key.c revision 1.140 1 /* $NetBSD: key.c,v 1.140 2017/05/23 09:08:45 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.140 2017/05/23 09:08:45 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72 #include <net/raw_cb.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/in_var.h>
78 #ifdef INET
79 #include <netinet/ip_var.h>
80 #endif
81
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #include <netinet6/in6_var.h>
85 #include <netinet6/ip6_var.h>
86 #endif /* INET6 */
87
88 #ifdef INET
89 #include <netinet/in_pcb.h>
90 #endif
91 #ifdef INET6
92 #include <netinet6/in6_pcb.h>
93 #endif /* INET6 */
94
95 #include <net/pfkeyv2.h>
96 #include <netipsec/keydb.h>
97 #include <netipsec/key.h>
98 #include <netipsec/keysock.h>
99 #include <netipsec/key_debug.h>
100
101 #include <netipsec/ipsec.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/ipsec_private.h>
106
107 #include <netipsec/xform.h>
108 #include <netipsec/ipcomp.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 #define PORT_NONE 0
117 #define PORT_LOOSE 1
118 #define PORT_STRICT 2
119
120 percpu_t *pfkeystat_percpu;
121
122 /*
123 * Note on SA reference counting:
124 * - SAs that are not in DEAD state will have (total external reference + 1)
125 * following value in reference count field. they cannot be freed and are
126 * referenced from SA header.
127 * - SAs that are in DEAD state will have (total external reference)
128 * in reference count field. they are ready to be freed. reference from
129 * SA header will be removed in key_delsav(), when the reference count
130 * field hits 0 (= no external reference other than from SA header.
131 */
132
133 u_int32_t key_debug_level = 0;
134 static u_int key_spi_trycnt = 1000;
135 static u_int32_t key_spi_minval = 0x100;
136 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
137 static u_int32_t policy_id = 0;
138 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
139 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
140 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
141 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
142 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
143
144 static u_int32_t acq_seq = 0;
145
146 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
147 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
149 /* registed list */
150 #ifndef IPSEC_NONBLOCK_ACQUIRE
151 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
152 #endif
153 #ifdef notyet
154 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
155 #endif
156
157 /* search order for SAs */
158 /*
159 * This order is important because we must select the oldest SA
160 * for outbound processing. For inbound, This is not important.
161 */
162 static const u_int saorder_state_valid_prefer_old[] = {
163 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
164 };
165 static const u_int saorder_state_valid_prefer_new[] = {
166 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
167 };
168
169 static const u_int saorder_state_alive[] = {
170 /* except DEAD */
171 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
172 };
173 static const u_int saorder_state_any[] = {
174 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
175 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
176 };
177
178 #define SASTATE_ALIVE_FOREACH(s) \
179 for (int _i = 0; \
180 _i < __arraycount(saorder_state_alive) ? \
181 (s) = saorder_state_alive[_i], true : false; \
182 _i++)
183 #define SASTATE_ANY_FOREACH(s) \
184 for (int _i = 0; \
185 _i < __arraycount(saorder_state_any) ? \
186 (s) = saorder_state_any[_i], true : false; \
187 _i++)
188
189 static const int minsize[] = {
190 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
191 sizeof(struct sadb_sa), /* SADB_EXT_SA */
192 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
193 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
194 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
195 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
196 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
197 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
198 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
199 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
200 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
201 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
202 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
203 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
204 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
205 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
206 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
207 0, /* SADB_X_EXT_KMPRIVATE */
208 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
209 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
210 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
211 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
212 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
213 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
214 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
215 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
216 };
217 static const int maxsize[] = {
218 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
219 sizeof(struct sadb_sa), /* SADB_EXT_SA */
220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
221 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
222 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
223 0, /* SADB_EXT_ADDRESS_SRC */
224 0, /* SADB_EXT_ADDRESS_DST */
225 0, /* SADB_EXT_ADDRESS_PROXY */
226 0, /* SADB_EXT_KEY_AUTH */
227 0, /* SADB_EXT_KEY_ENCRYPT */
228 0, /* SADB_EXT_IDENTITY_SRC */
229 0, /* SADB_EXT_IDENTITY_DST */
230 0, /* SADB_EXT_SENSITIVITY */
231 0, /* SADB_EXT_PROPOSAL */
232 0, /* SADB_EXT_SUPPORTED_AUTH */
233 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
234 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
235 0, /* SADB_X_EXT_KMPRIVATE */
236 0, /* SADB_X_EXT_POLICY */
237 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
238 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
239 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
240 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
241 0, /* SADB_X_EXT_NAT_T_OAI */
242 0, /* SADB_X_EXT_NAT_T_OAR */
243 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
244 };
245
246 static int ipsec_esp_keymin = 256;
247 static int ipsec_esp_auth = 0;
248 static int ipsec_ah_keymin = 128;
249
250 #ifdef SYSCTL_DECL
251 SYSCTL_DECL(_net_key);
252 #endif
253
254 #ifdef SYSCTL_INT
255 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
256 &key_debug_level, 0, "");
257
258 /* max count of trial for the decision of spi value */
259 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
260 &key_spi_trycnt, 0, "");
261
262 /* minimum spi value to allocate automatically. */
263 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
264 &key_spi_minval, 0, "");
265
266 /* maximun spi value to allocate automatically. */
267 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
268 &key_spi_maxval, 0, "");
269
270 /* interval to initialize randseed */
271 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
272 &key_int_random, 0, "");
273
274 /* lifetime for larval SA */
275 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
276 &key_larval_lifetime, 0, "");
277
278 /* counter for blocking to send SADB_ACQUIRE to IKEd */
279 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
280 &key_blockacq_count, 0, "");
281
282 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
283 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
284 &key_blockacq_lifetime, 0, "");
285
286 /* ESP auth */
287 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
288 &ipsec_esp_auth, 0, "");
289
290 /* minimum ESP key length */
291 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
292 &ipsec_esp_keymin, 0, "");
293
294 /* minimum AH key length */
295 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
296 &ipsec_ah_keymin, 0, "");
297
298 /* perfered old SA rather than new SA */
299 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
300 &key_prefered_oldsa, 0, "");
301 #endif /* SYSCTL_INT */
302
303 #define __LIST_CHAINED(elm) \
304 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
305 #define LIST_INSERT_TAIL(head, elm, type, field) \
306 do {\
307 struct type *curelm = LIST_FIRST(head); \
308 if (curelm == NULL) {\
309 LIST_INSERT_HEAD(head, elm, field); \
310 } else { \
311 while (LIST_NEXT(curelm, field)) \
312 curelm = LIST_NEXT(curelm, field);\
313 LIST_INSERT_AFTER(curelm, elm, field);\
314 }\
315 } while (0)
316
317 #define KEY_CHKSASTATE(head, sav) \
318 /* do */ { \
319 if ((head) != (sav)) { \
320 IPSECLOG(LOG_DEBUG, \
321 "state mismatched (TREE=%d SA=%d)\n", \
322 (head), (sav)); \
323 continue; \
324 } \
325 } /* while (0) */
326
327 #define KEY_CHKSPDIR(head, sp) \
328 do { \
329 if ((head) != (sp)) { \
330 IPSECLOG(LOG_DEBUG, \
331 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
332 (head), (sp)); \
333 } \
334 } while (0)
335
336 /*
337 * set parameters into secpolicyindex buffer.
338 * Must allocate secpolicyindex buffer passed to this function.
339 */
340 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
341 do { \
342 memset((idx), 0, sizeof(struct secpolicyindex)); \
343 (idx)->dir = (_dir); \
344 (idx)->prefs = (ps); \
345 (idx)->prefd = (pd); \
346 (idx)->ul_proto = (ulp); \
347 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
348 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
349 } while (0)
350
351 /*
352 * set parameters into secasindex buffer.
353 * Must allocate secasindex buffer before calling this function.
354 */
355 static int
356 key_setsecasidx (int, int, int, const struct sadb_address *,
357 const struct sadb_address *, struct secasindex *);
358
359 /* key statistics */
360 struct _keystat {
361 u_long getspi_count; /* the avarage of count to try to get new SPI */
362 } keystat;
363
364 struct sadb_msghdr {
365 struct sadb_msg *msg;
366 struct sadb_ext *ext[SADB_EXT_MAX + 1];
367 int extoff[SADB_EXT_MAX + 1];
368 int extlen[SADB_EXT_MAX + 1];
369 };
370
371 static struct secasvar *key_allocsa_policy (const struct secasindex *);
372 static void key_freesp_so (struct secpolicy **);
373 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
374 static void key_delsp (struct secpolicy *);
375 static struct secpolicy *key_getsp (const struct secpolicyindex *);
376 static struct secpolicy *key_getspbyid (u_int32_t);
377 static u_int16_t key_newreqid (void);
378 static struct mbuf *key_gather_mbuf (struct mbuf *,
379 const struct sadb_msghdr *, int, int, ...);
380 static int key_spdadd (struct socket *, struct mbuf *,
381 const struct sadb_msghdr *);
382 static u_int32_t key_getnewspid (void);
383 static int key_spddelete (struct socket *, struct mbuf *,
384 const struct sadb_msghdr *);
385 static int key_spddelete2 (struct socket *, struct mbuf *,
386 const struct sadb_msghdr *);
387 static int key_spdget (struct socket *, struct mbuf *,
388 const struct sadb_msghdr *);
389 static int key_spdflush (struct socket *, struct mbuf *,
390 const struct sadb_msghdr *);
391 static int key_spddump (struct socket *, struct mbuf *,
392 const struct sadb_msghdr *);
393 static struct mbuf * key_setspddump (int *errorp, pid_t);
394 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
395 static int key_nat_map (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static struct mbuf *key_setdumpsp (struct secpolicy *,
398 u_int8_t, u_int32_t, pid_t);
399 static u_int key_getspreqmsglen (const struct secpolicy *);
400 static int key_spdexpire (struct secpolicy *);
401 static struct secashead *key_newsah (const struct secasindex *);
402 static void key_delsah (struct secashead *);
403 static struct secasvar *key_newsav (struct mbuf *,
404 const struct sadb_msghdr *, struct secashead *, int *,
405 const char*, int);
406 #define KEY_NEWSAV(m, sadb, sah, e) \
407 key_newsav(m, sadb, sah, e, __func__, __LINE__)
408 static void key_delsav (struct secasvar *);
409 static struct secashead *key_getsah (const struct secasindex *);
410 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
411 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
412 static int key_setsaval (struct secasvar *, struct mbuf *,
413 const struct sadb_msghdr *);
414 static void key_freesaval(struct secasvar *);
415 static int key_mature (struct secasvar *);
416 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
417 u_int8_t, u_int32_t, u_int32_t);
418 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
419 static struct mbuf *key_setsadbxtype (u_int16_t);
420 static struct mbuf *key_setsadbxfrag (u_int16_t);
421 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
422 static int key_checksalen (const union sockaddr_union *);
423 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
424 u_int32_t, pid_t, u_int16_t);
425 static struct mbuf *key_setsadbsa (struct secasvar *);
426 static struct mbuf *key_setsadbaddr (u_int16_t,
427 const struct sockaddr *, u_int8_t, u_int16_t);
428 #if 0
429 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
430 int, u_int64_t);
431 #endif
432 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
433 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
434 u_int32_t);
435 static void *key_newbuf (const void *, u_int);
436 #ifdef INET6
437 static int key_ismyaddr6 (const struct sockaddr_in6 *);
438 #endif
439
440 static void sysctl_net_keyv2_setup(struct sysctllog **);
441 static void sysctl_net_key_compat_setup(struct sysctllog **);
442
443 /* flags for key_cmpsaidx() */
444 #define CMP_HEAD 1 /* protocol, addresses. */
445 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
446 #define CMP_REQID 3 /* additionally HEAD, reaid. */
447 #define CMP_EXACTLY 4 /* all elements. */
448 static int key_cmpsaidx
449 (const struct secasindex *, const struct secasindex *, int);
450
451 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
452 static int key_bbcmp (const void *, const void *, u_int);
453 static u_int16_t key_satype2proto (u_int8_t);
454 static u_int8_t key_proto2satype (u_int16_t);
455
456 static int key_getspi (struct socket *, struct mbuf *,
457 const struct sadb_msghdr *);
458 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
459 const struct secasindex *);
460 static int key_handle_natt_info (struct secasvar *,
461 const struct sadb_msghdr *);
462 static int key_set_natt_ports (union sockaddr_union *,
463 union sockaddr_union *,
464 const struct sadb_msghdr *);
465 static int key_update (struct socket *, struct mbuf *,
466 const struct sadb_msghdr *);
467 #ifdef IPSEC_DOSEQCHECK
468 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
469 #endif
470 static int key_add (struct socket *, struct mbuf *,
471 const struct sadb_msghdr *);
472 static int key_setident (struct secashead *, struct mbuf *,
473 const struct sadb_msghdr *);
474 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
475 const struct sadb_msghdr *);
476 static int key_delete (struct socket *, struct mbuf *,
477 const struct sadb_msghdr *);
478 static int key_get (struct socket *, struct mbuf *,
479 const struct sadb_msghdr *);
480
481 static void key_getcomb_setlifetime (struct sadb_comb *);
482 static struct mbuf *key_getcomb_esp (void);
483 static struct mbuf *key_getcomb_ah (void);
484 static struct mbuf *key_getcomb_ipcomp (void);
485 static struct mbuf *key_getprop (const struct secasindex *);
486
487 static int key_acquire (const struct secasindex *, struct secpolicy *);
488 #ifndef IPSEC_NONBLOCK_ACQUIRE
489 static struct secacq *key_newacq (const struct secasindex *);
490 static struct secacq *key_getacq (const struct secasindex *);
491 static struct secacq *key_getacqbyseq (u_int32_t);
492 #endif
493 #ifdef notyet
494 static struct secspacq *key_newspacq (const struct secpolicyindex *);
495 static struct secspacq *key_getspacq (const struct secpolicyindex *);
496 #endif
497 static int key_acquire2 (struct socket *, struct mbuf *,
498 const struct sadb_msghdr *);
499 static int key_register (struct socket *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static int key_expire (struct secasvar *);
502 static int key_flush (struct socket *, struct mbuf *,
503 const struct sadb_msghdr *);
504 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
505 int *lenp, pid_t pid);
506 static int key_dump (struct socket *, struct mbuf *,
507 const struct sadb_msghdr *);
508 static int key_promisc (struct socket *, struct mbuf *,
509 const struct sadb_msghdr *);
510 static int key_senderror (struct socket *, struct mbuf *, int);
511 static int key_validate_ext (const struct sadb_ext *, int);
512 static int key_align (struct mbuf *, struct sadb_msghdr *);
513 #if 0
514 static const char *key_getfqdn (void);
515 static const char *key_getuserfqdn (void);
516 #endif
517 static void key_sa_chgstate (struct secasvar *, u_int8_t);
518 static inline void key_sp_dead (struct secpolicy *);
519 static void key_sp_unlink (struct secpolicy *sp);
520
521 static struct mbuf *key_alloc_mbuf (int);
522
523 static void key_timehandler(void *);
524 static void key_timehandler_work(struct work *, void *);
525 static struct callout key_timehandler_ch;
526 static struct workqueue *key_timehandler_wq;
527 static struct work key_timehandler_wk;
528
529 #ifdef IPSEC_REF_DEBUG
530 #define REFLOG(label, p, where, tag) \
531 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
532 (where), (tag), (p)->refcnt, (p))
533 #else
534 #define REFLOG(label, p, where, tag) do {} while (0)
535 #endif
536
537 #define SA_ADDREF(p) do { \
538 (p)->refcnt++; \
539 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
540 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
541 } while (0)
542 #define SA_ADDREF2(p, where, tag) do { \
543 (p)->refcnt++; \
544 REFLOG("SA_ADDREF", (p), (where), (tag)); \
545 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
546 } while (0)
547 #define SA_DELREF(p) do { \
548 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
549 (p)->refcnt--; \
550 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
551 } while (0)
552 #define SA_DELREF2(p, where, tag) do { \
553 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
554 (p)->refcnt--; \
555 REFLOG("SA_DELREF", (p), (where), (tag)); \
556 } while (0)
557
558 #define SP_ADDREF(p) do { \
559 (p)->refcnt++; \
560 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
561 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
562 } while (0)
563 #define SP_ADDREF2(p, where, tag) do { \
564 (p)->refcnt++; \
565 REFLOG("SP_ADDREF", (p), (where), (tag)); \
566 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
567 } while (0)
568 #define SP_DELREF(p) do { \
569 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
570 (p)->refcnt--; \
571 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
572 } while (0)
573 #define SP_DELREF2(p, where, tag) do { \
574 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
575 (p)->refcnt--; \
576 REFLOG("SP_DELREF", (p), (where), (tag)); \
577 } while (0)
578
579
580 static inline void
581 key_sp_dead(struct secpolicy *sp)
582 {
583
584 /* mark the SP dead */
585 sp->state = IPSEC_SPSTATE_DEAD;
586 }
587
588 static void
589 key_sp_unlink(struct secpolicy *sp)
590 {
591
592 /* remove from SP index */
593 KASSERT(__LIST_CHAINED(sp));
594 LIST_REMOVE(sp, chain);
595 /* Release refcount held just for being on chain */
596 KEY_FREESP(&sp);
597 }
598
599
600 /*
601 * Return 0 when there are known to be no SP's for the specified
602 * direction. Otherwise return 1. This is used by IPsec code
603 * to optimize performance.
604 */
605 int
606 key_havesp(u_int dir)
607 {
608 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
609 !LIST_EMPTY(&sptree[dir]) : 1);
610 }
611
612 /* %%% IPsec policy management */
613 /*
614 * allocating a SP for OUTBOUND or INBOUND packet.
615 * Must call key_freesp() later.
616 * OUT: NULL: not found
617 * others: found and return the pointer.
618 */
619 struct secpolicy *
620 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
621 {
622 struct secpolicy *sp;
623 int s;
624
625 KASSERT(spidx != NULL);
626 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
627
628 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
629
630 /* get a SP entry */
631 s = splsoftnet(); /*called from softclock()*/
632 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
633 printf("*** objects\n");
634 kdebug_secpolicyindex(spidx);
635 }
636
637 LIST_FOREACH(sp, &sptree[dir], chain) {
638 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
639 printf("*** in SPD\n");
640 kdebug_secpolicyindex(&sp->spidx);
641 }
642
643 if (sp->state == IPSEC_SPSTATE_DEAD)
644 continue;
645 if (key_cmpspidx_withmask(&sp->spidx, spidx))
646 goto found;
647 }
648 sp = NULL;
649 found:
650 if (sp) {
651 /* sanity check */
652 KEY_CHKSPDIR(sp->spidx.dir, dir);
653
654 /* found a SPD entry */
655 sp->lastused = time_uptime;
656 SP_ADDREF2(sp, where, tag);
657 }
658 splx(s);
659
660 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
661 "DP return SP:%p (ID=%u) refcnt %u\n",
662 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
663 return sp;
664 }
665
666 /*
667 * allocating a SP for OUTBOUND or INBOUND packet.
668 * Must call key_freesp() later.
669 * OUT: NULL: not found
670 * others: found and return the pointer.
671 */
672 struct secpolicy *
673 key_allocsp2(u_int32_t spi,
674 const union sockaddr_union *dst,
675 u_int8_t proto,
676 u_int dir,
677 const char* where, int tag)
678 {
679 struct secpolicy *sp;
680 int s;
681
682 KASSERT(dst != NULL);
683 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
684
685 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
686
687 /* get a SP entry */
688 s = splsoftnet(); /*called from softclock()*/
689 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
690 printf("*** objects\n");
691 printf("spi %u proto %u dir %u\n", spi, proto, dir);
692 kdebug_sockaddr(&dst->sa);
693 }
694
695 LIST_FOREACH(sp, &sptree[dir], chain) {
696 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
697 printf("*** in SPD\n");
698 kdebug_secpolicyindex(&sp->spidx);
699 }
700
701 if (sp->state == IPSEC_SPSTATE_DEAD)
702 continue;
703 /* compare simple values, then dst address */
704 if (sp->spidx.ul_proto != proto)
705 continue;
706 /* NB: spi's must exist and match */
707 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
708 continue;
709 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT) == 0)
710 goto found;
711 }
712 sp = NULL;
713 found:
714 if (sp) {
715 /* sanity check */
716 KEY_CHKSPDIR(sp->spidx.dir, dir);
717
718 /* found a SPD entry */
719 sp->lastused = time_uptime;
720 SP_ADDREF2(sp, where, tag);
721 }
722 splx(s);
723
724 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
725 "DP return SP:%p (ID=%u) refcnt %u\n",
726 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
727 return sp;
728 }
729
730 /*
731 * return a policy that matches this particular inbound packet.
732 * XXX slow
733 */
734 struct secpolicy *
735 key_gettunnel(const struct sockaddr *osrc,
736 const struct sockaddr *odst,
737 const struct sockaddr *isrc,
738 const struct sockaddr *idst,
739 const char* where, int tag)
740 {
741 struct secpolicy *sp;
742 const int dir = IPSEC_DIR_INBOUND;
743 int s;
744 struct ipsecrequest *r1, *r2, *p;
745 struct secpolicyindex spidx;
746
747 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
748
749 if (isrc->sa_family != idst->sa_family) {
750 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
751 isrc->sa_family, idst->sa_family);
752 sp = NULL;
753 goto done;
754 }
755
756 s = splsoftnet(); /*called from softclock()*/
757 LIST_FOREACH(sp, &sptree[dir], chain) {
758 if (sp->state == IPSEC_SPSTATE_DEAD)
759 continue;
760
761 r1 = r2 = NULL;
762 for (p = sp->req; p; p = p->next) {
763 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
764 continue;
765
766 r1 = r2;
767 r2 = p;
768
769 if (!r1) {
770 /* here we look at address matches only */
771 spidx = sp->spidx;
772 if (isrc->sa_len > sizeof(spidx.src) ||
773 idst->sa_len > sizeof(spidx.dst))
774 continue;
775 memcpy(&spidx.src, isrc, isrc->sa_len);
776 memcpy(&spidx.dst, idst, idst->sa_len);
777 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
778 continue;
779 } else {
780 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, PORT_NONE) ||
781 key_sockaddrcmp(&r1->saidx.dst.sa, idst, PORT_NONE))
782 continue;
783 }
784
785 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, PORT_NONE) ||
786 key_sockaddrcmp(&r2->saidx.dst.sa, odst, PORT_NONE))
787 continue;
788
789 goto found;
790 }
791 }
792 sp = NULL;
793 found:
794 if (sp) {
795 sp->lastused = time_uptime;
796 SP_ADDREF2(sp, where, tag);
797 }
798 splx(s);
799 done:
800 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
801 "DP return SP:%p (ID=%u) refcnt %u\n",
802 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
803 return sp;
804 }
805
806 /*
807 * allocating an SA entry for an *OUTBOUND* packet.
808 * checking each request entries in SP, and acquire an SA if need.
809 * OUT: 0: there are valid requests.
810 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
811 */
812 int
813 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
814 {
815 u_int level;
816 int error;
817
818 KASSERT(isr != NULL);
819 KASSERT(saidx != NULL);
820 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
821 saidx->mode == IPSEC_MODE_TUNNEL,
822 "unexpected policy %u", saidx->mode);
823
824 /* get current level */
825 level = ipsec_get_reqlevel(isr);
826
827 /*
828 * XXX guard against protocol callbacks from the crypto
829 * thread as they reference ipsecrequest.sav which we
830 * temporarily null out below. Need to rethink how we
831 * handle bundled SA's in the callback thread.
832 */
833 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
834 #if 0
835 /*
836 * We do allocate new SA only if the state of SA in the holder is
837 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
838 */
839 if (isr->sav != NULL) {
840 if (isr->sav->sah == NULL)
841 panic("key_checkrequest: sah is null");
842 if (isr->sav == (struct secasvar *)LIST_FIRST(
843 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
844 KEY_FREESAV(&isr->sav);
845 isr->sav = NULL;
846 }
847 }
848 #else
849 /*
850 * we free any SA stashed in the IPsec request because a different
851 * SA may be involved each time this request is checked, either
852 * because new SAs are being configured, or this request is
853 * associated with an unconnected datagram socket, or this request
854 * is associated with a system default policy.
855 *
856 * The operation may have negative impact to performance. We may
857 * want to check cached SA carefully, rather than picking new SA
858 * every time.
859 */
860 if (isr->sav != NULL) {
861 KEY_FREESAV(&isr->sav);
862 isr->sav = NULL;
863 }
864 #endif
865
866 /*
867 * new SA allocation if no SA found.
868 * key_allocsa_policy should allocate the oldest SA available.
869 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
870 */
871 if (isr->sav == NULL)
872 isr->sav = key_allocsa_policy(saidx);
873
874 /* When there is SA. */
875 if (isr->sav != NULL) {
876 if (isr->sav->state != SADB_SASTATE_MATURE &&
877 isr->sav->state != SADB_SASTATE_DYING)
878 return EINVAL;
879 return 0;
880 }
881
882 /* there is no SA */
883 error = key_acquire(saidx, isr->sp);
884 if (error != 0) {
885 /* XXX What should I do ? */
886 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
887 error);
888 return error;
889 }
890
891 if (level != IPSEC_LEVEL_REQUIRE) {
892 /* XXX sigh, the interface to this routine is botched */
893 KASSERTMSG(isr->sav == NULL, "unexpected SA");
894 return 0;
895 } else {
896 return ENOENT;
897 }
898 }
899
900 /*
901 * allocating a SA for policy entry from SAD.
902 * NOTE: searching SAD of aliving state.
903 * OUT: NULL: not found.
904 * others: found and return the pointer.
905 */
906 static struct secasvar *
907 key_allocsa_policy(const struct secasindex *saidx)
908 {
909 struct secashead *sah;
910 struct secasvar *sav;
911 u_int stateidx, state;
912 const u_int *saorder_state_valid;
913 int arraysize;
914
915 LIST_FOREACH(sah, &sahtree, chain) {
916 if (sah->state == SADB_SASTATE_DEAD)
917 continue;
918 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
919 goto found;
920 }
921
922 return NULL;
923
924 found:
925
926 /*
927 * search a valid state list for outbound packet.
928 * This search order is important.
929 */
930 if (key_prefered_oldsa) {
931 saorder_state_valid = saorder_state_valid_prefer_old;
932 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
933 } else {
934 saorder_state_valid = saorder_state_valid_prefer_new;
935 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
936 }
937
938 /* search valid state */
939 for (stateidx = 0;
940 stateidx < arraysize;
941 stateidx++) {
942
943 state = saorder_state_valid[stateidx];
944
945 sav = key_do_allocsa_policy(sah, state);
946 if (sav != NULL)
947 return sav;
948 }
949
950 return NULL;
951 }
952
953 /*
954 * searching SAD with direction, protocol, mode and state.
955 * called by key_allocsa_policy().
956 * OUT:
957 * NULL : not found
958 * others : found, pointer to a SA.
959 */
960 static struct secasvar *
961 key_do_allocsa_policy(struct secashead *sah, u_int state)
962 {
963 struct secasvar *sav, *candidate, *d;
964
965 /* initilize */
966 candidate = NULL;
967
968 LIST_FOREACH(sav, &sah->savtree[state], chain) {
969 /* sanity check */
970 KEY_CHKSASTATE(sav->state, state);
971
972 /* initialize */
973 if (candidate == NULL) {
974 candidate = sav;
975 continue;
976 }
977
978 /* Which SA is the better ? */
979
980 /* sanity check 2 */
981 KASSERT(candidate->lft_c != NULL);
982 KASSERT(sav->lft_c != NULL);
983
984 /* What the best method is to compare ? */
985 if (key_prefered_oldsa) {
986 if (candidate->lft_c->sadb_lifetime_addtime >
987 sav->lft_c->sadb_lifetime_addtime) {
988 candidate = sav;
989 }
990 continue;
991 /*NOTREACHED*/
992 }
993
994 /* prefered new sa rather than old sa */
995 if (candidate->lft_c->sadb_lifetime_addtime <
996 sav->lft_c->sadb_lifetime_addtime) {
997 d = candidate;
998 candidate = sav;
999 } else
1000 d = sav;
1001
1002 /*
1003 * prepared to delete the SA when there is more
1004 * suitable candidate and the lifetime of the SA is not
1005 * permanent.
1006 */
1007 if (d->lft_c->sadb_lifetime_addtime != 0) {
1008 struct mbuf *m, *result = 0;
1009 uint8_t satype;
1010
1011 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1012
1013 KASSERT(d->refcnt > 0);
1014
1015 satype = key_proto2satype(d->sah->saidx.proto);
1016 if (satype == 0)
1017 goto msgfail;
1018
1019 m = key_setsadbmsg(SADB_DELETE, 0,
1020 satype, 0, 0, d->refcnt - 1);
1021 if (!m)
1022 goto msgfail;
1023 result = m;
1024
1025 /* set sadb_address for saidx's. */
1026 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1027 &d->sah->saidx.src.sa,
1028 d->sah->saidx.src.sa.sa_len << 3,
1029 IPSEC_ULPROTO_ANY);
1030 if (!m)
1031 goto msgfail;
1032 m_cat(result, m);
1033
1034 /* set sadb_address for saidx's. */
1035 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1036 &d->sah->saidx.src.sa,
1037 d->sah->saidx.src.sa.sa_len << 3,
1038 IPSEC_ULPROTO_ANY);
1039 if (!m)
1040 goto msgfail;
1041 m_cat(result, m);
1042
1043 /* create SA extension */
1044 m = key_setsadbsa(d);
1045 if (!m)
1046 goto msgfail;
1047 m_cat(result, m);
1048
1049 if (result->m_len < sizeof(struct sadb_msg)) {
1050 result = m_pullup(result,
1051 sizeof(struct sadb_msg));
1052 if (result == NULL)
1053 goto msgfail;
1054 }
1055
1056 result->m_pkthdr.len = 0;
1057 for (m = result; m; m = m->m_next)
1058 result->m_pkthdr.len += m->m_len;
1059 mtod(result, struct sadb_msg *)->sadb_msg_len =
1060 PFKEY_UNIT64(result->m_pkthdr.len);
1061
1062 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1063 result = 0;
1064 msgfail:
1065 if (result)
1066 m_freem(result);
1067 KEY_FREESAV(&d);
1068 }
1069 }
1070
1071 if (candidate) {
1072 SA_ADDREF(candidate);
1073 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1074 "DP cause refcnt++:%d SA:%p\n",
1075 candidate->refcnt, candidate);
1076 }
1077 return candidate;
1078 }
1079
1080 /*
1081 * allocating a usable SA entry for a *INBOUND* packet.
1082 * Must call key_freesav() later.
1083 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1084 * NULL: not found, or error occurred.
1085 *
1086 * In the comparison, no source address is used--for RFC2401 conformance.
1087 * To quote, from section 4.1:
1088 * A security association is uniquely identified by a triple consisting
1089 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1090 * security protocol (AH or ESP) identifier.
1091 * Note that, however, we do need to keep source address in IPsec SA.
1092 * IKE specification and PF_KEY specification do assume that we
1093 * keep source address in IPsec SA. We see a tricky situation here.
1094 *
1095 * sport and dport are used for NAT-T. network order is always used.
1096 */
1097 struct secasvar *
1098 key_allocsa(
1099 const union sockaddr_union *dst,
1100 u_int proto,
1101 u_int32_t spi,
1102 u_int16_t sport,
1103 u_int16_t dport,
1104 const char* where, int tag)
1105 {
1106 struct secashead *sah;
1107 struct secasvar *sav;
1108 u_int stateidx, state;
1109 const u_int *saorder_state_valid;
1110 int arraysize, chkport;
1111 int s;
1112
1113 int must_check_spi = 1;
1114 int must_check_alg = 0;
1115 u_int16_t cpi = 0;
1116 u_int8_t algo = 0;
1117
1118 if ((sport != 0) && (dport != 0))
1119 chkport = PORT_STRICT;
1120 else
1121 chkport = PORT_NONE;
1122
1123 KASSERT(dst != NULL);
1124
1125 /*
1126 * XXX IPCOMP case
1127 * We use cpi to define spi here. In the case where cpi <=
1128 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1129 * the real spi. In this case, don't check the spi but check the
1130 * algorithm
1131 */
1132
1133 if (proto == IPPROTO_IPCOMP) {
1134 u_int32_t tmp;
1135 tmp = ntohl(spi);
1136 cpi = (u_int16_t) tmp;
1137 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1138 algo = (u_int8_t) cpi;
1139 must_check_spi = 0;
1140 must_check_alg = 1;
1141 }
1142 }
1143 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1144 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1145 where, tag, must_check_spi, must_check_alg);
1146
1147
1148 /*
1149 * searching SAD.
1150 * XXX: to be checked internal IP header somewhere. Also when
1151 * IPsec tunnel packet is received. But ESP tunnel mode is
1152 * encrypted so we can't check internal IP header.
1153 */
1154 s = splsoftnet(); /*called from softclock()*/
1155 if (key_prefered_oldsa) {
1156 saorder_state_valid = saorder_state_valid_prefer_old;
1157 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1158 } else {
1159 saorder_state_valid = saorder_state_valid_prefer_new;
1160 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1161 }
1162 LIST_FOREACH(sah, &sahtree, chain) {
1163 /* search valid state */
1164 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1165 state = saorder_state_valid[stateidx];
1166 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1167 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1168 "try match spi %#x, %#x\n",
1169 ntohl(spi), ntohl(sav->spi));
1170 /* sanity check */
1171 KEY_CHKSASTATE(sav->state, state);
1172 /* do not return entries w/ unusable state */
1173 if (sav->state != SADB_SASTATE_MATURE &&
1174 sav->state != SADB_SASTATE_DYING) {
1175 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1176 "bad state %d\n", sav->state);
1177 continue;
1178 }
1179 if (proto != sav->sah->saidx.proto) {
1180 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1181 "proto fail %d != %d\n",
1182 proto, sav->sah->saidx.proto);
1183 continue;
1184 }
1185 if (must_check_spi && spi != sav->spi) {
1186 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1187 "spi fail %#x != %#x\n",
1188 ntohl(spi), ntohl(sav->spi));
1189 continue;
1190 }
1191 /* XXX only on the ipcomp case */
1192 if (must_check_alg && algo != sav->alg_comp) {
1193 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1194 "algo fail %d != %d\n",
1195 algo, sav->alg_comp);
1196 continue;
1197 }
1198
1199 #if 0 /* don't check src */
1200 /* Fix port in src->sa */
1201
1202 /* check src address */
1203 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE) != 0)
1204 continue;
1205 #endif
1206 /* fix port of dst address XXX*/
1207 key_porttosaddr(__UNCONST(dst), dport);
1208 /* check dst address */
1209 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1210 continue;
1211 SA_ADDREF2(sav, where, tag);
1212 goto done;
1213 }
1214 }
1215 }
1216 sav = NULL;
1217 done:
1218 splx(s);
1219
1220 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1221 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1222 return sav;
1223 }
1224
1225 /*
1226 * Must be called after calling key_allocsp().
1227 * For both the packet without socket and key_freeso().
1228 */
1229 void
1230 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1231 {
1232 struct secpolicy *sp = *spp;
1233
1234 KASSERT(sp != NULL);
1235
1236 SP_DELREF2(sp, where, tag);
1237
1238 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1239 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1240 sp, sp->id, where, tag, sp->refcnt);
1241
1242 if (sp->refcnt == 0) {
1243 *spp = NULL;
1244 key_delsp(sp);
1245 }
1246 }
1247
1248 /*
1249 * Must be called after calling key_allocsp().
1250 * For the packet with socket.
1251 */
1252 void
1253 key_freeso(struct socket *so)
1254 {
1255 /* sanity check */
1256 KASSERT(so != NULL);
1257
1258 switch (so->so_proto->pr_domain->dom_family) {
1259 #ifdef INET
1260 case PF_INET:
1261 {
1262 struct inpcb *pcb = sotoinpcb(so);
1263
1264 /* Does it have a PCB ? */
1265 if (pcb == NULL)
1266 return;
1267
1268 struct inpcbpolicy *sp = pcb->inp_sp;
1269 key_freesp_so(&sp->sp_in);
1270 key_freesp_so(&sp->sp_out);
1271 }
1272 break;
1273 #endif
1274 #ifdef INET6
1275 case PF_INET6:
1276 {
1277 #ifdef HAVE_NRL_INPCB
1278 struct inpcb *pcb = sotoinpcb(so);
1279 struct inpcbpolicy *sp = pcb->inp_sp;
1280
1281 /* Does it have a PCB ? */
1282 if (pcb == NULL)
1283 return;
1284 key_freesp_so(&sp->sp_in);
1285 key_freesp_so(&sp->sp_out);
1286 #else
1287 struct in6pcb *pcb = sotoin6pcb(so);
1288
1289 /* Does it have a PCB ? */
1290 if (pcb == NULL)
1291 return;
1292 key_freesp_so(&pcb->in6p_sp->sp_in);
1293 key_freesp_so(&pcb->in6p_sp->sp_out);
1294 #endif
1295 }
1296 break;
1297 #endif /* INET6 */
1298 default:
1299 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1300 so->so_proto->pr_domain->dom_family);
1301 return;
1302 }
1303 }
1304
1305 static void
1306 key_freesp_so(struct secpolicy **sp)
1307 {
1308
1309 KASSERT(sp != NULL);
1310 KASSERT(*sp != NULL);
1311
1312 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1313 (*sp)->policy == IPSEC_POLICY_BYPASS)
1314 return;
1315
1316 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1317 "invalid policy %u", (*sp)->policy);
1318 KEY_FREESP(sp);
1319 }
1320
1321 /*
1322 * Must be called after calling key_allocsa().
1323 * This function is called by key_freesp() to free some SA allocated
1324 * for a policy.
1325 */
1326 void
1327 key_freesav(struct secasvar **psav, const char* where, int tag)
1328 {
1329 struct secasvar *sav = *psav;
1330
1331 KASSERT(sav != NULL);
1332
1333 SA_DELREF2(sav, where, tag);
1334
1335 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1336 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1337 sav, (u_long)ntohl(sav->spi), where, tag, sav->refcnt);
1338
1339 if (sav->refcnt == 0) {
1340 *psav = NULL;
1341 key_delsav(sav);
1342 }
1343 }
1344
1345 /* %%% SPD management */
1346 /*
1347 * free security policy entry.
1348 */
1349 static void
1350 key_delsp(struct secpolicy *sp)
1351 {
1352 int s;
1353
1354 KASSERT(sp != NULL);
1355
1356 key_sp_dead(sp);
1357
1358 KASSERTMSG(sp->refcnt == 0,
1359 "SP with references deleted (refcnt %u)", sp->refcnt);
1360
1361 s = splsoftnet(); /*called from softclock()*/
1362
1363 {
1364 struct ipsecrequest *isr = sp->req, *nextisr;
1365
1366 while (isr != NULL) {
1367 if (isr->sav != NULL) {
1368 KEY_FREESAV(&isr->sav);
1369 isr->sav = NULL;
1370 }
1371
1372 nextisr = isr->next;
1373 kmem_intr_free(isr, sizeof(*isr));
1374 isr = nextisr;
1375 }
1376 }
1377
1378 kmem_intr_free(sp, sizeof(*sp));
1379
1380 splx(s);
1381 }
1382
1383 /*
1384 * search SPD
1385 * OUT: NULL : not found
1386 * others : found, pointer to a SP.
1387 */
1388 static struct secpolicy *
1389 key_getsp(const struct secpolicyindex *spidx)
1390 {
1391 struct secpolicy *sp;
1392
1393 KASSERT(spidx != NULL);
1394
1395 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1396 if (sp->state == IPSEC_SPSTATE_DEAD)
1397 continue;
1398 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1399 SP_ADDREF(sp);
1400 return sp;
1401 }
1402 }
1403
1404 return NULL;
1405 }
1406
1407 /*
1408 * get SP by index.
1409 * OUT: NULL : not found
1410 * others : found, pointer to a SP.
1411 */
1412 static struct secpolicy *
1413 key_getspbyid(u_int32_t id)
1414 {
1415 struct secpolicy *sp;
1416
1417 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1418 if (sp->state == IPSEC_SPSTATE_DEAD)
1419 continue;
1420 if (sp->id == id) {
1421 SP_ADDREF(sp);
1422 return sp;
1423 }
1424 }
1425
1426 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1427 if (sp->state == IPSEC_SPSTATE_DEAD)
1428 continue;
1429 if (sp->id == id) {
1430 SP_ADDREF(sp);
1431 return sp;
1432 }
1433 }
1434
1435 return NULL;
1436 }
1437
1438 struct secpolicy *
1439 key_newsp(const char* where, int tag)
1440 {
1441 struct secpolicy *newsp = NULL;
1442
1443 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1444 if (newsp != NULL)
1445 newsp->refcnt = 1;
1446
1447 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1448 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1449 return newsp;
1450 }
1451
1452 /*
1453 * create secpolicy structure from sadb_x_policy structure.
1454 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1455 * so must be set properly later.
1456 */
1457 struct secpolicy *
1458 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1459 {
1460 struct secpolicy *newsp;
1461
1462 KASSERT(!cpu_softintr_p());
1463 KASSERT(xpl0 != NULL);
1464 KASSERT(len >= sizeof(*xpl0));
1465
1466 if (len != PFKEY_EXTLEN(xpl0)) {
1467 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1468 *error = EINVAL;
1469 return NULL;
1470 }
1471
1472 newsp = KEY_NEWSP();
1473 if (newsp == NULL) {
1474 *error = ENOBUFS;
1475 return NULL;
1476 }
1477
1478 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1479 newsp->policy = xpl0->sadb_x_policy_type;
1480
1481 /* check policy */
1482 switch (xpl0->sadb_x_policy_type) {
1483 case IPSEC_POLICY_DISCARD:
1484 case IPSEC_POLICY_NONE:
1485 case IPSEC_POLICY_ENTRUST:
1486 case IPSEC_POLICY_BYPASS:
1487 newsp->req = NULL;
1488 *error = 0;
1489 return newsp;
1490
1491 case IPSEC_POLICY_IPSEC:
1492 /* Continued */
1493 break;
1494 default:
1495 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1496 KEY_FREESP(&newsp);
1497 *error = EINVAL;
1498 return NULL;
1499 }
1500
1501 /* IPSEC_POLICY_IPSEC */
1502 {
1503 int tlen;
1504 const struct sadb_x_ipsecrequest *xisr;
1505 uint16_t xisr_reqid;
1506 struct ipsecrequest **p_isr = &newsp->req;
1507
1508 /* validity check */
1509 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1510 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1511 *error = EINVAL;
1512 goto free_exit;
1513 }
1514
1515 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1516 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1517
1518 while (tlen > 0) {
1519 /* length check */
1520 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1521 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1522 *error = EINVAL;
1523 goto free_exit;
1524 }
1525
1526 /* allocate request buffer */
1527 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1528
1529 /* set values */
1530 (*p_isr)->next = NULL;
1531
1532 switch (xisr->sadb_x_ipsecrequest_proto) {
1533 case IPPROTO_ESP:
1534 case IPPROTO_AH:
1535 case IPPROTO_IPCOMP:
1536 break;
1537 default:
1538 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1539 xisr->sadb_x_ipsecrequest_proto);
1540 *error = EPROTONOSUPPORT;
1541 goto free_exit;
1542 }
1543 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1544
1545 switch (xisr->sadb_x_ipsecrequest_mode) {
1546 case IPSEC_MODE_TRANSPORT:
1547 case IPSEC_MODE_TUNNEL:
1548 break;
1549 case IPSEC_MODE_ANY:
1550 default:
1551 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1552 xisr->sadb_x_ipsecrequest_mode);
1553 *error = EINVAL;
1554 goto free_exit;
1555 }
1556 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1557
1558 switch (xisr->sadb_x_ipsecrequest_level) {
1559 case IPSEC_LEVEL_DEFAULT:
1560 case IPSEC_LEVEL_USE:
1561 case IPSEC_LEVEL_REQUIRE:
1562 break;
1563 case IPSEC_LEVEL_UNIQUE:
1564 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1565 /* validity check */
1566 /*
1567 * If range violation of reqid, kernel will
1568 * update it, don't refuse it.
1569 */
1570 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1571 IPSECLOG(LOG_DEBUG,
1572 "reqid=%d range "
1573 "violation, updated by kernel.\n",
1574 xisr_reqid);
1575 xisr_reqid = 0;
1576 }
1577
1578 /* allocate new reqid id if reqid is zero. */
1579 if (xisr_reqid == 0) {
1580 u_int16_t reqid = key_newreqid();
1581 if (reqid == 0) {
1582 *error = ENOBUFS;
1583 goto free_exit;
1584 }
1585 (*p_isr)->saidx.reqid = reqid;
1586 } else {
1587 /* set it for manual keying. */
1588 (*p_isr)->saidx.reqid = xisr_reqid;
1589 }
1590 break;
1591
1592 default:
1593 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1594 xisr->sadb_x_ipsecrequest_level);
1595 *error = EINVAL;
1596 goto free_exit;
1597 }
1598 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1599
1600 /* set IP addresses if there */
1601 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1602 const struct sockaddr *paddr;
1603
1604 paddr = (const struct sockaddr *)(xisr + 1);
1605
1606 /* validity check */
1607 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1608 IPSECLOG(LOG_DEBUG, "invalid request "
1609 "address length.\n");
1610 *error = EINVAL;
1611 goto free_exit;
1612 }
1613 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1614
1615 paddr = (const struct sockaddr *)((const char *)paddr
1616 + paddr->sa_len);
1617
1618 /* validity check */
1619 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1620 IPSECLOG(LOG_DEBUG, "invalid request "
1621 "address length.\n");
1622 *error = EINVAL;
1623 goto free_exit;
1624 }
1625 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1626 }
1627
1628 (*p_isr)->sav = NULL;
1629 (*p_isr)->sp = newsp;
1630
1631 /* initialization for the next. */
1632 p_isr = &(*p_isr)->next;
1633 tlen -= xisr->sadb_x_ipsecrequest_len;
1634
1635 /* validity check */
1636 if (tlen < 0) {
1637 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1638 *error = EINVAL;
1639 goto free_exit;
1640 }
1641
1642 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1643 xisr->sadb_x_ipsecrequest_len);
1644 }
1645 }
1646
1647 *error = 0;
1648 return newsp;
1649
1650 free_exit:
1651 KEY_FREESP(&newsp);
1652 return NULL;
1653 }
1654
1655 static u_int16_t
1656 key_newreqid(void)
1657 {
1658 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1659
1660 auto_reqid = (auto_reqid == 0xffff ?
1661 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1662
1663 /* XXX should be unique check */
1664
1665 return auto_reqid;
1666 }
1667
1668 /*
1669 * copy secpolicy struct to sadb_x_policy structure indicated.
1670 */
1671 struct mbuf *
1672 key_sp2msg(const struct secpolicy *sp)
1673 {
1674 struct sadb_x_policy *xpl;
1675 int tlen;
1676 char *p;
1677 struct mbuf *m;
1678
1679 KASSERT(sp != NULL);
1680
1681 tlen = key_getspreqmsglen(sp);
1682
1683 m = key_alloc_mbuf(tlen);
1684 if (!m || m->m_next) { /*XXX*/
1685 if (m)
1686 m_freem(m);
1687 return NULL;
1688 }
1689
1690 m->m_len = tlen;
1691 m->m_next = NULL;
1692 xpl = mtod(m, struct sadb_x_policy *);
1693 memset(xpl, 0, tlen);
1694
1695 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1696 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1697 xpl->sadb_x_policy_type = sp->policy;
1698 xpl->sadb_x_policy_dir = sp->spidx.dir;
1699 xpl->sadb_x_policy_id = sp->id;
1700 p = (char *)xpl + sizeof(*xpl);
1701
1702 /* if is the policy for ipsec ? */
1703 if (sp->policy == IPSEC_POLICY_IPSEC) {
1704 struct sadb_x_ipsecrequest *xisr;
1705 struct ipsecrequest *isr;
1706
1707 for (isr = sp->req; isr != NULL; isr = isr->next) {
1708
1709 xisr = (struct sadb_x_ipsecrequest *)p;
1710
1711 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1712 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1713 xisr->sadb_x_ipsecrequest_level = isr->level;
1714 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1715
1716 p += sizeof(*xisr);
1717 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1718 p += isr->saidx.src.sa.sa_len;
1719 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1720 p += isr->saidx.src.sa.sa_len;
1721
1722 xisr->sadb_x_ipsecrequest_len =
1723 PFKEY_ALIGN8(sizeof(*xisr)
1724 + isr->saidx.src.sa.sa_len
1725 + isr->saidx.dst.sa.sa_len);
1726 }
1727 }
1728
1729 return m;
1730 }
1731
1732 /* m will not be freed nor modified */
1733 static struct mbuf *
1734 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1735 int ndeep, int nitem, ...)
1736 {
1737 va_list ap;
1738 int idx;
1739 int i;
1740 struct mbuf *result = NULL, *n;
1741 int len;
1742
1743 KASSERT(m != NULL);
1744 KASSERT(mhp != NULL);
1745
1746 va_start(ap, nitem);
1747 for (i = 0; i < nitem; i++) {
1748 idx = va_arg(ap, int);
1749 if (idx < 0 || idx > SADB_EXT_MAX)
1750 goto fail;
1751 /* don't attempt to pull empty extension */
1752 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1753 continue;
1754 if (idx != SADB_EXT_RESERVED &&
1755 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1756 continue;
1757
1758 if (idx == SADB_EXT_RESERVED) {
1759 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1760 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1761 MGETHDR(n, M_DONTWAIT, MT_DATA);
1762 if (!n)
1763 goto fail;
1764 n->m_len = len;
1765 n->m_next = NULL;
1766 m_copydata(m, 0, sizeof(struct sadb_msg),
1767 mtod(n, void *));
1768 } else if (i < ndeep) {
1769 len = mhp->extlen[idx];
1770 n = key_alloc_mbuf(len);
1771 if (!n || n->m_next) { /*XXX*/
1772 if (n)
1773 m_freem(n);
1774 goto fail;
1775 }
1776 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1777 mtod(n, void *));
1778 } else {
1779 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1780 M_DONTWAIT);
1781 }
1782 if (n == NULL)
1783 goto fail;
1784
1785 if (result)
1786 m_cat(result, n);
1787 else
1788 result = n;
1789 }
1790 va_end(ap);
1791
1792 if (result && (result->m_flags & M_PKTHDR) != 0) {
1793 result->m_pkthdr.len = 0;
1794 for (n = result; n; n = n->m_next)
1795 result->m_pkthdr.len += n->m_len;
1796 }
1797
1798 return result;
1799
1800 fail:
1801 va_end(ap);
1802 m_freem(result);
1803 return NULL;
1804 }
1805
1806 /*
1807 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1808 * add an entry to SP database, when received
1809 * <base, address(SD), (lifetime(H),) policy>
1810 * from the user(?).
1811 * Adding to SP database,
1812 * and send
1813 * <base, address(SD), (lifetime(H),) policy>
1814 * to the socket which was send.
1815 *
1816 * SPDADD set a unique policy entry.
1817 * SPDSETIDX like SPDADD without a part of policy requests.
1818 * SPDUPDATE replace a unique policy entry.
1819 *
1820 * m will always be freed.
1821 */
1822 static int
1823 key_spdadd(struct socket *so, struct mbuf *m,
1824 const struct sadb_msghdr *mhp)
1825 {
1826 const struct sadb_address *src0, *dst0;
1827 const struct sadb_x_policy *xpl0;
1828 struct sadb_x_policy *xpl;
1829 const struct sadb_lifetime *lft = NULL;
1830 struct secpolicyindex spidx;
1831 struct secpolicy *newsp;
1832 int error;
1833
1834 KASSERT(!cpu_softintr_p());
1835 KASSERT(so != NULL);
1836 KASSERT(m != NULL);
1837 KASSERT(mhp != NULL);
1838 KASSERT(mhp->msg != NULL);
1839
1840 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1841 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1842 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1843 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1844 return key_senderror(so, m, EINVAL);
1845 }
1846 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1847 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1848 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1849 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1850 return key_senderror(so, m, EINVAL);
1851 }
1852 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1853 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1854 sizeof(struct sadb_lifetime)) {
1855 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1856 return key_senderror(so, m, EINVAL);
1857 }
1858 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1859 }
1860
1861 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1862 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1863 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1864
1865 /* make secindex */
1866 /* XXX boundary check against sa_len */
1867 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1868 src0 + 1,
1869 dst0 + 1,
1870 src0->sadb_address_prefixlen,
1871 dst0->sadb_address_prefixlen,
1872 src0->sadb_address_proto,
1873 &spidx);
1874
1875 /* checking the direciton. */
1876 switch (xpl0->sadb_x_policy_dir) {
1877 case IPSEC_DIR_INBOUND:
1878 case IPSEC_DIR_OUTBOUND:
1879 break;
1880 default:
1881 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1882 mhp->msg->sadb_msg_errno = EINVAL;
1883 return 0;
1884 }
1885
1886 /* check policy */
1887 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1888 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1889 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1890 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1891 return key_senderror(so, m, EINVAL);
1892 }
1893
1894 /* policy requests are mandatory when action is ipsec. */
1895 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1896 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1897 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1898 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1899 return key_senderror(so, m, EINVAL);
1900 }
1901
1902 /*
1903 * checking there is SP already or not.
1904 * SPDUPDATE doesn't depend on whether there is a SP or not.
1905 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1906 * then error.
1907 */
1908 newsp = key_getsp(&spidx);
1909 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1910 if (newsp) {
1911 key_sp_dead(newsp);
1912 key_sp_unlink(newsp); /* XXX jrs ordering */
1913 KEY_FREESP(&newsp);
1914 newsp = NULL;
1915 }
1916 } else {
1917 if (newsp != NULL) {
1918 KEY_FREESP(&newsp);
1919 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1920 return key_senderror(so, m, EEXIST);
1921 }
1922 }
1923
1924 /* allocation new SP entry */
1925 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1926 if (newsp == NULL) {
1927 return key_senderror(so, m, error);
1928 }
1929
1930 newsp->id = key_getnewspid();
1931 if (newsp->id == 0) {
1932 kmem_free(newsp, sizeof(*newsp));
1933 return key_senderror(so, m, ENOBUFS);
1934 }
1935
1936 /* XXX boundary check against sa_len */
1937 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1938 src0 + 1,
1939 dst0 + 1,
1940 src0->sadb_address_prefixlen,
1941 dst0->sadb_address_prefixlen,
1942 src0->sadb_address_proto,
1943 &newsp->spidx);
1944
1945 /* sanity check on addr pair */
1946 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1947 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1948 kmem_free(newsp, sizeof(*newsp));
1949 return key_senderror(so, m, EINVAL);
1950 }
1951 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1952 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1953 kmem_free(newsp, sizeof(*newsp));
1954 return key_senderror(so, m, EINVAL);
1955 }
1956
1957 newsp->created = time_uptime;
1958 newsp->lastused = newsp->created;
1959 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1960 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1961
1962 newsp->refcnt = 1; /* do not reclaim until I say I do */
1963 newsp->state = IPSEC_SPSTATE_ALIVE;
1964 if (newsp->policy == IPSEC_POLICY_IPSEC)
1965 KASSERT(newsp->req != NULL);
1966 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1967
1968 #ifdef notyet
1969 /* delete the entry in spacqtree */
1970 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1971 struct secspacq *spacq = key_getspacq(&spidx);
1972 if (spacq != NULL) {
1973 /* reset counter in order to deletion by timehandler. */
1974 spacq->created = time_uptime;
1975 spacq->count = 0;
1976 }
1977 }
1978 #endif
1979
1980 /* Invalidate all cached SPD pointers in the PCBs. */
1981 ipsec_invalpcbcacheall();
1982
1983 #if defined(GATEWAY)
1984 /* Invalidate the ipflow cache, as well. */
1985 ipflow_invalidate_all(0);
1986 #ifdef INET6
1987 if (in6_present)
1988 ip6flow_invalidate_all(0);
1989 #endif /* INET6 */
1990 #endif /* GATEWAY */
1991
1992 {
1993 struct mbuf *n, *mpolicy;
1994 struct sadb_msg *newmsg;
1995 int off;
1996
1997 /* create new sadb_msg to reply. */
1998 if (lft) {
1999 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2000 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2001 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2002 } else {
2003 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2004 SADB_X_EXT_POLICY,
2005 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2006 }
2007 if (!n)
2008 return key_senderror(so, m, ENOBUFS);
2009
2010 if (n->m_len < sizeof(*newmsg)) {
2011 n = m_pullup(n, sizeof(*newmsg));
2012 if (!n)
2013 return key_senderror(so, m, ENOBUFS);
2014 }
2015 newmsg = mtod(n, struct sadb_msg *);
2016 newmsg->sadb_msg_errno = 0;
2017 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2018
2019 off = 0;
2020 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2021 sizeof(*xpl), &off);
2022 if (mpolicy == NULL) {
2023 /* n is already freed */
2024 return key_senderror(so, m, ENOBUFS);
2025 }
2026 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2027 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2028 m_freem(n);
2029 return key_senderror(so, m, EINVAL);
2030 }
2031 xpl->sadb_x_policy_id = newsp->id;
2032
2033 m_freem(m);
2034 key_update_used();
2035 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2036 }
2037 }
2038
2039 /*
2040 * get new policy id.
2041 * OUT:
2042 * 0: failure.
2043 * others: success.
2044 */
2045 static u_int32_t
2046 key_getnewspid(void)
2047 {
2048 u_int32_t newid = 0;
2049 int count = key_spi_trycnt; /* XXX */
2050 struct secpolicy *sp;
2051
2052 /* when requesting to allocate spi ranged */
2053 while (count--) {
2054 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2055
2056 sp = key_getspbyid(newid);
2057 if (sp == NULL)
2058 break;
2059
2060 KEY_FREESP(&sp);
2061 }
2062
2063 if (count == 0 || newid == 0) {
2064 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2065 return 0;
2066 }
2067
2068 return newid;
2069 }
2070
2071 /*
2072 * SADB_SPDDELETE processing
2073 * receive
2074 * <base, address(SD), policy(*)>
2075 * from the user(?), and set SADB_SASTATE_DEAD,
2076 * and send,
2077 * <base, address(SD), policy(*)>
2078 * to the ikmpd.
2079 * policy(*) including direction of policy.
2080 *
2081 * m will always be freed.
2082 */
2083 static int
2084 key_spddelete(struct socket *so, struct mbuf *m,
2085 const struct sadb_msghdr *mhp)
2086 {
2087 struct sadb_address *src0, *dst0;
2088 struct sadb_x_policy *xpl0;
2089 struct secpolicyindex spidx;
2090 struct secpolicy *sp;
2091
2092 KASSERT(so != NULL);
2093 KASSERT(m != NULL);
2094 KASSERT(mhp != NULL);
2095 KASSERT(mhp->msg != NULL);
2096
2097 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2098 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2099 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2100 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2101 return key_senderror(so, m, EINVAL);
2102 }
2103 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2104 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2105 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2106 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2107 return key_senderror(so, m, EINVAL);
2108 }
2109
2110 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2111 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2112 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2113
2114 /* make secindex */
2115 /* XXX boundary check against sa_len */
2116 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2117 src0 + 1,
2118 dst0 + 1,
2119 src0->sadb_address_prefixlen,
2120 dst0->sadb_address_prefixlen,
2121 src0->sadb_address_proto,
2122 &spidx);
2123
2124 /* checking the direciton. */
2125 switch (xpl0->sadb_x_policy_dir) {
2126 case IPSEC_DIR_INBOUND:
2127 case IPSEC_DIR_OUTBOUND:
2128 break;
2129 default:
2130 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2131 return key_senderror(so, m, EINVAL);
2132 }
2133
2134 /* Is there SP in SPD ? */
2135 sp = key_getsp(&spidx);
2136 if (sp == NULL) {
2137 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2138 return key_senderror(so, m, EINVAL);
2139 }
2140
2141 /* save policy id to buffer to be returned. */
2142 xpl0->sadb_x_policy_id = sp->id;
2143
2144 key_sp_dead(sp);
2145 key_sp_unlink(sp); /* XXX jrs ordering */
2146 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2147
2148 /* Invalidate all cached SPD pointers in the PCBs. */
2149 ipsec_invalpcbcacheall();
2150
2151 /* We're deleting policy; no need to invalidate the ipflow cache. */
2152
2153 {
2154 struct mbuf *n;
2155 struct sadb_msg *newmsg;
2156
2157 /* create new sadb_msg to reply. */
2158 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2159 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2160 if (!n)
2161 return key_senderror(so, m, ENOBUFS);
2162
2163 newmsg = mtod(n, struct sadb_msg *);
2164 newmsg->sadb_msg_errno = 0;
2165 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2166
2167 m_freem(m);
2168 key_update_used();
2169 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2170 }
2171 }
2172
2173 /*
2174 * SADB_SPDDELETE2 processing
2175 * receive
2176 * <base, policy(*)>
2177 * from the user(?), and set SADB_SASTATE_DEAD,
2178 * and send,
2179 * <base, policy(*)>
2180 * to the ikmpd.
2181 * policy(*) including direction of policy.
2182 *
2183 * m will always be freed.
2184 */
2185 static int
2186 key_spddelete2(struct socket *so, struct mbuf *m,
2187 const struct sadb_msghdr *mhp)
2188 {
2189 u_int32_t id;
2190 struct secpolicy *sp;
2191
2192 KASSERT(so != NULL);
2193 KASSERT(m != NULL);
2194 KASSERT(mhp != NULL);
2195 KASSERT(mhp->msg != NULL);
2196
2197 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2198 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2199 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2200 key_senderror(so, m, EINVAL);
2201 return 0;
2202 }
2203
2204 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2205
2206 /* Is there SP in SPD ? */
2207 sp = key_getspbyid(id);
2208 if (sp == NULL) {
2209 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2210 return key_senderror(so, m, EINVAL);
2211 }
2212
2213 key_sp_dead(sp);
2214 key_sp_unlink(sp); /* XXX jrs ordering */
2215 KEY_FREESP(&sp); /* ref gained by key_getsp */
2216 sp = NULL;
2217
2218 /* Invalidate all cached SPD pointers in the PCBs. */
2219 ipsec_invalpcbcacheall();
2220
2221 /* We're deleting policy; no need to invalidate the ipflow cache. */
2222
2223 {
2224 struct mbuf *n, *nn;
2225 struct sadb_msg *newmsg;
2226 int off, len;
2227
2228 /* create new sadb_msg to reply. */
2229 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2230
2231 if (len > MCLBYTES)
2232 return key_senderror(so, m, ENOBUFS);
2233 MGETHDR(n, M_DONTWAIT, MT_DATA);
2234 if (n && len > MHLEN) {
2235 MCLGET(n, M_DONTWAIT);
2236 if ((n->m_flags & M_EXT) == 0) {
2237 m_freem(n);
2238 n = NULL;
2239 }
2240 }
2241 if (!n)
2242 return key_senderror(so, m, ENOBUFS);
2243
2244 n->m_len = len;
2245 n->m_next = NULL;
2246 off = 0;
2247
2248 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2249 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2250
2251 KASSERTMSG(off == len, "length inconsistency");
2252
2253 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2254 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2255 if (!n->m_next) {
2256 m_freem(n);
2257 return key_senderror(so, m, ENOBUFS);
2258 }
2259
2260 n->m_pkthdr.len = 0;
2261 for (nn = n; nn; nn = nn->m_next)
2262 n->m_pkthdr.len += nn->m_len;
2263
2264 newmsg = mtod(n, struct sadb_msg *);
2265 newmsg->sadb_msg_errno = 0;
2266 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2267
2268 m_freem(m);
2269 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2270 }
2271 }
2272
2273 /*
2274 * SADB_X_GET processing
2275 * receive
2276 * <base, policy(*)>
2277 * from the user(?),
2278 * and send,
2279 * <base, address(SD), policy>
2280 * to the ikmpd.
2281 * policy(*) including direction of policy.
2282 *
2283 * m will always be freed.
2284 */
2285 static int
2286 key_spdget(struct socket *so, struct mbuf *m,
2287 const struct sadb_msghdr *mhp)
2288 {
2289 u_int32_t id;
2290 struct secpolicy *sp;
2291 struct mbuf *n;
2292
2293 KASSERT(so != NULL);
2294 KASSERT(m != NULL);
2295 KASSERT(mhp != NULL);
2296 KASSERT(mhp->msg != NULL);
2297
2298 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2299 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2300 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2301 return key_senderror(so, m, EINVAL);
2302 }
2303
2304 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2305
2306 /* Is there SP in SPD ? */
2307 sp = key_getspbyid(id);
2308 if (sp == NULL) {
2309 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2310 return key_senderror(so, m, ENOENT);
2311 }
2312
2313 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2314 mhp->msg->sadb_msg_pid);
2315 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2316 if (n != NULL) {
2317 m_freem(m);
2318 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2319 } else
2320 return key_senderror(so, m, ENOBUFS);
2321 }
2322
2323 #ifdef notyet
2324 /*
2325 * SADB_X_SPDACQUIRE processing.
2326 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2327 * send
2328 * <base, policy(*)>
2329 * to KMD, and expect to receive
2330 * <base> with SADB_X_SPDACQUIRE if error occurred,
2331 * or
2332 * <base, policy>
2333 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2334 * policy(*) is without policy requests.
2335 *
2336 * 0 : succeed
2337 * others: error number
2338 */
2339 int
2340 key_spdacquire(const struct secpolicy *sp)
2341 {
2342 struct mbuf *result = NULL, *m;
2343 struct secspacq *newspacq;
2344 int error;
2345
2346 KASSERT(sp != NULL);
2347 KASSERTMSG(sp->req == NULL, "called but there is request");
2348 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2349 "policy mismathed. IPsec is expected");
2350
2351 /* Get an entry to check whether sent message or not. */
2352 newspacq = key_getspacq(&sp->spidx);
2353 if (newspacq != NULL) {
2354 if (key_blockacq_count < newspacq->count) {
2355 /* reset counter and do send message. */
2356 newspacq->count = 0;
2357 } else {
2358 /* increment counter and do nothing. */
2359 newspacq->count++;
2360 return 0;
2361 }
2362 } else {
2363 /* make new entry for blocking to send SADB_ACQUIRE. */
2364 newspacq = key_newspacq(&sp->spidx);
2365 if (newspacq == NULL)
2366 return ENOBUFS;
2367
2368 /* add to acqtree */
2369 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2370 }
2371
2372 /* create new sadb_msg to reply. */
2373 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2374 if (!m) {
2375 error = ENOBUFS;
2376 goto fail;
2377 }
2378 result = m;
2379
2380 result->m_pkthdr.len = 0;
2381 for (m = result; m; m = m->m_next)
2382 result->m_pkthdr.len += m->m_len;
2383
2384 mtod(result, struct sadb_msg *)->sadb_msg_len =
2385 PFKEY_UNIT64(result->m_pkthdr.len);
2386
2387 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2388
2389 fail:
2390 if (result)
2391 m_freem(result);
2392 return error;
2393 }
2394 #endif /* notyet */
2395
2396 /*
2397 * SADB_SPDFLUSH processing
2398 * receive
2399 * <base>
2400 * from the user, and free all entries in secpctree.
2401 * and send,
2402 * <base>
2403 * to the user.
2404 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2405 *
2406 * m will always be freed.
2407 */
2408 static int
2409 key_spdflush(struct socket *so, struct mbuf *m,
2410 const struct sadb_msghdr *mhp)
2411 {
2412 struct sadb_msg *newmsg;
2413 struct secpolicy *sp;
2414 u_int dir;
2415
2416 KASSERT(so != NULL);
2417 KASSERT(m != NULL);
2418 KASSERT(mhp != NULL);
2419 KASSERT(mhp->msg != NULL);
2420
2421 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2422 return key_senderror(so, m, EINVAL);
2423
2424 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2425 struct secpolicy * nextsp;
2426 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2427 if (sp->state == IPSEC_SPSTATE_DEAD)
2428 continue;
2429 key_sp_dead(sp);
2430 key_sp_unlink(sp);
2431 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2432 continue;
2433 }
2434 }
2435
2436 /* Invalidate all cached SPD pointers in the PCBs. */
2437 ipsec_invalpcbcacheall();
2438
2439 /* We're deleting policy; no need to invalidate the ipflow cache. */
2440
2441 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2442 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2443 return key_senderror(so, m, ENOBUFS);
2444 }
2445
2446 if (m->m_next)
2447 m_freem(m->m_next);
2448 m->m_next = NULL;
2449 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2450 newmsg = mtod(m, struct sadb_msg *);
2451 newmsg->sadb_msg_errno = 0;
2452 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2453
2454 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2455 }
2456
2457 static struct sockaddr key_src = {
2458 .sa_len = 2,
2459 .sa_family = PF_KEY,
2460 };
2461
2462 static struct mbuf *
2463 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2464 {
2465 struct secpolicy *sp;
2466 int cnt;
2467 u_int dir;
2468 struct mbuf *m, *n, *prev;
2469 int totlen;
2470
2471 *lenp = 0;
2472
2473 /* search SPD entry and get buffer size. */
2474 cnt = 0;
2475 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2476 LIST_FOREACH(sp, &sptree[dir], chain) {
2477 cnt++;
2478 }
2479 }
2480
2481 if (cnt == 0) {
2482 *errorp = ENOENT;
2483 return (NULL);
2484 }
2485
2486 m = NULL;
2487 prev = m;
2488 totlen = 0;
2489 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2490 LIST_FOREACH(sp, &sptree[dir], chain) {
2491 --cnt;
2492 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2493
2494 if (!n) {
2495 *errorp = ENOBUFS;
2496 if (m)
2497 m_freem(m);
2498 return (NULL);
2499 }
2500
2501 totlen += n->m_pkthdr.len;
2502 if (!m) {
2503 m = n;
2504 } else {
2505 prev->m_nextpkt = n;
2506 }
2507 prev = n;
2508 }
2509 }
2510
2511 *lenp = totlen;
2512 *errorp = 0;
2513 return (m);
2514 }
2515
2516 /*
2517 * SADB_SPDDUMP processing
2518 * receive
2519 * <base>
2520 * from the user, and dump all SP leaves
2521 * and send,
2522 * <base> .....
2523 * to the ikmpd.
2524 *
2525 * m will always be freed.
2526 */
2527 static int
2528 key_spddump(struct socket *so, struct mbuf *m0,
2529 const struct sadb_msghdr *mhp)
2530 {
2531 struct mbuf *n;
2532 int error, len;
2533 int ok, s;
2534 pid_t pid;
2535
2536 KASSERT(so != NULL);
2537 KASSERT(m0 != NULL);
2538 KASSERT(mhp != NULL);
2539 KASSERT(mhp->msg != NULL);
2540
2541 pid = mhp->msg->sadb_msg_pid;
2542 /*
2543 * If the requestor has insufficient socket-buffer space
2544 * for the entire chain, nobody gets any response to the DUMP.
2545 * XXX For now, only the requestor ever gets anything.
2546 * Moreover, if the requestor has any space at all, they receive
2547 * the entire chain, otherwise the request is refused with ENOBUFS.
2548 */
2549 if (sbspace(&so->so_rcv) <= 0) {
2550 return key_senderror(so, m0, ENOBUFS);
2551 }
2552
2553 s = splsoftnet();
2554 n = key_setspddump_chain(&error, &len, pid);
2555 splx(s);
2556
2557 if (n == NULL) {
2558 return key_senderror(so, m0, ENOENT);
2559 }
2560 {
2561 uint64_t *ps = PFKEY_STAT_GETREF();
2562 ps[PFKEY_STAT_IN_TOTAL]++;
2563 ps[PFKEY_STAT_IN_BYTES] += len;
2564 PFKEY_STAT_PUTREF();
2565 }
2566
2567 /*
2568 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2569 * The requestor receives either the entire chain, or an
2570 * error message with ENOBUFS.
2571 */
2572
2573 /*
2574 * sbappendchainwith record takes the chain of entries, one
2575 * packet-record per SPD entry, prepends the key_src sockaddr
2576 * to each packet-record, links the sockaddr mbufs into a new
2577 * list of records, then appends the entire resulting
2578 * list to the requesting socket.
2579 */
2580 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2581 SB_PRIO_ONESHOT_OVERFLOW);
2582
2583 if (!ok) {
2584 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2585 m_freem(n);
2586 return key_senderror(so, m0, ENOBUFS);
2587 }
2588
2589 m_freem(m0);
2590 return error;
2591 }
2592
2593 /*
2594 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2595 */
2596 static int
2597 key_nat_map(struct socket *so, struct mbuf *m,
2598 const struct sadb_msghdr *mhp)
2599 {
2600 struct sadb_x_nat_t_type *type;
2601 struct sadb_x_nat_t_port *sport;
2602 struct sadb_x_nat_t_port *dport;
2603 struct sadb_address *iaddr, *raddr;
2604 struct sadb_x_nat_t_frag *frag;
2605
2606 KASSERT(so != NULL);
2607 KASSERT(m != NULL);
2608 KASSERT(mhp != NULL);
2609 KASSERT(mhp->msg != NULL);
2610
2611 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2612 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2613 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2614 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2615 return key_senderror(so, m, EINVAL);
2616 }
2617 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2618 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2619 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2620 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2621 return key_senderror(so, m, EINVAL);
2622 }
2623
2624 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2625 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2626 IPSECLOG(LOG_DEBUG, "invalid message\n");
2627 return key_senderror(so, m, EINVAL);
2628 }
2629
2630 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2631 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2632 IPSECLOG(LOG_DEBUG, "invalid message\n");
2633 return key_senderror(so, m, EINVAL);
2634 }
2635
2636 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2637 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2638 IPSECLOG(LOG_DEBUG, "invalid message\n");
2639 return key_senderror(so, m, EINVAL);
2640 }
2641
2642 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2643 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2644 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2645 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2646 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2647 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2648
2649 /*
2650 * XXX handle that, it should also contain a SA, or anything
2651 * that enable to update the SA information.
2652 */
2653
2654 return 0;
2655 }
2656
2657 static struct mbuf *
2658 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2659 {
2660 struct mbuf *result = NULL, *m;
2661
2662 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2663 if (!m)
2664 goto fail;
2665 result = m;
2666
2667 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2668 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2669 if (!m)
2670 goto fail;
2671 m_cat(result, m);
2672
2673 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2674 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2675 if (!m)
2676 goto fail;
2677 m_cat(result, m);
2678
2679 m = key_sp2msg(sp);
2680 if (!m)
2681 goto fail;
2682 m_cat(result, m);
2683
2684 if ((result->m_flags & M_PKTHDR) == 0)
2685 goto fail;
2686
2687 if (result->m_len < sizeof(struct sadb_msg)) {
2688 result = m_pullup(result, sizeof(struct sadb_msg));
2689 if (result == NULL)
2690 goto fail;
2691 }
2692
2693 result->m_pkthdr.len = 0;
2694 for (m = result; m; m = m->m_next)
2695 result->m_pkthdr.len += m->m_len;
2696
2697 mtod(result, struct sadb_msg *)->sadb_msg_len =
2698 PFKEY_UNIT64(result->m_pkthdr.len);
2699
2700 return result;
2701
2702 fail:
2703 m_freem(result);
2704 return NULL;
2705 }
2706
2707 /*
2708 * get PFKEY message length for security policy and request.
2709 */
2710 static u_int
2711 key_getspreqmsglen(const struct secpolicy *sp)
2712 {
2713 u_int tlen;
2714
2715 tlen = sizeof(struct sadb_x_policy);
2716
2717 /* if is the policy for ipsec ? */
2718 if (sp->policy != IPSEC_POLICY_IPSEC)
2719 return tlen;
2720
2721 /* get length of ipsec requests */
2722 {
2723 const struct ipsecrequest *isr;
2724 int len;
2725
2726 for (isr = sp->req; isr != NULL; isr = isr->next) {
2727 len = sizeof(struct sadb_x_ipsecrequest)
2728 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2729
2730 tlen += PFKEY_ALIGN8(len);
2731 }
2732 }
2733
2734 return tlen;
2735 }
2736
2737 /*
2738 * SADB_SPDEXPIRE processing
2739 * send
2740 * <base, address(SD), lifetime(CH), policy>
2741 * to KMD by PF_KEY.
2742 *
2743 * OUT: 0 : succeed
2744 * others : error number
2745 */
2746 static int
2747 key_spdexpire(struct secpolicy *sp)
2748 {
2749 int s;
2750 struct mbuf *result = NULL, *m;
2751 int len;
2752 int error = -1;
2753 struct sadb_lifetime *lt;
2754
2755 /* XXX: Why do we lock ? */
2756 s = splsoftnet(); /*called from softclock()*/
2757
2758 KASSERT(sp != NULL);
2759
2760 /* set msg header */
2761 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2762 if (!m) {
2763 error = ENOBUFS;
2764 goto fail;
2765 }
2766 result = m;
2767
2768 /* create lifetime extension (current and hard) */
2769 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2770 m = key_alloc_mbuf(len);
2771 if (!m || m->m_next) { /*XXX*/
2772 if (m)
2773 m_freem(m);
2774 error = ENOBUFS;
2775 goto fail;
2776 }
2777 memset(mtod(m, void *), 0, len);
2778 lt = mtod(m, struct sadb_lifetime *);
2779 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2780 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2781 lt->sadb_lifetime_allocations = 0;
2782 lt->sadb_lifetime_bytes = 0;
2783 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2784 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2785 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2786 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2787 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2788 lt->sadb_lifetime_allocations = 0;
2789 lt->sadb_lifetime_bytes = 0;
2790 lt->sadb_lifetime_addtime = sp->lifetime;
2791 lt->sadb_lifetime_usetime = sp->validtime;
2792 m_cat(result, m);
2793
2794 /* set sadb_address for source */
2795 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2796 sp->spidx.prefs, sp->spidx.ul_proto);
2797 if (!m) {
2798 error = ENOBUFS;
2799 goto fail;
2800 }
2801 m_cat(result, m);
2802
2803 /* set sadb_address for destination */
2804 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2805 sp->spidx.prefd, sp->spidx.ul_proto);
2806 if (!m) {
2807 error = ENOBUFS;
2808 goto fail;
2809 }
2810 m_cat(result, m);
2811
2812 /* set secpolicy */
2813 m = key_sp2msg(sp);
2814 if (!m) {
2815 error = ENOBUFS;
2816 goto fail;
2817 }
2818 m_cat(result, m);
2819
2820 if ((result->m_flags & M_PKTHDR) == 0) {
2821 error = EINVAL;
2822 goto fail;
2823 }
2824
2825 if (result->m_len < sizeof(struct sadb_msg)) {
2826 result = m_pullup(result, sizeof(struct sadb_msg));
2827 if (result == NULL) {
2828 error = ENOBUFS;
2829 goto fail;
2830 }
2831 }
2832
2833 result->m_pkthdr.len = 0;
2834 for (m = result; m; m = m->m_next)
2835 result->m_pkthdr.len += m->m_len;
2836
2837 mtod(result, struct sadb_msg *)->sadb_msg_len =
2838 PFKEY_UNIT64(result->m_pkthdr.len);
2839
2840 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2841
2842 fail:
2843 if (result)
2844 m_freem(result);
2845 splx(s);
2846 return error;
2847 }
2848
2849 /* %%% SAD management */
2850 /*
2851 * allocating a memory for new SA head, and copy from the values of mhp.
2852 * OUT: NULL : failure due to the lack of memory.
2853 * others : pointer to new SA head.
2854 */
2855 static struct secashead *
2856 key_newsah(const struct secasindex *saidx)
2857 {
2858 struct secashead *newsah;
2859 int i;
2860
2861 KASSERT(saidx != NULL);
2862
2863 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2864 for (i = 0; i < __arraycount(newsah->savtree); i++)
2865 LIST_INIT(&newsah->savtree[i]);
2866 newsah->saidx = *saidx;
2867
2868 /* add to saidxtree */
2869 newsah->state = SADB_SASTATE_MATURE;
2870 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2871
2872 return newsah;
2873 }
2874
2875 /*
2876 * delete SA index and all SA registerd.
2877 */
2878 static void
2879 key_delsah(struct secashead *sah)
2880 {
2881 struct secasvar *sav, *nextsav;
2882 u_int state;
2883 int s;
2884 int zombie = 0;
2885
2886 KASSERT(!cpu_softintr_p());
2887 KASSERT(sah != NULL);
2888
2889 s = splsoftnet();
2890
2891 /* searching all SA registerd in the secindex. */
2892 SASTATE_ANY_FOREACH(state) {
2893 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2894 if (sav->refcnt == 0) {
2895 /* sanity check */
2896 KEY_CHKSASTATE(state, sav->state);
2897 KEY_FREESAV(&sav);
2898 } else {
2899 /* give up to delete this sa */
2900 zombie++;
2901 }
2902 }
2903 }
2904
2905 /* don't delete sah only if there are savs. */
2906 if (zombie) {
2907 splx(s);
2908 return;
2909 }
2910
2911 rtcache_free(&sah->sa_route);
2912
2913 /* remove from tree of SA index */
2914 KASSERT(__LIST_CHAINED(sah));
2915 LIST_REMOVE(sah, chain);
2916
2917 if (sah->idents != NULL)
2918 kmem_free(sah->idents, sah->idents_len);
2919 if (sah->identd != NULL)
2920 kmem_free(sah->identd, sah->identd_len);
2921
2922 kmem_free(sah, sizeof(*sah));
2923
2924 splx(s);
2925 return;
2926 }
2927
2928 /*
2929 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2930 * and copy the values of mhp into new buffer.
2931 * When SAD message type is GETSPI:
2932 * to set sequence number from acq_seq++,
2933 * to set zero to SPI.
2934 * not to call key_setsava().
2935 * OUT: NULL : fail
2936 * others : pointer to new secasvar.
2937 *
2938 * does not modify mbuf. does not free mbuf on error.
2939 */
2940 static struct secasvar *
2941 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2942 struct secashead *sah, int *errp,
2943 const char* where, int tag)
2944 {
2945 struct secasvar *newsav;
2946 const struct sadb_sa *xsa;
2947
2948 KASSERT(!cpu_softintr_p());
2949 KASSERT(m != NULL);
2950 KASSERT(mhp != NULL);
2951 KASSERT(mhp->msg != NULL);
2952 KASSERT(sah != NULL);
2953
2954 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2955
2956 switch (mhp->msg->sadb_msg_type) {
2957 case SADB_GETSPI:
2958 newsav->spi = 0;
2959
2960 #ifdef IPSEC_DOSEQCHECK
2961 /* sync sequence number */
2962 if (mhp->msg->sadb_msg_seq == 0)
2963 newsav->seq =
2964 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2965 else
2966 #endif
2967 newsav->seq = mhp->msg->sadb_msg_seq;
2968 break;
2969
2970 case SADB_ADD:
2971 /* sanity check */
2972 if (mhp->ext[SADB_EXT_SA] == NULL) {
2973 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2974 *errp = EINVAL;
2975 goto error;
2976 }
2977 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2978 newsav->spi = xsa->sadb_sa_spi;
2979 newsav->seq = mhp->msg->sadb_msg_seq;
2980 break;
2981 default:
2982 *errp = EINVAL;
2983 goto error;
2984 }
2985
2986 /* copy sav values */
2987 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2988 *errp = key_setsaval(newsav, m, mhp);
2989 if (*errp)
2990 goto error;
2991 }
2992
2993 /* reset created */
2994 newsav->created = time_uptime;
2995 newsav->pid = mhp->msg->sadb_msg_pid;
2996
2997 /* add to satree */
2998 newsav->sah = sah;
2999 newsav->refcnt = 1;
3000 newsav->state = SADB_SASTATE_LARVAL;
3001 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3002 secasvar, chain);
3003 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3004 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3005 return newsav;
3006
3007 error:
3008 KASSERT(*errp != 0);
3009 kmem_free(newsav, sizeof(*newsav));
3010 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3011 "DP from %s:%u return SA:NULL\n", where, tag);
3012 return NULL;
3013 }
3014
3015 /*
3016 * free() SA variable entry.
3017 */
3018 static void
3019 key_delsav(struct secasvar *sav)
3020 {
3021
3022 KASSERT(sav != NULL);
3023 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3024
3025 /* remove from SA header */
3026 KASSERT(__LIST_CHAINED(sav));
3027 LIST_REMOVE(sav, chain);
3028
3029 /*
3030 * Cleanup xform state. Note that zeroize'ing causes the
3031 * keys to be cleared; otherwise we must do it ourself.
3032 */
3033 if (sav->tdb_xform != NULL) {
3034 sav->tdb_xform->xf_zeroize(sav);
3035 sav->tdb_xform = NULL;
3036 } else {
3037 if (sav->key_auth != NULL)
3038 explicit_memset(_KEYBUF(sav->key_auth), 0,
3039 _KEYLEN(sav->key_auth));
3040 if (sav->key_enc != NULL)
3041 explicit_memset(_KEYBUF(sav->key_enc), 0,
3042 _KEYLEN(sav->key_enc));
3043 }
3044
3045 key_freesaval(sav);
3046 kmem_intr_free(sav, sizeof(*sav));
3047
3048 return;
3049 }
3050
3051 /*
3052 * search SAD.
3053 * OUT:
3054 * NULL : not found
3055 * others : found, pointer to a SA.
3056 */
3057 static struct secashead *
3058 key_getsah(const struct secasindex *saidx)
3059 {
3060 struct secashead *sah;
3061
3062 LIST_FOREACH(sah, &sahtree, chain) {
3063 if (sah->state == SADB_SASTATE_DEAD)
3064 continue;
3065 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3066 return sah;
3067 }
3068
3069 return NULL;
3070 }
3071
3072 /*
3073 * check not to be duplicated SPI.
3074 * NOTE: this function is too slow due to searching all SAD.
3075 * OUT:
3076 * NULL : not found
3077 * others : found, pointer to a SA.
3078 */
3079 static struct secasvar *
3080 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3081 {
3082 struct secashead *sah;
3083 struct secasvar *sav;
3084
3085 /* check address family */
3086 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3087 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3088 return NULL;
3089 }
3090
3091 /* check all SAD */
3092 LIST_FOREACH(sah, &sahtree, chain) {
3093 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3094 continue;
3095 sav = key_getsavbyspi(sah, spi);
3096 if (sav != NULL)
3097 return sav;
3098 }
3099
3100 return NULL;
3101 }
3102
3103 /*
3104 * search SAD litmited alive SA, protocol, SPI.
3105 * OUT:
3106 * NULL : not found
3107 * others : found, pointer to a SA.
3108 */
3109 static struct secasvar *
3110 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3111 {
3112 struct secasvar *sav;
3113 u_int state;
3114
3115 /* search all status */
3116 SASTATE_ALIVE_FOREACH(state) {
3117 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3118
3119 /* sanity check */
3120 if (sav->state != state) {
3121 IPSECLOG(LOG_DEBUG,
3122 "invalid sav->state (queue: %d SA: %d)\n",
3123 state, sav->state);
3124 continue;
3125 }
3126
3127 if (sav->spi == spi)
3128 return sav;
3129 }
3130 }
3131
3132 return NULL;
3133 }
3134
3135 /*
3136 * Free allocated data to member variables of sav:
3137 * sav->replay, sav->key_* and sav->lft_*.
3138 */
3139 static void
3140 key_freesaval(struct secasvar *sav)
3141 {
3142
3143 if (sav->replay != NULL) {
3144 kmem_intr_free(sav->replay, sav->replay_len);
3145 sav->replay = NULL;
3146 sav->replay_len = 0;
3147 }
3148 if (sav->key_auth != NULL) {
3149 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3150 sav->key_auth = NULL;
3151 sav->key_auth_len = 0;
3152 }
3153 if (sav->key_enc != NULL) {
3154 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3155 sav->key_enc = NULL;
3156 sav->key_enc_len = 0;
3157 }
3158 if (sav->lft_c != NULL) {
3159 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3160 sav->lft_c = NULL;
3161 }
3162 if (sav->lft_h != NULL) {
3163 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3164 sav->lft_h = NULL;
3165 }
3166 if (sav->lft_s != NULL) {
3167 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3168 sav->lft_s = NULL;
3169 }
3170 }
3171
3172 /*
3173 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3174 * You must update these if need.
3175 * OUT: 0: success.
3176 * !0: failure.
3177 *
3178 * does not modify mbuf. does not free mbuf on error.
3179 */
3180 static int
3181 key_setsaval(struct secasvar *sav, struct mbuf *m,
3182 const struct sadb_msghdr *mhp)
3183 {
3184 int error = 0;
3185
3186 KASSERT(!cpu_softintr_p());
3187 KASSERT(m != NULL);
3188 KASSERT(mhp != NULL);
3189 KASSERT(mhp->msg != NULL);
3190
3191 /* initialization */
3192 key_freesaval(sav);
3193 sav->tdb_xform = NULL; /* transform */
3194 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3195 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3196 sav->tdb_compalgxform = NULL; /* compression algorithm */
3197 sav->natt_type = 0;
3198 sav->esp_frag = 0;
3199
3200 /* SA */
3201 if (mhp->ext[SADB_EXT_SA] != NULL) {
3202 const struct sadb_sa *sa0;
3203
3204 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3205 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3206 error = EINVAL;
3207 goto fail;
3208 }
3209
3210 sav->alg_auth = sa0->sadb_sa_auth;
3211 sav->alg_enc = sa0->sadb_sa_encrypt;
3212 sav->flags = sa0->sadb_sa_flags;
3213
3214 /* replay window */
3215 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3216 size_t len = sizeof(struct secreplay) +
3217 sa0->sadb_sa_replay;
3218 sav->replay = kmem_zalloc(len, KM_SLEEP);
3219 sav->replay_len = len;
3220 if (sa0->sadb_sa_replay != 0)
3221 sav->replay->bitmap = (char*)(sav->replay+1);
3222 sav->replay->wsize = sa0->sadb_sa_replay;
3223 }
3224 }
3225
3226 /* Authentication keys */
3227 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3228 const struct sadb_key *key0;
3229 int len;
3230
3231 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3232 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3233
3234 error = 0;
3235 if (len < sizeof(*key0)) {
3236 error = EINVAL;
3237 goto fail;
3238 }
3239 switch (mhp->msg->sadb_msg_satype) {
3240 case SADB_SATYPE_AH:
3241 case SADB_SATYPE_ESP:
3242 case SADB_X_SATYPE_TCPSIGNATURE:
3243 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3244 sav->alg_auth != SADB_X_AALG_NULL)
3245 error = EINVAL;
3246 break;
3247 case SADB_X_SATYPE_IPCOMP:
3248 default:
3249 error = EINVAL;
3250 break;
3251 }
3252 if (error) {
3253 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3254 goto fail;
3255 }
3256
3257 sav->key_auth = key_newbuf(key0, len);
3258 sav->key_auth_len = len;
3259 }
3260
3261 /* Encryption key */
3262 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3263 const struct sadb_key *key0;
3264 int len;
3265
3266 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3267 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3268
3269 error = 0;
3270 if (len < sizeof(*key0)) {
3271 error = EINVAL;
3272 goto fail;
3273 }
3274 switch (mhp->msg->sadb_msg_satype) {
3275 case SADB_SATYPE_ESP:
3276 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3277 sav->alg_enc != SADB_EALG_NULL) {
3278 error = EINVAL;
3279 break;
3280 }
3281 sav->key_enc = key_newbuf(key0, len);
3282 sav->key_enc_len = len;
3283 break;
3284 case SADB_X_SATYPE_IPCOMP:
3285 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3286 error = EINVAL;
3287 sav->key_enc = NULL; /*just in case*/
3288 break;
3289 case SADB_SATYPE_AH:
3290 case SADB_X_SATYPE_TCPSIGNATURE:
3291 default:
3292 error = EINVAL;
3293 break;
3294 }
3295 if (error) {
3296 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3297 goto fail;
3298 }
3299 }
3300
3301 /* set iv */
3302 sav->ivlen = 0;
3303
3304 switch (mhp->msg->sadb_msg_satype) {
3305 case SADB_SATYPE_AH:
3306 error = xform_init(sav, XF_AH);
3307 break;
3308 case SADB_SATYPE_ESP:
3309 error = xform_init(sav, XF_ESP);
3310 break;
3311 case SADB_X_SATYPE_IPCOMP:
3312 error = xform_init(sav, XF_IPCOMP);
3313 break;
3314 case SADB_X_SATYPE_TCPSIGNATURE:
3315 error = xform_init(sav, XF_TCPSIGNATURE);
3316 break;
3317 }
3318 if (error) {
3319 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3320 mhp->msg->sadb_msg_satype);
3321 goto fail;
3322 }
3323
3324 /* reset created */
3325 sav->created = time_uptime;
3326
3327 /* make lifetime for CURRENT */
3328 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3329
3330 sav->lft_c->sadb_lifetime_len =
3331 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3332 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3333 sav->lft_c->sadb_lifetime_allocations = 0;
3334 sav->lft_c->sadb_lifetime_bytes = 0;
3335 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3336 sav->lft_c->sadb_lifetime_usetime = 0;
3337
3338 /* lifetimes for HARD and SOFT */
3339 {
3340 const struct sadb_lifetime *lft0;
3341
3342 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3343 if (lft0 != NULL) {
3344 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3345 error = EINVAL;
3346 goto fail;
3347 }
3348 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3349 }
3350
3351 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3352 if (lft0 != NULL) {
3353 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3354 error = EINVAL;
3355 goto fail;
3356 }
3357 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3358 /* to be initialize ? */
3359 }
3360 }
3361
3362 return 0;
3363
3364 fail:
3365 /* initialization */
3366 key_freesaval(sav);
3367
3368 return error;
3369 }
3370
3371 /*
3372 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3373 * OUT: 0: valid
3374 * other: errno
3375 */
3376 static int
3377 key_mature(struct secasvar *sav)
3378 {
3379 int error;
3380
3381 /* check SPI value */
3382 switch (sav->sah->saidx.proto) {
3383 case IPPROTO_ESP:
3384 case IPPROTO_AH:
3385 if (ntohl(sav->spi) <= 255) {
3386 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3387 (u_int32_t)ntohl(sav->spi));
3388 return EINVAL;
3389 }
3390 break;
3391 }
3392
3393 /* check satype */
3394 switch (sav->sah->saidx.proto) {
3395 case IPPROTO_ESP:
3396 /* check flags */
3397 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3398 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3399 IPSECLOG(LOG_DEBUG,
3400 "invalid flag (derived) given to old-esp.\n");
3401 return EINVAL;
3402 }
3403 error = xform_init(sav, XF_ESP);
3404 break;
3405 case IPPROTO_AH:
3406 /* check flags */
3407 if (sav->flags & SADB_X_EXT_DERIV) {
3408 IPSECLOG(LOG_DEBUG,
3409 "invalid flag (derived) given to AH SA.\n");
3410 return EINVAL;
3411 }
3412 if (sav->alg_enc != SADB_EALG_NONE) {
3413 IPSECLOG(LOG_DEBUG,
3414 "protocol and algorithm mismated.\n");
3415 return(EINVAL);
3416 }
3417 error = xform_init(sav, XF_AH);
3418 break;
3419 case IPPROTO_IPCOMP:
3420 if (sav->alg_auth != SADB_AALG_NONE) {
3421 IPSECLOG(LOG_DEBUG,
3422 "protocol and algorithm mismated.\n");
3423 return(EINVAL);
3424 }
3425 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3426 && ntohl(sav->spi) >= 0x10000) {
3427 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3428 return(EINVAL);
3429 }
3430 error = xform_init(sav, XF_IPCOMP);
3431 break;
3432 case IPPROTO_TCP:
3433 if (sav->alg_enc != SADB_EALG_NONE) {
3434 IPSECLOG(LOG_DEBUG,
3435 "protocol and algorithm mismated.\n");
3436 return(EINVAL);
3437 }
3438 error = xform_init(sav, XF_TCPSIGNATURE);
3439 break;
3440 default:
3441 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3442 error = EPROTONOSUPPORT;
3443 break;
3444 }
3445 if (error == 0)
3446 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3447 return (error);
3448 }
3449
3450 /*
3451 * subroutine for SADB_GET and SADB_DUMP.
3452 */
3453 static struct mbuf *
3454 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3455 u_int32_t seq, u_int32_t pid)
3456 {
3457 struct mbuf *result = NULL, *tres = NULL, *m;
3458 int l = 0;
3459 int i;
3460 void *p;
3461 struct sadb_lifetime lt;
3462 int dumporder[] = {
3463 SADB_EXT_SA, SADB_X_EXT_SA2,
3464 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3465 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3466 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3467 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3468 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3469 SADB_X_EXT_NAT_T_TYPE,
3470 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3471 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3472 SADB_X_EXT_NAT_T_FRAG,
3473
3474 };
3475
3476 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3477 if (m == NULL)
3478 goto fail;
3479 result = m;
3480
3481 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3482 m = NULL;
3483 p = NULL;
3484 switch (dumporder[i]) {
3485 case SADB_EXT_SA:
3486 m = key_setsadbsa(sav);
3487 break;
3488
3489 case SADB_X_EXT_SA2:
3490 m = key_setsadbxsa2(sav->sah->saidx.mode,
3491 sav->replay ? sav->replay->count : 0,
3492 sav->sah->saidx.reqid);
3493 break;
3494
3495 case SADB_EXT_ADDRESS_SRC:
3496 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3497 &sav->sah->saidx.src.sa,
3498 FULLMASK, IPSEC_ULPROTO_ANY);
3499 break;
3500
3501 case SADB_EXT_ADDRESS_DST:
3502 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3503 &sav->sah->saidx.dst.sa,
3504 FULLMASK, IPSEC_ULPROTO_ANY);
3505 break;
3506
3507 case SADB_EXT_KEY_AUTH:
3508 if (!sav->key_auth)
3509 continue;
3510 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3511 p = sav->key_auth;
3512 break;
3513
3514 case SADB_EXT_KEY_ENCRYPT:
3515 if (!sav->key_enc)
3516 continue;
3517 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3518 p = sav->key_enc;
3519 break;
3520
3521 case SADB_EXT_LIFETIME_CURRENT:
3522 if (!sav->lft_c)
3523 continue;
3524 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3525 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3526 lt.sadb_lifetime_addtime += time_second - time_uptime;
3527 lt.sadb_lifetime_usetime += time_second - time_uptime;
3528 p = <
3529 break;
3530
3531 case SADB_EXT_LIFETIME_HARD:
3532 if (!sav->lft_h)
3533 continue;
3534 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3535 p = sav->lft_h;
3536 break;
3537
3538 case SADB_EXT_LIFETIME_SOFT:
3539 if (!sav->lft_s)
3540 continue;
3541 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3542 p = sav->lft_s;
3543 break;
3544
3545 case SADB_X_EXT_NAT_T_TYPE:
3546 m = key_setsadbxtype(sav->natt_type);
3547 break;
3548
3549 case SADB_X_EXT_NAT_T_DPORT:
3550 if (sav->natt_type == 0)
3551 continue;
3552 m = key_setsadbxport(
3553 key_portfromsaddr(&sav->sah->saidx.dst),
3554 SADB_X_EXT_NAT_T_DPORT);
3555 break;
3556
3557 case SADB_X_EXT_NAT_T_SPORT:
3558 if (sav->natt_type == 0)
3559 continue;
3560 m = key_setsadbxport(
3561 key_portfromsaddr(&sav->sah->saidx.src),
3562 SADB_X_EXT_NAT_T_SPORT);
3563 break;
3564
3565 case SADB_X_EXT_NAT_T_FRAG:
3566 /* don't send frag info if not set */
3567 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3568 continue;
3569 m = key_setsadbxfrag(sav->esp_frag);
3570 break;
3571
3572 case SADB_X_EXT_NAT_T_OAI:
3573 case SADB_X_EXT_NAT_T_OAR:
3574 continue;
3575
3576 case SADB_EXT_ADDRESS_PROXY:
3577 case SADB_EXT_IDENTITY_SRC:
3578 case SADB_EXT_IDENTITY_DST:
3579 /* XXX: should we brought from SPD ? */
3580 case SADB_EXT_SENSITIVITY:
3581 default:
3582 continue;
3583 }
3584
3585 KASSERT(!(m && p));
3586 if (!m && !p)
3587 goto fail;
3588 if (p && tres) {
3589 M_PREPEND(tres, l, M_DONTWAIT);
3590 if (!tres)
3591 goto fail;
3592 memcpy(mtod(tres, void *), p, l);
3593 continue;
3594 }
3595 if (p) {
3596 m = key_alloc_mbuf(l);
3597 if (!m)
3598 goto fail;
3599 m_copyback(m, 0, l, p);
3600 }
3601
3602 if (tres)
3603 m_cat(m, tres);
3604 tres = m;
3605 }
3606
3607 m_cat(result, tres);
3608 tres = NULL; /* avoid free on error below */
3609
3610 if (result->m_len < sizeof(struct sadb_msg)) {
3611 result = m_pullup(result, sizeof(struct sadb_msg));
3612 if (result == NULL)
3613 goto fail;
3614 }
3615
3616 result->m_pkthdr.len = 0;
3617 for (m = result; m; m = m->m_next)
3618 result->m_pkthdr.len += m->m_len;
3619
3620 mtod(result, struct sadb_msg *)->sadb_msg_len =
3621 PFKEY_UNIT64(result->m_pkthdr.len);
3622
3623 return result;
3624
3625 fail:
3626 m_freem(result);
3627 m_freem(tres);
3628 return NULL;
3629 }
3630
3631
3632 /*
3633 * set a type in sadb_x_nat_t_type
3634 */
3635 static struct mbuf *
3636 key_setsadbxtype(u_int16_t type)
3637 {
3638 struct mbuf *m;
3639 size_t len;
3640 struct sadb_x_nat_t_type *p;
3641
3642 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3643
3644 m = key_alloc_mbuf(len);
3645 if (!m || m->m_next) { /*XXX*/
3646 if (m)
3647 m_freem(m);
3648 return NULL;
3649 }
3650
3651 p = mtod(m, struct sadb_x_nat_t_type *);
3652
3653 memset(p, 0, len);
3654 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3655 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3656 p->sadb_x_nat_t_type_type = type;
3657
3658 return m;
3659 }
3660 /*
3661 * set a port in sadb_x_nat_t_port. port is in network order
3662 */
3663 static struct mbuf *
3664 key_setsadbxport(u_int16_t port, u_int16_t type)
3665 {
3666 struct mbuf *m;
3667 size_t len;
3668 struct sadb_x_nat_t_port *p;
3669
3670 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3671
3672 m = key_alloc_mbuf(len);
3673 if (!m || m->m_next) { /*XXX*/
3674 if (m)
3675 m_freem(m);
3676 return NULL;
3677 }
3678
3679 p = mtod(m, struct sadb_x_nat_t_port *);
3680
3681 memset(p, 0, len);
3682 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3683 p->sadb_x_nat_t_port_exttype = type;
3684 p->sadb_x_nat_t_port_port = port;
3685
3686 return m;
3687 }
3688
3689 /*
3690 * set fragmentation info in sadb_x_nat_t_frag
3691 */
3692 static struct mbuf *
3693 key_setsadbxfrag(u_int16_t flen)
3694 {
3695 struct mbuf *m;
3696 size_t len;
3697 struct sadb_x_nat_t_frag *p;
3698
3699 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3700
3701 m = key_alloc_mbuf(len);
3702 if (!m || m->m_next) { /*XXX*/
3703 if (m)
3704 m_freem(m);
3705 return NULL;
3706 }
3707
3708 p = mtod(m, struct sadb_x_nat_t_frag *);
3709
3710 memset(p, 0, len);
3711 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3712 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3713 p->sadb_x_nat_t_frag_fraglen = flen;
3714
3715 return m;
3716 }
3717
3718 /*
3719 * Get port from sockaddr, port is in network order
3720 */
3721 u_int16_t
3722 key_portfromsaddr(const union sockaddr_union *saddr)
3723 {
3724 u_int16_t port;
3725
3726 switch (saddr->sa.sa_family) {
3727 case AF_INET: {
3728 port = saddr->sin.sin_port;
3729 break;
3730 }
3731 #ifdef INET6
3732 case AF_INET6: {
3733 port = saddr->sin6.sin6_port;
3734 break;
3735 }
3736 #endif
3737 default:
3738 printf("%s: unexpected address family\n", __func__);
3739 port = 0;
3740 break;
3741 }
3742
3743 return port;
3744 }
3745
3746
3747 /*
3748 * Set port is struct sockaddr. port is in network order
3749 */
3750 static void
3751 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3752 {
3753 switch (saddr->sa.sa_family) {
3754 case AF_INET: {
3755 saddr->sin.sin_port = port;
3756 break;
3757 }
3758 #ifdef INET6
3759 case AF_INET6: {
3760 saddr->sin6.sin6_port = port;
3761 break;
3762 }
3763 #endif
3764 default:
3765 printf("%s: unexpected address family %d\n", __func__,
3766 saddr->sa.sa_family);
3767 break;
3768 }
3769
3770 return;
3771 }
3772
3773 /*
3774 * Safety check sa_len
3775 */
3776 static int
3777 key_checksalen(const union sockaddr_union *saddr)
3778 {
3779 switch (saddr->sa.sa_family) {
3780 case AF_INET:
3781 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3782 return -1;
3783 break;
3784 #ifdef INET6
3785 case AF_INET6:
3786 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3787 return -1;
3788 break;
3789 #endif
3790 default:
3791 printf("%s: unexpected sa_family %d\n", __func__,
3792 saddr->sa.sa_family);
3793 return -1;
3794 break;
3795 }
3796 return 0;
3797 }
3798
3799
3800 /*
3801 * set data into sadb_msg.
3802 */
3803 static struct mbuf *
3804 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3805 u_int32_t seq, pid_t pid, u_int16_t reserved)
3806 {
3807 struct mbuf *m;
3808 struct sadb_msg *p;
3809 int len;
3810
3811 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3812 if (len > MCLBYTES)
3813 return NULL;
3814 MGETHDR(m, M_DONTWAIT, MT_DATA);
3815 if (m && len > MHLEN) {
3816 MCLGET(m, M_DONTWAIT);
3817 if ((m->m_flags & M_EXT) == 0) {
3818 m_freem(m);
3819 m = NULL;
3820 }
3821 }
3822 if (!m)
3823 return NULL;
3824 m->m_pkthdr.len = m->m_len = len;
3825 m->m_next = NULL;
3826
3827 p = mtod(m, struct sadb_msg *);
3828
3829 memset(p, 0, len);
3830 p->sadb_msg_version = PF_KEY_V2;
3831 p->sadb_msg_type = type;
3832 p->sadb_msg_errno = 0;
3833 p->sadb_msg_satype = satype;
3834 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3835 p->sadb_msg_reserved = reserved;
3836 p->sadb_msg_seq = seq;
3837 p->sadb_msg_pid = (u_int32_t)pid;
3838
3839 return m;
3840 }
3841
3842 /*
3843 * copy secasvar data into sadb_address.
3844 */
3845 static struct mbuf *
3846 key_setsadbsa(struct secasvar *sav)
3847 {
3848 struct mbuf *m;
3849 struct sadb_sa *p;
3850 int len;
3851
3852 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3853 m = key_alloc_mbuf(len);
3854 if (!m || m->m_next) { /*XXX*/
3855 if (m)
3856 m_freem(m);
3857 return NULL;
3858 }
3859
3860 p = mtod(m, struct sadb_sa *);
3861
3862 memset(p, 0, len);
3863 p->sadb_sa_len = PFKEY_UNIT64(len);
3864 p->sadb_sa_exttype = SADB_EXT_SA;
3865 p->sadb_sa_spi = sav->spi;
3866 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3867 p->sadb_sa_state = sav->state;
3868 p->sadb_sa_auth = sav->alg_auth;
3869 p->sadb_sa_encrypt = sav->alg_enc;
3870 p->sadb_sa_flags = sav->flags;
3871
3872 return m;
3873 }
3874
3875 /*
3876 * set data into sadb_address.
3877 */
3878 static struct mbuf *
3879 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3880 u_int8_t prefixlen, u_int16_t ul_proto)
3881 {
3882 struct mbuf *m;
3883 struct sadb_address *p;
3884 size_t len;
3885
3886 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3887 PFKEY_ALIGN8(saddr->sa_len);
3888 m = key_alloc_mbuf(len);
3889 if (!m || m->m_next) { /*XXX*/
3890 if (m)
3891 m_freem(m);
3892 return NULL;
3893 }
3894
3895 p = mtod(m, struct sadb_address *);
3896
3897 memset(p, 0, len);
3898 p->sadb_address_len = PFKEY_UNIT64(len);
3899 p->sadb_address_exttype = exttype;
3900 p->sadb_address_proto = ul_proto;
3901 if (prefixlen == FULLMASK) {
3902 switch (saddr->sa_family) {
3903 case AF_INET:
3904 prefixlen = sizeof(struct in_addr) << 3;
3905 break;
3906 case AF_INET6:
3907 prefixlen = sizeof(struct in6_addr) << 3;
3908 break;
3909 default:
3910 ; /*XXX*/
3911 }
3912 }
3913 p->sadb_address_prefixlen = prefixlen;
3914 p->sadb_address_reserved = 0;
3915
3916 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3917 saddr, saddr->sa_len);
3918
3919 return m;
3920 }
3921
3922 #if 0
3923 /*
3924 * set data into sadb_ident.
3925 */
3926 static struct mbuf *
3927 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3928 void *string, int stringlen, u_int64_t id)
3929 {
3930 struct mbuf *m;
3931 struct sadb_ident *p;
3932 size_t len;
3933
3934 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3935 m = key_alloc_mbuf(len);
3936 if (!m || m->m_next) { /*XXX*/
3937 if (m)
3938 m_freem(m);
3939 return NULL;
3940 }
3941
3942 p = mtod(m, struct sadb_ident *);
3943
3944 memset(p, 0, len);
3945 p->sadb_ident_len = PFKEY_UNIT64(len);
3946 p->sadb_ident_exttype = exttype;
3947 p->sadb_ident_type = idtype;
3948 p->sadb_ident_reserved = 0;
3949 p->sadb_ident_id = id;
3950
3951 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3952 string, stringlen);
3953
3954 return m;
3955 }
3956 #endif
3957
3958 /*
3959 * set data into sadb_x_sa2.
3960 */
3961 static struct mbuf *
3962 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3963 {
3964 struct mbuf *m;
3965 struct sadb_x_sa2 *p;
3966 size_t len;
3967
3968 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3969 m = key_alloc_mbuf(len);
3970 if (!m || m->m_next) { /*XXX*/
3971 if (m)
3972 m_freem(m);
3973 return NULL;
3974 }
3975
3976 p = mtod(m, struct sadb_x_sa2 *);
3977
3978 memset(p, 0, len);
3979 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3980 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3981 p->sadb_x_sa2_mode = mode;
3982 p->sadb_x_sa2_reserved1 = 0;
3983 p->sadb_x_sa2_reserved2 = 0;
3984 p->sadb_x_sa2_sequence = seq;
3985 p->sadb_x_sa2_reqid = reqid;
3986
3987 return m;
3988 }
3989
3990 /*
3991 * set data into sadb_x_policy
3992 */
3993 static struct mbuf *
3994 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3995 {
3996 struct mbuf *m;
3997 struct sadb_x_policy *p;
3998 size_t len;
3999
4000 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4001 m = key_alloc_mbuf(len);
4002 if (!m || m->m_next) { /*XXX*/
4003 if (m)
4004 m_freem(m);
4005 return NULL;
4006 }
4007
4008 p = mtod(m, struct sadb_x_policy *);
4009
4010 memset(p, 0, len);
4011 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4012 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4013 p->sadb_x_policy_type = type;
4014 p->sadb_x_policy_dir = dir;
4015 p->sadb_x_policy_id = id;
4016
4017 return m;
4018 }
4019
4020 /* %%% utilities */
4021 /*
4022 * copy a buffer into the new buffer allocated.
4023 */
4024 static void *
4025 key_newbuf(const void *src, u_int len)
4026 {
4027 void *new;
4028
4029 new = kmem_alloc(len, KM_SLEEP);
4030 memcpy(new, src, len);
4031
4032 return new;
4033 }
4034
4035 /* compare my own address
4036 * OUT: 1: true, i.e. my address.
4037 * 0: false
4038 */
4039 int
4040 key_ismyaddr(const struct sockaddr *sa)
4041 {
4042 #ifdef INET
4043 const struct sockaddr_in *sin;
4044 const struct in_ifaddr *ia;
4045 int s;
4046 #endif
4047
4048 KASSERT(sa != NULL);
4049
4050 switch (sa->sa_family) {
4051 #ifdef INET
4052 case AF_INET:
4053 sin = (const struct sockaddr_in *)sa;
4054 s = pserialize_read_enter();
4055 IN_ADDRLIST_READER_FOREACH(ia) {
4056 if (sin->sin_family == ia->ia_addr.sin_family &&
4057 sin->sin_len == ia->ia_addr.sin_len &&
4058 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4059 {
4060 pserialize_read_exit(s);
4061 return 1;
4062 }
4063 }
4064 pserialize_read_exit(s);
4065 break;
4066 #endif
4067 #ifdef INET6
4068 case AF_INET6:
4069 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4070 #endif
4071 }
4072
4073 return 0;
4074 }
4075
4076 #ifdef INET6
4077 /*
4078 * compare my own address for IPv6.
4079 * 1: ours
4080 * 0: other
4081 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4082 */
4083 #include <netinet6/in6_var.h>
4084
4085 static int
4086 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4087 {
4088 struct in6_ifaddr *ia;
4089 int s;
4090 struct psref psref;
4091 int bound;
4092 int ours = 1;
4093
4094 bound = curlwp_bind();
4095 s = pserialize_read_enter();
4096 IN6_ADDRLIST_READER_FOREACH(ia) {
4097 bool ingroup;
4098
4099 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4100 (const struct sockaddr *)&ia->ia_addr, 0) == 0) {
4101 pserialize_read_exit(s);
4102 goto ours;
4103 }
4104 ia6_acquire(ia, &psref);
4105 pserialize_read_exit(s);
4106
4107 /*
4108 * XXX Multicast
4109 * XXX why do we care about multlicast here while we don't care
4110 * about IPv4 multicast??
4111 * XXX scope
4112 */
4113 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4114 if (ingroup) {
4115 ia6_release(ia, &psref);
4116 goto ours;
4117 }
4118
4119 s = pserialize_read_enter();
4120 ia6_release(ia, &psref);
4121 }
4122 pserialize_read_exit(s);
4123
4124 /* loopback, just for safety */
4125 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4126 goto ours;
4127
4128 ours = 0;
4129 ours:
4130 curlwp_bindx(bound);
4131
4132 return ours;
4133 }
4134 #endif /*INET6*/
4135
4136 /*
4137 * compare two secasindex structure.
4138 * flag can specify to compare 2 saidxes.
4139 * compare two secasindex structure without both mode and reqid.
4140 * don't compare port.
4141 * IN:
4142 * saidx0: source, it can be in SAD.
4143 * saidx1: object.
4144 * OUT:
4145 * 1 : equal
4146 * 0 : not equal
4147 */
4148 static int
4149 key_cmpsaidx(
4150 const struct secasindex *saidx0,
4151 const struct secasindex *saidx1,
4152 int flag)
4153 {
4154 int chkport;
4155 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4156
4157 /* sanity */
4158 if (saidx0 == NULL && saidx1 == NULL)
4159 return 1;
4160
4161 if (saidx0 == NULL || saidx1 == NULL)
4162 return 0;
4163
4164 if (saidx0->proto != saidx1->proto)
4165 return 0;
4166
4167 if (flag == CMP_EXACTLY) {
4168 if (saidx0->mode != saidx1->mode)
4169 return 0;
4170 if (saidx0->reqid != saidx1->reqid)
4171 return 0;
4172 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4173 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4174 return 0;
4175 } else {
4176
4177 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4178 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4179 /*
4180 * If reqid of SPD is non-zero, unique SA is required.
4181 * The result must be of same reqid in this case.
4182 */
4183 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4184 return 0;
4185 }
4186
4187 if (flag == CMP_MODE_REQID) {
4188 if (saidx0->mode != IPSEC_MODE_ANY &&
4189 saidx0->mode != saidx1->mode)
4190 return 0;
4191 }
4192
4193
4194 sa0src = &saidx0->src.sa;
4195 sa0dst = &saidx0->dst.sa;
4196 sa1src = &saidx1->src.sa;
4197 sa1dst = &saidx1->dst.sa;
4198 /*
4199 * If NAT-T is enabled, check ports for tunnel mode.
4200 * Don't do it for transport mode, as there is no
4201 * port information available in the SP.
4202 * Also don't check ports if they are set to zero
4203 * in the SPD: This means we have a non-generated
4204 * SPD which can't know UDP ports.
4205 */
4206 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4207 chkport = PORT_LOOSE;
4208 else
4209 chkport = PORT_NONE;
4210
4211 if (key_sockaddrcmp(sa0src, sa1src, chkport) != 0) {
4212 return 0;
4213 }
4214 if (key_sockaddrcmp(sa0dst, sa1dst, chkport) != 0) {
4215 return 0;
4216 }
4217 }
4218
4219 return 1;
4220 }
4221
4222 /*
4223 * compare two secindex structure exactly.
4224 * IN:
4225 * spidx0: source, it is often in SPD.
4226 * spidx1: object, it is often from PFKEY message.
4227 * OUT:
4228 * 1 : equal
4229 * 0 : not equal
4230 */
4231 int
4232 key_cmpspidx_exactly(
4233 const struct secpolicyindex *spidx0,
4234 const struct secpolicyindex *spidx1)
4235 {
4236 /* sanity */
4237 if (spidx0 == NULL && spidx1 == NULL)
4238 return 1;
4239
4240 if (spidx0 == NULL || spidx1 == NULL)
4241 return 0;
4242
4243 if (spidx0->prefs != spidx1->prefs ||
4244 spidx0->prefd != spidx1->prefd ||
4245 spidx0->ul_proto != spidx1->ul_proto)
4246 return 0;
4247
4248 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) == 0 &&
4249 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT) == 0;
4250 }
4251
4252 /*
4253 * compare two secindex structure with mask.
4254 * IN:
4255 * spidx0: source, it is often in SPD.
4256 * spidx1: object, it is often from IP header.
4257 * OUT:
4258 * 1 : equal
4259 * 0 : not equal
4260 */
4261 int
4262 key_cmpspidx_withmask(
4263 const struct secpolicyindex *spidx0,
4264 const struct secpolicyindex *spidx1)
4265 {
4266 /* sanity */
4267 if (spidx0 == NULL && spidx1 == NULL)
4268 return 1;
4269
4270 if (spidx0 == NULL || spidx1 == NULL)
4271 return 0;
4272
4273 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4274 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4275 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4276 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4277 return 0;
4278
4279 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4280 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4281 spidx0->ul_proto != spidx1->ul_proto)
4282 return 0;
4283
4284 switch (spidx0->src.sa.sa_family) {
4285 case AF_INET:
4286 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4287 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4288 return 0;
4289 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4290 &spidx1->src.sin.sin_addr, spidx0->prefs))
4291 return 0;
4292 break;
4293 case AF_INET6:
4294 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4295 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4296 return 0;
4297 /*
4298 * scope_id check. if sin6_scope_id is 0, we regard it
4299 * as a wildcard scope, which matches any scope zone ID.
4300 */
4301 if (spidx0->src.sin6.sin6_scope_id &&
4302 spidx1->src.sin6.sin6_scope_id &&
4303 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4304 return 0;
4305 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4306 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4307 return 0;
4308 break;
4309 default:
4310 /* XXX */
4311 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4312 return 0;
4313 break;
4314 }
4315
4316 switch (spidx0->dst.sa.sa_family) {
4317 case AF_INET:
4318 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4319 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4320 return 0;
4321 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4322 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4323 return 0;
4324 break;
4325 case AF_INET6:
4326 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4327 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4328 return 0;
4329 /*
4330 * scope_id check. if sin6_scope_id is 0, we regard it
4331 * as a wildcard scope, which matches any scope zone ID.
4332 */
4333 if (spidx0->src.sin6.sin6_scope_id &&
4334 spidx1->src.sin6.sin6_scope_id &&
4335 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4336 return 0;
4337 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4338 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4339 return 0;
4340 break;
4341 default:
4342 /* XXX */
4343 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4344 return 0;
4345 break;
4346 }
4347
4348 /* XXX Do we check other field ? e.g. flowinfo */
4349
4350 return 1;
4351 }
4352
4353 /* returns 0 on match */
4354 static int
4355 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4356 {
4357 switch (howport) {
4358 case PORT_NONE:
4359 return 0;
4360 case PORT_LOOSE:
4361 if (port1 == 0 || port2 == 0)
4362 return 0;
4363 /*FALLTHROUGH*/
4364 case PORT_STRICT:
4365 if (port1 != port2) {
4366 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4367 "port fail %d != %d\n", port1, port2);
4368 return 1;
4369 }
4370 return 0;
4371 default:
4372 KASSERT(0);
4373 return 1;
4374 }
4375 }
4376
4377 /* returns 0 on match */
4378 static int
4379 key_sockaddrcmp(
4380 const struct sockaddr *sa1,
4381 const struct sockaddr *sa2,
4382 int howport)
4383 {
4384 const struct sockaddr_in *sin1, *sin2;
4385 const struct sockaddr_in6 *sin61, *sin62;
4386
4387 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4388 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4389 "fam/len fail %d != %d || %d != %d\n",
4390 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4391 sa2->sa_len);
4392 return 1;
4393 }
4394
4395 switch (sa1->sa_family) {
4396 case AF_INET:
4397 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4398 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4399 "len fail %d != %zu\n",
4400 sa1->sa_len, sizeof(struct sockaddr_in));
4401 return 1;
4402 }
4403 sin1 = (const struct sockaddr_in *)sa1;
4404 sin2 = (const struct sockaddr_in *)sa2;
4405 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4406 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4407 "addr fail %#x != %#x\n",
4408 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4409 return 1;
4410 }
4411 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4412 return 1;
4413 }
4414 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4415 "addr success %#x[%d] == %#x[%d]\n",
4416 sin1->sin_addr.s_addr, sin1->sin_port,
4417 sin2->sin_addr.s_addr, sin2->sin_port);
4418 break;
4419 case AF_INET6:
4420 sin61 = (const struct sockaddr_in6 *)sa1;
4421 sin62 = (const struct sockaddr_in6 *)sa2;
4422 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4423 return 1; /*EINVAL*/
4424
4425 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4426 return 1;
4427 }
4428 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4429 return 1;
4430 }
4431 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4432 return 1;
4433 }
4434 break;
4435 default:
4436 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4437 return 1;
4438 break;
4439 }
4440
4441 return 0;
4442 }
4443
4444 /*
4445 * compare two buffers with mask.
4446 * IN:
4447 * addr1: source
4448 * addr2: object
4449 * bits: Number of bits to compare
4450 * OUT:
4451 * 1 : equal
4452 * 0 : not equal
4453 */
4454 static int
4455 key_bbcmp(const void *a1, const void *a2, u_int bits)
4456 {
4457 const unsigned char *p1 = a1;
4458 const unsigned char *p2 = a2;
4459
4460 /* XXX: This could be considerably faster if we compare a word
4461 * at a time, but it is complicated on LSB Endian machines */
4462
4463 /* Handle null pointers */
4464 if (p1 == NULL || p2 == NULL)
4465 return (p1 == p2);
4466
4467 while (bits >= 8) {
4468 if (*p1++ != *p2++)
4469 return 0;
4470 bits -= 8;
4471 }
4472
4473 if (bits > 0) {
4474 u_int8_t mask = ~((1<<(8-bits))-1);
4475 if ((*p1 & mask) != (*p2 & mask))
4476 return 0;
4477 }
4478 return 1; /* Match! */
4479 }
4480
4481 /*
4482 * time handler.
4483 * scanning SPD and SAD to check status for each entries,
4484 * and do to remove or to expire.
4485 */
4486 static void
4487 key_timehandler_work(struct work *wk, void *arg)
4488 {
4489 u_int dir;
4490 int s;
4491 time_t now = time_uptime;
4492
4493 s = splsoftnet();
4494 mutex_enter(softnet_lock);
4495
4496 /* SPD */
4497 {
4498 struct secpolicy *sp, *nextsp;
4499
4500 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4501 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4502 if (sp->state == IPSEC_SPSTATE_DEAD) {
4503 key_sp_unlink(sp); /*XXX*/
4504
4505 /* 'sp' dead; continue transfers to
4506 * 'sp = nextsp'
4507 */
4508 continue;
4509 }
4510
4511 if (sp->lifetime == 0 && sp->validtime == 0)
4512 continue;
4513
4514 /* the deletion will occur next time */
4515 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4516 (sp->validtime && now - sp->lastused > sp->validtime)) {
4517 key_sp_dead(sp);
4518 key_spdexpire(sp);
4519 continue;
4520 }
4521 }
4522 }
4523 }
4524
4525 /* SAD */
4526 {
4527 struct secashead *sah, *nextsah;
4528 struct secasvar *sav, *nextsav;
4529
4530 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4531 /* if sah has been dead, then delete it and process next sah. */
4532 if (sah->state == SADB_SASTATE_DEAD) {
4533 key_delsah(sah);
4534 continue;
4535 }
4536
4537 /* if LARVAL entry doesn't become MATURE, delete it. */
4538 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4539 chain, nextsav) {
4540 if (now - sav->created > key_larval_lifetime) {
4541 KEY_FREESAV(&sav);
4542 }
4543 }
4544
4545 /*
4546 * check MATURE entry to start to send expire message
4547 * whether or not.
4548 */
4549 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4550 chain, nextsav) {
4551 /* we don't need to check. */
4552 if (sav->lft_s == NULL)
4553 continue;
4554
4555 /* sanity check */
4556 if (sav->lft_c == NULL) {
4557 IPSECLOG(LOG_DEBUG,
4558 "There is no CURRENT time, why?\n");
4559 continue;
4560 }
4561
4562 /* check SOFT lifetime */
4563 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4564 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4565 /*
4566 * check SA to be used whether or not.
4567 * when SA hasn't been used, delete it.
4568 */
4569 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4570 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4571 KEY_FREESAV(&sav);
4572 } else {
4573 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4574 /*
4575 * XXX If we keep to send expire
4576 * message in the status of
4577 * DYING. Do remove below code.
4578 */
4579 key_expire(sav);
4580 }
4581 }
4582 /* check SOFT lifetime by bytes */
4583 /*
4584 * XXX I don't know the way to delete this SA
4585 * when new SA is installed. Caution when it's
4586 * installed too big lifetime by time.
4587 */
4588 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4589 sav->lft_s->sadb_lifetime_bytes <
4590 sav->lft_c->sadb_lifetime_bytes) {
4591
4592 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4593 /*
4594 * XXX If we keep to send expire
4595 * message in the status of
4596 * DYING. Do remove below code.
4597 */
4598 key_expire(sav);
4599 }
4600 }
4601
4602 /* check DYING entry to change status to DEAD. */
4603 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4604 chain, nextsav) {
4605 /* we don't need to check. */
4606 if (sav->lft_h == NULL)
4607 continue;
4608
4609 /* sanity check */
4610 if (sav->lft_c == NULL) {
4611 IPSECLOG(LOG_DEBUG,
4612 "There is no CURRENT time, why?\n");
4613 continue;
4614 }
4615
4616 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4617 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4618 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4619 KEY_FREESAV(&sav);
4620 }
4621 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4622 else if (sav->lft_s != NULL
4623 && sav->lft_s->sadb_lifetime_addtime != 0
4624 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4625 /*
4626 * XXX: should be checked to be
4627 * installed the valid SA.
4628 */
4629
4630 /*
4631 * If there is no SA then sending
4632 * expire message.
4633 */
4634 key_expire(sav);
4635 }
4636 #endif
4637 /* check HARD lifetime by bytes */
4638 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4639 sav->lft_h->sadb_lifetime_bytes <
4640 sav->lft_c->sadb_lifetime_bytes) {
4641 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4642 KEY_FREESAV(&sav);
4643 }
4644 }
4645
4646 /* delete entry in DEAD */
4647 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4648 chain, nextsav) {
4649 /* sanity check */
4650 if (sav->state != SADB_SASTATE_DEAD) {
4651 IPSECLOG(LOG_DEBUG,
4652 "invalid sav->state (queue: %d SA: %d): "
4653 "kill it anyway\n",
4654 SADB_SASTATE_DEAD, sav->state);
4655 }
4656
4657 /*
4658 * do not call key_freesav() here.
4659 * sav should already be freed, and sav->refcnt
4660 * shows other references to sav
4661 * (such as from SPD).
4662 */
4663 }
4664 }
4665 }
4666
4667 #ifndef IPSEC_NONBLOCK_ACQUIRE
4668 /* ACQ tree */
4669 {
4670 struct secacq *acq, *nextacq;
4671
4672 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4673 if (now - acq->created > key_blockacq_lifetime) {
4674 KASSERT(__LIST_CHAINED(acq));
4675 LIST_REMOVE(acq, chain);
4676 kmem_free(acq, sizeof(*acq));
4677 }
4678 }
4679 }
4680 #endif
4681
4682 #ifdef notyet
4683 /* SP ACQ tree */
4684 {
4685 struct secspacq *acq, *nextacq;
4686
4687 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4688 if (now - acq->created > key_blockacq_lifetime) {
4689 KASSERT(__LIST_CHAINED(acq));
4690 LIST_REMOVE(acq, chain);
4691 kmem_free(acq, sizeof(*acq));
4692 }
4693 }
4694 }
4695 #endif
4696
4697 /* do exchange to tick time !! */
4698 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4699
4700 mutex_exit(softnet_lock);
4701 splx(s);
4702 return;
4703 }
4704
4705 static void
4706 key_timehandler(void *arg)
4707 {
4708
4709 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4710 }
4711
4712 u_long
4713 key_random(void)
4714 {
4715 u_long value;
4716
4717 key_randomfill(&value, sizeof(value));
4718 return value;
4719 }
4720
4721 void
4722 key_randomfill(void *p, size_t l)
4723 {
4724
4725 cprng_fast(p, l);
4726 }
4727
4728 /*
4729 * map SADB_SATYPE_* to IPPROTO_*.
4730 * if satype == SADB_SATYPE then satype is mapped to ~0.
4731 * OUT:
4732 * 0: invalid satype.
4733 */
4734 static u_int16_t
4735 key_satype2proto(u_int8_t satype)
4736 {
4737 switch (satype) {
4738 case SADB_SATYPE_UNSPEC:
4739 return IPSEC_PROTO_ANY;
4740 case SADB_SATYPE_AH:
4741 return IPPROTO_AH;
4742 case SADB_SATYPE_ESP:
4743 return IPPROTO_ESP;
4744 case SADB_X_SATYPE_IPCOMP:
4745 return IPPROTO_IPCOMP;
4746 case SADB_X_SATYPE_TCPSIGNATURE:
4747 return IPPROTO_TCP;
4748 default:
4749 return 0;
4750 }
4751 /* NOTREACHED */
4752 }
4753
4754 /*
4755 * map IPPROTO_* to SADB_SATYPE_*
4756 * OUT:
4757 * 0: invalid protocol type.
4758 */
4759 static u_int8_t
4760 key_proto2satype(u_int16_t proto)
4761 {
4762 switch (proto) {
4763 case IPPROTO_AH:
4764 return SADB_SATYPE_AH;
4765 case IPPROTO_ESP:
4766 return SADB_SATYPE_ESP;
4767 case IPPROTO_IPCOMP:
4768 return SADB_X_SATYPE_IPCOMP;
4769 case IPPROTO_TCP:
4770 return SADB_X_SATYPE_TCPSIGNATURE;
4771 default:
4772 return 0;
4773 }
4774 /* NOTREACHED */
4775 }
4776
4777 static int
4778 key_setsecasidx(int proto, int mode, int reqid,
4779 const struct sadb_address * src,
4780 const struct sadb_address * dst,
4781 struct secasindex * saidx)
4782 {
4783 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4784 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4785
4786 /* sa len safety check */
4787 if (key_checksalen(src_u) != 0)
4788 return -1;
4789 if (key_checksalen(dst_u) != 0)
4790 return -1;
4791
4792 memset(saidx, 0, sizeof(*saidx));
4793 saidx->proto = proto;
4794 saidx->mode = mode;
4795 saidx->reqid = reqid;
4796 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4797 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4798
4799 key_porttosaddr(&((saidx)->src), 0);
4800 key_porttosaddr(&((saidx)->dst), 0);
4801 return 0;
4802 }
4803
4804 /* %%% PF_KEY */
4805 /*
4806 * SADB_GETSPI processing is to receive
4807 * <base, (SA2), src address, dst address, (SPI range)>
4808 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4809 * tree with the status of LARVAL, and send
4810 * <base, SA(*), address(SD)>
4811 * to the IKMPd.
4812 *
4813 * IN: mhp: pointer to the pointer to each header.
4814 * OUT: NULL if fail.
4815 * other if success, return pointer to the message to send.
4816 */
4817 static int
4818 key_getspi(struct socket *so, struct mbuf *m,
4819 const struct sadb_msghdr *mhp)
4820 {
4821 struct sadb_address *src0, *dst0;
4822 struct secasindex saidx;
4823 struct secashead *newsah;
4824 struct secasvar *newsav;
4825 u_int8_t proto;
4826 u_int32_t spi;
4827 u_int8_t mode;
4828 u_int16_t reqid;
4829 int error;
4830
4831 KASSERT(!cpu_softintr_p());
4832 KASSERT(so != NULL);
4833 KASSERT(m != NULL);
4834 KASSERT(mhp != NULL);
4835 KASSERT(mhp->msg != NULL);
4836
4837 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4838 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4839 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4840 return key_senderror(so, m, EINVAL);
4841 }
4842 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4843 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4844 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4845 return key_senderror(so, m, EINVAL);
4846 }
4847 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4848 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4849 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4850 } else {
4851 mode = IPSEC_MODE_ANY;
4852 reqid = 0;
4853 }
4854
4855 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4856 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4857
4858 /* map satype to proto */
4859 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4860 if (proto == 0) {
4861 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4862 return key_senderror(so, m, EINVAL);
4863 }
4864
4865
4866 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4867 if (error != 0)
4868 return key_senderror(so, m, EINVAL);
4869
4870 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4871 if (error != 0)
4872 return key_senderror(so, m, EINVAL);
4873
4874 /* SPI allocation */
4875 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4876 &saidx);
4877 if (spi == 0)
4878 return key_senderror(so, m, EINVAL);
4879
4880 /* get a SA index */
4881 newsah = key_getsah(&saidx);
4882 if (newsah == NULL) {
4883 /* create a new SA index */
4884 newsah = key_newsah(&saidx);
4885 if (newsah == NULL) {
4886 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4887 return key_senderror(so, m, ENOBUFS);
4888 }
4889 }
4890
4891 /* get a new SA */
4892 /* XXX rewrite */
4893 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4894 if (newsav == NULL) {
4895 /* XXX don't free new SA index allocated in above. */
4896 return key_senderror(so, m, error);
4897 }
4898
4899 /* set spi */
4900 newsav->spi = htonl(spi);
4901
4902 #ifndef IPSEC_NONBLOCK_ACQUIRE
4903 /* delete the entry in acqtree */
4904 if (mhp->msg->sadb_msg_seq != 0) {
4905 struct secacq *acq;
4906 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4907 if (acq != NULL) {
4908 /* reset counter in order to deletion by timehandler. */
4909 acq->created = time_uptime;
4910 acq->count = 0;
4911 }
4912 }
4913 #endif
4914
4915 {
4916 struct mbuf *n, *nn;
4917 struct sadb_sa *m_sa;
4918 struct sadb_msg *newmsg;
4919 int off, len;
4920
4921 /* create new sadb_msg to reply. */
4922 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4923 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4924 if (len > MCLBYTES)
4925 return key_senderror(so, m, ENOBUFS);
4926
4927 MGETHDR(n, M_DONTWAIT, MT_DATA);
4928 if (len > MHLEN) {
4929 MCLGET(n, M_DONTWAIT);
4930 if ((n->m_flags & M_EXT) == 0) {
4931 m_freem(n);
4932 n = NULL;
4933 }
4934 }
4935 if (!n)
4936 return key_senderror(so, m, ENOBUFS);
4937
4938 n->m_len = len;
4939 n->m_next = NULL;
4940 off = 0;
4941
4942 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4943 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4944
4945 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4946 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4947 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4948 m_sa->sadb_sa_spi = htonl(spi);
4949 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4950
4951 KASSERTMSG(off == len, "length inconsistency");
4952
4953 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4954 SADB_EXT_ADDRESS_DST);
4955 if (!n->m_next) {
4956 m_freem(n);
4957 return key_senderror(so, m, ENOBUFS);
4958 }
4959
4960 if (n->m_len < sizeof(struct sadb_msg)) {
4961 n = m_pullup(n, sizeof(struct sadb_msg));
4962 if (n == NULL)
4963 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4964 }
4965
4966 n->m_pkthdr.len = 0;
4967 for (nn = n; nn; nn = nn->m_next)
4968 n->m_pkthdr.len += nn->m_len;
4969
4970 newmsg = mtod(n, struct sadb_msg *);
4971 newmsg->sadb_msg_seq = newsav->seq;
4972 newmsg->sadb_msg_errno = 0;
4973 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4974
4975 m_freem(m);
4976 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4977 }
4978 }
4979
4980 /*
4981 * allocating new SPI
4982 * called by key_getspi().
4983 * OUT:
4984 * 0: failure.
4985 * others: success.
4986 */
4987 static u_int32_t
4988 key_do_getnewspi(const struct sadb_spirange *spirange,
4989 const struct secasindex *saidx)
4990 {
4991 u_int32_t newspi;
4992 u_int32_t spmin, spmax;
4993 int count = key_spi_trycnt;
4994
4995 /* set spi range to allocate */
4996 if (spirange != NULL) {
4997 spmin = spirange->sadb_spirange_min;
4998 spmax = spirange->sadb_spirange_max;
4999 } else {
5000 spmin = key_spi_minval;
5001 spmax = key_spi_maxval;
5002 }
5003 /* IPCOMP needs 2-byte SPI */
5004 if (saidx->proto == IPPROTO_IPCOMP) {
5005 u_int32_t t;
5006 if (spmin >= 0x10000)
5007 spmin = 0xffff;
5008 if (spmax >= 0x10000)
5009 spmax = 0xffff;
5010 if (spmin > spmax) {
5011 t = spmin; spmin = spmax; spmax = t;
5012 }
5013 }
5014
5015 if (spmin == spmax) {
5016 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5017 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5018 return 0;
5019 }
5020
5021 count--; /* taking one cost. */
5022 newspi = spmin;
5023
5024 } else {
5025
5026 /* init SPI */
5027 newspi = 0;
5028
5029 /* when requesting to allocate spi ranged */
5030 while (count--) {
5031 /* generate pseudo-random SPI value ranged. */
5032 newspi = spmin + (key_random() % (spmax - spmin + 1));
5033
5034 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5035 break;
5036 }
5037
5038 if (count == 0 || newspi == 0) {
5039 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5040 return 0;
5041 }
5042 }
5043
5044 /* statistics */
5045 keystat.getspi_count =
5046 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5047
5048 return newspi;
5049 }
5050
5051 static int
5052 key_handle_natt_info(struct secasvar *sav,
5053 const struct sadb_msghdr *mhp)
5054 {
5055 const char *msg = "?" ;
5056 struct sadb_x_nat_t_type *type;
5057 struct sadb_x_nat_t_port *sport, *dport;
5058 struct sadb_address *iaddr, *raddr;
5059 struct sadb_x_nat_t_frag *frag;
5060
5061 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5062 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5063 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5064 return 0;
5065
5066 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5067 msg = "TYPE";
5068 goto bad;
5069 }
5070
5071 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5072 msg = "SPORT";
5073 goto bad;
5074 }
5075
5076 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5077 msg = "DPORT";
5078 goto bad;
5079 }
5080
5081 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5082 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5083 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5084 msg = "OAI";
5085 goto bad;
5086 }
5087 }
5088
5089 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5090 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5091 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5092 msg = "OAR";
5093 goto bad;
5094 }
5095 }
5096
5097 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5098 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5099 msg = "FRAG";
5100 goto bad;
5101 }
5102 }
5103
5104 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5105 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5106 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5107 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5108 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5109 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5110
5111 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5112 type->sadb_x_nat_t_type_type,
5113 ntohs(sport->sadb_x_nat_t_port_port),
5114 ntohs(dport->sadb_x_nat_t_port_port));
5115
5116 sav->natt_type = type->sadb_x_nat_t_type_type;
5117 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5118 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5119 if (frag)
5120 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5121 else
5122 sav->esp_frag = IP_MAXPACKET;
5123
5124 return 0;
5125 bad:
5126 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5127 __USE(msg);
5128 return -1;
5129 }
5130
5131 /* Just update the IPSEC_NAT_T ports if present */
5132 static int
5133 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5134 const struct sadb_msghdr *mhp)
5135 {
5136 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5137 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5138 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5139 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5140
5141 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5142 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5143 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5144 struct sadb_x_nat_t_type *type;
5145 struct sadb_x_nat_t_port *sport;
5146 struct sadb_x_nat_t_port *dport;
5147
5148 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5149 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5150 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5151 IPSECLOG(LOG_DEBUG, "invalid message\n");
5152 return -1;
5153 }
5154
5155 type = (struct sadb_x_nat_t_type *)
5156 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5157 sport = (struct sadb_x_nat_t_port *)
5158 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5159 dport = (struct sadb_x_nat_t_port *)
5160 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5161
5162 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5163 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5164
5165 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5166 type->sadb_x_nat_t_type_type,
5167 ntohs(sport->sadb_x_nat_t_port_port),
5168 ntohs(dport->sadb_x_nat_t_port_port));
5169 }
5170
5171 return 0;
5172 }
5173
5174
5175 /*
5176 * SADB_UPDATE processing
5177 * receive
5178 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5179 * key(AE), (identity(SD),) (sensitivity)>
5180 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5181 * and send
5182 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5183 * (identity(SD),) (sensitivity)>
5184 * to the ikmpd.
5185 *
5186 * m will always be freed.
5187 */
5188 static int
5189 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5190 {
5191 struct sadb_sa *sa0;
5192 struct sadb_address *src0, *dst0;
5193 struct secasindex saidx;
5194 struct secashead *sah;
5195 struct secasvar *sav;
5196 u_int16_t proto;
5197 u_int8_t mode;
5198 u_int16_t reqid;
5199 int error;
5200
5201 KASSERT(!cpu_softintr_p());
5202 KASSERT(so != NULL);
5203 KASSERT(m != NULL);
5204 KASSERT(mhp != NULL);
5205 KASSERT(mhp->msg != NULL);
5206
5207 /* map satype to proto */
5208 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5209 if (proto == 0) {
5210 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5211 return key_senderror(so, m, EINVAL);
5212 }
5213
5214 if (mhp->ext[SADB_EXT_SA] == NULL ||
5215 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5216 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5217 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5218 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5219 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5220 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5221 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5222 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5223 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5224 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5225 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5226 return key_senderror(so, m, EINVAL);
5227 }
5228 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5229 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5230 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5231 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5232 return key_senderror(so, m, EINVAL);
5233 }
5234 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5235 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5236 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5237 } else {
5238 mode = IPSEC_MODE_ANY;
5239 reqid = 0;
5240 }
5241 /* XXX boundary checking for other extensions */
5242
5243 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5244 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5245 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5246
5247 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5248 if (error != 0)
5249 return key_senderror(so, m, EINVAL);
5250
5251 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5252 if (error != 0)
5253 return key_senderror(so, m, EINVAL);
5254
5255 /* get a SA header */
5256 sah = key_getsah(&saidx);
5257 if (sah == NULL) {
5258 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5259 return key_senderror(so, m, ENOENT);
5260 }
5261
5262 /* set spidx if there */
5263 /* XXX rewrite */
5264 error = key_setident(sah, m, mhp);
5265 if (error)
5266 return key_senderror(so, m, error);
5267
5268 /* find a SA with sequence number. */
5269 #ifdef IPSEC_DOSEQCHECK
5270 if (mhp->msg->sadb_msg_seq != 0) {
5271 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5272 if (sav == NULL) {
5273 IPSECLOG(LOG_DEBUG,
5274 "no larval SA with sequence %u exists.\n",
5275 mhp->msg->sadb_msg_seq);
5276 return key_senderror(so, m, ENOENT);
5277 }
5278 }
5279 #else
5280 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5281 if (sav == NULL) {
5282 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5283 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5284 return key_senderror(so, m, EINVAL);
5285 }
5286 #endif
5287
5288 /* validity check */
5289 if (sav->sah->saidx.proto != proto) {
5290 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5291 sav->sah->saidx.proto, proto);
5292 return key_senderror(so, m, EINVAL);
5293 }
5294 #ifdef IPSEC_DOSEQCHECK
5295 if (sav->spi != sa0->sadb_sa_spi) {
5296 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5297 (u_int32_t)ntohl(sav->spi),
5298 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5299 return key_senderror(so, m, EINVAL);
5300 }
5301 #endif
5302 if (sav->pid != mhp->msg->sadb_msg_pid) {
5303 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5304 sav->pid, mhp->msg->sadb_msg_pid);
5305 return key_senderror(so, m, EINVAL);
5306 }
5307
5308 /* copy sav values */
5309 error = key_setsaval(sav, m, mhp);
5310 if (error) {
5311 KEY_FREESAV(&sav);
5312 return key_senderror(so, m, error);
5313 }
5314
5315 error = key_handle_natt_info(sav,mhp);
5316 if (error != 0)
5317 return key_senderror(so, m, EINVAL);
5318
5319 /* check SA values to be mature. */
5320 mhp->msg->sadb_msg_errno = key_mature(sav);
5321 if (mhp->msg->sadb_msg_errno != 0) {
5322 KEY_FREESAV(&sav);
5323 return key_senderror(so, m, 0);
5324 }
5325
5326 {
5327 struct mbuf *n;
5328
5329 /* set msg buf from mhp */
5330 n = key_getmsgbuf_x1(m, mhp);
5331 if (n == NULL) {
5332 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5333 return key_senderror(so, m, ENOBUFS);
5334 }
5335
5336 m_freem(m);
5337 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5338 }
5339 }
5340
5341 /*
5342 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5343 * only called by key_update().
5344 * OUT:
5345 * NULL : not found
5346 * others : found, pointer to a SA.
5347 */
5348 #ifdef IPSEC_DOSEQCHECK
5349 static struct secasvar *
5350 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5351 {
5352 struct secasvar *sav;
5353 u_int state;
5354
5355 state = SADB_SASTATE_LARVAL;
5356
5357 /* search SAD with sequence number ? */
5358 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5359
5360 KEY_CHKSASTATE(state, sav->state);
5361
5362 if (sav->seq == seq) {
5363 SA_ADDREF(sav);
5364 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5365 "DP cause refcnt++:%d SA:%p\n",
5366 sav->refcnt, sav);
5367 return sav;
5368 }
5369 }
5370
5371 return NULL;
5372 }
5373 #endif
5374
5375 /*
5376 * SADB_ADD processing
5377 * add an entry to SA database, when received
5378 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5379 * key(AE), (identity(SD),) (sensitivity)>
5380 * from the ikmpd,
5381 * and send
5382 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5383 * (identity(SD),) (sensitivity)>
5384 * to the ikmpd.
5385 *
5386 * IGNORE identity and sensitivity messages.
5387 *
5388 * m will always be freed.
5389 */
5390 static int
5391 key_add(struct socket *so, struct mbuf *m,
5392 const struct sadb_msghdr *mhp)
5393 {
5394 struct sadb_sa *sa0;
5395 struct sadb_address *src0, *dst0;
5396 struct secasindex saidx;
5397 struct secashead *newsah;
5398 struct secasvar *newsav;
5399 u_int16_t proto;
5400 u_int8_t mode;
5401 u_int16_t reqid;
5402 int error;
5403
5404 KASSERT(so != NULL);
5405 KASSERT(m != NULL);
5406 KASSERT(mhp != NULL);
5407 KASSERT(mhp->msg != NULL);
5408
5409 /* map satype to proto */
5410 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5411 if (proto == 0) {
5412 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5413 return key_senderror(so, m, EINVAL);
5414 }
5415
5416 if (mhp->ext[SADB_EXT_SA] == NULL ||
5417 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5418 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5419 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5420 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5421 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5422 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5423 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5424 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5425 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5426 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5427 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5428 return key_senderror(so, m, EINVAL);
5429 }
5430 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5431 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5432 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5433 /* XXX need more */
5434 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5435 return key_senderror(so, m, EINVAL);
5436 }
5437 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5438 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5439 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5440 } else {
5441 mode = IPSEC_MODE_ANY;
5442 reqid = 0;
5443 }
5444
5445 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5446 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5447 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5448
5449 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5450 if (error != 0)
5451 return key_senderror(so, m, EINVAL);
5452
5453 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5454 if (error != 0)
5455 return key_senderror(so, m, EINVAL);
5456
5457 /* get a SA header */
5458 newsah = key_getsah(&saidx);
5459 if (newsah == NULL) {
5460 /* create a new SA header */
5461 newsah = key_newsah(&saidx);
5462 if (newsah == NULL) {
5463 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5464 return key_senderror(so, m, ENOBUFS);
5465 }
5466 }
5467
5468 /* set spidx if there */
5469 /* XXX rewrite */
5470 error = key_setident(newsah, m, mhp);
5471 if (error) {
5472 return key_senderror(so, m, error);
5473 }
5474
5475 /* create new SA entry. */
5476 /* We can create new SA only if SPI is differenct. */
5477 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5478 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5479 return key_senderror(so, m, EEXIST);
5480 }
5481 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5482 if (newsav == NULL) {
5483 return key_senderror(so, m, error);
5484 }
5485
5486 error = key_handle_natt_info(newsav, mhp);
5487 if (error != 0)
5488 return key_senderror(so, m, EINVAL);
5489
5490 /* check SA values to be mature. */
5491 error = key_mature(newsav);
5492 if (error != 0) {
5493 KEY_FREESAV(&newsav);
5494 return key_senderror(so, m, error);
5495 }
5496
5497 /*
5498 * don't call key_freesav() here, as we would like to keep the SA
5499 * in the database on success.
5500 */
5501
5502 {
5503 struct mbuf *n;
5504
5505 /* set msg buf from mhp */
5506 n = key_getmsgbuf_x1(m, mhp);
5507 if (n == NULL) {
5508 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5509 return key_senderror(so, m, ENOBUFS);
5510 }
5511
5512 m_freem(m);
5513 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5514 }
5515 }
5516
5517 /* m is retained */
5518 static int
5519 key_setident(struct secashead *sah, struct mbuf *m,
5520 const struct sadb_msghdr *mhp)
5521 {
5522 const struct sadb_ident *idsrc, *iddst;
5523 int idsrclen, iddstlen;
5524
5525 KASSERT(!cpu_softintr_p());
5526 KASSERT(sah != NULL);
5527 KASSERT(m != NULL);
5528 KASSERT(mhp != NULL);
5529 KASSERT(mhp->msg != NULL);
5530
5531 /*
5532 * Can be called with an existing sah from key_update().
5533 */
5534 if (sah->idents != NULL) {
5535 kmem_free(sah->idents, sah->idents_len);
5536 sah->idents = NULL;
5537 sah->idents_len = 0;
5538 }
5539 if (sah->identd != NULL) {
5540 kmem_free(sah->identd, sah->identd_len);
5541 sah->identd = NULL;
5542 sah->identd_len = 0;
5543 }
5544
5545 /* don't make buffer if not there */
5546 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5547 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5548 sah->idents = NULL;
5549 sah->identd = NULL;
5550 return 0;
5551 }
5552
5553 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5554 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5555 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5556 return EINVAL;
5557 }
5558
5559 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5560 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5561 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5562 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5563
5564 /* validity check */
5565 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5566 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5567 return EINVAL;
5568 }
5569
5570 switch (idsrc->sadb_ident_type) {
5571 case SADB_IDENTTYPE_PREFIX:
5572 case SADB_IDENTTYPE_FQDN:
5573 case SADB_IDENTTYPE_USERFQDN:
5574 default:
5575 /* XXX do nothing */
5576 sah->idents = NULL;
5577 sah->identd = NULL;
5578 return 0;
5579 }
5580
5581 /* make structure */
5582 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5583 sah->idents_len = idsrclen;
5584 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5585 sah->identd_len = iddstlen;
5586 memcpy(sah->idents, idsrc, idsrclen);
5587 memcpy(sah->identd, iddst, iddstlen);
5588
5589 return 0;
5590 }
5591
5592 /*
5593 * m will not be freed on return.
5594 * it is caller's responsibility to free the result.
5595 */
5596 static struct mbuf *
5597 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5598 {
5599 struct mbuf *n;
5600
5601 KASSERT(m != NULL);
5602 KASSERT(mhp != NULL);
5603 KASSERT(mhp->msg != NULL);
5604
5605 /* create new sadb_msg to reply. */
5606 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5607 SADB_EXT_SA, SADB_X_EXT_SA2,
5608 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5609 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5610 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5611 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5612 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5613 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5614 if (!n)
5615 return NULL;
5616
5617 if (n->m_len < sizeof(struct sadb_msg)) {
5618 n = m_pullup(n, sizeof(struct sadb_msg));
5619 if (n == NULL)
5620 return NULL;
5621 }
5622 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5623 mtod(n, struct sadb_msg *)->sadb_msg_len =
5624 PFKEY_UNIT64(n->m_pkthdr.len);
5625
5626 return n;
5627 }
5628
5629 static int key_delete_all (struct socket *, struct mbuf *,
5630 const struct sadb_msghdr *, u_int16_t);
5631
5632 /*
5633 * SADB_DELETE processing
5634 * receive
5635 * <base, SA(*), address(SD)>
5636 * from the ikmpd, and set SADB_SASTATE_DEAD,
5637 * and send,
5638 * <base, SA(*), address(SD)>
5639 * to the ikmpd.
5640 *
5641 * m will always be freed.
5642 */
5643 static int
5644 key_delete(struct socket *so, struct mbuf *m,
5645 const struct sadb_msghdr *mhp)
5646 {
5647 struct sadb_sa *sa0;
5648 struct sadb_address *src0, *dst0;
5649 struct secasindex saidx;
5650 struct secashead *sah;
5651 struct secasvar *sav = NULL;
5652 u_int16_t proto;
5653 int error;
5654
5655 KASSERT(so != NULL);
5656 KASSERT(m != NULL);
5657 KASSERT(mhp != NULL);
5658 KASSERT(mhp->msg != NULL);
5659
5660 /* map satype to proto */
5661 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5662 if (proto == 0) {
5663 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5664 return key_senderror(so, m, EINVAL);
5665 }
5666
5667 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5668 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5669 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5670 return key_senderror(so, m, EINVAL);
5671 }
5672
5673 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5674 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5675 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5676 return key_senderror(so, m, EINVAL);
5677 }
5678
5679 if (mhp->ext[SADB_EXT_SA] == NULL) {
5680 /*
5681 * Caller wants us to delete all non-LARVAL SAs
5682 * that match the src/dst. This is used during
5683 * IKE INITIAL-CONTACT.
5684 */
5685 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5686 return key_delete_all(so, m, mhp, proto);
5687 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5688 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5689 return key_senderror(so, m, EINVAL);
5690 }
5691
5692 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5693 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5694 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5695
5696 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5697 &saidx);
5698 if (error != 0)
5699 return key_senderror(so, m, EINVAL);
5700
5701 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5702 if (error != 0)
5703 return key_senderror(so, m, EINVAL);
5704
5705 /* get a SA header */
5706 LIST_FOREACH(sah, &sahtree, chain) {
5707 if (sah->state == SADB_SASTATE_DEAD)
5708 continue;
5709 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5710 continue;
5711
5712 /* get a SA with SPI. */
5713 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5714 if (sav)
5715 break;
5716 }
5717 if (sah == NULL) {
5718 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5719 return key_senderror(so, m, ENOENT);
5720 }
5721
5722 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5723 KEY_FREESAV(&sav);
5724
5725 {
5726 struct mbuf *n;
5727 struct sadb_msg *newmsg;
5728
5729 /* create new sadb_msg to reply. */
5730 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5731 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5732 if (!n)
5733 return key_senderror(so, m, ENOBUFS);
5734
5735 if (n->m_len < sizeof(struct sadb_msg)) {
5736 n = m_pullup(n, sizeof(struct sadb_msg));
5737 if (n == NULL)
5738 return key_senderror(so, m, ENOBUFS);
5739 }
5740 newmsg = mtod(n, struct sadb_msg *);
5741 newmsg->sadb_msg_errno = 0;
5742 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5743
5744 m_freem(m);
5745 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5746 }
5747 }
5748
5749 /*
5750 * delete all SAs for src/dst. Called from key_delete().
5751 */
5752 static int
5753 key_delete_all(struct socket *so, struct mbuf *m,
5754 const struct sadb_msghdr *mhp, u_int16_t proto)
5755 {
5756 struct sadb_address *src0, *dst0;
5757 struct secasindex saidx;
5758 struct secashead *sah;
5759 struct secasvar *sav, *nextsav;
5760 u_int state;
5761 int error;
5762
5763 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5764 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5765
5766 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5767 &saidx);
5768 if (error != 0)
5769 return key_senderror(so, m, EINVAL);
5770
5771 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5772 if (error != 0)
5773 return key_senderror(so, m, EINVAL);
5774
5775 LIST_FOREACH(sah, &sahtree, chain) {
5776 if (sah->state == SADB_SASTATE_DEAD)
5777 continue;
5778 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5779 continue;
5780
5781 /* Delete all non-LARVAL SAs. */
5782 SASTATE_ALIVE_FOREACH(state) {
5783 if (state == SADB_SASTATE_LARVAL)
5784 continue;
5785 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5786 nextsav) {
5787 /* sanity check */
5788 if (sav->state != state) {
5789 IPSECLOG(LOG_DEBUG,
5790 "invalid sav->state "
5791 "(queue: %d SA: %d)\n",
5792 state, sav->state);
5793 continue;
5794 }
5795
5796 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5797 KEY_FREESAV(&sav);
5798 }
5799 }
5800 }
5801 {
5802 struct mbuf *n;
5803 struct sadb_msg *newmsg;
5804
5805 /* create new sadb_msg to reply. */
5806 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5807 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5808 if (!n)
5809 return key_senderror(so, m, ENOBUFS);
5810
5811 if (n->m_len < sizeof(struct sadb_msg)) {
5812 n = m_pullup(n, sizeof(struct sadb_msg));
5813 if (n == NULL)
5814 return key_senderror(so, m, ENOBUFS);
5815 }
5816 newmsg = mtod(n, struct sadb_msg *);
5817 newmsg->sadb_msg_errno = 0;
5818 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5819
5820 m_freem(m);
5821 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5822 }
5823 }
5824
5825 /*
5826 * SADB_GET processing
5827 * receive
5828 * <base, SA(*), address(SD)>
5829 * from the ikmpd, and get a SP and a SA to respond,
5830 * and send,
5831 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5832 * (identity(SD),) (sensitivity)>
5833 * to the ikmpd.
5834 *
5835 * m will always be freed.
5836 */
5837 static int
5838 key_get(struct socket *so, struct mbuf *m,
5839 const struct sadb_msghdr *mhp)
5840 {
5841 struct sadb_sa *sa0;
5842 struct sadb_address *src0, *dst0;
5843 struct secasindex saidx;
5844 struct secashead *sah;
5845 struct secasvar *sav = NULL;
5846 u_int16_t proto;
5847 int error;
5848
5849 KASSERT(so != NULL);
5850 KASSERT(m != NULL);
5851 KASSERT(mhp != NULL);
5852 KASSERT(mhp->msg != NULL);
5853
5854 /* map satype to proto */
5855 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5856 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5857 return key_senderror(so, m, EINVAL);
5858 }
5859
5860 if (mhp->ext[SADB_EXT_SA] == NULL ||
5861 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5862 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5863 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5864 return key_senderror(so, m, EINVAL);
5865 }
5866 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5867 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5868 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5869 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5870 return key_senderror(so, m, EINVAL);
5871 }
5872
5873 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5874 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5875 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5876
5877 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5878 &saidx);
5879 if (error != 0)
5880 return key_senderror(so, m, EINVAL);
5881
5882 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5883 if (error != 0)
5884 return key_senderror(so, m, EINVAL);
5885
5886 /* get a SA header */
5887 LIST_FOREACH(sah, &sahtree, chain) {
5888 if (sah->state == SADB_SASTATE_DEAD)
5889 continue;
5890 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5891 continue;
5892
5893 /* get a SA with SPI. */
5894 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5895 if (sav)
5896 break;
5897 }
5898 if (sah == NULL) {
5899 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5900 return key_senderror(so, m, ENOENT);
5901 }
5902
5903 {
5904 struct mbuf *n;
5905 u_int8_t satype;
5906
5907 /* map proto to satype */
5908 satype = key_proto2satype(sah->saidx.proto);
5909 if (satype == 0) {
5910 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5911 return key_senderror(so, m, EINVAL);
5912 }
5913
5914 /* create new sadb_msg to reply. */
5915 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5916 mhp->msg->sadb_msg_pid);
5917 if (!n)
5918 return key_senderror(so, m, ENOBUFS);
5919
5920 m_freem(m);
5921 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5922 }
5923 }
5924
5925 /* XXX make it sysctl-configurable? */
5926 static void
5927 key_getcomb_setlifetime(struct sadb_comb *comb)
5928 {
5929
5930 comb->sadb_comb_soft_allocations = 1;
5931 comb->sadb_comb_hard_allocations = 1;
5932 comb->sadb_comb_soft_bytes = 0;
5933 comb->sadb_comb_hard_bytes = 0;
5934 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5935 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5936 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5937 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5938 }
5939
5940 /*
5941 * XXX reorder combinations by preference
5942 * XXX no idea if the user wants ESP authentication or not
5943 */
5944 static struct mbuf *
5945 key_getcomb_esp(void)
5946 {
5947 struct sadb_comb *comb;
5948 const struct enc_xform *algo;
5949 struct mbuf *result = NULL, *m, *n;
5950 int encmin;
5951 int i, off, o;
5952 int totlen;
5953 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5954
5955 m = NULL;
5956 for (i = 1; i <= SADB_EALG_MAX; i++) {
5957 algo = esp_algorithm_lookup(i);
5958 if (algo == NULL)
5959 continue;
5960
5961 /* discard algorithms with key size smaller than system min */
5962 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5963 continue;
5964 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5965 encmin = ipsec_esp_keymin;
5966 else
5967 encmin = _BITS(algo->minkey);
5968
5969 if (ipsec_esp_auth)
5970 m = key_getcomb_ah();
5971 else {
5972 KASSERTMSG(l <= MLEN,
5973 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5974 MGET(m, M_DONTWAIT, MT_DATA);
5975 if (m) {
5976 M_ALIGN(m, l);
5977 m->m_len = l;
5978 m->m_next = NULL;
5979 memset(mtod(m, void *), 0, m->m_len);
5980 }
5981 }
5982 if (!m)
5983 goto fail;
5984
5985 totlen = 0;
5986 for (n = m; n; n = n->m_next)
5987 totlen += n->m_len;
5988 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5989
5990 for (off = 0; off < totlen; off += l) {
5991 n = m_pulldown(m, off, l, &o);
5992 if (!n) {
5993 /* m is already freed */
5994 goto fail;
5995 }
5996 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5997 memset(comb, 0, sizeof(*comb));
5998 key_getcomb_setlifetime(comb);
5999 comb->sadb_comb_encrypt = i;
6000 comb->sadb_comb_encrypt_minbits = encmin;
6001 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6002 }
6003
6004 if (!result)
6005 result = m;
6006 else
6007 m_cat(result, m);
6008 }
6009
6010 return result;
6011
6012 fail:
6013 if (result)
6014 m_freem(result);
6015 return NULL;
6016 }
6017
6018 static void
6019 key_getsizes_ah(const struct auth_hash *ah, int alg,
6020 u_int16_t* ksmin, u_int16_t* ksmax)
6021 {
6022 *ksmin = *ksmax = ah->keysize;
6023 if (ah->keysize == 0) {
6024 /*
6025 * Transform takes arbitrary key size but algorithm
6026 * key size is restricted. Enforce this here.
6027 */
6028 switch (alg) {
6029 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6030 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6031 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6032 default:
6033 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6034 break;
6035 }
6036 }
6037 }
6038
6039 /*
6040 * XXX reorder combinations by preference
6041 */
6042 static struct mbuf *
6043 key_getcomb_ah(void)
6044 {
6045 struct sadb_comb *comb;
6046 const struct auth_hash *algo;
6047 struct mbuf *m;
6048 u_int16_t minkeysize, maxkeysize;
6049 int i;
6050 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6051
6052 m = NULL;
6053 for (i = 1; i <= SADB_AALG_MAX; i++) {
6054 #if 1
6055 /* we prefer HMAC algorithms, not old algorithms */
6056 if (i != SADB_AALG_SHA1HMAC &&
6057 i != SADB_AALG_MD5HMAC &&
6058 i != SADB_X_AALG_SHA2_256 &&
6059 i != SADB_X_AALG_SHA2_384 &&
6060 i != SADB_X_AALG_SHA2_512)
6061 continue;
6062 #endif
6063 algo = ah_algorithm_lookup(i);
6064 if (!algo)
6065 continue;
6066 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6067 /* discard algorithms with key size smaller than system min */
6068 if (_BITS(minkeysize) < ipsec_ah_keymin)
6069 continue;
6070
6071 if (!m) {
6072 KASSERTMSG(l <= MLEN,
6073 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6074 MGET(m, M_DONTWAIT, MT_DATA);
6075 if (m) {
6076 M_ALIGN(m, l);
6077 m->m_len = l;
6078 m->m_next = NULL;
6079 }
6080 } else
6081 M_PREPEND(m, l, M_DONTWAIT);
6082 if (!m)
6083 return NULL;
6084
6085 comb = mtod(m, struct sadb_comb *);
6086 memset(comb, 0, sizeof(*comb));
6087 key_getcomb_setlifetime(comb);
6088 comb->sadb_comb_auth = i;
6089 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6090 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6091 }
6092
6093 return m;
6094 }
6095
6096 /*
6097 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6098 * XXX reorder combinations by preference
6099 */
6100 static struct mbuf *
6101 key_getcomb_ipcomp(void)
6102 {
6103 struct sadb_comb *comb;
6104 const struct comp_algo *algo;
6105 struct mbuf *m;
6106 int i;
6107 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6108
6109 m = NULL;
6110 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6111 algo = ipcomp_algorithm_lookup(i);
6112 if (!algo)
6113 continue;
6114
6115 if (!m) {
6116 KASSERTMSG(l <= MLEN,
6117 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6118 MGET(m, M_DONTWAIT, MT_DATA);
6119 if (m) {
6120 M_ALIGN(m, l);
6121 m->m_len = l;
6122 m->m_next = NULL;
6123 }
6124 } else
6125 M_PREPEND(m, l, M_DONTWAIT);
6126 if (!m)
6127 return NULL;
6128
6129 comb = mtod(m, struct sadb_comb *);
6130 memset(comb, 0, sizeof(*comb));
6131 key_getcomb_setlifetime(comb);
6132 comb->sadb_comb_encrypt = i;
6133 /* what should we set into sadb_comb_*_{min,max}bits? */
6134 }
6135
6136 return m;
6137 }
6138
6139 /*
6140 * XXX no way to pass mode (transport/tunnel) to userland
6141 * XXX replay checking?
6142 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6143 */
6144 static struct mbuf *
6145 key_getprop(const struct secasindex *saidx)
6146 {
6147 struct sadb_prop *prop;
6148 struct mbuf *m, *n;
6149 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6150 int totlen;
6151
6152 switch (saidx->proto) {
6153 case IPPROTO_ESP:
6154 m = key_getcomb_esp();
6155 break;
6156 case IPPROTO_AH:
6157 m = key_getcomb_ah();
6158 break;
6159 case IPPROTO_IPCOMP:
6160 m = key_getcomb_ipcomp();
6161 break;
6162 default:
6163 return NULL;
6164 }
6165
6166 if (!m)
6167 return NULL;
6168 M_PREPEND(m, l, M_DONTWAIT);
6169 if (!m)
6170 return NULL;
6171
6172 totlen = 0;
6173 for (n = m; n; n = n->m_next)
6174 totlen += n->m_len;
6175
6176 prop = mtod(m, struct sadb_prop *);
6177 memset(prop, 0, sizeof(*prop));
6178 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6179 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6180 prop->sadb_prop_replay = 32; /* XXX */
6181
6182 return m;
6183 }
6184
6185 /*
6186 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6187 * send
6188 * <base, SA, address(SD), (address(P)), x_policy,
6189 * (identity(SD),) (sensitivity,) proposal>
6190 * to KMD, and expect to receive
6191 * <base> with SADB_ACQUIRE if error occurred,
6192 * or
6193 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6194 * from KMD by PF_KEY.
6195 *
6196 * XXX x_policy is outside of RFC2367 (KAME extension).
6197 * XXX sensitivity is not supported.
6198 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6199 * see comment for key_getcomb_ipcomp().
6200 *
6201 * OUT:
6202 * 0 : succeed
6203 * others: error number
6204 */
6205 static int
6206 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6207 {
6208 struct mbuf *result = NULL, *m;
6209 #ifndef IPSEC_NONBLOCK_ACQUIRE
6210 struct secacq *newacq;
6211 #endif
6212 u_int8_t satype;
6213 int error = -1;
6214 u_int32_t seq;
6215
6216 /* sanity check */
6217 KASSERT(saidx != NULL);
6218 satype = key_proto2satype(saidx->proto);
6219 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6220
6221 #ifndef IPSEC_NONBLOCK_ACQUIRE
6222 /*
6223 * We never do anything about acquirng SA. There is anather
6224 * solution that kernel blocks to send SADB_ACQUIRE message until
6225 * getting something message from IKEd. In later case, to be
6226 * managed with ACQUIRING list.
6227 */
6228 /* Get an entry to check whether sending message or not. */
6229 newacq = key_getacq(saidx);
6230 if (newacq != NULL) {
6231 if (key_blockacq_count < newacq->count) {
6232 /* reset counter and do send message. */
6233 newacq->count = 0;
6234 } else {
6235 /* increment counter and do nothing. */
6236 newacq->count++;
6237 return 0;
6238 }
6239 } else {
6240 /* make new entry for blocking to send SADB_ACQUIRE. */
6241 newacq = key_newacq(saidx);
6242 if (newacq == NULL)
6243 return ENOBUFS;
6244
6245 /* add to acqtree */
6246 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6247 }
6248 #endif
6249
6250
6251 #ifndef IPSEC_NONBLOCK_ACQUIRE
6252 seq = newacq->seq;
6253 #else
6254 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6255 #endif
6256 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6257 if (!m) {
6258 error = ENOBUFS;
6259 goto fail;
6260 }
6261 result = m;
6262
6263 /* set sadb_address for saidx's. */
6264 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6265 IPSEC_ULPROTO_ANY);
6266 if (!m) {
6267 error = ENOBUFS;
6268 goto fail;
6269 }
6270 m_cat(result, m);
6271
6272 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6273 IPSEC_ULPROTO_ANY);
6274 if (!m) {
6275 error = ENOBUFS;
6276 goto fail;
6277 }
6278 m_cat(result, m);
6279
6280 /* XXX proxy address (optional) */
6281
6282 /* set sadb_x_policy */
6283 if (sp) {
6284 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6285 if (!m) {
6286 error = ENOBUFS;
6287 goto fail;
6288 }
6289 m_cat(result, m);
6290 }
6291
6292 /* XXX identity (optional) */
6293 #if 0
6294 if (idexttype && fqdn) {
6295 /* create identity extension (FQDN) */
6296 struct sadb_ident *id;
6297 int fqdnlen;
6298
6299 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6300 id = (struct sadb_ident *)p;
6301 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6302 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6303 id->sadb_ident_exttype = idexttype;
6304 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6305 memcpy(id + 1, fqdn, fqdnlen);
6306 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6307 }
6308
6309 if (idexttype) {
6310 /* create identity extension (USERFQDN) */
6311 struct sadb_ident *id;
6312 int userfqdnlen;
6313
6314 if (userfqdn) {
6315 /* +1 for terminating-NUL */
6316 userfqdnlen = strlen(userfqdn) + 1;
6317 } else
6318 userfqdnlen = 0;
6319 id = (struct sadb_ident *)p;
6320 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6321 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6322 id->sadb_ident_exttype = idexttype;
6323 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6324 /* XXX is it correct? */
6325 if (curlwp)
6326 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6327 if (userfqdn && userfqdnlen)
6328 memcpy(id + 1, userfqdn, userfqdnlen);
6329 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6330 }
6331 #endif
6332
6333 /* XXX sensitivity (optional) */
6334
6335 /* create proposal/combination extension */
6336 m = key_getprop(saidx);
6337 #if 0
6338 /*
6339 * spec conformant: always attach proposal/combination extension,
6340 * the problem is that we have no way to attach it for ipcomp,
6341 * due to the way sadb_comb is declared in RFC2367.
6342 */
6343 if (!m) {
6344 error = ENOBUFS;
6345 goto fail;
6346 }
6347 m_cat(result, m);
6348 #else
6349 /*
6350 * outside of spec; make proposal/combination extension optional.
6351 */
6352 if (m)
6353 m_cat(result, m);
6354 #endif
6355
6356 if ((result->m_flags & M_PKTHDR) == 0) {
6357 error = EINVAL;
6358 goto fail;
6359 }
6360
6361 if (result->m_len < sizeof(struct sadb_msg)) {
6362 result = m_pullup(result, sizeof(struct sadb_msg));
6363 if (result == NULL) {
6364 error = ENOBUFS;
6365 goto fail;
6366 }
6367 }
6368
6369 result->m_pkthdr.len = 0;
6370 for (m = result; m; m = m->m_next)
6371 result->m_pkthdr.len += m->m_len;
6372
6373 mtod(result, struct sadb_msg *)->sadb_msg_len =
6374 PFKEY_UNIT64(result->m_pkthdr.len);
6375
6376 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6377
6378 fail:
6379 if (result)
6380 m_freem(result);
6381 return error;
6382 }
6383
6384 #ifndef IPSEC_NONBLOCK_ACQUIRE
6385 static struct secacq *
6386 key_newacq(const struct secasindex *saidx)
6387 {
6388 struct secacq *newacq;
6389
6390 /* get new entry */
6391 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6392 if (newacq == NULL) {
6393 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6394 return NULL;
6395 }
6396
6397 /* copy secindex */
6398 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6399 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6400 newacq->created = time_uptime;
6401 newacq->count = 0;
6402
6403 return newacq;
6404 }
6405
6406 static struct secacq *
6407 key_getacq(const struct secasindex *saidx)
6408 {
6409 struct secacq *acq;
6410
6411 LIST_FOREACH(acq, &acqtree, chain) {
6412 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6413 return acq;
6414 }
6415
6416 return NULL;
6417 }
6418
6419 static struct secacq *
6420 key_getacqbyseq(u_int32_t seq)
6421 {
6422 struct secacq *acq;
6423
6424 LIST_FOREACH(acq, &acqtree, chain) {
6425 if (acq->seq == seq)
6426 return acq;
6427 }
6428
6429 return NULL;
6430 }
6431 #endif
6432
6433 #ifdef notyet
6434 static struct secspacq *
6435 key_newspacq(const struct secpolicyindex *spidx)
6436 {
6437 struct secspacq *acq;
6438
6439 /* get new entry */
6440 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6441 if (acq == NULL) {
6442 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6443 return NULL;
6444 }
6445
6446 /* copy secindex */
6447 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6448 acq->created = time_uptime;
6449 acq->count = 0;
6450
6451 return acq;
6452 }
6453
6454 static struct secspacq *
6455 key_getspacq(const struct secpolicyindex *spidx)
6456 {
6457 struct secspacq *acq;
6458
6459 LIST_FOREACH(acq, &spacqtree, chain) {
6460 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6461 return acq;
6462 }
6463
6464 return NULL;
6465 }
6466 #endif /* notyet */
6467
6468 /*
6469 * SADB_ACQUIRE processing,
6470 * in first situation, is receiving
6471 * <base>
6472 * from the ikmpd, and clear sequence of its secasvar entry.
6473 *
6474 * In second situation, is receiving
6475 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6476 * from a user land process, and return
6477 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6478 * to the socket.
6479 *
6480 * m will always be freed.
6481 */
6482 static int
6483 key_acquire2(struct socket *so, struct mbuf *m,
6484 const struct sadb_msghdr *mhp)
6485 {
6486 const struct sadb_address *src0, *dst0;
6487 struct secasindex saidx;
6488 struct secashead *sah;
6489 u_int16_t proto;
6490 int error;
6491
6492 KASSERT(so != NULL);
6493 KASSERT(m != NULL);
6494 KASSERT(mhp != NULL);
6495 KASSERT(mhp->msg != NULL);
6496
6497 /*
6498 * Error message from KMd.
6499 * We assume that if error was occurred in IKEd, the length of PFKEY
6500 * message is equal to the size of sadb_msg structure.
6501 * We do not raise error even if error occurred in this function.
6502 */
6503 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6504 #ifndef IPSEC_NONBLOCK_ACQUIRE
6505 struct secacq *acq;
6506
6507 /* check sequence number */
6508 if (mhp->msg->sadb_msg_seq == 0) {
6509 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6510 m_freem(m);
6511 return 0;
6512 }
6513
6514 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6515 if (acq == NULL) {
6516 /*
6517 * the specified larval SA is already gone, or we got
6518 * a bogus sequence number. we can silently ignore it.
6519 */
6520 m_freem(m);
6521 return 0;
6522 }
6523
6524 /* reset acq counter in order to deletion by timehander. */
6525 acq->created = time_uptime;
6526 acq->count = 0;
6527 #endif
6528 m_freem(m);
6529 return 0;
6530 }
6531
6532 /*
6533 * This message is from user land.
6534 */
6535
6536 /* map satype to proto */
6537 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6538 if (proto == 0) {
6539 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6540 return key_senderror(so, m, EINVAL);
6541 }
6542
6543 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6544 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6545 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6546 /* error */
6547 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6548 return key_senderror(so, m, EINVAL);
6549 }
6550 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6551 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6552 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6553 /* error */
6554 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6555 return key_senderror(so, m, EINVAL);
6556 }
6557
6558 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6559 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6560
6561 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
6562 &saidx);
6563 if (error != 0)
6564 return key_senderror(so, m, EINVAL);
6565
6566 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6567 if (error != 0)
6568 return key_senderror(so, m, EINVAL);
6569
6570 /* get a SA index */
6571 LIST_FOREACH(sah, &sahtree, chain) {
6572 if (sah->state == SADB_SASTATE_DEAD)
6573 continue;
6574 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6575 break;
6576 }
6577 if (sah != NULL) {
6578 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6579 return key_senderror(so, m, EEXIST);
6580 }
6581
6582 error = key_acquire(&saidx, NULL);
6583 if (error != 0) {
6584 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6585 mhp->msg->sadb_msg_errno);
6586 return key_senderror(so, m, error);
6587 }
6588
6589 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6590 }
6591
6592 /*
6593 * SADB_REGISTER processing.
6594 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6595 * receive
6596 * <base>
6597 * from the ikmpd, and register a socket to send PF_KEY messages,
6598 * and send
6599 * <base, supported>
6600 * to KMD by PF_KEY.
6601 * If socket is detached, must free from regnode.
6602 *
6603 * m will always be freed.
6604 */
6605 static int
6606 key_register(struct socket *so, struct mbuf *m,
6607 const struct sadb_msghdr *mhp)
6608 {
6609 struct secreg *reg, *newreg = 0;
6610
6611 KASSERT(!cpu_softintr_p());
6612 KASSERT(so != NULL);
6613 KASSERT(m != NULL);
6614 KASSERT(mhp != NULL);
6615 KASSERT(mhp->msg != NULL);
6616
6617 /* check for invalid register message */
6618 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6619 return key_senderror(so, m, EINVAL);
6620
6621 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6622 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6623 goto setmsg;
6624
6625 /* check whether existing or not */
6626 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6627 if (reg->so == so) {
6628 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6629 return key_senderror(so, m, EEXIST);
6630 }
6631 }
6632
6633 /* create regnode */
6634 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6635
6636 newreg->so = so;
6637 ((struct keycb *)sotorawcb(so))->kp_registered++;
6638
6639 /* add regnode to regtree. */
6640 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6641
6642 setmsg:
6643 {
6644 struct mbuf *n;
6645 struct sadb_msg *newmsg;
6646 struct sadb_supported *sup;
6647 u_int len, alen, elen;
6648 int off;
6649 int i;
6650 struct sadb_alg *alg;
6651
6652 /* create new sadb_msg to reply. */
6653 alen = 0;
6654 for (i = 1; i <= SADB_AALG_MAX; i++) {
6655 if (ah_algorithm_lookup(i))
6656 alen += sizeof(struct sadb_alg);
6657 }
6658 if (alen)
6659 alen += sizeof(struct sadb_supported);
6660 elen = 0;
6661 for (i = 1; i <= SADB_EALG_MAX; i++) {
6662 if (esp_algorithm_lookup(i))
6663 elen += sizeof(struct sadb_alg);
6664 }
6665 if (elen)
6666 elen += sizeof(struct sadb_supported);
6667
6668 len = sizeof(struct sadb_msg) + alen + elen;
6669
6670 if (len > MCLBYTES)
6671 return key_senderror(so, m, ENOBUFS);
6672
6673 MGETHDR(n, M_DONTWAIT, MT_DATA);
6674 if (len > MHLEN) {
6675 MCLGET(n, M_DONTWAIT);
6676 if ((n->m_flags & M_EXT) == 0) {
6677 m_freem(n);
6678 n = NULL;
6679 }
6680 }
6681 if (!n)
6682 return key_senderror(so, m, ENOBUFS);
6683
6684 n->m_pkthdr.len = n->m_len = len;
6685 n->m_next = NULL;
6686 off = 0;
6687
6688 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6689 newmsg = mtod(n, struct sadb_msg *);
6690 newmsg->sadb_msg_errno = 0;
6691 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6692 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6693
6694 /* for authentication algorithm */
6695 if (alen) {
6696 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6697 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6698 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6699 off += PFKEY_ALIGN8(sizeof(*sup));
6700
6701 for (i = 1; i <= SADB_AALG_MAX; i++) {
6702 const struct auth_hash *aalgo;
6703 u_int16_t minkeysize, maxkeysize;
6704
6705 aalgo = ah_algorithm_lookup(i);
6706 if (!aalgo)
6707 continue;
6708 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6709 alg->sadb_alg_id = i;
6710 alg->sadb_alg_ivlen = 0;
6711 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6712 alg->sadb_alg_minbits = _BITS(minkeysize);
6713 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6714 off += PFKEY_ALIGN8(sizeof(*alg));
6715 }
6716 }
6717
6718 /* for encryption algorithm */
6719 if (elen) {
6720 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6721 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6722 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6723 off += PFKEY_ALIGN8(sizeof(*sup));
6724
6725 for (i = 1; i <= SADB_EALG_MAX; i++) {
6726 const struct enc_xform *ealgo;
6727
6728 ealgo = esp_algorithm_lookup(i);
6729 if (!ealgo)
6730 continue;
6731 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6732 alg->sadb_alg_id = i;
6733 alg->sadb_alg_ivlen = ealgo->blocksize;
6734 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6735 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6736 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6737 }
6738 }
6739
6740 KASSERTMSG(off == len, "length inconsistency");
6741
6742 m_freem(m);
6743 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6744 }
6745 }
6746
6747 /*
6748 * free secreg entry registered.
6749 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6750 */
6751 void
6752 key_freereg(struct socket *so)
6753 {
6754 struct secreg *reg;
6755 int i;
6756
6757 KASSERT(!cpu_softintr_p());
6758 KASSERT(so != NULL);
6759
6760 /*
6761 * check whether existing or not.
6762 * check all type of SA, because there is a potential that
6763 * one socket is registered to multiple type of SA.
6764 */
6765 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6766 LIST_FOREACH(reg, ®tree[i], chain) {
6767 if (reg->so == so) {
6768 KASSERT(__LIST_CHAINED(reg));
6769 LIST_REMOVE(reg, chain);
6770 kmem_free(reg, sizeof(*reg));
6771 break;
6772 }
6773 }
6774 }
6775
6776 return;
6777 }
6778
6779 /*
6780 * SADB_EXPIRE processing
6781 * send
6782 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6783 * to KMD by PF_KEY.
6784 * NOTE: We send only soft lifetime extension.
6785 *
6786 * OUT: 0 : succeed
6787 * others : error number
6788 */
6789 static int
6790 key_expire(struct secasvar *sav)
6791 {
6792 int s;
6793 int satype;
6794 struct mbuf *result = NULL, *m;
6795 int len;
6796 int error = -1;
6797 struct sadb_lifetime *lt;
6798
6799 /* XXX: Why do we lock ? */
6800 s = splsoftnet(); /*called from softclock()*/
6801
6802 KASSERT(sav != NULL);
6803 KASSERT(sav->sah != NULL);
6804
6805 satype = key_proto2satype(sav->sah->saidx.proto);
6806 KASSERTMSG(satype != 0, "invalid proto is passed");
6807
6808 /* set msg header */
6809 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6810 if (!m) {
6811 error = ENOBUFS;
6812 goto fail;
6813 }
6814 result = m;
6815
6816 /* create SA extension */
6817 m = key_setsadbsa(sav);
6818 if (!m) {
6819 error = ENOBUFS;
6820 goto fail;
6821 }
6822 m_cat(result, m);
6823
6824 /* create SA extension */
6825 m = key_setsadbxsa2(sav->sah->saidx.mode,
6826 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6827 if (!m) {
6828 error = ENOBUFS;
6829 goto fail;
6830 }
6831 m_cat(result, m);
6832
6833 /* create lifetime extension (current and soft) */
6834 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6835 m = key_alloc_mbuf(len);
6836 if (!m || m->m_next) { /*XXX*/
6837 if (m)
6838 m_freem(m);
6839 error = ENOBUFS;
6840 goto fail;
6841 }
6842 memset(mtod(m, void *), 0, len);
6843 lt = mtod(m, struct sadb_lifetime *);
6844 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6845 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6846 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6847 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6848 lt->sadb_lifetime_addtime =
6849 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6850 lt->sadb_lifetime_usetime =
6851 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6852 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6853 memcpy(lt, sav->lft_s, sizeof(*lt));
6854 m_cat(result, m);
6855
6856 /* set sadb_address for source */
6857 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6858 FULLMASK, IPSEC_ULPROTO_ANY);
6859 if (!m) {
6860 error = ENOBUFS;
6861 goto fail;
6862 }
6863 m_cat(result, m);
6864
6865 /* set sadb_address for destination */
6866 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6867 FULLMASK, IPSEC_ULPROTO_ANY);
6868 if (!m) {
6869 error = ENOBUFS;
6870 goto fail;
6871 }
6872 m_cat(result, m);
6873
6874 if ((result->m_flags & M_PKTHDR) == 0) {
6875 error = EINVAL;
6876 goto fail;
6877 }
6878
6879 if (result->m_len < sizeof(struct sadb_msg)) {
6880 result = m_pullup(result, sizeof(struct sadb_msg));
6881 if (result == NULL) {
6882 error = ENOBUFS;
6883 goto fail;
6884 }
6885 }
6886
6887 result->m_pkthdr.len = 0;
6888 for (m = result; m; m = m->m_next)
6889 result->m_pkthdr.len += m->m_len;
6890
6891 mtod(result, struct sadb_msg *)->sadb_msg_len =
6892 PFKEY_UNIT64(result->m_pkthdr.len);
6893
6894 splx(s);
6895 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6896
6897 fail:
6898 if (result)
6899 m_freem(result);
6900 splx(s);
6901 return error;
6902 }
6903
6904 /*
6905 * SADB_FLUSH processing
6906 * receive
6907 * <base>
6908 * from the ikmpd, and free all entries in secastree.
6909 * and send,
6910 * <base>
6911 * to the ikmpd.
6912 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6913 *
6914 * m will always be freed.
6915 */
6916 static int
6917 key_flush(struct socket *so, struct mbuf *m,
6918 const struct sadb_msghdr *mhp)
6919 {
6920 struct sadb_msg *newmsg;
6921 struct secashead *sah;
6922 struct secasvar *sav, *nextsav;
6923 u_int16_t proto;
6924 u_int8_t state;
6925
6926 KASSERT(so != NULL);
6927 KASSERT(mhp != NULL);
6928 KASSERT(mhp->msg != NULL);
6929
6930 /* map satype to proto */
6931 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6932 if (proto == 0) {
6933 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6934 return key_senderror(so, m, EINVAL);
6935 }
6936
6937 /* no SATYPE specified, i.e. flushing all SA. */
6938 LIST_FOREACH(sah, &sahtree, chain) {
6939 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6940 proto != sah->saidx.proto)
6941 continue;
6942
6943 SASTATE_ALIVE_FOREACH(state) {
6944 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6945 nextsav) {
6946 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6947 KEY_FREESAV(&sav);
6948 }
6949 }
6950
6951 sah->state = SADB_SASTATE_DEAD;
6952 }
6953
6954 if (m->m_len < sizeof(struct sadb_msg) ||
6955 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6956 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6957 return key_senderror(so, m, ENOBUFS);
6958 }
6959
6960 if (m->m_next)
6961 m_freem(m->m_next);
6962 m->m_next = NULL;
6963 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6964 newmsg = mtod(m, struct sadb_msg *);
6965 newmsg->sadb_msg_errno = 0;
6966 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6967
6968 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6969 }
6970
6971
6972 static struct mbuf *
6973 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6974 {
6975 struct secashead *sah;
6976 struct secasvar *sav;
6977 u_int16_t proto;
6978 u_int8_t satype;
6979 u_int8_t state;
6980 int cnt;
6981 struct mbuf *m, *n, *prev;
6982
6983 *lenp = 0;
6984
6985 /* map satype to proto */
6986 proto = key_satype2proto(req_satype);
6987 if (proto == 0) {
6988 *errorp = EINVAL;
6989 return (NULL);
6990 }
6991
6992 /* count sav entries to be sent to userland. */
6993 cnt = 0;
6994 LIST_FOREACH(sah, &sahtree, chain) {
6995 if (req_satype != SADB_SATYPE_UNSPEC &&
6996 proto != sah->saidx.proto)
6997 continue;
6998
6999 SASTATE_ANY_FOREACH(state) {
7000 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7001 cnt++;
7002 }
7003 }
7004 }
7005
7006 if (cnt == 0) {
7007 *errorp = ENOENT;
7008 return (NULL);
7009 }
7010
7011 /* send this to the userland, one at a time. */
7012 m = NULL;
7013 prev = m;
7014 LIST_FOREACH(sah, &sahtree, chain) {
7015 if (req_satype != SADB_SATYPE_UNSPEC &&
7016 proto != sah->saidx.proto)
7017 continue;
7018
7019 /* map proto to satype */
7020 satype = key_proto2satype(sah->saidx.proto);
7021 if (satype == 0) {
7022 m_freem(m);
7023 *errorp = EINVAL;
7024 return (NULL);
7025 }
7026
7027 SASTATE_ANY_FOREACH(state) {
7028 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7029 n = key_setdumpsa(sav, SADB_DUMP, satype,
7030 --cnt, pid);
7031 if (!n) {
7032 m_freem(m);
7033 *errorp = ENOBUFS;
7034 return (NULL);
7035 }
7036
7037 if (!m)
7038 m = n;
7039 else
7040 prev->m_nextpkt = n;
7041 prev = n;
7042 }
7043 }
7044 }
7045
7046 if (!m) {
7047 *errorp = EINVAL;
7048 return (NULL);
7049 }
7050
7051 if ((m->m_flags & M_PKTHDR) != 0) {
7052 m->m_pkthdr.len = 0;
7053 for (n = m; n; n = n->m_next)
7054 m->m_pkthdr.len += n->m_len;
7055 }
7056
7057 *errorp = 0;
7058 return (m);
7059 }
7060
7061 /*
7062 * SADB_DUMP processing
7063 * dump all entries including status of DEAD in SAD.
7064 * receive
7065 * <base>
7066 * from the ikmpd, and dump all secasvar leaves
7067 * and send,
7068 * <base> .....
7069 * to the ikmpd.
7070 *
7071 * m will always be freed.
7072 */
7073 static int
7074 key_dump(struct socket *so, struct mbuf *m0,
7075 const struct sadb_msghdr *mhp)
7076 {
7077 u_int16_t proto;
7078 u_int8_t satype;
7079 struct mbuf *n;
7080 int s;
7081 int error, len, ok;
7082
7083 KASSERT(so != NULL);
7084 KASSERT(m0 != NULL);
7085 KASSERT(mhp != NULL);
7086 KASSERT(mhp->msg != NULL);
7087
7088 /* map satype to proto */
7089 satype = mhp->msg->sadb_msg_satype;
7090 proto = key_satype2proto(satype);
7091 if (proto == 0) {
7092 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7093 return key_senderror(so, m0, EINVAL);
7094 }
7095
7096 /*
7097 * If the requestor has insufficient socket-buffer space
7098 * for the entire chain, nobody gets any response to the DUMP.
7099 * XXX For now, only the requestor ever gets anything.
7100 * Moreover, if the requestor has any space at all, they receive
7101 * the entire chain, otherwise the request is refused with ENOBUFS.
7102 */
7103 if (sbspace(&so->so_rcv) <= 0) {
7104 return key_senderror(so, m0, ENOBUFS);
7105 }
7106
7107 s = splsoftnet();
7108 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7109 splx(s);
7110
7111 if (n == NULL) {
7112 return key_senderror(so, m0, ENOENT);
7113 }
7114 {
7115 uint64_t *ps = PFKEY_STAT_GETREF();
7116 ps[PFKEY_STAT_IN_TOTAL]++;
7117 ps[PFKEY_STAT_IN_BYTES] += len;
7118 PFKEY_STAT_PUTREF();
7119 }
7120
7121 /*
7122 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7123 * The requestor receives either the entire chain, or an
7124 * error message with ENOBUFS.
7125 *
7126 * sbappendaddrchain() takes the chain of entries, one
7127 * packet-record per SPD entry, prepends the key_src sockaddr
7128 * to each packet-record, links the sockaddr mbufs into a new
7129 * list of records, then appends the entire resulting
7130 * list to the requesting socket.
7131 */
7132 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7133 SB_PRIO_ONESHOT_OVERFLOW);
7134
7135 if (!ok) {
7136 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7137 m_freem(n);
7138 return key_senderror(so, m0, ENOBUFS);
7139 }
7140
7141 m_freem(m0);
7142 return 0;
7143 }
7144
7145 /*
7146 * SADB_X_PROMISC processing
7147 *
7148 * m will always be freed.
7149 */
7150 static int
7151 key_promisc(struct socket *so, struct mbuf *m,
7152 const struct sadb_msghdr *mhp)
7153 {
7154 int olen;
7155
7156 KASSERT(so != NULL);
7157 KASSERT(m != NULL);
7158 KASSERT(mhp != NULL);
7159 KASSERT(mhp->msg != NULL);
7160
7161 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7162
7163 if (olen < sizeof(struct sadb_msg)) {
7164 #if 1
7165 return key_senderror(so, m, EINVAL);
7166 #else
7167 m_freem(m);
7168 return 0;
7169 #endif
7170 } else if (olen == sizeof(struct sadb_msg)) {
7171 /* enable/disable promisc mode */
7172 struct keycb *kp = (struct keycb *)sotorawcb(so);
7173 if (kp == NULL)
7174 return key_senderror(so, m, EINVAL);
7175 mhp->msg->sadb_msg_errno = 0;
7176 switch (mhp->msg->sadb_msg_satype) {
7177 case 0:
7178 case 1:
7179 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7180 break;
7181 default:
7182 return key_senderror(so, m, EINVAL);
7183 }
7184
7185 /* send the original message back to everyone */
7186 mhp->msg->sadb_msg_errno = 0;
7187 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7188 } else {
7189 /* send packet as is */
7190
7191 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7192
7193 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7194 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7195 }
7196 }
7197
7198 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7199 const struct sadb_msghdr *) = {
7200 NULL, /* SADB_RESERVED */
7201 key_getspi, /* SADB_GETSPI */
7202 key_update, /* SADB_UPDATE */
7203 key_add, /* SADB_ADD */
7204 key_delete, /* SADB_DELETE */
7205 key_get, /* SADB_GET */
7206 key_acquire2, /* SADB_ACQUIRE */
7207 key_register, /* SADB_REGISTER */
7208 NULL, /* SADB_EXPIRE */
7209 key_flush, /* SADB_FLUSH */
7210 key_dump, /* SADB_DUMP */
7211 key_promisc, /* SADB_X_PROMISC */
7212 NULL, /* SADB_X_PCHANGE */
7213 key_spdadd, /* SADB_X_SPDUPDATE */
7214 key_spdadd, /* SADB_X_SPDADD */
7215 key_spddelete, /* SADB_X_SPDDELETE */
7216 key_spdget, /* SADB_X_SPDGET */
7217 NULL, /* SADB_X_SPDACQUIRE */
7218 key_spddump, /* SADB_X_SPDDUMP */
7219 key_spdflush, /* SADB_X_SPDFLUSH */
7220 key_spdadd, /* SADB_X_SPDSETIDX */
7221 NULL, /* SADB_X_SPDEXPIRE */
7222 key_spddelete2, /* SADB_X_SPDDELETE2 */
7223 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7224 };
7225
7226 /*
7227 * parse sadb_msg buffer to process PFKEYv2,
7228 * and create a data to response if needed.
7229 * I think to be dealed with mbuf directly.
7230 * IN:
7231 * msgp : pointer to pointer to a received buffer pulluped.
7232 * This is rewrited to response.
7233 * so : pointer to socket.
7234 * OUT:
7235 * length for buffer to send to user process.
7236 */
7237 int
7238 key_parse(struct mbuf *m, struct socket *so)
7239 {
7240 struct sadb_msg *msg;
7241 struct sadb_msghdr mh;
7242 u_int orglen;
7243 int error;
7244 int target;
7245
7246 KASSERT(m != NULL);
7247 KASSERT(so != NULL);
7248
7249 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7250 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7251 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7252 kdebug_sadb(msg);
7253 }
7254 #endif
7255
7256 if (m->m_len < sizeof(struct sadb_msg)) {
7257 m = m_pullup(m, sizeof(struct sadb_msg));
7258 if (!m)
7259 return ENOBUFS;
7260 }
7261 msg = mtod(m, struct sadb_msg *);
7262 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7263 target = KEY_SENDUP_ONE;
7264
7265 if ((m->m_flags & M_PKTHDR) == 0 ||
7266 m->m_pkthdr.len != orglen) {
7267 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7268 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7269 error = EINVAL;
7270 goto senderror;
7271 }
7272
7273 if (msg->sadb_msg_version != PF_KEY_V2) {
7274 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7275 msg->sadb_msg_version);
7276 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7277 error = EINVAL;
7278 goto senderror;
7279 }
7280
7281 if (msg->sadb_msg_type > SADB_MAX) {
7282 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7283 msg->sadb_msg_type);
7284 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7285 error = EINVAL;
7286 goto senderror;
7287 }
7288
7289 /* for old-fashioned code - should be nuked */
7290 if (m->m_pkthdr.len > MCLBYTES) {
7291 m_freem(m);
7292 return ENOBUFS;
7293 }
7294 if (m->m_next) {
7295 struct mbuf *n;
7296
7297 MGETHDR(n, M_DONTWAIT, MT_DATA);
7298 if (n && m->m_pkthdr.len > MHLEN) {
7299 MCLGET(n, M_DONTWAIT);
7300 if ((n->m_flags & M_EXT) == 0) {
7301 m_free(n);
7302 n = NULL;
7303 }
7304 }
7305 if (!n) {
7306 m_freem(m);
7307 return ENOBUFS;
7308 }
7309 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7310 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7311 n->m_next = NULL;
7312 m_freem(m);
7313 m = n;
7314 }
7315
7316 /* align the mbuf chain so that extensions are in contiguous region. */
7317 error = key_align(m, &mh);
7318 if (error)
7319 return error;
7320
7321 if (m->m_next) { /*XXX*/
7322 m_freem(m);
7323 return ENOBUFS;
7324 }
7325
7326 msg = mh.msg;
7327
7328 /* check SA type */
7329 switch (msg->sadb_msg_satype) {
7330 case SADB_SATYPE_UNSPEC:
7331 switch (msg->sadb_msg_type) {
7332 case SADB_GETSPI:
7333 case SADB_UPDATE:
7334 case SADB_ADD:
7335 case SADB_DELETE:
7336 case SADB_GET:
7337 case SADB_ACQUIRE:
7338 case SADB_EXPIRE:
7339 IPSECLOG(LOG_DEBUG,
7340 "must specify satype when msg type=%u.\n",
7341 msg->sadb_msg_type);
7342 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7343 error = EINVAL;
7344 goto senderror;
7345 }
7346 break;
7347 case SADB_SATYPE_AH:
7348 case SADB_SATYPE_ESP:
7349 case SADB_X_SATYPE_IPCOMP:
7350 case SADB_X_SATYPE_TCPSIGNATURE:
7351 switch (msg->sadb_msg_type) {
7352 case SADB_X_SPDADD:
7353 case SADB_X_SPDDELETE:
7354 case SADB_X_SPDGET:
7355 case SADB_X_SPDDUMP:
7356 case SADB_X_SPDFLUSH:
7357 case SADB_X_SPDSETIDX:
7358 case SADB_X_SPDUPDATE:
7359 case SADB_X_SPDDELETE2:
7360 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7361 msg->sadb_msg_type);
7362 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7363 error = EINVAL;
7364 goto senderror;
7365 }
7366 break;
7367 case SADB_SATYPE_RSVP:
7368 case SADB_SATYPE_OSPFV2:
7369 case SADB_SATYPE_RIPV2:
7370 case SADB_SATYPE_MIP:
7371 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7372 msg->sadb_msg_satype);
7373 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7374 error = EOPNOTSUPP;
7375 goto senderror;
7376 case 1: /* XXX: What does it do? */
7377 if (msg->sadb_msg_type == SADB_X_PROMISC)
7378 break;
7379 /*FALLTHROUGH*/
7380 default:
7381 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7382 msg->sadb_msg_satype);
7383 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7384 error = EINVAL;
7385 goto senderror;
7386 }
7387
7388 /* check field of upper layer protocol and address family */
7389 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7390 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7391 struct sadb_address *src0, *dst0;
7392 u_int plen;
7393
7394 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7395 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7396
7397 /* check upper layer protocol */
7398 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7399 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7400 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7401 error = EINVAL;
7402 goto senderror;
7403 }
7404
7405 /* check family */
7406 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7407 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7408 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7409 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7410 error = EINVAL;
7411 goto senderror;
7412 }
7413 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7414 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7415 IPSECLOG(LOG_DEBUG,
7416 "address struct size mismatched.\n");
7417 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7418 error = EINVAL;
7419 goto senderror;
7420 }
7421
7422 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7423 case AF_INET:
7424 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7425 sizeof(struct sockaddr_in)) {
7426 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7427 error = EINVAL;
7428 goto senderror;
7429 }
7430 break;
7431 case AF_INET6:
7432 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7433 sizeof(struct sockaddr_in6)) {
7434 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7435 error = EINVAL;
7436 goto senderror;
7437 }
7438 break;
7439 default:
7440 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7441 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7442 error = EAFNOSUPPORT;
7443 goto senderror;
7444 }
7445
7446 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7447 case AF_INET:
7448 plen = sizeof(struct in_addr) << 3;
7449 break;
7450 case AF_INET6:
7451 plen = sizeof(struct in6_addr) << 3;
7452 break;
7453 default:
7454 plen = 0; /*fool gcc*/
7455 break;
7456 }
7457
7458 /* check max prefix length */
7459 if (src0->sadb_address_prefixlen > plen ||
7460 dst0->sadb_address_prefixlen > plen) {
7461 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7462 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7463 error = EINVAL;
7464 goto senderror;
7465 }
7466
7467 /*
7468 * prefixlen == 0 is valid because there can be a case when
7469 * all addresses are matched.
7470 */
7471 }
7472
7473 if (msg->sadb_msg_type >= __arraycount(key_typesw) ||
7474 key_typesw[msg->sadb_msg_type] == NULL) {
7475 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7476 error = EINVAL;
7477 goto senderror;
7478 }
7479
7480 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7481
7482 senderror:
7483 msg->sadb_msg_errno = error;
7484 return key_sendup_mbuf(so, m, target);
7485 }
7486
7487 static int
7488 key_senderror(struct socket *so, struct mbuf *m, int code)
7489 {
7490 struct sadb_msg *msg;
7491
7492 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7493
7494 msg = mtod(m, struct sadb_msg *);
7495 msg->sadb_msg_errno = code;
7496 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7497 }
7498
7499 /*
7500 * set the pointer to each header into message buffer.
7501 * m will be freed on error.
7502 * XXX larger-than-MCLBYTES extension?
7503 */
7504 static int
7505 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7506 {
7507 struct mbuf *n;
7508 struct sadb_ext *ext;
7509 size_t off, end;
7510 int extlen;
7511 int toff;
7512
7513 KASSERT(m != NULL);
7514 KASSERT(mhp != NULL);
7515 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7516
7517 /* initialize */
7518 memset(mhp, 0, sizeof(*mhp));
7519
7520 mhp->msg = mtod(m, struct sadb_msg *);
7521 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7522
7523 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7524 extlen = end; /*just in case extlen is not updated*/
7525 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7526 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7527 if (!n) {
7528 /* m is already freed */
7529 return ENOBUFS;
7530 }
7531 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7532
7533 /* set pointer */
7534 switch (ext->sadb_ext_type) {
7535 case SADB_EXT_SA:
7536 case SADB_EXT_ADDRESS_SRC:
7537 case SADB_EXT_ADDRESS_DST:
7538 case SADB_EXT_ADDRESS_PROXY:
7539 case SADB_EXT_LIFETIME_CURRENT:
7540 case SADB_EXT_LIFETIME_HARD:
7541 case SADB_EXT_LIFETIME_SOFT:
7542 case SADB_EXT_KEY_AUTH:
7543 case SADB_EXT_KEY_ENCRYPT:
7544 case SADB_EXT_IDENTITY_SRC:
7545 case SADB_EXT_IDENTITY_DST:
7546 case SADB_EXT_SENSITIVITY:
7547 case SADB_EXT_PROPOSAL:
7548 case SADB_EXT_SUPPORTED_AUTH:
7549 case SADB_EXT_SUPPORTED_ENCRYPT:
7550 case SADB_EXT_SPIRANGE:
7551 case SADB_X_EXT_POLICY:
7552 case SADB_X_EXT_SA2:
7553 case SADB_X_EXT_NAT_T_TYPE:
7554 case SADB_X_EXT_NAT_T_SPORT:
7555 case SADB_X_EXT_NAT_T_DPORT:
7556 case SADB_X_EXT_NAT_T_OAI:
7557 case SADB_X_EXT_NAT_T_OAR:
7558 case SADB_X_EXT_NAT_T_FRAG:
7559 /* duplicate check */
7560 /*
7561 * XXX Are there duplication payloads of either
7562 * KEY_AUTH or KEY_ENCRYPT ?
7563 */
7564 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7565 IPSECLOG(LOG_DEBUG,
7566 "duplicate ext_type %u is passed.\n",
7567 ext->sadb_ext_type);
7568 m_freem(m);
7569 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7570 return EINVAL;
7571 }
7572 break;
7573 default:
7574 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7575 ext->sadb_ext_type);
7576 m_freem(m);
7577 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7578 return EINVAL;
7579 }
7580
7581 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7582
7583 if (key_validate_ext(ext, extlen)) {
7584 m_freem(m);
7585 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7586 return EINVAL;
7587 }
7588
7589 n = m_pulldown(m, off, extlen, &toff);
7590 if (!n) {
7591 /* m is already freed */
7592 return ENOBUFS;
7593 }
7594 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7595
7596 mhp->ext[ext->sadb_ext_type] = ext;
7597 mhp->extoff[ext->sadb_ext_type] = off;
7598 mhp->extlen[ext->sadb_ext_type] = extlen;
7599 }
7600
7601 if (off != end) {
7602 m_freem(m);
7603 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7604 return EINVAL;
7605 }
7606
7607 return 0;
7608 }
7609
7610 static int
7611 key_validate_ext(const struct sadb_ext *ext, int len)
7612 {
7613 const struct sockaddr *sa;
7614 enum { NONE, ADDR } checktype = NONE;
7615 int baselen = 0;
7616 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7617
7618 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7619 return EINVAL;
7620
7621 /* if it does not match minimum/maximum length, bail */
7622 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7623 ext->sadb_ext_type >= __arraycount(maxsize))
7624 return EINVAL;
7625 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7626 return EINVAL;
7627 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7628 return EINVAL;
7629
7630 /* more checks based on sadb_ext_type XXX need more */
7631 switch (ext->sadb_ext_type) {
7632 case SADB_EXT_ADDRESS_SRC:
7633 case SADB_EXT_ADDRESS_DST:
7634 case SADB_EXT_ADDRESS_PROXY:
7635 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7636 checktype = ADDR;
7637 break;
7638 case SADB_EXT_IDENTITY_SRC:
7639 case SADB_EXT_IDENTITY_DST:
7640 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7641 SADB_X_IDENTTYPE_ADDR) {
7642 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7643 checktype = ADDR;
7644 } else
7645 checktype = NONE;
7646 break;
7647 default:
7648 checktype = NONE;
7649 break;
7650 }
7651
7652 switch (checktype) {
7653 case NONE:
7654 break;
7655 case ADDR:
7656 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7657 if (len < baselen + sal)
7658 return EINVAL;
7659 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7660 return EINVAL;
7661 break;
7662 }
7663
7664 return 0;
7665 }
7666
7667 static int
7668 key_do_init(void)
7669 {
7670 int i, error;
7671
7672 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7673
7674 callout_init(&key_timehandler_ch, 0);
7675 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7676 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7677 if (error != 0)
7678 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7679
7680 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7681 LIST_INIT(&sptree[i]);
7682 }
7683
7684 LIST_INIT(&sahtree);
7685
7686 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7687 LIST_INIT(®tree[i]);
7688 }
7689
7690 #ifndef IPSEC_NONBLOCK_ACQUIRE
7691 LIST_INIT(&acqtree);
7692 #endif
7693 #ifdef notyet
7694 LIST_INIT(&spacqtree);
7695 #endif
7696
7697 /* system default */
7698 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7699 ip4_def_policy.refcnt++; /*never reclaim this*/
7700
7701 #ifdef INET6
7702 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7703 ip6_def_policy.refcnt++; /*never reclaim this*/
7704 #endif
7705
7706 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7707
7708 /* initialize key statistics */
7709 keystat.getspi_count = 1;
7710
7711 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7712
7713 return (0);
7714 }
7715
7716 void
7717 key_init(void)
7718 {
7719 static ONCE_DECL(key_init_once);
7720
7721 sysctl_net_keyv2_setup(NULL);
7722 sysctl_net_key_compat_setup(NULL);
7723
7724 RUN_ONCE(&key_init_once, key_do_init);
7725 }
7726
7727 /*
7728 * XXX: maybe This function is called after INBOUND IPsec processing.
7729 *
7730 * Special check for tunnel-mode packets.
7731 * We must make some checks for consistency between inner and outer IP header.
7732 *
7733 * xxx more checks to be provided
7734 */
7735 int
7736 key_checktunnelsanity(
7737 struct secasvar *sav,
7738 u_int family,
7739 void *src,
7740 void *dst
7741 )
7742 {
7743
7744 KASSERT(sav->sah != NULL);
7745
7746 /* XXX: check inner IP header */
7747
7748 return 1;
7749 }
7750
7751 #if 0
7752 #define hostnamelen strlen(hostname)
7753
7754 /*
7755 * Get FQDN for the host.
7756 * If the administrator configured hostname (by hostname(1)) without
7757 * domain name, returns nothing.
7758 */
7759 static const char *
7760 key_getfqdn(void)
7761 {
7762 int i;
7763 int hasdot;
7764 static char fqdn[MAXHOSTNAMELEN + 1];
7765
7766 if (!hostnamelen)
7767 return NULL;
7768
7769 /* check if it comes with domain name. */
7770 hasdot = 0;
7771 for (i = 0; i < hostnamelen; i++) {
7772 if (hostname[i] == '.')
7773 hasdot++;
7774 }
7775 if (!hasdot)
7776 return NULL;
7777
7778 /* NOTE: hostname may not be NUL-terminated. */
7779 memset(fqdn, 0, sizeof(fqdn));
7780 memcpy(fqdn, hostname, hostnamelen);
7781 fqdn[hostnamelen] = '\0';
7782 return fqdn;
7783 }
7784
7785 /*
7786 * get username@FQDN for the host/user.
7787 */
7788 static const char *
7789 key_getuserfqdn(void)
7790 {
7791 const char *host;
7792 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7793 struct proc *p = curproc;
7794 char *q;
7795
7796 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7797 return NULL;
7798 if (!(host = key_getfqdn()))
7799 return NULL;
7800
7801 /* NOTE: s_login may not be-NUL terminated. */
7802 memset(userfqdn, 0, sizeof(userfqdn));
7803 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7804 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7805 q = userfqdn + strlen(userfqdn);
7806 *q++ = '@';
7807 memcpy(q, host, strlen(host));
7808 q += strlen(host);
7809 *q++ = '\0';
7810
7811 return userfqdn;
7812 }
7813 #endif
7814
7815 /* record data transfer on SA, and update timestamps */
7816 void
7817 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7818 {
7819
7820 KASSERT(sav != NULL);
7821 KASSERT(m != NULL);
7822 if (!sav->lft_c)
7823 return;
7824
7825 /*
7826 * XXX Currently, there is a difference of bytes size
7827 * between inbound and outbound processing.
7828 */
7829 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7830 /* to check bytes lifetime is done in key_timehandler(). */
7831
7832 /*
7833 * We use the number of packets as the unit of
7834 * sadb_lifetime_allocations. We increment the variable
7835 * whenever {esp,ah}_{in,out}put is called.
7836 */
7837 sav->lft_c->sadb_lifetime_allocations++;
7838 /* XXX check for expires? */
7839
7840 /*
7841 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7842 * in seconds. HARD and SOFT lifetime are measured by the time
7843 * difference (again in seconds) from sadb_lifetime_usetime.
7844 *
7845 * usetime
7846 * v expire expire
7847 * -----+-----+--------+---> t
7848 * <--------------> HARD
7849 * <-----> SOFT
7850 */
7851 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7852 /* XXX check for expires? */
7853
7854 return;
7855 }
7856
7857 /* dumb version */
7858 void
7859 key_sa_routechange(struct sockaddr *dst)
7860 {
7861 struct secashead *sah;
7862 struct route *ro;
7863 const struct sockaddr *sa;
7864
7865 LIST_FOREACH(sah, &sahtree, chain) {
7866 ro = &sah->sa_route;
7867 sa = rtcache_getdst(ro);
7868 if (sa != NULL && dst->sa_len == sa->sa_len &&
7869 memcmp(dst, sa, dst->sa_len) == 0)
7870 rtcache_free(ro);
7871 }
7872
7873 return;
7874 }
7875
7876 static void
7877 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7878 {
7879
7880 KASSERT(sav != NULL);
7881
7882 if (sav->state == state)
7883 return;
7884
7885 KASSERT(__LIST_CHAINED(sav));
7886 LIST_REMOVE(sav, chain);
7887
7888 sav->state = state;
7889 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7890 }
7891
7892 /* XXX too much? */
7893 static struct mbuf *
7894 key_alloc_mbuf(int l)
7895 {
7896 struct mbuf *m = NULL, *n;
7897 int len, t;
7898
7899 len = l;
7900 while (len > 0) {
7901 MGET(n, M_DONTWAIT, MT_DATA);
7902 if (n && len > MLEN)
7903 MCLGET(n, M_DONTWAIT);
7904 if (!n) {
7905 m_freem(m);
7906 return NULL;
7907 }
7908
7909 n->m_next = NULL;
7910 n->m_len = 0;
7911 n->m_len = M_TRAILINGSPACE(n);
7912 /* use the bottom of mbuf, hoping we can prepend afterwards */
7913 if (n->m_len > len) {
7914 t = (n->m_len - len) & ~(sizeof(long) - 1);
7915 n->m_data += t;
7916 n->m_len = len;
7917 }
7918
7919 len -= n->m_len;
7920
7921 if (m)
7922 m_cat(m, n);
7923 else
7924 m = n;
7925 }
7926
7927 return m;
7928 }
7929
7930 static struct mbuf *
7931 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7932 {
7933 struct secashead *sah;
7934 struct secasvar *sav;
7935 u_int16_t proto;
7936 u_int8_t satype;
7937 u_int8_t state;
7938 int cnt;
7939 struct mbuf *m, *n;
7940
7941 /* map satype to proto */
7942 proto = key_satype2proto(req_satype);
7943 if (proto == 0) {
7944 *errorp = EINVAL;
7945 return (NULL);
7946 }
7947
7948 /* count sav entries to be sent to the userland. */
7949 cnt = 0;
7950 LIST_FOREACH(sah, &sahtree, chain) {
7951 if (req_satype != SADB_SATYPE_UNSPEC &&
7952 proto != sah->saidx.proto)
7953 continue;
7954
7955 SASTATE_ANY_FOREACH(state) {
7956 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7957 cnt++;
7958 }
7959 }
7960 }
7961
7962 if (cnt == 0) {
7963 *errorp = ENOENT;
7964 return (NULL);
7965 }
7966
7967 /* send this to the userland, one at a time. */
7968 m = NULL;
7969 LIST_FOREACH(sah, &sahtree, chain) {
7970 if (req_satype != SADB_SATYPE_UNSPEC &&
7971 proto != sah->saidx.proto)
7972 continue;
7973
7974 /* map proto to satype */
7975 satype = key_proto2satype(sah->saidx.proto);
7976 if (satype == 0) {
7977 m_freem(m);
7978 *errorp = EINVAL;
7979 return (NULL);
7980 }
7981
7982 SASTATE_ANY_FOREACH(state) {
7983 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7984 n = key_setdumpsa(sav, SADB_DUMP, satype,
7985 --cnt, pid);
7986 if (!n) {
7987 m_freem(m);
7988 *errorp = ENOBUFS;
7989 return (NULL);
7990 }
7991
7992 if (!m)
7993 m = n;
7994 else
7995 m_cat(m, n);
7996 }
7997 }
7998 }
7999
8000 if (!m) {
8001 *errorp = EINVAL;
8002 return (NULL);
8003 }
8004
8005 if ((m->m_flags & M_PKTHDR) != 0) {
8006 m->m_pkthdr.len = 0;
8007 for (n = m; n; n = n->m_next)
8008 m->m_pkthdr.len += n->m_len;
8009 }
8010
8011 *errorp = 0;
8012 return (m);
8013 }
8014
8015 static struct mbuf *
8016 key_setspddump(int *errorp, pid_t pid)
8017 {
8018 struct secpolicy *sp;
8019 int cnt;
8020 u_int dir;
8021 struct mbuf *m, *n;
8022
8023 /* search SPD entry and get buffer size. */
8024 cnt = 0;
8025 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8026 LIST_FOREACH(sp, &sptree[dir], chain) {
8027 cnt++;
8028 }
8029 }
8030
8031 if (cnt == 0) {
8032 *errorp = ENOENT;
8033 return (NULL);
8034 }
8035
8036 m = NULL;
8037 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8038 LIST_FOREACH(sp, &sptree[dir], chain) {
8039 --cnt;
8040 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8041
8042 if (!n) {
8043 *errorp = ENOBUFS;
8044 m_freem(m);
8045 return (NULL);
8046 }
8047 if (!m)
8048 m = n;
8049 else {
8050 m->m_pkthdr.len += n->m_pkthdr.len;
8051 m_cat(m, n);
8052 }
8053 }
8054 }
8055
8056 *errorp = 0;
8057 return (m);
8058 }
8059
8060 int
8061 key_get_used(void) {
8062 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8063 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8064 }
8065
8066 void
8067 key_update_used(void)
8068 {
8069 switch (ipsec_enabled) {
8070 default:
8071 case 0:
8072 #ifdef notyet
8073 /* XXX: racy */
8074 ipsec_used = 0;
8075 #endif
8076 break;
8077 case 1:
8078 #ifndef notyet
8079 /* XXX: racy */
8080 if (!ipsec_used)
8081 #endif
8082 ipsec_used = key_get_used();
8083 break;
8084 case 2:
8085 ipsec_used = 1;
8086 break;
8087 }
8088 }
8089
8090 static int
8091 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8092 {
8093 struct mbuf *m, *n;
8094 int err2 = 0;
8095 char *p, *ep;
8096 size_t len;
8097 int s, error;
8098
8099 if (newp)
8100 return (EPERM);
8101 if (namelen != 1)
8102 return (EINVAL);
8103
8104 s = splsoftnet();
8105 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8106 splx(s);
8107 if (!m)
8108 return (error);
8109 if (!oldp)
8110 *oldlenp = m->m_pkthdr.len;
8111 else {
8112 p = oldp;
8113 if (*oldlenp < m->m_pkthdr.len) {
8114 err2 = ENOMEM;
8115 ep = p + *oldlenp;
8116 } else {
8117 *oldlenp = m->m_pkthdr.len;
8118 ep = p + m->m_pkthdr.len;
8119 }
8120 for (n = m; n; n = n->m_next) {
8121 len = (ep - p < n->m_len) ?
8122 ep - p : n->m_len;
8123 error = copyout(mtod(n, const void *), p, len);
8124 p += len;
8125 if (error)
8126 break;
8127 }
8128 if (error == 0)
8129 error = err2;
8130 }
8131 m_freem(m);
8132
8133 return (error);
8134 }
8135
8136 static int
8137 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8138 {
8139 struct mbuf *m, *n;
8140 int err2 = 0;
8141 char *p, *ep;
8142 size_t len;
8143 int s, error;
8144
8145 if (newp)
8146 return (EPERM);
8147 if (namelen != 0)
8148 return (EINVAL);
8149
8150 s = splsoftnet();
8151 m = key_setspddump(&error, l->l_proc->p_pid);
8152 splx(s);
8153 if (!m)
8154 return (error);
8155 if (!oldp)
8156 *oldlenp = m->m_pkthdr.len;
8157 else {
8158 p = oldp;
8159 if (*oldlenp < m->m_pkthdr.len) {
8160 err2 = ENOMEM;
8161 ep = p + *oldlenp;
8162 } else {
8163 *oldlenp = m->m_pkthdr.len;
8164 ep = p + m->m_pkthdr.len;
8165 }
8166 for (n = m; n; n = n->m_next) {
8167 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8168 error = copyout(mtod(n, const void *), p, len);
8169 p += len;
8170 if (error)
8171 break;
8172 }
8173 if (error == 0)
8174 error = err2;
8175 }
8176 m_freem(m);
8177
8178 return (error);
8179 }
8180
8181 /*
8182 * Create sysctl tree for native IPSEC key knobs, originally
8183 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8184 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8185 * and in any case the part of our sysctl namespace used for dumping the
8186 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8187 * namespace, for API reasons.
8188 *
8189 * Pending a consensus on the right way to fix this, add a level of
8190 * indirection in how we number the `native' IPSEC key nodes;
8191 * and (as requested by Andrew Brown) move registration of the
8192 * KAME-compatible names to a separate function.
8193 */
8194 #if 0
8195 # define IPSEC_PFKEY PF_KEY_V2
8196 # define IPSEC_PFKEY_NAME "keyv2"
8197 #else
8198 # define IPSEC_PFKEY PF_KEY
8199 # define IPSEC_PFKEY_NAME "key"
8200 #endif
8201
8202 static int
8203 sysctl_net_key_stats(SYSCTLFN_ARGS)
8204 {
8205
8206 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8207 }
8208
8209 static void
8210 sysctl_net_keyv2_setup(struct sysctllog **clog)
8211 {
8212
8213 sysctl_createv(clog, 0, NULL, NULL,
8214 CTLFLAG_PERMANENT,
8215 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8216 NULL, 0, NULL, 0,
8217 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8218
8219 sysctl_createv(clog, 0, NULL, NULL,
8220 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8221 CTLTYPE_INT, "debug", NULL,
8222 NULL, 0, &key_debug_level, 0,
8223 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8224 sysctl_createv(clog, 0, NULL, NULL,
8225 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8226 CTLTYPE_INT, "spi_try", NULL,
8227 NULL, 0, &key_spi_trycnt, 0,
8228 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8229 sysctl_createv(clog, 0, NULL, NULL,
8230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8231 CTLTYPE_INT, "spi_min_value", NULL,
8232 NULL, 0, &key_spi_minval, 0,
8233 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8234 sysctl_createv(clog, 0, NULL, NULL,
8235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8236 CTLTYPE_INT, "spi_max_value", NULL,
8237 NULL, 0, &key_spi_maxval, 0,
8238 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8239 sysctl_createv(clog, 0, NULL, NULL,
8240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8241 CTLTYPE_INT, "random_int", NULL,
8242 NULL, 0, &key_int_random, 0,
8243 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8244 sysctl_createv(clog, 0, NULL, NULL,
8245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8246 CTLTYPE_INT, "larval_lifetime", NULL,
8247 NULL, 0, &key_larval_lifetime, 0,
8248 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8249 sysctl_createv(clog, 0, NULL, NULL,
8250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8251 CTLTYPE_INT, "blockacq_count", NULL,
8252 NULL, 0, &key_blockacq_count, 0,
8253 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8254 sysctl_createv(clog, 0, NULL, NULL,
8255 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8256 CTLTYPE_INT, "blockacq_lifetime", NULL,
8257 NULL, 0, &key_blockacq_lifetime, 0,
8258 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8259 sysctl_createv(clog, 0, NULL, NULL,
8260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8261 CTLTYPE_INT, "esp_keymin", NULL,
8262 NULL, 0, &ipsec_esp_keymin, 0,
8263 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8264 sysctl_createv(clog, 0, NULL, NULL,
8265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8266 CTLTYPE_INT, "prefered_oldsa", NULL,
8267 NULL, 0, &key_prefered_oldsa, 0,
8268 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8269 sysctl_createv(clog, 0, NULL, NULL,
8270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8271 CTLTYPE_INT, "esp_auth", NULL,
8272 NULL, 0, &ipsec_esp_auth, 0,
8273 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8274 sysctl_createv(clog, 0, NULL, NULL,
8275 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8276 CTLTYPE_INT, "ah_keymin", NULL,
8277 NULL, 0, &ipsec_ah_keymin, 0,
8278 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8279 sysctl_createv(clog, 0, NULL, NULL,
8280 CTLFLAG_PERMANENT,
8281 CTLTYPE_STRUCT, "stats",
8282 SYSCTL_DESCR("PF_KEY statistics"),
8283 sysctl_net_key_stats, 0, NULL, 0,
8284 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8285 }
8286
8287 /*
8288 * Register sysctl names used by setkey(8). For historical reasons,
8289 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8290 * for both IPSEC and KAME IPSEC.
8291 */
8292 static void
8293 sysctl_net_key_compat_setup(struct sysctllog **clog)
8294 {
8295
8296 sysctl_createv(clog, 0, NULL, NULL,
8297 CTLFLAG_PERMANENT,
8298 CTLTYPE_NODE, "key", NULL,
8299 NULL, 0, NULL, 0,
8300 CTL_NET, PF_KEY, CTL_EOL);
8301
8302 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8303 sysctl_createv(clog, 0, NULL, NULL,
8304 CTLFLAG_PERMANENT,
8305 CTLTYPE_STRUCT, "dumpsa", NULL,
8306 sysctl_net_key_dumpsa, 0, NULL, 0,
8307 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8308 sysctl_createv(clog, 0, NULL, NULL,
8309 CTLFLAG_PERMANENT,
8310 CTLTYPE_STRUCT, "dumpsp", NULL,
8311 sysctl_net_key_dumpsp, 0, NULL, 0,
8312 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8313 }
8314