key.c revision 1.153 1 /* $NetBSD: key.c,v 1.153 2017/05/31 04:02:05 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.153 2017/05/31 04:02:05 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <net/raw_cb.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/in_var.h>
79 #ifdef INET
80 #include <netinet/ip_var.h>
81 #endif
82
83 #ifdef INET6
84 #include <netinet/ip6.h>
85 #include <netinet6/in6_var.h>
86 #include <netinet6/ip6_var.h>
87 #endif /* INET6 */
88
89 #ifdef INET
90 #include <netinet/in_pcb.h>
91 #endif
92 #ifdef INET6
93 #include <netinet6/in6_pcb.h>
94 #endif /* INET6 */
95
96 #include <net/pfkeyv2.h>
97 #include <netipsec/keydb.h>
98 #include <netipsec/key.h>
99 #include <netipsec/keysock.h>
100 #include <netipsec/key_debug.h>
101
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/ipsec_private.h>
107
108 #include <netipsec/xform.h>
109 #include <netipsec/ipcomp.h>
110
111
112 #include <net/net_osdep.h>
113
114 #define FULLMASK 0xff
115 #define _BITS(bytes) ((bytes) << 3)
116
117 #define PORT_NONE 0
118 #define PORT_LOOSE 1
119 #define PORT_STRICT 2
120
121 percpu_t *pfkeystat_percpu;
122
123 /*
124 * Note on SA reference counting:
125 * - SAs that are not in DEAD state will have (total external reference + 1)
126 * following value in reference count field. they cannot be freed and are
127 * referenced from SA header.
128 * - SAs that are in DEAD state will have (total external reference)
129 * in reference count field. they are ready to be freed. reference from
130 * SA header will be removed in key_delsav(), when the reference count
131 * field hits 0 (= no external reference other than from SA header.
132 */
133
134 u_int32_t key_debug_level = 0;
135 static u_int key_spi_trycnt = 1000;
136 static u_int32_t key_spi_minval = 0x100;
137 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
138 static u_int32_t policy_id = 0;
139 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
140 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
141 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
142 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
143 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
144
145 static u_int32_t acq_seq = 0;
146
147 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
148 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
149 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
150 /* registed list */
151 #ifndef IPSEC_NONBLOCK_ACQUIRE
152 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
153 #endif
154 #ifdef notyet
155 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
156 #endif
157
158 /*
159 * Protect regtree, acqtree and items stored in the lists.
160 */
161 static kmutex_t key_mtx __cacheline_aligned;
162
163 /* search order for SAs */
164 /*
165 * This order is important because we must select the oldest SA
166 * for outbound processing. For inbound, This is not important.
167 */
168 static const u_int saorder_state_valid_prefer_old[] = {
169 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
170 };
171 static const u_int saorder_state_valid_prefer_new[] = {
172 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
173 };
174
175 static const u_int saorder_state_alive[] = {
176 /* except DEAD */
177 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
178 };
179 static const u_int saorder_state_any[] = {
180 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
181 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
182 };
183
184 #define SASTATE_ALIVE_FOREACH(s) \
185 for (int _i = 0; \
186 _i < __arraycount(saorder_state_alive) ? \
187 (s) = saorder_state_alive[_i], true : false; \
188 _i++)
189 #define SASTATE_ANY_FOREACH(s) \
190 for (int _i = 0; \
191 _i < __arraycount(saorder_state_any) ? \
192 (s) = saorder_state_any[_i], true : false; \
193 _i++)
194
195 static const int minsize[] = {
196 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
197 sizeof(struct sadb_sa), /* SADB_EXT_SA */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
200 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
202 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
203 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
204 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
205 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
206 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
207 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
208 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
209 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
210 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
211 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
212 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
213 0, /* SADB_X_EXT_KMPRIVATE */
214 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
215 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
216 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
217 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
218 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
219 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
220 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
221 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
222 };
223 static const int maxsize[] = {
224 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
225 sizeof(struct sadb_sa), /* SADB_EXT_SA */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
227 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
228 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
229 0, /* SADB_EXT_ADDRESS_SRC */
230 0, /* SADB_EXT_ADDRESS_DST */
231 0, /* SADB_EXT_ADDRESS_PROXY */
232 0, /* SADB_EXT_KEY_AUTH */
233 0, /* SADB_EXT_KEY_ENCRYPT */
234 0, /* SADB_EXT_IDENTITY_SRC */
235 0, /* SADB_EXT_IDENTITY_DST */
236 0, /* SADB_EXT_SENSITIVITY */
237 0, /* SADB_EXT_PROPOSAL */
238 0, /* SADB_EXT_SUPPORTED_AUTH */
239 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
240 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
241 0, /* SADB_X_EXT_KMPRIVATE */
242 0, /* SADB_X_EXT_POLICY */
243 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
244 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
245 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
246 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
247 0, /* SADB_X_EXT_NAT_T_OAI */
248 0, /* SADB_X_EXT_NAT_T_OAR */
249 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
250 };
251
252 static int ipsec_esp_keymin = 256;
253 static int ipsec_esp_auth = 0;
254 static int ipsec_ah_keymin = 128;
255
256 #ifdef SYSCTL_DECL
257 SYSCTL_DECL(_net_key);
258 #endif
259
260 #ifdef SYSCTL_INT
261 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
262 &key_debug_level, 0, "");
263
264 /* max count of trial for the decision of spi value */
265 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
266 &key_spi_trycnt, 0, "");
267
268 /* minimum spi value to allocate automatically. */
269 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
270 &key_spi_minval, 0, "");
271
272 /* maximun spi value to allocate automatically. */
273 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
274 &key_spi_maxval, 0, "");
275
276 /* interval to initialize randseed */
277 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
278 &key_int_random, 0, "");
279
280 /* lifetime for larval SA */
281 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
282 &key_larval_lifetime, 0, "");
283
284 /* counter for blocking to send SADB_ACQUIRE to IKEd */
285 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
286 &key_blockacq_count, 0, "");
287
288 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
289 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
290 &key_blockacq_lifetime, 0, "");
291
292 /* ESP auth */
293 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
294 &ipsec_esp_auth, 0, "");
295
296 /* minimum ESP key length */
297 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
298 &ipsec_esp_keymin, 0, "");
299
300 /* minimum AH key length */
301 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
302 &ipsec_ah_keymin, 0, "");
303
304 /* perfered old SA rather than new SA */
305 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
306 &key_prefered_oldsa, 0, "");
307 #endif /* SYSCTL_INT */
308
309 #define __LIST_CHAINED(elm) \
310 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
311 #define LIST_INSERT_TAIL(head, elm, type, field) \
312 do {\
313 struct type *curelm = LIST_FIRST(head); \
314 if (curelm == NULL) {\
315 LIST_INSERT_HEAD(head, elm, field); \
316 } else { \
317 while (LIST_NEXT(curelm, field)) \
318 curelm = LIST_NEXT(curelm, field);\
319 LIST_INSERT_AFTER(curelm, elm, field);\
320 }\
321 } while (0)
322
323 #define KEY_CHKSASTATE(head, sav) \
324 /* do */ { \
325 if ((head) != (sav)) { \
326 IPSECLOG(LOG_DEBUG, \
327 "state mismatched (TREE=%d SA=%d)\n", \
328 (head), (sav)); \
329 continue; \
330 } \
331 } /* while (0) */
332
333 #define KEY_CHKSPDIR(head, sp) \
334 do { \
335 if ((head) != (sp)) { \
336 IPSECLOG(LOG_DEBUG, \
337 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
338 (head), (sp)); \
339 } \
340 } while (0)
341
342 /*
343 * set parameters into secasindex buffer.
344 * Must allocate secasindex buffer before calling this function.
345 */
346 static int
347 key_setsecasidx(int, int, int, const struct sockaddr *,
348 const struct sockaddr *, struct secasindex *);
349
350 /* key statistics */
351 struct _keystat {
352 u_long getspi_count; /* the avarage of count to try to get new SPI */
353 } keystat;
354
355 struct sadb_msghdr {
356 struct sadb_msg *msg;
357 struct sadb_ext *ext[SADB_EXT_MAX + 1];
358 int extoff[SADB_EXT_MAX + 1];
359 int extlen[SADB_EXT_MAX + 1];
360 };
361
362 static void
363 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
364
365 static const struct sockaddr *
366 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
367 {
368
369 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
370 }
371
372 static struct secasvar *key_allocsa_policy (const struct secasindex *);
373 #if 0
374 static void key_freeso(struct socket *);
375 static void key_freesp_so(struct secpolicy **);
376 #endif
377 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
378 static void key_delsp (struct secpolicy *);
379 static struct secpolicy *key_getsp (const struct secpolicyindex *);
380 static struct secpolicy *key_getspbyid (u_int32_t);
381 static u_int16_t key_newreqid (void);
382 static struct mbuf *key_gather_mbuf (struct mbuf *,
383 const struct sadb_msghdr *, int, int, ...);
384 static int key_spdadd (struct socket *, struct mbuf *,
385 const struct sadb_msghdr *);
386 static u_int32_t key_getnewspid (void);
387 static int key_spddelete (struct socket *, struct mbuf *,
388 const struct sadb_msghdr *);
389 static int key_spddelete2 (struct socket *, struct mbuf *,
390 const struct sadb_msghdr *);
391 static int key_spdget (struct socket *, struct mbuf *,
392 const struct sadb_msghdr *);
393 static int key_spdflush (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spddump (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static struct mbuf * key_setspddump (int *errorp, pid_t);
398 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
399 static int key_nat_map (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static struct mbuf *key_setdumpsp (struct secpolicy *,
402 u_int8_t, u_int32_t, pid_t);
403 static u_int key_getspreqmsglen (const struct secpolicy *);
404 static int key_spdexpire (struct secpolicy *);
405 static struct secashead *key_newsah (const struct secasindex *);
406 static void key_delsah (struct secashead *);
407 static struct secasvar *key_newsav (struct mbuf *,
408 const struct sadb_msghdr *, struct secashead *, int *,
409 const char*, int);
410 #define KEY_NEWSAV(m, sadb, sah, e) \
411 key_newsav(m, sadb, sah, e, __func__, __LINE__)
412 static void key_delsav (struct secasvar *);
413 static struct secashead *key_getsah (const struct secasindex *);
414 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
415 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
416 static int key_setsaval (struct secasvar *, struct mbuf *,
417 const struct sadb_msghdr *);
418 static void key_freesaval(struct secasvar *);
419 static int key_mature (struct secasvar *);
420 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
421 u_int8_t, u_int32_t, u_int32_t);
422 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
423 static struct mbuf *key_setsadbxtype (u_int16_t);
424 static struct mbuf *key_setsadbxfrag (u_int16_t);
425 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
426 static int key_checksalen (const union sockaddr_union *);
427 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
428 u_int32_t, pid_t, u_int16_t);
429 static struct mbuf *key_setsadbsa (struct secasvar *);
430 static struct mbuf *key_setsadbaddr (u_int16_t,
431 const struct sockaddr *, u_int8_t, u_int16_t);
432 #if 0
433 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
434 int, u_int64_t);
435 #endif
436 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
437 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
438 u_int32_t);
439 static void *key_newbuf (const void *, u_int);
440 #ifdef INET6
441 static int key_ismyaddr6 (const struct sockaddr_in6 *);
442 #endif
443
444 static void sysctl_net_keyv2_setup(struct sysctllog **);
445 static void sysctl_net_key_compat_setup(struct sysctllog **);
446
447 /* flags for key_saidx_match() */
448 #define CMP_HEAD 1 /* protocol, addresses. */
449 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
450 #define CMP_REQID 3 /* additionally HEAD, reaid. */
451 #define CMP_EXACTLY 4 /* all elements. */
452 static int key_saidx_match(const struct secasindex *,
453 const struct secasindex *, int);
454
455 static int key_sockaddr_match(const struct sockaddr *,
456 const struct sockaddr *, int);
457 static int key_bb_match_withmask(const void *, const void *, u_int);
458 static u_int16_t key_satype2proto (u_int8_t);
459 static u_int8_t key_proto2satype (u_int16_t);
460
461 static int key_spidx_match_exactly(const struct secpolicyindex *,
462 const struct secpolicyindex *);
463 static int key_spidx_match_withmask(const struct secpolicyindex *,
464 const struct secpolicyindex *);
465
466 static int key_getspi (struct socket *, struct mbuf *,
467 const struct sadb_msghdr *);
468 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
469 const struct secasindex *);
470 static int key_handle_natt_info (struct secasvar *,
471 const struct sadb_msghdr *);
472 static int key_set_natt_ports (union sockaddr_union *,
473 union sockaddr_union *,
474 const struct sadb_msghdr *);
475 static int key_update (struct socket *, struct mbuf *,
476 const struct sadb_msghdr *);
477 #ifdef IPSEC_DOSEQCHECK
478 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
479 #endif
480 static int key_add (struct socket *, struct mbuf *,
481 const struct sadb_msghdr *);
482 static int key_setident (struct secashead *, struct mbuf *,
483 const struct sadb_msghdr *);
484 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
485 const struct sadb_msghdr *);
486 static int key_delete (struct socket *, struct mbuf *,
487 const struct sadb_msghdr *);
488 static int key_get (struct socket *, struct mbuf *,
489 const struct sadb_msghdr *);
490
491 static void key_getcomb_setlifetime (struct sadb_comb *);
492 static struct mbuf *key_getcomb_esp (void);
493 static struct mbuf *key_getcomb_ah (void);
494 static struct mbuf *key_getcomb_ipcomp (void);
495 static struct mbuf *key_getprop (const struct secasindex *);
496
497 static int key_acquire (const struct secasindex *, struct secpolicy *);
498 #ifndef IPSEC_NONBLOCK_ACQUIRE
499 static struct secacq *key_newacq (const struct secasindex *);
500 static struct secacq *key_getacq (const struct secasindex *);
501 static struct secacq *key_getacqbyseq (u_int32_t);
502 #endif
503 #ifdef notyet
504 static struct secspacq *key_newspacq (const struct secpolicyindex *);
505 static struct secspacq *key_getspacq (const struct secpolicyindex *);
506 #endif
507 static int key_acquire2 (struct socket *, struct mbuf *,
508 const struct sadb_msghdr *);
509 static int key_register (struct socket *, struct mbuf *,
510 const struct sadb_msghdr *);
511 static int key_expire (struct secasvar *);
512 static int key_flush (struct socket *, struct mbuf *,
513 const struct sadb_msghdr *);
514 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
515 int *lenp, pid_t pid);
516 static int key_dump (struct socket *, struct mbuf *,
517 const struct sadb_msghdr *);
518 static int key_promisc (struct socket *, struct mbuf *,
519 const struct sadb_msghdr *);
520 static int key_senderror (struct socket *, struct mbuf *, int);
521 static int key_validate_ext (const struct sadb_ext *, int);
522 static int key_align (struct mbuf *, struct sadb_msghdr *);
523 #if 0
524 static const char *key_getfqdn (void);
525 static const char *key_getuserfqdn (void);
526 #endif
527 static void key_sa_chgstate (struct secasvar *, u_int8_t);
528 static inline void key_sp_dead (struct secpolicy *);
529 static void key_sp_unlink (struct secpolicy *sp);
530
531 static struct mbuf *key_alloc_mbuf (int);
532
533 static void key_timehandler(void *);
534 static void key_timehandler_work(struct work *, void *);
535 static struct callout key_timehandler_ch;
536 static struct workqueue *key_timehandler_wq;
537 static struct work key_timehandler_wk;
538
539 #ifdef IPSEC_REF_DEBUG
540 #define REFLOG(label, p, where, tag) \
541 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
542 (where), (tag), (p)->refcnt, (p))
543 #else
544 #define REFLOG(label, p, where, tag) do {} while (0)
545 #endif
546
547 #define SA_ADDREF(p) do { \
548 atomic_inc_uint(&(p)->refcnt); \
549 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
550 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
551 } while (0)
552 #define SA_ADDREF2(p, where, tag) do { \
553 atomic_inc_uint(&(p)->refcnt); \
554 REFLOG("SA_ADDREF", (p), (where), (tag)); \
555 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
556 } while (0)
557 #define SA_DELREF(p) do { \
558 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
559 atomic_dec_uint(&(p)->refcnt); \
560 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
561 } while (0)
562 #define SA_DELREF2(p, nv, where, tag) do { \
563 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
564 nv = atomic_dec_uint_nv(&(p)->refcnt); \
565 REFLOG("SA_DELREF", (p), (where), (tag)); \
566 } while (0)
567
568 #define SP_ADDREF(p) do { \
569 atomic_inc_uint(&(p)->refcnt); \
570 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
571 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
572 } while (0)
573 #define SP_ADDREF2(p, where, tag) do { \
574 atomic_inc_uint(&(p)->refcnt); \
575 REFLOG("SP_ADDREF", (p), (where), (tag)); \
576 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
577 } while (0)
578 #define SP_DELREF(p) do { \
579 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
580 atomic_dec_uint(&(p)->refcnt); \
581 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
582 } while (0)
583 #define SP_DELREF2(p, nv, where, tag) do { \
584 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
585 nv = atomic_dec_uint_nv(&(p)->refcnt); \
586 REFLOG("SP_DELREF", (p), (where), (tag)); \
587 } while (0)
588
589
590 static inline void
591 key_sp_dead(struct secpolicy *sp)
592 {
593
594 /* mark the SP dead */
595 sp->state = IPSEC_SPSTATE_DEAD;
596 }
597
598 static void
599 key_sp_unlink(struct secpolicy *sp)
600 {
601
602 /* remove from SP index */
603 KASSERT(__LIST_CHAINED(sp));
604 LIST_REMOVE(sp, chain);
605 /* Release refcount held just for being on chain */
606 KEY_FREESP(&sp);
607 }
608
609
610 /*
611 * Return 0 when there are known to be no SP's for the specified
612 * direction. Otherwise return 1. This is used by IPsec code
613 * to optimize performance.
614 */
615 int
616 key_havesp(u_int dir)
617 {
618 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
619 !LIST_EMPTY(&sptree[dir]) : 1);
620 }
621
622 /* %%% IPsec policy management */
623 /*
624 * allocating a SP for OUTBOUND or INBOUND packet.
625 * Must call key_freesp() later.
626 * OUT: NULL: not found
627 * others: found and return the pointer.
628 */
629 struct secpolicy *
630 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
631 {
632 struct secpolicy *sp;
633 int s;
634
635 KASSERT(spidx != NULL);
636 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
637
638 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
639
640 /* get a SP entry */
641 s = splsoftnet(); /*called from softclock()*/
642 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
643 printf("*** objects\n");
644 kdebug_secpolicyindex(spidx);
645 }
646
647 LIST_FOREACH(sp, &sptree[dir], chain) {
648 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
649 printf("*** in SPD\n");
650 kdebug_secpolicyindex(&sp->spidx);
651 }
652
653 if (sp->state == IPSEC_SPSTATE_DEAD)
654 continue;
655 if (key_spidx_match_withmask(&sp->spidx, spidx))
656 goto found;
657 }
658 sp = NULL;
659 found:
660 if (sp) {
661 /* sanity check */
662 KEY_CHKSPDIR(sp->spidx.dir, dir);
663
664 /* found a SPD entry */
665 sp->lastused = time_uptime;
666 SP_ADDREF2(sp, where, tag);
667 }
668 splx(s);
669
670 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
671 "DP return SP:%p (ID=%u) refcnt %u\n",
672 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
673 return sp;
674 }
675
676 /*
677 * allocating a SP for OUTBOUND or INBOUND packet.
678 * Must call key_freesp() later.
679 * OUT: NULL: not found
680 * others: found and return the pointer.
681 */
682 struct secpolicy *
683 key_allocsp2(u_int32_t spi,
684 const union sockaddr_union *dst,
685 u_int8_t proto,
686 u_int dir,
687 const char* where, int tag)
688 {
689 struct secpolicy *sp;
690 int s;
691
692 KASSERT(dst != NULL);
693 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
694
695 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
696
697 /* get a SP entry */
698 s = splsoftnet(); /*called from softclock()*/
699 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
700 printf("*** objects\n");
701 printf("spi %u proto %u dir %u\n", spi, proto, dir);
702 kdebug_sockaddr(&dst->sa);
703 }
704
705 LIST_FOREACH(sp, &sptree[dir], chain) {
706 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
707 printf("*** in SPD\n");
708 kdebug_secpolicyindex(&sp->spidx);
709 }
710
711 if (sp->state == IPSEC_SPSTATE_DEAD)
712 continue;
713 /* compare simple values, then dst address */
714 if (sp->spidx.ul_proto != proto)
715 continue;
716 /* NB: spi's must exist and match */
717 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
718 continue;
719 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
720 goto found;
721 }
722 sp = NULL;
723 found:
724 if (sp) {
725 /* sanity check */
726 KEY_CHKSPDIR(sp->spidx.dir, dir);
727
728 /* found a SPD entry */
729 sp->lastused = time_uptime;
730 SP_ADDREF2(sp, where, tag);
731 }
732 splx(s);
733
734 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
735 "DP return SP:%p (ID=%u) refcnt %u\n",
736 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
737 return sp;
738 }
739
740 /*
741 * return a policy that matches this particular inbound packet.
742 * XXX slow
743 */
744 struct secpolicy *
745 key_gettunnel(const struct sockaddr *osrc,
746 const struct sockaddr *odst,
747 const struct sockaddr *isrc,
748 const struct sockaddr *idst,
749 const char* where, int tag)
750 {
751 struct secpolicy *sp;
752 const int dir = IPSEC_DIR_INBOUND;
753 int s;
754 struct ipsecrequest *r1, *r2, *p;
755 struct secpolicyindex spidx;
756
757 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
758
759 if (isrc->sa_family != idst->sa_family) {
760 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
761 isrc->sa_family, idst->sa_family);
762 sp = NULL;
763 goto done;
764 }
765
766 s = splsoftnet(); /*called from softclock()*/
767 LIST_FOREACH(sp, &sptree[dir], chain) {
768 if (sp->state == IPSEC_SPSTATE_DEAD)
769 continue;
770
771 r1 = r2 = NULL;
772 for (p = sp->req; p; p = p->next) {
773 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
774 continue;
775
776 r1 = r2;
777 r2 = p;
778
779 if (!r1) {
780 /* here we look at address matches only */
781 spidx = sp->spidx;
782 if (isrc->sa_len > sizeof(spidx.src) ||
783 idst->sa_len > sizeof(spidx.dst))
784 continue;
785 memcpy(&spidx.src, isrc, isrc->sa_len);
786 memcpy(&spidx.dst, idst, idst->sa_len);
787 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
788 continue;
789 } else {
790 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
791 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
792 continue;
793 }
794
795 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
796 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
797 continue;
798
799 goto found;
800 }
801 }
802 sp = NULL;
803 found:
804 if (sp) {
805 sp->lastused = time_uptime;
806 SP_ADDREF2(sp, where, tag);
807 }
808 splx(s);
809 done:
810 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
811 "DP return SP:%p (ID=%u) refcnt %u\n",
812 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
813 return sp;
814 }
815
816 /*
817 * allocating an SA entry for an *OUTBOUND* packet.
818 * checking each request entries in SP, and acquire an SA if need.
819 * OUT: 0: there are valid requests.
820 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
821 */
822 int
823 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
824 {
825 u_int level;
826 int error;
827 struct secasvar *oldsav = NULL;
828
829 KASSERT(isr != NULL);
830 KASSERT(saidx != NULL);
831 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
832 saidx->mode == IPSEC_MODE_TUNNEL,
833 "unexpected policy %u", saidx->mode);
834
835 /* get current level */
836 level = ipsec_get_reqlevel(isr);
837
838 /*
839 * XXX guard against protocol callbacks from the crypto
840 * thread as they reference ipsecrequest.sav which we
841 * temporarily null out below. Need to rethink how we
842 * handle bundled SA's in the callback thread.
843 */
844 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
845 #if 0
846 /*
847 * We do allocate new SA only if the state of SA in the holder is
848 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
849 */
850 if (isr->sav != NULL) {
851 if (isr->sav->sah == NULL)
852 panic("key_checkrequest: sah is null");
853 if (isr->sav == (struct secasvar *)LIST_FIRST(
854 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
855 KEY_FREESAV(&isr->sav);
856 isr->sav = NULL;
857 }
858 }
859 #else
860 /*
861 * we free any SA stashed in the IPsec request because a different
862 * SA may be involved each time this request is checked, either
863 * because new SAs are being configured, or this request is
864 * associated with an unconnected datagram socket, or this request
865 * is associated with a system default policy.
866 *
867 * The operation may have negative impact to performance. We may
868 * want to check cached SA carefully, rather than picking new SA
869 * every time.
870 */
871 if (isr->sav != NULL)
872 oldsav = isr->sav;
873 #endif
874
875 /*
876 * new SA allocation if no SA found.
877 * key_allocsa_policy should allocate the oldest SA available.
878 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
879 */
880 isr->sav = key_allocsa_policy(saidx);
881 membar_producer();
882 if (oldsav != NULL)
883 KEY_FREESAV(&oldsav);
884
885 /* When there is SA. */
886 if (isr->sav != NULL) {
887 if (isr->sav->state != SADB_SASTATE_MATURE &&
888 isr->sav->state != SADB_SASTATE_DYING)
889 return EINVAL;
890 return 0;
891 }
892
893 /* there is no SA */
894 error = key_acquire(saidx, isr->sp);
895 if (error != 0) {
896 /* XXX What should I do ? */
897 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
898 error);
899 return error;
900 }
901
902 if (level != IPSEC_LEVEL_REQUIRE) {
903 /* XXX sigh, the interface to this routine is botched */
904 KASSERTMSG(isr->sav == NULL, "unexpected SA");
905 return 0;
906 } else {
907 return ENOENT;
908 }
909 }
910
911 /*
912 * allocating a SA for policy entry from SAD.
913 * NOTE: searching SAD of aliving state.
914 * OUT: NULL: not found.
915 * others: found and return the pointer.
916 */
917 static struct secasvar *
918 key_allocsa_policy(const struct secasindex *saidx)
919 {
920 struct secashead *sah;
921 struct secasvar *sav;
922 u_int stateidx, state;
923 const u_int *saorder_state_valid;
924 int arraysize;
925
926 LIST_FOREACH(sah, &sahtree, chain) {
927 if (sah->state == SADB_SASTATE_DEAD)
928 continue;
929 if (key_saidx_match(&sah->saidx, saidx, CMP_MODE_REQID))
930 goto found;
931 }
932
933 return NULL;
934
935 found:
936
937 /*
938 * search a valid state list for outbound packet.
939 * This search order is important.
940 */
941 if (key_prefered_oldsa) {
942 saorder_state_valid = saorder_state_valid_prefer_old;
943 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
944 } else {
945 saorder_state_valid = saorder_state_valid_prefer_new;
946 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
947 }
948
949 /* search valid state */
950 for (stateidx = 0;
951 stateidx < arraysize;
952 stateidx++) {
953
954 state = saorder_state_valid[stateidx];
955
956 sav = key_do_allocsa_policy(sah, state);
957 if (sav != NULL)
958 return sav;
959 }
960
961 return NULL;
962 }
963
964 /*
965 * searching SAD with direction, protocol, mode and state.
966 * called by key_allocsa_policy().
967 * OUT:
968 * NULL : not found
969 * others : found, pointer to a SA.
970 */
971 static struct secasvar *
972 key_do_allocsa_policy(struct secashead *sah, u_int state)
973 {
974 struct secasvar *sav, *candidate, *d;
975
976 /* initilize */
977 candidate = NULL;
978
979 LIST_FOREACH(sav, &sah->savtree[state], chain) {
980 /* sanity check */
981 KEY_CHKSASTATE(sav->state, state);
982
983 /* initialize */
984 if (candidate == NULL) {
985 candidate = sav;
986 continue;
987 }
988
989 /* Which SA is the better ? */
990
991 /* sanity check 2 */
992 KASSERT(candidate->lft_c != NULL);
993 KASSERT(sav->lft_c != NULL);
994
995 /* What the best method is to compare ? */
996 if (key_prefered_oldsa) {
997 if (candidate->lft_c->sadb_lifetime_addtime >
998 sav->lft_c->sadb_lifetime_addtime) {
999 candidate = sav;
1000 }
1001 continue;
1002 /*NOTREACHED*/
1003 }
1004
1005 /* prefered new sa rather than old sa */
1006 if (candidate->lft_c->sadb_lifetime_addtime <
1007 sav->lft_c->sadb_lifetime_addtime) {
1008 d = candidate;
1009 candidate = sav;
1010 } else
1011 d = sav;
1012
1013 /*
1014 * prepared to delete the SA when there is more
1015 * suitable candidate and the lifetime of the SA is not
1016 * permanent.
1017 */
1018 if (d->lft_c->sadb_lifetime_addtime != 0) {
1019 struct mbuf *m, *result = 0;
1020 uint8_t satype;
1021
1022 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1023
1024 KASSERT(d->refcnt > 0);
1025
1026 satype = key_proto2satype(d->sah->saidx.proto);
1027 if (satype == 0)
1028 goto msgfail;
1029
1030 m = key_setsadbmsg(SADB_DELETE, 0,
1031 satype, 0, 0, d->refcnt - 1);
1032 if (!m)
1033 goto msgfail;
1034 result = m;
1035
1036 /* set sadb_address for saidx's. */
1037 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1038 &d->sah->saidx.src.sa,
1039 d->sah->saidx.src.sa.sa_len << 3,
1040 IPSEC_ULPROTO_ANY);
1041 if (!m)
1042 goto msgfail;
1043 m_cat(result, m);
1044
1045 /* set sadb_address for saidx's. */
1046 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1047 &d->sah->saidx.src.sa,
1048 d->sah->saidx.src.sa.sa_len << 3,
1049 IPSEC_ULPROTO_ANY);
1050 if (!m)
1051 goto msgfail;
1052 m_cat(result, m);
1053
1054 /* create SA extension */
1055 m = key_setsadbsa(d);
1056 if (!m)
1057 goto msgfail;
1058 m_cat(result, m);
1059
1060 if (result->m_len < sizeof(struct sadb_msg)) {
1061 result = m_pullup(result,
1062 sizeof(struct sadb_msg));
1063 if (result == NULL)
1064 goto msgfail;
1065 }
1066
1067 result->m_pkthdr.len = 0;
1068 for (m = result; m; m = m->m_next)
1069 result->m_pkthdr.len += m->m_len;
1070 mtod(result, struct sadb_msg *)->sadb_msg_len =
1071 PFKEY_UNIT64(result->m_pkthdr.len);
1072
1073 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1074 result = 0;
1075 msgfail:
1076 if (result)
1077 m_freem(result);
1078 KEY_FREESAV(&d);
1079 }
1080 }
1081
1082 if (candidate) {
1083 SA_ADDREF(candidate);
1084 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1085 "DP cause refcnt++:%d SA:%p\n",
1086 candidate->refcnt, candidate);
1087 }
1088 return candidate;
1089 }
1090
1091 /*
1092 * allocating a usable SA entry for a *INBOUND* packet.
1093 * Must call key_freesav() later.
1094 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1095 * NULL: not found, or error occurred.
1096 *
1097 * In the comparison, no source address is used--for RFC2401 conformance.
1098 * To quote, from section 4.1:
1099 * A security association is uniquely identified by a triple consisting
1100 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1101 * security protocol (AH or ESP) identifier.
1102 * Note that, however, we do need to keep source address in IPsec SA.
1103 * IKE specification and PF_KEY specification do assume that we
1104 * keep source address in IPsec SA. We see a tricky situation here.
1105 *
1106 * sport and dport are used for NAT-T. network order is always used.
1107 */
1108 struct secasvar *
1109 key_allocsa(
1110 const union sockaddr_union *dst,
1111 u_int proto,
1112 u_int32_t spi,
1113 u_int16_t sport,
1114 u_int16_t dport,
1115 const char* where, int tag)
1116 {
1117 struct secashead *sah;
1118 struct secasvar *sav;
1119 u_int stateidx, state;
1120 const u_int *saorder_state_valid;
1121 int arraysize, chkport;
1122 int s;
1123
1124 int must_check_spi = 1;
1125 int must_check_alg = 0;
1126 u_int16_t cpi = 0;
1127 u_int8_t algo = 0;
1128
1129 if ((sport != 0) && (dport != 0))
1130 chkport = PORT_STRICT;
1131 else
1132 chkport = PORT_NONE;
1133
1134 KASSERT(dst != NULL);
1135
1136 /*
1137 * XXX IPCOMP case
1138 * We use cpi to define spi here. In the case where cpi <=
1139 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1140 * the real spi. In this case, don't check the spi but check the
1141 * algorithm
1142 */
1143
1144 if (proto == IPPROTO_IPCOMP) {
1145 u_int32_t tmp;
1146 tmp = ntohl(spi);
1147 cpi = (u_int16_t) tmp;
1148 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1149 algo = (u_int8_t) cpi;
1150 must_check_spi = 0;
1151 must_check_alg = 1;
1152 }
1153 }
1154 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1155 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1156 where, tag, must_check_spi, must_check_alg);
1157
1158
1159 /*
1160 * searching SAD.
1161 * XXX: to be checked internal IP header somewhere. Also when
1162 * IPsec tunnel packet is received. But ESP tunnel mode is
1163 * encrypted so we can't check internal IP header.
1164 */
1165 s = splsoftnet(); /*called from softclock()*/
1166 if (key_prefered_oldsa) {
1167 saorder_state_valid = saorder_state_valid_prefer_old;
1168 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1169 } else {
1170 saorder_state_valid = saorder_state_valid_prefer_new;
1171 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1172 }
1173 LIST_FOREACH(sah, &sahtree, chain) {
1174 /* search valid state */
1175 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1176 state = saorder_state_valid[stateidx];
1177 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1178 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1179 "try match spi %#x, %#x\n",
1180 ntohl(spi), ntohl(sav->spi));
1181 /* sanity check */
1182 KEY_CHKSASTATE(sav->state, state);
1183 /* do not return entries w/ unusable state */
1184 if (sav->state != SADB_SASTATE_MATURE &&
1185 sav->state != SADB_SASTATE_DYING) {
1186 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1187 "bad state %d\n", sav->state);
1188 continue;
1189 }
1190 if (proto != sav->sah->saidx.proto) {
1191 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1192 "proto fail %d != %d\n",
1193 proto, sav->sah->saidx.proto);
1194 continue;
1195 }
1196 if (must_check_spi && spi != sav->spi) {
1197 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1198 "spi fail %#x != %#x\n",
1199 ntohl(spi), ntohl(sav->spi));
1200 continue;
1201 }
1202 /* XXX only on the ipcomp case */
1203 if (must_check_alg && algo != sav->alg_comp) {
1204 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1205 "algo fail %d != %d\n",
1206 algo, sav->alg_comp);
1207 continue;
1208 }
1209
1210 #if 0 /* don't check src */
1211 /* Fix port in src->sa */
1212
1213 /* check src address */
1214 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1215 continue;
1216 #endif
1217 /* fix port of dst address XXX*/
1218 key_porttosaddr(__UNCONST(dst), dport);
1219 /* check dst address */
1220 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1221 continue;
1222 SA_ADDREF2(sav, where, tag);
1223 goto done;
1224 }
1225 }
1226 }
1227 sav = NULL;
1228 done:
1229 splx(s);
1230
1231 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1232 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1233 return sav;
1234 }
1235
1236 void
1237 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1238 {
1239
1240 SP_ADDREF2(sp, where, tag);
1241
1242 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1243 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1244 sp, sp->id, where, tag, sp->refcnt);
1245 }
1246
1247 /*
1248 * Must be called after calling key_allocsp().
1249 * For both the packet without socket and key_freeso().
1250 */
1251 void
1252 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1253 {
1254 struct secpolicy *sp = *spp;
1255 unsigned int nv;
1256
1257 KASSERT(sp != NULL);
1258
1259 SP_DELREF2(sp, nv, where, tag);
1260
1261 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1262 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1263 sp, sp->id, where, tag, nv);
1264
1265 if (nv == 0) {
1266 *spp = NULL;
1267 key_delsp(sp);
1268 }
1269 }
1270
1271 #if 0
1272 /*
1273 * Must be called after calling key_allocsp().
1274 * For the packet with socket.
1275 */
1276 static void
1277 key_freeso(struct socket *so)
1278 {
1279 /* sanity check */
1280 KASSERT(so != NULL);
1281
1282 switch (so->so_proto->pr_domain->dom_family) {
1283 #ifdef INET
1284 case PF_INET:
1285 {
1286 struct inpcb *pcb = sotoinpcb(so);
1287
1288 /* Does it have a PCB ? */
1289 if (pcb == NULL)
1290 return;
1291
1292 struct inpcbpolicy *sp = pcb->inp_sp;
1293 key_freesp_so(&sp->sp_in);
1294 key_freesp_so(&sp->sp_out);
1295 }
1296 break;
1297 #endif
1298 #ifdef INET6
1299 case PF_INET6:
1300 {
1301 #ifdef HAVE_NRL_INPCB
1302 struct inpcb *pcb = sotoinpcb(so);
1303 struct inpcbpolicy *sp = pcb->inp_sp;
1304
1305 /* Does it have a PCB ? */
1306 if (pcb == NULL)
1307 return;
1308 key_freesp_so(&sp->sp_in);
1309 key_freesp_so(&sp->sp_out);
1310 #else
1311 struct in6pcb *pcb = sotoin6pcb(so);
1312
1313 /* Does it have a PCB ? */
1314 if (pcb == NULL)
1315 return;
1316 key_freesp_so(&pcb->in6p_sp->sp_in);
1317 key_freesp_so(&pcb->in6p_sp->sp_out);
1318 #endif
1319 }
1320 break;
1321 #endif /* INET6 */
1322 default:
1323 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1324 so->so_proto->pr_domain->dom_family);
1325 return;
1326 }
1327 }
1328
1329 static void
1330 key_freesp_so(struct secpolicy **sp)
1331 {
1332
1333 KASSERT(sp != NULL);
1334 KASSERT(*sp != NULL);
1335
1336 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1337 (*sp)->policy == IPSEC_POLICY_BYPASS)
1338 return;
1339
1340 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1341 "invalid policy %u", (*sp)->policy);
1342 KEY_FREESP(sp);
1343 }
1344 #endif
1345
1346 /*
1347 * Must be called after calling key_allocsa().
1348 * This function is called by key_freesp() to free some SA allocated
1349 * for a policy.
1350 */
1351 void
1352 key_freesav(struct secasvar **psav, const char* where, int tag)
1353 {
1354 struct secasvar *sav = *psav;
1355 unsigned int nv;
1356
1357 KASSERT(sav != NULL);
1358
1359 SA_DELREF2(sav, nv, where, tag);
1360
1361 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1362 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1363 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1364
1365 if (nv == 0) {
1366 *psav = NULL;
1367 key_delsav(sav);
1368 }
1369 }
1370
1371 /* %%% SPD management */
1372 /*
1373 * free security policy entry.
1374 */
1375 static void
1376 key_delsp(struct secpolicy *sp)
1377 {
1378 int s;
1379
1380 KASSERT(sp != NULL);
1381
1382 key_sp_dead(sp);
1383
1384 KASSERTMSG(sp->refcnt == 0,
1385 "SP with references deleted (refcnt %u)", sp->refcnt);
1386
1387 s = splsoftnet(); /*called from softclock()*/
1388
1389 {
1390 struct ipsecrequest *isr = sp->req, *nextisr;
1391
1392 while (isr != NULL) {
1393 if (isr->sav != NULL) {
1394 KEY_FREESAV(&isr->sav);
1395 isr->sav = NULL;
1396 }
1397
1398 nextisr = isr->next;
1399 kmem_intr_free(isr, sizeof(*isr));
1400 isr = nextisr;
1401 }
1402 }
1403
1404 kmem_intr_free(sp, sizeof(*sp));
1405
1406 splx(s);
1407 }
1408
1409 /*
1410 * search SPD
1411 * OUT: NULL : not found
1412 * others : found, pointer to a SP.
1413 */
1414 static struct secpolicy *
1415 key_getsp(const struct secpolicyindex *spidx)
1416 {
1417 struct secpolicy *sp;
1418
1419 KASSERT(spidx != NULL);
1420
1421 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1422 if (sp->state == IPSEC_SPSTATE_DEAD)
1423 continue;
1424 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1425 SP_ADDREF(sp);
1426 return sp;
1427 }
1428 }
1429
1430 return NULL;
1431 }
1432
1433 /*
1434 * get SP by index.
1435 * OUT: NULL : not found
1436 * others : found, pointer to a SP.
1437 */
1438 static struct secpolicy *
1439 key_getspbyid(u_int32_t id)
1440 {
1441 struct secpolicy *sp;
1442
1443 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1444 if (sp->state == IPSEC_SPSTATE_DEAD)
1445 continue;
1446 if (sp->id == id) {
1447 SP_ADDREF(sp);
1448 return sp;
1449 }
1450 }
1451
1452 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1453 if (sp->state == IPSEC_SPSTATE_DEAD)
1454 continue;
1455 if (sp->id == id) {
1456 SP_ADDREF(sp);
1457 return sp;
1458 }
1459 }
1460
1461 return NULL;
1462 }
1463
1464 struct secpolicy *
1465 key_newsp(const char* where, int tag)
1466 {
1467 struct secpolicy *newsp = NULL;
1468
1469 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1470 if (newsp != NULL)
1471 newsp->refcnt = 1;
1472
1473 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1474 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1475 return newsp;
1476 }
1477
1478 /*
1479 * create secpolicy structure from sadb_x_policy structure.
1480 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1481 * so must be set properly later.
1482 */
1483 struct secpolicy *
1484 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1485 {
1486 struct secpolicy *newsp;
1487
1488 KASSERT(!cpu_softintr_p());
1489 KASSERT(xpl0 != NULL);
1490 KASSERT(len >= sizeof(*xpl0));
1491
1492 if (len != PFKEY_EXTLEN(xpl0)) {
1493 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1494 *error = EINVAL;
1495 return NULL;
1496 }
1497
1498 newsp = KEY_NEWSP();
1499 if (newsp == NULL) {
1500 *error = ENOBUFS;
1501 return NULL;
1502 }
1503
1504 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1505 newsp->policy = xpl0->sadb_x_policy_type;
1506
1507 /* check policy */
1508 switch (xpl0->sadb_x_policy_type) {
1509 case IPSEC_POLICY_DISCARD:
1510 case IPSEC_POLICY_NONE:
1511 case IPSEC_POLICY_ENTRUST:
1512 case IPSEC_POLICY_BYPASS:
1513 newsp->req = NULL;
1514 *error = 0;
1515 return newsp;
1516
1517 case IPSEC_POLICY_IPSEC:
1518 /* Continued */
1519 break;
1520 default:
1521 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1522 KEY_FREESP(&newsp);
1523 *error = EINVAL;
1524 return NULL;
1525 }
1526
1527 /* IPSEC_POLICY_IPSEC */
1528 {
1529 int tlen;
1530 const struct sadb_x_ipsecrequest *xisr;
1531 uint16_t xisr_reqid;
1532 struct ipsecrequest **p_isr = &newsp->req;
1533
1534 /* validity check */
1535 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1536 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1537 *error = EINVAL;
1538 goto free_exit;
1539 }
1540
1541 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1542 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1543
1544 while (tlen > 0) {
1545 /* length check */
1546 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1547 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1548 *error = EINVAL;
1549 goto free_exit;
1550 }
1551
1552 /* allocate request buffer */
1553 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1554
1555 /* set values */
1556 (*p_isr)->next = NULL;
1557
1558 switch (xisr->sadb_x_ipsecrequest_proto) {
1559 case IPPROTO_ESP:
1560 case IPPROTO_AH:
1561 case IPPROTO_IPCOMP:
1562 break;
1563 default:
1564 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1565 xisr->sadb_x_ipsecrequest_proto);
1566 *error = EPROTONOSUPPORT;
1567 goto free_exit;
1568 }
1569 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1570
1571 switch (xisr->sadb_x_ipsecrequest_mode) {
1572 case IPSEC_MODE_TRANSPORT:
1573 case IPSEC_MODE_TUNNEL:
1574 break;
1575 case IPSEC_MODE_ANY:
1576 default:
1577 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1578 xisr->sadb_x_ipsecrequest_mode);
1579 *error = EINVAL;
1580 goto free_exit;
1581 }
1582 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1583
1584 switch (xisr->sadb_x_ipsecrequest_level) {
1585 case IPSEC_LEVEL_DEFAULT:
1586 case IPSEC_LEVEL_USE:
1587 case IPSEC_LEVEL_REQUIRE:
1588 break;
1589 case IPSEC_LEVEL_UNIQUE:
1590 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1591 /* validity check */
1592 /*
1593 * If range violation of reqid, kernel will
1594 * update it, don't refuse it.
1595 */
1596 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1597 IPSECLOG(LOG_DEBUG,
1598 "reqid=%d range "
1599 "violation, updated by kernel.\n",
1600 xisr_reqid);
1601 xisr_reqid = 0;
1602 }
1603
1604 /* allocate new reqid id if reqid is zero. */
1605 if (xisr_reqid == 0) {
1606 u_int16_t reqid = key_newreqid();
1607 if (reqid == 0) {
1608 *error = ENOBUFS;
1609 goto free_exit;
1610 }
1611 (*p_isr)->saidx.reqid = reqid;
1612 } else {
1613 /* set it for manual keying. */
1614 (*p_isr)->saidx.reqid = xisr_reqid;
1615 }
1616 break;
1617
1618 default:
1619 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1620 xisr->sadb_x_ipsecrequest_level);
1621 *error = EINVAL;
1622 goto free_exit;
1623 }
1624 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1625
1626 /* set IP addresses if there */
1627 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1628 const struct sockaddr *paddr;
1629
1630 paddr = (const struct sockaddr *)(xisr + 1);
1631
1632 /* validity check */
1633 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1634 IPSECLOG(LOG_DEBUG, "invalid request "
1635 "address length.\n");
1636 *error = EINVAL;
1637 goto free_exit;
1638 }
1639 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1640
1641 paddr = (const struct sockaddr *)((const char *)paddr
1642 + paddr->sa_len);
1643
1644 /* validity check */
1645 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1646 IPSECLOG(LOG_DEBUG, "invalid request "
1647 "address length.\n");
1648 *error = EINVAL;
1649 goto free_exit;
1650 }
1651 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1652 }
1653
1654 (*p_isr)->sav = NULL;
1655 (*p_isr)->sp = newsp;
1656
1657 /* initialization for the next. */
1658 p_isr = &(*p_isr)->next;
1659 tlen -= xisr->sadb_x_ipsecrequest_len;
1660
1661 /* validity check */
1662 if (tlen < 0) {
1663 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1664 *error = EINVAL;
1665 goto free_exit;
1666 }
1667
1668 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1669 xisr->sadb_x_ipsecrequest_len);
1670 }
1671 }
1672
1673 *error = 0;
1674 return newsp;
1675
1676 free_exit:
1677 KEY_FREESP(&newsp);
1678 return NULL;
1679 }
1680
1681 static u_int16_t
1682 key_newreqid(void)
1683 {
1684 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1685
1686 auto_reqid = (auto_reqid == 0xffff ?
1687 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1688
1689 /* XXX should be unique check */
1690
1691 return auto_reqid;
1692 }
1693
1694 /*
1695 * copy secpolicy struct to sadb_x_policy structure indicated.
1696 */
1697 struct mbuf *
1698 key_sp2msg(const struct secpolicy *sp)
1699 {
1700 struct sadb_x_policy *xpl;
1701 int tlen;
1702 char *p;
1703 struct mbuf *m;
1704
1705 KASSERT(sp != NULL);
1706
1707 tlen = key_getspreqmsglen(sp);
1708
1709 m = key_alloc_mbuf(tlen);
1710 if (!m || m->m_next) { /*XXX*/
1711 if (m)
1712 m_freem(m);
1713 return NULL;
1714 }
1715
1716 m->m_len = tlen;
1717 m->m_next = NULL;
1718 xpl = mtod(m, struct sadb_x_policy *);
1719 memset(xpl, 0, tlen);
1720
1721 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1722 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1723 xpl->sadb_x_policy_type = sp->policy;
1724 xpl->sadb_x_policy_dir = sp->spidx.dir;
1725 xpl->sadb_x_policy_id = sp->id;
1726 p = (char *)xpl + sizeof(*xpl);
1727
1728 /* if is the policy for ipsec ? */
1729 if (sp->policy == IPSEC_POLICY_IPSEC) {
1730 struct sadb_x_ipsecrequest *xisr;
1731 struct ipsecrequest *isr;
1732
1733 for (isr = sp->req; isr != NULL; isr = isr->next) {
1734
1735 xisr = (struct sadb_x_ipsecrequest *)p;
1736
1737 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1738 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1739 xisr->sadb_x_ipsecrequest_level = isr->level;
1740 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1741
1742 p += sizeof(*xisr);
1743 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1744 p += isr->saidx.src.sa.sa_len;
1745 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1746 p += isr->saidx.src.sa.sa_len;
1747
1748 xisr->sadb_x_ipsecrequest_len =
1749 PFKEY_ALIGN8(sizeof(*xisr)
1750 + isr->saidx.src.sa.sa_len
1751 + isr->saidx.dst.sa.sa_len);
1752 }
1753 }
1754
1755 return m;
1756 }
1757
1758 /* m will not be freed nor modified */
1759 static struct mbuf *
1760 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1761 int ndeep, int nitem, ...)
1762 {
1763 va_list ap;
1764 int idx;
1765 int i;
1766 struct mbuf *result = NULL, *n;
1767 int len;
1768
1769 KASSERT(m != NULL);
1770 KASSERT(mhp != NULL);
1771
1772 va_start(ap, nitem);
1773 for (i = 0; i < nitem; i++) {
1774 idx = va_arg(ap, int);
1775 if (idx < 0 || idx > SADB_EXT_MAX)
1776 goto fail;
1777 /* don't attempt to pull empty extension */
1778 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1779 continue;
1780 if (idx != SADB_EXT_RESERVED &&
1781 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1782 continue;
1783
1784 if (idx == SADB_EXT_RESERVED) {
1785 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1786 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1787 MGETHDR(n, M_DONTWAIT, MT_DATA);
1788 if (!n)
1789 goto fail;
1790 n->m_len = len;
1791 n->m_next = NULL;
1792 m_copydata(m, 0, sizeof(struct sadb_msg),
1793 mtod(n, void *));
1794 } else if (i < ndeep) {
1795 len = mhp->extlen[idx];
1796 n = key_alloc_mbuf(len);
1797 if (!n || n->m_next) { /*XXX*/
1798 if (n)
1799 m_freem(n);
1800 goto fail;
1801 }
1802 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1803 mtod(n, void *));
1804 } else {
1805 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1806 M_DONTWAIT);
1807 }
1808 if (n == NULL)
1809 goto fail;
1810
1811 if (result)
1812 m_cat(result, n);
1813 else
1814 result = n;
1815 }
1816 va_end(ap);
1817
1818 if (result && (result->m_flags & M_PKTHDR) != 0) {
1819 result->m_pkthdr.len = 0;
1820 for (n = result; n; n = n->m_next)
1821 result->m_pkthdr.len += n->m_len;
1822 }
1823
1824 return result;
1825
1826 fail:
1827 va_end(ap);
1828 m_freem(result);
1829 return NULL;
1830 }
1831
1832 /*
1833 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1834 * add an entry to SP database, when received
1835 * <base, address(SD), (lifetime(H),) policy>
1836 * from the user(?).
1837 * Adding to SP database,
1838 * and send
1839 * <base, address(SD), (lifetime(H),) policy>
1840 * to the socket which was send.
1841 *
1842 * SPDADD set a unique policy entry.
1843 * SPDSETIDX like SPDADD without a part of policy requests.
1844 * SPDUPDATE replace a unique policy entry.
1845 *
1846 * m will always be freed.
1847 */
1848 static int
1849 key_spdadd(struct socket *so, struct mbuf *m,
1850 const struct sadb_msghdr *mhp)
1851 {
1852 const struct sockaddr *src, *dst;
1853 const struct sadb_x_policy *xpl0;
1854 struct sadb_x_policy *xpl;
1855 const struct sadb_lifetime *lft = NULL;
1856 struct secpolicyindex spidx;
1857 struct secpolicy *newsp;
1858 int error;
1859
1860 KASSERT(!cpu_softintr_p());
1861 KASSERT(so != NULL);
1862 KASSERT(m != NULL);
1863 KASSERT(mhp != NULL);
1864 KASSERT(mhp->msg != NULL);
1865
1866 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1867 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1868 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1869 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1870 return key_senderror(so, m, EINVAL);
1871 }
1872 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1873 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1874 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1875 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1876 return key_senderror(so, m, EINVAL);
1877 }
1878 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1879 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1880 sizeof(struct sadb_lifetime)) {
1881 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1882 return key_senderror(so, m, EINVAL);
1883 }
1884 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1885 }
1886
1887 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1888
1889 /* checking the direciton. */
1890 switch (xpl0->sadb_x_policy_dir) {
1891 case IPSEC_DIR_INBOUND:
1892 case IPSEC_DIR_OUTBOUND:
1893 break;
1894 default:
1895 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1896 return key_senderror(so, m, EINVAL);
1897 }
1898
1899 /* check policy */
1900 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1901 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1902 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1903 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1904 return key_senderror(so, m, EINVAL);
1905 }
1906
1907 /* policy requests are mandatory when action is ipsec. */
1908 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1909 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1910 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1911 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1912 return key_senderror(so, m, EINVAL);
1913 }
1914
1915 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1916 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1917
1918 /* sanity check on addr pair */
1919 if (src->sa_family != dst->sa_family)
1920 return key_senderror(so, m, EINVAL);
1921 if (src->sa_len != dst->sa_len)
1922 return key_senderror(so, m, EINVAL);
1923
1924 key_init_spidx_bymsghdr(&spidx, mhp);
1925
1926 /*
1927 * checking there is SP already or not.
1928 * SPDUPDATE doesn't depend on whether there is a SP or not.
1929 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1930 * then error.
1931 */
1932 newsp = key_getsp(&spidx);
1933 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1934 if (newsp) {
1935 key_sp_dead(newsp);
1936 key_sp_unlink(newsp); /* XXX jrs ordering */
1937 KEY_FREESP(&newsp);
1938 newsp = NULL;
1939 }
1940 } else {
1941 if (newsp != NULL) {
1942 KEY_FREESP(&newsp);
1943 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1944 return key_senderror(so, m, EEXIST);
1945 }
1946 }
1947
1948 /* allocation new SP entry */
1949 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1950 if (newsp == NULL) {
1951 return key_senderror(so, m, error);
1952 }
1953
1954 newsp->id = key_getnewspid();
1955 if (newsp->id == 0) {
1956 kmem_free(newsp, sizeof(*newsp));
1957 return key_senderror(so, m, ENOBUFS);
1958 }
1959
1960 newsp->spidx = spidx;
1961 newsp->created = time_uptime;
1962 newsp->lastused = newsp->created;
1963 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1964 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1965
1966 newsp->refcnt = 1; /* do not reclaim until I say I do */
1967 newsp->state = IPSEC_SPSTATE_ALIVE;
1968 if (newsp->policy == IPSEC_POLICY_IPSEC)
1969 KASSERT(newsp->req != NULL);
1970 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1971
1972 #ifdef notyet
1973 /* delete the entry in spacqtree */
1974 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1975 struct secspacq *spacq = key_getspacq(&spidx);
1976 if (spacq != NULL) {
1977 /* reset counter in order to deletion by timehandler. */
1978 spacq->created = time_uptime;
1979 spacq->count = 0;
1980 }
1981 }
1982 #endif
1983
1984 /* Invalidate all cached SPD pointers in the PCBs. */
1985 ipsec_invalpcbcacheall();
1986
1987 #if defined(GATEWAY)
1988 /* Invalidate the ipflow cache, as well. */
1989 ipflow_invalidate_all(0);
1990 #ifdef INET6
1991 if (in6_present)
1992 ip6flow_invalidate_all(0);
1993 #endif /* INET6 */
1994 #endif /* GATEWAY */
1995
1996 {
1997 struct mbuf *n, *mpolicy;
1998 struct sadb_msg *newmsg;
1999 int off;
2000
2001 /* create new sadb_msg to reply. */
2002 if (lft) {
2003 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2004 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2005 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2006 } else {
2007 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2008 SADB_X_EXT_POLICY,
2009 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2010 }
2011 if (!n)
2012 return key_senderror(so, m, ENOBUFS);
2013
2014 if (n->m_len < sizeof(*newmsg)) {
2015 n = m_pullup(n, sizeof(*newmsg));
2016 if (!n)
2017 return key_senderror(so, m, ENOBUFS);
2018 }
2019 newmsg = mtod(n, struct sadb_msg *);
2020 newmsg->sadb_msg_errno = 0;
2021 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2022
2023 off = 0;
2024 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2025 sizeof(*xpl), &off);
2026 if (mpolicy == NULL) {
2027 /* n is already freed */
2028 return key_senderror(so, m, ENOBUFS);
2029 }
2030 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2031 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2032 m_freem(n);
2033 return key_senderror(so, m, EINVAL);
2034 }
2035 xpl->sadb_x_policy_id = newsp->id;
2036
2037 m_freem(m);
2038 key_update_used();
2039 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2040 }
2041 }
2042
2043 /*
2044 * get new policy id.
2045 * OUT:
2046 * 0: failure.
2047 * others: success.
2048 */
2049 static u_int32_t
2050 key_getnewspid(void)
2051 {
2052 u_int32_t newid = 0;
2053 int count = key_spi_trycnt; /* XXX */
2054 struct secpolicy *sp;
2055
2056 /* when requesting to allocate spi ranged */
2057 while (count--) {
2058 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2059
2060 sp = key_getspbyid(newid);
2061 if (sp == NULL)
2062 break;
2063
2064 KEY_FREESP(&sp);
2065 }
2066
2067 if (count == 0 || newid == 0) {
2068 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2069 return 0;
2070 }
2071
2072 return newid;
2073 }
2074
2075 /*
2076 * SADB_SPDDELETE processing
2077 * receive
2078 * <base, address(SD), policy(*)>
2079 * from the user(?), and set SADB_SASTATE_DEAD,
2080 * and send,
2081 * <base, address(SD), policy(*)>
2082 * to the ikmpd.
2083 * policy(*) including direction of policy.
2084 *
2085 * m will always be freed.
2086 */
2087 static int
2088 key_spddelete(struct socket *so, struct mbuf *m,
2089 const struct sadb_msghdr *mhp)
2090 {
2091 struct sadb_x_policy *xpl0;
2092 struct secpolicyindex spidx;
2093 struct secpolicy *sp;
2094
2095 KASSERT(so != NULL);
2096 KASSERT(m != NULL);
2097 KASSERT(mhp != NULL);
2098 KASSERT(mhp->msg != NULL);
2099
2100 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2101 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2102 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2103 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2104 return key_senderror(so, m, EINVAL);
2105 }
2106 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2107 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2108 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2109 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2110 return key_senderror(so, m, EINVAL);
2111 }
2112
2113 /* make secindex */
2114 key_init_spidx_bymsghdr(&spidx, mhp);
2115
2116 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2117
2118 /* checking the direciton. */
2119 switch (xpl0->sadb_x_policy_dir) {
2120 case IPSEC_DIR_INBOUND:
2121 case IPSEC_DIR_OUTBOUND:
2122 break;
2123 default:
2124 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2125 return key_senderror(so, m, EINVAL);
2126 }
2127
2128 /* Is there SP in SPD ? */
2129 sp = key_getsp(&spidx);
2130 if (sp == NULL) {
2131 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2132 return key_senderror(so, m, EINVAL);
2133 }
2134
2135 /* save policy id to buffer to be returned. */
2136 xpl0->sadb_x_policy_id = sp->id;
2137
2138 key_sp_dead(sp);
2139 key_sp_unlink(sp); /* XXX jrs ordering */
2140 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2141
2142 /* Invalidate all cached SPD pointers in the PCBs. */
2143 ipsec_invalpcbcacheall();
2144
2145 /* We're deleting policy; no need to invalidate the ipflow cache. */
2146
2147 {
2148 struct mbuf *n;
2149 struct sadb_msg *newmsg;
2150
2151 /* create new sadb_msg to reply. */
2152 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2153 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2154 if (!n)
2155 return key_senderror(so, m, ENOBUFS);
2156
2157 newmsg = mtod(n, struct sadb_msg *);
2158 newmsg->sadb_msg_errno = 0;
2159 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2160
2161 m_freem(m);
2162 key_update_used();
2163 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2164 }
2165 }
2166
2167 /*
2168 * SADB_SPDDELETE2 processing
2169 * receive
2170 * <base, policy(*)>
2171 * from the user(?), and set SADB_SASTATE_DEAD,
2172 * and send,
2173 * <base, policy(*)>
2174 * to the ikmpd.
2175 * policy(*) including direction of policy.
2176 *
2177 * m will always be freed.
2178 */
2179 static int
2180 key_spddelete2(struct socket *so, struct mbuf *m,
2181 const struct sadb_msghdr *mhp)
2182 {
2183 u_int32_t id;
2184 struct secpolicy *sp;
2185
2186 KASSERT(so != NULL);
2187 KASSERT(m != NULL);
2188 KASSERT(mhp != NULL);
2189 KASSERT(mhp->msg != NULL);
2190
2191 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2192 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2193 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2194 key_senderror(so, m, EINVAL);
2195 return 0;
2196 }
2197
2198 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2199
2200 /* Is there SP in SPD ? */
2201 sp = key_getspbyid(id);
2202 if (sp == NULL) {
2203 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2204 return key_senderror(so, m, EINVAL);
2205 }
2206
2207 key_sp_dead(sp);
2208 key_sp_unlink(sp); /* XXX jrs ordering */
2209 KEY_FREESP(&sp); /* ref gained by key_getsp */
2210 sp = NULL;
2211
2212 /* Invalidate all cached SPD pointers in the PCBs. */
2213 ipsec_invalpcbcacheall();
2214
2215 /* We're deleting policy; no need to invalidate the ipflow cache. */
2216
2217 {
2218 struct mbuf *n, *nn;
2219 struct sadb_msg *newmsg;
2220 int off, len;
2221
2222 /* create new sadb_msg to reply. */
2223 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2224
2225 if (len > MCLBYTES)
2226 return key_senderror(so, m, ENOBUFS);
2227 MGETHDR(n, M_DONTWAIT, MT_DATA);
2228 if (n && len > MHLEN) {
2229 MCLGET(n, M_DONTWAIT);
2230 if ((n->m_flags & M_EXT) == 0) {
2231 m_freem(n);
2232 n = NULL;
2233 }
2234 }
2235 if (!n)
2236 return key_senderror(so, m, ENOBUFS);
2237
2238 n->m_len = len;
2239 n->m_next = NULL;
2240 off = 0;
2241
2242 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2243 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2244
2245 KASSERTMSG(off == len, "length inconsistency");
2246
2247 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2248 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2249 if (!n->m_next) {
2250 m_freem(n);
2251 return key_senderror(so, m, ENOBUFS);
2252 }
2253
2254 n->m_pkthdr.len = 0;
2255 for (nn = n; nn; nn = nn->m_next)
2256 n->m_pkthdr.len += nn->m_len;
2257
2258 newmsg = mtod(n, struct sadb_msg *);
2259 newmsg->sadb_msg_errno = 0;
2260 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2261
2262 m_freem(m);
2263 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2264 }
2265 }
2266
2267 /*
2268 * SADB_X_GET processing
2269 * receive
2270 * <base, policy(*)>
2271 * from the user(?),
2272 * and send,
2273 * <base, address(SD), policy>
2274 * to the ikmpd.
2275 * policy(*) including direction of policy.
2276 *
2277 * m will always be freed.
2278 */
2279 static int
2280 key_spdget(struct socket *so, struct mbuf *m,
2281 const struct sadb_msghdr *mhp)
2282 {
2283 u_int32_t id;
2284 struct secpolicy *sp;
2285 struct mbuf *n;
2286
2287 KASSERT(so != NULL);
2288 KASSERT(m != NULL);
2289 KASSERT(mhp != NULL);
2290 KASSERT(mhp->msg != NULL);
2291
2292 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2293 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2294 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2295 return key_senderror(so, m, EINVAL);
2296 }
2297
2298 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2299
2300 /* Is there SP in SPD ? */
2301 sp = key_getspbyid(id);
2302 if (sp == NULL) {
2303 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2304 return key_senderror(so, m, ENOENT);
2305 }
2306
2307 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2308 mhp->msg->sadb_msg_pid);
2309 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2310 if (n != NULL) {
2311 m_freem(m);
2312 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2313 } else
2314 return key_senderror(so, m, ENOBUFS);
2315 }
2316
2317 #ifdef notyet
2318 /*
2319 * SADB_X_SPDACQUIRE processing.
2320 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2321 * send
2322 * <base, policy(*)>
2323 * to KMD, and expect to receive
2324 * <base> with SADB_X_SPDACQUIRE if error occurred,
2325 * or
2326 * <base, policy>
2327 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2328 * policy(*) is without policy requests.
2329 *
2330 * 0 : succeed
2331 * others: error number
2332 */
2333 int
2334 key_spdacquire(const struct secpolicy *sp)
2335 {
2336 struct mbuf *result = NULL, *m;
2337 struct secspacq *newspacq;
2338 int error;
2339
2340 KASSERT(sp != NULL);
2341 KASSERTMSG(sp->req == NULL, "called but there is request");
2342 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2343 "policy mismathed. IPsec is expected");
2344
2345 /* Get an entry to check whether sent message or not. */
2346 newspacq = key_getspacq(&sp->spidx);
2347 if (newspacq != NULL) {
2348 if (key_blockacq_count < newspacq->count) {
2349 /* reset counter and do send message. */
2350 newspacq->count = 0;
2351 } else {
2352 /* increment counter and do nothing. */
2353 newspacq->count++;
2354 return 0;
2355 }
2356 } else {
2357 /* make new entry for blocking to send SADB_ACQUIRE. */
2358 newspacq = key_newspacq(&sp->spidx);
2359 if (newspacq == NULL)
2360 return ENOBUFS;
2361
2362 /* add to acqtree */
2363 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2364 }
2365
2366 /* create new sadb_msg to reply. */
2367 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2368 if (!m) {
2369 error = ENOBUFS;
2370 goto fail;
2371 }
2372 result = m;
2373
2374 result->m_pkthdr.len = 0;
2375 for (m = result; m; m = m->m_next)
2376 result->m_pkthdr.len += m->m_len;
2377
2378 mtod(result, struct sadb_msg *)->sadb_msg_len =
2379 PFKEY_UNIT64(result->m_pkthdr.len);
2380
2381 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2382
2383 fail:
2384 if (result)
2385 m_freem(result);
2386 return error;
2387 }
2388 #endif /* notyet */
2389
2390 /*
2391 * SADB_SPDFLUSH processing
2392 * receive
2393 * <base>
2394 * from the user, and free all entries in secpctree.
2395 * and send,
2396 * <base>
2397 * to the user.
2398 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2399 *
2400 * m will always be freed.
2401 */
2402 static int
2403 key_spdflush(struct socket *so, struct mbuf *m,
2404 const struct sadb_msghdr *mhp)
2405 {
2406 struct sadb_msg *newmsg;
2407 struct secpolicy *sp;
2408 u_int dir;
2409
2410 KASSERT(so != NULL);
2411 KASSERT(m != NULL);
2412 KASSERT(mhp != NULL);
2413 KASSERT(mhp->msg != NULL);
2414
2415 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2416 return key_senderror(so, m, EINVAL);
2417
2418 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2419 struct secpolicy * nextsp;
2420 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2421 if (sp->state == IPSEC_SPSTATE_DEAD)
2422 continue;
2423 key_sp_dead(sp);
2424 key_sp_unlink(sp);
2425 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2426 continue;
2427 }
2428 }
2429
2430 /* Invalidate all cached SPD pointers in the PCBs. */
2431 ipsec_invalpcbcacheall();
2432
2433 /* We're deleting policy; no need to invalidate the ipflow cache. */
2434
2435 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2436 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2437 return key_senderror(so, m, ENOBUFS);
2438 }
2439
2440 if (m->m_next)
2441 m_freem(m->m_next);
2442 m->m_next = NULL;
2443 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2444 newmsg = mtod(m, struct sadb_msg *);
2445 newmsg->sadb_msg_errno = 0;
2446 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2447
2448 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2449 }
2450
2451 static struct sockaddr key_src = {
2452 .sa_len = 2,
2453 .sa_family = PF_KEY,
2454 };
2455
2456 static struct mbuf *
2457 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2458 {
2459 struct secpolicy *sp;
2460 int cnt;
2461 u_int dir;
2462 struct mbuf *m, *n, *prev;
2463 int totlen;
2464
2465 *lenp = 0;
2466
2467 /* search SPD entry and get buffer size. */
2468 cnt = 0;
2469 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2470 LIST_FOREACH(sp, &sptree[dir], chain) {
2471 cnt++;
2472 }
2473 }
2474
2475 if (cnt == 0) {
2476 *errorp = ENOENT;
2477 return (NULL);
2478 }
2479
2480 m = NULL;
2481 prev = m;
2482 totlen = 0;
2483 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2484 LIST_FOREACH(sp, &sptree[dir], chain) {
2485 --cnt;
2486 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2487
2488 if (!n) {
2489 *errorp = ENOBUFS;
2490 if (m)
2491 m_freem(m);
2492 return (NULL);
2493 }
2494
2495 totlen += n->m_pkthdr.len;
2496 if (!m) {
2497 m = n;
2498 } else {
2499 prev->m_nextpkt = n;
2500 }
2501 prev = n;
2502 }
2503 }
2504
2505 *lenp = totlen;
2506 *errorp = 0;
2507 return (m);
2508 }
2509
2510 /*
2511 * SADB_SPDDUMP processing
2512 * receive
2513 * <base>
2514 * from the user, and dump all SP leaves
2515 * and send,
2516 * <base> .....
2517 * to the ikmpd.
2518 *
2519 * m will always be freed.
2520 */
2521 static int
2522 key_spddump(struct socket *so, struct mbuf *m0,
2523 const struct sadb_msghdr *mhp)
2524 {
2525 struct mbuf *n;
2526 int error, len;
2527 int ok, s;
2528 pid_t pid;
2529
2530 KASSERT(so != NULL);
2531 KASSERT(m0 != NULL);
2532 KASSERT(mhp != NULL);
2533 KASSERT(mhp->msg != NULL);
2534
2535 pid = mhp->msg->sadb_msg_pid;
2536 /*
2537 * If the requestor has insufficient socket-buffer space
2538 * for the entire chain, nobody gets any response to the DUMP.
2539 * XXX For now, only the requestor ever gets anything.
2540 * Moreover, if the requestor has any space at all, they receive
2541 * the entire chain, otherwise the request is refused with ENOBUFS.
2542 */
2543 if (sbspace(&so->so_rcv) <= 0) {
2544 return key_senderror(so, m0, ENOBUFS);
2545 }
2546
2547 s = splsoftnet();
2548 n = key_setspddump_chain(&error, &len, pid);
2549 splx(s);
2550
2551 if (n == NULL) {
2552 return key_senderror(so, m0, ENOENT);
2553 }
2554 {
2555 uint64_t *ps = PFKEY_STAT_GETREF();
2556 ps[PFKEY_STAT_IN_TOTAL]++;
2557 ps[PFKEY_STAT_IN_BYTES] += len;
2558 PFKEY_STAT_PUTREF();
2559 }
2560
2561 /*
2562 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2563 * The requestor receives either the entire chain, or an
2564 * error message with ENOBUFS.
2565 */
2566
2567 /*
2568 * sbappendchainwith record takes the chain of entries, one
2569 * packet-record per SPD entry, prepends the key_src sockaddr
2570 * to each packet-record, links the sockaddr mbufs into a new
2571 * list of records, then appends the entire resulting
2572 * list to the requesting socket.
2573 */
2574 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2575 SB_PRIO_ONESHOT_OVERFLOW);
2576
2577 if (!ok) {
2578 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2579 m_freem(n);
2580 return key_senderror(so, m0, ENOBUFS);
2581 }
2582
2583 m_freem(m0);
2584 return error;
2585 }
2586
2587 /*
2588 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2589 */
2590 static int
2591 key_nat_map(struct socket *so, struct mbuf *m,
2592 const struct sadb_msghdr *mhp)
2593 {
2594 struct sadb_x_nat_t_type *type;
2595 struct sadb_x_nat_t_port *sport;
2596 struct sadb_x_nat_t_port *dport;
2597 struct sadb_address *iaddr, *raddr;
2598 struct sadb_x_nat_t_frag *frag;
2599
2600 KASSERT(so != NULL);
2601 KASSERT(m != NULL);
2602 KASSERT(mhp != NULL);
2603 KASSERT(mhp->msg != NULL);
2604
2605 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2606 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2607 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2608 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2609 return key_senderror(so, m, EINVAL);
2610 }
2611 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2612 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2613 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2614 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2615 return key_senderror(so, m, EINVAL);
2616 }
2617
2618 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2619 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2620 IPSECLOG(LOG_DEBUG, "invalid message\n");
2621 return key_senderror(so, m, EINVAL);
2622 }
2623
2624 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2625 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2626 IPSECLOG(LOG_DEBUG, "invalid message\n");
2627 return key_senderror(so, m, EINVAL);
2628 }
2629
2630 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2631 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2632 IPSECLOG(LOG_DEBUG, "invalid message\n");
2633 return key_senderror(so, m, EINVAL);
2634 }
2635
2636 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2637 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2638 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2639 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2640 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2641 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2642
2643 /*
2644 * XXX handle that, it should also contain a SA, or anything
2645 * that enable to update the SA information.
2646 */
2647
2648 return 0;
2649 }
2650
2651 static struct mbuf *
2652 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2653 {
2654 struct mbuf *result = NULL, *m;
2655
2656 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2657 if (!m)
2658 goto fail;
2659 result = m;
2660
2661 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2662 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2663 if (!m)
2664 goto fail;
2665 m_cat(result, m);
2666
2667 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2668 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2669 if (!m)
2670 goto fail;
2671 m_cat(result, m);
2672
2673 m = key_sp2msg(sp);
2674 if (!m)
2675 goto fail;
2676 m_cat(result, m);
2677
2678 if ((result->m_flags & M_PKTHDR) == 0)
2679 goto fail;
2680
2681 if (result->m_len < sizeof(struct sadb_msg)) {
2682 result = m_pullup(result, sizeof(struct sadb_msg));
2683 if (result == NULL)
2684 goto fail;
2685 }
2686
2687 result->m_pkthdr.len = 0;
2688 for (m = result; m; m = m->m_next)
2689 result->m_pkthdr.len += m->m_len;
2690
2691 mtod(result, struct sadb_msg *)->sadb_msg_len =
2692 PFKEY_UNIT64(result->m_pkthdr.len);
2693
2694 return result;
2695
2696 fail:
2697 m_freem(result);
2698 return NULL;
2699 }
2700
2701 /*
2702 * get PFKEY message length for security policy and request.
2703 */
2704 static u_int
2705 key_getspreqmsglen(const struct secpolicy *sp)
2706 {
2707 u_int tlen;
2708
2709 tlen = sizeof(struct sadb_x_policy);
2710
2711 /* if is the policy for ipsec ? */
2712 if (sp->policy != IPSEC_POLICY_IPSEC)
2713 return tlen;
2714
2715 /* get length of ipsec requests */
2716 {
2717 const struct ipsecrequest *isr;
2718 int len;
2719
2720 for (isr = sp->req; isr != NULL; isr = isr->next) {
2721 len = sizeof(struct sadb_x_ipsecrequest)
2722 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2723
2724 tlen += PFKEY_ALIGN8(len);
2725 }
2726 }
2727
2728 return tlen;
2729 }
2730
2731 /*
2732 * SADB_SPDEXPIRE processing
2733 * send
2734 * <base, address(SD), lifetime(CH), policy>
2735 * to KMD by PF_KEY.
2736 *
2737 * OUT: 0 : succeed
2738 * others : error number
2739 */
2740 static int
2741 key_spdexpire(struct secpolicy *sp)
2742 {
2743 int s;
2744 struct mbuf *result = NULL, *m;
2745 int len;
2746 int error = -1;
2747 struct sadb_lifetime *lt;
2748
2749 /* XXX: Why do we lock ? */
2750 s = splsoftnet(); /*called from softclock()*/
2751
2752 KASSERT(sp != NULL);
2753
2754 /* set msg header */
2755 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2756 if (!m) {
2757 error = ENOBUFS;
2758 goto fail;
2759 }
2760 result = m;
2761
2762 /* create lifetime extension (current and hard) */
2763 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2764 m = key_alloc_mbuf(len);
2765 if (!m || m->m_next) { /*XXX*/
2766 if (m)
2767 m_freem(m);
2768 error = ENOBUFS;
2769 goto fail;
2770 }
2771 memset(mtod(m, void *), 0, len);
2772 lt = mtod(m, struct sadb_lifetime *);
2773 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2774 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2775 lt->sadb_lifetime_allocations = 0;
2776 lt->sadb_lifetime_bytes = 0;
2777 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2778 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2779 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2780 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2781 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2782 lt->sadb_lifetime_allocations = 0;
2783 lt->sadb_lifetime_bytes = 0;
2784 lt->sadb_lifetime_addtime = sp->lifetime;
2785 lt->sadb_lifetime_usetime = sp->validtime;
2786 m_cat(result, m);
2787
2788 /* set sadb_address for source */
2789 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2790 sp->spidx.prefs, sp->spidx.ul_proto);
2791 if (!m) {
2792 error = ENOBUFS;
2793 goto fail;
2794 }
2795 m_cat(result, m);
2796
2797 /* set sadb_address for destination */
2798 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2799 sp->spidx.prefd, sp->spidx.ul_proto);
2800 if (!m) {
2801 error = ENOBUFS;
2802 goto fail;
2803 }
2804 m_cat(result, m);
2805
2806 /* set secpolicy */
2807 m = key_sp2msg(sp);
2808 if (!m) {
2809 error = ENOBUFS;
2810 goto fail;
2811 }
2812 m_cat(result, m);
2813
2814 if ((result->m_flags & M_PKTHDR) == 0) {
2815 error = EINVAL;
2816 goto fail;
2817 }
2818
2819 if (result->m_len < sizeof(struct sadb_msg)) {
2820 result = m_pullup(result, sizeof(struct sadb_msg));
2821 if (result == NULL) {
2822 error = ENOBUFS;
2823 goto fail;
2824 }
2825 }
2826
2827 result->m_pkthdr.len = 0;
2828 for (m = result; m; m = m->m_next)
2829 result->m_pkthdr.len += m->m_len;
2830
2831 mtod(result, struct sadb_msg *)->sadb_msg_len =
2832 PFKEY_UNIT64(result->m_pkthdr.len);
2833
2834 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2835
2836 fail:
2837 if (result)
2838 m_freem(result);
2839 splx(s);
2840 return error;
2841 }
2842
2843 /* %%% SAD management */
2844 /*
2845 * allocating a memory for new SA head, and copy from the values of mhp.
2846 * OUT: NULL : failure due to the lack of memory.
2847 * others : pointer to new SA head.
2848 */
2849 static struct secashead *
2850 key_newsah(const struct secasindex *saidx)
2851 {
2852 struct secashead *newsah;
2853 int i;
2854
2855 KASSERT(saidx != NULL);
2856
2857 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2858 for (i = 0; i < __arraycount(newsah->savtree); i++)
2859 LIST_INIT(&newsah->savtree[i]);
2860 newsah->saidx = *saidx;
2861
2862 /* add to saidxtree */
2863 newsah->state = SADB_SASTATE_MATURE;
2864 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2865
2866 return newsah;
2867 }
2868
2869 /*
2870 * delete SA index and all SA registerd.
2871 */
2872 static void
2873 key_delsah(struct secashead *sah)
2874 {
2875 struct secasvar *sav, *nextsav;
2876 u_int state;
2877 int s;
2878 int zombie = 0;
2879
2880 KASSERT(!cpu_softintr_p());
2881 KASSERT(sah != NULL);
2882
2883 s = splsoftnet();
2884
2885 /* searching all SA registerd in the secindex. */
2886 SASTATE_ANY_FOREACH(state) {
2887 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2888 if (sav->refcnt == 0) {
2889 /* sanity check */
2890 KEY_CHKSASTATE(state, sav->state);
2891 KEY_FREESAV(&sav);
2892 } else {
2893 /* give up to delete this sa */
2894 zombie++;
2895 }
2896 }
2897 }
2898
2899 /* don't delete sah only if there are savs. */
2900 if (zombie) {
2901 splx(s);
2902 return;
2903 }
2904
2905 rtcache_free(&sah->sa_route);
2906
2907 /* remove from tree of SA index */
2908 KASSERT(__LIST_CHAINED(sah));
2909 LIST_REMOVE(sah, chain);
2910
2911 if (sah->idents != NULL)
2912 kmem_free(sah->idents, sah->idents_len);
2913 if (sah->identd != NULL)
2914 kmem_free(sah->identd, sah->identd_len);
2915
2916 kmem_free(sah, sizeof(*sah));
2917
2918 splx(s);
2919 return;
2920 }
2921
2922 /*
2923 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2924 * and copy the values of mhp into new buffer.
2925 * When SAD message type is GETSPI:
2926 * to set sequence number from acq_seq++,
2927 * to set zero to SPI.
2928 * not to call key_setsava().
2929 * OUT: NULL : fail
2930 * others : pointer to new secasvar.
2931 *
2932 * does not modify mbuf. does not free mbuf on error.
2933 */
2934 static struct secasvar *
2935 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2936 struct secashead *sah, int *errp,
2937 const char* where, int tag)
2938 {
2939 struct secasvar *newsav;
2940 const struct sadb_sa *xsa;
2941
2942 KASSERT(!cpu_softintr_p());
2943 KASSERT(m != NULL);
2944 KASSERT(mhp != NULL);
2945 KASSERT(mhp->msg != NULL);
2946 KASSERT(sah != NULL);
2947
2948 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2949
2950 switch (mhp->msg->sadb_msg_type) {
2951 case SADB_GETSPI:
2952 newsav->spi = 0;
2953
2954 #ifdef IPSEC_DOSEQCHECK
2955 /* sync sequence number */
2956 if (mhp->msg->sadb_msg_seq == 0)
2957 newsav->seq =
2958 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2959 else
2960 #endif
2961 newsav->seq = mhp->msg->sadb_msg_seq;
2962 break;
2963
2964 case SADB_ADD:
2965 /* sanity check */
2966 if (mhp->ext[SADB_EXT_SA] == NULL) {
2967 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2968 *errp = EINVAL;
2969 goto error;
2970 }
2971 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2972 newsav->spi = xsa->sadb_sa_spi;
2973 newsav->seq = mhp->msg->sadb_msg_seq;
2974 break;
2975 default:
2976 *errp = EINVAL;
2977 goto error;
2978 }
2979
2980 /* copy sav values */
2981 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2982 *errp = key_setsaval(newsav, m, mhp);
2983 if (*errp)
2984 goto error;
2985 }
2986
2987 /* reset created */
2988 newsav->created = time_uptime;
2989 newsav->pid = mhp->msg->sadb_msg_pid;
2990
2991 /* add to satree */
2992 newsav->sah = sah;
2993 newsav->refcnt = 1;
2994 newsav->state = SADB_SASTATE_LARVAL;
2995 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2996 secasvar, chain);
2997 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2998 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2999 return newsav;
3000
3001 error:
3002 KASSERT(*errp != 0);
3003 kmem_free(newsav, sizeof(*newsav));
3004 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3005 "DP from %s:%u return SA:NULL\n", where, tag);
3006 return NULL;
3007 }
3008
3009 /*
3010 * free() SA variable entry.
3011 */
3012 static void
3013 key_delsav(struct secasvar *sav)
3014 {
3015
3016 KASSERT(sav != NULL);
3017 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3018
3019 /* remove from SA header */
3020 KASSERT(__LIST_CHAINED(sav));
3021 LIST_REMOVE(sav, chain);
3022
3023 /*
3024 * Cleanup xform state. Note that zeroize'ing causes the
3025 * keys to be cleared; otherwise we must do it ourself.
3026 */
3027 if (sav->tdb_xform != NULL) {
3028 sav->tdb_xform->xf_zeroize(sav);
3029 sav->tdb_xform = NULL;
3030 } else {
3031 if (sav->key_auth != NULL)
3032 explicit_memset(_KEYBUF(sav->key_auth), 0,
3033 _KEYLEN(sav->key_auth));
3034 if (sav->key_enc != NULL)
3035 explicit_memset(_KEYBUF(sav->key_enc), 0,
3036 _KEYLEN(sav->key_enc));
3037 }
3038
3039 key_freesaval(sav);
3040 kmem_intr_free(sav, sizeof(*sav));
3041
3042 return;
3043 }
3044
3045 /*
3046 * search SAD.
3047 * OUT:
3048 * NULL : not found
3049 * others : found, pointer to a SA.
3050 */
3051 static struct secashead *
3052 key_getsah(const struct secasindex *saidx)
3053 {
3054 struct secashead *sah;
3055
3056 LIST_FOREACH(sah, &sahtree, chain) {
3057 if (sah->state == SADB_SASTATE_DEAD)
3058 continue;
3059 if (key_saidx_match(&sah->saidx, saidx, CMP_REQID))
3060 return sah;
3061 }
3062
3063 return NULL;
3064 }
3065
3066 /*
3067 * check not to be duplicated SPI.
3068 * NOTE: this function is too slow due to searching all SAD.
3069 * OUT:
3070 * NULL : not found
3071 * others : found, pointer to a SA.
3072 */
3073 static struct secasvar *
3074 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3075 {
3076 struct secashead *sah;
3077 struct secasvar *sav;
3078
3079 /* check address family */
3080 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3081 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3082 return NULL;
3083 }
3084
3085 /* check all SAD */
3086 LIST_FOREACH(sah, &sahtree, chain) {
3087 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3088 continue;
3089 sav = key_getsavbyspi(sah, spi);
3090 if (sav != NULL)
3091 return sav;
3092 }
3093
3094 return NULL;
3095 }
3096
3097 /*
3098 * search SAD litmited alive SA, protocol, SPI.
3099 * OUT:
3100 * NULL : not found
3101 * others : found, pointer to a SA.
3102 */
3103 static struct secasvar *
3104 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3105 {
3106 struct secasvar *sav;
3107 u_int state;
3108
3109 /* search all status */
3110 SASTATE_ALIVE_FOREACH(state) {
3111 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3112
3113 /* sanity check */
3114 if (sav->state != state) {
3115 IPSECLOG(LOG_DEBUG,
3116 "invalid sav->state (queue: %d SA: %d)\n",
3117 state, sav->state);
3118 continue;
3119 }
3120
3121 if (sav->spi == spi)
3122 return sav;
3123 }
3124 }
3125
3126 return NULL;
3127 }
3128
3129 /*
3130 * Free allocated data to member variables of sav:
3131 * sav->replay, sav->key_* and sav->lft_*.
3132 */
3133 static void
3134 key_freesaval(struct secasvar *sav)
3135 {
3136
3137 if (sav->replay != NULL) {
3138 kmem_intr_free(sav->replay, sav->replay_len);
3139 sav->replay = NULL;
3140 sav->replay_len = 0;
3141 }
3142 if (sav->key_auth != NULL) {
3143 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3144 sav->key_auth = NULL;
3145 sav->key_auth_len = 0;
3146 }
3147 if (sav->key_enc != NULL) {
3148 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3149 sav->key_enc = NULL;
3150 sav->key_enc_len = 0;
3151 }
3152 if (sav->lft_c != NULL) {
3153 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3154 sav->lft_c = NULL;
3155 }
3156 if (sav->lft_h != NULL) {
3157 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3158 sav->lft_h = NULL;
3159 }
3160 if (sav->lft_s != NULL) {
3161 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3162 sav->lft_s = NULL;
3163 }
3164 }
3165
3166 /*
3167 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3168 * You must update these if need.
3169 * OUT: 0: success.
3170 * !0: failure.
3171 *
3172 * does not modify mbuf. does not free mbuf on error.
3173 */
3174 static int
3175 key_setsaval(struct secasvar *sav, struct mbuf *m,
3176 const struct sadb_msghdr *mhp)
3177 {
3178 int error = 0;
3179
3180 KASSERT(!cpu_softintr_p());
3181 KASSERT(m != NULL);
3182 KASSERT(mhp != NULL);
3183 KASSERT(mhp->msg != NULL);
3184
3185 /* initialization */
3186 key_freesaval(sav);
3187 sav->tdb_xform = NULL; /* transform */
3188 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3189 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3190 sav->tdb_compalgxform = NULL; /* compression algorithm */
3191 sav->natt_type = 0;
3192 sav->esp_frag = 0;
3193
3194 /* SA */
3195 if (mhp->ext[SADB_EXT_SA] != NULL) {
3196 const struct sadb_sa *sa0;
3197
3198 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3199 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3200 error = EINVAL;
3201 goto fail;
3202 }
3203
3204 sav->alg_auth = sa0->sadb_sa_auth;
3205 sav->alg_enc = sa0->sadb_sa_encrypt;
3206 sav->flags = sa0->sadb_sa_flags;
3207
3208 /* replay window */
3209 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3210 size_t len = sizeof(struct secreplay) +
3211 sa0->sadb_sa_replay;
3212 sav->replay = kmem_zalloc(len, KM_SLEEP);
3213 sav->replay_len = len;
3214 if (sa0->sadb_sa_replay != 0)
3215 sav->replay->bitmap = (char*)(sav->replay+1);
3216 sav->replay->wsize = sa0->sadb_sa_replay;
3217 }
3218 }
3219
3220 /* Authentication keys */
3221 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3222 const struct sadb_key *key0;
3223 int len;
3224
3225 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3226 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3227
3228 error = 0;
3229 if (len < sizeof(*key0)) {
3230 error = EINVAL;
3231 goto fail;
3232 }
3233 switch (mhp->msg->sadb_msg_satype) {
3234 case SADB_SATYPE_AH:
3235 case SADB_SATYPE_ESP:
3236 case SADB_X_SATYPE_TCPSIGNATURE:
3237 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3238 sav->alg_auth != SADB_X_AALG_NULL)
3239 error = EINVAL;
3240 break;
3241 case SADB_X_SATYPE_IPCOMP:
3242 default:
3243 error = EINVAL;
3244 break;
3245 }
3246 if (error) {
3247 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3248 goto fail;
3249 }
3250
3251 sav->key_auth = key_newbuf(key0, len);
3252 sav->key_auth_len = len;
3253 }
3254
3255 /* Encryption key */
3256 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3257 const struct sadb_key *key0;
3258 int len;
3259
3260 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3261 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3262
3263 error = 0;
3264 if (len < sizeof(*key0)) {
3265 error = EINVAL;
3266 goto fail;
3267 }
3268 switch (mhp->msg->sadb_msg_satype) {
3269 case SADB_SATYPE_ESP:
3270 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3271 sav->alg_enc != SADB_EALG_NULL) {
3272 error = EINVAL;
3273 break;
3274 }
3275 sav->key_enc = key_newbuf(key0, len);
3276 sav->key_enc_len = len;
3277 break;
3278 case SADB_X_SATYPE_IPCOMP:
3279 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3280 error = EINVAL;
3281 sav->key_enc = NULL; /*just in case*/
3282 break;
3283 case SADB_SATYPE_AH:
3284 case SADB_X_SATYPE_TCPSIGNATURE:
3285 default:
3286 error = EINVAL;
3287 break;
3288 }
3289 if (error) {
3290 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3291 goto fail;
3292 }
3293 }
3294
3295 /* set iv */
3296 sav->ivlen = 0;
3297
3298 switch (mhp->msg->sadb_msg_satype) {
3299 case SADB_SATYPE_AH:
3300 error = xform_init(sav, XF_AH);
3301 break;
3302 case SADB_SATYPE_ESP:
3303 error = xform_init(sav, XF_ESP);
3304 break;
3305 case SADB_X_SATYPE_IPCOMP:
3306 error = xform_init(sav, XF_IPCOMP);
3307 break;
3308 case SADB_X_SATYPE_TCPSIGNATURE:
3309 error = xform_init(sav, XF_TCPSIGNATURE);
3310 break;
3311 }
3312 if (error) {
3313 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3314 mhp->msg->sadb_msg_satype);
3315 goto fail;
3316 }
3317
3318 /* reset created */
3319 sav->created = time_uptime;
3320
3321 /* make lifetime for CURRENT */
3322 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3323
3324 sav->lft_c->sadb_lifetime_len =
3325 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3326 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3327 sav->lft_c->sadb_lifetime_allocations = 0;
3328 sav->lft_c->sadb_lifetime_bytes = 0;
3329 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3330 sav->lft_c->sadb_lifetime_usetime = 0;
3331
3332 /* lifetimes for HARD and SOFT */
3333 {
3334 const struct sadb_lifetime *lft0;
3335
3336 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3337 if (lft0 != NULL) {
3338 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3339 error = EINVAL;
3340 goto fail;
3341 }
3342 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3343 }
3344
3345 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3346 if (lft0 != NULL) {
3347 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3348 error = EINVAL;
3349 goto fail;
3350 }
3351 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3352 /* to be initialize ? */
3353 }
3354 }
3355
3356 return 0;
3357
3358 fail:
3359 /* initialization */
3360 key_freesaval(sav);
3361
3362 return error;
3363 }
3364
3365 /*
3366 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3367 * OUT: 0: valid
3368 * other: errno
3369 */
3370 static int
3371 key_mature(struct secasvar *sav)
3372 {
3373 int error;
3374
3375 /* check SPI value */
3376 switch (sav->sah->saidx.proto) {
3377 case IPPROTO_ESP:
3378 case IPPROTO_AH:
3379 if (ntohl(sav->spi) <= 255) {
3380 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3381 (u_int32_t)ntohl(sav->spi));
3382 return EINVAL;
3383 }
3384 break;
3385 }
3386
3387 /* check satype */
3388 switch (sav->sah->saidx.proto) {
3389 case IPPROTO_ESP:
3390 /* check flags */
3391 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3392 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3393 IPSECLOG(LOG_DEBUG,
3394 "invalid flag (derived) given to old-esp.\n");
3395 return EINVAL;
3396 }
3397 error = xform_init(sav, XF_ESP);
3398 break;
3399 case IPPROTO_AH:
3400 /* check flags */
3401 if (sav->flags & SADB_X_EXT_DERIV) {
3402 IPSECLOG(LOG_DEBUG,
3403 "invalid flag (derived) given to AH SA.\n");
3404 return EINVAL;
3405 }
3406 if (sav->alg_enc != SADB_EALG_NONE) {
3407 IPSECLOG(LOG_DEBUG,
3408 "protocol and algorithm mismated.\n");
3409 return(EINVAL);
3410 }
3411 error = xform_init(sav, XF_AH);
3412 break;
3413 case IPPROTO_IPCOMP:
3414 if (sav->alg_auth != SADB_AALG_NONE) {
3415 IPSECLOG(LOG_DEBUG,
3416 "protocol and algorithm mismated.\n");
3417 return(EINVAL);
3418 }
3419 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3420 && ntohl(sav->spi) >= 0x10000) {
3421 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3422 return(EINVAL);
3423 }
3424 error = xform_init(sav, XF_IPCOMP);
3425 break;
3426 case IPPROTO_TCP:
3427 if (sav->alg_enc != SADB_EALG_NONE) {
3428 IPSECLOG(LOG_DEBUG,
3429 "protocol and algorithm mismated.\n");
3430 return(EINVAL);
3431 }
3432 error = xform_init(sav, XF_TCPSIGNATURE);
3433 break;
3434 default:
3435 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3436 error = EPROTONOSUPPORT;
3437 break;
3438 }
3439 if (error == 0)
3440 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3441 return (error);
3442 }
3443
3444 /*
3445 * subroutine for SADB_GET and SADB_DUMP.
3446 */
3447 static struct mbuf *
3448 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3449 u_int32_t seq, u_int32_t pid)
3450 {
3451 struct mbuf *result = NULL, *tres = NULL, *m;
3452 int l = 0;
3453 int i;
3454 void *p;
3455 struct sadb_lifetime lt;
3456 int dumporder[] = {
3457 SADB_EXT_SA, SADB_X_EXT_SA2,
3458 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3459 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3460 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3461 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3462 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3463 SADB_X_EXT_NAT_T_TYPE,
3464 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3465 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3466 SADB_X_EXT_NAT_T_FRAG,
3467
3468 };
3469
3470 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3471 if (m == NULL)
3472 goto fail;
3473 result = m;
3474
3475 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3476 m = NULL;
3477 p = NULL;
3478 switch (dumporder[i]) {
3479 case SADB_EXT_SA:
3480 m = key_setsadbsa(sav);
3481 break;
3482
3483 case SADB_X_EXT_SA2:
3484 m = key_setsadbxsa2(sav->sah->saidx.mode,
3485 sav->replay ? sav->replay->count : 0,
3486 sav->sah->saidx.reqid);
3487 break;
3488
3489 case SADB_EXT_ADDRESS_SRC:
3490 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3491 &sav->sah->saidx.src.sa,
3492 FULLMASK, IPSEC_ULPROTO_ANY);
3493 break;
3494
3495 case SADB_EXT_ADDRESS_DST:
3496 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3497 &sav->sah->saidx.dst.sa,
3498 FULLMASK, IPSEC_ULPROTO_ANY);
3499 break;
3500
3501 case SADB_EXT_KEY_AUTH:
3502 if (!sav->key_auth)
3503 continue;
3504 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3505 p = sav->key_auth;
3506 break;
3507
3508 case SADB_EXT_KEY_ENCRYPT:
3509 if (!sav->key_enc)
3510 continue;
3511 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3512 p = sav->key_enc;
3513 break;
3514
3515 case SADB_EXT_LIFETIME_CURRENT:
3516 if (!sav->lft_c)
3517 continue;
3518 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3519 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3520 lt.sadb_lifetime_addtime += time_second - time_uptime;
3521 lt.sadb_lifetime_usetime += time_second - time_uptime;
3522 p = <
3523 break;
3524
3525 case SADB_EXT_LIFETIME_HARD:
3526 if (!sav->lft_h)
3527 continue;
3528 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3529 p = sav->lft_h;
3530 break;
3531
3532 case SADB_EXT_LIFETIME_SOFT:
3533 if (!sav->lft_s)
3534 continue;
3535 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3536 p = sav->lft_s;
3537 break;
3538
3539 case SADB_X_EXT_NAT_T_TYPE:
3540 m = key_setsadbxtype(sav->natt_type);
3541 break;
3542
3543 case SADB_X_EXT_NAT_T_DPORT:
3544 if (sav->natt_type == 0)
3545 continue;
3546 m = key_setsadbxport(
3547 key_portfromsaddr(&sav->sah->saidx.dst),
3548 SADB_X_EXT_NAT_T_DPORT);
3549 break;
3550
3551 case SADB_X_EXT_NAT_T_SPORT:
3552 if (sav->natt_type == 0)
3553 continue;
3554 m = key_setsadbxport(
3555 key_portfromsaddr(&sav->sah->saidx.src),
3556 SADB_X_EXT_NAT_T_SPORT);
3557 break;
3558
3559 case SADB_X_EXT_NAT_T_FRAG:
3560 /* don't send frag info if not set */
3561 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3562 continue;
3563 m = key_setsadbxfrag(sav->esp_frag);
3564 break;
3565
3566 case SADB_X_EXT_NAT_T_OAI:
3567 case SADB_X_EXT_NAT_T_OAR:
3568 continue;
3569
3570 case SADB_EXT_ADDRESS_PROXY:
3571 case SADB_EXT_IDENTITY_SRC:
3572 case SADB_EXT_IDENTITY_DST:
3573 /* XXX: should we brought from SPD ? */
3574 case SADB_EXT_SENSITIVITY:
3575 default:
3576 continue;
3577 }
3578
3579 KASSERT(!(m && p));
3580 if (!m && !p)
3581 goto fail;
3582 if (p && tres) {
3583 M_PREPEND(tres, l, M_DONTWAIT);
3584 if (!tres)
3585 goto fail;
3586 memcpy(mtod(tres, void *), p, l);
3587 continue;
3588 }
3589 if (p) {
3590 m = key_alloc_mbuf(l);
3591 if (!m)
3592 goto fail;
3593 m_copyback(m, 0, l, p);
3594 }
3595
3596 if (tres)
3597 m_cat(m, tres);
3598 tres = m;
3599 }
3600
3601 m_cat(result, tres);
3602 tres = NULL; /* avoid free on error below */
3603
3604 if (result->m_len < sizeof(struct sadb_msg)) {
3605 result = m_pullup(result, sizeof(struct sadb_msg));
3606 if (result == NULL)
3607 goto fail;
3608 }
3609
3610 result->m_pkthdr.len = 0;
3611 for (m = result; m; m = m->m_next)
3612 result->m_pkthdr.len += m->m_len;
3613
3614 mtod(result, struct sadb_msg *)->sadb_msg_len =
3615 PFKEY_UNIT64(result->m_pkthdr.len);
3616
3617 return result;
3618
3619 fail:
3620 m_freem(result);
3621 m_freem(tres);
3622 return NULL;
3623 }
3624
3625
3626 /*
3627 * set a type in sadb_x_nat_t_type
3628 */
3629 static struct mbuf *
3630 key_setsadbxtype(u_int16_t type)
3631 {
3632 struct mbuf *m;
3633 size_t len;
3634 struct sadb_x_nat_t_type *p;
3635
3636 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3637
3638 m = key_alloc_mbuf(len);
3639 if (!m || m->m_next) { /*XXX*/
3640 if (m)
3641 m_freem(m);
3642 return NULL;
3643 }
3644
3645 p = mtod(m, struct sadb_x_nat_t_type *);
3646
3647 memset(p, 0, len);
3648 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3649 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3650 p->sadb_x_nat_t_type_type = type;
3651
3652 return m;
3653 }
3654 /*
3655 * set a port in sadb_x_nat_t_port. port is in network order
3656 */
3657 static struct mbuf *
3658 key_setsadbxport(u_int16_t port, u_int16_t type)
3659 {
3660 struct mbuf *m;
3661 size_t len;
3662 struct sadb_x_nat_t_port *p;
3663
3664 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3665
3666 m = key_alloc_mbuf(len);
3667 if (!m || m->m_next) { /*XXX*/
3668 if (m)
3669 m_freem(m);
3670 return NULL;
3671 }
3672
3673 p = mtod(m, struct sadb_x_nat_t_port *);
3674
3675 memset(p, 0, len);
3676 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3677 p->sadb_x_nat_t_port_exttype = type;
3678 p->sadb_x_nat_t_port_port = port;
3679
3680 return m;
3681 }
3682
3683 /*
3684 * set fragmentation info in sadb_x_nat_t_frag
3685 */
3686 static struct mbuf *
3687 key_setsadbxfrag(u_int16_t flen)
3688 {
3689 struct mbuf *m;
3690 size_t len;
3691 struct sadb_x_nat_t_frag *p;
3692
3693 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3694
3695 m = key_alloc_mbuf(len);
3696 if (!m || m->m_next) { /*XXX*/
3697 if (m)
3698 m_freem(m);
3699 return NULL;
3700 }
3701
3702 p = mtod(m, struct sadb_x_nat_t_frag *);
3703
3704 memset(p, 0, len);
3705 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3706 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3707 p->sadb_x_nat_t_frag_fraglen = flen;
3708
3709 return m;
3710 }
3711
3712 /*
3713 * Get port from sockaddr, port is in network order
3714 */
3715 u_int16_t
3716 key_portfromsaddr(const union sockaddr_union *saddr)
3717 {
3718 u_int16_t port;
3719
3720 switch (saddr->sa.sa_family) {
3721 case AF_INET: {
3722 port = saddr->sin.sin_port;
3723 break;
3724 }
3725 #ifdef INET6
3726 case AF_INET6: {
3727 port = saddr->sin6.sin6_port;
3728 break;
3729 }
3730 #endif
3731 default:
3732 printf("%s: unexpected address family\n", __func__);
3733 port = 0;
3734 break;
3735 }
3736
3737 return port;
3738 }
3739
3740
3741 /*
3742 * Set port is struct sockaddr. port is in network order
3743 */
3744 static void
3745 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3746 {
3747 switch (saddr->sa.sa_family) {
3748 case AF_INET: {
3749 saddr->sin.sin_port = port;
3750 break;
3751 }
3752 #ifdef INET6
3753 case AF_INET6: {
3754 saddr->sin6.sin6_port = port;
3755 break;
3756 }
3757 #endif
3758 default:
3759 printf("%s: unexpected address family %d\n", __func__,
3760 saddr->sa.sa_family);
3761 break;
3762 }
3763
3764 return;
3765 }
3766
3767 /*
3768 * Safety check sa_len
3769 */
3770 static int
3771 key_checksalen(const union sockaddr_union *saddr)
3772 {
3773 switch (saddr->sa.sa_family) {
3774 case AF_INET:
3775 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3776 return -1;
3777 break;
3778 #ifdef INET6
3779 case AF_INET6:
3780 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3781 return -1;
3782 break;
3783 #endif
3784 default:
3785 printf("%s: unexpected sa_family %d\n", __func__,
3786 saddr->sa.sa_family);
3787 return -1;
3788 break;
3789 }
3790 return 0;
3791 }
3792
3793
3794 /*
3795 * set data into sadb_msg.
3796 */
3797 static struct mbuf *
3798 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3799 u_int32_t seq, pid_t pid, u_int16_t reserved)
3800 {
3801 struct mbuf *m;
3802 struct sadb_msg *p;
3803 int len;
3804
3805 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3806 if (len > MCLBYTES)
3807 return NULL;
3808 MGETHDR(m, M_DONTWAIT, MT_DATA);
3809 if (m && len > MHLEN) {
3810 MCLGET(m, M_DONTWAIT);
3811 if ((m->m_flags & M_EXT) == 0) {
3812 m_freem(m);
3813 m = NULL;
3814 }
3815 }
3816 if (!m)
3817 return NULL;
3818 m->m_pkthdr.len = m->m_len = len;
3819 m->m_next = NULL;
3820
3821 p = mtod(m, struct sadb_msg *);
3822
3823 memset(p, 0, len);
3824 p->sadb_msg_version = PF_KEY_V2;
3825 p->sadb_msg_type = type;
3826 p->sadb_msg_errno = 0;
3827 p->sadb_msg_satype = satype;
3828 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3829 p->sadb_msg_reserved = reserved;
3830 p->sadb_msg_seq = seq;
3831 p->sadb_msg_pid = (u_int32_t)pid;
3832
3833 return m;
3834 }
3835
3836 /*
3837 * copy secasvar data into sadb_address.
3838 */
3839 static struct mbuf *
3840 key_setsadbsa(struct secasvar *sav)
3841 {
3842 struct mbuf *m;
3843 struct sadb_sa *p;
3844 int len;
3845
3846 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3847 m = key_alloc_mbuf(len);
3848 if (!m || m->m_next) { /*XXX*/
3849 if (m)
3850 m_freem(m);
3851 return NULL;
3852 }
3853
3854 p = mtod(m, struct sadb_sa *);
3855
3856 memset(p, 0, len);
3857 p->sadb_sa_len = PFKEY_UNIT64(len);
3858 p->sadb_sa_exttype = SADB_EXT_SA;
3859 p->sadb_sa_spi = sav->spi;
3860 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3861 p->sadb_sa_state = sav->state;
3862 p->sadb_sa_auth = sav->alg_auth;
3863 p->sadb_sa_encrypt = sav->alg_enc;
3864 p->sadb_sa_flags = sav->flags;
3865
3866 return m;
3867 }
3868
3869 /*
3870 * set data into sadb_address.
3871 */
3872 static struct mbuf *
3873 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3874 u_int8_t prefixlen, u_int16_t ul_proto)
3875 {
3876 struct mbuf *m;
3877 struct sadb_address *p;
3878 size_t len;
3879
3880 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3881 PFKEY_ALIGN8(saddr->sa_len);
3882 m = key_alloc_mbuf(len);
3883 if (!m || m->m_next) { /*XXX*/
3884 if (m)
3885 m_freem(m);
3886 return NULL;
3887 }
3888
3889 p = mtod(m, struct sadb_address *);
3890
3891 memset(p, 0, len);
3892 p->sadb_address_len = PFKEY_UNIT64(len);
3893 p->sadb_address_exttype = exttype;
3894 p->sadb_address_proto = ul_proto;
3895 if (prefixlen == FULLMASK) {
3896 switch (saddr->sa_family) {
3897 case AF_INET:
3898 prefixlen = sizeof(struct in_addr) << 3;
3899 break;
3900 case AF_INET6:
3901 prefixlen = sizeof(struct in6_addr) << 3;
3902 break;
3903 default:
3904 ; /*XXX*/
3905 }
3906 }
3907 p->sadb_address_prefixlen = prefixlen;
3908 p->sadb_address_reserved = 0;
3909
3910 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3911 saddr, saddr->sa_len);
3912
3913 return m;
3914 }
3915
3916 #if 0
3917 /*
3918 * set data into sadb_ident.
3919 */
3920 static struct mbuf *
3921 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3922 void *string, int stringlen, u_int64_t id)
3923 {
3924 struct mbuf *m;
3925 struct sadb_ident *p;
3926 size_t len;
3927
3928 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3929 m = key_alloc_mbuf(len);
3930 if (!m || m->m_next) { /*XXX*/
3931 if (m)
3932 m_freem(m);
3933 return NULL;
3934 }
3935
3936 p = mtod(m, struct sadb_ident *);
3937
3938 memset(p, 0, len);
3939 p->sadb_ident_len = PFKEY_UNIT64(len);
3940 p->sadb_ident_exttype = exttype;
3941 p->sadb_ident_type = idtype;
3942 p->sadb_ident_reserved = 0;
3943 p->sadb_ident_id = id;
3944
3945 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3946 string, stringlen);
3947
3948 return m;
3949 }
3950 #endif
3951
3952 /*
3953 * set data into sadb_x_sa2.
3954 */
3955 static struct mbuf *
3956 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3957 {
3958 struct mbuf *m;
3959 struct sadb_x_sa2 *p;
3960 size_t len;
3961
3962 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3963 m = key_alloc_mbuf(len);
3964 if (!m || m->m_next) { /*XXX*/
3965 if (m)
3966 m_freem(m);
3967 return NULL;
3968 }
3969
3970 p = mtod(m, struct sadb_x_sa2 *);
3971
3972 memset(p, 0, len);
3973 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3974 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3975 p->sadb_x_sa2_mode = mode;
3976 p->sadb_x_sa2_reserved1 = 0;
3977 p->sadb_x_sa2_reserved2 = 0;
3978 p->sadb_x_sa2_sequence = seq;
3979 p->sadb_x_sa2_reqid = reqid;
3980
3981 return m;
3982 }
3983
3984 /*
3985 * set data into sadb_x_policy
3986 */
3987 static struct mbuf *
3988 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3989 {
3990 struct mbuf *m;
3991 struct sadb_x_policy *p;
3992 size_t len;
3993
3994 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3995 m = key_alloc_mbuf(len);
3996 if (!m || m->m_next) { /*XXX*/
3997 if (m)
3998 m_freem(m);
3999 return NULL;
4000 }
4001
4002 p = mtod(m, struct sadb_x_policy *);
4003
4004 memset(p, 0, len);
4005 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4006 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4007 p->sadb_x_policy_type = type;
4008 p->sadb_x_policy_dir = dir;
4009 p->sadb_x_policy_id = id;
4010
4011 return m;
4012 }
4013
4014 /* %%% utilities */
4015 /*
4016 * copy a buffer into the new buffer allocated.
4017 */
4018 static void *
4019 key_newbuf(const void *src, u_int len)
4020 {
4021 void *new;
4022
4023 new = kmem_alloc(len, KM_SLEEP);
4024 memcpy(new, src, len);
4025
4026 return new;
4027 }
4028
4029 /* compare my own address
4030 * OUT: 1: true, i.e. my address.
4031 * 0: false
4032 */
4033 int
4034 key_ismyaddr(const struct sockaddr *sa)
4035 {
4036 #ifdef INET
4037 const struct sockaddr_in *sin;
4038 const struct in_ifaddr *ia;
4039 int s;
4040 #endif
4041
4042 KASSERT(sa != NULL);
4043
4044 switch (sa->sa_family) {
4045 #ifdef INET
4046 case AF_INET:
4047 sin = (const struct sockaddr_in *)sa;
4048 s = pserialize_read_enter();
4049 IN_ADDRLIST_READER_FOREACH(ia) {
4050 if (sin->sin_family == ia->ia_addr.sin_family &&
4051 sin->sin_len == ia->ia_addr.sin_len &&
4052 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4053 {
4054 pserialize_read_exit(s);
4055 return 1;
4056 }
4057 }
4058 pserialize_read_exit(s);
4059 break;
4060 #endif
4061 #ifdef INET6
4062 case AF_INET6:
4063 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4064 #endif
4065 }
4066
4067 return 0;
4068 }
4069
4070 #ifdef INET6
4071 /*
4072 * compare my own address for IPv6.
4073 * 1: ours
4074 * 0: other
4075 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4076 */
4077 #include <netinet6/in6_var.h>
4078
4079 static int
4080 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4081 {
4082 struct in6_ifaddr *ia;
4083 int s;
4084 struct psref psref;
4085 int bound;
4086 int ours = 1;
4087
4088 bound = curlwp_bind();
4089 s = pserialize_read_enter();
4090 IN6_ADDRLIST_READER_FOREACH(ia) {
4091 bool ingroup;
4092
4093 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4094 (const struct sockaddr *)&ia->ia_addr, 0)) {
4095 pserialize_read_exit(s);
4096 goto ours;
4097 }
4098 ia6_acquire(ia, &psref);
4099 pserialize_read_exit(s);
4100
4101 /*
4102 * XXX Multicast
4103 * XXX why do we care about multlicast here while we don't care
4104 * about IPv4 multicast??
4105 * XXX scope
4106 */
4107 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4108 if (ingroup) {
4109 ia6_release(ia, &psref);
4110 goto ours;
4111 }
4112
4113 s = pserialize_read_enter();
4114 ia6_release(ia, &psref);
4115 }
4116 pserialize_read_exit(s);
4117
4118 /* loopback, just for safety */
4119 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4120 goto ours;
4121
4122 ours = 0;
4123 ours:
4124 curlwp_bindx(bound);
4125
4126 return ours;
4127 }
4128 #endif /*INET6*/
4129
4130 /*
4131 * compare two secasindex structure.
4132 * flag can specify to compare 2 saidxes.
4133 * compare two secasindex structure without both mode and reqid.
4134 * don't compare port.
4135 * IN:
4136 * saidx0: source, it can be in SAD.
4137 * saidx1: object.
4138 * OUT:
4139 * 1 : equal
4140 * 0 : not equal
4141 */
4142 static int
4143 key_saidx_match(
4144 const struct secasindex *saidx0,
4145 const struct secasindex *saidx1,
4146 int flag)
4147 {
4148 int chkport;
4149 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4150
4151 /* sanity */
4152 if (saidx0 == NULL && saidx1 == NULL)
4153 return 1;
4154
4155 if (saidx0 == NULL || saidx1 == NULL)
4156 return 0;
4157
4158 if (saidx0->proto != saidx1->proto)
4159 return 0;
4160
4161 if (flag == CMP_EXACTLY) {
4162 if (saidx0->mode != saidx1->mode)
4163 return 0;
4164 if (saidx0->reqid != saidx1->reqid)
4165 return 0;
4166 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4167 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4168 return 0;
4169 } else {
4170
4171 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4172 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4173 /*
4174 * If reqid of SPD is non-zero, unique SA is required.
4175 * The result must be of same reqid in this case.
4176 */
4177 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4178 return 0;
4179 }
4180
4181 if (flag == CMP_MODE_REQID) {
4182 if (saidx0->mode != IPSEC_MODE_ANY &&
4183 saidx0->mode != saidx1->mode)
4184 return 0;
4185 }
4186
4187
4188 sa0src = &saidx0->src.sa;
4189 sa0dst = &saidx0->dst.sa;
4190 sa1src = &saidx1->src.sa;
4191 sa1dst = &saidx1->dst.sa;
4192 /*
4193 * If NAT-T is enabled, check ports for tunnel mode.
4194 * Don't do it for transport mode, as there is no
4195 * port information available in the SP.
4196 * Also don't check ports if they are set to zero
4197 * in the SPD: This means we have a non-generated
4198 * SPD which can't know UDP ports.
4199 */
4200 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4201 chkport = PORT_LOOSE;
4202 else
4203 chkport = PORT_NONE;
4204
4205 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4206 return 0;
4207 }
4208 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4209 return 0;
4210 }
4211 }
4212
4213 return 1;
4214 }
4215
4216 /*
4217 * compare two secindex structure exactly.
4218 * IN:
4219 * spidx0: source, it is often in SPD.
4220 * spidx1: object, it is often from PFKEY message.
4221 * OUT:
4222 * 1 : equal
4223 * 0 : not equal
4224 */
4225 static int
4226 key_spidx_match_exactly(
4227 const struct secpolicyindex *spidx0,
4228 const struct secpolicyindex *spidx1)
4229 {
4230 /* sanity */
4231 if (spidx0 == NULL && spidx1 == NULL)
4232 return 1;
4233
4234 if (spidx0 == NULL || spidx1 == NULL)
4235 return 0;
4236
4237 if (spidx0->prefs != spidx1->prefs ||
4238 spidx0->prefd != spidx1->prefd ||
4239 spidx0->ul_proto != spidx1->ul_proto)
4240 return 0;
4241
4242 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4243 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4244 }
4245
4246 /*
4247 * compare two secindex structure with mask.
4248 * IN:
4249 * spidx0: source, it is often in SPD.
4250 * spidx1: object, it is often from IP header.
4251 * OUT:
4252 * 1 : equal
4253 * 0 : not equal
4254 */
4255 static int
4256 key_spidx_match_withmask(
4257 const struct secpolicyindex *spidx0,
4258 const struct secpolicyindex *spidx1)
4259 {
4260
4261 KASSERT(spidx0 != NULL);
4262 KASSERT(spidx1 != NULL);
4263
4264 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4265 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4266 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4267 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4268 return 0;
4269
4270 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4271 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4272 spidx0->ul_proto != spidx1->ul_proto)
4273 return 0;
4274
4275 switch (spidx0->src.sa.sa_family) {
4276 case AF_INET:
4277 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4278 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4279 return 0;
4280 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4281 &spidx1->src.sin.sin_addr, spidx0->prefs))
4282 return 0;
4283 break;
4284 case AF_INET6:
4285 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4286 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4287 return 0;
4288 /*
4289 * scope_id check. if sin6_scope_id is 0, we regard it
4290 * as a wildcard scope, which matches any scope zone ID.
4291 */
4292 if (spidx0->src.sin6.sin6_scope_id &&
4293 spidx1->src.sin6.sin6_scope_id &&
4294 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4295 return 0;
4296 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4297 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4298 return 0;
4299 break;
4300 default:
4301 /* XXX */
4302 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4303 return 0;
4304 break;
4305 }
4306
4307 switch (spidx0->dst.sa.sa_family) {
4308 case AF_INET:
4309 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4310 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4311 return 0;
4312 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4313 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4314 return 0;
4315 break;
4316 case AF_INET6:
4317 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4318 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4319 return 0;
4320 /*
4321 * scope_id check. if sin6_scope_id is 0, we regard it
4322 * as a wildcard scope, which matches any scope zone ID.
4323 */
4324 if (spidx0->src.sin6.sin6_scope_id &&
4325 spidx1->src.sin6.sin6_scope_id &&
4326 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4327 return 0;
4328 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4329 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4330 return 0;
4331 break;
4332 default:
4333 /* XXX */
4334 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4335 return 0;
4336 break;
4337 }
4338
4339 /* XXX Do we check other field ? e.g. flowinfo */
4340
4341 return 1;
4342 }
4343
4344 /* returns 0 on match */
4345 static int
4346 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4347 {
4348 switch (howport) {
4349 case PORT_NONE:
4350 return 0;
4351 case PORT_LOOSE:
4352 if (port1 == 0 || port2 == 0)
4353 return 0;
4354 /*FALLTHROUGH*/
4355 case PORT_STRICT:
4356 if (port1 != port2) {
4357 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4358 "port fail %d != %d\n", port1, port2);
4359 return 1;
4360 }
4361 return 0;
4362 default:
4363 KASSERT(0);
4364 return 1;
4365 }
4366 }
4367
4368 /* returns 1 on match */
4369 static int
4370 key_sockaddr_match(
4371 const struct sockaddr *sa1,
4372 const struct sockaddr *sa2,
4373 int howport)
4374 {
4375 const struct sockaddr_in *sin1, *sin2;
4376 const struct sockaddr_in6 *sin61, *sin62;
4377
4378 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4379 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4380 "fam/len fail %d != %d || %d != %d\n",
4381 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4382 sa2->sa_len);
4383 return 0;
4384 }
4385
4386 switch (sa1->sa_family) {
4387 case AF_INET:
4388 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4389 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4390 "len fail %d != %zu\n",
4391 sa1->sa_len, sizeof(struct sockaddr_in));
4392 return 0;
4393 }
4394 sin1 = (const struct sockaddr_in *)sa1;
4395 sin2 = (const struct sockaddr_in *)sa2;
4396 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4397 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4398 "addr fail %#x != %#x\n",
4399 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4400 return 0;
4401 }
4402 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4403 return 0;
4404 }
4405 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4406 "addr success %#x[%d] == %#x[%d]\n",
4407 sin1->sin_addr.s_addr, sin1->sin_port,
4408 sin2->sin_addr.s_addr, sin2->sin_port);
4409 break;
4410 case AF_INET6:
4411 sin61 = (const struct sockaddr_in6 *)sa1;
4412 sin62 = (const struct sockaddr_in6 *)sa2;
4413 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4414 return 0; /*EINVAL*/
4415
4416 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4417 return 0;
4418 }
4419 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4420 return 0;
4421 }
4422 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4423 return 0;
4424 }
4425 break;
4426 default:
4427 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4428 return 0;
4429 break;
4430 }
4431
4432 return 1;
4433 }
4434
4435 /*
4436 * compare two buffers with mask.
4437 * IN:
4438 * addr1: source
4439 * addr2: object
4440 * bits: Number of bits to compare
4441 * OUT:
4442 * 1 : equal
4443 * 0 : not equal
4444 */
4445 static int
4446 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4447 {
4448 const unsigned char *p1 = a1;
4449 const unsigned char *p2 = a2;
4450
4451 /* XXX: This could be considerably faster if we compare a word
4452 * at a time, but it is complicated on LSB Endian machines */
4453
4454 /* Handle null pointers */
4455 if (p1 == NULL || p2 == NULL)
4456 return (p1 == p2);
4457
4458 while (bits >= 8) {
4459 if (*p1++ != *p2++)
4460 return 0;
4461 bits -= 8;
4462 }
4463
4464 if (bits > 0) {
4465 u_int8_t mask = ~((1<<(8-bits))-1);
4466 if ((*p1 & mask) != (*p2 & mask))
4467 return 0;
4468 }
4469 return 1; /* Match! */
4470 }
4471
4472 /*
4473 * time handler.
4474 * scanning SPD and SAD to check status for each entries,
4475 * and do to remove or to expire.
4476 */
4477 static void
4478 key_timehandler_work(struct work *wk, void *arg)
4479 {
4480 u_int dir;
4481 int s;
4482 time_t now = time_uptime;
4483
4484 s = splsoftnet();
4485 mutex_enter(softnet_lock);
4486
4487 /* SPD */
4488 {
4489 struct secpolicy *sp, *nextsp;
4490
4491 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4492 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4493 if (sp->state == IPSEC_SPSTATE_DEAD) {
4494 key_sp_unlink(sp); /*XXX*/
4495
4496 /* 'sp' dead; continue transfers to
4497 * 'sp = nextsp'
4498 */
4499 continue;
4500 }
4501
4502 if (sp->lifetime == 0 && sp->validtime == 0)
4503 continue;
4504
4505 /* the deletion will occur next time */
4506 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4507 (sp->validtime && now - sp->lastused > sp->validtime)) {
4508 key_sp_dead(sp);
4509 key_spdexpire(sp);
4510 continue;
4511 }
4512 }
4513 }
4514 }
4515
4516 /* SAD */
4517 {
4518 struct secashead *sah, *nextsah;
4519 struct secasvar *sav, *nextsav;
4520
4521 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4522 /* if sah has been dead, then delete it and process next sah. */
4523 if (sah->state == SADB_SASTATE_DEAD) {
4524 key_delsah(sah);
4525 continue;
4526 }
4527
4528 /* if LARVAL entry doesn't become MATURE, delete it. */
4529 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4530 chain, nextsav) {
4531 if (now - sav->created > key_larval_lifetime) {
4532 KEY_FREESAV(&sav);
4533 }
4534 }
4535
4536 /*
4537 * check MATURE entry to start to send expire message
4538 * whether or not.
4539 */
4540 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4541 chain, nextsav) {
4542 /* we don't need to check. */
4543 if (sav->lft_s == NULL)
4544 continue;
4545
4546 /* sanity check */
4547 if (sav->lft_c == NULL) {
4548 IPSECLOG(LOG_DEBUG,
4549 "There is no CURRENT time, why?\n");
4550 continue;
4551 }
4552
4553 /* check SOFT lifetime */
4554 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4555 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4556 /*
4557 * check SA to be used whether or not.
4558 * when SA hasn't been used, delete it.
4559 */
4560 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4561 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4562 KEY_FREESAV(&sav);
4563 } else {
4564 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4565 /*
4566 * XXX If we keep to send expire
4567 * message in the status of
4568 * DYING. Do remove below code.
4569 */
4570 key_expire(sav);
4571 }
4572 }
4573 /* check SOFT lifetime by bytes */
4574 /*
4575 * XXX I don't know the way to delete this SA
4576 * when new SA is installed. Caution when it's
4577 * installed too big lifetime by time.
4578 */
4579 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4580 sav->lft_s->sadb_lifetime_bytes <
4581 sav->lft_c->sadb_lifetime_bytes) {
4582
4583 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4584 /*
4585 * XXX If we keep to send expire
4586 * message in the status of
4587 * DYING. Do remove below code.
4588 */
4589 key_expire(sav);
4590 }
4591 }
4592
4593 /* check DYING entry to change status to DEAD. */
4594 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4595 chain, nextsav) {
4596 /* we don't need to check. */
4597 if (sav->lft_h == NULL)
4598 continue;
4599
4600 /* sanity check */
4601 if (sav->lft_c == NULL) {
4602 IPSECLOG(LOG_DEBUG,
4603 "There is no CURRENT time, why?\n");
4604 continue;
4605 }
4606
4607 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4608 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4609 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4610 KEY_FREESAV(&sav);
4611 }
4612 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4613 else if (sav->lft_s != NULL
4614 && sav->lft_s->sadb_lifetime_addtime != 0
4615 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4616 /*
4617 * XXX: should be checked to be
4618 * installed the valid SA.
4619 */
4620
4621 /*
4622 * If there is no SA then sending
4623 * expire message.
4624 */
4625 key_expire(sav);
4626 }
4627 #endif
4628 /* check HARD lifetime by bytes */
4629 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4630 sav->lft_h->sadb_lifetime_bytes <
4631 sav->lft_c->sadb_lifetime_bytes) {
4632 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4633 KEY_FREESAV(&sav);
4634 }
4635 }
4636
4637 /* delete entry in DEAD */
4638 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4639 chain, nextsav) {
4640 /* sanity check */
4641 if (sav->state != SADB_SASTATE_DEAD) {
4642 IPSECLOG(LOG_DEBUG,
4643 "invalid sav->state (queue: %d SA: %d): "
4644 "kill it anyway\n",
4645 SADB_SASTATE_DEAD, sav->state);
4646 }
4647
4648 /*
4649 * do not call key_freesav() here.
4650 * sav should already be freed, and sav->refcnt
4651 * shows other references to sav
4652 * (such as from SPD).
4653 */
4654 }
4655 }
4656 }
4657
4658 #ifndef IPSEC_NONBLOCK_ACQUIRE
4659 /* ACQ tree */
4660 {
4661 struct secacq *acq, *nextacq;
4662
4663 restart:
4664 mutex_enter(&key_mtx);
4665 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4666 if (now - acq->created > key_blockacq_lifetime) {
4667 LIST_REMOVE(acq, chain);
4668 mutex_exit(&key_mtx);
4669 kmem_free(acq, sizeof(*acq));
4670 goto restart;
4671 }
4672 }
4673 mutex_exit(&key_mtx);
4674 }
4675 #endif
4676
4677 #ifdef notyet
4678 /* SP ACQ tree */
4679 {
4680 struct secspacq *acq, *nextacq;
4681
4682 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4683 if (now - acq->created > key_blockacq_lifetime) {
4684 KASSERT(__LIST_CHAINED(acq));
4685 LIST_REMOVE(acq, chain);
4686 kmem_free(acq, sizeof(*acq));
4687 }
4688 }
4689 }
4690 #endif
4691
4692 /* do exchange to tick time !! */
4693 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4694
4695 mutex_exit(softnet_lock);
4696 splx(s);
4697 return;
4698 }
4699
4700 static void
4701 key_timehandler(void *arg)
4702 {
4703
4704 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4705 }
4706
4707 u_long
4708 key_random(void)
4709 {
4710 u_long value;
4711
4712 key_randomfill(&value, sizeof(value));
4713 return value;
4714 }
4715
4716 void
4717 key_randomfill(void *p, size_t l)
4718 {
4719
4720 cprng_fast(p, l);
4721 }
4722
4723 /*
4724 * map SADB_SATYPE_* to IPPROTO_*.
4725 * if satype == SADB_SATYPE then satype is mapped to ~0.
4726 * OUT:
4727 * 0: invalid satype.
4728 */
4729 static u_int16_t
4730 key_satype2proto(u_int8_t satype)
4731 {
4732 switch (satype) {
4733 case SADB_SATYPE_UNSPEC:
4734 return IPSEC_PROTO_ANY;
4735 case SADB_SATYPE_AH:
4736 return IPPROTO_AH;
4737 case SADB_SATYPE_ESP:
4738 return IPPROTO_ESP;
4739 case SADB_X_SATYPE_IPCOMP:
4740 return IPPROTO_IPCOMP;
4741 case SADB_X_SATYPE_TCPSIGNATURE:
4742 return IPPROTO_TCP;
4743 default:
4744 return 0;
4745 }
4746 /* NOTREACHED */
4747 }
4748
4749 /*
4750 * map IPPROTO_* to SADB_SATYPE_*
4751 * OUT:
4752 * 0: invalid protocol type.
4753 */
4754 static u_int8_t
4755 key_proto2satype(u_int16_t proto)
4756 {
4757 switch (proto) {
4758 case IPPROTO_AH:
4759 return SADB_SATYPE_AH;
4760 case IPPROTO_ESP:
4761 return SADB_SATYPE_ESP;
4762 case IPPROTO_IPCOMP:
4763 return SADB_X_SATYPE_IPCOMP;
4764 case IPPROTO_TCP:
4765 return SADB_X_SATYPE_TCPSIGNATURE;
4766 default:
4767 return 0;
4768 }
4769 /* NOTREACHED */
4770 }
4771
4772 static int
4773 key_setsecasidx(int proto, int mode, int reqid,
4774 const struct sockaddr *src, const struct sockaddr *dst,
4775 struct secasindex * saidx)
4776 {
4777 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4778 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4779
4780 /* sa len safety check */
4781 if (key_checksalen(src_u) != 0)
4782 return -1;
4783 if (key_checksalen(dst_u) != 0)
4784 return -1;
4785
4786 memset(saidx, 0, sizeof(*saidx));
4787 saidx->proto = proto;
4788 saidx->mode = mode;
4789 saidx->reqid = reqid;
4790 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4791 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4792
4793 key_porttosaddr(&((saidx)->src), 0);
4794 key_porttosaddr(&((saidx)->dst), 0);
4795 return 0;
4796 }
4797
4798 static void
4799 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4800 const struct sadb_msghdr *mhp)
4801 {
4802 const struct sadb_address *src0, *dst0;
4803 const struct sockaddr *src, *dst;
4804 const struct sadb_x_policy *xpl0;
4805
4806 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4807 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4808 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4809 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4810 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4811
4812 memset(spidx, 0, sizeof(*spidx));
4813 spidx->dir = xpl0->sadb_x_policy_dir;
4814 spidx->prefs = src0->sadb_address_prefixlen;
4815 spidx->prefd = dst0->sadb_address_prefixlen;
4816 spidx->ul_proto = src0->sadb_address_proto;
4817 /* XXX boundary check against sa_len */
4818 memcpy(&spidx->src, src, src->sa_len);
4819 memcpy(&spidx->dst, dst, dst->sa_len);
4820 }
4821
4822 /* %%% PF_KEY */
4823 /*
4824 * SADB_GETSPI processing is to receive
4825 * <base, (SA2), src address, dst address, (SPI range)>
4826 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4827 * tree with the status of LARVAL, and send
4828 * <base, SA(*), address(SD)>
4829 * to the IKMPd.
4830 *
4831 * IN: mhp: pointer to the pointer to each header.
4832 * OUT: NULL if fail.
4833 * other if success, return pointer to the message to send.
4834 */
4835 static int
4836 key_getspi(struct socket *so, struct mbuf *m,
4837 const struct sadb_msghdr *mhp)
4838 {
4839 const struct sockaddr *src, *dst;
4840 struct secasindex saidx;
4841 struct secashead *newsah;
4842 struct secasvar *newsav;
4843 u_int8_t proto;
4844 u_int32_t spi;
4845 u_int8_t mode;
4846 u_int16_t reqid;
4847 int error;
4848
4849 KASSERT(!cpu_softintr_p());
4850 KASSERT(so != NULL);
4851 KASSERT(m != NULL);
4852 KASSERT(mhp != NULL);
4853 KASSERT(mhp->msg != NULL);
4854
4855 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4856 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4857 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4858 return key_senderror(so, m, EINVAL);
4859 }
4860 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4861 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4862 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4863 return key_senderror(so, m, EINVAL);
4864 }
4865 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4866 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4867 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4868 } else {
4869 mode = IPSEC_MODE_ANY;
4870 reqid = 0;
4871 }
4872
4873 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4874 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4875
4876 /* map satype to proto */
4877 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4878 if (proto == 0) {
4879 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4880 return key_senderror(so, m, EINVAL);
4881 }
4882
4883
4884 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4885 if (error != 0)
4886 return key_senderror(so, m, EINVAL);
4887
4888 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4889 if (error != 0)
4890 return key_senderror(so, m, EINVAL);
4891
4892 /* SPI allocation */
4893 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4894 &saidx);
4895 if (spi == 0)
4896 return key_senderror(so, m, EINVAL);
4897
4898 /* get a SA index */
4899 newsah = key_getsah(&saidx);
4900 if (newsah == NULL) {
4901 /* create a new SA index */
4902 newsah = key_newsah(&saidx);
4903 if (newsah == NULL) {
4904 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4905 return key_senderror(so, m, ENOBUFS);
4906 }
4907 }
4908
4909 /* get a new SA */
4910 /* XXX rewrite */
4911 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4912 if (newsav == NULL) {
4913 /* XXX don't free new SA index allocated in above. */
4914 return key_senderror(so, m, error);
4915 }
4916
4917 /* set spi */
4918 newsav->spi = htonl(spi);
4919
4920 #ifndef IPSEC_NONBLOCK_ACQUIRE
4921 /* delete the entry in acqtree */
4922 if (mhp->msg->sadb_msg_seq != 0) {
4923 struct secacq *acq;
4924 mutex_enter(&key_mtx);
4925 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4926 if (acq != NULL) {
4927 /* reset counter in order to deletion by timehandler. */
4928 acq->created = time_uptime;
4929 acq->count = 0;
4930 }
4931 mutex_exit(&key_mtx);
4932 }
4933 #endif
4934
4935 {
4936 struct mbuf *n, *nn;
4937 struct sadb_sa *m_sa;
4938 struct sadb_msg *newmsg;
4939 int off, len;
4940
4941 /* create new sadb_msg to reply. */
4942 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4943 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4944 if (len > MCLBYTES)
4945 return key_senderror(so, m, ENOBUFS);
4946
4947 MGETHDR(n, M_DONTWAIT, MT_DATA);
4948 if (len > MHLEN) {
4949 MCLGET(n, M_DONTWAIT);
4950 if ((n->m_flags & M_EXT) == 0) {
4951 m_freem(n);
4952 n = NULL;
4953 }
4954 }
4955 if (!n)
4956 return key_senderror(so, m, ENOBUFS);
4957
4958 n->m_len = len;
4959 n->m_next = NULL;
4960 off = 0;
4961
4962 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4963 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4964
4965 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4966 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4967 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4968 m_sa->sadb_sa_spi = htonl(spi);
4969 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4970
4971 KASSERTMSG(off == len, "length inconsistency");
4972
4973 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4974 SADB_EXT_ADDRESS_DST);
4975 if (!n->m_next) {
4976 m_freem(n);
4977 return key_senderror(so, m, ENOBUFS);
4978 }
4979
4980 if (n->m_len < sizeof(struct sadb_msg)) {
4981 n = m_pullup(n, sizeof(struct sadb_msg));
4982 if (n == NULL)
4983 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4984 }
4985
4986 n->m_pkthdr.len = 0;
4987 for (nn = n; nn; nn = nn->m_next)
4988 n->m_pkthdr.len += nn->m_len;
4989
4990 newmsg = mtod(n, struct sadb_msg *);
4991 newmsg->sadb_msg_seq = newsav->seq;
4992 newmsg->sadb_msg_errno = 0;
4993 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4994
4995 m_freem(m);
4996 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4997 }
4998 }
4999
5000 /*
5001 * allocating new SPI
5002 * called by key_getspi().
5003 * OUT:
5004 * 0: failure.
5005 * others: success.
5006 */
5007 static u_int32_t
5008 key_do_getnewspi(const struct sadb_spirange *spirange,
5009 const struct secasindex *saidx)
5010 {
5011 u_int32_t newspi;
5012 u_int32_t spmin, spmax;
5013 int count = key_spi_trycnt;
5014
5015 /* set spi range to allocate */
5016 if (spirange != NULL) {
5017 spmin = spirange->sadb_spirange_min;
5018 spmax = spirange->sadb_spirange_max;
5019 } else {
5020 spmin = key_spi_minval;
5021 spmax = key_spi_maxval;
5022 }
5023 /* IPCOMP needs 2-byte SPI */
5024 if (saidx->proto == IPPROTO_IPCOMP) {
5025 u_int32_t t;
5026 if (spmin >= 0x10000)
5027 spmin = 0xffff;
5028 if (spmax >= 0x10000)
5029 spmax = 0xffff;
5030 if (spmin > spmax) {
5031 t = spmin; spmin = spmax; spmax = t;
5032 }
5033 }
5034
5035 if (spmin == spmax) {
5036 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5037 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5038 return 0;
5039 }
5040
5041 count--; /* taking one cost. */
5042 newspi = spmin;
5043
5044 } else {
5045
5046 /* init SPI */
5047 newspi = 0;
5048
5049 /* when requesting to allocate spi ranged */
5050 while (count--) {
5051 /* generate pseudo-random SPI value ranged. */
5052 newspi = spmin + (key_random() % (spmax - spmin + 1));
5053
5054 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5055 break;
5056 }
5057
5058 if (count == 0 || newspi == 0) {
5059 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5060 return 0;
5061 }
5062 }
5063
5064 /* statistics */
5065 keystat.getspi_count =
5066 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5067
5068 return newspi;
5069 }
5070
5071 static int
5072 key_handle_natt_info(struct secasvar *sav,
5073 const struct sadb_msghdr *mhp)
5074 {
5075 const char *msg = "?" ;
5076 struct sadb_x_nat_t_type *type;
5077 struct sadb_x_nat_t_port *sport, *dport;
5078 struct sadb_address *iaddr, *raddr;
5079 struct sadb_x_nat_t_frag *frag;
5080
5081 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5082 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5083 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5084 return 0;
5085
5086 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5087 msg = "TYPE";
5088 goto bad;
5089 }
5090
5091 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5092 msg = "SPORT";
5093 goto bad;
5094 }
5095
5096 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5097 msg = "DPORT";
5098 goto bad;
5099 }
5100
5101 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5102 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5103 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5104 msg = "OAI";
5105 goto bad;
5106 }
5107 }
5108
5109 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5110 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5111 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5112 msg = "OAR";
5113 goto bad;
5114 }
5115 }
5116
5117 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5118 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5119 msg = "FRAG";
5120 goto bad;
5121 }
5122 }
5123
5124 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5125 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5126 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5127 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5128 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5129 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5130
5131 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5132 type->sadb_x_nat_t_type_type,
5133 ntohs(sport->sadb_x_nat_t_port_port),
5134 ntohs(dport->sadb_x_nat_t_port_port));
5135
5136 sav->natt_type = type->sadb_x_nat_t_type_type;
5137 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5138 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5139 if (frag)
5140 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5141 else
5142 sav->esp_frag = IP_MAXPACKET;
5143
5144 return 0;
5145 bad:
5146 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5147 __USE(msg);
5148 return -1;
5149 }
5150
5151 /* Just update the IPSEC_NAT_T ports if present */
5152 static int
5153 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5154 const struct sadb_msghdr *mhp)
5155 {
5156 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5157 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5158 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5159 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5160
5161 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5162 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5163 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5164 struct sadb_x_nat_t_type *type;
5165 struct sadb_x_nat_t_port *sport;
5166 struct sadb_x_nat_t_port *dport;
5167
5168 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5169 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5170 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5171 IPSECLOG(LOG_DEBUG, "invalid message\n");
5172 return -1;
5173 }
5174
5175 type = (struct sadb_x_nat_t_type *)
5176 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5177 sport = (struct sadb_x_nat_t_port *)
5178 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5179 dport = (struct sadb_x_nat_t_port *)
5180 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5181
5182 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5183 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5184
5185 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5186 type->sadb_x_nat_t_type_type,
5187 ntohs(sport->sadb_x_nat_t_port_port),
5188 ntohs(dport->sadb_x_nat_t_port_port));
5189 }
5190
5191 return 0;
5192 }
5193
5194
5195 /*
5196 * SADB_UPDATE processing
5197 * receive
5198 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5199 * key(AE), (identity(SD),) (sensitivity)>
5200 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5201 * and send
5202 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5203 * (identity(SD),) (sensitivity)>
5204 * to the ikmpd.
5205 *
5206 * m will always be freed.
5207 */
5208 static int
5209 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5210 {
5211 struct sadb_sa *sa0;
5212 const struct sockaddr *src, *dst;
5213 struct secasindex saidx;
5214 struct secashead *sah;
5215 struct secasvar *sav;
5216 u_int16_t proto;
5217 u_int8_t mode;
5218 u_int16_t reqid;
5219 int error;
5220
5221 KASSERT(!cpu_softintr_p());
5222 KASSERT(so != NULL);
5223 KASSERT(m != NULL);
5224 KASSERT(mhp != NULL);
5225 KASSERT(mhp->msg != NULL);
5226
5227 /* map satype to proto */
5228 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5229 if (proto == 0) {
5230 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5231 return key_senderror(so, m, EINVAL);
5232 }
5233
5234 if (mhp->ext[SADB_EXT_SA] == NULL ||
5235 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5236 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5237 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5238 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5239 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5240 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5241 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5242 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5243 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5244 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5245 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5246 return key_senderror(so, m, EINVAL);
5247 }
5248 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5249 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5250 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5251 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5252 return key_senderror(so, m, EINVAL);
5253 }
5254 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5255 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5256 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5257 } else {
5258 mode = IPSEC_MODE_ANY;
5259 reqid = 0;
5260 }
5261 /* XXX boundary checking for other extensions */
5262
5263 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5264 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5265 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5266
5267 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5268 if (error != 0)
5269 return key_senderror(so, m, EINVAL);
5270
5271 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5272 if (error != 0)
5273 return key_senderror(so, m, EINVAL);
5274
5275 /* get a SA header */
5276 sah = key_getsah(&saidx);
5277 if (sah == NULL) {
5278 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5279 return key_senderror(so, m, ENOENT);
5280 }
5281
5282 /* set spidx if there */
5283 /* XXX rewrite */
5284 error = key_setident(sah, m, mhp);
5285 if (error)
5286 return key_senderror(so, m, error);
5287
5288 /* find a SA with sequence number. */
5289 #ifdef IPSEC_DOSEQCHECK
5290 if (mhp->msg->sadb_msg_seq != 0) {
5291 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5292 if (sav == NULL) {
5293 IPSECLOG(LOG_DEBUG,
5294 "no larval SA with sequence %u exists.\n",
5295 mhp->msg->sadb_msg_seq);
5296 return key_senderror(so, m, ENOENT);
5297 }
5298 }
5299 #else
5300 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5301 if (sav == NULL) {
5302 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5303 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5304 return key_senderror(so, m, EINVAL);
5305 }
5306 #endif
5307
5308 /* validity check */
5309 if (sav->sah->saidx.proto != proto) {
5310 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5311 sav->sah->saidx.proto, proto);
5312 return key_senderror(so, m, EINVAL);
5313 }
5314 #ifdef IPSEC_DOSEQCHECK
5315 if (sav->spi != sa0->sadb_sa_spi) {
5316 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5317 (u_int32_t)ntohl(sav->spi),
5318 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5319 return key_senderror(so, m, EINVAL);
5320 }
5321 #endif
5322 if (sav->pid != mhp->msg->sadb_msg_pid) {
5323 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5324 sav->pid, mhp->msg->sadb_msg_pid);
5325 return key_senderror(so, m, EINVAL);
5326 }
5327
5328 /* copy sav values */
5329 error = key_setsaval(sav, m, mhp);
5330 if (error) {
5331 KEY_FREESAV(&sav);
5332 return key_senderror(so, m, error);
5333 }
5334
5335 error = key_handle_natt_info(sav,mhp);
5336 if (error != 0)
5337 return key_senderror(so, m, EINVAL);
5338
5339 /* check SA values to be mature. */
5340 mhp->msg->sadb_msg_errno = key_mature(sav);
5341 if (mhp->msg->sadb_msg_errno != 0) {
5342 KEY_FREESAV(&sav);
5343 return key_senderror(so, m, 0);
5344 }
5345
5346 {
5347 struct mbuf *n;
5348
5349 /* set msg buf from mhp */
5350 n = key_getmsgbuf_x1(m, mhp);
5351 if (n == NULL) {
5352 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5353 return key_senderror(so, m, ENOBUFS);
5354 }
5355
5356 m_freem(m);
5357 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5358 }
5359 }
5360
5361 /*
5362 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5363 * only called by key_update().
5364 * OUT:
5365 * NULL : not found
5366 * others : found, pointer to a SA.
5367 */
5368 #ifdef IPSEC_DOSEQCHECK
5369 static struct secasvar *
5370 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5371 {
5372 struct secasvar *sav;
5373 u_int state;
5374
5375 state = SADB_SASTATE_LARVAL;
5376
5377 /* search SAD with sequence number ? */
5378 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5379
5380 KEY_CHKSASTATE(state, sav->state);
5381
5382 if (sav->seq == seq) {
5383 SA_ADDREF(sav);
5384 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5385 "DP cause refcnt++:%d SA:%p\n",
5386 sav->refcnt, sav);
5387 return sav;
5388 }
5389 }
5390
5391 return NULL;
5392 }
5393 #endif
5394
5395 /*
5396 * SADB_ADD processing
5397 * add an entry to SA database, when received
5398 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5399 * key(AE), (identity(SD),) (sensitivity)>
5400 * from the ikmpd,
5401 * and send
5402 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5403 * (identity(SD),) (sensitivity)>
5404 * to the ikmpd.
5405 *
5406 * IGNORE identity and sensitivity messages.
5407 *
5408 * m will always be freed.
5409 */
5410 static int
5411 key_add(struct socket *so, struct mbuf *m,
5412 const struct sadb_msghdr *mhp)
5413 {
5414 struct sadb_sa *sa0;
5415 const struct sockaddr *src, *dst;
5416 struct secasindex saidx;
5417 struct secashead *newsah;
5418 struct secasvar *newsav;
5419 u_int16_t proto;
5420 u_int8_t mode;
5421 u_int16_t reqid;
5422 int error;
5423
5424 KASSERT(so != NULL);
5425 KASSERT(m != NULL);
5426 KASSERT(mhp != NULL);
5427 KASSERT(mhp->msg != NULL);
5428
5429 /* map satype to proto */
5430 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5431 if (proto == 0) {
5432 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5433 return key_senderror(so, m, EINVAL);
5434 }
5435
5436 if (mhp->ext[SADB_EXT_SA] == NULL ||
5437 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5438 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5439 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5440 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5441 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5442 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5443 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5444 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5445 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5446 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5447 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5448 return key_senderror(so, m, EINVAL);
5449 }
5450 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5451 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5452 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5453 /* XXX need more */
5454 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5455 return key_senderror(so, m, EINVAL);
5456 }
5457 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5458 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5459 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5460 } else {
5461 mode = IPSEC_MODE_ANY;
5462 reqid = 0;
5463 }
5464
5465 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5466 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5467 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5468
5469 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5470 if (error != 0)
5471 return key_senderror(so, m, EINVAL);
5472
5473 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5474 if (error != 0)
5475 return key_senderror(so, m, EINVAL);
5476
5477 /* get a SA header */
5478 newsah = key_getsah(&saidx);
5479 if (newsah == NULL) {
5480 /* create a new SA header */
5481 newsah = key_newsah(&saidx);
5482 if (newsah == NULL) {
5483 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5484 return key_senderror(so, m, ENOBUFS);
5485 }
5486 }
5487
5488 /* set spidx if there */
5489 /* XXX rewrite */
5490 error = key_setident(newsah, m, mhp);
5491 if (error) {
5492 return key_senderror(so, m, error);
5493 }
5494
5495 /* create new SA entry. */
5496 /* We can create new SA only if SPI is differenct. */
5497 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5498 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5499 return key_senderror(so, m, EEXIST);
5500 }
5501 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5502 if (newsav == NULL) {
5503 return key_senderror(so, m, error);
5504 }
5505
5506 error = key_handle_natt_info(newsav, mhp);
5507 if (error != 0)
5508 return key_senderror(so, m, EINVAL);
5509
5510 /* check SA values to be mature. */
5511 error = key_mature(newsav);
5512 if (error != 0) {
5513 KEY_FREESAV(&newsav);
5514 return key_senderror(so, m, error);
5515 }
5516
5517 /*
5518 * don't call key_freesav() here, as we would like to keep the SA
5519 * in the database on success.
5520 */
5521
5522 {
5523 struct mbuf *n;
5524
5525 /* set msg buf from mhp */
5526 n = key_getmsgbuf_x1(m, mhp);
5527 if (n == NULL) {
5528 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5529 return key_senderror(so, m, ENOBUFS);
5530 }
5531
5532 m_freem(m);
5533 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5534 }
5535 }
5536
5537 /* m is retained */
5538 static int
5539 key_setident(struct secashead *sah, struct mbuf *m,
5540 const struct sadb_msghdr *mhp)
5541 {
5542 const struct sadb_ident *idsrc, *iddst;
5543 int idsrclen, iddstlen;
5544
5545 KASSERT(!cpu_softintr_p());
5546 KASSERT(sah != NULL);
5547 KASSERT(m != NULL);
5548 KASSERT(mhp != NULL);
5549 KASSERT(mhp->msg != NULL);
5550
5551 /*
5552 * Can be called with an existing sah from key_update().
5553 */
5554 if (sah->idents != NULL) {
5555 kmem_free(sah->idents, sah->idents_len);
5556 sah->idents = NULL;
5557 sah->idents_len = 0;
5558 }
5559 if (sah->identd != NULL) {
5560 kmem_free(sah->identd, sah->identd_len);
5561 sah->identd = NULL;
5562 sah->identd_len = 0;
5563 }
5564
5565 /* don't make buffer if not there */
5566 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5567 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5568 sah->idents = NULL;
5569 sah->identd = NULL;
5570 return 0;
5571 }
5572
5573 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5574 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5575 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5576 return EINVAL;
5577 }
5578
5579 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5580 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5581 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5582 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5583
5584 /* validity check */
5585 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5586 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5587 return EINVAL;
5588 }
5589
5590 switch (idsrc->sadb_ident_type) {
5591 case SADB_IDENTTYPE_PREFIX:
5592 case SADB_IDENTTYPE_FQDN:
5593 case SADB_IDENTTYPE_USERFQDN:
5594 default:
5595 /* XXX do nothing */
5596 sah->idents = NULL;
5597 sah->identd = NULL;
5598 return 0;
5599 }
5600
5601 /* make structure */
5602 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5603 sah->idents_len = idsrclen;
5604 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5605 sah->identd_len = iddstlen;
5606 memcpy(sah->idents, idsrc, idsrclen);
5607 memcpy(sah->identd, iddst, iddstlen);
5608
5609 return 0;
5610 }
5611
5612 /*
5613 * m will not be freed on return.
5614 * it is caller's responsibility to free the result.
5615 */
5616 static struct mbuf *
5617 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5618 {
5619 struct mbuf *n;
5620
5621 KASSERT(m != NULL);
5622 KASSERT(mhp != NULL);
5623 KASSERT(mhp->msg != NULL);
5624
5625 /* create new sadb_msg to reply. */
5626 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5627 SADB_EXT_SA, SADB_X_EXT_SA2,
5628 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5629 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5630 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5631 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5632 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5633 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5634 if (!n)
5635 return NULL;
5636
5637 if (n->m_len < sizeof(struct sadb_msg)) {
5638 n = m_pullup(n, sizeof(struct sadb_msg));
5639 if (n == NULL)
5640 return NULL;
5641 }
5642 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5643 mtod(n, struct sadb_msg *)->sadb_msg_len =
5644 PFKEY_UNIT64(n->m_pkthdr.len);
5645
5646 return n;
5647 }
5648
5649 static int key_delete_all (struct socket *, struct mbuf *,
5650 const struct sadb_msghdr *, u_int16_t);
5651
5652 /*
5653 * SADB_DELETE processing
5654 * receive
5655 * <base, SA(*), address(SD)>
5656 * from the ikmpd, and set SADB_SASTATE_DEAD,
5657 * and send,
5658 * <base, SA(*), address(SD)>
5659 * to the ikmpd.
5660 *
5661 * m will always be freed.
5662 */
5663 static int
5664 key_delete(struct socket *so, struct mbuf *m,
5665 const struct sadb_msghdr *mhp)
5666 {
5667 struct sadb_sa *sa0;
5668 const struct sockaddr *src, *dst;
5669 struct secasindex saidx;
5670 struct secashead *sah;
5671 struct secasvar *sav = NULL;
5672 u_int16_t proto;
5673 int error;
5674
5675 KASSERT(so != NULL);
5676 KASSERT(m != NULL);
5677 KASSERT(mhp != NULL);
5678 KASSERT(mhp->msg != NULL);
5679
5680 /* map satype to proto */
5681 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5682 if (proto == 0) {
5683 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5684 return key_senderror(so, m, EINVAL);
5685 }
5686
5687 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5688 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5689 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5690 return key_senderror(so, m, EINVAL);
5691 }
5692
5693 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5694 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5695 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5696 return key_senderror(so, m, EINVAL);
5697 }
5698
5699 if (mhp->ext[SADB_EXT_SA] == NULL) {
5700 /*
5701 * Caller wants us to delete all non-LARVAL SAs
5702 * that match the src/dst. This is used during
5703 * IKE INITIAL-CONTACT.
5704 */
5705 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5706 return key_delete_all(so, m, mhp, proto);
5707 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5708 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5709 return key_senderror(so, m, EINVAL);
5710 }
5711
5712 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5713 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5714 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5715
5716 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5717 if (error != 0)
5718 return key_senderror(so, m, EINVAL);
5719
5720 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5721 if (error != 0)
5722 return key_senderror(so, m, EINVAL);
5723
5724 /* get a SA header */
5725 LIST_FOREACH(sah, &sahtree, chain) {
5726 if (sah->state == SADB_SASTATE_DEAD)
5727 continue;
5728 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5729 continue;
5730
5731 /* get a SA with SPI. */
5732 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5733 if (sav)
5734 break;
5735 }
5736 if (sah == NULL) {
5737 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5738 return key_senderror(so, m, ENOENT);
5739 }
5740
5741 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5742 KEY_FREESAV(&sav);
5743
5744 {
5745 struct mbuf *n;
5746 struct sadb_msg *newmsg;
5747
5748 /* create new sadb_msg to reply. */
5749 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5750 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5751 if (!n)
5752 return key_senderror(so, m, ENOBUFS);
5753
5754 if (n->m_len < sizeof(struct sadb_msg)) {
5755 n = m_pullup(n, sizeof(struct sadb_msg));
5756 if (n == NULL)
5757 return key_senderror(so, m, ENOBUFS);
5758 }
5759 newmsg = mtod(n, struct sadb_msg *);
5760 newmsg->sadb_msg_errno = 0;
5761 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5762
5763 m_freem(m);
5764 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5765 }
5766 }
5767
5768 /*
5769 * delete all SAs for src/dst. Called from key_delete().
5770 */
5771 static int
5772 key_delete_all(struct socket *so, struct mbuf *m,
5773 const struct sadb_msghdr *mhp, u_int16_t proto)
5774 {
5775 const struct sockaddr *src, *dst;
5776 struct secasindex saidx;
5777 struct secashead *sah;
5778 struct secasvar *sav, *nextsav;
5779 u_int state;
5780 int error;
5781
5782 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5783 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5784
5785 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5786 if (error != 0)
5787 return key_senderror(so, m, EINVAL);
5788
5789 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5790 if (error != 0)
5791 return key_senderror(so, m, EINVAL);
5792
5793 LIST_FOREACH(sah, &sahtree, chain) {
5794 if (sah->state == SADB_SASTATE_DEAD)
5795 continue;
5796 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5797 continue;
5798
5799 /* Delete all non-LARVAL SAs. */
5800 SASTATE_ALIVE_FOREACH(state) {
5801 if (state == SADB_SASTATE_LARVAL)
5802 continue;
5803 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5804 nextsav) {
5805 /* sanity check */
5806 if (sav->state != state) {
5807 IPSECLOG(LOG_DEBUG,
5808 "invalid sav->state "
5809 "(queue: %d SA: %d)\n",
5810 state, sav->state);
5811 continue;
5812 }
5813
5814 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5815 KEY_FREESAV(&sav);
5816 }
5817 }
5818 }
5819 {
5820 struct mbuf *n;
5821 struct sadb_msg *newmsg;
5822
5823 /* create new sadb_msg to reply. */
5824 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5825 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5826 if (!n)
5827 return key_senderror(so, m, ENOBUFS);
5828
5829 if (n->m_len < sizeof(struct sadb_msg)) {
5830 n = m_pullup(n, sizeof(struct sadb_msg));
5831 if (n == NULL)
5832 return key_senderror(so, m, ENOBUFS);
5833 }
5834 newmsg = mtod(n, struct sadb_msg *);
5835 newmsg->sadb_msg_errno = 0;
5836 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5837
5838 m_freem(m);
5839 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5840 }
5841 }
5842
5843 /*
5844 * SADB_GET processing
5845 * receive
5846 * <base, SA(*), address(SD)>
5847 * from the ikmpd, and get a SP and a SA to respond,
5848 * and send,
5849 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5850 * (identity(SD),) (sensitivity)>
5851 * to the ikmpd.
5852 *
5853 * m will always be freed.
5854 */
5855 static int
5856 key_get(struct socket *so, struct mbuf *m,
5857 const struct sadb_msghdr *mhp)
5858 {
5859 struct sadb_sa *sa0;
5860 const struct sockaddr *src, *dst;
5861 struct secasindex saidx;
5862 struct secashead *sah;
5863 struct secasvar *sav = NULL;
5864 u_int16_t proto;
5865 int error;
5866
5867 KASSERT(so != NULL);
5868 KASSERT(m != NULL);
5869 KASSERT(mhp != NULL);
5870 KASSERT(mhp->msg != NULL);
5871
5872 /* map satype to proto */
5873 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5874 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5875 return key_senderror(so, m, EINVAL);
5876 }
5877
5878 if (mhp->ext[SADB_EXT_SA] == NULL ||
5879 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5880 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5881 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5882 return key_senderror(so, m, EINVAL);
5883 }
5884 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5885 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5886 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5887 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5888 return key_senderror(so, m, EINVAL);
5889 }
5890
5891 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5892 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5893 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5894
5895 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5896 if (error != 0)
5897 return key_senderror(so, m, EINVAL);
5898
5899 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5900 if (error != 0)
5901 return key_senderror(so, m, EINVAL);
5902
5903 /* get a SA header */
5904 LIST_FOREACH(sah, &sahtree, chain) {
5905 if (sah->state == SADB_SASTATE_DEAD)
5906 continue;
5907 if (!key_saidx_match(&sah->saidx, &saidx, CMP_HEAD))
5908 continue;
5909
5910 /* get a SA with SPI. */
5911 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5912 if (sav)
5913 break;
5914 }
5915 if (sah == NULL) {
5916 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5917 return key_senderror(so, m, ENOENT);
5918 }
5919
5920 {
5921 struct mbuf *n;
5922 u_int8_t satype;
5923
5924 /* map proto to satype */
5925 satype = key_proto2satype(sah->saidx.proto);
5926 if (satype == 0) {
5927 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5928 return key_senderror(so, m, EINVAL);
5929 }
5930
5931 /* create new sadb_msg to reply. */
5932 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5933 mhp->msg->sadb_msg_pid);
5934 if (!n)
5935 return key_senderror(so, m, ENOBUFS);
5936
5937 m_freem(m);
5938 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5939 }
5940 }
5941
5942 /* XXX make it sysctl-configurable? */
5943 static void
5944 key_getcomb_setlifetime(struct sadb_comb *comb)
5945 {
5946
5947 comb->sadb_comb_soft_allocations = 1;
5948 comb->sadb_comb_hard_allocations = 1;
5949 comb->sadb_comb_soft_bytes = 0;
5950 comb->sadb_comb_hard_bytes = 0;
5951 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5952 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5953 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5954 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5955 }
5956
5957 /*
5958 * XXX reorder combinations by preference
5959 * XXX no idea if the user wants ESP authentication or not
5960 */
5961 static struct mbuf *
5962 key_getcomb_esp(void)
5963 {
5964 struct sadb_comb *comb;
5965 const struct enc_xform *algo;
5966 struct mbuf *result = NULL, *m, *n;
5967 int encmin;
5968 int i, off, o;
5969 int totlen;
5970 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5971
5972 m = NULL;
5973 for (i = 1; i <= SADB_EALG_MAX; i++) {
5974 algo = esp_algorithm_lookup(i);
5975 if (algo == NULL)
5976 continue;
5977
5978 /* discard algorithms with key size smaller than system min */
5979 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5980 continue;
5981 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5982 encmin = ipsec_esp_keymin;
5983 else
5984 encmin = _BITS(algo->minkey);
5985
5986 if (ipsec_esp_auth)
5987 m = key_getcomb_ah();
5988 else {
5989 KASSERTMSG(l <= MLEN,
5990 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5991 MGET(m, M_DONTWAIT, MT_DATA);
5992 if (m) {
5993 M_ALIGN(m, l);
5994 m->m_len = l;
5995 m->m_next = NULL;
5996 memset(mtod(m, void *), 0, m->m_len);
5997 }
5998 }
5999 if (!m)
6000 goto fail;
6001
6002 totlen = 0;
6003 for (n = m; n; n = n->m_next)
6004 totlen += n->m_len;
6005 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6006
6007 for (off = 0; off < totlen; off += l) {
6008 n = m_pulldown(m, off, l, &o);
6009 if (!n) {
6010 /* m is already freed */
6011 goto fail;
6012 }
6013 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6014 memset(comb, 0, sizeof(*comb));
6015 key_getcomb_setlifetime(comb);
6016 comb->sadb_comb_encrypt = i;
6017 comb->sadb_comb_encrypt_minbits = encmin;
6018 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6019 }
6020
6021 if (!result)
6022 result = m;
6023 else
6024 m_cat(result, m);
6025 }
6026
6027 return result;
6028
6029 fail:
6030 if (result)
6031 m_freem(result);
6032 return NULL;
6033 }
6034
6035 static void
6036 key_getsizes_ah(const struct auth_hash *ah, int alg,
6037 u_int16_t* ksmin, u_int16_t* ksmax)
6038 {
6039 *ksmin = *ksmax = ah->keysize;
6040 if (ah->keysize == 0) {
6041 /*
6042 * Transform takes arbitrary key size but algorithm
6043 * key size is restricted. Enforce this here.
6044 */
6045 switch (alg) {
6046 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6047 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6048 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6049 default:
6050 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6051 break;
6052 }
6053 }
6054 }
6055
6056 /*
6057 * XXX reorder combinations by preference
6058 */
6059 static struct mbuf *
6060 key_getcomb_ah(void)
6061 {
6062 struct sadb_comb *comb;
6063 const struct auth_hash *algo;
6064 struct mbuf *m;
6065 u_int16_t minkeysize, maxkeysize;
6066 int i;
6067 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6068
6069 m = NULL;
6070 for (i = 1; i <= SADB_AALG_MAX; i++) {
6071 #if 1
6072 /* we prefer HMAC algorithms, not old algorithms */
6073 if (i != SADB_AALG_SHA1HMAC &&
6074 i != SADB_AALG_MD5HMAC &&
6075 i != SADB_X_AALG_SHA2_256 &&
6076 i != SADB_X_AALG_SHA2_384 &&
6077 i != SADB_X_AALG_SHA2_512)
6078 continue;
6079 #endif
6080 algo = ah_algorithm_lookup(i);
6081 if (!algo)
6082 continue;
6083 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6084 /* discard algorithms with key size smaller than system min */
6085 if (_BITS(minkeysize) < ipsec_ah_keymin)
6086 continue;
6087
6088 if (!m) {
6089 KASSERTMSG(l <= MLEN,
6090 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6091 MGET(m, M_DONTWAIT, MT_DATA);
6092 if (m) {
6093 M_ALIGN(m, l);
6094 m->m_len = l;
6095 m->m_next = NULL;
6096 }
6097 } else
6098 M_PREPEND(m, l, M_DONTWAIT);
6099 if (!m)
6100 return NULL;
6101
6102 comb = mtod(m, struct sadb_comb *);
6103 memset(comb, 0, sizeof(*comb));
6104 key_getcomb_setlifetime(comb);
6105 comb->sadb_comb_auth = i;
6106 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6107 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6108 }
6109
6110 return m;
6111 }
6112
6113 /*
6114 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6115 * XXX reorder combinations by preference
6116 */
6117 static struct mbuf *
6118 key_getcomb_ipcomp(void)
6119 {
6120 struct sadb_comb *comb;
6121 const struct comp_algo *algo;
6122 struct mbuf *m;
6123 int i;
6124 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6125
6126 m = NULL;
6127 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6128 algo = ipcomp_algorithm_lookup(i);
6129 if (!algo)
6130 continue;
6131
6132 if (!m) {
6133 KASSERTMSG(l <= MLEN,
6134 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6135 MGET(m, M_DONTWAIT, MT_DATA);
6136 if (m) {
6137 M_ALIGN(m, l);
6138 m->m_len = l;
6139 m->m_next = NULL;
6140 }
6141 } else
6142 M_PREPEND(m, l, M_DONTWAIT);
6143 if (!m)
6144 return NULL;
6145
6146 comb = mtod(m, struct sadb_comb *);
6147 memset(comb, 0, sizeof(*comb));
6148 key_getcomb_setlifetime(comb);
6149 comb->sadb_comb_encrypt = i;
6150 /* what should we set into sadb_comb_*_{min,max}bits? */
6151 }
6152
6153 return m;
6154 }
6155
6156 /*
6157 * XXX no way to pass mode (transport/tunnel) to userland
6158 * XXX replay checking?
6159 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6160 */
6161 static struct mbuf *
6162 key_getprop(const struct secasindex *saidx)
6163 {
6164 struct sadb_prop *prop;
6165 struct mbuf *m, *n;
6166 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6167 int totlen;
6168
6169 switch (saidx->proto) {
6170 case IPPROTO_ESP:
6171 m = key_getcomb_esp();
6172 break;
6173 case IPPROTO_AH:
6174 m = key_getcomb_ah();
6175 break;
6176 case IPPROTO_IPCOMP:
6177 m = key_getcomb_ipcomp();
6178 break;
6179 default:
6180 return NULL;
6181 }
6182
6183 if (!m)
6184 return NULL;
6185 M_PREPEND(m, l, M_DONTWAIT);
6186 if (!m)
6187 return NULL;
6188
6189 totlen = 0;
6190 for (n = m; n; n = n->m_next)
6191 totlen += n->m_len;
6192
6193 prop = mtod(m, struct sadb_prop *);
6194 memset(prop, 0, sizeof(*prop));
6195 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6196 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6197 prop->sadb_prop_replay = 32; /* XXX */
6198
6199 return m;
6200 }
6201
6202 /*
6203 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6204 * send
6205 * <base, SA, address(SD), (address(P)), x_policy,
6206 * (identity(SD),) (sensitivity,) proposal>
6207 * to KMD, and expect to receive
6208 * <base> with SADB_ACQUIRE if error occurred,
6209 * or
6210 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6211 * from KMD by PF_KEY.
6212 *
6213 * XXX x_policy is outside of RFC2367 (KAME extension).
6214 * XXX sensitivity is not supported.
6215 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6216 * see comment for key_getcomb_ipcomp().
6217 *
6218 * OUT:
6219 * 0 : succeed
6220 * others: error number
6221 */
6222 static int
6223 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6224 {
6225 struct mbuf *result = NULL, *m;
6226 #ifndef IPSEC_NONBLOCK_ACQUIRE
6227 struct secacq *newacq;
6228 #endif
6229 u_int8_t satype;
6230 int error = -1;
6231 u_int32_t seq;
6232
6233 /* sanity check */
6234 KASSERT(saidx != NULL);
6235 satype = key_proto2satype(saidx->proto);
6236 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6237
6238 #ifndef IPSEC_NONBLOCK_ACQUIRE
6239 /*
6240 * We never do anything about acquirng SA. There is anather
6241 * solution that kernel blocks to send SADB_ACQUIRE message until
6242 * getting something message from IKEd. In later case, to be
6243 * managed with ACQUIRING list.
6244 */
6245 /* Get an entry to check whether sending message or not. */
6246 mutex_enter(&key_mtx);
6247 newacq = key_getacq(saidx);
6248 if (newacq != NULL) {
6249 if (key_blockacq_count < newacq->count) {
6250 /* reset counter and do send message. */
6251 newacq->count = 0;
6252 } else {
6253 /* increment counter and do nothing. */
6254 newacq->count++;
6255 mutex_exit(&key_mtx);
6256 return 0;
6257 }
6258 } else {
6259 /* make new entry for blocking to send SADB_ACQUIRE. */
6260 newacq = key_newacq(saidx);
6261 if (newacq == NULL)
6262 return ENOBUFS;
6263
6264 /* add to acqtree */
6265 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6266 }
6267
6268 seq = newacq->seq;
6269 mutex_exit(&key_mtx);
6270 #else
6271 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6272 #endif
6273 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6274 if (!m) {
6275 error = ENOBUFS;
6276 goto fail;
6277 }
6278 result = m;
6279
6280 /* set sadb_address for saidx's. */
6281 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6282 IPSEC_ULPROTO_ANY);
6283 if (!m) {
6284 error = ENOBUFS;
6285 goto fail;
6286 }
6287 m_cat(result, m);
6288
6289 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6290 IPSEC_ULPROTO_ANY);
6291 if (!m) {
6292 error = ENOBUFS;
6293 goto fail;
6294 }
6295 m_cat(result, m);
6296
6297 /* XXX proxy address (optional) */
6298
6299 /* set sadb_x_policy */
6300 if (sp) {
6301 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6302 if (!m) {
6303 error = ENOBUFS;
6304 goto fail;
6305 }
6306 m_cat(result, m);
6307 }
6308
6309 /* XXX identity (optional) */
6310 #if 0
6311 if (idexttype && fqdn) {
6312 /* create identity extension (FQDN) */
6313 struct sadb_ident *id;
6314 int fqdnlen;
6315
6316 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6317 id = (struct sadb_ident *)p;
6318 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6319 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6320 id->sadb_ident_exttype = idexttype;
6321 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6322 memcpy(id + 1, fqdn, fqdnlen);
6323 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6324 }
6325
6326 if (idexttype) {
6327 /* create identity extension (USERFQDN) */
6328 struct sadb_ident *id;
6329 int userfqdnlen;
6330
6331 if (userfqdn) {
6332 /* +1 for terminating-NUL */
6333 userfqdnlen = strlen(userfqdn) + 1;
6334 } else
6335 userfqdnlen = 0;
6336 id = (struct sadb_ident *)p;
6337 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6338 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6339 id->sadb_ident_exttype = idexttype;
6340 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6341 /* XXX is it correct? */
6342 if (curlwp)
6343 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6344 if (userfqdn && userfqdnlen)
6345 memcpy(id + 1, userfqdn, userfqdnlen);
6346 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6347 }
6348 #endif
6349
6350 /* XXX sensitivity (optional) */
6351
6352 /* create proposal/combination extension */
6353 m = key_getprop(saidx);
6354 #if 0
6355 /*
6356 * spec conformant: always attach proposal/combination extension,
6357 * the problem is that we have no way to attach it for ipcomp,
6358 * due to the way sadb_comb is declared in RFC2367.
6359 */
6360 if (!m) {
6361 error = ENOBUFS;
6362 goto fail;
6363 }
6364 m_cat(result, m);
6365 #else
6366 /*
6367 * outside of spec; make proposal/combination extension optional.
6368 */
6369 if (m)
6370 m_cat(result, m);
6371 #endif
6372
6373 if ((result->m_flags & M_PKTHDR) == 0) {
6374 error = EINVAL;
6375 goto fail;
6376 }
6377
6378 if (result->m_len < sizeof(struct sadb_msg)) {
6379 result = m_pullup(result, sizeof(struct sadb_msg));
6380 if (result == NULL) {
6381 error = ENOBUFS;
6382 goto fail;
6383 }
6384 }
6385
6386 result->m_pkthdr.len = 0;
6387 for (m = result; m; m = m->m_next)
6388 result->m_pkthdr.len += m->m_len;
6389
6390 mtod(result, struct sadb_msg *)->sadb_msg_len =
6391 PFKEY_UNIT64(result->m_pkthdr.len);
6392
6393 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6394
6395 fail:
6396 if (result)
6397 m_freem(result);
6398 return error;
6399 }
6400
6401 #ifndef IPSEC_NONBLOCK_ACQUIRE
6402 static struct secacq *
6403 key_newacq(const struct secasindex *saidx)
6404 {
6405 struct secacq *newacq;
6406
6407 /* get new entry */
6408 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6409 if (newacq == NULL) {
6410 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6411 return NULL;
6412 }
6413
6414 /* copy secindex */
6415 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6416 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6417 newacq->created = time_uptime;
6418 newacq->count = 0;
6419
6420 return newacq;
6421 }
6422
6423 static struct secacq *
6424 key_getacq(const struct secasindex *saidx)
6425 {
6426 struct secacq *acq;
6427
6428 KASSERT(mutex_owned(&key_mtx));
6429
6430 LIST_FOREACH(acq, &acqtree, chain) {
6431 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6432 return acq;
6433 }
6434
6435 return NULL;
6436 }
6437
6438 static struct secacq *
6439 key_getacqbyseq(u_int32_t seq)
6440 {
6441 struct secacq *acq;
6442
6443 KASSERT(mutex_owned(&key_mtx));
6444
6445 LIST_FOREACH(acq, &acqtree, chain) {
6446 if (acq->seq == seq)
6447 return acq;
6448 }
6449
6450 return NULL;
6451 }
6452 #endif
6453
6454 #ifdef notyet
6455 static struct secspacq *
6456 key_newspacq(const struct secpolicyindex *spidx)
6457 {
6458 struct secspacq *acq;
6459
6460 /* get new entry */
6461 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6462 if (acq == NULL) {
6463 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6464 return NULL;
6465 }
6466
6467 /* copy secindex */
6468 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6469 acq->created = time_uptime;
6470 acq->count = 0;
6471
6472 return acq;
6473 }
6474
6475 static struct secspacq *
6476 key_getspacq(const struct secpolicyindex *spidx)
6477 {
6478 struct secspacq *acq;
6479
6480 LIST_FOREACH(acq, &spacqtree, chain) {
6481 if (key_spidx_match_exactly(spidx, &acq->spidx))
6482 return acq;
6483 }
6484
6485 return NULL;
6486 }
6487 #endif /* notyet */
6488
6489 /*
6490 * SADB_ACQUIRE processing,
6491 * in first situation, is receiving
6492 * <base>
6493 * from the ikmpd, and clear sequence of its secasvar entry.
6494 *
6495 * In second situation, is receiving
6496 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6497 * from a user land process, and return
6498 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6499 * to the socket.
6500 *
6501 * m will always be freed.
6502 */
6503 static int
6504 key_acquire2(struct socket *so, struct mbuf *m,
6505 const struct sadb_msghdr *mhp)
6506 {
6507 const struct sockaddr *src, *dst;
6508 struct secasindex saidx;
6509 struct secashead *sah;
6510 u_int16_t proto;
6511 int error;
6512
6513 KASSERT(so != NULL);
6514 KASSERT(m != NULL);
6515 KASSERT(mhp != NULL);
6516 KASSERT(mhp->msg != NULL);
6517
6518 /*
6519 * Error message from KMd.
6520 * We assume that if error was occurred in IKEd, the length of PFKEY
6521 * message is equal to the size of sadb_msg structure.
6522 * We do not raise error even if error occurred in this function.
6523 */
6524 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6525 #ifndef IPSEC_NONBLOCK_ACQUIRE
6526 struct secacq *acq;
6527
6528 /* check sequence number */
6529 if (mhp->msg->sadb_msg_seq == 0) {
6530 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6531 m_freem(m);
6532 return 0;
6533 }
6534
6535 mutex_enter(&key_mtx);
6536 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6537 if (acq == NULL) {
6538 mutex_exit(&key_mtx);
6539 /*
6540 * the specified larval SA is already gone, or we got
6541 * a bogus sequence number. we can silently ignore it.
6542 */
6543 m_freem(m);
6544 return 0;
6545 }
6546
6547 /* reset acq counter in order to deletion by timehander. */
6548 acq->created = time_uptime;
6549 acq->count = 0;
6550 mutex_exit(&key_mtx);
6551 #endif
6552 m_freem(m);
6553 return 0;
6554 }
6555
6556 /*
6557 * This message is from user land.
6558 */
6559
6560 /* map satype to proto */
6561 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6562 if (proto == 0) {
6563 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6564 return key_senderror(so, m, EINVAL);
6565 }
6566
6567 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6568 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6569 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6570 /* error */
6571 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6572 return key_senderror(so, m, EINVAL);
6573 }
6574 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6575 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6576 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6577 /* error */
6578 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6579 return key_senderror(so, m, EINVAL);
6580 }
6581
6582 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6583 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6584
6585 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6586 if (error != 0)
6587 return key_senderror(so, m, EINVAL);
6588
6589 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6590 if (error != 0)
6591 return key_senderror(so, m, EINVAL);
6592
6593 /* get a SA index */
6594 LIST_FOREACH(sah, &sahtree, chain) {
6595 if (sah->state == SADB_SASTATE_DEAD)
6596 continue;
6597 if (key_saidx_match(&sah->saidx, &saidx, CMP_MODE_REQID))
6598 break;
6599 }
6600 if (sah != NULL) {
6601 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6602 return key_senderror(so, m, EEXIST);
6603 }
6604
6605 error = key_acquire(&saidx, NULL);
6606 if (error != 0) {
6607 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6608 mhp->msg->sadb_msg_errno);
6609 return key_senderror(so, m, error);
6610 }
6611
6612 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6613 }
6614
6615 /*
6616 * SADB_REGISTER processing.
6617 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6618 * receive
6619 * <base>
6620 * from the ikmpd, and register a socket to send PF_KEY messages,
6621 * and send
6622 * <base, supported>
6623 * to KMD by PF_KEY.
6624 * If socket is detached, must free from regnode.
6625 *
6626 * m will always be freed.
6627 */
6628 static int
6629 key_register(struct socket *so, struct mbuf *m,
6630 const struct sadb_msghdr *mhp)
6631 {
6632 struct secreg *reg, *newreg = 0;
6633
6634 KASSERT(!cpu_softintr_p());
6635 KASSERT(so != NULL);
6636 KASSERT(m != NULL);
6637 KASSERT(mhp != NULL);
6638 KASSERT(mhp->msg != NULL);
6639
6640 /* check for invalid register message */
6641 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6642 return key_senderror(so, m, EINVAL);
6643
6644 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6645 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6646 goto setmsg;
6647
6648 /* Allocate regnode in advance, out of mutex */
6649 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6650
6651 /* check whether existing or not */
6652 mutex_enter(&key_mtx);
6653 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6654 if (reg->so == so) {
6655 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6656 mutex_exit(&key_mtx);
6657 kmem_free(newreg, sizeof(*newreg));
6658 return key_senderror(so, m, EEXIST);
6659 }
6660 }
6661
6662 newreg->so = so;
6663 ((struct keycb *)sotorawcb(so))->kp_registered++;
6664
6665 /* add regnode to regtree. */
6666 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6667 mutex_exit(&key_mtx);
6668
6669 setmsg:
6670 {
6671 struct mbuf *n;
6672 struct sadb_msg *newmsg;
6673 struct sadb_supported *sup;
6674 u_int len, alen, elen;
6675 int off;
6676 int i;
6677 struct sadb_alg *alg;
6678
6679 /* create new sadb_msg to reply. */
6680 alen = 0;
6681 for (i = 1; i <= SADB_AALG_MAX; i++) {
6682 if (ah_algorithm_lookup(i))
6683 alen += sizeof(struct sadb_alg);
6684 }
6685 if (alen)
6686 alen += sizeof(struct sadb_supported);
6687 elen = 0;
6688 for (i = 1; i <= SADB_EALG_MAX; i++) {
6689 if (esp_algorithm_lookup(i))
6690 elen += sizeof(struct sadb_alg);
6691 }
6692 if (elen)
6693 elen += sizeof(struct sadb_supported);
6694
6695 len = sizeof(struct sadb_msg) + alen + elen;
6696
6697 if (len > MCLBYTES)
6698 return key_senderror(so, m, ENOBUFS);
6699
6700 MGETHDR(n, M_DONTWAIT, MT_DATA);
6701 if (len > MHLEN) {
6702 MCLGET(n, M_DONTWAIT);
6703 if ((n->m_flags & M_EXT) == 0) {
6704 m_freem(n);
6705 n = NULL;
6706 }
6707 }
6708 if (!n)
6709 return key_senderror(so, m, ENOBUFS);
6710
6711 n->m_pkthdr.len = n->m_len = len;
6712 n->m_next = NULL;
6713 off = 0;
6714
6715 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6716 newmsg = mtod(n, struct sadb_msg *);
6717 newmsg->sadb_msg_errno = 0;
6718 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6719 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6720
6721 /* for authentication algorithm */
6722 if (alen) {
6723 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6724 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6725 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6726 off += PFKEY_ALIGN8(sizeof(*sup));
6727
6728 for (i = 1; i <= SADB_AALG_MAX; i++) {
6729 const struct auth_hash *aalgo;
6730 u_int16_t minkeysize, maxkeysize;
6731
6732 aalgo = ah_algorithm_lookup(i);
6733 if (!aalgo)
6734 continue;
6735 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6736 alg->sadb_alg_id = i;
6737 alg->sadb_alg_ivlen = 0;
6738 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6739 alg->sadb_alg_minbits = _BITS(minkeysize);
6740 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6741 off += PFKEY_ALIGN8(sizeof(*alg));
6742 }
6743 }
6744
6745 /* for encryption algorithm */
6746 if (elen) {
6747 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6748 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6749 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6750 off += PFKEY_ALIGN8(sizeof(*sup));
6751
6752 for (i = 1; i <= SADB_EALG_MAX; i++) {
6753 const struct enc_xform *ealgo;
6754
6755 ealgo = esp_algorithm_lookup(i);
6756 if (!ealgo)
6757 continue;
6758 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6759 alg->sadb_alg_id = i;
6760 alg->sadb_alg_ivlen = ealgo->blocksize;
6761 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6762 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6763 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6764 }
6765 }
6766
6767 KASSERTMSG(off == len, "length inconsistency");
6768
6769 m_freem(m);
6770 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6771 }
6772 }
6773
6774 /*
6775 * free secreg entry registered.
6776 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6777 */
6778 void
6779 key_freereg(struct socket *so)
6780 {
6781 struct secreg *reg;
6782 int i;
6783
6784 KASSERT(!cpu_softintr_p());
6785 KASSERT(so != NULL);
6786
6787 /*
6788 * check whether existing or not.
6789 * check all type of SA, because there is a potential that
6790 * one socket is registered to multiple type of SA.
6791 */
6792 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6793 mutex_enter(&key_mtx);
6794 LIST_FOREACH(reg, ®tree[i], chain) {
6795 if (reg->so == so) {
6796 LIST_REMOVE(reg, chain);
6797 break;
6798 }
6799 }
6800 mutex_exit(&key_mtx);
6801 if (reg != NULL)
6802 kmem_free(reg, sizeof(*reg));
6803 }
6804
6805 return;
6806 }
6807
6808 /*
6809 * SADB_EXPIRE processing
6810 * send
6811 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6812 * to KMD by PF_KEY.
6813 * NOTE: We send only soft lifetime extension.
6814 *
6815 * OUT: 0 : succeed
6816 * others : error number
6817 */
6818 static int
6819 key_expire(struct secasvar *sav)
6820 {
6821 int s;
6822 int satype;
6823 struct mbuf *result = NULL, *m;
6824 int len;
6825 int error = -1;
6826 struct sadb_lifetime *lt;
6827
6828 /* XXX: Why do we lock ? */
6829 s = splsoftnet(); /*called from softclock()*/
6830
6831 KASSERT(sav != NULL);
6832 KASSERT(sav->sah != NULL);
6833
6834 satype = key_proto2satype(sav->sah->saidx.proto);
6835 KASSERTMSG(satype != 0, "invalid proto is passed");
6836
6837 /* set msg header */
6838 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6839 if (!m) {
6840 error = ENOBUFS;
6841 goto fail;
6842 }
6843 result = m;
6844
6845 /* create SA extension */
6846 m = key_setsadbsa(sav);
6847 if (!m) {
6848 error = ENOBUFS;
6849 goto fail;
6850 }
6851 m_cat(result, m);
6852
6853 /* create SA extension */
6854 m = key_setsadbxsa2(sav->sah->saidx.mode,
6855 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6856 if (!m) {
6857 error = ENOBUFS;
6858 goto fail;
6859 }
6860 m_cat(result, m);
6861
6862 /* create lifetime extension (current and soft) */
6863 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6864 m = key_alloc_mbuf(len);
6865 if (!m || m->m_next) { /*XXX*/
6866 if (m)
6867 m_freem(m);
6868 error = ENOBUFS;
6869 goto fail;
6870 }
6871 memset(mtod(m, void *), 0, len);
6872 lt = mtod(m, struct sadb_lifetime *);
6873 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6874 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6875 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6876 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6877 lt->sadb_lifetime_addtime =
6878 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6879 lt->sadb_lifetime_usetime =
6880 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6881 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6882 memcpy(lt, sav->lft_s, sizeof(*lt));
6883 m_cat(result, m);
6884
6885 /* set sadb_address for source */
6886 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6887 FULLMASK, IPSEC_ULPROTO_ANY);
6888 if (!m) {
6889 error = ENOBUFS;
6890 goto fail;
6891 }
6892 m_cat(result, m);
6893
6894 /* set sadb_address for destination */
6895 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6896 FULLMASK, IPSEC_ULPROTO_ANY);
6897 if (!m) {
6898 error = ENOBUFS;
6899 goto fail;
6900 }
6901 m_cat(result, m);
6902
6903 if ((result->m_flags & M_PKTHDR) == 0) {
6904 error = EINVAL;
6905 goto fail;
6906 }
6907
6908 if (result->m_len < sizeof(struct sadb_msg)) {
6909 result = m_pullup(result, sizeof(struct sadb_msg));
6910 if (result == NULL) {
6911 error = ENOBUFS;
6912 goto fail;
6913 }
6914 }
6915
6916 result->m_pkthdr.len = 0;
6917 for (m = result; m; m = m->m_next)
6918 result->m_pkthdr.len += m->m_len;
6919
6920 mtod(result, struct sadb_msg *)->sadb_msg_len =
6921 PFKEY_UNIT64(result->m_pkthdr.len);
6922
6923 splx(s);
6924 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6925
6926 fail:
6927 if (result)
6928 m_freem(result);
6929 splx(s);
6930 return error;
6931 }
6932
6933 /*
6934 * SADB_FLUSH processing
6935 * receive
6936 * <base>
6937 * from the ikmpd, and free all entries in secastree.
6938 * and send,
6939 * <base>
6940 * to the ikmpd.
6941 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6942 *
6943 * m will always be freed.
6944 */
6945 static int
6946 key_flush(struct socket *so, struct mbuf *m,
6947 const struct sadb_msghdr *mhp)
6948 {
6949 struct sadb_msg *newmsg;
6950 struct secashead *sah;
6951 struct secasvar *sav, *nextsav;
6952 u_int16_t proto;
6953 u_int8_t state;
6954
6955 KASSERT(so != NULL);
6956 KASSERT(mhp != NULL);
6957 KASSERT(mhp->msg != NULL);
6958
6959 /* map satype to proto */
6960 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6961 if (proto == 0) {
6962 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6963 return key_senderror(so, m, EINVAL);
6964 }
6965
6966 /* no SATYPE specified, i.e. flushing all SA. */
6967 LIST_FOREACH(sah, &sahtree, chain) {
6968 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6969 proto != sah->saidx.proto)
6970 continue;
6971
6972 SASTATE_ALIVE_FOREACH(state) {
6973 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6974 nextsav) {
6975 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6976 KEY_FREESAV(&sav);
6977 }
6978 }
6979
6980 sah->state = SADB_SASTATE_DEAD;
6981 }
6982
6983 if (m->m_len < sizeof(struct sadb_msg) ||
6984 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6985 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6986 return key_senderror(so, m, ENOBUFS);
6987 }
6988
6989 if (m->m_next)
6990 m_freem(m->m_next);
6991 m->m_next = NULL;
6992 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6993 newmsg = mtod(m, struct sadb_msg *);
6994 newmsg->sadb_msg_errno = 0;
6995 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6996
6997 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6998 }
6999
7000
7001 static struct mbuf *
7002 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7003 {
7004 struct secashead *sah;
7005 struct secasvar *sav;
7006 u_int16_t proto;
7007 u_int8_t satype;
7008 u_int8_t state;
7009 int cnt;
7010 struct mbuf *m, *n, *prev;
7011
7012 *lenp = 0;
7013
7014 /* map satype to proto */
7015 proto = key_satype2proto(req_satype);
7016 if (proto == 0) {
7017 *errorp = EINVAL;
7018 return (NULL);
7019 }
7020
7021 /* count sav entries to be sent to userland. */
7022 cnt = 0;
7023 LIST_FOREACH(sah, &sahtree, chain) {
7024 if (req_satype != SADB_SATYPE_UNSPEC &&
7025 proto != sah->saidx.proto)
7026 continue;
7027
7028 SASTATE_ANY_FOREACH(state) {
7029 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7030 cnt++;
7031 }
7032 }
7033 }
7034
7035 if (cnt == 0) {
7036 *errorp = ENOENT;
7037 return (NULL);
7038 }
7039
7040 /* send this to the userland, one at a time. */
7041 m = NULL;
7042 prev = m;
7043 LIST_FOREACH(sah, &sahtree, chain) {
7044 if (req_satype != SADB_SATYPE_UNSPEC &&
7045 proto != sah->saidx.proto)
7046 continue;
7047
7048 /* map proto to satype */
7049 satype = key_proto2satype(sah->saidx.proto);
7050 if (satype == 0) {
7051 m_freem(m);
7052 *errorp = EINVAL;
7053 return (NULL);
7054 }
7055
7056 SASTATE_ANY_FOREACH(state) {
7057 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7058 n = key_setdumpsa(sav, SADB_DUMP, satype,
7059 --cnt, pid);
7060 if (!n) {
7061 m_freem(m);
7062 *errorp = ENOBUFS;
7063 return (NULL);
7064 }
7065
7066 if (!m)
7067 m = n;
7068 else
7069 prev->m_nextpkt = n;
7070 prev = n;
7071 }
7072 }
7073 }
7074
7075 if (!m) {
7076 *errorp = EINVAL;
7077 return (NULL);
7078 }
7079
7080 if ((m->m_flags & M_PKTHDR) != 0) {
7081 m->m_pkthdr.len = 0;
7082 for (n = m; n; n = n->m_next)
7083 m->m_pkthdr.len += n->m_len;
7084 }
7085
7086 *errorp = 0;
7087 return (m);
7088 }
7089
7090 /*
7091 * SADB_DUMP processing
7092 * dump all entries including status of DEAD in SAD.
7093 * receive
7094 * <base>
7095 * from the ikmpd, and dump all secasvar leaves
7096 * and send,
7097 * <base> .....
7098 * to the ikmpd.
7099 *
7100 * m will always be freed.
7101 */
7102 static int
7103 key_dump(struct socket *so, struct mbuf *m0,
7104 const struct sadb_msghdr *mhp)
7105 {
7106 u_int16_t proto;
7107 u_int8_t satype;
7108 struct mbuf *n;
7109 int s;
7110 int error, len, ok;
7111
7112 KASSERT(so != NULL);
7113 KASSERT(m0 != NULL);
7114 KASSERT(mhp != NULL);
7115 KASSERT(mhp->msg != NULL);
7116
7117 /* map satype to proto */
7118 satype = mhp->msg->sadb_msg_satype;
7119 proto = key_satype2proto(satype);
7120 if (proto == 0) {
7121 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7122 return key_senderror(so, m0, EINVAL);
7123 }
7124
7125 /*
7126 * If the requestor has insufficient socket-buffer space
7127 * for the entire chain, nobody gets any response to the DUMP.
7128 * XXX For now, only the requestor ever gets anything.
7129 * Moreover, if the requestor has any space at all, they receive
7130 * the entire chain, otherwise the request is refused with ENOBUFS.
7131 */
7132 if (sbspace(&so->so_rcv) <= 0) {
7133 return key_senderror(so, m0, ENOBUFS);
7134 }
7135
7136 s = splsoftnet();
7137 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7138 splx(s);
7139
7140 if (n == NULL) {
7141 return key_senderror(so, m0, ENOENT);
7142 }
7143 {
7144 uint64_t *ps = PFKEY_STAT_GETREF();
7145 ps[PFKEY_STAT_IN_TOTAL]++;
7146 ps[PFKEY_STAT_IN_BYTES] += len;
7147 PFKEY_STAT_PUTREF();
7148 }
7149
7150 /*
7151 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7152 * The requestor receives either the entire chain, or an
7153 * error message with ENOBUFS.
7154 *
7155 * sbappendaddrchain() takes the chain of entries, one
7156 * packet-record per SPD entry, prepends the key_src sockaddr
7157 * to each packet-record, links the sockaddr mbufs into a new
7158 * list of records, then appends the entire resulting
7159 * list to the requesting socket.
7160 */
7161 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7162 SB_PRIO_ONESHOT_OVERFLOW);
7163
7164 if (!ok) {
7165 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7166 m_freem(n);
7167 return key_senderror(so, m0, ENOBUFS);
7168 }
7169
7170 m_freem(m0);
7171 return 0;
7172 }
7173
7174 /*
7175 * SADB_X_PROMISC processing
7176 *
7177 * m will always be freed.
7178 */
7179 static int
7180 key_promisc(struct socket *so, struct mbuf *m,
7181 const struct sadb_msghdr *mhp)
7182 {
7183 int olen;
7184
7185 KASSERT(so != NULL);
7186 KASSERT(m != NULL);
7187 KASSERT(mhp != NULL);
7188 KASSERT(mhp->msg != NULL);
7189
7190 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7191
7192 if (olen < sizeof(struct sadb_msg)) {
7193 #if 1
7194 return key_senderror(so, m, EINVAL);
7195 #else
7196 m_freem(m);
7197 return 0;
7198 #endif
7199 } else if (olen == sizeof(struct sadb_msg)) {
7200 /* enable/disable promisc mode */
7201 struct keycb *kp = (struct keycb *)sotorawcb(so);
7202 if (kp == NULL)
7203 return key_senderror(so, m, EINVAL);
7204 mhp->msg->sadb_msg_errno = 0;
7205 switch (mhp->msg->sadb_msg_satype) {
7206 case 0:
7207 case 1:
7208 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7209 break;
7210 default:
7211 return key_senderror(so, m, EINVAL);
7212 }
7213
7214 /* send the original message back to everyone */
7215 mhp->msg->sadb_msg_errno = 0;
7216 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7217 } else {
7218 /* send packet as is */
7219
7220 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7221
7222 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7223 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7224 }
7225 }
7226
7227 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7228 const struct sadb_msghdr *) = {
7229 NULL, /* SADB_RESERVED */
7230 key_getspi, /* SADB_GETSPI */
7231 key_update, /* SADB_UPDATE */
7232 key_add, /* SADB_ADD */
7233 key_delete, /* SADB_DELETE */
7234 key_get, /* SADB_GET */
7235 key_acquire2, /* SADB_ACQUIRE */
7236 key_register, /* SADB_REGISTER */
7237 NULL, /* SADB_EXPIRE */
7238 key_flush, /* SADB_FLUSH */
7239 key_dump, /* SADB_DUMP */
7240 key_promisc, /* SADB_X_PROMISC */
7241 NULL, /* SADB_X_PCHANGE */
7242 key_spdadd, /* SADB_X_SPDUPDATE */
7243 key_spdadd, /* SADB_X_SPDADD */
7244 key_spddelete, /* SADB_X_SPDDELETE */
7245 key_spdget, /* SADB_X_SPDGET */
7246 NULL, /* SADB_X_SPDACQUIRE */
7247 key_spddump, /* SADB_X_SPDDUMP */
7248 key_spdflush, /* SADB_X_SPDFLUSH */
7249 key_spdadd, /* SADB_X_SPDSETIDX */
7250 NULL, /* SADB_X_SPDEXPIRE */
7251 key_spddelete2, /* SADB_X_SPDDELETE2 */
7252 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7253 };
7254
7255 /*
7256 * parse sadb_msg buffer to process PFKEYv2,
7257 * and create a data to response if needed.
7258 * I think to be dealed with mbuf directly.
7259 * IN:
7260 * msgp : pointer to pointer to a received buffer pulluped.
7261 * This is rewrited to response.
7262 * so : pointer to socket.
7263 * OUT:
7264 * length for buffer to send to user process.
7265 */
7266 int
7267 key_parse(struct mbuf *m, struct socket *so)
7268 {
7269 struct sadb_msg *msg;
7270 struct sadb_msghdr mh;
7271 u_int orglen;
7272 int error;
7273
7274 KASSERT(m != NULL);
7275 KASSERT(so != NULL);
7276
7277 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7278 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7279 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7280 kdebug_sadb(msg);
7281 }
7282 #endif
7283
7284 if (m->m_len < sizeof(struct sadb_msg)) {
7285 m = m_pullup(m, sizeof(struct sadb_msg));
7286 if (!m)
7287 return ENOBUFS;
7288 }
7289 msg = mtod(m, struct sadb_msg *);
7290 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7291
7292 if ((m->m_flags & M_PKTHDR) == 0 ||
7293 m->m_pkthdr.len != orglen) {
7294 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7295 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7296 error = EINVAL;
7297 goto senderror;
7298 }
7299
7300 if (msg->sadb_msg_version != PF_KEY_V2) {
7301 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7302 msg->sadb_msg_version);
7303 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7304 error = EINVAL;
7305 goto senderror;
7306 }
7307
7308 if (msg->sadb_msg_type > SADB_MAX) {
7309 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7310 msg->sadb_msg_type);
7311 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7312 error = EINVAL;
7313 goto senderror;
7314 }
7315
7316 /* for old-fashioned code - should be nuked */
7317 if (m->m_pkthdr.len > MCLBYTES) {
7318 m_freem(m);
7319 return ENOBUFS;
7320 }
7321 if (m->m_next) {
7322 struct mbuf *n;
7323
7324 MGETHDR(n, M_DONTWAIT, MT_DATA);
7325 if (n && m->m_pkthdr.len > MHLEN) {
7326 MCLGET(n, M_DONTWAIT);
7327 if ((n->m_flags & M_EXT) == 0) {
7328 m_free(n);
7329 n = NULL;
7330 }
7331 }
7332 if (!n) {
7333 m_freem(m);
7334 return ENOBUFS;
7335 }
7336 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7337 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7338 n->m_next = NULL;
7339 m_freem(m);
7340 m = n;
7341 }
7342
7343 /* align the mbuf chain so that extensions are in contiguous region. */
7344 error = key_align(m, &mh);
7345 if (error)
7346 return error;
7347
7348 if (m->m_next) { /*XXX*/
7349 m_freem(m);
7350 return ENOBUFS;
7351 }
7352
7353 msg = mh.msg;
7354
7355 /* check SA type */
7356 switch (msg->sadb_msg_satype) {
7357 case SADB_SATYPE_UNSPEC:
7358 switch (msg->sadb_msg_type) {
7359 case SADB_GETSPI:
7360 case SADB_UPDATE:
7361 case SADB_ADD:
7362 case SADB_DELETE:
7363 case SADB_GET:
7364 case SADB_ACQUIRE:
7365 case SADB_EXPIRE:
7366 IPSECLOG(LOG_DEBUG,
7367 "must specify satype when msg type=%u.\n",
7368 msg->sadb_msg_type);
7369 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7370 error = EINVAL;
7371 goto senderror;
7372 }
7373 break;
7374 case SADB_SATYPE_AH:
7375 case SADB_SATYPE_ESP:
7376 case SADB_X_SATYPE_IPCOMP:
7377 case SADB_X_SATYPE_TCPSIGNATURE:
7378 switch (msg->sadb_msg_type) {
7379 case SADB_X_SPDADD:
7380 case SADB_X_SPDDELETE:
7381 case SADB_X_SPDGET:
7382 case SADB_X_SPDDUMP:
7383 case SADB_X_SPDFLUSH:
7384 case SADB_X_SPDSETIDX:
7385 case SADB_X_SPDUPDATE:
7386 case SADB_X_SPDDELETE2:
7387 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7388 msg->sadb_msg_type);
7389 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7390 error = EINVAL;
7391 goto senderror;
7392 }
7393 break;
7394 case SADB_SATYPE_RSVP:
7395 case SADB_SATYPE_OSPFV2:
7396 case SADB_SATYPE_RIPV2:
7397 case SADB_SATYPE_MIP:
7398 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7399 msg->sadb_msg_satype);
7400 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7401 error = EOPNOTSUPP;
7402 goto senderror;
7403 case 1: /* XXX: What does it do? */
7404 if (msg->sadb_msg_type == SADB_X_PROMISC)
7405 break;
7406 /*FALLTHROUGH*/
7407 default:
7408 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7409 msg->sadb_msg_satype);
7410 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7411 error = EINVAL;
7412 goto senderror;
7413 }
7414
7415 /* check field of upper layer protocol and address family */
7416 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7417 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7418 struct sadb_address *src0, *dst0;
7419 u_int plen;
7420
7421 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7422 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7423
7424 /* check upper layer protocol */
7425 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7426 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7427 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7428 error = EINVAL;
7429 goto senderror;
7430 }
7431
7432 /* check family */
7433 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7434 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7435 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7436 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7437 error = EINVAL;
7438 goto senderror;
7439 }
7440 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7441 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7442 IPSECLOG(LOG_DEBUG,
7443 "address struct size mismatched.\n");
7444 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7445 error = EINVAL;
7446 goto senderror;
7447 }
7448
7449 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7450 case AF_INET:
7451 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7452 sizeof(struct sockaddr_in)) {
7453 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7454 error = EINVAL;
7455 goto senderror;
7456 }
7457 break;
7458 case AF_INET6:
7459 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7460 sizeof(struct sockaddr_in6)) {
7461 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7462 error = EINVAL;
7463 goto senderror;
7464 }
7465 break;
7466 default:
7467 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7468 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7469 error = EAFNOSUPPORT;
7470 goto senderror;
7471 }
7472
7473 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7474 case AF_INET:
7475 plen = sizeof(struct in_addr) << 3;
7476 break;
7477 case AF_INET6:
7478 plen = sizeof(struct in6_addr) << 3;
7479 break;
7480 default:
7481 plen = 0; /*fool gcc*/
7482 break;
7483 }
7484
7485 /* check max prefix length */
7486 if (src0->sadb_address_prefixlen > plen ||
7487 dst0->sadb_address_prefixlen > plen) {
7488 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7489 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7490 error = EINVAL;
7491 goto senderror;
7492 }
7493
7494 /*
7495 * prefixlen == 0 is valid because there can be a case when
7496 * all addresses are matched.
7497 */
7498 }
7499
7500 if (msg->sadb_msg_type >= __arraycount(key_typesw) ||
7501 key_typesw[msg->sadb_msg_type] == NULL) {
7502 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7503 error = EINVAL;
7504 goto senderror;
7505 }
7506
7507 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7508
7509 senderror:
7510 return key_senderror(so, m, error);
7511 }
7512
7513 static int
7514 key_senderror(struct socket *so, struct mbuf *m, int code)
7515 {
7516 struct sadb_msg *msg;
7517
7518 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7519
7520 msg = mtod(m, struct sadb_msg *);
7521 msg->sadb_msg_errno = code;
7522 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7523 }
7524
7525 /*
7526 * set the pointer to each header into message buffer.
7527 * m will be freed on error.
7528 * XXX larger-than-MCLBYTES extension?
7529 */
7530 static int
7531 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7532 {
7533 struct mbuf *n;
7534 struct sadb_ext *ext;
7535 size_t off, end;
7536 int extlen;
7537 int toff;
7538
7539 KASSERT(m != NULL);
7540 KASSERT(mhp != NULL);
7541 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7542
7543 /* initialize */
7544 memset(mhp, 0, sizeof(*mhp));
7545
7546 mhp->msg = mtod(m, struct sadb_msg *);
7547 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7548
7549 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7550 extlen = end; /*just in case extlen is not updated*/
7551 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7552 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7553 if (!n) {
7554 /* m is already freed */
7555 return ENOBUFS;
7556 }
7557 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7558
7559 /* set pointer */
7560 switch (ext->sadb_ext_type) {
7561 case SADB_EXT_SA:
7562 case SADB_EXT_ADDRESS_SRC:
7563 case SADB_EXT_ADDRESS_DST:
7564 case SADB_EXT_ADDRESS_PROXY:
7565 case SADB_EXT_LIFETIME_CURRENT:
7566 case SADB_EXT_LIFETIME_HARD:
7567 case SADB_EXT_LIFETIME_SOFT:
7568 case SADB_EXT_KEY_AUTH:
7569 case SADB_EXT_KEY_ENCRYPT:
7570 case SADB_EXT_IDENTITY_SRC:
7571 case SADB_EXT_IDENTITY_DST:
7572 case SADB_EXT_SENSITIVITY:
7573 case SADB_EXT_PROPOSAL:
7574 case SADB_EXT_SUPPORTED_AUTH:
7575 case SADB_EXT_SUPPORTED_ENCRYPT:
7576 case SADB_EXT_SPIRANGE:
7577 case SADB_X_EXT_POLICY:
7578 case SADB_X_EXT_SA2:
7579 case SADB_X_EXT_NAT_T_TYPE:
7580 case SADB_X_EXT_NAT_T_SPORT:
7581 case SADB_X_EXT_NAT_T_DPORT:
7582 case SADB_X_EXT_NAT_T_OAI:
7583 case SADB_X_EXT_NAT_T_OAR:
7584 case SADB_X_EXT_NAT_T_FRAG:
7585 /* duplicate check */
7586 /*
7587 * XXX Are there duplication payloads of either
7588 * KEY_AUTH or KEY_ENCRYPT ?
7589 */
7590 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7591 IPSECLOG(LOG_DEBUG,
7592 "duplicate ext_type %u is passed.\n",
7593 ext->sadb_ext_type);
7594 m_freem(m);
7595 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7596 return EINVAL;
7597 }
7598 break;
7599 default:
7600 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7601 ext->sadb_ext_type);
7602 m_freem(m);
7603 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7604 return EINVAL;
7605 }
7606
7607 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7608
7609 if (key_validate_ext(ext, extlen)) {
7610 m_freem(m);
7611 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7612 return EINVAL;
7613 }
7614
7615 n = m_pulldown(m, off, extlen, &toff);
7616 if (!n) {
7617 /* m is already freed */
7618 return ENOBUFS;
7619 }
7620 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7621
7622 mhp->ext[ext->sadb_ext_type] = ext;
7623 mhp->extoff[ext->sadb_ext_type] = off;
7624 mhp->extlen[ext->sadb_ext_type] = extlen;
7625 }
7626
7627 if (off != end) {
7628 m_freem(m);
7629 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7630 return EINVAL;
7631 }
7632
7633 return 0;
7634 }
7635
7636 static int
7637 key_validate_ext(const struct sadb_ext *ext, int len)
7638 {
7639 const struct sockaddr *sa;
7640 enum { NONE, ADDR } checktype = NONE;
7641 int baselen = 0;
7642 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7643
7644 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7645 return EINVAL;
7646
7647 /* if it does not match minimum/maximum length, bail */
7648 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7649 ext->sadb_ext_type >= __arraycount(maxsize))
7650 return EINVAL;
7651 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7652 return EINVAL;
7653 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7654 return EINVAL;
7655
7656 /* more checks based on sadb_ext_type XXX need more */
7657 switch (ext->sadb_ext_type) {
7658 case SADB_EXT_ADDRESS_SRC:
7659 case SADB_EXT_ADDRESS_DST:
7660 case SADB_EXT_ADDRESS_PROXY:
7661 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7662 checktype = ADDR;
7663 break;
7664 case SADB_EXT_IDENTITY_SRC:
7665 case SADB_EXT_IDENTITY_DST:
7666 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7667 SADB_X_IDENTTYPE_ADDR) {
7668 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7669 checktype = ADDR;
7670 } else
7671 checktype = NONE;
7672 break;
7673 default:
7674 checktype = NONE;
7675 break;
7676 }
7677
7678 switch (checktype) {
7679 case NONE:
7680 break;
7681 case ADDR:
7682 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7683 if (len < baselen + sal)
7684 return EINVAL;
7685 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7686 return EINVAL;
7687 break;
7688 }
7689
7690 return 0;
7691 }
7692
7693 static int
7694 key_do_init(void)
7695 {
7696 int i, error;
7697
7698 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7699
7700 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7701
7702 callout_init(&key_timehandler_ch, 0);
7703 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7704 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7705 if (error != 0)
7706 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7707
7708 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7709 LIST_INIT(&sptree[i]);
7710 }
7711
7712 LIST_INIT(&sahtree);
7713
7714 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7715 LIST_INIT(®tree[i]);
7716 }
7717
7718 #ifndef IPSEC_NONBLOCK_ACQUIRE
7719 LIST_INIT(&acqtree);
7720 #endif
7721 #ifdef notyet
7722 LIST_INIT(&spacqtree);
7723 #endif
7724
7725 /* system default */
7726 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7727 ip4_def_policy.refcnt++; /*never reclaim this*/
7728
7729 #ifdef INET6
7730 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7731 ip6_def_policy.refcnt++; /*never reclaim this*/
7732 #endif
7733
7734 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7735
7736 /* initialize key statistics */
7737 keystat.getspi_count = 1;
7738
7739 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7740
7741 return (0);
7742 }
7743
7744 void
7745 key_init(void)
7746 {
7747 static ONCE_DECL(key_init_once);
7748
7749 sysctl_net_keyv2_setup(NULL);
7750 sysctl_net_key_compat_setup(NULL);
7751
7752 RUN_ONCE(&key_init_once, key_do_init);
7753 }
7754
7755 /*
7756 * XXX: maybe This function is called after INBOUND IPsec processing.
7757 *
7758 * Special check for tunnel-mode packets.
7759 * We must make some checks for consistency between inner and outer IP header.
7760 *
7761 * xxx more checks to be provided
7762 */
7763 int
7764 key_checktunnelsanity(
7765 struct secasvar *sav,
7766 u_int family,
7767 void *src,
7768 void *dst
7769 )
7770 {
7771
7772 KASSERT(sav->sah != NULL);
7773
7774 /* XXX: check inner IP header */
7775
7776 return 1;
7777 }
7778
7779 #if 0
7780 #define hostnamelen strlen(hostname)
7781
7782 /*
7783 * Get FQDN for the host.
7784 * If the administrator configured hostname (by hostname(1)) without
7785 * domain name, returns nothing.
7786 */
7787 static const char *
7788 key_getfqdn(void)
7789 {
7790 int i;
7791 int hasdot;
7792 static char fqdn[MAXHOSTNAMELEN + 1];
7793
7794 if (!hostnamelen)
7795 return NULL;
7796
7797 /* check if it comes with domain name. */
7798 hasdot = 0;
7799 for (i = 0; i < hostnamelen; i++) {
7800 if (hostname[i] == '.')
7801 hasdot++;
7802 }
7803 if (!hasdot)
7804 return NULL;
7805
7806 /* NOTE: hostname may not be NUL-terminated. */
7807 memset(fqdn, 0, sizeof(fqdn));
7808 memcpy(fqdn, hostname, hostnamelen);
7809 fqdn[hostnamelen] = '\0';
7810 return fqdn;
7811 }
7812
7813 /*
7814 * get username@FQDN for the host/user.
7815 */
7816 static const char *
7817 key_getuserfqdn(void)
7818 {
7819 const char *host;
7820 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7821 struct proc *p = curproc;
7822 char *q;
7823
7824 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7825 return NULL;
7826 if (!(host = key_getfqdn()))
7827 return NULL;
7828
7829 /* NOTE: s_login may not be-NUL terminated. */
7830 memset(userfqdn, 0, sizeof(userfqdn));
7831 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7832 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7833 q = userfqdn + strlen(userfqdn);
7834 *q++ = '@';
7835 memcpy(q, host, strlen(host));
7836 q += strlen(host);
7837 *q++ = '\0';
7838
7839 return userfqdn;
7840 }
7841 #endif
7842
7843 /* record data transfer on SA, and update timestamps */
7844 void
7845 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7846 {
7847
7848 KASSERT(sav != NULL);
7849 KASSERT(m != NULL);
7850 if (!sav->lft_c)
7851 return;
7852
7853 /*
7854 * XXX Currently, there is a difference of bytes size
7855 * between inbound and outbound processing.
7856 */
7857 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7858 /* to check bytes lifetime is done in key_timehandler(). */
7859
7860 /*
7861 * We use the number of packets as the unit of
7862 * sadb_lifetime_allocations. We increment the variable
7863 * whenever {esp,ah}_{in,out}put is called.
7864 */
7865 sav->lft_c->sadb_lifetime_allocations++;
7866 /* XXX check for expires? */
7867
7868 /*
7869 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7870 * in seconds. HARD and SOFT lifetime are measured by the time
7871 * difference (again in seconds) from sadb_lifetime_usetime.
7872 *
7873 * usetime
7874 * v expire expire
7875 * -----+-----+--------+---> t
7876 * <--------------> HARD
7877 * <-----> SOFT
7878 */
7879 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7880 /* XXX check for expires? */
7881
7882 return;
7883 }
7884
7885 /* dumb version */
7886 void
7887 key_sa_routechange(struct sockaddr *dst)
7888 {
7889 struct secashead *sah;
7890 struct route *ro;
7891 const struct sockaddr *sa;
7892
7893 LIST_FOREACH(sah, &sahtree, chain) {
7894 ro = &sah->sa_route;
7895 sa = rtcache_getdst(ro);
7896 if (sa != NULL && dst->sa_len == sa->sa_len &&
7897 memcmp(dst, sa, dst->sa_len) == 0)
7898 rtcache_free(ro);
7899 }
7900
7901 return;
7902 }
7903
7904 static void
7905 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7906 {
7907
7908 KASSERT(sav != NULL);
7909
7910 if (sav->state == state)
7911 return;
7912
7913 KASSERT(__LIST_CHAINED(sav));
7914 LIST_REMOVE(sav, chain);
7915
7916 sav->state = state;
7917 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7918 }
7919
7920 /* XXX too much? */
7921 static struct mbuf *
7922 key_alloc_mbuf(int l)
7923 {
7924 struct mbuf *m = NULL, *n;
7925 int len, t;
7926
7927 len = l;
7928 while (len > 0) {
7929 MGET(n, M_DONTWAIT, MT_DATA);
7930 if (n && len > MLEN)
7931 MCLGET(n, M_DONTWAIT);
7932 if (!n) {
7933 m_freem(m);
7934 return NULL;
7935 }
7936
7937 n->m_next = NULL;
7938 n->m_len = 0;
7939 n->m_len = M_TRAILINGSPACE(n);
7940 /* use the bottom of mbuf, hoping we can prepend afterwards */
7941 if (n->m_len > len) {
7942 t = (n->m_len - len) & ~(sizeof(long) - 1);
7943 n->m_data += t;
7944 n->m_len = len;
7945 }
7946
7947 len -= n->m_len;
7948
7949 if (m)
7950 m_cat(m, n);
7951 else
7952 m = n;
7953 }
7954
7955 return m;
7956 }
7957
7958 static struct mbuf *
7959 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7960 {
7961 struct secashead *sah;
7962 struct secasvar *sav;
7963 u_int16_t proto;
7964 u_int8_t satype;
7965 u_int8_t state;
7966 int cnt;
7967 struct mbuf *m, *n;
7968
7969 /* map satype to proto */
7970 proto = key_satype2proto(req_satype);
7971 if (proto == 0) {
7972 *errorp = EINVAL;
7973 return (NULL);
7974 }
7975
7976 /* count sav entries to be sent to the userland. */
7977 cnt = 0;
7978 LIST_FOREACH(sah, &sahtree, chain) {
7979 if (req_satype != SADB_SATYPE_UNSPEC &&
7980 proto != sah->saidx.proto)
7981 continue;
7982
7983 SASTATE_ANY_FOREACH(state) {
7984 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7985 cnt++;
7986 }
7987 }
7988 }
7989
7990 if (cnt == 0) {
7991 *errorp = ENOENT;
7992 return (NULL);
7993 }
7994
7995 /* send this to the userland, one at a time. */
7996 m = NULL;
7997 LIST_FOREACH(sah, &sahtree, chain) {
7998 if (req_satype != SADB_SATYPE_UNSPEC &&
7999 proto != sah->saidx.proto)
8000 continue;
8001
8002 /* map proto to satype */
8003 satype = key_proto2satype(sah->saidx.proto);
8004 if (satype == 0) {
8005 m_freem(m);
8006 *errorp = EINVAL;
8007 return (NULL);
8008 }
8009
8010 SASTATE_ANY_FOREACH(state) {
8011 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8012 n = key_setdumpsa(sav, SADB_DUMP, satype,
8013 --cnt, pid);
8014 if (!n) {
8015 m_freem(m);
8016 *errorp = ENOBUFS;
8017 return (NULL);
8018 }
8019
8020 if (!m)
8021 m = n;
8022 else
8023 m_cat(m, n);
8024 }
8025 }
8026 }
8027
8028 if (!m) {
8029 *errorp = EINVAL;
8030 return (NULL);
8031 }
8032
8033 if ((m->m_flags & M_PKTHDR) != 0) {
8034 m->m_pkthdr.len = 0;
8035 for (n = m; n; n = n->m_next)
8036 m->m_pkthdr.len += n->m_len;
8037 }
8038
8039 *errorp = 0;
8040 return (m);
8041 }
8042
8043 static struct mbuf *
8044 key_setspddump(int *errorp, pid_t pid)
8045 {
8046 struct secpolicy *sp;
8047 int cnt;
8048 u_int dir;
8049 struct mbuf *m, *n;
8050
8051 /* search SPD entry and get buffer size. */
8052 cnt = 0;
8053 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8054 LIST_FOREACH(sp, &sptree[dir], chain) {
8055 cnt++;
8056 }
8057 }
8058
8059 if (cnt == 0) {
8060 *errorp = ENOENT;
8061 return (NULL);
8062 }
8063
8064 m = NULL;
8065 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8066 LIST_FOREACH(sp, &sptree[dir], chain) {
8067 --cnt;
8068 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8069
8070 if (!n) {
8071 *errorp = ENOBUFS;
8072 m_freem(m);
8073 return (NULL);
8074 }
8075 if (!m)
8076 m = n;
8077 else {
8078 m->m_pkthdr.len += n->m_pkthdr.len;
8079 m_cat(m, n);
8080 }
8081 }
8082 }
8083
8084 *errorp = 0;
8085 return (m);
8086 }
8087
8088 int
8089 key_get_used(void) {
8090 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8091 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8092 }
8093
8094 void
8095 key_update_used(void)
8096 {
8097 switch (ipsec_enabled) {
8098 default:
8099 case 0:
8100 #ifdef notyet
8101 /* XXX: racy */
8102 ipsec_used = 0;
8103 #endif
8104 break;
8105 case 1:
8106 #ifndef notyet
8107 /* XXX: racy */
8108 if (!ipsec_used)
8109 #endif
8110 ipsec_used = key_get_used();
8111 break;
8112 case 2:
8113 ipsec_used = 1;
8114 break;
8115 }
8116 }
8117
8118 static int
8119 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8120 {
8121 struct mbuf *m, *n;
8122 int err2 = 0;
8123 char *p, *ep;
8124 size_t len;
8125 int s, error;
8126
8127 if (newp)
8128 return (EPERM);
8129 if (namelen != 1)
8130 return (EINVAL);
8131
8132 s = splsoftnet();
8133 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8134 splx(s);
8135 if (!m)
8136 return (error);
8137 if (!oldp)
8138 *oldlenp = m->m_pkthdr.len;
8139 else {
8140 p = oldp;
8141 if (*oldlenp < m->m_pkthdr.len) {
8142 err2 = ENOMEM;
8143 ep = p + *oldlenp;
8144 } else {
8145 *oldlenp = m->m_pkthdr.len;
8146 ep = p + m->m_pkthdr.len;
8147 }
8148 for (n = m; n; n = n->m_next) {
8149 len = (ep - p < n->m_len) ?
8150 ep - p : n->m_len;
8151 error = copyout(mtod(n, const void *), p, len);
8152 p += len;
8153 if (error)
8154 break;
8155 }
8156 if (error == 0)
8157 error = err2;
8158 }
8159 m_freem(m);
8160
8161 return (error);
8162 }
8163
8164 static int
8165 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8166 {
8167 struct mbuf *m, *n;
8168 int err2 = 0;
8169 char *p, *ep;
8170 size_t len;
8171 int s, error;
8172
8173 if (newp)
8174 return (EPERM);
8175 if (namelen != 0)
8176 return (EINVAL);
8177
8178 s = splsoftnet();
8179 m = key_setspddump(&error, l->l_proc->p_pid);
8180 splx(s);
8181 if (!m)
8182 return (error);
8183 if (!oldp)
8184 *oldlenp = m->m_pkthdr.len;
8185 else {
8186 p = oldp;
8187 if (*oldlenp < m->m_pkthdr.len) {
8188 err2 = ENOMEM;
8189 ep = p + *oldlenp;
8190 } else {
8191 *oldlenp = m->m_pkthdr.len;
8192 ep = p + m->m_pkthdr.len;
8193 }
8194 for (n = m; n; n = n->m_next) {
8195 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8196 error = copyout(mtod(n, const void *), p, len);
8197 p += len;
8198 if (error)
8199 break;
8200 }
8201 if (error == 0)
8202 error = err2;
8203 }
8204 m_freem(m);
8205
8206 return (error);
8207 }
8208
8209 /*
8210 * Create sysctl tree for native IPSEC key knobs, originally
8211 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8212 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8213 * and in any case the part of our sysctl namespace used for dumping the
8214 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8215 * namespace, for API reasons.
8216 *
8217 * Pending a consensus on the right way to fix this, add a level of
8218 * indirection in how we number the `native' IPSEC key nodes;
8219 * and (as requested by Andrew Brown) move registration of the
8220 * KAME-compatible names to a separate function.
8221 */
8222 #if 0
8223 # define IPSEC_PFKEY PF_KEY_V2
8224 # define IPSEC_PFKEY_NAME "keyv2"
8225 #else
8226 # define IPSEC_PFKEY PF_KEY
8227 # define IPSEC_PFKEY_NAME "key"
8228 #endif
8229
8230 static int
8231 sysctl_net_key_stats(SYSCTLFN_ARGS)
8232 {
8233
8234 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8235 }
8236
8237 static void
8238 sysctl_net_keyv2_setup(struct sysctllog **clog)
8239 {
8240
8241 sysctl_createv(clog, 0, NULL, NULL,
8242 CTLFLAG_PERMANENT,
8243 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8244 NULL, 0, NULL, 0,
8245 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8246
8247 sysctl_createv(clog, 0, NULL, NULL,
8248 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8249 CTLTYPE_INT, "debug", NULL,
8250 NULL, 0, &key_debug_level, 0,
8251 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8252 sysctl_createv(clog, 0, NULL, NULL,
8253 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8254 CTLTYPE_INT, "spi_try", NULL,
8255 NULL, 0, &key_spi_trycnt, 0,
8256 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8257 sysctl_createv(clog, 0, NULL, NULL,
8258 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8259 CTLTYPE_INT, "spi_min_value", NULL,
8260 NULL, 0, &key_spi_minval, 0,
8261 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8262 sysctl_createv(clog, 0, NULL, NULL,
8263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8264 CTLTYPE_INT, "spi_max_value", NULL,
8265 NULL, 0, &key_spi_maxval, 0,
8266 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8267 sysctl_createv(clog, 0, NULL, NULL,
8268 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8269 CTLTYPE_INT, "random_int", NULL,
8270 NULL, 0, &key_int_random, 0,
8271 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8272 sysctl_createv(clog, 0, NULL, NULL,
8273 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8274 CTLTYPE_INT, "larval_lifetime", NULL,
8275 NULL, 0, &key_larval_lifetime, 0,
8276 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8277 sysctl_createv(clog, 0, NULL, NULL,
8278 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8279 CTLTYPE_INT, "blockacq_count", NULL,
8280 NULL, 0, &key_blockacq_count, 0,
8281 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8282 sysctl_createv(clog, 0, NULL, NULL,
8283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8284 CTLTYPE_INT, "blockacq_lifetime", NULL,
8285 NULL, 0, &key_blockacq_lifetime, 0,
8286 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8287 sysctl_createv(clog, 0, NULL, NULL,
8288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8289 CTLTYPE_INT, "esp_keymin", NULL,
8290 NULL, 0, &ipsec_esp_keymin, 0,
8291 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8292 sysctl_createv(clog, 0, NULL, NULL,
8293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8294 CTLTYPE_INT, "prefered_oldsa", NULL,
8295 NULL, 0, &key_prefered_oldsa, 0,
8296 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8297 sysctl_createv(clog, 0, NULL, NULL,
8298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8299 CTLTYPE_INT, "esp_auth", NULL,
8300 NULL, 0, &ipsec_esp_auth, 0,
8301 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8302 sysctl_createv(clog, 0, NULL, NULL,
8303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8304 CTLTYPE_INT, "ah_keymin", NULL,
8305 NULL, 0, &ipsec_ah_keymin, 0,
8306 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8307 sysctl_createv(clog, 0, NULL, NULL,
8308 CTLFLAG_PERMANENT,
8309 CTLTYPE_STRUCT, "stats",
8310 SYSCTL_DESCR("PF_KEY statistics"),
8311 sysctl_net_key_stats, 0, NULL, 0,
8312 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8313 }
8314
8315 /*
8316 * Register sysctl names used by setkey(8). For historical reasons,
8317 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8318 * for both IPSEC and KAME IPSEC.
8319 */
8320 static void
8321 sysctl_net_key_compat_setup(struct sysctllog **clog)
8322 {
8323
8324 sysctl_createv(clog, 0, NULL, NULL,
8325 CTLFLAG_PERMANENT,
8326 CTLTYPE_NODE, "key", NULL,
8327 NULL, 0, NULL, 0,
8328 CTL_NET, PF_KEY, CTL_EOL);
8329
8330 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8331 sysctl_createv(clog, 0, NULL, NULL,
8332 CTLFLAG_PERMANENT,
8333 CTLTYPE_STRUCT, "dumpsa", NULL,
8334 sysctl_net_key_dumpsa, 0, NULL, 0,
8335 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8336 sysctl_createv(clog, 0, NULL, NULL,
8337 CTLFLAG_PERMANENT,
8338 CTLTYPE_STRUCT, "dumpsp", NULL,
8339 sysctl_net_key_dumpsp, 0, NULL, 0,
8340 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8341 }
8342