not found
1409 * others : found, pointer to a SP.
1410 */
1411 static struct secpolicy *
1412 key_getspbyid(u_int32_t id)
1413 {
1414 struct secpolicy *sp;
1415
1416 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1417 if (sp->state == IPSEC_SPSTATE_DEAD)
1418 continue;
1419 if (sp->id == id) {
1420 SP_ADDREF(sp);
1421 return sp;
1422 }
1423 }
1424
1425 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1426 if (sp->state == IPSEC_SPSTATE_DEAD)
1427 continue;
1428 if (sp->id == id) {
1429 SP_ADDREF(sp);
1430 return sp;
1431 }
1432 }
1433
1434 return NULL;
1435 }
1436
1437 struct secpolicy *
1438 key_newsp(const char* where, int tag)
1439 {
1440 struct secpolicy *newsp = NULL;
1441
1442 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1443 if (newsp != NULL)
1444 newsp->refcnt = 1;
1445
1446 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1447 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1448 return newsp;
1449 }
1450
1451 /*
1452 * create secpolicy structure from sadb_x_policy structure.
1453 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1454 * so must be set properly later.
1455 */
1456 struct secpolicy *
1457 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1458 {
1459 struct secpolicy *newsp;
1460
1461 KASSERT(!cpu_softintr_p());
1462 KASSERT(xpl0 != NULL);
1463 KASSERT(len >= sizeof(*xpl0));
1464
1465 if (len != PFKEY_EXTLEN(xpl0)) {
1466 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1467 *error = EINVAL;
1468 return NULL;
1469 }
1470
1471 if ((newsp = KEY_NEWSP()) == NULL) {
1472 *error = ENOBUFS;
1473 return NULL;
1474 }
1475
1476 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1477 newsp->policy = xpl0->sadb_x_policy_type;
1478
1479 /* check policy */
1480 switch (xpl0->sadb_x_policy_type) {
1481 case IPSEC_POLICY_DISCARD:
1482 case IPSEC_POLICY_NONE:
1483 case IPSEC_POLICY_ENTRUST:
1484 case IPSEC_POLICY_BYPASS:
1485 newsp->req = NULL;
1486 *error = 0;
1487 return newsp;
1488
1489 case IPSEC_POLICY_IPSEC:
1490 /* Continued */
1491 break;
1492 default:
1493 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1494 KEY_FREESP(&newsp);
1495 *error = EINVAL;
1496 return NULL;
1497 }
1498
1499 /* IPSEC_POLICY_IPSEC */
1500 {
1501 int tlen;
1502 const struct sadb_x_ipsecrequest *xisr;
1503 uint16_t xisr_reqid;
1504 struct ipsecrequest **p_isr = &newsp->req;
1505
1506 /* validity check */
1507 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1508 ipseclog((LOG_DEBUG,
1509 "key_msg2sp: Invalid msg length.\n"));
1510 *error = EINVAL;
1511 goto free_exit;
1512 }
1513
1514 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1515 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1516
1517 while (tlen > 0) {
1518 /* length check */
1519 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1520 ipseclog((LOG_DEBUG, "key_msg2sp: "
1521 "invalid ipsecrequest length.\n"));
1522 *error = EINVAL;
1523 goto free_exit;
1524 }
1525
1526 /* allocate request buffer */
1527 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1528
1529 /* set values */
1530 (*p_isr)->next = NULL;
1531
1532 switch (xisr->sadb_x_ipsecrequest_proto) {
1533 case IPPROTO_ESP:
1534 case IPPROTO_AH:
1535 case IPPROTO_IPCOMP:
1536 break;
1537 default:
1538 ipseclog((LOG_DEBUG,
1539 "key_msg2sp: invalid proto type=%u\n",
1540 xisr->sadb_x_ipsecrequest_proto));
1541 *error = EPROTONOSUPPORT;
1542 goto free_exit;
1543 }
1544 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1545
1546 switch (xisr->sadb_x_ipsecrequest_mode) {
1547 case IPSEC_MODE_TRANSPORT:
1548 case IPSEC_MODE_TUNNEL:
1549 break;
1550 case IPSEC_MODE_ANY:
1551 default:
1552 ipseclog((LOG_DEBUG,
1553 "key_msg2sp: invalid mode=%u\n",
1554 xisr->sadb_x_ipsecrequest_mode));
1555 *error = EINVAL;
1556 goto free_exit;
1557 }
1558 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1559
1560 switch (xisr->sadb_x_ipsecrequest_level) {
1561 case IPSEC_LEVEL_DEFAULT:
1562 case IPSEC_LEVEL_USE:
1563 case IPSEC_LEVEL_REQUIRE:
1564 break;
1565 case IPSEC_LEVEL_UNIQUE:
1566 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1567 /* validity check */
1568 /*
1569 * If range violation of reqid, kernel will
1570 * update it, don't refuse it.
1571 */
1572 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1573 ipseclog((LOG_DEBUG,
1574 "key_msg2sp: reqid=%d range "
1575 "violation, updated by kernel.\n",
1576 xisr_reqid));
1577 xisr_reqid = 0;
1578 }
1579
1580 /* allocate new reqid id if reqid is zero. */
1581 if (xisr_reqid == 0) {
1582 u_int16_t reqid;
1583 if ((reqid = key_newreqid()) == 0) {
1584 *error = ENOBUFS;
1585 goto free_exit;
1586 }
1587 (*p_isr)->saidx.reqid = reqid;
1588 } else {
1589 /* set it for manual keying. */
1590 (*p_isr)->saidx.reqid = xisr_reqid;
1591 }
1592 break;
1593
1594 default:
1595 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1596 xisr->sadb_x_ipsecrequest_level));
1597 *error = EINVAL;
1598 goto free_exit;
1599 }
1600 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1601
1602 /* set IP addresses if there */
1603 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1604 const struct sockaddr *paddr;
1605
1606 paddr = (const struct sockaddr *)(xisr + 1);
1607
1608 /* validity check */
1609 if (paddr->sa_len
1610 > sizeof((*p_isr)->saidx.src)) {
1611 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1612 "address length.\n"));
1613 *error = EINVAL;
1614 goto free_exit;
1615 }
1616 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1617
1618 paddr = (const struct sockaddr *)((const char *)paddr
1619 + paddr->sa_len);
1620
1621 /* validity check */
1622 if (paddr->sa_len
1623 > sizeof((*p_isr)->saidx.dst)) {
1624 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1625 "address length.\n"));
1626 *error = EINVAL;
1627 goto free_exit;
1628 }
1629 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1630 }
1631
1632 (*p_isr)->sav = NULL;
1633 (*p_isr)->sp = newsp;
1634
1635 /* initialization for the next. */
1636 p_isr = &(*p_isr)->next;
1637 tlen -= xisr->sadb_x_ipsecrequest_len;
1638
1639 /* validity check */
1640 if (tlen < 0) {
1641 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1642 *error = EINVAL;
1643 goto free_exit;
1644 }
1645
1646 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1647 + xisr->sadb_x_ipsecrequest_len);
1648 }
1649 }
1650
1651 *error = 0;
1652 return newsp;
1653
1654 free_exit:
1655 KEY_FREESP(&newsp);
1656 return NULL;
1657 }
1658
1659 static u_int16_t
1660 key_newreqid(void)
1661 {
1662 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1663
1664 auto_reqid = (auto_reqid == 0xffff
1665 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1666
1667 /* XXX should be unique check */
1668
1669 return auto_reqid;
1670 }
1671
1672 /*
1673 * copy secpolicy struct to sadb_x_policy structure indicated.
1674 */
1675 struct mbuf *
1676 key_sp2msg(const struct secpolicy *sp)
1677 {
1678 struct sadb_x_policy *xpl;
1679 int tlen;
1680 char *p;
1681 struct mbuf *m;
1682
1683 KASSERT(sp != NULL);
1684
1685 tlen = key_getspreqmsglen(sp);
1686
1687 m = key_alloc_mbuf(tlen);
1688 if (!m || m->m_next) { /*XXX*/
1689 if (m)
1690 m_freem(m);
1691 return NULL;
1692 }
1693
1694 m->m_len = tlen;
1695 m->m_next = NULL;
1696 xpl = mtod(m, struct sadb_x_policy *);
1697 memset(xpl, 0, tlen);
1698
1699 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1700 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1701 xpl->sadb_x_policy_type = sp->policy;
1702 xpl->sadb_x_policy_dir = sp->spidx.dir;
1703 xpl->sadb_x_policy_id = sp->id;
1704 p = (char *)xpl + sizeof(*xpl);
1705
1706 /* if is the policy for ipsec ? */
1707 if (sp->policy == IPSEC_POLICY_IPSEC) {
1708 struct sadb_x_ipsecrequest *xisr;
1709 struct ipsecrequest *isr;
1710
1711 for (isr = sp->req; isr != NULL; isr = isr->next) {
1712
1713 xisr = (struct sadb_x_ipsecrequest *)p;
1714
1715 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1716 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1717 xisr->sadb_x_ipsecrequest_level = isr->level;
1718 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1719
1720 p += sizeof(*xisr);
1721 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1722 p += isr->saidx.src.sa.sa_len;
1723 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1724 p += isr->saidx.src.sa.sa_len;
1725
1726 xisr->sadb_x_ipsecrequest_len =
1727 PFKEY_ALIGN8(sizeof(*xisr)
1728 + isr->saidx.src.sa.sa_len
1729 + isr->saidx.dst.sa.sa_len);
1730 }
1731 }
1732
1733 return m;
1734 }
1735
1736 /* m will not be freed nor modified */
1737 static struct mbuf *
1738 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1739 int ndeep, int nitem, ...)
1740 {
1741 va_list ap;
1742 int idx;
1743 int i;
1744 struct mbuf *result = NULL, *n;
1745 int len;
1746
1747 KASSERT(m != NULL);
1748 KASSERT(mhp != NULL);
1749
1750 va_start(ap, nitem);
1751 for (i = 0; i < nitem; i++) {
1752 idx = va_arg(ap, int);
1753 if (idx < 0 || idx > SADB_EXT_MAX)
1754 goto fail;
1755 /* don't attempt to pull empty extension */
1756 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1757 continue;
1758 if (idx != SADB_EXT_RESERVED &&
1759 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1760 continue;
1761
1762 if (idx == SADB_EXT_RESERVED) {
1763 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1764 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1765 MGETHDR(n, M_DONTWAIT, MT_DATA);
1766 if (!n)
1767 goto fail;
1768 n->m_len = len;
1769 n->m_next = NULL;
1770 m_copydata(m, 0, sizeof(struct sadb_msg),
1771 mtod(n, void *));
1772 } else if (i < ndeep) {
1773 len = mhp->extlen[idx];
1774 n = key_alloc_mbuf(len);
1775 if (!n || n->m_next) { /*XXX*/
1776 if (n)
1777 m_freem(n);
1778 goto fail;
1779 }
1780 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1781 mtod(n, void *));
1782 } else {
1783 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1784 M_DONTWAIT);
1785 }
1786 if (n == NULL)
1787 goto fail;
1788
1789 if (result)
1790 m_cat(result, n);
1791 else
1792 result = n;
1793 }
1794 va_end(ap);
1795
1796 if (result && (result->m_flags & M_PKTHDR) != 0) {
1797 result->m_pkthdr.len = 0;
1798 for (n = result; n; n = n->m_next)
1799 result->m_pkthdr.len += n->m_len;
1800 }
1801
1802 return result;
1803
1804 fail:
1805 va_end(ap);
1806 m_freem(result);
1807 return NULL;
1808 }
1809
1810 /*
1811 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1812 * add an entry to SP database, when received
1813 * <base, address(SD), (lifetime(H),) policy>
1814 * from the user(?).
1815 * Adding to SP database,
1816 * and send
1817 * <base, address(SD), (lifetime(H),) policy>
1818 * to the socket which was send.
1819 *
1820 * SPDADD set a unique policy entry.
1821 * SPDSETIDX like SPDADD without a part of policy requests.
1822 * SPDUPDATE replace a unique policy entry.
1823 *
1824 * m will always be freed.
1825 */
1826 static int
1827 key_spdadd(struct socket *so, struct mbuf *m,
1828 const struct sadb_msghdr *mhp)
1829 {
1830 const struct sadb_address *src0, *dst0;
1831 const struct sadb_x_policy *xpl0;
1832 struct sadb_x_policy *xpl;
1833 const struct sadb_lifetime *lft = NULL;
1834 struct secpolicyindex spidx;
1835 struct secpolicy *newsp;
1836 int error;
1837
1838 KASSERT(!cpu_softintr_p());
1839 KASSERT(so != NULL);
1840 KASSERT(m != NULL);
1841 KASSERT(mhp != NULL);
1842 KASSERT(mhp->msg != NULL);
1843
1844 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1845 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1846 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1847 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1848 return key_senderror(so, m, EINVAL);
1849 }
1850 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1851 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1852 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1853 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1854 return key_senderror(so, m, EINVAL);
1855 }
1856 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1857 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1858 < sizeof(struct sadb_lifetime)) {
1859 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1860 return key_senderror(so, m, EINVAL);
1861 }
1862 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1863 }
1864
1865 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1866 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1867 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1868
1869 /* make secindex */
1870 /* XXX boundary check against sa_len */
1871 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1872 src0 + 1,
1873 dst0 + 1,
1874 src0->sadb_address_prefixlen,
1875 dst0->sadb_address_prefixlen,
1876 src0->sadb_address_proto,
1877 &spidx);
1878
1879 /* checking the direciton. */
1880 switch (xpl0->sadb_x_policy_dir) {
1881 case IPSEC_DIR_INBOUND:
1882 case IPSEC_DIR_OUTBOUND:
1883 break;
1884 default:
1885 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1886 mhp->msg->sadb_msg_errno = EINVAL;
1887 return 0;
1888 }
1889
1890 /* check policy */
1891 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1892 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1893 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1894 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1895 return key_senderror(so, m, EINVAL);
1896 }
1897
1898 /* policy requests are mandatory when action is ipsec. */
1899 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1900 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1901 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1902 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1903 return key_senderror(so, m, EINVAL);
1904 }
1905
1906 /*
1907 * checking there is SP already or not.
1908 * SPDUPDATE doesn't depend on whether there is a SP or not.
1909 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1910 * then error.
1911 */
1912 newsp = key_getsp(&spidx);
1913 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1914 if (newsp) {
1915 key_sp_dead(newsp);
1916 key_sp_unlink(newsp); /* XXX jrs ordering */
1917 KEY_FREESP(&newsp);
1918 newsp = NULL;
1919 }
1920 } else {
1921 if (newsp != NULL) {
1922 KEY_FREESP(&newsp);
1923 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1924 return key_senderror(so, m, EEXIST);
1925 }
1926 }
1927
1928 /* allocation new SP entry */
1929 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1930 return key_senderror(so, m, error);
1931 }
1932
1933 if ((newsp->id = key_getnewspid()) == 0) {
1934 kmem_free(newsp, sizeof(*newsp));
1935 return key_senderror(so, m, ENOBUFS);
1936 }
1937
1938 /* XXX boundary check against sa_len */
1939 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1940 src0 + 1,
1941 dst0 + 1,
1942 src0->sadb_address_prefixlen,
1943 dst0->sadb_address_prefixlen,
1944 src0->sadb_address_proto,
1945 &newsp->spidx);
1946
1947 /* sanity check on addr pair */
1948 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1949 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1950 kmem_free(newsp, sizeof(*newsp));
1951 return key_senderror(so, m, EINVAL);
1952 }
1953 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1954 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1955 kmem_free(newsp, sizeof(*newsp));
1956 return key_senderror(so, m, EINVAL);
1957 }
1958
1959 newsp->created = time_uptime;
1960 newsp->lastused = newsp->created;
1961 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1962 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1963
1964 newsp->refcnt = 1; /* do not reclaim until I say I do */
1965 newsp->state = IPSEC_SPSTATE_ALIVE;
1966 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1967
1968 /* delete the entry in spacqtree */
1969 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1970 struct secspacq *spacq;
1971 if ((spacq = key_getspacq(&spidx)) != NULL) {
1972 /* reset counter in order to deletion by timehandler. */
1973 spacq->created = time_uptime;
1974 spacq->count = 0;
1975 }
1976 }
1977
1978 /* Invalidate all cached SPD pointers in the PCBs. */
1979 ipsec_invalpcbcacheall();
1980
1981 #if defined(GATEWAY)
1982 /* Invalidate the ipflow cache, as well. */
1983 ipflow_invalidate_all(0);
1984 #ifdef INET6
1985 if (in6_present)
1986 ip6flow_invalidate_all(0);
1987 #endif /* INET6 */
1988 #endif /* GATEWAY */
1989
1990 {
1991 struct mbuf *n, *mpolicy;
1992 struct sadb_msg *newmsg;
1993 int off;
1994
1995 /* create new sadb_msg to reply. */
1996 if (lft) {
1997 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1998 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1999 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2000 } else {
2001 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2002 SADB_X_EXT_POLICY,
2003 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2004 }
2005 if (!n)
2006 return key_senderror(so, m, ENOBUFS);
2007
2008 if (n->m_len < sizeof(*newmsg)) {
2009 n = m_pullup(n, sizeof(*newmsg));
2010 if (!n)
2011 return key_senderror(so, m, ENOBUFS);
2012 }
2013 newmsg = mtod(n, struct sadb_msg *);
2014 newmsg->sadb_msg_errno = 0;
2015 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2016
2017 off = 0;
2018 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2019 sizeof(*xpl), &off);
2020 if (mpolicy == NULL) {
2021 /* n is already freed */
2022 return key_senderror(so, m, ENOBUFS);
2023 }
2024 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2025 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2026 m_freem(n);
2027 return key_senderror(so, m, EINVAL);
2028 }
2029 xpl->sadb_x_policy_id = newsp->id;
2030
2031 m_freem(m);
2032 key_update_used();
2033 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2034 }
2035 }
2036
2037 /*
2038 * get new policy id.
2039 * OUT:
2040 * 0: failure.
2041 * others: success.
2042 */
2043 static u_int32_t
2044 key_getnewspid(void)
2045 {
2046 u_int32_t newid = 0;
2047 int count = key_spi_trycnt; /* XXX */
2048 struct secpolicy *sp;
2049
2050 /* when requesting to allocate spi ranged */
2051 while (count--) {
2052 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2053
2054 if ((sp = key_getspbyid(newid)) == NULL)
2055 break;
2056
2057 KEY_FREESP(&sp);
2058 }
2059
2060 if (count == 0 || newid == 0) {
2061 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2062 return 0;
2063 }
2064
2065 return newid;
2066 }
2067
2068 /*
2069 * SADB_SPDDELETE processing
2070 * receive
2071 * <base, address(SD), policy(*)>
2072 * from the user(?), and set SADB_SASTATE_DEAD,
2073 * and send,
2074 * <base, address(SD), policy(*)>
2075 * to the ikmpd.
2076 * policy(*) including direction of policy.
2077 *
2078 * m will always be freed.
2079 */
2080 static int
2081 key_spddelete(struct socket *so, struct mbuf *m,
2082 const struct sadb_msghdr *mhp)
2083 {
2084 struct sadb_address *src0, *dst0;
2085 struct sadb_x_policy *xpl0;
2086 struct secpolicyindex spidx;
2087 struct secpolicy *sp;
2088
2089 KASSERT(so != NULL);
2090 KASSERT(m != NULL);
2091 KASSERT(mhp != NULL);
2092 KASSERT(mhp->msg != NULL);
2093
2094 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2095 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2096 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2097 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2098 return key_senderror(so, m, EINVAL);
2099 }
2100 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2101 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2102 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2103 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2104 return key_senderror(so, m, EINVAL);
2105 }
2106
2107 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2108 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2109 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2110
2111 /* make secindex */
2112 /* XXX boundary check against sa_len */
2113 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2114 src0 + 1,
2115 dst0 + 1,
2116 src0->sadb_address_prefixlen,
2117 dst0->sadb_address_prefixlen,
2118 src0->sadb_address_proto,
2119 &spidx);
2120
2121 /* checking the direciton. */
2122 switch (xpl0->sadb_x_policy_dir) {
2123 case IPSEC_DIR_INBOUND:
2124 case IPSEC_DIR_OUTBOUND:
2125 break;
2126 default:
2127 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2128 return key_senderror(so, m, EINVAL);
2129 }
2130
2131 /* Is there SP in SPD ? */
2132 if ((sp = key_getsp(&spidx)) == NULL) {
2133 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2134 return key_senderror(so, m, EINVAL);
2135 }
2136
2137 /* save policy id to buffer to be returned. */
2138 xpl0->sadb_x_policy_id = sp->id;
2139
2140 key_sp_dead(sp);
2141 key_sp_unlink(sp); /* XXX jrs ordering */
2142 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2143
2144 /* Invalidate all cached SPD pointers in the PCBs. */
2145 ipsec_invalpcbcacheall();
2146
2147 /* We're deleting policy; no need to invalidate the ipflow cache. */
2148
2149 {
2150 struct mbuf *n;
2151 struct sadb_msg *newmsg;
2152
2153 /* create new sadb_msg to reply. */
2154 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2155 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2156 if (!n)
2157 return key_senderror(so, m, ENOBUFS);
2158
2159 newmsg = mtod(n, struct sadb_msg *);
2160 newmsg->sadb_msg_errno = 0;
2161 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2162
2163 m_freem(m);
2164 key_update_used();
2165 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2166 }
2167 }
2168
2169 /*
2170 * SADB_SPDDELETE2 processing
2171 * receive
2172 * <base, policy(*)>
2173 * from the user(?), and set SADB_SASTATE_DEAD,
2174 * and send,
2175 * <base, policy(*)>
2176 * to the ikmpd.
2177 * policy(*) including direction of policy.
2178 *
2179 * m will always be freed.
2180 */
2181 static int
2182 key_spddelete2(struct socket *so, struct mbuf *m,
2183 const struct sadb_msghdr *mhp)
2184 {
2185 u_int32_t id;
2186 struct secpolicy *sp;
2187
2188 KASSERT(so != NULL);
2189 KASSERT(m != NULL);
2190 KASSERT(mhp != NULL);
2191 KASSERT(mhp->msg != NULL);
2192
2193 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2194 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2195 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2196 key_senderror(so, m, EINVAL);
2197 return 0;
2198 }
2199
2200 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2201
2202 /* Is there SP in SPD ? */
2203 if ((sp = key_getspbyid(id)) == NULL) {
2204 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2205 return key_senderror(so, m, EINVAL);
2206 }
2207
2208 key_sp_dead(sp);
2209 key_sp_unlink(sp); /* XXX jrs ordering */
2210 KEY_FREESP(&sp); /* ref gained by key_getsp */
2211 sp = NULL;
2212
2213 /* Invalidate all cached SPD pointers in the PCBs. */
2214 ipsec_invalpcbcacheall();
2215
2216 /* We're deleting policy; no need to invalidate the ipflow cache. */
2217
2218 {
2219 struct mbuf *n, *nn;
2220 struct sadb_msg *newmsg;
2221 int off, len;
2222
2223 /* create new sadb_msg to reply. */
2224 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2225
2226 if (len > MCLBYTES)
2227 return key_senderror(so, m, ENOBUFS);
2228 MGETHDR(n, M_DONTWAIT, MT_DATA);
2229 if (n && len > MHLEN) {
2230 MCLGET(n, M_DONTWAIT);
2231 if ((n->m_flags & M_EXT) == 0) {
2232 m_freem(n);
2233 n = NULL;
2234 }
2235 }
2236 if (!n)
2237 return key_senderror(so, m, ENOBUFS);
2238
2239 n->m_len = len;
2240 n->m_next = NULL;
2241 off = 0;
2242
2243 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2244 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2245
2246 KASSERTMSG(off == len, "length inconsistency");
2247
2248 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2249 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2250 if (!n->m_next) {
2251 m_freem(n);
2252 return key_senderror(so, m, ENOBUFS);
2253 }
2254
2255 n->m_pkthdr.len = 0;
2256 for (nn = n; nn; nn = nn->m_next)
2257 n->m_pkthdr.len += nn->m_len;
2258
2259 newmsg = mtod(n, struct sadb_msg *);
2260 newmsg->sadb_msg_errno = 0;
2261 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2262
2263 m_freem(m);
2264 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2265 }
2266 }
2267
2268 /*
2269 * SADB_X_GET processing
2270 * receive
2271 * <base, policy(*)>
2272 * from the user(?),
2273 * and send,
2274 * <base, address(SD), policy>
2275 * to the ikmpd.
2276 * policy(*) including direction of policy.
2277 *
2278 * m will always be freed.
2279 */
2280 static int
2281 key_spdget(struct socket *so, struct mbuf *m,
2282 const struct sadb_msghdr *mhp)
2283 {
2284 u_int32_t id;
2285 struct secpolicy *sp;
2286 struct mbuf *n;
2287
2288 KASSERT(so != NULL);
2289 KASSERT(m != NULL);
2290 KASSERT(mhp != NULL);
2291 KASSERT(mhp->msg != NULL);
2292
2293 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2294 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2295 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2296 return key_senderror(so, m, EINVAL);
2297 }
2298
2299 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2300
2301 /* Is there SP in SPD ? */
2302 if ((sp = key_getspbyid(id)) == NULL) {
2303 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2304 return key_senderror(so, m, ENOENT);
2305 }
2306
2307 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2308 mhp->msg->sadb_msg_pid);
2309 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2310 if (n != NULL) {
2311 m_freem(m);
2312 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2313 } else
2314 return key_senderror(so, m, ENOBUFS);
2315 }
2316
2317 /*
2318 * SADB_X_SPDACQUIRE processing.
2319 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2320 * send
2321 * <base, policy(*)>
2322 * to KMD, and expect to receive
2323 * <base> with SADB_X_SPDACQUIRE if error occurred,
2324 * or
2325 * <base, policy>
2326 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2327 * policy(*) is without policy requests.
2328 *
2329 * 0 : succeed
2330 * others: error number
2331 */
2332 int
2333 key_spdacquire(const struct secpolicy *sp)
2334 {
2335 struct mbuf *result = NULL, *m;
2336 struct secspacq *newspacq;
2337 int error;
2338
2339 KASSERT(sp != NULL);
2340 KASSERTMSG(sp->req == NULL, "called but there is request");
2341 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2342 "policy mismathed. IPsec is expected");
2343
2344 /* Get an entry to check whether sent message or not. */
2345 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2346 if (key_blockacq_count < newspacq->count) {
2347 /* reset counter and do send message. */
2348 newspacq->count = 0;
2349 } else {
2350 /* increment counter and do nothing. */
2351 newspacq->count++;
2352 return 0;
2353 }
2354 } else {
2355 /* make new entry for blocking to send SADB_ACQUIRE. */
2356 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2357 return ENOBUFS;
2358
2359 /* add to acqtree */
2360 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2361 }
2362
2363 /* create new sadb_msg to reply. */
2364 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2365 if (!m) {
2366 error = ENOBUFS;
2367 goto fail;
2368 }
2369 result = m;
2370
2371 result->m_pkthdr.len = 0;
2372 for (m = result; m; m = m->m_next)
2373 result->m_pkthdr.len += m->m_len;
2374
2375 mtod(result, struct sadb_msg *)->sadb_msg_len =
2376 PFKEY_UNIT64(result->m_pkthdr.len);
2377
2378 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2379
2380 fail:
2381 if (result)
2382 m_freem(result);
2383 return error;
2384 }
2385
2386 /*
2387 * SADB_SPDFLUSH processing
2388 * receive
2389 * <base>
2390 * from the user, and free all entries in secpctree.
2391 * and send,
2392 * <base>
2393 * to the user.
2394 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2395 *
2396 * m will always be freed.
2397 */
2398 static int
2399 key_spdflush(struct socket *so, struct mbuf *m,
2400 const struct sadb_msghdr *mhp)
2401 {
2402 struct sadb_msg *newmsg;
2403 struct secpolicy *sp;
2404 u_int dir;
2405
2406 KASSERT(so != NULL);
2407 KASSERT(m != NULL);
2408 KASSERT(mhp != NULL);
2409 KASSERT(mhp->msg != NULL);
2410
2411 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2412 return key_senderror(so, m, EINVAL);
2413
2414 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2415 struct secpolicy * nextsp;
2416 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2417 if (sp->state == IPSEC_SPSTATE_DEAD)
2418 continue;
2419 key_sp_dead(sp);
2420 key_sp_unlink(sp);
2421 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2422 continue;
2423 }
2424 }
2425
2426 /* Invalidate all cached SPD pointers in the PCBs. */
2427 ipsec_invalpcbcacheall();
2428
2429 /* We're deleting policy; no need to invalidate the ipflow cache. */
2430
2431 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2432 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2433 return key_senderror(so, m, ENOBUFS);
2434 }
2435
2436 if (m->m_next)
2437 m_freem(m->m_next);
2438 m->m_next = NULL;
2439 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2440 newmsg = mtod(m, struct sadb_msg *);
2441 newmsg->sadb_msg_errno = 0;
2442 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2443
2444 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2445 }
2446
2447 static struct sockaddr key_src = {
2448 .sa_len = 2,
2449 .sa_family = PF_KEY,
2450 };
2451
2452 static struct mbuf *
2453 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2454 {
2455 struct secpolicy *sp;
2456 int cnt;
2457 u_int dir;
2458 struct mbuf *m, *n, *prev;
2459 int totlen;
2460
2461 *lenp = 0;
2462
2463 /* search SPD entry and get buffer size. */
2464 cnt = 0;
2465 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2466 LIST_FOREACH(sp, &sptree[dir], chain) {
2467 cnt++;
2468 }
2469 }
2470
2471 if (cnt == 0) {
2472 *errorp = ENOENT;
2473 return (NULL);
2474 }
2475
2476 m = NULL;
2477 prev = m;
2478 totlen = 0;
2479 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2480 LIST_FOREACH(sp, &sptree[dir], chain) {
2481 --cnt;
2482 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2483
2484 if (!n) {
2485 *errorp = ENOBUFS;
2486 if (m) m_freem(m);
2487 return (NULL);
2488 }
2489
2490 totlen += n->m_pkthdr.len;
2491 if (!m) {
2492 m = n;
2493 } else {
2494 prev->m_nextpkt = n;
2495 }
2496 prev = n;
2497 }
2498 }
2499
2500 *lenp = totlen;
2501 *errorp = 0;
2502 return (m);
2503 }
2504
2505 /*
2506 * SADB_SPDDUMP processing
2507 * receive
2508 * <base>
2509 * from the user, and dump all SP leaves
2510 * and send,
2511 * <base> .....
2512 * to the ikmpd.
2513 *
2514 * m will always be freed.
2515 */
2516 static int
2517 key_spddump(struct socket *so, struct mbuf *m0,
2518 const struct sadb_msghdr *mhp)
2519 {
2520 struct mbuf *n;
2521 int error, len;
2522 int ok, s;
2523 pid_t pid;
2524
2525 KASSERT(so != NULL);
2526 KASSERT(m0 != NULL);
2527 KASSERT(mhp != NULL);
2528 KASSERT(mhp->msg != NULL);
2529
2530 pid = mhp->msg->sadb_msg_pid;
2531 /*
2532 * If the requestor has insufficient socket-buffer space
2533 * for the entire chain, nobody gets any response to the DUMP.
2534 * XXX For now, only the requestor ever gets anything.
2535 * Moreover, if the requestor has any space at all, they receive
2536 * the entire chain, otherwise the request is refused with ENOBUFS.
2537 */
2538 if (sbspace(&so->so_rcv) <= 0) {
2539 return key_senderror(so, m0, ENOBUFS);
2540 }
2541
2542 s = splsoftnet();
2543 n = key_setspddump_chain(&error, &len, pid);
2544 splx(s);
2545
2546 if (n == NULL) {
2547 return key_senderror(so, m0, ENOENT);
2548 }
2549 {
2550 uint64_t *ps = PFKEY_STAT_GETREF();
2551 ps[PFKEY_STAT_IN_TOTAL]++;
2552 ps[PFKEY_STAT_IN_BYTES] += len;
2553 PFKEY_STAT_PUTREF();
2554 }
2555
2556 /*
2557 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2558 * The requestor receives either the entire chain, or an
2559 * error message with ENOBUFS.
2560 */
2561
2562 /*
2563 * sbappendchainwith record takes the chain of entries, one
2564 * packet-record per SPD entry, prepends the key_src sockaddr
2565 * to each packet-record, links the sockaddr mbufs into a new
2566 * list of records, then appends the entire resulting
2567 * list to the requesting socket.
2568 */
2569 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2570 n, SB_PRIO_ONESHOT_OVERFLOW);
2571
2572 if (!ok) {
2573 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2574 m_freem(n);
2575 return key_senderror(so, m0, ENOBUFS);
2576 }
2577
2578 m_freem(m0);
2579 return error;
2580 }
2581
2582 /*
2583 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2584 */
2585 static int
2586 key_nat_map(struct socket *so, struct mbuf *m,
2587 const struct sadb_msghdr *mhp)
2588 {
2589 struct sadb_x_nat_t_type *type;
2590 struct sadb_x_nat_t_port *sport;
2591 struct sadb_x_nat_t_port *dport;
2592 struct sadb_address *iaddr, *raddr;
2593 struct sadb_x_nat_t_frag *frag;
2594
2595 KASSERT(so != NULL);
2596 KASSERT(m != NULL);
2597 KASSERT(mhp != NULL);
2598 KASSERT(mhp->msg != NULL);
2599
2600 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2601 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2602 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2603 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2604 return key_senderror(so, m, EINVAL);
2605 }
2606 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2607 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2608 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2609 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2610 return key_senderror(so, m, EINVAL);
2611 }
2612
2613 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2614 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2615 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2616 return key_senderror(so, m, EINVAL);
2617 }
2618
2619 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2620 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2621 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2622 return key_senderror(so, m, EINVAL);
2623 }
2624
2625 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2626 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2627 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2628 return key_senderror(so, m, EINVAL);
2629 }
2630
2631 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2632 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2633 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2634 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2635 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2636 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2637
2638 /*
2639 * XXX handle that, it should also contain a SA, or anything
2640 * that enable to update the SA information.
2641 */
2642
2643 return 0;
2644 }
2645
2646 static struct mbuf *
2647 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2648 {
2649 struct mbuf *result = NULL, *m;
2650
2651 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2652 if (!m)
2653 goto fail;
2654 result = m;
2655
2656 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2657 &sp->spidx.src.sa, sp->spidx.prefs,
2658 sp->spidx.ul_proto);
2659 if (!m)
2660 goto fail;
2661 m_cat(result, m);
2662
2663 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2664 &sp->spidx.dst.sa, sp->spidx.prefd,
2665 sp->spidx.ul_proto);
2666 if (!m)
2667 goto fail;
2668 m_cat(result, m);
2669
2670 m = key_sp2msg(sp);
2671 if (!m)
2672 goto fail;
2673 m_cat(result, m);
2674
2675 if ((result->m_flags & M_PKTHDR) == 0)
2676 goto fail;
2677
2678 if (result->m_len < sizeof(struct sadb_msg)) {
2679 result = m_pullup(result, sizeof(struct sadb_msg));
2680 if (result == NULL)
2681 goto fail;
2682 }
2683
2684 result->m_pkthdr.len = 0;
2685 for (m = result; m; m = m->m_next)
2686 result->m_pkthdr.len += m->m_len;
2687
2688 mtod(result, struct sadb_msg *)->sadb_msg_len =
2689 PFKEY_UNIT64(result->m_pkthdr.len);
2690
2691 return result;
2692
2693 fail:
2694 m_freem(result);
2695 return NULL;
2696 }
2697
2698 /*
2699 * get PFKEY message length for security policy and request.
2700 */
2701 static u_int
2702 key_getspreqmsglen(const struct secpolicy *sp)
2703 {
2704 u_int tlen;
2705
2706 tlen = sizeof(struct sadb_x_policy);
2707
2708 /* if is the policy for ipsec ? */
2709 if (sp->policy != IPSEC_POLICY_IPSEC)
2710 return tlen;
2711
2712 /* get length of ipsec requests */
2713 {
2714 const struct ipsecrequest *isr;
2715 int len;
2716
2717 for (isr = sp->req; isr != NULL; isr = isr->next) {
2718 len = sizeof(struct sadb_x_ipsecrequest)
2719 + isr->saidx.src.sa.sa_len
2720 + isr->saidx.dst.sa.sa_len;
2721
2722 tlen += PFKEY_ALIGN8(len);
2723 }
2724 }
2725
2726 return tlen;
2727 }
2728
2729 /*
2730 * SADB_SPDEXPIRE processing
2731 * send
2732 * <base, address(SD), lifetime(CH), policy>
2733 * to KMD by PF_KEY.
2734 *
2735 * OUT: 0 : succeed
2736 * others : error number
2737 */
2738 static int
2739 key_spdexpire(struct secpolicy *sp)
2740 {
2741 int s;
2742 struct mbuf *result = NULL, *m;
2743 int len;
2744 int error = -1;
2745 struct sadb_lifetime *lt;
2746
2747 /* XXX: Why do we lock ? */
2748 s = splsoftnet(); /*called from softclock()*/
2749
2750 KASSERT(sp != NULL);
2751
2752 /* set msg header */
2753 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2754 if (!m) {
2755 error = ENOBUFS;
2756 goto fail;
2757 }
2758 result = m;
2759
2760 /* create lifetime extension (current and hard) */
2761 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2762 m = key_alloc_mbuf(len);
2763 if (!m || m->m_next) { /*XXX*/
2764 if (m)
2765 m_freem(m);
2766 error = ENOBUFS;
2767 goto fail;
2768 }
2769 memset(mtod(m, void *), 0, len);
2770 lt = mtod(m, struct sadb_lifetime *);
2771 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2772 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2773 lt->sadb_lifetime_allocations = 0;
2774 lt->sadb_lifetime_bytes = 0;
2775 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2776 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2777 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2778 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2779 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2780 lt->sadb_lifetime_allocations = 0;
2781 lt->sadb_lifetime_bytes = 0;
2782 lt->sadb_lifetime_addtime = sp->lifetime;
2783 lt->sadb_lifetime_usetime = sp->validtime;
2784 m_cat(result, m);
2785
2786 /* set sadb_address for source */
2787 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2788 &sp->spidx.src.sa,
2789 sp->spidx.prefs, sp->spidx.ul_proto);
2790 if (!m) {
2791 error = ENOBUFS;
2792 goto fail;
2793 }
2794 m_cat(result, m);
2795
2796 /* set sadb_address for destination */
2797 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2798 &sp->spidx.dst.sa,
2799 sp->spidx.prefd, sp->spidx.ul_proto);
2800 if (!m) {
2801 error = ENOBUFS;
2802 goto fail;
2803 }
2804 m_cat(result, m);
2805
2806 /* set secpolicy */
2807 m = key_sp2msg(sp);
2808 if (!m) {
2809 error = ENOBUFS;
2810 goto fail;
2811 }
2812 m_cat(result, m);
2813
2814 if ((result->m_flags & M_PKTHDR) == 0) {
2815 error = EINVAL;
2816 goto fail;
2817 }
2818
2819 if (result->m_len < sizeof(struct sadb_msg)) {
2820 result = m_pullup(result, sizeof(struct sadb_msg));
2821 if (result == NULL) {
2822 error = ENOBUFS;
2823 goto fail;
2824 }
2825 }
2826
2827 result->m_pkthdr.len = 0;
2828 for (m = result; m; m = m->m_next)
2829 result->m_pkthdr.len += m->m_len;
2830
2831 mtod(result, struct sadb_msg *)->sadb_msg_len =
2832 PFKEY_UNIT64(result->m_pkthdr.len);
2833
2834 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2835
2836 fail:
2837 if (result)
2838 m_freem(result);
2839 splx(s);
2840 return error;
2841 }
2842
2843 /* %%% SAD management */
2844 /*
2845 * allocating a memory for new SA head, and copy from the values of mhp.
2846 * OUT: NULL : failure due to the lack of memory.
2847 * others : pointer to new SA head.
2848 */
2849 static struct secashead *
2850 key_newsah(const struct secasindex *saidx)
2851 {
2852 struct secashead *newsah;
2853 int i;
2854
2855 KASSERT(saidx != NULL);
2856
2857 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2858 for (i = 0; i < __arraycount(newsah->savtree); i++)
2859 LIST_INIT(&newsah->savtree[i]);
2860 newsah->saidx = *saidx;
2861
2862 /* add to saidxtree */
2863 newsah->state = SADB_SASTATE_MATURE;
2864 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2865
2866 return newsah;
2867 }
2868
2869 /*
2870 * delete SA index and all SA registerd.
2871 */
2872 static void
2873 key_delsah(struct secashead *sah)
2874 {
2875 struct secasvar *sav, *nextsav;
2876 u_int state;
2877 int s;
2878 int zombie = 0;
2879
2880 KASSERT(!cpu_softintr_p());
2881 KASSERT(sah != NULL);
2882
2883 s = splsoftnet();
2884
2885 /* searching all SA registerd in the secindex. */
2886 SASTATE_ANY_FOREACH(state) {
2887 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2888 if (sav->refcnt == 0) {
2889 /* sanity check */
2890 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2891 KEY_FREESAV(&sav);
2892 } else {
2893 /* give up to delete this sa */
2894 zombie++;
2895 }
2896 }
2897 }
2898
2899 /* don't delete sah only if there are savs. */
2900 if (zombie) {
2901 splx(s);
2902 return;
2903 }
2904
2905 rtcache_free(&sah->sa_route);
2906
2907 /* remove from tree of SA index */
2908 if (__LIST_CHAINED(sah))
2909 LIST_REMOVE(sah, chain);
2910
2911 if (sah->idents != NULL)
2912 kmem_free(sah->idents, sah->idents_len);
2913 if (sah->identd != NULL)
2914 kmem_free(sah->identd, sah->identd_len);
2915
2916 kmem_free(sah, sizeof(*sah));
2917
2918 splx(s);
2919 return;
2920 }
2921
2922 /*
2923 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2924 * and copy the values of mhp into new buffer.
2925 * When SAD message type is GETSPI:
2926 * to set sequence number from acq_seq++,
2927 * to set zero to SPI.
2928 * not to call key_setsava().
2929 * OUT: NULL : fail
2930 * others : pointer to new secasvar.
2931 *
2932 * does not modify mbuf. does not free mbuf on error.
2933 */
2934 static struct secasvar *
2935 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2936 struct secashead *sah, int *errp,
2937 const char* where, int tag)
2938 {
2939 struct secasvar *newsav;
2940 const struct sadb_sa *xsa;
2941
2942 KASSERT(!cpu_softintr_p());
2943 KASSERT(m != NULL);
2944 KASSERT(mhp != NULL);
2945 KASSERT(mhp->msg != NULL);
2946 KASSERT(sah != NULL);
2947
2948 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2949
2950 switch (mhp->msg->sadb_msg_type) {
2951 case SADB_GETSPI:
2952 newsav->spi = 0;
2953
2954 #ifdef IPSEC_DOSEQCHECK
2955 /* sync sequence number */
2956 if (mhp->msg->sadb_msg_seq == 0)
2957 newsav->seq =
2958 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2959 else
2960 #endif
2961 newsav->seq = mhp->msg->sadb_msg_seq;
2962 break;
2963
2964 case SADB_ADD:
2965 /* sanity check */
2966 if (mhp->ext[SADB_EXT_SA] == NULL) {
2967 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2968 *errp = EINVAL;
2969 goto error;
2970 }
2971 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2972 newsav->spi = xsa->sadb_sa_spi;
2973 newsav->seq = mhp->msg->sadb_msg_seq;
2974 break;
2975 default:
2976 *errp = EINVAL;
2977 goto error;
2978 }
2979
2980 /* copy sav values */
2981 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2982 *errp = key_setsaval(newsav, m, mhp);
2983 if (*errp)
2984 goto error;
2985 }
2986
2987 /* reset created */
2988 newsav->created = time_uptime;
2989 newsav->pid = mhp->msg->sadb_msg_pid;
2990
2991 /* add to satree */
2992 newsav->sah = sah;
2993 newsav->refcnt = 1;
2994 newsav->state = SADB_SASTATE_LARVAL;
2995 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2996 secasvar, chain);
2997 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2998 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2999 return newsav;
3000
3001 error:
3002 KASSERT(*errp != 0);
3003 kmem_free(newsav, sizeof(*newsav));
3004 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3005 "DP from %s:%u return SA:NULL\n", where, tag);
3006 return NULL;
3007 }
3008
3009 /*
3010 * free() SA variable entry.
3011 */
3012 static void
3013 key_delsav(struct secasvar *sav)
3014 {
3015
3016 KASSERT(sav != NULL);
3017 KASSERTMSG(sav->refcnt == 0,
3018 "reference count %u > 0", sav->refcnt);
3019
3020 /* remove from SA header */
3021 if (__LIST_CHAINED(sav))
3022 LIST_REMOVE(sav, chain);
3023
3024 /*
3025 * Cleanup xform state. Note that zeroize'ing causes the
3026 * keys to be cleared; otherwise we must do it ourself.
3027 */
3028 if (sav->tdb_xform != NULL) {
3029 sav->tdb_xform->xf_zeroize(sav);
3030 sav->tdb_xform = NULL;
3031 } else {
3032 if (sav->key_auth != NULL)
3033 explicit_memset(_KEYBUF(sav->key_auth), 0,
3034 _KEYLEN(sav->key_auth));
3035 if (sav->key_enc != NULL)
3036 explicit_memset(_KEYBUF(sav->key_enc), 0,
3037 _KEYLEN(sav->key_enc));
3038 }
3039
3040 key_freesaval(sav);
3041 kmem_intr_free(sav, sizeof(*sav));
3042
3043 return;
3044 }
3045
3046 /*
3047 * search SAD.
3048 * OUT:
3049 * NULL : not found
3050 * others : found, pointer to a SA.
3051 */
3052 static struct secashead *
3053 key_getsah(const struct secasindex *saidx)
3054 {
3055 struct secashead *sah;
3056
3057 LIST_FOREACH(sah, &sahtree, chain) {
3058 if (sah->state == SADB_SASTATE_DEAD)
3059 continue;
3060 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3061 return sah;
3062 }
3063
3064 return NULL;
3065 }
3066
3067 /*
3068 * check not to be duplicated SPI.
3069 * NOTE: this function is too slow due to searching all SAD.
3070 * OUT:
3071 * NULL : not found
3072 * others : found, pointer to a SA.
3073 */
3074 static struct secasvar *
3075 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3076 {
3077 struct secashead *sah;
3078 struct secasvar *sav;
3079
3080 /* check address family */
3081 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3082 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3083 return NULL;
3084 }
3085
3086 /* check all SAD */
3087 LIST_FOREACH(sah, &sahtree, chain) {
3088 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3089 continue;
3090 sav = key_getsavbyspi(sah, spi);
3091 if (sav != NULL)
3092 return sav;
3093 }
3094
3095 return NULL;
3096 }
3097
3098 /*
3099 * search SAD litmited alive SA, protocol, SPI.
3100 * OUT:
3101 * NULL : not found
3102 * others : found, pointer to a SA.
3103 */
3104 static struct secasvar *
3105 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3106 {
3107 struct secasvar *sav;
3108 u_int state;
3109
3110 /* search all status */
3111 SASTATE_ALIVE_FOREACH(state) {
3112 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3113
3114 /* sanity check */
3115 if (sav->state != state) {
3116 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3117 "invalid sav->state (queue: %d SA: %d)\n",
3118 state, sav->state));
3119 continue;
3120 }
3121
3122 if (sav->spi == spi)
3123 return sav;
3124 }
3125 }
3126
3127 return NULL;
3128 }
3129
3130 /*
3131 * Free allocated data to member variables of sav:
3132 * sav->replay, sav->key_* and sav->lft_*.
3133 */
3134 static void
3135 key_freesaval(struct secasvar *sav)
3136 {
3137
3138 if (sav->replay != NULL) {
3139 kmem_intr_free(sav->replay, sav->replay_len);
3140 sav->replay = NULL;
3141 sav->replay_len = 0;
3142 }
3143 if (sav->key_auth != NULL) {
3144 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3145 sav->key_auth = NULL;
3146 sav->key_auth_len = 0;
3147 }
3148 if (sav->key_enc != NULL) {
3149 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3150 sav->key_enc = NULL;
3151 sav->key_enc_len = 0;
3152 }
3153 if (sav->lft_c != NULL) {
3154 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3155 sav->lft_c = NULL;
3156 }
3157 if (sav->lft_h != NULL) {
3158 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3159 sav->lft_h = NULL;
3160 }
3161 if (sav->lft_s != NULL) {
3162 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3163 sav->lft_s = NULL;
3164 }
3165 }
3166
3167 /*
3168 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3169 * You must update these if need.
3170 * OUT: 0: success.
3171 * !0: failure.
3172 *
3173 * does not modify mbuf. does not free mbuf on error.
3174 */
3175 static int
3176 key_setsaval(struct secasvar *sav, struct mbuf *m,
3177 const struct sadb_msghdr *mhp)
3178 {
3179 int error = 0;
3180
3181 KASSERT(!cpu_softintr_p());
3182 KASSERT(m != NULL);
3183 KASSERT(mhp != NULL);
3184 KASSERT(mhp->msg != NULL);
3185
3186 /* initialization */
3187 key_freesaval(sav);
3188 sav->tdb_xform = NULL; /* transform */
3189 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3190 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3191 sav->tdb_compalgxform = NULL; /* compression algorithm */
3192 sav->natt_type = 0;
3193 sav->esp_frag = 0;
3194
3195 /* SA */
3196 if (mhp->ext[SADB_EXT_SA] != NULL) {
3197 const struct sadb_sa *sa0;
3198
3199 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3200 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3201 error = EINVAL;
3202 goto fail;
3203 }
3204
3205 sav->alg_auth = sa0->sadb_sa_auth;
3206 sav->alg_enc = sa0->sadb_sa_encrypt;
3207 sav->flags = sa0->sadb_sa_flags;
3208
3209 /* replay window */
3210 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3211 size_t len = sizeof(struct secreplay) +
3212 sa0->sadb_sa_replay;
3213 sav->replay = kmem_zalloc(len, KM_SLEEP);
3214 sav->replay_len = len;
3215 if (sa0->sadb_sa_replay != 0)
3216 sav->replay->bitmap = (char*)(sav->replay+1);
3217 sav->replay->wsize = sa0->sadb_sa_replay;
3218 }
3219 }
3220
3221 /* Authentication keys */
3222 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3223 const struct sadb_key *key0;
3224 int len;
3225
3226 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3227 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3228
3229 error = 0;
3230 if (len < sizeof(*key0)) {
3231 error = EINVAL;
3232 goto fail;
3233 }
3234 switch (mhp->msg->sadb_msg_satype) {
3235 case SADB_SATYPE_AH:
3236 case SADB_SATYPE_ESP:
3237 case SADB_X_SATYPE_TCPSIGNATURE:
3238 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3239 sav->alg_auth != SADB_X_AALG_NULL)
3240 error = EINVAL;
3241 break;
3242 case SADB_X_SATYPE_IPCOMP:
3243 default:
3244 error = EINVAL;
3245 break;
3246 }
3247 if (error) {
3248 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3249 goto fail;
3250 }
3251
3252 sav->key_auth = key_newbuf(key0, len);
3253 sav->key_auth_len = len;
3254 }
3255
3256 /* Encryption key */
3257 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3258 const struct sadb_key *key0;
3259 int len;
3260
3261 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3262 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3263
3264 error = 0;
3265 if (len < sizeof(*key0)) {
3266 error = EINVAL;
3267 goto fail;
3268 }
3269 switch (mhp->msg->sadb_msg_satype) {
3270 case SADB_SATYPE_ESP:
3271 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3272 sav->alg_enc != SADB_EALG_NULL) {
3273 error = EINVAL;
3274 break;
3275 }
3276 sav->key_enc = key_newbuf(key0, len);
3277 sav->key_enc_len = len;
3278 break;
3279 case SADB_X_SATYPE_IPCOMP:
3280 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3281 error = EINVAL;
3282 sav->key_enc = NULL; /*just in case*/
3283 break;
3284 case SADB_SATYPE_AH:
3285 case SADB_X_SATYPE_TCPSIGNATURE:
3286 default:
3287 error = EINVAL;
3288 break;
3289 }
3290 if (error) {
3291 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3292 goto fail;
3293 }
3294 }
3295
3296 /* set iv */
3297 sav->ivlen = 0;
3298
3299 switch (mhp->msg->sadb_msg_satype) {
3300 case SADB_SATYPE_AH:
3301 error = xform_init(sav, XF_AH);
3302 break;
3303 case SADB_SATYPE_ESP:
3304 error = xform_init(sav, XF_ESP);
3305 break;
3306 case SADB_X_SATYPE_IPCOMP:
3307 error = xform_init(sav, XF_IPCOMP);
3308 break;
3309 case SADB_X_SATYPE_TCPSIGNATURE:
3310 error = xform_init(sav, XF_TCPSIGNATURE);
3311 break;
3312 }
3313 if (error) {
3314 ipseclog((LOG_DEBUG,
3315 "key_setsaval: unable to initialize SA type %u.\n",
3316 mhp->msg->sadb_msg_satype));
3317 goto fail;
3318 }
3319
3320 /* reset created */
3321 sav->created = time_uptime;
3322
3323 /* make lifetime for CURRENT */
3324 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3325
3326 sav->lft_c->sadb_lifetime_len =
3327 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3328 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3329 sav->lft_c->sadb_lifetime_allocations = 0;
3330 sav->lft_c->sadb_lifetime_bytes = 0;
3331 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3332 sav->lft_c->sadb_lifetime_usetime = 0;
3333
3334 /* lifetimes for HARD and SOFT */
3335 {
3336 const struct sadb_lifetime *lft0;
3337
3338 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3339 if (lft0 != NULL) {
3340 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3341 error = EINVAL;
3342 goto fail;
3343 }
3344 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3345 }
3346
3347 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3348 if (lft0 != NULL) {
3349 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3350 error = EINVAL;
3351 goto fail;
3352 }
3353 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3354 /* to be initialize ? */
3355 }
3356 }
3357
3358 return 0;
3359
3360 fail:
3361 /* initialization */
3362 key_freesaval(sav);
3363
3364 return error;
3365 }
3366
3367 /*
3368 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3369 * OUT: 0: valid
3370 * other: errno
3371 */
3372 static int
3373 key_mature(struct secasvar *sav)
3374 {
3375 int error;
3376
3377 /* check SPI value */
3378 switch (sav->sah->saidx.proto) {
3379 case IPPROTO_ESP:
3380 case IPPROTO_AH:
3381 if (ntohl(sav->spi) <= 255) {
3382 ipseclog((LOG_DEBUG,
3383 "key_mature: illegal range of SPI %u.\n",
3384 (u_int32_t)ntohl(sav->spi)));
3385 return EINVAL;
3386 }
3387 break;
3388 }
3389
3390 /* check satype */
3391 switch (sav->sah->saidx.proto) {
3392 case IPPROTO_ESP:
3393 /* check flags */
3394 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3395 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3396 ipseclog((LOG_DEBUG, "key_mature: "
3397 "invalid flag (derived) given to old-esp.\n"));
3398 return EINVAL;
3399 }
3400 error = xform_init(sav, XF_ESP);
3401 break;
3402 case IPPROTO_AH:
3403 /* check flags */
3404 if (sav->flags & SADB_X_EXT_DERIV) {
3405 ipseclog((LOG_DEBUG, "key_mature: "
3406 "invalid flag (derived) given to AH SA.\n"));
3407 return EINVAL;
3408 }
3409 if (sav->alg_enc != SADB_EALG_NONE) {
3410 ipseclog((LOG_DEBUG, "key_mature: "
3411 "protocol and algorithm mismated.\n"));
3412 return(EINVAL);
3413 }
3414 error = xform_init(sav, XF_AH);
3415 break;
3416 case IPPROTO_IPCOMP:
3417 if (sav->alg_auth != SADB_AALG_NONE) {
3418 ipseclog((LOG_DEBUG, "key_mature: "
3419 "protocol and algorithm mismated.\n"));
3420 return(EINVAL);
3421 }
3422 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3423 && ntohl(sav->spi) >= 0x10000) {
3424 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3425 return(EINVAL);
3426 }
3427 error = xform_init(sav, XF_IPCOMP);
3428 break;
3429 case IPPROTO_TCP:
3430 if (sav->alg_enc != SADB_EALG_NONE) {
3431 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3432 "mismated.\n", __func__));
3433 return(EINVAL);
3434 }
3435 error = xform_init(sav, XF_TCPSIGNATURE);
3436 break;
3437 default:
3438 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3439 error = EPROTONOSUPPORT;
3440 break;
3441 }
3442 if (error == 0)
3443 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3444 return (error);
3445 }
3446
3447 /*
3448 * subroutine for SADB_GET and SADB_DUMP.
3449 */
3450 static struct mbuf *
3451 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3452 u_int32_t seq, u_int32_t pid)
3453 {
3454 struct mbuf *result = NULL, *tres = NULL, *m;
3455 int l = 0;
3456 int i;
3457 void *p;
3458 struct sadb_lifetime lt;
3459 int dumporder[] = {
3460 SADB_EXT_SA, SADB_X_EXT_SA2,
3461 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3462 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3463 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3464 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3465 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3466 SADB_X_EXT_NAT_T_TYPE,
3467 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3468 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3469 SADB_X_EXT_NAT_T_FRAG,
3470
3471 };
3472
3473 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3474 if (m == NULL)
3475 goto fail;
3476 result = m;
3477
3478 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3479 m = NULL;
3480 p = NULL;
3481 switch (dumporder[i]) {
3482 case SADB_EXT_SA:
3483 m = key_setsadbsa(sav);
3484 break;
3485
3486 case SADB_X_EXT_SA2:
3487 m = key_setsadbxsa2(sav->sah->saidx.mode,
3488 sav->replay ? sav->replay->count : 0,
3489 sav->sah->saidx.reqid);
3490 break;
3491
3492 case SADB_EXT_ADDRESS_SRC:
3493 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3494 &sav->sah->saidx.src.sa,
3495 FULLMASK, IPSEC_ULPROTO_ANY);
3496 break;
3497
3498 case SADB_EXT_ADDRESS_DST:
3499 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3500 &sav->sah->saidx.dst.sa,
3501 FULLMASK, IPSEC_ULPROTO_ANY);
3502 break;
3503
3504 case SADB_EXT_KEY_AUTH:
3505 if (!sav->key_auth)
3506 continue;
3507 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3508 p = sav->key_auth;
3509 break;
3510
3511 case SADB_EXT_KEY_ENCRYPT:
3512 if (!sav->key_enc)
3513 continue;
3514 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3515 p = sav->key_enc;
3516 break;
3517
3518 case SADB_EXT_LIFETIME_CURRENT:
3519 if (!sav->lft_c)
3520 continue;
3521 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3522 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3523 lt.sadb_lifetime_addtime += time_second - time_uptime;
3524 lt.sadb_lifetime_usetime += time_second - time_uptime;
3525 p = <
3526 break;
3527
3528 case SADB_EXT_LIFETIME_HARD:
3529 if (!sav->lft_h)
3530 continue;
3531 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3532 p = sav->lft_h;
3533 break;
3534
3535 case SADB_EXT_LIFETIME_SOFT:
3536 if (!sav->lft_s)
3537 continue;
3538 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3539 p = sav->lft_s;
3540 break;
3541
3542 case SADB_X_EXT_NAT_T_TYPE:
3543 m = key_setsadbxtype(sav->natt_type);
3544 break;
3545
3546 case SADB_X_EXT_NAT_T_DPORT:
3547 if (sav->natt_type == 0)
3548 continue;
3549 m = key_setsadbxport(
3550 key_portfromsaddr(&sav->sah->saidx.dst),
3551 SADB_X_EXT_NAT_T_DPORT);
3552 break;
3553
3554 case SADB_X_EXT_NAT_T_SPORT:
3555 if (sav->natt_type == 0)
3556 continue;
3557 m = key_setsadbxport(
3558 key_portfromsaddr(&sav->sah->saidx.src),
3559 SADB_X_EXT_NAT_T_SPORT);
3560 break;
3561
3562 case SADB_X_EXT_NAT_T_FRAG:
3563 /* don't send frag info if not set */
3564 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3565 continue;
3566 m = key_setsadbxfrag(sav->esp_frag);
3567 break;
3568
3569 case SADB_X_EXT_NAT_T_OAI:
3570 case SADB_X_EXT_NAT_T_OAR:
3571 continue;
3572
3573 case SADB_EXT_ADDRESS_PROXY:
3574 case SADB_EXT_IDENTITY_SRC:
3575 case SADB_EXT_IDENTITY_DST:
3576 /* XXX: should we brought from SPD ? */
3577 case SADB_EXT_SENSITIVITY:
3578 default:
3579 continue;
3580 }
3581
3582 KASSERT(!(m && p));
3583 if (!m && !p)
3584 goto fail;
3585 if (p && tres) {
3586 M_PREPEND(tres, l, M_DONTWAIT);
3587 if (!tres)
3588 goto fail;
3589 memcpy(mtod(tres, void *), p, l);
3590 continue;
3591 }
3592 if (p) {
3593 m = key_alloc_mbuf(l);
3594 if (!m)
3595 goto fail;
3596 m_copyback(m, 0, l, p);
3597 }
3598
3599 if (tres)
3600 m_cat(m, tres);
3601 tres = m;
3602 }
3603
3604 m_cat(result, tres);
3605 tres = NULL; /* avoid free on error below */
3606
3607 if (result->m_len < sizeof(struct sadb_msg)) {
3608 result = m_pullup(result, sizeof(struct sadb_msg));
3609 if (result == NULL)
3610 goto fail;
3611 }
3612
3613 result->m_pkthdr.len = 0;
3614 for (m = result; m; m = m->m_next)
3615 result->m_pkthdr.len += m->m_len;
3616
3617 mtod(result, struct sadb_msg *)->sadb_msg_len =
3618 PFKEY_UNIT64(result->m_pkthdr.len);
3619
3620 return result;
3621
3622 fail:
3623 m_freem(result);
3624 m_freem(tres);
3625 return NULL;
3626 }
3627
3628
3629 /*
3630 * set a type in sadb_x_nat_t_type
3631 */
3632 static struct mbuf *
3633 key_setsadbxtype(u_int16_t type)
3634 {
3635 struct mbuf *m;
3636 size_t len;
3637 struct sadb_x_nat_t_type *p;
3638
3639 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3640
3641 m = key_alloc_mbuf(len);
3642 if (!m || m->m_next) { /*XXX*/
3643 if (m)
3644 m_freem(m);
3645 return NULL;
3646 }
3647
3648 p = mtod(m, struct sadb_x_nat_t_type *);
3649
3650 memset(p, 0, len);
3651 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3652 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3653 p->sadb_x_nat_t_type_type = type;
3654
3655 return m;
3656 }
3657 /*
3658 * set a port in sadb_x_nat_t_port. port is in network order
3659 */
3660 static struct mbuf *
3661 key_setsadbxport(u_int16_t port, u_int16_t type)
3662 {
3663 struct mbuf *m;
3664 size_t len;
3665 struct sadb_x_nat_t_port *p;
3666
3667 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3668
3669 m = key_alloc_mbuf(len);
3670 if (!m || m->m_next) { /*XXX*/
3671 if (m)
3672 m_freem(m);
3673 return NULL;
3674 }
3675
3676 p = mtod(m, struct sadb_x_nat_t_port *);
3677
3678 memset(p, 0, len);
3679 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3680 p->sadb_x_nat_t_port_exttype = type;
3681 p->sadb_x_nat_t_port_port = port;
3682
3683 return m;
3684 }
3685
3686 /*
3687 * set fragmentation info in sadb_x_nat_t_frag
3688 */
3689 static struct mbuf *
3690 key_setsadbxfrag(u_int16_t flen)
3691 {
3692 struct mbuf *m;
3693 size_t len;
3694 struct sadb_x_nat_t_frag *p;
3695
3696 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3697
3698 m = key_alloc_mbuf(len);
3699 if (!m || m->m_next) { /*XXX*/
3700 if (m)
3701 m_freem(m);
3702 return NULL;
3703 }
3704
3705 p = mtod(m, struct sadb_x_nat_t_frag *);
3706
3707 memset(p, 0, len);
3708 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3709 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3710 p->sadb_x_nat_t_frag_fraglen = flen;
3711
3712 return m;
3713 }
3714
3715 /*
3716 * Get port from sockaddr, port is in network order
3717 */
3718 u_int16_t
3719 key_portfromsaddr(const union sockaddr_union *saddr)
3720 {
3721 u_int16_t port;
3722
3723 switch (saddr->sa.sa_family) {
3724 case AF_INET: {
3725 port = saddr->sin.sin_port;
3726 break;
3727 }
3728 #ifdef INET6
3729 case AF_INET6: {
3730 port = saddr->sin6.sin6_port;
3731 break;
3732 }
3733 #endif
3734 default:
3735 printf("%s: unexpected address family\n", __func__);
3736 port = 0;
3737 break;
3738 }
3739
3740 return port;
3741 }
3742
3743
3744 /*
3745 * Set port is struct sockaddr. port is in network order
3746 */
3747 static void
3748 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3749 {
3750 switch (saddr->sa.sa_family) {
3751 case AF_INET: {
3752 saddr->sin.sin_port = port;
3753 break;
3754 }
3755 #ifdef INET6
3756 case AF_INET6: {
3757 saddr->sin6.sin6_port = port;
3758 break;
3759 }
3760 #endif
3761 default:
3762 printf("%s: unexpected address family %d\n", __func__,
3763 saddr->sa.sa_family);
3764 break;
3765 }
3766
3767 return;
3768 }
3769
3770 /*
3771 * Safety check sa_len
3772 */
3773 static int
3774 key_checksalen(const union sockaddr_union *saddr)
3775 {
3776 switch (saddr->sa.sa_family) {
3777 case AF_INET:
3778 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3779 return -1;
3780 break;
3781 #ifdef INET6
3782 case AF_INET6:
3783 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3784 return -1;
3785 break;
3786 #endif
3787 default:
3788 printf("%s: unexpected sa_family %d\n", __func__,
3789 saddr->sa.sa_family);
3790 return -1;
3791 break;
3792 }
3793 return 0;
3794 }
3795
3796
3797 /*
3798 * set data into sadb_msg.
3799 */
3800 static struct mbuf *
3801 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3802 u_int32_t seq, pid_t pid, u_int16_t reserved)
3803 {
3804 struct mbuf *m;
3805 struct sadb_msg *p;
3806 int len;
3807
3808 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3809 if (len > MCLBYTES)
3810 return NULL;
3811 MGETHDR(m, M_DONTWAIT, MT_DATA);
3812 if (m && len > MHLEN) {
3813 MCLGET(m, M_DONTWAIT);
3814 if ((m->m_flags & M_EXT) == 0) {
3815 m_freem(m);
3816 m = NULL;
3817 }
3818 }
3819 if (!m)
3820 return NULL;
3821 m->m_pkthdr.len = m->m_len = len;
3822 m->m_next = NULL;
3823
3824 p = mtod(m, struct sadb_msg *);
3825
3826 memset(p, 0, len);
3827 p->sadb_msg_version = PF_KEY_V2;
3828 p->sadb_msg_type = type;
3829 p->sadb_msg_errno = 0;
3830 p->sadb_msg_satype = satype;
3831 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3832 p->sadb_msg_reserved = reserved;
3833 p->sadb_msg_seq = seq;
3834 p->sadb_msg_pid = (u_int32_t)pid;
3835
3836 return m;
3837 }
3838
3839 /*
3840 * copy secasvar data into sadb_address.
3841 */
3842 static struct mbuf *
3843 key_setsadbsa(struct secasvar *sav)
3844 {
3845 struct mbuf *m;
3846 struct sadb_sa *p;
3847 int len;
3848
3849 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3850 m = key_alloc_mbuf(len);
3851 if (!m || m->m_next) { /*XXX*/
3852 if (m)
3853 m_freem(m);
3854 return NULL;
3855 }
3856
3857 p = mtod(m, struct sadb_sa *);
3858
3859 memset(p, 0, len);
3860 p->sadb_sa_len = PFKEY_UNIT64(len);
3861 p->sadb_sa_exttype = SADB_EXT_SA;
3862 p->sadb_sa_spi = sav->spi;
3863 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3864 p->sadb_sa_state = sav->state;
3865 p->sadb_sa_auth = sav->alg_auth;
3866 p->sadb_sa_encrypt = sav->alg_enc;
3867 p->sadb_sa_flags = sav->flags;
3868
3869 return m;
3870 }
3871
3872 /*
3873 * set data into sadb_address.
3874 */
3875 static struct mbuf *
3876 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3877 u_int8_t prefixlen, u_int16_t ul_proto)
3878 {
3879 struct mbuf *m;
3880 struct sadb_address *p;
3881 size_t len;
3882
3883 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3884 PFKEY_ALIGN8(saddr->sa_len);
3885 m = key_alloc_mbuf(len);
3886 if (!m || m->m_next) { /*XXX*/
3887 if (m)
3888 m_freem(m);
3889 return NULL;
3890 }
3891
3892 p = mtod(m, struct sadb_address *);
3893
3894 memset(p, 0, len);
3895 p->sadb_address_len = PFKEY_UNIT64(len);
3896 p->sadb_address_exttype = exttype;
3897 p->sadb_address_proto = ul_proto;
3898 if (prefixlen == FULLMASK) {
3899 switch (saddr->sa_family) {
3900 case AF_INET:
3901 prefixlen = sizeof(struct in_addr) << 3;
3902 break;
3903 case AF_INET6:
3904 prefixlen = sizeof(struct in6_addr) << 3;
3905 break;
3906 default:
3907 ; /*XXX*/
3908 }
3909 }
3910 p->sadb_address_prefixlen = prefixlen;
3911 p->sadb_address_reserved = 0;
3912
3913 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3914 saddr, saddr->sa_len);
3915
3916 return m;
3917 }
3918
3919 #if 0
3920 /*
3921 * set data into sadb_ident.
3922 */
3923 static struct mbuf *
3924 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3925 void *string, int stringlen, u_int64_t id)
3926 {
3927 struct mbuf *m;
3928 struct sadb_ident *p;
3929 size_t len;
3930
3931 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3932 m = key_alloc_mbuf(len);
3933 if (!m || m->m_next) { /*XXX*/
3934 if (m)
3935 m_freem(m);
3936 return NULL;
3937 }
3938
3939 p = mtod(m, struct sadb_ident *);
3940
3941 memset(p, 0, len);
3942 p->sadb_ident_len = PFKEY_UNIT64(len);
3943 p->sadb_ident_exttype = exttype;
3944 p->sadb_ident_type = idtype;
3945 p->sadb_ident_reserved = 0;
3946 p->sadb_ident_id = id;
3947
3948 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3949 string, stringlen);
3950
3951 return m;
3952 }
3953 #endif
3954
3955 /*
3956 * set data into sadb_x_sa2.
3957 */
3958 static struct mbuf *
3959 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3960 {
3961 struct mbuf *m;
3962 struct sadb_x_sa2 *p;
3963 size_t len;
3964
3965 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3966 m = key_alloc_mbuf(len);
3967 if (!m || m->m_next) { /*XXX*/
3968 if (m)
3969 m_freem(m);
3970 return NULL;
3971 }
3972
3973 p = mtod(m, struct sadb_x_sa2 *);
3974
3975 memset(p, 0, len);
3976 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3977 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3978 p->sadb_x_sa2_mode = mode;
3979 p->sadb_x_sa2_reserved1 = 0;
3980 p->sadb_x_sa2_reserved2 = 0;
3981 p->sadb_x_sa2_sequence = seq;
3982 p->sadb_x_sa2_reqid = reqid;
3983
3984 return m;
3985 }
3986
3987 /*
3988 * set data into sadb_x_policy
3989 */
3990 static struct mbuf *
3991 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3992 {
3993 struct mbuf *m;
3994 struct sadb_x_policy *p;
3995 size_t len;
3996
3997 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3998 m = key_alloc_mbuf(len);
3999 if (!m || m->m_next) { /*XXX*/
4000 if (m)
4001 m_freem(m);
4002 return NULL;
4003 }
4004
4005 p = mtod(m, struct sadb_x_policy *);
4006
4007 memset(p, 0, len);
4008 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4009 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4010 p->sadb_x_policy_type = type;
4011 p->sadb_x_policy_dir = dir;
4012 p->sadb_x_policy_id = id;
4013
4014 return m;
4015 }
4016
4017 /* %%% utilities */
4018 /*
4019 * copy a buffer into the new buffer allocated.
4020 */
4021 static void *
4022 key_newbuf(const void *src, u_int len)
4023 {
4024 void *new;
4025
4026 new = kmem_alloc(len, KM_SLEEP);
4027 memcpy(new, src, len);
4028
4029 return new;
4030 }
4031
4032 /* compare my own address
4033 * OUT: 1: true, i.e. my address.
4034 * 0: false
4035 */
4036 int
4037 key_ismyaddr(const struct sockaddr *sa)
4038 {
4039 #ifdef INET
4040 const struct sockaddr_in *sin;
4041 const struct in_ifaddr *ia;
4042 int s;
4043 #endif
4044
4045 KASSERT(sa != NULL);
4046
4047 switch (sa->sa_family) {
4048 #ifdef INET
4049 case AF_INET:
4050 sin = (const struct sockaddr_in *)sa;
4051 s = pserialize_read_enter();
4052 IN_ADDRLIST_READER_FOREACH(ia) {
4053 if (sin->sin_family == ia->ia_addr.sin_family &&
4054 sin->sin_len == ia->ia_addr.sin_len &&
4055 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4056 {
4057 pserialize_read_exit(s);
4058 return 1;
4059 }
4060 }
4061 pserialize_read_exit(s);
4062 break;
4063 #endif
4064 #ifdef INET6
4065 case AF_INET6:
4066 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4067 #endif
4068 }
4069
4070 return 0;
4071 }
4072
4073 #ifdef INET6
4074 /*
4075 * compare my own address for IPv6.
4076 * 1: ours
4077 * 0: other
4078 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4079 */
4080 #include <netinet6/in6_var.h>
4081
4082 static int
4083 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4084 {
4085 struct in6_ifaddr *ia;
4086 int s;
4087 struct psref psref;
4088 int bound;
4089 int ours = 1;
4090
4091 bound = curlwp_bind();
4092 s = pserialize_read_enter();
4093 IN6_ADDRLIST_READER_FOREACH(ia) {
4094 bool ingroup;
4095
4096 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4097 (const struct sockaddr *)&ia->ia_addr, 0) == 0) {
4098 pserialize_read_exit(s);
4099 goto ours;
4100 }
4101 ia6_acquire(ia, &psref);
4102 pserialize_read_exit(s);
4103
4104 /*
4105 * XXX Multicast
4106 * XXX why do we care about multlicast here while we don't care
4107 * about IPv4 multicast??
4108 * XXX scope
4109 */
4110 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4111 if (ingroup) {
4112 ia6_release(ia, &psref);
4113 goto ours;
4114 }
4115
4116 s = pserialize_read_enter();
4117 ia6_release(ia, &psref);
4118 }
4119 pserialize_read_exit(s);
4120
4121 /* loopback, just for safety */
4122 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4123 goto ours;
4124
4125 ours = 0;
4126 ours:
4127 curlwp_bindx(bound);
4128
4129 return ours;
4130 }
4131 #endif /*INET6*/
4132
4133 /*
4134 * compare two secasindex structure.
4135 * flag can specify to compare 2 saidxes.
4136 * compare two secasindex structure without both mode and reqid.
4137 * don't compare port.
4138 * IN:
4139 * saidx0: source, it can be in SAD.
4140 * saidx1: object.
4141 * OUT:
4142 * 1 : equal
4143 * 0 : not equal
4144 */
4145 static int
4146 key_cmpsaidx(
4147 const struct secasindex *saidx0,
4148 const struct secasindex *saidx1,
4149 int flag)
4150 {
4151 int chkport;
4152 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4153
4154 /* sanity */
4155 if (saidx0 == NULL && saidx1 == NULL)
4156 return 1;
4157
4158 if (saidx0 == NULL || saidx1 == NULL)
4159 return 0;
4160
4161 if (saidx0->proto != saidx1->proto)
4162 return 0;
4163
4164 if (flag == CMP_EXACTLY) {
4165 if (saidx0->mode != saidx1->mode)
4166 return 0;
4167 if (saidx0->reqid != saidx1->reqid)
4168 return 0;
4169 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4170 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4171 return 0;
4172 } else {
4173
4174 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4175 if (flag == CMP_MODE_REQID
4176 ||flag == CMP_REQID) {
4177 /*
4178 * If reqid of SPD is non-zero, unique SA is required.
4179 * The result must be of same reqid in this case.
4180 */
4181 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4182 return 0;
4183 }
4184
4185 if (flag == CMP_MODE_REQID) {
4186 if (saidx0->mode != IPSEC_MODE_ANY
4187 && saidx0->mode != saidx1->mode)
4188 return 0;
4189 }
4190
4191
4192 sa0src = &saidx0->src.sa;
4193 sa0dst = &saidx0->dst.sa;
4194 sa1src = &saidx1->src.sa;
4195 sa1dst = &saidx1->dst.sa;
4196 /*
4197 * If NAT-T is enabled, check ports for tunnel mode.
4198 * Don't do it for transport mode, as there is no
4199 * port information available in the SP.
4200 * Also don't check ports if they are set to zero
4201 * in the SPD: This means we have a non-generated
4202 * SPD which can't know UDP ports.
4203 */
4204 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4205 chkport = PORT_LOOSE;
4206 else
4207 chkport = PORT_NONE;
4208
4209 if (key_sockaddrcmp(sa0src, sa1src, chkport) != 0) {
4210 return 0;
4211 }
4212 if (key_sockaddrcmp(sa0dst, sa1dst, chkport) != 0) {
4213 return 0;
4214 }
4215 }
4216
4217 return 1;
4218 }
4219
4220 /*
4221 * compare two secindex structure exactly.
4222 * IN:
4223 * spidx0: source, it is often in SPD.
4224 * spidx1: object, it is often from PFKEY message.
4225 * OUT:
4226 * 1 : equal
4227 * 0 : not equal
4228 */
4229 int
4230 key_cmpspidx_exactly(
4231 const struct secpolicyindex *spidx0,
4232 const struct secpolicyindex *spidx1)
4233 {
4234 /* sanity */
4235 if (spidx0 == NULL && spidx1 == NULL)
4236 return 1;
4237
4238 if (spidx0 == NULL || spidx1 == NULL)
4239 return 0;
4240
4241 if (spidx0->prefs != spidx1->prefs
4242 || spidx0->prefd != spidx1->prefd
4243 || spidx0->ul_proto != spidx1->ul_proto)
4244 return 0;
4245
4246 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) == 0 &&
4247 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT) == 0;
4248 }
4249
4250 /*
4251 * compare two secindex structure with mask.
4252 * IN:
4253 * spidx0: source, it is often in SPD.
4254 * spidx1: object, it is often from IP header.
4255 * OUT:
4256 * 1 : equal
4257 * 0 : not equal
4258 */
4259 int
4260 key_cmpspidx_withmask(
4261 const struct secpolicyindex *spidx0,
4262 const struct secpolicyindex *spidx1)
4263 {
4264 /* sanity */
4265 if (spidx0 == NULL && spidx1 == NULL)
4266 return 1;
4267
4268 if (spidx0 == NULL || spidx1 == NULL)
4269 return 0;
4270
4271 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4272 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4273 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4274 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4275 return 0;
4276
4277 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4278 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4279 && spidx0->ul_proto != spidx1->ul_proto)
4280 return 0;
4281
4282 switch (spidx0->src.sa.sa_family) {
4283 case AF_INET:
4284 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4285 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4286 return 0;
4287 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4288 &spidx1->src.sin.sin_addr, spidx0->prefs))
4289 return 0;
4290 break;
4291 case AF_INET6:
4292 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4293 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4294 return 0;
4295 /*
4296 * scope_id check. if sin6_scope_id is 0, we regard it
4297 * as a wildcard scope, which matches any scope zone ID.
4298 */
4299 if (spidx0->src.sin6.sin6_scope_id &&
4300 spidx1->src.sin6.sin6_scope_id &&
4301 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4302 return 0;
4303 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4304 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4305 return 0;
4306 break;
4307 default:
4308 /* XXX */
4309 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4310 return 0;
4311 break;
4312 }
4313
4314 switch (spidx0->dst.sa.sa_family) {
4315 case AF_INET:
4316 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4317 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4318 return 0;
4319 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4320 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4321 return 0;
4322 break;
4323 case AF_INET6:
4324 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4325 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4326 return 0;
4327 /*
4328 * scope_id check. if sin6_scope_id is 0, we regard it
4329 * as a wildcard scope, which matches any scope zone ID.
4330 */
4331 if (spidx0->src.sin6.sin6_scope_id &&
4332 spidx1->src.sin6.sin6_scope_id &&
4333 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4334 return 0;
4335 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4336 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4337 return 0;
4338 break;
4339 default:
4340 /* XXX */
4341 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4342 return 0;
4343 break;
4344 }
4345
4346 /* XXX Do we check other field ? e.g. flowinfo */
4347
4348 return 1;
4349 }
4350
4351 /* returns 0 on match */
4352 static int
4353 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4354 {
4355 switch (howport) {
4356 case PORT_NONE:
4357 return 0;
4358 case PORT_LOOSE:
4359 if (port1 == 0 || port2 == 0)
4360 return 0;
4361 /*FALLTHROUGH*/
4362 case PORT_STRICT:
4363 if (port1 != port2) {
4364 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4365 "port fail %d != %d\n", port1, port2);
4366 return 1;
4367 }
4368 return 0;
4369 default:
4370 KASSERT(0);
4371 return 1;
4372 }
4373 }
4374
4375 /* returns 0 on match */
4376 static int
4377 key_sockaddrcmp(
4378 const struct sockaddr *sa1,
4379 const struct sockaddr *sa2,
4380 int howport)
4381 {
4382 const struct sockaddr_in *sin1, *sin2;
4383 const struct sockaddr_in6 *sin61, *sin62;
4384
4385 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4386 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4387 "fam/len fail %d != %d || %d != %d\n",
4388 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4389 sa2->sa_len);
4390 return 1;
4391 }
4392
4393 switch (sa1->sa_family) {
4394 case AF_INET:
4395 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4396 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4397 "len fail %d != %zu\n",
4398 sa1->sa_len, sizeof(struct sockaddr_in));
4399 return 1;
4400 }
4401 sin1 = (const struct sockaddr_in *)sa1;
4402 sin2 = (const struct sockaddr_in *)sa2;
4403 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4404 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4405 "addr fail %#x != %#x\n",
4406 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4407 return 1;
4408 }
4409 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4410 return 1;
4411 }
4412 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4413 "addr success %#x[%d] == %#x[%d]\n",
4414 sin1->sin_addr.s_addr, sin1->sin_port,
4415 sin2->sin_addr.s_addr, sin2->sin_port);
4416 break;
4417 case AF_INET6:
4418 sin61 = (const struct sockaddr_in6 *)sa1;
4419 sin62 = (const struct sockaddr_in6 *)sa2;
4420 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4421 return 1; /*EINVAL*/
4422
4423 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4424 return 1;
4425 }
4426 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4427 return 1;
4428 }
4429 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4430 return 1;
4431 }
4432 break;
4433 default:
4434 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4435 return 1;
4436 break;
4437 }
4438
4439 return 0;
4440 }
4441
4442 /*
4443 * compare two buffers with mask.
4444 * IN:
4445 * addr1: source
4446 * addr2: object
4447 * bits: Number of bits to compare
4448 * OUT:
4449 * 1 : equal
4450 * 0 : not equal
4451 */
4452 static int
4453 key_bbcmp(const void *a1, const void *a2, u_int bits)
4454 {
4455 const unsigned char *p1 = a1;
4456 const unsigned char *p2 = a2;
4457
4458 /* XXX: This could be considerably faster if we compare a word
4459 * at a time, but it is complicated on LSB Endian machines */
4460
4461 /* Handle null pointers */
4462 if (p1 == NULL || p2 == NULL)
4463 return (p1 == p2);
4464
4465 while (bits >= 8) {
4466 if (*p1++ != *p2++)
4467 return 0;
4468 bits -= 8;
4469 }
4470
4471 if (bits > 0) {
4472 u_int8_t mask = ~((1<<(8-bits))-1);
4473 if ((*p1 & mask) != (*p2 & mask))
4474 return 0;
4475 }
4476 return 1; /* Match! */
4477 }
4478
4479 /*
4480 * time handler.
4481 * scanning SPD and SAD to check status for each entries,
4482 * and do to remove or to expire.
4483 */
4484 static void
4485 key_timehandler_work(struct work *wk, void *arg)
4486 {
4487 u_int dir;
4488 int s;
4489 time_t now = time_uptime;
4490
4491 s = splsoftnet();
4492 mutex_enter(softnet_lock);
4493
4494 /* SPD */
4495 {
4496 struct secpolicy *sp, *nextsp;
4497
4498 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4499 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4500 if (sp->state == IPSEC_SPSTATE_DEAD) {
4501 key_sp_unlink(sp); /*XXX*/
4502
4503 /* 'sp' dead; continue transfers to
4504 * 'sp = nextsp'
4505 */
4506 continue;
4507 }
4508
4509 if (sp->lifetime == 0 && sp->validtime == 0)
4510 continue;
4511
4512 /* the deletion will occur next time */
4513 if ((sp->lifetime && now - sp->created > sp->lifetime)
4514 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4515 key_sp_dead(sp);
4516 key_spdexpire(sp);
4517 continue;
4518 }
4519 }
4520 }
4521 }
4522
4523 /* SAD */
4524 {
4525 struct secashead *sah, *nextsah;
4526 struct secasvar *sav, *nextsav;
4527
4528 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4529 /* if sah has been dead, then delete it and process next sah. */
4530 if (sah->state == SADB_SASTATE_DEAD) {
4531 key_delsah(sah);
4532 continue;
4533 }
4534
4535 /* if LARVAL entry doesn't become MATURE, delete it. */
4536 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4537 chain, nextsav) {
4538 if (now - sav->created > key_larval_lifetime) {
4539 KEY_FREESAV(&sav);
4540 }
4541 }
4542
4543 /*
4544 * check MATURE entry to start to send expire message
4545 * whether or not.
4546 */
4547 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4548 chain, nextsav) {
4549 /* we don't need to check. */
4550 if (sav->lft_s == NULL)
4551 continue;
4552
4553 /* sanity check */
4554 if (sav->lft_c == NULL) {
4555 ipseclog((LOG_DEBUG,"key_timehandler: "
4556 "There is no CURRENT time, why?\n"));
4557 continue;
4558 }
4559
4560 /* check SOFT lifetime */
4561 if (sav->lft_s->sadb_lifetime_addtime != 0
4562 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4563 /*
4564 * check SA to be used whether or not.
4565 * when SA hasn't been used, delete it.
4566 */
4567 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4568 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4569 KEY_FREESAV(&sav);
4570 } else {
4571 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4572 /*
4573 * XXX If we keep to send expire
4574 * message in the status of
4575 * DYING. Do remove below code.
4576 */
4577 key_expire(sav);
4578 }
4579 }
4580 /* check SOFT lifetime by bytes */
4581 /*
4582 * XXX I don't know the way to delete this SA
4583 * when new SA is installed. Caution when it's
4584 * installed too big lifetime by time.
4585 */
4586 else if (sav->lft_s->sadb_lifetime_bytes != 0
4587 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4588
4589 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4590 /*
4591 * XXX If we keep to send expire
4592 * message in the status of
4593 * DYING. Do remove below code.
4594 */
4595 key_expire(sav);
4596 }
4597 }
4598
4599 /* check DYING entry to change status to DEAD. */
4600 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4601 chain, nextsav) {
4602 /* we don't need to check. */
4603 if (sav->lft_h == NULL)
4604 continue;
4605
4606 /* sanity check */
4607 if (sav->lft_c == NULL) {
4608 ipseclog((LOG_DEBUG, "key_timehandler: "
4609 "There is no CURRENT time, why?\n"));
4610 continue;
4611 }
4612
4613 if (sav->lft_h->sadb_lifetime_addtime != 0
4614 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4615 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4616 KEY_FREESAV(&sav);
4617 }
4618 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4619 else if (sav->lft_s != NULL
4620 && sav->lft_s->sadb_lifetime_addtime != 0
4621 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4622 /*
4623 * XXX: should be checked to be
4624 * installed the valid SA.
4625 */
4626
4627 /*
4628 * If there is no SA then sending
4629 * expire message.
4630 */
4631 key_expire(sav);
4632 }
4633 #endif
4634 /* check HARD lifetime by bytes */
4635 else if (sav->lft_h->sadb_lifetime_bytes != 0
4636 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4637 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4638 KEY_FREESAV(&sav);
4639 }
4640 }
4641
4642 /* delete entry in DEAD */
4643 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4644 chain, nextsav) {
4645 /* sanity check */
4646 if (sav->state != SADB_SASTATE_DEAD) {
4647 ipseclog((LOG_DEBUG, "key_timehandler: "
4648 "invalid sav->state "
4649 "(queue: %d SA: %d): "
4650 "kill it anyway\n",
4651 SADB_SASTATE_DEAD, sav->state));
4652 }
4653
4654 /*
4655 * do not call key_freesav() here.
4656 * sav should already be freed, and sav->refcnt
4657 * shows other references to sav
4658 * (such as from SPD).
4659 */
4660 }
4661 }
4662 }
4663
4664 #ifndef IPSEC_NONBLOCK_ACQUIRE
4665 /* ACQ tree */
4666 {
4667 struct secacq *acq, *nextacq;
4668
4669 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4670 if (now - acq->created > key_blockacq_lifetime
4671 && __LIST_CHAINED(acq)) {
4672 LIST_REMOVE(acq, chain);
4673 kmem_free(acq, sizeof(*acq));
4674 }
4675 }
4676 }
4677 #endif
4678
4679 /* SP ACQ tree */
4680 {
4681 struct secspacq *acq, *nextacq;
4682
4683 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4684 if (now - acq->created > key_blockacq_lifetime
4685 && __LIST_CHAINED(acq)) {
4686 LIST_REMOVE(acq, chain);
4687 kmem_free(acq, sizeof(*acq));
4688 }
4689 }
4690 }
4691
4692 /* do exchange to tick time !! */
4693 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4694
4695 mutex_exit(softnet_lock);
4696 splx(s);
4697 return;
4698 }
4699
4700 static void
4701 key_timehandler(void *arg)
4702 {
4703
4704 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4705 }
4706
4707 u_long
4708 key_random(void)
4709 {
4710 u_long value;
4711
4712 key_randomfill(&value, sizeof(value));
4713 return value;
4714 }
4715
4716 void
4717 key_randomfill(void *p, size_t l)
4718 {
4719
4720 cprng_fast(p, l);
4721 }
4722
4723 /*
4724 * map SADB_SATYPE_* to IPPROTO_*.
4725 * if satype == SADB_SATYPE then satype is mapped to ~0.
4726 * OUT:
4727 * 0: invalid satype.
4728 */
4729 static u_int16_t
4730 key_satype2proto(u_int8_t satype)
4731 {
4732 switch (satype) {
4733 case SADB_SATYPE_UNSPEC:
4734 return IPSEC_PROTO_ANY;
4735 case SADB_SATYPE_AH:
4736 return IPPROTO_AH;
4737 case SADB_SATYPE_ESP:
4738 return IPPROTO_ESP;
4739 case SADB_X_SATYPE_IPCOMP:
4740 return IPPROTO_IPCOMP;
4741 case SADB_X_SATYPE_TCPSIGNATURE:
4742 return IPPROTO_TCP;
4743 default:
4744 return 0;
4745 }
4746 /* NOTREACHED */
4747 }
4748
4749 /*
4750 * map IPPROTO_* to SADB_SATYPE_*
4751 * OUT:
4752 * 0: invalid protocol type.
4753 */
4754 static u_int8_t
4755 key_proto2satype(u_int16_t proto)
4756 {
4757 switch (proto) {
4758 case IPPROTO_AH:
4759 return SADB_SATYPE_AH;
4760 case IPPROTO_ESP:
4761 return SADB_SATYPE_ESP;
4762 case IPPROTO_IPCOMP:
4763 return SADB_X_SATYPE_IPCOMP;
4764 case IPPROTO_TCP:
4765 return SADB_X_SATYPE_TCPSIGNATURE;
4766 default:
4767 return 0;
4768 }
4769 /* NOTREACHED */
4770 }
4771
4772 static int
4773 key_setsecasidx(int proto, int mode, int reqid,
4774 const struct sadb_address * src,
4775 const struct sadb_address * dst,
4776 struct secasindex * saidx)
4777 {
4778 const union sockaddr_union * src_u =
4779 (const union sockaddr_union *) src;
4780 const union sockaddr_union * dst_u =
4781 (const union sockaddr_union *) dst;
4782
4783 /* sa len safety check */
4784 if (key_checksalen(src_u) != 0)
4785 return -1;
4786 if (key_checksalen(dst_u) != 0)
4787 return -1;
4788
4789 memset(saidx, 0, sizeof(*saidx));
4790 saidx->proto = proto;
4791 saidx->mode = mode;
4792 saidx->reqid = reqid;
4793 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4794 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4795
4796 key_porttosaddr(&((saidx)->src),0);
4797 key_porttosaddr(&((saidx)->dst),0);
4798 return 0;
4799 }
4800
4801 /* %%% PF_KEY */
4802 /*
4803 * SADB_GETSPI processing is to receive
4804 * <base, (SA2), src address, dst address, (SPI range)>
4805 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4806 * tree with the status of LARVAL, and send
4807 * <base, SA(*), address(SD)>
4808 * to the IKMPd.
4809 *
4810 * IN: mhp: pointer to the pointer to each header.
4811 * OUT: NULL if fail.
4812 * other if success, return pointer to the message to send.
4813 */
4814 static int
4815 key_getspi(struct socket *so, struct mbuf *m,
4816 const struct sadb_msghdr *mhp)
4817 {
4818 struct sadb_address *src0, *dst0;
4819 struct secasindex saidx;
4820 struct secashead *newsah;
4821 struct secasvar *newsav;
4822 u_int8_t proto;
4823 u_int32_t spi;
4824 u_int8_t mode;
4825 u_int16_t reqid;
4826 int error;
4827
4828 KASSERT(!cpu_softintr_p());
4829 KASSERT(so != NULL);
4830 KASSERT(m != NULL);
4831 KASSERT(mhp != NULL);
4832 KASSERT(mhp->msg != NULL);
4833
4834 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4835 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4836 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4837 return key_senderror(so, m, EINVAL);
4838 }
4839 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4840 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4841 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4842 return key_senderror(so, m, EINVAL);
4843 }
4844 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4845 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4846 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4847 } else {
4848 mode = IPSEC_MODE_ANY;
4849 reqid = 0;
4850 }
4851
4852 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4853 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4854
4855 /* map satype to proto */
4856 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4857 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4858 return key_senderror(so, m, EINVAL);
4859 }
4860
4861
4862 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4863 dst0 + 1, &saidx)) != 0)
4864 return key_senderror(so, m, EINVAL);
4865
4866 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4867 return key_senderror(so, m, EINVAL);
4868
4869 /* SPI allocation */
4870 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4871 &saidx);
4872 if (spi == 0)
4873 return key_senderror(so, m, EINVAL);
4874
4875 /* get a SA index */
4876 if ((newsah = key_getsah(&saidx)) == NULL) {
4877 /* create a new SA index */
4878 if ((newsah = key_newsah(&saidx)) == NULL) {
4879 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4880 return key_senderror(so, m, ENOBUFS);
4881 }
4882 }
4883
4884 /* get a new SA */
4885 /* XXX rewrite */
4886 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4887 if (newsav == NULL) {
4888 /* XXX don't free new SA index allocated in above. */
4889 return key_senderror(so, m, error);
4890 }
4891
4892 /* set spi */
4893 newsav->spi = htonl(spi);
4894
4895 #ifndef IPSEC_NONBLOCK_ACQUIRE
4896 /* delete the entry in acqtree */
4897 if (mhp->msg->sadb_msg_seq != 0) {
4898 struct secacq *acq;
4899 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4900 /* reset counter in order to deletion by timehandler. */
4901 acq->created = time_uptime;
4902 acq->count = 0;
4903 }
4904 }
4905 #endif
4906
4907 {
4908 struct mbuf *n, *nn;
4909 struct sadb_sa *m_sa;
4910 struct sadb_msg *newmsg;
4911 int off, len;
4912
4913 /* create new sadb_msg to reply. */
4914 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4915 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4916 if (len > MCLBYTES)
4917 return key_senderror(so, m, ENOBUFS);
4918
4919 MGETHDR(n, M_DONTWAIT, MT_DATA);
4920 if (len > MHLEN) {
4921 MCLGET(n, M_DONTWAIT);
4922 if ((n->m_flags & M_EXT) == 0) {
4923 m_freem(n);
4924 n = NULL;
4925 }
4926 }
4927 if (!n)
4928 return key_senderror(so, m, ENOBUFS);
4929
4930 n->m_len = len;
4931 n->m_next = NULL;
4932 off = 0;
4933
4934 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4935 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4936
4937 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4938 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4939 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4940 m_sa->sadb_sa_spi = htonl(spi);
4941 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4942
4943 KASSERTMSG(off == len, "length inconsistency");
4944
4945 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4946 SADB_EXT_ADDRESS_DST);
4947 if (!n->m_next) {
4948 m_freem(n);
4949 return key_senderror(so, m, ENOBUFS);
4950 }
4951
4952 if (n->m_len < sizeof(struct sadb_msg)) {
4953 n = m_pullup(n, sizeof(struct sadb_msg));
4954 if (n == NULL)
4955 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4956 }
4957
4958 n->m_pkthdr.len = 0;
4959 for (nn = n; nn; nn = nn->m_next)
4960 n->m_pkthdr.len += nn->m_len;
4961
4962 newmsg = mtod(n, struct sadb_msg *);
4963 newmsg->sadb_msg_seq = newsav->seq;
4964 newmsg->sadb_msg_errno = 0;
4965 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4966
4967 m_freem(m);
4968 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4969 }
4970 }
4971
4972 /*
4973 * allocating new SPI
4974 * called by key_getspi().
4975 * OUT:
4976 * 0: failure.
4977 * others: success.
4978 */
4979 static u_int32_t
4980 key_do_getnewspi(const struct sadb_spirange *spirange,
4981 const struct secasindex *saidx)
4982 {
4983 u_int32_t newspi;
4984 u_int32_t spmin, spmax;
4985 int count = key_spi_trycnt;
4986
4987 /* set spi range to allocate */
4988 if (spirange != NULL) {
4989 spmin = spirange->sadb_spirange_min;
4990 spmax = spirange->sadb_spirange_max;
4991 } else {
4992 spmin = key_spi_minval;
4993 spmax = key_spi_maxval;
4994 }
4995 /* IPCOMP needs 2-byte SPI */
4996 if (saidx->proto == IPPROTO_IPCOMP) {
4997 u_int32_t t;
4998 if (spmin >= 0x10000)
4999 spmin = 0xffff;
5000 if (spmax >= 0x10000)
5001 spmax = 0xffff;
5002 if (spmin > spmax) {
5003 t = spmin; spmin = spmax; spmax = t;
5004 }
5005 }
5006
5007 if (spmin == spmax) {
5008 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5009 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5010 return 0;
5011 }
5012
5013 count--; /* taking one cost. */
5014 newspi = spmin;
5015
5016 } else {
5017
5018 /* init SPI */
5019 newspi = 0;
5020
5021 /* when requesting to allocate spi ranged */
5022 while (count--) {
5023 /* generate pseudo-random SPI value ranged. */
5024 newspi = spmin + (key_random() % (spmax - spmin + 1));
5025
5026 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5027 break;
5028 }
5029
5030 if (count == 0 || newspi == 0) {
5031 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5032 return 0;
5033 }
5034 }
5035
5036 /* statistics */
5037 keystat.getspi_count =
5038 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5039
5040 return newspi;
5041 }
5042
5043 static int
5044 key_handle_natt_info(struct secasvar *sav,
5045 const struct sadb_msghdr *mhp)
5046 {
5047 const char *msg = "?" ;
5048 struct sadb_x_nat_t_type *type;
5049 struct sadb_x_nat_t_port *sport, *dport;
5050 struct sadb_address *iaddr, *raddr;
5051 struct sadb_x_nat_t_frag *frag;
5052
5053 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5054 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5055 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5056 return 0;
5057
5058 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5059 msg = "TYPE";
5060 goto bad;
5061 }
5062
5063 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5064 msg = "SPORT";
5065 goto bad;
5066 }
5067
5068 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5069 msg = "DPORT";
5070 goto bad;
5071 }
5072
5073 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5074 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5075 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5076 msg = "OAI";
5077 goto bad;
5078 }
5079 }
5080
5081 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5082 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5083 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5084 msg = "OAR";
5085 goto bad;
5086 }
5087 }
5088
5089 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5090 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5091 msg = "FRAG";
5092 goto bad;
5093 }
5094 }
5095
5096 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5097 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5098 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5099 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5100 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5101 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5102
5103 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5104 __func__, type->sadb_x_nat_t_type_type,
5105 ntohs(sport->sadb_x_nat_t_port_port),
5106 ntohs(dport->sadb_x_nat_t_port_port)));
5107
5108 sav->natt_type = type->sadb_x_nat_t_type_type;
5109 key_porttosaddr(&sav->sah->saidx.src,
5110 sport->sadb_x_nat_t_port_port);
5111 key_porttosaddr(&sav->sah->saidx.dst,
5112 dport->sadb_x_nat_t_port_port);
5113 if (frag)
5114 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5115 else
5116 sav->esp_frag = IP_MAXPACKET;
5117
5118 return 0;
5119 bad:
5120 ipseclog((LOG_DEBUG, "%s: invalid message %s\n", __func__, msg));
5121 __USE(msg);
5122 return -1;
5123 }
5124
5125 /* Just update the IPSEC_NAT_T ports if present */
5126 static int
5127 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5128 const struct sadb_msghdr *mhp)
5129 {
5130 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5131 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5132 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5133 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5134
5135 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5136 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5137 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5138 struct sadb_x_nat_t_type *type;
5139 struct sadb_x_nat_t_port *sport;
5140 struct sadb_x_nat_t_port *dport;
5141
5142 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5143 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5144 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5145 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5146 __func__));
5147 return -1;
5148 }
5149
5150 type = (struct sadb_x_nat_t_type *)
5151 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5152 sport = (struct sadb_x_nat_t_port *)
5153 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5154 dport = (struct sadb_x_nat_t_port *)
5155 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5156
5157 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5158 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5159
5160 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5161 __func__, type->sadb_x_nat_t_type_type,
5162 ntohs(sport->sadb_x_nat_t_port_port),
5163 ntohs(dport->sadb_x_nat_t_port_port)));
5164 }
5165
5166 return 0;
5167 }
5168
5169
5170 /*
5171 * SADB_UPDATE processing
5172 * receive
5173 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5174 * key(AE), (identity(SD),) (sensitivity)>
5175 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5176 * and send
5177 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5178 * (identity(SD),) (sensitivity)>
5179 * to the ikmpd.
5180 *
5181 * m will always be freed.
5182 */
5183 static int
5184 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5185 {
5186 struct sadb_sa *sa0;
5187 struct sadb_address *src0, *dst0;
5188 struct secasindex saidx;
5189 struct secashead *sah;
5190 struct secasvar *sav;
5191 u_int16_t proto;
5192 u_int8_t mode;
5193 u_int16_t reqid;
5194 int error;
5195
5196 KASSERT(!cpu_softintr_p());
5197 KASSERT(so != NULL);
5198 KASSERT(m != NULL);
5199 KASSERT(mhp != NULL);
5200 KASSERT(mhp->msg != NULL);
5201
5202 /* map satype to proto */
5203 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5204 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5205 return key_senderror(so, m, EINVAL);
5206 }
5207
5208 if (mhp->ext[SADB_EXT_SA] == NULL ||
5209 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5210 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5211 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5212 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5213 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5214 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5215 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5216 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5217 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5218 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5219 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5220 return key_senderror(so, m, EINVAL);
5221 }
5222 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5223 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5224 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5225 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5226 return key_senderror(so, m, EINVAL);
5227 }
5228 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5229 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5230 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5231 } else {
5232 mode = IPSEC_MODE_ANY;
5233 reqid = 0;
5234 }
5235 /* XXX boundary checking for other extensions */
5236
5237 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5238 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5239 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5240
5241 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5242 dst0 + 1, &saidx)) != 0)
5243 return key_senderror(so, m, EINVAL);
5244
5245 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5246 return key_senderror(so, m, EINVAL);
5247
5248 /* get a SA header */
5249 if ((sah = key_getsah(&saidx)) == NULL) {
5250 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5251 return key_senderror(so, m, ENOENT);
5252 }
5253
5254 /* set spidx if there */
5255 /* XXX rewrite */
5256 error = key_setident(sah, m, mhp);
5257 if (error)
5258 return key_senderror(so, m, error);
5259
5260 /* find a SA with sequence number. */
5261 #ifdef IPSEC_DOSEQCHECK
5262 if (mhp->msg->sadb_msg_seq != 0
5263 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5264 ipseclog((LOG_DEBUG,
5265 "key_update: no larval SA with sequence %u exists.\n",
5266 mhp->msg->sadb_msg_seq));
5267 return key_senderror(so, m, ENOENT);
5268 }
5269 #else
5270 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5271 ipseclog((LOG_DEBUG,
5272 "key_update: no such a SA found (spi:%u)\n",
5273 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5274 return key_senderror(so, m, EINVAL);
5275 }
5276 #endif
5277
5278 /* validity check */
5279 if (sav->sah->saidx.proto != proto) {
5280 ipseclog((LOG_DEBUG,
5281 "key_update: protocol mismatched (DB=%u param=%u)\n",
5282 sav->sah->saidx.proto, proto));
5283 return key_senderror(so, m, EINVAL);
5284 }
5285 #ifdef IPSEC_DOSEQCHECK
5286 if (sav->spi != sa0->sadb_sa_spi) {
5287 ipseclog((LOG_DEBUG,
5288 "key_update: SPI mismatched (DB:%u param:%u)\n",
5289 (u_int32_t)ntohl(sav->spi),
5290 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5291 return key_senderror(so, m, EINVAL);
5292 }
5293 #endif
5294 if (sav->pid != mhp->msg->sadb_msg_pid) {
5295 ipseclog((LOG_DEBUG,
5296 "key_update: pid mismatched (DB:%u param:%u)\n",
5297 sav->pid, mhp->msg->sadb_msg_pid));
5298 return key_senderror(so, m, EINVAL);
5299 }
5300
5301 /* copy sav values */
5302 error = key_setsaval(sav, m, mhp);
5303 if (error) {
5304 KEY_FREESAV(&sav);
5305 return key_senderror(so, m, error);
5306 }
5307
5308 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5309 return key_senderror(so, m, EINVAL);
5310
5311 /* check SA values to be mature. */
5312 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5313 KEY_FREESAV(&sav);
5314 return key_senderror(so, m, 0);
5315 }
5316
5317 {
5318 struct mbuf *n;
5319
5320 /* set msg buf from mhp */
5321 n = key_getmsgbuf_x1(m, mhp);
5322 if (n == NULL) {
5323 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5324 return key_senderror(so, m, ENOBUFS);
5325 }
5326
5327 m_freem(m);
5328 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5329 }
5330 }
5331
5332 /*
5333 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5334 * only called by key_update().
5335 * OUT:
5336 * NULL : not found
5337 * others : found, pointer to a SA.
5338 */
5339 #ifdef IPSEC_DOSEQCHECK
5340 static struct secasvar *
5341 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5342 {
5343 struct secasvar *sav;
5344 u_int state;
5345
5346 state = SADB_SASTATE_LARVAL;
5347
5348 /* search SAD with sequence number ? */
5349 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5350
5351 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5352
5353 if (sav->seq == seq) {
5354 SA_ADDREF(sav);
5355 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5356 "DP cause refcnt++:%d SA:%p\n",
5357 sav->refcnt, sav);
5358 return sav;
5359 }
5360 }
5361
5362 return NULL;
5363 }
5364 #endif
5365
5366 /*
5367 * SADB_ADD processing
5368 * add an entry to SA database, when received
5369 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5370 * key(AE), (identity(SD),) (sensitivity)>
5371 * from the ikmpd,
5372 * and send
5373 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5374 * (identity(SD),) (sensitivity)>
5375 * to the ikmpd.
5376 *
5377 * IGNORE identity and sensitivity messages.
5378 *
5379 * m will always be freed.
5380 */
5381 static int
5382 key_add(struct socket *so, struct mbuf *m,
5383 const struct sadb_msghdr *mhp)
5384 {
5385 struct sadb_sa *sa0;
5386 struct sadb_address *src0, *dst0;
5387 struct secasindex saidx;
5388 struct secashead *newsah;
5389 struct secasvar *newsav;
5390 u_int16_t proto;
5391 u_int8_t mode;
5392 u_int16_t reqid;
5393 int error;
5394
5395 KASSERT(so != NULL);
5396 KASSERT(m != NULL);
5397 KASSERT(mhp != NULL);
5398 KASSERT(mhp->msg != NULL);
5399
5400 /* map satype to proto */
5401 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5402 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5403 return key_senderror(so, m, EINVAL);
5404 }
5405
5406 if (mhp->ext[SADB_EXT_SA] == NULL ||
5407 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5408 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5409 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5410 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5411 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5412 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5413 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5414 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5415 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5416 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5417 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5418 return key_senderror(so, m, EINVAL);
5419 }
5420 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5421 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5422 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5423 /* XXX need more */
5424 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5425 return key_senderror(so, m, EINVAL);
5426 }
5427 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5428 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5429 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5430 } else {
5431 mode = IPSEC_MODE_ANY;
5432 reqid = 0;
5433 }
5434
5435 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5436 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5437 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5438
5439 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5440 dst0 + 1, &saidx)) != 0)
5441 return key_senderror(so, m, EINVAL);
5442
5443 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5444 return key_senderror(so, m, EINVAL);
5445
5446 /* get a SA header */
5447 if ((newsah = key_getsah(&saidx)) == NULL) {
5448 /* create a new SA header */
5449 if ((newsah = key_newsah(&saidx)) == NULL) {
5450 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5451 return key_senderror(so, m, ENOBUFS);
5452 }
5453 }
5454
5455 /* set spidx if there */
5456 /* XXX rewrite */
5457 error = key_setident(newsah, m, mhp);
5458 if (error) {
5459 return key_senderror(so, m, error);
5460 }
5461
5462 /* create new SA entry. */
5463 /* We can create new SA only if SPI is differenct. */
5464 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5465 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5466 return key_senderror(so, m, EEXIST);
5467 }
5468 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5469 if (newsav == NULL) {
5470 return key_senderror(so, m, error);
5471 }
5472
5473 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5474 return key_senderror(so, m, EINVAL);
5475
5476 /* check SA values to be mature. */
5477 if ((error = key_mature(newsav)) != 0) {
5478 KEY_FREESAV(&newsav);
5479 return key_senderror(so, m, error);
5480 }
5481
5482 /*
5483 * don't call key_freesav() here, as we would like to keep the SA
5484 * in the database on success.
5485 */
5486
5487 {
5488 struct mbuf *n;
5489
5490 /* set msg buf from mhp */
5491 n = key_getmsgbuf_x1(m, mhp);
5492 if (n == NULL) {
5493 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5494 return key_senderror(so, m, ENOBUFS);
5495 }
5496
5497 m_freem(m);
5498 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5499 }
5500 }
5501
5502 /* m is retained */
5503 static int
5504 key_setident(struct secashead *sah, struct mbuf *m,
5505 const struct sadb_msghdr *mhp)
5506 {
5507 const struct sadb_ident *idsrc, *iddst;
5508 int idsrclen, iddstlen;
5509
5510 KASSERT(!cpu_softintr_p());
5511 KASSERT(sah != NULL);
5512 KASSERT(m != NULL);
5513 KASSERT(mhp != NULL);
5514 KASSERT(mhp->msg != NULL);
5515
5516 /*
5517 * Can be called with an existing sah from key_update().
5518 */
5519 if (sah->idents != NULL) {
5520 kmem_free(sah->idents, sah->idents_len);
5521 sah->idents = NULL;
5522 sah->idents_len = 0;
5523 }
5524 if (sah->identd != NULL) {
5525 kmem_free(sah->identd, sah->identd_len);
5526 sah->identd = NULL;
5527 sah->identd_len = 0;
5528 }
5529
5530 /* don't make buffer if not there */
5531 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5532 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5533 sah->idents = NULL;
5534 sah->identd = NULL;
5535 return 0;
5536 }
5537
5538 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5539 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5540 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5541 return EINVAL;
5542 }
5543
5544 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5545 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5546 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5547 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5548
5549 /* validity check */
5550 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5551 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5552 return EINVAL;
5553 }
5554
5555 switch (idsrc->sadb_ident_type) {
5556 case SADB_IDENTTYPE_PREFIX:
5557 case SADB_IDENTTYPE_FQDN:
5558 case SADB_IDENTTYPE_USERFQDN:
5559 default:
5560 /* XXX do nothing */
5561 sah->idents = NULL;
5562 sah->identd = NULL;
5563 return 0;
5564 }
5565
5566 /* make structure */
5567 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5568 sah->idents_len = idsrclen;
5569 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5570 sah->identd_len = iddstlen;
5571 memcpy(sah->idents, idsrc, idsrclen);
5572 memcpy(sah->identd, iddst, iddstlen);
5573
5574 return 0;
5575 }
5576
5577 /*
5578 * m will not be freed on return.
5579 * it is caller's responsibility to free the result.
5580 */
5581 static struct mbuf *
5582 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5583 {
5584 struct mbuf *n;
5585
5586 KASSERT(m != NULL);
5587 KASSERT(mhp != NULL);
5588 KASSERT(mhp->msg != NULL);
5589
5590 /* create new sadb_msg to reply. */
5591 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5592 SADB_EXT_SA, SADB_X_EXT_SA2,
5593 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5594 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5595 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5596 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5597 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5598 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5599 if (!n)
5600 return NULL;
5601
5602 if (n->m_len < sizeof(struct sadb_msg)) {
5603 n = m_pullup(n, sizeof(struct sadb_msg));
5604 if (n == NULL)
5605 return NULL;
5606 }
5607 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5608 mtod(n, struct sadb_msg *)->sadb_msg_len =
5609 PFKEY_UNIT64(n->m_pkthdr.len);
5610
5611 return n;
5612 }
5613
5614 static int key_delete_all (struct socket *, struct mbuf *,
5615 const struct sadb_msghdr *, u_int16_t);
5616
5617 /*
5618 * SADB_DELETE processing
5619 * receive
5620 * <base, SA(*), address(SD)>
5621 * from the ikmpd, and set SADB_SASTATE_DEAD,
5622 * and send,
5623 * <base, SA(*), address(SD)>
5624 * to the ikmpd.
5625 *
5626 * m will always be freed.
5627 */
5628 static int
5629 key_delete(struct socket *so, struct mbuf *m,
5630 const struct sadb_msghdr *mhp)
5631 {
5632 struct sadb_sa *sa0;
5633 struct sadb_address *src0, *dst0;
5634 struct secasindex saidx;
5635 struct secashead *sah;
5636 struct secasvar *sav = NULL;
5637 u_int16_t proto;
5638 int error;
5639
5640 KASSERT(so != NULL);
5641 KASSERT(m != NULL);
5642 KASSERT(mhp != NULL);
5643 KASSERT(mhp->msg != NULL);
5644
5645 /* map satype to proto */
5646 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5647 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5648 return key_senderror(so, m, EINVAL);
5649 }
5650
5651 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5652 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5653 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5654 return key_senderror(so, m, EINVAL);
5655 }
5656
5657 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5658 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5659 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5660 return key_senderror(so, m, EINVAL);
5661 }
5662
5663 if (mhp->ext[SADB_EXT_SA] == NULL) {
5664 /*
5665 * Caller wants us to delete all non-LARVAL SAs
5666 * that match the src/dst. This is used during
5667 * IKE INITIAL-CONTACT.
5668 */
5669 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5670 return key_delete_all(so, m, mhp, proto);
5671 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5672 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5673 return key_senderror(so, m, EINVAL);
5674 }
5675
5676 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5677 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5678 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5679
5680 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5681 dst0 + 1, &saidx)) != 0)
5682 return key_senderror(so, m, EINVAL);
5683
5684 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5685 return key_senderror(so, m, EINVAL);
5686
5687 /* get a SA header */
5688 LIST_FOREACH(sah, &sahtree, chain) {
5689 if (sah->state == SADB_SASTATE_DEAD)
5690 continue;
5691 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5692 continue;
5693
5694 /* get a SA with SPI. */
5695 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5696 if (sav)
5697 break;
5698 }
5699 if (sah == NULL) {
5700 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5701 return key_senderror(so, m, ENOENT);
5702 }
5703
5704 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5705 KEY_FREESAV(&sav);
5706
5707 {
5708 struct mbuf *n;
5709 struct sadb_msg *newmsg;
5710
5711 /* create new sadb_msg to reply. */
5712 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5713 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5714 if (!n)
5715 return key_senderror(so, m, ENOBUFS);
5716
5717 if (n->m_len < sizeof(struct sadb_msg)) {
5718 n = m_pullup(n, sizeof(struct sadb_msg));
5719 if (n == NULL)
5720 return key_senderror(so, m, ENOBUFS);
5721 }
5722 newmsg = mtod(n, struct sadb_msg *);
5723 newmsg->sadb_msg_errno = 0;
5724 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5725
5726 m_freem(m);
5727 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5728 }
5729 }
5730
5731 /*
5732 * delete all SAs for src/dst. Called from key_delete().
5733 */
5734 static int
5735 key_delete_all(struct socket *so, struct mbuf *m,
5736 const struct sadb_msghdr *mhp, u_int16_t proto)
5737 {
5738 struct sadb_address *src0, *dst0;
5739 struct secasindex saidx;
5740 struct secashead *sah;
5741 struct secasvar *sav, *nextsav;
5742 u_int state;
5743 int error;
5744
5745 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5746 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5747
5748 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5749 dst0 + 1, &saidx)) != 0)
5750 return key_senderror(so, m, EINVAL);
5751
5752 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5753 return key_senderror(so, m, EINVAL);
5754
5755 LIST_FOREACH(sah, &sahtree, chain) {
5756 if (sah->state == SADB_SASTATE_DEAD)
5757 continue;
5758 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5759 continue;
5760
5761 /* Delete all non-LARVAL SAs. */
5762 SASTATE_ALIVE_FOREACH(state) {
5763 if (state == SADB_SASTATE_LARVAL)
5764 continue;
5765 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5766 nextsav) {
5767 /* sanity check */
5768 if (sav->state != state) {
5769 ipseclog((LOG_DEBUG, "key_delete_all: "
5770 "invalid sav->state "
5771 "(queue: %d SA: %d)\n",
5772 state, sav->state));
5773 continue;
5774 }
5775
5776 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5777 KEY_FREESAV(&sav);
5778 }
5779 }
5780 }
5781 {
5782 struct mbuf *n;
5783 struct sadb_msg *newmsg;
5784
5785 /* create new sadb_msg to reply. */
5786 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5787 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5788 if (!n)
5789 return key_senderror(so, m, ENOBUFS);
5790
5791 if (n->m_len < sizeof(struct sadb_msg)) {
5792 n = m_pullup(n, sizeof(struct sadb_msg));
5793 if (n == NULL)
5794 return key_senderror(so, m, ENOBUFS);
5795 }
5796 newmsg = mtod(n, struct sadb_msg *);
5797 newmsg->sadb_msg_errno = 0;
5798 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5799
5800 m_freem(m);
5801 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5802 }
5803 }
5804
5805 /*
5806 * SADB_GET processing
5807 * receive
5808 * <base, SA(*), address(SD)>
5809 * from the ikmpd, and get a SP and a SA to respond,
5810 * and send,
5811 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5812 * (identity(SD),) (sensitivity)>
5813 * to the ikmpd.
5814 *
5815 * m will always be freed.
5816 */
5817 static int
5818 key_get(struct socket *so, struct mbuf *m,
5819 const struct sadb_msghdr *mhp)
5820 {
5821 struct sadb_sa *sa0;
5822 struct sadb_address *src0, *dst0;
5823 struct secasindex saidx;
5824 struct secashead *sah;
5825 struct secasvar *sav = NULL;
5826 u_int16_t proto;
5827 int error;
5828
5829 KASSERT(so != NULL);
5830 KASSERT(m != NULL);
5831 KASSERT(mhp != NULL);
5832 KASSERT(mhp->msg != NULL);
5833
5834 /* map satype to proto */
5835 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5836 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5837 return key_senderror(so, m, EINVAL);
5838 }
5839
5840 if (mhp->ext[SADB_EXT_SA] == NULL ||
5841 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5842 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5843 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5844 return key_senderror(so, m, EINVAL);
5845 }
5846 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5847 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5848 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5849 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5850 return key_senderror(so, m, EINVAL);
5851 }
5852
5853 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5854 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5855 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5856
5857 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5858 dst0 + 1, &saidx)) != 0)
5859 return key_senderror(so, m, EINVAL);
5860
5861 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5862 return key_senderror(so, m, EINVAL);
5863
5864 /* get a SA header */
5865 LIST_FOREACH(sah, &sahtree, chain) {
5866 if (sah->state == SADB_SASTATE_DEAD)
5867 continue;
5868 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5869 continue;
5870
5871 /* get a SA with SPI. */
5872 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5873 if (sav)
5874 break;
5875 }
5876 if (sah == NULL) {
5877 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5878 return key_senderror(so, m, ENOENT);
5879 }
5880
5881 {
5882 struct mbuf *n;
5883 u_int8_t satype;
5884
5885 /* map proto to satype */
5886 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5887 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5888 return key_senderror(so, m, EINVAL);
5889 }
5890
5891 /* create new sadb_msg to reply. */
5892 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5893 mhp->msg->sadb_msg_pid);
5894 if (!n)
5895 return key_senderror(so, m, ENOBUFS);
5896
5897 m_freem(m);
5898 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5899 }
5900 }
5901
5902 /* XXX make it sysctl-configurable? */
5903 static void
5904 key_getcomb_setlifetime(struct sadb_comb *comb)
5905 {
5906
5907 comb->sadb_comb_soft_allocations = 1;
5908 comb->sadb_comb_hard_allocations = 1;
5909 comb->sadb_comb_soft_bytes = 0;
5910 comb->sadb_comb_hard_bytes = 0;
5911 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5912 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5913 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5914 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5915 }
5916
5917 /*
5918 * XXX reorder combinations by preference
5919 * XXX no idea if the user wants ESP authentication or not
5920 */
5921 static struct mbuf *
5922 key_getcomb_esp(void)
5923 {
5924 struct sadb_comb *comb;
5925 const struct enc_xform *algo;
5926 struct mbuf *result = NULL, *m, *n;
5927 int encmin;
5928 int i, off, o;
5929 int totlen;
5930 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5931
5932 m = NULL;
5933 for (i = 1; i <= SADB_EALG_MAX; i++) {
5934 algo = esp_algorithm_lookup(i);
5935 if (algo == NULL)
5936 continue;
5937
5938 /* discard algorithms with key size smaller than system min */
5939 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5940 continue;
5941 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5942 encmin = ipsec_esp_keymin;
5943 else
5944 encmin = _BITS(algo->minkey);
5945
5946 if (ipsec_esp_auth)
5947 m = key_getcomb_ah();
5948 else {
5949 KASSERTMSG(l <= MLEN,
5950 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5951 MGET(m, M_DONTWAIT, MT_DATA);
5952 if (m) {
5953 M_ALIGN(m, l);
5954 m->m_len = l;
5955 m->m_next = NULL;
5956 memset(mtod(m, void *), 0, m->m_len);
5957 }
5958 }
5959 if (!m)
5960 goto fail;
5961
5962 totlen = 0;
5963 for (n = m; n; n = n->m_next)
5964 totlen += n->m_len;
5965 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5966
5967 for (off = 0; off < totlen; off += l) {
5968 n = m_pulldown(m, off, l, &o);
5969 if (!n) {
5970 /* m is already freed */
5971 goto fail;
5972 }
5973 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5974 memset(comb, 0, sizeof(*comb));
5975 key_getcomb_setlifetime(comb);
5976 comb->sadb_comb_encrypt = i;
5977 comb->sadb_comb_encrypt_minbits = encmin;
5978 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5979 }
5980
5981 if (!result)
5982 result = m;
5983 else
5984 m_cat(result, m);
5985 }
5986
5987 return result;
5988
5989 fail:
5990 if (result)
5991 m_freem(result);
5992 return NULL;
5993 }
5994
5995 static void
5996 key_getsizes_ah(const struct auth_hash *ah, int alg,
5997 u_int16_t* ksmin, u_int16_t* ksmax)
5998 {
5999 *ksmin = *ksmax = ah->keysize;
6000 if (ah->keysize == 0) {
6001 /*
6002 * Transform takes arbitrary key size but algorithm
6003 * key size is restricted. Enforce this here.
6004 */
6005 switch (alg) {
6006 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6007 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6008 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6009 default:
6010 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6011 alg));
6012 break;
6013 }
6014 }
6015 }
6016
6017 /*
6018 * XXX reorder combinations by preference
6019 */
6020 static struct mbuf *
6021 key_getcomb_ah(void)
6022 {
6023 struct sadb_comb *comb;
6024 const struct auth_hash *algo;
6025 struct mbuf *m;
6026 u_int16_t minkeysize, maxkeysize;
6027 int i;
6028 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6029
6030 m = NULL;
6031 for (i = 1; i <= SADB_AALG_MAX; i++) {
6032 #if 1
6033 /* we prefer HMAC algorithms, not old algorithms */
6034 if (i != SADB_AALG_SHA1HMAC &&
6035 i != SADB_AALG_MD5HMAC &&
6036 i != SADB_X_AALG_SHA2_256 &&
6037 i != SADB_X_AALG_SHA2_384 &&
6038 i != SADB_X_AALG_SHA2_512)
6039 continue;
6040 #endif
6041 algo = ah_algorithm_lookup(i);
6042 if (!algo)
6043 continue;
6044 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6045 /* discard algorithms with key size smaller than system min */
6046 if (_BITS(minkeysize) < ipsec_ah_keymin)
6047 continue;
6048
6049 if (!m) {
6050 KASSERTMSG(l <= MLEN,
6051 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6052 MGET(m, M_DONTWAIT, MT_DATA);
6053 if (m) {
6054 M_ALIGN(m, l);
6055 m->m_len = l;
6056 m->m_next = NULL;
6057 }
6058 } else
6059 M_PREPEND(m, l, M_DONTWAIT);
6060 if (!m)
6061 return NULL;
6062
6063 comb = mtod(m, struct sadb_comb *);
6064 memset(comb, 0, sizeof(*comb));
6065 key_getcomb_setlifetime(comb);
6066 comb->sadb_comb_auth = i;
6067 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6068 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6069 }
6070
6071 return m;
6072 }
6073
6074 /*
6075 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6076 * XXX reorder combinations by preference
6077 */
6078 static struct mbuf *
6079 key_getcomb_ipcomp(void)
6080 {
6081 struct sadb_comb *comb;
6082 const struct comp_algo *algo;
6083 struct mbuf *m;
6084 int i;
6085 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6086
6087 m = NULL;
6088 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6089 algo = ipcomp_algorithm_lookup(i);
6090 if (!algo)
6091 continue;
6092
6093 if (!m) {
6094 KASSERTMSG(l <= MLEN,
6095 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6096 MGET(m, M_DONTWAIT, MT_DATA);
6097 if (m) {
6098 M_ALIGN(m, l);
6099 m->m_len = l;
6100 m->m_next = NULL;
6101 }
6102 } else
6103 M_PREPEND(m, l, M_DONTWAIT);
6104 if (!m)
6105 return NULL;
6106
6107 comb = mtod(m, struct sadb_comb *);
6108 memset(comb, 0, sizeof(*comb));
6109 key_getcomb_setlifetime(comb);
6110 comb->sadb_comb_encrypt = i;
6111 /* what should we set into sadb_comb_*_{min,max}bits? */
6112 }
6113
6114 return m;
6115 }
6116
6117 /*
6118 * XXX no way to pass mode (transport/tunnel) to userland
6119 * XXX replay checking?
6120 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6121 */
6122 static struct mbuf *
6123 key_getprop(const struct secasindex *saidx)
6124 {
6125 struct sadb_prop *prop;
6126 struct mbuf *m, *n;
6127 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6128 int totlen;
6129
6130 switch (saidx->proto) {
6131 case IPPROTO_ESP:
6132 m = key_getcomb_esp();
6133 break;
6134 case IPPROTO_AH:
6135 m = key_getcomb_ah();
6136 break;
6137 case IPPROTO_IPCOMP:
6138 m = key_getcomb_ipcomp();
6139 break;
6140 default:
6141 return NULL;
6142 }
6143
6144 if (!m)
6145 return NULL;
6146 M_PREPEND(m, l, M_DONTWAIT);
6147 if (!m)
6148 return NULL;
6149
6150 totlen = 0;
6151 for (n = m; n; n = n->m_next)
6152 totlen += n->m_len;
6153
6154 prop = mtod(m, struct sadb_prop *);
6155 memset(prop, 0, sizeof(*prop));
6156 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6157 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6158 prop->sadb_prop_replay = 32; /* XXX */
6159
6160 return m;
6161 }
6162
6163 /*
6164 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6165 * send
6166 * <base, SA, address(SD), (address(P)), x_policy,
6167 * (identity(SD),) (sensitivity,) proposal>
6168 * to KMD, and expect to receive
6169 * <base> with SADB_ACQUIRE if error occurred,
6170 * or
6171 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6172 * from KMD by PF_KEY.
6173 *
6174 * XXX x_policy is outside of RFC2367 (KAME extension).
6175 * XXX sensitivity is not supported.
6176 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6177 * see comment for key_getcomb_ipcomp().
6178 *
6179 * OUT:
6180 * 0 : succeed
6181 * others: error number
6182 */
6183 static int
6184 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6185 {
6186 struct mbuf *result = NULL, *m;
6187 #ifndef IPSEC_NONBLOCK_ACQUIRE
6188 struct secacq *newacq;
6189 #endif
6190 u_int8_t satype;
6191 int error = -1;
6192 u_int32_t seq;
6193
6194 /* sanity check */
6195 KASSERT(saidx != NULL);
6196 satype = key_proto2satype(saidx->proto);
6197 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6198
6199 #ifndef IPSEC_NONBLOCK_ACQUIRE
6200 /*
6201 * We never do anything about acquirng SA. There is anather
6202 * solution that kernel blocks to send SADB_ACQUIRE message until
6203 * getting something message from IKEd. In later case, to be
6204 * managed with ACQUIRING list.
6205 */
6206 /* Get an entry to check whether sending message or not. */
6207 if ((newacq = key_getacq(saidx)) != NULL) {
6208 if (key_blockacq_count < newacq->count) {
6209 /* reset counter and do send message. */
6210 newacq->count = 0;
6211 } else {
6212 /* increment counter and do nothing. */
6213 newacq->count++;
6214 return 0;
6215 }
6216 } else {
6217 /* make new entry for blocking to send SADB_ACQUIRE. */
6218 if ((newacq = key_newacq(saidx)) == NULL)
6219 return ENOBUFS;
6220
6221 /* add to acqtree */
6222 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6223 }
6224 #endif
6225
6226
6227 #ifndef IPSEC_NONBLOCK_ACQUIRE
6228 seq = newacq->seq;
6229 #else
6230 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6231 #endif
6232 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6233 if (!m) {
6234 error = ENOBUFS;
6235 goto fail;
6236 }
6237 result = m;
6238
6239 /* set sadb_address for saidx's. */
6240 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6241 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6242 if (!m) {
6243 error = ENOBUFS;
6244 goto fail;
6245 }
6246 m_cat(result, m);
6247
6248 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6249 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6250 if (!m) {
6251 error = ENOBUFS;
6252 goto fail;
6253 }
6254 m_cat(result, m);
6255
6256 /* XXX proxy address (optional) */
6257
6258 /* set sadb_x_policy */
6259 if (sp) {
6260 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6261 if (!m) {
6262 error = ENOBUFS;
6263 goto fail;
6264 }
6265 m_cat(result, m);
6266 }
6267
6268 /* XXX identity (optional) */
6269 #if 0
6270 if (idexttype && fqdn) {
6271 /* create identity extension (FQDN) */
6272 struct sadb_ident *id;
6273 int fqdnlen;
6274
6275 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6276 id = (struct sadb_ident *)p;
6277 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6278 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6279 id->sadb_ident_exttype = idexttype;
6280 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6281 memcpy(id + 1, fqdn, fqdnlen);
6282 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6283 }
6284
6285 if (idexttype) {
6286 /* create identity extension (USERFQDN) */
6287 struct sadb_ident *id;
6288 int userfqdnlen;
6289
6290 if (userfqdn) {
6291 /* +1 for terminating-NUL */
6292 userfqdnlen = strlen(userfqdn) + 1;
6293 } else
6294 userfqdnlen = 0;
6295 id = (struct sadb_ident *)p;
6296 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6297 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6298 id->sadb_ident_exttype = idexttype;
6299 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6300 /* XXX is it correct? */
6301 if (curlwp)
6302 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6303 if (userfqdn && userfqdnlen)
6304 memcpy(id + 1, userfqdn, userfqdnlen);
6305 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6306 }
6307 #endif
6308
6309 /* XXX sensitivity (optional) */
6310
6311 /* create proposal/combination extension */
6312 m = key_getprop(saidx);
6313 #if 0
6314 /*
6315 * spec conformant: always attach proposal/combination extension,
6316 * the problem is that we have no way to attach it for ipcomp,
6317 * due to the way sadb_comb is declared in RFC2367.
6318 */
6319 if (!m) {
6320 error = ENOBUFS;
6321 goto fail;
6322 }
6323 m_cat(result, m);
6324 #else
6325 /*
6326 * outside of spec; make proposal/combination extension optional.
6327 */
6328 if (m)
6329 m_cat(result, m);
6330 #endif
6331
6332 if ((result->m_flags & M_PKTHDR) == 0) {
6333 error = EINVAL;
6334 goto fail;
6335 }
6336
6337 if (result->m_len < sizeof(struct sadb_msg)) {
6338 result = m_pullup(result, sizeof(struct sadb_msg));
6339 if (result == NULL) {
6340 error = ENOBUFS;
6341 goto fail;
6342 }
6343 }
6344
6345 result->m_pkthdr.len = 0;
6346 for (m = result; m; m = m->m_next)
6347 result->m_pkthdr.len += m->m_len;
6348
6349 mtod(result, struct sadb_msg *)->sadb_msg_len =
6350 PFKEY_UNIT64(result->m_pkthdr.len);
6351
6352 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6353
6354 fail:
6355 if (result)
6356 m_freem(result);
6357 return error;
6358 }
6359
6360 #ifndef IPSEC_NONBLOCK_ACQUIRE
6361 static struct secacq *
6362 key_newacq(const struct secasindex *saidx)
6363 {
6364 struct secacq *newacq;
6365
6366 /* get new entry */
6367 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6368 if (newacq == NULL) {
6369 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6370 return NULL;
6371 }
6372
6373 /* copy secindex */
6374 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6375 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6376 newacq->created = time_uptime;
6377 newacq->count = 0;
6378
6379 return newacq;
6380 }
6381
6382 static struct secacq *
6383 key_getacq(const struct secasindex *saidx)
6384 {
6385 struct secacq *acq;
6386
6387 LIST_FOREACH(acq, &acqtree, chain) {
6388 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6389 return acq;
6390 }
6391
6392 return NULL;
6393 }
6394
6395 static struct secacq *
6396 key_getacqbyseq(u_int32_t seq)
6397 {
6398 struct secacq *acq;
6399
6400 LIST_FOREACH(acq, &acqtree, chain) {
6401 if (acq->seq == seq)
6402 return acq;
6403 }
6404
6405 return NULL;
6406 }
6407 #endif
6408
6409 static struct secspacq *
6410 key_newspacq(const struct secpolicyindex *spidx)
6411 {
6412 struct secspacq *acq;
6413
6414 /* get new entry */
6415 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6416 if (acq == NULL) {
6417 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6418 return NULL;
6419 }
6420
6421 /* copy secindex */
6422 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6423 acq->created = time_uptime;
6424 acq->count = 0;
6425
6426 return acq;
6427 }
6428
6429 static struct secspacq *
6430 key_getspacq(const struct secpolicyindex *spidx)
6431 {
6432 struct secspacq *acq;
6433
6434 LIST_FOREACH(acq, &spacqtree, chain) {
6435 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6436 return acq;
6437 }
6438
6439 return NULL;
6440 }
6441
6442 /*
6443 * SADB_ACQUIRE processing,
6444 * in first situation, is receiving
6445 * <base>
6446 * from the ikmpd, and clear sequence of its secasvar entry.
6447 *
6448 * In second situation, is receiving
6449 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6450 * from a user land process, and return
6451 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6452 * to the socket.
6453 *
6454 * m will always be freed.
6455 */
6456 static int
6457 key_acquire2(struct socket *so, struct mbuf *m,
6458 const struct sadb_msghdr *mhp)
6459 {
6460 const struct sadb_address *src0, *dst0;
6461 struct secasindex saidx;
6462 struct secashead *sah;
6463 u_int16_t proto;
6464 int error;
6465
6466 KASSERT(so != NULL);
6467 KASSERT(m != NULL);
6468 KASSERT(mhp != NULL);
6469 KASSERT(mhp->msg != NULL);
6470
6471 /*
6472 * Error message from KMd.
6473 * We assume that if error was occurred in IKEd, the length of PFKEY
6474 * message is equal to the size of sadb_msg structure.
6475 * We do not raise error even if error occurred in this function.
6476 */
6477 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6478 #ifndef IPSEC_NONBLOCK_ACQUIRE
6479 struct secacq *acq;
6480
6481 /* check sequence number */
6482 if (mhp->msg->sadb_msg_seq == 0) {
6483 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6484 m_freem(m);
6485 return 0;
6486 }
6487
6488 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6489 /*
6490 * the specified larval SA is already gone, or we got
6491 * a bogus sequence number. we can silently ignore it.
6492 */
6493 m_freem(m);
6494 return 0;
6495 }
6496
6497 /* reset acq counter in order to deletion by timehander. */
6498 acq->created = time_uptime;
6499 acq->count = 0;
6500 #endif
6501 m_freem(m);
6502 return 0;
6503 }
6504
6505 /*
6506 * This message is from user land.
6507 */
6508
6509 /* map satype to proto */
6510 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6511 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6512 return key_senderror(so, m, EINVAL);
6513 }
6514
6515 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6516 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6517 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6518 /* error */
6519 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6520 return key_senderror(so, m, EINVAL);
6521 }
6522 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6523 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6524 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6525 /* error */
6526 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6527 return key_senderror(so, m, EINVAL);
6528 }
6529
6530 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6531 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6532
6533 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6534 dst0 + 1, &saidx)) != 0)
6535 return key_senderror(so, m, EINVAL);
6536
6537 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6538 return key_senderror(so, m, EINVAL);
6539
6540 /* get a SA index */
6541 LIST_FOREACH(sah, &sahtree, chain) {
6542 if (sah->state == SADB_SASTATE_DEAD)
6543 continue;
6544 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6545 break;
6546 }
6547 if (sah != NULL) {
6548 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6549 return key_senderror(so, m, EEXIST);
6550 }
6551
6552 error = key_acquire(&saidx, NULL);
6553 if (error != 0) {
6554 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6555 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6556 return key_senderror(so, m, error);
6557 }
6558
6559 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6560 }
6561
6562 /*
6563 * SADB_REGISTER processing.
6564 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6565 * receive
6566 * <base>
6567 * from the ikmpd, and register a socket to send PF_KEY messages,
6568 * and send
6569 * <base, supported>
6570 * to KMD by PF_KEY.
6571 * If socket is detached, must free from regnode.
6572 *
6573 * m will always be freed.
6574 */
6575 static int
6576 key_register(struct socket *so, struct mbuf *m,
6577 const struct sadb_msghdr *mhp)
6578 {
6579 struct secreg *reg, *newreg = 0;
6580
6581 KASSERT(!cpu_softintr_p());
6582 KASSERT(so != NULL);
6583 KASSERT(m != NULL);
6584 KASSERT(mhp != NULL);
6585 KASSERT(mhp->msg != NULL);
6586
6587 /* check for invalid register message */
6588 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6589 return key_senderror(so, m, EINVAL);
6590
6591 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6592 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6593 goto setmsg;
6594
6595 /* check whether existing or not */
6596 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6597 if (reg->so == so) {
6598 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6599 return key_senderror(so, m, EEXIST);
6600 }
6601 }
6602
6603 /* create regnode */
6604 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6605
6606 newreg->so = so;
6607 ((struct keycb *)sotorawcb(so))->kp_registered++;
6608
6609 /* add regnode to regtree. */
6610 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6611
6612 setmsg:
6613 {
6614 struct mbuf *n;
6615 struct sadb_msg *newmsg;
6616 struct sadb_supported *sup;
6617 u_int len, alen, elen;
6618 int off;
6619 int i;
6620 struct sadb_alg *alg;
6621
6622 /* create new sadb_msg to reply. */
6623 alen = 0;
6624 for (i = 1; i <= SADB_AALG_MAX; i++) {
6625 if (ah_algorithm_lookup(i))
6626 alen += sizeof(struct sadb_alg);
6627 }
6628 if (alen)
6629 alen += sizeof(struct sadb_supported);
6630 elen = 0;
6631 for (i = 1; i <= SADB_EALG_MAX; i++) {
6632 if (esp_algorithm_lookup(i))
6633 elen += sizeof(struct sadb_alg);
6634 }
6635 if (elen)
6636 elen += sizeof(struct sadb_supported);
6637
6638 len = sizeof(struct sadb_msg) + alen + elen;
6639
6640 if (len > MCLBYTES)
6641 return key_senderror(so, m, ENOBUFS);
6642
6643 MGETHDR(n, M_DONTWAIT, MT_DATA);
6644 if (len > MHLEN) {
6645 MCLGET(n, M_DONTWAIT);
6646 if ((n->m_flags & M_EXT) == 0) {
6647 m_freem(n);
6648 n = NULL;
6649 }
6650 }
6651 if (!n)
6652 return key_senderror(so, m, ENOBUFS);
6653
6654 n->m_pkthdr.len = n->m_len = len;
6655 n->m_next = NULL;
6656 off = 0;
6657
6658 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6659 newmsg = mtod(n, struct sadb_msg *);
6660 newmsg->sadb_msg_errno = 0;
6661 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6662 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6663
6664 /* for authentication algorithm */
6665 if (alen) {
6666 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6667 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6668 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6669 off += PFKEY_ALIGN8(sizeof(*sup));
6670
6671 for (i = 1; i <= SADB_AALG_MAX; i++) {
6672 const struct auth_hash *aalgo;
6673 u_int16_t minkeysize, maxkeysize;
6674
6675 aalgo = ah_algorithm_lookup(i);
6676 if (!aalgo)
6677 continue;
6678 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6679 alg->sadb_alg_id = i;
6680 alg->sadb_alg_ivlen = 0;
6681 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6682 alg->sadb_alg_minbits = _BITS(minkeysize);
6683 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6684 off += PFKEY_ALIGN8(sizeof(*alg));
6685 }
6686 }
6687
6688 /* for encryption algorithm */
6689 if (elen) {
6690 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6691 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6692 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6693 off += PFKEY_ALIGN8(sizeof(*sup));
6694
6695 for (i = 1; i <= SADB_EALG_MAX; i++) {
6696 const struct enc_xform *ealgo;
6697
6698 ealgo = esp_algorithm_lookup(i);
6699 if (!ealgo)
6700 continue;
6701 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6702 alg->sadb_alg_id = i;
6703 alg->sadb_alg_ivlen = ealgo->blocksize;
6704 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6705 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6706 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6707 }
6708 }
6709
6710 KASSERTMSG(off == len, "length inconsistency");
6711
6712 m_freem(m);
6713 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6714 }
6715 }
6716
6717 /*
6718 * free secreg entry registered.
6719 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6720 */
6721 void
6722 key_freereg(struct socket *so)
6723 {
6724 struct secreg *reg;
6725 int i;
6726
6727 KASSERT(!cpu_softintr_p());
6728 KASSERT(so != NULL);
6729
6730 /*
6731 * check whether existing or not.
6732 * check all type of SA, because there is a potential that
6733 * one socket is registered to multiple type of SA.
6734 */
6735 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6736 LIST_FOREACH(reg, ®tree[i], chain) {
6737 if (reg->so == so
6738 && __LIST_CHAINED(reg)) {
6739 LIST_REMOVE(reg, chain);
6740 kmem_free(reg, sizeof(*reg));
6741 break;
6742 }
6743 }
6744 }
6745
6746 return;
6747 }
6748
6749 /*
6750 * SADB_EXPIRE processing
6751 * send
6752 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6753 * to KMD by PF_KEY.
6754 * NOTE: We send only soft lifetime extension.
6755 *
6756 * OUT: 0 : succeed
6757 * others : error number
6758 */
6759 static int
6760 key_expire(struct secasvar *sav)
6761 {
6762 int s;
6763 int satype;
6764 struct mbuf *result = NULL, *m;
6765 int len;
6766 int error = -1;
6767 struct sadb_lifetime *lt;
6768
6769 /* XXX: Why do we lock ? */
6770 s = splsoftnet(); /*called from softclock()*/
6771
6772 KASSERT(sav != NULL);
6773 KASSERT(sav->sah != NULL);
6774
6775 satype = key_proto2satype(sav->sah->saidx.proto);
6776 KASSERTMSG(satype != 0, "invalid proto is passed");
6777
6778 /* set msg header */
6779 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6780 if (!m) {
6781 error = ENOBUFS;
6782 goto fail;
6783 }
6784 result = m;
6785
6786 /* create SA extension */
6787 m = key_setsadbsa(sav);
6788 if (!m) {
6789 error = ENOBUFS;
6790 goto fail;
6791 }
6792 m_cat(result, m);
6793
6794 /* create SA extension */
6795 m = key_setsadbxsa2(sav->sah->saidx.mode,
6796 sav->replay ? sav->replay->count : 0,
6797 sav->sah->saidx.reqid);
6798 if (!m) {
6799 error = ENOBUFS;
6800 goto fail;
6801 }
6802 m_cat(result, m);
6803
6804 /* create lifetime extension (current and soft) */
6805 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6806 m = key_alloc_mbuf(len);
6807 if (!m || m->m_next) { /*XXX*/
6808 if (m)
6809 m_freem(m);
6810 error = ENOBUFS;
6811 goto fail;
6812 }
6813 memset(mtod(m, void *), 0, len);
6814 lt = mtod(m, struct sadb_lifetime *);
6815 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6816 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6817 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6818 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6819 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6820 + time_second - time_uptime;
6821 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6822 + time_second - time_uptime;
6823 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6824 memcpy(lt, sav->lft_s, sizeof(*lt));
6825 m_cat(result, m);
6826
6827 /* set sadb_address for source */
6828 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6829 &sav->sah->saidx.src.sa,
6830 FULLMASK, IPSEC_ULPROTO_ANY);
6831 if (!m) {
6832 error = ENOBUFS;
6833 goto fail;
6834 }
6835 m_cat(result, m);
6836
6837 /* set sadb_address for destination */
6838 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6839 &sav->sah->saidx.dst.sa,
6840 FULLMASK, IPSEC_ULPROTO_ANY);
6841 if (!m) {
6842 error = ENOBUFS;
6843 goto fail;
6844 }
6845 m_cat(result, m);
6846
6847 if ((result->m_flags & M_PKTHDR) == 0) {
6848 error = EINVAL;
6849 goto fail;
6850 }
6851
6852 if (result->m_len < sizeof(struct sadb_msg)) {
6853 result = m_pullup(result, sizeof(struct sadb_msg));
6854 if (result == NULL) {
6855 error = ENOBUFS;
6856 goto fail;
6857 }
6858 }
6859
6860 result->m_pkthdr.len = 0;
6861 for (m = result; m; m = m->m_next)
6862 result->m_pkthdr.len += m->m_len;
6863
6864 mtod(result, struct sadb_msg *)->sadb_msg_len =
6865 PFKEY_UNIT64(result->m_pkthdr.len);
6866
6867 splx(s);
6868 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6869
6870 fail:
6871 if (result)
6872 m_freem(result);
6873 splx(s);
6874 return error;
6875 }
6876
6877 /*
6878 * SADB_FLUSH processing
6879 * receive
6880 * <base>
6881 * from the ikmpd, and free all entries in secastree.
6882 * and send,
6883 * <base>
6884 * to the ikmpd.
6885 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6886 *
6887 * m will always be freed.
6888 */
6889 static int
6890 key_flush(struct socket *so, struct mbuf *m,
6891 const struct sadb_msghdr *mhp)
6892 {
6893 struct sadb_msg *newmsg;
6894 struct secashead *sah;
6895 struct secasvar *sav, *nextsav;
6896 u_int16_t proto;
6897 u_int8_t state;
6898
6899 KASSERT(so != NULL);
6900 KASSERT(mhp != NULL);
6901 KASSERT(mhp->msg != NULL);
6902
6903 /* map satype to proto */
6904 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6905 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6906 return key_senderror(so, m, EINVAL);
6907 }
6908
6909 /* no SATYPE specified, i.e. flushing all SA. */
6910 LIST_FOREACH(sah, &sahtree, chain) {
6911 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6912 && proto != sah->saidx.proto)
6913 continue;
6914
6915 SASTATE_ALIVE_FOREACH(state) {
6916 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6917 nextsav) {
6918 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6919 KEY_FREESAV(&sav);
6920 }
6921 }
6922
6923 sah->state = SADB_SASTATE_DEAD;
6924 }
6925
6926 if (m->m_len < sizeof(struct sadb_msg) ||
6927 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6928 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
6929 return key_senderror(so, m, ENOBUFS);
6930 }
6931
6932 if (m->m_next)
6933 m_freem(m->m_next);
6934 m->m_next = NULL;
6935 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6936 newmsg = mtod(m, struct sadb_msg *);
6937 newmsg->sadb_msg_errno = 0;
6938 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6939
6940 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6941 }
6942
6943
6944 static struct mbuf *
6945 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6946 {
6947 struct secashead *sah;
6948 struct secasvar *sav;
6949 u_int16_t proto;
6950 u_int8_t satype;
6951 u_int8_t state;
6952 int cnt;
6953 struct mbuf *m, *n, *prev;
6954
6955 *lenp = 0;
6956
6957 /* map satype to proto */
6958 if ((proto = key_satype2proto(req_satype)) == 0) {
6959 *errorp = EINVAL;
6960 return (NULL);
6961 }
6962
6963 /* count sav entries to be sent to userland. */
6964 cnt = 0;
6965 LIST_FOREACH(sah, &sahtree, chain) {
6966 if (req_satype != SADB_SATYPE_UNSPEC &&
6967 proto != sah->saidx.proto)
6968 continue;
6969
6970 SASTATE_ANY_FOREACH(state) {
6971 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6972 cnt++;
6973 }
6974 }
6975 }
6976
6977 if (cnt == 0) {
6978 *errorp = ENOENT;
6979 return (NULL);
6980 }
6981
6982 /* send this to the userland, one at a time. */
6983 m = NULL;
6984 prev = m;
6985 LIST_FOREACH(sah, &sahtree, chain) {
6986 if (req_satype != SADB_SATYPE_UNSPEC &&
6987 proto != sah->saidx.proto)
6988 continue;
6989
6990 /* map proto to satype */
6991 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6992 m_freem(m);
6993 *errorp = EINVAL;
6994 return (NULL);
6995 }
6996
6997 SASTATE_ANY_FOREACH(state) {
6998 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6999 n = key_setdumpsa(sav, SADB_DUMP, satype,
7000 --cnt, pid);
7001 if (!n) {
7002 m_freem(m);
7003 *errorp = ENOBUFS;
7004 return (NULL);
7005 }
7006
7007 if (!m)
7008 m = n;
7009 else
7010 prev->m_nextpkt = n;
7011 prev = n;
7012 }
7013 }
7014 }
7015
7016 if (!m) {
7017 *errorp = EINVAL;
7018 return (NULL);
7019 }
7020
7021 if ((m->m_flags & M_PKTHDR) != 0) {
7022 m->m_pkthdr.len = 0;
7023 for (n = m; n; n = n->m_next)
7024 m->m_pkthdr.len += n->m_len;
7025 }
7026
7027 *errorp = 0;
7028 return (m);
7029 }
7030
7031 /*
7032 * SADB_DUMP processing
7033 * dump all entries including status of DEAD in SAD.
7034 * receive
7035 * <base>
7036 * from the ikmpd, and dump all secasvar leaves
7037 * and send,
7038 * <base> .....
7039 * to the ikmpd.
7040 *
7041 * m will always be freed.
7042 */
7043 static int
7044 key_dump(struct socket *so, struct mbuf *m0,
7045 const struct sadb_msghdr *mhp)
7046 {
7047 u_int16_t proto;
7048 u_int8_t satype;
7049 struct mbuf *n;
7050 int s;
7051 int error, len, ok;
7052
7053 KASSERT(so != NULL);
7054 KASSERT(m0 != NULL);
7055 KASSERT(mhp != NULL);
7056 KASSERT(mhp->msg != NULL);
7057
7058 /* map satype to proto */
7059 satype = mhp->msg->sadb_msg_satype;
7060 if ((proto = key_satype2proto(satype)) == 0) {
7061 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7062 return key_senderror(so, m0, EINVAL);
7063 }
7064
7065 /*
7066 * If the requestor has insufficient socket-buffer space
7067 * for the entire chain, nobody gets any response to the DUMP.
7068 * XXX For now, only the requestor ever gets anything.
7069 * Moreover, if the requestor has any space at all, they receive
7070 * the entire chain, otherwise the request is refused with ENOBUFS.
7071 */
7072 if (sbspace(&so->so_rcv) <= 0) {
7073 return key_senderror(so, m0, ENOBUFS);
7074 }
7075
7076 s = splsoftnet();
7077 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7078 splx(s);
7079
7080 if (n == NULL) {
7081 return key_senderror(so, m0, ENOENT);
7082 }
7083 {
7084 uint64_t *ps = PFKEY_STAT_GETREF();
7085 ps[PFKEY_STAT_IN_TOTAL]++;
7086 ps[PFKEY_STAT_IN_BYTES] += len;
7087 PFKEY_STAT_PUTREF();
7088 }
7089
7090 /*
7091 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7092 * The requestor receives either the entire chain, or an
7093 * error message with ENOBUFS.
7094 *
7095 * sbappendaddrchain() takes the chain of entries, one
7096 * packet-record per SPD entry, prepends the key_src sockaddr
7097 * to each packet-record, links the sockaddr mbufs into a new
7098 * list of records, then appends the entire resulting
7099 * list to the requesting socket.
7100 */
7101 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7102 n, SB_PRIO_ONESHOT_OVERFLOW);
7103
7104 if (!ok) {
7105 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7106 m_freem(n);
7107 return key_senderror(so, m0, ENOBUFS);
7108 }
7109
7110 m_freem(m0);
7111 return 0;
7112 }
7113
7114 /*
7115 * SADB_X_PROMISC processing
7116 *
7117 * m will always be freed.
7118 */
7119 static int
7120 key_promisc(struct socket *so, struct mbuf *m,
7121 const struct sadb_msghdr *mhp)
7122 {
7123 int olen;
7124
7125 KASSERT(so != NULL);
7126 KASSERT(m != NULL);
7127 KASSERT(mhp != NULL);
7128 KASSERT(mhp->msg != NULL);
7129
7130 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7131
7132 if (olen < sizeof(struct sadb_msg)) {
7133 #if 1
7134 return key_senderror(so, m, EINVAL);
7135 #else
7136 m_freem(m);
7137 return 0;
7138 #endif
7139 } else if (olen == sizeof(struct sadb_msg)) {
7140 /* enable/disable promisc mode */
7141 struct keycb *kp;
7142
7143 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7144 return key_senderror(so, m, EINVAL);
7145 mhp->msg->sadb_msg_errno = 0;
7146 switch (mhp->msg->sadb_msg_satype) {
7147 case 0:
7148 case 1:
7149 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7150 break;
7151 default:
7152 return key_senderror(so, m, EINVAL);
7153 }
7154
7155 /* send the original message back to everyone */
7156 mhp->msg->sadb_msg_errno = 0;
7157 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7158 } else {
7159 /* send packet as is */
7160
7161 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7162
7163 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7164 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7165 }
7166 }
7167
7168 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7169 const struct sadb_msghdr *) = {
7170 NULL, /* SADB_RESERVED */
7171 key_getspi, /* SADB_GETSPI */
7172 key_update, /* SADB_UPDATE */
7173 key_add, /* SADB_ADD */
7174 key_delete, /* SADB_DELETE */
7175 key_get, /* SADB_GET */
7176 key_acquire2, /* SADB_ACQUIRE */
7177 key_register, /* SADB_REGISTER */
7178 NULL, /* SADB_EXPIRE */
7179 key_flush, /* SADB_FLUSH */
7180 key_dump, /* SADB_DUMP */
7181 key_promisc, /* SADB_X_PROMISC */
7182 NULL, /* SADB_X_PCHANGE */
7183 key_spdadd, /* SADB_X_SPDUPDATE */
7184 key_spdadd, /* SADB_X_SPDADD */
7185 key_spddelete, /* SADB_X_SPDDELETE */
7186 key_spdget, /* SADB_X_SPDGET */
7187 NULL, /* SADB_X_SPDACQUIRE */
7188 key_spddump, /* SADB_X_SPDDUMP */
7189 key_spdflush, /* SADB_X_SPDFLUSH */
7190 key_spdadd, /* SADB_X_SPDSETIDX */
7191 NULL, /* SADB_X_SPDEXPIRE */
7192 key_spddelete2, /* SADB_X_SPDDELETE2 */
7193 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7194 };
7195
7196 /*
7197 * parse sadb_msg buffer to process PFKEYv2,
7198 * and create a data to response if needed.
7199 * I think to be dealed with mbuf directly.
7200 * IN:
7201 * msgp : pointer to pointer to a received buffer pulluped.
7202 * This is rewrited to response.
7203 * so : pointer to socket.
7204 * OUT:
7205 * length for buffer to send to user process.
7206 */
7207 int
7208 key_parse(struct mbuf *m, struct socket *so)
7209 {
7210 struct sadb_msg *msg;
7211 struct sadb_msghdr mh;
7212 u_int orglen;
7213 int error;
7214 int target;
7215
7216 KASSERT(m != NULL);
7217 KASSERT(so != NULL);
7218
7219 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7220 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7221 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7222 kdebug_sadb(msg);
7223 }
7224 #endif
7225
7226 if (m->m_len < sizeof(struct sadb_msg)) {
7227 m = m_pullup(m, sizeof(struct sadb_msg));
7228 if (!m)
7229 return ENOBUFS;
7230 }
7231 msg = mtod(m, struct sadb_msg *);
7232 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7233 target = KEY_SENDUP_ONE;
7234
7235 if ((m->m_flags & M_PKTHDR) == 0 ||
7236 m->m_pkthdr.len != orglen) {
7237 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7238 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7239 error = EINVAL;
7240 goto senderror;
7241 }
7242
7243 if (msg->sadb_msg_version != PF_KEY_V2) {
7244 ipseclog((LOG_DEBUG,
7245 "key_parse: PF_KEY version %u is mismatched.\n",
7246 msg->sadb_msg_version));
7247 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7248 error = EINVAL;
7249 goto senderror;
7250 }
7251
7252 if (msg->sadb_msg_type > SADB_MAX) {
7253 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7254 msg->sadb_msg_type));
7255 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7256 error = EINVAL;
7257 goto senderror;
7258 }
7259
7260 /* for old-fashioned code - should be nuked */
7261 if (m->m_pkthdr.len > MCLBYTES) {
7262 m_freem(m);
7263 return ENOBUFS;
7264 }
7265 if (m->m_next) {
7266 struct mbuf *n;
7267
7268 MGETHDR(n, M_DONTWAIT, MT_DATA);
7269 if (n && m->m_pkthdr.len > MHLEN) {
7270 MCLGET(n, M_DONTWAIT);
7271 if ((n->m_flags & M_EXT) == 0) {
7272 m_free(n);
7273 n = NULL;
7274 }
7275 }
7276 if (!n) {
7277 m_freem(m);
7278 return ENOBUFS;
7279 }
7280 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7281 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7282 n->m_next = NULL;
7283 m_freem(m);
7284 m = n;
7285 }
7286
7287 /* align the mbuf chain so that extensions are in contiguous region. */
7288 error = key_align(m, &mh);
7289 if (error)
7290 return error;
7291
7292 if (m->m_next) { /*XXX*/
7293 m_freem(m);
7294 return ENOBUFS;
7295 }
7296
7297 msg = mh.msg;
7298
7299 /* check SA type */
7300 switch (msg->sadb_msg_satype) {
7301 case SADB_SATYPE_UNSPEC:
7302 switch (msg->sadb_msg_type) {
7303 case SADB_GETSPI:
7304 case SADB_UPDATE:
7305 case SADB_ADD:
7306 case SADB_DELETE:
7307 case SADB_GET:
7308 case SADB_ACQUIRE:
7309 case SADB_EXPIRE:
7310 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7311 "when msg type=%u.\n", msg->sadb_msg_type));
7312 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7313 error = EINVAL;
7314 goto senderror;
7315 }
7316 break;
7317 case SADB_SATYPE_AH:
7318 case SADB_SATYPE_ESP:
7319 case SADB_X_SATYPE_IPCOMP:
7320 case SADB_X_SATYPE_TCPSIGNATURE:
7321 switch (msg->sadb_msg_type) {
7322 case SADB_X_SPDADD:
7323 case SADB_X_SPDDELETE:
7324 case SADB_X_SPDGET:
7325 case SADB_X_SPDDUMP:
7326 case SADB_X_SPDFLUSH:
7327 case SADB_X_SPDSETIDX:
7328 case SADB_X_SPDUPDATE:
7329 case SADB_X_SPDDELETE2:
7330 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7331 msg->sadb_msg_type));
7332 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7333 error = EINVAL;
7334 goto senderror;
7335 }
7336 break;
7337 case SADB_SATYPE_RSVP:
7338 case SADB_SATYPE_OSPFV2:
7339 case SADB_SATYPE_RIPV2:
7340 case SADB_SATYPE_MIP:
7341 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7342 msg->sadb_msg_satype));
7343 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7344 error = EOPNOTSUPP;
7345 goto senderror;
7346 case 1: /* XXX: What does it do? */
7347 if (msg->sadb_msg_type == SADB_X_PROMISC)
7348 break;
7349 /*FALLTHROUGH*/
7350 default:
7351 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7352 msg->sadb_msg_satype));
7353 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7354 error = EINVAL;
7355 goto senderror;
7356 }
7357
7358 /* check field of upper layer protocol and address family */
7359 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7360 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7361 struct sadb_address *src0, *dst0;
7362 u_int plen;
7363
7364 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7365 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7366
7367 /* check upper layer protocol */
7368 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7369 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7370 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7371 error = EINVAL;
7372 goto senderror;
7373 }
7374
7375 /* check family */
7376 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7377 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7378 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7379 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7380 error = EINVAL;
7381 goto senderror;
7382 }
7383 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7384 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7385 ipseclog((LOG_DEBUG,
7386 "key_parse: address struct size mismatched.\n"));
7387 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7388 error = EINVAL;
7389 goto senderror;
7390 }
7391
7392 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7393 case AF_INET:
7394 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7395 sizeof(struct sockaddr_in)) {
7396 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7397 error = EINVAL;
7398 goto senderror;
7399 }
7400 break;
7401 case AF_INET6:
7402 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7403 sizeof(struct sockaddr_in6)) {
7404 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7405 error = EINVAL;
7406 goto senderror;
7407 }
7408 break;
7409 default:
7410 ipseclog((LOG_DEBUG,
7411 "key_parse: unsupported address family.\n"));
7412 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7413 error = EAFNOSUPPORT;
7414 goto senderror;
7415 }
7416
7417 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7418 case AF_INET:
7419 plen = sizeof(struct in_addr) << 3;
7420 break;
7421 case AF_INET6:
7422 plen = sizeof(struct in6_addr) << 3;
7423 break;
7424 default:
7425 plen = 0; /*fool gcc*/
7426 break;
7427 }
7428
7429 /* check max prefix length */
7430 if (src0->sadb_address_prefixlen > plen ||
7431 dst0->sadb_address_prefixlen > plen) {
7432 ipseclog((LOG_DEBUG,
7433 "key_parse: illegal prefixlen.\n"));
7434 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7435 error = EINVAL;
7436 goto senderror;
7437 }
7438
7439 /*
7440 * prefixlen == 0 is valid because there can be a case when
7441 * all addresses are matched.
7442 */
7443 }
7444
7445 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7446 key_typesw[msg->sadb_msg_type] == NULL) {
7447 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7448 error = EINVAL;
7449 goto senderror;
7450 }
7451
7452 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7453
7454 senderror:
7455 msg->sadb_msg_errno = error;
7456 return key_sendup_mbuf(so, m, target);
7457 }
7458
7459 static int
7460 key_senderror(struct socket *so, struct mbuf *m, int code)
7461 {
7462 struct sadb_msg *msg;
7463
7464 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7465
7466 msg = mtod(m, struct sadb_msg *);
7467 msg->sadb_msg_errno = code;
7468 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7469 }
7470
7471 /*
7472 * set the pointer to each header into message buffer.
7473 * m will be freed on error.
7474 * XXX larger-than-MCLBYTES extension?
7475 */
7476 static int
7477 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7478 {
7479 struct mbuf *n;
7480 struct sadb_ext *ext;
7481 size_t off, end;
7482 int extlen;
7483 int toff;
7484
7485 KASSERT(m != NULL);
7486 KASSERT(mhp != NULL);
7487 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7488
7489 /* initialize */
7490 memset(mhp, 0, sizeof(*mhp));
7491
7492 mhp->msg = mtod(m, struct sadb_msg *);
7493 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7494
7495 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7496 extlen = end; /*just in case extlen is not updated*/
7497 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7498 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7499 if (!n) {
7500 /* m is already freed */
7501 return ENOBUFS;
7502 }
7503 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7504
7505 /* set pointer */
7506 switch (ext->sadb_ext_type) {
7507 case SADB_EXT_SA:
7508 case SADB_EXT_ADDRESS_SRC:
7509 case SADB_EXT_ADDRESS_DST:
7510 case SADB_EXT_ADDRESS_PROXY:
7511 case SADB_EXT_LIFETIME_CURRENT:
7512 case SADB_EXT_LIFETIME_HARD:
7513 case SADB_EXT_LIFETIME_SOFT:
7514 case SADB_EXT_KEY_AUTH:
7515 case SADB_EXT_KEY_ENCRYPT:
7516 case SADB_EXT_IDENTITY_SRC:
7517 case SADB_EXT_IDENTITY_DST:
7518 case SADB_EXT_SENSITIVITY:
7519 case SADB_EXT_PROPOSAL:
7520 case SADB_EXT_SUPPORTED_AUTH:
7521 case SADB_EXT_SUPPORTED_ENCRYPT:
7522 case SADB_EXT_SPIRANGE:
7523 case SADB_X_EXT_POLICY:
7524 case SADB_X_EXT_SA2:
7525 case SADB_X_EXT_NAT_T_TYPE:
7526 case SADB_X_EXT_NAT_T_SPORT:
7527 case SADB_X_EXT_NAT_T_DPORT:
7528 case SADB_X_EXT_NAT_T_OAI:
7529 case SADB_X_EXT_NAT_T_OAR:
7530 case SADB_X_EXT_NAT_T_FRAG:
7531 /* duplicate check */
7532 /*
7533 * XXX Are there duplication payloads of either
7534 * KEY_AUTH or KEY_ENCRYPT ?
7535 */
7536 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7537 ipseclog((LOG_DEBUG,
7538 "key_align: duplicate ext_type %u "
7539 "is passed.\n", ext->sadb_ext_type));
7540 m_freem(m);
7541 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7542 return EINVAL;
7543 }
7544 break;
7545 default:
7546 ipseclog((LOG_DEBUG,
7547 "key_align: invalid ext_type %u is passed.\n",
7548 ext->sadb_ext_type));
7549 m_freem(m);
7550 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7551 return EINVAL;
7552 }
7553
7554 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7555
7556 if (key_validate_ext(ext, extlen)) {
7557 m_freem(m);
7558 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7559 return EINVAL;
7560 }
7561
7562 n = m_pulldown(m, off, extlen, &toff);
7563 if (!n) {
7564 /* m is already freed */
7565 return ENOBUFS;
7566 }
7567 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7568
7569 mhp->ext[ext->sadb_ext_type] = ext;
7570 mhp->extoff[ext->sadb_ext_type] = off;
7571 mhp->extlen[ext->sadb_ext_type] = extlen;
7572 }
7573
7574 if (off != end) {
7575 m_freem(m);
7576 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7577 return EINVAL;
7578 }
7579
7580 return 0;
7581 }
7582
7583 static int
7584 key_validate_ext(const struct sadb_ext *ext, int len)
7585 {
7586 const struct sockaddr *sa;
7587 enum { NONE, ADDR } checktype = NONE;
7588 int baselen = 0;
7589 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7590
7591 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7592 return EINVAL;
7593
7594 /* if it does not match minimum/maximum length, bail */
7595 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7596 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7597 return EINVAL;
7598 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7599 return EINVAL;
7600 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7601 return EINVAL;
7602
7603 /* more checks based on sadb_ext_type XXX need more */
7604 switch (ext->sadb_ext_type) {
7605 case SADB_EXT_ADDRESS_SRC:
7606 case SADB_EXT_ADDRESS_DST:
7607 case SADB_EXT_ADDRESS_PROXY:
7608 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7609 checktype = ADDR;
7610 break;
7611 case SADB_EXT_IDENTITY_SRC:
7612 case SADB_EXT_IDENTITY_DST:
7613 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7614 SADB_X_IDENTTYPE_ADDR) {
7615 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7616 checktype = ADDR;
7617 } else
7618 checktype = NONE;
7619 break;
7620 default:
7621 checktype = NONE;
7622 break;
7623 }
7624
7625 switch (checktype) {
7626 case NONE:
7627 break;
7628 case ADDR:
7629 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7630 if (len < baselen + sal)
7631 return EINVAL;
7632 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7633 return EINVAL;
7634 break;
7635 }
7636
7637 return 0;
7638 }
7639
7640 static int
7641 key_do_init(void)
7642 {
7643 int i, error;
7644
7645 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7646
7647 callout_init(&key_timehandler_ch, 0);
7648 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7649 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7650 if (error != 0)
7651 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7652
7653 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7654 LIST_INIT(&sptree[i]);
7655 }
7656
7657 LIST_INIT(&sahtree);
7658
7659 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7660 LIST_INIT(®tree[i]);
7661 }
7662
7663 #ifndef IPSEC_NONBLOCK_ACQUIRE
7664 LIST_INIT(&acqtree);
7665 #endif
7666 LIST_INIT(&spacqtree);
7667
7668 /* system default */
7669 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7670 ip4_def_policy.refcnt++; /*never reclaim this*/
7671
7672 #ifdef INET6
7673 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7674 ip6_def_policy.refcnt++; /*never reclaim this*/
7675 #endif
7676
7677 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7678
7679 /* initialize key statistics */
7680 keystat.getspi_count = 1;
7681
7682 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7683
7684 return (0);
7685 }
7686
7687 void
7688 key_init(void)
7689 {
7690 static ONCE_DECL(key_init_once);
7691
7692 sysctl_net_keyv2_setup(NULL);
7693 sysctl_net_key_compat_setup(NULL);
7694
7695 RUN_ONCE(&key_init_once, key_do_init);
7696 }
7697
7698 /*
7699 * XXX: maybe This function is called after INBOUND IPsec processing.
7700 *
7701 * Special check for tunnel-mode packets.
7702 * We must make some checks for consistency between inner and outer IP header.
7703 *
7704 * xxx more checks to be provided
7705 */
7706 int
7707 key_checktunnelsanity(
7708 struct secasvar *sav,
7709 u_int family,
7710 void *src,
7711 void *dst
7712 )
7713 {
7714
7715 KASSERT(sav->sah != NULL);
7716
7717 /* XXX: check inner IP header */
7718
7719 return 1;
7720 }
7721
7722 #if 0
7723 #define hostnamelen strlen(hostname)
7724
7725 /*
7726 * Get FQDN for the host.
7727 * If the administrator configured hostname (by hostname(1)) without
7728 * domain name, returns nothing.
7729 */
7730 static const char *
7731 key_getfqdn(void)
7732 {
7733 int i;
7734 int hasdot;
7735 static char fqdn[MAXHOSTNAMELEN + 1];
7736
7737 if (!hostnamelen)
7738 return NULL;
7739
7740 /* check if it comes with domain name. */
7741 hasdot = 0;
7742 for (i = 0; i < hostnamelen; i++) {
7743 if (hostname[i] == '.')
7744 hasdot++;
7745 }
7746 if (!hasdot)
7747 return NULL;
7748
7749 /* NOTE: hostname may not be NUL-terminated. */
7750 memset(fqdn, 0, sizeof(fqdn));
7751 memcpy(fqdn, hostname, hostnamelen);
7752 fqdn[hostnamelen] = '\0';
7753 return fqdn;
7754 }
7755
7756 /*
7757 * get username@FQDN for the host/user.
7758 */
7759 static const char *
7760 key_getuserfqdn(void)
7761 {
7762 const char *host;
7763 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7764 struct proc *p = curproc;
7765 char *q;
7766
7767 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7768 return NULL;
7769 if (!(host = key_getfqdn()))
7770 return NULL;
7771
7772 /* NOTE: s_login may not be-NUL terminated. */
7773 memset(userfqdn, 0, sizeof(userfqdn));
7774 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7775 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7776 q = userfqdn + strlen(userfqdn);
7777 *q++ = '@';
7778 memcpy(q, host, strlen(host));
7779 q += strlen(host);
7780 *q++ = '\0';
7781
7782 return userfqdn;
7783 }
7784 #endif
7785
7786 /* record data transfer on SA, and update timestamps */
7787 void
7788 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7789 {
7790
7791 KASSERT(sav != NULL);
7792 KASSERT(m != NULL);
7793 if (!sav->lft_c)
7794 return;
7795
7796 /*
7797 * XXX Currently, there is a difference of bytes size
7798 * between inbound and outbound processing.
7799 */
7800 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7801 /* to check bytes lifetime is done in key_timehandler(). */
7802
7803 /*
7804 * We use the number of packets as the unit of
7805 * sadb_lifetime_allocations. We increment the variable
7806 * whenever {esp,ah}_{in,out}put is called.
7807 */
7808 sav->lft_c->sadb_lifetime_allocations++;
7809 /* XXX check for expires? */
7810
7811 /*
7812 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7813 * in seconds. HARD and SOFT lifetime are measured by the time
7814 * difference (again in seconds) from sadb_lifetime_usetime.
7815 *
7816 * usetime
7817 * v expire expire
7818 * -----+-----+--------+---> t
7819 * <--------------> HARD
7820 * <-----> SOFT
7821 */
7822 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7823 /* XXX check for expires? */
7824
7825 return;
7826 }
7827
7828 /* dumb version */
7829 void
7830 key_sa_routechange(struct sockaddr *dst)
7831 {
7832 struct secashead *sah;
7833 struct route *ro;
7834 const struct sockaddr *sa;
7835
7836 LIST_FOREACH(sah, &sahtree, chain) {
7837 ro = &sah->sa_route;
7838 sa = rtcache_getdst(ro);
7839 if (sa != NULL && dst->sa_len == sa->sa_len &&
7840 memcmp(dst, sa, dst->sa_len) == 0)
7841 rtcache_free(ro);
7842 }
7843
7844 return;
7845 }
7846
7847 static void
7848 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7849 {
7850
7851 KASSERT(sav != NULL);
7852
7853 if (sav->state == state)
7854 return;
7855
7856 if (__LIST_CHAINED(sav))
7857 LIST_REMOVE(sav, chain);
7858
7859 sav->state = state;
7860 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7861 }
7862
7863 /* XXX too much? */
7864 static struct mbuf *
7865 key_alloc_mbuf(int l)
7866 {
7867 struct mbuf *m = NULL, *n;
7868 int len, t;
7869
7870 len = l;
7871 while (len > 0) {
7872 MGET(n, M_DONTWAIT, MT_DATA);
7873 if (n && len > MLEN)
7874 MCLGET(n, M_DONTWAIT);
7875 if (!n) {
7876 m_freem(m);
7877 return NULL;
7878 }
7879
7880 n->m_next = NULL;
7881 n->m_len = 0;
7882 n->m_len = M_TRAILINGSPACE(n);
7883 /* use the bottom of mbuf, hoping we can prepend afterwards */
7884 if (n->m_len > len) {
7885 t = (n->m_len - len) & ~(sizeof(long) - 1);
7886 n->m_data += t;
7887 n->m_len = len;
7888 }
7889
7890 len -= n->m_len;
7891
7892 if (m)
7893 m_cat(m, n);
7894 else
7895 m = n;
7896 }
7897
7898 return m;
7899 }
7900
7901 static struct mbuf *
7902 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7903 {
7904 struct secashead *sah;
7905 struct secasvar *sav;
7906 u_int16_t proto;
7907 u_int8_t satype;
7908 u_int8_t state;
7909 int cnt;
7910 struct mbuf *m, *n;
7911
7912 /* map satype to proto */
7913 if ((proto = key_satype2proto(req_satype)) == 0) {
7914 *errorp = EINVAL;
7915 return (NULL);
7916 }
7917
7918 /* count sav entries to be sent to the userland. */
7919 cnt = 0;
7920 LIST_FOREACH(sah, &sahtree, chain) {
7921 if (req_satype != SADB_SATYPE_UNSPEC &&
7922 proto != sah->saidx.proto)
7923 continue;
7924
7925 SASTATE_ANY_FOREACH(state) {
7926 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7927 cnt++;
7928 }
7929 }
7930 }
7931
7932 if (cnt == 0) {
7933 *errorp = ENOENT;
7934 return (NULL);
7935 }
7936
7937 /* send this to the userland, one at a time. */
7938 m = NULL;
7939 LIST_FOREACH(sah, &sahtree, chain) {
7940 if (req_satype != SADB_SATYPE_UNSPEC &&
7941 proto != sah->saidx.proto)
7942 continue;
7943
7944 /* map proto to satype */
7945 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7946 m_freem(m);
7947 *errorp = EINVAL;
7948 return (NULL);
7949 }
7950
7951 SASTATE_ANY_FOREACH(state) {
7952 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7953 n = key_setdumpsa(sav, SADB_DUMP, satype,
7954 --cnt, pid);
7955 if (!n) {
7956 m_freem(m);
7957 *errorp = ENOBUFS;
7958 return (NULL);
7959 }
7960
7961 if (!m)
7962 m = n;
7963 else
7964 m_cat(m, n);
7965 }
7966 }
7967 }
7968
7969 if (!m) {
7970 *errorp = EINVAL;
7971 return (NULL);
7972 }
7973
7974 if ((m->m_flags & M_PKTHDR) != 0) {
7975 m->m_pkthdr.len = 0;
7976 for (n = m; n; n = n->m_next)
7977 m->m_pkthdr.len += n->m_len;
7978 }
7979
7980 *errorp = 0;
7981 return (m);
7982 }
7983
7984 static struct mbuf *
7985 key_setspddump(int *errorp, pid_t pid)
7986 {
7987 struct secpolicy *sp;
7988 int cnt;
7989 u_int dir;
7990 struct mbuf *m, *n;
7991
7992 /* search SPD entry and get buffer size. */
7993 cnt = 0;
7994 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7995 LIST_FOREACH(sp, &sptree[dir], chain) {
7996 cnt++;
7997 }
7998 }
7999
8000 if (cnt == 0) {
8001 *errorp = ENOENT;
8002 return (NULL);
8003 }
8004
8005 m = NULL;
8006 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8007 LIST_FOREACH(sp, &sptree[dir], chain) {
8008 --cnt;
8009 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8010
8011 if (!n) {
8012 *errorp = ENOBUFS;
8013 m_freem(m);
8014 return (NULL);
8015 }
8016 if (!m)
8017 m = n;
8018 else {
8019 m->m_pkthdr.len += n->m_pkthdr.len;
8020 m_cat(m, n);
8021 }
8022 }
8023 }
8024
8025 *errorp = 0;
8026 return (m);
8027 }
8028
8029 int
8030 key_get_used(void) {
8031 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8032 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8033 }
8034
8035 void
8036 key_update_used(void)
8037 {
8038 switch (ipsec_enabled) {
8039 default:
8040 case 0:
8041 #ifdef notyet
8042 /* XXX: racy */
8043 ipsec_used = 0;
8044 #endif
8045 break;
8046 case 1:
8047 #ifndef notyet
8048 /* XXX: racy */
8049 if (!ipsec_used)
8050 #endif
8051 ipsec_used = key_get_used();
8052 break;
8053 case 2:
8054 ipsec_used = 1;
8055 break;
8056 }
8057 }
8058
8059 static int
8060 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8061 {
8062 struct mbuf *m, *n;
8063 int err2 = 0;
8064 char *p, *ep;
8065 size_t len;
8066 int s, error;
8067
8068 if (newp)
8069 return (EPERM);
8070 if (namelen != 1)
8071 return (EINVAL);
8072
8073 s = splsoftnet();
8074 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8075 splx(s);
8076 if (!m)
8077 return (error);
8078 if (!oldp)
8079 *oldlenp = m->m_pkthdr.len;
8080 else {
8081 p = oldp;
8082 if (*oldlenp < m->m_pkthdr.len) {
8083 err2 = ENOMEM;
8084 ep = p + *oldlenp;
8085 } else {
8086 *oldlenp = m->m_pkthdr.len;
8087 ep = p + m->m_pkthdr.len;
8088 }
8089 for (n = m; n; n = n->m_next) {
8090 len = (ep - p < n->m_len) ?
8091 ep - p : n->m_len;
8092 error = copyout(mtod(n, const void *), p, len);
8093 p += len;
8094 if (error)
8095 break;
8096 }
8097 if (error == 0)
8098 error = err2;
8099 }
8100 m_freem(m);
8101
8102 return (error);
8103 }
8104
8105 static int
8106 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8107 {
8108 struct mbuf *m, *n;
8109 int err2 = 0;
8110 char *p, *ep;
8111 size_t len;
8112 int s, error;
8113
8114 if (newp)
8115 return (EPERM);
8116 if (namelen != 0)
8117 return (EINVAL);
8118
8119 s = splsoftnet();
8120 m = key_setspddump(&error, l->l_proc->p_pid);
8121 splx(s);
8122 if (!m)
8123 return (error);
8124 if (!oldp)
8125 *oldlenp = m->m_pkthdr.len;
8126 else {
8127 p = oldp;
8128 if (*oldlenp < m->m_pkthdr.len) {
8129 err2 = ENOMEM;
8130 ep = p + *oldlenp;
8131 } else {
8132 *oldlenp = m->m_pkthdr.len;
8133 ep = p + m->m_pkthdr.len;
8134 }
8135 for (n = m; n; n = n->m_next) {
8136 len = (ep - p < n->m_len) ?
8137 ep - p : n->m_len;
8138 error = copyout(mtod(n, const void *), p, len);
8139 p += len;
8140 if (error)
8141 break;
8142 }
8143 if (error == 0)
8144 error = err2;
8145 }
8146 m_freem(m);
8147
8148 return (error);
8149 }
8150
8151 /*
8152 * Create sysctl tree for native IPSEC key knobs, originally
8153 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8154 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8155 * and in any case the part of our sysctl namespace used for dumping the
8156 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8157 * namespace, for API reasons.
8158 *
8159 * Pending a consensus on the right way to fix this, add a level of
8160 * indirection in how we number the `native' IPSEC key nodes;
8161 * and (as requested by Andrew Brown) move registration of the
8162 * KAME-compatible names to a separate function.
8163 */
8164 #if 0
8165 # define IPSEC_PFKEY PF_KEY_V2
8166 # define IPSEC_PFKEY_NAME "keyv2"
8167 #else
8168 # define IPSEC_PFKEY PF_KEY
8169 # define IPSEC_PFKEY_NAME "key"
8170 #endif
8171
8172 static int
8173 sysctl_net_key_stats(SYSCTLFN_ARGS)
8174 {
8175
8176 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8177 }
8178
8179 static void
8180 sysctl_net_keyv2_setup(struct sysctllog **clog)
8181 {
8182
8183 sysctl_createv(clog, 0, NULL, NULL,
8184 CTLFLAG_PERMANENT,
8185 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8186 NULL, 0, NULL, 0,
8187 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8188
8189 sysctl_createv(clog, 0, NULL, NULL,
8190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8191 CTLTYPE_INT, "debug", NULL,
8192 NULL, 0, &key_debug_level, 0,
8193 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8194 sysctl_createv(clog, 0, NULL, NULL,
8195 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8196 CTLTYPE_INT, "spi_try", NULL,
8197 NULL, 0, &key_spi_trycnt, 0,
8198 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8199 sysctl_createv(clog, 0, NULL, NULL,
8200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8201 CTLTYPE_INT, "spi_min_value", NULL,
8202 NULL, 0, &key_spi_minval, 0,
8203 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8204 sysctl_createv(clog, 0, NULL, NULL,
8205 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8206 CTLTYPE_INT, "spi_max_value", NULL,
8207 NULL, 0, &key_spi_maxval, 0,
8208 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8209 sysctl_createv(clog, 0, NULL, NULL,
8210 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8211 CTLTYPE_INT, "random_int", NULL,
8212 NULL, 0, &key_int_random, 0,
8213 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8214 sysctl_createv(clog, 0, NULL, NULL,
8215 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8216 CTLTYPE_INT, "larval_lifetime", NULL,
8217 NULL, 0, &key_larval_lifetime, 0,
8218 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8219 sysctl_createv(clog, 0, NULL, NULL,
8220 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8221 CTLTYPE_INT, "blockacq_count", NULL,
8222 NULL, 0, &key_blockacq_count, 0,
8223 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8224 sysctl_createv(clog, 0, NULL, NULL,
8225 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8226 CTLTYPE_INT, "blockacq_lifetime", NULL,
8227 NULL, 0, &key_blockacq_lifetime, 0,
8228 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8229 sysctl_createv(clog, 0, NULL, NULL,
8230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8231 CTLTYPE_INT, "esp_keymin", NULL,
8232 NULL, 0, &ipsec_esp_keymin, 0,
8233 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8234 sysctl_createv(clog, 0, NULL, NULL,
8235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8236 CTLTYPE_INT, "prefered_oldsa", NULL,
8237 NULL, 0, &key_prefered_oldsa, 0,
8238 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8239 sysctl_createv(clog, 0, NULL, NULL,
8240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8241 CTLTYPE_INT, "esp_auth", NULL,
8242 NULL, 0, &ipsec_esp_auth, 0,
8243 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8244 sysctl_createv(clog, 0, NULL, NULL,
8245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8246 CTLTYPE_INT, "ah_keymin", NULL,
8247 NULL, 0, &ipsec_ah_keymin, 0,
8248 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8249 sysctl_createv(clog, 0, NULL, NULL,
8250 CTLFLAG_PERMANENT,
8251 CTLTYPE_STRUCT, "stats",
8252 SYSCTL_DESCR("PF_KEY statistics"),
8253 sysctl_net_key_stats, 0, NULL, 0,
8254 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8255 }
8256
8257 /*
8258 * Register sysctl names used by setkey(8). For historical reasons,
8259 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8260 * for both IPSEC and KAME IPSEC.
8261 */
8262 static void
8263 sysctl_net_key_compat_setup(struct sysctllog **clog)
8264 {
8265
8266 sysctl_createv(clog, 0, NULL, NULL,
8267 CTLFLAG_PERMANENT,
8268 CTLTYPE_NODE, "key", NULL,
8269 NULL, 0, NULL, 0,
8270 CTL_NET, PF_KEY, CTL_EOL);
8271
8272 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8273 sysctl_createv(clog, 0, NULL, NULL,
8274 CTLFLAG_PERMANENT,
8275 CTLTYPE_STRUCT, "dumpsa", NULL,
8276 sysctl_net_key_dumpsa, 0, NULL, 0,
8277 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8278 sysctl_createv(clog, 0, NULL, NULL,
8279 CTLFLAG_PERMANENT,
8280 CTLTYPE_STRUCT, "dumpsp", NULL,
8281 sysctl_net_key_dumpsp, 0, NULL, 0,
8282 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8283 }
8284