key.c revision 1.171 1 /* $NetBSD: key.c,v 1.171 2017/07/10 07:45:10 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.171 2017/07/10 07:45:10 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/errno.h>
58 #include <sys/proc.h>
59 #include <sys/queue.h>
60 #include <sys/syslog.h>
61 #include <sys/once.h>
62 #include <sys/cprng.h>
63 #include <sys/psref.h>
64 #include <sys/lwp.h>
65 #include <sys/workqueue.h>
66 #include <sys/kmem.h>
67 #include <sys/cpu.h>
68 #include <sys/atomic.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipcomp.h>
108
109
110 #include <net/net_osdep.h>
111
112 #define FULLMASK 0xff
113 #define _BITS(bytes) ((bytes) << 3)
114
115 #define PORT_NONE 0
116 #define PORT_LOOSE 1
117 #define PORT_STRICT 2
118
119 percpu_t *pfkeystat_percpu;
120
121 /*
122 * Note on SA reference counting:
123 * - SAs that are not in DEAD state will have (total external reference + 1)
124 * following value in reference count field. they cannot be freed and are
125 * referenced from SA header.
126 * - SAs that are in DEAD state will have (total external reference)
127 * in reference count field. they are ready to be freed. reference from
128 * SA header will be removed in key_delsav(), when the reference count
129 * field hits 0 (= no external reference other than from SA header.
130 */
131
132 u_int32_t key_debug_level = 0;
133 static u_int key_spi_trycnt = 1000;
134 static u_int32_t key_spi_minval = 0x100;
135 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
136 static u_int32_t policy_id = 0;
137 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
138 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
139 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
140 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
141 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
142
143 static u_int32_t acq_seq = 0;
144
145 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
146 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 /* registed list */
149 #ifndef IPSEC_NONBLOCK_ACQUIRE
150 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
151 #endif
152 #ifdef notyet
153 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
154 #endif
155
156 /*
157 * Protect regtree, acqtree and items stored in the lists.
158 */
159 static kmutex_t key_mtx __cacheline_aligned;
160
161 /* search order for SAs */
162 /*
163 * This order is important because we must select the oldest SA
164 * for outbound processing. For inbound, This is not important.
165 */
166 static const u_int saorder_state_valid_prefer_old[] = {
167 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
168 };
169 static const u_int saorder_state_valid_prefer_new[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 };
172
173 static const u_int saorder_state_alive[] = {
174 /* except DEAD */
175 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
176 };
177 static const u_int saorder_state_any[] = {
178 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
179 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
180 };
181
182 #define SASTATE_ALIVE_FOREACH(s) \
183 for (int _i = 0; \
184 _i < __arraycount(saorder_state_alive) ? \
185 (s) = saorder_state_alive[_i], true : false; \
186 _i++)
187 #define SASTATE_ANY_FOREACH(s) \
188 for (int _i = 0; \
189 _i < __arraycount(saorder_state_any) ? \
190 (s) = saorder_state_any[_i], true : false; \
191 _i++)
192
193 static const int minsize[] = {
194 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
195 sizeof(struct sadb_sa), /* SADB_EXT_SA */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
202 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
203 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
205 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
206 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
207 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
209 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
210 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
211 0, /* SADB_X_EXT_KMPRIVATE */
212 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
213 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
214 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
215 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
217 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
218 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221 static const int maxsize[] = {
222 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
223 sizeof(struct sadb_sa), /* SADB_EXT_SA */
224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
225 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
227 0, /* SADB_EXT_ADDRESS_SRC */
228 0, /* SADB_EXT_ADDRESS_DST */
229 0, /* SADB_EXT_ADDRESS_PROXY */
230 0, /* SADB_EXT_KEY_AUTH */
231 0, /* SADB_EXT_KEY_ENCRYPT */
232 0, /* SADB_EXT_IDENTITY_SRC */
233 0, /* SADB_EXT_IDENTITY_DST */
234 0, /* SADB_EXT_SENSITIVITY */
235 0, /* SADB_EXT_PROPOSAL */
236 0, /* SADB_EXT_SUPPORTED_AUTH */
237 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
238 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
239 0, /* SADB_X_EXT_KMPRIVATE */
240 0, /* SADB_X_EXT_POLICY */
241 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
242 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
243 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
244 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
245 0, /* SADB_X_EXT_NAT_T_OAI */
246 0, /* SADB_X_EXT_NAT_T_OAR */
247 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
248 };
249
250 static int ipsec_esp_keymin = 256;
251 static int ipsec_esp_auth = 0;
252 static int ipsec_ah_keymin = 128;
253
254 #ifdef SYSCTL_DECL
255 SYSCTL_DECL(_net_key);
256 #endif
257
258 #ifdef SYSCTL_INT
259 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
260 &key_debug_level, 0, "");
261
262 /* max count of trial for the decision of spi value */
263 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
264 &key_spi_trycnt, 0, "");
265
266 /* minimum spi value to allocate automatically. */
267 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
268 &key_spi_minval, 0, "");
269
270 /* maximun spi value to allocate automatically. */
271 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
272 &key_spi_maxval, 0, "");
273
274 /* interval to initialize randseed */
275 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
276 &key_int_random, 0, "");
277
278 /* lifetime for larval SA */
279 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
280 &key_larval_lifetime, 0, "");
281
282 /* counter for blocking to send SADB_ACQUIRE to IKEd */
283 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
284 &key_blockacq_count, 0, "");
285
286 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
287 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
288 &key_blockacq_lifetime, 0, "");
289
290 /* ESP auth */
291 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
292 &ipsec_esp_auth, 0, "");
293
294 /* minimum ESP key length */
295 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
296 &ipsec_esp_keymin, 0, "");
297
298 /* minimum AH key length */
299 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
300 &ipsec_ah_keymin, 0, "");
301
302 /* perfered old SA rather than new SA */
303 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
304 &key_prefered_oldsa, 0, "");
305 #endif /* SYSCTL_INT */
306
307 #define __LIST_CHAINED(elm) \
308 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
309 #define LIST_INSERT_TAIL(head, elm, type, field) \
310 do {\
311 struct type *curelm = LIST_FIRST(head); \
312 if (curelm == NULL) {\
313 LIST_INSERT_HEAD(head, elm, field); \
314 } else { \
315 while (LIST_NEXT(curelm, field)) \
316 curelm = LIST_NEXT(curelm, field);\
317 LIST_INSERT_AFTER(curelm, elm, field);\
318 }\
319 } while (0)
320
321 #define KEY_CHKSASTATE(head, sav) \
322 /* do */ { \
323 if ((head) != (sav)) { \
324 IPSECLOG(LOG_DEBUG, \
325 "state mismatched (TREE=%d SA=%d)\n", \
326 (head), (sav)); \
327 continue; \
328 } \
329 } /* while (0) */
330
331 #define KEY_CHKSPDIR(head, sp) \
332 do { \
333 if ((head) != (sp)) { \
334 IPSECLOG(LOG_DEBUG, \
335 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
336 (head), (sp)); \
337 } \
338 } while (0)
339
340 /*
341 * set parameters into secasindex buffer.
342 * Must allocate secasindex buffer before calling this function.
343 */
344 static int
345 key_setsecasidx(int, int, int, const struct sockaddr *,
346 const struct sockaddr *, struct secasindex *);
347
348 /* key statistics */
349 struct _keystat {
350 u_long getspi_count; /* the avarage of count to try to get new SPI */
351 } keystat;
352
353 struct sadb_msghdr {
354 struct sadb_msg *msg;
355 struct sadb_ext *ext[SADB_EXT_MAX + 1];
356 int extoff[SADB_EXT_MAX + 1];
357 int extlen[SADB_EXT_MAX + 1];
358 };
359
360 static void
361 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
362
363 static const struct sockaddr *
364 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
365 {
366
367 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
368 }
369
370 static struct mbuf *
371 key_fill_replymsg(struct mbuf *m, int seq)
372 {
373 struct sadb_msg *msg;
374
375 if (m->m_len < sizeof(*msg)) {
376 m = m_pullup(m, sizeof(*msg));
377 if (m == NULL)
378 return NULL;
379 }
380 msg = mtod(m, struct sadb_msg *);
381 msg->sadb_msg_errno = 0;
382 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
383 if (seq != 0)
384 msg->sadb_msg_seq = seq;
385
386 return m;
387 }
388
389 static struct secasvar *key_allocsa_policy (const struct secasindex *);
390 #if 0
391 static void key_freeso(struct socket *);
392 static void key_freesp_so(struct secpolicy **);
393 #endif
394 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
395 static void key_delsp (struct secpolicy *);
396 static struct secpolicy *key_getsp (const struct secpolicyindex *);
397 static struct secpolicy *key_getspbyid (u_int32_t);
398 static u_int16_t key_newreqid (void);
399 static struct mbuf *key_gather_mbuf (struct mbuf *,
400 const struct sadb_msghdr *, int, int, ...);
401 static int key_api_spdadd(struct socket *, struct mbuf *,
402 const struct sadb_msghdr *);
403 static u_int32_t key_getnewspid (void);
404 static int key_api_spddelete(struct socket *, struct mbuf *,
405 const struct sadb_msghdr *);
406 static int key_api_spddelete2(struct socket *, struct mbuf *,
407 const struct sadb_msghdr *);
408 static int key_api_spdget(struct socket *, struct mbuf *,
409 const struct sadb_msghdr *);
410 static int key_api_spdflush(struct socket *, struct mbuf *,
411 const struct sadb_msghdr *);
412 static int key_api_spddump(struct socket *, struct mbuf *,
413 const struct sadb_msghdr *);
414 static struct mbuf * key_setspddump (int *errorp, pid_t);
415 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
416 static int key_api_nat_map(struct socket *, struct mbuf *,
417 const struct sadb_msghdr *);
418 static struct mbuf *key_setdumpsp (struct secpolicy *,
419 u_int8_t, u_int32_t, pid_t);
420 static u_int key_getspreqmsglen (const struct secpolicy *);
421 static int key_spdexpire (struct secpolicy *);
422 static struct secashead *key_newsah (const struct secasindex *);
423 static void key_delsah (struct secashead *);
424 static struct secasvar *key_newsav(struct mbuf *,
425 const struct sadb_msghdr *, int *, const char*, int);
426 #define KEY_NEWSAV(m, sadb, e) \
427 key_newsav(m, sadb, e, __func__, __LINE__)
428 static void key_delsav (struct secasvar *);
429 static struct secashead *key_getsah(const struct secasindex *, int);
430 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
431 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
432 static int key_setsaval (struct secasvar *, struct mbuf *,
433 const struct sadb_msghdr *);
434 static void key_freesaval(struct secasvar *);
435 static int key_init_xform(struct secasvar *);
436 static void key_clear_xform(struct secasvar *);
437 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
438 u_int8_t, u_int32_t, u_int32_t);
439 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
440 static struct mbuf *key_setsadbxtype (u_int16_t);
441 static struct mbuf *key_setsadbxfrag (u_int16_t);
442 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
443 static int key_checksalen (const union sockaddr_union *);
444 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
445 u_int32_t, pid_t, u_int16_t);
446 static struct mbuf *key_setsadbsa (struct secasvar *);
447 static struct mbuf *key_setsadbaddr (u_int16_t,
448 const struct sockaddr *, u_int8_t, u_int16_t);
449 #if 0
450 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
451 int, u_int64_t);
452 #endif
453 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
454 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
455 u_int32_t);
456 static void *key_newbuf (const void *, u_int);
457 #ifdef INET6
458 static int key_ismyaddr6 (const struct sockaddr_in6 *);
459 #endif
460
461 static void sysctl_net_keyv2_setup(struct sysctllog **);
462 static void sysctl_net_key_compat_setup(struct sysctllog **);
463
464 /* flags for key_saidx_match() */
465 #define CMP_HEAD 1 /* protocol, addresses. */
466 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
467 #define CMP_REQID 3 /* additionally HEAD, reaid. */
468 #define CMP_EXACTLY 4 /* all elements. */
469 static int key_saidx_match(const struct secasindex *,
470 const struct secasindex *, int);
471
472 static int key_sockaddr_match(const struct sockaddr *,
473 const struct sockaddr *, int);
474 static int key_bb_match_withmask(const void *, const void *, u_int);
475 static u_int16_t key_satype2proto (u_int8_t);
476 static u_int8_t key_proto2satype (u_int16_t);
477
478 static int key_spidx_match_exactly(const struct secpolicyindex *,
479 const struct secpolicyindex *);
480 static int key_spidx_match_withmask(const struct secpolicyindex *,
481 const struct secpolicyindex *);
482
483 static int key_api_getspi(struct socket *, struct mbuf *,
484 const struct sadb_msghdr *);
485 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
486 const struct secasindex *);
487 static int key_handle_natt_info (struct secasvar *,
488 const struct sadb_msghdr *);
489 static int key_set_natt_ports (union sockaddr_union *,
490 union sockaddr_union *,
491 const struct sadb_msghdr *);
492 static int key_api_update(struct socket *, struct mbuf *,
493 const struct sadb_msghdr *);
494 #ifdef IPSEC_DOSEQCHECK
495 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
496 #endif
497 static int key_api_add(struct socket *, struct mbuf *,
498 const struct sadb_msghdr *);
499 static int key_setident (struct secashead *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
502 const struct sadb_msghdr *);
503 static int key_api_delete(struct socket *, struct mbuf *,
504 const struct sadb_msghdr *);
505 static int key_api_get(struct socket *, struct mbuf *,
506 const struct sadb_msghdr *);
507
508 static void key_getcomb_setlifetime (struct sadb_comb *);
509 static struct mbuf *key_getcomb_esp (void);
510 static struct mbuf *key_getcomb_ah (void);
511 static struct mbuf *key_getcomb_ipcomp (void);
512 static struct mbuf *key_getprop (const struct secasindex *);
513
514 static int key_acquire (const struct secasindex *, struct secpolicy *);
515 #ifndef IPSEC_NONBLOCK_ACQUIRE
516 static struct secacq *key_newacq (const struct secasindex *);
517 static struct secacq *key_getacq (const struct secasindex *);
518 static struct secacq *key_getacqbyseq (u_int32_t);
519 #endif
520 #ifdef notyet
521 static struct secspacq *key_newspacq (const struct secpolicyindex *);
522 static struct secspacq *key_getspacq (const struct secpolicyindex *);
523 #endif
524 static int key_api_acquire(struct socket *, struct mbuf *,
525 const struct sadb_msghdr *);
526 static int key_api_register(struct socket *, struct mbuf *,
527 const struct sadb_msghdr *);
528 static int key_expire (struct secasvar *);
529 static int key_api_flush(struct socket *, struct mbuf *,
530 const struct sadb_msghdr *);
531 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
532 int *lenp, pid_t pid);
533 static int key_api_dump(struct socket *, struct mbuf *,
534 const struct sadb_msghdr *);
535 static int key_api_promisc(struct socket *, struct mbuf *,
536 const struct sadb_msghdr *);
537 static int key_senderror (struct socket *, struct mbuf *, int);
538 static int key_validate_ext (const struct sadb_ext *, int);
539 static int key_align (struct mbuf *, struct sadb_msghdr *);
540 #if 0
541 static const char *key_getfqdn (void);
542 static const char *key_getuserfqdn (void);
543 #endif
544 static void key_sa_chgstate (struct secasvar *, u_int8_t);
545 static inline void key_sp_dead (struct secpolicy *);
546 static void key_sp_unlink (struct secpolicy *sp);
547
548 static struct mbuf *key_alloc_mbuf (int);
549
550 static void key_timehandler(void *);
551 static void key_timehandler_work(struct work *, void *);
552 static struct callout key_timehandler_ch;
553 static struct workqueue *key_timehandler_wq;
554 static struct work key_timehandler_wk;
555
556 #ifdef IPSEC_REF_DEBUG
557 #define REFLOG(label, p, where, tag) \
558 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
559 (where), (tag), (p)->refcnt, (p))
560 #else
561 #define REFLOG(label, p, where, tag) do {} while (0)
562 #endif
563
564 #define SA_ADDREF(p) do { \
565 atomic_inc_uint(&(p)->refcnt); \
566 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
567 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
568 } while (0)
569 #define SA_ADDREF2(p, where, tag) do { \
570 atomic_inc_uint(&(p)->refcnt); \
571 REFLOG("SA_ADDREF", (p), (where), (tag)); \
572 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
573 } while (0)
574 #define SA_DELREF(p) do { \
575 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
576 atomic_dec_uint(&(p)->refcnt); \
577 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
578 } while (0)
579 #define SA_DELREF2(p, nv, where, tag) do { \
580 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
581 nv = atomic_dec_uint_nv(&(p)->refcnt); \
582 REFLOG("SA_DELREF", (p), (where), (tag)); \
583 } while (0)
584
585 #define SP_ADDREF(p) do { \
586 atomic_inc_uint(&(p)->refcnt); \
587 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
588 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
589 } while (0)
590 #define SP_ADDREF2(p, where, tag) do { \
591 atomic_inc_uint(&(p)->refcnt); \
592 REFLOG("SP_ADDREF", (p), (where), (tag)); \
593 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
594 } while (0)
595 #define SP_DELREF(p) do { \
596 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
597 atomic_dec_uint(&(p)->refcnt); \
598 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
599 } while (0)
600 #define SP_DELREF2(p, nv, where, tag) do { \
601 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
602 nv = atomic_dec_uint_nv(&(p)->refcnt); \
603 REFLOG("SP_DELREF", (p), (where), (tag)); \
604 } while (0)
605
606
607 static inline void
608 key_sp_dead(struct secpolicy *sp)
609 {
610
611 /* mark the SP dead */
612 sp->state = IPSEC_SPSTATE_DEAD;
613 }
614
615 static void
616 key_sp_unlink(struct secpolicy *sp)
617 {
618
619 /* remove from SP index */
620 KASSERT(__LIST_CHAINED(sp));
621 LIST_REMOVE(sp, chain);
622 /* Release refcount held just for being on chain */
623 KEY_FREESP(&sp);
624 }
625
626
627 /*
628 * Return 0 when there are known to be no SP's for the specified
629 * direction. Otherwise return 1. This is used by IPsec code
630 * to optimize performance.
631 */
632 int
633 key_havesp(u_int dir)
634 {
635 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
636 !LIST_EMPTY(&sptree[dir]) : 1);
637 }
638
639 /* %%% IPsec policy management */
640 /*
641 * allocating a SP for OUTBOUND or INBOUND packet.
642 * Must call key_freesp() later.
643 * OUT: NULL: not found
644 * others: found and return the pointer.
645 */
646 struct secpolicy *
647 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
648 u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
652
653 KASSERT(spidx != NULL);
654 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
655
656 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
657
658 /* get a SP entry */
659 s = splsoftnet(); /*called from softclock()*/
660 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
661 printf("*** objects\n");
662 kdebug_secpolicyindex(spidx);
663 }
664
665 LIST_FOREACH(sp, &sptree[dir], chain) {
666 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
667 printf("*** in SPD\n");
668 kdebug_secpolicyindex(&sp->spidx);
669 }
670
671 if (sp->state == IPSEC_SPSTATE_DEAD)
672 continue;
673 if (key_spidx_match_withmask(&sp->spidx, spidx))
674 goto found;
675 }
676 sp = NULL;
677 found:
678 if (sp) {
679 /* sanity check */
680 KEY_CHKSPDIR(sp->spidx.dir, dir);
681
682 /* found a SPD entry */
683 sp->lastused = time_uptime;
684 SP_ADDREF2(sp, where, tag);
685 }
686 splx(s);
687
688 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
689 "DP return SP:%p (ID=%u) refcnt %u\n",
690 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
691 return sp;
692 }
693
694 /*
695 * allocating a SP for OUTBOUND or INBOUND packet.
696 * Must call key_freesp() later.
697 * OUT: NULL: not found
698 * others: found and return the pointer.
699 */
700 struct secpolicy *
701 key_lookup_sp(u_int32_t spi,
702 const union sockaddr_union *dst,
703 u_int8_t proto,
704 u_int dir,
705 const char* where, int tag)
706 {
707 struct secpolicy *sp;
708 int s;
709
710 KASSERT(dst != NULL);
711 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
712
713 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
714
715 /* get a SP entry */
716 s = splsoftnet(); /*called from softclock()*/
717 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
718 printf("*** objects\n");
719 printf("spi %u proto %u dir %u\n", spi, proto, dir);
720 kdebug_sockaddr(&dst->sa);
721 }
722
723 LIST_FOREACH(sp, &sptree[dir], chain) {
724 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
725 printf("*** in SPD\n");
726 kdebug_secpolicyindex(&sp->spidx);
727 }
728
729 if (sp->state == IPSEC_SPSTATE_DEAD)
730 continue;
731 /* compare simple values, then dst address */
732 if (sp->spidx.ul_proto != proto)
733 continue;
734 /* NB: spi's must exist and match */
735 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
736 continue;
737 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
738 goto found;
739 }
740 sp = NULL;
741 found:
742 if (sp) {
743 /* sanity check */
744 KEY_CHKSPDIR(sp->spidx.dir, dir);
745
746 /* found a SPD entry */
747 sp->lastused = time_uptime;
748 SP_ADDREF2(sp, where, tag);
749 }
750 splx(s);
751
752 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
753 "DP return SP:%p (ID=%u) refcnt %u\n",
754 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
755 return sp;
756 }
757
758 /*
759 * return a policy that matches this particular inbound packet.
760 * XXX slow
761 */
762 struct secpolicy *
763 key_gettunnel(const struct sockaddr *osrc,
764 const struct sockaddr *odst,
765 const struct sockaddr *isrc,
766 const struct sockaddr *idst,
767 const char* where, int tag)
768 {
769 struct secpolicy *sp;
770 const int dir = IPSEC_DIR_INBOUND;
771 int s;
772 struct ipsecrequest *r1, *r2, *p;
773 struct secpolicyindex spidx;
774
775 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
776
777 if (isrc->sa_family != idst->sa_family) {
778 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
779 isrc->sa_family, idst->sa_family);
780 sp = NULL;
781 goto done;
782 }
783
784 s = splsoftnet(); /*called from softclock()*/
785 LIST_FOREACH(sp, &sptree[dir], chain) {
786 if (sp->state == IPSEC_SPSTATE_DEAD)
787 continue;
788
789 r1 = r2 = NULL;
790 for (p = sp->req; p; p = p->next) {
791 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
792 continue;
793
794 r1 = r2;
795 r2 = p;
796
797 if (!r1) {
798 /* here we look at address matches only */
799 spidx = sp->spidx;
800 if (isrc->sa_len > sizeof(spidx.src) ||
801 idst->sa_len > sizeof(spidx.dst))
802 continue;
803 memcpy(&spidx.src, isrc, isrc->sa_len);
804 memcpy(&spidx.dst, idst, idst->sa_len);
805 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
806 continue;
807 } else {
808 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
809 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
810 continue;
811 }
812
813 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
814 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
815 continue;
816
817 goto found;
818 }
819 }
820 sp = NULL;
821 found:
822 if (sp) {
823 sp->lastused = time_uptime;
824 SP_ADDREF2(sp, where, tag);
825 }
826 splx(s);
827 done:
828 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
829 "DP return SP:%p (ID=%u) refcnt %u\n",
830 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
831 return sp;
832 }
833
834 /*
835 * allocating an SA entry for an *OUTBOUND* packet.
836 * checking each request entries in SP, and acquire an SA if need.
837 * OUT: 0: there are valid requests.
838 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
839 */
840 int
841 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
842 {
843 u_int level;
844 int error;
845 struct secasvar *oldsav = NULL;
846
847 KASSERT(isr != NULL);
848 KASSERT(saidx != NULL);
849 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
850 saidx->mode == IPSEC_MODE_TUNNEL,
851 "unexpected policy %u", saidx->mode);
852
853 /* get current level */
854 level = ipsec_get_reqlevel(isr);
855
856 /*
857 * XXX guard against protocol callbacks from the crypto
858 * thread as they reference ipsecrequest.sav which we
859 * temporarily null out below. Need to rethink how we
860 * handle bundled SA's in the callback thread.
861 */
862 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
863 #if 0
864 /*
865 * We do allocate new SA only if the state of SA in the holder is
866 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
867 */
868 if (isr->sav != NULL) {
869 if (isr->sav->sah == NULL)
870 panic("key_checkrequest: sah is null");
871 if (isr->sav == (struct secasvar *)LIST_FIRST(
872 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
873 KEY_FREESAV(&isr->sav);
874 isr->sav = NULL;
875 }
876 }
877 #else
878 /*
879 * we free any SA stashed in the IPsec request because a different
880 * SA may be involved each time this request is checked, either
881 * because new SAs are being configured, or this request is
882 * associated with an unconnected datagram socket, or this request
883 * is associated with a system default policy.
884 *
885 * The operation may have negative impact to performance. We may
886 * want to check cached SA carefully, rather than picking new SA
887 * every time.
888 */
889 if (isr->sav != NULL)
890 oldsav = isr->sav;
891 #endif
892
893 /*
894 * new SA allocation if no SA found.
895 * key_allocsa_policy should allocate the oldest SA available.
896 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
897 */
898 isr->sav = key_allocsa_policy(saidx);
899 membar_producer();
900 if (oldsav != NULL)
901 KEY_FREESAV(&oldsav);
902
903 /* When there is SA. */
904 if (isr->sav != NULL) {
905 if (isr->sav->state != SADB_SASTATE_MATURE &&
906 isr->sav->state != SADB_SASTATE_DYING)
907 return EINVAL;
908 return 0;
909 }
910
911 /* there is no SA */
912 error = key_acquire(saidx, isr->sp);
913 if (error != 0) {
914 /* XXX What should I do ? */
915 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
916 error);
917 return error;
918 }
919
920 if (level != IPSEC_LEVEL_REQUIRE) {
921 /* XXX sigh, the interface to this routine is botched */
922 KASSERTMSG(isr->sav == NULL, "unexpected SA");
923 return 0;
924 } else {
925 return ENOENT;
926 }
927 }
928
929 /*
930 * allocating a SA for policy entry from SAD.
931 * NOTE: searching SAD of aliving state.
932 * OUT: NULL: not found.
933 * others: found and return the pointer.
934 */
935 static struct secasvar *
936 key_allocsa_policy(const struct secasindex *saidx)
937 {
938 struct secashead *sah;
939 struct secasvar *sav;
940 u_int stateidx, state;
941 const u_int *saorder_state_valid;
942 int arraysize;
943
944 sah = key_getsah(saidx, CMP_MODE_REQID);
945 if (sah == NULL)
946 return NULL;
947
948 /*
949 * search a valid state list for outbound packet.
950 * This search order is important.
951 */
952 if (key_prefered_oldsa) {
953 saorder_state_valid = saorder_state_valid_prefer_old;
954 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
955 } else {
956 saorder_state_valid = saorder_state_valid_prefer_new;
957 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
958 }
959
960 /* search valid state */
961 for (stateidx = 0;
962 stateidx < arraysize;
963 stateidx++) {
964
965 state = saorder_state_valid[stateidx];
966
967 sav = key_do_allocsa_policy(sah, state);
968 if (sav != NULL)
969 return sav;
970 }
971
972 return NULL;
973 }
974
975 /*
976 * searching SAD with direction, protocol, mode and state.
977 * called by key_allocsa_policy().
978 * OUT:
979 * NULL : not found
980 * others : found, pointer to a SA.
981 */
982 static struct secasvar *
983 key_do_allocsa_policy(struct secashead *sah, u_int state)
984 {
985 struct secasvar *sav, *candidate, *d;
986
987 /* initilize */
988 candidate = NULL;
989
990 LIST_FOREACH(sav, &sah->savtree[state], chain) {
991 /* sanity check */
992 KEY_CHKSASTATE(sav->state, state);
993
994 /* initialize */
995 if (candidate == NULL) {
996 candidate = sav;
997 continue;
998 }
999
1000 /* Which SA is the better ? */
1001
1002 /* sanity check 2 */
1003 KASSERT(candidate->lft_c != NULL);
1004 KASSERT(sav->lft_c != NULL);
1005
1006 /* What the best method is to compare ? */
1007 if (key_prefered_oldsa) {
1008 if (candidate->lft_c->sadb_lifetime_addtime >
1009 sav->lft_c->sadb_lifetime_addtime) {
1010 candidate = sav;
1011 }
1012 continue;
1013 /*NOTREACHED*/
1014 }
1015
1016 /* prefered new sa rather than old sa */
1017 if (candidate->lft_c->sadb_lifetime_addtime <
1018 sav->lft_c->sadb_lifetime_addtime) {
1019 d = candidate;
1020 candidate = sav;
1021 } else
1022 d = sav;
1023
1024 /*
1025 * prepared to delete the SA when there is more
1026 * suitable candidate and the lifetime of the SA is not
1027 * permanent.
1028 */
1029 if (d->lft_c->sadb_lifetime_addtime != 0) {
1030 struct mbuf *m, *result = 0;
1031 uint8_t satype;
1032
1033 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1034
1035 KASSERT(d->refcnt > 0);
1036
1037 satype = key_proto2satype(d->sah->saidx.proto);
1038 if (satype == 0)
1039 goto msgfail;
1040
1041 m = key_setsadbmsg(SADB_DELETE, 0,
1042 satype, 0, 0, d->refcnt - 1);
1043 if (!m)
1044 goto msgfail;
1045 result = m;
1046
1047 /* set sadb_address for saidx's. */
1048 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1049 &d->sah->saidx.src.sa,
1050 d->sah->saidx.src.sa.sa_len << 3,
1051 IPSEC_ULPROTO_ANY);
1052 if (!m)
1053 goto msgfail;
1054 m_cat(result, m);
1055
1056 /* set sadb_address for saidx's. */
1057 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1058 &d->sah->saidx.src.sa,
1059 d->sah->saidx.src.sa.sa_len << 3,
1060 IPSEC_ULPROTO_ANY);
1061 if (!m)
1062 goto msgfail;
1063 m_cat(result, m);
1064
1065 /* create SA extension */
1066 m = key_setsadbsa(d);
1067 if (!m)
1068 goto msgfail;
1069 m_cat(result, m);
1070
1071 if (result->m_len < sizeof(struct sadb_msg)) {
1072 result = m_pullup(result,
1073 sizeof(struct sadb_msg));
1074 if (result == NULL)
1075 goto msgfail;
1076 }
1077
1078 result->m_pkthdr.len = 0;
1079 for (m = result; m; m = m->m_next)
1080 result->m_pkthdr.len += m->m_len;
1081 mtod(result, struct sadb_msg *)->sadb_msg_len =
1082 PFKEY_UNIT64(result->m_pkthdr.len);
1083
1084 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1085 result = 0;
1086 msgfail:
1087 if (result)
1088 m_freem(result);
1089 KEY_FREESAV(&d);
1090 }
1091 }
1092
1093 if (candidate) {
1094 SA_ADDREF(candidate);
1095 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1096 "DP cause refcnt++:%d SA:%p\n",
1097 candidate->refcnt, candidate);
1098 }
1099 return candidate;
1100 }
1101
1102 /*
1103 * allocating a usable SA entry for a *INBOUND* packet.
1104 * Must call key_freesav() later.
1105 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1106 * NULL: not found, or error occurred.
1107 *
1108 * In the comparison, no source address is used--for RFC2401 conformance.
1109 * To quote, from section 4.1:
1110 * A security association is uniquely identified by a triple consisting
1111 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1112 * security protocol (AH or ESP) identifier.
1113 * Note that, however, we do need to keep source address in IPsec SA.
1114 * IKE specification and PF_KEY specification do assume that we
1115 * keep source address in IPsec SA. We see a tricky situation here.
1116 *
1117 * sport and dport are used for NAT-T. network order is always used.
1118 */
1119 struct secasvar *
1120 key_lookup_sa(
1121 const union sockaddr_union *dst,
1122 u_int proto,
1123 u_int32_t spi,
1124 u_int16_t sport,
1125 u_int16_t dport,
1126 const char* where, int tag)
1127 {
1128 struct secashead *sah;
1129 struct secasvar *sav;
1130 u_int stateidx, state;
1131 const u_int *saorder_state_valid;
1132 int arraysize, chkport;
1133 int s;
1134
1135 int must_check_spi = 1;
1136 int must_check_alg = 0;
1137 u_int16_t cpi = 0;
1138 u_int8_t algo = 0;
1139
1140 if ((sport != 0) && (dport != 0))
1141 chkport = PORT_STRICT;
1142 else
1143 chkport = PORT_NONE;
1144
1145 KASSERT(dst != NULL);
1146
1147 /*
1148 * XXX IPCOMP case
1149 * We use cpi to define spi here. In the case where cpi <=
1150 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1151 * the real spi. In this case, don't check the spi but check the
1152 * algorithm
1153 */
1154
1155 if (proto == IPPROTO_IPCOMP) {
1156 u_int32_t tmp;
1157 tmp = ntohl(spi);
1158 cpi = (u_int16_t) tmp;
1159 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1160 algo = (u_int8_t) cpi;
1161 must_check_spi = 0;
1162 must_check_alg = 1;
1163 }
1164 }
1165 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1166 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1167 where, tag, must_check_spi, must_check_alg);
1168
1169
1170 /*
1171 * searching SAD.
1172 * XXX: to be checked internal IP header somewhere. Also when
1173 * IPsec tunnel packet is received. But ESP tunnel mode is
1174 * encrypted so we can't check internal IP header.
1175 */
1176 s = splsoftnet(); /*called from softclock()*/
1177 if (key_prefered_oldsa) {
1178 saorder_state_valid = saorder_state_valid_prefer_old;
1179 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1180 } else {
1181 saorder_state_valid = saorder_state_valid_prefer_new;
1182 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1183 }
1184 LIST_FOREACH(sah, &sahtree, chain) {
1185 /* search valid state */
1186 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1187 state = saorder_state_valid[stateidx];
1188 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1189 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1190 "try match spi %#x, %#x\n",
1191 ntohl(spi), ntohl(sav->spi));
1192 /* sanity check */
1193 KEY_CHKSASTATE(sav->state, state);
1194 /* do not return entries w/ unusable state */
1195 if (!SADB_SASTATE_USABLE_P(sav)) {
1196 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1197 "bad state %d\n", sav->state);
1198 continue;
1199 }
1200 if (proto != sav->sah->saidx.proto) {
1201 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1202 "proto fail %d != %d\n",
1203 proto, sav->sah->saidx.proto);
1204 continue;
1205 }
1206 if (must_check_spi && spi != sav->spi) {
1207 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1208 "spi fail %#x != %#x\n",
1209 ntohl(spi), ntohl(sav->spi));
1210 continue;
1211 }
1212 /* XXX only on the ipcomp case */
1213 if (must_check_alg && algo != sav->alg_comp) {
1214 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1215 "algo fail %d != %d\n",
1216 algo, sav->alg_comp);
1217 continue;
1218 }
1219
1220 #if 0 /* don't check src */
1221 /* Fix port in src->sa */
1222
1223 /* check src address */
1224 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1225 continue;
1226 #endif
1227 /* fix port of dst address XXX*/
1228 key_porttosaddr(__UNCONST(dst), dport);
1229 /* check dst address */
1230 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1231 continue;
1232 SA_ADDREF2(sav, where, tag);
1233 goto done;
1234 }
1235 }
1236 }
1237 sav = NULL;
1238 done:
1239 splx(s);
1240
1241 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1242 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1243 return sav;
1244 }
1245
1246 void
1247 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1248 {
1249
1250 SP_ADDREF2(sp, where, tag);
1251
1252 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1253 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1254 sp, sp->id, where, tag, sp->refcnt);
1255 }
1256
1257 /*
1258 * Must be called after calling key_lookup_sp*().
1259 * For both the packet without socket and key_freeso().
1260 */
1261 void
1262 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1263 {
1264 struct secpolicy *sp = *spp;
1265 unsigned int nv;
1266
1267 KASSERT(sp != NULL);
1268
1269 SP_DELREF2(sp, nv, where, tag);
1270
1271 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1272 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1273 sp, sp->id, where, tag, nv);
1274
1275 if (nv == 0) {
1276 *spp = NULL;
1277 key_delsp(sp);
1278 }
1279 }
1280
1281 #if 0
1282 /*
1283 * Must be called after calling key_lookup_sp*().
1284 * For the packet with socket.
1285 */
1286 static void
1287 key_freeso(struct socket *so)
1288 {
1289 /* sanity check */
1290 KASSERT(so != NULL);
1291
1292 switch (so->so_proto->pr_domain->dom_family) {
1293 #ifdef INET
1294 case PF_INET:
1295 {
1296 struct inpcb *pcb = sotoinpcb(so);
1297
1298 /* Does it have a PCB ? */
1299 if (pcb == NULL)
1300 return;
1301
1302 struct inpcbpolicy *sp = pcb->inp_sp;
1303 key_freesp_so(&sp->sp_in);
1304 key_freesp_so(&sp->sp_out);
1305 }
1306 break;
1307 #endif
1308 #ifdef INET6
1309 case PF_INET6:
1310 {
1311 #ifdef HAVE_NRL_INPCB
1312 struct inpcb *pcb = sotoinpcb(so);
1313 struct inpcbpolicy *sp = pcb->inp_sp;
1314
1315 /* Does it have a PCB ? */
1316 if (pcb == NULL)
1317 return;
1318 key_freesp_so(&sp->sp_in);
1319 key_freesp_so(&sp->sp_out);
1320 #else
1321 struct in6pcb *pcb = sotoin6pcb(so);
1322
1323 /* Does it have a PCB ? */
1324 if (pcb == NULL)
1325 return;
1326 key_freesp_so(&pcb->in6p_sp->sp_in);
1327 key_freesp_so(&pcb->in6p_sp->sp_out);
1328 #endif
1329 }
1330 break;
1331 #endif /* INET6 */
1332 default:
1333 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1334 so->so_proto->pr_domain->dom_family);
1335 return;
1336 }
1337 }
1338
1339 static void
1340 key_freesp_so(struct secpolicy **sp)
1341 {
1342
1343 KASSERT(sp != NULL);
1344 KASSERT(*sp != NULL);
1345
1346 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1347 (*sp)->policy == IPSEC_POLICY_BYPASS)
1348 return;
1349
1350 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1351 "invalid policy %u", (*sp)->policy);
1352 KEY_FREESP(sp);
1353 }
1354 #endif
1355
1356 /*
1357 * Must be called after calling key_lookup_sa().
1358 * This function is called by key_freesp() to free some SA allocated
1359 * for a policy.
1360 */
1361 void
1362 key_freesav(struct secasvar **psav, const char* where, int tag)
1363 {
1364 struct secasvar *sav = *psav;
1365 unsigned int nv;
1366
1367 KASSERT(sav != NULL);
1368
1369 SA_DELREF2(sav, nv, where, tag);
1370
1371 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1372 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1373 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1374
1375 if (nv == 0) {
1376 *psav = NULL;
1377
1378 /* remove from SA header */
1379 KASSERT(__LIST_CHAINED(sav));
1380 LIST_REMOVE(sav, chain);
1381
1382 key_delsav(sav);
1383 }
1384 }
1385
1386 /* %%% SPD management */
1387 /*
1388 * free security policy entry.
1389 */
1390 static void
1391 key_delsp(struct secpolicy *sp)
1392 {
1393 int s;
1394
1395 KASSERT(sp != NULL);
1396
1397 key_sp_dead(sp);
1398
1399 KASSERTMSG(sp->refcnt == 0,
1400 "SP with references deleted (refcnt %u)", sp->refcnt);
1401
1402 s = splsoftnet(); /*called from softclock()*/
1403
1404 {
1405 struct ipsecrequest *isr = sp->req, *nextisr;
1406
1407 while (isr != NULL) {
1408 if (isr->sav != NULL) {
1409 KEY_FREESAV(&isr->sav);
1410 isr->sav = NULL;
1411 }
1412
1413 nextisr = isr->next;
1414 kmem_intr_free(isr, sizeof(*isr));
1415 isr = nextisr;
1416 }
1417 }
1418
1419 kmem_intr_free(sp, sizeof(*sp));
1420
1421 splx(s);
1422 }
1423
1424 /*
1425 * search SPD
1426 * OUT: NULL : not found
1427 * others : found, pointer to a SP.
1428 */
1429 static struct secpolicy *
1430 key_getsp(const struct secpolicyindex *spidx)
1431 {
1432 struct secpolicy *sp;
1433
1434 KASSERT(spidx != NULL);
1435
1436 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1437 if (sp->state == IPSEC_SPSTATE_DEAD)
1438 continue;
1439 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1440 SP_ADDREF(sp);
1441 return sp;
1442 }
1443 }
1444
1445 return NULL;
1446 }
1447
1448 /*
1449 * get SP by index.
1450 * OUT: NULL : not found
1451 * others : found, pointer to a SP.
1452 */
1453 static struct secpolicy *
1454 key_getspbyid(u_int32_t id)
1455 {
1456 struct secpolicy *sp;
1457
1458 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1459 if (sp->state == IPSEC_SPSTATE_DEAD)
1460 continue;
1461 if (sp->id == id) {
1462 SP_ADDREF(sp);
1463 return sp;
1464 }
1465 }
1466
1467 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1468 if (sp->state == IPSEC_SPSTATE_DEAD)
1469 continue;
1470 if (sp->id == id) {
1471 SP_ADDREF(sp);
1472 return sp;
1473 }
1474 }
1475
1476 return NULL;
1477 }
1478
1479 struct secpolicy *
1480 key_newsp(const char* where, int tag)
1481 {
1482 struct secpolicy *newsp = NULL;
1483
1484 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1485 if (newsp != NULL)
1486 newsp->refcnt = 1;
1487
1488 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1489 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1490 return newsp;
1491 }
1492
1493 /*
1494 * create secpolicy structure from sadb_x_policy structure.
1495 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1496 * so must be set properly later.
1497 */
1498 struct secpolicy *
1499 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1500 {
1501 struct secpolicy *newsp;
1502
1503 KASSERT(!cpu_softintr_p());
1504 KASSERT(xpl0 != NULL);
1505 KASSERT(len >= sizeof(*xpl0));
1506
1507 if (len != PFKEY_EXTLEN(xpl0)) {
1508 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1509 *error = EINVAL;
1510 return NULL;
1511 }
1512
1513 newsp = KEY_NEWSP();
1514 if (newsp == NULL) {
1515 *error = ENOBUFS;
1516 return NULL;
1517 }
1518
1519 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1520 newsp->policy = xpl0->sadb_x_policy_type;
1521
1522 /* check policy */
1523 switch (xpl0->sadb_x_policy_type) {
1524 case IPSEC_POLICY_DISCARD:
1525 case IPSEC_POLICY_NONE:
1526 case IPSEC_POLICY_ENTRUST:
1527 case IPSEC_POLICY_BYPASS:
1528 newsp->req = NULL;
1529 *error = 0;
1530 return newsp;
1531
1532 case IPSEC_POLICY_IPSEC:
1533 /* Continued */
1534 break;
1535 default:
1536 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1537 KEY_FREESP(&newsp);
1538 *error = EINVAL;
1539 return NULL;
1540 }
1541
1542 /* IPSEC_POLICY_IPSEC */
1543 {
1544 int tlen;
1545 const struct sadb_x_ipsecrequest *xisr;
1546 uint16_t xisr_reqid;
1547 struct ipsecrequest **p_isr = &newsp->req;
1548
1549 /* validity check */
1550 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1551 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1552 *error = EINVAL;
1553 goto free_exit;
1554 }
1555
1556 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1557 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1558
1559 while (tlen > 0) {
1560 /* length check */
1561 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1562 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1563 *error = EINVAL;
1564 goto free_exit;
1565 }
1566
1567 /* allocate request buffer */
1568 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1569
1570 /* set values */
1571 (*p_isr)->next = NULL;
1572
1573 switch (xisr->sadb_x_ipsecrequest_proto) {
1574 case IPPROTO_ESP:
1575 case IPPROTO_AH:
1576 case IPPROTO_IPCOMP:
1577 break;
1578 default:
1579 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1580 xisr->sadb_x_ipsecrequest_proto);
1581 *error = EPROTONOSUPPORT;
1582 goto free_exit;
1583 }
1584 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1585
1586 switch (xisr->sadb_x_ipsecrequest_mode) {
1587 case IPSEC_MODE_TRANSPORT:
1588 case IPSEC_MODE_TUNNEL:
1589 break;
1590 case IPSEC_MODE_ANY:
1591 default:
1592 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1593 xisr->sadb_x_ipsecrequest_mode);
1594 *error = EINVAL;
1595 goto free_exit;
1596 }
1597 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1598
1599 switch (xisr->sadb_x_ipsecrequest_level) {
1600 case IPSEC_LEVEL_DEFAULT:
1601 case IPSEC_LEVEL_USE:
1602 case IPSEC_LEVEL_REQUIRE:
1603 break;
1604 case IPSEC_LEVEL_UNIQUE:
1605 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1606 /* validity check */
1607 /*
1608 * If range violation of reqid, kernel will
1609 * update it, don't refuse it.
1610 */
1611 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1612 IPSECLOG(LOG_DEBUG,
1613 "reqid=%d range "
1614 "violation, updated by kernel.\n",
1615 xisr_reqid);
1616 xisr_reqid = 0;
1617 }
1618
1619 /* allocate new reqid id if reqid is zero. */
1620 if (xisr_reqid == 0) {
1621 u_int16_t reqid = key_newreqid();
1622 if (reqid == 0) {
1623 *error = ENOBUFS;
1624 goto free_exit;
1625 }
1626 (*p_isr)->saidx.reqid = reqid;
1627 } else {
1628 /* set it for manual keying. */
1629 (*p_isr)->saidx.reqid = xisr_reqid;
1630 }
1631 break;
1632
1633 default:
1634 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1635 xisr->sadb_x_ipsecrequest_level);
1636 *error = EINVAL;
1637 goto free_exit;
1638 }
1639 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1640
1641 /* set IP addresses if there */
1642 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1643 const struct sockaddr *paddr;
1644
1645 paddr = (const struct sockaddr *)(xisr + 1);
1646
1647 /* validity check */
1648 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1649 IPSECLOG(LOG_DEBUG, "invalid request "
1650 "address length.\n");
1651 *error = EINVAL;
1652 goto free_exit;
1653 }
1654 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1655
1656 paddr = (const struct sockaddr *)((const char *)paddr
1657 + paddr->sa_len);
1658
1659 /* validity check */
1660 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1661 IPSECLOG(LOG_DEBUG, "invalid request "
1662 "address length.\n");
1663 *error = EINVAL;
1664 goto free_exit;
1665 }
1666 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1667 }
1668
1669 (*p_isr)->sav = NULL;
1670 (*p_isr)->sp = newsp;
1671
1672 /* initialization for the next. */
1673 p_isr = &(*p_isr)->next;
1674 tlen -= xisr->sadb_x_ipsecrequest_len;
1675
1676 /* validity check */
1677 if (tlen < 0) {
1678 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1679 *error = EINVAL;
1680 goto free_exit;
1681 }
1682
1683 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1684 xisr->sadb_x_ipsecrequest_len);
1685 }
1686 }
1687
1688 *error = 0;
1689 return newsp;
1690
1691 free_exit:
1692 KEY_FREESP(&newsp);
1693 return NULL;
1694 }
1695
1696 static u_int16_t
1697 key_newreqid(void)
1698 {
1699 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1700
1701 auto_reqid = (auto_reqid == 0xffff ?
1702 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1703
1704 /* XXX should be unique check */
1705
1706 return auto_reqid;
1707 }
1708
1709 /*
1710 * copy secpolicy struct to sadb_x_policy structure indicated.
1711 */
1712 struct mbuf *
1713 key_sp2msg(const struct secpolicy *sp)
1714 {
1715 struct sadb_x_policy *xpl;
1716 int tlen;
1717 char *p;
1718 struct mbuf *m;
1719
1720 KASSERT(sp != NULL);
1721
1722 tlen = key_getspreqmsglen(sp);
1723
1724 m = key_alloc_mbuf(tlen);
1725 if (!m || m->m_next) { /*XXX*/
1726 if (m)
1727 m_freem(m);
1728 return NULL;
1729 }
1730
1731 m->m_len = tlen;
1732 m->m_next = NULL;
1733 xpl = mtod(m, struct sadb_x_policy *);
1734 memset(xpl, 0, tlen);
1735
1736 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1737 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1738 xpl->sadb_x_policy_type = sp->policy;
1739 xpl->sadb_x_policy_dir = sp->spidx.dir;
1740 xpl->sadb_x_policy_id = sp->id;
1741 p = (char *)xpl + sizeof(*xpl);
1742
1743 /* if is the policy for ipsec ? */
1744 if (sp->policy == IPSEC_POLICY_IPSEC) {
1745 struct sadb_x_ipsecrequest *xisr;
1746 struct ipsecrequest *isr;
1747
1748 for (isr = sp->req; isr != NULL; isr = isr->next) {
1749
1750 xisr = (struct sadb_x_ipsecrequest *)p;
1751
1752 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1753 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1754 xisr->sadb_x_ipsecrequest_level = isr->level;
1755 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1756
1757 p += sizeof(*xisr);
1758 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1759 p += isr->saidx.src.sa.sa_len;
1760 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1761 p += isr->saidx.src.sa.sa_len;
1762
1763 xisr->sadb_x_ipsecrequest_len =
1764 PFKEY_ALIGN8(sizeof(*xisr)
1765 + isr->saidx.src.sa.sa_len
1766 + isr->saidx.dst.sa.sa_len);
1767 }
1768 }
1769
1770 return m;
1771 }
1772
1773 /* m will not be freed nor modified */
1774 static struct mbuf *
1775 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1776 int ndeep, int nitem, ...)
1777 {
1778 va_list ap;
1779 int idx;
1780 int i;
1781 struct mbuf *result = NULL, *n;
1782 int len;
1783
1784 KASSERT(m != NULL);
1785 KASSERT(mhp != NULL);
1786
1787 va_start(ap, nitem);
1788 for (i = 0; i < nitem; i++) {
1789 idx = va_arg(ap, int);
1790 if (idx < 0 || idx > SADB_EXT_MAX)
1791 goto fail;
1792 /* don't attempt to pull empty extension */
1793 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1794 continue;
1795 if (idx != SADB_EXT_RESERVED &&
1796 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1797 continue;
1798
1799 if (idx == SADB_EXT_RESERVED) {
1800 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1801 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1802 MGETHDR(n, M_DONTWAIT, MT_DATA);
1803 if (!n)
1804 goto fail;
1805 n->m_len = len;
1806 n->m_next = NULL;
1807 m_copydata(m, 0, sizeof(struct sadb_msg),
1808 mtod(n, void *));
1809 } else if (i < ndeep) {
1810 len = mhp->extlen[idx];
1811 n = key_alloc_mbuf(len);
1812 if (!n || n->m_next) { /*XXX*/
1813 if (n)
1814 m_freem(n);
1815 goto fail;
1816 }
1817 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1818 mtod(n, void *));
1819 } else {
1820 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1821 M_DONTWAIT);
1822 }
1823 if (n == NULL)
1824 goto fail;
1825
1826 if (result)
1827 m_cat(result, n);
1828 else
1829 result = n;
1830 }
1831 va_end(ap);
1832
1833 if (result && (result->m_flags & M_PKTHDR) != 0) {
1834 result->m_pkthdr.len = 0;
1835 for (n = result; n; n = n->m_next)
1836 result->m_pkthdr.len += n->m_len;
1837 }
1838
1839 return result;
1840
1841 fail:
1842 va_end(ap);
1843 m_freem(result);
1844 return NULL;
1845 }
1846
1847 /*
1848 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1849 * add an entry to SP database, when received
1850 * <base, address(SD), (lifetime(H),) policy>
1851 * from the user(?).
1852 * Adding to SP database,
1853 * and send
1854 * <base, address(SD), (lifetime(H),) policy>
1855 * to the socket which was send.
1856 *
1857 * SPDADD set a unique policy entry.
1858 * SPDSETIDX like SPDADD without a part of policy requests.
1859 * SPDUPDATE replace a unique policy entry.
1860 *
1861 * m will always be freed.
1862 */
1863 static int
1864 key_api_spdadd(struct socket *so, struct mbuf *m,
1865 const struct sadb_msghdr *mhp)
1866 {
1867 const struct sockaddr *src, *dst;
1868 const struct sadb_x_policy *xpl0;
1869 struct sadb_x_policy *xpl;
1870 const struct sadb_lifetime *lft = NULL;
1871 struct secpolicyindex spidx;
1872 struct secpolicy *newsp;
1873 int error;
1874
1875 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1876 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1877 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1878 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1879 return key_senderror(so, m, EINVAL);
1880 }
1881 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1882 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1883 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1884 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1885 return key_senderror(so, m, EINVAL);
1886 }
1887 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1888 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1889 sizeof(struct sadb_lifetime)) {
1890 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1891 return key_senderror(so, m, EINVAL);
1892 }
1893 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1894 }
1895
1896 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1897
1898 /* checking the direciton. */
1899 switch (xpl0->sadb_x_policy_dir) {
1900 case IPSEC_DIR_INBOUND:
1901 case IPSEC_DIR_OUTBOUND:
1902 break;
1903 default:
1904 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1905 return key_senderror(so, m, EINVAL);
1906 }
1907
1908 /* check policy */
1909 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
1910 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1911 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1912 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1913 return key_senderror(so, m, EINVAL);
1914 }
1915
1916 /* policy requests are mandatory when action is ipsec. */
1917 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1918 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1919 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1920 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1921 return key_senderror(so, m, EINVAL);
1922 }
1923
1924 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1925 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1926
1927 /* sanity check on addr pair */
1928 if (src->sa_family != dst->sa_family)
1929 return key_senderror(so, m, EINVAL);
1930 if (src->sa_len != dst->sa_len)
1931 return key_senderror(so, m, EINVAL);
1932
1933 key_init_spidx_bymsghdr(&spidx, mhp);
1934
1935 /*
1936 * checking there is SP already or not.
1937 * SPDUPDATE doesn't depend on whether there is a SP or not.
1938 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1939 * then error.
1940 */
1941 {
1942 struct secpolicy *sp;
1943
1944 sp = key_getsp(&spidx);
1945 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1946 if (sp) {
1947 key_sp_dead(sp);
1948 key_sp_unlink(sp); /* XXX jrs ordering */
1949 KEY_FREESP(&sp);
1950 }
1951 } else {
1952 if (sp != NULL) {
1953 KEY_FREESP(&sp);
1954 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1955 return key_senderror(so, m, EEXIST);
1956 }
1957 }
1958 }
1959
1960 /* allocation new SP entry */
1961 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1962 if (newsp == NULL) {
1963 return key_senderror(so, m, error);
1964 }
1965
1966 newsp->id = key_getnewspid();
1967 if (newsp->id == 0) {
1968 kmem_free(newsp, sizeof(*newsp));
1969 return key_senderror(so, m, ENOBUFS);
1970 }
1971
1972 newsp->spidx = spidx;
1973 newsp->created = time_uptime;
1974 newsp->lastused = newsp->created;
1975 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1976 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1977
1978 newsp->refcnt = 1; /* do not reclaim until I say I do */
1979 newsp->state = IPSEC_SPSTATE_ALIVE;
1980 if (newsp->policy == IPSEC_POLICY_IPSEC)
1981 KASSERT(newsp->req != NULL);
1982 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1983
1984 #ifdef notyet
1985 /* delete the entry in spacqtree */
1986 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1987 struct secspacq *spacq = key_getspacq(&spidx);
1988 if (spacq != NULL) {
1989 /* reset counter in order to deletion by timehandler. */
1990 spacq->created = time_uptime;
1991 spacq->count = 0;
1992 }
1993 }
1994 #endif
1995
1996 /* Invalidate all cached SPD pointers in the PCBs. */
1997 ipsec_invalpcbcacheall();
1998
1999 #if defined(GATEWAY)
2000 /* Invalidate the ipflow cache, as well. */
2001 ipflow_invalidate_all(0);
2002 #ifdef INET6
2003 if (in6_present)
2004 ip6flow_invalidate_all(0);
2005 #endif /* INET6 */
2006 #endif /* GATEWAY */
2007
2008 {
2009 struct mbuf *n, *mpolicy;
2010 int off;
2011
2012 /* create new sadb_msg to reply. */
2013 if (lft) {
2014 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2015 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2016 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2017 } else {
2018 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2019 SADB_X_EXT_POLICY,
2020 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2021 }
2022 if (!n)
2023 return key_senderror(so, m, ENOBUFS);
2024
2025 n = key_fill_replymsg(n, 0);
2026 if (n == NULL)
2027 return key_senderror(so, m, ENOBUFS);
2028
2029 off = 0;
2030 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2031 sizeof(*xpl), &off);
2032 if (mpolicy == NULL) {
2033 /* n is already freed */
2034 return key_senderror(so, m, ENOBUFS);
2035 }
2036 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2037 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2038 m_freem(n);
2039 return key_senderror(so, m, EINVAL);
2040 }
2041 xpl->sadb_x_policy_id = newsp->id;
2042
2043 m_freem(m);
2044 key_update_used();
2045 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2046 }
2047 }
2048
2049 /*
2050 * get new policy id.
2051 * OUT:
2052 * 0: failure.
2053 * others: success.
2054 */
2055 static u_int32_t
2056 key_getnewspid(void)
2057 {
2058 u_int32_t newid = 0;
2059 int count = key_spi_trycnt; /* XXX */
2060 struct secpolicy *sp;
2061
2062 /* when requesting to allocate spi ranged */
2063 while (count--) {
2064 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2065
2066 sp = key_getspbyid(newid);
2067 if (sp == NULL)
2068 break;
2069
2070 KEY_FREESP(&sp);
2071 }
2072
2073 if (count == 0 || newid == 0) {
2074 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2075 return 0;
2076 }
2077
2078 return newid;
2079 }
2080
2081 /*
2082 * SADB_SPDDELETE processing
2083 * receive
2084 * <base, address(SD), policy(*)>
2085 * from the user(?), and set SADB_SASTATE_DEAD,
2086 * and send,
2087 * <base, address(SD), policy(*)>
2088 * to the ikmpd.
2089 * policy(*) including direction of policy.
2090 *
2091 * m will always be freed.
2092 */
2093 static int
2094 key_api_spddelete(struct socket *so, struct mbuf *m,
2095 const struct sadb_msghdr *mhp)
2096 {
2097 struct sadb_x_policy *xpl0;
2098 struct secpolicyindex spidx;
2099 struct secpolicy *sp;
2100
2101 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2102 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2103 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2104 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2105 return key_senderror(so, m, EINVAL);
2106 }
2107 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2108 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2109 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2110 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2111 return key_senderror(so, m, EINVAL);
2112 }
2113
2114 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2115
2116 /* checking the direciton. */
2117 switch (xpl0->sadb_x_policy_dir) {
2118 case IPSEC_DIR_INBOUND:
2119 case IPSEC_DIR_OUTBOUND:
2120 break;
2121 default:
2122 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2123 return key_senderror(so, m, EINVAL);
2124 }
2125
2126 /* make secindex */
2127 key_init_spidx_bymsghdr(&spidx, mhp);
2128
2129 /* Is there SP in SPD ? */
2130 sp = key_getsp(&spidx);
2131 if (sp == NULL) {
2132 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2133 return key_senderror(so, m, EINVAL);
2134 }
2135
2136 /* save policy id to buffer to be returned. */
2137 xpl0->sadb_x_policy_id = sp->id;
2138
2139 key_sp_dead(sp);
2140 key_sp_unlink(sp); /* XXX jrs ordering */
2141 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2142
2143 /* Invalidate all cached SPD pointers in the PCBs. */
2144 ipsec_invalpcbcacheall();
2145
2146 /* We're deleting policy; no need to invalidate the ipflow cache. */
2147
2148 {
2149 struct mbuf *n;
2150
2151 /* create new sadb_msg to reply. */
2152 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2153 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2154 if (!n)
2155 return key_senderror(so, m, ENOBUFS);
2156
2157 n = key_fill_replymsg(n, 0);
2158 if (n == NULL)
2159 return key_senderror(so, m, ENOBUFS);
2160
2161 m_freem(m);
2162 key_update_used();
2163 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2164 }
2165 }
2166
2167 /*
2168 * SADB_SPDDELETE2 processing
2169 * receive
2170 * <base, policy(*)>
2171 * from the user(?), and set SADB_SASTATE_DEAD,
2172 * and send,
2173 * <base, policy(*)>
2174 * to the ikmpd.
2175 * policy(*) including direction of policy.
2176 *
2177 * m will always be freed.
2178 */
2179 static int
2180 key_api_spddelete2(struct socket *so, struct mbuf *m,
2181 const struct sadb_msghdr *mhp)
2182 {
2183 u_int32_t id;
2184 struct secpolicy *sp;
2185
2186 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2187 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2188 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2189 return key_senderror(so, m, EINVAL);
2190 }
2191
2192 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2193
2194 /* Is there SP in SPD ? */
2195 sp = key_getspbyid(id);
2196 if (sp == NULL) {
2197 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2198 return key_senderror(so, m, EINVAL);
2199 }
2200
2201 key_sp_dead(sp);
2202 key_sp_unlink(sp); /* XXX jrs ordering */
2203 KEY_FREESP(&sp); /* ref gained by key_getsp */
2204 sp = NULL;
2205
2206 /* Invalidate all cached SPD pointers in the PCBs. */
2207 ipsec_invalpcbcacheall();
2208
2209 /* We're deleting policy; no need to invalidate the ipflow cache. */
2210
2211 {
2212 struct mbuf *n, *nn;
2213 int off, len;
2214
2215 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2216
2217 /* create new sadb_msg to reply. */
2218 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2219
2220 MGETHDR(n, M_DONTWAIT, MT_DATA);
2221 if (n && len > MHLEN) {
2222 MCLGET(n, M_DONTWAIT);
2223 if ((n->m_flags & M_EXT) == 0) {
2224 m_freem(n);
2225 n = NULL;
2226 }
2227 }
2228 if (!n)
2229 return key_senderror(so, m, ENOBUFS);
2230
2231 n->m_len = len;
2232 n->m_next = NULL;
2233 off = 0;
2234
2235 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2236 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2237
2238 KASSERTMSG(off == len, "length inconsistency");
2239
2240 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2241 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2242 if (!n->m_next) {
2243 m_freem(n);
2244 return key_senderror(so, m, ENOBUFS);
2245 }
2246
2247 n->m_pkthdr.len = 0;
2248 for (nn = n; nn; nn = nn->m_next)
2249 n->m_pkthdr.len += nn->m_len;
2250
2251 n = key_fill_replymsg(n, 0);
2252 if (n == NULL)
2253 return key_senderror(so, m, ENOBUFS);
2254
2255 m_freem(m);
2256 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2257 }
2258 }
2259
2260 /*
2261 * SADB_X_GET processing
2262 * receive
2263 * <base, policy(*)>
2264 * from the user(?),
2265 * and send,
2266 * <base, address(SD), policy>
2267 * to the ikmpd.
2268 * policy(*) including direction of policy.
2269 *
2270 * m will always be freed.
2271 */
2272 static int
2273 key_api_spdget(struct socket *so, struct mbuf *m,
2274 const struct sadb_msghdr *mhp)
2275 {
2276 u_int32_t id;
2277 struct secpolicy *sp;
2278 struct mbuf *n;
2279
2280 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2281 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2282 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2283 return key_senderror(so, m, EINVAL);
2284 }
2285
2286 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2287
2288 /* Is there SP in SPD ? */
2289 sp = key_getspbyid(id);
2290 if (sp == NULL) {
2291 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2292 return key_senderror(so, m, ENOENT);
2293 }
2294
2295 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2296 mhp->msg->sadb_msg_pid);
2297 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2298 if (n != NULL) {
2299 m_freem(m);
2300 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2301 } else
2302 return key_senderror(so, m, ENOBUFS);
2303 }
2304
2305 #ifdef notyet
2306 /*
2307 * SADB_X_SPDACQUIRE processing.
2308 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2309 * send
2310 * <base, policy(*)>
2311 * to KMD, and expect to receive
2312 * <base> with SADB_X_SPDACQUIRE if error occurred,
2313 * or
2314 * <base, policy>
2315 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2316 * policy(*) is without policy requests.
2317 *
2318 * 0 : succeed
2319 * others: error number
2320 */
2321 int
2322 key_spdacquire(const struct secpolicy *sp)
2323 {
2324 struct mbuf *result = NULL, *m;
2325 struct secspacq *newspacq;
2326 int error;
2327
2328 KASSERT(sp != NULL);
2329 KASSERTMSG(sp->req == NULL, "called but there is request");
2330 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2331 "policy mismathed. IPsec is expected");
2332
2333 /* Get an entry to check whether sent message or not. */
2334 newspacq = key_getspacq(&sp->spidx);
2335 if (newspacq != NULL) {
2336 if (key_blockacq_count < newspacq->count) {
2337 /* reset counter and do send message. */
2338 newspacq->count = 0;
2339 } else {
2340 /* increment counter and do nothing. */
2341 newspacq->count++;
2342 return 0;
2343 }
2344 } else {
2345 /* make new entry for blocking to send SADB_ACQUIRE. */
2346 newspacq = key_newspacq(&sp->spidx);
2347 if (newspacq == NULL)
2348 return ENOBUFS;
2349
2350 /* add to acqtree */
2351 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2352 }
2353
2354 /* create new sadb_msg to reply. */
2355 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2356 if (!m) {
2357 error = ENOBUFS;
2358 goto fail;
2359 }
2360 result = m;
2361
2362 result->m_pkthdr.len = 0;
2363 for (m = result; m; m = m->m_next)
2364 result->m_pkthdr.len += m->m_len;
2365
2366 mtod(result, struct sadb_msg *)->sadb_msg_len =
2367 PFKEY_UNIT64(result->m_pkthdr.len);
2368
2369 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2370
2371 fail:
2372 if (result)
2373 m_freem(result);
2374 return error;
2375 }
2376 #endif /* notyet */
2377
2378 /*
2379 * SADB_SPDFLUSH processing
2380 * receive
2381 * <base>
2382 * from the user, and free all entries in secpctree.
2383 * and send,
2384 * <base>
2385 * to the user.
2386 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2387 *
2388 * m will always be freed.
2389 */
2390 static int
2391 key_api_spdflush(struct socket *so, struct mbuf *m,
2392 const struct sadb_msghdr *mhp)
2393 {
2394 struct sadb_msg *newmsg;
2395 struct secpolicy *sp;
2396 u_int dir;
2397
2398 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2399 return key_senderror(so, m, EINVAL);
2400
2401 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2402 struct secpolicy * nextsp;
2403 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2404 if (sp->state == IPSEC_SPSTATE_DEAD)
2405 continue;
2406 key_sp_dead(sp);
2407 key_sp_unlink(sp);
2408 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2409 continue;
2410 }
2411 }
2412
2413 /* Invalidate all cached SPD pointers in the PCBs. */
2414 ipsec_invalpcbcacheall();
2415
2416 /* We're deleting policy; no need to invalidate the ipflow cache. */
2417
2418 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2419 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2420 return key_senderror(so, m, ENOBUFS);
2421 }
2422
2423 if (m->m_next)
2424 m_freem(m->m_next);
2425 m->m_next = NULL;
2426 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2427 newmsg = mtod(m, struct sadb_msg *);
2428 newmsg->sadb_msg_errno = 0;
2429 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2430
2431 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2432 }
2433
2434 static struct sockaddr key_src = {
2435 .sa_len = 2,
2436 .sa_family = PF_KEY,
2437 };
2438
2439 static struct mbuf *
2440 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2441 {
2442 struct secpolicy *sp;
2443 int cnt;
2444 u_int dir;
2445 struct mbuf *m, *n, *prev;
2446 int totlen;
2447
2448 *lenp = 0;
2449
2450 /* search SPD entry and get buffer size. */
2451 cnt = 0;
2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2453 LIST_FOREACH(sp, &sptree[dir], chain) {
2454 cnt++;
2455 }
2456 }
2457
2458 if (cnt == 0) {
2459 *errorp = ENOENT;
2460 return (NULL);
2461 }
2462
2463 m = NULL;
2464 prev = m;
2465 totlen = 0;
2466 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2467 LIST_FOREACH(sp, &sptree[dir], chain) {
2468 --cnt;
2469 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2470
2471 if (!n) {
2472 *errorp = ENOBUFS;
2473 if (m)
2474 m_freem(m);
2475 return (NULL);
2476 }
2477
2478 totlen += n->m_pkthdr.len;
2479 if (!m) {
2480 m = n;
2481 } else {
2482 prev->m_nextpkt = n;
2483 }
2484 prev = n;
2485 }
2486 }
2487
2488 *lenp = totlen;
2489 *errorp = 0;
2490 return (m);
2491 }
2492
2493 /*
2494 * SADB_SPDDUMP processing
2495 * receive
2496 * <base>
2497 * from the user, and dump all SP leaves
2498 * and send,
2499 * <base> .....
2500 * to the ikmpd.
2501 *
2502 * m will always be freed.
2503 */
2504 static int
2505 key_api_spddump(struct socket *so, struct mbuf *m0,
2506 const struct sadb_msghdr *mhp)
2507 {
2508 struct mbuf *n;
2509 int error, len;
2510 int ok, s;
2511 pid_t pid;
2512
2513 pid = mhp->msg->sadb_msg_pid;
2514 /*
2515 * If the requestor has insufficient socket-buffer space
2516 * for the entire chain, nobody gets any response to the DUMP.
2517 * XXX For now, only the requestor ever gets anything.
2518 * Moreover, if the requestor has any space at all, they receive
2519 * the entire chain, otherwise the request is refused with ENOBUFS.
2520 */
2521 if (sbspace(&so->so_rcv) <= 0) {
2522 return key_senderror(so, m0, ENOBUFS);
2523 }
2524
2525 s = splsoftnet();
2526 n = key_setspddump_chain(&error, &len, pid);
2527 splx(s);
2528
2529 if (n == NULL) {
2530 return key_senderror(so, m0, ENOENT);
2531 }
2532 {
2533 uint64_t *ps = PFKEY_STAT_GETREF();
2534 ps[PFKEY_STAT_IN_TOTAL]++;
2535 ps[PFKEY_STAT_IN_BYTES] += len;
2536 PFKEY_STAT_PUTREF();
2537 }
2538
2539 /*
2540 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2541 * The requestor receives either the entire chain, or an
2542 * error message with ENOBUFS.
2543 */
2544
2545 /*
2546 * sbappendchainwith record takes the chain of entries, one
2547 * packet-record per SPD entry, prepends the key_src sockaddr
2548 * to each packet-record, links the sockaddr mbufs into a new
2549 * list of records, then appends the entire resulting
2550 * list to the requesting socket.
2551 */
2552 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2553 SB_PRIO_ONESHOT_OVERFLOW);
2554
2555 if (!ok) {
2556 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2557 m_freem(n);
2558 return key_senderror(so, m0, ENOBUFS);
2559 }
2560
2561 m_freem(m0);
2562 return error;
2563 }
2564
2565 /*
2566 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2567 */
2568 static int
2569 key_api_nat_map(struct socket *so, struct mbuf *m,
2570 const struct sadb_msghdr *mhp)
2571 {
2572 struct sadb_x_nat_t_type *type;
2573 struct sadb_x_nat_t_port *sport;
2574 struct sadb_x_nat_t_port *dport;
2575 struct sadb_address *iaddr, *raddr;
2576 struct sadb_x_nat_t_frag *frag;
2577
2578 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2579 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2580 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2581 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2582 return key_senderror(so, m, EINVAL);
2583 }
2584 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2585 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2586 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2587 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2588 return key_senderror(so, m, EINVAL);
2589 }
2590
2591 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2592 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2593 IPSECLOG(LOG_DEBUG, "invalid message\n");
2594 return key_senderror(so, m, EINVAL);
2595 }
2596
2597 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2598 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2599 IPSECLOG(LOG_DEBUG, "invalid message\n");
2600 return key_senderror(so, m, EINVAL);
2601 }
2602
2603 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2604 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2605 IPSECLOG(LOG_DEBUG, "invalid message\n");
2606 return key_senderror(so, m, EINVAL);
2607 }
2608
2609 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2610 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2611 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2612 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2613 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2614 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2615
2616 /*
2617 * XXX handle that, it should also contain a SA, or anything
2618 * that enable to update the SA information.
2619 */
2620
2621 return 0;
2622 }
2623
2624 static struct mbuf *
2625 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2626 {
2627 struct mbuf *result = NULL, *m;
2628
2629 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2630 if (!m)
2631 goto fail;
2632 result = m;
2633
2634 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2635 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2636 if (!m)
2637 goto fail;
2638 m_cat(result, m);
2639
2640 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2641 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2642 if (!m)
2643 goto fail;
2644 m_cat(result, m);
2645
2646 m = key_sp2msg(sp);
2647 if (!m)
2648 goto fail;
2649 m_cat(result, m);
2650
2651 if ((result->m_flags & M_PKTHDR) == 0)
2652 goto fail;
2653
2654 if (result->m_len < sizeof(struct sadb_msg)) {
2655 result = m_pullup(result, sizeof(struct sadb_msg));
2656 if (result == NULL)
2657 goto fail;
2658 }
2659
2660 result->m_pkthdr.len = 0;
2661 for (m = result; m; m = m->m_next)
2662 result->m_pkthdr.len += m->m_len;
2663
2664 mtod(result, struct sadb_msg *)->sadb_msg_len =
2665 PFKEY_UNIT64(result->m_pkthdr.len);
2666
2667 return result;
2668
2669 fail:
2670 m_freem(result);
2671 return NULL;
2672 }
2673
2674 /*
2675 * get PFKEY message length for security policy and request.
2676 */
2677 static u_int
2678 key_getspreqmsglen(const struct secpolicy *sp)
2679 {
2680 u_int tlen;
2681
2682 tlen = sizeof(struct sadb_x_policy);
2683
2684 /* if is the policy for ipsec ? */
2685 if (sp->policy != IPSEC_POLICY_IPSEC)
2686 return tlen;
2687
2688 /* get length of ipsec requests */
2689 {
2690 const struct ipsecrequest *isr;
2691 int len;
2692
2693 for (isr = sp->req; isr != NULL; isr = isr->next) {
2694 len = sizeof(struct sadb_x_ipsecrequest)
2695 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2696
2697 tlen += PFKEY_ALIGN8(len);
2698 }
2699 }
2700
2701 return tlen;
2702 }
2703
2704 /*
2705 * SADB_SPDEXPIRE processing
2706 * send
2707 * <base, address(SD), lifetime(CH), policy>
2708 * to KMD by PF_KEY.
2709 *
2710 * OUT: 0 : succeed
2711 * others : error number
2712 */
2713 static int
2714 key_spdexpire(struct secpolicy *sp)
2715 {
2716 int s;
2717 struct mbuf *result = NULL, *m;
2718 int len;
2719 int error = -1;
2720 struct sadb_lifetime *lt;
2721
2722 /* XXX: Why do we lock ? */
2723 s = splsoftnet(); /*called from softclock()*/
2724
2725 KASSERT(sp != NULL);
2726
2727 /* set msg header */
2728 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2729 if (!m) {
2730 error = ENOBUFS;
2731 goto fail;
2732 }
2733 result = m;
2734
2735 /* create lifetime extension (current and hard) */
2736 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2737 m = key_alloc_mbuf(len);
2738 if (!m || m->m_next) { /*XXX*/
2739 if (m)
2740 m_freem(m);
2741 error = ENOBUFS;
2742 goto fail;
2743 }
2744 memset(mtod(m, void *), 0, len);
2745 lt = mtod(m, struct sadb_lifetime *);
2746 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2747 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2748 lt->sadb_lifetime_allocations = 0;
2749 lt->sadb_lifetime_bytes = 0;
2750 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2751 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2752 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2753 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2754 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2755 lt->sadb_lifetime_allocations = 0;
2756 lt->sadb_lifetime_bytes = 0;
2757 lt->sadb_lifetime_addtime = sp->lifetime;
2758 lt->sadb_lifetime_usetime = sp->validtime;
2759 m_cat(result, m);
2760
2761 /* set sadb_address for source */
2762 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2763 sp->spidx.prefs, sp->spidx.ul_proto);
2764 if (!m) {
2765 error = ENOBUFS;
2766 goto fail;
2767 }
2768 m_cat(result, m);
2769
2770 /* set sadb_address for destination */
2771 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2772 sp->spidx.prefd, sp->spidx.ul_proto);
2773 if (!m) {
2774 error = ENOBUFS;
2775 goto fail;
2776 }
2777 m_cat(result, m);
2778
2779 /* set secpolicy */
2780 m = key_sp2msg(sp);
2781 if (!m) {
2782 error = ENOBUFS;
2783 goto fail;
2784 }
2785 m_cat(result, m);
2786
2787 if ((result->m_flags & M_PKTHDR) == 0) {
2788 error = EINVAL;
2789 goto fail;
2790 }
2791
2792 if (result->m_len < sizeof(struct sadb_msg)) {
2793 result = m_pullup(result, sizeof(struct sadb_msg));
2794 if (result == NULL) {
2795 error = ENOBUFS;
2796 goto fail;
2797 }
2798 }
2799
2800 result->m_pkthdr.len = 0;
2801 for (m = result; m; m = m->m_next)
2802 result->m_pkthdr.len += m->m_len;
2803
2804 mtod(result, struct sadb_msg *)->sadb_msg_len =
2805 PFKEY_UNIT64(result->m_pkthdr.len);
2806
2807 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2808
2809 fail:
2810 if (result)
2811 m_freem(result);
2812 splx(s);
2813 return error;
2814 }
2815
2816 /* %%% SAD management */
2817 /*
2818 * allocating a memory for new SA head, and copy from the values of mhp.
2819 * OUT: NULL : failure due to the lack of memory.
2820 * others : pointer to new SA head.
2821 */
2822 static struct secashead *
2823 key_newsah(const struct secasindex *saidx)
2824 {
2825 struct secashead *newsah;
2826 int i;
2827
2828 KASSERT(saidx != NULL);
2829
2830 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2831 for (i = 0; i < __arraycount(newsah->savtree); i++)
2832 LIST_INIT(&newsah->savtree[i]);
2833 newsah->saidx = *saidx;
2834
2835 /* add to saidxtree */
2836 newsah->state = SADB_SASTATE_MATURE;
2837 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2838
2839 return newsah;
2840 }
2841
2842 /*
2843 * delete SA index and all SA registerd.
2844 */
2845 static void
2846 key_delsah(struct secashead *sah)
2847 {
2848 struct secasvar *sav, *nextsav;
2849 u_int state;
2850 int s;
2851 int zombie = 0;
2852
2853 KASSERT(!cpu_softintr_p());
2854 KASSERT(sah != NULL);
2855
2856 s = splsoftnet();
2857
2858 /* searching all SA registerd in the secindex. */
2859 SASTATE_ANY_FOREACH(state) {
2860 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2861 if (sav->refcnt == 0) {
2862 /* sanity check */
2863 KEY_CHKSASTATE(state, sav->state);
2864 KEY_FREESAV(&sav);
2865 } else {
2866 /* give up to delete this sa */
2867 zombie++;
2868 }
2869 }
2870 }
2871
2872 /* don't delete sah only if there are savs. */
2873 if (zombie) {
2874 splx(s);
2875 return;
2876 }
2877
2878 rtcache_free(&sah->sa_route);
2879
2880 /* remove from tree of SA index */
2881 KASSERT(__LIST_CHAINED(sah));
2882 LIST_REMOVE(sah, chain);
2883
2884 if (sah->idents != NULL)
2885 kmem_free(sah->idents, sah->idents_len);
2886 if (sah->identd != NULL)
2887 kmem_free(sah->identd, sah->identd_len);
2888
2889 kmem_free(sah, sizeof(*sah));
2890
2891 splx(s);
2892 return;
2893 }
2894
2895 /*
2896 * allocating a new SA with LARVAL state.
2897 * key_api_add() and key_api_getspi() call,
2898 * and copy the values of mhp into new buffer.
2899 * When SAD message type is GETSPI:
2900 * to set sequence number from acq_seq++,
2901 * to set zero to SPI.
2902 * not to call key_setsava().
2903 * OUT: NULL : fail
2904 * others : pointer to new secasvar.
2905 *
2906 * does not modify mbuf. does not free mbuf on error.
2907 */
2908 static struct secasvar *
2909 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2910 int *errp, const char* where, int tag)
2911 {
2912 struct secasvar *newsav;
2913 const struct sadb_sa *xsa;
2914
2915 KASSERT(!cpu_softintr_p());
2916 KASSERT(m != NULL);
2917 KASSERT(mhp != NULL);
2918 KASSERT(mhp->msg != NULL);
2919
2920 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2921
2922 switch (mhp->msg->sadb_msg_type) {
2923 case SADB_GETSPI:
2924 newsav->spi = 0;
2925
2926 #ifdef IPSEC_DOSEQCHECK
2927 /* sync sequence number */
2928 if (mhp->msg->sadb_msg_seq == 0)
2929 newsav->seq =
2930 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2931 else
2932 #endif
2933 newsav->seq = mhp->msg->sadb_msg_seq;
2934 break;
2935
2936 case SADB_ADD:
2937 /* sanity check */
2938 if (mhp->ext[SADB_EXT_SA] == NULL) {
2939 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2940 *errp = EINVAL;
2941 goto error;
2942 }
2943 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2944 newsav->spi = xsa->sadb_sa_spi;
2945 newsav->seq = mhp->msg->sadb_msg_seq;
2946 break;
2947 default:
2948 *errp = EINVAL;
2949 goto error;
2950 }
2951
2952 /* copy sav values */
2953 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2954 *errp = key_setsaval(newsav, m, mhp);
2955 if (*errp)
2956 goto error;
2957 }
2958
2959 /* reset created */
2960 newsav->created = time_uptime;
2961 newsav->pid = mhp->msg->sadb_msg_pid;
2962
2963 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2964 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2965 return newsav;
2966
2967 error:
2968 KASSERT(*errp != 0);
2969 kmem_free(newsav, sizeof(*newsav));
2970 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2971 "DP from %s:%u return SA:NULL\n", where, tag);
2972 return NULL;
2973 }
2974
2975
2976 static void
2977 key_clear_xform(struct secasvar *sav)
2978 {
2979
2980 /*
2981 * Cleanup xform state. Note that zeroize'ing causes the
2982 * keys to be cleared; otherwise we must do it ourself.
2983 */
2984 if (sav->tdb_xform != NULL) {
2985 sav->tdb_xform->xf_zeroize(sav);
2986 sav->tdb_xform = NULL;
2987 } else {
2988 if (sav->key_auth != NULL)
2989 explicit_memset(_KEYBUF(sav->key_auth), 0,
2990 _KEYLEN(sav->key_auth));
2991 if (sav->key_enc != NULL)
2992 explicit_memset(_KEYBUF(sav->key_enc), 0,
2993 _KEYLEN(sav->key_enc));
2994 }
2995 }
2996
2997 /*
2998 * free() SA variable entry.
2999 */
3000 static void
3001 key_delsav(struct secasvar *sav)
3002 {
3003
3004 KASSERT(sav != NULL);
3005 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3006
3007 key_clear_xform(sav);
3008 key_freesaval(sav);
3009 kmem_intr_free(sav, sizeof(*sav));
3010
3011 return;
3012 }
3013
3014 /*
3015 * search SAD.
3016 * OUT:
3017 * NULL : not found
3018 * others : found, pointer to a SA.
3019 */
3020 static struct secashead *
3021 key_getsah(const struct secasindex *saidx, int flag)
3022 {
3023 struct secashead *sah;
3024
3025 LIST_FOREACH(sah, &sahtree, chain) {
3026 if (sah->state == SADB_SASTATE_DEAD)
3027 continue;
3028 if (key_saidx_match(&sah->saidx, saidx, flag))
3029 return sah;
3030 }
3031
3032 return NULL;
3033 }
3034
3035 /*
3036 * check not to be duplicated SPI.
3037 * NOTE: this function is too slow due to searching all SAD.
3038 * OUT:
3039 * NULL : not found
3040 * others : found, pointer to a SA.
3041 */
3042 static struct secasvar *
3043 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3044 {
3045 struct secashead *sah;
3046 struct secasvar *sav;
3047
3048 /* check address family */
3049 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3050 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3051 return NULL;
3052 }
3053
3054 /* check all SAD */
3055 LIST_FOREACH(sah, &sahtree, chain) {
3056 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3057 continue;
3058 sav = key_getsavbyspi(sah, spi);
3059 if (sav != NULL)
3060 return sav;
3061 }
3062
3063 return NULL;
3064 }
3065
3066 /*
3067 * search SAD litmited alive SA, protocol, SPI.
3068 * OUT:
3069 * NULL : not found
3070 * others : found, pointer to a SA.
3071 */
3072 static struct secasvar *
3073 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3074 {
3075 struct secasvar *sav;
3076 u_int state;
3077
3078 /* search all status */
3079 SASTATE_ALIVE_FOREACH(state) {
3080 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3081
3082 /* sanity check */
3083 if (sav->state != state) {
3084 IPSECLOG(LOG_DEBUG,
3085 "invalid sav->state (queue: %d SA: %d)\n",
3086 state, sav->state);
3087 continue;
3088 }
3089
3090 if (sav->spi == spi)
3091 return sav;
3092 }
3093 }
3094
3095 return NULL;
3096 }
3097
3098 /*
3099 * Free allocated data to member variables of sav:
3100 * sav->replay, sav->key_* and sav->lft_*.
3101 */
3102 static void
3103 key_freesaval(struct secasvar *sav)
3104 {
3105
3106 if (sav->replay != NULL) {
3107 kmem_intr_free(sav->replay, sav->replay_len);
3108 sav->replay = NULL;
3109 sav->replay_len = 0;
3110 }
3111 if (sav->key_auth != NULL) {
3112 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3113 sav->key_auth = NULL;
3114 sav->key_auth_len = 0;
3115 }
3116 if (sav->key_enc != NULL) {
3117 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3118 sav->key_enc = NULL;
3119 sav->key_enc_len = 0;
3120 }
3121 if (sav->lft_c != NULL) {
3122 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3123 sav->lft_c = NULL;
3124 }
3125 if (sav->lft_h != NULL) {
3126 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3127 sav->lft_h = NULL;
3128 }
3129 if (sav->lft_s != NULL) {
3130 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3131 sav->lft_s = NULL;
3132 }
3133 }
3134
3135 /*
3136 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3137 * You must update these if need.
3138 * OUT: 0: success.
3139 * !0: failure.
3140 *
3141 * does not modify mbuf. does not free mbuf on error.
3142 */
3143 static int
3144 key_setsaval(struct secasvar *sav, struct mbuf *m,
3145 const struct sadb_msghdr *mhp)
3146 {
3147 int error = 0;
3148
3149 KASSERT(!cpu_softintr_p());
3150 KASSERT(m != NULL);
3151 KASSERT(mhp != NULL);
3152 KASSERT(mhp->msg != NULL);
3153
3154 /* We shouldn't initialize sav variables while someone uses it. */
3155 KASSERT(sav->refcnt == 0);
3156
3157 /* initialization */
3158 key_freesaval(sav);
3159 sav->tdb_xform = NULL; /* transform */
3160 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3161 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3162 sav->tdb_compalgxform = NULL; /* compression algorithm */
3163 sav->natt_type = 0;
3164 sav->esp_frag = 0;
3165
3166 /* SA */
3167 if (mhp->ext[SADB_EXT_SA] != NULL) {
3168 const struct sadb_sa *sa0;
3169
3170 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3171 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3172 error = EINVAL;
3173 goto fail;
3174 }
3175
3176 sav->alg_auth = sa0->sadb_sa_auth;
3177 sav->alg_enc = sa0->sadb_sa_encrypt;
3178 sav->flags = sa0->sadb_sa_flags;
3179
3180 /* replay window */
3181 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3182 size_t len = sizeof(struct secreplay) +
3183 sa0->sadb_sa_replay;
3184 sav->replay = kmem_zalloc(len, KM_SLEEP);
3185 sav->replay_len = len;
3186 if (sa0->sadb_sa_replay != 0)
3187 sav->replay->bitmap = (char*)(sav->replay+1);
3188 sav->replay->wsize = sa0->sadb_sa_replay;
3189 }
3190 }
3191
3192 /* Authentication keys */
3193 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3194 const struct sadb_key *key0;
3195 int len;
3196
3197 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3198 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3199
3200 error = 0;
3201 if (len < sizeof(*key0)) {
3202 error = EINVAL;
3203 goto fail;
3204 }
3205 switch (mhp->msg->sadb_msg_satype) {
3206 case SADB_SATYPE_AH:
3207 case SADB_SATYPE_ESP:
3208 case SADB_X_SATYPE_TCPSIGNATURE:
3209 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3210 sav->alg_auth != SADB_X_AALG_NULL)
3211 error = EINVAL;
3212 break;
3213 case SADB_X_SATYPE_IPCOMP:
3214 default:
3215 error = EINVAL;
3216 break;
3217 }
3218 if (error) {
3219 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3220 goto fail;
3221 }
3222
3223 sav->key_auth = key_newbuf(key0, len);
3224 sav->key_auth_len = len;
3225 }
3226
3227 /* Encryption key */
3228 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3229 const struct sadb_key *key0;
3230 int len;
3231
3232 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3233 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3234
3235 error = 0;
3236 if (len < sizeof(*key0)) {
3237 error = EINVAL;
3238 goto fail;
3239 }
3240 switch (mhp->msg->sadb_msg_satype) {
3241 case SADB_SATYPE_ESP:
3242 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3243 sav->alg_enc != SADB_EALG_NULL) {
3244 error = EINVAL;
3245 break;
3246 }
3247 sav->key_enc = key_newbuf(key0, len);
3248 sav->key_enc_len = len;
3249 break;
3250 case SADB_X_SATYPE_IPCOMP:
3251 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3252 error = EINVAL;
3253 sav->key_enc = NULL; /*just in case*/
3254 break;
3255 case SADB_SATYPE_AH:
3256 case SADB_X_SATYPE_TCPSIGNATURE:
3257 default:
3258 error = EINVAL;
3259 break;
3260 }
3261 if (error) {
3262 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3263 goto fail;
3264 }
3265 }
3266
3267 /* set iv */
3268 sav->ivlen = 0;
3269
3270 switch (mhp->msg->sadb_msg_satype) {
3271 case SADB_SATYPE_AH:
3272 error = xform_init(sav, XF_AH);
3273 break;
3274 case SADB_SATYPE_ESP:
3275 error = xform_init(sav, XF_ESP);
3276 break;
3277 case SADB_X_SATYPE_IPCOMP:
3278 error = xform_init(sav, XF_IPCOMP);
3279 break;
3280 case SADB_X_SATYPE_TCPSIGNATURE:
3281 error = xform_init(sav, XF_TCPSIGNATURE);
3282 break;
3283 }
3284 if (error) {
3285 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3286 mhp->msg->sadb_msg_satype);
3287 goto fail;
3288 }
3289
3290 /* reset created */
3291 sav->created = time_uptime;
3292
3293 /* make lifetime for CURRENT */
3294 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3295
3296 sav->lft_c->sadb_lifetime_len =
3297 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3298 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3299 sav->lft_c->sadb_lifetime_allocations = 0;
3300 sav->lft_c->sadb_lifetime_bytes = 0;
3301 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3302 sav->lft_c->sadb_lifetime_usetime = 0;
3303
3304 /* lifetimes for HARD and SOFT */
3305 {
3306 const struct sadb_lifetime *lft0;
3307
3308 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3309 if (lft0 != NULL) {
3310 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3311 error = EINVAL;
3312 goto fail;
3313 }
3314 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3315 }
3316
3317 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3318 if (lft0 != NULL) {
3319 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3320 error = EINVAL;
3321 goto fail;
3322 }
3323 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3324 /* to be initialize ? */
3325 }
3326 }
3327
3328 return 0;
3329
3330 fail:
3331 key_clear_xform(sav);
3332 key_freesaval(sav);
3333
3334 return error;
3335 }
3336
3337 /*
3338 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3339 * OUT: 0: valid
3340 * other: errno
3341 */
3342 static int
3343 key_init_xform(struct secasvar *sav)
3344 {
3345 int error;
3346
3347 /* We shouldn't initialize sav variables while someone uses it. */
3348 KASSERT(sav->refcnt == 0);
3349
3350 /* check SPI value */
3351 switch (sav->sah->saidx.proto) {
3352 case IPPROTO_ESP:
3353 case IPPROTO_AH:
3354 if (ntohl(sav->spi) <= 255) {
3355 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3356 (u_int32_t)ntohl(sav->spi));
3357 return EINVAL;
3358 }
3359 break;
3360 }
3361
3362 /* check satype */
3363 switch (sav->sah->saidx.proto) {
3364 case IPPROTO_ESP:
3365 /* check flags */
3366 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3367 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3368 IPSECLOG(LOG_DEBUG,
3369 "invalid flag (derived) given to old-esp.\n");
3370 return EINVAL;
3371 }
3372 error = xform_init(sav, XF_ESP);
3373 break;
3374 case IPPROTO_AH:
3375 /* check flags */
3376 if (sav->flags & SADB_X_EXT_DERIV) {
3377 IPSECLOG(LOG_DEBUG,
3378 "invalid flag (derived) given to AH SA.\n");
3379 return EINVAL;
3380 }
3381 if (sav->alg_enc != SADB_EALG_NONE) {
3382 IPSECLOG(LOG_DEBUG,
3383 "protocol and algorithm mismated.\n");
3384 return(EINVAL);
3385 }
3386 error = xform_init(sav, XF_AH);
3387 break;
3388 case IPPROTO_IPCOMP:
3389 if (sav->alg_auth != SADB_AALG_NONE) {
3390 IPSECLOG(LOG_DEBUG,
3391 "protocol and algorithm mismated.\n");
3392 return(EINVAL);
3393 }
3394 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3395 && ntohl(sav->spi) >= 0x10000) {
3396 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3397 return(EINVAL);
3398 }
3399 error = xform_init(sav, XF_IPCOMP);
3400 break;
3401 case IPPROTO_TCP:
3402 if (sav->alg_enc != SADB_EALG_NONE) {
3403 IPSECLOG(LOG_DEBUG,
3404 "protocol and algorithm mismated.\n");
3405 return(EINVAL);
3406 }
3407 error = xform_init(sav, XF_TCPSIGNATURE);
3408 break;
3409 default:
3410 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3411 error = EPROTONOSUPPORT;
3412 break;
3413 }
3414
3415 return error;
3416 }
3417
3418 /*
3419 * subroutine for SADB_GET and SADB_DUMP.
3420 */
3421 static struct mbuf *
3422 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3423 u_int32_t seq, u_int32_t pid)
3424 {
3425 struct mbuf *result = NULL, *tres = NULL, *m;
3426 int l = 0;
3427 int i;
3428 void *p;
3429 struct sadb_lifetime lt;
3430 int dumporder[] = {
3431 SADB_EXT_SA, SADB_X_EXT_SA2,
3432 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3433 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3434 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3435 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3436 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3437 SADB_X_EXT_NAT_T_TYPE,
3438 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3439 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3440 SADB_X_EXT_NAT_T_FRAG,
3441
3442 };
3443
3444 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3445 if (m == NULL)
3446 goto fail;
3447 result = m;
3448
3449 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3450 m = NULL;
3451 p = NULL;
3452 switch (dumporder[i]) {
3453 case SADB_EXT_SA:
3454 m = key_setsadbsa(sav);
3455 break;
3456
3457 case SADB_X_EXT_SA2:
3458 m = key_setsadbxsa2(sav->sah->saidx.mode,
3459 sav->replay ? sav->replay->count : 0,
3460 sav->sah->saidx.reqid);
3461 break;
3462
3463 case SADB_EXT_ADDRESS_SRC:
3464 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3465 &sav->sah->saidx.src.sa,
3466 FULLMASK, IPSEC_ULPROTO_ANY);
3467 break;
3468
3469 case SADB_EXT_ADDRESS_DST:
3470 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3471 &sav->sah->saidx.dst.sa,
3472 FULLMASK, IPSEC_ULPROTO_ANY);
3473 break;
3474
3475 case SADB_EXT_KEY_AUTH:
3476 if (!sav->key_auth)
3477 continue;
3478 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3479 p = sav->key_auth;
3480 break;
3481
3482 case SADB_EXT_KEY_ENCRYPT:
3483 if (!sav->key_enc)
3484 continue;
3485 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3486 p = sav->key_enc;
3487 break;
3488
3489 case SADB_EXT_LIFETIME_CURRENT:
3490 if (!sav->lft_c)
3491 continue;
3492 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3493 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3494 lt.sadb_lifetime_addtime += time_second - time_uptime;
3495 lt.sadb_lifetime_usetime += time_second - time_uptime;
3496 p = <
3497 break;
3498
3499 case SADB_EXT_LIFETIME_HARD:
3500 if (!sav->lft_h)
3501 continue;
3502 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3503 p = sav->lft_h;
3504 break;
3505
3506 case SADB_EXT_LIFETIME_SOFT:
3507 if (!sav->lft_s)
3508 continue;
3509 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3510 p = sav->lft_s;
3511 break;
3512
3513 case SADB_X_EXT_NAT_T_TYPE:
3514 m = key_setsadbxtype(sav->natt_type);
3515 break;
3516
3517 case SADB_X_EXT_NAT_T_DPORT:
3518 if (sav->natt_type == 0)
3519 continue;
3520 m = key_setsadbxport(
3521 key_portfromsaddr(&sav->sah->saidx.dst),
3522 SADB_X_EXT_NAT_T_DPORT);
3523 break;
3524
3525 case SADB_X_EXT_NAT_T_SPORT:
3526 if (sav->natt_type == 0)
3527 continue;
3528 m = key_setsadbxport(
3529 key_portfromsaddr(&sav->sah->saidx.src),
3530 SADB_X_EXT_NAT_T_SPORT);
3531 break;
3532
3533 case SADB_X_EXT_NAT_T_FRAG:
3534 /* don't send frag info if not set */
3535 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3536 continue;
3537 m = key_setsadbxfrag(sav->esp_frag);
3538 break;
3539
3540 case SADB_X_EXT_NAT_T_OAI:
3541 case SADB_X_EXT_NAT_T_OAR:
3542 continue;
3543
3544 case SADB_EXT_ADDRESS_PROXY:
3545 case SADB_EXT_IDENTITY_SRC:
3546 case SADB_EXT_IDENTITY_DST:
3547 /* XXX: should we brought from SPD ? */
3548 case SADB_EXT_SENSITIVITY:
3549 default:
3550 continue;
3551 }
3552
3553 KASSERT(!(m && p));
3554 if (!m && !p)
3555 goto fail;
3556 if (p && tres) {
3557 M_PREPEND(tres, l, M_DONTWAIT);
3558 if (!tres)
3559 goto fail;
3560 memcpy(mtod(tres, void *), p, l);
3561 continue;
3562 }
3563 if (p) {
3564 m = key_alloc_mbuf(l);
3565 if (!m)
3566 goto fail;
3567 m_copyback(m, 0, l, p);
3568 }
3569
3570 if (tres)
3571 m_cat(m, tres);
3572 tres = m;
3573 }
3574
3575 m_cat(result, tres);
3576 tres = NULL; /* avoid free on error below */
3577
3578 if (result->m_len < sizeof(struct sadb_msg)) {
3579 result = m_pullup(result, sizeof(struct sadb_msg));
3580 if (result == NULL)
3581 goto fail;
3582 }
3583
3584 result->m_pkthdr.len = 0;
3585 for (m = result; m; m = m->m_next)
3586 result->m_pkthdr.len += m->m_len;
3587
3588 mtod(result, struct sadb_msg *)->sadb_msg_len =
3589 PFKEY_UNIT64(result->m_pkthdr.len);
3590
3591 return result;
3592
3593 fail:
3594 m_freem(result);
3595 m_freem(tres);
3596 return NULL;
3597 }
3598
3599
3600 /*
3601 * set a type in sadb_x_nat_t_type
3602 */
3603 static struct mbuf *
3604 key_setsadbxtype(u_int16_t type)
3605 {
3606 struct mbuf *m;
3607 size_t len;
3608 struct sadb_x_nat_t_type *p;
3609
3610 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3611
3612 m = key_alloc_mbuf(len);
3613 if (!m || m->m_next) { /*XXX*/
3614 if (m)
3615 m_freem(m);
3616 return NULL;
3617 }
3618
3619 p = mtod(m, struct sadb_x_nat_t_type *);
3620
3621 memset(p, 0, len);
3622 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3623 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3624 p->sadb_x_nat_t_type_type = type;
3625
3626 return m;
3627 }
3628 /*
3629 * set a port in sadb_x_nat_t_port. port is in network order
3630 */
3631 static struct mbuf *
3632 key_setsadbxport(u_int16_t port, u_int16_t type)
3633 {
3634 struct mbuf *m;
3635 size_t len;
3636 struct sadb_x_nat_t_port *p;
3637
3638 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3639
3640 m = key_alloc_mbuf(len);
3641 if (!m || m->m_next) { /*XXX*/
3642 if (m)
3643 m_freem(m);
3644 return NULL;
3645 }
3646
3647 p = mtod(m, struct sadb_x_nat_t_port *);
3648
3649 memset(p, 0, len);
3650 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3651 p->sadb_x_nat_t_port_exttype = type;
3652 p->sadb_x_nat_t_port_port = port;
3653
3654 return m;
3655 }
3656
3657 /*
3658 * set fragmentation info in sadb_x_nat_t_frag
3659 */
3660 static struct mbuf *
3661 key_setsadbxfrag(u_int16_t flen)
3662 {
3663 struct mbuf *m;
3664 size_t len;
3665 struct sadb_x_nat_t_frag *p;
3666
3667 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3668
3669 m = key_alloc_mbuf(len);
3670 if (!m || m->m_next) { /*XXX*/
3671 if (m)
3672 m_freem(m);
3673 return NULL;
3674 }
3675
3676 p = mtod(m, struct sadb_x_nat_t_frag *);
3677
3678 memset(p, 0, len);
3679 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3680 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3681 p->sadb_x_nat_t_frag_fraglen = flen;
3682
3683 return m;
3684 }
3685
3686 /*
3687 * Get port from sockaddr, port is in network order
3688 */
3689 u_int16_t
3690 key_portfromsaddr(const union sockaddr_union *saddr)
3691 {
3692 u_int16_t port;
3693
3694 switch (saddr->sa.sa_family) {
3695 case AF_INET: {
3696 port = saddr->sin.sin_port;
3697 break;
3698 }
3699 #ifdef INET6
3700 case AF_INET6: {
3701 port = saddr->sin6.sin6_port;
3702 break;
3703 }
3704 #endif
3705 default:
3706 printf("%s: unexpected address family\n", __func__);
3707 port = 0;
3708 break;
3709 }
3710
3711 return port;
3712 }
3713
3714
3715 /*
3716 * Set port is struct sockaddr. port is in network order
3717 */
3718 static void
3719 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3720 {
3721 switch (saddr->sa.sa_family) {
3722 case AF_INET: {
3723 saddr->sin.sin_port = port;
3724 break;
3725 }
3726 #ifdef INET6
3727 case AF_INET6: {
3728 saddr->sin6.sin6_port = port;
3729 break;
3730 }
3731 #endif
3732 default:
3733 printf("%s: unexpected address family %d\n", __func__,
3734 saddr->sa.sa_family);
3735 break;
3736 }
3737
3738 return;
3739 }
3740
3741 /*
3742 * Safety check sa_len
3743 */
3744 static int
3745 key_checksalen(const union sockaddr_union *saddr)
3746 {
3747 switch (saddr->sa.sa_family) {
3748 case AF_INET:
3749 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3750 return -1;
3751 break;
3752 #ifdef INET6
3753 case AF_INET6:
3754 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3755 return -1;
3756 break;
3757 #endif
3758 default:
3759 printf("%s: unexpected sa_family %d\n", __func__,
3760 saddr->sa.sa_family);
3761 return -1;
3762 break;
3763 }
3764 return 0;
3765 }
3766
3767
3768 /*
3769 * set data into sadb_msg.
3770 */
3771 static struct mbuf *
3772 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3773 u_int32_t seq, pid_t pid, u_int16_t reserved)
3774 {
3775 struct mbuf *m;
3776 struct sadb_msg *p;
3777 int len;
3778
3779 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3780
3781 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3782
3783 MGETHDR(m, M_DONTWAIT, MT_DATA);
3784 if (m && len > MHLEN) {
3785 MCLGET(m, M_DONTWAIT);
3786 if ((m->m_flags & M_EXT) == 0) {
3787 m_freem(m);
3788 m = NULL;
3789 }
3790 }
3791 if (!m)
3792 return NULL;
3793 m->m_pkthdr.len = m->m_len = len;
3794 m->m_next = NULL;
3795
3796 p = mtod(m, struct sadb_msg *);
3797
3798 memset(p, 0, len);
3799 p->sadb_msg_version = PF_KEY_V2;
3800 p->sadb_msg_type = type;
3801 p->sadb_msg_errno = 0;
3802 p->sadb_msg_satype = satype;
3803 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3804 p->sadb_msg_reserved = reserved;
3805 p->sadb_msg_seq = seq;
3806 p->sadb_msg_pid = (u_int32_t)pid;
3807
3808 return m;
3809 }
3810
3811 /*
3812 * copy secasvar data into sadb_address.
3813 */
3814 static struct mbuf *
3815 key_setsadbsa(struct secasvar *sav)
3816 {
3817 struct mbuf *m;
3818 struct sadb_sa *p;
3819 int len;
3820
3821 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3822 m = key_alloc_mbuf(len);
3823 if (!m || m->m_next) { /*XXX*/
3824 if (m)
3825 m_freem(m);
3826 return NULL;
3827 }
3828
3829 p = mtod(m, struct sadb_sa *);
3830
3831 memset(p, 0, len);
3832 p->sadb_sa_len = PFKEY_UNIT64(len);
3833 p->sadb_sa_exttype = SADB_EXT_SA;
3834 p->sadb_sa_spi = sav->spi;
3835 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3836 p->sadb_sa_state = sav->state;
3837 p->sadb_sa_auth = sav->alg_auth;
3838 p->sadb_sa_encrypt = sav->alg_enc;
3839 p->sadb_sa_flags = sav->flags;
3840
3841 return m;
3842 }
3843
3844 /*
3845 * set data into sadb_address.
3846 */
3847 static struct mbuf *
3848 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3849 u_int8_t prefixlen, u_int16_t ul_proto)
3850 {
3851 struct mbuf *m;
3852 struct sadb_address *p;
3853 size_t len;
3854
3855 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3856 PFKEY_ALIGN8(saddr->sa_len);
3857 m = key_alloc_mbuf(len);
3858 if (!m || m->m_next) { /*XXX*/
3859 if (m)
3860 m_freem(m);
3861 return NULL;
3862 }
3863
3864 p = mtod(m, struct sadb_address *);
3865
3866 memset(p, 0, len);
3867 p->sadb_address_len = PFKEY_UNIT64(len);
3868 p->sadb_address_exttype = exttype;
3869 p->sadb_address_proto = ul_proto;
3870 if (prefixlen == FULLMASK) {
3871 switch (saddr->sa_family) {
3872 case AF_INET:
3873 prefixlen = sizeof(struct in_addr) << 3;
3874 break;
3875 case AF_INET6:
3876 prefixlen = sizeof(struct in6_addr) << 3;
3877 break;
3878 default:
3879 ; /*XXX*/
3880 }
3881 }
3882 p->sadb_address_prefixlen = prefixlen;
3883 p->sadb_address_reserved = 0;
3884
3885 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3886 saddr, saddr->sa_len);
3887
3888 return m;
3889 }
3890
3891 #if 0
3892 /*
3893 * set data into sadb_ident.
3894 */
3895 static struct mbuf *
3896 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3897 void *string, int stringlen, u_int64_t id)
3898 {
3899 struct mbuf *m;
3900 struct sadb_ident *p;
3901 size_t len;
3902
3903 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3904 m = key_alloc_mbuf(len);
3905 if (!m || m->m_next) { /*XXX*/
3906 if (m)
3907 m_freem(m);
3908 return NULL;
3909 }
3910
3911 p = mtod(m, struct sadb_ident *);
3912
3913 memset(p, 0, len);
3914 p->sadb_ident_len = PFKEY_UNIT64(len);
3915 p->sadb_ident_exttype = exttype;
3916 p->sadb_ident_type = idtype;
3917 p->sadb_ident_reserved = 0;
3918 p->sadb_ident_id = id;
3919
3920 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3921 string, stringlen);
3922
3923 return m;
3924 }
3925 #endif
3926
3927 /*
3928 * set data into sadb_x_sa2.
3929 */
3930 static struct mbuf *
3931 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3932 {
3933 struct mbuf *m;
3934 struct sadb_x_sa2 *p;
3935 size_t len;
3936
3937 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3938 m = key_alloc_mbuf(len);
3939 if (!m || m->m_next) { /*XXX*/
3940 if (m)
3941 m_freem(m);
3942 return NULL;
3943 }
3944
3945 p = mtod(m, struct sadb_x_sa2 *);
3946
3947 memset(p, 0, len);
3948 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3949 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3950 p->sadb_x_sa2_mode = mode;
3951 p->sadb_x_sa2_reserved1 = 0;
3952 p->sadb_x_sa2_reserved2 = 0;
3953 p->sadb_x_sa2_sequence = seq;
3954 p->sadb_x_sa2_reqid = reqid;
3955
3956 return m;
3957 }
3958
3959 /*
3960 * set data into sadb_x_policy
3961 */
3962 static struct mbuf *
3963 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3964 {
3965 struct mbuf *m;
3966 struct sadb_x_policy *p;
3967 size_t len;
3968
3969 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3970 m = key_alloc_mbuf(len);
3971 if (!m || m->m_next) { /*XXX*/
3972 if (m)
3973 m_freem(m);
3974 return NULL;
3975 }
3976
3977 p = mtod(m, struct sadb_x_policy *);
3978
3979 memset(p, 0, len);
3980 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3981 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3982 p->sadb_x_policy_type = type;
3983 p->sadb_x_policy_dir = dir;
3984 p->sadb_x_policy_id = id;
3985
3986 return m;
3987 }
3988
3989 /* %%% utilities */
3990 /*
3991 * copy a buffer into the new buffer allocated.
3992 */
3993 static void *
3994 key_newbuf(const void *src, u_int len)
3995 {
3996 void *new;
3997
3998 new = kmem_alloc(len, KM_SLEEP);
3999 memcpy(new, src, len);
4000
4001 return new;
4002 }
4003
4004 /* compare my own address
4005 * OUT: 1: true, i.e. my address.
4006 * 0: false
4007 */
4008 int
4009 key_ismyaddr(const struct sockaddr *sa)
4010 {
4011 #ifdef INET
4012 const struct sockaddr_in *sin;
4013 const struct in_ifaddr *ia;
4014 int s;
4015 #endif
4016
4017 KASSERT(sa != NULL);
4018
4019 switch (sa->sa_family) {
4020 #ifdef INET
4021 case AF_INET:
4022 sin = (const struct sockaddr_in *)sa;
4023 s = pserialize_read_enter();
4024 IN_ADDRLIST_READER_FOREACH(ia) {
4025 if (sin->sin_family == ia->ia_addr.sin_family &&
4026 sin->sin_len == ia->ia_addr.sin_len &&
4027 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4028 {
4029 pserialize_read_exit(s);
4030 return 1;
4031 }
4032 }
4033 pserialize_read_exit(s);
4034 break;
4035 #endif
4036 #ifdef INET6
4037 case AF_INET6:
4038 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4039 #endif
4040 }
4041
4042 return 0;
4043 }
4044
4045 #ifdef INET6
4046 /*
4047 * compare my own address for IPv6.
4048 * 1: ours
4049 * 0: other
4050 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4051 */
4052 #include <netinet6/in6_var.h>
4053
4054 static int
4055 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4056 {
4057 struct in6_ifaddr *ia;
4058 int s;
4059 struct psref psref;
4060 int bound;
4061 int ours = 1;
4062
4063 bound = curlwp_bind();
4064 s = pserialize_read_enter();
4065 IN6_ADDRLIST_READER_FOREACH(ia) {
4066 bool ingroup;
4067
4068 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4069 (const struct sockaddr *)&ia->ia_addr, 0)) {
4070 pserialize_read_exit(s);
4071 goto ours;
4072 }
4073 ia6_acquire(ia, &psref);
4074 pserialize_read_exit(s);
4075
4076 /*
4077 * XXX Multicast
4078 * XXX why do we care about multlicast here while we don't care
4079 * about IPv4 multicast??
4080 * XXX scope
4081 */
4082 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4083 if (ingroup) {
4084 ia6_release(ia, &psref);
4085 goto ours;
4086 }
4087
4088 s = pserialize_read_enter();
4089 ia6_release(ia, &psref);
4090 }
4091 pserialize_read_exit(s);
4092
4093 /* loopback, just for safety */
4094 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4095 goto ours;
4096
4097 ours = 0;
4098 ours:
4099 curlwp_bindx(bound);
4100
4101 return ours;
4102 }
4103 #endif /*INET6*/
4104
4105 /*
4106 * compare two secasindex structure.
4107 * flag can specify to compare 2 saidxes.
4108 * compare two secasindex structure without both mode and reqid.
4109 * don't compare port.
4110 * IN:
4111 * saidx0: source, it can be in SAD.
4112 * saidx1: object.
4113 * OUT:
4114 * 1 : equal
4115 * 0 : not equal
4116 */
4117 static int
4118 key_saidx_match(
4119 const struct secasindex *saidx0,
4120 const struct secasindex *saidx1,
4121 int flag)
4122 {
4123 int chkport;
4124 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4125
4126 KASSERT(saidx0 != NULL);
4127 KASSERT(saidx1 != NULL);
4128
4129 /* sanity */
4130 if (saidx0->proto != saidx1->proto)
4131 return 0;
4132
4133 if (flag == CMP_EXACTLY) {
4134 if (saidx0->mode != saidx1->mode)
4135 return 0;
4136 if (saidx0->reqid != saidx1->reqid)
4137 return 0;
4138 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4139 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4140 return 0;
4141 } else {
4142
4143 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4144 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4145 /*
4146 * If reqid of SPD is non-zero, unique SA is required.
4147 * The result must be of same reqid in this case.
4148 */
4149 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4150 return 0;
4151 }
4152
4153 if (flag == CMP_MODE_REQID) {
4154 if (saidx0->mode != IPSEC_MODE_ANY &&
4155 saidx0->mode != saidx1->mode)
4156 return 0;
4157 }
4158
4159
4160 sa0src = &saidx0->src.sa;
4161 sa0dst = &saidx0->dst.sa;
4162 sa1src = &saidx1->src.sa;
4163 sa1dst = &saidx1->dst.sa;
4164 /*
4165 * If NAT-T is enabled, check ports for tunnel mode.
4166 * Don't do it for transport mode, as there is no
4167 * port information available in the SP.
4168 * Also don't check ports if they are set to zero
4169 * in the SPD: This means we have a non-generated
4170 * SPD which can't know UDP ports.
4171 */
4172 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4173 chkport = PORT_LOOSE;
4174 else
4175 chkport = PORT_NONE;
4176
4177 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4178 return 0;
4179 }
4180 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4181 return 0;
4182 }
4183 }
4184
4185 return 1;
4186 }
4187
4188 /*
4189 * compare two secindex structure exactly.
4190 * IN:
4191 * spidx0: source, it is often in SPD.
4192 * spidx1: object, it is often from PFKEY message.
4193 * OUT:
4194 * 1 : equal
4195 * 0 : not equal
4196 */
4197 static int
4198 key_spidx_match_exactly(
4199 const struct secpolicyindex *spidx0,
4200 const struct secpolicyindex *spidx1)
4201 {
4202
4203 KASSERT(spidx0 != NULL);
4204 KASSERT(spidx1 != NULL);
4205
4206 /* sanity */
4207 if (spidx0->prefs != spidx1->prefs ||
4208 spidx0->prefd != spidx1->prefd ||
4209 spidx0->ul_proto != spidx1->ul_proto)
4210 return 0;
4211
4212 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4213 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4214 }
4215
4216 /*
4217 * compare two secindex structure with mask.
4218 * IN:
4219 * spidx0: source, it is often in SPD.
4220 * spidx1: object, it is often from IP header.
4221 * OUT:
4222 * 1 : equal
4223 * 0 : not equal
4224 */
4225 static int
4226 key_spidx_match_withmask(
4227 const struct secpolicyindex *spidx0,
4228 const struct secpolicyindex *spidx1)
4229 {
4230
4231 KASSERT(spidx0 != NULL);
4232 KASSERT(spidx1 != NULL);
4233
4234 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4235 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4236 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4237 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4238 return 0;
4239
4240 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4241 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4242 spidx0->ul_proto != spidx1->ul_proto)
4243 return 0;
4244
4245 switch (spidx0->src.sa.sa_family) {
4246 case AF_INET:
4247 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4248 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4249 return 0;
4250 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4251 &spidx1->src.sin.sin_addr, spidx0->prefs))
4252 return 0;
4253 break;
4254 case AF_INET6:
4255 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4256 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4257 return 0;
4258 /*
4259 * scope_id check. if sin6_scope_id is 0, we regard it
4260 * as a wildcard scope, which matches any scope zone ID.
4261 */
4262 if (spidx0->src.sin6.sin6_scope_id &&
4263 spidx1->src.sin6.sin6_scope_id &&
4264 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4265 return 0;
4266 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4267 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4268 return 0;
4269 break;
4270 default:
4271 /* XXX */
4272 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4273 return 0;
4274 break;
4275 }
4276
4277 switch (spidx0->dst.sa.sa_family) {
4278 case AF_INET:
4279 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4280 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4281 return 0;
4282 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4283 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4284 return 0;
4285 break;
4286 case AF_INET6:
4287 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4288 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4289 return 0;
4290 /*
4291 * scope_id check. if sin6_scope_id is 0, we regard it
4292 * as a wildcard scope, which matches any scope zone ID.
4293 */
4294 if (spidx0->src.sin6.sin6_scope_id &&
4295 spidx1->src.sin6.sin6_scope_id &&
4296 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4297 return 0;
4298 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4299 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4300 return 0;
4301 break;
4302 default:
4303 /* XXX */
4304 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4305 return 0;
4306 break;
4307 }
4308
4309 /* XXX Do we check other field ? e.g. flowinfo */
4310
4311 return 1;
4312 }
4313
4314 /* returns 0 on match */
4315 static int
4316 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4317 {
4318 switch (howport) {
4319 case PORT_NONE:
4320 return 0;
4321 case PORT_LOOSE:
4322 if (port1 == 0 || port2 == 0)
4323 return 0;
4324 /*FALLTHROUGH*/
4325 case PORT_STRICT:
4326 if (port1 != port2) {
4327 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4328 "port fail %d != %d\n", port1, port2);
4329 return 1;
4330 }
4331 return 0;
4332 default:
4333 KASSERT(0);
4334 return 1;
4335 }
4336 }
4337
4338 /* returns 1 on match */
4339 static int
4340 key_sockaddr_match(
4341 const struct sockaddr *sa1,
4342 const struct sockaddr *sa2,
4343 int howport)
4344 {
4345 const struct sockaddr_in *sin1, *sin2;
4346 const struct sockaddr_in6 *sin61, *sin62;
4347
4348 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4349 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4350 "fam/len fail %d != %d || %d != %d\n",
4351 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4352 sa2->sa_len);
4353 return 0;
4354 }
4355
4356 switch (sa1->sa_family) {
4357 case AF_INET:
4358 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4359 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4360 "len fail %d != %zu\n",
4361 sa1->sa_len, sizeof(struct sockaddr_in));
4362 return 0;
4363 }
4364 sin1 = (const struct sockaddr_in *)sa1;
4365 sin2 = (const struct sockaddr_in *)sa2;
4366 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4367 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4368 "addr fail %#x != %#x\n",
4369 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4370 return 0;
4371 }
4372 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4373 return 0;
4374 }
4375 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4376 "addr success %#x[%d] == %#x[%d]\n",
4377 sin1->sin_addr.s_addr, sin1->sin_port,
4378 sin2->sin_addr.s_addr, sin2->sin_port);
4379 break;
4380 case AF_INET6:
4381 sin61 = (const struct sockaddr_in6 *)sa1;
4382 sin62 = (const struct sockaddr_in6 *)sa2;
4383 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4384 return 0; /*EINVAL*/
4385
4386 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4387 return 0;
4388 }
4389 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4390 return 0;
4391 }
4392 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4393 return 0;
4394 }
4395 break;
4396 default:
4397 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4398 return 0;
4399 break;
4400 }
4401
4402 return 1;
4403 }
4404
4405 /*
4406 * compare two buffers with mask.
4407 * IN:
4408 * addr1: source
4409 * addr2: object
4410 * bits: Number of bits to compare
4411 * OUT:
4412 * 1 : equal
4413 * 0 : not equal
4414 */
4415 static int
4416 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4417 {
4418 const unsigned char *p1 = a1;
4419 const unsigned char *p2 = a2;
4420
4421 /* XXX: This could be considerably faster if we compare a word
4422 * at a time, but it is complicated on LSB Endian machines */
4423
4424 /* Handle null pointers */
4425 if (p1 == NULL || p2 == NULL)
4426 return (p1 == p2);
4427
4428 while (bits >= 8) {
4429 if (*p1++ != *p2++)
4430 return 0;
4431 bits -= 8;
4432 }
4433
4434 if (bits > 0) {
4435 u_int8_t mask = ~((1<<(8-bits))-1);
4436 if ((*p1 & mask) != (*p2 & mask))
4437 return 0;
4438 }
4439 return 1; /* Match! */
4440 }
4441
4442 static void
4443 key_timehandler_spd(time_t now)
4444 {
4445 u_int dir;
4446 struct secpolicy *sp, *nextsp;
4447
4448 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4449 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4450 if (sp->state == IPSEC_SPSTATE_DEAD) {
4451 key_sp_unlink(sp); /*XXX*/
4452
4453 /* 'sp' dead; continue transfers to
4454 * 'sp = nextsp'
4455 */
4456 continue;
4457 }
4458
4459 if (sp->lifetime == 0 && sp->validtime == 0)
4460 continue;
4461
4462 /* the deletion will occur next time */
4463 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4464 (sp->validtime && now - sp->lastused > sp->validtime)) {
4465 key_sp_dead(sp);
4466 key_spdexpire(sp);
4467 continue;
4468 }
4469 }
4470 }
4471 }
4472
4473 static void
4474 key_timehandler_sad(time_t now)
4475 {
4476 struct secashead *sah, *nextsah;
4477 struct secasvar *sav, *nextsav;
4478
4479 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4480 /* if sah has been dead, then delete it and process next sah. */
4481 if (sah->state == SADB_SASTATE_DEAD) {
4482 key_delsah(sah);
4483 continue;
4484 }
4485
4486 /* if LARVAL entry doesn't become MATURE, delete it. */
4487 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4488 chain, nextsav) {
4489 if (now - sav->created > key_larval_lifetime) {
4490 KEY_FREESAV(&sav);
4491 }
4492 }
4493
4494 /*
4495 * check MATURE entry to start to send expire message
4496 * whether or not.
4497 */
4498 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4499 chain, nextsav) {
4500 /* we don't need to check. */
4501 if (sav->lft_s == NULL)
4502 continue;
4503
4504 /* sanity check */
4505 if (sav->lft_c == NULL) {
4506 IPSECLOG(LOG_DEBUG,
4507 "There is no CURRENT time, why?\n");
4508 continue;
4509 }
4510
4511 /* check SOFT lifetime */
4512 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4513 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4514 /*
4515 * check SA to be used whether or not.
4516 * when SA hasn't been used, delete it.
4517 */
4518 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4519 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4520 KEY_FREESAV(&sav);
4521 } else {
4522 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4523 /*
4524 * XXX If we keep to send expire
4525 * message in the status of
4526 * DYING. Do remove below code.
4527 */
4528 key_expire(sav);
4529 }
4530 }
4531 /* check SOFT lifetime by bytes */
4532 /*
4533 * XXX I don't know the way to delete this SA
4534 * when new SA is installed. Caution when it's
4535 * installed too big lifetime by time.
4536 */
4537 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4538 sav->lft_s->sadb_lifetime_bytes <
4539 sav->lft_c->sadb_lifetime_bytes) {
4540
4541 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4542 /*
4543 * XXX If we keep to send expire
4544 * message in the status of
4545 * DYING. Do remove below code.
4546 */
4547 key_expire(sav);
4548 }
4549 }
4550
4551 /* check DYING entry to change status to DEAD. */
4552 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4553 chain, nextsav) {
4554 /* we don't need to check. */
4555 if (sav->lft_h == NULL)
4556 continue;
4557
4558 /* sanity check */
4559 if (sav->lft_c == NULL) {
4560 IPSECLOG(LOG_DEBUG,
4561 "There is no CURRENT time, why?\n");
4562 continue;
4563 }
4564
4565 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4566 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4567 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4568 KEY_FREESAV(&sav);
4569 }
4570 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4571 else if (sav->lft_s != NULL
4572 && sav->lft_s->sadb_lifetime_addtime != 0
4573 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4574 /*
4575 * XXX: should be checked to be
4576 * installed the valid SA.
4577 */
4578
4579 /*
4580 * If there is no SA then sending
4581 * expire message.
4582 */
4583 key_expire(sav);
4584 }
4585 #endif
4586 /* check HARD lifetime by bytes */
4587 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4588 sav->lft_h->sadb_lifetime_bytes <
4589 sav->lft_c->sadb_lifetime_bytes) {
4590 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4591 KEY_FREESAV(&sav);
4592 }
4593 }
4594
4595 /* delete entry in DEAD */
4596 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4597 chain, nextsav) {
4598 /* sanity check */
4599 if (sav->state != SADB_SASTATE_DEAD) {
4600 IPSECLOG(LOG_DEBUG,
4601 "invalid sav->state (queue: %d SA: %d): "
4602 "kill it anyway\n",
4603 SADB_SASTATE_DEAD, sav->state);
4604 }
4605
4606 /*
4607 * do not call key_freesav() here.
4608 * sav should already be freed, and sav->refcnt
4609 * shows other references to sav
4610 * (such as from SPD).
4611 */
4612 }
4613 }
4614 }
4615
4616 static void
4617 key_timehandler_acq(time_t now)
4618 {
4619 #ifndef IPSEC_NONBLOCK_ACQUIRE
4620 struct secacq *acq, *nextacq;
4621
4622 restart:
4623 mutex_enter(&key_mtx);
4624 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4625 if (now - acq->created > key_blockacq_lifetime) {
4626 LIST_REMOVE(acq, chain);
4627 mutex_exit(&key_mtx);
4628 kmem_free(acq, sizeof(*acq));
4629 goto restart;
4630 }
4631 }
4632 mutex_exit(&key_mtx);
4633 #endif
4634 }
4635
4636 static void
4637 key_timehandler_spacq(time_t now)
4638 {
4639 #ifdef notyet
4640 struct secspacq *acq, *nextacq;
4641
4642 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4643 if (now - acq->created > key_blockacq_lifetime) {
4644 KASSERT(__LIST_CHAINED(acq));
4645 LIST_REMOVE(acq, chain);
4646 kmem_free(acq, sizeof(*acq));
4647 }
4648 }
4649 #endif
4650 }
4651
4652 /*
4653 * time handler.
4654 * scanning SPD and SAD to check status for each entries,
4655 * and do to remove or to expire.
4656 */
4657 static void
4658 key_timehandler_work(struct work *wk, void *arg)
4659 {
4660 int s;
4661 time_t now = time_uptime;
4662
4663 s = splsoftnet();
4664 mutex_enter(softnet_lock);
4665
4666 key_timehandler_spd(now);
4667 key_timehandler_sad(now);
4668 key_timehandler_acq(now);
4669 key_timehandler_spacq(now);
4670
4671 /* do exchange to tick time !! */
4672 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4673
4674 mutex_exit(softnet_lock);
4675 splx(s);
4676 return;
4677 }
4678
4679 static void
4680 key_timehandler(void *arg)
4681 {
4682
4683 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4684 }
4685
4686 u_long
4687 key_random(void)
4688 {
4689 u_long value;
4690
4691 key_randomfill(&value, sizeof(value));
4692 return value;
4693 }
4694
4695 void
4696 key_randomfill(void *p, size_t l)
4697 {
4698
4699 cprng_fast(p, l);
4700 }
4701
4702 /*
4703 * map SADB_SATYPE_* to IPPROTO_*.
4704 * if satype == SADB_SATYPE then satype is mapped to ~0.
4705 * OUT:
4706 * 0: invalid satype.
4707 */
4708 static u_int16_t
4709 key_satype2proto(u_int8_t satype)
4710 {
4711 switch (satype) {
4712 case SADB_SATYPE_UNSPEC:
4713 return IPSEC_PROTO_ANY;
4714 case SADB_SATYPE_AH:
4715 return IPPROTO_AH;
4716 case SADB_SATYPE_ESP:
4717 return IPPROTO_ESP;
4718 case SADB_X_SATYPE_IPCOMP:
4719 return IPPROTO_IPCOMP;
4720 case SADB_X_SATYPE_TCPSIGNATURE:
4721 return IPPROTO_TCP;
4722 default:
4723 return 0;
4724 }
4725 /* NOTREACHED */
4726 }
4727
4728 /*
4729 * map IPPROTO_* to SADB_SATYPE_*
4730 * OUT:
4731 * 0: invalid protocol type.
4732 */
4733 static u_int8_t
4734 key_proto2satype(u_int16_t proto)
4735 {
4736 switch (proto) {
4737 case IPPROTO_AH:
4738 return SADB_SATYPE_AH;
4739 case IPPROTO_ESP:
4740 return SADB_SATYPE_ESP;
4741 case IPPROTO_IPCOMP:
4742 return SADB_X_SATYPE_IPCOMP;
4743 case IPPROTO_TCP:
4744 return SADB_X_SATYPE_TCPSIGNATURE;
4745 default:
4746 return 0;
4747 }
4748 /* NOTREACHED */
4749 }
4750
4751 static int
4752 key_setsecasidx(int proto, int mode, int reqid,
4753 const struct sockaddr *src, const struct sockaddr *dst,
4754 struct secasindex * saidx)
4755 {
4756 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4757 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4758
4759 /* sa len safety check */
4760 if (key_checksalen(src_u) != 0)
4761 return -1;
4762 if (key_checksalen(dst_u) != 0)
4763 return -1;
4764
4765 memset(saidx, 0, sizeof(*saidx));
4766 saidx->proto = proto;
4767 saidx->mode = mode;
4768 saidx->reqid = reqid;
4769 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4770 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4771
4772 key_porttosaddr(&((saidx)->src), 0);
4773 key_porttosaddr(&((saidx)->dst), 0);
4774 return 0;
4775 }
4776
4777 static void
4778 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4779 const struct sadb_msghdr *mhp)
4780 {
4781 const struct sadb_address *src0, *dst0;
4782 const struct sockaddr *src, *dst;
4783 const struct sadb_x_policy *xpl0;
4784
4785 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4786 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4787 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4788 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4789 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4790
4791 memset(spidx, 0, sizeof(*spidx));
4792 spidx->dir = xpl0->sadb_x_policy_dir;
4793 spidx->prefs = src0->sadb_address_prefixlen;
4794 spidx->prefd = dst0->sadb_address_prefixlen;
4795 spidx->ul_proto = src0->sadb_address_proto;
4796 /* XXX boundary check against sa_len */
4797 memcpy(&spidx->src, src, src->sa_len);
4798 memcpy(&spidx->dst, dst, dst->sa_len);
4799 }
4800
4801 /* %%% PF_KEY */
4802 /*
4803 * SADB_GETSPI processing is to receive
4804 * <base, (SA2), src address, dst address, (SPI range)>
4805 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4806 * tree with the status of LARVAL, and send
4807 * <base, SA(*), address(SD)>
4808 * to the IKMPd.
4809 *
4810 * IN: mhp: pointer to the pointer to each header.
4811 * OUT: NULL if fail.
4812 * other if success, return pointer to the message to send.
4813 */
4814 static int
4815 key_api_getspi(struct socket *so, struct mbuf *m,
4816 const struct sadb_msghdr *mhp)
4817 {
4818 const struct sockaddr *src, *dst;
4819 struct secasindex saidx;
4820 struct secashead *newsah;
4821 struct secasvar *newsav;
4822 u_int8_t proto;
4823 u_int32_t spi;
4824 u_int8_t mode;
4825 u_int16_t reqid;
4826 int error;
4827
4828 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4829 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4830 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4831 return key_senderror(so, m, EINVAL);
4832 }
4833 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4834 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4835 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4836 return key_senderror(so, m, EINVAL);
4837 }
4838 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4839 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4840 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4841 } else {
4842 mode = IPSEC_MODE_ANY;
4843 reqid = 0;
4844 }
4845
4846 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4847 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4848
4849 /* map satype to proto */
4850 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4851 if (proto == 0) {
4852 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4853 return key_senderror(so, m, EINVAL);
4854 }
4855
4856
4857 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4858 if (error != 0)
4859 return key_senderror(so, m, EINVAL);
4860
4861 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4862 if (error != 0)
4863 return key_senderror(so, m, EINVAL);
4864
4865 /* SPI allocation */
4866 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4867 &saidx);
4868 if (spi == 0)
4869 return key_senderror(so, m, EINVAL);
4870
4871 /* get a SA index */
4872 newsah = key_getsah(&saidx, CMP_REQID);
4873 if (newsah == NULL) {
4874 /* create a new SA index */
4875 newsah = key_newsah(&saidx);
4876 if (newsah == NULL) {
4877 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4878 return key_senderror(so, m, ENOBUFS);
4879 }
4880 }
4881
4882 /* get a new SA */
4883 /* XXX rewrite */
4884 newsav = KEY_NEWSAV(m, mhp, &error);
4885 if (newsav == NULL) {
4886 /* XXX don't free new SA index allocated in above. */
4887 return key_senderror(so, m, error);
4888 }
4889
4890 /* set spi */
4891 newsav->spi = htonl(spi);
4892
4893 /* add to satree */
4894 newsav->refcnt = 1;
4895 newsav->sah = newsah;
4896 newsav->state = SADB_SASTATE_LARVAL;
4897 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_LARVAL], newsav,
4898 secasvar, chain);
4899
4900 #ifndef IPSEC_NONBLOCK_ACQUIRE
4901 /* delete the entry in acqtree */
4902 if (mhp->msg->sadb_msg_seq != 0) {
4903 struct secacq *acq;
4904 mutex_enter(&key_mtx);
4905 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4906 if (acq != NULL) {
4907 /* reset counter in order to deletion by timehandler. */
4908 acq->created = time_uptime;
4909 acq->count = 0;
4910 }
4911 mutex_exit(&key_mtx);
4912 }
4913 #endif
4914
4915 {
4916 struct mbuf *n, *nn;
4917 struct sadb_sa *m_sa;
4918 int off, len;
4919
4920 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4921 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4922
4923 /* create new sadb_msg to reply. */
4924 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4925 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4926
4927 MGETHDR(n, M_DONTWAIT, MT_DATA);
4928 if (len > MHLEN) {
4929 MCLGET(n, M_DONTWAIT);
4930 if ((n->m_flags & M_EXT) == 0) {
4931 m_freem(n);
4932 n = NULL;
4933 }
4934 }
4935 if (!n)
4936 return key_senderror(so, m, ENOBUFS);
4937
4938 n->m_len = len;
4939 n->m_next = NULL;
4940 off = 0;
4941
4942 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4943 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4944
4945 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4946 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4947 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4948 m_sa->sadb_sa_spi = htonl(spi);
4949 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4950
4951 KASSERTMSG(off == len, "length inconsistency");
4952
4953 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4954 SADB_EXT_ADDRESS_DST);
4955 if (!n->m_next) {
4956 m_freem(n);
4957 return key_senderror(so, m, ENOBUFS);
4958 }
4959
4960 if (n->m_len < sizeof(struct sadb_msg)) {
4961 n = m_pullup(n, sizeof(struct sadb_msg));
4962 if (n == NULL)
4963 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4964 }
4965
4966 n->m_pkthdr.len = 0;
4967 for (nn = n; nn; nn = nn->m_next)
4968 n->m_pkthdr.len += nn->m_len;
4969
4970 key_fill_replymsg(n, newsav->seq);
4971
4972 m_freem(m);
4973 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4974 }
4975 }
4976
4977 /*
4978 * allocating new SPI
4979 * called by key_api_getspi().
4980 * OUT:
4981 * 0: failure.
4982 * others: success.
4983 */
4984 static u_int32_t
4985 key_do_getnewspi(const struct sadb_spirange *spirange,
4986 const struct secasindex *saidx)
4987 {
4988 u_int32_t newspi;
4989 u_int32_t spmin, spmax;
4990 int count = key_spi_trycnt;
4991
4992 /* set spi range to allocate */
4993 if (spirange != NULL) {
4994 spmin = spirange->sadb_spirange_min;
4995 spmax = spirange->sadb_spirange_max;
4996 } else {
4997 spmin = key_spi_minval;
4998 spmax = key_spi_maxval;
4999 }
5000 /* IPCOMP needs 2-byte SPI */
5001 if (saidx->proto == IPPROTO_IPCOMP) {
5002 u_int32_t t;
5003 if (spmin >= 0x10000)
5004 spmin = 0xffff;
5005 if (spmax >= 0x10000)
5006 spmax = 0xffff;
5007 if (spmin > spmax) {
5008 t = spmin; spmin = spmax; spmax = t;
5009 }
5010 }
5011
5012 if (spmin == spmax) {
5013 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5014 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5015 return 0;
5016 }
5017
5018 count--; /* taking one cost. */
5019 newspi = spmin;
5020
5021 } else {
5022
5023 /* init SPI */
5024 newspi = 0;
5025
5026 /* when requesting to allocate spi ranged */
5027 while (count--) {
5028 /* generate pseudo-random SPI value ranged. */
5029 newspi = spmin + (key_random() % (spmax - spmin + 1));
5030
5031 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5032 break;
5033 }
5034
5035 if (count == 0 || newspi == 0) {
5036 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5037 return 0;
5038 }
5039 }
5040
5041 /* statistics */
5042 keystat.getspi_count =
5043 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5044
5045 return newspi;
5046 }
5047
5048 static int
5049 key_handle_natt_info(struct secasvar *sav,
5050 const struct sadb_msghdr *mhp)
5051 {
5052 const char *msg = "?" ;
5053 struct sadb_x_nat_t_type *type;
5054 struct sadb_x_nat_t_port *sport, *dport;
5055 struct sadb_address *iaddr, *raddr;
5056 struct sadb_x_nat_t_frag *frag;
5057
5058 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5059 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5060 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5061 return 0;
5062
5063 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5064 msg = "TYPE";
5065 goto bad;
5066 }
5067
5068 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5069 msg = "SPORT";
5070 goto bad;
5071 }
5072
5073 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5074 msg = "DPORT";
5075 goto bad;
5076 }
5077
5078 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5079 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5080 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5081 msg = "OAI";
5082 goto bad;
5083 }
5084 }
5085
5086 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5087 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5088 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5089 msg = "OAR";
5090 goto bad;
5091 }
5092 }
5093
5094 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5095 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5096 msg = "FRAG";
5097 goto bad;
5098 }
5099 }
5100
5101 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5102 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5103 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5104 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5105 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5106 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5107
5108 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5109 type->sadb_x_nat_t_type_type,
5110 ntohs(sport->sadb_x_nat_t_port_port),
5111 ntohs(dport->sadb_x_nat_t_port_port));
5112
5113 sav->natt_type = type->sadb_x_nat_t_type_type;
5114 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5115 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5116 if (frag)
5117 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5118 else
5119 sav->esp_frag = IP_MAXPACKET;
5120
5121 return 0;
5122 bad:
5123 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5124 __USE(msg);
5125 return -1;
5126 }
5127
5128 /* Just update the IPSEC_NAT_T ports if present */
5129 static int
5130 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5131 const struct sadb_msghdr *mhp)
5132 {
5133 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5134 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5135 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5136 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5137
5138 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5139 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5140 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5141 struct sadb_x_nat_t_type *type;
5142 struct sadb_x_nat_t_port *sport;
5143 struct sadb_x_nat_t_port *dport;
5144
5145 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5146 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5147 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5148 IPSECLOG(LOG_DEBUG, "invalid message\n");
5149 return -1;
5150 }
5151
5152 type = (struct sadb_x_nat_t_type *)
5153 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5154 sport = (struct sadb_x_nat_t_port *)
5155 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5156 dport = (struct sadb_x_nat_t_port *)
5157 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5158
5159 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5160 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5161
5162 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5163 type->sadb_x_nat_t_type_type,
5164 ntohs(sport->sadb_x_nat_t_port_port),
5165 ntohs(dport->sadb_x_nat_t_port_port));
5166 }
5167
5168 return 0;
5169 }
5170
5171
5172 /*
5173 * SADB_UPDATE processing
5174 * receive
5175 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5176 * key(AE), (identity(SD),) (sensitivity)>
5177 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5178 * and send
5179 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5180 * (identity(SD),) (sensitivity)>
5181 * to the ikmpd.
5182 *
5183 * m will always be freed.
5184 */
5185 static int
5186 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5187 {
5188 struct sadb_sa *sa0;
5189 const struct sockaddr *src, *dst;
5190 struct secasindex saidx;
5191 struct secashead *sah;
5192 struct secasvar *sav, *newsav;
5193 u_int16_t proto;
5194 u_int8_t mode;
5195 u_int16_t reqid;
5196 int error;
5197
5198 /* map satype to proto */
5199 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5200 if (proto == 0) {
5201 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5202 return key_senderror(so, m, EINVAL);
5203 }
5204
5205 if (mhp->ext[SADB_EXT_SA] == NULL ||
5206 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5207 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5208 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5209 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5210 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5211 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5212 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5213 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5214 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5215 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5216 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5217 return key_senderror(so, m, EINVAL);
5218 }
5219 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5220 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5221 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5222 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5223 return key_senderror(so, m, EINVAL);
5224 }
5225 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5226 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5227 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5228 } else {
5229 mode = IPSEC_MODE_ANY;
5230 reqid = 0;
5231 }
5232 /* XXX boundary checking for other extensions */
5233
5234 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5235 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5236 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5237
5238 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5239 if (error != 0)
5240 return key_senderror(so, m, EINVAL);
5241
5242 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5243 if (error != 0)
5244 return key_senderror(so, m, EINVAL);
5245
5246 /* get a SA header */
5247 sah = key_getsah(&saidx, CMP_REQID);
5248 if (sah == NULL) {
5249 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5250 return key_senderror(so, m, ENOENT);
5251 }
5252
5253 /* set spidx if there */
5254 /* XXX rewrite */
5255 error = key_setident(sah, m, mhp);
5256 if (error)
5257 return key_senderror(so, m, error);
5258
5259 /* find a SA with sequence number. */
5260 #ifdef IPSEC_DOSEQCHECK
5261 if (mhp->msg->sadb_msg_seq != 0) {
5262 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5263 if (sav == NULL) {
5264 IPSECLOG(LOG_DEBUG,
5265 "no larval SA with sequence %u exists.\n",
5266 mhp->msg->sadb_msg_seq);
5267 return key_senderror(so, m, ENOENT);
5268 }
5269 }
5270 #else
5271 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5272 if (sav == NULL) {
5273 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5274 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5275 return key_senderror(so, m, EINVAL);
5276 }
5277 #endif
5278
5279 /* validity check */
5280 if (sav->sah->saidx.proto != proto) {
5281 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5282 sav->sah->saidx.proto, proto);
5283 return key_senderror(so, m, EINVAL);
5284 }
5285 #ifdef IPSEC_DOSEQCHECK
5286 if (sav->spi != sa0->sadb_sa_spi) {
5287 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5288 (u_int32_t)ntohl(sav->spi),
5289 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5290 return key_senderror(so, m, EINVAL);
5291 }
5292 #endif
5293 if (sav->pid != mhp->msg->sadb_msg_pid) {
5294 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5295 sav->pid, mhp->msg->sadb_msg_pid);
5296 return key_senderror(so, m, EINVAL);
5297 }
5298
5299 /*
5300 * Allocate a new SA instead of modifying the existing SA directly
5301 * to avoid race conditions.
5302 */
5303 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5304
5305 /* copy sav values */
5306 newsav->spi = sav->spi;
5307 newsav->seq = sav->seq;
5308 newsav->created = sav->created;
5309 newsav->pid = sav->pid;
5310 newsav->sah = sav->sah;
5311
5312 error = key_setsaval(newsav, m, mhp);
5313 if (error) {
5314 key_delsav(newsav);
5315 return key_senderror(so, m, error);
5316 }
5317
5318 error = key_handle_natt_info(newsav, mhp);
5319 if (error != 0) {
5320 key_delsav(newsav);
5321 return key_senderror(so, m, error);
5322 }
5323
5324 error = key_init_xform(newsav);
5325 if (error != 0) {
5326 key_delsav(newsav);
5327 return key_senderror(so, m, error);
5328 }
5329
5330 /* add to satree */
5331 newsav->refcnt = 1;
5332 newsav->state = SADB_SASTATE_MATURE;
5333 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_MATURE], newsav,
5334 secasvar, chain);
5335
5336 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5337 KEY_FREESAV(&sav);
5338
5339 {
5340 struct mbuf *n;
5341
5342 /* set msg buf from mhp */
5343 n = key_getmsgbuf_x1(m, mhp);
5344 if (n == NULL) {
5345 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5346 return key_senderror(so, m, ENOBUFS);
5347 }
5348
5349 m_freem(m);
5350 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5351 }
5352 }
5353
5354 /*
5355 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5356 * only called by key_api_update().
5357 * OUT:
5358 * NULL : not found
5359 * others : found, pointer to a SA.
5360 */
5361 #ifdef IPSEC_DOSEQCHECK
5362 static struct secasvar *
5363 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5364 {
5365 struct secasvar *sav;
5366 u_int state;
5367
5368 state = SADB_SASTATE_LARVAL;
5369
5370 /* search SAD with sequence number ? */
5371 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5372
5373 KEY_CHKSASTATE(state, sav->state);
5374
5375 if (sav->seq == seq) {
5376 SA_ADDREF(sav);
5377 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5378 "DP cause refcnt++:%d SA:%p\n",
5379 sav->refcnt, sav);
5380 return sav;
5381 }
5382 }
5383
5384 return NULL;
5385 }
5386 #endif
5387
5388 /*
5389 * SADB_ADD processing
5390 * add an entry to SA database, when received
5391 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5392 * key(AE), (identity(SD),) (sensitivity)>
5393 * from the ikmpd,
5394 * and send
5395 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5396 * (identity(SD),) (sensitivity)>
5397 * to the ikmpd.
5398 *
5399 * IGNORE identity and sensitivity messages.
5400 *
5401 * m will always be freed.
5402 */
5403 static int
5404 key_api_add(struct socket *so, struct mbuf *m,
5405 const struct sadb_msghdr *mhp)
5406 {
5407 struct sadb_sa *sa0;
5408 const struct sockaddr *src, *dst;
5409 struct secasindex saidx;
5410 struct secashead *newsah;
5411 struct secasvar *newsav;
5412 u_int16_t proto;
5413 u_int8_t mode;
5414 u_int16_t reqid;
5415 int error;
5416
5417 /* map satype to proto */
5418 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5419 if (proto == 0) {
5420 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5421 return key_senderror(so, m, EINVAL);
5422 }
5423
5424 if (mhp->ext[SADB_EXT_SA] == NULL ||
5425 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5426 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5427 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5428 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5429 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5430 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5431 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5432 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5433 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5434 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5435 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5436 return key_senderror(so, m, EINVAL);
5437 }
5438 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5439 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5440 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5441 /* XXX need more */
5442 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5443 return key_senderror(so, m, EINVAL);
5444 }
5445 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5446 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5447 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5448 } else {
5449 mode = IPSEC_MODE_ANY;
5450 reqid = 0;
5451 }
5452
5453 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5454 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5455 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5456
5457 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5458 if (error != 0)
5459 return key_senderror(so, m, EINVAL);
5460
5461 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5462 if (error != 0)
5463 return key_senderror(so, m, EINVAL);
5464
5465 /* get a SA header */
5466 newsah = key_getsah(&saidx, CMP_REQID);
5467 if (newsah == NULL) {
5468 /* create a new SA header */
5469 newsah = key_newsah(&saidx);
5470 if (newsah == NULL) {
5471 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5472 return key_senderror(so, m, ENOBUFS);
5473 }
5474 }
5475
5476 /* set spidx if there */
5477 /* XXX rewrite */
5478 error = key_setident(newsah, m, mhp);
5479 if (error) {
5480 return key_senderror(so, m, error);
5481 }
5482
5483 /* create new SA entry. */
5484 /* We can create new SA only if SPI is differenct. */
5485 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5486 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5487 return key_senderror(so, m, EEXIST);
5488 }
5489 newsav = KEY_NEWSAV(m, mhp, &error);
5490 if (newsav == NULL) {
5491 return key_senderror(so, m, error);
5492 }
5493 newsav->sah = newsah;
5494
5495 error = key_handle_natt_info(newsav, mhp);
5496 if (error != 0) {
5497 key_delsav(newsav);
5498 return key_senderror(so, m, EINVAL);
5499 }
5500
5501 error = key_init_xform(newsav);
5502 if (error != 0) {
5503 key_delsav(newsav);
5504 return key_senderror(so, m, error);
5505 }
5506
5507 /* add to satree */
5508 newsav->refcnt = 1;
5509 newsav->state = SADB_SASTATE_MATURE;
5510 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], newsav,
5511 secasvar, chain);
5512
5513 /*
5514 * don't call key_freesav() here, as we would like to keep the SA
5515 * in the database on success.
5516 */
5517
5518 {
5519 struct mbuf *n;
5520
5521 /* set msg buf from mhp */
5522 n = key_getmsgbuf_x1(m, mhp);
5523 if (n == NULL) {
5524 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5525 return key_senderror(so, m, ENOBUFS);
5526 }
5527
5528 m_freem(m);
5529 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5530 }
5531 }
5532
5533 /* m is retained */
5534 static int
5535 key_setident(struct secashead *sah, struct mbuf *m,
5536 const struct sadb_msghdr *mhp)
5537 {
5538 const struct sadb_ident *idsrc, *iddst;
5539 int idsrclen, iddstlen;
5540
5541 KASSERT(!cpu_softintr_p());
5542 KASSERT(sah != NULL);
5543 KASSERT(m != NULL);
5544 KASSERT(mhp != NULL);
5545 KASSERT(mhp->msg != NULL);
5546
5547 /*
5548 * Can be called with an existing sah from key_api_update().
5549 */
5550 if (sah->idents != NULL) {
5551 kmem_free(sah->idents, sah->idents_len);
5552 sah->idents = NULL;
5553 sah->idents_len = 0;
5554 }
5555 if (sah->identd != NULL) {
5556 kmem_free(sah->identd, sah->identd_len);
5557 sah->identd = NULL;
5558 sah->identd_len = 0;
5559 }
5560
5561 /* don't make buffer if not there */
5562 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5563 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5564 sah->idents = NULL;
5565 sah->identd = NULL;
5566 return 0;
5567 }
5568
5569 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5570 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5571 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5572 return EINVAL;
5573 }
5574
5575 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5576 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5577 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5578 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5579
5580 /* validity check */
5581 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5582 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5583 return EINVAL;
5584 }
5585
5586 switch (idsrc->sadb_ident_type) {
5587 case SADB_IDENTTYPE_PREFIX:
5588 case SADB_IDENTTYPE_FQDN:
5589 case SADB_IDENTTYPE_USERFQDN:
5590 default:
5591 /* XXX do nothing */
5592 sah->idents = NULL;
5593 sah->identd = NULL;
5594 return 0;
5595 }
5596
5597 /* make structure */
5598 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5599 sah->idents_len = idsrclen;
5600 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5601 sah->identd_len = iddstlen;
5602 memcpy(sah->idents, idsrc, idsrclen);
5603 memcpy(sah->identd, iddst, iddstlen);
5604
5605 return 0;
5606 }
5607
5608 /*
5609 * m will not be freed on return.
5610 * it is caller's responsibility to free the result.
5611 */
5612 static struct mbuf *
5613 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5614 {
5615 struct mbuf *n;
5616
5617 KASSERT(m != NULL);
5618 KASSERT(mhp != NULL);
5619 KASSERT(mhp->msg != NULL);
5620
5621 /* create new sadb_msg to reply. */
5622 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5623 SADB_EXT_SA, SADB_X_EXT_SA2,
5624 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5625 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5626 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5627 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5628 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5629 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5630 if (!n)
5631 return NULL;
5632
5633 if (n->m_len < sizeof(struct sadb_msg)) {
5634 n = m_pullup(n, sizeof(struct sadb_msg));
5635 if (n == NULL)
5636 return NULL;
5637 }
5638 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5639 mtod(n, struct sadb_msg *)->sadb_msg_len =
5640 PFKEY_UNIT64(n->m_pkthdr.len);
5641
5642 return n;
5643 }
5644
5645 static int key_delete_all (struct socket *, struct mbuf *,
5646 const struct sadb_msghdr *, u_int16_t);
5647
5648 /*
5649 * SADB_DELETE processing
5650 * receive
5651 * <base, SA(*), address(SD)>
5652 * from the ikmpd, and set SADB_SASTATE_DEAD,
5653 * and send,
5654 * <base, SA(*), address(SD)>
5655 * to the ikmpd.
5656 *
5657 * m will always be freed.
5658 */
5659 static int
5660 key_api_delete(struct socket *so, struct mbuf *m,
5661 const struct sadb_msghdr *mhp)
5662 {
5663 struct sadb_sa *sa0;
5664 const struct sockaddr *src, *dst;
5665 struct secasindex saidx;
5666 struct secashead *sah;
5667 struct secasvar *sav = NULL;
5668 u_int16_t proto;
5669 int error;
5670
5671 /* map satype to proto */
5672 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5673 if (proto == 0) {
5674 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5675 return key_senderror(so, m, EINVAL);
5676 }
5677
5678 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5679 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5680 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5681 return key_senderror(so, m, EINVAL);
5682 }
5683
5684 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5685 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5686 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5687 return key_senderror(so, m, EINVAL);
5688 }
5689
5690 if (mhp->ext[SADB_EXT_SA] == NULL) {
5691 /*
5692 * Caller wants us to delete all non-LARVAL SAs
5693 * that match the src/dst. This is used during
5694 * IKE INITIAL-CONTACT.
5695 */
5696 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5697 return key_delete_all(so, m, mhp, proto);
5698 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5699 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5700 return key_senderror(so, m, EINVAL);
5701 }
5702
5703 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5704 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5705 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5706
5707 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5708 if (error != 0)
5709 return key_senderror(so, m, EINVAL);
5710
5711 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5712 if (error != 0)
5713 return key_senderror(so, m, EINVAL);
5714
5715 /* get a SA header */
5716 sah = key_getsah(&saidx, CMP_HEAD);
5717 if (sah != NULL) {
5718 /* get a SA with SPI. */
5719 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5720 }
5721
5722 if (sav == NULL) {
5723 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5724 return key_senderror(so, m, ENOENT);
5725 }
5726
5727 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5728 KEY_FREESAV(&sav);
5729
5730 {
5731 struct mbuf *n;
5732
5733 /* create new sadb_msg to reply. */
5734 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5735 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5736 if (!n)
5737 return key_senderror(so, m, ENOBUFS);
5738
5739 n = key_fill_replymsg(n, 0);
5740 if (n == NULL)
5741 return key_senderror(so, m, ENOBUFS);
5742
5743 m_freem(m);
5744 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5745 }
5746 }
5747
5748 /*
5749 * delete all SAs for src/dst. Called from key_api_delete().
5750 */
5751 static int
5752 key_delete_all(struct socket *so, struct mbuf *m,
5753 const struct sadb_msghdr *mhp, u_int16_t proto)
5754 {
5755 const struct sockaddr *src, *dst;
5756 struct secasindex saidx;
5757 struct secashead *sah;
5758 struct secasvar *sav, *nextsav;
5759 u_int state;
5760 int error;
5761
5762 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5763 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5764
5765 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5766 if (error != 0)
5767 return key_senderror(so, m, EINVAL);
5768
5769 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5770 if (error != 0)
5771 return key_senderror(so, m, EINVAL);
5772
5773 sah = key_getsah(&saidx, CMP_HEAD);
5774 if (sah != NULL) {
5775 /* Delete all non-LARVAL SAs. */
5776 SASTATE_ALIVE_FOREACH(state) {
5777 if (state == SADB_SASTATE_LARVAL)
5778 continue;
5779 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5780 nextsav) {
5781 /* sanity check */
5782 if (sav->state != state) {
5783 IPSECLOG(LOG_DEBUG,
5784 "invalid sav->state "
5785 "(queue: %d SA: %d)\n",
5786 state, sav->state);
5787 continue;
5788 }
5789
5790 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5791 KEY_FREESAV(&sav);
5792 }
5793 }
5794 }
5795 {
5796 struct mbuf *n;
5797
5798 /* create new sadb_msg to reply. */
5799 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5800 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5801 if (!n)
5802 return key_senderror(so, m, ENOBUFS);
5803
5804 n = key_fill_replymsg(n, 0);
5805 if (n == NULL)
5806 return key_senderror(so, m, ENOBUFS);
5807
5808 m_freem(m);
5809 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5810 }
5811 }
5812
5813 /*
5814 * SADB_GET processing
5815 * receive
5816 * <base, SA(*), address(SD)>
5817 * from the ikmpd, and get a SP and a SA to respond,
5818 * and send,
5819 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5820 * (identity(SD),) (sensitivity)>
5821 * to the ikmpd.
5822 *
5823 * m will always be freed.
5824 */
5825 static int
5826 key_api_get(struct socket *so, struct mbuf *m,
5827 const struct sadb_msghdr *mhp)
5828 {
5829 struct sadb_sa *sa0;
5830 const struct sockaddr *src, *dst;
5831 struct secasindex saidx;
5832 struct secashead *sah;
5833 struct secasvar *sav = NULL;
5834 u_int16_t proto;
5835 int error;
5836
5837 /* map satype to proto */
5838 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5839 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5840 return key_senderror(so, m, EINVAL);
5841 }
5842
5843 if (mhp->ext[SADB_EXT_SA] == NULL ||
5844 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5845 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5846 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5847 return key_senderror(so, m, EINVAL);
5848 }
5849 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5850 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5851 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5852 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5853 return key_senderror(so, m, EINVAL);
5854 }
5855
5856 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5857 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5858 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5859
5860 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5861 if (error != 0)
5862 return key_senderror(so, m, EINVAL);
5863
5864 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5865 if (error != 0)
5866 return key_senderror(so, m, EINVAL);
5867
5868 /* get a SA header */
5869 sah = key_getsah(&saidx, CMP_HEAD);
5870 if (sah != NULL) {
5871 /* get a SA with SPI. */
5872 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5873 }
5874 if (sav == NULL) {
5875 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5876 return key_senderror(so, m, ENOENT);
5877 }
5878
5879 {
5880 struct mbuf *n;
5881 u_int8_t satype;
5882
5883 /* map proto to satype */
5884 satype = key_proto2satype(sah->saidx.proto);
5885 if (satype == 0) {
5886 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5887 return key_senderror(so, m, EINVAL);
5888 }
5889
5890 /* create new sadb_msg to reply. */
5891 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5892 mhp->msg->sadb_msg_pid);
5893 if (!n)
5894 return key_senderror(so, m, ENOBUFS);
5895
5896 m_freem(m);
5897 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5898 }
5899 }
5900
5901 /* XXX make it sysctl-configurable? */
5902 static void
5903 key_getcomb_setlifetime(struct sadb_comb *comb)
5904 {
5905
5906 comb->sadb_comb_soft_allocations = 1;
5907 comb->sadb_comb_hard_allocations = 1;
5908 comb->sadb_comb_soft_bytes = 0;
5909 comb->sadb_comb_hard_bytes = 0;
5910 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5911 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5912 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5913 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5914 }
5915
5916 /*
5917 * XXX reorder combinations by preference
5918 * XXX no idea if the user wants ESP authentication or not
5919 */
5920 static struct mbuf *
5921 key_getcomb_esp(void)
5922 {
5923 struct sadb_comb *comb;
5924 const struct enc_xform *algo;
5925 struct mbuf *result = NULL, *m, *n;
5926 int encmin;
5927 int i, off, o;
5928 int totlen;
5929 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5930
5931 m = NULL;
5932 for (i = 1; i <= SADB_EALG_MAX; i++) {
5933 algo = esp_algorithm_lookup(i);
5934 if (algo == NULL)
5935 continue;
5936
5937 /* discard algorithms with key size smaller than system min */
5938 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5939 continue;
5940 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5941 encmin = ipsec_esp_keymin;
5942 else
5943 encmin = _BITS(algo->minkey);
5944
5945 if (ipsec_esp_auth)
5946 m = key_getcomb_ah();
5947 else {
5948 KASSERTMSG(l <= MLEN,
5949 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5950 MGET(m, M_DONTWAIT, MT_DATA);
5951 if (m) {
5952 M_ALIGN(m, l);
5953 m->m_len = l;
5954 m->m_next = NULL;
5955 memset(mtod(m, void *), 0, m->m_len);
5956 }
5957 }
5958 if (!m)
5959 goto fail;
5960
5961 totlen = 0;
5962 for (n = m; n; n = n->m_next)
5963 totlen += n->m_len;
5964 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5965
5966 for (off = 0; off < totlen; off += l) {
5967 n = m_pulldown(m, off, l, &o);
5968 if (!n) {
5969 /* m is already freed */
5970 goto fail;
5971 }
5972 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5973 memset(comb, 0, sizeof(*comb));
5974 key_getcomb_setlifetime(comb);
5975 comb->sadb_comb_encrypt = i;
5976 comb->sadb_comb_encrypt_minbits = encmin;
5977 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5978 }
5979
5980 if (!result)
5981 result = m;
5982 else
5983 m_cat(result, m);
5984 }
5985
5986 return result;
5987
5988 fail:
5989 if (result)
5990 m_freem(result);
5991 return NULL;
5992 }
5993
5994 static void
5995 key_getsizes_ah(const struct auth_hash *ah, int alg,
5996 u_int16_t* ksmin, u_int16_t* ksmax)
5997 {
5998 *ksmin = *ksmax = ah->keysize;
5999 if (ah->keysize == 0) {
6000 /*
6001 * Transform takes arbitrary key size but algorithm
6002 * key size is restricted. Enforce this here.
6003 */
6004 switch (alg) {
6005 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6006 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6007 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6008 default:
6009 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6010 break;
6011 }
6012 }
6013 }
6014
6015 /*
6016 * XXX reorder combinations by preference
6017 */
6018 static struct mbuf *
6019 key_getcomb_ah(void)
6020 {
6021 struct sadb_comb *comb;
6022 const struct auth_hash *algo;
6023 struct mbuf *m;
6024 u_int16_t minkeysize, maxkeysize;
6025 int i;
6026 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6027
6028 m = NULL;
6029 for (i = 1; i <= SADB_AALG_MAX; i++) {
6030 #if 1
6031 /* we prefer HMAC algorithms, not old algorithms */
6032 if (i != SADB_AALG_SHA1HMAC &&
6033 i != SADB_AALG_MD5HMAC &&
6034 i != SADB_X_AALG_SHA2_256 &&
6035 i != SADB_X_AALG_SHA2_384 &&
6036 i != SADB_X_AALG_SHA2_512)
6037 continue;
6038 #endif
6039 algo = ah_algorithm_lookup(i);
6040 if (!algo)
6041 continue;
6042 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6043 /* discard algorithms with key size smaller than system min */
6044 if (_BITS(minkeysize) < ipsec_ah_keymin)
6045 continue;
6046
6047 if (!m) {
6048 KASSERTMSG(l <= MLEN,
6049 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6050 MGET(m, M_DONTWAIT, MT_DATA);
6051 if (m) {
6052 M_ALIGN(m, l);
6053 m->m_len = l;
6054 m->m_next = NULL;
6055 }
6056 } else
6057 M_PREPEND(m, l, M_DONTWAIT);
6058 if (!m)
6059 return NULL;
6060
6061 if (m->m_len < sizeof(struct sadb_comb)) {
6062 m = m_pullup(m, sizeof(struct sadb_comb));
6063 if (m == NULL)
6064 return NULL;
6065 }
6066
6067 comb = mtod(m, struct sadb_comb *);
6068 memset(comb, 0, sizeof(*comb));
6069 key_getcomb_setlifetime(comb);
6070 comb->sadb_comb_auth = i;
6071 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6072 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6073 }
6074
6075 return m;
6076 }
6077
6078 /*
6079 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6080 * XXX reorder combinations by preference
6081 */
6082 static struct mbuf *
6083 key_getcomb_ipcomp(void)
6084 {
6085 struct sadb_comb *comb;
6086 const struct comp_algo *algo;
6087 struct mbuf *m;
6088 int i;
6089 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6090
6091 m = NULL;
6092 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6093 algo = ipcomp_algorithm_lookup(i);
6094 if (!algo)
6095 continue;
6096
6097 if (!m) {
6098 KASSERTMSG(l <= MLEN,
6099 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6100 MGET(m, M_DONTWAIT, MT_DATA);
6101 if (m) {
6102 M_ALIGN(m, l);
6103 m->m_len = l;
6104 m->m_next = NULL;
6105 }
6106 } else
6107 M_PREPEND(m, l, M_DONTWAIT);
6108 if (!m)
6109 return NULL;
6110
6111 if (m->m_len < sizeof(struct sadb_comb)) {
6112 m = m_pullup(m, sizeof(struct sadb_comb));
6113 if (m == NULL)
6114 return NULL;
6115 }
6116
6117 comb = mtod(m, struct sadb_comb *);
6118 memset(comb, 0, sizeof(*comb));
6119 key_getcomb_setlifetime(comb);
6120 comb->sadb_comb_encrypt = i;
6121 /* what should we set into sadb_comb_*_{min,max}bits? */
6122 }
6123
6124 return m;
6125 }
6126
6127 /*
6128 * XXX no way to pass mode (transport/tunnel) to userland
6129 * XXX replay checking?
6130 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6131 */
6132 static struct mbuf *
6133 key_getprop(const struct secasindex *saidx)
6134 {
6135 struct sadb_prop *prop;
6136 struct mbuf *m, *n;
6137 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6138 int totlen;
6139
6140 switch (saidx->proto) {
6141 case IPPROTO_ESP:
6142 m = key_getcomb_esp();
6143 break;
6144 case IPPROTO_AH:
6145 m = key_getcomb_ah();
6146 break;
6147 case IPPROTO_IPCOMP:
6148 m = key_getcomb_ipcomp();
6149 break;
6150 default:
6151 return NULL;
6152 }
6153
6154 if (!m)
6155 return NULL;
6156 M_PREPEND(m, l, M_DONTWAIT);
6157 if (!m)
6158 return NULL;
6159
6160 totlen = 0;
6161 for (n = m; n; n = n->m_next)
6162 totlen += n->m_len;
6163
6164 prop = mtod(m, struct sadb_prop *);
6165 memset(prop, 0, sizeof(*prop));
6166 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6167 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6168 prop->sadb_prop_replay = 32; /* XXX */
6169
6170 return m;
6171 }
6172
6173 /*
6174 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6175 * send
6176 * <base, SA, address(SD), (address(P)), x_policy,
6177 * (identity(SD),) (sensitivity,) proposal>
6178 * to KMD, and expect to receive
6179 * <base> with SADB_ACQUIRE if error occurred,
6180 * or
6181 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6182 * from KMD by PF_KEY.
6183 *
6184 * XXX x_policy is outside of RFC2367 (KAME extension).
6185 * XXX sensitivity is not supported.
6186 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6187 * see comment for key_getcomb_ipcomp().
6188 *
6189 * OUT:
6190 * 0 : succeed
6191 * others: error number
6192 */
6193 static int
6194 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6195 {
6196 struct mbuf *result = NULL, *m;
6197 #ifndef IPSEC_NONBLOCK_ACQUIRE
6198 struct secacq *newacq;
6199 #endif
6200 u_int8_t satype;
6201 int error = -1;
6202 u_int32_t seq;
6203
6204 /* sanity check */
6205 KASSERT(saidx != NULL);
6206 satype = key_proto2satype(saidx->proto);
6207 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6208
6209 #ifndef IPSEC_NONBLOCK_ACQUIRE
6210 /*
6211 * We never do anything about acquirng SA. There is anather
6212 * solution that kernel blocks to send SADB_ACQUIRE message until
6213 * getting something message from IKEd. In later case, to be
6214 * managed with ACQUIRING list.
6215 */
6216 /* Get an entry to check whether sending message or not. */
6217 mutex_enter(&key_mtx);
6218 newacq = key_getacq(saidx);
6219 if (newacq != NULL) {
6220 if (key_blockacq_count < newacq->count) {
6221 /* reset counter and do send message. */
6222 newacq->count = 0;
6223 } else {
6224 /* increment counter and do nothing. */
6225 newacq->count++;
6226 mutex_exit(&key_mtx);
6227 return 0;
6228 }
6229 } else {
6230 /* make new entry for blocking to send SADB_ACQUIRE. */
6231 newacq = key_newacq(saidx);
6232 if (newacq == NULL)
6233 return ENOBUFS;
6234
6235 /* add to acqtree */
6236 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6237 }
6238
6239 seq = newacq->seq;
6240 mutex_exit(&key_mtx);
6241 #else
6242 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6243 #endif
6244 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6245 if (!m) {
6246 error = ENOBUFS;
6247 goto fail;
6248 }
6249 result = m;
6250
6251 /* set sadb_address for saidx's. */
6252 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6253 IPSEC_ULPROTO_ANY);
6254 if (!m) {
6255 error = ENOBUFS;
6256 goto fail;
6257 }
6258 m_cat(result, m);
6259
6260 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6261 IPSEC_ULPROTO_ANY);
6262 if (!m) {
6263 error = ENOBUFS;
6264 goto fail;
6265 }
6266 m_cat(result, m);
6267
6268 /* XXX proxy address (optional) */
6269
6270 /* set sadb_x_policy */
6271 if (sp) {
6272 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6273 if (!m) {
6274 error = ENOBUFS;
6275 goto fail;
6276 }
6277 m_cat(result, m);
6278 }
6279
6280 /* XXX identity (optional) */
6281 #if 0
6282 if (idexttype && fqdn) {
6283 /* create identity extension (FQDN) */
6284 struct sadb_ident *id;
6285 int fqdnlen;
6286
6287 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6288 id = (struct sadb_ident *)p;
6289 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6290 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6291 id->sadb_ident_exttype = idexttype;
6292 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6293 memcpy(id + 1, fqdn, fqdnlen);
6294 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6295 }
6296
6297 if (idexttype) {
6298 /* create identity extension (USERFQDN) */
6299 struct sadb_ident *id;
6300 int userfqdnlen;
6301
6302 if (userfqdn) {
6303 /* +1 for terminating-NUL */
6304 userfqdnlen = strlen(userfqdn) + 1;
6305 } else
6306 userfqdnlen = 0;
6307 id = (struct sadb_ident *)p;
6308 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6309 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6310 id->sadb_ident_exttype = idexttype;
6311 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6312 /* XXX is it correct? */
6313 if (curlwp)
6314 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6315 if (userfqdn && userfqdnlen)
6316 memcpy(id + 1, userfqdn, userfqdnlen);
6317 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6318 }
6319 #endif
6320
6321 /* XXX sensitivity (optional) */
6322
6323 /* create proposal/combination extension */
6324 m = key_getprop(saidx);
6325 #if 0
6326 /*
6327 * spec conformant: always attach proposal/combination extension,
6328 * the problem is that we have no way to attach it for ipcomp,
6329 * due to the way sadb_comb is declared in RFC2367.
6330 */
6331 if (!m) {
6332 error = ENOBUFS;
6333 goto fail;
6334 }
6335 m_cat(result, m);
6336 #else
6337 /*
6338 * outside of spec; make proposal/combination extension optional.
6339 */
6340 if (m)
6341 m_cat(result, m);
6342 #endif
6343
6344 if ((result->m_flags & M_PKTHDR) == 0) {
6345 error = EINVAL;
6346 goto fail;
6347 }
6348
6349 if (result->m_len < sizeof(struct sadb_msg)) {
6350 result = m_pullup(result, sizeof(struct sadb_msg));
6351 if (result == NULL) {
6352 error = ENOBUFS;
6353 goto fail;
6354 }
6355 }
6356
6357 result->m_pkthdr.len = 0;
6358 for (m = result; m; m = m->m_next)
6359 result->m_pkthdr.len += m->m_len;
6360
6361 mtod(result, struct sadb_msg *)->sadb_msg_len =
6362 PFKEY_UNIT64(result->m_pkthdr.len);
6363
6364 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6365
6366 fail:
6367 if (result)
6368 m_freem(result);
6369 return error;
6370 }
6371
6372 #ifndef IPSEC_NONBLOCK_ACQUIRE
6373 static struct secacq *
6374 key_newacq(const struct secasindex *saidx)
6375 {
6376 struct secacq *newacq;
6377
6378 /* get new entry */
6379 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6380 if (newacq == NULL) {
6381 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6382 return NULL;
6383 }
6384
6385 /* copy secindex */
6386 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6387 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6388 newacq->created = time_uptime;
6389 newacq->count = 0;
6390
6391 return newacq;
6392 }
6393
6394 static struct secacq *
6395 key_getacq(const struct secasindex *saidx)
6396 {
6397 struct secacq *acq;
6398
6399 KASSERT(mutex_owned(&key_mtx));
6400
6401 LIST_FOREACH(acq, &acqtree, chain) {
6402 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6403 return acq;
6404 }
6405
6406 return NULL;
6407 }
6408
6409 static struct secacq *
6410 key_getacqbyseq(u_int32_t seq)
6411 {
6412 struct secacq *acq;
6413
6414 KASSERT(mutex_owned(&key_mtx));
6415
6416 LIST_FOREACH(acq, &acqtree, chain) {
6417 if (acq->seq == seq)
6418 return acq;
6419 }
6420
6421 return NULL;
6422 }
6423 #endif
6424
6425 #ifdef notyet
6426 static struct secspacq *
6427 key_newspacq(const struct secpolicyindex *spidx)
6428 {
6429 struct secspacq *acq;
6430
6431 /* get new entry */
6432 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6433 if (acq == NULL) {
6434 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6435 return NULL;
6436 }
6437
6438 /* copy secindex */
6439 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6440 acq->created = time_uptime;
6441 acq->count = 0;
6442
6443 return acq;
6444 }
6445
6446 static struct secspacq *
6447 key_getspacq(const struct secpolicyindex *spidx)
6448 {
6449 struct secspacq *acq;
6450
6451 LIST_FOREACH(acq, &spacqtree, chain) {
6452 if (key_spidx_match_exactly(spidx, &acq->spidx))
6453 return acq;
6454 }
6455
6456 return NULL;
6457 }
6458 #endif /* notyet */
6459
6460 /*
6461 * SADB_ACQUIRE processing,
6462 * in first situation, is receiving
6463 * <base>
6464 * from the ikmpd, and clear sequence of its secasvar entry.
6465 *
6466 * In second situation, is receiving
6467 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6468 * from a user land process, and return
6469 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6470 * to the socket.
6471 *
6472 * m will always be freed.
6473 */
6474 static int
6475 key_api_acquire(struct socket *so, struct mbuf *m,
6476 const struct sadb_msghdr *mhp)
6477 {
6478 const struct sockaddr *src, *dst;
6479 struct secasindex saidx;
6480 struct secashead *sah;
6481 u_int16_t proto;
6482 int error;
6483
6484 /*
6485 * Error message from KMd.
6486 * We assume that if error was occurred in IKEd, the length of PFKEY
6487 * message is equal to the size of sadb_msg structure.
6488 * We do not raise error even if error occurred in this function.
6489 */
6490 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6491 #ifndef IPSEC_NONBLOCK_ACQUIRE
6492 struct secacq *acq;
6493
6494 /* check sequence number */
6495 if (mhp->msg->sadb_msg_seq == 0) {
6496 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6497 m_freem(m);
6498 return 0;
6499 }
6500
6501 mutex_enter(&key_mtx);
6502 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6503 if (acq == NULL) {
6504 mutex_exit(&key_mtx);
6505 /*
6506 * the specified larval SA is already gone, or we got
6507 * a bogus sequence number. we can silently ignore it.
6508 */
6509 m_freem(m);
6510 return 0;
6511 }
6512
6513 /* reset acq counter in order to deletion by timehander. */
6514 acq->created = time_uptime;
6515 acq->count = 0;
6516 mutex_exit(&key_mtx);
6517 #endif
6518 m_freem(m);
6519 return 0;
6520 }
6521
6522 /*
6523 * This message is from user land.
6524 */
6525
6526 /* map satype to proto */
6527 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6528 if (proto == 0) {
6529 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6530 return key_senderror(so, m, EINVAL);
6531 }
6532
6533 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6534 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6535 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6536 /* error */
6537 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6538 return key_senderror(so, m, EINVAL);
6539 }
6540 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6541 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6542 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6543 /* error */
6544 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6545 return key_senderror(so, m, EINVAL);
6546 }
6547
6548 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6549 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6550
6551 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6552 if (error != 0)
6553 return key_senderror(so, m, EINVAL);
6554
6555 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6556 if (error != 0)
6557 return key_senderror(so, m, EINVAL);
6558
6559 /* get a SA index */
6560 sah = key_getsah(&saidx, CMP_MODE_REQID);
6561 if (sah != NULL) {
6562 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6563 return key_senderror(so, m, EEXIST);
6564 }
6565
6566 error = key_acquire(&saidx, NULL);
6567 if (error != 0) {
6568 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6569 error);
6570 return key_senderror(so, m, error);
6571 }
6572
6573 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6574 }
6575
6576 /*
6577 * SADB_REGISTER processing.
6578 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6579 * receive
6580 * <base>
6581 * from the ikmpd, and register a socket to send PF_KEY messages,
6582 * and send
6583 * <base, supported>
6584 * to KMD by PF_KEY.
6585 * If socket is detached, must free from regnode.
6586 *
6587 * m will always be freed.
6588 */
6589 static int
6590 key_api_register(struct socket *so, struct mbuf *m,
6591 const struct sadb_msghdr *mhp)
6592 {
6593 struct secreg *reg, *newreg = 0;
6594
6595 /* check for invalid register message */
6596 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6597 return key_senderror(so, m, EINVAL);
6598
6599 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6600 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6601 goto setmsg;
6602
6603 /* Allocate regnode in advance, out of mutex */
6604 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6605
6606 /* check whether existing or not */
6607 mutex_enter(&key_mtx);
6608 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6609 if (reg->so == so) {
6610 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6611 mutex_exit(&key_mtx);
6612 kmem_free(newreg, sizeof(*newreg));
6613 return key_senderror(so, m, EEXIST);
6614 }
6615 }
6616
6617 newreg->so = so;
6618 ((struct keycb *)sotorawcb(so))->kp_registered++;
6619
6620 /* add regnode to regtree. */
6621 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6622 mutex_exit(&key_mtx);
6623
6624 setmsg:
6625 {
6626 struct mbuf *n;
6627 struct sadb_supported *sup;
6628 u_int len, alen, elen;
6629 int off;
6630 int i;
6631 struct sadb_alg *alg;
6632
6633 /* create new sadb_msg to reply. */
6634 alen = 0;
6635 for (i = 1; i <= SADB_AALG_MAX; i++) {
6636 if (ah_algorithm_lookup(i))
6637 alen += sizeof(struct sadb_alg);
6638 }
6639 if (alen)
6640 alen += sizeof(struct sadb_supported);
6641 elen = 0;
6642 for (i = 1; i <= SADB_EALG_MAX; i++) {
6643 if (esp_algorithm_lookup(i))
6644 elen += sizeof(struct sadb_alg);
6645 }
6646 if (elen)
6647 elen += sizeof(struct sadb_supported);
6648
6649 len = sizeof(struct sadb_msg) + alen + elen;
6650
6651 if (len > MCLBYTES)
6652 return key_senderror(so, m, ENOBUFS);
6653
6654 MGETHDR(n, M_DONTWAIT, MT_DATA);
6655 if (len > MHLEN) {
6656 MCLGET(n, M_DONTWAIT);
6657 if ((n->m_flags & M_EXT) == 0) {
6658 m_freem(n);
6659 n = NULL;
6660 }
6661 }
6662 if (!n)
6663 return key_senderror(so, m, ENOBUFS);
6664
6665 n->m_pkthdr.len = n->m_len = len;
6666 n->m_next = NULL;
6667 off = 0;
6668
6669 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6670 n = key_fill_replymsg(n, 0);
6671 if (n == NULL)
6672 return key_senderror(so, m, ENOBUFS);
6673
6674 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6675
6676 /* for authentication algorithm */
6677 if (alen) {
6678 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6679 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6680 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6681 off += PFKEY_ALIGN8(sizeof(*sup));
6682
6683 for (i = 1; i <= SADB_AALG_MAX; i++) {
6684 const struct auth_hash *aalgo;
6685 u_int16_t minkeysize, maxkeysize;
6686
6687 aalgo = ah_algorithm_lookup(i);
6688 if (!aalgo)
6689 continue;
6690 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6691 alg->sadb_alg_id = i;
6692 alg->sadb_alg_ivlen = 0;
6693 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6694 alg->sadb_alg_minbits = _BITS(minkeysize);
6695 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6696 off += PFKEY_ALIGN8(sizeof(*alg));
6697 }
6698 }
6699
6700 /* for encryption algorithm */
6701 if (elen) {
6702 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6703 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6704 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6705 off += PFKEY_ALIGN8(sizeof(*sup));
6706
6707 for (i = 1; i <= SADB_EALG_MAX; i++) {
6708 const struct enc_xform *ealgo;
6709
6710 ealgo = esp_algorithm_lookup(i);
6711 if (!ealgo)
6712 continue;
6713 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6714 alg->sadb_alg_id = i;
6715 alg->sadb_alg_ivlen = ealgo->blocksize;
6716 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6717 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6718 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6719 }
6720 }
6721
6722 KASSERTMSG(off == len, "length inconsistency");
6723
6724 m_freem(m);
6725 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6726 }
6727 }
6728
6729 /*
6730 * free secreg entry registered.
6731 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6732 */
6733 void
6734 key_freereg(struct socket *so)
6735 {
6736 struct secreg *reg;
6737 int i;
6738
6739 KASSERT(!cpu_softintr_p());
6740 KASSERT(so != NULL);
6741
6742 /*
6743 * check whether existing or not.
6744 * check all type of SA, because there is a potential that
6745 * one socket is registered to multiple type of SA.
6746 */
6747 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6748 mutex_enter(&key_mtx);
6749 LIST_FOREACH(reg, ®tree[i], chain) {
6750 if (reg->so == so) {
6751 LIST_REMOVE(reg, chain);
6752 break;
6753 }
6754 }
6755 mutex_exit(&key_mtx);
6756 if (reg != NULL)
6757 kmem_free(reg, sizeof(*reg));
6758 }
6759
6760 return;
6761 }
6762
6763 /*
6764 * SADB_EXPIRE processing
6765 * send
6766 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6767 * to KMD by PF_KEY.
6768 * NOTE: We send only soft lifetime extension.
6769 *
6770 * OUT: 0 : succeed
6771 * others : error number
6772 */
6773 static int
6774 key_expire(struct secasvar *sav)
6775 {
6776 int s;
6777 int satype;
6778 struct mbuf *result = NULL, *m;
6779 int len;
6780 int error = -1;
6781 struct sadb_lifetime *lt;
6782
6783 /* XXX: Why do we lock ? */
6784 s = splsoftnet(); /*called from softclock()*/
6785
6786 KASSERT(sav != NULL);
6787 KASSERT(sav->sah != NULL);
6788
6789 satype = key_proto2satype(sav->sah->saidx.proto);
6790 KASSERTMSG(satype != 0, "invalid proto is passed");
6791
6792 /* set msg header */
6793 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6794 if (!m) {
6795 error = ENOBUFS;
6796 goto fail;
6797 }
6798 result = m;
6799
6800 /* create SA extension */
6801 m = key_setsadbsa(sav);
6802 if (!m) {
6803 error = ENOBUFS;
6804 goto fail;
6805 }
6806 m_cat(result, m);
6807
6808 /* create SA extension */
6809 m = key_setsadbxsa2(sav->sah->saidx.mode,
6810 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6811 if (!m) {
6812 error = ENOBUFS;
6813 goto fail;
6814 }
6815 m_cat(result, m);
6816
6817 /* create lifetime extension (current and soft) */
6818 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6819 m = key_alloc_mbuf(len);
6820 if (!m || m->m_next) { /*XXX*/
6821 if (m)
6822 m_freem(m);
6823 error = ENOBUFS;
6824 goto fail;
6825 }
6826 memset(mtod(m, void *), 0, len);
6827 lt = mtod(m, struct sadb_lifetime *);
6828 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6829 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6830 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6831 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6832 lt->sadb_lifetime_addtime =
6833 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6834 lt->sadb_lifetime_usetime =
6835 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6836 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6837 memcpy(lt, sav->lft_s, sizeof(*lt));
6838 m_cat(result, m);
6839
6840 /* set sadb_address for source */
6841 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6842 FULLMASK, IPSEC_ULPROTO_ANY);
6843 if (!m) {
6844 error = ENOBUFS;
6845 goto fail;
6846 }
6847 m_cat(result, m);
6848
6849 /* set sadb_address for destination */
6850 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6851 FULLMASK, IPSEC_ULPROTO_ANY);
6852 if (!m) {
6853 error = ENOBUFS;
6854 goto fail;
6855 }
6856 m_cat(result, m);
6857
6858 if ((result->m_flags & M_PKTHDR) == 0) {
6859 error = EINVAL;
6860 goto fail;
6861 }
6862
6863 if (result->m_len < sizeof(struct sadb_msg)) {
6864 result = m_pullup(result, sizeof(struct sadb_msg));
6865 if (result == NULL) {
6866 error = ENOBUFS;
6867 goto fail;
6868 }
6869 }
6870
6871 result->m_pkthdr.len = 0;
6872 for (m = result; m; m = m->m_next)
6873 result->m_pkthdr.len += m->m_len;
6874
6875 mtod(result, struct sadb_msg *)->sadb_msg_len =
6876 PFKEY_UNIT64(result->m_pkthdr.len);
6877
6878 splx(s);
6879 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6880
6881 fail:
6882 if (result)
6883 m_freem(result);
6884 splx(s);
6885 return error;
6886 }
6887
6888 /*
6889 * SADB_FLUSH processing
6890 * receive
6891 * <base>
6892 * from the ikmpd, and free all entries in secastree.
6893 * and send,
6894 * <base>
6895 * to the ikmpd.
6896 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6897 *
6898 * m will always be freed.
6899 */
6900 static int
6901 key_api_flush(struct socket *so, struct mbuf *m,
6902 const struct sadb_msghdr *mhp)
6903 {
6904 struct sadb_msg *newmsg;
6905 struct secashead *sah;
6906 struct secasvar *sav, *nextsav;
6907 u_int16_t proto;
6908 u_int8_t state;
6909
6910 /* map satype to proto */
6911 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6912 if (proto == 0) {
6913 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6914 return key_senderror(so, m, EINVAL);
6915 }
6916
6917 /* no SATYPE specified, i.e. flushing all SA. */
6918 LIST_FOREACH(sah, &sahtree, chain) {
6919 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6920 proto != sah->saidx.proto)
6921 continue;
6922
6923 SASTATE_ALIVE_FOREACH(state) {
6924 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6925 nextsav) {
6926 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6927 KEY_FREESAV(&sav);
6928 }
6929 }
6930
6931 sah->state = SADB_SASTATE_DEAD;
6932 }
6933
6934 if (m->m_len < sizeof(struct sadb_msg) ||
6935 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6936 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6937 return key_senderror(so, m, ENOBUFS);
6938 }
6939
6940 if (m->m_next)
6941 m_freem(m->m_next);
6942 m->m_next = NULL;
6943 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6944 newmsg = mtod(m, struct sadb_msg *);
6945 newmsg->sadb_msg_errno = 0;
6946 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6947
6948 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6949 }
6950
6951
6952 static struct mbuf *
6953 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6954 {
6955 struct secashead *sah;
6956 struct secasvar *sav;
6957 u_int16_t proto;
6958 u_int8_t satype;
6959 u_int8_t state;
6960 int cnt;
6961 struct mbuf *m, *n, *prev;
6962
6963 *lenp = 0;
6964
6965 /* map satype to proto */
6966 proto = key_satype2proto(req_satype);
6967 if (proto == 0) {
6968 *errorp = EINVAL;
6969 return (NULL);
6970 }
6971
6972 /* count sav entries to be sent to userland. */
6973 cnt = 0;
6974 LIST_FOREACH(sah, &sahtree, chain) {
6975 if (req_satype != SADB_SATYPE_UNSPEC &&
6976 proto != sah->saidx.proto)
6977 continue;
6978
6979 SASTATE_ANY_FOREACH(state) {
6980 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6981 cnt++;
6982 }
6983 }
6984 }
6985
6986 if (cnt == 0) {
6987 *errorp = ENOENT;
6988 return (NULL);
6989 }
6990
6991 /* send this to the userland, one at a time. */
6992 m = NULL;
6993 prev = m;
6994 LIST_FOREACH(sah, &sahtree, chain) {
6995 if (req_satype != SADB_SATYPE_UNSPEC &&
6996 proto != sah->saidx.proto)
6997 continue;
6998
6999 /* map proto to satype */
7000 satype = key_proto2satype(sah->saidx.proto);
7001 if (satype == 0) {
7002 m_freem(m);
7003 *errorp = EINVAL;
7004 return (NULL);
7005 }
7006
7007 SASTATE_ANY_FOREACH(state) {
7008 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7009 n = key_setdumpsa(sav, SADB_DUMP, satype,
7010 --cnt, pid);
7011 if (!n) {
7012 m_freem(m);
7013 *errorp = ENOBUFS;
7014 return (NULL);
7015 }
7016
7017 if (!m)
7018 m = n;
7019 else
7020 prev->m_nextpkt = n;
7021 prev = n;
7022 }
7023 }
7024 }
7025
7026 if (!m) {
7027 *errorp = EINVAL;
7028 return (NULL);
7029 }
7030
7031 if ((m->m_flags & M_PKTHDR) != 0) {
7032 m->m_pkthdr.len = 0;
7033 for (n = m; n; n = n->m_next)
7034 m->m_pkthdr.len += n->m_len;
7035 }
7036
7037 *errorp = 0;
7038 return (m);
7039 }
7040
7041 /*
7042 * SADB_DUMP processing
7043 * dump all entries including status of DEAD in SAD.
7044 * receive
7045 * <base>
7046 * from the ikmpd, and dump all secasvar leaves
7047 * and send,
7048 * <base> .....
7049 * to the ikmpd.
7050 *
7051 * m will always be freed.
7052 */
7053 static int
7054 key_api_dump(struct socket *so, struct mbuf *m0,
7055 const struct sadb_msghdr *mhp)
7056 {
7057 u_int16_t proto;
7058 u_int8_t satype;
7059 struct mbuf *n;
7060 int s;
7061 int error, len, ok;
7062
7063 /* map satype to proto */
7064 satype = mhp->msg->sadb_msg_satype;
7065 proto = key_satype2proto(satype);
7066 if (proto == 0) {
7067 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7068 return key_senderror(so, m0, EINVAL);
7069 }
7070
7071 /*
7072 * If the requestor has insufficient socket-buffer space
7073 * for the entire chain, nobody gets any response to the DUMP.
7074 * XXX For now, only the requestor ever gets anything.
7075 * Moreover, if the requestor has any space at all, they receive
7076 * the entire chain, otherwise the request is refused with ENOBUFS.
7077 */
7078 if (sbspace(&so->so_rcv) <= 0) {
7079 return key_senderror(so, m0, ENOBUFS);
7080 }
7081
7082 s = splsoftnet();
7083 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7084 splx(s);
7085
7086 if (n == NULL) {
7087 return key_senderror(so, m0, ENOENT);
7088 }
7089 {
7090 uint64_t *ps = PFKEY_STAT_GETREF();
7091 ps[PFKEY_STAT_IN_TOTAL]++;
7092 ps[PFKEY_STAT_IN_BYTES] += len;
7093 PFKEY_STAT_PUTREF();
7094 }
7095
7096 /*
7097 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7098 * The requestor receives either the entire chain, or an
7099 * error message with ENOBUFS.
7100 *
7101 * sbappendaddrchain() takes the chain of entries, one
7102 * packet-record per SPD entry, prepends the key_src sockaddr
7103 * to each packet-record, links the sockaddr mbufs into a new
7104 * list of records, then appends the entire resulting
7105 * list to the requesting socket.
7106 */
7107 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7108 SB_PRIO_ONESHOT_OVERFLOW);
7109
7110 if (!ok) {
7111 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7112 m_freem(n);
7113 return key_senderror(so, m0, ENOBUFS);
7114 }
7115
7116 m_freem(m0);
7117 return 0;
7118 }
7119
7120 /*
7121 * SADB_X_PROMISC processing
7122 *
7123 * m will always be freed.
7124 */
7125 static int
7126 key_api_promisc(struct socket *so, struct mbuf *m,
7127 const struct sadb_msghdr *mhp)
7128 {
7129 int olen;
7130
7131 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7132
7133 if (olen < sizeof(struct sadb_msg)) {
7134 #if 1
7135 return key_senderror(so, m, EINVAL);
7136 #else
7137 m_freem(m);
7138 return 0;
7139 #endif
7140 } else if (olen == sizeof(struct sadb_msg)) {
7141 /* enable/disable promisc mode */
7142 struct keycb *kp = (struct keycb *)sotorawcb(so);
7143 if (kp == NULL)
7144 return key_senderror(so, m, EINVAL);
7145 mhp->msg->sadb_msg_errno = 0;
7146 switch (mhp->msg->sadb_msg_satype) {
7147 case 0:
7148 case 1:
7149 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7150 break;
7151 default:
7152 return key_senderror(so, m, EINVAL);
7153 }
7154
7155 /* send the original message back to everyone */
7156 mhp->msg->sadb_msg_errno = 0;
7157 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7158 } else {
7159 /* send packet as is */
7160
7161 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7162
7163 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7164 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7165 }
7166 }
7167
7168 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7169 const struct sadb_msghdr *) = {
7170 NULL, /* SADB_RESERVED */
7171 key_api_getspi, /* SADB_GETSPI */
7172 key_api_update, /* SADB_UPDATE */
7173 key_api_add, /* SADB_ADD */
7174 key_api_delete, /* SADB_DELETE */
7175 key_api_get, /* SADB_GET */
7176 key_api_acquire, /* SADB_ACQUIRE */
7177 key_api_register, /* SADB_REGISTER */
7178 NULL, /* SADB_EXPIRE */
7179 key_api_flush, /* SADB_FLUSH */
7180 key_api_dump, /* SADB_DUMP */
7181 key_api_promisc, /* SADB_X_PROMISC */
7182 NULL, /* SADB_X_PCHANGE */
7183 key_api_spdadd, /* SADB_X_SPDUPDATE */
7184 key_api_spdadd, /* SADB_X_SPDADD */
7185 key_api_spddelete, /* SADB_X_SPDDELETE */
7186 key_api_spdget, /* SADB_X_SPDGET */
7187 NULL, /* SADB_X_SPDACQUIRE */
7188 key_api_spddump, /* SADB_X_SPDDUMP */
7189 key_api_spdflush, /* SADB_X_SPDFLUSH */
7190 key_api_spdadd, /* SADB_X_SPDSETIDX */
7191 NULL, /* SADB_X_SPDEXPIRE */
7192 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7193 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7194 };
7195
7196 /*
7197 * parse sadb_msg buffer to process PFKEYv2,
7198 * and create a data to response if needed.
7199 * I think to be dealed with mbuf directly.
7200 * IN:
7201 * msgp : pointer to pointer to a received buffer pulluped.
7202 * This is rewrited to response.
7203 * so : pointer to socket.
7204 * OUT:
7205 * length for buffer to send to user process.
7206 */
7207 int
7208 key_parse(struct mbuf *m, struct socket *so)
7209 {
7210 struct sadb_msg *msg;
7211 struct sadb_msghdr mh;
7212 u_int orglen;
7213 int error;
7214
7215 KASSERT(m != NULL);
7216 KASSERT(so != NULL);
7217
7218 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7219 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7220 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7221 kdebug_sadb(msg);
7222 }
7223 #endif
7224
7225 if (m->m_len < sizeof(struct sadb_msg)) {
7226 m = m_pullup(m, sizeof(struct sadb_msg));
7227 if (!m)
7228 return ENOBUFS;
7229 }
7230 msg = mtod(m, struct sadb_msg *);
7231 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7232
7233 if ((m->m_flags & M_PKTHDR) == 0 ||
7234 m->m_pkthdr.len != orglen) {
7235 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7236 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7237 error = EINVAL;
7238 goto senderror;
7239 }
7240
7241 if (msg->sadb_msg_version != PF_KEY_V2) {
7242 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7243 msg->sadb_msg_version);
7244 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7245 error = EINVAL;
7246 goto senderror;
7247 }
7248
7249 if (msg->sadb_msg_type > SADB_MAX) {
7250 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7251 msg->sadb_msg_type);
7252 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7253 error = EINVAL;
7254 goto senderror;
7255 }
7256
7257 /* for old-fashioned code - should be nuked */
7258 if (m->m_pkthdr.len > MCLBYTES) {
7259 m_freem(m);
7260 return ENOBUFS;
7261 }
7262 if (m->m_next) {
7263 struct mbuf *n;
7264
7265 MGETHDR(n, M_DONTWAIT, MT_DATA);
7266 if (n && m->m_pkthdr.len > MHLEN) {
7267 MCLGET(n, M_DONTWAIT);
7268 if ((n->m_flags & M_EXT) == 0) {
7269 m_free(n);
7270 n = NULL;
7271 }
7272 }
7273 if (!n) {
7274 m_freem(m);
7275 return ENOBUFS;
7276 }
7277 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7278 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7279 n->m_next = NULL;
7280 m_freem(m);
7281 m = n;
7282 }
7283
7284 /* align the mbuf chain so that extensions are in contiguous region. */
7285 error = key_align(m, &mh);
7286 if (error)
7287 return error;
7288
7289 if (m->m_next) { /*XXX*/
7290 m_freem(m);
7291 return ENOBUFS;
7292 }
7293
7294 msg = mh.msg;
7295
7296 /* check SA type */
7297 switch (msg->sadb_msg_satype) {
7298 case SADB_SATYPE_UNSPEC:
7299 switch (msg->sadb_msg_type) {
7300 case SADB_GETSPI:
7301 case SADB_UPDATE:
7302 case SADB_ADD:
7303 case SADB_DELETE:
7304 case SADB_GET:
7305 case SADB_ACQUIRE:
7306 case SADB_EXPIRE:
7307 IPSECLOG(LOG_DEBUG,
7308 "must specify satype when msg type=%u.\n",
7309 msg->sadb_msg_type);
7310 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7311 error = EINVAL;
7312 goto senderror;
7313 }
7314 break;
7315 case SADB_SATYPE_AH:
7316 case SADB_SATYPE_ESP:
7317 case SADB_X_SATYPE_IPCOMP:
7318 case SADB_X_SATYPE_TCPSIGNATURE:
7319 switch (msg->sadb_msg_type) {
7320 case SADB_X_SPDADD:
7321 case SADB_X_SPDDELETE:
7322 case SADB_X_SPDGET:
7323 case SADB_X_SPDDUMP:
7324 case SADB_X_SPDFLUSH:
7325 case SADB_X_SPDSETIDX:
7326 case SADB_X_SPDUPDATE:
7327 case SADB_X_SPDDELETE2:
7328 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7329 msg->sadb_msg_type);
7330 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7331 error = EINVAL;
7332 goto senderror;
7333 }
7334 break;
7335 case SADB_SATYPE_RSVP:
7336 case SADB_SATYPE_OSPFV2:
7337 case SADB_SATYPE_RIPV2:
7338 case SADB_SATYPE_MIP:
7339 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7340 msg->sadb_msg_satype);
7341 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7342 error = EOPNOTSUPP;
7343 goto senderror;
7344 case 1: /* XXX: What does it do? */
7345 if (msg->sadb_msg_type == SADB_X_PROMISC)
7346 break;
7347 /*FALLTHROUGH*/
7348 default:
7349 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7350 msg->sadb_msg_satype);
7351 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7352 error = EINVAL;
7353 goto senderror;
7354 }
7355
7356 /* check field of upper layer protocol and address family */
7357 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7358 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7359 struct sadb_address *src0, *dst0;
7360 u_int plen;
7361
7362 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7363 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7364
7365 /* check upper layer protocol */
7366 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7367 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7368 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7369 error = EINVAL;
7370 goto senderror;
7371 }
7372
7373 /* check family */
7374 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7375 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7376 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7377 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7378 error = EINVAL;
7379 goto senderror;
7380 }
7381 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7382 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7383 IPSECLOG(LOG_DEBUG,
7384 "address struct size mismatched.\n");
7385 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7386 error = EINVAL;
7387 goto senderror;
7388 }
7389
7390 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7391 case AF_INET:
7392 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7393 sizeof(struct sockaddr_in)) {
7394 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7395 error = EINVAL;
7396 goto senderror;
7397 }
7398 break;
7399 case AF_INET6:
7400 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7401 sizeof(struct sockaddr_in6)) {
7402 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7403 error = EINVAL;
7404 goto senderror;
7405 }
7406 break;
7407 default:
7408 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7409 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7410 error = EAFNOSUPPORT;
7411 goto senderror;
7412 }
7413
7414 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7415 case AF_INET:
7416 plen = sizeof(struct in_addr) << 3;
7417 break;
7418 case AF_INET6:
7419 plen = sizeof(struct in6_addr) << 3;
7420 break;
7421 default:
7422 plen = 0; /*fool gcc*/
7423 break;
7424 }
7425
7426 /* check max prefix length */
7427 if (src0->sadb_address_prefixlen > plen ||
7428 dst0->sadb_address_prefixlen > plen) {
7429 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7430 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7431 error = EINVAL;
7432 goto senderror;
7433 }
7434
7435 /*
7436 * prefixlen == 0 is valid because there can be a case when
7437 * all addresses are matched.
7438 */
7439 }
7440
7441 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7442 key_api_typesw[msg->sadb_msg_type] == NULL) {
7443 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7444 error = EINVAL;
7445 goto senderror;
7446 }
7447
7448 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7449
7450 senderror:
7451 return key_senderror(so, m, error);
7452 }
7453
7454 static int
7455 key_senderror(struct socket *so, struct mbuf *m, int code)
7456 {
7457 struct sadb_msg *msg;
7458
7459 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7460
7461 msg = mtod(m, struct sadb_msg *);
7462 msg->sadb_msg_errno = code;
7463 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7464 }
7465
7466 /*
7467 * set the pointer to each header into message buffer.
7468 * m will be freed on error.
7469 * XXX larger-than-MCLBYTES extension?
7470 */
7471 static int
7472 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7473 {
7474 struct mbuf *n;
7475 struct sadb_ext *ext;
7476 size_t off, end;
7477 int extlen;
7478 int toff;
7479
7480 KASSERT(m != NULL);
7481 KASSERT(mhp != NULL);
7482 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7483
7484 /* initialize */
7485 memset(mhp, 0, sizeof(*mhp));
7486
7487 mhp->msg = mtod(m, struct sadb_msg *);
7488 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7489
7490 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7491 extlen = end; /*just in case extlen is not updated*/
7492 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7493 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7494 if (!n) {
7495 /* m is already freed */
7496 return ENOBUFS;
7497 }
7498 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7499
7500 /* set pointer */
7501 switch (ext->sadb_ext_type) {
7502 case SADB_EXT_SA:
7503 case SADB_EXT_ADDRESS_SRC:
7504 case SADB_EXT_ADDRESS_DST:
7505 case SADB_EXT_ADDRESS_PROXY:
7506 case SADB_EXT_LIFETIME_CURRENT:
7507 case SADB_EXT_LIFETIME_HARD:
7508 case SADB_EXT_LIFETIME_SOFT:
7509 case SADB_EXT_KEY_AUTH:
7510 case SADB_EXT_KEY_ENCRYPT:
7511 case SADB_EXT_IDENTITY_SRC:
7512 case SADB_EXT_IDENTITY_DST:
7513 case SADB_EXT_SENSITIVITY:
7514 case SADB_EXT_PROPOSAL:
7515 case SADB_EXT_SUPPORTED_AUTH:
7516 case SADB_EXT_SUPPORTED_ENCRYPT:
7517 case SADB_EXT_SPIRANGE:
7518 case SADB_X_EXT_POLICY:
7519 case SADB_X_EXT_SA2:
7520 case SADB_X_EXT_NAT_T_TYPE:
7521 case SADB_X_EXT_NAT_T_SPORT:
7522 case SADB_X_EXT_NAT_T_DPORT:
7523 case SADB_X_EXT_NAT_T_OAI:
7524 case SADB_X_EXT_NAT_T_OAR:
7525 case SADB_X_EXT_NAT_T_FRAG:
7526 /* duplicate check */
7527 /*
7528 * XXX Are there duplication payloads of either
7529 * KEY_AUTH or KEY_ENCRYPT ?
7530 */
7531 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7532 IPSECLOG(LOG_DEBUG,
7533 "duplicate ext_type %u is passed.\n",
7534 ext->sadb_ext_type);
7535 m_freem(m);
7536 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7537 return EINVAL;
7538 }
7539 break;
7540 default:
7541 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7542 ext->sadb_ext_type);
7543 m_freem(m);
7544 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7545 return EINVAL;
7546 }
7547
7548 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7549
7550 if (key_validate_ext(ext, extlen)) {
7551 m_freem(m);
7552 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7553 return EINVAL;
7554 }
7555
7556 n = m_pulldown(m, off, extlen, &toff);
7557 if (!n) {
7558 /* m is already freed */
7559 return ENOBUFS;
7560 }
7561 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7562
7563 mhp->ext[ext->sadb_ext_type] = ext;
7564 mhp->extoff[ext->sadb_ext_type] = off;
7565 mhp->extlen[ext->sadb_ext_type] = extlen;
7566 }
7567
7568 if (off != end) {
7569 m_freem(m);
7570 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7571 return EINVAL;
7572 }
7573
7574 return 0;
7575 }
7576
7577 static int
7578 key_validate_ext(const struct sadb_ext *ext, int len)
7579 {
7580 const struct sockaddr *sa;
7581 enum { NONE, ADDR } checktype = NONE;
7582 int baselen = 0;
7583 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7584
7585 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7586 return EINVAL;
7587
7588 /* if it does not match minimum/maximum length, bail */
7589 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7590 ext->sadb_ext_type >= __arraycount(maxsize))
7591 return EINVAL;
7592 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7593 return EINVAL;
7594 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7595 return EINVAL;
7596
7597 /* more checks based on sadb_ext_type XXX need more */
7598 switch (ext->sadb_ext_type) {
7599 case SADB_EXT_ADDRESS_SRC:
7600 case SADB_EXT_ADDRESS_DST:
7601 case SADB_EXT_ADDRESS_PROXY:
7602 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7603 checktype = ADDR;
7604 break;
7605 case SADB_EXT_IDENTITY_SRC:
7606 case SADB_EXT_IDENTITY_DST:
7607 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7608 SADB_X_IDENTTYPE_ADDR) {
7609 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7610 checktype = ADDR;
7611 } else
7612 checktype = NONE;
7613 break;
7614 default:
7615 checktype = NONE;
7616 break;
7617 }
7618
7619 switch (checktype) {
7620 case NONE:
7621 break;
7622 case ADDR:
7623 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7624 if (len < baselen + sal)
7625 return EINVAL;
7626 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7627 return EINVAL;
7628 break;
7629 }
7630
7631 return 0;
7632 }
7633
7634 static int
7635 key_do_init(void)
7636 {
7637 int i, error;
7638
7639 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7640
7641 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7642
7643 callout_init(&key_timehandler_ch, 0);
7644 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7645 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7646 if (error != 0)
7647 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7648
7649 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7650 LIST_INIT(&sptree[i]);
7651 }
7652
7653 LIST_INIT(&sahtree);
7654
7655 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7656 LIST_INIT(®tree[i]);
7657 }
7658
7659 #ifndef IPSEC_NONBLOCK_ACQUIRE
7660 LIST_INIT(&acqtree);
7661 #endif
7662 #ifdef notyet
7663 LIST_INIT(&spacqtree);
7664 #endif
7665
7666 /* system default */
7667 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7668 ip4_def_policy.refcnt++; /*never reclaim this*/
7669
7670 #ifdef INET6
7671 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7672 ip6_def_policy.refcnt++; /*never reclaim this*/
7673 #endif
7674
7675 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7676
7677 /* initialize key statistics */
7678 keystat.getspi_count = 1;
7679
7680 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7681
7682 return (0);
7683 }
7684
7685 void
7686 key_init(void)
7687 {
7688 static ONCE_DECL(key_init_once);
7689
7690 sysctl_net_keyv2_setup(NULL);
7691 sysctl_net_key_compat_setup(NULL);
7692
7693 RUN_ONCE(&key_init_once, key_do_init);
7694 }
7695
7696 /*
7697 * XXX: maybe This function is called after INBOUND IPsec processing.
7698 *
7699 * Special check for tunnel-mode packets.
7700 * We must make some checks for consistency between inner and outer IP header.
7701 *
7702 * xxx more checks to be provided
7703 */
7704 int
7705 key_checktunnelsanity(
7706 struct secasvar *sav,
7707 u_int family,
7708 void *src,
7709 void *dst
7710 )
7711 {
7712
7713 KASSERT(sav->sah != NULL);
7714
7715 /* XXX: check inner IP header */
7716
7717 return 1;
7718 }
7719
7720 #if 0
7721 #define hostnamelen strlen(hostname)
7722
7723 /*
7724 * Get FQDN for the host.
7725 * If the administrator configured hostname (by hostname(1)) without
7726 * domain name, returns nothing.
7727 */
7728 static const char *
7729 key_getfqdn(void)
7730 {
7731 int i;
7732 int hasdot;
7733 static char fqdn[MAXHOSTNAMELEN + 1];
7734
7735 if (!hostnamelen)
7736 return NULL;
7737
7738 /* check if it comes with domain name. */
7739 hasdot = 0;
7740 for (i = 0; i < hostnamelen; i++) {
7741 if (hostname[i] == '.')
7742 hasdot++;
7743 }
7744 if (!hasdot)
7745 return NULL;
7746
7747 /* NOTE: hostname may not be NUL-terminated. */
7748 memset(fqdn, 0, sizeof(fqdn));
7749 memcpy(fqdn, hostname, hostnamelen);
7750 fqdn[hostnamelen] = '\0';
7751 return fqdn;
7752 }
7753
7754 /*
7755 * get username@FQDN for the host/user.
7756 */
7757 static const char *
7758 key_getuserfqdn(void)
7759 {
7760 const char *host;
7761 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7762 struct proc *p = curproc;
7763 char *q;
7764
7765 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7766 return NULL;
7767 if (!(host = key_getfqdn()))
7768 return NULL;
7769
7770 /* NOTE: s_login may not be-NUL terminated. */
7771 memset(userfqdn, 0, sizeof(userfqdn));
7772 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7773 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7774 q = userfqdn + strlen(userfqdn);
7775 *q++ = '@';
7776 memcpy(q, host, strlen(host));
7777 q += strlen(host);
7778 *q++ = '\0';
7779
7780 return userfqdn;
7781 }
7782 #endif
7783
7784 /* record data transfer on SA, and update timestamps */
7785 void
7786 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7787 {
7788
7789 KASSERT(sav != NULL);
7790 KASSERT(m != NULL);
7791 if (!sav->lft_c)
7792 return;
7793
7794 /*
7795 * XXX Currently, there is a difference of bytes size
7796 * between inbound and outbound processing.
7797 */
7798 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7799 /* to check bytes lifetime is done in key_timehandler(). */
7800
7801 /*
7802 * We use the number of packets as the unit of
7803 * sadb_lifetime_allocations. We increment the variable
7804 * whenever {esp,ah}_{in,out}put is called.
7805 */
7806 sav->lft_c->sadb_lifetime_allocations++;
7807 /* XXX check for expires? */
7808
7809 /*
7810 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7811 * in seconds. HARD and SOFT lifetime are measured by the time
7812 * difference (again in seconds) from sadb_lifetime_usetime.
7813 *
7814 * usetime
7815 * v expire expire
7816 * -----+-----+--------+---> t
7817 * <--------------> HARD
7818 * <-----> SOFT
7819 */
7820 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7821 /* XXX check for expires? */
7822
7823 return;
7824 }
7825
7826 /* dumb version */
7827 void
7828 key_sa_routechange(struct sockaddr *dst)
7829 {
7830 struct secashead *sah;
7831 struct route *ro;
7832 const struct sockaddr *sa;
7833
7834 LIST_FOREACH(sah, &sahtree, chain) {
7835 ro = &sah->sa_route;
7836 sa = rtcache_getdst(ro);
7837 if (sa != NULL && dst->sa_len == sa->sa_len &&
7838 memcmp(dst, sa, dst->sa_len) == 0)
7839 rtcache_free(ro);
7840 }
7841
7842 return;
7843 }
7844
7845 static void
7846 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7847 {
7848
7849 KASSERT(sav != NULL);
7850
7851 if (sav->state == state)
7852 return;
7853
7854 KASSERT(__LIST_CHAINED(sav));
7855 LIST_REMOVE(sav, chain);
7856
7857 sav->state = state;
7858 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7859 }
7860
7861 /* XXX too much? */
7862 static struct mbuf *
7863 key_alloc_mbuf(int l)
7864 {
7865 struct mbuf *m = NULL, *n;
7866 int len, t;
7867
7868 len = l;
7869 while (len > 0) {
7870 MGET(n, M_DONTWAIT, MT_DATA);
7871 if (n && len > MLEN)
7872 MCLGET(n, M_DONTWAIT);
7873 if (!n) {
7874 m_freem(m);
7875 return NULL;
7876 }
7877
7878 n->m_next = NULL;
7879 n->m_len = 0;
7880 n->m_len = M_TRAILINGSPACE(n);
7881 /* use the bottom of mbuf, hoping we can prepend afterwards */
7882 if (n->m_len > len) {
7883 t = (n->m_len - len) & ~(sizeof(long) - 1);
7884 n->m_data += t;
7885 n->m_len = len;
7886 }
7887
7888 len -= n->m_len;
7889
7890 if (m)
7891 m_cat(m, n);
7892 else
7893 m = n;
7894 }
7895
7896 return m;
7897 }
7898
7899 static struct mbuf *
7900 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7901 {
7902 struct secashead *sah;
7903 struct secasvar *sav;
7904 u_int16_t proto;
7905 u_int8_t satype;
7906 u_int8_t state;
7907 int cnt;
7908 struct mbuf *m, *n;
7909
7910 /* map satype to proto */
7911 proto = key_satype2proto(req_satype);
7912 if (proto == 0) {
7913 *errorp = EINVAL;
7914 return (NULL);
7915 }
7916
7917 /* count sav entries to be sent to the userland. */
7918 cnt = 0;
7919 LIST_FOREACH(sah, &sahtree, chain) {
7920 if (req_satype != SADB_SATYPE_UNSPEC &&
7921 proto != sah->saidx.proto)
7922 continue;
7923
7924 SASTATE_ANY_FOREACH(state) {
7925 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7926 cnt++;
7927 }
7928 }
7929 }
7930
7931 if (cnt == 0) {
7932 *errorp = ENOENT;
7933 return (NULL);
7934 }
7935
7936 /* send this to the userland, one at a time. */
7937 m = NULL;
7938 LIST_FOREACH(sah, &sahtree, chain) {
7939 if (req_satype != SADB_SATYPE_UNSPEC &&
7940 proto != sah->saidx.proto)
7941 continue;
7942
7943 /* map proto to satype */
7944 satype = key_proto2satype(sah->saidx.proto);
7945 if (satype == 0) {
7946 m_freem(m);
7947 *errorp = EINVAL;
7948 return (NULL);
7949 }
7950
7951 SASTATE_ANY_FOREACH(state) {
7952 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7953 n = key_setdumpsa(sav, SADB_DUMP, satype,
7954 --cnt, pid);
7955 if (!n) {
7956 m_freem(m);
7957 *errorp = ENOBUFS;
7958 return (NULL);
7959 }
7960
7961 if (!m)
7962 m = n;
7963 else
7964 m_cat(m, n);
7965 }
7966 }
7967 }
7968
7969 if (!m) {
7970 *errorp = EINVAL;
7971 return (NULL);
7972 }
7973
7974 if ((m->m_flags & M_PKTHDR) != 0) {
7975 m->m_pkthdr.len = 0;
7976 for (n = m; n; n = n->m_next)
7977 m->m_pkthdr.len += n->m_len;
7978 }
7979
7980 *errorp = 0;
7981 return (m);
7982 }
7983
7984 static struct mbuf *
7985 key_setspddump(int *errorp, pid_t pid)
7986 {
7987 struct secpolicy *sp;
7988 int cnt;
7989 u_int dir;
7990 struct mbuf *m, *n;
7991
7992 /* search SPD entry and get buffer size. */
7993 cnt = 0;
7994 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7995 LIST_FOREACH(sp, &sptree[dir], chain) {
7996 cnt++;
7997 }
7998 }
7999
8000 if (cnt == 0) {
8001 *errorp = ENOENT;
8002 return (NULL);
8003 }
8004
8005 m = NULL;
8006 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8007 LIST_FOREACH(sp, &sptree[dir], chain) {
8008 --cnt;
8009 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8010
8011 if (!n) {
8012 *errorp = ENOBUFS;
8013 m_freem(m);
8014 return (NULL);
8015 }
8016 if (!m)
8017 m = n;
8018 else {
8019 m->m_pkthdr.len += n->m_pkthdr.len;
8020 m_cat(m, n);
8021 }
8022 }
8023 }
8024
8025 *errorp = 0;
8026 return (m);
8027 }
8028
8029 int
8030 key_get_used(void) {
8031 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8032 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8033 }
8034
8035 void
8036 key_update_used(void)
8037 {
8038 switch (ipsec_enabled) {
8039 default:
8040 case 0:
8041 #ifdef notyet
8042 /* XXX: racy */
8043 ipsec_used = 0;
8044 #endif
8045 break;
8046 case 1:
8047 #ifndef notyet
8048 /* XXX: racy */
8049 if (!ipsec_used)
8050 #endif
8051 ipsec_used = key_get_used();
8052 break;
8053 case 2:
8054 ipsec_used = 1;
8055 break;
8056 }
8057 }
8058
8059 static int
8060 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8061 {
8062 struct mbuf *m, *n;
8063 int err2 = 0;
8064 char *p, *ep;
8065 size_t len;
8066 int s, error;
8067
8068 if (newp)
8069 return (EPERM);
8070 if (namelen != 1)
8071 return (EINVAL);
8072
8073 s = splsoftnet();
8074 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8075 splx(s);
8076 if (!m)
8077 return (error);
8078 if (!oldp)
8079 *oldlenp = m->m_pkthdr.len;
8080 else {
8081 p = oldp;
8082 if (*oldlenp < m->m_pkthdr.len) {
8083 err2 = ENOMEM;
8084 ep = p + *oldlenp;
8085 } else {
8086 *oldlenp = m->m_pkthdr.len;
8087 ep = p + m->m_pkthdr.len;
8088 }
8089 for (n = m; n; n = n->m_next) {
8090 len = (ep - p < n->m_len) ?
8091 ep - p : n->m_len;
8092 error = copyout(mtod(n, const void *), p, len);
8093 p += len;
8094 if (error)
8095 break;
8096 }
8097 if (error == 0)
8098 error = err2;
8099 }
8100 m_freem(m);
8101
8102 return (error);
8103 }
8104
8105 static int
8106 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8107 {
8108 struct mbuf *m, *n;
8109 int err2 = 0;
8110 char *p, *ep;
8111 size_t len;
8112 int s, error;
8113
8114 if (newp)
8115 return (EPERM);
8116 if (namelen != 0)
8117 return (EINVAL);
8118
8119 s = splsoftnet();
8120 m = key_setspddump(&error, l->l_proc->p_pid);
8121 splx(s);
8122 if (!m)
8123 return (error);
8124 if (!oldp)
8125 *oldlenp = m->m_pkthdr.len;
8126 else {
8127 p = oldp;
8128 if (*oldlenp < m->m_pkthdr.len) {
8129 err2 = ENOMEM;
8130 ep = p + *oldlenp;
8131 } else {
8132 *oldlenp = m->m_pkthdr.len;
8133 ep = p + m->m_pkthdr.len;
8134 }
8135 for (n = m; n; n = n->m_next) {
8136 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8137 error = copyout(mtod(n, const void *), p, len);
8138 p += len;
8139 if (error)
8140 break;
8141 }
8142 if (error == 0)
8143 error = err2;
8144 }
8145 m_freem(m);
8146
8147 return (error);
8148 }
8149
8150 /*
8151 * Create sysctl tree for native IPSEC key knobs, originally
8152 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8153 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8154 * and in any case the part of our sysctl namespace used for dumping the
8155 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8156 * namespace, for API reasons.
8157 *
8158 * Pending a consensus on the right way to fix this, add a level of
8159 * indirection in how we number the `native' IPSEC key nodes;
8160 * and (as requested by Andrew Brown) move registration of the
8161 * KAME-compatible names to a separate function.
8162 */
8163 #if 0
8164 # define IPSEC_PFKEY PF_KEY_V2
8165 # define IPSEC_PFKEY_NAME "keyv2"
8166 #else
8167 # define IPSEC_PFKEY PF_KEY
8168 # define IPSEC_PFKEY_NAME "key"
8169 #endif
8170
8171 static int
8172 sysctl_net_key_stats(SYSCTLFN_ARGS)
8173 {
8174
8175 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8176 }
8177
8178 static void
8179 sysctl_net_keyv2_setup(struct sysctllog **clog)
8180 {
8181
8182 sysctl_createv(clog, 0, NULL, NULL,
8183 CTLFLAG_PERMANENT,
8184 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8185 NULL, 0, NULL, 0,
8186 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8187
8188 sysctl_createv(clog, 0, NULL, NULL,
8189 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8190 CTLTYPE_INT, "debug", NULL,
8191 NULL, 0, &key_debug_level, 0,
8192 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8193 sysctl_createv(clog, 0, NULL, NULL,
8194 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8195 CTLTYPE_INT, "spi_try", NULL,
8196 NULL, 0, &key_spi_trycnt, 0,
8197 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8198 sysctl_createv(clog, 0, NULL, NULL,
8199 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8200 CTLTYPE_INT, "spi_min_value", NULL,
8201 NULL, 0, &key_spi_minval, 0,
8202 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8203 sysctl_createv(clog, 0, NULL, NULL,
8204 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8205 CTLTYPE_INT, "spi_max_value", NULL,
8206 NULL, 0, &key_spi_maxval, 0,
8207 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8208 sysctl_createv(clog, 0, NULL, NULL,
8209 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8210 CTLTYPE_INT, "random_int", NULL,
8211 NULL, 0, &key_int_random, 0,
8212 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8213 sysctl_createv(clog, 0, NULL, NULL,
8214 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8215 CTLTYPE_INT, "larval_lifetime", NULL,
8216 NULL, 0, &key_larval_lifetime, 0,
8217 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8218 sysctl_createv(clog, 0, NULL, NULL,
8219 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8220 CTLTYPE_INT, "blockacq_count", NULL,
8221 NULL, 0, &key_blockacq_count, 0,
8222 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8223 sysctl_createv(clog, 0, NULL, NULL,
8224 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8225 CTLTYPE_INT, "blockacq_lifetime", NULL,
8226 NULL, 0, &key_blockacq_lifetime, 0,
8227 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8228 sysctl_createv(clog, 0, NULL, NULL,
8229 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8230 CTLTYPE_INT, "esp_keymin", NULL,
8231 NULL, 0, &ipsec_esp_keymin, 0,
8232 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8233 sysctl_createv(clog, 0, NULL, NULL,
8234 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8235 CTLTYPE_INT, "prefered_oldsa", NULL,
8236 NULL, 0, &key_prefered_oldsa, 0,
8237 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8238 sysctl_createv(clog, 0, NULL, NULL,
8239 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8240 CTLTYPE_INT, "esp_auth", NULL,
8241 NULL, 0, &ipsec_esp_auth, 0,
8242 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8243 sysctl_createv(clog, 0, NULL, NULL,
8244 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8245 CTLTYPE_INT, "ah_keymin", NULL,
8246 NULL, 0, &ipsec_ah_keymin, 0,
8247 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8248 sysctl_createv(clog, 0, NULL, NULL,
8249 CTLFLAG_PERMANENT,
8250 CTLTYPE_STRUCT, "stats",
8251 SYSCTL_DESCR("PF_KEY statistics"),
8252 sysctl_net_key_stats, 0, NULL, 0,
8253 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8254 }
8255
8256 /*
8257 * Register sysctl names used by setkey(8). For historical reasons,
8258 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8259 * for both IPSEC and KAME IPSEC.
8260 */
8261 static void
8262 sysctl_net_key_compat_setup(struct sysctllog **clog)
8263 {
8264
8265 sysctl_createv(clog, 0, NULL, NULL,
8266 CTLFLAG_PERMANENT,
8267 CTLTYPE_NODE, "key", NULL,
8268 NULL, 0, NULL, 0,
8269 CTL_NET, PF_KEY, CTL_EOL);
8270
8271 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8272 sysctl_createv(clog, 0, NULL, NULL,
8273 CTLFLAG_PERMANENT,
8274 CTLTYPE_STRUCT, "dumpsa", NULL,
8275 sysctl_net_key_dumpsa, 0, NULL, 0,
8276 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8277 sysctl_createv(clog, 0, NULL, NULL,
8278 CTLFLAG_PERMANENT,
8279 CTLTYPE_STRUCT, "dumpsp", NULL,
8280 sysctl_net_key_dumpsp, 0, NULL, 0,
8281 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8282 }
8283