key.c revision 1.146 1 /* $NetBSD: key.c,v 1.146 2017/05/28 14:16:05 mlelstv Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.146 2017/05/28 14:16:05 mlelstv Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72 #include <net/raw_cb.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/in_var.h>
78 #ifdef INET
79 #include <netinet/ip_var.h>
80 #endif
81
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #include <netinet6/in6_var.h>
85 #include <netinet6/ip6_var.h>
86 #endif /* INET6 */
87
88 #ifdef INET
89 #include <netinet/in_pcb.h>
90 #endif
91 #ifdef INET6
92 #include <netinet6/in6_pcb.h>
93 #endif /* INET6 */
94
95 #include <net/pfkeyv2.h>
96 #include <netipsec/keydb.h>
97 #include <netipsec/key.h>
98 #include <netipsec/keysock.h>
99 #include <netipsec/key_debug.h>
100
101 #include <netipsec/ipsec.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/ipsec_private.h>
106
107 #include <netipsec/xform.h>
108 #include <netipsec/ipcomp.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 #define PORT_NONE 0
117 #define PORT_LOOSE 1
118 #define PORT_STRICT 2
119
120 percpu_t *pfkeystat_percpu;
121
122 /*
123 * Note on SA reference counting:
124 * - SAs that are not in DEAD state will have (total external reference + 1)
125 * following value in reference count field. they cannot be freed and are
126 * referenced from SA header.
127 * - SAs that are in DEAD state will have (total external reference)
128 * in reference count field. they are ready to be freed. reference from
129 * SA header will be removed in key_delsav(), when the reference count
130 * field hits 0 (= no external reference other than from SA header.
131 */
132
133 u_int32_t key_debug_level = 0;
134 static u_int key_spi_trycnt = 1000;
135 static u_int32_t key_spi_minval = 0x100;
136 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
137 static u_int32_t policy_id = 0;
138 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
139 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
140 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
141 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
142 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
143
144 static u_int32_t acq_seq = 0;
145
146 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
147 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
148 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
149 /* registed list */
150 #ifndef IPSEC_NONBLOCK_ACQUIRE
151 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
152 #endif
153 #ifdef notyet
154 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
155 #endif
156
157 /*
158 * Protect regtree, acqtree and items stored in the lists.
159 */
160 static kmutex_t key_mtx __cacheline_aligned;
161
162 /* search order for SAs */
163 /*
164 * This order is important because we must select the oldest SA
165 * for outbound processing. For inbound, This is not important.
166 */
167 static const u_int saorder_state_valid_prefer_old[] = {
168 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
169 };
170 static const u_int saorder_state_valid_prefer_new[] = {
171 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
172 };
173
174 static const u_int saorder_state_alive[] = {
175 /* except DEAD */
176 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
177 };
178 static const u_int saorder_state_any[] = {
179 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
180 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
181 };
182
183 #define SASTATE_ALIVE_FOREACH(s) \
184 for (int _i = 0; \
185 _i < __arraycount(saorder_state_alive) ? \
186 (s) = saorder_state_alive[_i], true : false; \
187 _i++)
188 #define SASTATE_ANY_FOREACH(s) \
189 for (int _i = 0; \
190 _i < __arraycount(saorder_state_any) ? \
191 (s) = saorder_state_any[_i], true : false; \
192 _i++)
193
194 static const int minsize[] = {
195 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
196 sizeof(struct sadb_sa), /* SADB_EXT_SA */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
202 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
203 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
204 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
205 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
206 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
207 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
208 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
209 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
210 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
211 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
212 0, /* SADB_X_EXT_KMPRIVATE */
213 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
214 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
215 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
217 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
218 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
219 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
220 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
221 };
222 static const int maxsize[] = {
223 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
224 sizeof(struct sadb_sa), /* SADB_EXT_SA */
225 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
227 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
228 0, /* SADB_EXT_ADDRESS_SRC */
229 0, /* SADB_EXT_ADDRESS_DST */
230 0, /* SADB_EXT_ADDRESS_PROXY */
231 0, /* SADB_EXT_KEY_AUTH */
232 0, /* SADB_EXT_KEY_ENCRYPT */
233 0, /* SADB_EXT_IDENTITY_SRC */
234 0, /* SADB_EXT_IDENTITY_DST */
235 0, /* SADB_EXT_SENSITIVITY */
236 0, /* SADB_EXT_PROPOSAL */
237 0, /* SADB_EXT_SUPPORTED_AUTH */
238 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
239 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
240 0, /* SADB_X_EXT_KMPRIVATE */
241 0, /* SADB_X_EXT_POLICY */
242 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
243 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
244 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
245 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
246 0, /* SADB_X_EXT_NAT_T_OAI */
247 0, /* SADB_X_EXT_NAT_T_OAR */
248 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
249 };
250
251 static int ipsec_esp_keymin = 256;
252 static int ipsec_esp_auth = 0;
253 static int ipsec_ah_keymin = 128;
254
255 #ifdef SYSCTL_DECL
256 SYSCTL_DECL(_net_key);
257 #endif
258
259 #ifdef SYSCTL_INT
260 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
261 &key_debug_level, 0, "");
262
263 /* max count of trial for the decision of spi value */
264 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
265 &key_spi_trycnt, 0, "");
266
267 /* minimum spi value to allocate automatically. */
268 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
269 &key_spi_minval, 0, "");
270
271 /* maximun spi value to allocate automatically. */
272 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
273 &key_spi_maxval, 0, "");
274
275 /* interval to initialize randseed */
276 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
277 &key_int_random, 0, "");
278
279 /* lifetime for larval SA */
280 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
281 &key_larval_lifetime, 0, "");
282
283 /* counter for blocking to send SADB_ACQUIRE to IKEd */
284 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
285 &key_blockacq_count, 0, "");
286
287 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
288 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
289 &key_blockacq_lifetime, 0, "");
290
291 /* ESP auth */
292 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
293 &ipsec_esp_auth, 0, "");
294
295 /* minimum ESP key length */
296 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
297 &ipsec_esp_keymin, 0, "");
298
299 /* minimum AH key length */
300 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
301 &ipsec_ah_keymin, 0, "");
302
303 /* perfered old SA rather than new SA */
304 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
305 &key_prefered_oldsa, 0, "");
306 #endif /* SYSCTL_INT */
307
308 #define __LIST_CHAINED(elm) \
309 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
310 #define LIST_INSERT_TAIL(head, elm, type, field) \
311 do {\
312 struct type *curelm = LIST_FIRST(head); \
313 if (curelm == NULL) {\
314 LIST_INSERT_HEAD(head, elm, field); \
315 } else { \
316 while (LIST_NEXT(curelm, field)) \
317 curelm = LIST_NEXT(curelm, field);\
318 LIST_INSERT_AFTER(curelm, elm, field);\
319 }\
320 } while (0)
321
322 #define KEY_CHKSASTATE(head, sav) \
323 /* do */ { \
324 if ((head) != (sav)) { \
325 IPSECLOG(LOG_DEBUG, \
326 "state mismatched (TREE=%d SA=%d)\n", \
327 (head), (sav)); \
328 continue; \
329 } \
330 } /* while (0) */
331
332 #define KEY_CHKSPDIR(head, sp) \
333 do { \
334 if ((head) != (sp)) { \
335 IPSECLOG(LOG_DEBUG, \
336 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
337 (head), (sp)); \
338 } \
339 } while (0)
340
341 /*
342 * set parameters into secpolicyindex buffer.
343 * Must allocate secpolicyindex buffer passed to this function.
344 */
345 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
346 do { \
347 memset((idx), 0, sizeof(struct secpolicyindex)); \
348 (idx)->dir = (_dir); \
349 (idx)->prefs = (ps); \
350 (idx)->prefd = (pd); \
351 (idx)->ul_proto = (ulp); \
352 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
353 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
354 } while (0)
355
356 /*
357 * set parameters into secasindex buffer.
358 * Must allocate secasindex buffer before calling this function.
359 */
360 static int
361 key_setsecasidx (int, int, int, const struct sadb_address *,
362 const struct sadb_address *, struct secasindex *);
363
364 /* key statistics */
365 struct _keystat {
366 u_long getspi_count; /* the avarage of count to try to get new SPI */
367 } keystat;
368
369 struct sadb_msghdr {
370 struct sadb_msg *msg;
371 struct sadb_ext *ext[SADB_EXT_MAX + 1];
372 int extoff[SADB_EXT_MAX + 1];
373 int extlen[SADB_EXT_MAX + 1];
374 };
375
376 static struct secasvar *key_allocsa_policy (const struct secasindex *);
377 #if 0
378 static void key_freeso(struct socket *);
379 static void key_freesp_so(struct secpolicy **);
380 #endif
381 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
382 static void key_delsp (struct secpolicy *);
383 static struct secpolicy *key_getsp (const struct secpolicyindex *);
384 static struct secpolicy *key_getspbyid (u_int32_t);
385 static u_int16_t key_newreqid (void);
386 static struct mbuf *key_gather_mbuf (struct mbuf *,
387 const struct sadb_msghdr *, int, int, ...);
388 static int key_spdadd (struct socket *, struct mbuf *,
389 const struct sadb_msghdr *);
390 static u_int32_t key_getnewspid (void);
391 static int key_spddelete (struct socket *, struct mbuf *,
392 const struct sadb_msghdr *);
393 static int key_spddelete2 (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spdget (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static int key_spdflush (struct socket *, struct mbuf *,
398 const struct sadb_msghdr *);
399 static int key_spddump (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static struct mbuf * key_setspddump (int *errorp, pid_t);
402 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
403 static int key_nat_map (struct socket *, struct mbuf *,
404 const struct sadb_msghdr *);
405 static struct mbuf *key_setdumpsp (struct secpolicy *,
406 u_int8_t, u_int32_t, pid_t);
407 static u_int key_getspreqmsglen (const struct secpolicy *);
408 static int key_spdexpire (struct secpolicy *);
409 static struct secashead *key_newsah (const struct secasindex *);
410 static void key_delsah (struct secashead *);
411 static struct secasvar *key_newsav (struct mbuf *,
412 const struct sadb_msghdr *, struct secashead *, int *,
413 const char*, int);
414 #define KEY_NEWSAV(m, sadb, sah, e) \
415 key_newsav(m, sadb, sah, e, __func__, __LINE__)
416 static void key_delsav (struct secasvar *);
417 static struct secashead *key_getsah (const struct secasindex *);
418 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
419 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
420 static int key_setsaval (struct secasvar *, struct mbuf *,
421 const struct sadb_msghdr *);
422 static void key_freesaval(struct secasvar *);
423 static int key_mature (struct secasvar *);
424 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
425 u_int8_t, u_int32_t, u_int32_t);
426 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
427 static struct mbuf *key_setsadbxtype (u_int16_t);
428 static struct mbuf *key_setsadbxfrag (u_int16_t);
429 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
430 static int key_checksalen (const union sockaddr_union *);
431 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
432 u_int32_t, pid_t, u_int16_t);
433 static struct mbuf *key_setsadbsa (struct secasvar *);
434 static struct mbuf *key_setsadbaddr (u_int16_t,
435 const struct sockaddr *, u_int8_t, u_int16_t);
436 #if 0
437 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
438 int, u_int64_t);
439 #endif
440 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
441 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
442 u_int32_t);
443 static void *key_newbuf (const void *, u_int);
444 #ifdef INET6
445 static int key_ismyaddr6 (const struct sockaddr_in6 *);
446 #endif
447
448 static void sysctl_net_keyv2_setup(struct sysctllog **);
449 static void sysctl_net_key_compat_setup(struct sysctllog **);
450
451 /* flags for key_saidx_match() */
452 #define CMP_HEAD 1 /* protocol, addresses. */
453 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
454 #define CMP_REQID 3 /* additionally HEAD, reaid. */
455 #define CMP_EXACTLY 4 /* all elements. */
456 static int key_saidx_match(const struct secasindex *,
457 const struct secasindex *, int);
458
459 static int key_sockaddr_match(const struct sockaddr *,
460 const struct sockaddr *, int);
461 static int key_bb_match_withmask(const void *, const void *, u_int);
462 static u_int16_t key_satype2proto (u_int8_t);
463 static u_int8_t key_proto2satype (u_int16_t);
464
465 static int key_spidx_match_exactly(const struct secpolicyindex *,
466 const struct secpolicyindex *);
467 static int key_spidx_match_withmask(const struct secpolicyindex *,
468 const struct secpolicyindex *);
469
470 static int key_getspi (struct socket *, struct mbuf *,
471 const struct sadb_msghdr *);
472 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
473 const struct secasindex *);
474 static int key_handle_natt_info (struct secasvar *,
475 const struct sadb_msghdr *);
476 static int key_set_natt_ports (union sockaddr_union *,
477 union sockaddr_union *,
478 const struct sadb_msghdr *);
479 static int key_update (struct socket *, struct mbuf *,
480 const struct sadb_msghdr *);
481 #ifdef IPSEC_DOSEQCHECK
482 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
483 #endif
484 static int key_add (struct socket *, struct mbuf *,
485 const struct sadb_msghdr *);
486 static int key_setident (struct secashead *, struct mbuf *,
487 const struct sadb_msghdr *);
488 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
489 const struct sadb_msghdr *);
490 static int key_delete (struct socket *, struct mbuf *,
491 const struct sadb_msghdr *);
492 static int key_get (struct socket *, struct mbuf *,
493 const struct sadb_msghdr *);
494
495 static void key_getcomb_setlifetime (struct sadb_comb *);
496 static struct mbuf *key_getcomb_esp (void);
497 static struct mbuf *key_getcomb_ah (void);
498 static struct mbuf *key_getcomb_ipcomp (void);
499 static struct mbuf *key_getprop (const struct secasindex *);
500
501 static int key_acquire (const struct secasindex *, struct secpolicy *);
502 #ifndef IPSEC_NONBLOCK_ACQUIRE
503 static struct secacq *key_newacq (const struct secasindex *);
504 static struct secacq *key_getacq (const struct secasindex *);
505 static struct secacq *key_getacqbyseq (u_int32_t);
506 #endif
507 #ifdef notyet
508 static struct secspacq *key_newspacq (const struct secpolicyindex *);
509 static struct secspacq *key_getspacq (const struct secpolicyindex *);
510 #endif
511 static int key_acquire2 (struct socket *, struct mbuf *,
512 const struct sadb_msghdr *);
513 static int key_register (struct socket *, struct mbuf *,
514 const struct sadb_msghdr *);
515 static int key_expire (struct secasvar *);
516 static int key_flush (struct socket *, struct mbuf *,
517 const struct sadb_msghdr *);
518 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
519 int *lenp, pid_t pid);
520 static int key_dump (struct socket *, struct mbuf *,
521 const struct sadb_msghdr *);
522 static int key_promisc (struct socket *, struct mbuf *,
523 const struct sadb_msghdr *);
524 static int key_senderror (struct socket *, struct mbuf *, int);
525 static int key_validate_ext (const struct sadb_ext *, int);
526 static int key_align (struct mbuf *, struct sadb_msghdr *);
527 #if 0
528 static const char *key_getfqdn (void);
529 static const char *key_getuserfqdn (void);
530 #endif
531 static void key_sa_chgstate (struct secasvar *, u_int8_t);
532 static inline void key_sp_dead (struct secpolicy *);
533 static void key_sp_unlink (struct secpolicy *sp);
534
535 static struct mbuf *key_alloc_mbuf (int);
536
537 static void key_timehandler(void *);
538 static void key_timehandler_work(struct work *, void *);
539 static struct callout key_timehandler_ch;
540 static struct workqueue *key_timehandler_wq;
541 static struct work key_timehandler_wk;
542
543 #ifdef IPSEC_REF_DEBUG
544 #define REFLOG(label, p, where, tag) \
545 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
546 (where), (tag), (p)->refcnt, (p))
547 #else
548 #define REFLOG(label, p, where, tag) do {} while (0)
549 #endif
550
551 #define SA_ADDREF(p) do { \
552 (p)->refcnt++; \
553 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
554 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
555 } while (0)
556 #define SA_ADDREF2(p, where, tag) do { \
557 (p)->refcnt++; \
558 REFLOG("SA_ADDREF", (p), (where), (tag)); \
559 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
560 } while (0)
561 #define SA_DELREF(p) do { \
562 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
563 (p)->refcnt--; \
564 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
565 } while (0)
566 #define SA_DELREF2(p, where, tag) do { \
567 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
568 (p)->refcnt--; \
569 REFLOG("SA_DELREF", (p), (where), (tag)); \
570 } while (0)
571
572 #define SP_ADDREF(p) do { \
573 (p)->refcnt++; \
574 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
575 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
576 } while (0)
577 #define SP_ADDREF2(p, where, tag) do { \
578 (p)->refcnt++; \
579 REFLOG("SP_ADDREF", (p), (where), (tag)); \
580 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
581 } while (0)
582 #define SP_DELREF(p) do { \
583 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
584 (p)->refcnt--; \
585 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
586 } while (0)
587 #define SP_DELREF2(p, where, tag) do { \
588 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
589 (p)->refcnt--; \
590 REFLOG("SP_DELREF", (p), (where), (tag)); \
591 } while (0)
592
593
594 static inline void
595 key_sp_dead(struct secpolicy *sp)
596 {
597
598 /* mark the SP dead */
599 sp->state = IPSEC_SPSTATE_DEAD;
600 }
601
602 static void
603 key_sp_unlink(struct secpolicy *sp)
604 {
605
606 /* remove from SP index */
607 KASSERT(__LIST_CHAINED(sp));
608 LIST_REMOVE(sp, chain);
609 /* Release refcount held just for being on chain */
610 KEY_FREESP(&sp);
611 }
612
613
614 /*
615 * Return 0 when there are known to be no SP's for the specified
616 * direction. Otherwise return 1. This is used by IPsec code
617 * to optimize performance.
618 */
619 int
620 key_havesp(u_int dir)
621 {
622 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
623 !LIST_EMPTY(&sptree[dir]) : 1);
624 }
625
626 /* %%% IPsec policy management */
627 /*
628 * allocating a SP for OUTBOUND or INBOUND packet.
629 * Must call key_freesp() later.
630 * OUT: NULL: not found
631 * others: found and return the pointer.
632 */
633 struct secpolicy *
634 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
635 {
636 struct secpolicy *sp;
637 int s;
638
639 KASSERT(spidx != NULL);
640 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
641
642 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
643
644 /* get a SP entry */
645 s = splsoftnet(); /*called from softclock()*/
646 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
647 printf("*** objects\n");
648 kdebug_secpolicyindex(spidx);
649 }
650
651 LIST_FOREACH(sp, &sptree[dir], chain) {
652 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
653 printf("*** in SPD\n");
654 kdebug_secpolicyindex(&sp->spidx);
655 }
656
657 if (sp->state == IPSEC_SPSTATE_DEAD)
658 continue;
659 if (key_spidx_match_withmask(&sp->spidx, spidx))
660 goto found;
661 }
662 sp = NULL;
663 found:
664 if (sp) {
665 /* sanity check */
666 KEY_CHKSPDIR(sp->spidx.dir, dir);
667
668 /* found a SPD entry */
669 sp->lastused = time_uptime;
670 SP_ADDREF2(sp, where, tag);
671 }
672 splx(s);
673
674 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
675 "DP return SP:%p (ID=%u) refcnt %u\n",
676 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
677 return sp;
678 }
679
680 /*
681 * allocating a SP for OUTBOUND or INBOUND packet.
682 * Must call key_freesp() later.
683 * OUT: NULL: not found
684 * others: found and return the pointer.
685 */
686 struct secpolicy *
687 key_allocsp2(u_int32_t spi,
688 const union sockaddr_union *dst,
689 u_int8_t proto,
690 u_int dir,
691 const char* where, int tag)
692 {
693 struct secpolicy *sp;
694 int s;
695
696 KASSERT(dst != NULL);
697 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
698
699 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
700
701 /* get a SP entry */
702 s = splsoftnet(); /*called from softclock()*/
703 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
704 printf("*** objects\n");
705 printf("spi %u proto %u dir %u\n", spi, proto, dir);
706 kdebug_sockaddr(&dst->sa);
707 }
708
709 LIST_FOREACH(sp, &sptree[dir], chain) {
710 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
711 printf("*** in SPD\n");
712 kdebug_secpolicyindex(&sp->spidx);
713 }
714
715 if (sp->state == IPSEC_SPSTATE_DEAD)
716 continue;
717 /* compare simple values, then dst address */
718 if (sp->spidx.ul_proto != proto)
719 continue;
720 /* NB: spi's must exist and match */
721 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
722 continue;
723 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
724 goto found;
725 }
726 sp = NULL;
727 found:
728 if (sp) {
729 /* sanity check */
730 KEY_CHKSPDIR(sp->spidx.dir, dir);
731
732 /* found a SPD entry */
733 sp->lastused = time_uptime;
734 SP_ADDREF2(sp, where, tag);
735 }
736 splx(s);
737
738 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
739 "DP return SP:%p (ID=%u) refcnt %u\n",
740 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
741 return sp;
742 }
743
744 /*
745 * return a policy that matches this particular inbound packet.
746 * XXX slow
747 */
748 struct secpolicy *
749 key_gettunnel(const struct sockaddr *osrc,
750 const struct sockaddr *odst,
751 const struct sockaddr *isrc,
752 const struct sockaddr *idst,
753 const char* where, int tag)
754 {
755 struct secpolicy *sp;
756 const int dir = IPSEC_DIR_INBOUND;
757 int s;
758 struct ipsecrequest *r1, *r2, *p;
759 struct secpolicyindex spidx;
760
761 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
762
763 if (isrc->sa_family != idst->sa_family) {
764 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
765 isrc->sa_family, idst->sa_family);
766 sp = NULL;
767 goto done;
768 }
769
770 s = splsoftnet(); /*called from softclock()*/
771 LIST_FOREACH(sp, &sptree[dir], chain) {
772 if (sp->state == IPSEC_SPSTATE_DEAD)
773 continue;
774
775 r1 = r2 = NULL;
776 for (p = sp->req; p; p = p->next) {
777 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
778 continue;
779
780 r1 = r2;
781 r2 = p;
782
783 if (!r1) {
784 /* here we look at address matches only */
785 spidx = sp->spidx;
786 if (isrc->sa_len > sizeof(spidx.src) ||
787 idst->sa_len > sizeof(spidx.dst))
788 continue;
789 memcpy(&spidx.src, isrc, isrc->sa_len);
790 memcpy(&spidx.dst, idst, idst->sa_len);
791 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
792 continue;
793 } else {
794 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
795 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
796 continue;
797 }
798
799 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
800 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
801 continue;
802
803 goto found;
804 }
805 }
806 sp = NULL;
807 found:
808 if (sp) {
809 sp->lastused = time_uptime;
810 SP_ADDREF2(sp, where, tag);
811 }
812 splx(s);
813 done:
814 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
815 "DP return SP:%p (ID=%u) refcnt %u\n",
816 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
817 return sp;
818 }
819
820 /*
821 * allocating an SA entry for an *OUTBOUND* packet.
822 * checking each request entries in SP, and acquire an SA if need.
823 * OUT: 0: there are valid requests.
824 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
825 */
826 int
827 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
828 {
829 u_int level;
830 int error;
831
832 KASSERT(isr != NULL);
833 KASSERT(saidx != NULL);
834 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
835 saidx->mode == IPSEC_MODE_TUNNEL,
836 "unexpected policy %u", saidx->mode);
837
838 /* get current level */
839 level = ipsec_get_reqlevel(isr);
840
841 /*
842 * XXX guard against protocol callbacks from the crypto
843 * thread as they reference ipsecrequest.sav which we
844 * temporarily null out below. Need to rethink how we
845 * handle bundled SA's in the callback thread.
846 */
847 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
848 #if 0
849 /*
850 * We do allocate new SA only if the state of SA in the holder is
851 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
852 */
853 if (isr->sav != NULL) {
854 if (isr->sav->sah == NULL)
855 panic("key_checkrequest: sah is null");
856 if (isr->sav == (struct secasvar *)LIST_FIRST(
857 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
858 KEY_FREESAV(&isr->sav);
859 isr->sav = NULL;
860 }
861 }
862 #else
863 /*
864 * we free any SA stashed in the IPsec request because a different
865 * SA may be involved each time this request is checked, either
866 * because new SAs are being configured, or this request is
867 * associated with an unconnected datagram socket, or this request
868 * is associated with a system default policy.
869 *
870 * The operation may have negative impact to performance. We may
871 * want to check cached SA carefully, rather than picking new SA
872 * every time.
873 */
874 if (isr->sav != NULL) {
875 KEY_FREESAV(&isr->sav);
876 isr->sav = NULL;
877 }
878 #endif
879
880 /*
881 * new SA allocation if no SA found.
882 * key_allocsa_policy should allocate the oldest SA available.
883 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
884 */
885 if (isr->sav == NULL)
886 isr->sav = key_allocsa_policy(saidx);
887
888 /* When there is SA. */
889 if (isr->sav != NULL) {
890 if (isr->sav->state != SADB_SASTATE_MATURE &&
891 isr->sav->state != SADB_SASTATE_DYING)
892 return EINVAL;
893 return 0;
894 }
895
896 /* there is no SA */
897 error = key_acquire(saidx, isr->sp);
898 if (error != 0) {
899 /* XXX What should I do ? */
900 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
901 error);
902 return error;
903 }
904
905 if (level != IPSEC_LEVEL_REQUIRE) {
906 /* XXX sigh, the interface to this routine is botched */
907 KASSERTMSG(isr->sav == NULL, "unexpected SA");
908 return 0;
909 } else {
910 return ENOENT;
911 }
912 }
913
914 /*
915 * allocating a SA for policy entry from SAD.
916 * NOTE: searching SAD of aliving state.
917 * OUT: NULL: not found.
918 * others: found and return the pointer.
919 */
920 static struct secasvar *
921 key_allocsa_policy(const struct secasindex *saidx)
922 {
923 struct secashead *sah;
924 struct secasvar *sav;
925 u_int stateidx, state;
926 const u_int *saorder_state_valid;
927 int arraysize;
928
929 LIST_FOREACH(sah, &sahtree, chain) {
930 if (sah->state == SADB_SASTATE_DEAD)
931 continue;
932 if (key_saidx_match(&sah->saidx, saidx, CMP_MODE_REQID))
933 goto found;
934 }
935
936 return NULL;
937
938 found:
939
940 /*
941 * search a valid state list for outbound packet.
942 * This search order is important.
943 */
944 if (key_prefered_oldsa) {
945 saorder_state_valid = saorder_state_valid_prefer_old;
946 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
947 } else {
948 saorder_state_valid = saorder_state_valid_prefer_new;
949 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
950 }
951
952 /* search valid state */
953 for (stateidx = 0;
954 stateidx < arraysize;
955 stateidx++) {
956
957 state = saorder_state_valid[stateidx];
958
959 sav = key_do_allocsa_policy(sah, state);
960 if (sav != NULL)
961 return sav;
962 }
963
964 return NULL;
965 }
966
967 /*
968 * searching SAD with direction, protocol, mode and state.
969 * called by key_allocsa_policy().
970 * OUT:
971 * NULL : not found
972 * others : found, pointer to a SA.
973 */
974 static struct secasvar *
975 key_do_allocsa_policy(struct secashead *sah, u_int state)
976 {
977 struct secasvar *sav, *candidate, *d;
978
979 /* initilize */
980 candidate = NULL;
981
982 LIST_FOREACH(sav, &sah->savtree[state], chain) {
983 /* sanity check */
984 KEY_CHKSASTATE(sav->state, state);
985
986 /* initialize */
987 if (candidate == NULL) {
988 candidate = sav;
989 continue;
990 }
991
992 /* Which SA is the better ? */
993
994 /* sanity check 2 */
995 KASSERT(candidate->lft_c != NULL);
996 KASSERT(sav->lft_c != NULL);
997
998 /* What the best method is to compare ? */
999 if (key_prefered_oldsa) {
1000 if (candidate->lft_c->sadb_lifetime_addtime >
1001 sav->lft_c->sadb_lifetime_addtime) {
1002 candidate = sav;
1003 }
1004 continue;
1005 /*NOTREACHED*/
1006 }
1007
1008 /* prefered new sa rather than old sa */
1009 if (candidate->lft_c->sadb_lifetime_addtime <
1010 sav->lft_c->sadb_lifetime_addtime) {
1011 d = candidate;
1012 candidate = sav;
1013 } else
1014 d = sav;
1015
1016 /*
1017 * prepared to delete the SA when there is more
1018 * suitable candidate and the lifetime of the SA is not
1019 * permanent.
1020 */
1021 if (d->lft_c->sadb_lifetime_addtime != 0) {
1022 struct mbuf *m, *result = 0;
1023 uint8_t satype;
1024
1025 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1026
1027 KASSERT(d->refcnt > 0);
1028
1029 satype = key_proto2satype(d->sah->saidx.proto);
1030 if (satype == 0)
1031 goto msgfail;
1032
1033 m = key_setsadbmsg(SADB_DELETE, 0,
1034 satype, 0, 0, d->refcnt - 1);
1035 if (!m)
1036 goto msgfail;
1037 result = m;
1038
1039 /* set sadb_address for saidx's. */
1040 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1041 &d->sah->saidx.src.sa,
1042 d->sah->saidx.src.sa.sa_len << 3,
1043 IPSEC_ULPROTO_ANY);
1044 if (!m)
1045 goto msgfail;
1046 m_cat(result, m);
1047
1048 /* set sadb_address for saidx's. */
1049 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1050 &d->sah->saidx.src.sa,
1051 d->sah->saidx.src.sa.sa_len << 3,
1052 IPSEC_ULPROTO_ANY);
1053 if (!m)
1054 goto msgfail;
1055 m_cat(result, m);
1056
1057 /* create SA extension */
1058 m = key_setsadbsa(d);
1059 if (!m)
1060 goto msgfail;
1061 m_cat(result, m);
1062
1063 if (result->m_len < sizeof(struct sadb_msg)) {
1064 result = m_pullup(result,
1065 sizeof(struct sadb_msg));
1066 if (result == NULL)
1067 goto msgfail;
1068 }
1069
1070 result->m_pkthdr.len = 0;
1071 for (m = result; m; m = m->m_next)
1072 result->m_pkthdr.len += m->m_len;
1073 mtod(result, struct sadb_msg *)->sadb_msg_len =
1074 PFKEY_UNIT64(result->m_pkthdr.len);
1075
1076 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1077 result = 0;
1078 msgfail:
1079 if (result)
1080 m_freem(result);
1081 KEY_FREESAV(&d);
1082 }
1083 }
1084
1085 if (candidate) {
1086 SA_ADDREF(candidate);
1087 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1088 "DP cause refcnt++:%d SA:%p\n",
1089 candidate->refcnt, candidate);
1090 }
1091 return candidate;
1092 }
1093
1094 /*
1095 * allocating a usable SA entry for a *INBOUND* packet.
1096 * Must call key_freesav() later.
1097 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1098 * NULL: not found, or error occurred.
1099 *
1100 * In the comparison, no source address is used--for RFC2401 conformance.
1101 * To quote, from section 4.1:
1102 * A security association is uniquely identified by a triple consisting
1103 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1104 * security protocol (AH or ESP) identifier.
1105 * Note that, however, we do need to keep source address in IPsec SA.
1106 * IKE specification and PF_KEY specification do assume that we
1107 * keep source address in IPsec SA. We see a tricky situation here.
1108 *
1109 * sport and dport are used for NAT-T. network order is always used.
1110 */
1111 struct secasvar *
1112 key_allocsa(
1113 const union sockaddr_union *dst,
1114 u_int proto,
1115 u_int32_t spi,
1116 u_int16_t sport,
1117 u_int16_t dport,
1118 const char* where, int tag)
1119 {
1120 struct secashead *sah;
1121 struct secasvar *sav;
1122 u_int stateidx, state;
1123 const u_int *saorder_state_valid;
1124 int arraysize, chkport;
1125 int s;
1126
1127 int must_check_spi = 1;
1128 int must_check_alg = 0;
1129 u_int16_t cpi = 0;
1130 u_int8_t algo = 0;
1131
1132 if ((sport != 0) && (dport != 0))
1133 chkport = PORT_STRICT;
1134 else
1135 chkport = PORT_NONE;
1136
1137 KASSERT(dst != NULL);
1138
1139 /*
1140 * XXX IPCOMP case
1141 * We use cpi to define spi here. In the case where cpi <=
1142 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1143 * the real spi. In this case, don't check the spi but check the
1144 * algorithm
1145 */
1146
1147 if (proto == IPPROTO_IPCOMP) {
1148 u_int32_t tmp;
1149 tmp = ntohl(spi);
1150 cpi = (u_int16_t) tmp;
1151 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1152 algo = (u_int8_t) cpi;
1153 must_check_spi = 0;
1154 must_check_alg = 1;
1155 }
1156 }
1157 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1158 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1159 where, tag, must_check_spi, must_check_alg);
1160
1161
1162 /*
1163 * searching SAD.
1164 * XXX: to be checked internal IP header somewhere. Also when
1165 * IPsec tunnel packet is received. But ESP tunnel mode is
1166 * encrypted so we can't check internal IP header.
1167 */
1168 s = splsoftnet(); /*called from softclock()*/
1169 if (key_prefered_oldsa) {
1170 saorder_state_valid = saorder_state_valid_prefer_old;
1171 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1172 } else {
1173 saorder_state_valid = saorder_state_valid_prefer_new;
1174 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1175 }
1176 LIST_FOREACH(sah, &sahtree, chain) {
1177 /* search valid state */
1178 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1179 state = saorder_state_valid[stateidx];
1180 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1181 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1182 "try match spi %#x, %#x\n",
1183 ntohl(spi), ntohl(sav->spi));
1184 /* sanity check */
1185 KEY_CHKSASTATE(sav->state, state);
1186 /* do not return entries w/ unusable state */
1187 if (sav->state != SADB_SASTATE_MATURE &&
1188 sav->state != SADB_SASTATE_DYING) {
1189 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1190 "bad state %d\n", sav->state);
1191 continue;
1192 }
1193 if (proto != sav->sah->saidx.proto) {
1194 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1195 "proto fail %d != %d\n",
1196 proto, sav->sah->saidx.proto);
1197 continue;
1198 }
1199 if (must_check_spi && spi != sav->spi) {
1200 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1201 "spi fail %#x != %#x\n",
1202 ntohl(spi), ntohl(sav->spi));
1203 continue;
1204 }
1205 /* XXX only on the ipcomp case */
1206 if (must_check_alg && algo != sav->alg_comp) {
1207 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1208 "algo fail %d != %d\n",
1209 algo, sav->alg_comp);
1210 continue;
1211 }
1212
1213 #if 0 /* don't check src */
1214 /* Fix port in src->sa */
1215
1216 /* check src address */
1217 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1218 continue;
1219 #endif
1220 /* fix port of dst address XXX*/
1221 key_porttosaddr(__UNCONST(dst), dport);
1222 /* check dst address */
1223 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1224 continue;
1225 SA_ADDREF2(sav, where, tag);
1226 goto done;
1227 }
1228 }
1229 }
1230 sav = NULL;
1231 done:
1232 splx(s);
1233
1234 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1235 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1236 return sav;
1237 }
1238
1239 /*
1240 * Must be called after calling key_allocsp().
1241 * For both the packet without socket and key_freeso().
1242 */
1243 void
1244 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1245 {
1246 struct secpolicy *sp = *spp;
1247
1248 KASSERT(sp != NULL);
1249
1250 SP_DELREF2(sp, where, tag);
1251
1252 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1253 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1254 sp, sp->id, where, tag, sp->refcnt);
1255
1256 if (sp->refcnt == 0) {
1257 *spp = NULL;
1258 key_delsp(sp);
1259 }
1260 }
1261
1262 #if 0
1263 /*
1264 * Must be called after calling key_allocsp().
1265 * For the packet with socket.
1266 */
1267 static void
1268 key_freeso(struct socket *so)
1269 {
1270 /* sanity check */
1271 KASSERT(so != NULL);
1272
1273 switch (so->so_proto->pr_domain->dom_family) {
1274 #ifdef INET
1275 case PF_INET:
1276 {
1277 struct inpcb *pcb = sotoinpcb(so);
1278
1279 /* Does it have a PCB ? */
1280 if (pcb == NULL)
1281 return;
1282
1283 struct inpcbpolicy *sp = pcb->inp_sp;
1284 key_freesp_so(&sp->sp_in);
1285 key_freesp_so(&sp->sp_out);
1286 }
1287 break;
1288 #endif
1289 #ifdef INET6
1290 case PF_INET6:
1291 {
1292 #ifdef HAVE_NRL_INPCB
1293 struct inpcb *pcb = sotoinpcb(so);
1294 struct inpcbpolicy *sp = pcb->inp_sp;
1295
1296 /* Does it have a PCB ? */
1297 if (pcb == NULL)
1298 return;
1299 key_freesp_so(&sp->sp_in);
1300 key_freesp_so(&sp->sp_out);
1301 #else
1302 struct in6pcb *pcb = sotoin6pcb(so);
1303
1304 /* Does it have a PCB ? */
1305 if (pcb == NULL)
1306 return;
1307 key_freesp_so(&pcb->in6p_sp->sp_in);
1308 key_freesp_so(&pcb->in6p_sp->sp_out);
1309 #endif
1310 }
1311 break;
1312 #endif /* INET6 */
1313 default:
1314 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1315 so->so_proto->pr_domain->dom_family);
1316 return;
1317 }
1318 }
1319
1320 static void
1321 key_freesp_so(struct secpolicy **sp)
1322 {
1323
1324 KASSERT(sp != NULL);
1325 KASSERT(*sp != NULL);
1326
1327 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1328 (*sp)->policy == IPSEC_POLICY_BYPASS)
1329 return;
1330
1331 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1332 "invalid policy %u", (*sp)->policy);
1333 KEY_FREESP(sp);
1334 }
1335 #endif
1336
1337 /*
1338 * Must be called after calling key_allocsa().
1339 * This function is called by key_freesp() to free some SA allocated
1340 * for a policy.
1341 */
1342 void
1343 key_freesav(struct secasvar **psav, const char* where, int tag)
1344 {
1345 struct secasvar *sav = *psav;
1346
1347 KASSERT(sav != NULL);
1348
1349 SA_DELREF2(sav, where, tag);
1350
1351 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1352 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1353 sav, (u_long)ntohl(sav->spi), where, tag, sav->refcnt);
1354
1355 if (sav->refcnt == 0) {
1356 *psav = NULL;
1357 key_delsav(sav);
1358 }
1359 }
1360
1361 /* %%% SPD management */
1362 /*
1363 * free security policy entry.
1364 */
1365 static void
1366 key_delsp(struct secpolicy *sp)
1367 {
1368 int s;
1369
1370 KASSERT(sp != NULL);
1371
1372 key_sp_dead(sp);
1373
1374 KASSERTMSG(sp->refcnt == 0,
1375 "SP with references deleted (refcnt %u)", sp->refcnt);
1376
1377 s = splsoftnet(); /*called from softclock()*/
1378
1379 {
1380 struct ipsecrequest *isr = sp->req, *nextisr;
1381
1382 while (isr != NULL) {
1383 if (isr->sav != NULL) {
1384 KEY_FREESAV(&isr->sav);
1385 isr->sav = NULL;
1386 }
1387
1388 nextisr = isr->next;
1389 kmem_intr_free(isr, sizeof(*isr));
1390 isr = nextisr;
1391 }
1392 }
1393
1394 kmem_intr_free(sp, sizeof(*sp));
1395
1396 splx(s);
1397 }
1398
1399 /*
1400 * search SPD
1401 * OUT: NULL : not found
1402 * others : found, pointer to a SP.
1403 */
1404 static struct secpolicy *
1405 key_getsp(const struct secpolicyindex *spidx)
1406 {
1407 struct secpolicy *sp;
1408
1409 KASSERT(spidx != NULL);
1410
1411 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1412 if (sp->state == IPSEC_SPSTATE_DEAD)
1413 continue;
1414 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1415 SP_ADDREF(sp);
1416 return sp;
1417 }
1418 }
1419
1420 return NULL;
1421 }
1422
1423 /*
1424 * get SP by index.
1425 * OUT: NULL : not found
1426 * others : found, pointer to a SP.
1427 */
1428 static struct secpolicy *
1429 key_getspbyid(u_int32_t id)
1430 {
1431 struct secpolicy *sp;
1432
1433 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1434 if (sp->state == IPSEC_SPSTATE_DEAD)
1435 continue;
1436 if (sp->id == id) {
1437 SP_ADDREF(sp);
1438 return sp;
1439 }
1440 }
1441
1442 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1443 if (sp->state == IPSEC_SPSTATE_DEAD)
1444 continue;
1445 if (sp->id == id) {
1446 SP_ADDREF(sp);
1447 return sp;
1448 }
1449 }
1450
1451 return NULL;
1452 }
1453
1454 struct secpolicy *
1455 key_newsp(const char* where, int tag)
1456 {
1457 struct secpolicy *newsp = NULL;
1458
1459 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1460 if (newsp != NULL)
1461 newsp->refcnt = 1;
1462
1463 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1464 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1465 return newsp;
1466 }
1467
1468 /*
1469 * create secpolicy structure from sadb_x_policy structure.
1470 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1471 * so must be set properly later.
1472 */
1473 struct secpolicy *
1474 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1475 {
1476 struct secpolicy *newsp;
1477
1478 KASSERT(!cpu_softintr_p());
1479 KASSERT(xpl0 != NULL);
1480 KASSERT(len >= sizeof(*xpl0));
1481
1482 if (len != PFKEY_EXTLEN(xpl0)) {
1483 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1484 *error = EINVAL;
1485 return NULL;
1486 }
1487
1488 newsp = KEY_NEWSP();
1489 if (newsp == NULL) {
1490 *error = ENOBUFS;
1491 return NULL;
1492 }
1493
1494 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1495 newsp->policy = xpl0->sadb_x_policy_type;
1496
1497 /* check policy */
1498 switch (xpl0->sadb_x_policy_type) {
1499 case IPSEC_POLICY_DISCARD:
1500 case IPSEC_POLICY_NONE:
1501 case IPSEC_POLICY_ENTRUST:
1502 case IPSEC_POLICY_BYPASS:
1503 newsp->req = NULL;
1504 *error = 0;
1505 return newsp;
1506
1507 case IPSEC_POLICY_IPSEC:
1508 /* Continued */
1509 break;
1510 default:
1511 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1512 KEY_FREESP(&newsp);
1513 *error = EINVAL;
1514 return NULL;
1515 }
1516
1517 /* IPSEC_POLICY_IPSEC */
1518 {
1519 int tlen;
1520 const struct sadb_x_ipsecrequest *xisr;
1521 uint16_t xisr_reqid;
1522 struct ipsecrequest **p_isr = &newsp->req;
1523
1524 /* validity check */
1525 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1526 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1527 *error = EINVAL;
1528 goto free_exit;
1529 }
1530
1531 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1532 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1533
1534 while (tlen > 0) {
1535 /* length check */
1536 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1537 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1538 *error = EINVAL;
1539 goto free_exit;
1540 }
1541
1542 /* allocate request buffer */
1543 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1544
1545 /* set values */
1546 (*p_isr)->next = NULL;
1547
1548 switch (xisr->sadb_x_ipsecrequest_proto) {
1549 case IPPROTO_ESP:
1550 case IPPROTO_AH:
1551 case IPPROTO_IPCOMP:
1552 break;
1553 default:
1554 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1555 xisr->sadb_x_ipsecrequest_proto);
1556 *error = EPROTONOSUPPORT;
1557 goto free_exit;
1558 }
1559 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1560
1561 switch (xisr->sadb_x_ipsecrequest_mode) {
1562 case IPSEC_MODE_TRANSPORT:
1563 case IPSEC_MODE_TUNNEL:
1564 break;
1565 case IPSEC_MODE_ANY:
1566 default:
1567 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1568 xisr->sadb_x_ipsecrequest_mode);
1569 *error = EINVAL;
1570 goto free_exit;
1571 }
1572 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1573
1574 switch (xisr->sadb_x_ipsecrequest_level) {
1575 case IPSEC_LEVEL_DEFAULT:
1576 case IPSEC_LEVEL_USE:
1577 case IPSEC_LEVEL_REQUIRE:
1578 break;
1579 case IPSEC_LEVEL_UNIQUE:
1580 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1581 /* validity check */
1582 /*
1583 * If range violation of reqid, kernel will
1584 * update it, don't refuse it.
1585 */
1586 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1587 IPSECLOG(LOG_DEBUG,
1588 "reqid=%d range "
1589 "violation, updated by kernel.\n",
1590 xisr_reqid);
1591 xisr_reqid = 0;
1592 }
1593
1594 /* allocate new reqid id if reqid is zero. */
1595 if (xisr_reqid == 0) {
1596 u_int16_t reqid = key_newreqid();
1597 if (reqid == 0) {
1598 *error = ENOBUFS;
1599 goto free_exit;
1600 }
1601 (*p_isr)->saidx.reqid = reqid;
1602 } else {
1603 /* set it for manual keying. */
1604 (*p_isr)->saidx.reqid = xisr_reqid;
1605 }
1606 break;
1607
1608 default:
1609 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1610 xisr->sadb_x_ipsecrequest_level);
1611 *error = EINVAL;
1612 goto free_exit;
1613 }
1614 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1615
1616 /* set IP addresses if there */
1617 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1618 const struct sockaddr *paddr;
1619
1620 paddr = (const struct sockaddr *)(xisr + 1);
1621
1622 /* validity check */
1623 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1624 IPSECLOG(LOG_DEBUG, "invalid request "
1625 "address length.\n");
1626 *error = EINVAL;
1627 goto free_exit;
1628 }
1629 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1630
1631 paddr = (const struct sockaddr *)((const char *)paddr
1632 + paddr->sa_len);
1633
1634 /* validity check */
1635 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1636 IPSECLOG(LOG_DEBUG, "invalid request "
1637 "address length.\n");
1638 *error = EINVAL;
1639 goto free_exit;
1640 }
1641 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1642 }
1643
1644 (*p_isr)->sav = NULL;
1645 (*p_isr)->sp = newsp;
1646
1647 /* initialization for the next. */
1648 p_isr = &(*p_isr)->next;
1649 tlen -= xisr->sadb_x_ipsecrequest_len;
1650
1651 /* validity check */
1652 if (tlen < 0) {
1653 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1654 *error = EINVAL;
1655 goto free_exit;
1656 }
1657
1658 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1659 xisr->sadb_x_ipsecrequest_len);
1660 }
1661 }
1662
1663 *error = 0;
1664 return newsp;
1665
1666 free_exit:
1667 KEY_FREESP(&newsp);
1668 return NULL;
1669 }
1670
1671 static u_int16_t
1672 key_newreqid(void)
1673 {
1674 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1675
1676 auto_reqid = (auto_reqid == 0xffff ?
1677 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1678
1679 /* XXX should be unique check */
1680
1681 return auto_reqid;
1682 }
1683
1684 /*
1685 * copy secpolicy struct to sadb_x_policy structure indicated.
1686 */
1687 struct mbuf *
1688 key_sp2msg(const struct secpolicy *sp)
1689 {
1690 struct sadb_x_policy *xpl;
1691 int tlen;
1692 char *p;
1693 struct mbuf *m;
1694
1695 KASSERT(sp != NULL);
1696
1697 tlen = key_getspreqmsglen(sp);
1698
1699 m = key_alloc_mbuf(tlen);
1700 if (!m || m->m_next) { /*XXX*/
1701 if (m)
1702 m_freem(m);
1703 return NULL;
1704 }
1705
1706 m->m_len = tlen;
1707 m->m_next = NULL;
1708 xpl = mtod(m, struct sadb_x_policy *);
1709 memset(xpl, 0, tlen);
1710
1711 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1712 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1713 xpl->sadb_x_policy_type = sp->policy;
1714 xpl->sadb_x_policy_dir = sp->spidx.dir;
1715 xpl->sadb_x_policy_id = sp->id;
1716 p = (char *)xpl + sizeof(*xpl);
1717
1718 /* if is the policy for ipsec ? */
1719 if (sp->policy == IPSEC_POLICY_IPSEC) {
1720 struct sadb_x_ipsecrequest *xisr;
1721 struct ipsecrequest *isr;
1722
1723 for (isr = sp->req; isr != NULL; isr = isr->next) {
1724
1725 xisr = (struct sadb_x_ipsecrequest *)p;
1726
1727 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1728 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1729 xisr->sadb_x_ipsecrequest_level = isr->level;
1730 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1731
1732 p += sizeof(*xisr);
1733 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1734 p += isr->saidx.src.sa.sa_len;
1735 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1736 p += isr->saidx.src.sa.sa_len;
1737
1738 xisr->sadb_x_ipsecrequest_len =
1739 PFKEY_ALIGN8(sizeof(*xisr)
1740 + isr->saidx.src.sa.sa_len
1741 + isr->saidx.dst.sa.sa_len);
1742 }
1743 }
1744
1745 return m;
1746 }
1747
1748 /* m will not be freed nor modified */
1749 static struct mbuf *
1750 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1751 int ndeep, int nitem, ...)
1752 {
1753 va_list ap;
1754 int idx;
1755 int i;
1756 struct mbuf *result = NULL, *n;
1757 int len;
1758
1759 KASSERT(m != NULL);
1760 KASSERT(mhp != NULL);
1761
1762 va_start(ap, nitem);
1763 for (i = 0; i < nitem; i++) {
1764 idx = va_arg(ap, int);
1765 if (idx < 0 || idx > SADB_EXT_MAX)
1766 goto fail;
1767 /* don't attempt to pull empty extension */
1768 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1769 continue;
1770 if (idx != SADB_EXT_RESERVED &&
1771 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1772 continue;
1773
1774 if (idx == SADB_EXT_RESERVED) {
1775 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1776 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1777 MGETHDR(n, M_DONTWAIT, MT_DATA);
1778 if (!n)
1779 goto fail;
1780 n->m_len = len;
1781 n->m_next = NULL;
1782 m_copydata(m, 0, sizeof(struct sadb_msg),
1783 mtod(n, void *));
1784 } else if (i < ndeep) {
1785 len = mhp->extlen[idx];
1786 n = key_alloc_mbuf(len);
1787 if (!n || n->m_next) { /*XXX*/
1788 if (n)
1789 m_freem(n);
1790 goto fail;
1791 }
1792 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1793 mtod(n, void *));
1794 } else {
1795 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1796 M_DONTWAIT);
1797 }
1798 if (n == NULL)
1799 goto fail;
1800
1801 if (result)
1802 m_cat(result, n);
1803 else
1804 result = n;
1805 }
1806 va_end(ap);
1807
1808 if (result && (result->m_flags & M_PKTHDR) != 0) {
1809 result->m_pkthdr.len = 0;
1810 for (n = result; n; n = n->m_next)
1811 result->m_pkthdr.len += n->m_len;
1812 }
1813
1814 return result;
1815
1816 fail:
1817 va_end(ap);
1818 m_freem(result);
1819 return NULL;
1820 }
1821
1822 /*
1823 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1824 * add an entry to SP database, when received
1825 * <base, address(SD), (lifetime(H),) policy>
1826 * from the user(?).
1827 * Adding to SP database,
1828 * and send
1829 * <base, address(SD), (lifetime(H),) policy>
1830 * to the socket which was send.
1831 *
1832 * SPDADD set a unique policy entry.
1833 * SPDSETIDX like SPDADD without a part of policy requests.
1834 * SPDUPDATE replace a unique policy entry.
1835 *
1836 * m will always be freed.
1837 */
1838 static int
1839 key_spdadd(struct socket *so, struct mbuf *m,
1840 const struct sadb_msghdr *mhp)
1841 {
1842 const struct sadb_address *src0, *dst0;
1843 const struct sadb_x_policy *xpl0;
1844 struct sadb_x_policy *xpl;
1845 const struct sadb_lifetime *lft = NULL;
1846 struct secpolicyindex spidx;
1847 struct secpolicy *newsp;
1848 int error;
1849
1850 KASSERT(!cpu_softintr_p());
1851 KASSERT(so != NULL);
1852 KASSERT(m != NULL);
1853 KASSERT(mhp != NULL);
1854 KASSERT(mhp->msg != NULL);
1855
1856 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1857 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1858 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1859 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1860 return key_senderror(so, m, EINVAL);
1861 }
1862 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1863 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1864 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1865 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1866 return key_senderror(so, m, EINVAL);
1867 }
1868 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1869 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1870 sizeof(struct sadb_lifetime)) {
1871 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1872 return key_senderror(so, m, EINVAL);
1873 }
1874 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1875 }
1876
1877 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1878 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1879 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1880
1881 /* make secindex */
1882 /* XXX boundary check against sa_len */
1883 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1884 src0 + 1,
1885 dst0 + 1,
1886 src0->sadb_address_prefixlen,
1887 dst0->sadb_address_prefixlen,
1888 src0->sadb_address_proto,
1889 &spidx);
1890
1891 /* checking the direciton. */
1892 switch (xpl0->sadb_x_policy_dir) {
1893 case IPSEC_DIR_INBOUND:
1894 case IPSEC_DIR_OUTBOUND:
1895 break;
1896 default:
1897 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1898 mhp->msg->sadb_msg_errno = EINVAL;
1899 return 0;
1900 }
1901
1902 /* check policy */
1903 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1904 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1905 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1906 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1907 return key_senderror(so, m, EINVAL);
1908 }
1909
1910 /* policy requests are mandatory when action is ipsec. */
1911 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1912 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1913 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1914 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1915 return key_senderror(so, m, EINVAL);
1916 }
1917
1918 /*
1919 * checking there is SP already or not.
1920 * SPDUPDATE doesn't depend on whether there is a SP or not.
1921 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1922 * then error.
1923 */
1924 newsp = key_getsp(&spidx);
1925 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1926 if (newsp) {
1927 key_sp_dead(newsp);
1928 key_sp_unlink(newsp); /* XXX jrs ordering */
1929 KEY_FREESP(&newsp);
1930 newsp = NULL;
1931 }
1932 } else {
1933 if (newsp != NULL) {
1934 KEY_FREESP(&newsp);
1935 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1936 return key_senderror(so, m, EEXIST);
1937 }
1938 }
1939
1940 /* allocation new SP entry */
1941 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1942 if (newsp == NULL) {
1943 return key_senderror(so, m, error);
1944 }
1945
1946 newsp->id = key_getnewspid();
1947 if (newsp->id == 0) {
1948 kmem_free(newsp, sizeof(*newsp));
1949 return key_senderror(so, m, ENOBUFS);
1950 }
1951
1952 /* XXX boundary check against sa_len */
1953 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1954 src0 + 1,
1955 dst0 + 1,
1956 src0->sadb_address_prefixlen,
1957 dst0->sadb_address_prefixlen,
1958 src0->sadb_address_proto,
1959 &newsp->spidx);
1960
1961 /* sanity check on addr pair */
1962 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1963 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1964 kmem_free(newsp, sizeof(*newsp));
1965 return key_senderror(so, m, EINVAL);
1966 }
1967 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1968 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1969 kmem_free(newsp, sizeof(*newsp));
1970 return key_senderror(so, m, EINVAL);
1971 }
1972
1973 newsp->created = time_uptime;
1974 newsp->lastused = newsp->created;
1975 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1976 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1977
1978 newsp->refcnt = 1; /* do not reclaim until I say I do */
1979 newsp->state = IPSEC_SPSTATE_ALIVE;
1980 if (newsp->policy == IPSEC_POLICY_IPSEC)
1981 KASSERT(newsp->req != NULL);
1982 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1983
1984 #ifdef notyet
1985 /* delete the entry in spacqtree */
1986 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1987 struct secspacq *spacq = key_getspacq(&spidx);
1988 if (spacq != NULL) {
1989 /* reset counter in order to deletion by timehandler. */
1990 spacq->created = time_uptime;
1991 spacq->count = 0;
1992 }
1993 }
1994 #endif
1995
1996 /* Invalidate all cached SPD pointers in the PCBs. */
1997 ipsec_invalpcbcacheall();
1998
1999 #if defined(GATEWAY)
2000 /* Invalidate the ipflow cache, as well. */
2001 ipflow_invalidate_all(0);
2002 #ifdef INET6
2003 if (in6_present)
2004 ip6flow_invalidate_all(0);
2005 #endif /* INET6 */
2006 #endif /* GATEWAY */
2007
2008 {
2009 struct mbuf *n, *mpolicy;
2010 struct sadb_msg *newmsg;
2011 int off;
2012
2013 /* create new sadb_msg to reply. */
2014 if (lft) {
2015 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2016 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2017 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2018 } else {
2019 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2020 SADB_X_EXT_POLICY,
2021 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2022 }
2023 if (!n)
2024 return key_senderror(so, m, ENOBUFS);
2025
2026 if (n->m_len < sizeof(*newmsg)) {
2027 n = m_pullup(n, sizeof(*newmsg));
2028 if (!n)
2029 return key_senderror(so, m, ENOBUFS);
2030 }
2031 newmsg = mtod(n, struct sadb_msg *);
2032 newmsg->sadb_msg_errno = 0;
2033 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2034
2035 off = 0;
2036 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2037 sizeof(*xpl), &off);
2038 if (mpolicy == NULL) {
2039 /* n is already freed */
2040 return key_senderror(so, m, ENOBUFS);
2041 }
2042 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2043 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2044 m_freem(n);
2045 return key_senderror(so, m, EINVAL);
2046 }
2047 xpl->sadb_x_policy_id = newsp->id;
2048
2049 m_freem(m);
2050 key_update_used();
2051 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2052 }
2053 }
2054
2055 /*
2056 * get new policy id.
2057 * OUT:
2058 * 0: failure.
2059 * others: success.
2060 */
2061 static u_int32_t
2062 key_getnewspid(void)
2063 {
2064 u_int32_t newid = 0;
2065 int count = key_spi_trycnt; /* XXX */
2066 struct secpolicy *sp;
2067
2068 /* when requesting to allocate spi ranged */
2069 while (count--) {
2070 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2071
2072 sp = key_getspbyid(newid);
2073 if (sp == NULL)
2074 break;
2075
2076 KEY_FREESP(&sp);
2077 }
2078
2079 if (count == 0 || newid == 0) {
2080 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2081 return 0;
2082 }
2083
2084 return newid;
2085 }
2086
2087 /*
2088 * SADB_SPDDELETE processing
2089 * receive
2090 * <base, address(SD), policy(*)>
2091 * from the user(?), and set SADB_SASTATE_DEAD,
2092 * and send,
2093 * <base, address(SD), policy(*)>
2094 * to the ikmpd.
2095 * policy(*) including direction of policy.
2096 *
2097 * m will always be freed.
2098 */
2099 static int
2100 key_spddelete(struct socket *so, struct mbuf *m,
2101 const struct sadb_msghdr *mhp)
2102 {
2103 struct sadb_address *src0, *dst0;
2104 struct sadb_x_policy *xpl0;
2105 struct secpolicyindex spidx;
2106 struct secpolicy *sp;
2107
2108 KASSERT(so != NULL);
2109 KASSERT(m != NULL);
2110 KASSERT(mhp != NULL);
2111 KASSERT(mhp->msg != NULL);
2112
2113 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2114 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2115 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2116 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2117 return key_senderror(so, m, EINVAL);
2118 }
2119 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2120 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2121 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2122 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2123 return key_senderror(so, m, EINVAL);
2124 }
2125
2126 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2127 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2128 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2129
2130 /* make secindex */
2131 /* XXX boundary check against sa_len */
2132 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2133 src0 + 1,
2134 dst0 + 1,
2135 src0->sadb_address_prefixlen,
2136 dst0->sadb_address_prefixlen,
2137 src0->sadb_address_proto,
2138 &spidx);
2139
2140 /* checking the direciton. */
2141 switch (xpl0->sadb_x_policy_dir) {
2142 case IPSEC_DIR_INBOUND:
2143 case IPSEC_DIR_OUTBOUND:
2144 break;
2145 default:
2146 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2147 return key_senderror(so, m, EINVAL);
2148 }
2149
2150 /* Is there SP in SPD ? */
2151 sp = key_getsp(&spidx);
2152 if (sp == NULL) {
2153 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2154 return key_senderror(so, m, EINVAL);
2155 }
2156
2157 /* save policy id to buffer to be returned. */
2158 xpl0->sadb_x_policy_id = sp->id;
2159
2160 key_sp_dead(sp);
2161 key_sp_unlink(sp); /* XXX jrs ordering */
2162 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2163
2164 /* Invalidate all cached SPD pointers in the PCBs. */
2165 ipsec_invalpcbcacheall();
2166
2167 /* We're deleting policy; no need to invalidate the ipflow cache. */
2168
2169 {
2170 struct mbuf *n;
2171 struct sadb_msg *newmsg;
2172
2173 /* create new sadb_msg to reply. */
2174 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2175 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2176 if (!n)
2177 return key_senderror(so, m, ENOBUFS);
2178
2179 newmsg = mtod(n, struct sadb_msg *);
2180 newmsg->sadb_msg_errno = 0;
2181 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2182
2183 m_freem(m);
2184 key_update_used();
2185 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2186 }
2187 }
2188
2189 /*
2190 * SADB_SPDDELETE2 processing
2191 * receive
2192 * <base, policy(*)>
2193 * from the user(?), and set SADB_SASTATE_DEAD,
2194 * and send,
2195 * <base, policy(*)>
2196 * to the ikmpd.
2197 * policy(*) including direction of policy.
2198 *
2199 * m will always be freed.
2200 */
2201 static int
2202 key_spddelete2(struct socket *so, struct mbuf *m,
2203 const struct sadb_msghdr *mhp)
2204 {
2205 u_int32_t id;
2206 struct secpolicy *sp;
2207
2208 KASSERT(so != NULL);
2209 KASSERT(m != NULL);
2210 KASSERT(mhp != NULL);
2211 KASSERT(mhp->msg != NULL);
2212
2213 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2214 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2215 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2216 key_senderror(so, m, EINVAL);
2217 return 0;
2218 }
2219
2220 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2221
2222 /* Is there SP in SPD ? */
2223 sp = key_getspbyid(id);
2224 if (sp == NULL) {
2225 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2226 return key_senderror(so, m, EINVAL);
2227 }
2228
2229 key_sp_dead(sp);
2230 key_sp_unlink(sp); /* XXX jrs ordering */
2231 KEY_FREESP(&sp); /* ref gained by key_getsp */
2232 sp = NULL;
2233
2234 /* Invalidate all cached SPD pointers in the PCBs. */
2235 ipsec_invalpcbcacheall();
2236
2237 /* We're deleting policy; no need to invalidate the ipflow cache. */
2238
2239 {
2240 struct mbuf *n, *nn;
2241 struct sadb_msg *newmsg;
2242 int off, len;
2243
2244 /* create new sadb_msg to reply. */
2245 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2246
2247 if (len > MCLBYTES)
2248 return key_senderror(so, m, ENOBUFS);
2249 MGETHDR(n, M_DONTWAIT, MT_DATA);
2250 if (n && len > MHLEN) {
2251 MCLGET(n, M_DONTWAIT);
2252 if ((n->m_flags & M_EXT) == 0) {
2253 m_freem(n);
2254 n = NULL;
2255 }
2256 }
2257 if (!n)
2258 return key_senderror(so, m, ENOBUFS);
2259
2260 n->m_len = len;
2261 n->m_next = NULL;
2262 off = 0;
2263
2264 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2265 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2266
2267 KASSERTMSG(off == len, "length inconsistency");
2268
2269 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2270 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2271 if (!n->m_next) {
2272 m_freem(n);
2273 return key_senderror(so, m, ENOBUFS);
2274 }
2275
2276 n->m_pkthdr.len = 0;
2277 for (nn = n; nn; nn = nn->m_next)
2278 n->m_pkthdr.len += nn->m_len;
2279
2280 newmsg = mtod(n, struct sadb_msg *);
2281 newmsg->sadb_msg_errno = 0;
2282 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2283
2284 m_freem(m);
2285 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2286 }
2287 }
2288
2289 /*
2290 * SADB_X_GET processing
2291 * receive
2292 * <base, policy(*)>
2293 * from the user(?),
2294 * and send,
2295 * <base, address(SD), policy>
2296 * to the ikmpd.
2297 * policy(*) including direction of policy.
2298 *
2299 * m will always be freed.
2300 */
2301 static int
2302 key_spdget(struct socket *so, struct mbuf *m,
2303 const struct sadb_msghdr *mhp)
2304 {
2305 u_int32_t id;
2306 struct secpolicy *sp;
2307 struct mbuf *n;
2308
2309 KASSERT(so != NULL);
2310 KASSERT(m != NULL);
2311 KASSERT(mhp != NULL);
2312 KASSERT(mhp->msg != NULL);
2313
2314 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2315 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2316 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2317 return key_senderror(so, m, EINVAL);
2318 }
2319
2320 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2321
2322 /* Is there SP in SPD ? */
2323 sp = key_getspbyid(id);
2324 if (sp == NULL) {
2325 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2326 return key_senderror(so, m, ENOENT);
2327 }
2328
2329 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2330 mhp->msg->sadb_msg_pid);
2331 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2332 if (n != NULL) {
2333 m_freem(m);
2334 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2335 } else
2336 return key_senderror(so, m, ENOBUFS);
2337 }
2338
2339 #ifdef notyet
2340 /*
2341 * SADB_X_SPDACQUIRE processing.
2342 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2343 * send
2344 * <base, policy(*)>
2345 * to KMD, and expect to receive
2346 * <base> with SADB_X_SPDACQUIRE if error occurred,
2347 * or
2348 * <base, policy>
2349 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2350 * policy(*) is without policy requests.
2351 *
2352 * 0 : succeed
2353 * others: error number
2354 */
2355 int
2356 key_spdacquire(const struct secpolicy *sp)
2357 {
2358 struct mbuf *result = NULL, *m;
2359 struct secspacq *newspacq;
2360 int error;
2361
2362 KASSERT(sp != NULL);
2363 KASSERTMSG(sp->req == NULL, "called but there is request");
2364 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2365 "policy mismathed. IPsec is expected");
2366
2367 /* Get an entry to check whether sent message or not. */
2368 newspacq = key_getspacq(&sp->spidx);
2369 if (newspacq != NULL) {
2370 if (key_blockacq_count < newspacq->count) {
2371 /* reset counter and do send message. */
2372 newspacq->count = 0;
2373 } else {
2374 /* increment counter and do nothing. */
2375 newspacq->count++;
2376 return 0;
2377 }
2378 } else {
2379 /* make new entry for blocking to send SADB_ACQUIRE. */
2380 newspacq = key_newspacq(&sp->spidx);
2381 if (newspacq == NULL)
2382 return ENOBUFS;
2383
2384 /* add to acqtree */
2385 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2386 }
2387
2388 /* create new sadb_msg to reply. */
2389 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2390 if (!m) {
2391 error = ENOBUFS;
2392 goto fail;
2393 }
2394 result = m;
2395
2396 result->m_pkthdr.len = 0;
2397 for (m = result; m; m = m->m_next)
2398 result->m_pkthdr.len += m->m_len;
2399
2400 mtod(result, struct sadb_msg *)->sadb_msg_len =
2401 PFKEY_UNIT64(result->m_pkthdr.len);
2402
2403 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2404
2405 fail:
2406 if (result)
2407 m_freem(result);
2408 return error;
2409 }
2410 #endif /* notyet */
2411
2412 /*
2413 * SADB_SPDFLUSH processing
2414 * receive
2415 * <base>
2416 * from the user, and free all entries in secpctree.
2417 * and send,
2418 * <base>
2419 * to the user.
2420 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2421 *
2422 * m will always be freed.
2423 */
2424 static int
2425 key_spdflush(struct socket *so, struct mbuf *m,
2426 const struct sadb_msghdr *mhp)
2427 {
2428 struct sadb_msg *newmsg;
2429 struct secpolicy *sp;
2430 u_int dir;
2431
2432 KASSERT(so != NULL);
2433 KASSERT(m != NULL);
2434 KASSERT(mhp != NULL);
2435 KASSERT(mhp->msg != NULL);
2436
2437 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2438 return key_senderror(so, m, EINVAL);
2439
2440 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2441 struct secpolicy * nextsp;
2442 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2443 if (sp->state == IPSEC_SPSTATE_DEAD)
2444 continue;
2445 key_sp_dead(sp);
2446 key_sp_unlink(sp);
2447 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2448 continue;
2449 }
2450 }
2451
2452 /* Invalidate all cached SPD pointers in the PCBs. */
2453 ipsec_invalpcbcacheall();
2454
2455 /* We're deleting policy; no need to invalidate the ipflow cache. */
2456
2457 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2458 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2459 return key_senderror(so, m, ENOBUFS);
2460 }
2461
2462 if (m->m_next)
2463 m_freem(m->m_next);
2464 m->m_next = NULL;
2465 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2466 newmsg = mtod(m, struct sadb_msg *);
2467 newmsg->sadb_msg_errno = 0;
2468 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2469
2470 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2471 }
2472
2473 static struct sockaddr key_src = {
2474 .sa_len = 2,
2475 .sa_family = PF_KEY,
2476 };
2477
2478 static struct mbuf *
2479 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2480 {
2481 struct secpolicy *sp;
2482 int cnt;
2483 u_int dir;
2484 struct mbuf *m, *n, *prev;
2485 int totlen;
2486
2487 *lenp = 0;
2488
2489 /* search SPD entry and get buffer size. */
2490 cnt = 0;
2491 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2492 LIST_FOREACH(sp, &sptree[dir], chain) {
2493 cnt++;
2494 }
2495 }
2496
2497 if (cnt == 0) {
2498 *errorp = ENOENT;
2499 return (NULL);
2500 }
2501
2502 m = NULL;
2503 prev = m;
2504 totlen = 0;
2505 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2506 LIST_FOREACH(sp, &sptree[dir], chain) {
2507 --cnt;
2508 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2509
2510 if (!n) {
2511 *errorp = ENOBUFS;
2512 if (m)
2513 m_freem(m);
2514 return (NULL);
2515 }
2516
2517 totlen += n->m_pkthdr.len;
2518 if (!m) {
2519 m = n;
2520 } else {
2521 prev->m_nextpkt = n;
2522 }
2523 prev = n;
2524 }
2525 }
2526
2527 *lenp = totlen;
2528 *errorp = 0;
2529 return (m);
2530 }
2531
2532 /*
2533 * SADB_SPDDUMP processing
2534 * receive
2535 * <base>
2536 * from the user, and dump all SP leaves
2537 * and send,
2538 * <base> .....
2539 * to the ikmpd.
2540 *
2541 * m will always be freed.
2542 */
2543 static int
2544 key_spddump(struct socket *so, struct mbuf *m0,
2545 const struct sadb_msghdr *mhp)
2546 {
2547 struct mbuf *n;
2548 int error, len;
2549 int ok, s;
2550 pid_t pid;
2551
2552 KASSERT(so != NULL);
2553 KASSERT(m0 != NULL);
2554 KASSERT(mhp != NULL);
2555 KASSERT(mhp->msg != NULL);
2556
2557 pid = mhp->msg->sadb_msg_pid;
2558 /*
2559 * If the requestor has insufficient socket-buffer space
2560 * for the entire chain, nobody gets any response to the DUMP.
2561 * XXX For now, only the requestor ever gets anything.
2562 * Moreover, if the requestor has any space at all, they receive
2563 * the entire chain, otherwise the request is refused with ENOBUFS.
2564 */
2565 if (sbspace(&so->so_rcv) <= 0) {
2566 return key_senderror(so, m0, ENOBUFS);
2567 }
2568
2569 s = splsoftnet();
2570 n = key_setspddump_chain(&error, &len, pid);
2571 splx(s);
2572
2573 if (n == NULL) {
2574 return key_senderror(so, m0, ENOENT);
2575 }
2576 {
2577 uint64_t *ps = PFKEY_STAT_GETREF();
2578 ps[PFKEY_STAT_IN_TOTAL]++;
2579 ps[PFKEY_STAT_IN_BYTES] += len;
2580 PFKEY_STAT_PUTREF();
2581 }
2582
2583 /*
2584 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2585 * The requestor receives either the entire chain, or an
2586 * error message with ENOBUFS.
2587 */
2588
2589 /*
2590 * sbappendchainwith record takes the chain of entries, one
2591 * packet-record per SPD entry, prepends the key_src sockaddr
2592 * to each packet-record, links the sockaddr mbufs into a new
2593 * list of records, then appends the entire resulting
2594 * list to the requesting socket.
2595 */
2596 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2597 SB_PRIO_ONESHOT_OVERFLOW);
2598
2599 if (!ok) {
2600 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2601 m_freem(n);
2602 return key_senderror(so, m0, ENOBUFS);
2603 }
2604
2605 m_freem(m0);
2606 return error;
2607 }
2608
2609 /*
2610 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2611 */
2612 static int
2613 key_nat_map(struct socket *so, struct mbuf *m,
2614 const struct sadb_msghdr *mhp)
2615 {
2616 struct sadb_x_nat_t_type *type;
2617 struct sadb_x_nat_t_port *sport;
2618 struct sadb_x_nat_t_port *dport;
2619 struct sadb_address *iaddr, *raddr;
2620 struct sadb_x_nat_t_frag *frag;
2621
2622 KASSERT(so != NULL);
2623 KASSERT(m != NULL);
2624 KASSERT(mhp != NULL);
2625 KASSERT(mhp->msg != NULL);
2626
2627 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2628 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2629 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2630 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2631 return key_senderror(so, m, EINVAL);
2632 }
2633 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2634 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2635 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2636 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2637 return key_senderror(so, m, EINVAL);
2638 }
2639
2640 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2641 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2642 IPSECLOG(LOG_DEBUG, "invalid message\n");
2643 return key_senderror(so, m, EINVAL);
2644 }
2645
2646 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2647 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2648 IPSECLOG(LOG_DEBUG, "invalid message\n");
2649 return key_senderror(so, m, EINVAL);
2650 }
2651
2652 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2653 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2654 IPSECLOG(LOG_DEBUG, "invalid message\n");
2655 return key_senderror(so, m, EINVAL);
2656 }
2657
2658 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2659 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2660 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2661 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2662 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2663 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2664
2665 /*
2666 * XXX handle that, it should also contain a SA, or anything
2667 * that enable to update the SA information.
2668 */
2669
2670 return 0;
2671 }
2672
2673 static struct mbuf *
2674 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2675 {
2676 struct mbuf *result = NULL, *m;
2677
2678 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2679 if (!m)
2680 goto fail;
2681 result = m;
2682
2683 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2684 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2685 if (!m)
2686 goto fail;
2687 m_cat(result, m);
2688
2689 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2690 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2691 if (!m)
2692 goto fail;
2693 m_cat(result, m);
2694
2695 m = key_sp2msg(sp);
2696 if (!m)
2697 goto fail;
2698 m_cat(result, m);
2699
2700 if ((result->m_flags & M_PKTHDR) == 0)
2701 goto fail;
2702
2703 if (result->m_len < sizeof(struct sadb_msg)) {
2704 result = m_pullup(result, sizeof(struct sadb_msg));
2705 if (result == NULL)
2706 goto fail;
2707 }
2708
2709 result->m_pkthdr.len = 0;
2710 for (m = result; m; m = m->m_next)
2711 result->m_pkthdr.len += m->m_len;
2712
2713 mtod(result, struct sadb_msg *)->sadb_msg_len =
2714 PFKEY_UNIT64(result->m_pkthdr.len);
2715
2716 return result;
2717
2718 fail:
2719 m_freem(result);
2720 return NULL;
2721 }
2722
2723 /*
2724 * get PFKEY message length for security policy and request.
2725 */
2726 static u_int
2727 key_getspreqmsglen(const struct secpolicy *sp)
2728 {
2729 u_int tlen;
2730
2731 tlen = sizeof(struct sadb_x_policy);
2732
2733 /* if is the policy for ipsec ? */
2734 if (sp->policy != IPSEC_POLICY_IPSEC)
2735 return tlen;
2736
2737 /* get length of ipsec requests */
2738 {
2739 const struct ipsecrequest *isr;
2740 int len;
2741
2742 for (isr = sp->req; isr != NULL; isr = isr->next) {
2743 len = sizeof(struct sadb_x_ipsecrequest)
2744 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2745
2746 tlen += PFKEY_ALIGN8(len);
2747 }
2748 }
2749
2750 return tlen;
2751 }
2752
2753 /*
2754 * SADB_SPDEXPIRE processing
2755 * send
2756 * <base, address(SD), lifetime(CH), policy>
2757 * to KMD by PF_KEY.
2758 *
2759 * OUT: 0 : succeed
2760 * others : error number
2761 */
2762 static int
2763 key_spdexpire(struct secpolicy *sp)
2764 {
2765 int s;
2766 struct mbuf *result = NULL, *m;
2767 int len;
2768 int error = -1;
2769 struct sadb_lifetime *lt;
2770
2771 /* XXX: Why do we lock ? */
2772 s = splsoftnet(); /*called from softclock()*/
2773
2774 KASSERT(sp != NULL);
2775
2776 /* set msg header */
2777 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2778 if (!m) {
2779 error = ENOBUFS;
2780 goto fail;
2781 }
2782 result = m;
2783
2784 /* create lifetime extension (current and hard) */
2785 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2786 m = key_alloc_mbuf(len);
2787 if (!m || m->m_next) { /*XXX*/
2788 if (m)
2789 m_freem(m);
2790 error = ENOBUFS;
2791 goto fail;
2792 }
2793 memset(mtod(m, void *), 0, len);
2794 lt = mtod(m, struct sadb_lifetime *);
2795 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2796 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2797 lt->sadb_lifetime_allocations = 0;
2798 lt->sadb_lifetime_bytes = 0;
2799 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2800 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2801 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2802 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2803 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2804 lt->sadb_lifetime_allocations = 0;
2805 lt->sadb_lifetime_bytes = 0;
2806 lt->sadb_lifetime_addtime = sp->lifetime;
2807 lt->sadb_lifetime_usetime = sp->validtime;
2808 m_cat(result, m);
2809
2810 /* set sadb_address for source */
2811 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2812 sp->spidx.prefs, sp->spidx.ul_proto);
2813 if (!m) {
2814 error = ENOBUFS;
2815 goto fail;
2816 }
2817 m_cat(result, m);
2818
2819 /* set sadb_address for destination */
2820 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2821 sp->spidx.prefd, sp->spidx.ul_proto);
2822 if (!m) {
2823 error = ENOBUFS;
2824 goto fail;
2825 }
2826 m_cat(result, m);
2827
2828 /* set secpolicy */
2829 m = key_sp2msg(sp);
2830 if (!m) {
2831 error = ENOBUFS;
2832 goto fail;
2833 }
2834 m_cat(result, m);
2835
2836 if ((result->m_flags & M_PKTHDR) == 0) {
2837 error = EINVAL;
2838 goto fail;
2839 }
2840
2841 if (result->m_len < sizeof(struct sadb_msg)) {
2842 result = m_pullup(result, sizeof(struct sadb_msg));
2843 if (result == NULL) {
2844 error = ENOBUFS;
2845 goto fail;
2846 }
2847 }
2848
2849 result->m_pkthdr.len = 0;
2850 for (m = result; m; m = m->m_next)
2851 result->m_pkthdr.len += m->m_len;
2852
2853 mtod(result, struct sadb_msg *)->sadb_msg_len =
2854 PFKEY_UNIT64(result->m_pkthdr.len);
2855
2856 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2857
2858 fail:
2859 if (result)
2860 m_freem(result);
2861 splx(s);
2862 return error;
2863 }
2864
2865 /* %%% SAD management */
2866 /*
2867 * allocating a memory for new SA head, and copy from the values of mhp.
2868 * OUT: NULL : failure due to the lack of memory.
2869 * others : pointer to new SA head.
2870 */
2871 static struct secashead *
2872 key_newsah(const struct secasindex *saidx)
2873 {
2874 struct secashead *newsah;
2875 int i;
2876
2877 KASSERT(saidx != NULL);
2878
2879 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2880 for (i = 0; i < __arraycount(newsah->savtree); i++)
2881 LIST_INIT(&newsah->savtree[i]);
2882 newsah->saidx = *saidx;
2883
2884 /* add to saidxtree */
2885 newsah->state = SADB_SASTATE_MATURE;
2886 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2887
2888 return newsah;
2889 }
2890
2891 /*
2892 * delete SA index and all SA registerd.
2893 */
2894 static void
2895 key_delsah(struct secashead *sah)
2896 {
2897 struct secasvar *sav, *nextsav;
2898 u_int state;
2899 int s;
2900 int zombie = 0;
2901
2902 KASSERT(!cpu_softintr_p());
2903 KASSERT(sah != NULL);
2904
2905 s = splsoftnet();
2906
2907 /* searching all SA registerd in the secindex. */
2908 SASTATE_ANY_FOREACH(state) {
2909 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2910 if (sav->refcnt == 0) {
2911 /* sanity check */
2912 KEY_CHKSASTATE(state, sav->state);
2913 KEY_FREESAV(&sav);
2914 } else {
2915 /* give up to delete this sa */
2916 zombie++;
2917 }
2918 }
2919 }
2920
2921 /* don't delete sah only if there are savs. */
2922 if (zombie) {
2923 splx(s);
2924 return;
2925 }
2926
2927 rtcache_free(&sah->sa_route);
2928
2929 /* remove from tree of SA index */
2930 KASSERT(__LIST_CHAINED(sah));
2931 LIST_REMOVE(sah, chain);
2932
2933 if (sah->idents != NULL)
2934 kmem_free(sah->idents, sah->idents_len);
2935 if (sah->identd != NULL)
2936 kmem_free(sah->identd, sah->identd_len);
2937
2938 kmem_free(sah, sizeof(*sah));
2939
2940 splx(s);
2941 return;
2942 }
2943
2944 /*
2945 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2946 * and copy the values of mhp into new buffer.
2947 * When SAD message type is GETSPI:
2948 * to set sequence number from acq_seq++,
2949 * to set zero to SPI.
2950 * not to call key_setsava().
2951 * OUT: NULL : fail
2952 * others : pointer to new secasvar.
2953 *
2954 * does not modify mbuf. does not free mbuf on error.
2955 */
2956 static struct secasvar *
2957 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2958 struct secashead *sah, int *errp,
2959 const char* where, int tag)
2960 {
2961 struct secasvar *newsav;
2962 const struct sadb_sa *xsa;
2963
2964 KASSERT(!cpu_softintr_p());
2965 KASSERT(m != NULL);
2966 KASSERT(mhp != NULL);
2967 KASSERT(mhp->msg != NULL);
2968 KASSERT(sah != NULL);
2969
2970 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2971
2972 switch (mhp->msg->sadb_msg_type) {
2973 case SADB_GETSPI:
2974 newsav->spi = 0;
2975
2976 #ifdef IPSEC_DOSEQCHECK
2977 /* sync sequence number */
2978 if (mhp->msg->sadb_msg_seq == 0)
2979 newsav->seq =
2980 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2981 else
2982 #endif
2983 newsav->seq = mhp->msg->sadb_msg_seq;
2984 break;
2985
2986 case SADB_ADD:
2987 /* sanity check */
2988 if (mhp->ext[SADB_EXT_SA] == NULL) {
2989 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2990 *errp = EINVAL;
2991 goto error;
2992 }
2993 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2994 newsav->spi = xsa->sadb_sa_spi;
2995 newsav->seq = mhp->msg->sadb_msg_seq;
2996 break;
2997 default:
2998 *errp = EINVAL;
2999 goto error;
3000 }
3001
3002 /* copy sav values */
3003 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3004 *errp = key_setsaval(newsav, m, mhp);
3005 if (*errp)
3006 goto error;
3007 }
3008
3009 /* reset created */
3010 newsav->created = time_uptime;
3011 newsav->pid = mhp->msg->sadb_msg_pid;
3012
3013 /* add to satree */
3014 newsav->sah = sah;
3015 newsav->refcnt = 1;
3016 newsav->state = SADB_SASTATE_LARVAL;
3017 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3018 secasvar, chain);
3019 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3020 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3021 return newsav;
3022
3023 error:
3024 KASSERT(*errp != 0);
3025 kmem_free(newsav, sizeof(*newsav));
3026 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3027 "DP from %s:%u return SA:NULL\n", where, tag);
3028 return NULL;
3029 }
3030
3031 /*
3032 * free() SA variable entry.
3033 */
3034 static void
3035 key_delsav(struct secasvar *sav)
3036 {
3037
3038 KASSERT(sav != NULL);
3039 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3040
3041 /* remove from SA header */
3042 KASSERT(__LIST_CHAINED(sav));
3043 LIST_REMOVE(sav, chain);
3044
3045 /*
3046 * Cleanup xform state. Note that zeroize'ing causes the
3047 * keys to be cleared; otherwise we must do it ourself.
3048 */
3049 if (sav->tdb_xform != NULL) {
3050 sav->tdb_xform->xf_zeroize(sav);
3051 sav->tdb_xform = NULL;
3052 } else {
3053 if (sav->key_auth != NULL)
3054 explicit_memset(_KEYBUF(sav->key_auth), 0,
3055 _KEYLEN(sav->key_auth));
3056 if (sav->key_enc != NULL)
3057 explicit_memset(_KEYBUF(sav->key_enc), 0,
3058 _KEYLEN(sav->key_enc));
3059 }
3060
3061 key_freesaval(sav);
3062 kmem_intr_free(sav, sizeof(*sav));
3063
3064 return;
3065 }
3066
3067 /*
3068 * search SAD.
3069 * OUT:
3070 * NULL : not found
3071 * others : found, pointer to a SA.
3072 */
3073 static struct secashead *
3074 key_getsah(const struct secasindex *saidx)
3075 {
3076 struct secashead *sah;
3077
3078 LIST_FOREACH(sah, &sahtree, chain) {
3079 if (sah->state == SADB_SASTATE_DEAD)
3080 continue;
3081 if (key_saidx_match(&sah->saidx, saidx, CMP_REQID))
3082 return sah;
3083 }
3084
3085 return NULL;
3086 }
3087
3088 /*
3089 * check not to be duplicated SPI.
3090 * NOTE: this function is too slow due to searching all SAD.
3091 * OUT:
3092 * NULL : not found
3093 * others : found, pointer to a SA.
3094 */
3095 static struct secasvar *
3096 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3097 {
3098 struct secashead *sah;
3099 struct secasvar *sav;
3100
3101 /* check address family */
3102 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3103 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3104 return NULL;
3105 }
3106
3107 /* check all SAD */
3108 LIST_FOREACH(sah, &sahtree, chain) {
3109 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3110 continue;
3111 sav = key_getsavbyspi(sah, spi);
3112 if (sav != NULL)
3113 return sav;
3114 }
3115
3116 return NULL;
3117 }
3118
3119 /*
3120 * search SAD litmited alive SA, protocol, SPI.
3121 * OUT:
3122 * NULL : not found
3123 * others : found, pointer to a SA.
3124 */
3125 static struct secasvar *
3126 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3127 {
3128 struct secasvar *sav;
3129 u_int state;
3130
3131 /* search all status */
3132 SASTATE_ALIVE_FOREACH(state) {
3133 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3134
3135 /* sanity check */
3136 if (sav->state != state) {
3137 IPSECLOG(LOG_DEBUG,
3138 "invalid sav->state (queue: %d SA: %d)\n",
3139 state, sav->state);
3140 continue;
3141 }
3142
3143 if (sav->spi == spi)
3144 return sav;
3145 }
3146 }
3147
3148 return NULL;
3149 }
3150
3151 /*
3152 * Free allocated data to member variables of sav:
3153 * sav->replay, sav->key_* and sav->lft_*.
3154 */
3155 static void
3156 key_freesaval(struct secasvar *sav)
3157 {
3158
3159 if (sav->replay != NULL) {
3160 kmem_intr_free(sav->replay, sav->replay_len);
3161 sav->replay = NULL;
3162 sav->replay_len = 0;
3163 }
3164 if (sav->key_auth != NULL) {
3165 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3166 sav->key_auth = NULL;
3167 sav->key_auth_len = 0;
3168 }
3169 if (sav->key_enc != NULL) {
3170 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3171 sav->key_enc = NULL;
3172 sav->key_enc_len = 0;
3173 }
3174 if (sav->lft_c != NULL) {
3175 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3176 sav->lft_c = NULL;
3177 }
3178 if (sav->lft_h != NULL) {
3179 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3180 sav->lft_h = NULL;
3181 }
3182 if (sav->lft_s != NULL) {
3183 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3184 sav->lft_s = NULL;
3185 }
3186 }
3187
3188 /*
3189 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3190 * You must update these if need.
3191 * OUT: 0: success.
3192 * !0: failure.
3193 *
3194 * does not modify mbuf. does not free mbuf on error.
3195 */
3196 static int
3197 key_setsaval(struct secasvar *sav, struct mbuf *m,
3198 const struct sadb_msghdr *mhp)
3199 {
3200 int error = 0;
3201
3202 KASSERT(!cpu_softintr_p());
3203 KASSERT(m != NULL);
3204 KASSERT(mhp != NULL);
3205 KASSERT(mhp->msg != NULL);
3206
3207 /* initialization */
3208 key_freesaval(sav);
3209 sav->tdb_xform = NULL; /* transform */
3210 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3211 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3212 sav->tdb_compalgxform = NULL; /* compression algorithm */
3213 sav->natt_type = 0;
3214 sav->esp_frag = 0;
3215
3216 /* SA */
3217 if (mhp->ext[SADB_EXT_SA] != NULL) {
3218 const struct sadb_sa *sa0;
3219
3220 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3221 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3222 error = EINVAL;
3223 goto fail;
3224 }
3225
3226 sav->alg_auth = sa0->sadb_sa_auth;
3227 sav->alg_enc = sa0->sadb_sa_encrypt;
3228 sav->flags = sa0->sadb_sa_flags;
3229
3230 /* replay window */
3231 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3232 size_t len = sizeof(struct secreplay) +
3233 sa0->sadb_sa_replay;
3234 sav->replay = kmem_zalloc(len, KM_SLEEP);
3235 sav->replay_len = len;
3236 if (sa0->sadb_sa_replay != 0)
3237 sav->replay->bitmap = (char*)(sav->replay+1);
3238 sav->replay->wsize = sa0->sadb_sa_replay;
3239 }
3240 }
3241
3242 /* Authentication keys */
3243 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3244 const struct sadb_key *key0;
3245 int len;
3246
3247 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3248 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3249
3250 error = 0;
3251 if (len < sizeof(*key0)) {
3252 error = EINVAL;
3253 goto fail;
3254 }
3255 switch (mhp->msg->sadb_msg_satype) {
3256 case SADB_SATYPE_AH:
3257 case SADB_SATYPE_ESP:
3258 case SADB_X_SATYPE_TCPSIGNATURE:
3259 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3260 sav->alg_auth != SADB_X_AALG_NULL)
3261 error = EINVAL;
3262 break;
3263 case SADB_X_SATYPE_IPCOMP:
3264 default:
3265 error = EINVAL;
3266 break;
3267 }
3268 if (error) {
3269 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3270 goto fail;
3271 }
3272
3273 sav->key_auth = key_newbuf(key0, len);
3274 sav->key_auth_len = len;
3275 }
3276
3277 /* Encryption key */
3278 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3279 const struct sadb_key *key0;
3280 int len;
3281
3282 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3283 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3284
3285 error = 0;
3286 if (len < sizeof(*key0)) {
3287 error = EINVAL;
3288 goto fail;
3289 }
3290 switch (mhp->msg->sadb_msg_satype) {
3291 case SADB_SATYPE_ESP:
3292 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3293 sav->alg_enc != SADB_EALG_NULL) {
3294 error = EINVAL;
3295 break;
3296 }
3297 sav->key_enc = key_newbuf(key0, len);
3298 sav->key_enc_len = len;
3299 break;
3300 case SADB_X_SATYPE_IPCOMP:
3301 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3302 error = EINVAL;
3303 sav->key_enc = NULL; /*just in case*/
3304 break;
3305 case SADB_SATYPE_AH:
3306 case SADB_X_SATYPE_TCPSIGNATURE:
3307 default:
3308 error = EINVAL;
3309 break;
3310 }
3311 if (error) {
3312 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3313 goto fail;
3314 }
3315 }
3316
3317 /* set iv */
3318 sav->ivlen = 0;
3319
3320 switch (mhp->msg->sadb_msg_satype) {
3321 case SADB_SATYPE_AH:
3322 error = xform_init(sav, XF_AH);
3323 break;
3324 case SADB_SATYPE_ESP:
3325 error = xform_init(sav, XF_ESP);
3326 break;
3327 case SADB_X_SATYPE_IPCOMP:
3328 error = xform_init(sav, XF_IPCOMP);
3329 break;
3330 case SADB_X_SATYPE_TCPSIGNATURE:
3331 error = xform_init(sav, XF_TCPSIGNATURE);
3332 break;
3333 }
3334 if (error) {
3335 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3336 mhp->msg->sadb_msg_satype);
3337 goto fail;
3338 }
3339
3340 /* reset created */
3341 sav->created = time_uptime;
3342
3343 /* make lifetime for CURRENT */
3344 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3345
3346 sav->lft_c->sadb_lifetime_len =
3347 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3348 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3349 sav->lft_c->sadb_lifetime_allocations = 0;
3350 sav->lft_c->sadb_lifetime_bytes = 0;
3351 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3352 sav->lft_c->sadb_lifetime_usetime = 0;
3353
3354 /* lifetimes for HARD and SOFT */
3355 {
3356 const struct sadb_lifetime *lft0;
3357
3358 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3359 if (lft0 != NULL) {
3360 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3361 error = EINVAL;
3362 goto fail;
3363 }
3364 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3365 }
3366
3367 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3368 if (lft0 != NULL) {
3369 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3370 error = EINVAL;
3371 goto fail;
3372 }
3373 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3374 /* to be initialize ? */
3375 }
3376 }
3377
3378 return 0;
3379
3380 fail:
3381 /* initialization */
3382 key_freesaval(sav);
3383
3384 return error;
3385 }
3386
3387 /*
3388 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3389 * OUT: 0: valid
3390 * other: errno
3391 */
3392 static int
3393 key_mature(struct secasvar *sav)
3394 {
3395 int error;
3396
3397 /* check SPI value */
3398 switch (sav->sah->saidx.proto) {
3399 case IPPROTO_ESP:
3400 case IPPROTO_AH:
3401 if (ntohl(sav->spi) <= 255) {
3402 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3403 (u_int32_t)ntohl(sav->spi));
3404 return EINVAL;
3405 }
3406 break;
3407 }
3408
3409 /* check satype */
3410 switch (sav->sah->saidx.proto) {
3411 case IPPROTO_ESP:
3412 /* check flags */
3413 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3414 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3415 IPSECLOG(LOG_DEBUG,
3416 "invalid flag (derived) given to old-esp.\n");
3417 return EINVAL;
3418 }
3419 error = xform_init(sav, XF_ESP);
3420 break;
3421 case IPPROTO_AH:
3422 /* check flags */
3423 if (sav->flags & SADB_X_EXT_DERIV) {
3424 IPSECLOG(LOG_DEBUG,
3425 "invalid flag (derived) given to AH SA.\n");
3426 return EINVAL;
3427 }
3428 if (sav->alg_enc != SADB_EALG_NONE) {
3429 IPSECLOG(LOG_DEBUG,
3430 "protocol and algorithm mismated.\n");
3431 return(EINVAL);
3432 }
3433 error = xform_init(sav, XF_AH);
3434 break;
3435 case IPPROTO_IPCOMP:
3436 if (sav->alg_auth != SADB_AALG_NONE) {
3437 IPSECLOG(LOG_DEBUG,
3438 "protocol and algorithm mismated.\n");
3439 return(EINVAL);
3440 }
3441 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3442 && ntohl(sav->spi) >= 0x10000) {
3443 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3444 return(EINVAL);
3445 }
3446 error = xform_init(sav, XF_IPCOMP);
3447 break;
3448 case IPPROTO_TCP:
3449 if (sav->alg_enc != SADB_EALG_NONE) {
3450 IPSECLOG(LOG_DEBUG,
3451 "protocol and algorithm mismated.\n");
3452 return(EINVAL);
3453 }
3454 error = xform_init(sav, XF_TCPSIGNATURE);
3455 break;
3456 default:
3457 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3458 error = EPROTONOSUPPORT;
3459 break;
3460 }
3461 if (error == 0)
3462 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3463 return (error);
3464 }
3465
3466 /*
3467 * subroutine for SADB_GET and SADB_DUMP.
3468 */
3469 static struct mbuf *
3470 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3471 u_int32_t seq, u_int32_t pid)
3472 {
3473 struct mbuf *result = NULL, *tres = NULL, *m;
3474 int l = 0;
3475 int i;
3476 void *p;
3477 struct sadb_lifetime lt;
3478 int dumporder[] = {
3479 SADB_EXT_SA, SADB_X_EXT_SA2,
3480 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3481 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3482 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3483 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3484 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3485 SADB_X_EXT_NAT_T_TYPE,
3486 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3487 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3488 SADB_X_EXT_NAT_T_FRAG,
3489
3490 };
3491
3492 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3493 if (m == NULL)
3494 goto fail;
3495 result = m;
3496
3497 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3498 m = NULL;
3499 p = NULL;
3500 switch (dumporder[i]) {
3501 case SADB_EXT_SA:
3502 m = key_setsadbsa(sav);
3503 break;
3504
3505 case SADB_X_EXT_SA2:
3506 m = key_setsadbxsa2(sav->sah->saidx.mode,
3507 sav->replay ? sav->replay->count : 0,
3508 sav->sah->saidx.reqid);
3509 break;
3510
3511 case SADB_EXT_ADDRESS_SRC:
3512 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3513 &sav->sah->saidx.src.sa,
3514 FULLMASK, IPSEC_ULPROTO_ANY);
3515 break;
3516
3517 case SADB_EXT_ADDRESS_DST:
3518 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3519 &sav->sah->saidx.dst.sa,
3520 FULLMASK, IPSEC_ULPROTO_ANY);
3521 break;
3522
3523 case SADB_EXT_KEY_AUTH:
3524 if (!sav->key_auth)
3525 continue;
3526 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3527 p = sav->key_auth;
3528 break;
3529
3530 case SADB_EXT_KEY_ENCRYPT:
3531 if (!sav->key_enc)
3532 continue;
3533 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3534 p = sav->key_enc;
3535 break;
3536
3537 case SADB_EXT_LIFETIME_CURRENT:
3538 if (!sav->lft_c)
3539 continue;
3540 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3541 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3542 lt.sadb_lifetime_addtime += time_second - time_uptime;
3543 lt.sadb_lifetime_usetime += time_second - time_uptime;
3544 p = <
3545 break;
3546
3547 case SADB_EXT_LIFETIME_HARD:
3548 if (!sav->lft_h)
3549 continue;
3550 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3551 p = sav->lft_h;
3552 break;
3553
3554 case SADB_EXT_LIFETIME_SOFT:
3555 if (!sav->lft_s)
3556 continue;
3557 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3558 p = sav->lft_s;
3559 break;
3560
3561 case SADB_X_EXT_NAT_T_TYPE:
3562 m = key_setsadbxtype(sav->natt_type);
3563 break;
3564
3565 case SADB_X_EXT_NAT_T_DPORT:
3566 if (sav->natt_type == 0)
3567 continue;
3568 m = key_setsadbxport(
3569 key_portfromsaddr(&sav->sah->saidx.dst),
3570 SADB_X_EXT_NAT_T_DPORT);
3571 break;
3572
3573 case SADB_X_EXT_NAT_T_SPORT:
3574 if (sav->natt_type == 0)
3575 continue;
3576 m = key_setsadbxport(
3577 key_portfromsaddr(&sav->sah->saidx.src),
3578 SADB_X_EXT_NAT_T_SPORT);
3579 break;
3580
3581 case SADB_X_EXT_NAT_T_FRAG:
3582 /* don't send frag info if not set */
3583 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3584 continue;
3585 m = key_setsadbxfrag(sav->esp_frag);
3586 break;
3587
3588 case SADB_X_EXT_NAT_T_OAI:
3589 case SADB_X_EXT_NAT_T_OAR:
3590 continue;
3591
3592 case SADB_EXT_ADDRESS_PROXY:
3593 case SADB_EXT_IDENTITY_SRC:
3594 case SADB_EXT_IDENTITY_DST:
3595 /* XXX: should we brought from SPD ? */
3596 case SADB_EXT_SENSITIVITY:
3597 default:
3598 continue;
3599 }
3600
3601 KASSERT(!(m && p));
3602 if (!m && !p)
3603 goto fail;
3604 if (p && tres) {
3605 M_PREPEND(tres, l, M_DONTWAIT);
3606 if (!tres)
3607 goto fail;
3608 memcpy(mtod(tres, void *), p, l);
3609 continue;
3610 }
3611 if (p) {
3612 m = key_alloc_mbuf(l);
3613 if (!m)
3614 goto fail;
3615 m_copyback(m, 0, l, p);
3616 }
3617
3618 if (tres)
3619 m_cat(m, tres);
3620 tres = m;
3621 }
3622
3623 m_cat(result, tres);
3624 tres = NULL; /* avoid free on error below */
3625
3626 if (result->m_len < sizeof(struct sadb_msg)) {
3627 result = m_pullup(result, sizeof(struct sadb_msg));
3628 if (result == NULL)
3629 goto fail;
3630 }
3631
3632 result->m_pkthdr.len = 0;
3633 for (m = result; m; m = m->m_next)
3634 result->m_pkthdr.len += m->m_len;
3635
3636 mtod(result, struct sadb_msg *)->sadb_msg_len =
3637 PFKEY_UNIT64(result->m_pkthdr.len);
3638
3639 return result;
3640
3641 fail:
3642 m_freem(result);
3643 m_freem(tres);
3644 return NULL;
3645 }
3646
3647
3648 /*
3649 * set a type in sadb_x_nat_t_type
3650 */
3651 static struct mbuf *
3652 key_setsadbxtype(u_int16_t type)
3653 {
3654 struct mbuf *m;
3655 size_t len;
3656 struct sadb_x_nat_t_type *p;
3657
3658 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3659
3660 m = key_alloc_mbuf(len);
3661 if (!m || m->m_next) { /*XXX*/
3662 if (m)
3663 m_freem(m);
3664 return NULL;
3665 }
3666
3667 p = mtod(m, struct sadb_x_nat_t_type *);
3668
3669 memset(p, 0, len);
3670 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3671 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3672 p->sadb_x_nat_t_type_type = type;
3673
3674 return m;
3675 }
3676 /*
3677 * set a port in sadb_x_nat_t_port. port is in network order
3678 */
3679 static struct mbuf *
3680 key_setsadbxport(u_int16_t port, u_int16_t type)
3681 {
3682 struct mbuf *m;
3683 size_t len;
3684 struct sadb_x_nat_t_port *p;
3685
3686 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3687
3688 m = key_alloc_mbuf(len);
3689 if (!m || m->m_next) { /*XXX*/
3690 if (m)
3691 m_freem(m);
3692 return NULL;
3693 }
3694
3695 p = mtod(m, struct sadb_x_nat_t_port *);
3696
3697 memset(p, 0, len);
3698 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3699 p->sadb_x_nat_t_port_exttype = type;
3700 p->sadb_x_nat_t_port_port = port;
3701
3702 return m;
3703 }
3704
3705 /*
3706 * set fragmentation info in sadb_x_nat_t_frag
3707 */
3708 static struct mbuf *
3709 key_setsadbxfrag(u_int16_t flen)
3710 {
3711 struct mbuf *m;
3712 size_t len;
3713 struct sadb_x_nat_t_frag *p;
3714
3715 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3716
3717 m = key_alloc_mbuf(len);
3718 if (!m || m->m_next) { /*XXX*/
3719 if (m)
3720 m_freem(m);
3721 return NULL;
3722 }
3723
3724 p = mtod(m, struct sadb_x_nat_t_frag *);
3725
3726 memset(p, 0, len);
3727 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3728 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3729 p->sadb_x_nat_t_frag_fraglen = flen;
3730
3731 return m;
3732 }
3733
3734 /*
3735 * Get port from sockaddr, port is in network order
3736 */
3737 u_int16_t
3738 key_portfromsaddr(const union sockaddr_union *saddr)
3739 {
3740 u_int16_t port;
3741
3742 switch (saddr->sa.sa_family) {
3743 case AF_INET: {
3744 port = saddr->sin.sin_port;
3745 break;
3746 }
3747 #ifdef INET6
3748 case AF_INET6: {
3749 port = saddr->sin6.sin6_port;
3750 break;
3751 }
3752 #endif
3753 default:
3754 printf("%s: unexpected address family\n", __func__);
3755 port = 0;
3756 break;
3757 }
3758
3759 return port;
3760 }
3761
3762
3763 /*
3764 * Set port is struct sockaddr. port is in network order
3765 */
3766 static void
3767 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3768 {
3769 switch (saddr->sa.sa_family) {
3770 case AF_INET: {
3771 saddr->sin.sin_port = port;
3772 break;
3773 }
3774 #ifdef INET6
3775 case AF_INET6: {
3776 saddr->sin6.sin6_port = port;
3777 break;
3778 }
3779 #endif
3780 default:
3781 printf("%s: unexpected address family %d\n", __func__,
3782 saddr->sa.sa_family);
3783 break;
3784 }
3785
3786 return;
3787 }
3788
3789 /*
3790 * Safety check sa_len
3791 */
3792 static int
3793 key_checksalen(const union sockaddr_union *saddr)
3794 {
3795 switch (saddr->sa.sa_family) {
3796 case AF_INET:
3797 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3798 return -1;
3799 break;
3800 #ifdef INET6
3801 case AF_INET6:
3802 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3803 return -1;
3804 break;
3805 #endif
3806 default:
3807 printf("%s: unexpected sa_family %d\n", __func__,
3808 saddr->sa.sa_family);
3809 return -1;
3810 break;
3811 }
3812 return 0;
3813 }
3814
3815
3816 /*
3817 * set data into sadb_msg.
3818 */
3819 static struct mbuf *
3820 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3821 u_int32_t seq, pid_t pid, u_int16_t reserved)
3822 {
3823 struct mbuf *m;
3824 struct sadb_msg *p;
3825 int len;
3826
3827 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3828 if (len > MCLBYTES)
3829 return NULL;
3830 MGETHDR(m, M_DONTWAIT, MT_DATA);
3831 if (m && len > MHLEN) {
3832 MCLGET(m, M_DONTWAIT);
3833 if ((m->m_flags & M_EXT) == 0) {
3834 m_freem(m);
3835 m = NULL;
3836 }
3837 }
3838 if (!m)
3839 return NULL;
3840 m->m_pkthdr.len = m->m_len = len;
3841 m->m_next = NULL;
3842
3843 p = mtod(m, struct sadb_msg *);
3844
3845 memset(p, 0, len);
3846 p->sadb_msg_version = PF_KEY_V2;
3847 p->sadb_msg_type = type;
3848 p->sadb_msg_errno = 0;
3849 p->sadb_msg_satype = satype;
3850 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3851 p->sadb_msg_reserved = reserved;
3852 p->sadb_msg_seq = seq;
3853 p->sadb_msg_pid = (u_int32_t)pid;
3854
3855 return m;
3856 }
3857
3858 /*
3859 * copy secasvar data into sadb_address.
3860 */
3861 static struct mbuf *
3862 key_setsadbsa(struct secasvar *sav)
3863 {
3864 struct mbuf *m;
3865 struct sadb_sa *p;
3866 int len;
3867
3868 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3869 m = key_alloc_mbuf(len);
3870 if (!m || m->m_next) { /*XXX*/
3871 if (m)
3872 m_freem(m);
3873 return NULL;
3874 }
3875
3876 p = mtod(m, struct sadb_sa *);
3877
3878 memset(p, 0, len);
3879 p->sadb_sa_len = PFKEY_UNIT64(len);
3880 p->sadb_sa_exttype = SADB_EXT_SA;
3881 p->sadb_sa_spi = sav->spi;
3882 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3883 p->sadb_sa_state = sav->state;
3884 p->sadb_sa_auth = sav->alg_auth;
3885 p->sadb_sa_encrypt = sav->alg_enc;
3886 p->sadb_sa_flags = sav->flags;
3887
3888 return m;
3889 }
3890
3891 /*
3892 * set data into sadb_address.
3893 */
3894 static struct mbuf *
3895 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3896 u_int8_t prefixlen, u_int16_t ul_proto)
3897 {
3898 struct mbuf *m;
3899 struct sadb_address *p;
3900 size_t len;
3901
3902 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3903 PFKEY_ALIGN8(saddr->sa_len);
3904 m = key_alloc_mbuf(len);
3905 if (!m || m->m_next) { /*XXX*/
3906 if (m)
3907 m_freem(m);
3908 return NULL;
3909 }
3910
3911 p = mtod(m, struct sadb_address *);
3912
3913 memset(p, 0, len);
3914 p->sadb_address_len = PFKEY_UNIT64(len);
3915 p->sadb_address_exttype = exttype;
3916 p->sadb_address_proto = ul_proto;
3917 if (prefixlen == FULLMASK) {
3918 switch (saddr->sa_family) {
3919 case AF_INET:
3920 prefixlen = sizeof(struct in_addr) << 3;
3921 break;
3922 case AF_INET6:
3923 prefixlen = sizeof(struct in6_addr) << 3;
3924 break;
3925 default:
3926 ; /*XXX*/
3927 }
3928 }
3929 p->sadb_address_prefixlen = prefixlen;
3930 p->sadb_address_reserved = 0;
3931
3932 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3933 saddr, saddr->sa_len);
3934
3935 return m;
3936 }
3937
3938 #if 0
3939 /*
3940 * set data into sadb_ident.
3941 */
3942 static struct mbuf *
3943 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3944 void *string, int stringlen, u_int64_t id)
3945 {
3946 struct mbuf *m;
3947 struct sadb_ident *p;
3948 size_t len;
3949
3950 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3951 m = key_alloc_mbuf(len);
3952 if (!m || m->m_next) { /*XXX*/
3953 if (m)
3954 m_freem(m);
3955 return NULL;
3956 }
3957
3958 p = mtod(m, struct sadb_ident *);
3959
3960 memset(p, 0, len);
3961 p->sadb_ident_len = PFKEY_UNIT64(len);
3962 p->sadb_ident_exttype = exttype;
3963 p->sadb_ident_type = idtype;
3964 p->sadb_ident_reserved = 0;
3965 p->sadb_ident_id = id;
3966
3967 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3968 string, stringlen);
3969
3970 return m;
3971 }
3972 #endif
3973
3974 /*
3975 * set data into sadb_x_sa2.
3976 */
3977 static struct mbuf *
3978 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3979 {
3980 struct mbuf *m;
3981 struct sadb_x_sa2 *p;
3982 size_t len;
3983
3984 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3985 m = key_alloc_mbuf(len);
3986 if (!m || m->m_next) { /*XXX*/
3987 if (m)
3988 m_freem(m);
3989 return NULL;
3990 }
3991
3992 p = mtod(m, struct sadb_x_sa2 *);
3993
3994 memset(p, 0, len);
3995 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3996 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3997 p->sadb_x_sa2_mode = mode;
3998 p->sadb_x_sa2_reserved1 = 0;
3999 p->sadb_x_sa2_reserved2 = 0;
4000 p->sadb_x_sa2_sequence = seq;
4001 p->sadb_x_sa2_reqid = reqid;
4002
4003 return m;
4004 }
4005
4006 /*
4007 * set data into sadb_x_policy
4008 */
4009 static struct mbuf *
4010 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4011 {
4012 struct mbuf *m;
4013 struct sadb_x_policy *p;
4014 size_t len;
4015
4016 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4017 m = key_alloc_mbuf(len);
4018 if (!m || m->m_next) { /*XXX*/
4019 if (m)
4020 m_freem(m);
4021 return NULL;
4022 }
4023
4024 p = mtod(m, struct sadb_x_policy *);
4025
4026 memset(p, 0, len);
4027 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4028 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4029 p->sadb_x_policy_type = type;
4030 p->sadb_x_policy_dir = dir;
4031 p->sadb_x_policy_id = id;
4032
4033 return m;
4034 }
4035
4036 /* %%% utilities */
4037 /*
4038 * copy a buffer into the new buffer allocated.
4039 */
4040 static void *
4041 key_newbuf(const void *src, u_int len)
4042 {
4043 void *new;
4044
4045 new = kmem_alloc(len, KM_SLEEP);
4046 memcpy(new, src, len);
4047
4048 return new;
4049 }
4050
4051 /* compare my own address
4052 * OUT: 1: true, i.e. my address.
4053 * 0: false
4054 */
4055 int
4056 key_ismyaddr(const struct sockaddr *sa)
4057 {
4058 #ifdef INET
4059 const struct sockaddr_in *sin;
4060 const struct in_ifaddr *ia;
4061 int s;
4062 #endif
4063
4064 KASSERT(sa != NULL);
4065
4066 switch (sa->sa_family) {
4067 #ifdef INET
4068 case AF_INET:
4069 sin = (const struct sockaddr_in *)sa;
4070 s = pserialize_read_enter();
4071 IN_ADDRLIST_READER_FOREACH(ia) {
4072 if (sin->sin_family == ia->ia_addr.sin_family &&
4073 sin->sin_len == ia->ia_addr.sin_len &&
4074 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4075 {
4076 pserialize_read_exit(s);
4077 return 1;
4078 }
4079 }
4080 pserialize_read_exit(s);
4081 break;
4082 #endif
4083 #ifdef INET6
4084 case AF_INET6:
4085 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4086 #endif
4087 }
4088
4089 return 0;
4090 }
4091
4092 #ifdef INET6
4093 /*
4094 * compare my own address for IPv6.
4095 * 1: ours
4096 * 0: other
4097 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4098 */
4099 #include <netinet6/in6_var.h>
4100
4101 static int
4102 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4103 {
4104 struct in6_ifaddr *ia;
4105 int s;
4106 struct psref psref;
4107 int bound;
4108 int ours = 1;
4109
4110 bound = curlwp_bind();
4111 s = pserialize_read_enter();
4112 IN6_ADDRLIST_READER_FOREACH(ia) {
4113 bool ingroup;
4114
4115 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4116 (const struct sockaddr *)&ia->ia_addr, 0)) {
4117 pserialize_read_exit(s);
4118 goto ours;
4119 }
4120 ia6_acquire(ia, &psref);
4121 pserialize_read_exit(s);
4122
4123 /*
4124 * XXX Multicast
4125 * XXX why do we care about multlicast here while we don't care
4126 * about IPv4 multicast??
4127 * XXX scope
4128 */
4129 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4130 if (ingroup) {
4131 ia6_release(ia, &psref);
4132 goto ours;
4133 }
4134
4135 s = pserialize_read_enter();
4136 ia6_release(ia, &psref);
4137 }
4138 pserialize_read_exit(s);
4139
4140 /* loopback, just for safety */
4141 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4142 goto ours;
4143
4144 ours = 0;
4145 ours:
4146 curlwp_bindx(bound);
4147
4148 return ours;
4149 }
4150 #endif /*INET6*/
4151
4152 /*
4153 * compare two secasindex structure.
4154 * flag can specify to compare 2 saidxes.
4155 * compare two secasindex structure without both mode and reqid.
4156 * don't compare port.
4157 * IN:
4158 * saidx0: source, it can be in SAD.
4159 * saidx1: object.
4160 * OUT:
4161 * 1 : equal
4162 * 0 : not equal
4163 */
4164 static int
4165 key_saidx_match(
4166 const struct secasindex *saidx0,
4167 const struct secasindex *saidx1,
4168 int flag)
4169 {
4170 int chkport;
4171 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4172
4173 /* sanity */
4174 if (saidx0 == NULL && saidx1 == NULL)
4175 return 1;
4176
4177 if (saidx0 == NULL || saidx1 == NULL)
4178 return 0;
4179
4180 if (saidx0->proto != saidx1->proto)
4181 return 0;
4182
4183 if (flag == CMP_EXACTLY) {
4184 if (saidx0->mode != saidx1->mode)
4185 return 0;
4186 if (saidx0->reqid != saidx1->reqid)
4187 return 0;
4188 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4189 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4190 return 0;
4191 } else {
4192
4193 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4194 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4195 /*
4196 * If reqid of SPD is non-zero, unique SA is required.
4197 * The result must be of same reqid in this case.
4198 */
4199 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4200 return 0;
4201 }
4202
4203 if (flag == CMP_MODE_REQID) {
4204 if (saidx0->mode != IPSEC_MODE_ANY &&
4205 saidx0->mode != saidx1->mode)
4206 return 0;
4207 }
4208
4209
4210 sa0src = &saidx0->src.sa;
4211 sa0dst = &saidx0->dst.sa;
4212 sa1src = &saidx1->src.sa;
4213 sa1dst = &saidx1->dst.sa;
4214 /*
4215 * If NAT-T is enabled, check ports for tunnel mode.
4216 * Don't do it for transport mode, as there is no
4217 * port information available in the SP.
4218 * Also don't check ports if they are set to zero
4219 * in the SPD: This means we have a non-generated
4220 * SPD which can't know UDP ports.
4221 */
4222 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4223 chkport = PORT_LOOSE;
4224 else
4225 chkport = PORT_NONE;
4226
4227 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4228 return 0;
4229 }
4230 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4231 return 0;
4232 }
4233 }
4234
4235 return 1;
4236 }
4237
4238 /*
4239 * compare two secindex structure exactly.
4240 * IN:
4241 * spidx0: source, it is often in SPD.
4242 * spidx1: object, it is often from PFKEY message.
4243 * OUT:
4244 * 1 : equal
4245 * 0 : not equal
4246 */
4247 static int
4248 key_spidx_match_exactly(
4249 const struct secpolicyindex *spidx0,
4250 const struct secpolicyindex *spidx1)
4251 {
4252 /* sanity */
4253 if (spidx0 == NULL && spidx1 == NULL)
4254 return 1;
4255
4256 if (spidx0 == NULL || spidx1 == NULL)
4257 return 0;
4258
4259 if (spidx0->prefs != spidx1->prefs ||
4260 spidx0->prefd != spidx1->prefd ||
4261 spidx0->ul_proto != spidx1->ul_proto)
4262 return 0;
4263
4264 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4265 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4266 }
4267
4268 /*
4269 * compare two secindex structure with mask.
4270 * IN:
4271 * spidx0: source, it is often in SPD.
4272 * spidx1: object, it is often from IP header.
4273 * OUT:
4274 * 1 : equal
4275 * 0 : not equal
4276 */
4277 static int
4278 key_spidx_match_withmask(
4279 const struct secpolicyindex *spidx0,
4280 const struct secpolicyindex *spidx1)
4281 {
4282
4283 KASSERT(spidx0 != NULL);
4284 KASSERT(spidx1 != NULL);
4285
4286 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4287 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4288 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4289 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4290 return 0;
4291
4292 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4293 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4294 spidx0->ul_proto != spidx1->ul_proto)
4295 return 0;
4296
4297 switch (spidx0->src.sa.sa_family) {
4298 case AF_INET:
4299 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4300 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4301 return 0;
4302 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4303 &spidx1->src.sin.sin_addr, spidx0->prefs))
4304 return 0;
4305 break;
4306 case AF_INET6:
4307 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4308 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4309 return 0;
4310 /*
4311 * scope_id check. if sin6_scope_id is 0, we regard it
4312 * as a wildcard scope, which matches any scope zone ID.
4313 */
4314 if (spidx0->src.sin6.sin6_scope_id &&
4315 spidx1->src.sin6.sin6_scope_id &&
4316 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4317 return 0;
4318 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4319 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4320 return 0;
4321 break;
4322 default:
4323 /* XXX */
4324 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4325 return 0;
4326 break;
4327 }
4328
4329 switch (spidx0->dst.sa.sa_family) {
4330 case AF_INET:
4331 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4332 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4333 return 0;
4334 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4335 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4336 return 0;
4337 break;
4338 case AF_INET6:
4339 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4340 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4341 return 0;
4342 /*
4343 * scope_id check. if sin6_scope_id is 0, we regard it
4344 * as a wildcard scope, which matches any scope zone ID.
4345 */
4346 if (spidx0->src.sin6.sin6_scope_id &&
4347 spidx1->src.sin6.sin6_scope_id &&
4348 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4349 return 0;
4350 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4351 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4352 return 0;
4353 break;
4354 default:
4355 /* XXX */
4356 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4357 return 0;
4358 break;
4359 }
4360
4361 /* XXX Do we check other field ? e.g. flowinfo */
4362
4363 return 1;
4364 }
4365
4366 /* returns 0 on match */
4367 static int
4368 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4369 {
4370 switch (howport) {
4371 case PORT_NONE:
4372 return 0;
4373 case PORT_LOOSE:
4374 if (port1 == 0 || port2 == 0)
4375 return 0;
4376 /*FALLTHROUGH*/
4377 case PORT_STRICT:
4378 if (port1 != port2) {
4379 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4380 "port fail %d != %d\n", port1, port2);
4381 return 1;
4382 }
4383 return 0;
4384 default:
4385 KASSERT(0);
4386 return 1;
4387 }
4388 }
4389
4390 /* returns 1 on match */
4391 static int
4392 key_sockaddr_match(
4393 const struct sockaddr *sa1,
4394 const struct sockaddr *sa2,
4395 int howport)
4396 {
4397 const struct sockaddr_in *sin1, *sin2;
4398 const struct sockaddr_in6 *sin61, *sin62;
4399
4400 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4401 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4402 "fam/len fail %d != %d || %d != %d\n",
4403 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4404 sa2->sa_len);
4405 return 0;
4406 }
4407
4408 switch (sa1->sa_family) {
4409 case AF_INET:
4410 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4411 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4412 "len fail %d != %zu\n",
4413 sa1->sa_len, sizeof(struct sockaddr_in));
4414 return 0;
4415 }
4416 sin1 = (const struct sockaddr_in *)sa1;
4417 sin2 = (const struct sockaddr_in *)sa2;
4418 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4419 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4420 "addr fail %#x != %#x\n",
4421 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4422 return 0;
4423 }
4424 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4425 return 0;
4426 }
4427 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4428 "addr success %#x[%d] == %#x[%d]\n",
4429 sin1->sin_addr.s_addr, sin1->sin_port,
4430 sin2->sin_addr.s_addr, sin2->sin_port);
4431 break;
4432 case AF_INET6:
4433 sin61 = (const struct sockaddr_in6 *)sa1;
4434 sin62 = (const struct sockaddr_in6 *)sa2;
4435 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4436 return 0; /*EINVAL*/
4437
4438 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4439 return 0;
4440 }
4441 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4442 return 0;
4443 }
4444 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4445 return 0;
4446 }
4447 break;
4448 default:
4449 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4450 return 0;
4451 break;
4452 }
4453
4454 return 1;
4455 }
4456
4457 /*
4458 * compare two buffers with mask.
4459 * IN:
4460 * addr1: source
4461 * addr2: object
4462 * bits: Number of bits to compare
4463 * OUT:
4464 * 1 : equal
4465 * 0 : not equal
4466 */
4467 static int
4468 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4469 {
4470 const unsigned char *p1 = a1;
4471 const unsigned char *p2 = a2;
4472
4473 /* XXX: This could be considerably faster if we compare a word
4474 * at a time, but it is complicated on LSB Endian machines */
4475
4476 /* Handle null pointers */
4477 if (p1 == NULL || p2 == NULL)
4478 return (p1 == p2);
4479
4480 while (bits >= 8) {
4481 if (*p1++ != *p2++)
4482 return 0;
4483 bits -= 8;
4484 }
4485
4486 if (bits > 0) {
4487 u_int8_t mask = ~((1<<(8-bits))-1);
4488 if ((*p1 & mask) != (*p2 & mask))
4489 return 0;
4490 }
4491 return 1; /* Match! */
4492 }
4493
4494 /*
4495 * time handler.
4496 * scanning SPD and SAD to check status for each entries,
4497 * and do to remove or to expire.
4498 */
4499 static void
4500 key_timehandler_work(struct work *wk, void *arg)
4501 {
4502 u_int dir;
4503 int s;
4504 time_t now = time_uptime;
4505
4506 s = splsoftnet();
4507 mutex_enter(softnet_lock);
4508
4509 /* SPD */
4510 {
4511 struct secpolicy *sp, *nextsp;
4512
4513 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4514 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4515 if (sp->state == IPSEC_SPSTATE_DEAD) {
4516 key_sp_unlink(sp); /*XXX*/
4517
4518 /* 'sp' dead; continue transfers to
4519 * 'sp = nextsp'
4520 */
4521 continue;
4522 }
4523
4524 if (sp->lifetime == 0 && sp->validtime == 0)
4525 continue;
4526
4527 /* the deletion will occur next time */
4528 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4529 (sp->validtime && now - sp->lastused > sp->validtime)) {
4530 key_sp_dead(sp);
4531 key_spdexpire(sp);
4532 continue;
4533 }
4534 }
4535 }
4536 }
4537
4538 /* SAD */
4539 {
4540 struct secashead *sah, *nextsah;
4541 struct secasvar *sav, *nextsav;
4542
4543 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4544 /* if sah has been dead, then delete it and process next sah. */
4545 if (sah->state == SADB_SASTATE_DEAD) {
4546 key_delsah(sah);
4547 continue;
4548 }
4549
4550 /* if LARVAL entry doesn't become MATURE, delete it. */
4551 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4552 chain, nextsav) {
4553 if (now - sav->created > key_larval_lifetime) {
4554 KEY_FREESAV(&sav);
4555 }
4556 }
4557
4558 /*
4559 * check MATURE entry to start to send expire message
4560 * whether or not.
4561 */
4562 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4563 chain, nextsav) {
4564 /* we don't need to check. */
4565 if (sav->lft_s == NULL)
4566 continue;
4567
4568 /* sanity check */
4569 if (sav->lft_c == NULL) {
4570 IPSECLOG(LOG_DEBUG,
4571 "There is no CURRENT time, why?\n");
4572 continue;
4573 }
4574
4575 /* check SOFT lifetime */
4576 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4577 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4578 /*
4579 * check SA to be used whether or not.
4580 * when SA hasn't been used, delete it.
4581 */
4582 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4583 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4584 KEY_FREESAV(&sav);
4585 } else {
4586 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4587 /*
4588 * XXX If we keep to send expire
4589 * message in the status of
4590 * DYING. Do remove below code.
4591 */
4592 key_expire(sav);
4593 }
4594 }
4595 /* check SOFT lifetime by bytes */
4596 /*
4597 * XXX I don't know the way to delete this SA
4598 * when new SA is installed. Caution when it's
4599 * installed too big lifetime by time.
4600 */
4601 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4602 sav->lft_s->sadb_lifetime_bytes <
4603 sav->lft_c->sadb_lifetime_bytes) {
4604
4605 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4606 /*
4607 * XXX If we keep to send expire
4608 * message in the status of
4609 * DYING. Do remove below code.
4610 */
4611 key_expire(sav);
4612 }
4613 }
4614
4615 /* check DYING entry to change status to DEAD. */
4616 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4617 chain, nextsav) {
4618 /* we don't need to check. */
4619 if (sav->lft_h == NULL)
4620 continue;
4621
4622 /* sanity check */
4623 if (sav->lft_c == NULL) {
4624 IPSECLOG(LOG_DEBUG,
4625 "There is no CURRENT time, why?\n");
4626 continue;
4627 }
4628
4629 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4630 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4631 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4632 KEY_FREESAV(&sav);
4633 }
4634 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4635 else if (sav->lft_s != NULL
4636 && sav->lft_s->sadb_lifetime_addtime != 0
4637 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4638 /*
4639 * XXX: should be checked to be
4640 * installed the valid SA.
4641 */
4642
4643 /*
4644 * If there is no SA then sending
4645 * expire message.
4646 */
4647 key_expire(sav);
4648 }
4649 #endif
4650 /* check HARD lifetime by bytes */
4651 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4652 sav->lft_h->sadb_lifetime_bytes <
4653 sav->lft_c->sadb_lifetime_bytes) {
4654 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4655 KEY_FREESAV(&sav);
4656 }
4657 }
4658
4659 /* delete entry in DEAD */
4660 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4661 chain, nextsav) {
4662 /* sanity check */
4663 if (sav->state != SADB_SASTATE_DEAD) {
4664 IPSECLOG(LOG_DEBUG,
4665 "invalid sav->state (queue: %d SA: %d): "
4666 "kill it anyway\n",
4667 SADB_SASTATE_DEAD, sav->state);
4668 }
4669
4670 /*
4671 * do not call key_freesav() here.
4672 * sav should already be freed, and sav->refcnt
4673 * shows other references to sav
4674 * (such as from SPD).
4675 */
4676 }
4677 }
4678 }
4679
4680 #ifndef IPSEC_NONBLOCK_ACQUIRE
4681 /* ACQ tree */
4682 {
4683 struct secacq *acq, *nextacq;
4684
4685 restart:
4686 mutex_enter(&key_mtx);
4687 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4688 if (now - acq->created > key_blockacq_lifetime) {
4689 LIST_REMOVE(acq, chain);
4690 mutex_exit(&key_mtx);
4691 kmem_free(acq, sizeof(*acq));
4692 goto restart;
4693 }
4694 }
4695 mutex_exit(&key_mtx);
4696 }
4697 #endif
4698
4699 #ifdef notyet
4700 /* SP ACQ tree */
4701 {
4702 struct secspacq *acq, *nextacq;
4703
4704 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4705 if (now - acq->created > key_blockacq_lifetime) {
4706 KASSERT(__LIST_CHAINED(acq));
4707 LIST_REMOVE(acq, chain);
4708 kmem_free(acq, sizeof(*acq));
4709 }
4710 }
4711 }
4712 #endif
4713
4714 /* do exchange to tick time !! */
4715 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4716
4717 mutex_exit(softnet_lock);
4718 splx(s);
4719 return;
4720 }
4721
4722 static void
4723 key_timehandler(void *arg)
4724 {
4725
4726 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4727 }
4728
4729 u_long
4730 key_random(void)
4731 {
4732 u_long value;
4733
4734 key_randomfill(&value, sizeof(value));
4735 return value;
4736 }
4737
4738 void
4739 key_randomfill(void *p, size_t l)
4740 {
4741
4742 cprng_fast(p, l);
4743 }
4744
4745 /*
4746 * map SADB_SATYPE_* to IPPROTO_*.
4747 * if satype == SADB_SATYPE then satype is mapped to ~0.
4748 * OUT:
4749 * 0: invalid satype.
4750 */
4751 static u_int16_t
4752 key_satype2proto(u_int8_t satype)
4753 {
4754 switch (satype) {
4755 case SADB_SATYPE_UNSPEC:
4756 return IPSEC_PROTO_ANY;
4757 case SADB_SATYPE_AH:
4758 return IPPROTO_AH;
4759 case SADB_SATYPE_ESP:
4760 return IPPROTO_ESP;
4761 case SADB_X_SATYPE_IPCOMP:
4762 return IPPROTO_IPCOMP;
4763 case SADB_X_SATYPE_TCPSIGNATURE:
4764 return IPPROTO_TCP;
4765 default:
4766 return 0;
4767 }
4768 /* NOTREACHED */
4769 }
4770
4771 /*
4772 * map IPPROTO_* to SADB_SATYPE_*
4773 * OUT:
4774 * 0: invalid protocol type.
4775 */
4776 static u_int8_t
4777 key_proto2satype(u_int16_t proto)
4778 {
4779 switch (proto) {
4780 case IPPROTO_AH:
4781 return SADB_SATYPE_AH;
4782 case IPPROTO_ESP:
4783 return SADB_SATYPE_ESP;
4784 case IPPROTO_IPCOMP:
4785 return SADB_X_SATYPE_IPCOMP;
4786 case IPPROTO_TCP:
4787 return SADB_X_SATYPE_TCPSIGNATURE;
4788 default:
4789 return 0;
4790 }
4791 /* NOTREACHED */
4792 }
4793
4794 static int
4795 key_setsecasidx(int proto, int mode, int reqid,
4796 const struct sadb_address * src,
4797 const struct sadb_address * dst,
4798 struct secasindex * saidx)
4799 {
4800 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4801 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4802
4803 /* sa len safety check */
4804 if (key_checksalen(src_u) != 0)
4805 return -1;
4806 if (key_checksalen(dst_u) != 0)
4807 return -1;
4808
4809 memset(saidx, 0, sizeof(*saidx));
4810 saidx->proto = proto;
4811 saidx->mode = mode;
4812 saidx->reqid = reqid;
4813 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4814 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4815
4816 key_porttosaddr(&((saidx)->src), 0);
4817 key_porttosaddr(&((saidx)->dst), 0);
4818 return 0;
4819 }
4820
4821 /* %%% PF_KEY */
4822 /*
4823 * SADB_GETSPI processing is to receive
4824 * <base, (SA2), src address, dst address, (SPI range)>
4825 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4826 * tree with the status of LARVAL, and send
4827 * <base, SA(*), address(SD)>
4828 * to the IKMPd.
4829 *
4830 * IN: mhp: pointer to the pointer to each header.
4831 * OUT: NULL if fail.
4832 * other if success, return pointer to the message to send.
4833 */
4834 static int
4835 key_getspi(struct socket *so, struct mbuf *m,
4836 const struct sadb_msghdr *mhp)
4837 {
4838 struct sadb_address *src0, *dst0;
4839 struct secasindex saidx;
4840 struct secashead *newsah;
4841 struct secasvar *newsav;
4842 u_int8_t proto;
4843 u_int32_t spi;
4844 u_int8_t mode;
4845 u_int16_t reqid;
4846 int error;
4847
4848 KASSERT(!cpu_softintr_p());
4849 KASSERT(so != NULL);
4850 KASSERT(m != NULL);
4851 KASSERT(mhp != NULL);
4852 KASSERT(mhp->msg != NULL);
4853
4854 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4855 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4856 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4857 return key_senderror(so, m, EINVAL);
4858 }
4859 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4860 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4861 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4862 return key_senderror(so, m, EINVAL);
4863 }
4864 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4865 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4866 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4867 } else {
4868 mode = IPSEC_MODE_ANY;
4869 reqid = 0;
4870 }
4871
4872 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4873 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4874
4875 /* map satype to proto */
4876 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4877 if (proto == 0) {
4878 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4879 return key_senderror(so, m, EINVAL);
4880 }
4881
4882
4883 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4884 if (error != 0)
4885 return key_senderror(so, m, EINVAL);
4886
4887 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4888 if (error != 0)
4889 return key_senderror(so, m, EINVAL);
4890
4891 /* SPI allocation */
4892 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4893 &saidx);
4894 if (spi == 0)
4895 return key_senderror(so, m, EINVAL);
4896
4897 /* get a SA index */
4898 newsah = key_getsah(&saidx);
4899 if (newsah == NULL) {
4900 /* create a new SA index */
4901 newsah = key_newsah(&saidx);
4902 if (newsah == NULL) {
4903 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4904 return key_senderror(so, m, ENOBUFS);
4905 }
4906 }
4907
4908 /* get a new SA */
4909 /* XXX rewrite */
4910 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4911 if (newsav == NULL) {
4912 /* XXX don't free new SA index allocated in above. */
4913 return key_senderror(so, m, error);
4914 }
4915
4916 /* set spi */
4917 newsav->spi = htonl(spi);
4918
4919 #ifndef IPSEC_NONBLOCK_ACQUIRE
4920 /* delete the entry in acqtree */
4921 if (mhp->msg->sadb_msg_seq != 0) {
4922 struct secacq *acq;
4923 mutex_enter(&key_mtx);
4924 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4925 if (acq != NULL) {
4926 /* reset counter in order to deletion by timehandler. */
4927 acq->created = time_uptime;
4928 acq->count = 0;
4929 }
4930 mutex_exit(&key_mtx);
4931 }
4932 #endif
4933
4934 {
4935 struct mbuf *n, *nn;
4936 struct sadb_sa *m_sa;
4937 struct sadb_msg *newmsg;
4938 int off, len;
4939
4940 /* create new sadb_msg to reply. */
4941 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4942 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4943 if (len > MCLBYTES)
4944 return key_senderror(so, m, ENOBUFS);
4945
4946 MGETHDR(n, M_DONTWAIT, MT_DATA);
4947 if (len > MHLEN) {
4948 MCLGET(n, M_DONTWAIT);
4949 if ((n->m_flags & M_EXT) == 0) {
4950 m_freem(n);
4951 n = NULL;
4952 }
4953 }
4954 if (!n)
4955 return key_senderror(so, m, ENOBUFS);
4956
4957 n->m_len = len;
4958 n->m_next = NULL;
4959 off = 0;
4960
4961 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4962 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4963
4964 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4965 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4966 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4967 m_sa->sadb_sa_spi = htonl(spi);
4968 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4969
4970 KASSERTMSG(off == len, "length inconsistency");
4971
4972 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4973 SADB_EXT_ADDRESS_DST);
4974 if (!n->m_next) {
4975 m_freem(n);
4976 return key_senderror(so, m, ENOBUFS);
4977 }
4978
4979 if (n->m_len < sizeof(struct sadb_msg)) {
4980 n = m_pullup(n, sizeof(struct sadb_msg));
4981 if (n == NULL)
4982 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4983 }
4984
4985 n->m_pkthdr.len = 0;
4986 for (nn = n; nn; nn = nn->m_next)
4987 n->m_pkthdr.len += nn->m_len;
4988
4989 newmsg = mtod(n, struct sadb_msg *);
4990 newmsg->sadb_msg_seq = newsav->seq;
4991 newmsg->sadb_msg_errno = 0;
4992 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4993
4994 m_freem(m);
4995 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4996 }
4997 }
4998
4999 /*
5000 * allocating new SPI
5001 * called by key_getspi().
5002 * OUT:
5003 * 0: failure.
5004 * others: success.
5005 */
5006 static u_int32_t
5007 key_do_getnewspi(const struct sadb_spirange *spirange,
5008 const struct secasindex *saidx)
5009 {
5010 u_int32_t newspi;
5011 u_int32_t spmin, spmax;
5012 int count = key_spi_trycnt;
5013
5014 /* set spi range to allocate */
5015 if (spirange != NULL) {
5016 spmin = spirange->sadb_spirange_min;
5017 spmax = spirange->sadb_spirange_max;
5018 } else {
5019 spmin = key_spi_minval;
5020 spmax = key_spi_maxval;
5021 }
5022 /* IPCOMP needs 2-byte SPI */
5023 if (saidx->proto == IPPROTO_IPCOMP) {
5024 u_int32_t t;
5025 if (spmin >= 0x10000)
5026 spmin = 0xffff;
5027 if (spmax >= 0x10000)
5028 spmax = 0xffff;
5029 if (spmin > spmax) {
5030 t = spmin; spmin = spmax; spmax = t;
5031 }
5032 }
5033
5034 if (spmin == spmax) {
5035 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5036 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5037 return 0;
5038 }
5039
5040 count--; /* taking one cost. */
5041 newspi = spmin;
5042
5043 } else {
5044
5045 /* init SPI */
5046 newspi = 0;
5047
5048 /* when requesting to allocate spi ranged */
5049 while (count--) {
5050 /* generate pseudo-random SPI value ranged. */
5051 newspi = spmin + (key_random() % (spmax - spmin + 1));
5052
5053 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5054 break;
5055 }
5056
5057 if (count == 0 || newspi == 0) {
5058 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5059 return 0;
5060 }
5061 }
5062
5063 /* statistics */
5064 keystat.getspi_count =
5065 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5066
5067 return newspi;
5068 }
5069
5070 static int
5071 key_handle_natt_info(struct secasvar *sav,
5072 const struct sadb_msghdr *mhp)
5073 {
5074 const char *msg = "?" ;
5075 struct sadb_x_nat_t_type *type;
5076 struct sadb_x_nat_t_port *sport, *dport;
5077 struct sadb_address *iaddr, *raddr;
5078 struct sadb_x_nat_t_frag *frag;
5079
5080 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5081 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5082 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5083 return 0;
5084
5085 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5086 msg = "TYPE";
5087 goto bad;
5088 }
5089
5090 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5091 msg = "SPORT";
5092 goto bad;
5093 }
5094
5095 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5096 msg = "DPORT";
5097 goto bad;
5098 }
5099
5100 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5101 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5102 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5103 msg = "OAI";
5104 goto bad;
5105 }
5106 }
5107
5108 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5109 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5110 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5111 msg = "OAR";
5112 goto bad;
5113 }
5114 }
5115
5116 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5117 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5118 msg = "FRAG";
5119 goto bad;
5120 }
5121 }
5122
5123 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5124 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5125 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5126 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5127 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5128 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5129
5130 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5131 type->sadb_x_nat_t_type_type,
5132 ntohs(sport->sadb_x_nat_t_port_port),
5133 ntohs(dport->sadb_x_nat_t_port_port));
5134
5135 sav->natt_type = type->sadb_x_nat_t_type_type;
5136 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5137 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5138 if (frag)
5139 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5140 else
5141 sav->esp_frag = IP_MAXPACKET;
5142
5143 return 0;
5144 bad:
5145 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5146 __USE(msg);
5147 return -1;
5148 }
5149
5150 /* Just update the IPSEC_NAT_T ports if present */
5151 static int
5152 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5153 const struct sadb_msghdr *mhp)
5154 {
5155 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5156 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5157 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5158 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5159
5160 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5161 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5162 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5163 struct sadb_x_nat_t_type *type;
5164 struct sadb_x_nat_t_port *sport;
5165 struct sadb_x_nat_t_port *dport;
5166
5167 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5168 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5169 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5170 IPSECLOG(LOG_DEBUG, "invalid message\n");
5171 return -1;
5172 }
5173
5174 type = (struct sadb_x_nat_t_type *)
5175 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5176 sport = (struct sadb_x_nat_t_port *)
5177 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5178 dport = (struct sadb_x_nat_t_port *)
5179 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5180
5181 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5182 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5183
5184 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5185 type->sadb_x_nat_t_type_type,
5186 ntohs(sport->sadb_x_nat_t_port_port),
5187 ntohs(dport->sadb_x_nat_t_port_port));
5188 }
5189
5190 return 0;
5191 }
5192
5193
5194 /*
5195 * SADB_UPDATE processing
5196 * receive
5197 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5198 * key(AE), (identity(SD),) (sensitivity)>
5199 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5200 * and send
5201 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5202 * (identity(SD),) (sensitivity)>
5203 * to the ikmpd.
5204 *
5205 * m will always be freed.
5206 */
5207 static int
5208 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5209 {
5210 struct sadb_sa *sa0;
5211 struct sadb_address *src0, *dst0;
5212 struct secasindex saidx;
5213 struct secashead *sah;
5214 struct secasvar *sav;
5215 u_int16_t proto;
5216 u_int8_t mode;
5217 u_int16_t reqid;
5218 int error;
5219
5220 KASSERT(!cpu_softintr_p());
5221 KASSERT(so != NULL);
5222 KASSERT(m != NULL);
5223 KASSERT(mhp != NULL);
5224 KASSERT(mhp->msg != NULL);
5225
5226 /* map satype to proto */
5227 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5228 if (proto == 0) {
5229 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5230 return key_senderror(so, m, EINVAL);
5231 }
5232
5233 if (mhp->ext[SADB_EXT_SA] == NULL ||
5234 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5235 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5236 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5237 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5238 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5239 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5240 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5241 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5242 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5243 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5244 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5245 return key_senderror(so, m, EINVAL);
5246 }
5247 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5248 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5249 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5250 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5251 return key_senderror(so, m, EINVAL);
5252 }
5253 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5254 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5255 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5256 } else {
5257 mode = IPSEC_MODE_ANY;
5258 reqid = 0;
5259 }
5260 /* XXX boundary checking for other extensions */
5261
5262 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5263 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5264 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5265
5266 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5267 if (error != 0)
5268 return key_senderror(so, m, EINVAL);
5269
5270 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5271 if (error != 0)
5272 return key_senderror(so, m, EINVAL);
5273
5274 /* get a SA header */
5275 sah = key_getsah(&saidx);
5276 if (sah == NULL) {
5277 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5278 return key_senderror(so, m, ENOENT);
5279 }
5280
5281 /* set spidx if there */
5282 /* XXX rewrite */
5283 error = key_setident(sah, m, mhp);
5284 if (error)
5285 return key_senderror(so, m, error);
5286
5287 /* find a SA with sequence number. */
5288 #ifdef IPSEC_DOSEQCHECK
5289 if (mhp->msg->sadb_msg_seq != 0) {
5290 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5291 if (sav == NULL) {
5292 IPSECLOG(LOG_DEBUG,
5293 "no larval SA with sequence %u exists.\n",
5294 mhp->msg->sadb_msg_seq);
5295 return key_senderror(so, m, ENOENT);
5296 }
5297 }
5298 #else
5299 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5300 if (sav == NULL) {
5301 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5302 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5303 return key_senderror(so, m, EINVAL);
5304 }
5305 #endif
5306
5307 /* validity check */
5308 if (sav->sah->saidx.proto != proto) {
5309 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5310 sav->sah->saidx.proto, proto);
5311 return key_senderror(so, m, EINVAL);
5312 }
5313 #ifdef IPSEC_DOSEQCHECK
5314 if (sav->spi != sa0->sadb_sa_spi) {
5315 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5316 (u_int32_t)ntohl(sav->spi),
5317 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5318 return key_senderror(so, m, EINVAL);
5319 }
5320 #endif
5321 if (sav->pid != mhp->msg->sadb_msg_pid) {
5322 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5323 sav->pid, mhp->msg->sadb_msg_pid);
5324 return key_senderror(so, m, EINVAL);
5325 }
5326
5327 /* copy sav values */
5328 error = key_setsaval(sav, m, mhp);
5329 if (error) {
5330 KEY_FREESAV(&sav);
5331 return key_senderror(so, m, error);
5332 }
5333
5334 error = key_handle_natt_info(sav,mhp);
5335 if (error != 0)
5336 return key_senderror(so, m, EINVAL);
5337
5338 /* check SA values to be mature. */
5339 mhp->msg->sadb_msg_errno = key_mature(sav);
5340 if (mhp->msg->sadb_msg_errno != 0) {
5341 KEY_FREESAV(&sav);
5342 return key_senderror(so, m, 0);
5343 }
5344
5345 {
5346 struct mbuf *n;
5347
5348 /* set msg buf from mhp */
5349 n = key_getmsgbuf_x1(m, mhp);
5350 if (n == NULL) {
5351 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5352 return key_senderror(so, m, ENOBUFS);
5353 }
5354
5355 m_freem(m);
5356 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5357 }
5358 }
5359
5360 /*
5361 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5362 * only called by key_update().
5363 * OUT:
5364 * NULL : not found
5365 * others : found, pointer to a SA.
5366 */
5367 #ifdef IPSEC_DOSEQCHECK
5368 static struct secasvar *
5369 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5370 {
5371 struct secasvar *sav;
5372 u_int state;
5373
5374 state = SADB_SASTATE_LARVAL;
5375
5376 /* search SAD with sequence number ? */
5377 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5378
5379 KEY_CHKSASTATE(state, sav->state);
5380
5381 if (sav->seq == seq) {
5382 SA_ADDREF(sav);
5383 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5384 "DP cause refcnt++:%d SA:%p\n",
5385 sav->refcnt, sav);
5386 return sav;
5387 }
5388 }
5389
5390 return NULL;
5391 }
5392 #endif
5393
5394 /*
5395 * SADB_ADD processing
5396 * add an entry to SA database, when received
5397 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5398 * key(AE), (identity(SD),) (sensitivity)>
5399 * from the ikmpd,
5400 * and send
5401 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5402 * (identity(SD),) (sensitivity)>
5403 * to the ikmpd.
5404 *
5405 * IGNORE identity and sensitivity messages.
5406 *
5407 * m will always be freed.
5408 */
5409 static int
5410 key_add(struct socket *so, struct mbuf *m,
5411 const struct sadb_msghdr *mhp)
5412 {
5413 struct sadb_sa *sa0;
5414 struct sadb_address *src0, *dst0;
5415 struct secasindex saidx;
5416 struct secashead *newsah;
5417 struct secasvar *newsav;
5418 u_int16_t proto;
5419 u_int8_t mode;
5420 u_int16_t reqid;
5421 int error;
5422
5423 KASSERT(so != NULL);
5424 KASSERT(m != NULL);
5425 KASSERT(mhp != NULL);
5426 KASSERT(mhp->msg != NULL);
5427
5428 /* map satype to proto */
5429 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5430 if (proto == 0) {
5431 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5432 return key_senderror(so, m, EINVAL);
5433 }
5434
5435 if (mhp->ext[SADB_EXT_SA] == NULL ||
5436 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5437 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5438 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5439 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5440 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5441 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5442 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5443 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5444 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5445 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5446 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5447 return key_senderror(so, m, EINVAL);
5448 }
5449 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5450 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5451 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5452 /* XXX need more */
5453 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5454 return key_senderror(so, m, EINVAL);
5455 }
5456 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5457 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5458 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5459 } else {
5460 mode = IPSEC_MODE_ANY;
5461 reqid = 0;
5462 }
5463
5464 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5465 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5466 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5467
5468 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5469 if (error != 0)
5470 return key_senderror(so, m, EINVAL);
5471
5472 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5473 if (error != 0)
5474 return key_senderror(so, m, EINVAL);
5475
5476 /* get a SA header */
5477 newsah = key_getsah(&saidx);
5478 if (newsah == NULL) {
5479 /* create a new SA header */
5480 newsah = key_newsah(&saidx);
5481 if (newsah == NULL) {
5482 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5483 return key_senderror(so, m, ENOBUFS);
5484 }
5485 }
5486
5487 /* set spidx if there */
5488 /* XXX rewrite */
5489 error = key_setident(newsah, m, mhp);
5490 if (error) {
5491 return key_senderror(so, m, error);
5492 }
5493
5494 /* create new SA entry. */
5495 /* We can create new SA only if SPI is differenct. */
5496 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5497 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5498 return key_senderror(so, m, EEXIST);
5499 }
5500 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5501 if (newsav == NULL) {
5502 return key_senderror(so, m, error);
5503 }
5504
5505 error = key_handle_natt_info(newsav, mhp);
5506 if (error != 0)
5507 return key_senderror(so, m, EINVAL);
5508
5509 /* check SA values to be mature. */
5510 error = key_mature(newsav);
5511 if (error != 0) {
5512 KEY_FREESAV(&newsav);
5513 return key_senderror(so, m, error);
5514 }
5515
5516 /*
5517 * don't call key_freesav() here, as we would like to keep the SA
5518 * in the database on success.
5519 */
5520
5521 {
5522 struct mbuf *n;
5523
5524 /* set msg buf from mhp */
5525 n = key_getmsgbuf_x1(m, mhp);
5526 if (n == NULL) {
5527 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5528 return key_senderror(so, m, ENOBUFS);
5529 }
5530
5531 m_freem(m);
5532 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5533 }
5534 }
5535
5536 /* m is retained */
5537 static int
5538 key_setident(struct secashead *sah, struct mbuf *m,
5539 const struct sadb_msghdr *mhp)
5540 {
5541 const struct sadb_ident *idsrc, *iddst;
5542 int idsrclen, iddstlen;
5543
5544 KASSERT(!cpu_softintr_p());
5545 KASSERT(sah != NULL);
5546 KASSERT(m != NULL);
5547 KASSERT(mhp != NULL);
5548 KASSERT(mhp->msg != NULL);
5549
5550 /*
5551 * Can be called with an existing sah from key_update().
5552 */
5553 if (sah->idents != NULL) {
5554 kmem_free(sah->idents, sah->idents_len);
5555 sah->idents = NULL;
5556 sah->idents_len = 0;
5557 }
5558 if (sah->identd != NULL) {
5559 kmem_free(sah->identd, sah->identd_len);
5560 sah->identd = NULL;
5561 sah->identd_len = 0;
5562 }
5563
5564 /* don't make buffer if not there */
5565 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5566 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5567 sah->idents = NULL;
5568 sah->identd = NULL;
5569 return 0;
5570 }
5571
5572 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5573 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5574 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5575 return EINVAL;
5576 }
5577
5578 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5579 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5580 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5581 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5582
5583 /* validity check */
5584 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5585 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5586 return EINVAL;
5587 }
5588
5589 switch (idsrc->sadb_ident_type) {
5590 case SADB_IDENTTYPE_PREFIX:
5591 case SADB_IDENTTYPE_FQDN:
5592 case SADB_IDENTTYPE_USERFQDN:
5593 default:
5594 /* XXX do nothing */
5595 sah->idents = NULL;
5596 sah->identd = NULL;
5597 return 0;
5598 }
5599
5600 /* make structure */
5601 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5602 sah->idents_len = idsrclen;
5603 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5604 sah->identd_len = iddstlen;
5605 memcpy(sah->idents, idsrc, idsrclen);
5606 memcpy(sah->identd, iddst, iddstlen);
5607
5608 return 0;
5609 }
5610
5611 /*
5612 * m will not be freed on return.
5613 * it is caller's responsibility to free the result.
5614 */
5615 static struct mbuf *
5616 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5617 {
5618 struct mbuf *n;
5619
5620 KASSERT(m != NULL);
5621 KASSERT(mhp != NULL);
5622 KASSERT(mhp->msg != NULL);
5623
5624 /* create new sadb_msg to reply. */
5625 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5626 SADB_EXT_SA, SADB_X_EXT_SA2,
5627 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5628 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5629 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5630 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5631 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5632 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5633 if (!n)
5634 return NULL;
5635
5636 if (n->m_len < sizeof(struct sadb_msg)) {
5637 n = m_pullup(n, sizeof(struct sadb_msg));
5638 if (n == NULL)
5639 return NULL;
5640 }
5641 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5642 mtod(n, struct sadb_msg *)->sadb_msg_len =
5643 PFKEY_UNIT64(n->m_pkthdr.len);
5644
5645 return n;
5646 }
5647
5648 static int key_delete_all (struct socket *, struct mbuf *,
5649 const struct sadb_msghdr *, u_int16_t);
5650
5651 /*
5652 * SADB_DELETE processing
5653 * receive
5654 * <base, SA(*), address(SD)>
5655 * from the ikmpd, and set SADB_SASTATE_DEAD,
5656 * and send,
5657 * <base, SA(*), address(SD)>
5658 * to the ikmpd.
5659 *
5660 * m will always be freed.
5661 */
5662 static int
5663 key_delete(struct socket *so, struct mbuf *m,
5664 const struct sadb_msghdr *mhp)
5665 {
5666 struct sadb_sa *sa0;
5667 struct sadb_address *src0, *dst0;
5668 struct secasindex saidx;
5669 struct secashead *sah;
5670 struct secasvar *sav = NULL;
5671 u_int16_t proto;
5672 int error;
5673
5674 KASSERT(so != NULL);
5675 KASSERT(m != NULL);
5676 KASSERT(mhp != NULL);
5677 KASSERT(mhp->msg != NULL);
5678
5679 /* map satype to proto */
5680 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5681 if (proto == 0) {
5682 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5683 return key_senderror(so, m, EINVAL);
5684 }
5685
5686 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5687 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5688 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5689 return key_senderror(so, m, EINVAL);
5690 }
5691
5692 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5693 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5694 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5695 return key_senderror(so, m, EINVAL);
5696 }
5697
5698 if (mhp->ext[SADB_EXT_SA] == NULL) {
5699 /*
5700 * Caller wants us to delete all non-LARVAL SAs
5701 * that match the src/dst. This is used during
5702 * IKE INITIAL-CONTACT.
5703 */
5704 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5705 return key_delete_all(so, m, mhp, proto);
5706 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5707 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5708 return key_senderror(so, m, EINVAL);
5709 }
5710
5711 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5712 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5713 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5714
5715 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5716 &saidx);
5717 if (error != 0)
5718 return key_senderror(so, m, EINVAL);
5719
5720 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5721 if (error != 0)
5722 return key_senderror(so, m, EINVAL);
5723
5724 /* get a SA header */
5725 LIST_FOREACH(sah, &sahtree, chain) {
5726 if (sah->state == SADB_SASTATE_DEAD)
5727 continue;
5728 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5729 continue;
5730
5731 /* get a SA with SPI. */
5732 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5733 if (sav)
5734 break;
5735 }
5736 if (sah == NULL) {
5737 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5738 return key_senderror(so, m, ENOENT);
5739 }
5740
5741 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5742 KEY_FREESAV(&sav);
5743
5744 {
5745 struct mbuf *n;
5746 struct sadb_msg *newmsg;
5747
5748 /* create new sadb_msg to reply. */
5749 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5750 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5751 if (!n)
5752 return key_senderror(so, m, ENOBUFS);
5753
5754 if (n->m_len < sizeof(struct sadb_msg)) {
5755 n = m_pullup(n, sizeof(struct sadb_msg));
5756 if (n == NULL)
5757 return key_senderror(so, m, ENOBUFS);
5758 }
5759 newmsg = mtod(n, struct sadb_msg *);
5760 newmsg->sadb_msg_errno = 0;
5761 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5762
5763 m_freem(m);
5764 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5765 }
5766 }
5767
5768 /*
5769 * delete all SAs for src/dst. Called from key_delete().
5770 */
5771 static int
5772 key_delete_all(struct socket *so, struct mbuf *m,
5773 const struct sadb_msghdr *mhp, u_int16_t proto)
5774 {
5775 struct sadb_address *src0, *dst0;
5776 struct secasindex saidx;
5777 struct secashead *sah;
5778 struct secasvar *sav, *nextsav;
5779 u_int state;
5780 int error;
5781
5782 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5783 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5784
5785 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5786 &saidx);
5787 if (error != 0)
5788 return key_senderror(so, m, EINVAL);
5789
5790 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5791 if (error != 0)
5792 return key_senderror(so, m, EINVAL);
5793
5794 LIST_FOREACH(sah, &sahtree, chain) {
5795 if (sah->state == SADB_SASTATE_DEAD)
5796 continue;
5797 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5798 continue;
5799
5800 /* Delete all non-LARVAL SAs. */
5801 SASTATE_ALIVE_FOREACH(state) {
5802 if (state == SADB_SASTATE_LARVAL)
5803 continue;
5804 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5805 nextsav) {
5806 /* sanity check */
5807 if (sav->state != state) {
5808 IPSECLOG(LOG_DEBUG,
5809 "invalid sav->state "
5810 "(queue: %d SA: %d)\n",
5811 state, sav->state);
5812 continue;
5813 }
5814
5815 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5816 KEY_FREESAV(&sav);
5817 }
5818 }
5819 }
5820 {
5821 struct mbuf *n;
5822 struct sadb_msg *newmsg;
5823
5824 /* create new sadb_msg to reply. */
5825 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5826 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5827 if (!n)
5828 return key_senderror(so, m, ENOBUFS);
5829
5830 if (n->m_len < sizeof(struct sadb_msg)) {
5831 n = m_pullup(n, sizeof(struct sadb_msg));
5832 if (n == NULL)
5833 return key_senderror(so, m, ENOBUFS);
5834 }
5835 newmsg = mtod(n, struct sadb_msg *);
5836 newmsg->sadb_msg_errno = 0;
5837 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5838
5839 m_freem(m);
5840 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5841 }
5842 }
5843
5844 /*
5845 * SADB_GET processing
5846 * receive
5847 * <base, SA(*), address(SD)>
5848 * from the ikmpd, and get a SP and a SA to respond,
5849 * and send,
5850 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5851 * (identity(SD),) (sensitivity)>
5852 * to the ikmpd.
5853 *
5854 * m will always be freed.
5855 */
5856 static int
5857 key_get(struct socket *so, struct mbuf *m,
5858 const struct sadb_msghdr *mhp)
5859 {
5860 struct sadb_sa *sa0;
5861 struct sadb_address *src0, *dst0;
5862 struct secasindex saidx;
5863 struct secashead *sah;
5864 struct secasvar *sav = NULL;
5865 u_int16_t proto;
5866 int error;
5867
5868 KASSERT(so != NULL);
5869 KASSERT(m != NULL);
5870 KASSERT(mhp != NULL);
5871 KASSERT(mhp->msg != NULL);
5872
5873 /* map satype to proto */
5874 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5875 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5876 return key_senderror(so, m, EINVAL);
5877 }
5878
5879 if (mhp->ext[SADB_EXT_SA] == NULL ||
5880 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5881 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5882 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5883 return key_senderror(so, m, EINVAL);
5884 }
5885 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5886 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5887 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5888 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5889 return key_senderror(so, m, EINVAL);
5890 }
5891
5892 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5893 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5894 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5895
5896 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5897 &saidx);
5898 if (error != 0)
5899 return key_senderror(so, m, EINVAL);
5900
5901 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5902 if (error != 0)
5903 return key_senderror(so, m, EINVAL);
5904
5905 /* get a SA header */
5906 LIST_FOREACH(sah, &sahtree, chain) {
5907 if (sah->state == SADB_SASTATE_DEAD)
5908 continue;
5909 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5910 continue;
5911
5912 /* get a SA with SPI. */
5913 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5914 if (sav)
5915 break;
5916 }
5917 if (sah == NULL) {
5918 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5919 return key_senderror(so, m, ENOENT);
5920 }
5921
5922 {
5923 struct mbuf *n;
5924 u_int8_t satype;
5925
5926 /* map proto to satype */
5927 satype = key_proto2satype(sah->saidx.proto);
5928 if (satype == 0) {
5929 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5930 return key_senderror(so, m, EINVAL);
5931 }
5932
5933 /* create new sadb_msg to reply. */
5934 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5935 mhp->msg->sadb_msg_pid);
5936 if (!n)
5937 return key_senderror(so, m, ENOBUFS);
5938
5939 m_freem(m);
5940 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5941 }
5942 }
5943
5944 /* XXX make it sysctl-configurable? */
5945 static void
5946 key_getcomb_setlifetime(struct sadb_comb *comb)
5947 {
5948
5949 comb->sadb_comb_soft_allocations = 1;
5950 comb->sadb_comb_hard_allocations = 1;
5951 comb->sadb_comb_soft_bytes = 0;
5952 comb->sadb_comb_hard_bytes = 0;
5953 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5954 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5955 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5956 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5957 }
5958
5959 /*
5960 * XXX reorder combinations by preference
5961 * XXX no idea if the user wants ESP authentication or not
5962 */
5963 static struct mbuf *
5964 key_getcomb_esp(void)
5965 {
5966 struct sadb_comb *comb;
5967 const struct enc_xform *algo;
5968 struct mbuf *result = NULL, *m, *n;
5969 int encmin;
5970 int i, off, o;
5971 int totlen;
5972 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5973
5974 m = NULL;
5975 for (i = 1; i <= SADB_EALG_MAX; i++) {
5976 algo = esp_algorithm_lookup(i);
5977 if (algo == NULL)
5978 continue;
5979
5980 /* discard algorithms with key size smaller than system min */
5981 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5982 continue;
5983 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5984 encmin = ipsec_esp_keymin;
5985 else
5986 encmin = _BITS(algo->minkey);
5987
5988 if (ipsec_esp_auth)
5989 m = key_getcomb_ah();
5990 else {
5991 KASSERTMSG(l <= MLEN,
5992 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5993 MGET(m, M_DONTWAIT, MT_DATA);
5994 if (m) {
5995 M_ALIGN(m, l);
5996 m->m_len = l;
5997 m->m_next = NULL;
5998 memset(mtod(m, void *), 0, m->m_len);
5999 }
6000 }
6001 if (!m)
6002 goto fail;
6003
6004 totlen = 0;
6005 for (n = m; n; n = n->m_next)
6006 totlen += n->m_len;
6007 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6008
6009 for (off = 0; off < totlen; off += l) {
6010 n = m_pulldown(m, off, l, &o);
6011 if (!n) {
6012 /* m is already freed */
6013 goto fail;
6014 }
6015 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6016 memset(comb, 0, sizeof(*comb));
6017 key_getcomb_setlifetime(comb);
6018 comb->sadb_comb_encrypt = i;
6019 comb->sadb_comb_encrypt_minbits = encmin;
6020 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6021 }
6022
6023 if (!result)
6024 result = m;
6025 else
6026 m_cat(result, m);
6027 }
6028
6029 return result;
6030
6031 fail:
6032 if (result)
6033 m_freem(result);
6034 return NULL;
6035 }
6036
6037 static void
6038 key_getsizes_ah(const struct auth_hash *ah, int alg,
6039 u_int16_t* ksmin, u_int16_t* ksmax)
6040 {
6041 *ksmin = *ksmax = ah->keysize;
6042 if (ah->keysize == 0) {
6043 /*
6044 * Transform takes arbitrary key size but algorithm
6045 * key size is restricted. Enforce this here.
6046 */
6047 switch (alg) {
6048 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6049 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6050 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6051 default:
6052 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6053 break;
6054 }
6055 }
6056 }
6057
6058 /*
6059 * XXX reorder combinations by preference
6060 */
6061 static struct mbuf *
6062 key_getcomb_ah(void)
6063 {
6064 struct sadb_comb *comb;
6065 const struct auth_hash *algo;
6066 struct mbuf *m;
6067 u_int16_t minkeysize, maxkeysize;
6068 int i;
6069 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6070
6071 m = NULL;
6072 for (i = 1; i <= SADB_AALG_MAX; i++) {
6073 #if 1
6074 /* we prefer HMAC algorithms, not old algorithms */
6075 if (i != SADB_AALG_SHA1HMAC &&
6076 i != SADB_AALG_MD5HMAC &&
6077 i != SADB_X_AALG_SHA2_256 &&
6078 i != SADB_X_AALG_SHA2_384 &&
6079 i != SADB_X_AALG_SHA2_512)
6080 continue;
6081 #endif
6082 algo = ah_algorithm_lookup(i);
6083 if (!algo)
6084 continue;
6085 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6086 /* discard algorithms with key size smaller than system min */
6087 if (_BITS(minkeysize) < ipsec_ah_keymin)
6088 continue;
6089
6090 if (!m) {
6091 KASSERTMSG(l <= MLEN,
6092 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6093 MGET(m, M_DONTWAIT, MT_DATA);
6094 if (m) {
6095 M_ALIGN(m, l);
6096 m->m_len = l;
6097 m->m_next = NULL;
6098 }
6099 } else
6100 M_PREPEND(m, l, M_DONTWAIT);
6101 if (!m)
6102 return NULL;
6103
6104 comb = mtod(m, struct sadb_comb *);
6105 memset(comb, 0, sizeof(*comb));
6106 key_getcomb_setlifetime(comb);
6107 comb->sadb_comb_auth = i;
6108 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6109 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6110 }
6111
6112 return m;
6113 }
6114
6115 /*
6116 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6117 * XXX reorder combinations by preference
6118 */
6119 static struct mbuf *
6120 key_getcomb_ipcomp(void)
6121 {
6122 struct sadb_comb *comb;
6123 const struct comp_algo *algo;
6124 struct mbuf *m;
6125 int i;
6126 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6127
6128 m = NULL;
6129 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6130 algo = ipcomp_algorithm_lookup(i);
6131 if (!algo)
6132 continue;
6133
6134 if (!m) {
6135 KASSERTMSG(l <= MLEN,
6136 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6137 MGET(m, M_DONTWAIT, MT_DATA);
6138 if (m) {
6139 M_ALIGN(m, l);
6140 m->m_len = l;
6141 m->m_next = NULL;
6142 }
6143 } else
6144 M_PREPEND(m, l, M_DONTWAIT);
6145 if (!m)
6146 return NULL;
6147
6148 comb = mtod(m, struct sadb_comb *);
6149 memset(comb, 0, sizeof(*comb));
6150 key_getcomb_setlifetime(comb);
6151 comb->sadb_comb_encrypt = i;
6152 /* what should we set into sadb_comb_*_{min,max}bits? */
6153 }
6154
6155 return m;
6156 }
6157
6158 /*
6159 * XXX no way to pass mode (transport/tunnel) to userland
6160 * XXX replay checking?
6161 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6162 */
6163 static struct mbuf *
6164 key_getprop(const struct secasindex *saidx)
6165 {
6166 struct sadb_prop *prop;
6167 struct mbuf *m, *n;
6168 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6169 int totlen;
6170
6171 switch (saidx->proto) {
6172 case IPPROTO_ESP:
6173 m = key_getcomb_esp();
6174 break;
6175 case IPPROTO_AH:
6176 m = key_getcomb_ah();
6177 break;
6178 case IPPROTO_IPCOMP:
6179 m = key_getcomb_ipcomp();
6180 break;
6181 default:
6182 return NULL;
6183 }
6184
6185 if (!m)
6186 return NULL;
6187 M_PREPEND(m, l, M_DONTWAIT);
6188 if (!m)
6189 return NULL;
6190
6191 totlen = 0;
6192 for (n = m; n; n = n->m_next)
6193 totlen += n->m_len;
6194
6195 prop = mtod(m, struct sadb_prop *);
6196 memset(prop, 0, sizeof(*prop));
6197 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6198 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6199 prop->sadb_prop_replay = 32; /* XXX */
6200
6201 return m;
6202 }
6203
6204 /*
6205 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6206 * send
6207 * <base, SA, address(SD), (address(P)), x_policy,
6208 * (identity(SD),) (sensitivity,) proposal>
6209 * to KMD, and expect to receive
6210 * <base> with SADB_ACQUIRE if error occurred,
6211 * or
6212 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6213 * from KMD by PF_KEY.
6214 *
6215 * XXX x_policy is outside of RFC2367 (KAME extension).
6216 * XXX sensitivity is not supported.
6217 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6218 * see comment for key_getcomb_ipcomp().
6219 *
6220 * OUT:
6221 * 0 : succeed
6222 * others: error number
6223 */
6224 static int
6225 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6226 {
6227 struct mbuf *result = NULL, *m;
6228 #ifndef IPSEC_NONBLOCK_ACQUIRE
6229 struct secacq *newacq;
6230 #endif
6231 u_int8_t satype;
6232 int error = -1;
6233 u_int32_t seq;
6234
6235 /* sanity check */
6236 KASSERT(saidx != NULL);
6237 satype = key_proto2satype(saidx->proto);
6238 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6239
6240 #ifndef IPSEC_NONBLOCK_ACQUIRE
6241 /*
6242 * We never do anything about acquirng SA. There is anather
6243 * solution that kernel blocks to send SADB_ACQUIRE message until
6244 * getting something message from IKEd. In later case, to be
6245 * managed with ACQUIRING list.
6246 */
6247 /* Get an entry to check whether sending message or not. */
6248 mutex_enter(&key_mtx);
6249 newacq = key_getacq(saidx);
6250 if (newacq != NULL) {
6251 if (key_blockacq_count < newacq->count) {
6252 /* reset counter and do send message. */
6253 newacq->count = 0;
6254 } else {
6255 /* increment counter and do nothing. */
6256 newacq->count++;
6257 mutex_exit(&key_mtx);
6258 return 0;
6259 }
6260 } else {
6261 /* make new entry for blocking to send SADB_ACQUIRE. */
6262 newacq = key_newacq(saidx);
6263 if (newacq == NULL)
6264 return ENOBUFS;
6265
6266 /* add to acqtree */
6267 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6268 }
6269
6270 seq = newacq->seq;
6271 mutex_exit(&key_mtx);
6272 #else
6273 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6274 #endif
6275 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6276 if (!m) {
6277 error = ENOBUFS;
6278 goto fail;
6279 }
6280 result = m;
6281
6282 /* set sadb_address for saidx's. */
6283 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6284 IPSEC_ULPROTO_ANY);
6285 if (!m) {
6286 error = ENOBUFS;
6287 goto fail;
6288 }
6289 m_cat(result, m);
6290
6291 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6292 IPSEC_ULPROTO_ANY);
6293 if (!m) {
6294 error = ENOBUFS;
6295 goto fail;
6296 }
6297 m_cat(result, m);
6298
6299 /* XXX proxy address (optional) */
6300
6301 /* set sadb_x_policy */
6302 if (sp) {
6303 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6304 if (!m) {
6305 error = ENOBUFS;
6306 goto fail;
6307 }
6308 m_cat(result, m);
6309 }
6310
6311 /* XXX identity (optional) */
6312 #if 0
6313 if (idexttype && fqdn) {
6314 /* create identity extension (FQDN) */
6315 struct sadb_ident *id;
6316 int fqdnlen;
6317
6318 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6319 id = (struct sadb_ident *)p;
6320 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6321 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6322 id->sadb_ident_exttype = idexttype;
6323 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6324 memcpy(id + 1, fqdn, fqdnlen);
6325 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6326 }
6327
6328 if (idexttype) {
6329 /* create identity extension (USERFQDN) */
6330 struct sadb_ident *id;
6331 int userfqdnlen;
6332
6333 if (userfqdn) {
6334 /* +1 for terminating-NUL */
6335 userfqdnlen = strlen(userfqdn) + 1;
6336 } else
6337 userfqdnlen = 0;
6338 id = (struct sadb_ident *)p;
6339 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6340 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6341 id->sadb_ident_exttype = idexttype;
6342 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6343 /* XXX is it correct? */
6344 if (curlwp)
6345 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6346 if (userfqdn && userfqdnlen)
6347 memcpy(id + 1, userfqdn, userfqdnlen);
6348 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6349 }
6350 #endif
6351
6352 /* XXX sensitivity (optional) */
6353
6354 /* create proposal/combination extension */
6355 m = key_getprop(saidx);
6356 #if 0
6357 /*
6358 * spec conformant: always attach proposal/combination extension,
6359 * the problem is that we have no way to attach it for ipcomp,
6360 * due to the way sadb_comb is declared in RFC2367.
6361 */
6362 if (!m) {
6363 error = ENOBUFS;
6364 goto fail;
6365 }
6366 m_cat(result, m);
6367 #else
6368 /*
6369 * outside of spec; make proposal/combination extension optional.
6370 */
6371 if (m)
6372 m_cat(result, m);
6373 #endif
6374
6375 if ((result->m_flags & M_PKTHDR) == 0) {
6376 error = EINVAL;
6377 goto fail;
6378 }
6379
6380 if (result->m_len < sizeof(struct sadb_msg)) {
6381 result = m_pullup(result, sizeof(struct sadb_msg));
6382 if (result == NULL) {
6383 error = ENOBUFS;
6384 goto fail;
6385 }
6386 }
6387
6388 result->m_pkthdr.len = 0;
6389 for (m = result; m; m = m->m_next)
6390 result->m_pkthdr.len += m->m_len;
6391
6392 mtod(result, struct sadb_msg *)->sadb_msg_len =
6393 PFKEY_UNIT64(result->m_pkthdr.len);
6394
6395 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6396
6397 fail:
6398 if (result)
6399 m_freem(result);
6400 return error;
6401 }
6402
6403 #ifndef IPSEC_NONBLOCK_ACQUIRE
6404 static struct secacq *
6405 key_newacq(const struct secasindex *saidx)
6406 {
6407 struct secacq *newacq;
6408
6409 /* get new entry */
6410 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6411 if (newacq == NULL) {
6412 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6413 return NULL;
6414 }
6415
6416 /* copy secindex */
6417 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6418 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6419 newacq->created = time_uptime;
6420 newacq->count = 0;
6421
6422 return newacq;
6423 }
6424
6425 static struct secacq *
6426 key_getacq(const struct secasindex *saidx)
6427 {
6428 struct secacq *acq;
6429
6430 KASSERT(mutex_owned(&key_mtx));
6431
6432 LIST_FOREACH(acq, &acqtree, chain) {
6433 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6434 return acq;
6435 }
6436
6437 return NULL;
6438 }
6439
6440 static struct secacq *
6441 key_getacqbyseq(u_int32_t seq)
6442 {
6443 struct secacq *acq;
6444
6445 KASSERT(mutex_owned(&key_mtx));
6446
6447 LIST_FOREACH(acq, &acqtree, chain) {
6448 if (acq->seq == seq)
6449 return acq;
6450 }
6451
6452 return NULL;
6453 }
6454 #endif
6455
6456 #ifdef notyet
6457 static struct secspacq *
6458 key_newspacq(const struct secpolicyindex *spidx)
6459 {
6460 struct secspacq *acq;
6461
6462 /* get new entry */
6463 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6464 if (acq == NULL) {
6465 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6466 return NULL;
6467 }
6468
6469 /* copy secindex */
6470 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6471 acq->created = time_uptime;
6472 acq->count = 0;
6473
6474 return acq;
6475 }
6476
6477 static struct secspacq *
6478 key_getspacq(const struct secpolicyindex *spidx)
6479 {
6480 struct secspacq *acq;
6481
6482 LIST_FOREACH(acq, &spacqtree, chain) {
6483 if (key_spidx_match_exactly(spidx, &acq->spidx))
6484 return acq;
6485 }
6486
6487 return NULL;
6488 }
6489 #endif /* notyet */
6490
6491 /*
6492 * SADB_ACQUIRE processing,
6493 * in first situation, is receiving
6494 * <base>
6495 * from the ikmpd, and clear sequence of its secasvar entry.
6496 *
6497 * In second situation, is receiving
6498 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6499 * from a user land process, and return
6500 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6501 * to the socket.
6502 *
6503 * m will always be freed.
6504 */
6505 static int
6506 key_acquire2(struct socket *so, struct mbuf *m,
6507 const struct sadb_msghdr *mhp)
6508 {
6509 const struct sadb_address *src0, *dst0;
6510 struct secasindex saidx;
6511 struct secashead *sah;
6512 u_int16_t proto;
6513 int error;
6514
6515 KASSERT(so != NULL);
6516 KASSERT(m != NULL);
6517 KASSERT(mhp != NULL);
6518 KASSERT(mhp->msg != NULL);
6519
6520 /*
6521 * Error message from KMd.
6522 * We assume that if error was occurred in IKEd, the length of PFKEY
6523 * message is equal to the size of sadb_msg structure.
6524 * We do not raise error even if error occurred in this function.
6525 */
6526 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6527 #ifndef IPSEC_NONBLOCK_ACQUIRE
6528 struct secacq *acq;
6529
6530 /* check sequence number */
6531 if (mhp->msg->sadb_msg_seq == 0) {
6532 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6533 m_freem(m);
6534 return 0;
6535 }
6536
6537 mutex_enter(&key_mtx);
6538 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6539 if (acq == NULL) {
6540 mutex_exit(&key_mtx);
6541 /*
6542 * the specified larval SA is already gone, or we got
6543 * a bogus sequence number. we can silently ignore it.
6544 */
6545 m_freem(m);
6546 return 0;
6547 }
6548
6549 /* reset acq counter in order to deletion by timehander. */
6550 acq->created = time_uptime;
6551 acq->count = 0;
6552 mutex_exit(&key_mtx);
6553 #endif
6554 m_freem(m);
6555 return 0;
6556 }
6557
6558 /*
6559 * This message is from user land.
6560 */
6561
6562 /* map satype to proto */
6563 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6564 if (proto == 0) {
6565 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6566 return key_senderror(so, m, EINVAL);
6567 }
6568
6569 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6570 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6571 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6572 /* error */
6573 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6574 return key_senderror(so, m, EINVAL);
6575 }
6576 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6577 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6578 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6579 /* error */
6580 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6581 return key_senderror(so, m, EINVAL);
6582 }
6583
6584 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6585 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6586
6587 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
6588 &saidx);
6589 if (error != 0)
6590 return key_senderror(so, m, EINVAL);
6591
6592 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6593 if (error != 0)
6594 return key_senderror(so, m, EINVAL);
6595
6596 /* get a SA index */
6597 LIST_FOREACH(sah, &sahtree, chain) {
6598 if (sah->state == SADB_SASTATE_DEAD)
6599 continue;
6600 if (key_saidx_match(&sah->saidx, &saidx, CMP_MODE_REQID))
6601 break;
6602 }
6603 if (sah != NULL) {
6604 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6605 return key_senderror(so, m, EEXIST);
6606 }
6607
6608 error = key_acquire(&saidx, NULL);
6609 if (error != 0) {
6610 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6611 mhp->msg->sadb_msg_errno);
6612 return key_senderror(so, m, error);
6613 }
6614
6615 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6616 }
6617
6618 /*
6619 * SADB_REGISTER processing.
6620 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6621 * receive
6622 * <base>
6623 * from the ikmpd, and register a socket to send PF_KEY messages,
6624 * and send
6625 * <base, supported>
6626 * to KMD by PF_KEY.
6627 * If socket is detached, must free from regnode.
6628 *
6629 * m will always be freed.
6630 */
6631 static int
6632 key_register(struct socket *so, struct mbuf *m,
6633 const struct sadb_msghdr *mhp)
6634 {
6635 struct secreg *reg, *newreg = 0;
6636
6637 KASSERT(!cpu_softintr_p());
6638 KASSERT(so != NULL);
6639 KASSERT(m != NULL);
6640 KASSERT(mhp != NULL);
6641 KASSERT(mhp->msg != NULL);
6642
6643 /* check for invalid register message */
6644 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6645 return key_senderror(so, m, EINVAL);
6646
6647 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6648 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6649 goto setmsg;
6650
6651 /* Allocate regnode in advance, out of mutex */
6652 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6653
6654 /* check whether existing or not */
6655 mutex_enter(&key_mtx);
6656 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6657 if (reg->so == so) {
6658 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6659 mutex_exit(&key_mtx);
6660 kmem_free(newreg, sizeof(*newreg));
6661 return key_senderror(so, m, EEXIST);
6662 }
6663 }
6664
6665 newreg->so = so;
6666 ((struct keycb *)sotorawcb(so))->kp_registered++;
6667
6668 /* add regnode to regtree. */
6669 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6670 mutex_exit(&key_mtx);
6671
6672 setmsg:
6673 {
6674 struct mbuf *n;
6675 struct sadb_msg *newmsg;
6676 struct sadb_supported *sup;
6677 u_int len, alen, elen;
6678 int off;
6679 int i;
6680 struct sadb_alg *alg;
6681
6682 /* create new sadb_msg to reply. */
6683 alen = 0;
6684 for (i = 1; i <= SADB_AALG_MAX; i++) {
6685 if (ah_algorithm_lookup(i))
6686 alen += sizeof(struct sadb_alg);
6687 }
6688 if (alen)
6689 alen += sizeof(struct sadb_supported);
6690 elen = 0;
6691 for (i = 1; i <= SADB_EALG_MAX; i++) {
6692 if (esp_algorithm_lookup(i))
6693 elen += sizeof(struct sadb_alg);
6694 }
6695 if (elen)
6696 elen += sizeof(struct sadb_supported);
6697
6698 len = sizeof(struct sadb_msg) + alen + elen;
6699
6700 if (len > MCLBYTES)
6701 return key_senderror(so, m, ENOBUFS);
6702
6703 MGETHDR(n, M_DONTWAIT, MT_DATA);
6704 if (len > MHLEN) {
6705 MCLGET(n, M_DONTWAIT);
6706 if ((n->m_flags & M_EXT) == 0) {
6707 m_freem(n);
6708 n = NULL;
6709 }
6710 }
6711 if (!n)
6712 return key_senderror(so, m, ENOBUFS);
6713
6714 n->m_pkthdr.len = n->m_len = len;
6715 n->m_next = NULL;
6716 off = 0;
6717
6718 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6719 newmsg = mtod(n, struct sadb_msg *);
6720 newmsg->sadb_msg_errno = 0;
6721 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6722 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6723
6724 /* for authentication algorithm */
6725 if (alen) {
6726 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6727 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6728 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6729 off += PFKEY_ALIGN8(sizeof(*sup));
6730
6731 for (i = 1; i <= SADB_AALG_MAX; i++) {
6732 const struct auth_hash *aalgo;
6733 u_int16_t minkeysize, maxkeysize;
6734
6735 aalgo = ah_algorithm_lookup(i);
6736 if (!aalgo)
6737 continue;
6738 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6739 alg->sadb_alg_id = i;
6740 alg->sadb_alg_ivlen = 0;
6741 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6742 alg->sadb_alg_minbits = _BITS(minkeysize);
6743 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6744 off += PFKEY_ALIGN8(sizeof(*alg));
6745 }
6746 }
6747
6748 /* for encryption algorithm */
6749 if (elen) {
6750 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6751 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6752 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6753 off += PFKEY_ALIGN8(sizeof(*sup));
6754
6755 for (i = 1; i <= SADB_EALG_MAX; i++) {
6756 const struct enc_xform *ealgo;
6757
6758 ealgo = esp_algorithm_lookup(i);
6759 if (!ealgo)
6760 continue;
6761 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6762 alg->sadb_alg_id = i;
6763 alg->sadb_alg_ivlen = ealgo->blocksize;
6764 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6765 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6766 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6767 }
6768 }
6769
6770 KASSERTMSG(off == len, "length inconsistency");
6771
6772 m_freem(m);
6773 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6774 }
6775 }
6776
6777 /*
6778 * free secreg entry registered.
6779 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6780 */
6781 void
6782 key_freereg(struct socket *so)
6783 {
6784 struct secreg *reg;
6785 int i;
6786
6787 KASSERT(!cpu_softintr_p());
6788 KASSERT(so != NULL);
6789
6790 /*
6791 * check whether existing or not.
6792 * check all type of SA, because there is a potential that
6793 * one socket is registered to multiple type of SA.
6794 */
6795 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6796 mutex_enter(&key_mtx);
6797 LIST_FOREACH(reg, ®tree[i], chain) {
6798 if (reg->so == so) {
6799 LIST_REMOVE(reg, chain);
6800 break;
6801 }
6802 }
6803 mutex_exit(&key_mtx);
6804 if (reg != NULL)
6805 kmem_free(reg, sizeof(*reg));
6806 }
6807
6808 return;
6809 }
6810
6811 /*
6812 * SADB_EXPIRE processing
6813 * send
6814 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6815 * to KMD by PF_KEY.
6816 * NOTE: We send only soft lifetime extension.
6817 *
6818 * OUT: 0 : succeed
6819 * others : error number
6820 */
6821 static int
6822 key_expire(struct secasvar *sav)
6823 {
6824 int s;
6825 int satype;
6826 struct mbuf *result = NULL, *m;
6827 int len;
6828 int error = -1;
6829 struct sadb_lifetime *lt;
6830
6831 /* XXX: Why do we lock ? */
6832 s = splsoftnet(); /*called from softclock()*/
6833
6834 KASSERT(sav != NULL);
6835 KASSERT(sav->sah != NULL);
6836
6837 satype = key_proto2satype(sav->sah->saidx.proto);
6838 KASSERTMSG(satype != 0, "invalid proto is passed");
6839
6840 /* set msg header */
6841 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6842 if (!m) {
6843 error = ENOBUFS;
6844 goto fail;
6845 }
6846 result = m;
6847
6848 /* create SA extension */
6849 m = key_setsadbsa(sav);
6850 if (!m) {
6851 error = ENOBUFS;
6852 goto fail;
6853 }
6854 m_cat(result, m);
6855
6856 /* create SA extension */
6857 m = key_setsadbxsa2(sav->sah->saidx.mode,
6858 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6859 if (!m) {
6860 error = ENOBUFS;
6861 goto fail;
6862 }
6863 m_cat(result, m);
6864
6865 /* create lifetime extension (current and soft) */
6866 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6867 m = key_alloc_mbuf(len);
6868 if (!m || m->m_next) { /*XXX*/
6869 if (m)
6870 m_freem(m);
6871 error = ENOBUFS;
6872 goto fail;
6873 }
6874 memset(mtod(m, void *), 0, len);
6875 lt = mtod(m, struct sadb_lifetime *);
6876 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6877 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6878 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6879 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6880 lt->sadb_lifetime_addtime =
6881 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6882 lt->sadb_lifetime_usetime =
6883 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6884 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6885 memcpy(lt, sav->lft_s, sizeof(*lt));
6886 m_cat(result, m);
6887
6888 /* set sadb_address for source */
6889 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6890 FULLMASK, IPSEC_ULPROTO_ANY);
6891 if (!m) {
6892 error = ENOBUFS;
6893 goto fail;
6894 }
6895 m_cat(result, m);
6896
6897 /* set sadb_address for destination */
6898 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6899 FULLMASK, IPSEC_ULPROTO_ANY);
6900 if (!m) {
6901 error = ENOBUFS;
6902 goto fail;
6903 }
6904 m_cat(result, m);
6905
6906 if ((result->m_flags & M_PKTHDR) == 0) {
6907 error = EINVAL;
6908 goto fail;
6909 }
6910
6911 if (result->m_len < sizeof(struct sadb_msg)) {
6912 result = m_pullup(result, sizeof(struct sadb_msg));
6913 if (result == NULL) {
6914 error = ENOBUFS;
6915 goto fail;
6916 }
6917 }
6918
6919 result->m_pkthdr.len = 0;
6920 for (m = result; m; m = m->m_next)
6921 result->m_pkthdr.len += m->m_len;
6922
6923 mtod(result, struct sadb_msg *)->sadb_msg_len =
6924 PFKEY_UNIT64(result->m_pkthdr.len);
6925
6926 splx(s);
6927 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6928
6929 fail:
6930 if (result)
6931 m_freem(result);
6932 splx(s);
6933 return error;
6934 }
6935
6936 /*
6937 * SADB_FLUSH processing
6938 * receive
6939 * <base>
6940 * from the ikmpd, and free all entries in secastree.
6941 * and send,
6942 * <base>
6943 * to the ikmpd.
6944 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6945 *
6946 * m will always be freed.
6947 */
6948 static int
6949 key_flush(struct socket *so, struct mbuf *m,
6950 const struct sadb_msghdr *mhp)
6951 {
6952 struct sadb_msg *newmsg;
6953 struct secashead *sah;
6954 struct secasvar *sav, *nextsav;
6955 u_int16_t proto;
6956 u_int8_t state;
6957
6958 KASSERT(so != NULL);
6959 KASSERT(mhp != NULL);
6960 KASSERT(mhp->msg != NULL);
6961
6962 /* map satype to proto */
6963 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6964 if (proto == 0) {
6965 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6966 return key_senderror(so, m, EINVAL);
6967 }
6968
6969 /* no SATYPE specified, i.e. flushing all SA. */
6970 LIST_FOREACH(sah, &sahtree, chain) {
6971 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6972 proto != sah->saidx.proto)
6973 continue;
6974
6975 SASTATE_ALIVE_FOREACH(state) {
6976 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6977 nextsav) {
6978 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6979 KEY_FREESAV(&sav);
6980 }
6981 }
6982
6983 sah->state = SADB_SASTATE_DEAD;
6984 }
6985
6986 if (m->m_len < sizeof(struct sadb_msg) ||
6987 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6988 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6989 return key_senderror(so, m, ENOBUFS);
6990 }
6991
6992 if (m->m_next)
6993 m_freem(m->m_next);
6994 m->m_next = NULL;
6995 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6996 newmsg = mtod(m, struct sadb_msg *);
6997 newmsg->sadb_msg_errno = 0;
6998 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6999
7000 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7001 }
7002
7003
7004 static struct mbuf *
7005 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7006 {
7007 struct secashead *sah;
7008 struct secasvar *sav;
7009 u_int16_t proto;
7010 u_int8_t satype;
7011 u_int8_t state;
7012 int cnt;
7013 struct mbuf *m, *n, *prev;
7014
7015 *lenp = 0;
7016
7017 /* map satype to proto */
7018 proto = key_satype2proto(req_satype);
7019 if (proto == 0) {
7020 *errorp = EINVAL;
7021 return (NULL);
7022 }
7023
7024 /* count sav entries to be sent to userland. */
7025 cnt = 0;
7026 LIST_FOREACH(sah, &sahtree, chain) {
7027 if (req_satype != SADB_SATYPE_UNSPEC &&
7028 proto != sah->saidx.proto)
7029 continue;
7030
7031 SASTATE_ANY_FOREACH(state) {
7032 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7033 cnt++;
7034 }
7035 }
7036 }
7037
7038 if (cnt == 0) {
7039 *errorp = ENOENT;
7040 return (NULL);
7041 }
7042
7043 /* send this to the userland, one at a time. */
7044 m = NULL;
7045 prev = m;
7046 LIST_FOREACH(sah, &sahtree, chain) {
7047 if (req_satype != SADB_SATYPE_UNSPEC &&
7048 proto != sah->saidx.proto)
7049 continue;
7050
7051 /* map proto to satype */
7052 satype = key_proto2satype(sah->saidx.proto);
7053 if (satype == 0) {
7054 m_freem(m);
7055 *errorp = EINVAL;
7056 return (NULL);
7057 }
7058
7059 SASTATE_ANY_FOREACH(state) {
7060 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7061 n = key_setdumpsa(sav, SADB_DUMP, satype,
7062 --cnt, pid);
7063 if (!n) {
7064 m_freem(m);
7065 *errorp = ENOBUFS;
7066 return (NULL);
7067 }
7068
7069 if (!m)
7070 m = n;
7071 else
7072 prev->m_nextpkt = n;
7073 prev = n;
7074 }
7075 }
7076 }
7077
7078 if (!m) {
7079 *errorp = EINVAL;
7080 return (NULL);
7081 }
7082
7083 if ((m->m_flags & M_PKTHDR) != 0) {
7084 m->m_pkthdr.len = 0;
7085 for (n = m; n; n = n->m_next)
7086 m->m_pkthdr.len += n->m_len;
7087 }
7088
7089 *errorp = 0;
7090 return (m);
7091 }
7092
7093 /*
7094 * SADB_DUMP processing
7095 * dump all entries including status of DEAD in SAD.
7096 * receive
7097 * <base>
7098 * from the ikmpd, and dump all secasvar leaves
7099 * and send,
7100 * <base> .....
7101 * to the ikmpd.
7102 *
7103 * m will always be freed.
7104 */
7105 static int
7106 key_dump(struct socket *so, struct mbuf *m0,
7107 const struct sadb_msghdr *mhp)
7108 {
7109 u_int16_t proto;
7110 u_int8_t satype;
7111 struct mbuf *n;
7112 int s;
7113 int error, len, ok;
7114
7115 KASSERT(so != NULL);
7116 KASSERT(m0 != NULL);
7117 KASSERT(mhp != NULL);
7118 KASSERT(mhp->msg != NULL);
7119
7120 /* map satype to proto */
7121 satype = mhp->msg->sadb_msg_satype;
7122 proto = key_satype2proto(satype);
7123 if (proto == 0) {
7124 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7125 return key_senderror(so, m0, EINVAL);
7126 }
7127
7128 /*
7129 * If the requestor has insufficient socket-buffer space
7130 * for the entire chain, nobody gets any response to the DUMP.
7131 * XXX For now, only the requestor ever gets anything.
7132 * Moreover, if the requestor has any space at all, they receive
7133 * the entire chain, otherwise the request is refused with ENOBUFS.
7134 */
7135 if (sbspace(&so->so_rcv) <= 0) {
7136 return key_senderror(so, m0, ENOBUFS);
7137 }
7138
7139 s = splsoftnet();
7140 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7141 splx(s);
7142
7143 if (n == NULL) {
7144 return key_senderror(so, m0, ENOENT);
7145 }
7146 {
7147 uint64_t *ps = PFKEY_STAT_GETREF();
7148 ps[PFKEY_STAT_IN_TOTAL]++;
7149 ps[PFKEY_STAT_IN_BYTES] += len;
7150 PFKEY_STAT_PUTREF();
7151 }
7152
7153 /*
7154 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7155 * The requestor receives either the entire chain, or an
7156 * error message with ENOBUFS.
7157 *
7158 * sbappendaddrchain() takes the chain of entries, one
7159 * packet-record per SPD entry, prepends the key_src sockaddr
7160 * to each packet-record, links the sockaddr mbufs into a new
7161 * list of records, then appends the entire resulting
7162 * list to the requesting socket.
7163 */
7164 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7165 SB_PRIO_ONESHOT_OVERFLOW);
7166
7167 if (!ok) {
7168 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7169 m_freem(n);
7170 return key_senderror(so, m0, ENOBUFS);
7171 }
7172
7173 m_freem(m0);
7174 return 0;
7175 }
7176
7177 /*
7178 * SADB_X_PROMISC processing
7179 *
7180 * m will always be freed.
7181 */
7182 static int
7183 key_promisc(struct socket *so, struct mbuf *m,
7184 const struct sadb_msghdr *mhp)
7185 {
7186 int olen;
7187
7188 KASSERT(so != NULL);
7189 KASSERT(m != NULL);
7190 KASSERT(mhp != NULL);
7191 KASSERT(mhp->msg != NULL);
7192
7193 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7194
7195 if (olen < sizeof(struct sadb_msg)) {
7196 #if 1
7197 return key_senderror(so, m, EINVAL);
7198 #else
7199 m_freem(m);
7200 return 0;
7201 #endif
7202 } else if (olen == sizeof(struct sadb_msg)) {
7203 /* enable/disable promisc mode */
7204 struct keycb *kp = (struct keycb *)sotorawcb(so);
7205 if (kp == NULL)
7206 return key_senderror(so, m, EINVAL);
7207 mhp->msg->sadb_msg_errno = 0;
7208 switch (mhp->msg->sadb_msg_satype) {
7209 case 0:
7210 case 1:
7211 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7212 break;
7213 default:
7214 return key_senderror(so, m, EINVAL);
7215 }
7216
7217 /* send the original message back to everyone */
7218 mhp->msg->sadb_msg_errno = 0;
7219 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7220 } else {
7221 /* send packet as is */
7222
7223 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7224
7225 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7226 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7227 }
7228 }
7229
7230 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7231 const struct sadb_msghdr *) = {
7232 NULL, /* SADB_RESERVED */
7233 key_getspi, /* SADB_GETSPI */
7234 key_update, /* SADB_UPDATE */
7235 key_add, /* SADB_ADD */
7236 key_delete, /* SADB_DELETE */
7237 key_get, /* SADB_GET */
7238 key_acquire2, /* SADB_ACQUIRE */
7239 key_register, /* SADB_REGISTER */
7240 NULL, /* SADB_EXPIRE */
7241 key_flush, /* SADB_FLUSH */
7242 key_dump, /* SADB_DUMP */
7243 key_promisc, /* SADB_X_PROMISC */
7244 NULL, /* SADB_X_PCHANGE */
7245 key_spdadd, /* SADB_X_SPDUPDATE */
7246 key_spdadd, /* SADB_X_SPDADD */
7247 key_spddelete, /* SADB_X_SPDDELETE */
7248 key_spdget, /* SADB_X_SPDGET */
7249 NULL, /* SADB_X_SPDACQUIRE */
7250 key_spddump, /* SADB_X_SPDDUMP */
7251 key_spdflush, /* SADB_X_SPDFLUSH */
7252 key_spdadd, /* SADB_X_SPDSETIDX */
7253 NULL, /* SADB_X_SPDEXPIRE */
7254 key_spddelete2, /* SADB_X_SPDDELETE2 */
7255 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7256 };
7257
7258 /*
7259 * parse sadb_msg buffer to process PFKEYv2,
7260 * and create a data to response if needed.
7261 * I think to be dealed with mbuf directly.
7262 * IN:
7263 * msgp : pointer to pointer to a received buffer pulluped.
7264 * This is rewrited to response.
7265 * so : pointer to socket.
7266 * OUT:
7267 * length for buffer to send to user process.
7268 */
7269 int
7270 key_parse(struct mbuf *m, struct socket *so)
7271 {
7272 struct sadb_msg *msg;
7273 struct sadb_msghdr mh;
7274 u_int orglen;
7275 int error;
7276 int target;
7277
7278 KASSERT(m != NULL);
7279 KASSERT(so != NULL);
7280
7281 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7282 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7283 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7284 kdebug_sadb(msg);
7285 }
7286 #endif
7287
7288 if (m->m_len < sizeof(struct sadb_msg)) {
7289 m = m_pullup(m, sizeof(struct sadb_msg));
7290 if (!m)
7291 return ENOBUFS;
7292 }
7293 msg = mtod(m, struct sadb_msg *);
7294 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7295 target = KEY_SENDUP_ONE;
7296
7297 if ((m->m_flags & M_PKTHDR) == 0 ||
7298 m->m_pkthdr.len != orglen) {
7299 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7300 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7301 error = EINVAL;
7302 goto senderror;
7303 }
7304
7305 if (msg->sadb_msg_version != PF_KEY_V2) {
7306 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7307 msg->sadb_msg_version);
7308 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7309 error = EINVAL;
7310 goto senderror;
7311 }
7312
7313 if (msg->sadb_msg_type > SADB_MAX) {
7314 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7315 msg->sadb_msg_type);
7316 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7317 error = EINVAL;
7318 goto senderror;
7319 }
7320
7321 /* for old-fashioned code - should be nuked */
7322 if (m->m_pkthdr.len > MCLBYTES) {
7323 m_freem(m);
7324 return ENOBUFS;
7325 }
7326 if (m->m_next) {
7327 struct mbuf *n;
7328
7329 MGETHDR(n, M_DONTWAIT, MT_DATA);
7330 if (n && m->m_pkthdr.len > MHLEN) {
7331 MCLGET(n, M_DONTWAIT);
7332 if ((n->m_flags & M_EXT) == 0) {
7333 m_free(n);
7334 n = NULL;
7335 }
7336 }
7337 if (!n) {
7338 m_freem(m);
7339 return ENOBUFS;
7340 }
7341 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7342 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7343 n->m_next = NULL;
7344 m_freem(m);
7345 m = n;
7346 }
7347
7348 /* align the mbuf chain so that extensions are in contiguous region. */
7349 error = key_align(m, &mh);
7350 if (error)
7351 return error;
7352
7353 if (m->m_next) { /*XXX*/
7354 m_freem(m);
7355 return ENOBUFS;
7356 }
7357
7358 msg = mh.msg;
7359
7360 /* check SA type */
7361 switch (msg->sadb_msg_satype) {
7362 case SADB_SATYPE_UNSPEC:
7363 switch (msg->sadb_msg_type) {
7364 case SADB_GETSPI:
7365 case SADB_UPDATE:
7366 case SADB_ADD:
7367 case SADB_DELETE:
7368 case SADB_GET:
7369 case SADB_ACQUIRE:
7370 case SADB_EXPIRE:
7371 IPSECLOG(LOG_DEBUG,
7372 "must specify satype when msg type=%u.\n",
7373 msg->sadb_msg_type);
7374 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7375 error = EINVAL;
7376 goto senderror;
7377 }
7378 break;
7379 case SADB_SATYPE_AH:
7380 case SADB_SATYPE_ESP:
7381 case SADB_X_SATYPE_IPCOMP:
7382 case SADB_X_SATYPE_TCPSIGNATURE:
7383 switch (msg->sadb_msg_type) {
7384 case SADB_X_SPDADD:
7385 case SADB_X_SPDDELETE:
7386 case SADB_X_SPDGET:
7387 case SADB_X_SPDDUMP:
7388 case SADB_X_SPDFLUSH:
7389 case SADB_X_SPDSETIDX:
7390 case SADB_X_SPDUPDATE:
7391 case SADB_X_SPDDELETE2:
7392 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7393 msg->sadb_msg_type);
7394 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7395 error = EINVAL;
7396 goto senderror;
7397 }
7398 break;
7399 case SADB_SATYPE_RSVP:
7400 case SADB_SATYPE_OSPFV2:
7401 case SADB_SATYPE_RIPV2:
7402 case SADB_SATYPE_MIP:
7403 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7404 msg->sadb_msg_satype);
7405 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7406 error = EOPNOTSUPP;
7407 goto senderror;
7408 case 1: /* XXX: What does it do? */
7409 if (msg->sadb_msg_type == SADB_X_PROMISC)
7410 break;
7411 /*FALLTHROUGH*/
7412 default:
7413 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7414 msg->sadb_msg_satype);
7415 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7416 error = EINVAL;
7417 goto senderror;
7418 }
7419
7420 /* check field of upper layer protocol and address family */
7421 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7422 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7423 struct sadb_address *src0, *dst0;
7424 u_int plen;
7425
7426 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7427 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7428
7429 /* check upper layer protocol */
7430 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7431 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7432 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7433 error = EINVAL;
7434 goto senderror;
7435 }
7436
7437 /* check family */
7438 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7439 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7440 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7441 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7442 error = EINVAL;
7443 goto senderror;
7444 }
7445 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7446 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7447 IPSECLOG(LOG_DEBUG,
7448 "address struct size mismatched.\n");
7449 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7450 error = EINVAL;
7451 goto senderror;
7452 }
7453
7454 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7455 case AF_INET:
7456 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7457 sizeof(struct sockaddr_in)) {
7458 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7459 error = EINVAL;
7460 goto senderror;
7461 }
7462 break;
7463 case AF_INET6:
7464 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7465 sizeof(struct sockaddr_in6)) {
7466 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7467 error = EINVAL;
7468 goto senderror;
7469 }
7470 break;
7471 default:
7472 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7473 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7474 error = EAFNOSUPPORT;
7475 goto senderror;
7476 }
7477
7478 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7479 case AF_INET:
7480 plen = sizeof(struct in_addr) << 3;
7481 break;
7482 case AF_INET6:
7483 plen = sizeof(struct in6_addr) << 3;
7484 break;
7485 default:
7486 plen = 0; /*fool gcc*/
7487 break;
7488 }
7489
7490 /* check max prefix length */
7491 if (src0->sadb_address_prefixlen > plen ||
7492 dst0->sadb_address_prefixlen > plen) {
7493 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7494 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7495 error = EINVAL;
7496 goto senderror;
7497 }
7498
7499 /*
7500 * prefixlen == 0 is valid because there can be a case when
7501 * all addresses are matched.
7502 */
7503 }
7504
7505 if (msg->sadb_msg_type >= __arraycount(key_typesw) ||
7506 key_typesw[msg->sadb_msg_type] == NULL) {
7507 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7508 error = EINVAL;
7509 goto senderror;
7510 }
7511
7512 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7513
7514 senderror:
7515 msg->sadb_msg_errno = error;
7516 return key_sendup_mbuf(so, m, target);
7517 }
7518
7519 static int
7520 key_senderror(struct socket *so, struct mbuf *m, int code)
7521 {
7522 struct sadb_msg *msg;
7523
7524 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7525
7526 msg = mtod(m, struct sadb_msg *);
7527 msg->sadb_msg_errno = code;
7528 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7529 }
7530
7531 /*
7532 * set the pointer to each header into message buffer.
7533 * m will be freed on error.
7534 * XXX larger-than-MCLBYTES extension?
7535 */
7536 static int
7537 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7538 {
7539 struct mbuf *n;
7540 struct sadb_ext *ext;
7541 size_t off, end;
7542 int extlen;
7543 int toff;
7544
7545 KASSERT(m != NULL);
7546 KASSERT(mhp != NULL);
7547 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7548
7549 /* initialize */
7550 memset(mhp, 0, sizeof(*mhp));
7551
7552 mhp->msg = mtod(m, struct sadb_msg *);
7553 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7554
7555 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7556 extlen = end; /*just in case extlen is not updated*/
7557 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7558 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7559 if (!n) {
7560 /* m is already freed */
7561 return ENOBUFS;
7562 }
7563 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7564
7565 /* set pointer */
7566 switch (ext->sadb_ext_type) {
7567 case SADB_EXT_SA:
7568 case SADB_EXT_ADDRESS_SRC:
7569 case SADB_EXT_ADDRESS_DST:
7570 case SADB_EXT_ADDRESS_PROXY:
7571 case SADB_EXT_LIFETIME_CURRENT:
7572 case SADB_EXT_LIFETIME_HARD:
7573 case SADB_EXT_LIFETIME_SOFT:
7574 case SADB_EXT_KEY_AUTH:
7575 case SADB_EXT_KEY_ENCRYPT:
7576 case SADB_EXT_IDENTITY_SRC:
7577 case SADB_EXT_IDENTITY_DST:
7578 case SADB_EXT_SENSITIVITY:
7579 case SADB_EXT_PROPOSAL:
7580 case SADB_EXT_SUPPORTED_AUTH:
7581 case SADB_EXT_SUPPORTED_ENCRYPT:
7582 case SADB_EXT_SPIRANGE:
7583 case SADB_X_EXT_POLICY:
7584 case SADB_X_EXT_SA2:
7585 case SADB_X_EXT_NAT_T_TYPE:
7586 case SADB_X_EXT_NAT_T_SPORT:
7587 case SADB_X_EXT_NAT_T_DPORT:
7588 case SADB_X_EXT_NAT_T_OAI:
7589 case SADB_X_EXT_NAT_T_OAR:
7590 case SADB_X_EXT_NAT_T_FRAG:
7591 /* duplicate check */
7592 /*
7593 * XXX Are there duplication payloads of either
7594 * KEY_AUTH or KEY_ENCRYPT ?
7595 */
7596 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7597 IPSECLOG(LOG_DEBUG,
7598 "duplicate ext_type %u is passed.\n",
7599 ext->sadb_ext_type);
7600 m_freem(m);
7601 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7602 return EINVAL;
7603 }
7604 break;
7605 default:
7606 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7607 ext->sadb_ext_type);
7608 m_freem(m);
7609 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7610 return EINVAL;
7611 }
7612
7613 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7614
7615 if (key_validate_ext(ext, extlen)) {
7616 m_freem(m);
7617 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7618 return EINVAL;
7619 }
7620
7621 n = m_pulldown(m, off, extlen, &toff);
7622 if (!n) {
7623 /* m is already freed */
7624 return ENOBUFS;
7625 }
7626 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7627
7628 mhp->ext[ext->sadb_ext_type] = ext;
7629 mhp->extoff[ext->sadb_ext_type] = off;
7630 mhp->extlen[ext->sadb_ext_type] = extlen;
7631 }
7632
7633 if (off != end) {
7634 m_freem(m);
7635 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7636 return EINVAL;
7637 }
7638
7639 return 0;
7640 }
7641
7642 static int
7643 key_validate_ext(const struct sadb_ext *ext, int len)
7644 {
7645 const struct sockaddr *sa;
7646 enum { NONE, ADDR } checktype = NONE;
7647 int baselen = 0;
7648 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7649
7650 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7651 return EINVAL;
7652
7653 /* if it does not match minimum/maximum length, bail */
7654 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7655 ext->sadb_ext_type >= __arraycount(maxsize))
7656 return EINVAL;
7657 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7658 return EINVAL;
7659 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7660 return EINVAL;
7661
7662 /* more checks based on sadb_ext_type XXX need more */
7663 switch (ext->sadb_ext_type) {
7664 case SADB_EXT_ADDRESS_SRC:
7665 case SADB_EXT_ADDRESS_DST:
7666 case SADB_EXT_ADDRESS_PROXY:
7667 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7668 checktype = ADDR;
7669 break;
7670 case SADB_EXT_IDENTITY_SRC:
7671 case SADB_EXT_IDENTITY_DST:
7672 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7673 SADB_X_IDENTTYPE_ADDR) {
7674 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7675 checktype = ADDR;
7676 } else
7677 checktype = NONE;
7678 break;
7679 default:
7680 checktype = NONE;
7681 break;
7682 }
7683
7684 switch (checktype) {
7685 case NONE:
7686 break;
7687 case ADDR:
7688 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7689 if (len < baselen + sal)
7690 return EINVAL;
7691 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7692 return EINVAL;
7693 break;
7694 }
7695
7696 return 0;
7697 }
7698
7699 static int
7700 key_do_init(void)
7701 {
7702 int i, error;
7703
7704 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7705
7706 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7707
7708 callout_init(&key_timehandler_ch, 0);
7709 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7710 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7711 if (error != 0)
7712 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7713
7714 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7715 LIST_INIT(&sptree[i]);
7716 }
7717
7718 LIST_INIT(&sahtree);
7719
7720 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7721 LIST_INIT(®tree[i]);
7722 }
7723
7724 #ifndef IPSEC_NONBLOCK_ACQUIRE
7725 LIST_INIT(&acqtree);
7726 #endif
7727 #ifdef notyet
7728 LIST_INIT(&spacqtree);
7729 #endif
7730
7731 /* system default */
7732 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7733 ip4_def_policy.refcnt++; /*never reclaim this*/
7734
7735 #ifdef INET6
7736 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7737 ip6_def_policy.refcnt++; /*never reclaim this*/
7738 #endif
7739
7740 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7741
7742 /* initialize key statistics */
7743 keystat.getspi_count = 1;
7744
7745 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7746
7747 return (0);
7748 }
7749
7750 void
7751 key_init(void)
7752 {
7753 static ONCE_DECL(key_init_once);
7754
7755 sysctl_net_keyv2_setup(NULL);
7756 sysctl_net_key_compat_setup(NULL);
7757
7758 RUN_ONCE(&key_init_once, key_do_init);
7759 }
7760
7761 /*
7762 * XXX: maybe This function is called after INBOUND IPsec processing.
7763 *
7764 * Special check for tunnel-mode packets.
7765 * We must make some checks for consistency between inner and outer IP header.
7766 *
7767 * xxx more checks to be provided
7768 */
7769 int
7770 key_checktunnelsanity(
7771 struct secasvar *sav,
7772 u_int family,
7773 void *src,
7774 void *dst
7775 )
7776 {
7777
7778 KASSERT(sav->sah != NULL);
7779
7780 /* XXX: check inner IP header */
7781
7782 return 1;
7783 }
7784
7785 #if 0
7786 #define hostnamelen strlen(hostname)
7787
7788 /*
7789 * Get FQDN for the host.
7790 * If the administrator configured hostname (by hostname(1)) without
7791 * domain name, returns nothing.
7792 */
7793 static const char *
7794 key_getfqdn(void)
7795 {
7796 int i;
7797 int hasdot;
7798 static char fqdn[MAXHOSTNAMELEN + 1];
7799
7800 if (!hostnamelen)
7801 return NULL;
7802
7803 /* check if it comes with domain name. */
7804 hasdot = 0;
7805 for (i = 0; i < hostnamelen; i++) {
7806 if (hostname[i] == '.')
7807 hasdot++;
7808 }
7809 if (!hasdot)
7810 return NULL;
7811
7812 /* NOTE: hostname may not be NUL-terminated. */
7813 memset(fqdn, 0, sizeof(fqdn));
7814 memcpy(fqdn, hostname, hostnamelen);
7815 fqdn[hostnamelen] = '\0';
7816 return fqdn;
7817 }
7818
7819 /*
7820 * get username@FQDN for the host/user.
7821 */
7822 static const char *
7823 key_getuserfqdn(void)
7824 {
7825 const char *host;
7826 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7827 struct proc *p = curproc;
7828 char *q;
7829
7830 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7831 return NULL;
7832 if (!(host = key_getfqdn()))
7833 return NULL;
7834
7835 /* NOTE: s_login may not be-NUL terminated. */
7836 memset(userfqdn, 0, sizeof(userfqdn));
7837 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7838 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7839 q = userfqdn + strlen(userfqdn);
7840 *q++ = '@';
7841 memcpy(q, host, strlen(host));
7842 q += strlen(host);
7843 *q++ = '\0';
7844
7845 return userfqdn;
7846 }
7847 #endif
7848
7849 /* record data transfer on SA, and update timestamps */
7850 void
7851 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7852 {
7853
7854 KASSERT(sav != NULL);
7855 KASSERT(m != NULL);
7856 if (!sav->lft_c)
7857 return;
7858
7859 /*
7860 * XXX Currently, there is a difference of bytes size
7861 * between inbound and outbound processing.
7862 */
7863 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7864 /* to check bytes lifetime is done in key_timehandler(). */
7865
7866 /*
7867 * We use the number of packets as the unit of
7868 * sadb_lifetime_allocations. We increment the variable
7869 * whenever {esp,ah}_{in,out}put is called.
7870 */
7871 sav->lft_c->sadb_lifetime_allocations++;
7872 /* XXX check for expires? */
7873
7874 /*
7875 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7876 * in seconds. HARD and SOFT lifetime are measured by the time
7877 * difference (again in seconds) from sadb_lifetime_usetime.
7878 *
7879 * usetime
7880 * v expire expire
7881 * -----+-----+--------+---> t
7882 * <--------------> HARD
7883 * <-----> SOFT
7884 */
7885 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7886 /* XXX check for expires? */
7887
7888 return;
7889 }
7890
7891 /* dumb version */
7892 void
7893 key_sa_routechange(struct sockaddr *dst)
7894 {
7895 struct secashead *sah;
7896 struct route *ro;
7897 const struct sockaddr *sa;
7898
7899 LIST_FOREACH(sah, &sahtree, chain) {
7900 ro = &sah->sa_route;
7901 sa = rtcache_getdst(ro);
7902 if (sa != NULL && dst->sa_len == sa->sa_len &&
7903 memcmp(dst, sa, dst->sa_len) == 0)
7904 rtcache_free(ro);
7905 }
7906
7907 return;
7908 }
7909
7910 static void
7911 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7912 {
7913
7914 KASSERT(sav != NULL);
7915
7916 if (sav->state == state)
7917 return;
7918
7919 KASSERT(__LIST_CHAINED(sav));
7920 LIST_REMOVE(sav, chain);
7921
7922 sav->state = state;
7923 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7924 }
7925
7926 /* XXX too much? */
7927 static struct mbuf *
7928 key_alloc_mbuf(int l)
7929 {
7930 struct mbuf *m = NULL, *n;
7931 int len, t;
7932
7933 len = l;
7934 while (len > 0) {
7935 MGET(n, M_DONTWAIT, MT_DATA);
7936 if (n && len > MLEN)
7937 MCLGET(n, M_DONTWAIT);
7938 if (!n) {
7939 m_freem(m);
7940 return NULL;
7941 }
7942
7943 n->m_next = NULL;
7944 n->m_len = 0;
7945 n->m_len = M_TRAILINGSPACE(n);
7946 /* use the bottom of mbuf, hoping we can prepend afterwards */
7947 if (n->m_len > len) {
7948 t = (n->m_len - len) & ~(sizeof(long) - 1);
7949 n->m_data += t;
7950 n->m_len = len;
7951 }
7952
7953 len -= n->m_len;
7954
7955 if (m)
7956 m_cat(m, n);
7957 else
7958 m = n;
7959 }
7960
7961 return m;
7962 }
7963
7964 static struct mbuf *
7965 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7966 {
7967 struct secashead *sah;
7968 struct secasvar *sav;
7969 u_int16_t proto;
7970 u_int8_t satype;
7971 u_int8_t state;
7972 int cnt;
7973 struct mbuf *m, *n;
7974
7975 /* map satype to proto */
7976 proto = key_satype2proto(req_satype);
7977 if (proto == 0) {
7978 *errorp = EINVAL;
7979 return (NULL);
7980 }
7981
7982 /* count sav entries to be sent to the userland. */
7983 cnt = 0;
7984 LIST_FOREACH(sah, &sahtree, chain) {
7985 if (req_satype != SADB_SATYPE_UNSPEC &&
7986 proto != sah->saidx.proto)
7987 continue;
7988
7989 SASTATE_ANY_FOREACH(state) {
7990 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7991 cnt++;
7992 }
7993 }
7994 }
7995
7996 if (cnt == 0) {
7997 *errorp = ENOENT;
7998 return (NULL);
7999 }
8000
8001 /* send this to the userland, one at a time. */
8002 m = NULL;
8003 LIST_FOREACH(sah, &sahtree, chain) {
8004 if (req_satype != SADB_SATYPE_UNSPEC &&
8005 proto != sah->saidx.proto)
8006 continue;
8007
8008 /* map proto to satype */
8009 satype = key_proto2satype(sah->saidx.proto);
8010 if (satype == 0) {
8011 m_freem(m);
8012 *errorp = EINVAL;
8013 return (NULL);
8014 }
8015
8016 SASTATE_ANY_FOREACH(state) {
8017 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8018 n = key_setdumpsa(sav, SADB_DUMP, satype,
8019 --cnt, pid);
8020 if (!n) {
8021 m_freem(m);
8022 *errorp = ENOBUFS;
8023 return (NULL);
8024 }
8025
8026 if (!m)
8027 m = n;
8028 else
8029 m_cat(m, n);
8030 }
8031 }
8032 }
8033
8034 if (!m) {
8035 *errorp = EINVAL;
8036 return (NULL);
8037 }
8038
8039 if ((m->m_flags & M_PKTHDR) != 0) {
8040 m->m_pkthdr.len = 0;
8041 for (n = m; n; n = n->m_next)
8042 m->m_pkthdr.len += n->m_len;
8043 }
8044
8045 *errorp = 0;
8046 return (m);
8047 }
8048
8049 static struct mbuf *
8050 key_setspddump(int *errorp, pid_t pid)
8051 {
8052 struct secpolicy *sp;
8053 int cnt;
8054 u_int dir;
8055 struct mbuf *m, *n;
8056
8057 /* search SPD entry and get buffer size. */
8058 cnt = 0;
8059 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8060 LIST_FOREACH(sp, &sptree[dir], chain) {
8061 cnt++;
8062 }
8063 }
8064
8065 if (cnt == 0) {
8066 *errorp = ENOENT;
8067 return (NULL);
8068 }
8069
8070 m = NULL;
8071 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8072 LIST_FOREACH(sp, &sptree[dir], chain) {
8073 --cnt;
8074 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8075
8076 if (!n) {
8077 *errorp = ENOBUFS;
8078 m_freem(m);
8079 return (NULL);
8080 }
8081 if (!m)
8082 m = n;
8083 else {
8084 m->m_pkthdr.len += n->m_pkthdr.len;
8085 m_cat(m, n);
8086 }
8087 }
8088 }
8089
8090 *errorp = 0;
8091 return (m);
8092 }
8093
8094 int
8095 key_get_used(void) {
8096 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8097 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8098 }
8099
8100 void
8101 key_update_used(void)
8102 {
8103 switch (ipsec_enabled) {
8104 default:
8105 case 0:
8106 #ifdef notyet
8107 /* XXX: racy */
8108 ipsec_used = 0;
8109 #endif
8110 break;
8111 case 1:
8112 #ifndef notyet
8113 /* XXX: racy */
8114 if (!ipsec_used)
8115 #endif
8116 ipsec_used = key_get_used();
8117 break;
8118 case 2:
8119 ipsec_used = 1;
8120 break;
8121 }
8122 }
8123
8124 static int
8125 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8126 {
8127 struct mbuf *m, *n;
8128 int err2 = 0;
8129 char *p, *ep;
8130 size_t len;
8131 int s, error;
8132
8133 if (newp)
8134 return (EPERM);
8135 if (namelen != 1)
8136 return (EINVAL);
8137
8138 s = splsoftnet();
8139 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8140 splx(s);
8141 if (!m)
8142 return (error);
8143 if (!oldp)
8144 *oldlenp = m->m_pkthdr.len;
8145 else {
8146 p = oldp;
8147 if (*oldlenp < m->m_pkthdr.len) {
8148 err2 = ENOMEM;
8149 ep = p + *oldlenp;
8150 } else {
8151 *oldlenp = m->m_pkthdr.len;
8152 ep = p + m->m_pkthdr.len;
8153 }
8154 for (n = m; n; n = n->m_next) {
8155 len = (ep - p < n->m_len) ?
8156 ep - p : n->m_len;
8157 error = copyout(mtod(n, const void *), p, len);
8158 p += len;
8159 if (error)
8160 break;
8161 }
8162 if (error == 0)
8163 error = err2;
8164 }
8165 m_freem(m);
8166
8167 return (error);
8168 }
8169
8170 static int
8171 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8172 {
8173 struct mbuf *m, *n;
8174 int err2 = 0;
8175 char *p, *ep;
8176 size_t len;
8177 int s, error;
8178
8179 if (newp)
8180 return (EPERM);
8181 if (namelen != 0)
8182 return (EINVAL);
8183
8184 s = splsoftnet();
8185 m = key_setspddump(&error, l->l_proc->p_pid);
8186 splx(s);
8187 if (!m)
8188 return (error);
8189 if (!oldp)
8190 *oldlenp = m->m_pkthdr.len;
8191 else {
8192 p = oldp;
8193 if (*oldlenp < m->m_pkthdr.len) {
8194 err2 = ENOMEM;
8195 ep = p + *oldlenp;
8196 } else {
8197 *oldlenp = m->m_pkthdr.len;
8198 ep = p + m->m_pkthdr.len;
8199 }
8200 for (n = m; n; n = n->m_next) {
8201 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8202 error = copyout(mtod(n, const void *), p, len);
8203 p += len;
8204 if (error)
8205 break;
8206 }
8207 if (error == 0)
8208 error = err2;
8209 }
8210 m_freem(m);
8211
8212 return (error);
8213 }
8214
8215 /*
8216 * Create sysctl tree for native IPSEC key knobs, originally
8217 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8218 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8219 * and in any case the part of our sysctl namespace used for dumping the
8220 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8221 * namespace, for API reasons.
8222 *
8223 * Pending a consensus on the right way to fix this, add a level of
8224 * indirection in how we number the `native' IPSEC key nodes;
8225 * and (as requested by Andrew Brown) move registration of the
8226 * KAME-compatible names to a separate function.
8227 */
8228 #if 0
8229 # define IPSEC_PFKEY PF_KEY_V2
8230 # define IPSEC_PFKEY_NAME "keyv2"
8231 #else
8232 # define IPSEC_PFKEY PF_KEY
8233 # define IPSEC_PFKEY_NAME "key"
8234 #endif
8235
8236 static int
8237 sysctl_net_key_stats(SYSCTLFN_ARGS)
8238 {
8239
8240 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8241 }
8242
8243 static void
8244 sysctl_net_keyv2_setup(struct sysctllog **clog)
8245 {
8246
8247 sysctl_createv(clog, 0, NULL, NULL,
8248 CTLFLAG_PERMANENT,
8249 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8250 NULL, 0, NULL, 0,
8251 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8252
8253 sysctl_createv(clog, 0, NULL, NULL,
8254 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8255 CTLTYPE_INT, "debug", NULL,
8256 NULL, 0, &key_debug_level, 0,
8257 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8258 sysctl_createv(clog, 0, NULL, NULL,
8259 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8260 CTLTYPE_INT, "spi_try", NULL,
8261 NULL, 0, &key_spi_trycnt, 0,
8262 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8263 sysctl_createv(clog, 0, NULL, NULL,
8264 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8265 CTLTYPE_INT, "spi_min_value", NULL,
8266 NULL, 0, &key_spi_minval, 0,
8267 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8268 sysctl_createv(clog, 0, NULL, NULL,
8269 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8270 CTLTYPE_INT, "spi_max_value", NULL,
8271 NULL, 0, &key_spi_maxval, 0,
8272 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8273 sysctl_createv(clog, 0, NULL, NULL,
8274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8275 CTLTYPE_INT, "random_int", NULL,
8276 NULL, 0, &key_int_random, 0,
8277 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8278 sysctl_createv(clog, 0, NULL, NULL,
8279 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8280 CTLTYPE_INT, "larval_lifetime", NULL,
8281 NULL, 0, &key_larval_lifetime, 0,
8282 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8283 sysctl_createv(clog, 0, NULL, NULL,
8284 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8285 CTLTYPE_INT, "blockacq_count", NULL,
8286 NULL, 0, &key_blockacq_count, 0,
8287 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8288 sysctl_createv(clog, 0, NULL, NULL,
8289 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8290 CTLTYPE_INT, "blockacq_lifetime", NULL,
8291 NULL, 0, &key_blockacq_lifetime, 0,
8292 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8293 sysctl_createv(clog, 0, NULL, NULL,
8294 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8295 CTLTYPE_INT, "esp_keymin", NULL,
8296 NULL, 0, &ipsec_esp_keymin, 0,
8297 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8298 sysctl_createv(clog, 0, NULL, NULL,
8299 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8300 CTLTYPE_INT, "prefered_oldsa", NULL,
8301 NULL, 0, &key_prefered_oldsa, 0,
8302 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8303 sysctl_createv(clog, 0, NULL, NULL,
8304 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8305 CTLTYPE_INT, "esp_auth", NULL,
8306 NULL, 0, &ipsec_esp_auth, 0,
8307 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8308 sysctl_createv(clog, 0, NULL, NULL,
8309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8310 CTLTYPE_INT, "ah_keymin", NULL,
8311 NULL, 0, &ipsec_ah_keymin, 0,
8312 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8313 sysctl_createv(clog, 0, NULL, NULL,
8314 CTLFLAG_PERMANENT,
8315 CTLTYPE_STRUCT, "stats",
8316 SYSCTL_DESCR("PF_KEY statistics"),
8317 sysctl_net_key_stats, 0, NULL, 0,
8318 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8319 }
8320
8321 /*
8322 * Register sysctl names used by setkey(8). For historical reasons,
8323 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8324 * for both IPSEC and KAME IPSEC.
8325 */
8326 static void
8327 sysctl_net_key_compat_setup(struct sysctllog **clog)
8328 {
8329
8330 sysctl_createv(clog, 0, NULL, NULL,
8331 CTLFLAG_PERMANENT,
8332 CTLTYPE_NODE, "key", NULL,
8333 NULL, 0, NULL, 0,
8334 CTL_NET, PF_KEY, CTL_EOL);
8335
8336 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8337 sysctl_createv(clog, 0, NULL, NULL,
8338 CTLFLAG_PERMANENT,
8339 CTLTYPE_STRUCT, "dumpsa", NULL,
8340 sysctl_net_key_dumpsa, 0, NULL, 0,
8341 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8342 sysctl_createv(clog, 0, NULL, NULL,
8343 CTLFLAG_PERMANENT,
8344 CTLTYPE_STRUCT, "dumpsp", NULL,
8345 sysctl_net_key_dumpsp, 0, NULL, 0,
8346 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8347 }
8348