key.c revision 1.149 1 /* $NetBSD: key.c,v 1.149 2017/05/30 09:39:08 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.149 2017/05/30 09:39:08 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <net/raw_cb.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/in_var.h>
79 #ifdef INET
80 #include <netinet/ip_var.h>
81 #endif
82
83 #ifdef INET6
84 #include <netinet/ip6.h>
85 #include <netinet6/in6_var.h>
86 #include <netinet6/ip6_var.h>
87 #endif /* INET6 */
88
89 #ifdef INET
90 #include <netinet/in_pcb.h>
91 #endif
92 #ifdef INET6
93 #include <netinet6/in6_pcb.h>
94 #endif /* INET6 */
95
96 #include <net/pfkeyv2.h>
97 #include <netipsec/keydb.h>
98 #include <netipsec/key.h>
99 #include <netipsec/keysock.h>
100 #include <netipsec/key_debug.h>
101
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/ipsec_private.h>
107
108 #include <netipsec/xform.h>
109 #include <netipsec/ipcomp.h>
110
111
112 #include <net/net_osdep.h>
113
114 #define FULLMASK 0xff
115 #define _BITS(bytes) ((bytes) << 3)
116
117 #define PORT_NONE 0
118 #define PORT_LOOSE 1
119 #define PORT_STRICT 2
120
121 percpu_t *pfkeystat_percpu;
122
123 /*
124 * Note on SA reference counting:
125 * - SAs that are not in DEAD state will have (total external reference + 1)
126 * following value in reference count field. they cannot be freed and are
127 * referenced from SA header.
128 * - SAs that are in DEAD state will have (total external reference)
129 * in reference count field. they are ready to be freed. reference from
130 * SA header will be removed in key_delsav(), when the reference count
131 * field hits 0 (= no external reference other than from SA header.
132 */
133
134 u_int32_t key_debug_level = 0;
135 static u_int key_spi_trycnt = 1000;
136 static u_int32_t key_spi_minval = 0x100;
137 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
138 static u_int32_t policy_id = 0;
139 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
140 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
141 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
142 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
143 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
144
145 static u_int32_t acq_seq = 0;
146
147 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
148 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
149 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
150 /* registed list */
151 #ifndef IPSEC_NONBLOCK_ACQUIRE
152 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
153 #endif
154 #ifdef notyet
155 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
156 #endif
157
158 /*
159 * Protect regtree, acqtree and items stored in the lists.
160 */
161 static kmutex_t key_mtx __cacheline_aligned;
162
163 /* search order for SAs */
164 /*
165 * This order is important because we must select the oldest SA
166 * for outbound processing. For inbound, This is not important.
167 */
168 static const u_int saorder_state_valid_prefer_old[] = {
169 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
170 };
171 static const u_int saorder_state_valid_prefer_new[] = {
172 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
173 };
174
175 static const u_int saorder_state_alive[] = {
176 /* except DEAD */
177 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
178 };
179 static const u_int saorder_state_any[] = {
180 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
181 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
182 };
183
184 #define SASTATE_ALIVE_FOREACH(s) \
185 for (int _i = 0; \
186 _i < __arraycount(saorder_state_alive) ? \
187 (s) = saorder_state_alive[_i], true : false; \
188 _i++)
189 #define SASTATE_ANY_FOREACH(s) \
190 for (int _i = 0; \
191 _i < __arraycount(saorder_state_any) ? \
192 (s) = saorder_state_any[_i], true : false; \
193 _i++)
194
195 static const int minsize[] = {
196 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
197 sizeof(struct sadb_sa), /* SADB_EXT_SA */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
200 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
202 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
203 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
204 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
205 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
206 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
207 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
208 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
209 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
210 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
211 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
212 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
213 0, /* SADB_X_EXT_KMPRIVATE */
214 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
215 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
216 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
217 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
218 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
219 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
220 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
221 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
222 };
223 static const int maxsize[] = {
224 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
225 sizeof(struct sadb_sa), /* SADB_EXT_SA */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
227 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
228 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
229 0, /* SADB_EXT_ADDRESS_SRC */
230 0, /* SADB_EXT_ADDRESS_DST */
231 0, /* SADB_EXT_ADDRESS_PROXY */
232 0, /* SADB_EXT_KEY_AUTH */
233 0, /* SADB_EXT_KEY_ENCRYPT */
234 0, /* SADB_EXT_IDENTITY_SRC */
235 0, /* SADB_EXT_IDENTITY_DST */
236 0, /* SADB_EXT_SENSITIVITY */
237 0, /* SADB_EXT_PROPOSAL */
238 0, /* SADB_EXT_SUPPORTED_AUTH */
239 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
240 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
241 0, /* SADB_X_EXT_KMPRIVATE */
242 0, /* SADB_X_EXT_POLICY */
243 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
244 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
245 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
246 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
247 0, /* SADB_X_EXT_NAT_T_OAI */
248 0, /* SADB_X_EXT_NAT_T_OAR */
249 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
250 };
251
252 static int ipsec_esp_keymin = 256;
253 static int ipsec_esp_auth = 0;
254 static int ipsec_ah_keymin = 128;
255
256 #ifdef SYSCTL_DECL
257 SYSCTL_DECL(_net_key);
258 #endif
259
260 #ifdef SYSCTL_INT
261 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
262 &key_debug_level, 0, "");
263
264 /* max count of trial for the decision of spi value */
265 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
266 &key_spi_trycnt, 0, "");
267
268 /* minimum spi value to allocate automatically. */
269 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
270 &key_spi_minval, 0, "");
271
272 /* maximun spi value to allocate automatically. */
273 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
274 &key_spi_maxval, 0, "");
275
276 /* interval to initialize randseed */
277 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
278 &key_int_random, 0, "");
279
280 /* lifetime for larval SA */
281 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
282 &key_larval_lifetime, 0, "");
283
284 /* counter for blocking to send SADB_ACQUIRE to IKEd */
285 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
286 &key_blockacq_count, 0, "");
287
288 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
289 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
290 &key_blockacq_lifetime, 0, "");
291
292 /* ESP auth */
293 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
294 &ipsec_esp_auth, 0, "");
295
296 /* minimum ESP key length */
297 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
298 &ipsec_esp_keymin, 0, "");
299
300 /* minimum AH key length */
301 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
302 &ipsec_ah_keymin, 0, "");
303
304 /* perfered old SA rather than new SA */
305 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
306 &key_prefered_oldsa, 0, "");
307 #endif /* SYSCTL_INT */
308
309 #define __LIST_CHAINED(elm) \
310 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
311 #define LIST_INSERT_TAIL(head, elm, type, field) \
312 do {\
313 struct type *curelm = LIST_FIRST(head); \
314 if (curelm == NULL) {\
315 LIST_INSERT_HEAD(head, elm, field); \
316 } else { \
317 while (LIST_NEXT(curelm, field)) \
318 curelm = LIST_NEXT(curelm, field);\
319 LIST_INSERT_AFTER(curelm, elm, field);\
320 }\
321 } while (0)
322
323 #define KEY_CHKSASTATE(head, sav) \
324 /* do */ { \
325 if ((head) != (sav)) { \
326 IPSECLOG(LOG_DEBUG, \
327 "state mismatched (TREE=%d SA=%d)\n", \
328 (head), (sav)); \
329 continue; \
330 } \
331 } /* while (0) */
332
333 #define KEY_CHKSPDIR(head, sp) \
334 do { \
335 if ((head) != (sp)) { \
336 IPSECLOG(LOG_DEBUG, \
337 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
338 (head), (sp)); \
339 } \
340 } while (0)
341
342 /*
343 * set parameters into secpolicyindex buffer.
344 * Must allocate secpolicyindex buffer passed to this function.
345 */
346 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
347 do { \
348 memset((idx), 0, sizeof(struct secpolicyindex)); \
349 (idx)->dir = (_dir); \
350 (idx)->prefs = (ps); \
351 (idx)->prefd = (pd); \
352 (idx)->ul_proto = (ulp); \
353 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
354 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
355 } while (0)
356
357 /*
358 * set parameters into secasindex buffer.
359 * Must allocate secasindex buffer before calling this function.
360 */
361 static int
362 key_setsecasidx (int, int, int, const struct sadb_address *,
363 const struct sadb_address *, struct secasindex *);
364
365 /* key statistics */
366 struct _keystat {
367 u_long getspi_count; /* the avarage of count to try to get new SPI */
368 } keystat;
369
370 struct sadb_msghdr {
371 struct sadb_msg *msg;
372 struct sadb_ext *ext[SADB_EXT_MAX + 1];
373 int extoff[SADB_EXT_MAX + 1];
374 int extlen[SADB_EXT_MAX + 1];
375 };
376
377 static struct secasvar *key_allocsa_policy (const struct secasindex *);
378 #if 0
379 static void key_freeso(struct socket *);
380 static void key_freesp_so(struct secpolicy **);
381 #endif
382 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
383 static void key_delsp (struct secpolicy *);
384 static struct secpolicy *key_getsp (const struct secpolicyindex *);
385 static struct secpolicy *key_getspbyid (u_int32_t);
386 static u_int16_t key_newreqid (void);
387 static struct mbuf *key_gather_mbuf (struct mbuf *,
388 const struct sadb_msghdr *, int, int, ...);
389 static int key_spdadd (struct socket *, struct mbuf *,
390 const struct sadb_msghdr *);
391 static u_int32_t key_getnewspid (void);
392 static int key_spddelete (struct socket *, struct mbuf *,
393 const struct sadb_msghdr *);
394 static int key_spddelete2 (struct socket *, struct mbuf *,
395 const struct sadb_msghdr *);
396 static int key_spdget (struct socket *, struct mbuf *,
397 const struct sadb_msghdr *);
398 static int key_spdflush (struct socket *, struct mbuf *,
399 const struct sadb_msghdr *);
400 static int key_spddump (struct socket *, struct mbuf *,
401 const struct sadb_msghdr *);
402 static struct mbuf * key_setspddump (int *errorp, pid_t);
403 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
404 static int key_nat_map (struct socket *, struct mbuf *,
405 const struct sadb_msghdr *);
406 static struct mbuf *key_setdumpsp (struct secpolicy *,
407 u_int8_t, u_int32_t, pid_t);
408 static u_int key_getspreqmsglen (const struct secpolicy *);
409 static int key_spdexpire (struct secpolicy *);
410 static struct secashead *key_newsah (const struct secasindex *);
411 static void key_delsah (struct secashead *);
412 static struct secasvar *key_newsav (struct mbuf *,
413 const struct sadb_msghdr *, struct secashead *, int *,
414 const char*, int);
415 #define KEY_NEWSAV(m, sadb, sah, e) \
416 key_newsav(m, sadb, sah, e, __func__, __LINE__)
417 static void key_delsav (struct secasvar *);
418 static struct secashead *key_getsah (const struct secasindex *);
419 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
420 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
421 static int key_setsaval (struct secasvar *, struct mbuf *,
422 const struct sadb_msghdr *);
423 static void key_freesaval(struct secasvar *);
424 static int key_mature (struct secasvar *);
425 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
426 u_int8_t, u_int32_t, u_int32_t);
427 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
428 static struct mbuf *key_setsadbxtype (u_int16_t);
429 static struct mbuf *key_setsadbxfrag (u_int16_t);
430 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
431 static int key_checksalen (const union sockaddr_union *);
432 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
433 u_int32_t, pid_t, u_int16_t);
434 static struct mbuf *key_setsadbsa (struct secasvar *);
435 static struct mbuf *key_setsadbaddr (u_int16_t,
436 const struct sockaddr *, u_int8_t, u_int16_t);
437 #if 0
438 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
439 int, u_int64_t);
440 #endif
441 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
442 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
443 u_int32_t);
444 static void *key_newbuf (const void *, u_int);
445 #ifdef INET6
446 static int key_ismyaddr6 (const struct sockaddr_in6 *);
447 #endif
448
449 static void sysctl_net_keyv2_setup(struct sysctllog **);
450 static void sysctl_net_key_compat_setup(struct sysctllog **);
451
452 /* flags for key_saidx_match() */
453 #define CMP_HEAD 1 /* protocol, addresses. */
454 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
455 #define CMP_REQID 3 /* additionally HEAD, reaid. */
456 #define CMP_EXACTLY 4 /* all elements. */
457 static int key_saidx_match(const struct secasindex *,
458 const struct secasindex *, int);
459
460 static int key_sockaddr_match(const struct sockaddr *,
461 const struct sockaddr *, int);
462 static int key_bb_match_withmask(const void *, const void *, u_int);
463 static u_int16_t key_satype2proto (u_int8_t);
464 static u_int8_t key_proto2satype (u_int16_t);
465
466 static int key_spidx_match_exactly(const struct secpolicyindex *,
467 const struct secpolicyindex *);
468 static int key_spidx_match_withmask(const struct secpolicyindex *,
469 const struct secpolicyindex *);
470
471 static int key_getspi (struct socket *, struct mbuf *,
472 const struct sadb_msghdr *);
473 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
474 const struct secasindex *);
475 static int key_handle_natt_info (struct secasvar *,
476 const struct sadb_msghdr *);
477 static int key_set_natt_ports (union sockaddr_union *,
478 union sockaddr_union *,
479 const struct sadb_msghdr *);
480 static int key_update (struct socket *, struct mbuf *,
481 const struct sadb_msghdr *);
482 #ifdef IPSEC_DOSEQCHECK
483 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
484 #endif
485 static int key_add (struct socket *, struct mbuf *,
486 const struct sadb_msghdr *);
487 static int key_setident (struct secashead *, struct mbuf *,
488 const struct sadb_msghdr *);
489 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
490 const struct sadb_msghdr *);
491 static int key_delete (struct socket *, struct mbuf *,
492 const struct sadb_msghdr *);
493 static int key_get (struct socket *, struct mbuf *,
494 const struct sadb_msghdr *);
495
496 static void key_getcomb_setlifetime (struct sadb_comb *);
497 static struct mbuf *key_getcomb_esp (void);
498 static struct mbuf *key_getcomb_ah (void);
499 static struct mbuf *key_getcomb_ipcomp (void);
500 static struct mbuf *key_getprop (const struct secasindex *);
501
502 static int key_acquire (const struct secasindex *, struct secpolicy *);
503 #ifndef IPSEC_NONBLOCK_ACQUIRE
504 static struct secacq *key_newacq (const struct secasindex *);
505 static struct secacq *key_getacq (const struct secasindex *);
506 static struct secacq *key_getacqbyseq (u_int32_t);
507 #endif
508 #ifdef notyet
509 static struct secspacq *key_newspacq (const struct secpolicyindex *);
510 static struct secspacq *key_getspacq (const struct secpolicyindex *);
511 #endif
512 static int key_acquire2 (struct socket *, struct mbuf *,
513 const struct sadb_msghdr *);
514 static int key_register (struct socket *, struct mbuf *,
515 const struct sadb_msghdr *);
516 static int key_expire (struct secasvar *);
517 static int key_flush (struct socket *, struct mbuf *,
518 const struct sadb_msghdr *);
519 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
520 int *lenp, pid_t pid);
521 static int key_dump (struct socket *, struct mbuf *,
522 const struct sadb_msghdr *);
523 static int key_promisc (struct socket *, struct mbuf *,
524 const struct sadb_msghdr *);
525 static int key_senderror (struct socket *, struct mbuf *, int);
526 static int key_validate_ext (const struct sadb_ext *, int);
527 static int key_align (struct mbuf *, struct sadb_msghdr *);
528 #if 0
529 static const char *key_getfqdn (void);
530 static const char *key_getuserfqdn (void);
531 #endif
532 static void key_sa_chgstate (struct secasvar *, u_int8_t);
533 static inline void key_sp_dead (struct secpolicy *);
534 static void key_sp_unlink (struct secpolicy *sp);
535
536 static struct mbuf *key_alloc_mbuf (int);
537
538 static void key_timehandler(void *);
539 static void key_timehandler_work(struct work *, void *);
540 static struct callout key_timehandler_ch;
541 static struct workqueue *key_timehandler_wq;
542 static struct work key_timehandler_wk;
543
544 #ifdef IPSEC_REF_DEBUG
545 #define REFLOG(label, p, where, tag) \
546 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
547 (where), (tag), (p)->refcnt, (p))
548 #else
549 #define REFLOG(label, p, where, tag) do {} while (0)
550 #endif
551
552 #define SA_ADDREF(p) do { \
553 atomic_inc_uint(&(p)->refcnt); \
554 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
555 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
556 } while (0)
557 #define SA_ADDREF2(p, where, tag) do { \
558 atomic_inc_uint(&(p)->refcnt); \
559 REFLOG("SA_ADDREF", (p), (where), (tag)); \
560 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
561 } while (0)
562 #define SA_DELREF(p) do { \
563 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
564 atomic_dec_uint(&(p)->refcnt); \
565 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
566 } while (0)
567 #define SA_DELREF2(p, nv, where, tag) do { \
568 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
569 nv = atomic_dec_uint_nv(&(p)->refcnt); \
570 REFLOG("SA_DELREF", (p), (where), (tag)); \
571 } while (0)
572
573 #define SP_ADDREF(p) do { \
574 atomic_inc_uint(&(p)->refcnt); \
575 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
576 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
577 } while (0)
578 #define SP_ADDREF2(p, where, tag) do { \
579 atomic_inc_uint(&(p)->refcnt); \
580 REFLOG("SP_ADDREF", (p), (where), (tag)); \
581 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
582 } while (0)
583 #define SP_DELREF(p) do { \
584 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
585 atomic_dec_uint(&(p)->refcnt); \
586 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
587 } while (0)
588 #define SP_DELREF2(p, nv, where, tag) do { \
589 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
590 nv = atomic_dec_uint_nv(&(p)->refcnt); \
591 REFLOG("SP_DELREF", (p), (where), (tag)); \
592 } while (0)
593
594
595 static inline void
596 key_sp_dead(struct secpolicy *sp)
597 {
598
599 /* mark the SP dead */
600 sp->state = IPSEC_SPSTATE_DEAD;
601 }
602
603 static void
604 key_sp_unlink(struct secpolicy *sp)
605 {
606
607 /* remove from SP index */
608 KASSERT(__LIST_CHAINED(sp));
609 LIST_REMOVE(sp, chain);
610 /* Release refcount held just for being on chain */
611 KEY_FREESP(&sp);
612 }
613
614
615 /*
616 * Return 0 when there are known to be no SP's for the specified
617 * direction. Otherwise return 1. This is used by IPsec code
618 * to optimize performance.
619 */
620 int
621 key_havesp(u_int dir)
622 {
623 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
624 !LIST_EMPTY(&sptree[dir]) : 1);
625 }
626
627 /* %%% IPsec policy management */
628 /*
629 * allocating a SP for OUTBOUND or INBOUND packet.
630 * Must call key_freesp() later.
631 * OUT: NULL: not found
632 * others: found and return the pointer.
633 */
634 struct secpolicy *
635 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
636 {
637 struct secpolicy *sp;
638 int s;
639
640 KASSERT(spidx != NULL);
641 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
642
643 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
644
645 /* get a SP entry */
646 s = splsoftnet(); /*called from softclock()*/
647 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
648 printf("*** objects\n");
649 kdebug_secpolicyindex(spidx);
650 }
651
652 LIST_FOREACH(sp, &sptree[dir], chain) {
653 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
654 printf("*** in SPD\n");
655 kdebug_secpolicyindex(&sp->spidx);
656 }
657
658 if (sp->state == IPSEC_SPSTATE_DEAD)
659 continue;
660 if (key_spidx_match_withmask(&sp->spidx, spidx))
661 goto found;
662 }
663 sp = NULL;
664 found:
665 if (sp) {
666 /* sanity check */
667 KEY_CHKSPDIR(sp->spidx.dir, dir);
668
669 /* found a SPD entry */
670 sp->lastused = time_uptime;
671 SP_ADDREF2(sp, where, tag);
672 }
673 splx(s);
674
675 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
676 "DP return SP:%p (ID=%u) refcnt %u\n",
677 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
678 return sp;
679 }
680
681 /*
682 * allocating a SP for OUTBOUND or INBOUND packet.
683 * Must call key_freesp() later.
684 * OUT: NULL: not found
685 * others: found and return the pointer.
686 */
687 struct secpolicy *
688 key_allocsp2(u_int32_t spi,
689 const union sockaddr_union *dst,
690 u_int8_t proto,
691 u_int dir,
692 const char* where, int tag)
693 {
694 struct secpolicy *sp;
695 int s;
696
697 KASSERT(dst != NULL);
698 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
699
700 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
701
702 /* get a SP entry */
703 s = splsoftnet(); /*called from softclock()*/
704 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
705 printf("*** objects\n");
706 printf("spi %u proto %u dir %u\n", spi, proto, dir);
707 kdebug_sockaddr(&dst->sa);
708 }
709
710 LIST_FOREACH(sp, &sptree[dir], chain) {
711 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
712 printf("*** in SPD\n");
713 kdebug_secpolicyindex(&sp->spidx);
714 }
715
716 if (sp->state == IPSEC_SPSTATE_DEAD)
717 continue;
718 /* compare simple values, then dst address */
719 if (sp->spidx.ul_proto != proto)
720 continue;
721 /* NB: spi's must exist and match */
722 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
723 continue;
724 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
725 goto found;
726 }
727 sp = NULL;
728 found:
729 if (sp) {
730 /* sanity check */
731 KEY_CHKSPDIR(sp->spidx.dir, dir);
732
733 /* found a SPD entry */
734 sp->lastused = time_uptime;
735 SP_ADDREF2(sp, where, tag);
736 }
737 splx(s);
738
739 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
740 "DP return SP:%p (ID=%u) refcnt %u\n",
741 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
742 return sp;
743 }
744
745 /*
746 * return a policy that matches this particular inbound packet.
747 * XXX slow
748 */
749 struct secpolicy *
750 key_gettunnel(const struct sockaddr *osrc,
751 const struct sockaddr *odst,
752 const struct sockaddr *isrc,
753 const struct sockaddr *idst,
754 const char* where, int tag)
755 {
756 struct secpolicy *sp;
757 const int dir = IPSEC_DIR_INBOUND;
758 int s;
759 struct ipsecrequest *r1, *r2, *p;
760 struct secpolicyindex spidx;
761
762 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
763
764 if (isrc->sa_family != idst->sa_family) {
765 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
766 isrc->sa_family, idst->sa_family);
767 sp = NULL;
768 goto done;
769 }
770
771 s = splsoftnet(); /*called from softclock()*/
772 LIST_FOREACH(sp, &sptree[dir], chain) {
773 if (sp->state == IPSEC_SPSTATE_DEAD)
774 continue;
775
776 r1 = r2 = NULL;
777 for (p = sp->req; p; p = p->next) {
778 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
779 continue;
780
781 r1 = r2;
782 r2 = p;
783
784 if (!r1) {
785 /* here we look at address matches only */
786 spidx = sp->spidx;
787 if (isrc->sa_len > sizeof(spidx.src) ||
788 idst->sa_len > sizeof(spidx.dst))
789 continue;
790 memcpy(&spidx.src, isrc, isrc->sa_len);
791 memcpy(&spidx.dst, idst, idst->sa_len);
792 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
793 continue;
794 } else {
795 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
796 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
797 continue;
798 }
799
800 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
801 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
802 continue;
803
804 goto found;
805 }
806 }
807 sp = NULL;
808 found:
809 if (sp) {
810 sp->lastused = time_uptime;
811 SP_ADDREF2(sp, where, tag);
812 }
813 splx(s);
814 done:
815 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
816 "DP return SP:%p (ID=%u) refcnt %u\n",
817 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
818 return sp;
819 }
820
821 /*
822 * allocating an SA entry for an *OUTBOUND* packet.
823 * checking each request entries in SP, and acquire an SA if need.
824 * OUT: 0: there are valid requests.
825 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
826 */
827 int
828 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
829 {
830 u_int level;
831 int error;
832 struct secasvar *oldsav = NULL;
833
834 KASSERT(isr != NULL);
835 KASSERT(saidx != NULL);
836 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
837 saidx->mode == IPSEC_MODE_TUNNEL,
838 "unexpected policy %u", saidx->mode);
839
840 /* get current level */
841 level = ipsec_get_reqlevel(isr);
842
843 /*
844 * XXX guard against protocol callbacks from the crypto
845 * thread as they reference ipsecrequest.sav which we
846 * temporarily null out below. Need to rethink how we
847 * handle bundled SA's in the callback thread.
848 */
849 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
850 #if 0
851 /*
852 * We do allocate new SA only if the state of SA in the holder is
853 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
854 */
855 if (isr->sav != NULL) {
856 if (isr->sav->sah == NULL)
857 panic("key_checkrequest: sah is null");
858 if (isr->sav == (struct secasvar *)LIST_FIRST(
859 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
860 KEY_FREESAV(&isr->sav);
861 isr->sav = NULL;
862 }
863 }
864 #else
865 /*
866 * we free any SA stashed in the IPsec request because a different
867 * SA may be involved each time this request is checked, either
868 * because new SAs are being configured, or this request is
869 * associated with an unconnected datagram socket, or this request
870 * is associated with a system default policy.
871 *
872 * The operation may have negative impact to performance. We may
873 * want to check cached SA carefully, rather than picking new SA
874 * every time.
875 */
876 if (isr->sav != NULL)
877 oldsav = isr->sav;
878 #endif
879
880 /*
881 * new SA allocation if no SA found.
882 * key_allocsa_policy should allocate the oldest SA available.
883 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
884 */
885 isr->sav = key_allocsa_policy(saidx);
886 membar_producer();
887 if (oldsav != NULL)
888 KEY_FREESAV(&oldsav);
889
890 /* When there is SA. */
891 if (isr->sav != NULL) {
892 if (isr->sav->state != SADB_SASTATE_MATURE &&
893 isr->sav->state != SADB_SASTATE_DYING)
894 return EINVAL;
895 return 0;
896 }
897
898 /* there is no SA */
899 error = key_acquire(saidx, isr->sp);
900 if (error != 0) {
901 /* XXX What should I do ? */
902 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
903 error);
904 return error;
905 }
906
907 if (level != IPSEC_LEVEL_REQUIRE) {
908 /* XXX sigh, the interface to this routine is botched */
909 KASSERTMSG(isr->sav == NULL, "unexpected SA");
910 return 0;
911 } else {
912 return ENOENT;
913 }
914 }
915
916 /*
917 * allocating a SA for policy entry from SAD.
918 * NOTE: searching SAD of aliving state.
919 * OUT: NULL: not found.
920 * others: found and return the pointer.
921 */
922 static struct secasvar *
923 key_allocsa_policy(const struct secasindex *saidx)
924 {
925 struct secashead *sah;
926 struct secasvar *sav;
927 u_int stateidx, state;
928 const u_int *saorder_state_valid;
929 int arraysize;
930
931 LIST_FOREACH(sah, &sahtree, chain) {
932 if (sah->state == SADB_SASTATE_DEAD)
933 continue;
934 if (key_saidx_match(&sah->saidx, saidx, CMP_MODE_REQID))
935 goto found;
936 }
937
938 return NULL;
939
940 found:
941
942 /*
943 * search a valid state list for outbound packet.
944 * This search order is important.
945 */
946 if (key_prefered_oldsa) {
947 saorder_state_valid = saorder_state_valid_prefer_old;
948 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
949 } else {
950 saorder_state_valid = saorder_state_valid_prefer_new;
951 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
952 }
953
954 /* search valid state */
955 for (stateidx = 0;
956 stateidx < arraysize;
957 stateidx++) {
958
959 state = saorder_state_valid[stateidx];
960
961 sav = key_do_allocsa_policy(sah, state);
962 if (sav != NULL)
963 return sav;
964 }
965
966 return NULL;
967 }
968
969 /*
970 * searching SAD with direction, protocol, mode and state.
971 * called by key_allocsa_policy().
972 * OUT:
973 * NULL : not found
974 * others : found, pointer to a SA.
975 */
976 static struct secasvar *
977 key_do_allocsa_policy(struct secashead *sah, u_int state)
978 {
979 struct secasvar *sav, *candidate, *d;
980
981 /* initilize */
982 candidate = NULL;
983
984 LIST_FOREACH(sav, &sah->savtree[state], chain) {
985 /* sanity check */
986 KEY_CHKSASTATE(sav->state, state);
987
988 /* initialize */
989 if (candidate == NULL) {
990 candidate = sav;
991 continue;
992 }
993
994 /* Which SA is the better ? */
995
996 /* sanity check 2 */
997 KASSERT(candidate->lft_c != NULL);
998 KASSERT(sav->lft_c != NULL);
999
1000 /* What the best method is to compare ? */
1001 if (key_prefered_oldsa) {
1002 if (candidate->lft_c->sadb_lifetime_addtime >
1003 sav->lft_c->sadb_lifetime_addtime) {
1004 candidate = sav;
1005 }
1006 continue;
1007 /*NOTREACHED*/
1008 }
1009
1010 /* prefered new sa rather than old sa */
1011 if (candidate->lft_c->sadb_lifetime_addtime <
1012 sav->lft_c->sadb_lifetime_addtime) {
1013 d = candidate;
1014 candidate = sav;
1015 } else
1016 d = sav;
1017
1018 /*
1019 * prepared to delete the SA when there is more
1020 * suitable candidate and the lifetime of the SA is not
1021 * permanent.
1022 */
1023 if (d->lft_c->sadb_lifetime_addtime != 0) {
1024 struct mbuf *m, *result = 0;
1025 uint8_t satype;
1026
1027 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1028
1029 KASSERT(d->refcnt > 0);
1030
1031 satype = key_proto2satype(d->sah->saidx.proto);
1032 if (satype == 0)
1033 goto msgfail;
1034
1035 m = key_setsadbmsg(SADB_DELETE, 0,
1036 satype, 0, 0, d->refcnt - 1);
1037 if (!m)
1038 goto msgfail;
1039 result = m;
1040
1041 /* set sadb_address for saidx's. */
1042 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1043 &d->sah->saidx.src.sa,
1044 d->sah->saidx.src.sa.sa_len << 3,
1045 IPSEC_ULPROTO_ANY);
1046 if (!m)
1047 goto msgfail;
1048 m_cat(result, m);
1049
1050 /* set sadb_address for saidx's. */
1051 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1052 &d->sah->saidx.src.sa,
1053 d->sah->saidx.src.sa.sa_len << 3,
1054 IPSEC_ULPROTO_ANY);
1055 if (!m)
1056 goto msgfail;
1057 m_cat(result, m);
1058
1059 /* create SA extension */
1060 m = key_setsadbsa(d);
1061 if (!m)
1062 goto msgfail;
1063 m_cat(result, m);
1064
1065 if (result->m_len < sizeof(struct sadb_msg)) {
1066 result = m_pullup(result,
1067 sizeof(struct sadb_msg));
1068 if (result == NULL)
1069 goto msgfail;
1070 }
1071
1072 result->m_pkthdr.len = 0;
1073 for (m = result; m; m = m->m_next)
1074 result->m_pkthdr.len += m->m_len;
1075 mtod(result, struct sadb_msg *)->sadb_msg_len =
1076 PFKEY_UNIT64(result->m_pkthdr.len);
1077
1078 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1079 result = 0;
1080 msgfail:
1081 if (result)
1082 m_freem(result);
1083 KEY_FREESAV(&d);
1084 }
1085 }
1086
1087 if (candidate) {
1088 SA_ADDREF(candidate);
1089 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1090 "DP cause refcnt++:%d SA:%p\n",
1091 candidate->refcnt, candidate);
1092 }
1093 return candidate;
1094 }
1095
1096 /*
1097 * allocating a usable SA entry for a *INBOUND* packet.
1098 * Must call key_freesav() later.
1099 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1100 * NULL: not found, or error occurred.
1101 *
1102 * In the comparison, no source address is used--for RFC2401 conformance.
1103 * To quote, from section 4.1:
1104 * A security association is uniquely identified by a triple consisting
1105 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1106 * security protocol (AH or ESP) identifier.
1107 * Note that, however, we do need to keep source address in IPsec SA.
1108 * IKE specification and PF_KEY specification do assume that we
1109 * keep source address in IPsec SA. We see a tricky situation here.
1110 *
1111 * sport and dport are used for NAT-T. network order is always used.
1112 */
1113 struct secasvar *
1114 key_allocsa(
1115 const union sockaddr_union *dst,
1116 u_int proto,
1117 u_int32_t spi,
1118 u_int16_t sport,
1119 u_int16_t dport,
1120 const char* where, int tag)
1121 {
1122 struct secashead *sah;
1123 struct secasvar *sav;
1124 u_int stateidx, state;
1125 const u_int *saorder_state_valid;
1126 int arraysize, chkport;
1127 int s;
1128
1129 int must_check_spi = 1;
1130 int must_check_alg = 0;
1131 u_int16_t cpi = 0;
1132 u_int8_t algo = 0;
1133
1134 if ((sport != 0) && (dport != 0))
1135 chkport = PORT_STRICT;
1136 else
1137 chkport = PORT_NONE;
1138
1139 KASSERT(dst != NULL);
1140
1141 /*
1142 * XXX IPCOMP case
1143 * We use cpi to define spi here. In the case where cpi <=
1144 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1145 * the real spi. In this case, don't check the spi but check the
1146 * algorithm
1147 */
1148
1149 if (proto == IPPROTO_IPCOMP) {
1150 u_int32_t tmp;
1151 tmp = ntohl(spi);
1152 cpi = (u_int16_t) tmp;
1153 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1154 algo = (u_int8_t) cpi;
1155 must_check_spi = 0;
1156 must_check_alg = 1;
1157 }
1158 }
1159 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1160 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1161 where, tag, must_check_spi, must_check_alg);
1162
1163
1164 /*
1165 * searching SAD.
1166 * XXX: to be checked internal IP header somewhere. Also when
1167 * IPsec tunnel packet is received. But ESP tunnel mode is
1168 * encrypted so we can't check internal IP header.
1169 */
1170 s = splsoftnet(); /*called from softclock()*/
1171 if (key_prefered_oldsa) {
1172 saorder_state_valid = saorder_state_valid_prefer_old;
1173 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1174 } else {
1175 saorder_state_valid = saorder_state_valid_prefer_new;
1176 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1177 }
1178 LIST_FOREACH(sah, &sahtree, chain) {
1179 /* search valid state */
1180 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1181 state = saorder_state_valid[stateidx];
1182 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1183 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1184 "try match spi %#x, %#x\n",
1185 ntohl(spi), ntohl(sav->spi));
1186 /* sanity check */
1187 KEY_CHKSASTATE(sav->state, state);
1188 /* do not return entries w/ unusable state */
1189 if (sav->state != SADB_SASTATE_MATURE &&
1190 sav->state != SADB_SASTATE_DYING) {
1191 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1192 "bad state %d\n", sav->state);
1193 continue;
1194 }
1195 if (proto != sav->sah->saidx.proto) {
1196 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1197 "proto fail %d != %d\n",
1198 proto, sav->sah->saidx.proto);
1199 continue;
1200 }
1201 if (must_check_spi && spi != sav->spi) {
1202 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1203 "spi fail %#x != %#x\n",
1204 ntohl(spi), ntohl(sav->spi));
1205 continue;
1206 }
1207 /* XXX only on the ipcomp case */
1208 if (must_check_alg && algo != sav->alg_comp) {
1209 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1210 "algo fail %d != %d\n",
1211 algo, sav->alg_comp);
1212 continue;
1213 }
1214
1215 #if 0 /* don't check src */
1216 /* Fix port in src->sa */
1217
1218 /* check src address */
1219 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1220 continue;
1221 #endif
1222 /* fix port of dst address XXX*/
1223 key_porttosaddr(__UNCONST(dst), dport);
1224 /* check dst address */
1225 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1226 continue;
1227 SA_ADDREF2(sav, where, tag);
1228 goto done;
1229 }
1230 }
1231 }
1232 sav = NULL;
1233 done:
1234 splx(s);
1235
1236 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1237 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1238 return sav;
1239 }
1240
1241 void
1242 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1243 {
1244
1245 SP_ADDREF2(sp, where, tag);
1246
1247 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1248 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1249 sp, sp->id, where, tag, sp->refcnt);
1250 }
1251
1252 /*
1253 * Must be called after calling key_allocsp().
1254 * For both the packet without socket and key_freeso().
1255 */
1256 void
1257 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1258 {
1259 struct secpolicy *sp = *spp;
1260 unsigned int nv;
1261
1262 KASSERT(sp != NULL);
1263
1264 SP_DELREF2(sp, nv, where, tag);
1265
1266 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1267 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1268 sp, sp->id, where, tag, nv);
1269
1270 if (nv == 0) {
1271 *spp = NULL;
1272 key_delsp(sp);
1273 }
1274 }
1275
1276 #if 0
1277 /*
1278 * Must be called after calling key_allocsp().
1279 * For the packet with socket.
1280 */
1281 static void
1282 key_freeso(struct socket *so)
1283 {
1284 /* sanity check */
1285 KASSERT(so != NULL);
1286
1287 switch (so->so_proto->pr_domain->dom_family) {
1288 #ifdef INET
1289 case PF_INET:
1290 {
1291 struct inpcb *pcb = sotoinpcb(so);
1292
1293 /* Does it have a PCB ? */
1294 if (pcb == NULL)
1295 return;
1296
1297 struct inpcbpolicy *sp = pcb->inp_sp;
1298 key_freesp_so(&sp->sp_in);
1299 key_freesp_so(&sp->sp_out);
1300 }
1301 break;
1302 #endif
1303 #ifdef INET6
1304 case PF_INET6:
1305 {
1306 #ifdef HAVE_NRL_INPCB
1307 struct inpcb *pcb = sotoinpcb(so);
1308 struct inpcbpolicy *sp = pcb->inp_sp;
1309
1310 /* Does it have a PCB ? */
1311 if (pcb == NULL)
1312 return;
1313 key_freesp_so(&sp->sp_in);
1314 key_freesp_so(&sp->sp_out);
1315 #else
1316 struct in6pcb *pcb = sotoin6pcb(so);
1317
1318 /* Does it have a PCB ? */
1319 if (pcb == NULL)
1320 return;
1321 key_freesp_so(&pcb->in6p_sp->sp_in);
1322 key_freesp_so(&pcb->in6p_sp->sp_out);
1323 #endif
1324 }
1325 break;
1326 #endif /* INET6 */
1327 default:
1328 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1329 so->so_proto->pr_domain->dom_family);
1330 return;
1331 }
1332 }
1333
1334 static void
1335 key_freesp_so(struct secpolicy **sp)
1336 {
1337
1338 KASSERT(sp != NULL);
1339 KASSERT(*sp != NULL);
1340
1341 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1342 (*sp)->policy == IPSEC_POLICY_BYPASS)
1343 return;
1344
1345 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1346 "invalid policy %u", (*sp)->policy);
1347 KEY_FREESP(sp);
1348 }
1349 #endif
1350
1351 /*
1352 * Must be called after calling key_allocsa().
1353 * This function is called by key_freesp() to free some SA allocated
1354 * for a policy.
1355 */
1356 void
1357 key_freesav(struct secasvar **psav, const char* where, int tag)
1358 {
1359 struct secasvar *sav = *psav;
1360 unsigned int nv;
1361
1362 KASSERT(sav != NULL);
1363
1364 SA_DELREF2(sav, nv, where, tag);
1365
1366 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1367 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1368 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1369
1370 if (nv == 0) {
1371 *psav = NULL;
1372 key_delsav(sav);
1373 }
1374 }
1375
1376 /* %%% SPD management */
1377 /*
1378 * free security policy entry.
1379 */
1380 static void
1381 key_delsp(struct secpolicy *sp)
1382 {
1383 int s;
1384
1385 KASSERT(sp != NULL);
1386
1387 key_sp_dead(sp);
1388
1389 KASSERTMSG(sp->refcnt == 0,
1390 "SP with references deleted (refcnt %u)", sp->refcnt);
1391
1392 s = splsoftnet(); /*called from softclock()*/
1393
1394 {
1395 struct ipsecrequest *isr = sp->req, *nextisr;
1396
1397 while (isr != NULL) {
1398 if (isr->sav != NULL) {
1399 KEY_FREESAV(&isr->sav);
1400 isr->sav = NULL;
1401 }
1402
1403 nextisr = isr->next;
1404 kmem_intr_free(isr, sizeof(*isr));
1405 isr = nextisr;
1406 }
1407 }
1408
1409 kmem_intr_free(sp, sizeof(*sp));
1410
1411 splx(s);
1412 }
1413
1414 /*
1415 * search SPD
1416 * OUT: NULL : not found
1417 * others : found, pointer to a SP.
1418 */
1419 static struct secpolicy *
1420 key_getsp(const struct secpolicyindex *spidx)
1421 {
1422 struct secpolicy *sp;
1423
1424 KASSERT(spidx != NULL);
1425
1426 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1427 if (sp->state == IPSEC_SPSTATE_DEAD)
1428 continue;
1429 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1430 SP_ADDREF(sp);
1431 return sp;
1432 }
1433 }
1434
1435 return NULL;
1436 }
1437
1438 /*
1439 * get SP by index.
1440 * OUT: NULL : not found
1441 * others : found, pointer to a SP.
1442 */
1443 static struct secpolicy *
1444 key_getspbyid(u_int32_t id)
1445 {
1446 struct secpolicy *sp;
1447
1448 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1449 if (sp->state == IPSEC_SPSTATE_DEAD)
1450 continue;
1451 if (sp->id == id) {
1452 SP_ADDREF(sp);
1453 return sp;
1454 }
1455 }
1456
1457 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1458 if (sp->state == IPSEC_SPSTATE_DEAD)
1459 continue;
1460 if (sp->id == id) {
1461 SP_ADDREF(sp);
1462 return sp;
1463 }
1464 }
1465
1466 return NULL;
1467 }
1468
1469 struct secpolicy *
1470 key_newsp(const char* where, int tag)
1471 {
1472 struct secpolicy *newsp = NULL;
1473
1474 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1475 if (newsp != NULL)
1476 newsp->refcnt = 1;
1477
1478 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1479 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1480 return newsp;
1481 }
1482
1483 /*
1484 * create secpolicy structure from sadb_x_policy structure.
1485 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1486 * so must be set properly later.
1487 */
1488 struct secpolicy *
1489 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1490 {
1491 struct secpolicy *newsp;
1492
1493 KASSERT(!cpu_softintr_p());
1494 KASSERT(xpl0 != NULL);
1495 KASSERT(len >= sizeof(*xpl0));
1496
1497 if (len != PFKEY_EXTLEN(xpl0)) {
1498 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1499 *error = EINVAL;
1500 return NULL;
1501 }
1502
1503 newsp = KEY_NEWSP();
1504 if (newsp == NULL) {
1505 *error = ENOBUFS;
1506 return NULL;
1507 }
1508
1509 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1510 newsp->policy = xpl0->sadb_x_policy_type;
1511
1512 /* check policy */
1513 switch (xpl0->sadb_x_policy_type) {
1514 case IPSEC_POLICY_DISCARD:
1515 case IPSEC_POLICY_NONE:
1516 case IPSEC_POLICY_ENTRUST:
1517 case IPSEC_POLICY_BYPASS:
1518 newsp->req = NULL;
1519 *error = 0;
1520 return newsp;
1521
1522 case IPSEC_POLICY_IPSEC:
1523 /* Continued */
1524 break;
1525 default:
1526 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1527 KEY_FREESP(&newsp);
1528 *error = EINVAL;
1529 return NULL;
1530 }
1531
1532 /* IPSEC_POLICY_IPSEC */
1533 {
1534 int tlen;
1535 const struct sadb_x_ipsecrequest *xisr;
1536 uint16_t xisr_reqid;
1537 struct ipsecrequest **p_isr = &newsp->req;
1538
1539 /* validity check */
1540 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1541 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1542 *error = EINVAL;
1543 goto free_exit;
1544 }
1545
1546 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1547 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1548
1549 while (tlen > 0) {
1550 /* length check */
1551 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1552 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1553 *error = EINVAL;
1554 goto free_exit;
1555 }
1556
1557 /* allocate request buffer */
1558 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1559
1560 /* set values */
1561 (*p_isr)->next = NULL;
1562
1563 switch (xisr->sadb_x_ipsecrequest_proto) {
1564 case IPPROTO_ESP:
1565 case IPPROTO_AH:
1566 case IPPROTO_IPCOMP:
1567 break;
1568 default:
1569 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1570 xisr->sadb_x_ipsecrequest_proto);
1571 *error = EPROTONOSUPPORT;
1572 goto free_exit;
1573 }
1574 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1575
1576 switch (xisr->sadb_x_ipsecrequest_mode) {
1577 case IPSEC_MODE_TRANSPORT:
1578 case IPSEC_MODE_TUNNEL:
1579 break;
1580 case IPSEC_MODE_ANY:
1581 default:
1582 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1583 xisr->sadb_x_ipsecrequest_mode);
1584 *error = EINVAL;
1585 goto free_exit;
1586 }
1587 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1588
1589 switch (xisr->sadb_x_ipsecrequest_level) {
1590 case IPSEC_LEVEL_DEFAULT:
1591 case IPSEC_LEVEL_USE:
1592 case IPSEC_LEVEL_REQUIRE:
1593 break;
1594 case IPSEC_LEVEL_UNIQUE:
1595 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1596 /* validity check */
1597 /*
1598 * If range violation of reqid, kernel will
1599 * update it, don't refuse it.
1600 */
1601 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1602 IPSECLOG(LOG_DEBUG,
1603 "reqid=%d range "
1604 "violation, updated by kernel.\n",
1605 xisr_reqid);
1606 xisr_reqid = 0;
1607 }
1608
1609 /* allocate new reqid id if reqid is zero. */
1610 if (xisr_reqid == 0) {
1611 u_int16_t reqid = key_newreqid();
1612 if (reqid == 0) {
1613 *error = ENOBUFS;
1614 goto free_exit;
1615 }
1616 (*p_isr)->saidx.reqid = reqid;
1617 } else {
1618 /* set it for manual keying. */
1619 (*p_isr)->saidx.reqid = xisr_reqid;
1620 }
1621 break;
1622
1623 default:
1624 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1625 xisr->sadb_x_ipsecrequest_level);
1626 *error = EINVAL;
1627 goto free_exit;
1628 }
1629 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1630
1631 /* set IP addresses if there */
1632 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1633 const struct sockaddr *paddr;
1634
1635 paddr = (const struct sockaddr *)(xisr + 1);
1636
1637 /* validity check */
1638 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1639 IPSECLOG(LOG_DEBUG, "invalid request "
1640 "address length.\n");
1641 *error = EINVAL;
1642 goto free_exit;
1643 }
1644 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1645
1646 paddr = (const struct sockaddr *)((const char *)paddr
1647 + paddr->sa_len);
1648
1649 /* validity check */
1650 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1651 IPSECLOG(LOG_DEBUG, "invalid request "
1652 "address length.\n");
1653 *error = EINVAL;
1654 goto free_exit;
1655 }
1656 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1657 }
1658
1659 (*p_isr)->sav = NULL;
1660 (*p_isr)->sp = newsp;
1661
1662 /* initialization for the next. */
1663 p_isr = &(*p_isr)->next;
1664 tlen -= xisr->sadb_x_ipsecrequest_len;
1665
1666 /* validity check */
1667 if (tlen < 0) {
1668 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1669 *error = EINVAL;
1670 goto free_exit;
1671 }
1672
1673 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1674 xisr->sadb_x_ipsecrequest_len);
1675 }
1676 }
1677
1678 *error = 0;
1679 return newsp;
1680
1681 free_exit:
1682 KEY_FREESP(&newsp);
1683 return NULL;
1684 }
1685
1686 static u_int16_t
1687 key_newreqid(void)
1688 {
1689 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1690
1691 auto_reqid = (auto_reqid == 0xffff ?
1692 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1693
1694 /* XXX should be unique check */
1695
1696 return auto_reqid;
1697 }
1698
1699 /*
1700 * copy secpolicy struct to sadb_x_policy structure indicated.
1701 */
1702 struct mbuf *
1703 key_sp2msg(const struct secpolicy *sp)
1704 {
1705 struct sadb_x_policy *xpl;
1706 int tlen;
1707 char *p;
1708 struct mbuf *m;
1709
1710 KASSERT(sp != NULL);
1711
1712 tlen = key_getspreqmsglen(sp);
1713
1714 m = key_alloc_mbuf(tlen);
1715 if (!m || m->m_next) { /*XXX*/
1716 if (m)
1717 m_freem(m);
1718 return NULL;
1719 }
1720
1721 m->m_len = tlen;
1722 m->m_next = NULL;
1723 xpl = mtod(m, struct sadb_x_policy *);
1724 memset(xpl, 0, tlen);
1725
1726 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1727 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1728 xpl->sadb_x_policy_type = sp->policy;
1729 xpl->sadb_x_policy_dir = sp->spidx.dir;
1730 xpl->sadb_x_policy_id = sp->id;
1731 p = (char *)xpl + sizeof(*xpl);
1732
1733 /* if is the policy for ipsec ? */
1734 if (sp->policy == IPSEC_POLICY_IPSEC) {
1735 struct sadb_x_ipsecrequest *xisr;
1736 struct ipsecrequest *isr;
1737
1738 for (isr = sp->req; isr != NULL; isr = isr->next) {
1739
1740 xisr = (struct sadb_x_ipsecrequest *)p;
1741
1742 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1743 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1744 xisr->sadb_x_ipsecrequest_level = isr->level;
1745 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1746
1747 p += sizeof(*xisr);
1748 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1749 p += isr->saidx.src.sa.sa_len;
1750 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1751 p += isr->saidx.src.sa.sa_len;
1752
1753 xisr->sadb_x_ipsecrequest_len =
1754 PFKEY_ALIGN8(sizeof(*xisr)
1755 + isr->saidx.src.sa.sa_len
1756 + isr->saidx.dst.sa.sa_len);
1757 }
1758 }
1759
1760 return m;
1761 }
1762
1763 /* m will not be freed nor modified */
1764 static struct mbuf *
1765 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1766 int ndeep, int nitem, ...)
1767 {
1768 va_list ap;
1769 int idx;
1770 int i;
1771 struct mbuf *result = NULL, *n;
1772 int len;
1773
1774 KASSERT(m != NULL);
1775 KASSERT(mhp != NULL);
1776
1777 va_start(ap, nitem);
1778 for (i = 0; i < nitem; i++) {
1779 idx = va_arg(ap, int);
1780 if (idx < 0 || idx > SADB_EXT_MAX)
1781 goto fail;
1782 /* don't attempt to pull empty extension */
1783 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1784 continue;
1785 if (idx != SADB_EXT_RESERVED &&
1786 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1787 continue;
1788
1789 if (idx == SADB_EXT_RESERVED) {
1790 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1791 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1792 MGETHDR(n, M_DONTWAIT, MT_DATA);
1793 if (!n)
1794 goto fail;
1795 n->m_len = len;
1796 n->m_next = NULL;
1797 m_copydata(m, 0, sizeof(struct sadb_msg),
1798 mtod(n, void *));
1799 } else if (i < ndeep) {
1800 len = mhp->extlen[idx];
1801 n = key_alloc_mbuf(len);
1802 if (!n || n->m_next) { /*XXX*/
1803 if (n)
1804 m_freem(n);
1805 goto fail;
1806 }
1807 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1808 mtod(n, void *));
1809 } else {
1810 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1811 M_DONTWAIT);
1812 }
1813 if (n == NULL)
1814 goto fail;
1815
1816 if (result)
1817 m_cat(result, n);
1818 else
1819 result = n;
1820 }
1821 va_end(ap);
1822
1823 if (result && (result->m_flags & M_PKTHDR) != 0) {
1824 result->m_pkthdr.len = 0;
1825 for (n = result; n; n = n->m_next)
1826 result->m_pkthdr.len += n->m_len;
1827 }
1828
1829 return result;
1830
1831 fail:
1832 va_end(ap);
1833 m_freem(result);
1834 return NULL;
1835 }
1836
1837 /*
1838 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1839 * add an entry to SP database, when received
1840 * <base, address(SD), (lifetime(H),) policy>
1841 * from the user(?).
1842 * Adding to SP database,
1843 * and send
1844 * <base, address(SD), (lifetime(H),) policy>
1845 * to the socket which was send.
1846 *
1847 * SPDADD set a unique policy entry.
1848 * SPDSETIDX like SPDADD without a part of policy requests.
1849 * SPDUPDATE replace a unique policy entry.
1850 *
1851 * m will always be freed.
1852 */
1853 static int
1854 key_spdadd(struct socket *so, struct mbuf *m,
1855 const struct sadb_msghdr *mhp)
1856 {
1857 const struct sadb_address *src0, *dst0;
1858 const struct sadb_x_policy *xpl0;
1859 struct sadb_x_policy *xpl;
1860 const struct sadb_lifetime *lft = NULL;
1861 struct secpolicyindex spidx;
1862 struct secpolicy *newsp;
1863 int error;
1864
1865 KASSERT(!cpu_softintr_p());
1866 KASSERT(so != NULL);
1867 KASSERT(m != NULL);
1868 KASSERT(mhp != NULL);
1869 KASSERT(mhp->msg != NULL);
1870
1871 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1872 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1873 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1874 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1875 return key_senderror(so, m, EINVAL);
1876 }
1877 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1878 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1879 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1880 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1881 return key_senderror(so, m, EINVAL);
1882 }
1883 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1884 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1885 sizeof(struct sadb_lifetime)) {
1886 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1887 return key_senderror(so, m, EINVAL);
1888 }
1889 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1890 }
1891
1892 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1893 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1894 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1895
1896 /* make secindex */
1897 /* XXX boundary check against sa_len */
1898 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1899 src0 + 1,
1900 dst0 + 1,
1901 src0->sadb_address_prefixlen,
1902 dst0->sadb_address_prefixlen,
1903 src0->sadb_address_proto,
1904 &spidx);
1905
1906 /* checking the direciton. */
1907 switch (xpl0->sadb_x_policy_dir) {
1908 case IPSEC_DIR_INBOUND:
1909 case IPSEC_DIR_OUTBOUND:
1910 break;
1911 default:
1912 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1913 return key_senderror(so, m, EINVAL);
1914 }
1915
1916 /* check policy */
1917 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1918 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1919 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1920 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1921 return key_senderror(so, m, EINVAL);
1922 }
1923
1924 /* policy requests are mandatory when action is ipsec. */
1925 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1926 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1927 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1928 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1929 return key_senderror(so, m, EINVAL);
1930 }
1931
1932 /*
1933 * checking there is SP already or not.
1934 * SPDUPDATE doesn't depend on whether there is a SP or not.
1935 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1936 * then error.
1937 */
1938 newsp = key_getsp(&spidx);
1939 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1940 if (newsp) {
1941 key_sp_dead(newsp);
1942 key_sp_unlink(newsp); /* XXX jrs ordering */
1943 KEY_FREESP(&newsp);
1944 newsp = NULL;
1945 }
1946 } else {
1947 if (newsp != NULL) {
1948 KEY_FREESP(&newsp);
1949 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1950 return key_senderror(so, m, EEXIST);
1951 }
1952 }
1953
1954 /* allocation new SP entry */
1955 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1956 if (newsp == NULL) {
1957 return key_senderror(so, m, error);
1958 }
1959
1960 newsp->id = key_getnewspid();
1961 if (newsp->id == 0) {
1962 kmem_free(newsp, sizeof(*newsp));
1963 return key_senderror(so, m, ENOBUFS);
1964 }
1965
1966 /* XXX boundary check against sa_len */
1967 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1968 src0 + 1,
1969 dst0 + 1,
1970 src0->sadb_address_prefixlen,
1971 dst0->sadb_address_prefixlen,
1972 src0->sadb_address_proto,
1973 &newsp->spidx);
1974
1975 /* sanity check on addr pair */
1976 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1977 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1978 kmem_free(newsp, sizeof(*newsp));
1979 return key_senderror(so, m, EINVAL);
1980 }
1981 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1982 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1983 kmem_free(newsp, sizeof(*newsp));
1984 return key_senderror(so, m, EINVAL);
1985 }
1986
1987 newsp->created = time_uptime;
1988 newsp->lastused = newsp->created;
1989 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1990 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1991
1992 newsp->refcnt = 1; /* do not reclaim until I say I do */
1993 newsp->state = IPSEC_SPSTATE_ALIVE;
1994 if (newsp->policy == IPSEC_POLICY_IPSEC)
1995 KASSERT(newsp->req != NULL);
1996 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1997
1998 #ifdef notyet
1999 /* delete the entry in spacqtree */
2000 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2001 struct secspacq *spacq = key_getspacq(&spidx);
2002 if (spacq != NULL) {
2003 /* reset counter in order to deletion by timehandler. */
2004 spacq->created = time_uptime;
2005 spacq->count = 0;
2006 }
2007 }
2008 #endif
2009
2010 /* Invalidate all cached SPD pointers in the PCBs. */
2011 ipsec_invalpcbcacheall();
2012
2013 #if defined(GATEWAY)
2014 /* Invalidate the ipflow cache, as well. */
2015 ipflow_invalidate_all(0);
2016 #ifdef INET6
2017 if (in6_present)
2018 ip6flow_invalidate_all(0);
2019 #endif /* INET6 */
2020 #endif /* GATEWAY */
2021
2022 {
2023 struct mbuf *n, *mpolicy;
2024 struct sadb_msg *newmsg;
2025 int off;
2026
2027 /* create new sadb_msg to reply. */
2028 if (lft) {
2029 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2030 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2031 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2032 } else {
2033 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2034 SADB_X_EXT_POLICY,
2035 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2036 }
2037 if (!n)
2038 return key_senderror(so, m, ENOBUFS);
2039
2040 if (n->m_len < sizeof(*newmsg)) {
2041 n = m_pullup(n, sizeof(*newmsg));
2042 if (!n)
2043 return key_senderror(so, m, ENOBUFS);
2044 }
2045 newmsg = mtod(n, struct sadb_msg *);
2046 newmsg->sadb_msg_errno = 0;
2047 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2048
2049 off = 0;
2050 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2051 sizeof(*xpl), &off);
2052 if (mpolicy == NULL) {
2053 /* n is already freed */
2054 return key_senderror(so, m, ENOBUFS);
2055 }
2056 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2057 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2058 m_freem(n);
2059 return key_senderror(so, m, EINVAL);
2060 }
2061 xpl->sadb_x_policy_id = newsp->id;
2062
2063 m_freem(m);
2064 key_update_used();
2065 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2066 }
2067 }
2068
2069 /*
2070 * get new policy id.
2071 * OUT:
2072 * 0: failure.
2073 * others: success.
2074 */
2075 static u_int32_t
2076 key_getnewspid(void)
2077 {
2078 u_int32_t newid = 0;
2079 int count = key_spi_trycnt; /* XXX */
2080 struct secpolicy *sp;
2081
2082 /* when requesting to allocate spi ranged */
2083 while (count--) {
2084 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2085
2086 sp = key_getspbyid(newid);
2087 if (sp == NULL)
2088 break;
2089
2090 KEY_FREESP(&sp);
2091 }
2092
2093 if (count == 0 || newid == 0) {
2094 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2095 return 0;
2096 }
2097
2098 return newid;
2099 }
2100
2101 /*
2102 * SADB_SPDDELETE processing
2103 * receive
2104 * <base, address(SD), policy(*)>
2105 * from the user(?), and set SADB_SASTATE_DEAD,
2106 * and send,
2107 * <base, address(SD), policy(*)>
2108 * to the ikmpd.
2109 * policy(*) including direction of policy.
2110 *
2111 * m will always be freed.
2112 */
2113 static int
2114 key_spddelete(struct socket *so, struct mbuf *m,
2115 const struct sadb_msghdr *mhp)
2116 {
2117 struct sadb_address *src0, *dst0;
2118 struct sadb_x_policy *xpl0;
2119 struct secpolicyindex spidx;
2120 struct secpolicy *sp;
2121
2122 KASSERT(so != NULL);
2123 KASSERT(m != NULL);
2124 KASSERT(mhp != NULL);
2125 KASSERT(mhp->msg != NULL);
2126
2127 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2128 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2129 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2130 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2131 return key_senderror(so, m, EINVAL);
2132 }
2133 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2134 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2135 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2136 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2137 return key_senderror(so, m, EINVAL);
2138 }
2139
2140 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2141 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2142 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2143
2144 /* make secindex */
2145 /* XXX boundary check against sa_len */
2146 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2147 src0 + 1,
2148 dst0 + 1,
2149 src0->sadb_address_prefixlen,
2150 dst0->sadb_address_prefixlen,
2151 src0->sadb_address_proto,
2152 &spidx);
2153
2154 /* checking the direciton. */
2155 switch (xpl0->sadb_x_policy_dir) {
2156 case IPSEC_DIR_INBOUND:
2157 case IPSEC_DIR_OUTBOUND:
2158 break;
2159 default:
2160 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2161 return key_senderror(so, m, EINVAL);
2162 }
2163
2164 /* Is there SP in SPD ? */
2165 sp = key_getsp(&spidx);
2166 if (sp == NULL) {
2167 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2168 return key_senderror(so, m, EINVAL);
2169 }
2170
2171 /* save policy id to buffer to be returned. */
2172 xpl0->sadb_x_policy_id = sp->id;
2173
2174 key_sp_dead(sp);
2175 key_sp_unlink(sp); /* XXX jrs ordering */
2176 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2177
2178 /* Invalidate all cached SPD pointers in the PCBs. */
2179 ipsec_invalpcbcacheall();
2180
2181 /* We're deleting policy; no need to invalidate the ipflow cache. */
2182
2183 {
2184 struct mbuf *n;
2185 struct sadb_msg *newmsg;
2186
2187 /* create new sadb_msg to reply. */
2188 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2189 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2190 if (!n)
2191 return key_senderror(so, m, ENOBUFS);
2192
2193 newmsg = mtod(n, struct sadb_msg *);
2194 newmsg->sadb_msg_errno = 0;
2195 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2196
2197 m_freem(m);
2198 key_update_used();
2199 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2200 }
2201 }
2202
2203 /*
2204 * SADB_SPDDELETE2 processing
2205 * receive
2206 * <base, policy(*)>
2207 * from the user(?), and set SADB_SASTATE_DEAD,
2208 * and send,
2209 * <base, policy(*)>
2210 * to the ikmpd.
2211 * policy(*) including direction of policy.
2212 *
2213 * m will always be freed.
2214 */
2215 static int
2216 key_spddelete2(struct socket *so, struct mbuf *m,
2217 const struct sadb_msghdr *mhp)
2218 {
2219 u_int32_t id;
2220 struct secpolicy *sp;
2221
2222 KASSERT(so != NULL);
2223 KASSERT(m != NULL);
2224 KASSERT(mhp != NULL);
2225 KASSERT(mhp->msg != NULL);
2226
2227 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2228 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2229 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2230 key_senderror(so, m, EINVAL);
2231 return 0;
2232 }
2233
2234 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2235
2236 /* Is there SP in SPD ? */
2237 sp = key_getspbyid(id);
2238 if (sp == NULL) {
2239 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2240 return key_senderror(so, m, EINVAL);
2241 }
2242
2243 key_sp_dead(sp);
2244 key_sp_unlink(sp); /* XXX jrs ordering */
2245 KEY_FREESP(&sp); /* ref gained by key_getsp */
2246 sp = NULL;
2247
2248 /* Invalidate all cached SPD pointers in the PCBs. */
2249 ipsec_invalpcbcacheall();
2250
2251 /* We're deleting policy; no need to invalidate the ipflow cache. */
2252
2253 {
2254 struct mbuf *n, *nn;
2255 struct sadb_msg *newmsg;
2256 int off, len;
2257
2258 /* create new sadb_msg to reply. */
2259 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2260
2261 if (len > MCLBYTES)
2262 return key_senderror(so, m, ENOBUFS);
2263 MGETHDR(n, M_DONTWAIT, MT_DATA);
2264 if (n && len > MHLEN) {
2265 MCLGET(n, M_DONTWAIT);
2266 if ((n->m_flags & M_EXT) == 0) {
2267 m_freem(n);
2268 n = NULL;
2269 }
2270 }
2271 if (!n)
2272 return key_senderror(so, m, ENOBUFS);
2273
2274 n->m_len = len;
2275 n->m_next = NULL;
2276 off = 0;
2277
2278 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2279 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2280
2281 KASSERTMSG(off == len, "length inconsistency");
2282
2283 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2284 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2285 if (!n->m_next) {
2286 m_freem(n);
2287 return key_senderror(so, m, ENOBUFS);
2288 }
2289
2290 n->m_pkthdr.len = 0;
2291 for (nn = n; nn; nn = nn->m_next)
2292 n->m_pkthdr.len += nn->m_len;
2293
2294 newmsg = mtod(n, struct sadb_msg *);
2295 newmsg->sadb_msg_errno = 0;
2296 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2297
2298 m_freem(m);
2299 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2300 }
2301 }
2302
2303 /*
2304 * SADB_X_GET processing
2305 * receive
2306 * <base, policy(*)>
2307 * from the user(?),
2308 * and send,
2309 * <base, address(SD), policy>
2310 * to the ikmpd.
2311 * policy(*) including direction of policy.
2312 *
2313 * m will always be freed.
2314 */
2315 static int
2316 key_spdget(struct socket *so, struct mbuf *m,
2317 const struct sadb_msghdr *mhp)
2318 {
2319 u_int32_t id;
2320 struct secpolicy *sp;
2321 struct mbuf *n;
2322
2323 KASSERT(so != NULL);
2324 KASSERT(m != NULL);
2325 KASSERT(mhp != NULL);
2326 KASSERT(mhp->msg != NULL);
2327
2328 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2329 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2330 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2331 return key_senderror(so, m, EINVAL);
2332 }
2333
2334 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2335
2336 /* Is there SP in SPD ? */
2337 sp = key_getspbyid(id);
2338 if (sp == NULL) {
2339 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2340 return key_senderror(so, m, ENOENT);
2341 }
2342
2343 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2344 mhp->msg->sadb_msg_pid);
2345 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2346 if (n != NULL) {
2347 m_freem(m);
2348 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2349 } else
2350 return key_senderror(so, m, ENOBUFS);
2351 }
2352
2353 #ifdef notyet
2354 /*
2355 * SADB_X_SPDACQUIRE processing.
2356 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2357 * send
2358 * <base, policy(*)>
2359 * to KMD, and expect to receive
2360 * <base> with SADB_X_SPDACQUIRE if error occurred,
2361 * or
2362 * <base, policy>
2363 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2364 * policy(*) is without policy requests.
2365 *
2366 * 0 : succeed
2367 * others: error number
2368 */
2369 int
2370 key_spdacquire(const struct secpolicy *sp)
2371 {
2372 struct mbuf *result = NULL, *m;
2373 struct secspacq *newspacq;
2374 int error;
2375
2376 KASSERT(sp != NULL);
2377 KASSERTMSG(sp->req == NULL, "called but there is request");
2378 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2379 "policy mismathed. IPsec is expected");
2380
2381 /* Get an entry to check whether sent message or not. */
2382 newspacq = key_getspacq(&sp->spidx);
2383 if (newspacq != NULL) {
2384 if (key_blockacq_count < newspacq->count) {
2385 /* reset counter and do send message. */
2386 newspacq->count = 0;
2387 } else {
2388 /* increment counter and do nothing. */
2389 newspacq->count++;
2390 return 0;
2391 }
2392 } else {
2393 /* make new entry for blocking to send SADB_ACQUIRE. */
2394 newspacq = key_newspacq(&sp->spidx);
2395 if (newspacq == NULL)
2396 return ENOBUFS;
2397
2398 /* add to acqtree */
2399 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2400 }
2401
2402 /* create new sadb_msg to reply. */
2403 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2404 if (!m) {
2405 error = ENOBUFS;
2406 goto fail;
2407 }
2408 result = m;
2409
2410 result->m_pkthdr.len = 0;
2411 for (m = result; m; m = m->m_next)
2412 result->m_pkthdr.len += m->m_len;
2413
2414 mtod(result, struct sadb_msg *)->sadb_msg_len =
2415 PFKEY_UNIT64(result->m_pkthdr.len);
2416
2417 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2418
2419 fail:
2420 if (result)
2421 m_freem(result);
2422 return error;
2423 }
2424 #endif /* notyet */
2425
2426 /*
2427 * SADB_SPDFLUSH processing
2428 * receive
2429 * <base>
2430 * from the user, and free all entries in secpctree.
2431 * and send,
2432 * <base>
2433 * to the user.
2434 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2435 *
2436 * m will always be freed.
2437 */
2438 static int
2439 key_spdflush(struct socket *so, struct mbuf *m,
2440 const struct sadb_msghdr *mhp)
2441 {
2442 struct sadb_msg *newmsg;
2443 struct secpolicy *sp;
2444 u_int dir;
2445
2446 KASSERT(so != NULL);
2447 KASSERT(m != NULL);
2448 KASSERT(mhp != NULL);
2449 KASSERT(mhp->msg != NULL);
2450
2451 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2452 return key_senderror(so, m, EINVAL);
2453
2454 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2455 struct secpolicy * nextsp;
2456 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2457 if (sp->state == IPSEC_SPSTATE_DEAD)
2458 continue;
2459 key_sp_dead(sp);
2460 key_sp_unlink(sp);
2461 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2462 continue;
2463 }
2464 }
2465
2466 /* Invalidate all cached SPD pointers in the PCBs. */
2467 ipsec_invalpcbcacheall();
2468
2469 /* We're deleting policy; no need to invalidate the ipflow cache. */
2470
2471 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2472 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2473 return key_senderror(so, m, ENOBUFS);
2474 }
2475
2476 if (m->m_next)
2477 m_freem(m->m_next);
2478 m->m_next = NULL;
2479 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2480 newmsg = mtod(m, struct sadb_msg *);
2481 newmsg->sadb_msg_errno = 0;
2482 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2483
2484 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2485 }
2486
2487 static struct sockaddr key_src = {
2488 .sa_len = 2,
2489 .sa_family = PF_KEY,
2490 };
2491
2492 static struct mbuf *
2493 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2494 {
2495 struct secpolicy *sp;
2496 int cnt;
2497 u_int dir;
2498 struct mbuf *m, *n, *prev;
2499 int totlen;
2500
2501 *lenp = 0;
2502
2503 /* search SPD entry and get buffer size. */
2504 cnt = 0;
2505 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2506 LIST_FOREACH(sp, &sptree[dir], chain) {
2507 cnt++;
2508 }
2509 }
2510
2511 if (cnt == 0) {
2512 *errorp = ENOENT;
2513 return (NULL);
2514 }
2515
2516 m = NULL;
2517 prev = m;
2518 totlen = 0;
2519 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2520 LIST_FOREACH(sp, &sptree[dir], chain) {
2521 --cnt;
2522 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2523
2524 if (!n) {
2525 *errorp = ENOBUFS;
2526 if (m)
2527 m_freem(m);
2528 return (NULL);
2529 }
2530
2531 totlen += n->m_pkthdr.len;
2532 if (!m) {
2533 m = n;
2534 } else {
2535 prev->m_nextpkt = n;
2536 }
2537 prev = n;
2538 }
2539 }
2540
2541 *lenp = totlen;
2542 *errorp = 0;
2543 return (m);
2544 }
2545
2546 /*
2547 * SADB_SPDDUMP processing
2548 * receive
2549 * <base>
2550 * from the user, and dump all SP leaves
2551 * and send,
2552 * <base> .....
2553 * to the ikmpd.
2554 *
2555 * m will always be freed.
2556 */
2557 static int
2558 key_spddump(struct socket *so, struct mbuf *m0,
2559 const struct sadb_msghdr *mhp)
2560 {
2561 struct mbuf *n;
2562 int error, len;
2563 int ok, s;
2564 pid_t pid;
2565
2566 KASSERT(so != NULL);
2567 KASSERT(m0 != NULL);
2568 KASSERT(mhp != NULL);
2569 KASSERT(mhp->msg != NULL);
2570
2571 pid = mhp->msg->sadb_msg_pid;
2572 /*
2573 * If the requestor has insufficient socket-buffer space
2574 * for the entire chain, nobody gets any response to the DUMP.
2575 * XXX For now, only the requestor ever gets anything.
2576 * Moreover, if the requestor has any space at all, they receive
2577 * the entire chain, otherwise the request is refused with ENOBUFS.
2578 */
2579 if (sbspace(&so->so_rcv) <= 0) {
2580 return key_senderror(so, m0, ENOBUFS);
2581 }
2582
2583 s = splsoftnet();
2584 n = key_setspddump_chain(&error, &len, pid);
2585 splx(s);
2586
2587 if (n == NULL) {
2588 return key_senderror(so, m0, ENOENT);
2589 }
2590 {
2591 uint64_t *ps = PFKEY_STAT_GETREF();
2592 ps[PFKEY_STAT_IN_TOTAL]++;
2593 ps[PFKEY_STAT_IN_BYTES] += len;
2594 PFKEY_STAT_PUTREF();
2595 }
2596
2597 /*
2598 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2599 * The requestor receives either the entire chain, or an
2600 * error message with ENOBUFS.
2601 */
2602
2603 /*
2604 * sbappendchainwith record takes the chain of entries, one
2605 * packet-record per SPD entry, prepends the key_src sockaddr
2606 * to each packet-record, links the sockaddr mbufs into a new
2607 * list of records, then appends the entire resulting
2608 * list to the requesting socket.
2609 */
2610 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2611 SB_PRIO_ONESHOT_OVERFLOW);
2612
2613 if (!ok) {
2614 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2615 m_freem(n);
2616 return key_senderror(so, m0, ENOBUFS);
2617 }
2618
2619 m_freem(m0);
2620 return error;
2621 }
2622
2623 /*
2624 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2625 */
2626 static int
2627 key_nat_map(struct socket *so, struct mbuf *m,
2628 const struct sadb_msghdr *mhp)
2629 {
2630 struct sadb_x_nat_t_type *type;
2631 struct sadb_x_nat_t_port *sport;
2632 struct sadb_x_nat_t_port *dport;
2633 struct sadb_address *iaddr, *raddr;
2634 struct sadb_x_nat_t_frag *frag;
2635
2636 KASSERT(so != NULL);
2637 KASSERT(m != NULL);
2638 KASSERT(mhp != NULL);
2639 KASSERT(mhp->msg != NULL);
2640
2641 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2642 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2643 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2644 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2645 return key_senderror(so, m, EINVAL);
2646 }
2647 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2648 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2649 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2650 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2651 return key_senderror(so, m, EINVAL);
2652 }
2653
2654 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2655 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2656 IPSECLOG(LOG_DEBUG, "invalid message\n");
2657 return key_senderror(so, m, EINVAL);
2658 }
2659
2660 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2661 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2662 IPSECLOG(LOG_DEBUG, "invalid message\n");
2663 return key_senderror(so, m, EINVAL);
2664 }
2665
2666 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2667 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2668 IPSECLOG(LOG_DEBUG, "invalid message\n");
2669 return key_senderror(so, m, EINVAL);
2670 }
2671
2672 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2673 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2674 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2675 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2676 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2677 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2678
2679 /*
2680 * XXX handle that, it should also contain a SA, or anything
2681 * that enable to update the SA information.
2682 */
2683
2684 return 0;
2685 }
2686
2687 static struct mbuf *
2688 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2689 {
2690 struct mbuf *result = NULL, *m;
2691
2692 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2693 if (!m)
2694 goto fail;
2695 result = m;
2696
2697 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2698 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2699 if (!m)
2700 goto fail;
2701 m_cat(result, m);
2702
2703 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2704 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2705 if (!m)
2706 goto fail;
2707 m_cat(result, m);
2708
2709 m = key_sp2msg(sp);
2710 if (!m)
2711 goto fail;
2712 m_cat(result, m);
2713
2714 if ((result->m_flags & M_PKTHDR) == 0)
2715 goto fail;
2716
2717 if (result->m_len < sizeof(struct sadb_msg)) {
2718 result = m_pullup(result, sizeof(struct sadb_msg));
2719 if (result == NULL)
2720 goto fail;
2721 }
2722
2723 result->m_pkthdr.len = 0;
2724 for (m = result; m; m = m->m_next)
2725 result->m_pkthdr.len += m->m_len;
2726
2727 mtod(result, struct sadb_msg *)->sadb_msg_len =
2728 PFKEY_UNIT64(result->m_pkthdr.len);
2729
2730 return result;
2731
2732 fail:
2733 m_freem(result);
2734 return NULL;
2735 }
2736
2737 /*
2738 * get PFKEY message length for security policy and request.
2739 */
2740 static u_int
2741 key_getspreqmsglen(const struct secpolicy *sp)
2742 {
2743 u_int tlen;
2744
2745 tlen = sizeof(struct sadb_x_policy);
2746
2747 /* if is the policy for ipsec ? */
2748 if (sp->policy != IPSEC_POLICY_IPSEC)
2749 return tlen;
2750
2751 /* get length of ipsec requests */
2752 {
2753 const struct ipsecrequest *isr;
2754 int len;
2755
2756 for (isr = sp->req; isr != NULL; isr = isr->next) {
2757 len = sizeof(struct sadb_x_ipsecrequest)
2758 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2759
2760 tlen += PFKEY_ALIGN8(len);
2761 }
2762 }
2763
2764 return tlen;
2765 }
2766
2767 /*
2768 * SADB_SPDEXPIRE processing
2769 * send
2770 * <base, address(SD), lifetime(CH), policy>
2771 * to KMD by PF_KEY.
2772 *
2773 * OUT: 0 : succeed
2774 * others : error number
2775 */
2776 static int
2777 key_spdexpire(struct secpolicy *sp)
2778 {
2779 int s;
2780 struct mbuf *result = NULL, *m;
2781 int len;
2782 int error = -1;
2783 struct sadb_lifetime *lt;
2784
2785 /* XXX: Why do we lock ? */
2786 s = splsoftnet(); /*called from softclock()*/
2787
2788 KASSERT(sp != NULL);
2789
2790 /* set msg header */
2791 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2792 if (!m) {
2793 error = ENOBUFS;
2794 goto fail;
2795 }
2796 result = m;
2797
2798 /* create lifetime extension (current and hard) */
2799 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2800 m = key_alloc_mbuf(len);
2801 if (!m || m->m_next) { /*XXX*/
2802 if (m)
2803 m_freem(m);
2804 error = ENOBUFS;
2805 goto fail;
2806 }
2807 memset(mtod(m, void *), 0, len);
2808 lt = mtod(m, struct sadb_lifetime *);
2809 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2810 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2811 lt->sadb_lifetime_allocations = 0;
2812 lt->sadb_lifetime_bytes = 0;
2813 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2814 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2815 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2816 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2817 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2818 lt->sadb_lifetime_allocations = 0;
2819 lt->sadb_lifetime_bytes = 0;
2820 lt->sadb_lifetime_addtime = sp->lifetime;
2821 lt->sadb_lifetime_usetime = sp->validtime;
2822 m_cat(result, m);
2823
2824 /* set sadb_address for source */
2825 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2826 sp->spidx.prefs, sp->spidx.ul_proto);
2827 if (!m) {
2828 error = ENOBUFS;
2829 goto fail;
2830 }
2831 m_cat(result, m);
2832
2833 /* set sadb_address for destination */
2834 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2835 sp->spidx.prefd, sp->spidx.ul_proto);
2836 if (!m) {
2837 error = ENOBUFS;
2838 goto fail;
2839 }
2840 m_cat(result, m);
2841
2842 /* set secpolicy */
2843 m = key_sp2msg(sp);
2844 if (!m) {
2845 error = ENOBUFS;
2846 goto fail;
2847 }
2848 m_cat(result, m);
2849
2850 if ((result->m_flags & M_PKTHDR) == 0) {
2851 error = EINVAL;
2852 goto fail;
2853 }
2854
2855 if (result->m_len < sizeof(struct sadb_msg)) {
2856 result = m_pullup(result, sizeof(struct sadb_msg));
2857 if (result == NULL) {
2858 error = ENOBUFS;
2859 goto fail;
2860 }
2861 }
2862
2863 result->m_pkthdr.len = 0;
2864 for (m = result; m; m = m->m_next)
2865 result->m_pkthdr.len += m->m_len;
2866
2867 mtod(result, struct sadb_msg *)->sadb_msg_len =
2868 PFKEY_UNIT64(result->m_pkthdr.len);
2869
2870 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2871
2872 fail:
2873 if (result)
2874 m_freem(result);
2875 splx(s);
2876 return error;
2877 }
2878
2879 /* %%% SAD management */
2880 /*
2881 * allocating a memory for new SA head, and copy from the values of mhp.
2882 * OUT: NULL : failure due to the lack of memory.
2883 * others : pointer to new SA head.
2884 */
2885 static struct secashead *
2886 key_newsah(const struct secasindex *saidx)
2887 {
2888 struct secashead *newsah;
2889 int i;
2890
2891 KASSERT(saidx != NULL);
2892
2893 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2894 for (i = 0; i < __arraycount(newsah->savtree); i++)
2895 LIST_INIT(&newsah->savtree[i]);
2896 newsah->saidx = *saidx;
2897
2898 /* add to saidxtree */
2899 newsah->state = SADB_SASTATE_MATURE;
2900 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2901
2902 return newsah;
2903 }
2904
2905 /*
2906 * delete SA index and all SA registerd.
2907 */
2908 static void
2909 key_delsah(struct secashead *sah)
2910 {
2911 struct secasvar *sav, *nextsav;
2912 u_int state;
2913 int s;
2914 int zombie = 0;
2915
2916 KASSERT(!cpu_softintr_p());
2917 KASSERT(sah != NULL);
2918
2919 s = splsoftnet();
2920
2921 /* searching all SA registerd in the secindex. */
2922 SASTATE_ANY_FOREACH(state) {
2923 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2924 if (sav->refcnt == 0) {
2925 /* sanity check */
2926 KEY_CHKSASTATE(state, sav->state);
2927 KEY_FREESAV(&sav);
2928 } else {
2929 /* give up to delete this sa */
2930 zombie++;
2931 }
2932 }
2933 }
2934
2935 /* don't delete sah only if there are savs. */
2936 if (zombie) {
2937 splx(s);
2938 return;
2939 }
2940
2941 rtcache_free(&sah->sa_route);
2942
2943 /* remove from tree of SA index */
2944 KASSERT(__LIST_CHAINED(sah));
2945 LIST_REMOVE(sah, chain);
2946
2947 if (sah->idents != NULL)
2948 kmem_free(sah->idents, sah->idents_len);
2949 if (sah->identd != NULL)
2950 kmem_free(sah->identd, sah->identd_len);
2951
2952 kmem_free(sah, sizeof(*sah));
2953
2954 splx(s);
2955 return;
2956 }
2957
2958 /*
2959 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2960 * and copy the values of mhp into new buffer.
2961 * When SAD message type is GETSPI:
2962 * to set sequence number from acq_seq++,
2963 * to set zero to SPI.
2964 * not to call key_setsava().
2965 * OUT: NULL : fail
2966 * others : pointer to new secasvar.
2967 *
2968 * does not modify mbuf. does not free mbuf on error.
2969 */
2970 static struct secasvar *
2971 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2972 struct secashead *sah, int *errp,
2973 const char* where, int tag)
2974 {
2975 struct secasvar *newsav;
2976 const struct sadb_sa *xsa;
2977
2978 KASSERT(!cpu_softintr_p());
2979 KASSERT(m != NULL);
2980 KASSERT(mhp != NULL);
2981 KASSERT(mhp->msg != NULL);
2982 KASSERT(sah != NULL);
2983
2984 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2985
2986 switch (mhp->msg->sadb_msg_type) {
2987 case SADB_GETSPI:
2988 newsav->spi = 0;
2989
2990 #ifdef IPSEC_DOSEQCHECK
2991 /* sync sequence number */
2992 if (mhp->msg->sadb_msg_seq == 0)
2993 newsav->seq =
2994 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2995 else
2996 #endif
2997 newsav->seq = mhp->msg->sadb_msg_seq;
2998 break;
2999
3000 case SADB_ADD:
3001 /* sanity check */
3002 if (mhp->ext[SADB_EXT_SA] == NULL) {
3003 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3004 *errp = EINVAL;
3005 goto error;
3006 }
3007 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3008 newsav->spi = xsa->sadb_sa_spi;
3009 newsav->seq = mhp->msg->sadb_msg_seq;
3010 break;
3011 default:
3012 *errp = EINVAL;
3013 goto error;
3014 }
3015
3016 /* copy sav values */
3017 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3018 *errp = key_setsaval(newsav, m, mhp);
3019 if (*errp)
3020 goto error;
3021 }
3022
3023 /* reset created */
3024 newsav->created = time_uptime;
3025 newsav->pid = mhp->msg->sadb_msg_pid;
3026
3027 /* add to satree */
3028 newsav->sah = sah;
3029 newsav->refcnt = 1;
3030 newsav->state = SADB_SASTATE_LARVAL;
3031 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3032 secasvar, chain);
3033 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3034 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3035 return newsav;
3036
3037 error:
3038 KASSERT(*errp != 0);
3039 kmem_free(newsav, sizeof(*newsav));
3040 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3041 "DP from %s:%u return SA:NULL\n", where, tag);
3042 return NULL;
3043 }
3044
3045 /*
3046 * free() SA variable entry.
3047 */
3048 static void
3049 key_delsav(struct secasvar *sav)
3050 {
3051
3052 KASSERT(sav != NULL);
3053 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3054
3055 /* remove from SA header */
3056 KASSERT(__LIST_CHAINED(sav));
3057 LIST_REMOVE(sav, chain);
3058
3059 /*
3060 * Cleanup xform state. Note that zeroize'ing causes the
3061 * keys to be cleared; otherwise we must do it ourself.
3062 */
3063 if (sav->tdb_xform != NULL) {
3064 sav->tdb_xform->xf_zeroize(sav);
3065 sav->tdb_xform = NULL;
3066 } else {
3067 if (sav->key_auth != NULL)
3068 explicit_memset(_KEYBUF(sav->key_auth), 0,
3069 _KEYLEN(sav->key_auth));
3070 if (sav->key_enc != NULL)
3071 explicit_memset(_KEYBUF(sav->key_enc), 0,
3072 _KEYLEN(sav->key_enc));
3073 }
3074
3075 key_freesaval(sav);
3076 kmem_intr_free(sav, sizeof(*sav));
3077
3078 return;
3079 }
3080
3081 /*
3082 * search SAD.
3083 * OUT:
3084 * NULL : not found
3085 * others : found, pointer to a SA.
3086 */
3087 static struct secashead *
3088 key_getsah(const struct secasindex *saidx)
3089 {
3090 struct secashead *sah;
3091
3092 LIST_FOREACH(sah, &sahtree, chain) {
3093 if (sah->state == SADB_SASTATE_DEAD)
3094 continue;
3095 if (key_saidx_match(&sah->saidx, saidx, CMP_REQID))
3096 return sah;
3097 }
3098
3099 return NULL;
3100 }
3101
3102 /*
3103 * check not to be duplicated SPI.
3104 * NOTE: this function is too slow due to searching all SAD.
3105 * OUT:
3106 * NULL : not found
3107 * others : found, pointer to a SA.
3108 */
3109 static struct secasvar *
3110 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3111 {
3112 struct secashead *sah;
3113 struct secasvar *sav;
3114
3115 /* check address family */
3116 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3117 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3118 return NULL;
3119 }
3120
3121 /* check all SAD */
3122 LIST_FOREACH(sah, &sahtree, chain) {
3123 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3124 continue;
3125 sav = key_getsavbyspi(sah, spi);
3126 if (sav != NULL)
3127 return sav;
3128 }
3129
3130 return NULL;
3131 }
3132
3133 /*
3134 * search SAD litmited alive SA, protocol, SPI.
3135 * OUT:
3136 * NULL : not found
3137 * others : found, pointer to a SA.
3138 */
3139 static struct secasvar *
3140 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3141 {
3142 struct secasvar *sav;
3143 u_int state;
3144
3145 /* search all status */
3146 SASTATE_ALIVE_FOREACH(state) {
3147 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3148
3149 /* sanity check */
3150 if (sav->state != state) {
3151 IPSECLOG(LOG_DEBUG,
3152 "invalid sav->state (queue: %d SA: %d)\n",
3153 state, sav->state);
3154 continue;
3155 }
3156
3157 if (sav->spi == spi)
3158 return sav;
3159 }
3160 }
3161
3162 return NULL;
3163 }
3164
3165 /*
3166 * Free allocated data to member variables of sav:
3167 * sav->replay, sav->key_* and sav->lft_*.
3168 */
3169 static void
3170 key_freesaval(struct secasvar *sav)
3171 {
3172
3173 if (sav->replay != NULL) {
3174 kmem_intr_free(sav->replay, sav->replay_len);
3175 sav->replay = NULL;
3176 sav->replay_len = 0;
3177 }
3178 if (sav->key_auth != NULL) {
3179 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3180 sav->key_auth = NULL;
3181 sav->key_auth_len = 0;
3182 }
3183 if (sav->key_enc != NULL) {
3184 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3185 sav->key_enc = NULL;
3186 sav->key_enc_len = 0;
3187 }
3188 if (sav->lft_c != NULL) {
3189 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3190 sav->lft_c = NULL;
3191 }
3192 if (sav->lft_h != NULL) {
3193 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3194 sav->lft_h = NULL;
3195 }
3196 if (sav->lft_s != NULL) {
3197 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3198 sav->lft_s = NULL;
3199 }
3200 }
3201
3202 /*
3203 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3204 * You must update these if need.
3205 * OUT: 0: success.
3206 * !0: failure.
3207 *
3208 * does not modify mbuf. does not free mbuf on error.
3209 */
3210 static int
3211 key_setsaval(struct secasvar *sav, struct mbuf *m,
3212 const struct sadb_msghdr *mhp)
3213 {
3214 int error = 0;
3215
3216 KASSERT(!cpu_softintr_p());
3217 KASSERT(m != NULL);
3218 KASSERT(mhp != NULL);
3219 KASSERT(mhp->msg != NULL);
3220
3221 /* initialization */
3222 key_freesaval(sav);
3223 sav->tdb_xform = NULL; /* transform */
3224 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3225 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3226 sav->tdb_compalgxform = NULL; /* compression algorithm */
3227 sav->natt_type = 0;
3228 sav->esp_frag = 0;
3229
3230 /* SA */
3231 if (mhp->ext[SADB_EXT_SA] != NULL) {
3232 const struct sadb_sa *sa0;
3233
3234 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3235 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3236 error = EINVAL;
3237 goto fail;
3238 }
3239
3240 sav->alg_auth = sa0->sadb_sa_auth;
3241 sav->alg_enc = sa0->sadb_sa_encrypt;
3242 sav->flags = sa0->sadb_sa_flags;
3243
3244 /* replay window */
3245 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3246 size_t len = sizeof(struct secreplay) +
3247 sa0->sadb_sa_replay;
3248 sav->replay = kmem_zalloc(len, KM_SLEEP);
3249 sav->replay_len = len;
3250 if (sa0->sadb_sa_replay != 0)
3251 sav->replay->bitmap = (char*)(sav->replay+1);
3252 sav->replay->wsize = sa0->sadb_sa_replay;
3253 }
3254 }
3255
3256 /* Authentication keys */
3257 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3258 const struct sadb_key *key0;
3259 int len;
3260
3261 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3262 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3263
3264 error = 0;
3265 if (len < sizeof(*key0)) {
3266 error = EINVAL;
3267 goto fail;
3268 }
3269 switch (mhp->msg->sadb_msg_satype) {
3270 case SADB_SATYPE_AH:
3271 case SADB_SATYPE_ESP:
3272 case SADB_X_SATYPE_TCPSIGNATURE:
3273 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3274 sav->alg_auth != SADB_X_AALG_NULL)
3275 error = EINVAL;
3276 break;
3277 case SADB_X_SATYPE_IPCOMP:
3278 default:
3279 error = EINVAL;
3280 break;
3281 }
3282 if (error) {
3283 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3284 goto fail;
3285 }
3286
3287 sav->key_auth = key_newbuf(key0, len);
3288 sav->key_auth_len = len;
3289 }
3290
3291 /* Encryption key */
3292 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3293 const struct sadb_key *key0;
3294 int len;
3295
3296 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3297 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3298
3299 error = 0;
3300 if (len < sizeof(*key0)) {
3301 error = EINVAL;
3302 goto fail;
3303 }
3304 switch (mhp->msg->sadb_msg_satype) {
3305 case SADB_SATYPE_ESP:
3306 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3307 sav->alg_enc != SADB_EALG_NULL) {
3308 error = EINVAL;
3309 break;
3310 }
3311 sav->key_enc = key_newbuf(key0, len);
3312 sav->key_enc_len = len;
3313 break;
3314 case SADB_X_SATYPE_IPCOMP:
3315 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3316 error = EINVAL;
3317 sav->key_enc = NULL; /*just in case*/
3318 break;
3319 case SADB_SATYPE_AH:
3320 case SADB_X_SATYPE_TCPSIGNATURE:
3321 default:
3322 error = EINVAL;
3323 break;
3324 }
3325 if (error) {
3326 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3327 goto fail;
3328 }
3329 }
3330
3331 /* set iv */
3332 sav->ivlen = 0;
3333
3334 switch (mhp->msg->sadb_msg_satype) {
3335 case SADB_SATYPE_AH:
3336 error = xform_init(sav, XF_AH);
3337 break;
3338 case SADB_SATYPE_ESP:
3339 error = xform_init(sav, XF_ESP);
3340 break;
3341 case SADB_X_SATYPE_IPCOMP:
3342 error = xform_init(sav, XF_IPCOMP);
3343 break;
3344 case SADB_X_SATYPE_TCPSIGNATURE:
3345 error = xform_init(sav, XF_TCPSIGNATURE);
3346 break;
3347 }
3348 if (error) {
3349 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3350 mhp->msg->sadb_msg_satype);
3351 goto fail;
3352 }
3353
3354 /* reset created */
3355 sav->created = time_uptime;
3356
3357 /* make lifetime for CURRENT */
3358 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3359
3360 sav->lft_c->sadb_lifetime_len =
3361 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3362 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3363 sav->lft_c->sadb_lifetime_allocations = 0;
3364 sav->lft_c->sadb_lifetime_bytes = 0;
3365 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3366 sav->lft_c->sadb_lifetime_usetime = 0;
3367
3368 /* lifetimes for HARD and SOFT */
3369 {
3370 const struct sadb_lifetime *lft0;
3371
3372 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3373 if (lft0 != NULL) {
3374 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3375 error = EINVAL;
3376 goto fail;
3377 }
3378 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3379 }
3380
3381 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3382 if (lft0 != NULL) {
3383 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3384 error = EINVAL;
3385 goto fail;
3386 }
3387 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3388 /* to be initialize ? */
3389 }
3390 }
3391
3392 return 0;
3393
3394 fail:
3395 /* initialization */
3396 key_freesaval(sav);
3397
3398 return error;
3399 }
3400
3401 /*
3402 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3403 * OUT: 0: valid
3404 * other: errno
3405 */
3406 static int
3407 key_mature(struct secasvar *sav)
3408 {
3409 int error;
3410
3411 /* check SPI value */
3412 switch (sav->sah->saidx.proto) {
3413 case IPPROTO_ESP:
3414 case IPPROTO_AH:
3415 if (ntohl(sav->spi) <= 255) {
3416 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3417 (u_int32_t)ntohl(sav->spi));
3418 return EINVAL;
3419 }
3420 break;
3421 }
3422
3423 /* check satype */
3424 switch (sav->sah->saidx.proto) {
3425 case IPPROTO_ESP:
3426 /* check flags */
3427 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3428 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3429 IPSECLOG(LOG_DEBUG,
3430 "invalid flag (derived) given to old-esp.\n");
3431 return EINVAL;
3432 }
3433 error = xform_init(sav, XF_ESP);
3434 break;
3435 case IPPROTO_AH:
3436 /* check flags */
3437 if (sav->flags & SADB_X_EXT_DERIV) {
3438 IPSECLOG(LOG_DEBUG,
3439 "invalid flag (derived) given to AH SA.\n");
3440 return EINVAL;
3441 }
3442 if (sav->alg_enc != SADB_EALG_NONE) {
3443 IPSECLOG(LOG_DEBUG,
3444 "protocol and algorithm mismated.\n");
3445 return(EINVAL);
3446 }
3447 error = xform_init(sav, XF_AH);
3448 break;
3449 case IPPROTO_IPCOMP:
3450 if (sav->alg_auth != SADB_AALG_NONE) {
3451 IPSECLOG(LOG_DEBUG,
3452 "protocol and algorithm mismated.\n");
3453 return(EINVAL);
3454 }
3455 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3456 && ntohl(sav->spi) >= 0x10000) {
3457 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3458 return(EINVAL);
3459 }
3460 error = xform_init(sav, XF_IPCOMP);
3461 break;
3462 case IPPROTO_TCP:
3463 if (sav->alg_enc != SADB_EALG_NONE) {
3464 IPSECLOG(LOG_DEBUG,
3465 "protocol and algorithm mismated.\n");
3466 return(EINVAL);
3467 }
3468 error = xform_init(sav, XF_TCPSIGNATURE);
3469 break;
3470 default:
3471 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3472 error = EPROTONOSUPPORT;
3473 break;
3474 }
3475 if (error == 0)
3476 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3477 return (error);
3478 }
3479
3480 /*
3481 * subroutine for SADB_GET and SADB_DUMP.
3482 */
3483 static struct mbuf *
3484 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3485 u_int32_t seq, u_int32_t pid)
3486 {
3487 struct mbuf *result = NULL, *tres = NULL, *m;
3488 int l = 0;
3489 int i;
3490 void *p;
3491 struct sadb_lifetime lt;
3492 int dumporder[] = {
3493 SADB_EXT_SA, SADB_X_EXT_SA2,
3494 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3495 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3496 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3497 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3498 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3499 SADB_X_EXT_NAT_T_TYPE,
3500 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3501 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3502 SADB_X_EXT_NAT_T_FRAG,
3503
3504 };
3505
3506 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3507 if (m == NULL)
3508 goto fail;
3509 result = m;
3510
3511 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3512 m = NULL;
3513 p = NULL;
3514 switch (dumporder[i]) {
3515 case SADB_EXT_SA:
3516 m = key_setsadbsa(sav);
3517 break;
3518
3519 case SADB_X_EXT_SA2:
3520 m = key_setsadbxsa2(sav->sah->saidx.mode,
3521 sav->replay ? sav->replay->count : 0,
3522 sav->sah->saidx.reqid);
3523 break;
3524
3525 case SADB_EXT_ADDRESS_SRC:
3526 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3527 &sav->sah->saidx.src.sa,
3528 FULLMASK, IPSEC_ULPROTO_ANY);
3529 break;
3530
3531 case SADB_EXT_ADDRESS_DST:
3532 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3533 &sav->sah->saidx.dst.sa,
3534 FULLMASK, IPSEC_ULPROTO_ANY);
3535 break;
3536
3537 case SADB_EXT_KEY_AUTH:
3538 if (!sav->key_auth)
3539 continue;
3540 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3541 p = sav->key_auth;
3542 break;
3543
3544 case SADB_EXT_KEY_ENCRYPT:
3545 if (!sav->key_enc)
3546 continue;
3547 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3548 p = sav->key_enc;
3549 break;
3550
3551 case SADB_EXT_LIFETIME_CURRENT:
3552 if (!sav->lft_c)
3553 continue;
3554 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3555 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3556 lt.sadb_lifetime_addtime += time_second - time_uptime;
3557 lt.sadb_lifetime_usetime += time_second - time_uptime;
3558 p = <
3559 break;
3560
3561 case SADB_EXT_LIFETIME_HARD:
3562 if (!sav->lft_h)
3563 continue;
3564 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3565 p = sav->lft_h;
3566 break;
3567
3568 case SADB_EXT_LIFETIME_SOFT:
3569 if (!sav->lft_s)
3570 continue;
3571 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3572 p = sav->lft_s;
3573 break;
3574
3575 case SADB_X_EXT_NAT_T_TYPE:
3576 m = key_setsadbxtype(sav->natt_type);
3577 break;
3578
3579 case SADB_X_EXT_NAT_T_DPORT:
3580 if (sav->natt_type == 0)
3581 continue;
3582 m = key_setsadbxport(
3583 key_portfromsaddr(&sav->sah->saidx.dst),
3584 SADB_X_EXT_NAT_T_DPORT);
3585 break;
3586
3587 case SADB_X_EXT_NAT_T_SPORT:
3588 if (sav->natt_type == 0)
3589 continue;
3590 m = key_setsadbxport(
3591 key_portfromsaddr(&sav->sah->saidx.src),
3592 SADB_X_EXT_NAT_T_SPORT);
3593 break;
3594
3595 case SADB_X_EXT_NAT_T_FRAG:
3596 /* don't send frag info if not set */
3597 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3598 continue;
3599 m = key_setsadbxfrag(sav->esp_frag);
3600 break;
3601
3602 case SADB_X_EXT_NAT_T_OAI:
3603 case SADB_X_EXT_NAT_T_OAR:
3604 continue;
3605
3606 case SADB_EXT_ADDRESS_PROXY:
3607 case SADB_EXT_IDENTITY_SRC:
3608 case SADB_EXT_IDENTITY_DST:
3609 /* XXX: should we brought from SPD ? */
3610 case SADB_EXT_SENSITIVITY:
3611 default:
3612 continue;
3613 }
3614
3615 KASSERT(!(m && p));
3616 if (!m && !p)
3617 goto fail;
3618 if (p && tres) {
3619 M_PREPEND(tres, l, M_DONTWAIT);
3620 if (!tres)
3621 goto fail;
3622 memcpy(mtod(tres, void *), p, l);
3623 continue;
3624 }
3625 if (p) {
3626 m = key_alloc_mbuf(l);
3627 if (!m)
3628 goto fail;
3629 m_copyback(m, 0, l, p);
3630 }
3631
3632 if (tres)
3633 m_cat(m, tres);
3634 tres = m;
3635 }
3636
3637 m_cat(result, tres);
3638 tres = NULL; /* avoid free on error below */
3639
3640 if (result->m_len < sizeof(struct sadb_msg)) {
3641 result = m_pullup(result, sizeof(struct sadb_msg));
3642 if (result == NULL)
3643 goto fail;
3644 }
3645
3646 result->m_pkthdr.len = 0;
3647 for (m = result; m; m = m->m_next)
3648 result->m_pkthdr.len += m->m_len;
3649
3650 mtod(result, struct sadb_msg *)->sadb_msg_len =
3651 PFKEY_UNIT64(result->m_pkthdr.len);
3652
3653 return result;
3654
3655 fail:
3656 m_freem(result);
3657 m_freem(tres);
3658 return NULL;
3659 }
3660
3661
3662 /*
3663 * set a type in sadb_x_nat_t_type
3664 */
3665 static struct mbuf *
3666 key_setsadbxtype(u_int16_t type)
3667 {
3668 struct mbuf *m;
3669 size_t len;
3670 struct sadb_x_nat_t_type *p;
3671
3672 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3673
3674 m = key_alloc_mbuf(len);
3675 if (!m || m->m_next) { /*XXX*/
3676 if (m)
3677 m_freem(m);
3678 return NULL;
3679 }
3680
3681 p = mtod(m, struct sadb_x_nat_t_type *);
3682
3683 memset(p, 0, len);
3684 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3685 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3686 p->sadb_x_nat_t_type_type = type;
3687
3688 return m;
3689 }
3690 /*
3691 * set a port in sadb_x_nat_t_port. port is in network order
3692 */
3693 static struct mbuf *
3694 key_setsadbxport(u_int16_t port, u_int16_t type)
3695 {
3696 struct mbuf *m;
3697 size_t len;
3698 struct sadb_x_nat_t_port *p;
3699
3700 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3701
3702 m = key_alloc_mbuf(len);
3703 if (!m || m->m_next) { /*XXX*/
3704 if (m)
3705 m_freem(m);
3706 return NULL;
3707 }
3708
3709 p = mtod(m, struct sadb_x_nat_t_port *);
3710
3711 memset(p, 0, len);
3712 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3713 p->sadb_x_nat_t_port_exttype = type;
3714 p->sadb_x_nat_t_port_port = port;
3715
3716 return m;
3717 }
3718
3719 /*
3720 * set fragmentation info in sadb_x_nat_t_frag
3721 */
3722 static struct mbuf *
3723 key_setsadbxfrag(u_int16_t flen)
3724 {
3725 struct mbuf *m;
3726 size_t len;
3727 struct sadb_x_nat_t_frag *p;
3728
3729 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3730
3731 m = key_alloc_mbuf(len);
3732 if (!m || m->m_next) { /*XXX*/
3733 if (m)
3734 m_freem(m);
3735 return NULL;
3736 }
3737
3738 p = mtod(m, struct sadb_x_nat_t_frag *);
3739
3740 memset(p, 0, len);
3741 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3742 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3743 p->sadb_x_nat_t_frag_fraglen = flen;
3744
3745 return m;
3746 }
3747
3748 /*
3749 * Get port from sockaddr, port is in network order
3750 */
3751 u_int16_t
3752 key_portfromsaddr(const union sockaddr_union *saddr)
3753 {
3754 u_int16_t port;
3755
3756 switch (saddr->sa.sa_family) {
3757 case AF_INET: {
3758 port = saddr->sin.sin_port;
3759 break;
3760 }
3761 #ifdef INET6
3762 case AF_INET6: {
3763 port = saddr->sin6.sin6_port;
3764 break;
3765 }
3766 #endif
3767 default:
3768 printf("%s: unexpected address family\n", __func__);
3769 port = 0;
3770 break;
3771 }
3772
3773 return port;
3774 }
3775
3776
3777 /*
3778 * Set port is struct sockaddr. port is in network order
3779 */
3780 static void
3781 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3782 {
3783 switch (saddr->sa.sa_family) {
3784 case AF_INET: {
3785 saddr->sin.sin_port = port;
3786 break;
3787 }
3788 #ifdef INET6
3789 case AF_INET6: {
3790 saddr->sin6.sin6_port = port;
3791 break;
3792 }
3793 #endif
3794 default:
3795 printf("%s: unexpected address family %d\n", __func__,
3796 saddr->sa.sa_family);
3797 break;
3798 }
3799
3800 return;
3801 }
3802
3803 /*
3804 * Safety check sa_len
3805 */
3806 static int
3807 key_checksalen(const union sockaddr_union *saddr)
3808 {
3809 switch (saddr->sa.sa_family) {
3810 case AF_INET:
3811 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3812 return -1;
3813 break;
3814 #ifdef INET6
3815 case AF_INET6:
3816 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3817 return -1;
3818 break;
3819 #endif
3820 default:
3821 printf("%s: unexpected sa_family %d\n", __func__,
3822 saddr->sa.sa_family);
3823 return -1;
3824 break;
3825 }
3826 return 0;
3827 }
3828
3829
3830 /*
3831 * set data into sadb_msg.
3832 */
3833 static struct mbuf *
3834 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3835 u_int32_t seq, pid_t pid, u_int16_t reserved)
3836 {
3837 struct mbuf *m;
3838 struct sadb_msg *p;
3839 int len;
3840
3841 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3842 if (len > MCLBYTES)
3843 return NULL;
3844 MGETHDR(m, M_DONTWAIT, MT_DATA);
3845 if (m && len > MHLEN) {
3846 MCLGET(m, M_DONTWAIT);
3847 if ((m->m_flags & M_EXT) == 0) {
3848 m_freem(m);
3849 m = NULL;
3850 }
3851 }
3852 if (!m)
3853 return NULL;
3854 m->m_pkthdr.len = m->m_len = len;
3855 m->m_next = NULL;
3856
3857 p = mtod(m, struct sadb_msg *);
3858
3859 memset(p, 0, len);
3860 p->sadb_msg_version = PF_KEY_V2;
3861 p->sadb_msg_type = type;
3862 p->sadb_msg_errno = 0;
3863 p->sadb_msg_satype = satype;
3864 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3865 p->sadb_msg_reserved = reserved;
3866 p->sadb_msg_seq = seq;
3867 p->sadb_msg_pid = (u_int32_t)pid;
3868
3869 return m;
3870 }
3871
3872 /*
3873 * copy secasvar data into sadb_address.
3874 */
3875 static struct mbuf *
3876 key_setsadbsa(struct secasvar *sav)
3877 {
3878 struct mbuf *m;
3879 struct sadb_sa *p;
3880 int len;
3881
3882 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3883 m = key_alloc_mbuf(len);
3884 if (!m || m->m_next) { /*XXX*/
3885 if (m)
3886 m_freem(m);
3887 return NULL;
3888 }
3889
3890 p = mtod(m, struct sadb_sa *);
3891
3892 memset(p, 0, len);
3893 p->sadb_sa_len = PFKEY_UNIT64(len);
3894 p->sadb_sa_exttype = SADB_EXT_SA;
3895 p->sadb_sa_spi = sav->spi;
3896 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3897 p->sadb_sa_state = sav->state;
3898 p->sadb_sa_auth = sav->alg_auth;
3899 p->sadb_sa_encrypt = sav->alg_enc;
3900 p->sadb_sa_flags = sav->flags;
3901
3902 return m;
3903 }
3904
3905 /*
3906 * set data into sadb_address.
3907 */
3908 static struct mbuf *
3909 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3910 u_int8_t prefixlen, u_int16_t ul_proto)
3911 {
3912 struct mbuf *m;
3913 struct sadb_address *p;
3914 size_t len;
3915
3916 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3917 PFKEY_ALIGN8(saddr->sa_len);
3918 m = key_alloc_mbuf(len);
3919 if (!m || m->m_next) { /*XXX*/
3920 if (m)
3921 m_freem(m);
3922 return NULL;
3923 }
3924
3925 p = mtod(m, struct sadb_address *);
3926
3927 memset(p, 0, len);
3928 p->sadb_address_len = PFKEY_UNIT64(len);
3929 p->sadb_address_exttype = exttype;
3930 p->sadb_address_proto = ul_proto;
3931 if (prefixlen == FULLMASK) {
3932 switch (saddr->sa_family) {
3933 case AF_INET:
3934 prefixlen = sizeof(struct in_addr) << 3;
3935 break;
3936 case AF_INET6:
3937 prefixlen = sizeof(struct in6_addr) << 3;
3938 break;
3939 default:
3940 ; /*XXX*/
3941 }
3942 }
3943 p->sadb_address_prefixlen = prefixlen;
3944 p->sadb_address_reserved = 0;
3945
3946 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3947 saddr, saddr->sa_len);
3948
3949 return m;
3950 }
3951
3952 #if 0
3953 /*
3954 * set data into sadb_ident.
3955 */
3956 static struct mbuf *
3957 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3958 void *string, int stringlen, u_int64_t id)
3959 {
3960 struct mbuf *m;
3961 struct sadb_ident *p;
3962 size_t len;
3963
3964 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3965 m = key_alloc_mbuf(len);
3966 if (!m || m->m_next) { /*XXX*/
3967 if (m)
3968 m_freem(m);
3969 return NULL;
3970 }
3971
3972 p = mtod(m, struct sadb_ident *);
3973
3974 memset(p, 0, len);
3975 p->sadb_ident_len = PFKEY_UNIT64(len);
3976 p->sadb_ident_exttype = exttype;
3977 p->sadb_ident_type = idtype;
3978 p->sadb_ident_reserved = 0;
3979 p->sadb_ident_id = id;
3980
3981 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3982 string, stringlen);
3983
3984 return m;
3985 }
3986 #endif
3987
3988 /*
3989 * set data into sadb_x_sa2.
3990 */
3991 static struct mbuf *
3992 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3993 {
3994 struct mbuf *m;
3995 struct sadb_x_sa2 *p;
3996 size_t len;
3997
3998 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3999 m = key_alloc_mbuf(len);
4000 if (!m || m->m_next) { /*XXX*/
4001 if (m)
4002 m_freem(m);
4003 return NULL;
4004 }
4005
4006 p = mtod(m, struct sadb_x_sa2 *);
4007
4008 memset(p, 0, len);
4009 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4010 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4011 p->sadb_x_sa2_mode = mode;
4012 p->sadb_x_sa2_reserved1 = 0;
4013 p->sadb_x_sa2_reserved2 = 0;
4014 p->sadb_x_sa2_sequence = seq;
4015 p->sadb_x_sa2_reqid = reqid;
4016
4017 return m;
4018 }
4019
4020 /*
4021 * set data into sadb_x_policy
4022 */
4023 static struct mbuf *
4024 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4025 {
4026 struct mbuf *m;
4027 struct sadb_x_policy *p;
4028 size_t len;
4029
4030 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4031 m = key_alloc_mbuf(len);
4032 if (!m || m->m_next) { /*XXX*/
4033 if (m)
4034 m_freem(m);
4035 return NULL;
4036 }
4037
4038 p = mtod(m, struct sadb_x_policy *);
4039
4040 memset(p, 0, len);
4041 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4042 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4043 p->sadb_x_policy_type = type;
4044 p->sadb_x_policy_dir = dir;
4045 p->sadb_x_policy_id = id;
4046
4047 return m;
4048 }
4049
4050 /* %%% utilities */
4051 /*
4052 * copy a buffer into the new buffer allocated.
4053 */
4054 static void *
4055 key_newbuf(const void *src, u_int len)
4056 {
4057 void *new;
4058
4059 new = kmem_alloc(len, KM_SLEEP);
4060 memcpy(new, src, len);
4061
4062 return new;
4063 }
4064
4065 /* compare my own address
4066 * OUT: 1: true, i.e. my address.
4067 * 0: false
4068 */
4069 int
4070 key_ismyaddr(const struct sockaddr *sa)
4071 {
4072 #ifdef INET
4073 const struct sockaddr_in *sin;
4074 const struct in_ifaddr *ia;
4075 int s;
4076 #endif
4077
4078 KASSERT(sa != NULL);
4079
4080 switch (sa->sa_family) {
4081 #ifdef INET
4082 case AF_INET:
4083 sin = (const struct sockaddr_in *)sa;
4084 s = pserialize_read_enter();
4085 IN_ADDRLIST_READER_FOREACH(ia) {
4086 if (sin->sin_family == ia->ia_addr.sin_family &&
4087 sin->sin_len == ia->ia_addr.sin_len &&
4088 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4089 {
4090 pserialize_read_exit(s);
4091 return 1;
4092 }
4093 }
4094 pserialize_read_exit(s);
4095 break;
4096 #endif
4097 #ifdef INET6
4098 case AF_INET6:
4099 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4100 #endif
4101 }
4102
4103 return 0;
4104 }
4105
4106 #ifdef INET6
4107 /*
4108 * compare my own address for IPv6.
4109 * 1: ours
4110 * 0: other
4111 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4112 */
4113 #include <netinet6/in6_var.h>
4114
4115 static int
4116 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4117 {
4118 struct in6_ifaddr *ia;
4119 int s;
4120 struct psref psref;
4121 int bound;
4122 int ours = 1;
4123
4124 bound = curlwp_bind();
4125 s = pserialize_read_enter();
4126 IN6_ADDRLIST_READER_FOREACH(ia) {
4127 bool ingroup;
4128
4129 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4130 (const struct sockaddr *)&ia->ia_addr, 0)) {
4131 pserialize_read_exit(s);
4132 goto ours;
4133 }
4134 ia6_acquire(ia, &psref);
4135 pserialize_read_exit(s);
4136
4137 /*
4138 * XXX Multicast
4139 * XXX why do we care about multlicast here while we don't care
4140 * about IPv4 multicast??
4141 * XXX scope
4142 */
4143 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4144 if (ingroup) {
4145 ia6_release(ia, &psref);
4146 goto ours;
4147 }
4148
4149 s = pserialize_read_enter();
4150 ia6_release(ia, &psref);
4151 }
4152 pserialize_read_exit(s);
4153
4154 /* loopback, just for safety */
4155 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4156 goto ours;
4157
4158 ours = 0;
4159 ours:
4160 curlwp_bindx(bound);
4161
4162 return ours;
4163 }
4164 #endif /*INET6*/
4165
4166 /*
4167 * compare two secasindex structure.
4168 * flag can specify to compare 2 saidxes.
4169 * compare two secasindex structure without both mode and reqid.
4170 * don't compare port.
4171 * IN:
4172 * saidx0: source, it can be in SAD.
4173 * saidx1: object.
4174 * OUT:
4175 * 1 : equal
4176 * 0 : not equal
4177 */
4178 static int
4179 key_saidx_match(
4180 const struct secasindex *saidx0,
4181 const struct secasindex *saidx1,
4182 int flag)
4183 {
4184 int chkport;
4185 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4186
4187 /* sanity */
4188 if (saidx0 == NULL && saidx1 == NULL)
4189 return 1;
4190
4191 if (saidx0 == NULL || saidx1 == NULL)
4192 return 0;
4193
4194 if (saidx0->proto != saidx1->proto)
4195 return 0;
4196
4197 if (flag == CMP_EXACTLY) {
4198 if (saidx0->mode != saidx1->mode)
4199 return 0;
4200 if (saidx0->reqid != saidx1->reqid)
4201 return 0;
4202 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4203 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4204 return 0;
4205 } else {
4206
4207 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4208 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4209 /*
4210 * If reqid of SPD is non-zero, unique SA is required.
4211 * The result must be of same reqid in this case.
4212 */
4213 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4214 return 0;
4215 }
4216
4217 if (flag == CMP_MODE_REQID) {
4218 if (saidx0->mode != IPSEC_MODE_ANY &&
4219 saidx0->mode != saidx1->mode)
4220 return 0;
4221 }
4222
4223
4224 sa0src = &saidx0->src.sa;
4225 sa0dst = &saidx0->dst.sa;
4226 sa1src = &saidx1->src.sa;
4227 sa1dst = &saidx1->dst.sa;
4228 /*
4229 * If NAT-T is enabled, check ports for tunnel mode.
4230 * Don't do it for transport mode, as there is no
4231 * port information available in the SP.
4232 * Also don't check ports if they are set to zero
4233 * in the SPD: This means we have a non-generated
4234 * SPD which can't know UDP ports.
4235 */
4236 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4237 chkport = PORT_LOOSE;
4238 else
4239 chkport = PORT_NONE;
4240
4241 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4242 return 0;
4243 }
4244 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4245 return 0;
4246 }
4247 }
4248
4249 return 1;
4250 }
4251
4252 /*
4253 * compare two secindex structure exactly.
4254 * IN:
4255 * spidx0: source, it is often in SPD.
4256 * spidx1: object, it is often from PFKEY message.
4257 * OUT:
4258 * 1 : equal
4259 * 0 : not equal
4260 */
4261 static int
4262 key_spidx_match_exactly(
4263 const struct secpolicyindex *spidx0,
4264 const struct secpolicyindex *spidx1)
4265 {
4266 /* sanity */
4267 if (spidx0 == NULL && spidx1 == NULL)
4268 return 1;
4269
4270 if (spidx0 == NULL || spidx1 == NULL)
4271 return 0;
4272
4273 if (spidx0->prefs != spidx1->prefs ||
4274 spidx0->prefd != spidx1->prefd ||
4275 spidx0->ul_proto != spidx1->ul_proto)
4276 return 0;
4277
4278 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4279 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4280 }
4281
4282 /*
4283 * compare two secindex structure with mask.
4284 * IN:
4285 * spidx0: source, it is often in SPD.
4286 * spidx1: object, it is often from IP header.
4287 * OUT:
4288 * 1 : equal
4289 * 0 : not equal
4290 */
4291 static int
4292 key_spidx_match_withmask(
4293 const struct secpolicyindex *spidx0,
4294 const struct secpolicyindex *spidx1)
4295 {
4296
4297 KASSERT(spidx0 != NULL);
4298 KASSERT(spidx1 != NULL);
4299
4300 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4301 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4302 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4303 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4304 return 0;
4305
4306 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4307 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4308 spidx0->ul_proto != spidx1->ul_proto)
4309 return 0;
4310
4311 switch (spidx0->src.sa.sa_family) {
4312 case AF_INET:
4313 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4314 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4315 return 0;
4316 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4317 &spidx1->src.sin.sin_addr, spidx0->prefs))
4318 return 0;
4319 break;
4320 case AF_INET6:
4321 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4322 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4323 return 0;
4324 /*
4325 * scope_id check. if sin6_scope_id is 0, we regard it
4326 * as a wildcard scope, which matches any scope zone ID.
4327 */
4328 if (spidx0->src.sin6.sin6_scope_id &&
4329 spidx1->src.sin6.sin6_scope_id &&
4330 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4331 return 0;
4332 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4333 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4334 return 0;
4335 break;
4336 default:
4337 /* XXX */
4338 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4339 return 0;
4340 break;
4341 }
4342
4343 switch (spidx0->dst.sa.sa_family) {
4344 case AF_INET:
4345 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4346 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4347 return 0;
4348 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4349 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4350 return 0;
4351 break;
4352 case AF_INET6:
4353 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4354 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4355 return 0;
4356 /*
4357 * scope_id check. if sin6_scope_id is 0, we regard it
4358 * as a wildcard scope, which matches any scope zone ID.
4359 */
4360 if (spidx0->src.sin6.sin6_scope_id &&
4361 spidx1->src.sin6.sin6_scope_id &&
4362 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4363 return 0;
4364 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4365 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4366 return 0;
4367 break;
4368 default:
4369 /* XXX */
4370 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4371 return 0;
4372 break;
4373 }
4374
4375 /* XXX Do we check other field ? e.g. flowinfo */
4376
4377 return 1;
4378 }
4379
4380 /* returns 0 on match */
4381 static int
4382 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4383 {
4384 switch (howport) {
4385 case PORT_NONE:
4386 return 0;
4387 case PORT_LOOSE:
4388 if (port1 == 0 || port2 == 0)
4389 return 0;
4390 /*FALLTHROUGH*/
4391 case PORT_STRICT:
4392 if (port1 != port2) {
4393 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4394 "port fail %d != %d\n", port1, port2);
4395 return 1;
4396 }
4397 return 0;
4398 default:
4399 KASSERT(0);
4400 return 1;
4401 }
4402 }
4403
4404 /* returns 1 on match */
4405 static int
4406 key_sockaddr_match(
4407 const struct sockaddr *sa1,
4408 const struct sockaddr *sa2,
4409 int howport)
4410 {
4411 const struct sockaddr_in *sin1, *sin2;
4412 const struct sockaddr_in6 *sin61, *sin62;
4413
4414 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4415 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4416 "fam/len fail %d != %d || %d != %d\n",
4417 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4418 sa2->sa_len);
4419 return 0;
4420 }
4421
4422 switch (sa1->sa_family) {
4423 case AF_INET:
4424 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4425 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4426 "len fail %d != %zu\n",
4427 sa1->sa_len, sizeof(struct sockaddr_in));
4428 return 0;
4429 }
4430 sin1 = (const struct sockaddr_in *)sa1;
4431 sin2 = (const struct sockaddr_in *)sa2;
4432 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4433 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4434 "addr fail %#x != %#x\n",
4435 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4436 return 0;
4437 }
4438 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4439 return 0;
4440 }
4441 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4442 "addr success %#x[%d] == %#x[%d]\n",
4443 sin1->sin_addr.s_addr, sin1->sin_port,
4444 sin2->sin_addr.s_addr, sin2->sin_port);
4445 break;
4446 case AF_INET6:
4447 sin61 = (const struct sockaddr_in6 *)sa1;
4448 sin62 = (const struct sockaddr_in6 *)sa2;
4449 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4450 return 0; /*EINVAL*/
4451
4452 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4453 return 0;
4454 }
4455 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4456 return 0;
4457 }
4458 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4459 return 0;
4460 }
4461 break;
4462 default:
4463 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4464 return 0;
4465 break;
4466 }
4467
4468 return 1;
4469 }
4470
4471 /*
4472 * compare two buffers with mask.
4473 * IN:
4474 * addr1: source
4475 * addr2: object
4476 * bits: Number of bits to compare
4477 * OUT:
4478 * 1 : equal
4479 * 0 : not equal
4480 */
4481 static int
4482 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4483 {
4484 const unsigned char *p1 = a1;
4485 const unsigned char *p2 = a2;
4486
4487 /* XXX: This could be considerably faster if we compare a word
4488 * at a time, but it is complicated on LSB Endian machines */
4489
4490 /* Handle null pointers */
4491 if (p1 == NULL || p2 == NULL)
4492 return (p1 == p2);
4493
4494 while (bits >= 8) {
4495 if (*p1++ != *p2++)
4496 return 0;
4497 bits -= 8;
4498 }
4499
4500 if (bits > 0) {
4501 u_int8_t mask = ~((1<<(8-bits))-1);
4502 if ((*p1 & mask) != (*p2 & mask))
4503 return 0;
4504 }
4505 return 1; /* Match! */
4506 }
4507
4508 /*
4509 * time handler.
4510 * scanning SPD and SAD to check status for each entries,
4511 * and do to remove or to expire.
4512 */
4513 static void
4514 key_timehandler_work(struct work *wk, void *arg)
4515 {
4516 u_int dir;
4517 int s;
4518 time_t now = time_uptime;
4519
4520 s = splsoftnet();
4521 mutex_enter(softnet_lock);
4522
4523 /* SPD */
4524 {
4525 struct secpolicy *sp, *nextsp;
4526
4527 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4528 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4529 if (sp->state == IPSEC_SPSTATE_DEAD) {
4530 key_sp_unlink(sp); /*XXX*/
4531
4532 /* 'sp' dead; continue transfers to
4533 * 'sp = nextsp'
4534 */
4535 continue;
4536 }
4537
4538 if (sp->lifetime == 0 && sp->validtime == 0)
4539 continue;
4540
4541 /* the deletion will occur next time */
4542 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4543 (sp->validtime && now - sp->lastused > sp->validtime)) {
4544 key_sp_dead(sp);
4545 key_spdexpire(sp);
4546 continue;
4547 }
4548 }
4549 }
4550 }
4551
4552 /* SAD */
4553 {
4554 struct secashead *sah, *nextsah;
4555 struct secasvar *sav, *nextsav;
4556
4557 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4558 /* if sah has been dead, then delete it and process next sah. */
4559 if (sah->state == SADB_SASTATE_DEAD) {
4560 key_delsah(sah);
4561 continue;
4562 }
4563
4564 /* if LARVAL entry doesn't become MATURE, delete it. */
4565 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4566 chain, nextsav) {
4567 if (now - sav->created > key_larval_lifetime) {
4568 KEY_FREESAV(&sav);
4569 }
4570 }
4571
4572 /*
4573 * check MATURE entry to start to send expire message
4574 * whether or not.
4575 */
4576 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4577 chain, nextsav) {
4578 /* we don't need to check. */
4579 if (sav->lft_s == NULL)
4580 continue;
4581
4582 /* sanity check */
4583 if (sav->lft_c == NULL) {
4584 IPSECLOG(LOG_DEBUG,
4585 "There is no CURRENT time, why?\n");
4586 continue;
4587 }
4588
4589 /* check SOFT lifetime */
4590 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4591 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4592 /*
4593 * check SA to be used whether or not.
4594 * when SA hasn't been used, delete it.
4595 */
4596 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4597 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4598 KEY_FREESAV(&sav);
4599 } else {
4600 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4601 /*
4602 * XXX If we keep to send expire
4603 * message in the status of
4604 * DYING. Do remove below code.
4605 */
4606 key_expire(sav);
4607 }
4608 }
4609 /* check SOFT lifetime by bytes */
4610 /*
4611 * XXX I don't know the way to delete this SA
4612 * when new SA is installed. Caution when it's
4613 * installed too big lifetime by time.
4614 */
4615 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4616 sav->lft_s->sadb_lifetime_bytes <
4617 sav->lft_c->sadb_lifetime_bytes) {
4618
4619 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4620 /*
4621 * XXX If we keep to send expire
4622 * message in the status of
4623 * DYING. Do remove below code.
4624 */
4625 key_expire(sav);
4626 }
4627 }
4628
4629 /* check DYING entry to change status to DEAD. */
4630 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4631 chain, nextsav) {
4632 /* we don't need to check. */
4633 if (sav->lft_h == NULL)
4634 continue;
4635
4636 /* sanity check */
4637 if (sav->lft_c == NULL) {
4638 IPSECLOG(LOG_DEBUG,
4639 "There is no CURRENT time, why?\n");
4640 continue;
4641 }
4642
4643 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4644 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4645 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4646 KEY_FREESAV(&sav);
4647 }
4648 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4649 else if (sav->lft_s != NULL
4650 && sav->lft_s->sadb_lifetime_addtime != 0
4651 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4652 /*
4653 * XXX: should be checked to be
4654 * installed the valid SA.
4655 */
4656
4657 /*
4658 * If there is no SA then sending
4659 * expire message.
4660 */
4661 key_expire(sav);
4662 }
4663 #endif
4664 /* check HARD lifetime by bytes */
4665 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4666 sav->lft_h->sadb_lifetime_bytes <
4667 sav->lft_c->sadb_lifetime_bytes) {
4668 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4669 KEY_FREESAV(&sav);
4670 }
4671 }
4672
4673 /* delete entry in DEAD */
4674 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4675 chain, nextsav) {
4676 /* sanity check */
4677 if (sav->state != SADB_SASTATE_DEAD) {
4678 IPSECLOG(LOG_DEBUG,
4679 "invalid sav->state (queue: %d SA: %d): "
4680 "kill it anyway\n",
4681 SADB_SASTATE_DEAD, sav->state);
4682 }
4683
4684 /*
4685 * do not call key_freesav() here.
4686 * sav should already be freed, and sav->refcnt
4687 * shows other references to sav
4688 * (such as from SPD).
4689 */
4690 }
4691 }
4692 }
4693
4694 #ifndef IPSEC_NONBLOCK_ACQUIRE
4695 /* ACQ tree */
4696 {
4697 struct secacq *acq, *nextacq;
4698
4699 restart:
4700 mutex_enter(&key_mtx);
4701 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4702 if (now - acq->created > key_blockacq_lifetime) {
4703 LIST_REMOVE(acq, chain);
4704 mutex_exit(&key_mtx);
4705 kmem_free(acq, sizeof(*acq));
4706 goto restart;
4707 }
4708 }
4709 mutex_exit(&key_mtx);
4710 }
4711 #endif
4712
4713 #ifdef notyet
4714 /* SP ACQ tree */
4715 {
4716 struct secspacq *acq, *nextacq;
4717
4718 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4719 if (now - acq->created > key_blockacq_lifetime) {
4720 KASSERT(__LIST_CHAINED(acq));
4721 LIST_REMOVE(acq, chain);
4722 kmem_free(acq, sizeof(*acq));
4723 }
4724 }
4725 }
4726 #endif
4727
4728 /* do exchange to tick time !! */
4729 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4730
4731 mutex_exit(softnet_lock);
4732 splx(s);
4733 return;
4734 }
4735
4736 static void
4737 key_timehandler(void *arg)
4738 {
4739
4740 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4741 }
4742
4743 u_long
4744 key_random(void)
4745 {
4746 u_long value;
4747
4748 key_randomfill(&value, sizeof(value));
4749 return value;
4750 }
4751
4752 void
4753 key_randomfill(void *p, size_t l)
4754 {
4755
4756 cprng_fast(p, l);
4757 }
4758
4759 /*
4760 * map SADB_SATYPE_* to IPPROTO_*.
4761 * if satype == SADB_SATYPE then satype is mapped to ~0.
4762 * OUT:
4763 * 0: invalid satype.
4764 */
4765 static u_int16_t
4766 key_satype2proto(u_int8_t satype)
4767 {
4768 switch (satype) {
4769 case SADB_SATYPE_UNSPEC:
4770 return IPSEC_PROTO_ANY;
4771 case SADB_SATYPE_AH:
4772 return IPPROTO_AH;
4773 case SADB_SATYPE_ESP:
4774 return IPPROTO_ESP;
4775 case SADB_X_SATYPE_IPCOMP:
4776 return IPPROTO_IPCOMP;
4777 case SADB_X_SATYPE_TCPSIGNATURE:
4778 return IPPROTO_TCP;
4779 default:
4780 return 0;
4781 }
4782 /* NOTREACHED */
4783 }
4784
4785 /*
4786 * map IPPROTO_* to SADB_SATYPE_*
4787 * OUT:
4788 * 0: invalid protocol type.
4789 */
4790 static u_int8_t
4791 key_proto2satype(u_int16_t proto)
4792 {
4793 switch (proto) {
4794 case IPPROTO_AH:
4795 return SADB_SATYPE_AH;
4796 case IPPROTO_ESP:
4797 return SADB_SATYPE_ESP;
4798 case IPPROTO_IPCOMP:
4799 return SADB_X_SATYPE_IPCOMP;
4800 case IPPROTO_TCP:
4801 return SADB_X_SATYPE_TCPSIGNATURE;
4802 default:
4803 return 0;
4804 }
4805 /* NOTREACHED */
4806 }
4807
4808 static int
4809 key_setsecasidx(int proto, int mode, int reqid,
4810 const struct sadb_address * src,
4811 const struct sadb_address * dst,
4812 struct secasindex * saidx)
4813 {
4814 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4815 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4816
4817 /* sa len safety check */
4818 if (key_checksalen(src_u) != 0)
4819 return -1;
4820 if (key_checksalen(dst_u) != 0)
4821 return -1;
4822
4823 memset(saidx, 0, sizeof(*saidx));
4824 saidx->proto = proto;
4825 saidx->mode = mode;
4826 saidx->reqid = reqid;
4827 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4828 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4829
4830 key_porttosaddr(&((saidx)->src), 0);
4831 key_porttosaddr(&((saidx)->dst), 0);
4832 return 0;
4833 }
4834
4835 /* %%% PF_KEY */
4836 /*
4837 * SADB_GETSPI processing is to receive
4838 * <base, (SA2), src address, dst address, (SPI range)>
4839 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4840 * tree with the status of LARVAL, and send
4841 * <base, SA(*), address(SD)>
4842 * to the IKMPd.
4843 *
4844 * IN: mhp: pointer to the pointer to each header.
4845 * OUT: NULL if fail.
4846 * other if success, return pointer to the message to send.
4847 */
4848 static int
4849 key_getspi(struct socket *so, struct mbuf *m,
4850 const struct sadb_msghdr *mhp)
4851 {
4852 struct sadb_address *src0, *dst0;
4853 struct secasindex saidx;
4854 struct secashead *newsah;
4855 struct secasvar *newsav;
4856 u_int8_t proto;
4857 u_int32_t spi;
4858 u_int8_t mode;
4859 u_int16_t reqid;
4860 int error;
4861
4862 KASSERT(!cpu_softintr_p());
4863 KASSERT(so != NULL);
4864 KASSERT(m != NULL);
4865 KASSERT(mhp != NULL);
4866 KASSERT(mhp->msg != NULL);
4867
4868 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4869 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4870 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4871 return key_senderror(so, m, EINVAL);
4872 }
4873 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4874 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4875 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4876 return key_senderror(so, m, EINVAL);
4877 }
4878 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4879 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4880 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4881 } else {
4882 mode = IPSEC_MODE_ANY;
4883 reqid = 0;
4884 }
4885
4886 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4887 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4888
4889 /* map satype to proto */
4890 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4891 if (proto == 0) {
4892 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4893 return key_senderror(so, m, EINVAL);
4894 }
4895
4896
4897 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4898 if (error != 0)
4899 return key_senderror(so, m, EINVAL);
4900
4901 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4902 if (error != 0)
4903 return key_senderror(so, m, EINVAL);
4904
4905 /* SPI allocation */
4906 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4907 &saidx);
4908 if (spi == 0)
4909 return key_senderror(so, m, EINVAL);
4910
4911 /* get a SA index */
4912 newsah = key_getsah(&saidx);
4913 if (newsah == NULL) {
4914 /* create a new SA index */
4915 newsah = key_newsah(&saidx);
4916 if (newsah == NULL) {
4917 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4918 return key_senderror(so, m, ENOBUFS);
4919 }
4920 }
4921
4922 /* get a new SA */
4923 /* XXX rewrite */
4924 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4925 if (newsav == NULL) {
4926 /* XXX don't free new SA index allocated in above. */
4927 return key_senderror(so, m, error);
4928 }
4929
4930 /* set spi */
4931 newsav->spi = htonl(spi);
4932
4933 #ifndef IPSEC_NONBLOCK_ACQUIRE
4934 /* delete the entry in acqtree */
4935 if (mhp->msg->sadb_msg_seq != 0) {
4936 struct secacq *acq;
4937 mutex_enter(&key_mtx);
4938 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4939 if (acq != NULL) {
4940 /* reset counter in order to deletion by timehandler. */
4941 acq->created = time_uptime;
4942 acq->count = 0;
4943 }
4944 mutex_exit(&key_mtx);
4945 }
4946 #endif
4947
4948 {
4949 struct mbuf *n, *nn;
4950 struct sadb_sa *m_sa;
4951 struct sadb_msg *newmsg;
4952 int off, len;
4953
4954 /* create new sadb_msg to reply. */
4955 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4956 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4957 if (len > MCLBYTES)
4958 return key_senderror(so, m, ENOBUFS);
4959
4960 MGETHDR(n, M_DONTWAIT, MT_DATA);
4961 if (len > MHLEN) {
4962 MCLGET(n, M_DONTWAIT);
4963 if ((n->m_flags & M_EXT) == 0) {
4964 m_freem(n);
4965 n = NULL;
4966 }
4967 }
4968 if (!n)
4969 return key_senderror(so, m, ENOBUFS);
4970
4971 n->m_len = len;
4972 n->m_next = NULL;
4973 off = 0;
4974
4975 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4976 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4977
4978 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4979 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4980 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4981 m_sa->sadb_sa_spi = htonl(spi);
4982 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4983
4984 KASSERTMSG(off == len, "length inconsistency");
4985
4986 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4987 SADB_EXT_ADDRESS_DST);
4988 if (!n->m_next) {
4989 m_freem(n);
4990 return key_senderror(so, m, ENOBUFS);
4991 }
4992
4993 if (n->m_len < sizeof(struct sadb_msg)) {
4994 n = m_pullup(n, sizeof(struct sadb_msg));
4995 if (n == NULL)
4996 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4997 }
4998
4999 n->m_pkthdr.len = 0;
5000 for (nn = n; nn; nn = nn->m_next)
5001 n->m_pkthdr.len += nn->m_len;
5002
5003 newmsg = mtod(n, struct sadb_msg *);
5004 newmsg->sadb_msg_seq = newsav->seq;
5005 newmsg->sadb_msg_errno = 0;
5006 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5007
5008 m_freem(m);
5009 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5010 }
5011 }
5012
5013 /*
5014 * allocating new SPI
5015 * called by key_getspi().
5016 * OUT:
5017 * 0: failure.
5018 * others: success.
5019 */
5020 static u_int32_t
5021 key_do_getnewspi(const struct sadb_spirange *spirange,
5022 const struct secasindex *saidx)
5023 {
5024 u_int32_t newspi;
5025 u_int32_t spmin, spmax;
5026 int count = key_spi_trycnt;
5027
5028 /* set spi range to allocate */
5029 if (spirange != NULL) {
5030 spmin = spirange->sadb_spirange_min;
5031 spmax = spirange->sadb_spirange_max;
5032 } else {
5033 spmin = key_spi_minval;
5034 spmax = key_spi_maxval;
5035 }
5036 /* IPCOMP needs 2-byte SPI */
5037 if (saidx->proto == IPPROTO_IPCOMP) {
5038 u_int32_t t;
5039 if (spmin >= 0x10000)
5040 spmin = 0xffff;
5041 if (spmax >= 0x10000)
5042 spmax = 0xffff;
5043 if (spmin > spmax) {
5044 t = spmin; spmin = spmax; spmax = t;
5045 }
5046 }
5047
5048 if (spmin == spmax) {
5049 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5050 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5051 return 0;
5052 }
5053
5054 count--; /* taking one cost. */
5055 newspi = spmin;
5056
5057 } else {
5058
5059 /* init SPI */
5060 newspi = 0;
5061
5062 /* when requesting to allocate spi ranged */
5063 while (count--) {
5064 /* generate pseudo-random SPI value ranged. */
5065 newspi = spmin + (key_random() % (spmax - spmin + 1));
5066
5067 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5068 break;
5069 }
5070
5071 if (count == 0 || newspi == 0) {
5072 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5073 return 0;
5074 }
5075 }
5076
5077 /* statistics */
5078 keystat.getspi_count =
5079 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5080
5081 return newspi;
5082 }
5083
5084 static int
5085 key_handle_natt_info(struct secasvar *sav,
5086 const struct sadb_msghdr *mhp)
5087 {
5088 const char *msg = "?" ;
5089 struct sadb_x_nat_t_type *type;
5090 struct sadb_x_nat_t_port *sport, *dport;
5091 struct sadb_address *iaddr, *raddr;
5092 struct sadb_x_nat_t_frag *frag;
5093
5094 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5095 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5096 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5097 return 0;
5098
5099 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5100 msg = "TYPE";
5101 goto bad;
5102 }
5103
5104 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5105 msg = "SPORT";
5106 goto bad;
5107 }
5108
5109 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5110 msg = "DPORT";
5111 goto bad;
5112 }
5113
5114 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5115 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5116 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5117 msg = "OAI";
5118 goto bad;
5119 }
5120 }
5121
5122 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5123 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5124 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5125 msg = "OAR";
5126 goto bad;
5127 }
5128 }
5129
5130 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5131 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5132 msg = "FRAG";
5133 goto bad;
5134 }
5135 }
5136
5137 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5138 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5139 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5140 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5141 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5142 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5143
5144 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5145 type->sadb_x_nat_t_type_type,
5146 ntohs(sport->sadb_x_nat_t_port_port),
5147 ntohs(dport->sadb_x_nat_t_port_port));
5148
5149 sav->natt_type = type->sadb_x_nat_t_type_type;
5150 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5151 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5152 if (frag)
5153 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5154 else
5155 sav->esp_frag = IP_MAXPACKET;
5156
5157 return 0;
5158 bad:
5159 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5160 __USE(msg);
5161 return -1;
5162 }
5163
5164 /* Just update the IPSEC_NAT_T ports if present */
5165 static int
5166 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5167 const struct sadb_msghdr *mhp)
5168 {
5169 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5170 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5171 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5172 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5173
5174 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5175 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5176 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5177 struct sadb_x_nat_t_type *type;
5178 struct sadb_x_nat_t_port *sport;
5179 struct sadb_x_nat_t_port *dport;
5180
5181 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5182 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5183 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5184 IPSECLOG(LOG_DEBUG, "invalid message\n");
5185 return -1;
5186 }
5187
5188 type = (struct sadb_x_nat_t_type *)
5189 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5190 sport = (struct sadb_x_nat_t_port *)
5191 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5192 dport = (struct sadb_x_nat_t_port *)
5193 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5194
5195 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5196 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5197
5198 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5199 type->sadb_x_nat_t_type_type,
5200 ntohs(sport->sadb_x_nat_t_port_port),
5201 ntohs(dport->sadb_x_nat_t_port_port));
5202 }
5203
5204 return 0;
5205 }
5206
5207
5208 /*
5209 * SADB_UPDATE processing
5210 * receive
5211 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5212 * key(AE), (identity(SD),) (sensitivity)>
5213 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5214 * and send
5215 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5216 * (identity(SD),) (sensitivity)>
5217 * to the ikmpd.
5218 *
5219 * m will always be freed.
5220 */
5221 static int
5222 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5223 {
5224 struct sadb_sa *sa0;
5225 struct sadb_address *src0, *dst0;
5226 struct secasindex saidx;
5227 struct secashead *sah;
5228 struct secasvar *sav;
5229 u_int16_t proto;
5230 u_int8_t mode;
5231 u_int16_t reqid;
5232 int error;
5233
5234 KASSERT(!cpu_softintr_p());
5235 KASSERT(so != NULL);
5236 KASSERT(m != NULL);
5237 KASSERT(mhp != NULL);
5238 KASSERT(mhp->msg != NULL);
5239
5240 /* map satype to proto */
5241 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5242 if (proto == 0) {
5243 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5244 return key_senderror(so, m, EINVAL);
5245 }
5246
5247 if (mhp->ext[SADB_EXT_SA] == NULL ||
5248 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5249 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5250 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5251 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5252 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5253 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5254 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5255 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5256 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5257 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5258 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5259 return key_senderror(so, m, EINVAL);
5260 }
5261 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5262 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5263 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5264 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5265 return key_senderror(so, m, EINVAL);
5266 }
5267 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5268 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5269 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5270 } else {
5271 mode = IPSEC_MODE_ANY;
5272 reqid = 0;
5273 }
5274 /* XXX boundary checking for other extensions */
5275
5276 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5277 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5278 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5279
5280 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5281 if (error != 0)
5282 return key_senderror(so, m, EINVAL);
5283
5284 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5285 if (error != 0)
5286 return key_senderror(so, m, EINVAL);
5287
5288 /* get a SA header */
5289 sah = key_getsah(&saidx);
5290 if (sah == NULL) {
5291 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5292 return key_senderror(so, m, ENOENT);
5293 }
5294
5295 /* set spidx if there */
5296 /* XXX rewrite */
5297 error = key_setident(sah, m, mhp);
5298 if (error)
5299 return key_senderror(so, m, error);
5300
5301 /* find a SA with sequence number. */
5302 #ifdef IPSEC_DOSEQCHECK
5303 if (mhp->msg->sadb_msg_seq != 0) {
5304 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5305 if (sav == NULL) {
5306 IPSECLOG(LOG_DEBUG,
5307 "no larval SA with sequence %u exists.\n",
5308 mhp->msg->sadb_msg_seq);
5309 return key_senderror(so, m, ENOENT);
5310 }
5311 }
5312 #else
5313 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5314 if (sav == NULL) {
5315 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5316 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5317 return key_senderror(so, m, EINVAL);
5318 }
5319 #endif
5320
5321 /* validity check */
5322 if (sav->sah->saidx.proto != proto) {
5323 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5324 sav->sah->saidx.proto, proto);
5325 return key_senderror(so, m, EINVAL);
5326 }
5327 #ifdef IPSEC_DOSEQCHECK
5328 if (sav->spi != sa0->sadb_sa_spi) {
5329 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5330 (u_int32_t)ntohl(sav->spi),
5331 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5332 return key_senderror(so, m, EINVAL);
5333 }
5334 #endif
5335 if (sav->pid != mhp->msg->sadb_msg_pid) {
5336 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5337 sav->pid, mhp->msg->sadb_msg_pid);
5338 return key_senderror(so, m, EINVAL);
5339 }
5340
5341 /* copy sav values */
5342 error = key_setsaval(sav, m, mhp);
5343 if (error) {
5344 KEY_FREESAV(&sav);
5345 return key_senderror(so, m, error);
5346 }
5347
5348 error = key_handle_natt_info(sav,mhp);
5349 if (error != 0)
5350 return key_senderror(so, m, EINVAL);
5351
5352 /* check SA values to be mature. */
5353 mhp->msg->sadb_msg_errno = key_mature(sav);
5354 if (mhp->msg->sadb_msg_errno != 0) {
5355 KEY_FREESAV(&sav);
5356 return key_senderror(so, m, 0);
5357 }
5358
5359 {
5360 struct mbuf *n;
5361
5362 /* set msg buf from mhp */
5363 n = key_getmsgbuf_x1(m, mhp);
5364 if (n == NULL) {
5365 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5366 return key_senderror(so, m, ENOBUFS);
5367 }
5368
5369 m_freem(m);
5370 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5371 }
5372 }
5373
5374 /*
5375 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5376 * only called by key_update().
5377 * OUT:
5378 * NULL : not found
5379 * others : found, pointer to a SA.
5380 */
5381 #ifdef IPSEC_DOSEQCHECK
5382 static struct secasvar *
5383 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5384 {
5385 struct secasvar *sav;
5386 u_int state;
5387
5388 state = SADB_SASTATE_LARVAL;
5389
5390 /* search SAD with sequence number ? */
5391 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5392
5393 KEY_CHKSASTATE(state, sav->state);
5394
5395 if (sav->seq == seq) {
5396 SA_ADDREF(sav);
5397 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5398 "DP cause refcnt++:%d SA:%p\n",
5399 sav->refcnt, sav);
5400 return sav;
5401 }
5402 }
5403
5404 return NULL;
5405 }
5406 #endif
5407
5408 /*
5409 * SADB_ADD processing
5410 * add an entry to SA database, when received
5411 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5412 * key(AE), (identity(SD),) (sensitivity)>
5413 * from the ikmpd,
5414 * and send
5415 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5416 * (identity(SD),) (sensitivity)>
5417 * to the ikmpd.
5418 *
5419 * IGNORE identity and sensitivity messages.
5420 *
5421 * m will always be freed.
5422 */
5423 static int
5424 key_add(struct socket *so, struct mbuf *m,
5425 const struct sadb_msghdr *mhp)
5426 {
5427 struct sadb_sa *sa0;
5428 struct sadb_address *src0, *dst0;
5429 struct secasindex saidx;
5430 struct secashead *newsah;
5431 struct secasvar *newsav;
5432 u_int16_t proto;
5433 u_int8_t mode;
5434 u_int16_t reqid;
5435 int error;
5436
5437 KASSERT(so != NULL);
5438 KASSERT(m != NULL);
5439 KASSERT(mhp != NULL);
5440 KASSERT(mhp->msg != NULL);
5441
5442 /* map satype to proto */
5443 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5444 if (proto == 0) {
5445 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5446 return key_senderror(so, m, EINVAL);
5447 }
5448
5449 if (mhp->ext[SADB_EXT_SA] == NULL ||
5450 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5451 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5452 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5453 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5454 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5455 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5456 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5457 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5458 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5459 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5460 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5461 return key_senderror(so, m, EINVAL);
5462 }
5463 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5464 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5465 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5466 /* XXX need more */
5467 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5468 return key_senderror(so, m, EINVAL);
5469 }
5470 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5471 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5472 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5473 } else {
5474 mode = IPSEC_MODE_ANY;
5475 reqid = 0;
5476 }
5477
5478 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5479 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5480 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5481
5482 error = key_setsecasidx(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5483 if (error != 0)
5484 return key_senderror(so, m, EINVAL);
5485
5486 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5487 if (error != 0)
5488 return key_senderror(so, m, EINVAL);
5489
5490 /* get a SA header */
5491 newsah = key_getsah(&saidx);
5492 if (newsah == NULL) {
5493 /* create a new SA header */
5494 newsah = key_newsah(&saidx);
5495 if (newsah == NULL) {
5496 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5497 return key_senderror(so, m, ENOBUFS);
5498 }
5499 }
5500
5501 /* set spidx if there */
5502 /* XXX rewrite */
5503 error = key_setident(newsah, m, mhp);
5504 if (error) {
5505 return key_senderror(so, m, error);
5506 }
5507
5508 /* create new SA entry. */
5509 /* We can create new SA only if SPI is differenct. */
5510 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5511 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5512 return key_senderror(so, m, EEXIST);
5513 }
5514 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5515 if (newsav == NULL) {
5516 return key_senderror(so, m, error);
5517 }
5518
5519 error = key_handle_natt_info(newsav, mhp);
5520 if (error != 0)
5521 return key_senderror(so, m, EINVAL);
5522
5523 /* check SA values to be mature. */
5524 error = key_mature(newsav);
5525 if (error != 0) {
5526 KEY_FREESAV(&newsav);
5527 return key_senderror(so, m, error);
5528 }
5529
5530 /*
5531 * don't call key_freesav() here, as we would like to keep the SA
5532 * in the database on success.
5533 */
5534
5535 {
5536 struct mbuf *n;
5537
5538 /* set msg buf from mhp */
5539 n = key_getmsgbuf_x1(m, mhp);
5540 if (n == NULL) {
5541 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5542 return key_senderror(so, m, ENOBUFS);
5543 }
5544
5545 m_freem(m);
5546 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5547 }
5548 }
5549
5550 /* m is retained */
5551 static int
5552 key_setident(struct secashead *sah, struct mbuf *m,
5553 const struct sadb_msghdr *mhp)
5554 {
5555 const struct sadb_ident *idsrc, *iddst;
5556 int idsrclen, iddstlen;
5557
5558 KASSERT(!cpu_softintr_p());
5559 KASSERT(sah != NULL);
5560 KASSERT(m != NULL);
5561 KASSERT(mhp != NULL);
5562 KASSERT(mhp->msg != NULL);
5563
5564 /*
5565 * Can be called with an existing sah from key_update().
5566 */
5567 if (sah->idents != NULL) {
5568 kmem_free(sah->idents, sah->idents_len);
5569 sah->idents = NULL;
5570 sah->idents_len = 0;
5571 }
5572 if (sah->identd != NULL) {
5573 kmem_free(sah->identd, sah->identd_len);
5574 sah->identd = NULL;
5575 sah->identd_len = 0;
5576 }
5577
5578 /* don't make buffer if not there */
5579 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5580 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5581 sah->idents = NULL;
5582 sah->identd = NULL;
5583 return 0;
5584 }
5585
5586 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5587 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5588 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5589 return EINVAL;
5590 }
5591
5592 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5593 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5594 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5595 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5596
5597 /* validity check */
5598 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5599 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5600 return EINVAL;
5601 }
5602
5603 switch (idsrc->sadb_ident_type) {
5604 case SADB_IDENTTYPE_PREFIX:
5605 case SADB_IDENTTYPE_FQDN:
5606 case SADB_IDENTTYPE_USERFQDN:
5607 default:
5608 /* XXX do nothing */
5609 sah->idents = NULL;
5610 sah->identd = NULL;
5611 return 0;
5612 }
5613
5614 /* make structure */
5615 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5616 sah->idents_len = idsrclen;
5617 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5618 sah->identd_len = iddstlen;
5619 memcpy(sah->idents, idsrc, idsrclen);
5620 memcpy(sah->identd, iddst, iddstlen);
5621
5622 return 0;
5623 }
5624
5625 /*
5626 * m will not be freed on return.
5627 * it is caller's responsibility to free the result.
5628 */
5629 static struct mbuf *
5630 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5631 {
5632 struct mbuf *n;
5633
5634 KASSERT(m != NULL);
5635 KASSERT(mhp != NULL);
5636 KASSERT(mhp->msg != NULL);
5637
5638 /* create new sadb_msg to reply. */
5639 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5640 SADB_EXT_SA, SADB_X_EXT_SA2,
5641 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5642 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5643 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5644 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5645 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5646 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5647 if (!n)
5648 return NULL;
5649
5650 if (n->m_len < sizeof(struct sadb_msg)) {
5651 n = m_pullup(n, sizeof(struct sadb_msg));
5652 if (n == NULL)
5653 return NULL;
5654 }
5655 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5656 mtod(n, struct sadb_msg *)->sadb_msg_len =
5657 PFKEY_UNIT64(n->m_pkthdr.len);
5658
5659 return n;
5660 }
5661
5662 static int key_delete_all (struct socket *, struct mbuf *,
5663 const struct sadb_msghdr *, u_int16_t);
5664
5665 /*
5666 * SADB_DELETE processing
5667 * receive
5668 * <base, SA(*), address(SD)>
5669 * from the ikmpd, and set SADB_SASTATE_DEAD,
5670 * and send,
5671 * <base, SA(*), address(SD)>
5672 * to the ikmpd.
5673 *
5674 * m will always be freed.
5675 */
5676 static int
5677 key_delete(struct socket *so, struct mbuf *m,
5678 const struct sadb_msghdr *mhp)
5679 {
5680 struct sadb_sa *sa0;
5681 struct sadb_address *src0, *dst0;
5682 struct secasindex saidx;
5683 struct secashead *sah;
5684 struct secasvar *sav = NULL;
5685 u_int16_t proto;
5686 int error;
5687
5688 KASSERT(so != NULL);
5689 KASSERT(m != NULL);
5690 KASSERT(mhp != NULL);
5691 KASSERT(mhp->msg != NULL);
5692
5693 /* map satype to proto */
5694 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5695 if (proto == 0) {
5696 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5697 return key_senderror(so, m, EINVAL);
5698 }
5699
5700 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5701 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5702 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5703 return key_senderror(so, m, EINVAL);
5704 }
5705
5706 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5707 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5708 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5709 return key_senderror(so, m, EINVAL);
5710 }
5711
5712 if (mhp->ext[SADB_EXT_SA] == NULL) {
5713 /*
5714 * Caller wants us to delete all non-LARVAL SAs
5715 * that match the src/dst. This is used during
5716 * IKE INITIAL-CONTACT.
5717 */
5718 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5719 return key_delete_all(so, m, mhp, proto);
5720 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5721 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5722 return key_senderror(so, m, EINVAL);
5723 }
5724
5725 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5726 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5727 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5728
5729 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5730 &saidx);
5731 if (error != 0)
5732 return key_senderror(so, m, EINVAL);
5733
5734 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5735 if (error != 0)
5736 return key_senderror(so, m, EINVAL);
5737
5738 /* get a SA header */
5739 LIST_FOREACH(sah, &sahtree, chain) {
5740 if (sah->state == SADB_SASTATE_DEAD)
5741 continue;
5742 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5743 continue;
5744
5745 /* get a SA with SPI. */
5746 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5747 if (sav)
5748 break;
5749 }
5750 if (sah == NULL) {
5751 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5752 return key_senderror(so, m, ENOENT);
5753 }
5754
5755 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5756 KEY_FREESAV(&sav);
5757
5758 {
5759 struct mbuf *n;
5760 struct sadb_msg *newmsg;
5761
5762 /* create new sadb_msg to reply. */
5763 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5764 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5765 if (!n)
5766 return key_senderror(so, m, ENOBUFS);
5767
5768 if (n->m_len < sizeof(struct sadb_msg)) {
5769 n = m_pullup(n, sizeof(struct sadb_msg));
5770 if (n == NULL)
5771 return key_senderror(so, m, ENOBUFS);
5772 }
5773 newmsg = mtod(n, struct sadb_msg *);
5774 newmsg->sadb_msg_errno = 0;
5775 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5776
5777 m_freem(m);
5778 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5779 }
5780 }
5781
5782 /*
5783 * delete all SAs for src/dst. Called from key_delete().
5784 */
5785 static int
5786 key_delete_all(struct socket *so, struct mbuf *m,
5787 const struct sadb_msghdr *mhp, u_int16_t proto)
5788 {
5789 struct sadb_address *src0, *dst0;
5790 struct secasindex saidx;
5791 struct secashead *sah;
5792 struct secasvar *sav, *nextsav;
5793 u_int state;
5794 int error;
5795
5796 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5797 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5798
5799 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5800 &saidx);
5801 if (error != 0)
5802 return key_senderror(so, m, EINVAL);
5803
5804 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5805 if (error != 0)
5806 return key_senderror(so, m, EINVAL);
5807
5808 LIST_FOREACH(sah, &sahtree, chain) {
5809 if (sah->state == SADB_SASTATE_DEAD)
5810 continue;
5811 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5812 continue;
5813
5814 /* Delete all non-LARVAL SAs. */
5815 SASTATE_ALIVE_FOREACH(state) {
5816 if (state == SADB_SASTATE_LARVAL)
5817 continue;
5818 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5819 nextsav) {
5820 /* sanity check */
5821 if (sav->state != state) {
5822 IPSECLOG(LOG_DEBUG,
5823 "invalid sav->state "
5824 "(queue: %d SA: %d)\n",
5825 state, sav->state);
5826 continue;
5827 }
5828
5829 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5830 KEY_FREESAV(&sav);
5831 }
5832 }
5833 }
5834 {
5835 struct mbuf *n;
5836 struct sadb_msg *newmsg;
5837
5838 /* create new sadb_msg to reply. */
5839 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5840 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5841 if (!n)
5842 return key_senderror(so, m, ENOBUFS);
5843
5844 if (n->m_len < sizeof(struct sadb_msg)) {
5845 n = m_pullup(n, sizeof(struct sadb_msg));
5846 if (n == NULL)
5847 return key_senderror(so, m, ENOBUFS);
5848 }
5849 newmsg = mtod(n, struct sadb_msg *);
5850 newmsg->sadb_msg_errno = 0;
5851 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5852
5853 m_freem(m);
5854 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5855 }
5856 }
5857
5858 /*
5859 * SADB_GET processing
5860 * receive
5861 * <base, SA(*), address(SD)>
5862 * from the ikmpd, and get a SP and a SA to respond,
5863 * and send,
5864 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5865 * (identity(SD),) (sensitivity)>
5866 * to the ikmpd.
5867 *
5868 * m will always be freed.
5869 */
5870 static int
5871 key_get(struct socket *so, struct mbuf *m,
5872 const struct sadb_msghdr *mhp)
5873 {
5874 struct sadb_sa *sa0;
5875 struct sadb_address *src0, *dst0;
5876 struct secasindex saidx;
5877 struct secashead *sah;
5878 struct secasvar *sav = NULL;
5879 u_int16_t proto;
5880 int error;
5881
5882 KASSERT(so != NULL);
5883 KASSERT(m != NULL);
5884 KASSERT(mhp != NULL);
5885 KASSERT(mhp->msg != NULL);
5886
5887 /* map satype to proto */
5888 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5889 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5890 return key_senderror(so, m, EINVAL);
5891 }
5892
5893 if (mhp->ext[SADB_EXT_SA] == NULL ||
5894 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5895 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5896 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5897 return key_senderror(so, m, EINVAL);
5898 }
5899 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5900 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5901 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5902 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5903 return key_senderror(so, m, EINVAL);
5904 }
5905
5906 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5907 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5908 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5909
5910 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
5911 &saidx);
5912 if (error != 0)
5913 return key_senderror(so, m, EINVAL);
5914
5915 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5916 if (error != 0)
5917 return key_senderror(so, m, EINVAL);
5918
5919 /* get a SA header */
5920 LIST_FOREACH(sah, &sahtree, chain) {
5921 if (sah->state == SADB_SASTATE_DEAD)
5922 continue;
5923 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5924 continue;
5925
5926 /* get a SA with SPI. */
5927 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5928 if (sav)
5929 break;
5930 }
5931 if (sah == NULL) {
5932 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5933 return key_senderror(so, m, ENOENT);
5934 }
5935
5936 {
5937 struct mbuf *n;
5938 u_int8_t satype;
5939
5940 /* map proto to satype */
5941 satype = key_proto2satype(sah->saidx.proto);
5942 if (satype == 0) {
5943 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5944 return key_senderror(so, m, EINVAL);
5945 }
5946
5947 /* create new sadb_msg to reply. */
5948 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5949 mhp->msg->sadb_msg_pid);
5950 if (!n)
5951 return key_senderror(so, m, ENOBUFS);
5952
5953 m_freem(m);
5954 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5955 }
5956 }
5957
5958 /* XXX make it sysctl-configurable? */
5959 static void
5960 key_getcomb_setlifetime(struct sadb_comb *comb)
5961 {
5962
5963 comb->sadb_comb_soft_allocations = 1;
5964 comb->sadb_comb_hard_allocations = 1;
5965 comb->sadb_comb_soft_bytes = 0;
5966 comb->sadb_comb_hard_bytes = 0;
5967 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5968 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5969 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5970 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5971 }
5972
5973 /*
5974 * XXX reorder combinations by preference
5975 * XXX no idea if the user wants ESP authentication or not
5976 */
5977 static struct mbuf *
5978 key_getcomb_esp(void)
5979 {
5980 struct sadb_comb *comb;
5981 const struct enc_xform *algo;
5982 struct mbuf *result = NULL, *m, *n;
5983 int encmin;
5984 int i, off, o;
5985 int totlen;
5986 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5987
5988 m = NULL;
5989 for (i = 1; i <= SADB_EALG_MAX; i++) {
5990 algo = esp_algorithm_lookup(i);
5991 if (algo == NULL)
5992 continue;
5993
5994 /* discard algorithms with key size smaller than system min */
5995 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5996 continue;
5997 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5998 encmin = ipsec_esp_keymin;
5999 else
6000 encmin = _BITS(algo->minkey);
6001
6002 if (ipsec_esp_auth)
6003 m = key_getcomb_ah();
6004 else {
6005 KASSERTMSG(l <= MLEN,
6006 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6007 MGET(m, M_DONTWAIT, MT_DATA);
6008 if (m) {
6009 M_ALIGN(m, l);
6010 m->m_len = l;
6011 m->m_next = NULL;
6012 memset(mtod(m, void *), 0, m->m_len);
6013 }
6014 }
6015 if (!m)
6016 goto fail;
6017
6018 totlen = 0;
6019 for (n = m; n; n = n->m_next)
6020 totlen += n->m_len;
6021 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6022
6023 for (off = 0; off < totlen; off += l) {
6024 n = m_pulldown(m, off, l, &o);
6025 if (!n) {
6026 /* m is already freed */
6027 goto fail;
6028 }
6029 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6030 memset(comb, 0, sizeof(*comb));
6031 key_getcomb_setlifetime(comb);
6032 comb->sadb_comb_encrypt = i;
6033 comb->sadb_comb_encrypt_minbits = encmin;
6034 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6035 }
6036
6037 if (!result)
6038 result = m;
6039 else
6040 m_cat(result, m);
6041 }
6042
6043 return result;
6044
6045 fail:
6046 if (result)
6047 m_freem(result);
6048 return NULL;
6049 }
6050
6051 static void
6052 key_getsizes_ah(const struct auth_hash *ah, int alg,
6053 u_int16_t* ksmin, u_int16_t* ksmax)
6054 {
6055 *ksmin = *ksmax = ah->keysize;
6056 if (ah->keysize == 0) {
6057 /*
6058 * Transform takes arbitrary key size but algorithm
6059 * key size is restricted. Enforce this here.
6060 */
6061 switch (alg) {
6062 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6063 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6064 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6065 default:
6066 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6067 break;
6068 }
6069 }
6070 }
6071
6072 /*
6073 * XXX reorder combinations by preference
6074 */
6075 static struct mbuf *
6076 key_getcomb_ah(void)
6077 {
6078 struct sadb_comb *comb;
6079 const struct auth_hash *algo;
6080 struct mbuf *m;
6081 u_int16_t minkeysize, maxkeysize;
6082 int i;
6083 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6084
6085 m = NULL;
6086 for (i = 1; i <= SADB_AALG_MAX; i++) {
6087 #if 1
6088 /* we prefer HMAC algorithms, not old algorithms */
6089 if (i != SADB_AALG_SHA1HMAC &&
6090 i != SADB_AALG_MD5HMAC &&
6091 i != SADB_X_AALG_SHA2_256 &&
6092 i != SADB_X_AALG_SHA2_384 &&
6093 i != SADB_X_AALG_SHA2_512)
6094 continue;
6095 #endif
6096 algo = ah_algorithm_lookup(i);
6097 if (!algo)
6098 continue;
6099 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6100 /* discard algorithms with key size smaller than system min */
6101 if (_BITS(minkeysize) < ipsec_ah_keymin)
6102 continue;
6103
6104 if (!m) {
6105 KASSERTMSG(l <= MLEN,
6106 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6107 MGET(m, M_DONTWAIT, MT_DATA);
6108 if (m) {
6109 M_ALIGN(m, l);
6110 m->m_len = l;
6111 m->m_next = NULL;
6112 }
6113 } else
6114 M_PREPEND(m, l, M_DONTWAIT);
6115 if (!m)
6116 return NULL;
6117
6118 comb = mtod(m, struct sadb_comb *);
6119 memset(comb, 0, sizeof(*comb));
6120 key_getcomb_setlifetime(comb);
6121 comb->sadb_comb_auth = i;
6122 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6123 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6124 }
6125
6126 return m;
6127 }
6128
6129 /*
6130 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6131 * XXX reorder combinations by preference
6132 */
6133 static struct mbuf *
6134 key_getcomb_ipcomp(void)
6135 {
6136 struct sadb_comb *comb;
6137 const struct comp_algo *algo;
6138 struct mbuf *m;
6139 int i;
6140 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6141
6142 m = NULL;
6143 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6144 algo = ipcomp_algorithm_lookup(i);
6145 if (!algo)
6146 continue;
6147
6148 if (!m) {
6149 KASSERTMSG(l <= MLEN,
6150 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6151 MGET(m, M_DONTWAIT, MT_DATA);
6152 if (m) {
6153 M_ALIGN(m, l);
6154 m->m_len = l;
6155 m->m_next = NULL;
6156 }
6157 } else
6158 M_PREPEND(m, l, M_DONTWAIT);
6159 if (!m)
6160 return NULL;
6161
6162 comb = mtod(m, struct sadb_comb *);
6163 memset(comb, 0, sizeof(*comb));
6164 key_getcomb_setlifetime(comb);
6165 comb->sadb_comb_encrypt = i;
6166 /* what should we set into sadb_comb_*_{min,max}bits? */
6167 }
6168
6169 return m;
6170 }
6171
6172 /*
6173 * XXX no way to pass mode (transport/tunnel) to userland
6174 * XXX replay checking?
6175 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6176 */
6177 static struct mbuf *
6178 key_getprop(const struct secasindex *saidx)
6179 {
6180 struct sadb_prop *prop;
6181 struct mbuf *m, *n;
6182 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6183 int totlen;
6184
6185 switch (saidx->proto) {
6186 case IPPROTO_ESP:
6187 m = key_getcomb_esp();
6188 break;
6189 case IPPROTO_AH:
6190 m = key_getcomb_ah();
6191 break;
6192 case IPPROTO_IPCOMP:
6193 m = key_getcomb_ipcomp();
6194 break;
6195 default:
6196 return NULL;
6197 }
6198
6199 if (!m)
6200 return NULL;
6201 M_PREPEND(m, l, M_DONTWAIT);
6202 if (!m)
6203 return NULL;
6204
6205 totlen = 0;
6206 for (n = m; n; n = n->m_next)
6207 totlen += n->m_len;
6208
6209 prop = mtod(m, struct sadb_prop *);
6210 memset(prop, 0, sizeof(*prop));
6211 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6212 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6213 prop->sadb_prop_replay = 32; /* XXX */
6214
6215 return m;
6216 }
6217
6218 /*
6219 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6220 * send
6221 * <base, SA, address(SD), (address(P)), x_policy,
6222 * (identity(SD),) (sensitivity,) proposal>
6223 * to KMD, and expect to receive
6224 * <base> with SADB_ACQUIRE if error occurred,
6225 * or
6226 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6227 * from KMD by PF_KEY.
6228 *
6229 * XXX x_policy is outside of RFC2367 (KAME extension).
6230 * XXX sensitivity is not supported.
6231 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6232 * see comment for key_getcomb_ipcomp().
6233 *
6234 * OUT:
6235 * 0 : succeed
6236 * others: error number
6237 */
6238 static int
6239 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6240 {
6241 struct mbuf *result = NULL, *m;
6242 #ifndef IPSEC_NONBLOCK_ACQUIRE
6243 struct secacq *newacq;
6244 #endif
6245 u_int8_t satype;
6246 int error = -1;
6247 u_int32_t seq;
6248
6249 /* sanity check */
6250 KASSERT(saidx != NULL);
6251 satype = key_proto2satype(saidx->proto);
6252 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6253
6254 #ifndef IPSEC_NONBLOCK_ACQUIRE
6255 /*
6256 * We never do anything about acquirng SA. There is anather
6257 * solution that kernel blocks to send SADB_ACQUIRE message until
6258 * getting something message from IKEd. In later case, to be
6259 * managed with ACQUIRING list.
6260 */
6261 /* Get an entry to check whether sending message or not. */
6262 mutex_enter(&key_mtx);
6263 newacq = key_getacq(saidx);
6264 if (newacq != NULL) {
6265 if (key_blockacq_count < newacq->count) {
6266 /* reset counter and do send message. */
6267 newacq->count = 0;
6268 } else {
6269 /* increment counter and do nothing. */
6270 newacq->count++;
6271 mutex_exit(&key_mtx);
6272 return 0;
6273 }
6274 } else {
6275 /* make new entry for blocking to send SADB_ACQUIRE. */
6276 newacq = key_newacq(saidx);
6277 if (newacq == NULL)
6278 return ENOBUFS;
6279
6280 /* add to acqtree */
6281 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6282 }
6283
6284 seq = newacq->seq;
6285 mutex_exit(&key_mtx);
6286 #else
6287 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6288 #endif
6289 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6290 if (!m) {
6291 error = ENOBUFS;
6292 goto fail;
6293 }
6294 result = m;
6295
6296 /* set sadb_address for saidx's. */
6297 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6298 IPSEC_ULPROTO_ANY);
6299 if (!m) {
6300 error = ENOBUFS;
6301 goto fail;
6302 }
6303 m_cat(result, m);
6304
6305 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6306 IPSEC_ULPROTO_ANY);
6307 if (!m) {
6308 error = ENOBUFS;
6309 goto fail;
6310 }
6311 m_cat(result, m);
6312
6313 /* XXX proxy address (optional) */
6314
6315 /* set sadb_x_policy */
6316 if (sp) {
6317 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6318 if (!m) {
6319 error = ENOBUFS;
6320 goto fail;
6321 }
6322 m_cat(result, m);
6323 }
6324
6325 /* XXX identity (optional) */
6326 #if 0
6327 if (idexttype && fqdn) {
6328 /* create identity extension (FQDN) */
6329 struct sadb_ident *id;
6330 int fqdnlen;
6331
6332 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6333 id = (struct sadb_ident *)p;
6334 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6335 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6336 id->sadb_ident_exttype = idexttype;
6337 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6338 memcpy(id + 1, fqdn, fqdnlen);
6339 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6340 }
6341
6342 if (idexttype) {
6343 /* create identity extension (USERFQDN) */
6344 struct sadb_ident *id;
6345 int userfqdnlen;
6346
6347 if (userfqdn) {
6348 /* +1 for terminating-NUL */
6349 userfqdnlen = strlen(userfqdn) + 1;
6350 } else
6351 userfqdnlen = 0;
6352 id = (struct sadb_ident *)p;
6353 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6354 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6355 id->sadb_ident_exttype = idexttype;
6356 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6357 /* XXX is it correct? */
6358 if (curlwp)
6359 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6360 if (userfqdn && userfqdnlen)
6361 memcpy(id + 1, userfqdn, userfqdnlen);
6362 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6363 }
6364 #endif
6365
6366 /* XXX sensitivity (optional) */
6367
6368 /* create proposal/combination extension */
6369 m = key_getprop(saidx);
6370 #if 0
6371 /*
6372 * spec conformant: always attach proposal/combination extension,
6373 * the problem is that we have no way to attach it for ipcomp,
6374 * due to the way sadb_comb is declared in RFC2367.
6375 */
6376 if (!m) {
6377 error = ENOBUFS;
6378 goto fail;
6379 }
6380 m_cat(result, m);
6381 #else
6382 /*
6383 * outside of spec; make proposal/combination extension optional.
6384 */
6385 if (m)
6386 m_cat(result, m);
6387 #endif
6388
6389 if ((result->m_flags & M_PKTHDR) == 0) {
6390 error = EINVAL;
6391 goto fail;
6392 }
6393
6394 if (result->m_len < sizeof(struct sadb_msg)) {
6395 result = m_pullup(result, sizeof(struct sadb_msg));
6396 if (result == NULL) {
6397 error = ENOBUFS;
6398 goto fail;
6399 }
6400 }
6401
6402 result->m_pkthdr.len = 0;
6403 for (m = result; m; m = m->m_next)
6404 result->m_pkthdr.len += m->m_len;
6405
6406 mtod(result, struct sadb_msg *)->sadb_msg_len =
6407 PFKEY_UNIT64(result->m_pkthdr.len);
6408
6409 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6410
6411 fail:
6412 if (result)
6413 m_freem(result);
6414 return error;
6415 }
6416
6417 #ifndef IPSEC_NONBLOCK_ACQUIRE
6418 static struct secacq *
6419 key_newacq(const struct secasindex *saidx)
6420 {
6421 struct secacq *newacq;
6422
6423 /* get new entry */
6424 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6425 if (newacq == NULL) {
6426 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6427 return NULL;
6428 }
6429
6430 /* copy secindex */
6431 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6432 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6433 newacq->created = time_uptime;
6434 newacq->count = 0;
6435
6436 return newacq;
6437 }
6438
6439 static struct secacq *
6440 key_getacq(const struct secasindex *saidx)
6441 {
6442 struct secacq *acq;
6443
6444 KASSERT(mutex_owned(&key_mtx));
6445
6446 LIST_FOREACH(acq, &acqtree, chain) {
6447 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6448 return acq;
6449 }
6450
6451 return NULL;
6452 }
6453
6454 static struct secacq *
6455 key_getacqbyseq(u_int32_t seq)
6456 {
6457 struct secacq *acq;
6458
6459 KASSERT(mutex_owned(&key_mtx));
6460
6461 LIST_FOREACH(acq, &acqtree, chain) {
6462 if (acq->seq == seq)
6463 return acq;
6464 }
6465
6466 return NULL;
6467 }
6468 #endif
6469
6470 #ifdef notyet
6471 static struct secspacq *
6472 key_newspacq(const struct secpolicyindex *spidx)
6473 {
6474 struct secspacq *acq;
6475
6476 /* get new entry */
6477 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6478 if (acq == NULL) {
6479 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6480 return NULL;
6481 }
6482
6483 /* copy secindex */
6484 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6485 acq->created = time_uptime;
6486 acq->count = 0;
6487
6488 return acq;
6489 }
6490
6491 static struct secspacq *
6492 key_getspacq(const struct secpolicyindex *spidx)
6493 {
6494 struct secspacq *acq;
6495
6496 LIST_FOREACH(acq, &spacqtree, chain) {
6497 if (key_spidx_match_exactly(spidx, &acq->spidx))
6498 return acq;
6499 }
6500
6501 return NULL;
6502 }
6503 #endif /* notyet */
6504
6505 /*
6506 * SADB_ACQUIRE processing,
6507 * in first situation, is receiving
6508 * <base>
6509 * from the ikmpd, and clear sequence of its secasvar entry.
6510 *
6511 * In second situation, is receiving
6512 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6513 * from a user land process, and return
6514 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6515 * to the socket.
6516 *
6517 * m will always be freed.
6518 */
6519 static int
6520 key_acquire2(struct socket *so, struct mbuf *m,
6521 const struct sadb_msghdr *mhp)
6522 {
6523 const struct sadb_address *src0, *dst0;
6524 struct secasindex saidx;
6525 struct secashead *sah;
6526 u_int16_t proto;
6527 int error;
6528
6529 KASSERT(so != NULL);
6530 KASSERT(m != NULL);
6531 KASSERT(mhp != NULL);
6532 KASSERT(mhp->msg != NULL);
6533
6534 /*
6535 * Error message from KMd.
6536 * We assume that if error was occurred in IKEd, the length of PFKEY
6537 * message is equal to the size of sadb_msg structure.
6538 * We do not raise error even if error occurred in this function.
6539 */
6540 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6541 #ifndef IPSEC_NONBLOCK_ACQUIRE
6542 struct secacq *acq;
6543
6544 /* check sequence number */
6545 if (mhp->msg->sadb_msg_seq == 0) {
6546 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6547 m_freem(m);
6548 return 0;
6549 }
6550
6551 mutex_enter(&key_mtx);
6552 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6553 if (acq == NULL) {
6554 mutex_exit(&key_mtx);
6555 /*
6556 * the specified larval SA is already gone, or we got
6557 * a bogus sequence number. we can silently ignore it.
6558 */
6559 m_freem(m);
6560 return 0;
6561 }
6562
6563 /* reset acq counter in order to deletion by timehander. */
6564 acq->created = time_uptime;
6565 acq->count = 0;
6566 mutex_exit(&key_mtx);
6567 #endif
6568 m_freem(m);
6569 return 0;
6570 }
6571
6572 /*
6573 * This message is from user land.
6574 */
6575
6576 /* map satype to proto */
6577 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6578 if (proto == 0) {
6579 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6580 return key_senderror(so, m, EINVAL);
6581 }
6582
6583 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6584 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6585 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6586 /* error */
6587 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6588 return key_senderror(so, m, EINVAL);
6589 }
6590 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6591 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6592 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6593 /* error */
6594 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6595 return key_senderror(so, m, EINVAL);
6596 }
6597
6598 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6599 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6600
6601 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1,
6602 &saidx);
6603 if (error != 0)
6604 return key_senderror(so, m, EINVAL);
6605
6606 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6607 if (error != 0)
6608 return key_senderror(so, m, EINVAL);
6609
6610 /* get a SA index */
6611 LIST_FOREACH(sah, &sahtree, chain) {
6612 if (sah->state == SADB_SASTATE_DEAD)
6613 continue;
6614 if (key_saidx_match(&sah->saidx, &saidx, CMP_MODE_REQID))
6615 break;
6616 }
6617 if (sah != NULL) {
6618 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6619 return key_senderror(so, m, EEXIST);
6620 }
6621
6622 error = key_acquire(&saidx, NULL);
6623 if (error != 0) {
6624 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6625 mhp->msg->sadb_msg_errno);
6626 return key_senderror(so, m, error);
6627 }
6628
6629 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6630 }
6631
6632 /*
6633 * SADB_REGISTER processing.
6634 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6635 * receive
6636 * <base>
6637 * from the ikmpd, and register a socket to send PF_KEY messages,
6638 * and send
6639 * <base, supported>
6640 * to KMD by PF_KEY.
6641 * If socket is detached, must free from regnode.
6642 *
6643 * m will always be freed.
6644 */
6645 static int
6646 key_register(struct socket *so, struct mbuf *m,
6647 const struct sadb_msghdr *mhp)
6648 {
6649 struct secreg *reg, *newreg = 0;
6650
6651 KASSERT(!cpu_softintr_p());
6652 KASSERT(so != NULL);
6653 KASSERT(m != NULL);
6654 KASSERT(mhp != NULL);
6655 KASSERT(mhp->msg != NULL);
6656
6657 /* check for invalid register message */
6658 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6659 return key_senderror(so, m, EINVAL);
6660
6661 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6662 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6663 goto setmsg;
6664
6665 /* Allocate regnode in advance, out of mutex */
6666 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6667
6668 /* check whether existing or not */
6669 mutex_enter(&key_mtx);
6670 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6671 if (reg->so == so) {
6672 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6673 mutex_exit(&key_mtx);
6674 kmem_free(newreg, sizeof(*newreg));
6675 return key_senderror(so, m, EEXIST);
6676 }
6677 }
6678
6679 newreg->so = so;
6680 ((struct keycb *)sotorawcb(so))->kp_registered++;
6681
6682 /* add regnode to regtree. */
6683 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6684 mutex_exit(&key_mtx);
6685
6686 setmsg:
6687 {
6688 struct mbuf *n;
6689 struct sadb_msg *newmsg;
6690 struct sadb_supported *sup;
6691 u_int len, alen, elen;
6692 int off;
6693 int i;
6694 struct sadb_alg *alg;
6695
6696 /* create new sadb_msg to reply. */
6697 alen = 0;
6698 for (i = 1; i <= SADB_AALG_MAX; i++) {
6699 if (ah_algorithm_lookup(i))
6700 alen += sizeof(struct sadb_alg);
6701 }
6702 if (alen)
6703 alen += sizeof(struct sadb_supported);
6704 elen = 0;
6705 for (i = 1; i <= SADB_EALG_MAX; i++) {
6706 if (esp_algorithm_lookup(i))
6707 elen += sizeof(struct sadb_alg);
6708 }
6709 if (elen)
6710 elen += sizeof(struct sadb_supported);
6711
6712 len = sizeof(struct sadb_msg) + alen + elen;
6713
6714 if (len > MCLBYTES)
6715 return key_senderror(so, m, ENOBUFS);
6716
6717 MGETHDR(n, M_DONTWAIT, MT_DATA);
6718 if (len > MHLEN) {
6719 MCLGET(n, M_DONTWAIT);
6720 if ((n->m_flags & M_EXT) == 0) {
6721 m_freem(n);
6722 n = NULL;
6723 }
6724 }
6725 if (!n)
6726 return key_senderror(so, m, ENOBUFS);
6727
6728 n->m_pkthdr.len = n->m_len = len;
6729 n->m_next = NULL;
6730 off = 0;
6731
6732 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6733 newmsg = mtod(n, struct sadb_msg *);
6734 newmsg->sadb_msg_errno = 0;
6735 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6736 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6737
6738 /* for authentication algorithm */
6739 if (alen) {
6740 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6741 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6742 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6743 off += PFKEY_ALIGN8(sizeof(*sup));
6744
6745 for (i = 1; i <= SADB_AALG_MAX; i++) {
6746 const struct auth_hash *aalgo;
6747 u_int16_t minkeysize, maxkeysize;
6748
6749 aalgo = ah_algorithm_lookup(i);
6750 if (!aalgo)
6751 continue;
6752 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6753 alg->sadb_alg_id = i;
6754 alg->sadb_alg_ivlen = 0;
6755 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6756 alg->sadb_alg_minbits = _BITS(minkeysize);
6757 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6758 off += PFKEY_ALIGN8(sizeof(*alg));
6759 }
6760 }
6761
6762 /* for encryption algorithm */
6763 if (elen) {
6764 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6765 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6766 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6767 off += PFKEY_ALIGN8(sizeof(*sup));
6768
6769 for (i = 1; i <= SADB_EALG_MAX; i++) {
6770 const struct enc_xform *ealgo;
6771
6772 ealgo = esp_algorithm_lookup(i);
6773 if (!ealgo)
6774 continue;
6775 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6776 alg->sadb_alg_id = i;
6777 alg->sadb_alg_ivlen = ealgo->blocksize;
6778 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6779 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6780 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6781 }
6782 }
6783
6784 KASSERTMSG(off == len, "length inconsistency");
6785
6786 m_freem(m);
6787 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6788 }
6789 }
6790
6791 /*
6792 * free secreg entry registered.
6793 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6794 */
6795 void
6796 key_freereg(struct socket *so)
6797 {
6798 struct secreg *reg;
6799 int i;
6800
6801 KASSERT(!cpu_softintr_p());
6802 KASSERT(so != NULL);
6803
6804 /*
6805 * check whether existing or not.
6806 * check all type of SA, because there is a potential that
6807 * one socket is registered to multiple type of SA.
6808 */
6809 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6810 mutex_enter(&key_mtx);
6811 LIST_FOREACH(reg, ®tree[i], chain) {
6812 if (reg->so == so) {
6813 LIST_REMOVE(reg, chain);
6814 break;
6815 }
6816 }
6817 mutex_exit(&key_mtx);
6818 if (reg != NULL)
6819 kmem_free(reg, sizeof(*reg));
6820 }
6821
6822 return;
6823 }
6824
6825 /*
6826 * SADB_EXPIRE processing
6827 * send
6828 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6829 * to KMD by PF_KEY.
6830 * NOTE: We send only soft lifetime extension.
6831 *
6832 * OUT: 0 : succeed
6833 * others : error number
6834 */
6835 static int
6836 key_expire(struct secasvar *sav)
6837 {
6838 int s;
6839 int satype;
6840 struct mbuf *result = NULL, *m;
6841 int len;
6842 int error = -1;
6843 struct sadb_lifetime *lt;
6844
6845 /* XXX: Why do we lock ? */
6846 s = splsoftnet(); /*called from softclock()*/
6847
6848 KASSERT(sav != NULL);
6849 KASSERT(sav->sah != NULL);
6850
6851 satype = key_proto2satype(sav->sah->saidx.proto);
6852 KASSERTMSG(satype != 0, "invalid proto is passed");
6853
6854 /* set msg header */
6855 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6856 if (!m) {
6857 error = ENOBUFS;
6858 goto fail;
6859 }
6860 result = m;
6861
6862 /* create SA extension */
6863 m = key_setsadbsa(sav);
6864 if (!m) {
6865 error = ENOBUFS;
6866 goto fail;
6867 }
6868 m_cat(result, m);
6869
6870 /* create SA extension */
6871 m = key_setsadbxsa2(sav->sah->saidx.mode,
6872 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6873 if (!m) {
6874 error = ENOBUFS;
6875 goto fail;
6876 }
6877 m_cat(result, m);
6878
6879 /* create lifetime extension (current and soft) */
6880 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6881 m = key_alloc_mbuf(len);
6882 if (!m || m->m_next) { /*XXX*/
6883 if (m)
6884 m_freem(m);
6885 error = ENOBUFS;
6886 goto fail;
6887 }
6888 memset(mtod(m, void *), 0, len);
6889 lt = mtod(m, struct sadb_lifetime *);
6890 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6891 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6892 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6893 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6894 lt->sadb_lifetime_addtime =
6895 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6896 lt->sadb_lifetime_usetime =
6897 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6898 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6899 memcpy(lt, sav->lft_s, sizeof(*lt));
6900 m_cat(result, m);
6901
6902 /* set sadb_address for source */
6903 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6904 FULLMASK, IPSEC_ULPROTO_ANY);
6905 if (!m) {
6906 error = ENOBUFS;
6907 goto fail;
6908 }
6909 m_cat(result, m);
6910
6911 /* set sadb_address for destination */
6912 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6913 FULLMASK, IPSEC_ULPROTO_ANY);
6914 if (!m) {
6915 error = ENOBUFS;
6916 goto fail;
6917 }
6918 m_cat(result, m);
6919
6920 if ((result->m_flags & M_PKTHDR) == 0) {
6921 error = EINVAL;
6922 goto fail;
6923 }
6924
6925 if (result->m_len < sizeof(struct sadb_msg)) {
6926 result = m_pullup(result, sizeof(struct sadb_msg));
6927 if (result == NULL) {
6928 error = ENOBUFS;
6929 goto fail;
6930 }
6931 }
6932
6933 result->m_pkthdr.len = 0;
6934 for (m = result; m; m = m->m_next)
6935 result->m_pkthdr.len += m->m_len;
6936
6937 mtod(result, struct sadb_msg *)->sadb_msg_len =
6938 PFKEY_UNIT64(result->m_pkthdr.len);
6939
6940 splx(s);
6941 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6942
6943 fail:
6944 if (result)
6945 m_freem(result);
6946 splx(s);
6947 return error;
6948 }
6949
6950 /*
6951 * SADB_FLUSH processing
6952 * receive
6953 * <base>
6954 * from the ikmpd, and free all entries in secastree.
6955 * and send,
6956 * <base>
6957 * to the ikmpd.
6958 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6959 *
6960 * m will always be freed.
6961 */
6962 static int
6963 key_flush(struct socket *so, struct mbuf *m,
6964 const struct sadb_msghdr *mhp)
6965 {
6966 struct sadb_msg *newmsg;
6967 struct secashead *sah;
6968 struct secasvar *sav, *nextsav;
6969 u_int16_t proto;
6970 u_int8_t state;
6971
6972 KASSERT(so != NULL);
6973 KASSERT(mhp != NULL);
6974 KASSERT(mhp->msg != NULL);
6975
6976 /* map satype to proto */
6977 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6978 if (proto == 0) {
6979 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6980 return key_senderror(so, m, EINVAL);
6981 }
6982
6983 /* no SATYPE specified, i.e. flushing all SA. */
6984 LIST_FOREACH(sah, &sahtree, chain) {
6985 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6986 proto != sah->saidx.proto)
6987 continue;
6988
6989 SASTATE_ALIVE_FOREACH(state) {
6990 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6991 nextsav) {
6992 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6993 KEY_FREESAV(&sav);
6994 }
6995 }
6996
6997 sah->state = SADB_SASTATE_DEAD;
6998 }
6999
7000 if (m->m_len < sizeof(struct sadb_msg) ||
7001 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7002 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7003 return key_senderror(so, m, ENOBUFS);
7004 }
7005
7006 if (m->m_next)
7007 m_freem(m->m_next);
7008 m->m_next = NULL;
7009 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7010 newmsg = mtod(m, struct sadb_msg *);
7011 newmsg->sadb_msg_errno = 0;
7012 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7013
7014 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7015 }
7016
7017
7018 static struct mbuf *
7019 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7020 {
7021 struct secashead *sah;
7022 struct secasvar *sav;
7023 u_int16_t proto;
7024 u_int8_t satype;
7025 u_int8_t state;
7026 int cnt;
7027 struct mbuf *m, *n, *prev;
7028
7029 *lenp = 0;
7030
7031 /* map satype to proto */
7032 proto = key_satype2proto(req_satype);
7033 if (proto == 0) {
7034 *errorp = EINVAL;
7035 return (NULL);
7036 }
7037
7038 /* count sav entries to be sent to userland. */
7039 cnt = 0;
7040 LIST_FOREACH(sah, &sahtree, chain) {
7041 if (req_satype != SADB_SATYPE_UNSPEC &&
7042 proto != sah->saidx.proto)
7043 continue;
7044
7045 SASTATE_ANY_FOREACH(state) {
7046 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7047 cnt++;
7048 }
7049 }
7050 }
7051
7052 if (cnt == 0) {
7053 *errorp = ENOENT;
7054 return (NULL);
7055 }
7056
7057 /* send this to the userland, one at a time. */
7058 m = NULL;
7059 prev = m;
7060 LIST_FOREACH(sah, &sahtree, chain) {
7061 if (req_satype != SADB_SATYPE_UNSPEC &&
7062 proto != sah->saidx.proto)
7063 continue;
7064
7065 /* map proto to satype */
7066 satype = key_proto2satype(sah->saidx.proto);
7067 if (satype == 0) {
7068 m_freem(m);
7069 *errorp = EINVAL;
7070 return (NULL);
7071 }
7072
7073 SASTATE_ANY_FOREACH(state) {
7074 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7075 n = key_setdumpsa(sav, SADB_DUMP, satype,
7076 --cnt, pid);
7077 if (!n) {
7078 m_freem(m);
7079 *errorp = ENOBUFS;
7080 return (NULL);
7081 }
7082
7083 if (!m)
7084 m = n;
7085 else
7086 prev->m_nextpkt = n;
7087 prev = n;
7088 }
7089 }
7090 }
7091
7092 if (!m) {
7093 *errorp = EINVAL;
7094 return (NULL);
7095 }
7096
7097 if ((m->m_flags & M_PKTHDR) != 0) {
7098 m->m_pkthdr.len = 0;
7099 for (n = m; n; n = n->m_next)
7100 m->m_pkthdr.len += n->m_len;
7101 }
7102
7103 *errorp = 0;
7104 return (m);
7105 }
7106
7107 /*
7108 * SADB_DUMP processing
7109 * dump all entries including status of DEAD in SAD.
7110 * receive
7111 * <base>
7112 * from the ikmpd, and dump all secasvar leaves
7113 * and send,
7114 * <base> .....
7115 * to the ikmpd.
7116 *
7117 * m will always be freed.
7118 */
7119 static int
7120 key_dump(struct socket *so, struct mbuf *m0,
7121 const struct sadb_msghdr *mhp)
7122 {
7123 u_int16_t proto;
7124 u_int8_t satype;
7125 struct mbuf *n;
7126 int s;
7127 int error, len, ok;
7128
7129 KASSERT(so != NULL);
7130 KASSERT(m0 != NULL);
7131 KASSERT(mhp != NULL);
7132 KASSERT(mhp->msg != NULL);
7133
7134 /* map satype to proto */
7135 satype = mhp->msg->sadb_msg_satype;
7136 proto = key_satype2proto(satype);
7137 if (proto == 0) {
7138 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7139 return key_senderror(so, m0, EINVAL);
7140 }
7141
7142 /*
7143 * If the requestor has insufficient socket-buffer space
7144 * for the entire chain, nobody gets any response to the DUMP.
7145 * XXX For now, only the requestor ever gets anything.
7146 * Moreover, if the requestor has any space at all, they receive
7147 * the entire chain, otherwise the request is refused with ENOBUFS.
7148 */
7149 if (sbspace(&so->so_rcv) <= 0) {
7150 return key_senderror(so, m0, ENOBUFS);
7151 }
7152
7153 s = splsoftnet();
7154 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7155 splx(s);
7156
7157 if (n == NULL) {
7158 return key_senderror(so, m0, ENOENT);
7159 }
7160 {
7161 uint64_t *ps = PFKEY_STAT_GETREF();
7162 ps[PFKEY_STAT_IN_TOTAL]++;
7163 ps[PFKEY_STAT_IN_BYTES] += len;
7164 PFKEY_STAT_PUTREF();
7165 }
7166
7167 /*
7168 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7169 * The requestor receives either the entire chain, or an
7170 * error message with ENOBUFS.
7171 *
7172 * sbappendaddrchain() takes the chain of entries, one
7173 * packet-record per SPD entry, prepends the key_src sockaddr
7174 * to each packet-record, links the sockaddr mbufs into a new
7175 * list of records, then appends the entire resulting
7176 * list to the requesting socket.
7177 */
7178 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7179 SB_PRIO_ONESHOT_OVERFLOW);
7180
7181 if (!ok) {
7182 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7183 m_freem(n);
7184 return key_senderror(so, m0, ENOBUFS);
7185 }
7186
7187 m_freem(m0);
7188 return 0;
7189 }
7190
7191 /*
7192 * SADB_X_PROMISC processing
7193 *
7194 * m will always be freed.
7195 */
7196 static int
7197 key_promisc(struct socket *so, struct mbuf *m,
7198 const struct sadb_msghdr *mhp)
7199 {
7200 int olen;
7201
7202 KASSERT(so != NULL);
7203 KASSERT(m != NULL);
7204 KASSERT(mhp != NULL);
7205 KASSERT(mhp->msg != NULL);
7206
7207 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7208
7209 if (olen < sizeof(struct sadb_msg)) {
7210 #if 1
7211 return key_senderror(so, m, EINVAL);
7212 #else
7213 m_freem(m);
7214 return 0;
7215 #endif
7216 } else if (olen == sizeof(struct sadb_msg)) {
7217 /* enable/disable promisc mode */
7218 struct keycb *kp = (struct keycb *)sotorawcb(so);
7219 if (kp == NULL)
7220 return key_senderror(so, m, EINVAL);
7221 mhp->msg->sadb_msg_errno = 0;
7222 switch (mhp->msg->sadb_msg_satype) {
7223 case 0:
7224 case 1:
7225 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7226 break;
7227 default:
7228 return key_senderror(so, m, EINVAL);
7229 }
7230
7231 /* send the original message back to everyone */
7232 mhp->msg->sadb_msg_errno = 0;
7233 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7234 } else {
7235 /* send packet as is */
7236
7237 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7238
7239 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7240 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7241 }
7242 }
7243
7244 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7245 const struct sadb_msghdr *) = {
7246 NULL, /* SADB_RESERVED */
7247 key_getspi, /* SADB_GETSPI */
7248 key_update, /* SADB_UPDATE */
7249 key_add, /* SADB_ADD */
7250 key_delete, /* SADB_DELETE */
7251 key_get, /* SADB_GET */
7252 key_acquire2, /* SADB_ACQUIRE */
7253 key_register, /* SADB_REGISTER */
7254 NULL, /* SADB_EXPIRE */
7255 key_flush, /* SADB_FLUSH */
7256 key_dump, /* SADB_DUMP */
7257 key_promisc, /* SADB_X_PROMISC */
7258 NULL, /* SADB_X_PCHANGE */
7259 key_spdadd, /* SADB_X_SPDUPDATE */
7260 key_spdadd, /* SADB_X_SPDADD */
7261 key_spddelete, /* SADB_X_SPDDELETE */
7262 key_spdget, /* SADB_X_SPDGET */
7263 NULL, /* SADB_X_SPDACQUIRE */
7264 key_spddump, /* SADB_X_SPDDUMP */
7265 key_spdflush, /* SADB_X_SPDFLUSH */
7266 key_spdadd, /* SADB_X_SPDSETIDX */
7267 NULL, /* SADB_X_SPDEXPIRE */
7268 key_spddelete2, /* SADB_X_SPDDELETE2 */
7269 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7270 };
7271
7272 /*
7273 * parse sadb_msg buffer to process PFKEYv2,
7274 * and create a data to response if needed.
7275 * I think to be dealed with mbuf directly.
7276 * IN:
7277 * msgp : pointer to pointer to a received buffer pulluped.
7278 * This is rewrited to response.
7279 * so : pointer to socket.
7280 * OUT:
7281 * length for buffer to send to user process.
7282 */
7283 int
7284 key_parse(struct mbuf *m, struct socket *so)
7285 {
7286 struct sadb_msg *msg;
7287 struct sadb_msghdr mh;
7288 u_int orglen;
7289 int error;
7290 int target;
7291
7292 KASSERT(m != NULL);
7293 KASSERT(so != NULL);
7294
7295 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7296 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7297 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7298 kdebug_sadb(msg);
7299 }
7300 #endif
7301
7302 if (m->m_len < sizeof(struct sadb_msg)) {
7303 m = m_pullup(m, sizeof(struct sadb_msg));
7304 if (!m)
7305 return ENOBUFS;
7306 }
7307 msg = mtod(m, struct sadb_msg *);
7308 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7309 target = KEY_SENDUP_ONE;
7310
7311 if ((m->m_flags & M_PKTHDR) == 0 ||
7312 m->m_pkthdr.len != orglen) {
7313 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7314 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7315 error = EINVAL;
7316 goto senderror;
7317 }
7318
7319 if (msg->sadb_msg_version != PF_KEY_V2) {
7320 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7321 msg->sadb_msg_version);
7322 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7323 error = EINVAL;
7324 goto senderror;
7325 }
7326
7327 if (msg->sadb_msg_type > SADB_MAX) {
7328 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7329 msg->sadb_msg_type);
7330 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7331 error = EINVAL;
7332 goto senderror;
7333 }
7334
7335 /* for old-fashioned code - should be nuked */
7336 if (m->m_pkthdr.len > MCLBYTES) {
7337 m_freem(m);
7338 return ENOBUFS;
7339 }
7340 if (m->m_next) {
7341 struct mbuf *n;
7342
7343 MGETHDR(n, M_DONTWAIT, MT_DATA);
7344 if (n && m->m_pkthdr.len > MHLEN) {
7345 MCLGET(n, M_DONTWAIT);
7346 if ((n->m_flags & M_EXT) == 0) {
7347 m_free(n);
7348 n = NULL;
7349 }
7350 }
7351 if (!n) {
7352 m_freem(m);
7353 return ENOBUFS;
7354 }
7355 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7356 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7357 n->m_next = NULL;
7358 m_freem(m);
7359 m = n;
7360 }
7361
7362 /* align the mbuf chain so that extensions are in contiguous region. */
7363 error = key_align(m, &mh);
7364 if (error)
7365 return error;
7366
7367 if (m->m_next) { /*XXX*/
7368 m_freem(m);
7369 return ENOBUFS;
7370 }
7371
7372 msg = mh.msg;
7373
7374 /* check SA type */
7375 switch (msg->sadb_msg_satype) {
7376 case SADB_SATYPE_UNSPEC:
7377 switch (msg->sadb_msg_type) {
7378 case SADB_GETSPI:
7379 case SADB_UPDATE:
7380 case SADB_ADD:
7381 case SADB_DELETE:
7382 case SADB_GET:
7383 case SADB_ACQUIRE:
7384 case SADB_EXPIRE:
7385 IPSECLOG(LOG_DEBUG,
7386 "must specify satype when msg type=%u.\n",
7387 msg->sadb_msg_type);
7388 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7389 error = EINVAL;
7390 goto senderror;
7391 }
7392 break;
7393 case SADB_SATYPE_AH:
7394 case SADB_SATYPE_ESP:
7395 case SADB_X_SATYPE_IPCOMP:
7396 case SADB_X_SATYPE_TCPSIGNATURE:
7397 switch (msg->sadb_msg_type) {
7398 case SADB_X_SPDADD:
7399 case SADB_X_SPDDELETE:
7400 case SADB_X_SPDGET:
7401 case SADB_X_SPDDUMP:
7402 case SADB_X_SPDFLUSH:
7403 case SADB_X_SPDSETIDX:
7404 case SADB_X_SPDUPDATE:
7405 case SADB_X_SPDDELETE2:
7406 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7407 msg->sadb_msg_type);
7408 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7409 error = EINVAL;
7410 goto senderror;
7411 }
7412 break;
7413 case SADB_SATYPE_RSVP:
7414 case SADB_SATYPE_OSPFV2:
7415 case SADB_SATYPE_RIPV2:
7416 case SADB_SATYPE_MIP:
7417 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7418 msg->sadb_msg_satype);
7419 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7420 error = EOPNOTSUPP;
7421 goto senderror;
7422 case 1: /* XXX: What does it do? */
7423 if (msg->sadb_msg_type == SADB_X_PROMISC)
7424 break;
7425 /*FALLTHROUGH*/
7426 default:
7427 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7428 msg->sadb_msg_satype);
7429 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7430 error = EINVAL;
7431 goto senderror;
7432 }
7433
7434 /* check field of upper layer protocol and address family */
7435 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7436 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7437 struct sadb_address *src0, *dst0;
7438 u_int plen;
7439
7440 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7441 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7442
7443 /* check upper layer protocol */
7444 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7445 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7446 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7447 error = EINVAL;
7448 goto senderror;
7449 }
7450
7451 /* check family */
7452 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7453 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7454 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7455 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7456 error = EINVAL;
7457 goto senderror;
7458 }
7459 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7460 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7461 IPSECLOG(LOG_DEBUG,
7462 "address struct size mismatched.\n");
7463 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7464 error = EINVAL;
7465 goto senderror;
7466 }
7467
7468 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7469 case AF_INET:
7470 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7471 sizeof(struct sockaddr_in)) {
7472 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7473 error = EINVAL;
7474 goto senderror;
7475 }
7476 break;
7477 case AF_INET6:
7478 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7479 sizeof(struct sockaddr_in6)) {
7480 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7481 error = EINVAL;
7482 goto senderror;
7483 }
7484 break;
7485 default:
7486 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7487 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7488 error = EAFNOSUPPORT;
7489 goto senderror;
7490 }
7491
7492 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7493 case AF_INET:
7494 plen = sizeof(struct in_addr) << 3;
7495 break;
7496 case AF_INET6:
7497 plen = sizeof(struct in6_addr) << 3;
7498 break;
7499 default:
7500 plen = 0; /*fool gcc*/
7501 break;
7502 }
7503
7504 /* check max prefix length */
7505 if (src0->sadb_address_prefixlen > plen ||
7506 dst0->sadb_address_prefixlen > plen) {
7507 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7508 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7509 error = EINVAL;
7510 goto senderror;
7511 }
7512
7513 /*
7514 * prefixlen == 0 is valid because there can be a case when
7515 * all addresses are matched.
7516 */
7517 }
7518
7519 if (msg->sadb_msg_type >= __arraycount(key_typesw) ||
7520 key_typesw[msg->sadb_msg_type] == NULL) {
7521 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7522 error = EINVAL;
7523 goto senderror;
7524 }
7525
7526 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7527
7528 senderror:
7529 msg->sadb_msg_errno = error;
7530 return key_sendup_mbuf(so, m, target);
7531 }
7532
7533 static int
7534 key_senderror(struct socket *so, struct mbuf *m, int code)
7535 {
7536 struct sadb_msg *msg;
7537
7538 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7539
7540 msg = mtod(m, struct sadb_msg *);
7541 msg->sadb_msg_errno = code;
7542 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7543 }
7544
7545 /*
7546 * set the pointer to each header into message buffer.
7547 * m will be freed on error.
7548 * XXX larger-than-MCLBYTES extension?
7549 */
7550 static int
7551 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7552 {
7553 struct mbuf *n;
7554 struct sadb_ext *ext;
7555 size_t off, end;
7556 int extlen;
7557 int toff;
7558
7559 KASSERT(m != NULL);
7560 KASSERT(mhp != NULL);
7561 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7562
7563 /* initialize */
7564 memset(mhp, 0, sizeof(*mhp));
7565
7566 mhp->msg = mtod(m, struct sadb_msg *);
7567 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7568
7569 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7570 extlen = end; /*just in case extlen is not updated*/
7571 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7572 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7573 if (!n) {
7574 /* m is already freed */
7575 return ENOBUFS;
7576 }
7577 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7578
7579 /* set pointer */
7580 switch (ext->sadb_ext_type) {
7581 case SADB_EXT_SA:
7582 case SADB_EXT_ADDRESS_SRC:
7583 case SADB_EXT_ADDRESS_DST:
7584 case SADB_EXT_ADDRESS_PROXY:
7585 case SADB_EXT_LIFETIME_CURRENT:
7586 case SADB_EXT_LIFETIME_HARD:
7587 case SADB_EXT_LIFETIME_SOFT:
7588 case SADB_EXT_KEY_AUTH:
7589 case SADB_EXT_KEY_ENCRYPT:
7590 case SADB_EXT_IDENTITY_SRC:
7591 case SADB_EXT_IDENTITY_DST:
7592 case SADB_EXT_SENSITIVITY:
7593 case SADB_EXT_PROPOSAL:
7594 case SADB_EXT_SUPPORTED_AUTH:
7595 case SADB_EXT_SUPPORTED_ENCRYPT:
7596 case SADB_EXT_SPIRANGE:
7597 case SADB_X_EXT_POLICY:
7598 case SADB_X_EXT_SA2:
7599 case SADB_X_EXT_NAT_T_TYPE:
7600 case SADB_X_EXT_NAT_T_SPORT:
7601 case SADB_X_EXT_NAT_T_DPORT:
7602 case SADB_X_EXT_NAT_T_OAI:
7603 case SADB_X_EXT_NAT_T_OAR:
7604 case SADB_X_EXT_NAT_T_FRAG:
7605 /* duplicate check */
7606 /*
7607 * XXX Are there duplication payloads of either
7608 * KEY_AUTH or KEY_ENCRYPT ?
7609 */
7610 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7611 IPSECLOG(LOG_DEBUG,
7612 "duplicate ext_type %u is passed.\n",
7613 ext->sadb_ext_type);
7614 m_freem(m);
7615 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7616 return EINVAL;
7617 }
7618 break;
7619 default:
7620 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7621 ext->sadb_ext_type);
7622 m_freem(m);
7623 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7624 return EINVAL;
7625 }
7626
7627 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7628
7629 if (key_validate_ext(ext, extlen)) {
7630 m_freem(m);
7631 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7632 return EINVAL;
7633 }
7634
7635 n = m_pulldown(m, off, extlen, &toff);
7636 if (!n) {
7637 /* m is already freed */
7638 return ENOBUFS;
7639 }
7640 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7641
7642 mhp->ext[ext->sadb_ext_type] = ext;
7643 mhp->extoff[ext->sadb_ext_type] = off;
7644 mhp->extlen[ext->sadb_ext_type] = extlen;
7645 }
7646
7647 if (off != end) {
7648 m_freem(m);
7649 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7650 return EINVAL;
7651 }
7652
7653 return 0;
7654 }
7655
7656 static int
7657 key_validate_ext(const struct sadb_ext *ext, int len)
7658 {
7659 const struct sockaddr *sa;
7660 enum { NONE, ADDR } checktype = NONE;
7661 int baselen = 0;
7662 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7663
7664 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7665 return EINVAL;
7666
7667 /* if it does not match minimum/maximum length, bail */
7668 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7669 ext->sadb_ext_type >= __arraycount(maxsize))
7670 return EINVAL;
7671 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7672 return EINVAL;
7673 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7674 return EINVAL;
7675
7676 /* more checks based on sadb_ext_type XXX need more */
7677 switch (ext->sadb_ext_type) {
7678 case SADB_EXT_ADDRESS_SRC:
7679 case SADB_EXT_ADDRESS_DST:
7680 case SADB_EXT_ADDRESS_PROXY:
7681 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7682 checktype = ADDR;
7683 break;
7684 case SADB_EXT_IDENTITY_SRC:
7685 case SADB_EXT_IDENTITY_DST:
7686 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7687 SADB_X_IDENTTYPE_ADDR) {
7688 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7689 checktype = ADDR;
7690 } else
7691 checktype = NONE;
7692 break;
7693 default:
7694 checktype = NONE;
7695 break;
7696 }
7697
7698 switch (checktype) {
7699 case NONE:
7700 break;
7701 case ADDR:
7702 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7703 if (len < baselen + sal)
7704 return EINVAL;
7705 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7706 return EINVAL;
7707 break;
7708 }
7709
7710 return 0;
7711 }
7712
7713 static int
7714 key_do_init(void)
7715 {
7716 int i, error;
7717
7718 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7719
7720 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7721
7722 callout_init(&key_timehandler_ch, 0);
7723 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7724 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7725 if (error != 0)
7726 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7727
7728 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7729 LIST_INIT(&sptree[i]);
7730 }
7731
7732 LIST_INIT(&sahtree);
7733
7734 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7735 LIST_INIT(®tree[i]);
7736 }
7737
7738 #ifndef IPSEC_NONBLOCK_ACQUIRE
7739 LIST_INIT(&acqtree);
7740 #endif
7741 #ifdef notyet
7742 LIST_INIT(&spacqtree);
7743 #endif
7744
7745 /* system default */
7746 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7747 ip4_def_policy.refcnt++; /*never reclaim this*/
7748
7749 #ifdef INET6
7750 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7751 ip6_def_policy.refcnt++; /*never reclaim this*/
7752 #endif
7753
7754 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7755
7756 /* initialize key statistics */
7757 keystat.getspi_count = 1;
7758
7759 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7760
7761 return (0);
7762 }
7763
7764 void
7765 key_init(void)
7766 {
7767 static ONCE_DECL(key_init_once);
7768
7769 sysctl_net_keyv2_setup(NULL);
7770 sysctl_net_key_compat_setup(NULL);
7771
7772 RUN_ONCE(&key_init_once, key_do_init);
7773 }
7774
7775 /*
7776 * XXX: maybe This function is called after INBOUND IPsec processing.
7777 *
7778 * Special check for tunnel-mode packets.
7779 * We must make some checks for consistency between inner and outer IP header.
7780 *
7781 * xxx more checks to be provided
7782 */
7783 int
7784 key_checktunnelsanity(
7785 struct secasvar *sav,
7786 u_int family,
7787 void *src,
7788 void *dst
7789 )
7790 {
7791
7792 KASSERT(sav->sah != NULL);
7793
7794 /* XXX: check inner IP header */
7795
7796 return 1;
7797 }
7798
7799 #if 0
7800 #define hostnamelen strlen(hostname)
7801
7802 /*
7803 * Get FQDN for the host.
7804 * If the administrator configured hostname (by hostname(1)) without
7805 * domain name, returns nothing.
7806 */
7807 static const char *
7808 key_getfqdn(void)
7809 {
7810 int i;
7811 int hasdot;
7812 static char fqdn[MAXHOSTNAMELEN + 1];
7813
7814 if (!hostnamelen)
7815 return NULL;
7816
7817 /* check if it comes with domain name. */
7818 hasdot = 0;
7819 for (i = 0; i < hostnamelen; i++) {
7820 if (hostname[i] == '.')
7821 hasdot++;
7822 }
7823 if (!hasdot)
7824 return NULL;
7825
7826 /* NOTE: hostname may not be NUL-terminated. */
7827 memset(fqdn, 0, sizeof(fqdn));
7828 memcpy(fqdn, hostname, hostnamelen);
7829 fqdn[hostnamelen] = '\0';
7830 return fqdn;
7831 }
7832
7833 /*
7834 * get username@FQDN for the host/user.
7835 */
7836 static const char *
7837 key_getuserfqdn(void)
7838 {
7839 const char *host;
7840 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7841 struct proc *p = curproc;
7842 char *q;
7843
7844 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7845 return NULL;
7846 if (!(host = key_getfqdn()))
7847 return NULL;
7848
7849 /* NOTE: s_login may not be-NUL terminated. */
7850 memset(userfqdn, 0, sizeof(userfqdn));
7851 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7852 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7853 q = userfqdn + strlen(userfqdn);
7854 *q++ = '@';
7855 memcpy(q, host, strlen(host));
7856 q += strlen(host);
7857 *q++ = '\0';
7858
7859 return userfqdn;
7860 }
7861 #endif
7862
7863 /* record data transfer on SA, and update timestamps */
7864 void
7865 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7866 {
7867
7868 KASSERT(sav != NULL);
7869 KASSERT(m != NULL);
7870 if (!sav->lft_c)
7871 return;
7872
7873 /*
7874 * XXX Currently, there is a difference of bytes size
7875 * between inbound and outbound processing.
7876 */
7877 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7878 /* to check bytes lifetime is done in key_timehandler(). */
7879
7880 /*
7881 * We use the number of packets as the unit of
7882 * sadb_lifetime_allocations. We increment the variable
7883 * whenever {esp,ah}_{in,out}put is called.
7884 */
7885 sav->lft_c->sadb_lifetime_allocations++;
7886 /* XXX check for expires? */
7887
7888 /*
7889 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7890 * in seconds. HARD and SOFT lifetime are measured by the time
7891 * difference (again in seconds) from sadb_lifetime_usetime.
7892 *
7893 * usetime
7894 * v expire expire
7895 * -----+-----+--------+---> t
7896 * <--------------> HARD
7897 * <-----> SOFT
7898 */
7899 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7900 /* XXX check for expires? */
7901
7902 return;
7903 }
7904
7905 /* dumb version */
7906 void
7907 key_sa_routechange(struct sockaddr *dst)
7908 {
7909 struct secashead *sah;
7910 struct route *ro;
7911 const struct sockaddr *sa;
7912
7913 LIST_FOREACH(sah, &sahtree, chain) {
7914 ro = &sah->sa_route;
7915 sa = rtcache_getdst(ro);
7916 if (sa != NULL && dst->sa_len == sa->sa_len &&
7917 memcmp(dst, sa, dst->sa_len) == 0)
7918 rtcache_free(ro);
7919 }
7920
7921 return;
7922 }
7923
7924 static void
7925 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7926 {
7927
7928 KASSERT(sav != NULL);
7929
7930 if (sav->state == state)
7931 return;
7932
7933 KASSERT(__LIST_CHAINED(sav));
7934 LIST_REMOVE(sav, chain);
7935
7936 sav->state = state;
7937 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7938 }
7939
7940 /* XXX too much? */
7941 static struct mbuf *
7942 key_alloc_mbuf(int l)
7943 {
7944 struct mbuf *m = NULL, *n;
7945 int len, t;
7946
7947 len = l;
7948 while (len > 0) {
7949 MGET(n, M_DONTWAIT, MT_DATA);
7950 if (n && len > MLEN)
7951 MCLGET(n, M_DONTWAIT);
7952 if (!n) {
7953 m_freem(m);
7954 return NULL;
7955 }
7956
7957 n->m_next = NULL;
7958 n->m_len = 0;
7959 n->m_len = M_TRAILINGSPACE(n);
7960 /* use the bottom of mbuf, hoping we can prepend afterwards */
7961 if (n->m_len > len) {
7962 t = (n->m_len - len) & ~(sizeof(long) - 1);
7963 n->m_data += t;
7964 n->m_len = len;
7965 }
7966
7967 len -= n->m_len;
7968
7969 if (m)
7970 m_cat(m, n);
7971 else
7972 m = n;
7973 }
7974
7975 return m;
7976 }
7977
7978 static struct mbuf *
7979 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7980 {
7981 struct secashead *sah;
7982 struct secasvar *sav;
7983 u_int16_t proto;
7984 u_int8_t satype;
7985 u_int8_t state;
7986 int cnt;
7987 struct mbuf *m, *n;
7988
7989 /* map satype to proto */
7990 proto = key_satype2proto(req_satype);
7991 if (proto == 0) {
7992 *errorp = EINVAL;
7993 return (NULL);
7994 }
7995
7996 /* count sav entries to be sent to the userland. */
7997 cnt = 0;
7998 LIST_FOREACH(sah, &sahtree, chain) {
7999 if (req_satype != SADB_SATYPE_UNSPEC &&
8000 proto != sah->saidx.proto)
8001 continue;
8002
8003 SASTATE_ANY_FOREACH(state) {
8004 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8005 cnt++;
8006 }
8007 }
8008 }
8009
8010 if (cnt == 0) {
8011 *errorp = ENOENT;
8012 return (NULL);
8013 }
8014
8015 /* send this to the userland, one at a time. */
8016 m = NULL;
8017 LIST_FOREACH(sah, &sahtree, chain) {
8018 if (req_satype != SADB_SATYPE_UNSPEC &&
8019 proto != sah->saidx.proto)
8020 continue;
8021
8022 /* map proto to satype */
8023 satype = key_proto2satype(sah->saidx.proto);
8024 if (satype == 0) {
8025 m_freem(m);
8026 *errorp = EINVAL;
8027 return (NULL);
8028 }
8029
8030 SASTATE_ANY_FOREACH(state) {
8031 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8032 n = key_setdumpsa(sav, SADB_DUMP, satype,
8033 --cnt, pid);
8034 if (!n) {
8035 m_freem(m);
8036 *errorp = ENOBUFS;
8037 return (NULL);
8038 }
8039
8040 if (!m)
8041 m = n;
8042 else
8043 m_cat(m, n);
8044 }
8045 }
8046 }
8047
8048 if (!m) {
8049 *errorp = EINVAL;
8050 return (NULL);
8051 }
8052
8053 if ((m->m_flags & M_PKTHDR) != 0) {
8054 m->m_pkthdr.len = 0;
8055 for (n = m; n; n = n->m_next)
8056 m->m_pkthdr.len += n->m_len;
8057 }
8058
8059 *errorp = 0;
8060 return (m);
8061 }
8062
8063 static struct mbuf *
8064 key_setspddump(int *errorp, pid_t pid)
8065 {
8066 struct secpolicy *sp;
8067 int cnt;
8068 u_int dir;
8069 struct mbuf *m, *n;
8070
8071 /* search SPD entry and get buffer size. */
8072 cnt = 0;
8073 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8074 LIST_FOREACH(sp, &sptree[dir], chain) {
8075 cnt++;
8076 }
8077 }
8078
8079 if (cnt == 0) {
8080 *errorp = ENOENT;
8081 return (NULL);
8082 }
8083
8084 m = NULL;
8085 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8086 LIST_FOREACH(sp, &sptree[dir], chain) {
8087 --cnt;
8088 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8089
8090 if (!n) {
8091 *errorp = ENOBUFS;
8092 m_freem(m);
8093 return (NULL);
8094 }
8095 if (!m)
8096 m = n;
8097 else {
8098 m->m_pkthdr.len += n->m_pkthdr.len;
8099 m_cat(m, n);
8100 }
8101 }
8102 }
8103
8104 *errorp = 0;
8105 return (m);
8106 }
8107
8108 int
8109 key_get_used(void) {
8110 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8111 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8112 }
8113
8114 void
8115 key_update_used(void)
8116 {
8117 switch (ipsec_enabled) {
8118 default:
8119 case 0:
8120 #ifdef notyet
8121 /* XXX: racy */
8122 ipsec_used = 0;
8123 #endif
8124 break;
8125 case 1:
8126 #ifndef notyet
8127 /* XXX: racy */
8128 if (!ipsec_used)
8129 #endif
8130 ipsec_used = key_get_used();
8131 break;
8132 case 2:
8133 ipsec_used = 1;
8134 break;
8135 }
8136 }
8137
8138 static int
8139 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8140 {
8141 struct mbuf *m, *n;
8142 int err2 = 0;
8143 char *p, *ep;
8144 size_t len;
8145 int s, error;
8146
8147 if (newp)
8148 return (EPERM);
8149 if (namelen != 1)
8150 return (EINVAL);
8151
8152 s = splsoftnet();
8153 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8154 splx(s);
8155 if (!m)
8156 return (error);
8157 if (!oldp)
8158 *oldlenp = m->m_pkthdr.len;
8159 else {
8160 p = oldp;
8161 if (*oldlenp < m->m_pkthdr.len) {
8162 err2 = ENOMEM;
8163 ep = p + *oldlenp;
8164 } else {
8165 *oldlenp = m->m_pkthdr.len;
8166 ep = p + m->m_pkthdr.len;
8167 }
8168 for (n = m; n; n = n->m_next) {
8169 len = (ep - p < n->m_len) ?
8170 ep - p : n->m_len;
8171 error = copyout(mtod(n, const void *), p, len);
8172 p += len;
8173 if (error)
8174 break;
8175 }
8176 if (error == 0)
8177 error = err2;
8178 }
8179 m_freem(m);
8180
8181 return (error);
8182 }
8183
8184 static int
8185 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8186 {
8187 struct mbuf *m, *n;
8188 int err2 = 0;
8189 char *p, *ep;
8190 size_t len;
8191 int s, error;
8192
8193 if (newp)
8194 return (EPERM);
8195 if (namelen != 0)
8196 return (EINVAL);
8197
8198 s = splsoftnet();
8199 m = key_setspddump(&error, l->l_proc->p_pid);
8200 splx(s);
8201 if (!m)
8202 return (error);
8203 if (!oldp)
8204 *oldlenp = m->m_pkthdr.len;
8205 else {
8206 p = oldp;
8207 if (*oldlenp < m->m_pkthdr.len) {
8208 err2 = ENOMEM;
8209 ep = p + *oldlenp;
8210 } else {
8211 *oldlenp = m->m_pkthdr.len;
8212 ep = p + m->m_pkthdr.len;
8213 }
8214 for (n = m; n; n = n->m_next) {
8215 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8216 error = copyout(mtod(n, const void *), p, len);
8217 p += len;
8218 if (error)
8219 break;
8220 }
8221 if (error == 0)
8222 error = err2;
8223 }
8224 m_freem(m);
8225
8226 return (error);
8227 }
8228
8229 /*
8230 * Create sysctl tree for native IPSEC key knobs, originally
8231 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8232 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8233 * and in any case the part of our sysctl namespace used for dumping the
8234 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8235 * namespace, for API reasons.
8236 *
8237 * Pending a consensus on the right way to fix this, add a level of
8238 * indirection in how we number the `native' IPSEC key nodes;
8239 * and (as requested by Andrew Brown) move registration of the
8240 * KAME-compatible names to a separate function.
8241 */
8242 #if 0
8243 # define IPSEC_PFKEY PF_KEY_V2
8244 # define IPSEC_PFKEY_NAME "keyv2"
8245 #else
8246 # define IPSEC_PFKEY PF_KEY
8247 # define IPSEC_PFKEY_NAME "key"
8248 #endif
8249
8250 static int
8251 sysctl_net_key_stats(SYSCTLFN_ARGS)
8252 {
8253
8254 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8255 }
8256
8257 static void
8258 sysctl_net_keyv2_setup(struct sysctllog **clog)
8259 {
8260
8261 sysctl_createv(clog, 0, NULL, NULL,
8262 CTLFLAG_PERMANENT,
8263 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8264 NULL, 0, NULL, 0,
8265 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8266
8267 sysctl_createv(clog, 0, NULL, NULL,
8268 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8269 CTLTYPE_INT, "debug", NULL,
8270 NULL, 0, &key_debug_level, 0,
8271 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8272 sysctl_createv(clog, 0, NULL, NULL,
8273 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8274 CTLTYPE_INT, "spi_try", NULL,
8275 NULL, 0, &key_spi_trycnt, 0,
8276 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8277 sysctl_createv(clog, 0, NULL, NULL,
8278 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8279 CTLTYPE_INT, "spi_min_value", NULL,
8280 NULL, 0, &key_spi_minval, 0,
8281 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8282 sysctl_createv(clog, 0, NULL, NULL,
8283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8284 CTLTYPE_INT, "spi_max_value", NULL,
8285 NULL, 0, &key_spi_maxval, 0,
8286 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8287 sysctl_createv(clog, 0, NULL, NULL,
8288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8289 CTLTYPE_INT, "random_int", NULL,
8290 NULL, 0, &key_int_random, 0,
8291 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8292 sysctl_createv(clog, 0, NULL, NULL,
8293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8294 CTLTYPE_INT, "larval_lifetime", NULL,
8295 NULL, 0, &key_larval_lifetime, 0,
8296 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8297 sysctl_createv(clog, 0, NULL, NULL,
8298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8299 CTLTYPE_INT, "blockacq_count", NULL,
8300 NULL, 0, &key_blockacq_count, 0,
8301 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8302 sysctl_createv(clog, 0, NULL, NULL,
8303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8304 CTLTYPE_INT, "blockacq_lifetime", NULL,
8305 NULL, 0, &key_blockacq_lifetime, 0,
8306 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8307 sysctl_createv(clog, 0, NULL, NULL,
8308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8309 CTLTYPE_INT, "esp_keymin", NULL,
8310 NULL, 0, &ipsec_esp_keymin, 0,
8311 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8312 sysctl_createv(clog, 0, NULL, NULL,
8313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8314 CTLTYPE_INT, "prefered_oldsa", NULL,
8315 NULL, 0, &key_prefered_oldsa, 0,
8316 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8317 sysctl_createv(clog, 0, NULL, NULL,
8318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8319 CTLTYPE_INT, "esp_auth", NULL,
8320 NULL, 0, &ipsec_esp_auth, 0,
8321 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8322 sysctl_createv(clog, 0, NULL, NULL,
8323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8324 CTLTYPE_INT, "ah_keymin", NULL,
8325 NULL, 0, &ipsec_ah_keymin, 0,
8326 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8327 sysctl_createv(clog, 0, NULL, NULL,
8328 CTLFLAG_PERMANENT,
8329 CTLTYPE_STRUCT, "stats",
8330 SYSCTL_DESCR("PF_KEY statistics"),
8331 sysctl_net_key_stats, 0, NULL, 0,
8332 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8333 }
8334
8335 /*
8336 * Register sysctl names used by setkey(8). For historical reasons,
8337 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8338 * for both IPSEC and KAME IPSEC.
8339 */
8340 static void
8341 sysctl_net_key_compat_setup(struct sysctllog **clog)
8342 {
8343
8344 sysctl_createv(clog, 0, NULL, NULL,
8345 CTLFLAG_PERMANENT,
8346 CTLTYPE_NODE, "key", NULL,
8347 NULL, 0, NULL, 0,
8348 CTL_NET, PF_KEY, CTL_EOL);
8349
8350 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8351 sysctl_createv(clog, 0, NULL, NULL,
8352 CTLFLAG_PERMANENT,
8353 CTLTYPE_STRUCT, "dumpsa", NULL,
8354 sysctl_net_key_dumpsa, 0, NULL, 0,
8355 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8356 sysctl_createv(clog, 0, NULL, NULL,
8357 CTLFLAG_PERMANENT,
8358 CTLTYPE_STRUCT, "dumpsp", NULL,
8359 sysctl_net_key_dumpsp, 0, NULL, 0,
8360 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8361 }
8362