key.c revision 1.159 1 /* $NetBSD: key.c,v 1.159 2017/05/31 09:53:35 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.159 2017/05/31 09:53:35 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <net/raw_cb.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/in_var.h>
79 #ifdef INET
80 #include <netinet/ip_var.h>
81 #endif
82
83 #ifdef INET6
84 #include <netinet/ip6.h>
85 #include <netinet6/in6_var.h>
86 #include <netinet6/ip6_var.h>
87 #endif /* INET6 */
88
89 #ifdef INET
90 #include <netinet/in_pcb.h>
91 #endif
92 #ifdef INET6
93 #include <netinet6/in6_pcb.h>
94 #endif /* INET6 */
95
96 #include <net/pfkeyv2.h>
97 #include <netipsec/keydb.h>
98 #include <netipsec/key.h>
99 #include <netipsec/keysock.h>
100 #include <netipsec/key_debug.h>
101
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/ipsec_private.h>
107
108 #include <netipsec/xform.h>
109 #include <netipsec/ipcomp.h>
110
111
112 #include <net/net_osdep.h>
113
114 #define FULLMASK 0xff
115 #define _BITS(bytes) ((bytes) << 3)
116
117 #define PORT_NONE 0
118 #define PORT_LOOSE 1
119 #define PORT_STRICT 2
120
121 percpu_t *pfkeystat_percpu;
122
123 /*
124 * Note on SA reference counting:
125 * - SAs that are not in DEAD state will have (total external reference + 1)
126 * following value in reference count field. they cannot be freed and are
127 * referenced from SA header.
128 * - SAs that are in DEAD state will have (total external reference)
129 * in reference count field. they are ready to be freed. reference from
130 * SA header will be removed in key_delsav(), when the reference count
131 * field hits 0 (= no external reference other than from SA header.
132 */
133
134 u_int32_t key_debug_level = 0;
135 static u_int key_spi_trycnt = 1000;
136 static u_int32_t key_spi_minval = 0x100;
137 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
138 static u_int32_t policy_id = 0;
139 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
140 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
141 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
142 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
143 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
144
145 static u_int32_t acq_seq = 0;
146
147 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
148 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
149 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
150 /* registed list */
151 #ifndef IPSEC_NONBLOCK_ACQUIRE
152 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
153 #endif
154 #ifdef notyet
155 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
156 #endif
157
158 /*
159 * Protect regtree, acqtree and items stored in the lists.
160 */
161 static kmutex_t key_mtx __cacheline_aligned;
162
163 /* search order for SAs */
164 /*
165 * This order is important because we must select the oldest SA
166 * for outbound processing. For inbound, This is not important.
167 */
168 static const u_int saorder_state_valid_prefer_old[] = {
169 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
170 };
171 static const u_int saorder_state_valid_prefer_new[] = {
172 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
173 };
174
175 static const u_int saorder_state_alive[] = {
176 /* except DEAD */
177 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
178 };
179 static const u_int saorder_state_any[] = {
180 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
181 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
182 };
183
184 #define SASTATE_ALIVE_FOREACH(s) \
185 for (int _i = 0; \
186 _i < __arraycount(saorder_state_alive) ? \
187 (s) = saorder_state_alive[_i], true : false; \
188 _i++)
189 #define SASTATE_ANY_FOREACH(s) \
190 for (int _i = 0; \
191 _i < __arraycount(saorder_state_any) ? \
192 (s) = saorder_state_any[_i], true : false; \
193 _i++)
194
195 static const int minsize[] = {
196 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
197 sizeof(struct sadb_sa), /* SADB_EXT_SA */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
200 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
202 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
203 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
204 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
205 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
206 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
207 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
208 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
209 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
210 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
211 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
212 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
213 0, /* SADB_X_EXT_KMPRIVATE */
214 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
215 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
216 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
217 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
218 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
219 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
220 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
221 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
222 };
223 static const int maxsize[] = {
224 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
225 sizeof(struct sadb_sa), /* SADB_EXT_SA */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
227 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
228 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
229 0, /* SADB_EXT_ADDRESS_SRC */
230 0, /* SADB_EXT_ADDRESS_DST */
231 0, /* SADB_EXT_ADDRESS_PROXY */
232 0, /* SADB_EXT_KEY_AUTH */
233 0, /* SADB_EXT_KEY_ENCRYPT */
234 0, /* SADB_EXT_IDENTITY_SRC */
235 0, /* SADB_EXT_IDENTITY_DST */
236 0, /* SADB_EXT_SENSITIVITY */
237 0, /* SADB_EXT_PROPOSAL */
238 0, /* SADB_EXT_SUPPORTED_AUTH */
239 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
240 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
241 0, /* SADB_X_EXT_KMPRIVATE */
242 0, /* SADB_X_EXT_POLICY */
243 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
244 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
245 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
246 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
247 0, /* SADB_X_EXT_NAT_T_OAI */
248 0, /* SADB_X_EXT_NAT_T_OAR */
249 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
250 };
251
252 static int ipsec_esp_keymin = 256;
253 static int ipsec_esp_auth = 0;
254 static int ipsec_ah_keymin = 128;
255
256 #ifdef SYSCTL_DECL
257 SYSCTL_DECL(_net_key);
258 #endif
259
260 #ifdef SYSCTL_INT
261 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
262 &key_debug_level, 0, "");
263
264 /* max count of trial for the decision of spi value */
265 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
266 &key_spi_trycnt, 0, "");
267
268 /* minimum spi value to allocate automatically. */
269 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
270 &key_spi_minval, 0, "");
271
272 /* maximun spi value to allocate automatically. */
273 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
274 &key_spi_maxval, 0, "");
275
276 /* interval to initialize randseed */
277 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
278 &key_int_random, 0, "");
279
280 /* lifetime for larval SA */
281 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
282 &key_larval_lifetime, 0, "");
283
284 /* counter for blocking to send SADB_ACQUIRE to IKEd */
285 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
286 &key_blockacq_count, 0, "");
287
288 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
289 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
290 &key_blockacq_lifetime, 0, "");
291
292 /* ESP auth */
293 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
294 &ipsec_esp_auth, 0, "");
295
296 /* minimum ESP key length */
297 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
298 &ipsec_esp_keymin, 0, "");
299
300 /* minimum AH key length */
301 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
302 &ipsec_ah_keymin, 0, "");
303
304 /* perfered old SA rather than new SA */
305 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
306 &key_prefered_oldsa, 0, "");
307 #endif /* SYSCTL_INT */
308
309 #define __LIST_CHAINED(elm) \
310 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
311 #define LIST_INSERT_TAIL(head, elm, type, field) \
312 do {\
313 struct type *curelm = LIST_FIRST(head); \
314 if (curelm == NULL) {\
315 LIST_INSERT_HEAD(head, elm, field); \
316 } else { \
317 while (LIST_NEXT(curelm, field)) \
318 curelm = LIST_NEXT(curelm, field);\
319 LIST_INSERT_AFTER(curelm, elm, field);\
320 }\
321 } while (0)
322
323 #define KEY_CHKSASTATE(head, sav) \
324 /* do */ { \
325 if ((head) != (sav)) { \
326 IPSECLOG(LOG_DEBUG, \
327 "state mismatched (TREE=%d SA=%d)\n", \
328 (head), (sav)); \
329 continue; \
330 } \
331 } /* while (0) */
332
333 #define KEY_CHKSPDIR(head, sp) \
334 do { \
335 if ((head) != (sp)) { \
336 IPSECLOG(LOG_DEBUG, \
337 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
338 (head), (sp)); \
339 } \
340 } while (0)
341
342 /*
343 * set parameters into secasindex buffer.
344 * Must allocate secasindex buffer before calling this function.
345 */
346 static int
347 key_setsecasidx(int, int, int, const struct sockaddr *,
348 const struct sockaddr *, struct secasindex *);
349
350 /* key statistics */
351 struct _keystat {
352 u_long getspi_count; /* the avarage of count to try to get new SPI */
353 } keystat;
354
355 struct sadb_msghdr {
356 struct sadb_msg *msg;
357 struct sadb_ext *ext[SADB_EXT_MAX + 1];
358 int extoff[SADB_EXT_MAX + 1];
359 int extlen[SADB_EXT_MAX + 1];
360 };
361
362 static void
363 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
364
365 static const struct sockaddr *
366 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
367 {
368
369 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
370 }
371
372 static struct mbuf *
373 key_fill_replymsg(struct mbuf *m, int seq)
374 {
375 struct sadb_msg *msg;
376
377 if (m->m_len < sizeof(*msg)) {
378 m = m_pullup(m, sizeof(*msg));
379 if (m == NULL)
380 return NULL;
381 }
382 msg = mtod(m, struct sadb_msg *);
383 msg->sadb_msg_errno = 0;
384 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
385 if (seq != 0)
386 msg->sadb_msg_seq = seq;
387
388 return m;
389 }
390
391 static struct secasvar *key_allocsa_policy (const struct secasindex *);
392 #if 0
393 static void key_freeso(struct socket *);
394 static void key_freesp_so(struct secpolicy **);
395 #endif
396 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
397 static void key_delsp (struct secpolicy *);
398 static struct secpolicy *key_getsp (const struct secpolicyindex *);
399 static struct secpolicy *key_getspbyid (u_int32_t);
400 static u_int16_t key_newreqid (void);
401 static struct mbuf *key_gather_mbuf (struct mbuf *,
402 const struct sadb_msghdr *, int, int, ...);
403 static int key_spdadd (struct socket *, struct mbuf *,
404 const struct sadb_msghdr *);
405 static u_int32_t key_getnewspid (void);
406 static int key_spddelete (struct socket *, struct mbuf *,
407 const struct sadb_msghdr *);
408 static int key_spddelete2 (struct socket *, struct mbuf *,
409 const struct sadb_msghdr *);
410 static int key_spdget (struct socket *, struct mbuf *,
411 const struct sadb_msghdr *);
412 static int key_spdflush (struct socket *, struct mbuf *,
413 const struct sadb_msghdr *);
414 static int key_spddump (struct socket *, struct mbuf *,
415 const struct sadb_msghdr *);
416 static struct mbuf * key_setspddump (int *errorp, pid_t);
417 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
418 static int key_nat_map (struct socket *, struct mbuf *,
419 const struct sadb_msghdr *);
420 static struct mbuf *key_setdumpsp (struct secpolicy *,
421 u_int8_t, u_int32_t, pid_t);
422 static u_int key_getspreqmsglen (const struct secpolicy *);
423 static int key_spdexpire (struct secpolicy *);
424 static struct secashead *key_newsah (const struct secasindex *);
425 static void key_delsah (struct secashead *);
426 static struct secasvar *key_newsav (struct mbuf *,
427 const struct sadb_msghdr *, struct secashead *, int *,
428 const char*, int);
429 #define KEY_NEWSAV(m, sadb, sah, e) \
430 key_newsav(m, sadb, sah, e, __func__, __LINE__)
431 static void key_delsav (struct secasvar *);
432 static struct secashead *key_getsah(const struct secasindex *, int);
433 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
434 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
435 static int key_setsaval (struct secasvar *, struct mbuf *,
436 const struct sadb_msghdr *);
437 static void key_freesaval(struct secasvar *);
438 static int key_mature (struct secasvar *);
439 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
440 u_int8_t, u_int32_t, u_int32_t);
441 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
442 static struct mbuf *key_setsadbxtype (u_int16_t);
443 static struct mbuf *key_setsadbxfrag (u_int16_t);
444 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
445 static int key_checksalen (const union sockaddr_union *);
446 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
447 u_int32_t, pid_t, u_int16_t);
448 static struct mbuf *key_setsadbsa (struct secasvar *);
449 static struct mbuf *key_setsadbaddr (u_int16_t,
450 const struct sockaddr *, u_int8_t, u_int16_t);
451 #if 0
452 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
453 int, u_int64_t);
454 #endif
455 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
456 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
457 u_int32_t);
458 static void *key_newbuf (const void *, u_int);
459 #ifdef INET6
460 static int key_ismyaddr6 (const struct sockaddr_in6 *);
461 #endif
462
463 static void sysctl_net_keyv2_setup(struct sysctllog **);
464 static void sysctl_net_key_compat_setup(struct sysctllog **);
465
466 /* flags for key_saidx_match() */
467 #define CMP_HEAD 1 /* protocol, addresses. */
468 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
469 #define CMP_REQID 3 /* additionally HEAD, reaid. */
470 #define CMP_EXACTLY 4 /* all elements. */
471 static int key_saidx_match(const struct secasindex *,
472 const struct secasindex *, int);
473
474 static int key_sockaddr_match(const struct sockaddr *,
475 const struct sockaddr *, int);
476 static int key_bb_match_withmask(const void *, const void *, u_int);
477 static u_int16_t key_satype2proto (u_int8_t);
478 static u_int8_t key_proto2satype (u_int16_t);
479
480 static int key_spidx_match_exactly(const struct secpolicyindex *,
481 const struct secpolicyindex *);
482 static int key_spidx_match_withmask(const struct secpolicyindex *,
483 const struct secpolicyindex *);
484
485 static int key_getspi (struct socket *, struct mbuf *,
486 const struct sadb_msghdr *);
487 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
488 const struct secasindex *);
489 static int key_handle_natt_info (struct secasvar *,
490 const struct sadb_msghdr *);
491 static int key_set_natt_ports (union sockaddr_union *,
492 union sockaddr_union *,
493 const struct sadb_msghdr *);
494 static int key_update (struct socket *, struct mbuf *,
495 const struct sadb_msghdr *);
496 #ifdef IPSEC_DOSEQCHECK
497 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
498 #endif
499 static int key_add (struct socket *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static int key_setident (struct secashead *, struct mbuf *,
502 const struct sadb_msghdr *);
503 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
504 const struct sadb_msghdr *);
505 static int key_delete (struct socket *, struct mbuf *,
506 const struct sadb_msghdr *);
507 static int key_get (struct socket *, struct mbuf *,
508 const struct sadb_msghdr *);
509
510 static void key_getcomb_setlifetime (struct sadb_comb *);
511 static struct mbuf *key_getcomb_esp (void);
512 static struct mbuf *key_getcomb_ah (void);
513 static struct mbuf *key_getcomb_ipcomp (void);
514 static struct mbuf *key_getprop (const struct secasindex *);
515
516 static int key_acquire (const struct secasindex *, struct secpolicy *);
517 #ifndef IPSEC_NONBLOCK_ACQUIRE
518 static struct secacq *key_newacq (const struct secasindex *);
519 static struct secacq *key_getacq (const struct secasindex *);
520 static struct secacq *key_getacqbyseq (u_int32_t);
521 #endif
522 #ifdef notyet
523 static struct secspacq *key_newspacq (const struct secpolicyindex *);
524 static struct secspacq *key_getspacq (const struct secpolicyindex *);
525 #endif
526 static int key_acquire2 (struct socket *, struct mbuf *,
527 const struct sadb_msghdr *);
528 static int key_register (struct socket *, struct mbuf *,
529 const struct sadb_msghdr *);
530 static int key_expire (struct secasvar *);
531 static int key_flush (struct socket *, struct mbuf *,
532 const struct sadb_msghdr *);
533 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
534 int *lenp, pid_t pid);
535 static int key_dump (struct socket *, struct mbuf *,
536 const struct sadb_msghdr *);
537 static int key_promisc (struct socket *, struct mbuf *,
538 const struct sadb_msghdr *);
539 static int key_senderror (struct socket *, struct mbuf *, int);
540 static int key_validate_ext (const struct sadb_ext *, int);
541 static int key_align (struct mbuf *, struct sadb_msghdr *);
542 #if 0
543 static const char *key_getfqdn (void);
544 static const char *key_getuserfqdn (void);
545 #endif
546 static void key_sa_chgstate (struct secasvar *, u_int8_t);
547 static inline void key_sp_dead (struct secpolicy *);
548 static void key_sp_unlink (struct secpolicy *sp);
549
550 static struct mbuf *key_alloc_mbuf (int);
551
552 static void key_timehandler(void *);
553 static void key_timehandler_work(struct work *, void *);
554 static struct callout key_timehandler_ch;
555 static struct workqueue *key_timehandler_wq;
556 static struct work key_timehandler_wk;
557
558 #ifdef IPSEC_REF_DEBUG
559 #define REFLOG(label, p, where, tag) \
560 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
561 (where), (tag), (p)->refcnt, (p))
562 #else
563 #define REFLOG(label, p, where, tag) do {} while (0)
564 #endif
565
566 #define SA_ADDREF(p) do { \
567 atomic_inc_uint(&(p)->refcnt); \
568 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
569 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
570 } while (0)
571 #define SA_ADDREF2(p, where, tag) do { \
572 atomic_inc_uint(&(p)->refcnt); \
573 REFLOG("SA_ADDREF", (p), (where), (tag)); \
574 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
575 } while (0)
576 #define SA_DELREF(p) do { \
577 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
578 atomic_dec_uint(&(p)->refcnt); \
579 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
580 } while (0)
581 #define SA_DELREF2(p, nv, where, tag) do { \
582 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
583 nv = atomic_dec_uint_nv(&(p)->refcnt); \
584 REFLOG("SA_DELREF", (p), (where), (tag)); \
585 } while (0)
586
587 #define SP_ADDREF(p) do { \
588 atomic_inc_uint(&(p)->refcnt); \
589 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
590 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
591 } while (0)
592 #define SP_ADDREF2(p, where, tag) do { \
593 atomic_inc_uint(&(p)->refcnt); \
594 REFLOG("SP_ADDREF", (p), (where), (tag)); \
595 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
596 } while (0)
597 #define SP_DELREF(p) do { \
598 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
599 atomic_dec_uint(&(p)->refcnt); \
600 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
601 } while (0)
602 #define SP_DELREF2(p, nv, where, tag) do { \
603 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
604 nv = atomic_dec_uint_nv(&(p)->refcnt); \
605 REFLOG("SP_DELREF", (p), (where), (tag)); \
606 } while (0)
607
608
609 static inline void
610 key_sp_dead(struct secpolicy *sp)
611 {
612
613 /* mark the SP dead */
614 sp->state = IPSEC_SPSTATE_DEAD;
615 }
616
617 static void
618 key_sp_unlink(struct secpolicy *sp)
619 {
620
621 /* remove from SP index */
622 KASSERT(__LIST_CHAINED(sp));
623 LIST_REMOVE(sp, chain);
624 /* Release refcount held just for being on chain */
625 KEY_FREESP(&sp);
626 }
627
628
629 /*
630 * Return 0 when there are known to be no SP's for the specified
631 * direction. Otherwise return 1. This is used by IPsec code
632 * to optimize performance.
633 */
634 int
635 key_havesp(u_int dir)
636 {
637 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
638 !LIST_EMPTY(&sptree[dir]) : 1);
639 }
640
641 /* %%% IPsec policy management */
642 /*
643 * allocating a SP for OUTBOUND or INBOUND packet.
644 * Must call key_freesp() later.
645 * OUT: NULL: not found
646 * others: found and return the pointer.
647 */
648 struct secpolicy *
649 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
650 {
651 struct secpolicy *sp;
652 int s;
653
654 KASSERT(spidx != NULL);
655 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
656
657 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
658
659 /* get a SP entry */
660 s = splsoftnet(); /*called from softclock()*/
661 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
662 printf("*** objects\n");
663 kdebug_secpolicyindex(spidx);
664 }
665
666 LIST_FOREACH(sp, &sptree[dir], chain) {
667 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
668 printf("*** in SPD\n");
669 kdebug_secpolicyindex(&sp->spidx);
670 }
671
672 if (sp->state == IPSEC_SPSTATE_DEAD)
673 continue;
674 if (key_spidx_match_withmask(&sp->spidx, spidx))
675 goto found;
676 }
677 sp = NULL;
678 found:
679 if (sp) {
680 /* sanity check */
681 KEY_CHKSPDIR(sp->spidx.dir, dir);
682
683 /* found a SPD entry */
684 sp->lastused = time_uptime;
685 SP_ADDREF2(sp, where, tag);
686 }
687 splx(s);
688
689 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
690 "DP return SP:%p (ID=%u) refcnt %u\n",
691 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
692 return sp;
693 }
694
695 /*
696 * allocating a SP for OUTBOUND or INBOUND packet.
697 * Must call key_freesp() later.
698 * OUT: NULL: not found
699 * others: found and return the pointer.
700 */
701 struct secpolicy *
702 key_allocsp2(u_int32_t spi,
703 const union sockaddr_union *dst,
704 u_int8_t proto,
705 u_int dir,
706 const char* where, int tag)
707 {
708 struct secpolicy *sp;
709 int s;
710
711 KASSERT(dst != NULL);
712 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
713
714 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
715
716 /* get a SP entry */
717 s = splsoftnet(); /*called from softclock()*/
718 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
719 printf("*** objects\n");
720 printf("spi %u proto %u dir %u\n", spi, proto, dir);
721 kdebug_sockaddr(&dst->sa);
722 }
723
724 LIST_FOREACH(sp, &sptree[dir], chain) {
725 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
726 printf("*** in SPD\n");
727 kdebug_secpolicyindex(&sp->spidx);
728 }
729
730 if (sp->state == IPSEC_SPSTATE_DEAD)
731 continue;
732 /* compare simple values, then dst address */
733 if (sp->spidx.ul_proto != proto)
734 continue;
735 /* NB: spi's must exist and match */
736 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
737 continue;
738 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
739 goto found;
740 }
741 sp = NULL;
742 found:
743 if (sp) {
744 /* sanity check */
745 KEY_CHKSPDIR(sp->spidx.dir, dir);
746
747 /* found a SPD entry */
748 sp->lastused = time_uptime;
749 SP_ADDREF2(sp, where, tag);
750 }
751 splx(s);
752
753 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
754 "DP return SP:%p (ID=%u) refcnt %u\n",
755 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
756 return sp;
757 }
758
759 /*
760 * return a policy that matches this particular inbound packet.
761 * XXX slow
762 */
763 struct secpolicy *
764 key_gettunnel(const struct sockaddr *osrc,
765 const struct sockaddr *odst,
766 const struct sockaddr *isrc,
767 const struct sockaddr *idst,
768 const char* where, int tag)
769 {
770 struct secpolicy *sp;
771 const int dir = IPSEC_DIR_INBOUND;
772 int s;
773 struct ipsecrequest *r1, *r2, *p;
774 struct secpolicyindex spidx;
775
776 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
777
778 if (isrc->sa_family != idst->sa_family) {
779 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
780 isrc->sa_family, idst->sa_family);
781 sp = NULL;
782 goto done;
783 }
784
785 s = splsoftnet(); /*called from softclock()*/
786 LIST_FOREACH(sp, &sptree[dir], chain) {
787 if (sp->state == IPSEC_SPSTATE_DEAD)
788 continue;
789
790 r1 = r2 = NULL;
791 for (p = sp->req; p; p = p->next) {
792 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
793 continue;
794
795 r1 = r2;
796 r2 = p;
797
798 if (!r1) {
799 /* here we look at address matches only */
800 spidx = sp->spidx;
801 if (isrc->sa_len > sizeof(spidx.src) ||
802 idst->sa_len > sizeof(spidx.dst))
803 continue;
804 memcpy(&spidx.src, isrc, isrc->sa_len);
805 memcpy(&spidx.dst, idst, idst->sa_len);
806 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
807 continue;
808 } else {
809 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
810 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
811 continue;
812 }
813
814 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
815 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
816 continue;
817
818 goto found;
819 }
820 }
821 sp = NULL;
822 found:
823 if (sp) {
824 sp->lastused = time_uptime;
825 SP_ADDREF2(sp, where, tag);
826 }
827 splx(s);
828 done:
829 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
830 "DP return SP:%p (ID=%u) refcnt %u\n",
831 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
832 return sp;
833 }
834
835 /*
836 * allocating an SA entry for an *OUTBOUND* packet.
837 * checking each request entries in SP, and acquire an SA if need.
838 * OUT: 0: there are valid requests.
839 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
840 */
841 int
842 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
843 {
844 u_int level;
845 int error;
846 struct secasvar *oldsav = NULL;
847
848 KASSERT(isr != NULL);
849 KASSERT(saidx != NULL);
850 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
851 saidx->mode == IPSEC_MODE_TUNNEL,
852 "unexpected policy %u", saidx->mode);
853
854 /* get current level */
855 level = ipsec_get_reqlevel(isr);
856
857 /*
858 * XXX guard against protocol callbacks from the crypto
859 * thread as they reference ipsecrequest.sav which we
860 * temporarily null out below. Need to rethink how we
861 * handle bundled SA's in the callback thread.
862 */
863 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
864 #if 0
865 /*
866 * We do allocate new SA only if the state of SA in the holder is
867 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
868 */
869 if (isr->sav != NULL) {
870 if (isr->sav->sah == NULL)
871 panic("key_checkrequest: sah is null");
872 if (isr->sav == (struct secasvar *)LIST_FIRST(
873 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
874 KEY_FREESAV(&isr->sav);
875 isr->sav = NULL;
876 }
877 }
878 #else
879 /*
880 * we free any SA stashed in the IPsec request because a different
881 * SA may be involved each time this request is checked, either
882 * because new SAs are being configured, or this request is
883 * associated with an unconnected datagram socket, or this request
884 * is associated with a system default policy.
885 *
886 * The operation may have negative impact to performance. We may
887 * want to check cached SA carefully, rather than picking new SA
888 * every time.
889 */
890 if (isr->sav != NULL)
891 oldsav = isr->sav;
892 #endif
893
894 /*
895 * new SA allocation if no SA found.
896 * key_allocsa_policy should allocate the oldest SA available.
897 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
898 */
899 isr->sav = key_allocsa_policy(saidx);
900 membar_producer();
901 if (oldsav != NULL)
902 KEY_FREESAV(&oldsav);
903
904 /* When there is SA. */
905 if (isr->sav != NULL) {
906 if (isr->sav->state != SADB_SASTATE_MATURE &&
907 isr->sav->state != SADB_SASTATE_DYING)
908 return EINVAL;
909 return 0;
910 }
911
912 /* there is no SA */
913 error = key_acquire(saidx, isr->sp);
914 if (error != 0) {
915 /* XXX What should I do ? */
916 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
917 error);
918 return error;
919 }
920
921 if (level != IPSEC_LEVEL_REQUIRE) {
922 /* XXX sigh, the interface to this routine is botched */
923 KASSERTMSG(isr->sav == NULL, "unexpected SA");
924 return 0;
925 } else {
926 return ENOENT;
927 }
928 }
929
930 /*
931 * allocating a SA for policy entry from SAD.
932 * NOTE: searching SAD of aliving state.
933 * OUT: NULL: not found.
934 * others: found and return the pointer.
935 */
936 static struct secasvar *
937 key_allocsa_policy(const struct secasindex *saidx)
938 {
939 struct secashead *sah;
940 struct secasvar *sav;
941 u_int stateidx, state;
942 const u_int *saorder_state_valid;
943 int arraysize;
944
945 sah = key_getsah(saidx, CMP_MODE_REQID);
946 if (sah == NULL)
947 return NULL;
948
949 /*
950 * search a valid state list for outbound packet.
951 * This search order is important.
952 */
953 if (key_prefered_oldsa) {
954 saorder_state_valid = saorder_state_valid_prefer_old;
955 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
956 } else {
957 saorder_state_valid = saorder_state_valid_prefer_new;
958 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
959 }
960
961 /* search valid state */
962 for (stateidx = 0;
963 stateidx < arraysize;
964 stateidx++) {
965
966 state = saorder_state_valid[stateidx];
967
968 sav = key_do_allocsa_policy(sah, state);
969 if (sav != NULL)
970 return sav;
971 }
972
973 return NULL;
974 }
975
976 /*
977 * searching SAD with direction, protocol, mode and state.
978 * called by key_allocsa_policy().
979 * OUT:
980 * NULL : not found
981 * others : found, pointer to a SA.
982 */
983 static struct secasvar *
984 key_do_allocsa_policy(struct secashead *sah, u_int state)
985 {
986 struct secasvar *sav, *candidate, *d;
987
988 /* initilize */
989 candidate = NULL;
990
991 LIST_FOREACH(sav, &sah->savtree[state], chain) {
992 /* sanity check */
993 KEY_CHKSASTATE(sav->state, state);
994
995 /* initialize */
996 if (candidate == NULL) {
997 candidate = sav;
998 continue;
999 }
1000
1001 /* Which SA is the better ? */
1002
1003 /* sanity check 2 */
1004 KASSERT(candidate->lft_c != NULL);
1005 KASSERT(sav->lft_c != NULL);
1006
1007 /* What the best method is to compare ? */
1008 if (key_prefered_oldsa) {
1009 if (candidate->lft_c->sadb_lifetime_addtime >
1010 sav->lft_c->sadb_lifetime_addtime) {
1011 candidate = sav;
1012 }
1013 continue;
1014 /*NOTREACHED*/
1015 }
1016
1017 /* prefered new sa rather than old sa */
1018 if (candidate->lft_c->sadb_lifetime_addtime <
1019 sav->lft_c->sadb_lifetime_addtime) {
1020 d = candidate;
1021 candidate = sav;
1022 } else
1023 d = sav;
1024
1025 /*
1026 * prepared to delete the SA when there is more
1027 * suitable candidate and the lifetime of the SA is not
1028 * permanent.
1029 */
1030 if (d->lft_c->sadb_lifetime_addtime != 0) {
1031 struct mbuf *m, *result = 0;
1032 uint8_t satype;
1033
1034 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1035
1036 KASSERT(d->refcnt > 0);
1037
1038 satype = key_proto2satype(d->sah->saidx.proto);
1039 if (satype == 0)
1040 goto msgfail;
1041
1042 m = key_setsadbmsg(SADB_DELETE, 0,
1043 satype, 0, 0, d->refcnt - 1);
1044 if (!m)
1045 goto msgfail;
1046 result = m;
1047
1048 /* set sadb_address for saidx's. */
1049 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1050 &d->sah->saidx.src.sa,
1051 d->sah->saidx.src.sa.sa_len << 3,
1052 IPSEC_ULPROTO_ANY);
1053 if (!m)
1054 goto msgfail;
1055 m_cat(result, m);
1056
1057 /* set sadb_address for saidx's. */
1058 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1059 &d->sah->saidx.src.sa,
1060 d->sah->saidx.src.sa.sa_len << 3,
1061 IPSEC_ULPROTO_ANY);
1062 if (!m)
1063 goto msgfail;
1064 m_cat(result, m);
1065
1066 /* create SA extension */
1067 m = key_setsadbsa(d);
1068 if (!m)
1069 goto msgfail;
1070 m_cat(result, m);
1071
1072 if (result->m_len < sizeof(struct sadb_msg)) {
1073 result = m_pullup(result,
1074 sizeof(struct sadb_msg));
1075 if (result == NULL)
1076 goto msgfail;
1077 }
1078
1079 result->m_pkthdr.len = 0;
1080 for (m = result; m; m = m->m_next)
1081 result->m_pkthdr.len += m->m_len;
1082 mtod(result, struct sadb_msg *)->sadb_msg_len =
1083 PFKEY_UNIT64(result->m_pkthdr.len);
1084
1085 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1086 result = 0;
1087 msgfail:
1088 if (result)
1089 m_freem(result);
1090 KEY_FREESAV(&d);
1091 }
1092 }
1093
1094 if (candidate) {
1095 SA_ADDREF(candidate);
1096 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1097 "DP cause refcnt++:%d SA:%p\n",
1098 candidate->refcnt, candidate);
1099 }
1100 return candidate;
1101 }
1102
1103 /*
1104 * allocating a usable SA entry for a *INBOUND* packet.
1105 * Must call key_freesav() later.
1106 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1107 * NULL: not found, or error occurred.
1108 *
1109 * In the comparison, no source address is used--for RFC2401 conformance.
1110 * To quote, from section 4.1:
1111 * A security association is uniquely identified by a triple consisting
1112 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1113 * security protocol (AH or ESP) identifier.
1114 * Note that, however, we do need to keep source address in IPsec SA.
1115 * IKE specification and PF_KEY specification do assume that we
1116 * keep source address in IPsec SA. We see a tricky situation here.
1117 *
1118 * sport and dport are used for NAT-T. network order is always used.
1119 */
1120 struct secasvar *
1121 key_allocsa(
1122 const union sockaddr_union *dst,
1123 u_int proto,
1124 u_int32_t spi,
1125 u_int16_t sport,
1126 u_int16_t dport,
1127 const char* where, int tag)
1128 {
1129 struct secashead *sah;
1130 struct secasvar *sav;
1131 u_int stateidx, state;
1132 const u_int *saorder_state_valid;
1133 int arraysize, chkport;
1134 int s;
1135
1136 int must_check_spi = 1;
1137 int must_check_alg = 0;
1138 u_int16_t cpi = 0;
1139 u_int8_t algo = 0;
1140
1141 if ((sport != 0) && (dport != 0))
1142 chkport = PORT_STRICT;
1143 else
1144 chkport = PORT_NONE;
1145
1146 KASSERT(dst != NULL);
1147
1148 /*
1149 * XXX IPCOMP case
1150 * We use cpi to define spi here. In the case where cpi <=
1151 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1152 * the real spi. In this case, don't check the spi but check the
1153 * algorithm
1154 */
1155
1156 if (proto == IPPROTO_IPCOMP) {
1157 u_int32_t tmp;
1158 tmp = ntohl(spi);
1159 cpi = (u_int16_t) tmp;
1160 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1161 algo = (u_int8_t) cpi;
1162 must_check_spi = 0;
1163 must_check_alg = 1;
1164 }
1165 }
1166 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1167 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1168 where, tag, must_check_spi, must_check_alg);
1169
1170
1171 /*
1172 * searching SAD.
1173 * XXX: to be checked internal IP header somewhere. Also when
1174 * IPsec tunnel packet is received. But ESP tunnel mode is
1175 * encrypted so we can't check internal IP header.
1176 */
1177 s = splsoftnet(); /*called from softclock()*/
1178 if (key_prefered_oldsa) {
1179 saorder_state_valid = saorder_state_valid_prefer_old;
1180 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1181 } else {
1182 saorder_state_valid = saorder_state_valid_prefer_new;
1183 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1184 }
1185 LIST_FOREACH(sah, &sahtree, chain) {
1186 /* search valid state */
1187 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1188 state = saorder_state_valid[stateidx];
1189 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1190 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1191 "try match spi %#x, %#x\n",
1192 ntohl(spi), ntohl(sav->spi));
1193 /* sanity check */
1194 KEY_CHKSASTATE(sav->state, state);
1195 /* do not return entries w/ unusable state */
1196 if (sav->state != SADB_SASTATE_MATURE &&
1197 sav->state != SADB_SASTATE_DYING) {
1198 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1199 "bad state %d\n", sav->state);
1200 continue;
1201 }
1202 if (proto != sav->sah->saidx.proto) {
1203 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1204 "proto fail %d != %d\n",
1205 proto, sav->sah->saidx.proto);
1206 continue;
1207 }
1208 if (must_check_spi && spi != sav->spi) {
1209 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1210 "spi fail %#x != %#x\n",
1211 ntohl(spi), ntohl(sav->spi));
1212 continue;
1213 }
1214 /* XXX only on the ipcomp case */
1215 if (must_check_alg && algo != sav->alg_comp) {
1216 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1217 "algo fail %d != %d\n",
1218 algo, sav->alg_comp);
1219 continue;
1220 }
1221
1222 #if 0 /* don't check src */
1223 /* Fix port in src->sa */
1224
1225 /* check src address */
1226 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1227 continue;
1228 #endif
1229 /* fix port of dst address XXX*/
1230 key_porttosaddr(__UNCONST(dst), dport);
1231 /* check dst address */
1232 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1233 continue;
1234 SA_ADDREF2(sav, where, tag);
1235 goto done;
1236 }
1237 }
1238 }
1239 sav = NULL;
1240 done:
1241 splx(s);
1242
1243 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1244 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1245 return sav;
1246 }
1247
1248 void
1249 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1250 {
1251
1252 SP_ADDREF2(sp, where, tag);
1253
1254 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1255 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1256 sp, sp->id, where, tag, sp->refcnt);
1257 }
1258
1259 /*
1260 * Must be called after calling key_allocsp().
1261 * For both the packet without socket and key_freeso().
1262 */
1263 void
1264 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1265 {
1266 struct secpolicy *sp = *spp;
1267 unsigned int nv;
1268
1269 KASSERT(sp != NULL);
1270
1271 SP_DELREF2(sp, nv, where, tag);
1272
1273 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1274 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1275 sp, sp->id, where, tag, nv);
1276
1277 if (nv == 0) {
1278 *spp = NULL;
1279 key_delsp(sp);
1280 }
1281 }
1282
1283 #if 0
1284 /*
1285 * Must be called after calling key_allocsp().
1286 * For the packet with socket.
1287 */
1288 static void
1289 key_freeso(struct socket *so)
1290 {
1291 /* sanity check */
1292 KASSERT(so != NULL);
1293
1294 switch (so->so_proto->pr_domain->dom_family) {
1295 #ifdef INET
1296 case PF_INET:
1297 {
1298 struct inpcb *pcb = sotoinpcb(so);
1299
1300 /* Does it have a PCB ? */
1301 if (pcb == NULL)
1302 return;
1303
1304 struct inpcbpolicy *sp = pcb->inp_sp;
1305 key_freesp_so(&sp->sp_in);
1306 key_freesp_so(&sp->sp_out);
1307 }
1308 break;
1309 #endif
1310 #ifdef INET6
1311 case PF_INET6:
1312 {
1313 #ifdef HAVE_NRL_INPCB
1314 struct inpcb *pcb = sotoinpcb(so);
1315 struct inpcbpolicy *sp = pcb->inp_sp;
1316
1317 /* Does it have a PCB ? */
1318 if (pcb == NULL)
1319 return;
1320 key_freesp_so(&sp->sp_in);
1321 key_freesp_so(&sp->sp_out);
1322 #else
1323 struct in6pcb *pcb = sotoin6pcb(so);
1324
1325 /* Does it have a PCB ? */
1326 if (pcb == NULL)
1327 return;
1328 key_freesp_so(&pcb->in6p_sp->sp_in);
1329 key_freesp_so(&pcb->in6p_sp->sp_out);
1330 #endif
1331 }
1332 break;
1333 #endif /* INET6 */
1334 default:
1335 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1336 so->so_proto->pr_domain->dom_family);
1337 return;
1338 }
1339 }
1340
1341 static void
1342 key_freesp_so(struct secpolicy **sp)
1343 {
1344
1345 KASSERT(sp != NULL);
1346 KASSERT(*sp != NULL);
1347
1348 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1349 (*sp)->policy == IPSEC_POLICY_BYPASS)
1350 return;
1351
1352 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1353 "invalid policy %u", (*sp)->policy);
1354 KEY_FREESP(sp);
1355 }
1356 #endif
1357
1358 /*
1359 * Must be called after calling key_allocsa().
1360 * This function is called by key_freesp() to free some SA allocated
1361 * for a policy.
1362 */
1363 void
1364 key_freesav(struct secasvar **psav, const char* where, int tag)
1365 {
1366 struct secasvar *sav = *psav;
1367 unsigned int nv;
1368
1369 KASSERT(sav != NULL);
1370
1371 SA_DELREF2(sav, nv, where, tag);
1372
1373 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1374 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1375 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1376
1377 if (nv == 0) {
1378 *psav = NULL;
1379 key_delsav(sav);
1380 }
1381 }
1382
1383 /* %%% SPD management */
1384 /*
1385 * free security policy entry.
1386 */
1387 static void
1388 key_delsp(struct secpolicy *sp)
1389 {
1390 int s;
1391
1392 KASSERT(sp != NULL);
1393
1394 key_sp_dead(sp);
1395
1396 KASSERTMSG(sp->refcnt == 0,
1397 "SP with references deleted (refcnt %u)", sp->refcnt);
1398
1399 s = splsoftnet(); /*called from softclock()*/
1400
1401 {
1402 struct ipsecrequest *isr = sp->req, *nextisr;
1403
1404 while (isr != NULL) {
1405 if (isr->sav != NULL) {
1406 KEY_FREESAV(&isr->sav);
1407 isr->sav = NULL;
1408 }
1409
1410 nextisr = isr->next;
1411 kmem_intr_free(isr, sizeof(*isr));
1412 isr = nextisr;
1413 }
1414 }
1415
1416 kmem_intr_free(sp, sizeof(*sp));
1417
1418 splx(s);
1419 }
1420
1421 /*
1422 * search SPD
1423 * OUT: NULL : not found
1424 * others : found, pointer to a SP.
1425 */
1426 static struct secpolicy *
1427 key_getsp(const struct secpolicyindex *spidx)
1428 {
1429 struct secpolicy *sp;
1430
1431 KASSERT(spidx != NULL);
1432
1433 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1434 if (sp->state == IPSEC_SPSTATE_DEAD)
1435 continue;
1436 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1437 SP_ADDREF(sp);
1438 return sp;
1439 }
1440 }
1441
1442 return NULL;
1443 }
1444
1445 /*
1446 * get SP by index.
1447 * OUT: NULL : not found
1448 * others : found, pointer to a SP.
1449 */
1450 static struct secpolicy *
1451 key_getspbyid(u_int32_t id)
1452 {
1453 struct secpolicy *sp;
1454
1455 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1456 if (sp->state == IPSEC_SPSTATE_DEAD)
1457 continue;
1458 if (sp->id == id) {
1459 SP_ADDREF(sp);
1460 return sp;
1461 }
1462 }
1463
1464 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1465 if (sp->state == IPSEC_SPSTATE_DEAD)
1466 continue;
1467 if (sp->id == id) {
1468 SP_ADDREF(sp);
1469 return sp;
1470 }
1471 }
1472
1473 return NULL;
1474 }
1475
1476 struct secpolicy *
1477 key_newsp(const char* where, int tag)
1478 {
1479 struct secpolicy *newsp = NULL;
1480
1481 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1482 if (newsp != NULL)
1483 newsp->refcnt = 1;
1484
1485 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1486 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1487 return newsp;
1488 }
1489
1490 /*
1491 * create secpolicy structure from sadb_x_policy structure.
1492 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1493 * so must be set properly later.
1494 */
1495 struct secpolicy *
1496 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1497 {
1498 struct secpolicy *newsp;
1499
1500 KASSERT(!cpu_softintr_p());
1501 KASSERT(xpl0 != NULL);
1502 KASSERT(len >= sizeof(*xpl0));
1503
1504 if (len != PFKEY_EXTLEN(xpl0)) {
1505 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1506 *error = EINVAL;
1507 return NULL;
1508 }
1509
1510 newsp = KEY_NEWSP();
1511 if (newsp == NULL) {
1512 *error = ENOBUFS;
1513 return NULL;
1514 }
1515
1516 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1517 newsp->policy = xpl0->sadb_x_policy_type;
1518
1519 /* check policy */
1520 switch (xpl0->sadb_x_policy_type) {
1521 case IPSEC_POLICY_DISCARD:
1522 case IPSEC_POLICY_NONE:
1523 case IPSEC_POLICY_ENTRUST:
1524 case IPSEC_POLICY_BYPASS:
1525 newsp->req = NULL;
1526 *error = 0;
1527 return newsp;
1528
1529 case IPSEC_POLICY_IPSEC:
1530 /* Continued */
1531 break;
1532 default:
1533 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1534 KEY_FREESP(&newsp);
1535 *error = EINVAL;
1536 return NULL;
1537 }
1538
1539 /* IPSEC_POLICY_IPSEC */
1540 {
1541 int tlen;
1542 const struct sadb_x_ipsecrequest *xisr;
1543 uint16_t xisr_reqid;
1544 struct ipsecrequest **p_isr = &newsp->req;
1545
1546 /* validity check */
1547 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1548 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1549 *error = EINVAL;
1550 goto free_exit;
1551 }
1552
1553 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1554 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1555
1556 while (tlen > 0) {
1557 /* length check */
1558 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1559 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1560 *error = EINVAL;
1561 goto free_exit;
1562 }
1563
1564 /* allocate request buffer */
1565 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1566
1567 /* set values */
1568 (*p_isr)->next = NULL;
1569
1570 switch (xisr->sadb_x_ipsecrequest_proto) {
1571 case IPPROTO_ESP:
1572 case IPPROTO_AH:
1573 case IPPROTO_IPCOMP:
1574 break;
1575 default:
1576 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1577 xisr->sadb_x_ipsecrequest_proto);
1578 *error = EPROTONOSUPPORT;
1579 goto free_exit;
1580 }
1581 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1582
1583 switch (xisr->sadb_x_ipsecrequest_mode) {
1584 case IPSEC_MODE_TRANSPORT:
1585 case IPSEC_MODE_TUNNEL:
1586 break;
1587 case IPSEC_MODE_ANY:
1588 default:
1589 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1590 xisr->sadb_x_ipsecrequest_mode);
1591 *error = EINVAL;
1592 goto free_exit;
1593 }
1594 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1595
1596 switch (xisr->sadb_x_ipsecrequest_level) {
1597 case IPSEC_LEVEL_DEFAULT:
1598 case IPSEC_LEVEL_USE:
1599 case IPSEC_LEVEL_REQUIRE:
1600 break;
1601 case IPSEC_LEVEL_UNIQUE:
1602 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1603 /* validity check */
1604 /*
1605 * If range violation of reqid, kernel will
1606 * update it, don't refuse it.
1607 */
1608 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1609 IPSECLOG(LOG_DEBUG,
1610 "reqid=%d range "
1611 "violation, updated by kernel.\n",
1612 xisr_reqid);
1613 xisr_reqid = 0;
1614 }
1615
1616 /* allocate new reqid id if reqid is zero. */
1617 if (xisr_reqid == 0) {
1618 u_int16_t reqid = key_newreqid();
1619 if (reqid == 0) {
1620 *error = ENOBUFS;
1621 goto free_exit;
1622 }
1623 (*p_isr)->saidx.reqid = reqid;
1624 } else {
1625 /* set it for manual keying. */
1626 (*p_isr)->saidx.reqid = xisr_reqid;
1627 }
1628 break;
1629
1630 default:
1631 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1632 xisr->sadb_x_ipsecrequest_level);
1633 *error = EINVAL;
1634 goto free_exit;
1635 }
1636 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1637
1638 /* set IP addresses if there */
1639 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1640 const struct sockaddr *paddr;
1641
1642 paddr = (const struct sockaddr *)(xisr + 1);
1643
1644 /* validity check */
1645 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1646 IPSECLOG(LOG_DEBUG, "invalid request "
1647 "address length.\n");
1648 *error = EINVAL;
1649 goto free_exit;
1650 }
1651 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1652
1653 paddr = (const struct sockaddr *)((const char *)paddr
1654 + paddr->sa_len);
1655
1656 /* validity check */
1657 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1658 IPSECLOG(LOG_DEBUG, "invalid request "
1659 "address length.\n");
1660 *error = EINVAL;
1661 goto free_exit;
1662 }
1663 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1664 }
1665
1666 (*p_isr)->sav = NULL;
1667 (*p_isr)->sp = newsp;
1668
1669 /* initialization for the next. */
1670 p_isr = &(*p_isr)->next;
1671 tlen -= xisr->sadb_x_ipsecrequest_len;
1672
1673 /* validity check */
1674 if (tlen < 0) {
1675 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1676 *error = EINVAL;
1677 goto free_exit;
1678 }
1679
1680 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1681 xisr->sadb_x_ipsecrequest_len);
1682 }
1683 }
1684
1685 *error = 0;
1686 return newsp;
1687
1688 free_exit:
1689 KEY_FREESP(&newsp);
1690 return NULL;
1691 }
1692
1693 static u_int16_t
1694 key_newreqid(void)
1695 {
1696 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1697
1698 auto_reqid = (auto_reqid == 0xffff ?
1699 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1700
1701 /* XXX should be unique check */
1702
1703 return auto_reqid;
1704 }
1705
1706 /*
1707 * copy secpolicy struct to sadb_x_policy structure indicated.
1708 */
1709 struct mbuf *
1710 key_sp2msg(const struct secpolicy *sp)
1711 {
1712 struct sadb_x_policy *xpl;
1713 int tlen;
1714 char *p;
1715 struct mbuf *m;
1716
1717 KASSERT(sp != NULL);
1718
1719 tlen = key_getspreqmsglen(sp);
1720
1721 m = key_alloc_mbuf(tlen);
1722 if (!m || m->m_next) { /*XXX*/
1723 if (m)
1724 m_freem(m);
1725 return NULL;
1726 }
1727
1728 m->m_len = tlen;
1729 m->m_next = NULL;
1730 xpl = mtod(m, struct sadb_x_policy *);
1731 memset(xpl, 0, tlen);
1732
1733 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1734 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1735 xpl->sadb_x_policy_type = sp->policy;
1736 xpl->sadb_x_policy_dir = sp->spidx.dir;
1737 xpl->sadb_x_policy_id = sp->id;
1738 p = (char *)xpl + sizeof(*xpl);
1739
1740 /* if is the policy for ipsec ? */
1741 if (sp->policy == IPSEC_POLICY_IPSEC) {
1742 struct sadb_x_ipsecrequest *xisr;
1743 struct ipsecrequest *isr;
1744
1745 for (isr = sp->req; isr != NULL; isr = isr->next) {
1746
1747 xisr = (struct sadb_x_ipsecrequest *)p;
1748
1749 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1750 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1751 xisr->sadb_x_ipsecrequest_level = isr->level;
1752 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1753
1754 p += sizeof(*xisr);
1755 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1756 p += isr->saidx.src.sa.sa_len;
1757 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1758 p += isr->saidx.src.sa.sa_len;
1759
1760 xisr->sadb_x_ipsecrequest_len =
1761 PFKEY_ALIGN8(sizeof(*xisr)
1762 + isr->saidx.src.sa.sa_len
1763 + isr->saidx.dst.sa.sa_len);
1764 }
1765 }
1766
1767 return m;
1768 }
1769
1770 /* m will not be freed nor modified */
1771 static struct mbuf *
1772 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1773 int ndeep, int nitem, ...)
1774 {
1775 va_list ap;
1776 int idx;
1777 int i;
1778 struct mbuf *result = NULL, *n;
1779 int len;
1780
1781 KASSERT(m != NULL);
1782 KASSERT(mhp != NULL);
1783
1784 va_start(ap, nitem);
1785 for (i = 0; i < nitem; i++) {
1786 idx = va_arg(ap, int);
1787 if (idx < 0 || idx > SADB_EXT_MAX)
1788 goto fail;
1789 /* don't attempt to pull empty extension */
1790 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1791 continue;
1792 if (idx != SADB_EXT_RESERVED &&
1793 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1794 continue;
1795
1796 if (idx == SADB_EXT_RESERVED) {
1797 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1798 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1799 MGETHDR(n, M_DONTWAIT, MT_DATA);
1800 if (!n)
1801 goto fail;
1802 n->m_len = len;
1803 n->m_next = NULL;
1804 m_copydata(m, 0, sizeof(struct sadb_msg),
1805 mtod(n, void *));
1806 } else if (i < ndeep) {
1807 len = mhp->extlen[idx];
1808 n = key_alloc_mbuf(len);
1809 if (!n || n->m_next) { /*XXX*/
1810 if (n)
1811 m_freem(n);
1812 goto fail;
1813 }
1814 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1815 mtod(n, void *));
1816 } else {
1817 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1818 M_DONTWAIT);
1819 }
1820 if (n == NULL)
1821 goto fail;
1822
1823 if (result)
1824 m_cat(result, n);
1825 else
1826 result = n;
1827 }
1828 va_end(ap);
1829
1830 if (result && (result->m_flags & M_PKTHDR) != 0) {
1831 result->m_pkthdr.len = 0;
1832 for (n = result; n; n = n->m_next)
1833 result->m_pkthdr.len += n->m_len;
1834 }
1835
1836 return result;
1837
1838 fail:
1839 va_end(ap);
1840 m_freem(result);
1841 return NULL;
1842 }
1843
1844 /*
1845 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1846 * add an entry to SP database, when received
1847 * <base, address(SD), (lifetime(H),) policy>
1848 * from the user(?).
1849 * Adding to SP database,
1850 * and send
1851 * <base, address(SD), (lifetime(H),) policy>
1852 * to the socket which was send.
1853 *
1854 * SPDADD set a unique policy entry.
1855 * SPDSETIDX like SPDADD without a part of policy requests.
1856 * SPDUPDATE replace a unique policy entry.
1857 *
1858 * m will always be freed.
1859 */
1860 static int
1861 key_spdadd(struct socket *so, struct mbuf *m,
1862 const struct sadb_msghdr *mhp)
1863 {
1864 const struct sockaddr *src, *dst;
1865 const struct sadb_x_policy *xpl0;
1866 struct sadb_x_policy *xpl;
1867 const struct sadb_lifetime *lft = NULL;
1868 struct secpolicyindex spidx;
1869 struct secpolicy *newsp;
1870 int error;
1871
1872 KASSERT(!cpu_softintr_p());
1873 KASSERT(so != NULL);
1874 KASSERT(m != NULL);
1875 KASSERT(mhp != NULL);
1876 KASSERT(mhp->msg != NULL);
1877
1878 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1879 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1880 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1881 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1882 return key_senderror(so, m, EINVAL);
1883 }
1884 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1885 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1886 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1887 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1888 return key_senderror(so, m, EINVAL);
1889 }
1890 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1891 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1892 sizeof(struct sadb_lifetime)) {
1893 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1894 return key_senderror(so, m, EINVAL);
1895 }
1896 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1897 }
1898
1899 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1900
1901 /* checking the direciton. */
1902 switch (xpl0->sadb_x_policy_dir) {
1903 case IPSEC_DIR_INBOUND:
1904 case IPSEC_DIR_OUTBOUND:
1905 break;
1906 default:
1907 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1908 return key_senderror(so, m, EINVAL);
1909 }
1910
1911 /* check policy */
1912 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1913 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1914 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1915 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1916 return key_senderror(so, m, EINVAL);
1917 }
1918
1919 /* policy requests are mandatory when action is ipsec. */
1920 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1921 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1922 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1923 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1924 return key_senderror(so, m, EINVAL);
1925 }
1926
1927 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1928 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1929
1930 /* sanity check on addr pair */
1931 if (src->sa_family != dst->sa_family)
1932 return key_senderror(so, m, EINVAL);
1933 if (src->sa_len != dst->sa_len)
1934 return key_senderror(so, m, EINVAL);
1935
1936 key_init_spidx_bymsghdr(&spidx, mhp);
1937
1938 /*
1939 * checking there is SP already or not.
1940 * SPDUPDATE doesn't depend on whether there is a SP or not.
1941 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1942 * then error.
1943 */
1944 {
1945 struct secpolicy *sp;
1946
1947 sp = key_getsp(&spidx);
1948 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1949 if (sp) {
1950 key_sp_dead(sp);
1951 key_sp_unlink(sp); /* XXX jrs ordering */
1952 KEY_FREESP(&sp);
1953 }
1954 } else {
1955 if (sp != NULL) {
1956 KEY_FREESP(&sp);
1957 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1958 return key_senderror(so, m, EEXIST);
1959 }
1960 }
1961 }
1962
1963 /* allocation new SP entry */
1964 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1965 if (newsp == NULL) {
1966 return key_senderror(so, m, error);
1967 }
1968
1969 newsp->id = key_getnewspid();
1970 if (newsp->id == 0) {
1971 kmem_free(newsp, sizeof(*newsp));
1972 return key_senderror(so, m, ENOBUFS);
1973 }
1974
1975 newsp->spidx = spidx;
1976 newsp->created = time_uptime;
1977 newsp->lastused = newsp->created;
1978 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1979 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1980
1981 newsp->refcnt = 1; /* do not reclaim until I say I do */
1982 newsp->state = IPSEC_SPSTATE_ALIVE;
1983 if (newsp->policy == IPSEC_POLICY_IPSEC)
1984 KASSERT(newsp->req != NULL);
1985 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1986
1987 #ifdef notyet
1988 /* delete the entry in spacqtree */
1989 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1990 struct secspacq *spacq = key_getspacq(&spidx);
1991 if (spacq != NULL) {
1992 /* reset counter in order to deletion by timehandler. */
1993 spacq->created = time_uptime;
1994 spacq->count = 0;
1995 }
1996 }
1997 #endif
1998
1999 /* Invalidate all cached SPD pointers in the PCBs. */
2000 ipsec_invalpcbcacheall();
2001
2002 #if defined(GATEWAY)
2003 /* Invalidate the ipflow cache, as well. */
2004 ipflow_invalidate_all(0);
2005 #ifdef INET6
2006 if (in6_present)
2007 ip6flow_invalidate_all(0);
2008 #endif /* INET6 */
2009 #endif /* GATEWAY */
2010
2011 {
2012 struct mbuf *n, *mpolicy;
2013 int off;
2014
2015 /* create new sadb_msg to reply. */
2016 if (lft) {
2017 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2018 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2019 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2020 } else {
2021 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2022 SADB_X_EXT_POLICY,
2023 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2024 }
2025 if (!n)
2026 return key_senderror(so, m, ENOBUFS);
2027
2028 n = key_fill_replymsg(n, 0);
2029 if (n == NULL)
2030 return key_senderror(so, m, ENOBUFS);
2031
2032 off = 0;
2033 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2034 sizeof(*xpl), &off);
2035 if (mpolicy == NULL) {
2036 /* n is already freed */
2037 return key_senderror(so, m, ENOBUFS);
2038 }
2039 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2040 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2041 m_freem(n);
2042 return key_senderror(so, m, EINVAL);
2043 }
2044 xpl->sadb_x_policy_id = newsp->id;
2045
2046 m_freem(m);
2047 key_update_used();
2048 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2049 }
2050 }
2051
2052 /*
2053 * get new policy id.
2054 * OUT:
2055 * 0: failure.
2056 * others: success.
2057 */
2058 static u_int32_t
2059 key_getnewspid(void)
2060 {
2061 u_int32_t newid = 0;
2062 int count = key_spi_trycnt; /* XXX */
2063 struct secpolicy *sp;
2064
2065 /* when requesting to allocate spi ranged */
2066 while (count--) {
2067 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2068
2069 sp = key_getspbyid(newid);
2070 if (sp == NULL)
2071 break;
2072
2073 KEY_FREESP(&sp);
2074 }
2075
2076 if (count == 0 || newid == 0) {
2077 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2078 return 0;
2079 }
2080
2081 return newid;
2082 }
2083
2084 /*
2085 * SADB_SPDDELETE processing
2086 * receive
2087 * <base, address(SD), policy(*)>
2088 * from the user(?), and set SADB_SASTATE_DEAD,
2089 * and send,
2090 * <base, address(SD), policy(*)>
2091 * to the ikmpd.
2092 * policy(*) including direction of policy.
2093 *
2094 * m will always be freed.
2095 */
2096 static int
2097 key_spddelete(struct socket *so, struct mbuf *m,
2098 const struct sadb_msghdr *mhp)
2099 {
2100 struct sadb_x_policy *xpl0;
2101 struct secpolicyindex spidx;
2102 struct secpolicy *sp;
2103
2104 KASSERT(so != NULL);
2105 KASSERT(m != NULL);
2106 KASSERT(mhp != NULL);
2107 KASSERT(mhp->msg != NULL);
2108
2109 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2110 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2111 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2112 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2113 return key_senderror(so, m, EINVAL);
2114 }
2115 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2116 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2117 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2118 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2119 return key_senderror(so, m, EINVAL);
2120 }
2121
2122 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2123
2124 /* checking the direciton. */
2125 switch (xpl0->sadb_x_policy_dir) {
2126 case IPSEC_DIR_INBOUND:
2127 case IPSEC_DIR_OUTBOUND:
2128 break;
2129 default:
2130 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2131 return key_senderror(so, m, EINVAL);
2132 }
2133
2134 /* make secindex */
2135 key_init_spidx_bymsghdr(&spidx, mhp);
2136
2137 /* Is there SP in SPD ? */
2138 sp = key_getsp(&spidx);
2139 if (sp == NULL) {
2140 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2141 return key_senderror(so, m, EINVAL);
2142 }
2143
2144 /* save policy id to buffer to be returned. */
2145 xpl0->sadb_x_policy_id = sp->id;
2146
2147 key_sp_dead(sp);
2148 key_sp_unlink(sp); /* XXX jrs ordering */
2149 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2150
2151 /* Invalidate all cached SPD pointers in the PCBs. */
2152 ipsec_invalpcbcacheall();
2153
2154 /* We're deleting policy; no need to invalidate the ipflow cache. */
2155
2156 {
2157 struct mbuf *n;
2158
2159 /* create new sadb_msg to reply. */
2160 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2161 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2162 if (!n)
2163 return key_senderror(so, m, ENOBUFS);
2164
2165 n = key_fill_replymsg(n, 0);
2166 if (n == NULL)
2167 return key_senderror(so, m, ENOBUFS);
2168
2169 m_freem(m);
2170 key_update_used();
2171 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2172 }
2173 }
2174
2175 /*
2176 * SADB_SPDDELETE2 processing
2177 * receive
2178 * <base, policy(*)>
2179 * from the user(?), and set SADB_SASTATE_DEAD,
2180 * and send,
2181 * <base, policy(*)>
2182 * to the ikmpd.
2183 * policy(*) including direction of policy.
2184 *
2185 * m will always be freed.
2186 */
2187 static int
2188 key_spddelete2(struct socket *so, struct mbuf *m,
2189 const struct sadb_msghdr *mhp)
2190 {
2191 u_int32_t id;
2192 struct secpolicy *sp;
2193
2194 KASSERT(so != NULL);
2195 KASSERT(m != NULL);
2196 KASSERT(mhp != NULL);
2197 KASSERT(mhp->msg != NULL);
2198
2199 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2200 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2201 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2202 key_senderror(so, m, EINVAL);
2203 return 0;
2204 }
2205
2206 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2207
2208 /* Is there SP in SPD ? */
2209 sp = key_getspbyid(id);
2210 if (sp == NULL) {
2211 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2212 return key_senderror(so, m, EINVAL);
2213 }
2214
2215 key_sp_dead(sp);
2216 key_sp_unlink(sp); /* XXX jrs ordering */
2217 KEY_FREESP(&sp); /* ref gained by key_getsp */
2218 sp = NULL;
2219
2220 /* Invalidate all cached SPD pointers in the PCBs. */
2221 ipsec_invalpcbcacheall();
2222
2223 /* We're deleting policy; no need to invalidate the ipflow cache. */
2224
2225 {
2226 struct mbuf *n, *nn;
2227 int off, len;
2228
2229 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2230
2231 /* create new sadb_msg to reply. */
2232 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2233
2234 MGETHDR(n, M_DONTWAIT, MT_DATA);
2235 if (n && len > MHLEN) {
2236 MCLGET(n, M_DONTWAIT);
2237 if ((n->m_flags & M_EXT) == 0) {
2238 m_freem(n);
2239 n = NULL;
2240 }
2241 }
2242 if (!n)
2243 return key_senderror(so, m, ENOBUFS);
2244
2245 n->m_len = len;
2246 n->m_next = NULL;
2247 off = 0;
2248
2249 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2250 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2251
2252 KASSERTMSG(off == len, "length inconsistency");
2253
2254 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2255 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2256 if (!n->m_next) {
2257 m_freem(n);
2258 return key_senderror(so, m, ENOBUFS);
2259 }
2260
2261 n->m_pkthdr.len = 0;
2262 for (nn = n; nn; nn = nn->m_next)
2263 n->m_pkthdr.len += nn->m_len;
2264
2265 n = key_fill_replymsg(n, 0);
2266 if (n == NULL)
2267 return key_senderror(so, m, ENOBUFS);
2268
2269 m_freem(m);
2270 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2271 }
2272 }
2273
2274 /*
2275 * SADB_X_GET processing
2276 * receive
2277 * <base, policy(*)>
2278 * from the user(?),
2279 * and send,
2280 * <base, address(SD), policy>
2281 * to the ikmpd.
2282 * policy(*) including direction of policy.
2283 *
2284 * m will always be freed.
2285 */
2286 static int
2287 key_spdget(struct socket *so, struct mbuf *m,
2288 const struct sadb_msghdr *mhp)
2289 {
2290 u_int32_t id;
2291 struct secpolicy *sp;
2292 struct mbuf *n;
2293
2294 KASSERT(so != NULL);
2295 KASSERT(m != NULL);
2296 KASSERT(mhp != NULL);
2297 KASSERT(mhp->msg != NULL);
2298
2299 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2300 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2301 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2302 return key_senderror(so, m, EINVAL);
2303 }
2304
2305 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2306
2307 /* Is there SP in SPD ? */
2308 sp = key_getspbyid(id);
2309 if (sp == NULL) {
2310 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2311 return key_senderror(so, m, ENOENT);
2312 }
2313
2314 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2315 mhp->msg->sadb_msg_pid);
2316 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2317 if (n != NULL) {
2318 m_freem(m);
2319 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2320 } else
2321 return key_senderror(so, m, ENOBUFS);
2322 }
2323
2324 #ifdef notyet
2325 /*
2326 * SADB_X_SPDACQUIRE processing.
2327 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2328 * send
2329 * <base, policy(*)>
2330 * to KMD, and expect to receive
2331 * <base> with SADB_X_SPDACQUIRE if error occurred,
2332 * or
2333 * <base, policy>
2334 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2335 * policy(*) is without policy requests.
2336 *
2337 * 0 : succeed
2338 * others: error number
2339 */
2340 int
2341 key_spdacquire(const struct secpolicy *sp)
2342 {
2343 struct mbuf *result = NULL, *m;
2344 struct secspacq *newspacq;
2345 int error;
2346
2347 KASSERT(sp != NULL);
2348 KASSERTMSG(sp->req == NULL, "called but there is request");
2349 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2350 "policy mismathed. IPsec is expected");
2351
2352 /* Get an entry to check whether sent message or not. */
2353 newspacq = key_getspacq(&sp->spidx);
2354 if (newspacq != NULL) {
2355 if (key_blockacq_count < newspacq->count) {
2356 /* reset counter and do send message. */
2357 newspacq->count = 0;
2358 } else {
2359 /* increment counter and do nothing. */
2360 newspacq->count++;
2361 return 0;
2362 }
2363 } else {
2364 /* make new entry for blocking to send SADB_ACQUIRE. */
2365 newspacq = key_newspacq(&sp->spidx);
2366 if (newspacq == NULL)
2367 return ENOBUFS;
2368
2369 /* add to acqtree */
2370 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2371 }
2372
2373 /* create new sadb_msg to reply. */
2374 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2375 if (!m) {
2376 error = ENOBUFS;
2377 goto fail;
2378 }
2379 result = m;
2380
2381 result->m_pkthdr.len = 0;
2382 for (m = result; m; m = m->m_next)
2383 result->m_pkthdr.len += m->m_len;
2384
2385 mtod(result, struct sadb_msg *)->sadb_msg_len =
2386 PFKEY_UNIT64(result->m_pkthdr.len);
2387
2388 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2389
2390 fail:
2391 if (result)
2392 m_freem(result);
2393 return error;
2394 }
2395 #endif /* notyet */
2396
2397 /*
2398 * SADB_SPDFLUSH processing
2399 * receive
2400 * <base>
2401 * from the user, and free all entries in secpctree.
2402 * and send,
2403 * <base>
2404 * to the user.
2405 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2406 *
2407 * m will always be freed.
2408 */
2409 static int
2410 key_spdflush(struct socket *so, struct mbuf *m,
2411 const struct sadb_msghdr *mhp)
2412 {
2413 struct sadb_msg *newmsg;
2414 struct secpolicy *sp;
2415 u_int dir;
2416
2417 KASSERT(so != NULL);
2418 KASSERT(m != NULL);
2419 KASSERT(mhp != NULL);
2420 KASSERT(mhp->msg != NULL);
2421
2422 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2423 return key_senderror(so, m, EINVAL);
2424
2425 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2426 struct secpolicy * nextsp;
2427 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2428 if (sp->state == IPSEC_SPSTATE_DEAD)
2429 continue;
2430 key_sp_dead(sp);
2431 key_sp_unlink(sp);
2432 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2433 continue;
2434 }
2435 }
2436
2437 /* Invalidate all cached SPD pointers in the PCBs. */
2438 ipsec_invalpcbcacheall();
2439
2440 /* We're deleting policy; no need to invalidate the ipflow cache. */
2441
2442 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2443 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2444 return key_senderror(so, m, ENOBUFS);
2445 }
2446
2447 if (m->m_next)
2448 m_freem(m->m_next);
2449 m->m_next = NULL;
2450 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2451 newmsg = mtod(m, struct sadb_msg *);
2452 newmsg->sadb_msg_errno = 0;
2453 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2454
2455 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2456 }
2457
2458 static struct sockaddr key_src = {
2459 .sa_len = 2,
2460 .sa_family = PF_KEY,
2461 };
2462
2463 static struct mbuf *
2464 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2465 {
2466 struct secpolicy *sp;
2467 int cnt;
2468 u_int dir;
2469 struct mbuf *m, *n, *prev;
2470 int totlen;
2471
2472 *lenp = 0;
2473
2474 /* search SPD entry and get buffer size. */
2475 cnt = 0;
2476 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2477 LIST_FOREACH(sp, &sptree[dir], chain) {
2478 cnt++;
2479 }
2480 }
2481
2482 if (cnt == 0) {
2483 *errorp = ENOENT;
2484 return (NULL);
2485 }
2486
2487 m = NULL;
2488 prev = m;
2489 totlen = 0;
2490 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2491 LIST_FOREACH(sp, &sptree[dir], chain) {
2492 --cnt;
2493 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2494
2495 if (!n) {
2496 *errorp = ENOBUFS;
2497 if (m)
2498 m_freem(m);
2499 return (NULL);
2500 }
2501
2502 totlen += n->m_pkthdr.len;
2503 if (!m) {
2504 m = n;
2505 } else {
2506 prev->m_nextpkt = n;
2507 }
2508 prev = n;
2509 }
2510 }
2511
2512 *lenp = totlen;
2513 *errorp = 0;
2514 return (m);
2515 }
2516
2517 /*
2518 * SADB_SPDDUMP processing
2519 * receive
2520 * <base>
2521 * from the user, and dump all SP leaves
2522 * and send,
2523 * <base> .....
2524 * to the ikmpd.
2525 *
2526 * m will always be freed.
2527 */
2528 static int
2529 key_spddump(struct socket *so, struct mbuf *m0,
2530 const struct sadb_msghdr *mhp)
2531 {
2532 struct mbuf *n;
2533 int error, len;
2534 int ok, s;
2535 pid_t pid;
2536
2537 KASSERT(so != NULL);
2538 KASSERT(m0 != NULL);
2539 KASSERT(mhp != NULL);
2540 KASSERT(mhp->msg != NULL);
2541
2542 pid = mhp->msg->sadb_msg_pid;
2543 /*
2544 * If the requestor has insufficient socket-buffer space
2545 * for the entire chain, nobody gets any response to the DUMP.
2546 * XXX For now, only the requestor ever gets anything.
2547 * Moreover, if the requestor has any space at all, they receive
2548 * the entire chain, otherwise the request is refused with ENOBUFS.
2549 */
2550 if (sbspace(&so->so_rcv) <= 0) {
2551 return key_senderror(so, m0, ENOBUFS);
2552 }
2553
2554 s = splsoftnet();
2555 n = key_setspddump_chain(&error, &len, pid);
2556 splx(s);
2557
2558 if (n == NULL) {
2559 return key_senderror(so, m0, ENOENT);
2560 }
2561 {
2562 uint64_t *ps = PFKEY_STAT_GETREF();
2563 ps[PFKEY_STAT_IN_TOTAL]++;
2564 ps[PFKEY_STAT_IN_BYTES] += len;
2565 PFKEY_STAT_PUTREF();
2566 }
2567
2568 /*
2569 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2570 * The requestor receives either the entire chain, or an
2571 * error message with ENOBUFS.
2572 */
2573
2574 /*
2575 * sbappendchainwith record takes the chain of entries, one
2576 * packet-record per SPD entry, prepends the key_src sockaddr
2577 * to each packet-record, links the sockaddr mbufs into a new
2578 * list of records, then appends the entire resulting
2579 * list to the requesting socket.
2580 */
2581 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2582 SB_PRIO_ONESHOT_OVERFLOW);
2583
2584 if (!ok) {
2585 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2586 m_freem(n);
2587 return key_senderror(so, m0, ENOBUFS);
2588 }
2589
2590 m_freem(m0);
2591 return error;
2592 }
2593
2594 /*
2595 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2596 */
2597 static int
2598 key_nat_map(struct socket *so, struct mbuf *m,
2599 const struct sadb_msghdr *mhp)
2600 {
2601 struct sadb_x_nat_t_type *type;
2602 struct sadb_x_nat_t_port *sport;
2603 struct sadb_x_nat_t_port *dport;
2604 struct sadb_address *iaddr, *raddr;
2605 struct sadb_x_nat_t_frag *frag;
2606
2607 KASSERT(so != NULL);
2608 KASSERT(m != NULL);
2609 KASSERT(mhp != NULL);
2610 KASSERT(mhp->msg != NULL);
2611
2612 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2613 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2614 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2615 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2616 return key_senderror(so, m, EINVAL);
2617 }
2618 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2619 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2620 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2621 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2622 return key_senderror(so, m, EINVAL);
2623 }
2624
2625 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2626 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2627 IPSECLOG(LOG_DEBUG, "invalid message\n");
2628 return key_senderror(so, m, EINVAL);
2629 }
2630
2631 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2632 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2633 IPSECLOG(LOG_DEBUG, "invalid message\n");
2634 return key_senderror(so, m, EINVAL);
2635 }
2636
2637 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2638 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2639 IPSECLOG(LOG_DEBUG, "invalid message\n");
2640 return key_senderror(so, m, EINVAL);
2641 }
2642
2643 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2644 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2645 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2646 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2647 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2648 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2649
2650 /*
2651 * XXX handle that, it should also contain a SA, or anything
2652 * that enable to update the SA information.
2653 */
2654
2655 return 0;
2656 }
2657
2658 static struct mbuf *
2659 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2660 {
2661 struct mbuf *result = NULL, *m;
2662
2663 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2664 if (!m)
2665 goto fail;
2666 result = m;
2667
2668 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2669 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2670 if (!m)
2671 goto fail;
2672 m_cat(result, m);
2673
2674 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2675 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2676 if (!m)
2677 goto fail;
2678 m_cat(result, m);
2679
2680 m = key_sp2msg(sp);
2681 if (!m)
2682 goto fail;
2683 m_cat(result, m);
2684
2685 if ((result->m_flags & M_PKTHDR) == 0)
2686 goto fail;
2687
2688 if (result->m_len < sizeof(struct sadb_msg)) {
2689 result = m_pullup(result, sizeof(struct sadb_msg));
2690 if (result == NULL)
2691 goto fail;
2692 }
2693
2694 result->m_pkthdr.len = 0;
2695 for (m = result; m; m = m->m_next)
2696 result->m_pkthdr.len += m->m_len;
2697
2698 mtod(result, struct sadb_msg *)->sadb_msg_len =
2699 PFKEY_UNIT64(result->m_pkthdr.len);
2700
2701 return result;
2702
2703 fail:
2704 m_freem(result);
2705 return NULL;
2706 }
2707
2708 /*
2709 * get PFKEY message length for security policy and request.
2710 */
2711 static u_int
2712 key_getspreqmsglen(const struct secpolicy *sp)
2713 {
2714 u_int tlen;
2715
2716 tlen = sizeof(struct sadb_x_policy);
2717
2718 /* if is the policy for ipsec ? */
2719 if (sp->policy != IPSEC_POLICY_IPSEC)
2720 return tlen;
2721
2722 /* get length of ipsec requests */
2723 {
2724 const struct ipsecrequest *isr;
2725 int len;
2726
2727 for (isr = sp->req; isr != NULL; isr = isr->next) {
2728 len = sizeof(struct sadb_x_ipsecrequest)
2729 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2730
2731 tlen += PFKEY_ALIGN8(len);
2732 }
2733 }
2734
2735 return tlen;
2736 }
2737
2738 /*
2739 * SADB_SPDEXPIRE processing
2740 * send
2741 * <base, address(SD), lifetime(CH), policy>
2742 * to KMD by PF_KEY.
2743 *
2744 * OUT: 0 : succeed
2745 * others : error number
2746 */
2747 static int
2748 key_spdexpire(struct secpolicy *sp)
2749 {
2750 int s;
2751 struct mbuf *result = NULL, *m;
2752 int len;
2753 int error = -1;
2754 struct sadb_lifetime *lt;
2755
2756 /* XXX: Why do we lock ? */
2757 s = splsoftnet(); /*called from softclock()*/
2758
2759 KASSERT(sp != NULL);
2760
2761 /* set msg header */
2762 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2763 if (!m) {
2764 error = ENOBUFS;
2765 goto fail;
2766 }
2767 result = m;
2768
2769 /* create lifetime extension (current and hard) */
2770 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2771 m = key_alloc_mbuf(len);
2772 if (!m || m->m_next) { /*XXX*/
2773 if (m)
2774 m_freem(m);
2775 error = ENOBUFS;
2776 goto fail;
2777 }
2778 memset(mtod(m, void *), 0, len);
2779 lt = mtod(m, struct sadb_lifetime *);
2780 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2781 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2782 lt->sadb_lifetime_allocations = 0;
2783 lt->sadb_lifetime_bytes = 0;
2784 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2785 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2786 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2787 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2788 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2789 lt->sadb_lifetime_allocations = 0;
2790 lt->sadb_lifetime_bytes = 0;
2791 lt->sadb_lifetime_addtime = sp->lifetime;
2792 lt->sadb_lifetime_usetime = sp->validtime;
2793 m_cat(result, m);
2794
2795 /* set sadb_address for source */
2796 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2797 sp->spidx.prefs, sp->spidx.ul_proto);
2798 if (!m) {
2799 error = ENOBUFS;
2800 goto fail;
2801 }
2802 m_cat(result, m);
2803
2804 /* set sadb_address for destination */
2805 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2806 sp->spidx.prefd, sp->spidx.ul_proto);
2807 if (!m) {
2808 error = ENOBUFS;
2809 goto fail;
2810 }
2811 m_cat(result, m);
2812
2813 /* set secpolicy */
2814 m = key_sp2msg(sp);
2815 if (!m) {
2816 error = ENOBUFS;
2817 goto fail;
2818 }
2819 m_cat(result, m);
2820
2821 if ((result->m_flags & M_PKTHDR) == 0) {
2822 error = EINVAL;
2823 goto fail;
2824 }
2825
2826 if (result->m_len < sizeof(struct sadb_msg)) {
2827 result = m_pullup(result, sizeof(struct sadb_msg));
2828 if (result == NULL) {
2829 error = ENOBUFS;
2830 goto fail;
2831 }
2832 }
2833
2834 result->m_pkthdr.len = 0;
2835 for (m = result; m; m = m->m_next)
2836 result->m_pkthdr.len += m->m_len;
2837
2838 mtod(result, struct sadb_msg *)->sadb_msg_len =
2839 PFKEY_UNIT64(result->m_pkthdr.len);
2840
2841 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2842
2843 fail:
2844 if (result)
2845 m_freem(result);
2846 splx(s);
2847 return error;
2848 }
2849
2850 /* %%% SAD management */
2851 /*
2852 * allocating a memory for new SA head, and copy from the values of mhp.
2853 * OUT: NULL : failure due to the lack of memory.
2854 * others : pointer to new SA head.
2855 */
2856 static struct secashead *
2857 key_newsah(const struct secasindex *saidx)
2858 {
2859 struct secashead *newsah;
2860 int i;
2861
2862 KASSERT(saidx != NULL);
2863
2864 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2865 for (i = 0; i < __arraycount(newsah->savtree); i++)
2866 LIST_INIT(&newsah->savtree[i]);
2867 newsah->saidx = *saidx;
2868
2869 /* add to saidxtree */
2870 newsah->state = SADB_SASTATE_MATURE;
2871 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2872
2873 return newsah;
2874 }
2875
2876 /*
2877 * delete SA index and all SA registerd.
2878 */
2879 static void
2880 key_delsah(struct secashead *sah)
2881 {
2882 struct secasvar *sav, *nextsav;
2883 u_int state;
2884 int s;
2885 int zombie = 0;
2886
2887 KASSERT(!cpu_softintr_p());
2888 KASSERT(sah != NULL);
2889
2890 s = splsoftnet();
2891
2892 /* searching all SA registerd in the secindex. */
2893 SASTATE_ANY_FOREACH(state) {
2894 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2895 if (sav->refcnt == 0) {
2896 /* sanity check */
2897 KEY_CHKSASTATE(state, sav->state);
2898 KEY_FREESAV(&sav);
2899 } else {
2900 /* give up to delete this sa */
2901 zombie++;
2902 }
2903 }
2904 }
2905
2906 /* don't delete sah only if there are savs. */
2907 if (zombie) {
2908 splx(s);
2909 return;
2910 }
2911
2912 rtcache_free(&sah->sa_route);
2913
2914 /* remove from tree of SA index */
2915 KASSERT(__LIST_CHAINED(sah));
2916 LIST_REMOVE(sah, chain);
2917
2918 if (sah->idents != NULL)
2919 kmem_free(sah->idents, sah->idents_len);
2920 if (sah->identd != NULL)
2921 kmem_free(sah->identd, sah->identd_len);
2922
2923 kmem_free(sah, sizeof(*sah));
2924
2925 splx(s);
2926 return;
2927 }
2928
2929 /*
2930 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2931 * and copy the values of mhp into new buffer.
2932 * When SAD message type is GETSPI:
2933 * to set sequence number from acq_seq++,
2934 * to set zero to SPI.
2935 * not to call key_setsava().
2936 * OUT: NULL : fail
2937 * others : pointer to new secasvar.
2938 *
2939 * does not modify mbuf. does not free mbuf on error.
2940 */
2941 static struct secasvar *
2942 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2943 struct secashead *sah, int *errp,
2944 const char* where, int tag)
2945 {
2946 struct secasvar *newsav;
2947 const struct sadb_sa *xsa;
2948
2949 KASSERT(!cpu_softintr_p());
2950 KASSERT(m != NULL);
2951 KASSERT(mhp != NULL);
2952 KASSERT(mhp->msg != NULL);
2953 KASSERT(sah != NULL);
2954
2955 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2956
2957 switch (mhp->msg->sadb_msg_type) {
2958 case SADB_GETSPI:
2959 newsav->spi = 0;
2960
2961 #ifdef IPSEC_DOSEQCHECK
2962 /* sync sequence number */
2963 if (mhp->msg->sadb_msg_seq == 0)
2964 newsav->seq =
2965 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2966 else
2967 #endif
2968 newsav->seq = mhp->msg->sadb_msg_seq;
2969 break;
2970
2971 case SADB_ADD:
2972 /* sanity check */
2973 if (mhp->ext[SADB_EXT_SA] == NULL) {
2974 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2975 *errp = EINVAL;
2976 goto error;
2977 }
2978 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2979 newsav->spi = xsa->sadb_sa_spi;
2980 newsav->seq = mhp->msg->sadb_msg_seq;
2981 break;
2982 default:
2983 *errp = EINVAL;
2984 goto error;
2985 }
2986
2987 /* copy sav values */
2988 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2989 *errp = key_setsaval(newsav, m, mhp);
2990 if (*errp)
2991 goto error;
2992 }
2993
2994 /* reset created */
2995 newsav->created = time_uptime;
2996 newsav->pid = mhp->msg->sadb_msg_pid;
2997
2998 /* add to satree */
2999 newsav->sah = sah;
3000 newsav->refcnt = 1;
3001 newsav->state = SADB_SASTATE_LARVAL;
3002 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3003 secasvar, chain);
3004 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3005 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3006 return newsav;
3007
3008 error:
3009 KASSERT(*errp != 0);
3010 kmem_free(newsav, sizeof(*newsav));
3011 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3012 "DP from %s:%u return SA:NULL\n", where, tag);
3013 return NULL;
3014 }
3015
3016 /*
3017 * free() SA variable entry.
3018 */
3019 static void
3020 key_delsav(struct secasvar *sav)
3021 {
3022
3023 KASSERT(sav != NULL);
3024 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3025
3026 /* remove from SA header */
3027 KASSERT(__LIST_CHAINED(sav));
3028 LIST_REMOVE(sav, chain);
3029
3030 /*
3031 * Cleanup xform state. Note that zeroize'ing causes the
3032 * keys to be cleared; otherwise we must do it ourself.
3033 */
3034 if (sav->tdb_xform != NULL) {
3035 sav->tdb_xform->xf_zeroize(sav);
3036 sav->tdb_xform = NULL;
3037 } else {
3038 if (sav->key_auth != NULL)
3039 explicit_memset(_KEYBUF(sav->key_auth), 0,
3040 _KEYLEN(sav->key_auth));
3041 if (sav->key_enc != NULL)
3042 explicit_memset(_KEYBUF(sav->key_enc), 0,
3043 _KEYLEN(sav->key_enc));
3044 }
3045
3046 key_freesaval(sav);
3047 kmem_intr_free(sav, sizeof(*sav));
3048
3049 return;
3050 }
3051
3052 /*
3053 * search SAD.
3054 * OUT:
3055 * NULL : not found
3056 * others : found, pointer to a SA.
3057 */
3058 static struct secashead *
3059 key_getsah(const struct secasindex *saidx, int flag)
3060 {
3061 struct secashead *sah;
3062
3063 LIST_FOREACH(sah, &sahtree, chain) {
3064 if (sah->state == SADB_SASTATE_DEAD)
3065 continue;
3066 if (key_saidx_match(&sah->saidx, saidx, flag))
3067 return sah;
3068 }
3069
3070 return NULL;
3071 }
3072
3073 /*
3074 * check not to be duplicated SPI.
3075 * NOTE: this function is too slow due to searching all SAD.
3076 * OUT:
3077 * NULL : not found
3078 * others : found, pointer to a SA.
3079 */
3080 static struct secasvar *
3081 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3082 {
3083 struct secashead *sah;
3084 struct secasvar *sav;
3085
3086 /* check address family */
3087 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3088 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3089 return NULL;
3090 }
3091
3092 /* check all SAD */
3093 LIST_FOREACH(sah, &sahtree, chain) {
3094 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3095 continue;
3096 sav = key_getsavbyspi(sah, spi);
3097 if (sav != NULL)
3098 return sav;
3099 }
3100
3101 return NULL;
3102 }
3103
3104 /*
3105 * search SAD litmited alive SA, protocol, SPI.
3106 * OUT:
3107 * NULL : not found
3108 * others : found, pointer to a SA.
3109 */
3110 static struct secasvar *
3111 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3112 {
3113 struct secasvar *sav;
3114 u_int state;
3115
3116 /* search all status */
3117 SASTATE_ALIVE_FOREACH(state) {
3118 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3119
3120 /* sanity check */
3121 if (sav->state != state) {
3122 IPSECLOG(LOG_DEBUG,
3123 "invalid sav->state (queue: %d SA: %d)\n",
3124 state, sav->state);
3125 continue;
3126 }
3127
3128 if (sav->spi == spi)
3129 return sav;
3130 }
3131 }
3132
3133 return NULL;
3134 }
3135
3136 /*
3137 * Free allocated data to member variables of sav:
3138 * sav->replay, sav->key_* and sav->lft_*.
3139 */
3140 static void
3141 key_freesaval(struct secasvar *sav)
3142 {
3143
3144 if (sav->replay != NULL) {
3145 kmem_intr_free(sav->replay, sav->replay_len);
3146 sav->replay = NULL;
3147 sav->replay_len = 0;
3148 }
3149 if (sav->key_auth != NULL) {
3150 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3151 sav->key_auth = NULL;
3152 sav->key_auth_len = 0;
3153 }
3154 if (sav->key_enc != NULL) {
3155 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3156 sav->key_enc = NULL;
3157 sav->key_enc_len = 0;
3158 }
3159 if (sav->lft_c != NULL) {
3160 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3161 sav->lft_c = NULL;
3162 }
3163 if (sav->lft_h != NULL) {
3164 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3165 sav->lft_h = NULL;
3166 }
3167 if (sav->lft_s != NULL) {
3168 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3169 sav->lft_s = NULL;
3170 }
3171 }
3172
3173 /*
3174 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3175 * You must update these if need.
3176 * OUT: 0: success.
3177 * !0: failure.
3178 *
3179 * does not modify mbuf. does not free mbuf on error.
3180 */
3181 static int
3182 key_setsaval(struct secasvar *sav, struct mbuf *m,
3183 const struct sadb_msghdr *mhp)
3184 {
3185 int error = 0;
3186
3187 KASSERT(!cpu_softintr_p());
3188 KASSERT(m != NULL);
3189 KASSERT(mhp != NULL);
3190 KASSERT(mhp->msg != NULL);
3191
3192 /* initialization */
3193 key_freesaval(sav);
3194 sav->tdb_xform = NULL; /* transform */
3195 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3196 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3197 sav->tdb_compalgxform = NULL; /* compression algorithm */
3198 sav->natt_type = 0;
3199 sav->esp_frag = 0;
3200
3201 /* SA */
3202 if (mhp->ext[SADB_EXT_SA] != NULL) {
3203 const struct sadb_sa *sa0;
3204
3205 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3206 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3207 error = EINVAL;
3208 goto fail;
3209 }
3210
3211 sav->alg_auth = sa0->sadb_sa_auth;
3212 sav->alg_enc = sa0->sadb_sa_encrypt;
3213 sav->flags = sa0->sadb_sa_flags;
3214
3215 /* replay window */
3216 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3217 size_t len = sizeof(struct secreplay) +
3218 sa0->sadb_sa_replay;
3219 sav->replay = kmem_zalloc(len, KM_SLEEP);
3220 sav->replay_len = len;
3221 if (sa0->sadb_sa_replay != 0)
3222 sav->replay->bitmap = (char*)(sav->replay+1);
3223 sav->replay->wsize = sa0->sadb_sa_replay;
3224 }
3225 }
3226
3227 /* Authentication keys */
3228 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3229 const struct sadb_key *key0;
3230 int len;
3231
3232 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3233 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3234
3235 error = 0;
3236 if (len < sizeof(*key0)) {
3237 error = EINVAL;
3238 goto fail;
3239 }
3240 switch (mhp->msg->sadb_msg_satype) {
3241 case SADB_SATYPE_AH:
3242 case SADB_SATYPE_ESP:
3243 case SADB_X_SATYPE_TCPSIGNATURE:
3244 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3245 sav->alg_auth != SADB_X_AALG_NULL)
3246 error = EINVAL;
3247 break;
3248 case SADB_X_SATYPE_IPCOMP:
3249 default:
3250 error = EINVAL;
3251 break;
3252 }
3253 if (error) {
3254 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3255 goto fail;
3256 }
3257
3258 sav->key_auth = key_newbuf(key0, len);
3259 sav->key_auth_len = len;
3260 }
3261
3262 /* Encryption key */
3263 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3264 const struct sadb_key *key0;
3265 int len;
3266
3267 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3268 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3269
3270 error = 0;
3271 if (len < sizeof(*key0)) {
3272 error = EINVAL;
3273 goto fail;
3274 }
3275 switch (mhp->msg->sadb_msg_satype) {
3276 case SADB_SATYPE_ESP:
3277 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3278 sav->alg_enc != SADB_EALG_NULL) {
3279 error = EINVAL;
3280 break;
3281 }
3282 sav->key_enc = key_newbuf(key0, len);
3283 sav->key_enc_len = len;
3284 break;
3285 case SADB_X_SATYPE_IPCOMP:
3286 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3287 error = EINVAL;
3288 sav->key_enc = NULL; /*just in case*/
3289 break;
3290 case SADB_SATYPE_AH:
3291 case SADB_X_SATYPE_TCPSIGNATURE:
3292 default:
3293 error = EINVAL;
3294 break;
3295 }
3296 if (error) {
3297 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3298 goto fail;
3299 }
3300 }
3301
3302 /* set iv */
3303 sav->ivlen = 0;
3304
3305 switch (mhp->msg->sadb_msg_satype) {
3306 case SADB_SATYPE_AH:
3307 error = xform_init(sav, XF_AH);
3308 break;
3309 case SADB_SATYPE_ESP:
3310 error = xform_init(sav, XF_ESP);
3311 break;
3312 case SADB_X_SATYPE_IPCOMP:
3313 error = xform_init(sav, XF_IPCOMP);
3314 break;
3315 case SADB_X_SATYPE_TCPSIGNATURE:
3316 error = xform_init(sav, XF_TCPSIGNATURE);
3317 break;
3318 }
3319 if (error) {
3320 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3321 mhp->msg->sadb_msg_satype);
3322 goto fail;
3323 }
3324
3325 /* reset created */
3326 sav->created = time_uptime;
3327
3328 /* make lifetime for CURRENT */
3329 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3330
3331 sav->lft_c->sadb_lifetime_len =
3332 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3333 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3334 sav->lft_c->sadb_lifetime_allocations = 0;
3335 sav->lft_c->sadb_lifetime_bytes = 0;
3336 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3337 sav->lft_c->sadb_lifetime_usetime = 0;
3338
3339 /* lifetimes for HARD and SOFT */
3340 {
3341 const struct sadb_lifetime *lft0;
3342
3343 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3344 if (lft0 != NULL) {
3345 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3346 error = EINVAL;
3347 goto fail;
3348 }
3349 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3350 }
3351
3352 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3353 if (lft0 != NULL) {
3354 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3355 error = EINVAL;
3356 goto fail;
3357 }
3358 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3359 /* to be initialize ? */
3360 }
3361 }
3362
3363 return 0;
3364
3365 fail:
3366 /* initialization */
3367 key_freesaval(sav);
3368
3369 return error;
3370 }
3371
3372 /*
3373 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3374 * OUT: 0: valid
3375 * other: errno
3376 */
3377 static int
3378 key_mature(struct secasvar *sav)
3379 {
3380 int error;
3381
3382 /* check SPI value */
3383 switch (sav->sah->saidx.proto) {
3384 case IPPROTO_ESP:
3385 case IPPROTO_AH:
3386 if (ntohl(sav->spi) <= 255) {
3387 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3388 (u_int32_t)ntohl(sav->spi));
3389 return EINVAL;
3390 }
3391 break;
3392 }
3393
3394 /* check satype */
3395 switch (sav->sah->saidx.proto) {
3396 case IPPROTO_ESP:
3397 /* check flags */
3398 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3399 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3400 IPSECLOG(LOG_DEBUG,
3401 "invalid flag (derived) given to old-esp.\n");
3402 return EINVAL;
3403 }
3404 error = xform_init(sav, XF_ESP);
3405 break;
3406 case IPPROTO_AH:
3407 /* check flags */
3408 if (sav->flags & SADB_X_EXT_DERIV) {
3409 IPSECLOG(LOG_DEBUG,
3410 "invalid flag (derived) given to AH SA.\n");
3411 return EINVAL;
3412 }
3413 if (sav->alg_enc != SADB_EALG_NONE) {
3414 IPSECLOG(LOG_DEBUG,
3415 "protocol and algorithm mismated.\n");
3416 return(EINVAL);
3417 }
3418 error = xform_init(sav, XF_AH);
3419 break;
3420 case IPPROTO_IPCOMP:
3421 if (sav->alg_auth != SADB_AALG_NONE) {
3422 IPSECLOG(LOG_DEBUG,
3423 "protocol and algorithm mismated.\n");
3424 return(EINVAL);
3425 }
3426 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3427 && ntohl(sav->spi) >= 0x10000) {
3428 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3429 return(EINVAL);
3430 }
3431 error = xform_init(sav, XF_IPCOMP);
3432 break;
3433 case IPPROTO_TCP:
3434 if (sav->alg_enc != SADB_EALG_NONE) {
3435 IPSECLOG(LOG_DEBUG,
3436 "protocol and algorithm mismated.\n");
3437 return(EINVAL);
3438 }
3439 error = xform_init(sav, XF_TCPSIGNATURE);
3440 break;
3441 default:
3442 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3443 error = EPROTONOSUPPORT;
3444 break;
3445 }
3446 if (error == 0)
3447 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3448 return (error);
3449 }
3450
3451 /*
3452 * subroutine for SADB_GET and SADB_DUMP.
3453 */
3454 static struct mbuf *
3455 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3456 u_int32_t seq, u_int32_t pid)
3457 {
3458 struct mbuf *result = NULL, *tres = NULL, *m;
3459 int l = 0;
3460 int i;
3461 void *p;
3462 struct sadb_lifetime lt;
3463 int dumporder[] = {
3464 SADB_EXT_SA, SADB_X_EXT_SA2,
3465 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3466 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3467 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3468 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3469 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3470 SADB_X_EXT_NAT_T_TYPE,
3471 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3472 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3473 SADB_X_EXT_NAT_T_FRAG,
3474
3475 };
3476
3477 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3478 if (m == NULL)
3479 goto fail;
3480 result = m;
3481
3482 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3483 m = NULL;
3484 p = NULL;
3485 switch (dumporder[i]) {
3486 case SADB_EXT_SA:
3487 m = key_setsadbsa(sav);
3488 break;
3489
3490 case SADB_X_EXT_SA2:
3491 m = key_setsadbxsa2(sav->sah->saidx.mode,
3492 sav->replay ? sav->replay->count : 0,
3493 sav->sah->saidx.reqid);
3494 break;
3495
3496 case SADB_EXT_ADDRESS_SRC:
3497 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3498 &sav->sah->saidx.src.sa,
3499 FULLMASK, IPSEC_ULPROTO_ANY);
3500 break;
3501
3502 case SADB_EXT_ADDRESS_DST:
3503 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3504 &sav->sah->saidx.dst.sa,
3505 FULLMASK, IPSEC_ULPROTO_ANY);
3506 break;
3507
3508 case SADB_EXT_KEY_AUTH:
3509 if (!sav->key_auth)
3510 continue;
3511 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3512 p = sav->key_auth;
3513 break;
3514
3515 case SADB_EXT_KEY_ENCRYPT:
3516 if (!sav->key_enc)
3517 continue;
3518 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3519 p = sav->key_enc;
3520 break;
3521
3522 case SADB_EXT_LIFETIME_CURRENT:
3523 if (!sav->lft_c)
3524 continue;
3525 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3526 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3527 lt.sadb_lifetime_addtime += time_second - time_uptime;
3528 lt.sadb_lifetime_usetime += time_second - time_uptime;
3529 p = <
3530 break;
3531
3532 case SADB_EXT_LIFETIME_HARD:
3533 if (!sav->lft_h)
3534 continue;
3535 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3536 p = sav->lft_h;
3537 break;
3538
3539 case SADB_EXT_LIFETIME_SOFT:
3540 if (!sav->lft_s)
3541 continue;
3542 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3543 p = sav->lft_s;
3544 break;
3545
3546 case SADB_X_EXT_NAT_T_TYPE:
3547 m = key_setsadbxtype(sav->natt_type);
3548 break;
3549
3550 case SADB_X_EXT_NAT_T_DPORT:
3551 if (sav->natt_type == 0)
3552 continue;
3553 m = key_setsadbxport(
3554 key_portfromsaddr(&sav->sah->saidx.dst),
3555 SADB_X_EXT_NAT_T_DPORT);
3556 break;
3557
3558 case SADB_X_EXT_NAT_T_SPORT:
3559 if (sav->natt_type == 0)
3560 continue;
3561 m = key_setsadbxport(
3562 key_portfromsaddr(&sav->sah->saidx.src),
3563 SADB_X_EXT_NAT_T_SPORT);
3564 break;
3565
3566 case SADB_X_EXT_NAT_T_FRAG:
3567 /* don't send frag info if not set */
3568 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3569 continue;
3570 m = key_setsadbxfrag(sav->esp_frag);
3571 break;
3572
3573 case SADB_X_EXT_NAT_T_OAI:
3574 case SADB_X_EXT_NAT_T_OAR:
3575 continue;
3576
3577 case SADB_EXT_ADDRESS_PROXY:
3578 case SADB_EXT_IDENTITY_SRC:
3579 case SADB_EXT_IDENTITY_DST:
3580 /* XXX: should we brought from SPD ? */
3581 case SADB_EXT_SENSITIVITY:
3582 default:
3583 continue;
3584 }
3585
3586 KASSERT(!(m && p));
3587 if (!m && !p)
3588 goto fail;
3589 if (p && tres) {
3590 M_PREPEND(tres, l, M_DONTWAIT);
3591 if (!tres)
3592 goto fail;
3593 memcpy(mtod(tres, void *), p, l);
3594 continue;
3595 }
3596 if (p) {
3597 m = key_alloc_mbuf(l);
3598 if (!m)
3599 goto fail;
3600 m_copyback(m, 0, l, p);
3601 }
3602
3603 if (tres)
3604 m_cat(m, tres);
3605 tres = m;
3606 }
3607
3608 m_cat(result, tres);
3609 tres = NULL; /* avoid free on error below */
3610
3611 if (result->m_len < sizeof(struct sadb_msg)) {
3612 result = m_pullup(result, sizeof(struct sadb_msg));
3613 if (result == NULL)
3614 goto fail;
3615 }
3616
3617 result->m_pkthdr.len = 0;
3618 for (m = result; m; m = m->m_next)
3619 result->m_pkthdr.len += m->m_len;
3620
3621 mtod(result, struct sadb_msg *)->sadb_msg_len =
3622 PFKEY_UNIT64(result->m_pkthdr.len);
3623
3624 return result;
3625
3626 fail:
3627 m_freem(result);
3628 m_freem(tres);
3629 return NULL;
3630 }
3631
3632
3633 /*
3634 * set a type in sadb_x_nat_t_type
3635 */
3636 static struct mbuf *
3637 key_setsadbxtype(u_int16_t type)
3638 {
3639 struct mbuf *m;
3640 size_t len;
3641 struct sadb_x_nat_t_type *p;
3642
3643 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3644
3645 m = key_alloc_mbuf(len);
3646 if (!m || m->m_next) { /*XXX*/
3647 if (m)
3648 m_freem(m);
3649 return NULL;
3650 }
3651
3652 p = mtod(m, struct sadb_x_nat_t_type *);
3653
3654 memset(p, 0, len);
3655 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3656 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3657 p->sadb_x_nat_t_type_type = type;
3658
3659 return m;
3660 }
3661 /*
3662 * set a port in sadb_x_nat_t_port. port is in network order
3663 */
3664 static struct mbuf *
3665 key_setsadbxport(u_int16_t port, u_int16_t type)
3666 {
3667 struct mbuf *m;
3668 size_t len;
3669 struct sadb_x_nat_t_port *p;
3670
3671 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3672
3673 m = key_alloc_mbuf(len);
3674 if (!m || m->m_next) { /*XXX*/
3675 if (m)
3676 m_freem(m);
3677 return NULL;
3678 }
3679
3680 p = mtod(m, struct sadb_x_nat_t_port *);
3681
3682 memset(p, 0, len);
3683 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3684 p->sadb_x_nat_t_port_exttype = type;
3685 p->sadb_x_nat_t_port_port = port;
3686
3687 return m;
3688 }
3689
3690 /*
3691 * set fragmentation info in sadb_x_nat_t_frag
3692 */
3693 static struct mbuf *
3694 key_setsadbxfrag(u_int16_t flen)
3695 {
3696 struct mbuf *m;
3697 size_t len;
3698 struct sadb_x_nat_t_frag *p;
3699
3700 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3701
3702 m = key_alloc_mbuf(len);
3703 if (!m || m->m_next) { /*XXX*/
3704 if (m)
3705 m_freem(m);
3706 return NULL;
3707 }
3708
3709 p = mtod(m, struct sadb_x_nat_t_frag *);
3710
3711 memset(p, 0, len);
3712 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3713 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3714 p->sadb_x_nat_t_frag_fraglen = flen;
3715
3716 return m;
3717 }
3718
3719 /*
3720 * Get port from sockaddr, port is in network order
3721 */
3722 u_int16_t
3723 key_portfromsaddr(const union sockaddr_union *saddr)
3724 {
3725 u_int16_t port;
3726
3727 switch (saddr->sa.sa_family) {
3728 case AF_INET: {
3729 port = saddr->sin.sin_port;
3730 break;
3731 }
3732 #ifdef INET6
3733 case AF_INET6: {
3734 port = saddr->sin6.sin6_port;
3735 break;
3736 }
3737 #endif
3738 default:
3739 printf("%s: unexpected address family\n", __func__);
3740 port = 0;
3741 break;
3742 }
3743
3744 return port;
3745 }
3746
3747
3748 /*
3749 * Set port is struct sockaddr. port is in network order
3750 */
3751 static void
3752 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3753 {
3754 switch (saddr->sa.sa_family) {
3755 case AF_INET: {
3756 saddr->sin.sin_port = port;
3757 break;
3758 }
3759 #ifdef INET6
3760 case AF_INET6: {
3761 saddr->sin6.sin6_port = port;
3762 break;
3763 }
3764 #endif
3765 default:
3766 printf("%s: unexpected address family %d\n", __func__,
3767 saddr->sa.sa_family);
3768 break;
3769 }
3770
3771 return;
3772 }
3773
3774 /*
3775 * Safety check sa_len
3776 */
3777 static int
3778 key_checksalen(const union sockaddr_union *saddr)
3779 {
3780 switch (saddr->sa.sa_family) {
3781 case AF_INET:
3782 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3783 return -1;
3784 break;
3785 #ifdef INET6
3786 case AF_INET6:
3787 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3788 return -1;
3789 break;
3790 #endif
3791 default:
3792 printf("%s: unexpected sa_family %d\n", __func__,
3793 saddr->sa.sa_family);
3794 return -1;
3795 break;
3796 }
3797 return 0;
3798 }
3799
3800
3801 /*
3802 * set data into sadb_msg.
3803 */
3804 static struct mbuf *
3805 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3806 u_int32_t seq, pid_t pid, u_int16_t reserved)
3807 {
3808 struct mbuf *m;
3809 struct sadb_msg *p;
3810 int len;
3811
3812 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3813
3814 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3815
3816 MGETHDR(m, M_DONTWAIT, MT_DATA);
3817 if (m && len > MHLEN) {
3818 MCLGET(m, M_DONTWAIT);
3819 if ((m->m_flags & M_EXT) == 0) {
3820 m_freem(m);
3821 m = NULL;
3822 }
3823 }
3824 if (!m)
3825 return NULL;
3826 m->m_pkthdr.len = m->m_len = len;
3827 m->m_next = NULL;
3828
3829 p = mtod(m, struct sadb_msg *);
3830
3831 memset(p, 0, len);
3832 p->sadb_msg_version = PF_KEY_V2;
3833 p->sadb_msg_type = type;
3834 p->sadb_msg_errno = 0;
3835 p->sadb_msg_satype = satype;
3836 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3837 p->sadb_msg_reserved = reserved;
3838 p->sadb_msg_seq = seq;
3839 p->sadb_msg_pid = (u_int32_t)pid;
3840
3841 return m;
3842 }
3843
3844 /*
3845 * copy secasvar data into sadb_address.
3846 */
3847 static struct mbuf *
3848 key_setsadbsa(struct secasvar *sav)
3849 {
3850 struct mbuf *m;
3851 struct sadb_sa *p;
3852 int len;
3853
3854 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3855 m = key_alloc_mbuf(len);
3856 if (!m || m->m_next) { /*XXX*/
3857 if (m)
3858 m_freem(m);
3859 return NULL;
3860 }
3861
3862 p = mtod(m, struct sadb_sa *);
3863
3864 memset(p, 0, len);
3865 p->sadb_sa_len = PFKEY_UNIT64(len);
3866 p->sadb_sa_exttype = SADB_EXT_SA;
3867 p->sadb_sa_spi = sav->spi;
3868 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3869 p->sadb_sa_state = sav->state;
3870 p->sadb_sa_auth = sav->alg_auth;
3871 p->sadb_sa_encrypt = sav->alg_enc;
3872 p->sadb_sa_flags = sav->flags;
3873
3874 return m;
3875 }
3876
3877 /*
3878 * set data into sadb_address.
3879 */
3880 static struct mbuf *
3881 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3882 u_int8_t prefixlen, u_int16_t ul_proto)
3883 {
3884 struct mbuf *m;
3885 struct sadb_address *p;
3886 size_t len;
3887
3888 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3889 PFKEY_ALIGN8(saddr->sa_len);
3890 m = key_alloc_mbuf(len);
3891 if (!m || m->m_next) { /*XXX*/
3892 if (m)
3893 m_freem(m);
3894 return NULL;
3895 }
3896
3897 p = mtod(m, struct sadb_address *);
3898
3899 memset(p, 0, len);
3900 p->sadb_address_len = PFKEY_UNIT64(len);
3901 p->sadb_address_exttype = exttype;
3902 p->sadb_address_proto = ul_proto;
3903 if (prefixlen == FULLMASK) {
3904 switch (saddr->sa_family) {
3905 case AF_INET:
3906 prefixlen = sizeof(struct in_addr) << 3;
3907 break;
3908 case AF_INET6:
3909 prefixlen = sizeof(struct in6_addr) << 3;
3910 break;
3911 default:
3912 ; /*XXX*/
3913 }
3914 }
3915 p->sadb_address_prefixlen = prefixlen;
3916 p->sadb_address_reserved = 0;
3917
3918 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3919 saddr, saddr->sa_len);
3920
3921 return m;
3922 }
3923
3924 #if 0
3925 /*
3926 * set data into sadb_ident.
3927 */
3928 static struct mbuf *
3929 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3930 void *string, int stringlen, u_int64_t id)
3931 {
3932 struct mbuf *m;
3933 struct sadb_ident *p;
3934 size_t len;
3935
3936 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3937 m = key_alloc_mbuf(len);
3938 if (!m || m->m_next) { /*XXX*/
3939 if (m)
3940 m_freem(m);
3941 return NULL;
3942 }
3943
3944 p = mtod(m, struct sadb_ident *);
3945
3946 memset(p, 0, len);
3947 p->sadb_ident_len = PFKEY_UNIT64(len);
3948 p->sadb_ident_exttype = exttype;
3949 p->sadb_ident_type = idtype;
3950 p->sadb_ident_reserved = 0;
3951 p->sadb_ident_id = id;
3952
3953 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3954 string, stringlen);
3955
3956 return m;
3957 }
3958 #endif
3959
3960 /*
3961 * set data into sadb_x_sa2.
3962 */
3963 static struct mbuf *
3964 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3965 {
3966 struct mbuf *m;
3967 struct sadb_x_sa2 *p;
3968 size_t len;
3969
3970 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3971 m = key_alloc_mbuf(len);
3972 if (!m || m->m_next) { /*XXX*/
3973 if (m)
3974 m_freem(m);
3975 return NULL;
3976 }
3977
3978 p = mtod(m, struct sadb_x_sa2 *);
3979
3980 memset(p, 0, len);
3981 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3982 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3983 p->sadb_x_sa2_mode = mode;
3984 p->sadb_x_sa2_reserved1 = 0;
3985 p->sadb_x_sa2_reserved2 = 0;
3986 p->sadb_x_sa2_sequence = seq;
3987 p->sadb_x_sa2_reqid = reqid;
3988
3989 return m;
3990 }
3991
3992 /*
3993 * set data into sadb_x_policy
3994 */
3995 static struct mbuf *
3996 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3997 {
3998 struct mbuf *m;
3999 struct sadb_x_policy *p;
4000 size_t len;
4001
4002 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4003 m = key_alloc_mbuf(len);
4004 if (!m || m->m_next) { /*XXX*/
4005 if (m)
4006 m_freem(m);
4007 return NULL;
4008 }
4009
4010 p = mtod(m, struct sadb_x_policy *);
4011
4012 memset(p, 0, len);
4013 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4014 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4015 p->sadb_x_policy_type = type;
4016 p->sadb_x_policy_dir = dir;
4017 p->sadb_x_policy_id = id;
4018
4019 return m;
4020 }
4021
4022 /* %%% utilities */
4023 /*
4024 * copy a buffer into the new buffer allocated.
4025 */
4026 static void *
4027 key_newbuf(const void *src, u_int len)
4028 {
4029 void *new;
4030
4031 new = kmem_alloc(len, KM_SLEEP);
4032 memcpy(new, src, len);
4033
4034 return new;
4035 }
4036
4037 /* compare my own address
4038 * OUT: 1: true, i.e. my address.
4039 * 0: false
4040 */
4041 int
4042 key_ismyaddr(const struct sockaddr *sa)
4043 {
4044 #ifdef INET
4045 const struct sockaddr_in *sin;
4046 const struct in_ifaddr *ia;
4047 int s;
4048 #endif
4049
4050 KASSERT(sa != NULL);
4051
4052 switch (sa->sa_family) {
4053 #ifdef INET
4054 case AF_INET:
4055 sin = (const struct sockaddr_in *)sa;
4056 s = pserialize_read_enter();
4057 IN_ADDRLIST_READER_FOREACH(ia) {
4058 if (sin->sin_family == ia->ia_addr.sin_family &&
4059 sin->sin_len == ia->ia_addr.sin_len &&
4060 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4061 {
4062 pserialize_read_exit(s);
4063 return 1;
4064 }
4065 }
4066 pserialize_read_exit(s);
4067 break;
4068 #endif
4069 #ifdef INET6
4070 case AF_INET6:
4071 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4072 #endif
4073 }
4074
4075 return 0;
4076 }
4077
4078 #ifdef INET6
4079 /*
4080 * compare my own address for IPv6.
4081 * 1: ours
4082 * 0: other
4083 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4084 */
4085 #include <netinet6/in6_var.h>
4086
4087 static int
4088 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4089 {
4090 struct in6_ifaddr *ia;
4091 int s;
4092 struct psref psref;
4093 int bound;
4094 int ours = 1;
4095
4096 bound = curlwp_bind();
4097 s = pserialize_read_enter();
4098 IN6_ADDRLIST_READER_FOREACH(ia) {
4099 bool ingroup;
4100
4101 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4102 (const struct sockaddr *)&ia->ia_addr, 0)) {
4103 pserialize_read_exit(s);
4104 goto ours;
4105 }
4106 ia6_acquire(ia, &psref);
4107 pserialize_read_exit(s);
4108
4109 /*
4110 * XXX Multicast
4111 * XXX why do we care about multlicast here while we don't care
4112 * about IPv4 multicast??
4113 * XXX scope
4114 */
4115 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4116 if (ingroup) {
4117 ia6_release(ia, &psref);
4118 goto ours;
4119 }
4120
4121 s = pserialize_read_enter();
4122 ia6_release(ia, &psref);
4123 }
4124 pserialize_read_exit(s);
4125
4126 /* loopback, just for safety */
4127 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4128 goto ours;
4129
4130 ours = 0;
4131 ours:
4132 curlwp_bindx(bound);
4133
4134 return ours;
4135 }
4136 #endif /*INET6*/
4137
4138 /*
4139 * compare two secasindex structure.
4140 * flag can specify to compare 2 saidxes.
4141 * compare two secasindex structure without both mode and reqid.
4142 * don't compare port.
4143 * IN:
4144 * saidx0: source, it can be in SAD.
4145 * saidx1: object.
4146 * OUT:
4147 * 1 : equal
4148 * 0 : not equal
4149 */
4150 static int
4151 key_saidx_match(
4152 const struct secasindex *saidx0,
4153 const struct secasindex *saidx1,
4154 int flag)
4155 {
4156 int chkport;
4157 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4158
4159 /* sanity */
4160 if (saidx0 == NULL && saidx1 == NULL)
4161 return 1;
4162
4163 if (saidx0 == NULL || saidx1 == NULL)
4164 return 0;
4165
4166 if (saidx0->proto != saidx1->proto)
4167 return 0;
4168
4169 if (flag == CMP_EXACTLY) {
4170 if (saidx0->mode != saidx1->mode)
4171 return 0;
4172 if (saidx0->reqid != saidx1->reqid)
4173 return 0;
4174 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4175 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4176 return 0;
4177 } else {
4178
4179 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4180 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4181 /*
4182 * If reqid of SPD is non-zero, unique SA is required.
4183 * The result must be of same reqid in this case.
4184 */
4185 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4186 return 0;
4187 }
4188
4189 if (flag == CMP_MODE_REQID) {
4190 if (saidx0->mode != IPSEC_MODE_ANY &&
4191 saidx0->mode != saidx1->mode)
4192 return 0;
4193 }
4194
4195
4196 sa0src = &saidx0->src.sa;
4197 sa0dst = &saidx0->dst.sa;
4198 sa1src = &saidx1->src.sa;
4199 sa1dst = &saidx1->dst.sa;
4200 /*
4201 * If NAT-T is enabled, check ports for tunnel mode.
4202 * Don't do it for transport mode, as there is no
4203 * port information available in the SP.
4204 * Also don't check ports if they are set to zero
4205 * in the SPD: This means we have a non-generated
4206 * SPD which can't know UDP ports.
4207 */
4208 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4209 chkport = PORT_LOOSE;
4210 else
4211 chkport = PORT_NONE;
4212
4213 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4214 return 0;
4215 }
4216 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4217 return 0;
4218 }
4219 }
4220
4221 return 1;
4222 }
4223
4224 /*
4225 * compare two secindex structure exactly.
4226 * IN:
4227 * spidx0: source, it is often in SPD.
4228 * spidx1: object, it is often from PFKEY message.
4229 * OUT:
4230 * 1 : equal
4231 * 0 : not equal
4232 */
4233 static int
4234 key_spidx_match_exactly(
4235 const struct secpolicyindex *spidx0,
4236 const struct secpolicyindex *spidx1)
4237 {
4238 /* sanity */
4239 if (spidx0 == NULL && spidx1 == NULL)
4240 return 1;
4241
4242 if (spidx0 == NULL || spidx1 == NULL)
4243 return 0;
4244
4245 if (spidx0->prefs != spidx1->prefs ||
4246 spidx0->prefd != spidx1->prefd ||
4247 spidx0->ul_proto != spidx1->ul_proto)
4248 return 0;
4249
4250 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4251 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4252 }
4253
4254 /*
4255 * compare two secindex structure with mask.
4256 * IN:
4257 * spidx0: source, it is often in SPD.
4258 * spidx1: object, it is often from IP header.
4259 * OUT:
4260 * 1 : equal
4261 * 0 : not equal
4262 */
4263 static int
4264 key_spidx_match_withmask(
4265 const struct secpolicyindex *spidx0,
4266 const struct secpolicyindex *spidx1)
4267 {
4268
4269 KASSERT(spidx0 != NULL);
4270 KASSERT(spidx1 != NULL);
4271
4272 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4273 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4274 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4275 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4276 return 0;
4277
4278 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4279 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4280 spidx0->ul_proto != spidx1->ul_proto)
4281 return 0;
4282
4283 switch (spidx0->src.sa.sa_family) {
4284 case AF_INET:
4285 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4286 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4287 return 0;
4288 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4289 &spidx1->src.sin.sin_addr, spidx0->prefs))
4290 return 0;
4291 break;
4292 case AF_INET6:
4293 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4294 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4295 return 0;
4296 /*
4297 * scope_id check. if sin6_scope_id is 0, we regard it
4298 * as a wildcard scope, which matches any scope zone ID.
4299 */
4300 if (spidx0->src.sin6.sin6_scope_id &&
4301 spidx1->src.sin6.sin6_scope_id &&
4302 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4303 return 0;
4304 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4305 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4306 return 0;
4307 break;
4308 default:
4309 /* XXX */
4310 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4311 return 0;
4312 break;
4313 }
4314
4315 switch (spidx0->dst.sa.sa_family) {
4316 case AF_INET:
4317 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4318 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4319 return 0;
4320 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4321 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4322 return 0;
4323 break;
4324 case AF_INET6:
4325 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4326 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4327 return 0;
4328 /*
4329 * scope_id check. if sin6_scope_id is 0, we regard it
4330 * as a wildcard scope, which matches any scope zone ID.
4331 */
4332 if (spidx0->src.sin6.sin6_scope_id &&
4333 spidx1->src.sin6.sin6_scope_id &&
4334 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4335 return 0;
4336 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4337 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4338 return 0;
4339 break;
4340 default:
4341 /* XXX */
4342 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4343 return 0;
4344 break;
4345 }
4346
4347 /* XXX Do we check other field ? e.g. flowinfo */
4348
4349 return 1;
4350 }
4351
4352 /* returns 0 on match */
4353 static int
4354 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4355 {
4356 switch (howport) {
4357 case PORT_NONE:
4358 return 0;
4359 case PORT_LOOSE:
4360 if (port1 == 0 || port2 == 0)
4361 return 0;
4362 /*FALLTHROUGH*/
4363 case PORT_STRICT:
4364 if (port1 != port2) {
4365 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4366 "port fail %d != %d\n", port1, port2);
4367 return 1;
4368 }
4369 return 0;
4370 default:
4371 KASSERT(0);
4372 return 1;
4373 }
4374 }
4375
4376 /* returns 1 on match */
4377 static int
4378 key_sockaddr_match(
4379 const struct sockaddr *sa1,
4380 const struct sockaddr *sa2,
4381 int howport)
4382 {
4383 const struct sockaddr_in *sin1, *sin2;
4384 const struct sockaddr_in6 *sin61, *sin62;
4385
4386 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4387 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4388 "fam/len fail %d != %d || %d != %d\n",
4389 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4390 sa2->sa_len);
4391 return 0;
4392 }
4393
4394 switch (sa1->sa_family) {
4395 case AF_INET:
4396 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4397 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4398 "len fail %d != %zu\n",
4399 sa1->sa_len, sizeof(struct sockaddr_in));
4400 return 0;
4401 }
4402 sin1 = (const struct sockaddr_in *)sa1;
4403 sin2 = (const struct sockaddr_in *)sa2;
4404 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4405 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4406 "addr fail %#x != %#x\n",
4407 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4408 return 0;
4409 }
4410 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4411 return 0;
4412 }
4413 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4414 "addr success %#x[%d] == %#x[%d]\n",
4415 sin1->sin_addr.s_addr, sin1->sin_port,
4416 sin2->sin_addr.s_addr, sin2->sin_port);
4417 break;
4418 case AF_INET6:
4419 sin61 = (const struct sockaddr_in6 *)sa1;
4420 sin62 = (const struct sockaddr_in6 *)sa2;
4421 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4422 return 0; /*EINVAL*/
4423
4424 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4425 return 0;
4426 }
4427 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4428 return 0;
4429 }
4430 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4431 return 0;
4432 }
4433 break;
4434 default:
4435 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4436 return 0;
4437 break;
4438 }
4439
4440 return 1;
4441 }
4442
4443 /*
4444 * compare two buffers with mask.
4445 * IN:
4446 * addr1: source
4447 * addr2: object
4448 * bits: Number of bits to compare
4449 * OUT:
4450 * 1 : equal
4451 * 0 : not equal
4452 */
4453 static int
4454 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4455 {
4456 const unsigned char *p1 = a1;
4457 const unsigned char *p2 = a2;
4458
4459 /* XXX: This could be considerably faster if we compare a word
4460 * at a time, but it is complicated on LSB Endian machines */
4461
4462 /* Handle null pointers */
4463 if (p1 == NULL || p2 == NULL)
4464 return (p1 == p2);
4465
4466 while (bits >= 8) {
4467 if (*p1++ != *p2++)
4468 return 0;
4469 bits -= 8;
4470 }
4471
4472 if (bits > 0) {
4473 u_int8_t mask = ~((1<<(8-bits))-1);
4474 if ((*p1 & mask) != (*p2 & mask))
4475 return 0;
4476 }
4477 return 1; /* Match! */
4478 }
4479
4480 static void
4481 key_timehandler_spd(time_t now)
4482 {
4483 u_int dir;
4484 struct secpolicy *sp, *nextsp;
4485
4486 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4487 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4488 if (sp->state == IPSEC_SPSTATE_DEAD) {
4489 key_sp_unlink(sp); /*XXX*/
4490
4491 /* 'sp' dead; continue transfers to
4492 * 'sp = nextsp'
4493 */
4494 continue;
4495 }
4496
4497 if (sp->lifetime == 0 && sp->validtime == 0)
4498 continue;
4499
4500 /* the deletion will occur next time */
4501 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4502 (sp->validtime && now - sp->lastused > sp->validtime)) {
4503 key_sp_dead(sp);
4504 key_spdexpire(sp);
4505 continue;
4506 }
4507 }
4508 }
4509 }
4510
4511 static void
4512 key_timehandler_sad(time_t now)
4513 {
4514 struct secashead *sah, *nextsah;
4515 struct secasvar *sav, *nextsav;
4516
4517 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4518 /* if sah has been dead, then delete it and process next sah. */
4519 if (sah->state == SADB_SASTATE_DEAD) {
4520 key_delsah(sah);
4521 continue;
4522 }
4523
4524 /* if LARVAL entry doesn't become MATURE, delete it. */
4525 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4526 chain, nextsav) {
4527 if (now - sav->created > key_larval_lifetime) {
4528 KEY_FREESAV(&sav);
4529 }
4530 }
4531
4532 /*
4533 * check MATURE entry to start to send expire message
4534 * whether or not.
4535 */
4536 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4537 chain, nextsav) {
4538 /* we don't need to check. */
4539 if (sav->lft_s == NULL)
4540 continue;
4541
4542 /* sanity check */
4543 if (sav->lft_c == NULL) {
4544 IPSECLOG(LOG_DEBUG,
4545 "There is no CURRENT time, why?\n");
4546 continue;
4547 }
4548
4549 /* check SOFT lifetime */
4550 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4551 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4552 /*
4553 * check SA to be used whether or not.
4554 * when SA hasn't been used, delete it.
4555 */
4556 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4557 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4558 KEY_FREESAV(&sav);
4559 } else {
4560 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4561 /*
4562 * XXX If we keep to send expire
4563 * message in the status of
4564 * DYING. Do remove below code.
4565 */
4566 key_expire(sav);
4567 }
4568 }
4569 /* check SOFT lifetime by bytes */
4570 /*
4571 * XXX I don't know the way to delete this SA
4572 * when new SA is installed. Caution when it's
4573 * installed too big lifetime by time.
4574 */
4575 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4576 sav->lft_s->sadb_lifetime_bytes <
4577 sav->lft_c->sadb_lifetime_bytes) {
4578
4579 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4580 /*
4581 * XXX If we keep to send expire
4582 * message in the status of
4583 * DYING. Do remove below code.
4584 */
4585 key_expire(sav);
4586 }
4587 }
4588
4589 /* check DYING entry to change status to DEAD. */
4590 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4591 chain, nextsav) {
4592 /* we don't need to check. */
4593 if (sav->lft_h == NULL)
4594 continue;
4595
4596 /* sanity check */
4597 if (sav->lft_c == NULL) {
4598 IPSECLOG(LOG_DEBUG,
4599 "There is no CURRENT time, why?\n");
4600 continue;
4601 }
4602
4603 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4604 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4605 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4606 KEY_FREESAV(&sav);
4607 }
4608 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4609 else if (sav->lft_s != NULL
4610 && sav->lft_s->sadb_lifetime_addtime != 0
4611 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4612 /*
4613 * XXX: should be checked to be
4614 * installed the valid SA.
4615 */
4616
4617 /*
4618 * If there is no SA then sending
4619 * expire message.
4620 */
4621 key_expire(sav);
4622 }
4623 #endif
4624 /* check HARD lifetime by bytes */
4625 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4626 sav->lft_h->sadb_lifetime_bytes <
4627 sav->lft_c->sadb_lifetime_bytes) {
4628 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4629 KEY_FREESAV(&sav);
4630 }
4631 }
4632
4633 /* delete entry in DEAD */
4634 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4635 chain, nextsav) {
4636 /* sanity check */
4637 if (sav->state != SADB_SASTATE_DEAD) {
4638 IPSECLOG(LOG_DEBUG,
4639 "invalid sav->state (queue: %d SA: %d): "
4640 "kill it anyway\n",
4641 SADB_SASTATE_DEAD, sav->state);
4642 }
4643
4644 /*
4645 * do not call key_freesav() here.
4646 * sav should already be freed, and sav->refcnt
4647 * shows other references to sav
4648 * (such as from SPD).
4649 */
4650 }
4651 }
4652 }
4653
4654 static void
4655 key_timehandler_acq(time_t now)
4656 {
4657 #ifndef IPSEC_NONBLOCK_ACQUIRE
4658 struct secacq *acq, *nextacq;
4659
4660 restart:
4661 mutex_enter(&key_mtx);
4662 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4663 if (now - acq->created > key_blockacq_lifetime) {
4664 LIST_REMOVE(acq, chain);
4665 mutex_exit(&key_mtx);
4666 kmem_free(acq, sizeof(*acq));
4667 goto restart;
4668 }
4669 }
4670 mutex_exit(&key_mtx);
4671 #endif
4672 }
4673
4674 static void
4675 key_timehandler_spacq(time_t now)
4676 {
4677 #ifdef notyet
4678 struct secspacq *acq, *nextacq;
4679
4680 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4681 if (now - acq->created > key_blockacq_lifetime) {
4682 KASSERT(__LIST_CHAINED(acq));
4683 LIST_REMOVE(acq, chain);
4684 kmem_free(acq, sizeof(*acq));
4685 }
4686 }
4687 #endif
4688 }
4689
4690 /*
4691 * time handler.
4692 * scanning SPD and SAD to check status for each entries,
4693 * and do to remove or to expire.
4694 */
4695 static void
4696 key_timehandler_work(struct work *wk, void *arg)
4697 {
4698 int s;
4699 time_t now = time_uptime;
4700
4701 s = splsoftnet();
4702 mutex_enter(softnet_lock);
4703
4704 key_timehandler_spd(now);
4705 key_timehandler_sad(now);
4706 key_timehandler_acq(now);
4707 key_timehandler_spacq(now);
4708
4709 /* do exchange to tick time !! */
4710 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4711
4712 mutex_exit(softnet_lock);
4713 splx(s);
4714 return;
4715 }
4716
4717 static void
4718 key_timehandler(void *arg)
4719 {
4720
4721 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4722 }
4723
4724 u_long
4725 key_random(void)
4726 {
4727 u_long value;
4728
4729 key_randomfill(&value, sizeof(value));
4730 return value;
4731 }
4732
4733 void
4734 key_randomfill(void *p, size_t l)
4735 {
4736
4737 cprng_fast(p, l);
4738 }
4739
4740 /*
4741 * map SADB_SATYPE_* to IPPROTO_*.
4742 * if satype == SADB_SATYPE then satype is mapped to ~0.
4743 * OUT:
4744 * 0: invalid satype.
4745 */
4746 static u_int16_t
4747 key_satype2proto(u_int8_t satype)
4748 {
4749 switch (satype) {
4750 case SADB_SATYPE_UNSPEC:
4751 return IPSEC_PROTO_ANY;
4752 case SADB_SATYPE_AH:
4753 return IPPROTO_AH;
4754 case SADB_SATYPE_ESP:
4755 return IPPROTO_ESP;
4756 case SADB_X_SATYPE_IPCOMP:
4757 return IPPROTO_IPCOMP;
4758 case SADB_X_SATYPE_TCPSIGNATURE:
4759 return IPPROTO_TCP;
4760 default:
4761 return 0;
4762 }
4763 /* NOTREACHED */
4764 }
4765
4766 /*
4767 * map IPPROTO_* to SADB_SATYPE_*
4768 * OUT:
4769 * 0: invalid protocol type.
4770 */
4771 static u_int8_t
4772 key_proto2satype(u_int16_t proto)
4773 {
4774 switch (proto) {
4775 case IPPROTO_AH:
4776 return SADB_SATYPE_AH;
4777 case IPPROTO_ESP:
4778 return SADB_SATYPE_ESP;
4779 case IPPROTO_IPCOMP:
4780 return SADB_X_SATYPE_IPCOMP;
4781 case IPPROTO_TCP:
4782 return SADB_X_SATYPE_TCPSIGNATURE;
4783 default:
4784 return 0;
4785 }
4786 /* NOTREACHED */
4787 }
4788
4789 static int
4790 key_setsecasidx(int proto, int mode, int reqid,
4791 const struct sockaddr *src, const struct sockaddr *dst,
4792 struct secasindex * saidx)
4793 {
4794 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4795 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4796
4797 /* sa len safety check */
4798 if (key_checksalen(src_u) != 0)
4799 return -1;
4800 if (key_checksalen(dst_u) != 0)
4801 return -1;
4802
4803 memset(saidx, 0, sizeof(*saidx));
4804 saidx->proto = proto;
4805 saidx->mode = mode;
4806 saidx->reqid = reqid;
4807 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4808 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4809
4810 key_porttosaddr(&((saidx)->src), 0);
4811 key_porttosaddr(&((saidx)->dst), 0);
4812 return 0;
4813 }
4814
4815 static void
4816 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4817 const struct sadb_msghdr *mhp)
4818 {
4819 const struct sadb_address *src0, *dst0;
4820 const struct sockaddr *src, *dst;
4821 const struct sadb_x_policy *xpl0;
4822
4823 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4824 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4825 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4826 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4827 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4828
4829 memset(spidx, 0, sizeof(*spidx));
4830 spidx->dir = xpl0->sadb_x_policy_dir;
4831 spidx->prefs = src0->sadb_address_prefixlen;
4832 spidx->prefd = dst0->sadb_address_prefixlen;
4833 spidx->ul_proto = src0->sadb_address_proto;
4834 /* XXX boundary check against sa_len */
4835 memcpy(&spidx->src, src, src->sa_len);
4836 memcpy(&spidx->dst, dst, dst->sa_len);
4837 }
4838
4839 /* %%% PF_KEY */
4840 /*
4841 * SADB_GETSPI processing is to receive
4842 * <base, (SA2), src address, dst address, (SPI range)>
4843 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4844 * tree with the status of LARVAL, and send
4845 * <base, SA(*), address(SD)>
4846 * to the IKMPd.
4847 *
4848 * IN: mhp: pointer to the pointer to each header.
4849 * OUT: NULL if fail.
4850 * other if success, return pointer to the message to send.
4851 */
4852 static int
4853 key_getspi(struct socket *so, struct mbuf *m,
4854 const struct sadb_msghdr *mhp)
4855 {
4856 const struct sockaddr *src, *dst;
4857 struct secasindex saidx;
4858 struct secashead *newsah;
4859 struct secasvar *newsav;
4860 u_int8_t proto;
4861 u_int32_t spi;
4862 u_int8_t mode;
4863 u_int16_t reqid;
4864 int error;
4865
4866 KASSERT(!cpu_softintr_p());
4867 KASSERT(so != NULL);
4868 KASSERT(m != NULL);
4869 KASSERT(mhp != NULL);
4870 KASSERT(mhp->msg != NULL);
4871
4872 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4873 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4874 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4875 return key_senderror(so, m, EINVAL);
4876 }
4877 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4878 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4879 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4880 return key_senderror(so, m, EINVAL);
4881 }
4882 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4883 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4884 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4885 } else {
4886 mode = IPSEC_MODE_ANY;
4887 reqid = 0;
4888 }
4889
4890 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4891 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4892
4893 /* map satype to proto */
4894 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4895 if (proto == 0) {
4896 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4897 return key_senderror(so, m, EINVAL);
4898 }
4899
4900
4901 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4902 if (error != 0)
4903 return key_senderror(so, m, EINVAL);
4904
4905 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4906 if (error != 0)
4907 return key_senderror(so, m, EINVAL);
4908
4909 /* SPI allocation */
4910 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4911 &saidx);
4912 if (spi == 0)
4913 return key_senderror(so, m, EINVAL);
4914
4915 /* get a SA index */
4916 newsah = key_getsah(&saidx, CMP_REQID);
4917 if (newsah == NULL) {
4918 /* create a new SA index */
4919 newsah = key_newsah(&saidx);
4920 if (newsah == NULL) {
4921 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4922 return key_senderror(so, m, ENOBUFS);
4923 }
4924 }
4925
4926 /* get a new SA */
4927 /* XXX rewrite */
4928 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4929 if (newsav == NULL) {
4930 /* XXX don't free new SA index allocated in above. */
4931 return key_senderror(so, m, error);
4932 }
4933
4934 /* set spi */
4935 newsav->spi = htonl(spi);
4936
4937 #ifndef IPSEC_NONBLOCK_ACQUIRE
4938 /* delete the entry in acqtree */
4939 if (mhp->msg->sadb_msg_seq != 0) {
4940 struct secacq *acq;
4941 mutex_enter(&key_mtx);
4942 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4943 if (acq != NULL) {
4944 /* reset counter in order to deletion by timehandler. */
4945 acq->created = time_uptime;
4946 acq->count = 0;
4947 }
4948 mutex_exit(&key_mtx);
4949 }
4950 #endif
4951
4952 {
4953 struct mbuf *n, *nn;
4954 struct sadb_sa *m_sa;
4955 int off, len;
4956
4957 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4958 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4959
4960 /* create new sadb_msg to reply. */
4961 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4962 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4963
4964 MGETHDR(n, M_DONTWAIT, MT_DATA);
4965 if (len > MHLEN) {
4966 MCLGET(n, M_DONTWAIT);
4967 if ((n->m_flags & M_EXT) == 0) {
4968 m_freem(n);
4969 n = NULL;
4970 }
4971 }
4972 if (!n)
4973 return key_senderror(so, m, ENOBUFS);
4974
4975 n->m_len = len;
4976 n->m_next = NULL;
4977 off = 0;
4978
4979 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4980 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4981
4982 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4983 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4984 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4985 m_sa->sadb_sa_spi = htonl(spi);
4986 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4987
4988 KASSERTMSG(off == len, "length inconsistency");
4989
4990 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4991 SADB_EXT_ADDRESS_DST);
4992 if (!n->m_next) {
4993 m_freem(n);
4994 return key_senderror(so, m, ENOBUFS);
4995 }
4996
4997 if (n->m_len < sizeof(struct sadb_msg)) {
4998 n = m_pullup(n, sizeof(struct sadb_msg));
4999 if (n == NULL)
5000 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5001 }
5002
5003 n->m_pkthdr.len = 0;
5004 for (nn = n; nn; nn = nn->m_next)
5005 n->m_pkthdr.len += nn->m_len;
5006
5007 key_fill_replymsg(n, newsav->seq);
5008
5009 m_freem(m);
5010 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5011 }
5012 }
5013
5014 /*
5015 * allocating new SPI
5016 * called by key_getspi().
5017 * OUT:
5018 * 0: failure.
5019 * others: success.
5020 */
5021 static u_int32_t
5022 key_do_getnewspi(const struct sadb_spirange *spirange,
5023 const struct secasindex *saidx)
5024 {
5025 u_int32_t newspi;
5026 u_int32_t spmin, spmax;
5027 int count = key_spi_trycnt;
5028
5029 /* set spi range to allocate */
5030 if (spirange != NULL) {
5031 spmin = spirange->sadb_spirange_min;
5032 spmax = spirange->sadb_spirange_max;
5033 } else {
5034 spmin = key_spi_minval;
5035 spmax = key_spi_maxval;
5036 }
5037 /* IPCOMP needs 2-byte SPI */
5038 if (saidx->proto == IPPROTO_IPCOMP) {
5039 u_int32_t t;
5040 if (spmin >= 0x10000)
5041 spmin = 0xffff;
5042 if (spmax >= 0x10000)
5043 spmax = 0xffff;
5044 if (spmin > spmax) {
5045 t = spmin; spmin = spmax; spmax = t;
5046 }
5047 }
5048
5049 if (spmin == spmax) {
5050 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5051 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5052 return 0;
5053 }
5054
5055 count--; /* taking one cost. */
5056 newspi = spmin;
5057
5058 } else {
5059
5060 /* init SPI */
5061 newspi = 0;
5062
5063 /* when requesting to allocate spi ranged */
5064 while (count--) {
5065 /* generate pseudo-random SPI value ranged. */
5066 newspi = spmin + (key_random() % (spmax - spmin + 1));
5067
5068 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5069 break;
5070 }
5071
5072 if (count == 0 || newspi == 0) {
5073 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5074 return 0;
5075 }
5076 }
5077
5078 /* statistics */
5079 keystat.getspi_count =
5080 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5081
5082 return newspi;
5083 }
5084
5085 static int
5086 key_handle_natt_info(struct secasvar *sav,
5087 const struct sadb_msghdr *mhp)
5088 {
5089 const char *msg = "?" ;
5090 struct sadb_x_nat_t_type *type;
5091 struct sadb_x_nat_t_port *sport, *dport;
5092 struct sadb_address *iaddr, *raddr;
5093 struct sadb_x_nat_t_frag *frag;
5094
5095 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5096 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5097 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5098 return 0;
5099
5100 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5101 msg = "TYPE";
5102 goto bad;
5103 }
5104
5105 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5106 msg = "SPORT";
5107 goto bad;
5108 }
5109
5110 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5111 msg = "DPORT";
5112 goto bad;
5113 }
5114
5115 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5116 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5117 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5118 msg = "OAI";
5119 goto bad;
5120 }
5121 }
5122
5123 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5124 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5125 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5126 msg = "OAR";
5127 goto bad;
5128 }
5129 }
5130
5131 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5132 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5133 msg = "FRAG";
5134 goto bad;
5135 }
5136 }
5137
5138 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5139 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5140 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5141 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5142 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5143 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5144
5145 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5146 type->sadb_x_nat_t_type_type,
5147 ntohs(sport->sadb_x_nat_t_port_port),
5148 ntohs(dport->sadb_x_nat_t_port_port));
5149
5150 sav->natt_type = type->sadb_x_nat_t_type_type;
5151 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5152 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5153 if (frag)
5154 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5155 else
5156 sav->esp_frag = IP_MAXPACKET;
5157
5158 return 0;
5159 bad:
5160 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5161 __USE(msg);
5162 return -1;
5163 }
5164
5165 /* Just update the IPSEC_NAT_T ports if present */
5166 static int
5167 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5168 const struct sadb_msghdr *mhp)
5169 {
5170 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5171 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5172 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5173 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5174
5175 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5176 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5177 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5178 struct sadb_x_nat_t_type *type;
5179 struct sadb_x_nat_t_port *sport;
5180 struct sadb_x_nat_t_port *dport;
5181
5182 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5183 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5184 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5185 IPSECLOG(LOG_DEBUG, "invalid message\n");
5186 return -1;
5187 }
5188
5189 type = (struct sadb_x_nat_t_type *)
5190 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5191 sport = (struct sadb_x_nat_t_port *)
5192 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5193 dport = (struct sadb_x_nat_t_port *)
5194 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5195
5196 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5197 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5198
5199 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5200 type->sadb_x_nat_t_type_type,
5201 ntohs(sport->sadb_x_nat_t_port_port),
5202 ntohs(dport->sadb_x_nat_t_port_port));
5203 }
5204
5205 return 0;
5206 }
5207
5208
5209 /*
5210 * SADB_UPDATE processing
5211 * receive
5212 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5213 * key(AE), (identity(SD),) (sensitivity)>
5214 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5215 * and send
5216 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5217 * (identity(SD),) (sensitivity)>
5218 * to the ikmpd.
5219 *
5220 * m will always be freed.
5221 */
5222 static int
5223 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5224 {
5225 struct sadb_sa *sa0;
5226 const struct sockaddr *src, *dst;
5227 struct secasindex saidx;
5228 struct secashead *sah;
5229 struct secasvar *sav;
5230 u_int16_t proto;
5231 u_int8_t mode;
5232 u_int16_t reqid;
5233 int error;
5234
5235 KASSERT(!cpu_softintr_p());
5236 KASSERT(so != NULL);
5237 KASSERT(m != NULL);
5238 KASSERT(mhp != NULL);
5239 KASSERT(mhp->msg != NULL);
5240
5241 /* map satype to proto */
5242 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5243 if (proto == 0) {
5244 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5245 return key_senderror(so, m, EINVAL);
5246 }
5247
5248 if (mhp->ext[SADB_EXT_SA] == NULL ||
5249 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5250 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5251 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5252 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5253 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5254 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5255 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5256 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5257 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5258 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5259 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5260 return key_senderror(so, m, EINVAL);
5261 }
5262 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5263 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5264 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5265 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5266 return key_senderror(so, m, EINVAL);
5267 }
5268 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5269 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5270 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5271 } else {
5272 mode = IPSEC_MODE_ANY;
5273 reqid = 0;
5274 }
5275 /* XXX boundary checking for other extensions */
5276
5277 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5278 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5279 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5280
5281 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5282 if (error != 0)
5283 return key_senderror(so, m, EINVAL);
5284
5285 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5286 if (error != 0)
5287 return key_senderror(so, m, EINVAL);
5288
5289 /* get a SA header */
5290 sah = key_getsah(&saidx, CMP_REQID);
5291 if (sah == NULL) {
5292 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5293 return key_senderror(so, m, ENOENT);
5294 }
5295
5296 /* set spidx if there */
5297 /* XXX rewrite */
5298 error = key_setident(sah, m, mhp);
5299 if (error)
5300 return key_senderror(so, m, error);
5301
5302 /* find a SA with sequence number. */
5303 #ifdef IPSEC_DOSEQCHECK
5304 if (mhp->msg->sadb_msg_seq != 0) {
5305 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5306 if (sav == NULL) {
5307 IPSECLOG(LOG_DEBUG,
5308 "no larval SA with sequence %u exists.\n",
5309 mhp->msg->sadb_msg_seq);
5310 return key_senderror(so, m, ENOENT);
5311 }
5312 }
5313 #else
5314 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5315 if (sav == NULL) {
5316 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5317 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5318 return key_senderror(so, m, EINVAL);
5319 }
5320 #endif
5321
5322 /* validity check */
5323 if (sav->sah->saidx.proto != proto) {
5324 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5325 sav->sah->saidx.proto, proto);
5326 return key_senderror(so, m, EINVAL);
5327 }
5328 #ifdef IPSEC_DOSEQCHECK
5329 if (sav->spi != sa0->sadb_sa_spi) {
5330 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5331 (u_int32_t)ntohl(sav->spi),
5332 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5333 return key_senderror(so, m, EINVAL);
5334 }
5335 #endif
5336 if (sav->pid != mhp->msg->sadb_msg_pid) {
5337 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5338 sav->pid, mhp->msg->sadb_msg_pid);
5339 return key_senderror(so, m, EINVAL);
5340 }
5341
5342 /* copy sav values */
5343 error = key_setsaval(sav, m, mhp);
5344 if (error) {
5345 KEY_FREESAV(&sav);
5346 return key_senderror(so, m, error);
5347 }
5348
5349 error = key_handle_natt_info(sav,mhp);
5350 if (error != 0)
5351 return key_senderror(so, m, EINVAL);
5352
5353 /* check SA values to be mature. */
5354 mhp->msg->sadb_msg_errno = key_mature(sav);
5355 if (mhp->msg->sadb_msg_errno != 0) {
5356 KEY_FREESAV(&sav);
5357 return key_senderror(so, m, 0);
5358 }
5359
5360 {
5361 struct mbuf *n;
5362
5363 /* set msg buf from mhp */
5364 n = key_getmsgbuf_x1(m, mhp);
5365 if (n == NULL) {
5366 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5367 return key_senderror(so, m, ENOBUFS);
5368 }
5369
5370 m_freem(m);
5371 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5372 }
5373 }
5374
5375 /*
5376 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5377 * only called by key_update().
5378 * OUT:
5379 * NULL : not found
5380 * others : found, pointer to a SA.
5381 */
5382 #ifdef IPSEC_DOSEQCHECK
5383 static struct secasvar *
5384 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5385 {
5386 struct secasvar *sav;
5387 u_int state;
5388
5389 state = SADB_SASTATE_LARVAL;
5390
5391 /* search SAD with sequence number ? */
5392 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5393
5394 KEY_CHKSASTATE(state, sav->state);
5395
5396 if (sav->seq == seq) {
5397 SA_ADDREF(sav);
5398 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5399 "DP cause refcnt++:%d SA:%p\n",
5400 sav->refcnt, sav);
5401 return sav;
5402 }
5403 }
5404
5405 return NULL;
5406 }
5407 #endif
5408
5409 /*
5410 * SADB_ADD processing
5411 * add an entry to SA database, when received
5412 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5413 * key(AE), (identity(SD),) (sensitivity)>
5414 * from the ikmpd,
5415 * and send
5416 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5417 * (identity(SD),) (sensitivity)>
5418 * to the ikmpd.
5419 *
5420 * IGNORE identity and sensitivity messages.
5421 *
5422 * m will always be freed.
5423 */
5424 static int
5425 key_add(struct socket *so, struct mbuf *m,
5426 const struct sadb_msghdr *mhp)
5427 {
5428 struct sadb_sa *sa0;
5429 const struct sockaddr *src, *dst;
5430 struct secasindex saidx;
5431 struct secashead *newsah;
5432 struct secasvar *newsav;
5433 u_int16_t proto;
5434 u_int8_t mode;
5435 u_int16_t reqid;
5436 int error;
5437
5438 KASSERT(so != NULL);
5439 KASSERT(m != NULL);
5440 KASSERT(mhp != NULL);
5441 KASSERT(mhp->msg != NULL);
5442
5443 /* map satype to proto */
5444 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5445 if (proto == 0) {
5446 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5447 return key_senderror(so, m, EINVAL);
5448 }
5449
5450 if (mhp->ext[SADB_EXT_SA] == NULL ||
5451 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5452 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5453 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5454 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5455 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5456 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5457 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5458 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5459 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5460 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5461 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5462 return key_senderror(so, m, EINVAL);
5463 }
5464 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5465 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5466 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5467 /* XXX need more */
5468 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5469 return key_senderror(so, m, EINVAL);
5470 }
5471 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5472 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5473 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5474 } else {
5475 mode = IPSEC_MODE_ANY;
5476 reqid = 0;
5477 }
5478
5479 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5480 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5481 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5482
5483 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5484 if (error != 0)
5485 return key_senderror(so, m, EINVAL);
5486
5487 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5488 if (error != 0)
5489 return key_senderror(so, m, EINVAL);
5490
5491 /* get a SA header */
5492 newsah = key_getsah(&saidx, CMP_REQID);
5493 if (newsah == NULL) {
5494 /* create a new SA header */
5495 newsah = key_newsah(&saidx);
5496 if (newsah == NULL) {
5497 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5498 return key_senderror(so, m, ENOBUFS);
5499 }
5500 }
5501
5502 /* set spidx if there */
5503 /* XXX rewrite */
5504 error = key_setident(newsah, m, mhp);
5505 if (error) {
5506 return key_senderror(so, m, error);
5507 }
5508
5509 /* create new SA entry. */
5510 /* We can create new SA only if SPI is differenct. */
5511 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5512 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5513 return key_senderror(so, m, EEXIST);
5514 }
5515 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5516 if (newsav == NULL) {
5517 return key_senderror(so, m, error);
5518 }
5519
5520 error = key_handle_natt_info(newsav, mhp);
5521 if (error != 0)
5522 return key_senderror(so, m, EINVAL);
5523
5524 /* check SA values to be mature. */
5525 error = key_mature(newsav);
5526 if (error != 0) {
5527 KEY_FREESAV(&newsav);
5528 return key_senderror(so, m, error);
5529 }
5530
5531 /*
5532 * don't call key_freesav() here, as we would like to keep the SA
5533 * in the database on success.
5534 */
5535
5536 {
5537 struct mbuf *n;
5538
5539 /* set msg buf from mhp */
5540 n = key_getmsgbuf_x1(m, mhp);
5541 if (n == NULL) {
5542 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5543 return key_senderror(so, m, ENOBUFS);
5544 }
5545
5546 m_freem(m);
5547 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5548 }
5549 }
5550
5551 /* m is retained */
5552 static int
5553 key_setident(struct secashead *sah, struct mbuf *m,
5554 const struct sadb_msghdr *mhp)
5555 {
5556 const struct sadb_ident *idsrc, *iddst;
5557 int idsrclen, iddstlen;
5558
5559 KASSERT(!cpu_softintr_p());
5560 KASSERT(sah != NULL);
5561 KASSERT(m != NULL);
5562 KASSERT(mhp != NULL);
5563 KASSERT(mhp->msg != NULL);
5564
5565 /*
5566 * Can be called with an existing sah from key_update().
5567 */
5568 if (sah->idents != NULL) {
5569 kmem_free(sah->idents, sah->idents_len);
5570 sah->idents = NULL;
5571 sah->idents_len = 0;
5572 }
5573 if (sah->identd != NULL) {
5574 kmem_free(sah->identd, sah->identd_len);
5575 sah->identd = NULL;
5576 sah->identd_len = 0;
5577 }
5578
5579 /* don't make buffer if not there */
5580 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5581 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5582 sah->idents = NULL;
5583 sah->identd = NULL;
5584 return 0;
5585 }
5586
5587 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5588 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5589 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5590 return EINVAL;
5591 }
5592
5593 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5594 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5595 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5596 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5597
5598 /* validity check */
5599 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5600 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5601 return EINVAL;
5602 }
5603
5604 switch (idsrc->sadb_ident_type) {
5605 case SADB_IDENTTYPE_PREFIX:
5606 case SADB_IDENTTYPE_FQDN:
5607 case SADB_IDENTTYPE_USERFQDN:
5608 default:
5609 /* XXX do nothing */
5610 sah->idents = NULL;
5611 sah->identd = NULL;
5612 return 0;
5613 }
5614
5615 /* make structure */
5616 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5617 sah->idents_len = idsrclen;
5618 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5619 sah->identd_len = iddstlen;
5620 memcpy(sah->idents, idsrc, idsrclen);
5621 memcpy(sah->identd, iddst, iddstlen);
5622
5623 return 0;
5624 }
5625
5626 /*
5627 * m will not be freed on return.
5628 * it is caller's responsibility to free the result.
5629 */
5630 static struct mbuf *
5631 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5632 {
5633 struct mbuf *n;
5634
5635 KASSERT(m != NULL);
5636 KASSERT(mhp != NULL);
5637 KASSERT(mhp->msg != NULL);
5638
5639 /* create new sadb_msg to reply. */
5640 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5641 SADB_EXT_SA, SADB_X_EXT_SA2,
5642 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5643 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5644 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5645 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5646 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5647 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5648 if (!n)
5649 return NULL;
5650
5651 if (n->m_len < sizeof(struct sadb_msg)) {
5652 n = m_pullup(n, sizeof(struct sadb_msg));
5653 if (n == NULL)
5654 return NULL;
5655 }
5656 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5657 mtod(n, struct sadb_msg *)->sadb_msg_len =
5658 PFKEY_UNIT64(n->m_pkthdr.len);
5659
5660 return n;
5661 }
5662
5663 static int key_delete_all (struct socket *, struct mbuf *,
5664 const struct sadb_msghdr *, u_int16_t);
5665
5666 /*
5667 * SADB_DELETE processing
5668 * receive
5669 * <base, SA(*), address(SD)>
5670 * from the ikmpd, and set SADB_SASTATE_DEAD,
5671 * and send,
5672 * <base, SA(*), address(SD)>
5673 * to the ikmpd.
5674 *
5675 * m will always be freed.
5676 */
5677 static int
5678 key_delete(struct socket *so, struct mbuf *m,
5679 const struct sadb_msghdr *mhp)
5680 {
5681 struct sadb_sa *sa0;
5682 const struct sockaddr *src, *dst;
5683 struct secasindex saidx;
5684 struct secashead *sah;
5685 struct secasvar *sav = NULL;
5686 u_int16_t proto;
5687 int error;
5688
5689 KASSERT(so != NULL);
5690 KASSERT(m != NULL);
5691 KASSERT(mhp != NULL);
5692 KASSERT(mhp->msg != NULL);
5693
5694 /* map satype to proto */
5695 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5696 if (proto == 0) {
5697 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5698 return key_senderror(so, m, EINVAL);
5699 }
5700
5701 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5702 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5703 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5704 return key_senderror(so, m, EINVAL);
5705 }
5706
5707 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5708 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5709 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5710 return key_senderror(so, m, EINVAL);
5711 }
5712
5713 if (mhp->ext[SADB_EXT_SA] == NULL) {
5714 /*
5715 * Caller wants us to delete all non-LARVAL SAs
5716 * that match the src/dst. This is used during
5717 * IKE INITIAL-CONTACT.
5718 */
5719 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5720 return key_delete_all(so, m, mhp, proto);
5721 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5722 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5723 return key_senderror(so, m, EINVAL);
5724 }
5725
5726 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5727 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5728 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5729
5730 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5731 if (error != 0)
5732 return key_senderror(so, m, EINVAL);
5733
5734 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5735 if (error != 0)
5736 return key_senderror(so, m, EINVAL);
5737
5738 /* get a SA header */
5739 sah = key_getsah(&saidx, CMP_HEAD);
5740 if (sah != NULL) {
5741 /* get a SA with SPI. */
5742 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5743 }
5744
5745 if (sav == NULL) {
5746 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5747 return key_senderror(so, m, ENOENT);
5748 }
5749
5750 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5751 KEY_FREESAV(&sav);
5752
5753 {
5754 struct mbuf *n;
5755
5756 /* create new sadb_msg to reply. */
5757 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5758 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5759 if (!n)
5760 return key_senderror(so, m, ENOBUFS);
5761
5762 n = key_fill_replymsg(n, 0);
5763 if (n == NULL)
5764 return key_senderror(so, m, ENOBUFS);
5765
5766 m_freem(m);
5767 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5768 }
5769 }
5770
5771 /*
5772 * delete all SAs for src/dst. Called from key_delete().
5773 */
5774 static int
5775 key_delete_all(struct socket *so, struct mbuf *m,
5776 const struct sadb_msghdr *mhp, u_int16_t proto)
5777 {
5778 const struct sockaddr *src, *dst;
5779 struct secasindex saidx;
5780 struct secashead *sah;
5781 struct secasvar *sav, *nextsav;
5782 u_int state;
5783 int error;
5784
5785 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5786 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5787
5788 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5789 if (error != 0)
5790 return key_senderror(so, m, EINVAL);
5791
5792 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5793 if (error != 0)
5794 return key_senderror(so, m, EINVAL);
5795
5796 sah = key_getsah(&saidx, CMP_HEAD);
5797 if (sah != NULL) {
5798 /* Delete all non-LARVAL SAs. */
5799 SASTATE_ALIVE_FOREACH(state) {
5800 if (state == SADB_SASTATE_LARVAL)
5801 continue;
5802 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5803 nextsav) {
5804 /* sanity check */
5805 if (sav->state != state) {
5806 IPSECLOG(LOG_DEBUG,
5807 "invalid sav->state "
5808 "(queue: %d SA: %d)\n",
5809 state, sav->state);
5810 continue;
5811 }
5812
5813 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5814 KEY_FREESAV(&sav);
5815 }
5816 }
5817 }
5818 {
5819 struct mbuf *n;
5820
5821 /* create new sadb_msg to reply. */
5822 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5823 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5824 if (!n)
5825 return key_senderror(so, m, ENOBUFS);
5826
5827 n = key_fill_replymsg(n, 0);
5828 if (n == NULL)
5829 return key_senderror(so, m, ENOBUFS);
5830
5831 m_freem(m);
5832 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5833 }
5834 }
5835
5836 /*
5837 * SADB_GET processing
5838 * receive
5839 * <base, SA(*), address(SD)>
5840 * from the ikmpd, and get a SP and a SA to respond,
5841 * and send,
5842 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5843 * (identity(SD),) (sensitivity)>
5844 * to the ikmpd.
5845 *
5846 * m will always be freed.
5847 */
5848 static int
5849 key_get(struct socket *so, struct mbuf *m,
5850 const struct sadb_msghdr *mhp)
5851 {
5852 struct sadb_sa *sa0;
5853 const struct sockaddr *src, *dst;
5854 struct secasindex saidx;
5855 struct secashead *sah;
5856 struct secasvar *sav = NULL;
5857 u_int16_t proto;
5858 int error;
5859
5860 KASSERT(so != NULL);
5861 KASSERT(m != NULL);
5862 KASSERT(mhp != NULL);
5863 KASSERT(mhp->msg != NULL);
5864
5865 /* map satype to proto */
5866 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5867 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5868 return key_senderror(so, m, EINVAL);
5869 }
5870
5871 if (mhp->ext[SADB_EXT_SA] == NULL ||
5872 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5873 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5874 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5875 return key_senderror(so, m, EINVAL);
5876 }
5877 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5878 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5879 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5880 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5881 return key_senderror(so, m, EINVAL);
5882 }
5883
5884 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5885 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5886 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5887
5888 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5889 if (error != 0)
5890 return key_senderror(so, m, EINVAL);
5891
5892 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5893 if (error != 0)
5894 return key_senderror(so, m, EINVAL);
5895
5896 /* get a SA header */
5897 sah = key_getsah(&saidx, CMP_HEAD);
5898 if (sah != NULL) {
5899 /* get a SA with SPI. */
5900 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5901 }
5902 if (sav == NULL) {
5903 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5904 return key_senderror(so, m, ENOENT);
5905 }
5906
5907 {
5908 struct mbuf *n;
5909 u_int8_t satype;
5910
5911 /* map proto to satype */
5912 satype = key_proto2satype(sah->saidx.proto);
5913 if (satype == 0) {
5914 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5915 return key_senderror(so, m, EINVAL);
5916 }
5917
5918 /* create new sadb_msg to reply. */
5919 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5920 mhp->msg->sadb_msg_pid);
5921 if (!n)
5922 return key_senderror(so, m, ENOBUFS);
5923
5924 m_freem(m);
5925 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5926 }
5927 }
5928
5929 /* XXX make it sysctl-configurable? */
5930 static void
5931 key_getcomb_setlifetime(struct sadb_comb *comb)
5932 {
5933
5934 comb->sadb_comb_soft_allocations = 1;
5935 comb->sadb_comb_hard_allocations = 1;
5936 comb->sadb_comb_soft_bytes = 0;
5937 comb->sadb_comb_hard_bytes = 0;
5938 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5939 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5940 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5941 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5942 }
5943
5944 /*
5945 * XXX reorder combinations by preference
5946 * XXX no idea if the user wants ESP authentication or not
5947 */
5948 static struct mbuf *
5949 key_getcomb_esp(void)
5950 {
5951 struct sadb_comb *comb;
5952 const struct enc_xform *algo;
5953 struct mbuf *result = NULL, *m, *n;
5954 int encmin;
5955 int i, off, o;
5956 int totlen;
5957 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5958
5959 m = NULL;
5960 for (i = 1; i <= SADB_EALG_MAX; i++) {
5961 algo = esp_algorithm_lookup(i);
5962 if (algo == NULL)
5963 continue;
5964
5965 /* discard algorithms with key size smaller than system min */
5966 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5967 continue;
5968 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5969 encmin = ipsec_esp_keymin;
5970 else
5971 encmin = _BITS(algo->minkey);
5972
5973 if (ipsec_esp_auth)
5974 m = key_getcomb_ah();
5975 else {
5976 KASSERTMSG(l <= MLEN,
5977 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5978 MGET(m, M_DONTWAIT, MT_DATA);
5979 if (m) {
5980 M_ALIGN(m, l);
5981 m->m_len = l;
5982 m->m_next = NULL;
5983 memset(mtod(m, void *), 0, m->m_len);
5984 }
5985 }
5986 if (!m)
5987 goto fail;
5988
5989 totlen = 0;
5990 for (n = m; n; n = n->m_next)
5991 totlen += n->m_len;
5992 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5993
5994 for (off = 0; off < totlen; off += l) {
5995 n = m_pulldown(m, off, l, &o);
5996 if (!n) {
5997 /* m is already freed */
5998 goto fail;
5999 }
6000 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6001 memset(comb, 0, sizeof(*comb));
6002 key_getcomb_setlifetime(comb);
6003 comb->sadb_comb_encrypt = i;
6004 comb->sadb_comb_encrypt_minbits = encmin;
6005 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6006 }
6007
6008 if (!result)
6009 result = m;
6010 else
6011 m_cat(result, m);
6012 }
6013
6014 return result;
6015
6016 fail:
6017 if (result)
6018 m_freem(result);
6019 return NULL;
6020 }
6021
6022 static void
6023 key_getsizes_ah(const struct auth_hash *ah, int alg,
6024 u_int16_t* ksmin, u_int16_t* ksmax)
6025 {
6026 *ksmin = *ksmax = ah->keysize;
6027 if (ah->keysize == 0) {
6028 /*
6029 * Transform takes arbitrary key size but algorithm
6030 * key size is restricted. Enforce this here.
6031 */
6032 switch (alg) {
6033 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6034 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6035 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6036 default:
6037 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6038 break;
6039 }
6040 }
6041 }
6042
6043 /*
6044 * XXX reorder combinations by preference
6045 */
6046 static struct mbuf *
6047 key_getcomb_ah(void)
6048 {
6049 struct sadb_comb *comb;
6050 const struct auth_hash *algo;
6051 struct mbuf *m;
6052 u_int16_t minkeysize, maxkeysize;
6053 int i;
6054 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6055
6056 m = NULL;
6057 for (i = 1; i <= SADB_AALG_MAX; i++) {
6058 #if 1
6059 /* we prefer HMAC algorithms, not old algorithms */
6060 if (i != SADB_AALG_SHA1HMAC &&
6061 i != SADB_AALG_MD5HMAC &&
6062 i != SADB_X_AALG_SHA2_256 &&
6063 i != SADB_X_AALG_SHA2_384 &&
6064 i != SADB_X_AALG_SHA2_512)
6065 continue;
6066 #endif
6067 algo = ah_algorithm_lookup(i);
6068 if (!algo)
6069 continue;
6070 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6071 /* discard algorithms with key size smaller than system min */
6072 if (_BITS(minkeysize) < ipsec_ah_keymin)
6073 continue;
6074
6075 if (!m) {
6076 KASSERTMSG(l <= MLEN,
6077 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6078 MGET(m, M_DONTWAIT, MT_DATA);
6079 if (m) {
6080 M_ALIGN(m, l);
6081 m->m_len = l;
6082 m->m_next = NULL;
6083 }
6084 } else
6085 M_PREPEND(m, l, M_DONTWAIT);
6086 if (!m)
6087 return NULL;
6088
6089 comb = mtod(m, struct sadb_comb *);
6090 memset(comb, 0, sizeof(*comb));
6091 key_getcomb_setlifetime(comb);
6092 comb->sadb_comb_auth = i;
6093 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6094 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6095 }
6096
6097 return m;
6098 }
6099
6100 /*
6101 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6102 * XXX reorder combinations by preference
6103 */
6104 static struct mbuf *
6105 key_getcomb_ipcomp(void)
6106 {
6107 struct sadb_comb *comb;
6108 const struct comp_algo *algo;
6109 struct mbuf *m;
6110 int i;
6111 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6112
6113 m = NULL;
6114 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6115 algo = ipcomp_algorithm_lookup(i);
6116 if (!algo)
6117 continue;
6118
6119 if (!m) {
6120 KASSERTMSG(l <= MLEN,
6121 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6122 MGET(m, M_DONTWAIT, MT_DATA);
6123 if (m) {
6124 M_ALIGN(m, l);
6125 m->m_len = l;
6126 m->m_next = NULL;
6127 }
6128 } else
6129 M_PREPEND(m, l, M_DONTWAIT);
6130 if (!m)
6131 return NULL;
6132
6133 comb = mtod(m, struct sadb_comb *);
6134 memset(comb, 0, sizeof(*comb));
6135 key_getcomb_setlifetime(comb);
6136 comb->sadb_comb_encrypt = i;
6137 /* what should we set into sadb_comb_*_{min,max}bits? */
6138 }
6139
6140 return m;
6141 }
6142
6143 /*
6144 * XXX no way to pass mode (transport/tunnel) to userland
6145 * XXX replay checking?
6146 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6147 */
6148 static struct mbuf *
6149 key_getprop(const struct secasindex *saidx)
6150 {
6151 struct sadb_prop *prop;
6152 struct mbuf *m, *n;
6153 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6154 int totlen;
6155
6156 switch (saidx->proto) {
6157 case IPPROTO_ESP:
6158 m = key_getcomb_esp();
6159 break;
6160 case IPPROTO_AH:
6161 m = key_getcomb_ah();
6162 break;
6163 case IPPROTO_IPCOMP:
6164 m = key_getcomb_ipcomp();
6165 break;
6166 default:
6167 return NULL;
6168 }
6169
6170 if (!m)
6171 return NULL;
6172 M_PREPEND(m, l, M_DONTWAIT);
6173 if (!m)
6174 return NULL;
6175
6176 totlen = 0;
6177 for (n = m; n; n = n->m_next)
6178 totlen += n->m_len;
6179
6180 prop = mtod(m, struct sadb_prop *);
6181 memset(prop, 0, sizeof(*prop));
6182 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6183 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6184 prop->sadb_prop_replay = 32; /* XXX */
6185
6186 return m;
6187 }
6188
6189 /*
6190 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6191 * send
6192 * <base, SA, address(SD), (address(P)), x_policy,
6193 * (identity(SD),) (sensitivity,) proposal>
6194 * to KMD, and expect to receive
6195 * <base> with SADB_ACQUIRE if error occurred,
6196 * or
6197 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6198 * from KMD by PF_KEY.
6199 *
6200 * XXX x_policy is outside of RFC2367 (KAME extension).
6201 * XXX sensitivity is not supported.
6202 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6203 * see comment for key_getcomb_ipcomp().
6204 *
6205 * OUT:
6206 * 0 : succeed
6207 * others: error number
6208 */
6209 static int
6210 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6211 {
6212 struct mbuf *result = NULL, *m;
6213 #ifndef IPSEC_NONBLOCK_ACQUIRE
6214 struct secacq *newacq;
6215 #endif
6216 u_int8_t satype;
6217 int error = -1;
6218 u_int32_t seq;
6219
6220 /* sanity check */
6221 KASSERT(saidx != NULL);
6222 satype = key_proto2satype(saidx->proto);
6223 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6224
6225 #ifndef IPSEC_NONBLOCK_ACQUIRE
6226 /*
6227 * We never do anything about acquirng SA. There is anather
6228 * solution that kernel blocks to send SADB_ACQUIRE message until
6229 * getting something message from IKEd. In later case, to be
6230 * managed with ACQUIRING list.
6231 */
6232 /* Get an entry to check whether sending message or not. */
6233 mutex_enter(&key_mtx);
6234 newacq = key_getacq(saidx);
6235 if (newacq != NULL) {
6236 if (key_blockacq_count < newacq->count) {
6237 /* reset counter and do send message. */
6238 newacq->count = 0;
6239 } else {
6240 /* increment counter and do nothing. */
6241 newacq->count++;
6242 mutex_exit(&key_mtx);
6243 return 0;
6244 }
6245 } else {
6246 /* make new entry for blocking to send SADB_ACQUIRE. */
6247 newacq = key_newacq(saidx);
6248 if (newacq == NULL)
6249 return ENOBUFS;
6250
6251 /* add to acqtree */
6252 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6253 }
6254
6255 seq = newacq->seq;
6256 mutex_exit(&key_mtx);
6257 #else
6258 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6259 #endif
6260 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6261 if (!m) {
6262 error = ENOBUFS;
6263 goto fail;
6264 }
6265 result = m;
6266
6267 /* set sadb_address for saidx's. */
6268 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6269 IPSEC_ULPROTO_ANY);
6270 if (!m) {
6271 error = ENOBUFS;
6272 goto fail;
6273 }
6274 m_cat(result, m);
6275
6276 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6277 IPSEC_ULPROTO_ANY);
6278 if (!m) {
6279 error = ENOBUFS;
6280 goto fail;
6281 }
6282 m_cat(result, m);
6283
6284 /* XXX proxy address (optional) */
6285
6286 /* set sadb_x_policy */
6287 if (sp) {
6288 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6289 if (!m) {
6290 error = ENOBUFS;
6291 goto fail;
6292 }
6293 m_cat(result, m);
6294 }
6295
6296 /* XXX identity (optional) */
6297 #if 0
6298 if (idexttype && fqdn) {
6299 /* create identity extension (FQDN) */
6300 struct sadb_ident *id;
6301 int fqdnlen;
6302
6303 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6304 id = (struct sadb_ident *)p;
6305 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6306 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6307 id->sadb_ident_exttype = idexttype;
6308 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6309 memcpy(id + 1, fqdn, fqdnlen);
6310 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6311 }
6312
6313 if (idexttype) {
6314 /* create identity extension (USERFQDN) */
6315 struct sadb_ident *id;
6316 int userfqdnlen;
6317
6318 if (userfqdn) {
6319 /* +1 for terminating-NUL */
6320 userfqdnlen = strlen(userfqdn) + 1;
6321 } else
6322 userfqdnlen = 0;
6323 id = (struct sadb_ident *)p;
6324 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6325 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6326 id->sadb_ident_exttype = idexttype;
6327 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6328 /* XXX is it correct? */
6329 if (curlwp)
6330 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6331 if (userfqdn && userfqdnlen)
6332 memcpy(id + 1, userfqdn, userfqdnlen);
6333 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6334 }
6335 #endif
6336
6337 /* XXX sensitivity (optional) */
6338
6339 /* create proposal/combination extension */
6340 m = key_getprop(saidx);
6341 #if 0
6342 /*
6343 * spec conformant: always attach proposal/combination extension,
6344 * the problem is that we have no way to attach it for ipcomp,
6345 * due to the way sadb_comb is declared in RFC2367.
6346 */
6347 if (!m) {
6348 error = ENOBUFS;
6349 goto fail;
6350 }
6351 m_cat(result, m);
6352 #else
6353 /*
6354 * outside of spec; make proposal/combination extension optional.
6355 */
6356 if (m)
6357 m_cat(result, m);
6358 #endif
6359
6360 if ((result->m_flags & M_PKTHDR) == 0) {
6361 error = EINVAL;
6362 goto fail;
6363 }
6364
6365 if (result->m_len < sizeof(struct sadb_msg)) {
6366 result = m_pullup(result, sizeof(struct sadb_msg));
6367 if (result == NULL) {
6368 error = ENOBUFS;
6369 goto fail;
6370 }
6371 }
6372
6373 result->m_pkthdr.len = 0;
6374 for (m = result; m; m = m->m_next)
6375 result->m_pkthdr.len += m->m_len;
6376
6377 mtod(result, struct sadb_msg *)->sadb_msg_len =
6378 PFKEY_UNIT64(result->m_pkthdr.len);
6379
6380 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6381
6382 fail:
6383 if (result)
6384 m_freem(result);
6385 return error;
6386 }
6387
6388 #ifndef IPSEC_NONBLOCK_ACQUIRE
6389 static struct secacq *
6390 key_newacq(const struct secasindex *saidx)
6391 {
6392 struct secacq *newacq;
6393
6394 /* get new entry */
6395 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6396 if (newacq == NULL) {
6397 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6398 return NULL;
6399 }
6400
6401 /* copy secindex */
6402 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6403 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6404 newacq->created = time_uptime;
6405 newacq->count = 0;
6406
6407 return newacq;
6408 }
6409
6410 static struct secacq *
6411 key_getacq(const struct secasindex *saidx)
6412 {
6413 struct secacq *acq;
6414
6415 KASSERT(mutex_owned(&key_mtx));
6416
6417 LIST_FOREACH(acq, &acqtree, chain) {
6418 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6419 return acq;
6420 }
6421
6422 return NULL;
6423 }
6424
6425 static struct secacq *
6426 key_getacqbyseq(u_int32_t seq)
6427 {
6428 struct secacq *acq;
6429
6430 KASSERT(mutex_owned(&key_mtx));
6431
6432 LIST_FOREACH(acq, &acqtree, chain) {
6433 if (acq->seq == seq)
6434 return acq;
6435 }
6436
6437 return NULL;
6438 }
6439 #endif
6440
6441 #ifdef notyet
6442 static struct secspacq *
6443 key_newspacq(const struct secpolicyindex *spidx)
6444 {
6445 struct secspacq *acq;
6446
6447 /* get new entry */
6448 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6449 if (acq == NULL) {
6450 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6451 return NULL;
6452 }
6453
6454 /* copy secindex */
6455 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6456 acq->created = time_uptime;
6457 acq->count = 0;
6458
6459 return acq;
6460 }
6461
6462 static struct secspacq *
6463 key_getspacq(const struct secpolicyindex *spidx)
6464 {
6465 struct secspacq *acq;
6466
6467 LIST_FOREACH(acq, &spacqtree, chain) {
6468 if (key_spidx_match_exactly(spidx, &acq->spidx))
6469 return acq;
6470 }
6471
6472 return NULL;
6473 }
6474 #endif /* notyet */
6475
6476 /*
6477 * SADB_ACQUIRE processing,
6478 * in first situation, is receiving
6479 * <base>
6480 * from the ikmpd, and clear sequence of its secasvar entry.
6481 *
6482 * In second situation, is receiving
6483 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6484 * from a user land process, and return
6485 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6486 * to the socket.
6487 *
6488 * m will always be freed.
6489 */
6490 static int
6491 key_acquire2(struct socket *so, struct mbuf *m,
6492 const struct sadb_msghdr *mhp)
6493 {
6494 const struct sockaddr *src, *dst;
6495 struct secasindex saidx;
6496 struct secashead *sah;
6497 u_int16_t proto;
6498 int error;
6499
6500 KASSERT(so != NULL);
6501 KASSERT(m != NULL);
6502 KASSERT(mhp != NULL);
6503 KASSERT(mhp->msg != NULL);
6504
6505 /*
6506 * Error message from KMd.
6507 * We assume that if error was occurred in IKEd, the length of PFKEY
6508 * message is equal to the size of sadb_msg structure.
6509 * We do not raise error even if error occurred in this function.
6510 */
6511 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6512 #ifndef IPSEC_NONBLOCK_ACQUIRE
6513 struct secacq *acq;
6514
6515 /* check sequence number */
6516 if (mhp->msg->sadb_msg_seq == 0) {
6517 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6518 m_freem(m);
6519 return 0;
6520 }
6521
6522 mutex_enter(&key_mtx);
6523 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6524 if (acq == NULL) {
6525 mutex_exit(&key_mtx);
6526 /*
6527 * the specified larval SA is already gone, or we got
6528 * a bogus sequence number. we can silently ignore it.
6529 */
6530 m_freem(m);
6531 return 0;
6532 }
6533
6534 /* reset acq counter in order to deletion by timehander. */
6535 acq->created = time_uptime;
6536 acq->count = 0;
6537 mutex_exit(&key_mtx);
6538 #endif
6539 m_freem(m);
6540 return 0;
6541 }
6542
6543 /*
6544 * This message is from user land.
6545 */
6546
6547 /* map satype to proto */
6548 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6549 if (proto == 0) {
6550 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6551 return key_senderror(so, m, EINVAL);
6552 }
6553
6554 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6555 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6556 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6557 /* error */
6558 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6559 return key_senderror(so, m, EINVAL);
6560 }
6561 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6562 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6563 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6564 /* error */
6565 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6566 return key_senderror(so, m, EINVAL);
6567 }
6568
6569 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6570 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6571
6572 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6573 if (error != 0)
6574 return key_senderror(so, m, EINVAL);
6575
6576 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6577 if (error != 0)
6578 return key_senderror(so, m, EINVAL);
6579
6580 /* get a SA index */
6581 sah = key_getsah(&saidx, CMP_MODE_REQID);
6582 if (sah != NULL) {
6583 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6584 return key_senderror(so, m, EEXIST);
6585 }
6586
6587 error = key_acquire(&saidx, NULL);
6588 if (error != 0) {
6589 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6590 mhp->msg->sadb_msg_errno);
6591 return key_senderror(so, m, error);
6592 }
6593
6594 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6595 }
6596
6597 /*
6598 * SADB_REGISTER processing.
6599 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6600 * receive
6601 * <base>
6602 * from the ikmpd, and register a socket to send PF_KEY messages,
6603 * and send
6604 * <base, supported>
6605 * to KMD by PF_KEY.
6606 * If socket is detached, must free from regnode.
6607 *
6608 * m will always be freed.
6609 */
6610 static int
6611 key_register(struct socket *so, struct mbuf *m,
6612 const struct sadb_msghdr *mhp)
6613 {
6614 struct secreg *reg, *newreg = 0;
6615
6616 KASSERT(!cpu_softintr_p());
6617 KASSERT(so != NULL);
6618 KASSERT(m != NULL);
6619 KASSERT(mhp != NULL);
6620 KASSERT(mhp->msg != NULL);
6621
6622 /* check for invalid register message */
6623 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6624 return key_senderror(so, m, EINVAL);
6625
6626 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6627 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6628 goto setmsg;
6629
6630 /* Allocate regnode in advance, out of mutex */
6631 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6632
6633 /* check whether existing or not */
6634 mutex_enter(&key_mtx);
6635 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6636 if (reg->so == so) {
6637 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6638 mutex_exit(&key_mtx);
6639 kmem_free(newreg, sizeof(*newreg));
6640 return key_senderror(so, m, EEXIST);
6641 }
6642 }
6643
6644 newreg->so = so;
6645 ((struct keycb *)sotorawcb(so))->kp_registered++;
6646
6647 /* add regnode to regtree. */
6648 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6649 mutex_exit(&key_mtx);
6650
6651 setmsg:
6652 {
6653 struct mbuf *n;
6654 struct sadb_supported *sup;
6655 u_int len, alen, elen;
6656 int off;
6657 int i;
6658 struct sadb_alg *alg;
6659
6660 /* create new sadb_msg to reply. */
6661 alen = 0;
6662 for (i = 1; i <= SADB_AALG_MAX; i++) {
6663 if (ah_algorithm_lookup(i))
6664 alen += sizeof(struct sadb_alg);
6665 }
6666 if (alen)
6667 alen += sizeof(struct sadb_supported);
6668 elen = 0;
6669 for (i = 1; i <= SADB_EALG_MAX; i++) {
6670 if (esp_algorithm_lookup(i))
6671 elen += sizeof(struct sadb_alg);
6672 }
6673 if (elen)
6674 elen += sizeof(struct sadb_supported);
6675
6676 len = sizeof(struct sadb_msg) + alen + elen;
6677
6678 if (len > MCLBYTES)
6679 return key_senderror(so, m, ENOBUFS);
6680
6681 MGETHDR(n, M_DONTWAIT, MT_DATA);
6682 if (len > MHLEN) {
6683 MCLGET(n, M_DONTWAIT);
6684 if ((n->m_flags & M_EXT) == 0) {
6685 m_freem(n);
6686 n = NULL;
6687 }
6688 }
6689 if (!n)
6690 return key_senderror(so, m, ENOBUFS);
6691
6692 n->m_pkthdr.len = n->m_len = len;
6693 n->m_next = NULL;
6694 off = 0;
6695
6696 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6697 n = key_fill_replymsg(n, 0);
6698 if (n == NULL)
6699 return key_senderror(so, m, ENOBUFS);
6700
6701 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6702
6703 /* for authentication algorithm */
6704 if (alen) {
6705 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6706 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6707 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6708 off += PFKEY_ALIGN8(sizeof(*sup));
6709
6710 for (i = 1; i <= SADB_AALG_MAX; i++) {
6711 const struct auth_hash *aalgo;
6712 u_int16_t minkeysize, maxkeysize;
6713
6714 aalgo = ah_algorithm_lookup(i);
6715 if (!aalgo)
6716 continue;
6717 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6718 alg->sadb_alg_id = i;
6719 alg->sadb_alg_ivlen = 0;
6720 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6721 alg->sadb_alg_minbits = _BITS(minkeysize);
6722 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6723 off += PFKEY_ALIGN8(sizeof(*alg));
6724 }
6725 }
6726
6727 /* for encryption algorithm */
6728 if (elen) {
6729 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6730 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6731 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6732 off += PFKEY_ALIGN8(sizeof(*sup));
6733
6734 for (i = 1; i <= SADB_EALG_MAX; i++) {
6735 const struct enc_xform *ealgo;
6736
6737 ealgo = esp_algorithm_lookup(i);
6738 if (!ealgo)
6739 continue;
6740 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6741 alg->sadb_alg_id = i;
6742 alg->sadb_alg_ivlen = ealgo->blocksize;
6743 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6744 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6745 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6746 }
6747 }
6748
6749 KASSERTMSG(off == len, "length inconsistency");
6750
6751 m_freem(m);
6752 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6753 }
6754 }
6755
6756 /*
6757 * free secreg entry registered.
6758 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6759 */
6760 void
6761 key_freereg(struct socket *so)
6762 {
6763 struct secreg *reg;
6764 int i;
6765
6766 KASSERT(!cpu_softintr_p());
6767 KASSERT(so != NULL);
6768
6769 /*
6770 * check whether existing or not.
6771 * check all type of SA, because there is a potential that
6772 * one socket is registered to multiple type of SA.
6773 */
6774 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6775 mutex_enter(&key_mtx);
6776 LIST_FOREACH(reg, ®tree[i], chain) {
6777 if (reg->so == so) {
6778 LIST_REMOVE(reg, chain);
6779 break;
6780 }
6781 }
6782 mutex_exit(&key_mtx);
6783 if (reg != NULL)
6784 kmem_free(reg, sizeof(*reg));
6785 }
6786
6787 return;
6788 }
6789
6790 /*
6791 * SADB_EXPIRE processing
6792 * send
6793 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6794 * to KMD by PF_KEY.
6795 * NOTE: We send only soft lifetime extension.
6796 *
6797 * OUT: 0 : succeed
6798 * others : error number
6799 */
6800 static int
6801 key_expire(struct secasvar *sav)
6802 {
6803 int s;
6804 int satype;
6805 struct mbuf *result = NULL, *m;
6806 int len;
6807 int error = -1;
6808 struct sadb_lifetime *lt;
6809
6810 /* XXX: Why do we lock ? */
6811 s = splsoftnet(); /*called from softclock()*/
6812
6813 KASSERT(sav != NULL);
6814 KASSERT(sav->sah != NULL);
6815
6816 satype = key_proto2satype(sav->sah->saidx.proto);
6817 KASSERTMSG(satype != 0, "invalid proto is passed");
6818
6819 /* set msg header */
6820 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6821 if (!m) {
6822 error = ENOBUFS;
6823 goto fail;
6824 }
6825 result = m;
6826
6827 /* create SA extension */
6828 m = key_setsadbsa(sav);
6829 if (!m) {
6830 error = ENOBUFS;
6831 goto fail;
6832 }
6833 m_cat(result, m);
6834
6835 /* create SA extension */
6836 m = key_setsadbxsa2(sav->sah->saidx.mode,
6837 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6838 if (!m) {
6839 error = ENOBUFS;
6840 goto fail;
6841 }
6842 m_cat(result, m);
6843
6844 /* create lifetime extension (current and soft) */
6845 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6846 m = key_alloc_mbuf(len);
6847 if (!m || m->m_next) { /*XXX*/
6848 if (m)
6849 m_freem(m);
6850 error = ENOBUFS;
6851 goto fail;
6852 }
6853 memset(mtod(m, void *), 0, len);
6854 lt = mtod(m, struct sadb_lifetime *);
6855 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6856 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6857 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6858 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6859 lt->sadb_lifetime_addtime =
6860 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6861 lt->sadb_lifetime_usetime =
6862 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6863 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6864 memcpy(lt, sav->lft_s, sizeof(*lt));
6865 m_cat(result, m);
6866
6867 /* set sadb_address for source */
6868 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6869 FULLMASK, IPSEC_ULPROTO_ANY);
6870 if (!m) {
6871 error = ENOBUFS;
6872 goto fail;
6873 }
6874 m_cat(result, m);
6875
6876 /* set sadb_address for destination */
6877 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6878 FULLMASK, IPSEC_ULPROTO_ANY);
6879 if (!m) {
6880 error = ENOBUFS;
6881 goto fail;
6882 }
6883 m_cat(result, m);
6884
6885 if ((result->m_flags & M_PKTHDR) == 0) {
6886 error = EINVAL;
6887 goto fail;
6888 }
6889
6890 if (result->m_len < sizeof(struct sadb_msg)) {
6891 result = m_pullup(result, sizeof(struct sadb_msg));
6892 if (result == NULL) {
6893 error = ENOBUFS;
6894 goto fail;
6895 }
6896 }
6897
6898 result->m_pkthdr.len = 0;
6899 for (m = result; m; m = m->m_next)
6900 result->m_pkthdr.len += m->m_len;
6901
6902 mtod(result, struct sadb_msg *)->sadb_msg_len =
6903 PFKEY_UNIT64(result->m_pkthdr.len);
6904
6905 splx(s);
6906 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6907
6908 fail:
6909 if (result)
6910 m_freem(result);
6911 splx(s);
6912 return error;
6913 }
6914
6915 /*
6916 * SADB_FLUSH processing
6917 * receive
6918 * <base>
6919 * from the ikmpd, and free all entries in secastree.
6920 * and send,
6921 * <base>
6922 * to the ikmpd.
6923 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6924 *
6925 * m will always be freed.
6926 */
6927 static int
6928 key_flush(struct socket *so, struct mbuf *m,
6929 const struct sadb_msghdr *mhp)
6930 {
6931 struct sadb_msg *newmsg;
6932 struct secashead *sah;
6933 struct secasvar *sav, *nextsav;
6934 u_int16_t proto;
6935 u_int8_t state;
6936
6937 KASSERT(so != NULL);
6938 KASSERT(mhp != NULL);
6939 KASSERT(mhp->msg != NULL);
6940
6941 /* map satype to proto */
6942 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6943 if (proto == 0) {
6944 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6945 return key_senderror(so, m, EINVAL);
6946 }
6947
6948 /* no SATYPE specified, i.e. flushing all SA. */
6949 LIST_FOREACH(sah, &sahtree, chain) {
6950 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6951 proto != sah->saidx.proto)
6952 continue;
6953
6954 SASTATE_ALIVE_FOREACH(state) {
6955 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6956 nextsav) {
6957 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6958 KEY_FREESAV(&sav);
6959 }
6960 }
6961
6962 sah->state = SADB_SASTATE_DEAD;
6963 }
6964
6965 if (m->m_len < sizeof(struct sadb_msg) ||
6966 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6967 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6968 return key_senderror(so, m, ENOBUFS);
6969 }
6970
6971 if (m->m_next)
6972 m_freem(m->m_next);
6973 m->m_next = NULL;
6974 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6975 newmsg = mtod(m, struct sadb_msg *);
6976 newmsg->sadb_msg_errno = 0;
6977 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6978
6979 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6980 }
6981
6982
6983 static struct mbuf *
6984 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6985 {
6986 struct secashead *sah;
6987 struct secasvar *sav;
6988 u_int16_t proto;
6989 u_int8_t satype;
6990 u_int8_t state;
6991 int cnt;
6992 struct mbuf *m, *n, *prev;
6993
6994 *lenp = 0;
6995
6996 /* map satype to proto */
6997 proto = key_satype2proto(req_satype);
6998 if (proto == 0) {
6999 *errorp = EINVAL;
7000 return (NULL);
7001 }
7002
7003 /* count sav entries to be sent to userland. */
7004 cnt = 0;
7005 LIST_FOREACH(sah, &sahtree, chain) {
7006 if (req_satype != SADB_SATYPE_UNSPEC &&
7007 proto != sah->saidx.proto)
7008 continue;
7009
7010 SASTATE_ANY_FOREACH(state) {
7011 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7012 cnt++;
7013 }
7014 }
7015 }
7016
7017 if (cnt == 0) {
7018 *errorp = ENOENT;
7019 return (NULL);
7020 }
7021
7022 /* send this to the userland, one at a time. */
7023 m = NULL;
7024 prev = m;
7025 LIST_FOREACH(sah, &sahtree, chain) {
7026 if (req_satype != SADB_SATYPE_UNSPEC &&
7027 proto != sah->saidx.proto)
7028 continue;
7029
7030 /* map proto to satype */
7031 satype = key_proto2satype(sah->saidx.proto);
7032 if (satype == 0) {
7033 m_freem(m);
7034 *errorp = EINVAL;
7035 return (NULL);
7036 }
7037
7038 SASTATE_ANY_FOREACH(state) {
7039 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7040 n = key_setdumpsa(sav, SADB_DUMP, satype,
7041 --cnt, pid);
7042 if (!n) {
7043 m_freem(m);
7044 *errorp = ENOBUFS;
7045 return (NULL);
7046 }
7047
7048 if (!m)
7049 m = n;
7050 else
7051 prev->m_nextpkt = n;
7052 prev = n;
7053 }
7054 }
7055 }
7056
7057 if (!m) {
7058 *errorp = EINVAL;
7059 return (NULL);
7060 }
7061
7062 if ((m->m_flags & M_PKTHDR) != 0) {
7063 m->m_pkthdr.len = 0;
7064 for (n = m; n; n = n->m_next)
7065 m->m_pkthdr.len += n->m_len;
7066 }
7067
7068 *errorp = 0;
7069 return (m);
7070 }
7071
7072 /*
7073 * SADB_DUMP processing
7074 * dump all entries including status of DEAD in SAD.
7075 * receive
7076 * <base>
7077 * from the ikmpd, and dump all secasvar leaves
7078 * and send,
7079 * <base> .....
7080 * to the ikmpd.
7081 *
7082 * m will always be freed.
7083 */
7084 static int
7085 key_dump(struct socket *so, struct mbuf *m0,
7086 const struct sadb_msghdr *mhp)
7087 {
7088 u_int16_t proto;
7089 u_int8_t satype;
7090 struct mbuf *n;
7091 int s;
7092 int error, len, ok;
7093
7094 KASSERT(so != NULL);
7095 KASSERT(m0 != NULL);
7096 KASSERT(mhp != NULL);
7097 KASSERT(mhp->msg != NULL);
7098
7099 /* map satype to proto */
7100 satype = mhp->msg->sadb_msg_satype;
7101 proto = key_satype2proto(satype);
7102 if (proto == 0) {
7103 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7104 return key_senderror(so, m0, EINVAL);
7105 }
7106
7107 /*
7108 * If the requestor has insufficient socket-buffer space
7109 * for the entire chain, nobody gets any response to the DUMP.
7110 * XXX For now, only the requestor ever gets anything.
7111 * Moreover, if the requestor has any space at all, they receive
7112 * the entire chain, otherwise the request is refused with ENOBUFS.
7113 */
7114 if (sbspace(&so->so_rcv) <= 0) {
7115 return key_senderror(so, m0, ENOBUFS);
7116 }
7117
7118 s = splsoftnet();
7119 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7120 splx(s);
7121
7122 if (n == NULL) {
7123 return key_senderror(so, m0, ENOENT);
7124 }
7125 {
7126 uint64_t *ps = PFKEY_STAT_GETREF();
7127 ps[PFKEY_STAT_IN_TOTAL]++;
7128 ps[PFKEY_STAT_IN_BYTES] += len;
7129 PFKEY_STAT_PUTREF();
7130 }
7131
7132 /*
7133 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7134 * The requestor receives either the entire chain, or an
7135 * error message with ENOBUFS.
7136 *
7137 * sbappendaddrchain() takes the chain of entries, one
7138 * packet-record per SPD entry, prepends the key_src sockaddr
7139 * to each packet-record, links the sockaddr mbufs into a new
7140 * list of records, then appends the entire resulting
7141 * list to the requesting socket.
7142 */
7143 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7144 SB_PRIO_ONESHOT_OVERFLOW);
7145
7146 if (!ok) {
7147 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7148 m_freem(n);
7149 return key_senderror(so, m0, ENOBUFS);
7150 }
7151
7152 m_freem(m0);
7153 return 0;
7154 }
7155
7156 /*
7157 * SADB_X_PROMISC processing
7158 *
7159 * m will always be freed.
7160 */
7161 static int
7162 key_promisc(struct socket *so, struct mbuf *m,
7163 const struct sadb_msghdr *mhp)
7164 {
7165 int olen;
7166
7167 KASSERT(so != NULL);
7168 KASSERT(m != NULL);
7169 KASSERT(mhp != NULL);
7170 KASSERT(mhp->msg != NULL);
7171
7172 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7173
7174 if (olen < sizeof(struct sadb_msg)) {
7175 #if 1
7176 return key_senderror(so, m, EINVAL);
7177 #else
7178 m_freem(m);
7179 return 0;
7180 #endif
7181 } else if (olen == sizeof(struct sadb_msg)) {
7182 /* enable/disable promisc mode */
7183 struct keycb *kp = (struct keycb *)sotorawcb(so);
7184 if (kp == NULL)
7185 return key_senderror(so, m, EINVAL);
7186 mhp->msg->sadb_msg_errno = 0;
7187 switch (mhp->msg->sadb_msg_satype) {
7188 case 0:
7189 case 1:
7190 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7191 break;
7192 default:
7193 return key_senderror(so, m, EINVAL);
7194 }
7195
7196 /* send the original message back to everyone */
7197 mhp->msg->sadb_msg_errno = 0;
7198 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7199 } else {
7200 /* send packet as is */
7201
7202 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7203
7204 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7205 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7206 }
7207 }
7208
7209 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7210 const struct sadb_msghdr *) = {
7211 NULL, /* SADB_RESERVED */
7212 key_getspi, /* SADB_GETSPI */
7213 key_update, /* SADB_UPDATE */
7214 key_add, /* SADB_ADD */
7215 key_delete, /* SADB_DELETE */
7216 key_get, /* SADB_GET */
7217 key_acquire2, /* SADB_ACQUIRE */
7218 key_register, /* SADB_REGISTER */
7219 NULL, /* SADB_EXPIRE */
7220 key_flush, /* SADB_FLUSH */
7221 key_dump, /* SADB_DUMP */
7222 key_promisc, /* SADB_X_PROMISC */
7223 NULL, /* SADB_X_PCHANGE */
7224 key_spdadd, /* SADB_X_SPDUPDATE */
7225 key_spdadd, /* SADB_X_SPDADD */
7226 key_spddelete, /* SADB_X_SPDDELETE */
7227 key_spdget, /* SADB_X_SPDGET */
7228 NULL, /* SADB_X_SPDACQUIRE */
7229 key_spddump, /* SADB_X_SPDDUMP */
7230 key_spdflush, /* SADB_X_SPDFLUSH */
7231 key_spdadd, /* SADB_X_SPDSETIDX */
7232 NULL, /* SADB_X_SPDEXPIRE */
7233 key_spddelete2, /* SADB_X_SPDDELETE2 */
7234 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7235 };
7236
7237 /*
7238 * parse sadb_msg buffer to process PFKEYv2,
7239 * and create a data to response if needed.
7240 * I think to be dealed with mbuf directly.
7241 * IN:
7242 * msgp : pointer to pointer to a received buffer pulluped.
7243 * This is rewrited to response.
7244 * so : pointer to socket.
7245 * OUT:
7246 * length for buffer to send to user process.
7247 */
7248 int
7249 key_parse(struct mbuf *m, struct socket *so)
7250 {
7251 struct sadb_msg *msg;
7252 struct sadb_msghdr mh;
7253 u_int orglen;
7254 int error;
7255
7256 KASSERT(m != NULL);
7257 KASSERT(so != NULL);
7258
7259 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7260 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7261 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7262 kdebug_sadb(msg);
7263 }
7264 #endif
7265
7266 if (m->m_len < sizeof(struct sadb_msg)) {
7267 m = m_pullup(m, sizeof(struct sadb_msg));
7268 if (!m)
7269 return ENOBUFS;
7270 }
7271 msg = mtod(m, struct sadb_msg *);
7272 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7273
7274 if ((m->m_flags & M_PKTHDR) == 0 ||
7275 m->m_pkthdr.len != orglen) {
7276 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7277 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7278 error = EINVAL;
7279 goto senderror;
7280 }
7281
7282 if (msg->sadb_msg_version != PF_KEY_V2) {
7283 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7284 msg->sadb_msg_version);
7285 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7286 error = EINVAL;
7287 goto senderror;
7288 }
7289
7290 if (msg->sadb_msg_type > SADB_MAX) {
7291 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7292 msg->sadb_msg_type);
7293 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7294 error = EINVAL;
7295 goto senderror;
7296 }
7297
7298 /* for old-fashioned code - should be nuked */
7299 if (m->m_pkthdr.len > MCLBYTES) {
7300 m_freem(m);
7301 return ENOBUFS;
7302 }
7303 if (m->m_next) {
7304 struct mbuf *n;
7305
7306 MGETHDR(n, M_DONTWAIT, MT_DATA);
7307 if (n && m->m_pkthdr.len > MHLEN) {
7308 MCLGET(n, M_DONTWAIT);
7309 if ((n->m_flags & M_EXT) == 0) {
7310 m_free(n);
7311 n = NULL;
7312 }
7313 }
7314 if (!n) {
7315 m_freem(m);
7316 return ENOBUFS;
7317 }
7318 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7319 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7320 n->m_next = NULL;
7321 m_freem(m);
7322 m = n;
7323 }
7324
7325 /* align the mbuf chain so that extensions are in contiguous region. */
7326 error = key_align(m, &mh);
7327 if (error)
7328 return error;
7329
7330 if (m->m_next) { /*XXX*/
7331 m_freem(m);
7332 return ENOBUFS;
7333 }
7334
7335 msg = mh.msg;
7336
7337 /* check SA type */
7338 switch (msg->sadb_msg_satype) {
7339 case SADB_SATYPE_UNSPEC:
7340 switch (msg->sadb_msg_type) {
7341 case SADB_GETSPI:
7342 case SADB_UPDATE:
7343 case SADB_ADD:
7344 case SADB_DELETE:
7345 case SADB_GET:
7346 case SADB_ACQUIRE:
7347 case SADB_EXPIRE:
7348 IPSECLOG(LOG_DEBUG,
7349 "must specify satype when msg type=%u.\n",
7350 msg->sadb_msg_type);
7351 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7352 error = EINVAL;
7353 goto senderror;
7354 }
7355 break;
7356 case SADB_SATYPE_AH:
7357 case SADB_SATYPE_ESP:
7358 case SADB_X_SATYPE_IPCOMP:
7359 case SADB_X_SATYPE_TCPSIGNATURE:
7360 switch (msg->sadb_msg_type) {
7361 case SADB_X_SPDADD:
7362 case SADB_X_SPDDELETE:
7363 case SADB_X_SPDGET:
7364 case SADB_X_SPDDUMP:
7365 case SADB_X_SPDFLUSH:
7366 case SADB_X_SPDSETIDX:
7367 case SADB_X_SPDUPDATE:
7368 case SADB_X_SPDDELETE2:
7369 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7370 msg->sadb_msg_type);
7371 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7372 error = EINVAL;
7373 goto senderror;
7374 }
7375 break;
7376 case SADB_SATYPE_RSVP:
7377 case SADB_SATYPE_OSPFV2:
7378 case SADB_SATYPE_RIPV2:
7379 case SADB_SATYPE_MIP:
7380 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7381 msg->sadb_msg_satype);
7382 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7383 error = EOPNOTSUPP;
7384 goto senderror;
7385 case 1: /* XXX: What does it do? */
7386 if (msg->sadb_msg_type == SADB_X_PROMISC)
7387 break;
7388 /*FALLTHROUGH*/
7389 default:
7390 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7391 msg->sadb_msg_satype);
7392 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7393 error = EINVAL;
7394 goto senderror;
7395 }
7396
7397 /* check field of upper layer protocol and address family */
7398 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7399 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7400 struct sadb_address *src0, *dst0;
7401 u_int plen;
7402
7403 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7404 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7405
7406 /* check upper layer protocol */
7407 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7408 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7409 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7410 error = EINVAL;
7411 goto senderror;
7412 }
7413
7414 /* check family */
7415 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7416 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7417 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7418 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7419 error = EINVAL;
7420 goto senderror;
7421 }
7422 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7423 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7424 IPSECLOG(LOG_DEBUG,
7425 "address struct size mismatched.\n");
7426 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7427 error = EINVAL;
7428 goto senderror;
7429 }
7430
7431 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7432 case AF_INET:
7433 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7434 sizeof(struct sockaddr_in)) {
7435 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7436 error = EINVAL;
7437 goto senderror;
7438 }
7439 break;
7440 case AF_INET6:
7441 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7442 sizeof(struct sockaddr_in6)) {
7443 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7444 error = EINVAL;
7445 goto senderror;
7446 }
7447 break;
7448 default:
7449 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7450 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7451 error = EAFNOSUPPORT;
7452 goto senderror;
7453 }
7454
7455 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7456 case AF_INET:
7457 plen = sizeof(struct in_addr) << 3;
7458 break;
7459 case AF_INET6:
7460 plen = sizeof(struct in6_addr) << 3;
7461 break;
7462 default:
7463 plen = 0; /*fool gcc*/
7464 break;
7465 }
7466
7467 /* check max prefix length */
7468 if (src0->sadb_address_prefixlen > plen ||
7469 dst0->sadb_address_prefixlen > plen) {
7470 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7471 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7472 error = EINVAL;
7473 goto senderror;
7474 }
7475
7476 /*
7477 * prefixlen == 0 is valid because there can be a case when
7478 * all addresses are matched.
7479 */
7480 }
7481
7482 if (msg->sadb_msg_type >= __arraycount(key_typesw) ||
7483 key_typesw[msg->sadb_msg_type] == NULL) {
7484 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7485 error = EINVAL;
7486 goto senderror;
7487 }
7488
7489 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7490
7491 senderror:
7492 return key_senderror(so, m, error);
7493 }
7494
7495 static int
7496 key_senderror(struct socket *so, struct mbuf *m, int code)
7497 {
7498 struct sadb_msg *msg;
7499
7500 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7501
7502 msg = mtod(m, struct sadb_msg *);
7503 msg->sadb_msg_errno = code;
7504 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7505 }
7506
7507 /*
7508 * set the pointer to each header into message buffer.
7509 * m will be freed on error.
7510 * XXX larger-than-MCLBYTES extension?
7511 */
7512 static int
7513 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7514 {
7515 struct mbuf *n;
7516 struct sadb_ext *ext;
7517 size_t off, end;
7518 int extlen;
7519 int toff;
7520
7521 KASSERT(m != NULL);
7522 KASSERT(mhp != NULL);
7523 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7524
7525 /* initialize */
7526 memset(mhp, 0, sizeof(*mhp));
7527
7528 mhp->msg = mtod(m, struct sadb_msg *);
7529 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7530
7531 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7532 extlen = end; /*just in case extlen is not updated*/
7533 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7534 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7535 if (!n) {
7536 /* m is already freed */
7537 return ENOBUFS;
7538 }
7539 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7540
7541 /* set pointer */
7542 switch (ext->sadb_ext_type) {
7543 case SADB_EXT_SA:
7544 case SADB_EXT_ADDRESS_SRC:
7545 case SADB_EXT_ADDRESS_DST:
7546 case SADB_EXT_ADDRESS_PROXY:
7547 case SADB_EXT_LIFETIME_CURRENT:
7548 case SADB_EXT_LIFETIME_HARD:
7549 case SADB_EXT_LIFETIME_SOFT:
7550 case SADB_EXT_KEY_AUTH:
7551 case SADB_EXT_KEY_ENCRYPT:
7552 case SADB_EXT_IDENTITY_SRC:
7553 case SADB_EXT_IDENTITY_DST:
7554 case SADB_EXT_SENSITIVITY:
7555 case SADB_EXT_PROPOSAL:
7556 case SADB_EXT_SUPPORTED_AUTH:
7557 case SADB_EXT_SUPPORTED_ENCRYPT:
7558 case SADB_EXT_SPIRANGE:
7559 case SADB_X_EXT_POLICY:
7560 case SADB_X_EXT_SA2:
7561 case SADB_X_EXT_NAT_T_TYPE:
7562 case SADB_X_EXT_NAT_T_SPORT:
7563 case SADB_X_EXT_NAT_T_DPORT:
7564 case SADB_X_EXT_NAT_T_OAI:
7565 case SADB_X_EXT_NAT_T_OAR:
7566 case SADB_X_EXT_NAT_T_FRAG:
7567 /* duplicate check */
7568 /*
7569 * XXX Are there duplication payloads of either
7570 * KEY_AUTH or KEY_ENCRYPT ?
7571 */
7572 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7573 IPSECLOG(LOG_DEBUG,
7574 "duplicate ext_type %u is passed.\n",
7575 ext->sadb_ext_type);
7576 m_freem(m);
7577 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7578 return EINVAL;
7579 }
7580 break;
7581 default:
7582 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7583 ext->sadb_ext_type);
7584 m_freem(m);
7585 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7586 return EINVAL;
7587 }
7588
7589 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7590
7591 if (key_validate_ext(ext, extlen)) {
7592 m_freem(m);
7593 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7594 return EINVAL;
7595 }
7596
7597 n = m_pulldown(m, off, extlen, &toff);
7598 if (!n) {
7599 /* m is already freed */
7600 return ENOBUFS;
7601 }
7602 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7603
7604 mhp->ext[ext->sadb_ext_type] = ext;
7605 mhp->extoff[ext->sadb_ext_type] = off;
7606 mhp->extlen[ext->sadb_ext_type] = extlen;
7607 }
7608
7609 if (off != end) {
7610 m_freem(m);
7611 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7612 return EINVAL;
7613 }
7614
7615 return 0;
7616 }
7617
7618 static int
7619 key_validate_ext(const struct sadb_ext *ext, int len)
7620 {
7621 const struct sockaddr *sa;
7622 enum { NONE, ADDR } checktype = NONE;
7623 int baselen = 0;
7624 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7625
7626 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7627 return EINVAL;
7628
7629 /* if it does not match minimum/maximum length, bail */
7630 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7631 ext->sadb_ext_type >= __arraycount(maxsize))
7632 return EINVAL;
7633 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7634 return EINVAL;
7635 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7636 return EINVAL;
7637
7638 /* more checks based on sadb_ext_type XXX need more */
7639 switch (ext->sadb_ext_type) {
7640 case SADB_EXT_ADDRESS_SRC:
7641 case SADB_EXT_ADDRESS_DST:
7642 case SADB_EXT_ADDRESS_PROXY:
7643 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7644 checktype = ADDR;
7645 break;
7646 case SADB_EXT_IDENTITY_SRC:
7647 case SADB_EXT_IDENTITY_DST:
7648 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7649 SADB_X_IDENTTYPE_ADDR) {
7650 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7651 checktype = ADDR;
7652 } else
7653 checktype = NONE;
7654 break;
7655 default:
7656 checktype = NONE;
7657 break;
7658 }
7659
7660 switch (checktype) {
7661 case NONE:
7662 break;
7663 case ADDR:
7664 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7665 if (len < baselen + sal)
7666 return EINVAL;
7667 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7668 return EINVAL;
7669 break;
7670 }
7671
7672 return 0;
7673 }
7674
7675 static int
7676 key_do_init(void)
7677 {
7678 int i, error;
7679
7680 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7681
7682 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7683
7684 callout_init(&key_timehandler_ch, 0);
7685 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7686 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7687 if (error != 0)
7688 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7689
7690 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7691 LIST_INIT(&sptree[i]);
7692 }
7693
7694 LIST_INIT(&sahtree);
7695
7696 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7697 LIST_INIT(®tree[i]);
7698 }
7699
7700 #ifndef IPSEC_NONBLOCK_ACQUIRE
7701 LIST_INIT(&acqtree);
7702 #endif
7703 #ifdef notyet
7704 LIST_INIT(&spacqtree);
7705 #endif
7706
7707 /* system default */
7708 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7709 ip4_def_policy.refcnt++; /*never reclaim this*/
7710
7711 #ifdef INET6
7712 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7713 ip6_def_policy.refcnt++; /*never reclaim this*/
7714 #endif
7715
7716 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7717
7718 /* initialize key statistics */
7719 keystat.getspi_count = 1;
7720
7721 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7722
7723 return (0);
7724 }
7725
7726 void
7727 key_init(void)
7728 {
7729 static ONCE_DECL(key_init_once);
7730
7731 sysctl_net_keyv2_setup(NULL);
7732 sysctl_net_key_compat_setup(NULL);
7733
7734 RUN_ONCE(&key_init_once, key_do_init);
7735 }
7736
7737 /*
7738 * XXX: maybe This function is called after INBOUND IPsec processing.
7739 *
7740 * Special check for tunnel-mode packets.
7741 * We must make some checks for consistency between inner and outer IP header.
7742 *
7743 * xxx more checks to be provided
7744 */
7745 int
7746 key_checktunnelsanity(
7747 struct secasvar *sav,
7748 u_int family,
7749 void *src,
7750 void *dst
7751 )
7752 {
7753
7754 KASSERT(sav->sah != NULL);
7755
7756 /* XXX: check inner IP header */
7757
7758 return 1;
7759 }
7760
7761 #if 0
7762 #define hostnamelen strlen(hostname)
7763
7764 /*
7765 * Get FQDN for the host.
7766 * If the administrator configured hostname (by hostname(1)) without
7767 * domain name, returns nothing.
7768 */
7769 static const char *
7770 key_getfqdn(void)
7771 {
7772 int i;
7773 int hasdot;
7774 static char fqdn[MAXHOSTNAMELEN + 1];
7775
7776 if (!hostnamelen)
7777 return NULL;
7778
7779 /* check if it comes with domain name. */
7780 hasdot = 0;
7781 for (i = 0; i < hostnamelen; i++) {
7782 if (hostname[i] == '.')
7783 hasdot++;
7784 }
7785 if (!hasdot)
7786 return NULL;
7787
7788 /* NOTE: hostname may not be NUL-terminated. */
7789 memset(fqdn, 0, sizeof(fqdn));
7790 memcpy(fqdn, hostname, hostnamelen);
7791 fqdn[hostnamelen] = '\0';
7792 return fqdn;
7793 }
7794
7795 /*
7796 * get username@FQDN for the host/user.
7797 */
7798 static const char *
7799 key_getuserfqdn(void)
7800 {
7801 const char *host;
7802 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7803 struct proc *p = curproc;
7804 char *q;
7805
7806 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7807 return NULL;
7808 if (!(host = key_getfqdn()))
7809 return NULL;
7810
7811 /* NOTE: s_login may not be-NUL terminated. */
7812 memset(userfqdn, 0, sizeof(userfqdn));
7813 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7814 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7815 q = userfqdn + strlen(userfqdn);
7816 *q++ = '@';
7817 memcpy(q, host, strlen(host));
7818 q += strlen(host);
7819 *q++ = '\0';
7820
7821 return userfqdn;
7822 }
7823 #endif
7824
7825 /* record data transfer on SA, and update timestamps */
7826 void
7827 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7828 {
7829
7830 KASSERT(sav != NULL);
7831 KASSERT(m != NULL);
7832 if (!sav->lft_c)
7833 return;
7834
7835 /*
7836 * XXX Currently, there is a difference of bytes size
7837 * between inbound and outbound processing.
7838 */
7839 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7840 /* to check bytes lifetime is done in key_timehandler(). */
7841
7842 /*
7843 * We use the number of packets as the unit of
7844 * sadb_lifetime_allocations. We increment the variable
7845 * whenever {esp,ah}_{in,out}put is called.
7846 */
7847 sav->lft_c->sadb_lifetime_allocations++;
7848 /* XXX check for expires? */
7849
7850 /*
7851 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7852 * in seconds. HARD and SOFT lifetime are measured by the time
7853 * difference (again in seconds) from sadb_lifetime_usetime.
7854 *
7855 * usetime
7856 * v expire expire
7857 * -----+-----+--------+---> t
7858 * <--------------> HARD
7859 * <-----> SOFT
7860 */
7861 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7862 /* XXX check for expires? */
7863
7864 return;
7865 }
7866
7867 /* dumb version */
7868 void
7869 key_sa_routechange(struct sockaddr *dst)
7870 {
7871 struct secashead *sah;
7872 struct route *ro;
7873 const struct sockaddr *sa;
7874
7875 LIST_FOREACH(sah, &sahtree, chain) {
7876 ro = &sah->sa_route;
7877 sa = rtcache_getdst(ro);
7878 if (sa != NULL && dst->sa_len == sa->sa_len &&
7879 memcmp(dst, sa, dst->sa_len) == 0)
7880 rtcache_free(ro);
7881 }
7882
7883 return;
7884 }
7885
7886 static void
7887 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7888 {
7889
7890 KASSERT(sav != NULL);
7891
7892 if (sav->state == state)
7893 return;
7894
7895 KASSERT(__LIST_CHAINED(sav));
7896 LIST_REMOVE(sav, chain);
7897
7898 sav->state = state;
7899 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7900 }
7901
7902 /* XXX too much? */
7903 static struct mbuf *
7904 key_alloc_mbuf(int l)
7905 {
7906 struct mbuf *m = NULL, *n;
7907 int len, t;
7908
7909 len = l;
7910 while (len > 0) {
7911 MGET(n, M_DONTWAIT, MT_DATA);
7912 if (n && len > MLEN)
7913 MCLGET(n, M_DONTWAIT);
7914 if (!n) {
7915 m_freem(m);
7916 return NULL;
7917 }
7918
7919 n->m_next = NULL;
7920 n->m_len = 0;
7921 n->m_len = M_TRAILINGSPACE(n);
7922 /* use the bottom of mbuf, hoping we can prepend afterwards */
7923 if (n->m_len > len) {
7924 t = (n->m_len - len) & ~(sizeof(long) - 1);
7925 n->m_data += t;
7926 n->m_len = len;
7927 }
7928
7929 len -= n->m_len;
7930
7931 if (m)
7932 m_cat(m, n);
7933 else
7934 m = n;
7935 }
7936
7937 return m;
7938 }
7939
7940 static struct mbuf *
7941 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7942 {
7943 struct secashead *sah;
7944 struct secasvar *sav;
7945 u_int16_t proto;
7946 u_int8_t satype;
7947 u_int8_t state;
7948 int cnt;
7949 struct mbuf *m, *n;
7950
7951 /* map satype to proto */
7952 proto = key_satype2proto(req_satype);
7953 if (proto == 0) {
7954 *errorp = EINVAL;
7955 return (NULL);
7956 }
7957
7958 /* count sav entries to be sent to the userland. */
7959 cnt = 0;
7960 LIST_FOREACH(sah, &sahtree, chain) {
7961 if (req_satype != SADB_SATYPE_UNSPEC &&
7962 proto != sah->saidx.proto)
7963 continue;
7964
7965 SASTATE_ANY_FOREACH(state) {
7966 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7967 cnt++;
7968 }
7969 }
7970 }
7971
7972 if (cnt == 0) {
7973 *errorp = ENOENT;
7974 return (NULL);
7975 }
7976
7977 /* send this to the userland, one at a time. */
7978 m = NULL;
7979 LIST_FOREACH(sah, &sahtree, chain) {
7980 if (req_satype != SADB_SATYPE_UNSPEC &&
7981 proto != sah->saidx.proto)
7982 continue;
7983
7984 /* map proto to satype */
7985 satype = key_proto2satype(sah->saidx.proto);
7986 if (satype == 0) {
7987 m_freem(m);
7988 *errorp = EINVAL;
7989 return (NULL);
7990 }
7991
7992 SASTATE_ANY_FOREACH(state) {
7993 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7994 n = key_setdumpsa(sav, SADB_DUMP, satype,
7995 --cnt, pid);
7996 if (!n) {
7997 m_freem(m);
7998 *errorp = ENOBUFS;
7999 return (NULL);
8000 }
8001
8002 if (!m)
8003 m = n;
8004 else
8005 m_cat(m, n);
8006 }
8007 }
8008 }
8009
8010 if (!m) {
8011 *errorp = EINVAL;
8012 return (NULL);
8013 }
8014
8015 if ((m->m_flags & M_PKTHDR) != 0) {
8016 m->m_pkthdr.len = 0;
8017 for (n = m; n; n = n->m_next)
8018 m->m_pkthdr.len += n->m_len;
8019 }
8020
8021 *errorp = 0;
8022 return (m);
8023 }
8024
8025 static struct mbuf *
8026 key_setspddump(int *errorp, pid_t pid)
8027 {
8028 struct secpolicy *sp;
8029 int cnt;
8030 u_int dir;
8031 struct mbuf *m, *n;
8032
8033 /* search SPD entry and get buffer size. */
8034 cnt = 0;
8035 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8036 LIST_FOREACH(sp, &sptree[dir], chain) {
8037 cnt++;
8038 }
8039 }
8040
8041 if (cnt == 0) {
8042 *errorp = ENOENT;
8043 return (NULL);
8044 }
8045
8046 m = NULL;
8047 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8048 LIST_FOREACH(sp, &sptree[dir], chain) {
8049 --cnt;
8050 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8051
8052 if (!n) {
8053 *errorp = ENOBUFS;
8054 m_freem(m);
8055 return (NULL);
8056 }
8057 if (!m)
8058 m = n;
8059 else {
8060 m->m_pkthdr.len += n->m_pkthdr.len;
8061 m_cat(m, n);
8062 }
8063 }
8064 }
8065
8066 *errorp = 0;
8067 return (m);
8068 }
8069
8070 int
8071 key_get_used(void) {
8072 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8073 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8074 }
8075
8076 void
8077 key_update_used(void)
8078 {
8079 switch (ipsec_enabled) {
8080 default:
8081 case 0:
8082 #ifdef notyet
8083 /* XXX: racy */
8084 ipsec_used = 0;
8085 #endif
8086 break;
8087 case 1:
8088 #ifndef notyet
8089 /* XXX: racy */
8090 if (!ipsec_used)
8091 #endif
8092 ipsec_used = key_get_used();
8093 break;
8094 case 2:
8095 ipsec_used = 1;
8096 break;
8097 }
8098 }
8099
8100 static int
8101 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8102 {
8103 struct mbuf *m, *n;
8104 int err2 = 0;
8105 char *p, *ep;
8106 size_t len;
8107 int s, error;
8108
8109 if (newp)
8110 return (EPERM);
8111 if (namelen != 1)
8112 return (EINVAL);
8113
8114 s = splsoftnet();
8115 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8116 splx(s);
8117 if (!m)
8118 return (error);
8119 if (!oldp)
8120 *oldlenp = m->m_pkthdr.len;
8121 else {
8122 p = oldp;
8123 if (*oldlenp < m->m_pkthdr.len) {
8124 err2 = ENOMEM;
8125 ep = p + *oldlenp;
8126 } else {
8127 *oldlenp = m->m_pkthdr.len;
8128 ep = p + m->m_pkthdr.len;
8129 }
8130 for (n = m; n; n = n->m_next) {
8131 len = (ep - p < n->m_len) ?
8132 ep - p : n->m_len;
8133 error = copyout(mtod(n, const void *), p, len);
8134 p += len;
8135 if (error)
8136 break;
8137 }
8138 if (error == 0)
8139 error = err2;
8140 }
8141 m_freem(m);
8142
8143 return (error);
8144 }
8145
8146 static int
8147 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8148 {
8149 struct mbuf *m, *n;
8150 int err2 = 0;
8151 char *p, *ep;
8152 size_t len;
8153 int s, error;
8154
8155 if (newp)
8156 return (EPERM);
8157 if (namelen != 0)
8158 return (EINVAL);
8159
8160 s = splsoftnet();
8161 m = key_setspddump(&error, l->l_proc->p_pid);
8162 splx(s);
8163 if (!m)
8164 return (error);
8165 if (!oldp)
8166 *oldlenp = m->m_pkthdr.len;
8167 else {
8168 p = oldp;
8169 if (*oldlenp < m->m_pkthdr.len) {
8170 err2 = ENOMEM;
8171 ep = p + *oldlenp;
8172 } else {
8173 *oldlenp = m->m_pkthdr.len;
8174 ep = p + m->m_pkthdr.len;
8175 }
8176 for (n = m; n; n = n->m_next) {
8177 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8178 error = copyout(mtod(n, const void *), p, len);
8179 p += len;
8180 if (error)
8181 break;
8182 }
8183 if (error == 0)
8184 error = err2;
8185 }
8186 m_freem(m);
8187
8188 return (error);
8189 }
8190
8191 /*
8192 * Create sysctl tree for native IPSEC key knobs, originally
8193 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8194 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8195 * and in any case the part of our sysctl namespace used for dumping the
8196 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8197 * namespace, for API reasons.
8198 *
8199 * Pending a consensus on the right way to fix this, add a level of
8200 * indirection in how we number the `native' IPSEC key nodes;
8201 * and (as requested by Andrew Brown) move registration of the
8202 * KAME-compatible names to a separate function.
8203 */
8204 #if 0
8205 # define IPSEC_PFKEY PF_KEY_V2
8206 # define IPSEC_PFKEY_NAME "keyv2"
8207 #else
8208 # define IPSEC_PFKEY PF_KEY
8209 # define IPSEC_PFKEY_NAME "key"
8210 #endif
8211
8212 static int
8213 sysctl_net_key_stats(SYSCTLFN_ARGS)
8214 {
8215
8216 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8217 }
8218
8219 static void
8220 sysctl_net_keyv2_setup(struct sysctllog **clog)
8221 {
8222
8223 sysctl_createv(clog, 0, NULL, NULL,
8224 CTLFLAG_PERMANENT,
8225 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8226 NULL, 0, NULL, 0,
8227 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8228
8229 sysctl_createv(clog, 0, NULL, NULL,
8230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8231 CTLTYPE_INT, "debug", NULL,
8232 NULL, 0, &key_debug_level, 0,
8233 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8234 sysctl_createv(clog, 0, NULL, NULL,
8235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8236 CTLTYPE_INT, "spi_try", NULL,
8237 NULL, 0, &key_spi_trycnt, 0,
8238 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8239 sysctl_createv(clog, 0, NULL, NULL,
8240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8241 CTLTYPE_INT, "spi_min_value", NULL,
8242 NULL, 0, &key_spi_minval, 0,
8243 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8244 sysctl_createv(clog, 0, NULL, NULL,
8245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8246 CTLTYPE_INT, "spi_max_value", NULL,
8247 NULL, 0, &key_spi_maxval, 0,
8248 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8249 sysctl_createv(clog, 0, NULL, NULL,
8250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8251 CTLTYPE_INT, "random_int", NULL,
8252 NULL, 0, &key_int_random, 0,
8253 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8254 sysctl_createv(clog, 0, NULL, NULL,
8255 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8256 CTLTYPE_INT, "larval_lifetime", NULL,
8257 NULL, 0, &key_larval_lifetime, 0,
8258 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8259 sysctl_createv(clog, 0, NULL, NULL,
8260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8261 CTLTYPE_INT, "blockacq_count", NULL,
8262 NULL, 0, &key_blockacq_count, 0,
8263 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8264 sysctl_createv(clog, 0, NULL, NULL,
8265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8266 CTLTYPE_INT, "blockacq_lifetime", NULL,
8267 NULL, 0, &key_blockacq_lifetime, 0,
8268 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8269 sysctl_createv(clog, 0, NULL, NULL,
8270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8271 CTLTYPE_INT, "esp_keymin", NULL,
8272 NULL, 0, &ipsec_esp_keymin, 0,
8273 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8274 sysctl_createv(clog, 0, NULL, NULL,
8275 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8276 CTLTYPE_INT, "prefered_oldsa", NULL,
8277 NULL, 0, &key_prefered_oldsa, 0,
8278 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8279 sysctl_createv(clog, 0, NULL, NULL,
8280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8281 CTLTYPE_INT, "esp_auth", NULL,
8282 NULL, 0, &ipsec_esp_auth, 0,
8283 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8284 sysctl_createv(clog, 0, NULL, NULL,
8285 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8286 CTLTYPE_INT, "ah_keymin", NULL,
8287 NULL, 0, &ipsec_ah_keymin, 0,
8288 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8289 sysctl_createv(clog, 0, NULL, NULL,
8290 CTLFLAG_PERMANENT,
8291 CTLTYPE_STRUCT, "stats",
8292 SYSCTL_DESCR("PF_KEY statistics"),
8293 sysctl_net_key_stats, 0, NULL, 0,
8294 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8295 }
8296
8297 /*
8298 * Register sysctl names used by setkey(8). For historical reasons,
8299 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8300 * for both IPSEC and KAME IPSEC.
8301 */
8302 static void
8303 sysctl_net_key_compat_setup(struct sysctllog **clog)
8304 {
8305
8306 sysctl_createv(clog, 0, NULL, NULL,
8307 CTLFLAG_PERMANENT,
8308 CTLTYPE_NODE, "key", NULL,
8309 NULL, 0, NULL, 0,
8310 CTL_NET, PF_KEY, CTL_EOL);
8311
8312 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8313 sysctl_createv(clog, 0, NULL, NULL,
8314 CTLFLAG_PERMANENT,
8315 CTLTYPE_STRUCT, "dumpsa", NULL,
8316 sysctl_net_key_dumpsa, 0, NULL, 0,
8317 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8318 sysctl_createv(clog, 0, NULL, NULL,
8319 CTLFLAG_PERMANENT,
8320 CTLTYPE_STRUCT, "dumpsp", NULL,
8321 sysctl_net_key_dumpsp, 0, NULL, 0,
8322 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8323 }
8324