key.c revision 1.174 1 /* $NetBSD: key.c,v 1.174 2017/07/11 04:55:39 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.174 2017/07/11 04:55:39 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/errno.h>
58 #include <sys/proc.h>
59 #include <sys/queue.h>
60 #include <sys/syslog.h>
61 #include <sys/once.h>
62 #include <sys/cprng.h>
63 #include <sys/psref.h>
64 #include <sys/lwp.h>
65 #include <sys/workqueue.h>
66 #include <sys/kmem.h>
67 #include <sys/cpu.h>
68 #include <sys/atomic.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipcomp.h>
108
109
110 #include <net/net_osdep.h>
111
112 #define FULLMASK 0xff
113 #define _BITS(bytes) ((bytes) << 3)
114
115 #define PORT_NONE 0
116 #define PORT_LOOSE 1
117 #define PORT_STRICT 2
118
119 percpu_t *pfkeystat_percpu;
120
121 /*
122 * Note on SA reference counting:
123 * - SAs that are not in DEAD state will have (total external reference + 1)
124 * following value in reference count field. they cannot be freed and are
125 * referenced from SA header.
126 * - SAs that are in DEAD state will have (total external reference)
127 * in reference count field. they are ready to be freed. reference from
128 * SA header will be removed in key_delsav(), when the reference count
129 * field hits 0 (= no external reference other than from SA header.
130 */
131
132 u_int32_t key_debug_level = 0;
133 static u_int key_spi_trycnt = 1000;
134 static u_int32_t key_spi_minval = 0x100;
135 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
136 static u_int32_t policy_id = 0;
137 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
138 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
139 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
140 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
141 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
142
143 static u_int32_t acq_seq = 0;
144
145 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
146 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 /* registed list */
149 #ifndef IPSEC_NONBLOCK_ACQUIRE
150 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
151 #endif
152 #ifdef notyet
153 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
154 #endif
155
156 /*
157 * Protect regtree, acqtree and items stored in the lists.
158 */
159 static kmutex_t key_mtx __cacheline_aligned;
160
161 /* search order for SAs */
162 /*
163 * This order is important because we must select the oldest SA
164 * for outbound processing. For inbound, This is not important.
165 */
166 static const u_int saorder_state_valid_prefer_old[] = {
167 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
168 };
169 static const u_int saorder_state_valid_prefer_new[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 };
172
173 static const u_int saorder_state_alive[] = {
174 /* except DEAD */
175 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
176 };
177 static const u_int saorder_state_any[] = {
178 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
179 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
180 };
181
182 #define SASTATE_ALIVE_FOREACH(s) \
183 for (int _i = 0; \
184 _i < __arraycount(saorder_state_alive) ? \
185 (s) = saorder_state_alive[_i], true : false; \
186 _i++)
187 #define SASTATE_ANY_FOREACH(s) \
188 for (int _i = 0; \
189 _i < __arraycount(saorder_state_any) ? \
190 (s) = saorder_state_any[_i], true : false; \
191 _i++)
192
193 static const int minsize[] = {
194 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
195 sizeof(struct sadb_sa), /* SADB_EXT_SA */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
202 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
203 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
205 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
206 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
207 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
209 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
210 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
211 0, /* SADB_X_EXT_KMPRIVATE */
212 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
213 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
214 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
215 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
217 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
218 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221 static const int maxsize[] = {
222 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
223 sizeof(struct sadb_sa), /* SADB_EXT_SA */
224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
225 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
227 0, /* SADB_EXT_ADDRESS_SRC */
228 0, /* SADB_EXT_ADDRESS_DST */
229 0, /* SADB_EXT_ADDRESS_PROXY */
230 0, /* SADB_EXT_KEY_AUTH */
231 0, /* SADB_EXT_KEY_ENCRYPT */
232 0, /* SADB_EXT_IDENTITY_SRC */
233 0, /* SADB_EXT_IDENTITY_DST */
234 0, /* SADB_EXT_SENSITIVITY */
235 0, /* SADB_EXT_PROPOSAL */
236 0, /* SADB_EXT_SUPPORTED_AUTH */
237 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
238 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
239 0, /* SADB_X_EXT_KMPRIVATE */
240 0, /* SADB_X_EXT_POLICY */
241 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
242 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
243 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
244 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
245 0, /* SADB_X_EXT_NAT_T_OAI */
246 0, /* SADB_X_EXT_NAT_T_OAR */
247 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
248 };
249
250 static int ipsec_esp_keymin = 256;
251 static int ipsec_esp_auth = 0;
252 static int ipsec_ah_keymin = 128;
253
254 #ifdef SYSCTL_DECL
255 SYSCTL_DECL(_net_key);
256 #endif
257
258 #ifdef SYSCTL_INT
259 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
260 &key_debug_level, 0, "");
261
262 /* max count of trial for the decision of spi value */
263 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
264 &key_spi_trycnt, 0, "");
265
266 /* minimum spi value to allocate automatically. */
267 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
268 &key_spi_minval, 0, "");
269
270 /* maximun spi value to allocate automatically. */
271 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
272 &key_spi_maxval, 0, "");
273
274 /* interval to initialize randseed */
275 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
276 &key_int_random, 0, "");
277
278 /* lifetime for larval SA */
279 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
280 &key_larval_lifetime, 0, "");
281
282 /* counter for blocking to send SADB_ACQUIRE to IKEd */
283 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
284 &key_blockacq_count, 0, "");
285
286 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
287 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
288 &key_blockacq_lifetime, 0, "");
289
290 /* ESP auth */
291 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
292 &ipsec_esp_auth, 0, "");
293
294 /* minimum ESP key length */
295 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
296 &ipsec_esp_keymin, 0, "");
297
298 /* minimum AH key length */
299 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
300 &ipsec_ah_keymin, 0, "");
301
302 /* perfered old SA rather than new SA */
303 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
304 &key_prefered_oldsa, 0, "");
305 #endif /* SYSCTL_INT */
306
307 #define __LIST_CHAINED(elm) \
308 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
309 #define LIST_INSERT_TAIL(head, elm, type, field) \
310 do {\
311 struct type *curelm = LIST_FIRST(head); \
312 if (curelm == NULL) {\
313 LIST_INSERT_HEAD(head, elm, field); \
314 } else { \
315 while (LIST_NEXT(curelm, field)) \
316 curelm = LIST_NEXT(curelm, field);\
317 LIST_INSERT_AFTER(curelm, elm, field);\
318 }\
319 } while (0)
320
321 #define KEY_CHKSASTATE(head, sav) \
322 /* do */ { \
323 if ((head) != (sav)) { \
324 IPSECLOG(LOG_DEBUG, \
325 "state mismatched (TREE=%d SA=%d)\n", \
326 (head), (sav)); \
327 continue; \
328 } \
329 } /* while (0) */
330
331 #define KEY_CHKSPDIR(head, sp) \
332 do { \
333 if ((head) != (sp)) { \
334 IPSECLOG(LOG_DEBUG, \
335 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
336 (head), (sp)); \
337 } \
338 } while (0)
339
340 /*
341 * set parameters into secasindex buffer.
342 * Must allocate secasindex buffer before calling this function.
343 */
344 static int
345 key_setsecasidx(int, int, int, const struct sockaddr *,
346 const struct sockaddr *, struct secasindex *);
347
348 /* key statistics */
349 struct _keystat {
350 u_long getspi_count; /* the avarage of count to try to get new SPI */
351 } keystat;
352
353 struct sadb_msghdr {
354 struct sadb_msg *msg;
355 struct sadb_ext *ext[SADB_EXT_MAX + 1];
356 int extoff[SADB_EXT_MAX + 1];
357 int extlen[SADB_EXT_MAX + 1];
358 };
359
360 static void
361 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
362
363 static const struct sockaddr *
364 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
365 {
366
367 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
368 }
369
370 static struct mbuf *
371 key_fill_replymsg(struct mbuf *m, int seq)
372 {
373 struct sadb_msg *msg;
374
375 if (m->m_len < sizeof(*msg)) {
376 m = m_pullup(m, sizeof(*msg));
377 if (m == NULL)
378 return NULL;
379 }
380 msg = mtod(m, struct sadb_msg *);
381 msg->sadb_msg_errno = 0;
382 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
383 if (seq != 0)
384 msg->sadb_msg_seq = seq;
385
386 return m;
387 }
388
389 static struct secasvar *key_allocsa_policy (const struct secasindex *);
390 #if 0
391 static void key_freeso(struct socket *);
392 static void key_freesp_so(struct secpolicy **);
393 #endif
394 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
395 static void key_delsp (struct secpolicy *);
396 static struct secpolicy *key_getsp (const struct secpolicyindex *);
397 static struct secpolicy *key_getspbyid (u_int32_t);
398 static u_int16_t key_newreqid (void);
399 static struct mbuf *key_gather_mbuf (struct mbuf *,
400 const struct sadb_msghdr *, int, int, ...);
401 static int key_api_spdadd(struct socket *, struct mbuf *,
402 const struct sadb_msghdr *);
403 static u_int32_t key_getnewspid (void);
404 static int key_api_spddelete(struct socket *, struct mbuf *,
405 const struct sadb_msghdr *);
406 static int key_api_spddelete2(struct socket *, struct mbuf *,
407 const struct sadb_msghdr *);
408 static int key_api_spdget(struct socket *, struct mbuf *,
409 const struct sadb_msghdr *);
410 static int key_api_spdflush(struct socket *, struct mbuf *,
411 const struct sadb_msghdr *);
412 static int key_api_spddump(struct socket *, struct mbuf *,
413 const struct sadb_msghdr *);
414 static struct mbuf * key_setspddump (int *errorp, pid_t);
415 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
416 static int key_api_nat_map(struct socket *, struct mbuf *,
417 const struct sadb_msghdr *);
418 static struct mbuf *key_setdumpsp (struct secpolicy *,
419 u_int8_t, u_int32_t, pid_t);
420 static u_int key_getspreqmsglen (const struct secpolicy *);
421 static int key_spdexpire (struct secpolicy *);
422 static struct secashead *key_newsah (const struct secasindex *);
423 static void key_delsah (struct secashead *);
424 static struct secasvar *key_newsav(struct mbuf *,
425 const struct sadb_msghdr *, int *, const char*, int);
426 #define KEY_NEWSAV(m, sadb, e) \
427 key_newsav(m, sadb, e, __func__, __LINE__)
428 static void key_delsav (struct secasvar *);
429 static struct secashead *key_getsah(const struct secasindex *, int);
430 static bool key_checkspidup(const struct secasindex *, u_int32_t);
431 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
432 static int key_setsaval (struct secasvar *, struct mbuf *,
433 const struct sadb_msghdr *);
434 static void key_freesaval(struct secasvar *);
435 static int key_init_xform(struct secasvar *);
436 static void key_clear_xform(struct secasvar *);
437 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
438 u_int8_t, u_int32_t, u_int32_t);
439 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
440 static struct mbuf *key_setsadbxtype (u_int16_t);
441 static struct mbuf *key_setsadbxfrag (u_int16_t);
442 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
443 static int key_checksalen (const union sockaddr_union *);
444 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
445 u_int32_t, pid_t, u_int16_t);
446 static struct mbuf *key_setsadbsa (struct secasvar *);
447 static struct mbuf *key_setsadbaddr (u_int16_t,
448 const struct sockaddr *, u_int8_t, u_int16_t);
449 #if 0
450 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
451 int, u_int64_t);
452 #endif
453 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
454 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
455 u_int32_t);
456 static void *key_newbuf (const void *, u_int);
457 #ifdef INET6
458 static int key_ismyaddr6 (const struct sockaddr_in6 *);
459 #endif
460
461 static void sysctl_net_keyv2_setup(struct sysctllog **);
462 static void sysctl_net_key_compat_setup(struct sysctllog **);
463
464 /* flags for key_saidx_match() */
465 #define CMP_HEAD 1 /* protocol, addresses. */
466 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
467 #define CMP_REQID 3 /* additionally HEAD, reaid. */
468 #define CMP_EXACTLY 4 /* all elements. */
469 static int key_saidx_match(const struct secasindex *,
470 const struct secasindex *, int);
471
472 static int key_sockaddr_match(const struct sockaddr *,
473 const struct sockaddr *, int);
474 static int key_bb_match_withmask(const void *, const void *, u_int);
475 static u_int16_t key_satype2proto (u_int8_t);
476 static u_int8_t key_proto2satype (u_int16_t);
477
478 static int key_spidx_match_exactly(const struct secpolicyindex *,
479 const struct secpolicyindex *);
480 static int key_spidx_match_withmask(const struct secpolicyindex *,
481 const struct secpolicyindex *);
482
483 static int key_api_getspi(struct socket *, struct mbuf *,
484 const struct sadb_msghdr *);
485 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
486 const struct secasindex *);
487 static int key_handle_natt_info (struct secasvar *,
488 const struct sadb_msghdr *);
489 static int key_set_natt_ports (union sockaddr_union *,
490 union sockaddr_union *,
491 const struct sadb_msghdr *);
492 static int key_api_update(struct socket *, struct mbuf *,
493 const struct sadb_msghdr *);
494 #ifdef IPSEC_DOSEQCHECK
495 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
496 #endif
497 static int key_api_add(struct socket *, struct mbuf *,
498 const struct sadb_msghdr *);
499 static int key_setident (struct secashead *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
502 const struct sadb_msghdr *);
503 static int key_api_delete(struct socket *, struct mbuf *,
504 const struct sadb_msghdr *);
505 static int key_api_get(struct socket *, struct mbuf *,
506 const struct sadb_msghdr *);
507
508 static void key_getcomb_setlifetime (struct sadb_comb *);
509 static struct mbuf *key_getcomb_esp (void);
510 static struct mbuf *key_getcomb_ah (void);
511 static struct mbuf *key_getcomb_ipcomp (void);
512 static struct mbuf *key_getprop (const struct secasindex *);
513
514 static int key_acquire (const struct secasindex *, struct secpolicy *);
515 #ifndef IPSEC_NONBLOCK_ACQUIRE
516 static struct secacq *key_newacq (const struct secasindex *);
517 static struct secacq *key_getacq (const struct secasindex *);
518 static struct secacq *key_getacqbyseq (u_int32_t);
519 #endif
520 #ifdef notyet
521 static struct secspacq *key_newspacq (const struct secpolicyindex *);
522 static struct secspacq *key_getspacq (const struct secpolicyindex *);
523 #endif
524 static int key_api_acquire(struct socket *, struct mbuf *,
525 const struct sadb_msghdr *);
526 static int key_api_register(struct socket *, struct mbuf *,
527 const struct sadb_msghdr *);
528 static int key_expire (struct secasvar *);
529 static int key_api_flush(struct socket *, struct mbuf *,
530 const struct sadb_msghdr *);
531 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
532 int *lenp, pid_t pid);
533 static int key_api_dump(struct socket *, struct mbuf *,
534 const struct sadb_msghdr *);
535 static int key_api_promisc(struct socket *, struct mbuf *,
536 const struct sadb_msghdr *);
537 static int key_senderror (struct socket *, struct mbuf *, int);
538 static int key_validate_ext (const struct sadb_ext *, int);
539 static int key_align (struct mbuf *, struct sadb_msghdr *);
540 #if 0
541 static const char *key_getfqdn (void);
542 static const char *key_getuserfqdn (void);
543 #endif
544 static void key_sa_chgstate (struct secasvar *, u_int8_t);
545 static inline void key_sp_dead (struct secpolicy *);
546 static void key_sp_unlink (struct secpolicy *sp);
547
548 static struct mbuf *key_alloc_mbuf (int);
549
550 static void key_timehandler(void *);
551 static void key_timehandler_work(struct work *, void *);
552 static struct callout key_timehandler_ch;
553 static struct workqueue *key_timehandler_wq;
554 static struct work key_timehandler_wk;
555
556 #ifdef IPSEC_REF_DEBUG
557 #define REFLOG(label, p, where, tag) \
558 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
559 (where), (tag), (p)->refcnt, (p))
560 #else
561 #define REFLOG(label, p, where, tag) do {} while (0)
562 #endif
563
564 #define SA_ADDREF(p) do { \
565 atomic_inc_uint(&(p)->refcnt); \
566 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
567 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
568 } while (0)
569 #define SA_ADDREF2(p, where, tag) do { \
570 atomic_inc_uint(&(p)->refcnt); \
571 REFLOG("SA_ADDREF", (p), (where), (tag)); \
572 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
573 } while (0)
574 #define SA_DELREF(p) do { \
575 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
576 atomic_dec_uint(&(p)->refcnt); \
577 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
578 } while (0)
579 #define SA_DELREF2(p, nv, where, tag) do { \
580 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
581 nv = atomic_dec_uint_nv(&(p)->refcnt); \
582 REFLOG("SA_DELREF", (p), (where), (tag)); \
583 } while (0)
584
585 #define SP_ADDREF(p) do { \
586 atomic_inc_uint(&(p)->refcnt); \
587 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
588 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
589 } while (0)
590 #define SP_ADDREF2(p, where, tag) do { \
591 atomic_inc_uint(&(p)->refcnt); \
592 REFLOG("SP_ADDREF", (p), (where), (tag)); \
593 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
594 } while (0)
595 #define SP_DELREF(p) do { \
596 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
597 atomic_dec_uint(&(p)->refcnt); \
598 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
599 } while (0)
600 #define SP_DELREF2(p, nv, where, tag) do { \
601 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
602 nv = atomic_dec_uint_nv(&(p)->refcnt); \
603 REFLOG("SP_DELREF", (p), (where), (tag)); \
604 } while (0)
605
606
607 static inline void
608 key_sp_dead(struct secpolicy *sp)
609 {
610
611 /* mark the SP dead */
612 sp->state = IPSEC_SPSTATE_DEAD;
613 }
614
615 static void
616 key_sp_unlink(struct secpolicy *sp)
617 {
618
619 /* remove from SP index */
620 KASSERT(__LIST_CHAINED(sp));
621 LIST_REMOVE(sp, chain);
622 /* Release refcount held just for being on chain */
623 KEY_FREESP(&sp);
624 }
625
626
627 /*
628 * Return 0 when there are known to be no SP's for the specified
629 * direction. Otherwise return 1. This is used by IPsec code
630 * to optimize performance.
631 */
632 int
633 key_havesp(u_int dir)
634 {
635 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
636 !LIST_EMPTY(&sptree[dir]) : 1);
637 }
638
639 /* %%% IPsec policy management */
640 /*
641 * allocating a SP for OUTBOUND or INBOUND packet.
642 * Must call key_freesp() later.
643 * OUT: NULL: not found
644 * others: found and return the pointer.
645 */
646 struct secpolicy *
647 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
648 u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
652
653 KASSERT(spidx != NULL);
654 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
655
656 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
657
658 /* get a SP entry */
659 s = splsoftnet(); /*called from softclock()*/
660 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
661 printf("*** objects\n");
662 kdebug_secpolicyindex(spidx);
663 }
664
665 LIST_FOREACH(sp, &sptree[dir], chain) {
666 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
667 printf("*** in SPD\n");
668 kdebug_secpolicyindex(&sp->spidx);
669 }
670
671 if (sp->state == IPSEC_SPSTATE_DEAD)
672 continue;
673 if (key_spidx_match_withmask(&sp->spidx, spidx))
674 goto found;
675 }
676 sp = NULL;
677 found:
678 if (sp) {
679 /* sanity check */
680 KEY_CHKSPDIR(sp->spidx.dir, dir);
681
682 /* found a SPD entry */
683 sp->lastused = time_uptime;
684 SP_ADDREF2(sp, where, tag);
685 }
686 splx(s);
687
688 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
689 "DP return SP:%p (ID=%u) refcnt %u\n",
690 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
691 return sp;
692 }
693
694 /*
695 * allocating a SP for OUTBOUND or INBOUND packet.
696 * Must call key_freesp() later.
697 * OUT: NULL: not found
698 * others: found and return the pointer.
699 */
700 struct secpolicy *
701 key_lookup_sp(u_int32_t spi,
702 const union sockaddr_union *dst,
703 u_int8_t proto,
704 u_int dir,
705 const char* where, int tag)
706 {
707 struct secpolicy *sp;
708 int s;
709
710 KASSERT(dst != NULL);
711 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
712
713 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
714
715 /* get a SP entry */
716 s = splsoftnet(); /*called from softclock()*/
717 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
718 printf("*** objects\n");
719 printf("spi %u proto %u dir %u\n", spi, proto, dir);
720 kdebug_sockaddr(&dst->sa);
721 }
722
723 LIST_FOREACH(sp, &sptree[dir], chain) {
724 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
725 printf("*** in SPD\n");
726 kdebug_secpolicyindex(&sp->spidx);
727 }
728
729 if (sp->state == IPSEC_SPSTATE_DEAD)
730 continue;
731 /* compare simple values, then dst address */
732 if (sp->spidx.ul_proto != proto)
733 continue;
734 /* NB: spi's must exist and match */
735 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
736 continue;
737 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
738 goto found;
739 }
740 sp = NULL;
741 found:
742 if (sp) {
743 /* sanity check */
744 KEY_CHKSPDIR(sp->spidx.dir, dir);
745
746 /* found a SPD entry */
747 sp->lastused = time_uptime;
748 SP_ADDREF2(sp, where, tag);
749 }
750 splx(s);
751
752 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
753 "DP return SP:%p (ID=%u) refcnt %u\n",
754 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
755 return sp;
756 }
757
758 /*
759 * return a policy that matches this particular inbound packet.
760 * XXX slow
761 */
762 struct secpolicy *
763 key_gettunnel(const struct sockaddr *osrc,
764 const struct sockaddr *odst,
765 const struct sockaddr *isrc,
766 const struct sockaddr *idst,
767 const char* where, int tag)
768 {
769 struct secpolicy *sp;
770 const int dir = IPSEC_DIR_INBOUND;
771 int s;
772 struct ipsecrequest *r1, *r2, *p;
773 struct secpolicyindex spidx;
774
775 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
776
777 if (isrc->sa_family != idst->sa_family) {
778 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
779 isrc->sa_family, idst->sa_family);
780 sp = NULL;
781 goto done;
782 }
783
784 s = splsoftnet(); /*called from softclock()*/
785 LIST_FOREACH(sp, &sptree[dir], chain) {
786 if (sp->state == IPSEC_SPSTATE_DEAD)
787 continue;
788
789 r1 = r2 = NULL;
790 for (p = sp->req; p; p = p->next) {
791 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
792 continue;
793
794 r1 = r2;
795 r2 = p;
796
797 if (!r1) {
798 /* here we look at address matches only */
799 spidx = sp->spidx;
800 if (isrc->sa_len > sizeof(spidx.src) ||
801 idst->sa_len > sizeof(spidx.dst))
802 continue;
803 memcpy(&spidx.src, isrc, isrc->sa_len);
804 memcpy(&spidx.dst, idst, idst->sa_len);
805 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
806 continue;
807 } else {
808 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
809 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
810 continue;
811 }
812
813 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
814 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
815 continue;
816
817 goto found;
818 }
819 }
820 sp = NULL;
821 found:
822 if (sp) {
823 sp->lastused = time_uptime;
824 SP_ADDREF2(sp, where, tag);
825 }
826 splx(s);
827 done:
828 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
829 "DP return SP:%p (ID=%u) refcnt %u\n",
830 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
831 return sp;
832 }
833
834 /*
835 * allocating an SA entry for an *OUTBOUND* packet.
836 * checking each request entries in SP, and acquire an SA if need.
837 * OUT: 0: there are valid requests.
838 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
839 */
840 int
841 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
842 {
843 u_int level;
844 int error;
845 struct secasvar *oldsav = NULL;
846
847 KASSERT(isr != NULL);
848 KASSERT(saidx != NULL);
849 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
850 saidx->mode == IPSEC_MODE_TUNNEL,
851 "unexpected policy %u", saidx->mode);
852
853 /* get current level */
854 level = ipsec_get_reqlevel(isr);
855
856 /*
857 * XXX guard against protocol callbacks from the crypto
858 * thread as they reference ipsecrequest.sav which we
859 * temporarily null out below. Need to rethink how we
860 * handle bundled SA's in the callback thread.
861 */
862 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
863 #if 0
864 /*
865 * We do allocate new SA only if the state of SA in the holder is
866 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
867 */
868 if (isr->sav != NULL) {
869 if (isr->sav->sah == NULL)
870 panic("key_checkrequest: sah is null");
871 if (isr->sav == (struct secasvar *)LIST_FIRST(
872 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
873 KEY_FREESAV(&isr->sav);
874 isr->sav = NULL;
875 }
876 }
877 #else
878 /*
879 * we free any SA stashed in the IPsec request because a different
880 * SA may be involved each time this request is checked, either
881 * because new SAs are being configured, or this request is
882 * associated with an unconnected datagram socket, or this request
883 * is associated with a system default policy.
884 *
885 * The operation may have negative impact to performance. We may
886 * want to check cached SA carefully, rather than picking new SA
887 * every time.
888 */
889 if (isr->sav != NULL)
890 oldsav = isr->sav;
891 #endif
892
893 /*
894 * new SA allocation if no SA found.
895 * key_allocsa_policy should allocate the oldest SA available.
896 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
897 */
898 isr->sav = key_allocsa_policy(saidx);
899 membar_producer();
900 if (oldsav != NULL)
901 KEY_FREESAV(&oldsav);
902
903 /* When there is SA. */
904 if (isr->sav != NULL) {
905 if (isr->sav->state != SADB_SASTATE_MATURE &&
906 isr->sav->state != SADB_SASTATE_DYING)
907 return EINVAL;
908 return 0;
909 }
910
911 /* there is no SA */
912 error = key_acquire(saidx, isr->sp);
913 if (error != 0) {
914 /* XXX What should I do ? */
915 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
916 error);
917 return error;
918 }
919
920 if (level != IPSEC_LEVEL_REQUIRE) {
921 /* XXX sigh, the interface to this routine is botched */
922 KASSERTMSG(isr->sav == NULL, "unexpected SA");
923 return 0;
924 } else {
925 return ENOENT;
926 }
927 }
928
929 /*
930 * allocating a SA for policy entry from SAD.
931 * NOTE: searching SAD of aliving state.
932 * OUT: NULL: not found.
933 * others: found and return the pointer.
934 */
935 static struct secasvar *
936 key_allocsa_policy(const struct secasindex *saidx)
937 {
938 struct secashead *sah;
939 struct secasvar *sav;
940 u_int stateidx, state;
941 const u_int *saorder_state_valid;
942 int arraysize;
943
944 sah = key_getsah(saidx, CMP_MODE_REQID);
945 if (sah == NULL)
946 return NULL;
947
948 /*
949 * search a valid state list for outbound packet.
950 * This search order is important.
951 */
952 if (key_prefered_oldsa) {
953 saorder_state_valid = saorder_state_valid_prefer_old;
954 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
955 } else {
956 saorder_state_valid = saorder_state_valid_prefer_new;
957 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
958 }
959
960 /* search valid state */
961 for (stateidx = 0;
962 stateidx < arraysize;
963 stateidx++) {
964
965 state = saorder_state_valid[stateidx];
966
967 sav = key_do_allocsa_policy(sah, state);
968 if (sav != NULL)
969 return sav;
970 }
971
972 return NULL;
973 }
974
975 /*
976 * searching SAD with direction, protocol, mode and state.
977 * called by key_allocsa_policy().
978 * OUT:
979 * NULL : not found
980 * others : found, pointer to a SA.
981 */
982 static struct secasvar *
983 key_do_allocsa_policy(struct secashead *sah, u_int state)
984 {
985 struct secasvar *sav, *candidate, *d;
986
987 /* initilize */
988 candidate = NULL;
989
990 LIST_FOREACH(sav, &sah->savtree[state], chain) {
991 /* sanity check */
992 KEY_CHKSASTATE(sav->state, state);
993
994 /* initialize */
995 if (candidate == NULL) {
996 candidate = sav;
997 continue;
998 }
999
1000 /* Which SA is the better ? */
1001
1002 /* sanity check 2 */
1003 KASSERT(candidate->lft_c != NULL);
1004 KASSERT(sav->lft_c != NULL);
1005
1006 /* What the best method is to compare ? */
1007 if (key_prefered_oldsa) {
1008 if (candidate->lft_c->sadb_lifetime_addtime >
1009 sav->lft_c->sadb_lifetime_addtime) {
1010 candidate = sav;
1011 }
1012 continue;
1013 /*NOTREACHED*/
1014 }
1015
1016 /* prefered new sa rather than old sa */
1017 if (candidate->lft_c->sadb_lifetime_addtime <
1018 sav->lft_c->sadb_lifetime_addtime) {
1019 d = candidate;
1020 candidate = sav;
1021 } else
1022 d = sav;
1023
1024 /*
1025 * prepared to delete the SA when there is more
1026 * suitable candidate and the lifetime of the SA is not
1027 * permanent.
1028 */
1029 if (d->lft_c->sadb_lifetime_addtime != 0) {
1030 struct mbuf *m, *result = 0;
1031 uint8_t satype;
1032
1033 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1034
1035 KASSERT(d->refcnt > 0);
1036
1037 satype = key_proto2satype(d->sah->saidx.proto);
1038 if (satype == 0)
1039 goto msgfail;
1040
1041 m = key_setsadbmsg(SADB_DELETE, 0,
1042 satype, 0, 0, d->refcnt - 1);
1043 if (!m)
1044 goto msgfail;
1045 result = m;
1046
1047 /* set sadb_address for saidx's. */
1048 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1049 &d->sah->saidx.src.sa,
1050 d->sah->saidx.src.sa.sa_len << 3,
1051 IPSEC_ULPROTO_ANY);
1052 if (!m)
1053 goto msgfail;
1054 m_cat(result, m);
1055
1056 /* set sadb_address for saidx's. */
1057 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1058 &d->sah->saidx.src.sa,
1059 d->sah->saidx.src.sa.sa_len << 3,
1060 IPSEC_ULPROTO_ANY);
1061 if (!m)
1062 goto msgfail;
1063 m_cat(result, m);
1064
1065 /* create SA extension */
1066 m = key_setsadbsa(d);
1067 if (!m)
1068 goto msgfail;
1069 m_cat(result, m);
1070
1071 if (result->m_len < sizeof(struct sadb_msg)) {
1072 result = m_pullup(result,
1073 sizeof(struct sadb_msg));
1074 if (result == NULL)
1075 goto msgfail;
1076 }
1077
1078 result->m_pkthdr.len = 0;
1079 for (m = result; m; m = m->m_next)
1080 result->m_pkthdr.len += m->m_len;
1081 mtod(result, struct sadb_msg *)->sadb_msg_len =
1082 PFKEY_UNIT64(result->m_pkthdr.len);
1083
1084 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1085 result = 0;
1086 msgfail:
1087 if (result)
1088 m_freem(result);
1089 KEY_FREESAV(&d);
1090 }
1091 }
1092
1093 if (candidate) {
1094 SA_ADDREF(candidate);
1095 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1096 "DP cause refcnt++:%d SA:%p\n",
1097 candidate->refcnt, candidate);
1098 }
1099 return candidate;
1100 }
1101
1102 /*
1103 * allocating a usable SA entry for a *INBOUND* packet.
1104 * Must call key_freesav() later.
1105 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1106 * NULL: not found, or error occurred.
1107 *
1108 * In the comparison, no source address is used--for RFC2401 conformance.
1109 * To quote, from section 4.1:
1110 * A security association is uniquely identified by a triple consisting
1111 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1112 * security protocol (AH or ESP) identifier.
1113 * Note that, however, we do need to keep source address in IPsec SA.
1114 * IKE specification and PF_KEY specification do assume that we
1115 * keep source address in IPsec SA. We see a tricky situation here.
1116 *
1117 * sport and dport are used for NAT-T. network order is always used.
1118 */
1119 struct secasvar *
1120 key_lookup_sa(
1121 const union sockaddr_union *dst,
1122 u_int proto,
1123 u_int32_t spi,
1124 u_int16_t sport,
1125 u_int16_t dport,
1126 const char* where, int tag)
1127 {
1128 struct secashead *sah;
1129 struct secasvar *sav;
1130 u_int stateidx, state;
1131 const u_int *saorder_state_valid;
1132 int arraysize, chkport;
1133 int s;
1134
1135 int must_check_spi = 1;
1136 int must_check_alg = 0;
1137 u_int16_t cpi = 0;
1138 u_int8_t algo = 0;
1139
1140 if ((sport != 0) && (dport != 0))
1141 chkport = PORT_STRICT;
1142 else
1143 chkport = PORT_NONE;
1144
1145 KASSERT(dst != NULL);
1146
1147 /*
1148 * XXX IPCOMP case
1149 * We use cpi to define spi here. In the case where cpi <=
1150 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1151 * the real spi. In this case, don't check the spi but check the
1152 * algorithm
1153 */
1154
1155 if (proto == IPPROTO_IPCOMP) {
1156 u_int32_t tmp;
1157 tmp = ntohl(spi);
1158 cpi = (u_int16_t) tmp;
1159 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1160 algo = (u_int8_t) cpi;
1161 must_check_spi = 0;
1162 must_check_alg = 1;
1163 }
1164 }
1165 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1166 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1167 where, tag, must_check_spi, must_check_alg);
1168
1169
1170 /*
1171 * searching SAD.
1172 * XXX: to be checked internal IP header somewhere. Also when
1173 * IPsec tunnel packet is received. But ESP tunnel mode is
1174 * encrypted so we can't check internal IP header.
1175 */
1176 s = splsoftnet(); /*called from softclock()*/
1177 if (key_prefered_oldsa) {
1178 saorder_state_valid = saorder_state_valid_prefer_old;
1179 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1180 } else {
1181 saorder_state_valid = saorder_state_valid_prefer_new;
1182 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1183 }
1184 LIST_FOREACH(sah, &sahtree, chain) {
1185 /* search valid state */
1186 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1187 state = saorder_state_valid[stateidx];
1188 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1189 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1190 "try match spi %#x, %#x\n",
1191 ntohl(spi), ntohl(sav->spi));
1192 /* sanity check */
1193 KEY_CHKSASTATE(sav->state, state);
1194 /* do not return entries w/ unusable state */
1195 if (!SADB_SASTATE_USABLE_P(sav)) {
1196 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1197 "bad state %d\n", sav->state);
1198 continue;
1199 }
1200 if (proto != sav->sah->saidx.proto) {
1201 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1202 "proto fail %d != %d\n",
1203 proto, sav->sah->saidx.proto);
1204 continue;
1205 }
1206 if (must_check_spi && spi != sav->spi) {
1207 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1208 "spi fail %#x != %#x\n",
1209 ntohl(spi), ntohl(sav->spi));
1210 continue;
1211 }
1212 /* XXX only on the ipcomp case */
1213 if (must_check_alg && algo != sav->alg_comp) {
1214 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1215 "algo fail %d != %d\n",
1216 algo, sav->alg_comp);
1217 continue;
1218 }
1219
1220 #if 0 /* don't check src */
1221 /* Fix port in src->sa */
1222
1223 /* check src address */
1224 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1225 continue;
1226 #endif
1227 /* fix port of dst address XXX*/
1228 key_porttosaddr(__UNCONST(dst), dport);
1229 /* check dst address */
1230 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1231 continue;
1232 SA_ADDREF2(sav, where, tag);
1233 goto done;
1234 }
1235 }
1236 }
1237 sav = NULL;
1238 done:
1239 splx(s);
1240
1241 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1242 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1243 return sav;
1244 }
1245
1246 void
1247 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1248 {
1249
1250 SP_ADDREF2(sp, where, tag);
1251
1252 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1253 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1254 sp, sp->id, where, tag, sp->refcnt);
1255 }
1256
1257 /*
1258 * Must be called after calling key_lookup_sp*().
1259 * For both the packet without socket and key_freeso().
1260 */
1261 void
1262 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1263 {
1264 struct secpolicy *sp = *spp;
1265 unsigned int nv;
1266
1267 KASSERT(sp != NULL);
1268
1269 SP_DELREF2(sp, nv, where, tag);
1270
1271 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1272 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1273 sp, sp->id, where, tag, nv);
1274
1275 if (nv == 0) {
1276 *spp = NULL;
1277 key_delsp(sp);
1278 }
1279 }
1280
1281 #if 0
1282 /*
1283 * Must be called after calling key_lookup_sp*().
1284 * For the packet with socket.
1285 */
1286 static void
1287 key_freeso(struct socket *so)
1288 {
1289 /* sanity check */
1290 KASSERT(so != NULL);
1291
1292 switch (so->so_proto->pr_domain->dom_family) {
1293 #ifdef INET
1294 case PF_INET:
1295 {
1296 struct inpcb *pcb = sotoinpcb(so);
1297
1298 /* Does it have a PCB ? */
1299 if (pcb == NULL)
1300 return;
1301
1302 struct inpcbpolicy *sp = pcb->inp_sp;
1303 key_freesp_so(&sp->sp_in);
1304 key_freesp_so(&sp->sp_out);
1305 }
1306 break;
1307 #endif
1308 #ifdef INET6
1309 case PF_INET6:
1310 {
1311 #ifdef HAVE_NRL_INPCB
1312 struct inpcb *pcb = sotoinpcb(so);
1313 struct inpcbpolicy *sp = pcb->inp_sp;
1314
1315 /* Does it have a PCB ? */
1316 if (pcb == NULL)
1317 return;
1318 key_freesp_so(&sp->sp_in);
1319 key_freesp_so(&sp->sp_out);
1320 #else
1321 struct in6pcb *pcb = sotoin6pcb(so);
1322
1323 /* Does it have a PCB ? */
1324 if (pcb == NULL)
1325 return;
1326 key_freesp_so(&pcb->in6p_sp->sp_in);
1327 key_freesp_so(&pcb->in6p_sp->sp_out);
1328 #endif
1329 }
1330 break;
1331 #endif /* INET6 */
1332 default:
1333 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1334 so->so_proto->pr_domain->dom_family);
1335 return;
1336 }
1337 }
1338
1339 static void
1340 key_freesp_so(struct secpolicy **sp)
1341 {
1342
1343 KASSERT(sp != NULL);
1344 KASSERT(*sp != NULL);
1345
1346 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1347 (*sp)->policy == IPSEC_POLICY_BYPASS)
1348 return;
1349
1350 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1351 "invalid policy %u", (*sp)->policy);
1352 KEY_FREESP(sp);
1353 }
1354 #endif
1355
1356 /*
1357 * Must be called after calling key_lookup_sa().
1358 * This function is called by key_freesp() to free some SA allocated
1359 * for a policy.
1360 */
1361 void
1362 key_freesav(struct secasvar **psav, const char* where, int tag)
1363 {
1364 struct secasvar *sav = *psav;
1365 unsigned int nv;
1366
1367 KASSERT(sav != NULL);
1368
1369 SA_DELREF2(sav, nv, where, tag);
1370
1371 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1372 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1373 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1374
1375 if (nv == 0) {
1376 *psav = NULL;
1377
1378 /* remove from SA header */
1379 KASSERT(__LIST_CHAINED(sav));
1380 LIST_REMOVE(sav, chain);
1381
1382 key_delsav(sav);
1383 }
1384 }
1385
1386 /* %%% SPD management */
1387 /*
1388 * free security policy entry.
1389 */
1390 static void
1391 key_delsp(struct secpolicy *sp)
1392 {
1393 int s;
1394
1395 KASSERT(sp != NULL);
1396
1397 key_sp_dead(sp);
1398
1399 KASSERTMSG(sp->refcnt == 0,
1400 "SP with references deleted (refcnt %u)", sp->refcnt);
1401
1402 s = splsoftnet(); /*called from softclock()*/
1403
1404 {
1405 struct ipsecrequest *isr = sp->req, *nextisr;
1406
1407 while (isr != NULL) {
1408 if (isr->sav != NULL) {
1409 KEY_FREESAV(&isr->sav);
1410 isr->sav = NULL;
1411 }
1412
1413 nextisr = isr->next;
1414 kmem_intr_free(isr, sizeof(*isr));
1415 isr = nextisr;
1416 }
1417 }
1418
1419 kmem_intr_free(sp, sizeof(*sp));
1420
1421 splx(s);
1422 }
1423
1424 /*
1425 * search SPD
1426 * OUT: NULL : not found
1427 * others : found, pointer to a SP.
1428 */
1429 static struct secpolicy *
1430 key_getsp(const struct secpolicyindex *spidx)
1431 {
1432 struct secpolicy *sp;
1433
1434 KASSERT(spidx != NULL);
1435
1436 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1437 if (sp->state == IPSEC_SPSTATE_DEAD)
1438 continue;
1439 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1440 SP_ADDREF(sp);
1441 return sp;
1442 }
1443 }
1444
1445 return NULL;
1446 }
1447
1448 /*
1449 * get SP by index.
1450 * OUT: NULL : not found
1451 * others : found, pointer to a SP.
1452 */
1453 static struct secpolicy *
1454 key_getspbyid(u_int32_t id)
1455 {
1456 struct secpolicy *sp;
1457
1458 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1459 if (sp->state == IPSEC_SPSTATE_DEAD)
1460 continue;
1461 if (sp->id == id) {
1462 SP_ADDREF(sp);
1463 return sp;
1464 }
1465 }
1466
1467 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1468 if (sp->state == IPSEC_SPSTATE_DEAD)
1469 continue;
1470 if (sp->id == id) {
1471 SP_ADDREF(sp);
1472 return sp;
1473 }
1474 }
1475
1476 return NULL;
1477 }
1478
1479 struct secpolicy *
1480 key_newsp(const char* where, int tag)
1481 {
1482 struct secpolicy *newsp = NULL;
1483
1484 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1485 if (newsp != NULL)
1486 newsp->refcnt = 1;
1487
1488 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1489 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1490 return newsp;
1491 }
1492
1493 /*
1494 * create secpolicy structure from sadb_x_policy structure.
1495 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1496 * so must be set properly later.
1497 */
1498 struct secpolicy *
1499 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1500 {
1501 struct secpolicy *newsp;
1502
1503 KASSERT(!cpu_softintr_p());
1504 KASSERT(xpl0 != NULL);
1505 KASSERT(len >= sizeof(*xpl0));
1506
1507 if (len != PFKEY_EXTLEN(xpl0)) {
1508 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1509 *error = EINVAL;
1510 return NULL;
1511 }
1512
1513 newsp = KEY_NEWSP();
1514 if (newsp == NULL) {
1515 *error = ENOBUFS;
1516 return NULL;
1517 }
1518
1519 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1520 newsp->policy = xpl0->sadb_x_policy_type;
1521
1522 /* check policy */
1523 switch (xpl0->sadb_x_policy_type) {
1524 case IPSEC_POLICY_DISCARD:
1525 case IPSEC_POLICY_NONE:
1526 case IPSEC_POLICY_ENTRUST:
1527 case IPSEC_POLICY_BYPASS:
1528 newsp->req = NULL;
1529 *error = 0;
1530 return newsp;
1531
1532 case IPSEC_POLICY_IPSEC:
1533 /* Continued */
1534 break;
1535 default:
1536 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1537 KEY_FREESP(&newsp);
1538 *error = EINVAL;
1539 return NULL;
1540 }
1541
1542 /* IPSEC_POLICY_IPSEC */
1543 {
1544 int tlen;
1545 const struct sadb_x_ipsecrequest *xisr;
1546 uint16_t xisr_reqid;
1547 struct ipsecrequest **p_isr = &newsp->req;
1548
1549 /* validity check */
1550 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1551 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1552 *error = EINVAL;
1553 goto free_exit;
1554 }
1555
1556 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1557 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1558
1559 while (tlen > 0) {
1560 /* length check */
1561 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1562 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1563 *error = EINVAL;
1564 goto free_exit;
1565 }
1566
1567 /* allocate request buffer */
1568 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1569
1570 /* set values */
1571 (*p_isr)->next = NULL;
1572
1573 switch (xisr->sadb_x_ipsecrequest_proto) {
1574 case IPPROTO_ESP:
1575 case IPPROTO_AH:
1576 case IPPROTO_IPCOMP:
1577 break;
1578 default:
1579 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1580 xisr->sadb_x_ipsecrequest_proto);
1581 *error = EPROTONOSUPPORT;
1582 goto free_exit;
1583 }
1584 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1585
1586 switch (xisr->sadb_x_ipsecrequest_mode) {
1587 case IPSEC_MODE_TRANSPORT:
1588 case IPSEC_MODE_TUNNEL:
1589 break;
1590 case IPSEC_MODE_ANY:
1591 default:
1592 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1593 xisr->sadb_x_ipsecrequest_mode);
1594 *error = EINVAL;
1595 goto free_exit;
1596 }
1597 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1598
1599 switch (xisr->sadb_x_ipsecrequest_level) {
1600 case IPSEC_LEVEL_DEFAULT:
1601 case IPSEC_LEVEL_USE:
1602 case IPSEC_LEVEL_REQUIRE:
1603 break;
1604 case IPSEC_LEVEL_UNIQUE:
1605 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1606 /* validity check */
1607 /*
1608 * If range violation of reqid, kernel will
1609 * update it, don't refuse it.
1610 */
1611 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1612 IPSECLOG(LOG_DEBUG,
1613 "reqid=%d range "
1614 "violation, updated by kernel.\n",
1615 xisr_reqid);
1616 xisr_reqid = 0;
1617 }
1618
1619 /* allocate new reqid id if reqid is zero. */
1620 if (xisr_reqid == 0) {
1621 u_int16_t reqid = key_newreqid();
1622 if (reqid == 0) {
1623 *error = ENOBUFS;
1624 goto free_exit;
1625 }
1626 (*p_isr)->saidx.reqid = reqid;
1627 } else {
1628 /* set it for manual keying. */
1629 (*p_isr)->saidx.reqid = xisr_reqid;
1630 }
1631 break;
1632
1633 default:
1634 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1635 xisr->sadb_x_ipsecrequest_level);
1636 *error = EINVAL;
1637 goto free_exit;
1638 }
1639 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1640
1641 /* set IP addresses if there */
1642 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1643 const struct sockaddr *paddr;
1644
1645 paddr = (const struct sockaddr *)(xisr + 1);
1646
1647 /* validity check */
1648 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1649 IPSECLOG(LOG_DEBUG, "invalid request "
1650 "address length.\n");
1651 *error = EINVAL;
1652 goto free_exit;
1653 }
1654 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1655
1656 paddr = (const struct sockaddr *)((const char *)paddr
1657 + paddr->sa_len);
1658
1659 /* validity check */
1660 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1661 IPSECLOG(LOG_DEBUG, "invalid request "
1662 "address length.\n");
1663 *error = EINVAL;
1664 goto free_exit;
1665 }
1666 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1667 }
1668
1669 (*p_isr)->sav = NULL;
1670 (*p_isr)->sp = newsp;
1671
1672 /* initialization for the next. */
1673 p_isr = &(*p_isr)->next;
1674 tlen -= xisr->sadb_x_ipsecrequest_len;
1675
1676 /* validity check */
1677 if (tlen < 0) {
1678 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1679 *error = EINVAL;
1680 goto free_exit;
1681 }
1682
1683 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1684 xisr->sadb_x_ipsecrequest_len);
1685 }
1686 }
1687
1688 *error = 0;
1689 return newsp;
1690
1691 free_exit:
1692 KEY_FREESP(&newsp);
1693 return NULL;
1694 }
1695
1696 static u_int16_t
1697 key_newreqid(void)
1698 {
1699 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1700
1701 auto_reqid = (auto_reqid == 0xffff ?
1702 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1703
1704 /* XXX should be unique check */
1705
1706 return auto_reqid;
1707 }
1708
1709 /*
1710 * copy secpolicy struct to sadb_x_policy structure indicated.
1711 */
1712 struct mbuf *
1713 key_sp2msg(const struct secpolicy *sp)
1714 {
1715 struct sadb_x_policy *xpl;
1716 int tlen;
1717 char *p;
1718 struct mbuf *m;
1719
1720 KASSERT(sp != NULL);
1721
1722 tlen = key_getspreqmsglen(sp);
1723
1724 m = key_alloc_mbuf(tlen);
1725 if (!m || m->m_next) { /*XXX*/
1726 if (m)
1727 m_freem(m);
1728 return NULL;
1729 }
1730
1731 m->m_len = tlen;
1732 m->m_next = NULL;
1733 xpl = mtod(m, struct sadb_x_policy *);
1734 memset(xpl, 0, tlen);
1735
1736 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1737 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1738 xpl->sadb_x_policy_type = sp->policy;
1739 xpl->sadb_x_policy_dir = sp->spidx.dir;
1740 xpl->sadb_x_policy_id = sp->id;
1741 p = (char *)xpl + sizeof(*xpl);
1742
1743 /* if is the policy for ipsec ? */
1744 if (sp->policy == IPSEC_POLICY_IPSEC) {
1745 struct sadb_x_ipsecrequest *xisr;
1746 struct ipsecrequest *isr;
1747
1748 for (isr = sp->req; isr != NULL; isr = isr->next) {
1749
1750 xisr = (struct sadb_x_ipsecrequest *)p;
1751
1752 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1753 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1754 xisr->sadb_x_ipsecrequest_level = isr->level;
1755 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1756
1757 p += sizeof(*xisr);
1758 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1759 p += isr->saidx.src.sa.sa_len;
1760 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1761 p += isr->saidx.src.sa.sa_len;
1762
1763 xisr->sadb_x_ipsecrequest_len =
1764 PFKEY_ALIGN8(sizeof(*xisr)
1765 + isr->saidx.src.sa.sa_len
1766 + isr->saidx.dst.sa.sa_len);
1767 }
1768 }
1769
1770 return m;
1771 }
1772
1773 /* m will not be freed nor modified */
1774 static struct mbuf *
1775 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1776 int ndeep, int nitem, ...)
1777 {
1778 va_list ap;
1779 int idx;
1780 int i;
1781 struct mbuf *result = NULL, *n;
1782 int len;
1783
1784 KASSERT(m != NULL);
1785 KASSERT(mhp != NULL);
1786
1787 va_start(ap, nitem);
1788 for (i = 0; i < nitem; i++) {
1789 idx = va_arg(ap, int);
1790 if (idx < 0 || idx > SADB_EXT_MAX)
1791 goto fail;
1792 /* don't attempt to pull empty extension */
1793 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1794 continue;
1795 if (idx != SADB_EXT_RESERVED &&
1796 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1797 continue;
1798
1799 if (idx == SADB_EXT_RESERVED) {
1800 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1801 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1802 MGETHDR(n, M_DONTWAIT, MT_DATA);
1803 if (!n)
1804 goto fail;
1805 n->m_len = len;
1806 n->m_next = NULL;
1807 m_copydata(m, 0, sizeof(struct sadb_msg),
1808 mtod(n, void *));
1809 } else if (i < ndeep) {
1810 len = mhp->extlen[idx];
1811 n = key_alloc_mbuf(len);
1812 if (!n || n->m_next) { /*XXX*/
1813 if (n)
1814 m_freem(n);
1815 goto fail;
1816 }
1817 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1818 mtod(n, void *));
1819 } else {
1820 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1821 M_DONTWAIT);
1822 }
1823 if (n == NULL)
1824 goto fail;
1825
1826 if (result)
1827 m_cat(result, n);
1828 else
1829 result = n;
1830 }
1831 va_end(ap);
1832
1833 if (result && (result->m_flags & M_PKTHDR) != 0) {
1834 result->m_pkthdr.len = 0;
1835 for (n = result; n; n = n->m_next)
1836 result->m_pkthdr.len += n->m_len;
1837 }
1838
1839 return result;
1840
1841 fail:
1842 va_end(ap);
1843 m_freem(result);
1844 return NULL;
1845 }
1846
1847 /*
1848 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1849 * add an entry to SP database, when received
1850 * <base, address(SD), (lifetime(H),) policy>
1851 * from the user(?).
1852 * Adding to SP database,
1853 * and send
1854 * <base, address(SD), (lifetime(H),) policy>
1855 * to the socket which was send.
1856 *
1857 * SPDADD set a unique policy entry.
1858 * SPDSETIDX like SPDADD without a part of policy requests.
1859 * SPDUPDATE replace a unique policy entry.
1860 *
1861 * m will always be freed.
1862 */
1863 static int
1864 key_api_spdadd(struct socket *so, struct mbuf *m,
1865 const struct sadb_msghdr *mhp)
1866 {
1867 const struct sockaddr *src, *dst;
1868 const struct sadb_x_policy *xpl0;
1869 struct sadb_x_policy *xpl;
1870 const struct sadb_lifetime *lft = NULL;
1871 struct secpolicyindex spidx;
1872 struct secpolicy *newsp;
1873 int error;
1874
1875 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1876 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1877 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1878 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1879 return key_senderror(so, m, EINVAL);
1880 }
1881 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1882 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1883 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1884 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1885 return key_senderror(so, m, EINVAL);
1886 }
1887 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1888 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1889 sizeof(struct sadb_lifetime)) {
1890 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1891 return key_senderror(so, m, EINVAL);
1892 }
1893 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1894 }
1895
1896 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1897
1898 /* checking the direciton. */
1899 switch (xpl0->sadb_x_policy_dir) {
1900 case IPSEC_DIR_INBOUND:
1901 case IPSEC_DIR_OUTBOUND:
1902 break;
1903 default:
1904 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1905 return key_senderror(so, m, EINVAL);
1906 }
1907
1908 /* check policy */
1909 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
1910 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1911 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1912 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1913 return key_senderror(so, m, EINVAL);
1914 }
1915
1916 /* policy requests are mandatory when action is ipsec. */
1917 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1918 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1919 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1920 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1921 return key_senderror(so, m, EINVAL);
1922 }
1923
1924 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1925 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1926
1927 /* sanity check on addr pair */
1928 if (src->sa_family != dst->sa_family)
1929 return key_senderror(so, m, EINVAL);
1930 if (src->sa_len != dst->sa_len)
1931 return key_senderror(so, m, EINVAL);
1932
1933 key_init_spidx_bymsghdr(&spidx, mhp);
1934
1935 /*
1936 * checking there is SP already or not.
1937 * SPDUPDATE doesn't depend on whether there is a SP or not.
1938 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1939 * then error.
1940 */
1941 {
1942 struct secpolicy *sp;
1943
1944 sp = key_getsp(&spidx);
1945 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1946 if (sp) {
1947 key_sp_dead(sp);
1948 key_sp_unlink(sp); /* XXX jrs ordering */
1949 KEY_FREESP(&sp);
1950 }
1951 } else {
1952 if (sp != NULL) {
1953 KEY_FREESP(&sp);
1954 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1955 return key_senderror(so, m, EEXIST);
1956 }
1957 }
1958 }
1959
1960 /* allocation new SP entry */
1961 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1962 if (newsp == NULL) {
1963 return key_senderror(so, m, error);
1964 }
1965
1966 newsp->id = key_getnewspid();
1967 if (newsp->id == 0) {
1968 kmem_free(newsp, sizeof(*newsp));
1969 return key_senderror(so, m, ENOBUFS);
1970 }
1971
1972 newsp->spidx = spidx;
1973 newsp->created = time_uptime;
1974 newsp->lastused = newsp->created;
1975 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1976 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1977
1978 newsp->refcnt = 1; /* do not reclaim until I say I do */
1979 newsp->state = IPSEC_SPSTATE_ALIVE;
1980 if (newsp->policy == IPSEC_POLICY_IPSEC)
1981 KASSERT(newsp->req != NULL);
1982 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1983
1984 #ifdef notyet
1985 /* delete the entry in spacqtree */
1986 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1987 struct secspacq *spacq = key_getspacq(&spidx);
1988 if (spacq != NULL) {
1989 /* reset counter in order to deletion by timehandler. */
1990 spacq->created = time_uptime;
1991 spacq->count = 0;
1992 }
1993 }
1994 #endif
1995
1996 /* Invalidate all cached SPD pointers in the PCBs. */
1997 ipsec_invalpcbcacheall();
1998
1999 #if defined(GATEWAY)
2000 /* Invalidate the ipflow cache, as well. */
2001 ipflow_invalidate_all(0);
2002 #ifdef INET6
2003 if (in6_present)
2004 ip6flow_invalidate_all(0);
2005 #endif /* INET6 */
2006 #endif /* GATEWAY */
2007
2008 {
2009 struct mbuf *n, *mpolicy;
2010 int off;
2011
2012 /* create new sadb_msg to reply. */
2013 if (lft) {
2014 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2015 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2016 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2017 } else {
2018 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2019 SADB_X_EXT_POLICY,
2020 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2021 }
2022 if (!n)
2023 return key_senderror(so, m, ENOBUFS);
2024
2025 n = key_fill_replymsg(n, 0);
2026 if (n == NULL)
2027 return key_senderror(so, m, ENOBUFS);
2028
2029 off = 0;
2030 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2031 sizeof(*xpl), &off);
2032 if (mpolicy == NULL) {
2033 /* n is already freed */
2034 return key_senderror(so, m, ENOBUFS);
2035 }
2036 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2037 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2038 m_freem(n);
2039 return key_senderror(so, m, EINVAL);
2040 }
2041 xpl->sadb_x_policy_id = newsp->id;
2042
2043 m_freem(m);
2044 key_update_used();
2045 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2046 }
2047 }
2048
2049 /*
2050 * get new policy id.
2051 * OUT:
2052 * 0: failure.
2053 * others: success.
2054 */
2055 static u_int32_t
2056 key_getnewspid(void)
2057 {
2058 u_int32_t newid = 0;
2059 int count = key_spi_trycnt; /* XXX */
2060 struct secpolicy *sp;
2061
2062 /* when requesting to allocate spi ranged */
2063 while (count--) {
2064 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2065
2066 sp = key_getspbyid(newid);
2067 if (sp == NULL)
2068 break;
2069
2070 KEY_FREESP(&sp);
2071 }
2072
2073 if (count == 0 || newid == 0) {
2074 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2075 return 0;
2076 }
2077
2078 return newid;
2079 }
2080
2081 /*
2082 * SADB_SPDDELETE processing
2083 * receive
2084 * <base, address(SD), policy(*)>
2085 * from the user(?), and set SADB_SASTATE_DEAD,
2086 * and send,
2087 * <base, address(SD), policy(*)>
2088 * to the ikmpd.
2089 * policy(*) including direction of policy.
2090 *
2091 * m will always be freed.
2092 */
2093 static int
2094 key_api_spddelete(struct socket *so, struct mbuf *m,
2095 const struct sadb_msghdr *mhp)
2096 {
2097 struct sadb_x_policy *xpl0;
2098 struct secpolicyindex spidx;
2099 struct secpolicy *sp;
2100
2101 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2102 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2103 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2104 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2105 return key_senderror(so, m, EINVAL);
2106 }
2107 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2108 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2109 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2110 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2111 return key_senderror(so, m, EINVAL);
2112 }
2113
2114 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2115
2116 /* checking the direciton. */
2117 switch (xpl0->sadb_x_policy_dir) {
2118 case IPSEC_DIR_INBOUND:
2119 case IPSEC_DIR_OUTBOUND:
2120 break;
2121 default:
2122 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2123 return key_senderror(so, m, EINVAL);
2124 }
2125
2126 /* make secindex */
2127 key_init_spidx_bymsghdr(&spidx, mhp);
2128
2129 /* Is there SP in SPD ? */
2130 sp = key_getsp(&spidx);
2131 if (sp == NULL) {
2132 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2133 return key_senderror(so, m, EINVAL);
2134 }
2135
2136 /* save policy id to buffer to be returned. */
2137 xpl0->sadb_x_policy_id = sp->id;
2138
2139 key_sp_dead(sp);
2140 key_sp_unlink(sp); /* XXX jrs ordering */
2141 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2142
2143 /* Invalidate all cached SPD pointers in the PCBs. */
2144 ipsec_invalpcbcacheall();
2145
2146 /* We're deleting policy; no need to invalidate the ipflow cache. */
2147
2148 {
2149 struct mbuf *n;
2150
2151 /* create new sadb_msg to reply. */
2152 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2153 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2154 if (!n)
2155 return key_senderror(so, m, ENOBUFS);
2156
2157 n = key_fill_replymsg(n, 0);
2158 if (n == NULL)
2159 return key_senderror(so, m, ENOBUFS);
2160
2161 m_freem(m);
2162 key_update_used();
2163 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2164 }
2165 }
2166
2167 /*
2168 * SADB_SPDDELETE2 processing
2169 * receive
2170 * <base, policy(*)>
2171 * from the user(?), and set SADB_SASTATE_DEAD,
2172 * and send,
2173 * <base, policy(*)>
2174 * to the ikmpd.
2175 * policy(*) including direction of policy.
2176 *
2177 * m will always be freed.
2178 */
2179 static int
2180 key_api_spddelete2(struct socket *so, struct mbuf *m,
2181 const struct sadb_msghdr *mhp)
2182 {
2183 u_int32_t id;
2184 struct secpolicy *sp;
2185
2186 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2187 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2188 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2189 return key_senderror(so, m, EINVAL);
2190 }
2191
2192 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2193
2194 /* Is there SP in SPD ? */
2195 sp = key_getspbyid(id);
2196 if (sp == NULL) {
2197 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2198 return key_senderror(so, m, EINVAL);
2199 }
2200
2201 key_sp_dead(sp);
2202 key_sp_unlink(sp); /* XXX jrs ordering */
2203 KEY_FREESP(&sp); /* ref gained by key_getsp */
2204 sp = NULL;
2205
2206 /* Invalidate all cached SPD pointers in the PCBs. */
2207 ipsec_invalpcbcacheall();
2208
2209 /* We're deleting policy; no need to invalidate the ipflow cache. */
2210
2211 {
2212 struct mbuf *n, *nn;
2213 int off, len;
2214
2215 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2216
2217 /* create new sadb_msg to reply. */
2218 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2219
2220 MGETHDR(n, M_DONTWAIT, MT_DATA);
2221 if (n && len > MHLEN) {
2222 MCLGET(n, M_DONTWAIT);
2223 if ((n->m_flags & M_EXT) == 0) {
2224 m_freem(n);
2225 n = NULL;
2226 }
2227 }
2228 if (!n)
2229 return key_senderror(so, m, ENOBUFS);
2230
2231 n->m_len = len;
2232 n->m_next = NULL;
2233 off = 0;
2234
2235 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2236 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2237
2238 KASSERTMSG(off == len, "length inconsistency");
2239
2240 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2241 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2242 if (!n->m_next) {
2243 m_freem(n);
2244 return key_senderror(so, m, ENOBUFS);
2245 }
2246
2247 n->m_pkthdr.len = 0;
2248 for (nn = n; nn; nn = nn->m_next)
2249 n->m_pkthdr.len += nn->m_len;
2250
2251 n = key_fill_replymsg(n, 0);
2252 if (n == NULL)
2253 return key_senderror(so, m, ENOBUFS);
2254
2255 m_freem(m);
2256 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2257 }
2258 }
2259
2260 /*
2261 * SADB_X_GET processing
2262 * receive
2263 * <base, policy(*)>
2264 * from the user(?),
2265 * and send,
2266 * <base, address(SD), policy>
2267 * to the ikmpd.
2268 * policy(*) including direction of policy.
2269 *
2270 * m will always be freed.
2271 */
2272 static int
2273 key_api_spdget(struct socket *so, struct mbuf *m,
2274 const struct sadb_msghdr *mhp)
2275 {
2276 u_int32_t id;
2277 struct secpolicy *sp;
2278 struct mbuf *n;
2279
2280 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2281 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2282 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2283 return key_senderror(so, m, EINVAL);
2284 }
2285
2286 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2287
2288 /* Is there SP in SPD ? */
2289 sp = key_getspbyid(id);
2290 if (sp == NULL) {
2291 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2292 return key_senderror(so, m, ENOENT);
2293 }
2294
2295 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2296 mhp->msg->sadb_msg_pid);
2297 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2298 if (n != NULL) {
2299 m_freem(m);
2300 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2301 } else
2302 return key_senderror(so, m, ENOBUFS);
2303 }
2304
2305 #ifdef notyet
2306 /*
2307 * SADB_X_SPDACQUIRE processing.
2308 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2309 * send
2310 * <base, policy(*)>
2311 * to KMD, and expect to receive
2312 * <base> with SADB_X_SPDACQUIRE if error occurred,
2313 * or
2314 * <base, policy>
2315 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2316 * policy(*) is without policy requests.
2317 *
2318 * 0 : succeed
2319 * others: error number
2320 */
2321 int
2322 key_spdacquire(const struct secpolicy *sp)
2323 {
2324 struct mbuf *result = NULL, *m;
2325 struct secspacq *newspacq;
2326 int error;
2327
2328 KASSERT(sp != NULL);
2329 KASSERTMSG(sp->req == NULL, "called but there is request");
2330 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2331 "policy mismathed. IPsec is expected");
2332
2333 /* Get an entry to check whether sent message or not. */
2334 newspacq = key_getspacq(&sp->spidx);
2335 if (newspacq != NULL) {
2336 if (key_blockacq_count < newspacq->count) {
2337 /* reset counter and do send message. */
2338 newspacq->count = 0;
2339 } else {
2340 /* increment counter and do nothing. */
2341 newspacq->count++;
2342 return 0;
2343 }
2344 } else {
2345 /* make new entry for blocking to send SADB_ACQUIRE. */
2346 newspacq = key_newspacq(&sp->spidx);
2347 if (newspacq == NULL)
2348 return ENOBUFS;
2349
2350 /* add to acqtree */
2351 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2352 }
2353
2354 /* create new sadb_msg to reply. */
2355 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2356 if (!m) {
2357 error = ENOBUFS;
2358 goto fail;
2359 }
2360 result = m;
2361
2362 result->m_pkthdr.len = 0;
2363 for (m = result; m; m = m->m_next)
2364 result->m_pkthdr.len += m->m_len;
2365
2366 mtod(result, struct sadb_msg *)->sadb_msg_len =
2367 PFKEY_UNIT64(result->m_pkthdr.len);
2368
2369 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2370
2371 fail:
2372 if (result)
2373 m_freem(result);
2374 return error;
2375 }
2376 #endif /* notyet */
2377
2378 /*
2379 * SADB_SPDFLUSH processing
2380 * receive
2381 * <base>
2382 * from the user, and free all entries in secpctree.
2383 * and send,
2384 * <base>
2385 * to the user.
2386 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2387 *
2388 * m will always be freed.
2389 */
2390 static int
2391 key_api_spdflush(struct socket *so, struct mbuf *m,
2392 const struct sadb_msghdr *mhp)
2393 {
2394 struct sadb_msg *newmsg;
2395 struct secpolicy *sp;
2396 u_int dir;
2397
2398 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2399 return key_senderror(so, m, EINVAL);
2400
2401 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2402 struct secpolicy * nextsp;
2403 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2404 if (sp->state == IPSEC_SPSTATE_DEAD)
2405 continue;
2406 key_sp_dead(sp);
2407 key_sp_unlink(sp);
2408 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2409 continue;
2410 }
2411 }
2412
2413 /* Invalidate all cached SPD pointers in the PCBs. */
2414 ipsec_invalpcbcacheall();
2415
2416 /* We're deleting policy; no need to invalidate the ipflow cache. */
2417
2418 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2419 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2420 return key_senderror(so, m, ENOBUFS);
2421 }
2422
2423 if (m->m_next)
2424 m_freem(m->m_next);
2425 m->m_next = NULL;
2426 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2427 newmsg = mtod(m, struct sadb_msg *);
2428 newmsg->sadb_msg_errno = 0;
2429 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2430
2431 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2432 }
2433
2434 static struct sockaddr key_src = {
2435 .sa_len = 2,
2436 .sa_family = PF_KEY,
2437 };
2438
2439 static struct mbuf *
2440 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2441 {
2442 struct secpolicy *sp;
2443 int cnt;
2444 u_int dir;
2445 struct mbuf *m, *n, *prev;
2446 int totlen;
2447
2448 *lenp = 0;
2449
2450 /* search SPD entry and get buffer size. */
2451 cnt = 0;
2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2453 LIST_FOREACH(sp, &sptree[dir], chain) {
2454 cnt++;
2455 }
2456 }
2457
2458 if (cnt == 0) {
2459 *errorp = ENOENT;
2460 return (NULL);
2461 }
2462
2463 m = NULL;
2464 prev = m;
2465 totlen = 0;
2466 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2467 LIST_FOREACH(sp, &sptree[dir], chain) {
2468 --cnt;
2469 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2470
2471 if (!n) {
2472 *errorp = ENOBUFS;
2473 if (m)
2474 m_freem(m);
2475 return (NULL);
2476 }
2477
2478 totlen += n->m_pkthdr.len;
2479 if (!m) {
2480 m = n;
2481 } else {
2482 prev->m_nextpkt = n;
2483 }
2484 prev = n;
2485 }
2486 }
2487
2488 *lenp = totlen;
2489 *errorp = 0;
2490 return (m);
2491 }
2492
2493 /*
2494 * SADB_SPDDUMP processing
2495 * receive
2496 * <base>
2497 * from the user, and dump all SP leaves
2498 * and send,
2499 * <base> .....
2500 * to the ikmpd.
2501 *
2502 * m will always be freed.
2503 */
2504 static int
2505 key_api_spddump(struct socket *so, struct mbuf *m0,
2506 const struct sadb_msghdr *mhp)
2507 {
2508 struct mbuf *n;
2509 int error, len;
2510 int ok, s;
2511 pid_t pid;
2512
2513 pid = mhp->msg->sadb_msg_pid;
2514 /*
2515 * If the requestor has insufficient socket-buffer space
2516 * for the entire chain, nobody gets any response to the DUMP.
2517 * XXX For now, only the requestor ever gets anything.
2518 * Moreover, if the requestor has any space at all, they receive
2519 * the entire chain, otherwise the request is refused with ENOBUFS.
2520 */
2521 if (sbspace(&so->so_rcv) <= 0) {
2522 return key_senderror(so, m0, ENOBUFS);
2523 }
2524
2525 s = splsoftnet();
2526 n = key_setspddump_chain(&error, &len, pid);
2527 splx(s);
2528
2529 if (n == NULL) {
2530 return key_senderror(so, m0, ENOENT);
2531 }
2532 {
2533 uint64_t *ps = PFKEY_STAT_GETREF();
2534 ps[PFKEY_STAT_IN_TOTAL]++;
2535 ps[PFKEY_STAT_IN_BYTES] += len;
2536 PFKEY_STAT_PUTREF();
2537 }
2538
2539 /*
2540 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2541 * The requestor receives either the entire chain, or an
2542 * error message with ENOBUFS.
2543 */
2544
2545 /*
2546 * sbappendchainwith record takes the chain of entries, one
2547 * packet-record per SPD entry, prepends the key_src sockaddr
2548 * to each packet-record, links the sockaddr mbufs into a new
2549 * list of records, then appends the entire resulting
2550 * list to the requesting socket.
2551 */
2552 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2553 SB_PRIO_ONESHOT_OVERFLOW);
2554
2555 if (!ok) {
2556 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2557 m_freem(n);
2558 return key_senderror(so, m0, ENOBUFS);
2559 }
2560
2561 m_freem(m0);
2562 return error;
2563 }
2564
2565 /*
2566 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2567 */
2568 static int
2569 key_api_nat_map(struct socket *so, struct mbuf *m,
2570 const struct sadb_msghdr *mhp)
2571 {
2572 struct sadb_x_nat_t_type *type;
2573 struct sadb_x_nat_t_port *sport;
2574 struct sadb_x_nat_t_port *dport;
2575 struct sadb_address *iaddr, *raddr;
2576 struct sadb_x_nat_t_frag *frag;
2577
2578 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2579 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2580 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2581 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2582 return key_senderror(so, m, EINVAL);
2583 }
2584 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2585 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2586 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2587 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2588 return key_senderror(so, m, EINVAL);
2589 }
2590
2591 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2592 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2593 IPSECLOG(LOG_DEBUG, "invalid message\n");
2594 return key_senderror(so, m, EINVAL);
2595 }
2596
2597 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2598 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2599 IPSECLOG(LOG_DEBUG, "invalid message\n");
2600 return key_senderror(so, m, EINVAL);
2601 }
2602
2603 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2604 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2605 IPSECLOG(LOG_DEBUG, "invalid message\n");
2606 return key_senderror(so, m, EINVAL);
2607 }
2608
2609 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2610 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2611 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2612 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2613 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2614 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2615
2616 /*
2617 * XXX handle that, it should also contain a SA, or anything
2618 * that enable to update the SA information.
2619 */
2620
2621 return 0;
2622 }
2623
2624 static struct mbuf *
2625 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2626 {
2627 struct mbuf *result = NULL, *m;
2628
2629 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2630 if (!m)
2631 goto fail;
2632 result = m;
2633
2634 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2635 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2636 if (!m)
2637 goto fail;
2638 m_cat(result, m);
2639
2640 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2641 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2642 if (!m)
2643 goto fail;
2644 m_cat(result, m);
2645
2646 m = key_sp2msg(sp);
2647 if (!m)
2648 goto fail;
2649 m_cat(result, m);
2650
2651 if ((result->m_flags & M_PKTHDR) == 0)
2652 goto fail;
2653
2654 if (result->m_len < sizeof(struct sadb_msg)) {
2655 result = m_pullup(result, sizeof(struct sadb_msg));
2656 if (result == NULL)
2657 goto fail;
2658 }
2659
2660 result->m_pkthdr.len = 0;
2661 for (m = result; m; m = m->m_next)
2662 result->m_pkthdr.len += m->m_len;
2663
2664 mtod(result, struct sadb_msg *)->sadb_msg_len =
2665 PFKEY_UNIT64(result->m_pkthdr.len);
2666
2667 return result;
2668
2669 fail:
2670 m_freem(result);
2671 return NULL;
2672 }
2673
2674 /*
2675 * get PFKEY message length for security policy and request.
2676 */
2677 static u_int
2678 key_getspreqmsglen(const struct secpolicy *sp)
2679 {
2680 u_int tlen;
2681
2682 tlen = sizeof(struct sadb_x_policy);
2683
2684 /* if is the policy for ipsec ? */
2685 if (sp->policy != IPSEC_POLICY_IPSEC)
2686 return tlen;
2687
2688 /* get length of ipsec requests */
2689 {
2690 const struct ipsecrequest *isr;
2691 int len;
2692
2693 for (isr = sp->req; isr != NULL; isr = isr->next) {
2694 len = sizeof(struct sadb_x_ipsecrequest)
2695 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2696
2697 tlen += PFKEY_ALIGN8(len);
2698 }
2699 }
2700
2701 return tlen;
2702 }
2703
2704 /*
2705 * SADB_SPDEXPIRE processing
2706 * send
2707 * <base, address(SD), lifetime(CH), policy>
2708 * to KMD by PF_KEY.
2709 *
2710 * OUT: 0 : succeed
2711 * others : error number
2712 */
2713 static int
2714 key_spdexpire(struct secpolicy *sp)
2715 {
2716 int s;
2717 struct mbuf *result = NULL, *m;
2718 int len;
2719 int error = -1;
2720 struct sadb_lifetime *lt;
2721
2722 /* XXX: Why do we lock ? */
2723 s = splsoftnet(); /*called from softclock()*/
2724
2725 KASSERT(sp != NULL);
2726
2727 /* set msg header */
2728 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2729 if (!m) {
2730 error = ENOBUFS;
2731 goto fail;
2732 }
2733 result = m;
2734
2735 /* create lifetime extension (current and hard) */
2736 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2737 m = key_alloc_mbuf(len);
2738 if (!m || m->m_next) { /*XXX*/
2739 if (m)
2740 m_freem(m);
2741 error = ENOBUFS;
2742 goto fail;
2743 }
2744 memset(mtod(m, void *), 0, len);
2745 lt = mtod(m, struct sadb_lifetime *);
2746 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2747 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2748 lt->sadb_lifetime_allocations = 0;
2749 lt->sadb_lifetime_bytes = 0;
2750 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2751 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2752 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2753 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2754 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2755 lt->sadb_lifetime_allocations = 0;
2756 lt->sadb_lifetime_bytes = 0;
2757 lt->sadb_lifetime_addtime = sp->lifetime;
2758 lt->sadb_lifetime_usetime = sp->validtime;
2759 m_cat(result, m);
2760
2761 /* set sadb_address for source */
2762 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2763 sp->spidx.prefs, sp->spidx.ul_proto);
2764 if (!m) {
2765 error = ENOBUFS;
2766 goto fail;
2767 }
2768 m_cat(result, m);
2769
2770 /* set sadb_address for destination */
2771 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2772 sp->spidx.prefd, sp->spidx.ul_proto);
2773 if (!m) {
2774 error = ENOBUFS;
2775 goto fail;
2776 }
2777 m_cat(result, m);
2778
2779 /* set secpolicy */
2780 m = key_sp2msg(sp);
2781 if (!m) {
2782 error = ENOBUFS;
2783 goto fail;
2784 }
2785 m_cat(result, m);
2786
2787 if ((result->m_flags & M_PKTHDR) == 0) {
2788 error = EINVAL;
2789 goto fail;
2790 }
2791
2792 if (result->m_len < sizeof(struct sadb_msg)) {
2793 result = m_pullup(result, sizeof(struct sadb_msg));
2794 if (result == NULL) {
2795 error = ENOBUFS;
2796 goto fail;
2797 }
2798 }
2799
2800 result->m_pkthdr.len = 0;
2801 for (m = result; m; m = m->m_next)
2802 result->m_pkthdr.len += m->m_len;
2803
2804 mtod(result, struct sadb_msg *)->sadb_msg_len =
2805 PFKEY_UNIT64(result->m_pkthdr.len);
2806
2807 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2808
2809 fail:
2810 if (result)
2811 m_freem(result);
2812 splx(s);
2813 return error;
2814 }
2815
2816 /* %%% SAD management */
2817 /*
2818 * allocating a memory for new SA head, and copy from the values of mhp.
2819 * OUT: NULL : failure due to the lack of memory.
2820 * others : pointer to new SA head.
2821 */
2822 static struct secashead *
2823 key_newsah(const struct secasindex *saidx)
2824 {
2825 struct secashead *newsah;
2826 int i;
2827
2828 KASSERT(saidx != NULL);
2829
2830 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2831 for (i = 0; i < __arraycount(newsah->savtree); i++)
2832 LIST_INIT(&newsah->savtree[i]);
2833 newsah->saidx = *saidx;
2834
2835 /* add to saidxtree */
2836 newsah->state = SADB_SASTATE_MATURE;
2837 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2838
2839 return newsah;
2840 }
2841
2842 /*
2843 * delete SA index and all SA registerd.
2844 */
2845 static void
2846 key_delsah(struct secashead *sah)
2847 {
2848 struct secasvar *sav;
2849 u_int state;
2850 int s;
2851 int zombie = 0;
2852
2853 KASSERT(!cpu_softintr_p());
2854 KASSERT(sah != NULL);
2855
2856 s = splsoftnet();
2857
2858 /* searching all SA registerd in the secindex. */
2859 SASTATE_ANY_FOREACH(state) {
2860 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2861 /* give up to delete this sa */
2862 zombie++;
2863 }
2864 }
2865
2866 /* don't delete sah only if there are savs. */
2867 if (zombie) {
2868 splx(s);
2869 return;
2870 }
2871
2872 rtcache_free(&sah->sa_route);
2873
2874 /* remove from tree of SA index */
2875 KASSERT(__LIST_CHAINED(sah));
2876 LIST_REMOVE(sah, chain);
2877
2878 if (sah->idents != NULL)
2879 kmem_free(sah->idents, sah->idents_len);
2880 if (sah->identd != NULL)
2881 kmem_free(sah->identd, sah->identd_len);
2882
2883 kmem_free(sah, sizeof(*sah));
2884
2885 splx(s);
2886 return;
2887 }
2888
2889 /*
2890 * allocating a new SA with LARVAL state.
2891 * key_api_add() and key_api_getspi() call,
2892 * and copy the values of mhp into new buffer.
2893 * When SAD message type is GETSPI:
2894 * to set sequence number from acq_seq++,
2895 * to set zero to SPI.
2896 * not to call key_setsava().
2897 * OUT: NULL : fail
2898 * others : pointer to new secasvar.
2899 *
2900 * does not modify mbuf. does not free mbuf on error.
2901 */
2902 static struct secasvar *
2903 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2904 int *errp, const char* where, int tag)
2905 {
2906 struct secasvar *newsav;
2907 const struct sadb_sa *xsa;
2908
2909 KASSERT(!cpu_softintr_p());
2910 KASSERT(m != NULL);
2911 KASSERT(mhp != NULL);
2912 KASSERT(mhp->msg != NULL);
2913
2914 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2915
2916 switch (mhp->msg->sadb_msg_type) {
2917 case SADB_GETSPI:
2918 newsav->spi = 0;
2919
2920 #ifdef IPSEC_DOSEQCHECK
2921 /* sync sequence number */
2922 if (mhp->msg->sadb_msg_seq == 0)
2923 newsav->seq =
2924 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2925 else
2926 #endif
2927 newsav->seq = mhp->msg->sadb_msg_seq;
2928 break;
2929
2930 case SADB_ADD:
2931 /* sanity check */
2932 if (mhp->ext[SADB_EXT_SA] == NULL) {
2933 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2934 *errp = EINVAL;
2935 goto error;
2936 }
2937 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2938 newsav->spi = xsa->sadb_sa_spi;
2939 newsav->seq = mhp->msg->sadb_msg_seq;
2940 break;
2941 default:
2942 *errp = EINVAL;
2943 goto error;
2944 }
2945
2946 /* copy sav values */
2947 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2948 *errp = key_setsaval(newsav, m, mhp);
2949 if (*errp)
2950 goto error;
2951 }
2952
2953 /* reset created */
2954 newsav->created = time_uptime;
2955 newsav->pid = mhp->msg->sadb_msg_pid;
2956
2957 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2958 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2959 return newsav;
2960
2961 error:
2962 KASSERT(*errp != 0);
2963 kmem_free(newsav, sizeof(*newsav));
2964 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2965 "DP from %s:%u return SA:NULL\n", where, tag);
2966 return NULL;
2967 }
2968
2969
2970 static void
2971 key_clear_xform(struct secasvar *sav)
2972 {
2973
2974 /*
2975 * Cleanup xform state. Note that zeroize'ing causes the
2976 * keys to be cleared; otherwise we must do it ourself.
2977 */
2978 if (sav->tdb_xform != NULL) {
2979 sav->tdb_xform->xf_zeroize(sav);
2980 sav->tdb_xform = NULL;
2981 } else {
2982 if (sav->key_auth != NULL)
2983 explicit_memset(_KEYBUF(sav->key_auth), 0,
2984 _KEYLEN(sav->key_auth));
2985 if (sav->key_enc != NULL)
2986 explicit_memset(_KEYBUF(sav->key_enc), 0,
2987 _KEYLEN(sav->key_enc));
2988 }
2989 }
2990
2991 /*
2992 * free() SA variable entry.
2993 */
2994 static void
2995 key_delsav(struct secasvar *sav)
2996 {
2997
2998 KASSERT(sav != NULL);
2999 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3000
3001 key_clear_xform(sav);
3002 key_freesaval(sav);
3003 kmem_intr_free(sav, sizeof(*sav));
3004
3005 return;
3006 }
3007
3008 /*
3009 * search SAD.
3010 * OUT:
3011 * NULL : not found
3012 * others : found, pointer to a SA.
3013 */
3014 static struct secashead *
3015 key_getsah(const struct secasindex *saidx, int flag)
3016 {
3017 struct secashead *sah;
3018
3019 LIST_FOREACH(sah, &sahtree, chain) {
3020 if (sah->state == SADB_SASTATE_DEAD)
3021 continue;
3022 if (key_saidx_match(&sah->saidx, saidx, flag))
3023 return sah;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /*
3030 * check not to be duplicated SPI.
3031 * NOTE: this function is too slow due to searching all SAD.
3032 * OUT:
3033 * NULL : not found
3034 * others : found, pointer to a SA.
3035 */
3036 static bool
3037 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3038 {
3039 struct secashead *sah;
3040 struct secasvar *sav;
3041
3042 /* check address family */
3043 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3044 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3045 return false;
3046 }
3047
3048 /* check all SAD */
3049 LIST_FOREACH(sah, &sahtree, chain) {
3050 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3051 continue;
3052 sav = key_getsavbyspi(sah, spi);
3053 if (sav != NULL) {
3054 KEY_FREESAV(&sav);
3055 return true;
3056 }
3057 }
3058
3059 return false;
3060 }
3061
3062 /*
3063 * search SAD litmited alive SA, protocol, SPI.
3064 * OUT:
3065 * NULL : not found
3066 * others : found, pointer to a SA.
3067 */
3068 static struct secasvar *
3069 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3070 {
3071 struct secasvar *sav;
3072 u_int state;
3073
3074 /* search all status */
3075 SASTATE_ALIVE_FOREACH(state) {
3076 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3077
3078 /* sanity check */
3079 if (sav->state != state) {
3080 IPSECLOG(LOG_DEBUG,
3081 "invalid sav->state (queue: %d SA: %d)\n",
3082 state, sav->state);
3083 continue;
3084 }
3085
3086 if (sav->spi == spi) {
3087 SA_ADDREF(sav);
3088 return sav;
3089 }
3090 }
3091 }
3092
3093 return NULL;
3094 }
3095
3096 /*
3097 * Free allocated data to member variables of sav:
3098 * sav->replay, sav->key_* and sav->lft_*.
3099 */
3100 static void
3101 key_freesaval(struct secasvar *sav)
3102 {
3103
3104 if (sav->replay != NULL) {
3105 kmem_intr_free(sav->replay, sav->replay_len);
3106 sav->replay = NULL;
3107 sav->replay_len = 0;
3108 }
3109 if (sav->key_auth != NULL) {
3110 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3111 sav->key_auth = NULL;
3112 sav->key_auth_len = 0;
3113 }
3114 if (sav->key_enc != NULL) {
3115 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3116 sav->key_enc = NULL;
3117 sav->key_enc_len = 0;
3118 }
3119 if (sav->lft_c != NULL) {
3120 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3121 sav->lft_c = NULL;
3122 }
3123 if (sav->lft_h != NULL) {
3124 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3125 sav->lft_h = NULL;
3126 }
3127 if (sav->lft_s != NULL) {
3128 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3129 sav->lft_s = NULL;
3130 }
3131 }
3132
3133 /*
3134 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3135 * You must update these if need.
3136 * OUT: 0: success.
3137 * !0: failure.
3138 *
3139 * does not modify mbuf. does not free mbuf on error.
3140 */
3141 static int
3142 key_setsaval(struct secasvar *sav, struct mbuf *m,
3143 const struct sadb_msghdr *mhp)
3144 {
3145 int error = 0;
3146
3147 KASSERT(!cpu_softintr_p());
3148 KASSERT(m != NULL);
3149 KASSERT(mhp != NULL);
3150 KASSERT(mhp->msg != NULL);
3151
3152 /* We shouldn't initialize sav variables while someone uses it. */
3153 KASSERT(sav->refcnt == 0);
3154
3155 /* SA */
3156 if (mhp->ext[SADB_EXT_SA] != NULL) {
3157 const struct sadb_sa *sa0;
3158
3159 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3160 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3161 error = EINVAL;
3162 goto fail;
3163 }
3164
3165 sav->alg_auth = sa0->sadb_sa_auth;
3166 sav->alg_enc = sa0->sadb_sa_encrypt;
3167 sav->flags = sa0->sadb_sa_flags;
3168
3169 /* replay window */
3170 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3171 size_t len = sizeof(struct secreplay) +
3172 sa0->sadb_sa_replay;
3173 sav->replay = kmem_zalloc(len, KM_SLEEP);
3174 sav->replay_len = len;
3175 if (sa0->sadb_sa_replay != 0)
3176 sav->replay->bitmap = (char*)(sav->replay+1);
3177 sav->replay->wsize = sa0->sadb_sa_replay;
3178 }
3179 }
3180
3181 /* Authentication keys */
3182 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3183 const struct sadb_key *key0;
3184 int len;
3185
3186 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3187 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3188
3189 error = 0;
3190 if (len < sizeof(*key0)) {
3191 error = EINVAL;
3192 goto fail;
3193 }
3194 switch (mhp->msg->sadb_msg_satype) {
3195 case SADB_SATYPE_AH:
3196 case SADB_SATYPE_ESP:
3197 case SADB_X_SATYPE_TCPSIGNATURE:
3198 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3199 sav->alg_auth != SADB_X_AALG_NULL)
3200 error = EINVAL;
3201 break;
3202 case SADB_X_SATYPE_IPCOMP:
3203 default:
3204 error = EINVAL;
3205 break;
3206 }
3207 if (error) {
3208 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3209 goto fail;
3210 }
3211
3212 sav->key_auth = key_newbuf(key0, len);
3213 sav->key_auth_len = len;
3214 }
3215
3216 /* Encryption key */
3217 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3218 const struct sadb_key *key0;
3219 int len;
3220
3221 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3222 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3223
3224 error = 0;
3225 if (len < sizeof(*key0)) {
3226 error = EINVAL;
3227 goto fail;
3228 }
3229 switch (mhp->msg->sadb_msg_satype) {
3230 case SADB_SATYPE_ESP:
3231 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3232 sav->alg_enc != SADB_EALG_NULL) {
3233 error = EINVAL;
3234 break;
3235 }
3236 sav->key_enc = key_newbuf(key0, len);
3237 sav->key_enc_len = len;
3238 break;
3239 case SADB_X_SATYPE_IPCOMP:
3240 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3241 error = EINVAL;
3242 sav->key_enc = NULL; /*just in case*/
3243 break;
3244 case SADB_SATYPE_AH:
3245 case SADB_X_SATYPE_TCPSIGNATURE:
3246 default:
3247 error = EINVAL;
3248 break;
3249 }
3250 if (error) {
3251 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3252 goto fail;
3253 }
3254 }
3255
3256 /* set iv */
3257 sav->ivlen = 0;
3258
3259 switch (mhp->msg->sadb_msg_satype) {
3260 case SADB_SATYPE_AH:
3261 error = xform_init(sav, XF_AH);
3262 break;
3263 case SADB_SATYPE_ESP:
3264 error = xform_init(sav, XF_ESP);
3265 break;
3266 case SADB_X_SATYPE_IPCOMP:
3267 error = xform_init(sav, XF_IPCOMP);
3268 break;
3269 case SADB_X_SATYPE_TCPSIGNATURE:
3270 error = xform_init(sav, XF_TCPSIGNATURE);
3271 break;
3272 }
3273 if (error) {
3274 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3275 mhp->msg->sadb_msg_satype);
3276 goto fail;
3277 }
3278
3279 /* reset created */
3280 sav->created = time_uptime;
3281
3282 /* make lifetime for CURRENT */
3283 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3284
3285 sav->lft_c->sadb_lifetime_len =
3286 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3287 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3288 sav->lft_c->sadb_lifetime_allocations = 0;
3289 sav->lft_c->sadb_lifetime_bytes = 0;
3290 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3291 sav->lft_c->sadb_lifetime_usetime = 0;
3292
3293 /* lifetimes for HARD and SOFT */
3294 {
3295 const struct sadb_lifetime *lft0;
3296
3297 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3298 if (lft0 != NULL) {
3299 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3300 error = EINVAL;
3301 goto fail;
3302 }
3303 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3304 }
3305
3306 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3307 if (lft0 != NULL) {
3308 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3309 error = EINVAL;
3310 goto fail;
3311 }
3312 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3313 /* to be initialize ? */
3314 }
3315 }
3316
3317 return 0;
3318
3319 fail:
3320 key_clear_xform(sav);
3321 key_freesaval(sav);
3322
3323 return error;
3324 }
3325
3326 /*
3327 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3328 * OUT: 0: valid
3329 * other: errno
3330 */
3331 static int
3332 key_init_xform(struct secasvar *sav)
3333 {
3334 int error;
3335
3336 /* We shouldn't initialize sav variables while someone uses it. */
3337 KASSERT(sav->refcnt == 0);
3338
3339 /* check SPI value */
3340 switch (sav->sah->saidx.proto) {
3341 case IPPROTO_ESP:
3342 case IPPROTO_AH:
3343 if (ntohl(sav->spi) <= 255) {
3344 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3345 (u_int32_t)ntohl(sav->spi));
3346 return EINVAL;
3347 }
3348 break;
3349 }
3350
3351 /* check satype */
3352 switch (sav->sah->saidx.proto) {
3353 case IPPROTO_ESP:
3354 /* check flags */
3355 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3356 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3357 IPSECLOG(LOG_DEBUG,
3358 "invalid flag (derived) given to old-esp.\n");
3359 return EINVAL;
3360 }
3361 error = xform_init(sav, XF_ESP);
3362 break;
3363 case IPPROTO_AH:
3364 /* check flags */
3365 if (sav->flags & SADB_X_EXT_DERIV) {
3366 IPSECLOG(LOG_DEBUG,
3367 "invalid flag (derived) given to AH SA.\n");
3368 return EINVAL;
3369 }
3370 if (sav->alg_enc != SADB_EALG_NONE) {
3371 IPSECLOG(LOG_DEBUG,
3372 "protocol and algorithm mismated.\n");
3373 return(EINVAL);
3374 }
3375 error = xform_init(sav, XF_AH);
3376 break;
3377 case IPPROTO_IPCOMP:
3378 if (sav->alg_auth != SADB_AALG_NONE) {
3379 IPSECLOG(LOG_DEBUG,
3380 "protocol and algorithm mismated.\n");
3381 return(EINVAL);
3382 }
3383 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3384 && ntohl(sav->spi) >= 0x10000) {
3385 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3386 return(EINVAL);
3387 }
3388 error = xform_init(sav, XF_IPCOMP);
3389 break;
3390 case IPPROTO_TCP:
3391 if (sav->alg_enc != SADB_EALG_NONE) {
3392 IPSECLOG(LOG_DEBUG,
3393 "protocol and algorithm mismated.\n");
3394 return(EINVAL);
3395 }
3396 error = xform_init(sav, XF_TCPSIGNATURE);
3397 break;
3398 default:
3399 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3400 error = EPROTONOSUPPORT;
3401 break;
3402 }
3403
3404 return error;
3405 }
3406
3407 /*
3408 * subroutine for SADB_GET and SADB_DUMP.
3409 */
3410 static struct mbuf *
3411 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3412 u_int32_t seq, u_int32_t pid)
3413 {
3414 struct mbuf *result = NULL, *tres = NULL, *m;
3415 int l = 0;
3416 int i;
3417 void *p;
3418 struct sadb_lifetime lt;
3419 int dumporder[] = {
3420 SADB_EXT_SA, SADB_X_EXT_SA2,
3421 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3422 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3423 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3424 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3425 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3426 SADB_X_EXT_NAT_T_TYPE,
3427 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3428 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3429 SADB_X_EXT_NAT_T_FRAG,
3430
3431 };
3432
3433 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3434 if (m == NULL)
3435 goto fail;
3436 result = m;
3437
3438 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3439 m = NULL;
3440 p = NULL;
3441 switch (dumporder[i]) {
3442 case SADB_EXT_SA:
3443 m = key_setsadbsa(sav);
3444 break;
3445
3446 case SADB_X_EXT_SA2:
3447 m = key_setsadbxsa2(sav->sah->saidx.mode,
3448 sav->replay ? sav->replay->count : 0,
3449 sav->sah->saidx.reqid);
3450 break;
3451
3452 case SADB_EXT_ADDRESS_SRC:
3453 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3454 &sav->sah->saidx.src.sa,
3455 FULLMASK, IPSEC_ULPROTO_ANY);
3456 break;
3457
3458 case SADB_EXT_ADDRESS_DST:
3459 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3460 &sav->sah->saidx.dst.sa,
3461 FULLMASK, IPSEC_ULPROTO_ANY);
3462 break;
3463
3464 case SADB_EXT_KEY_AUTH:
3465 if (!sav->key_auth)
3466 continue;
3467 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3468 p = sav->key_auth;
3469 break;
3470
3471 case SADB_EXT_KEY_ENCRYPT:
3472 if (!sav->key_enc)
3473 continue;
3474 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3475 p = sav->key_enc;
3476 break;
3477
3478 case SADB_EXT_LIFETIME_CURRENT:
3479 if (!sav->lft_c)
3480 continue;
3481 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3482 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3483 lt.sadb_lifetime_addtime += time_second - time_uptime;
3484 lt.sadb_lifetime_usetime += time_second - time_uptime;
3485 p = <
3486 break;
3487
3488 case SADB_EXT_LIFETIME_HARD:
3489 if (!sav->lft_h)
3490 continue;
3491 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3492 p = sav->lft_h;
3493 break;
3494
3495 case SADB_EXT_LIFETIME_SOFT:
3496 if (!sav->lft_s)
3497 continue;
3498 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3499 p = sav->lft_s;
3500 break;
3501
3502 case SADB_X_EXT_NAT_T_TYPE:
3503 m = key_setsadbxtype(sav->natt_type);
3504 break;
3505
3506 case SADB_X_EXT_NAT_T_DPORT:
3507 if (sav->natt_type == 0)
3508 continue;
3509 m = key_setsadbxport(
3510 key_portfromsaddr(&sav->sah->saidx.dst),
3511 SADB_X_EXT_NAT_T_DPORT);
3512 break;
3513
3514 case SADB_X_EXT_NAT_T_SPORT:
3515 if (sav->natt_type == 0)
3516 continue;
3517 m = key_setsadbxport(
3518 key_portfromsaddr(&sav->sah->saidx.src),
3519 SADB_X_EXT_NAT_T_SPORT);
3520 break;
3521
3522 case SADB_X_EXT_NAT_T_FRAG:
3523 /* don't send frag info if not set */
3524 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3525 continue;
3526 m = key_setsadbxfrag(sav->esp_frag);
3527 break;
3528
3529 case SADB_X_EXT_NAT_T_OAI:
3530 case SADB_X_EXT_NAT_T_OAR:
3531 continue;
3532
3533 case SADB_EXT_ADDRESS_PROXY:
3534 case SADB_EXT_IDENTITY_SRC:
3535 case SADB_EXT_IDENTITY_DST:
3536 /* XXX: should we brought from SPD ? */
3537 case SADB_EXT_SENSITIVITY:
3538 default:
3539 continue;
3540 }
3541
3542 KASSERT(!(m && p));
3543 if (!m && !p)
3544 goto fail;
3545 if (p && tres) {
3546 M_PREPEND(tres, l, M_DONTWAIT);
3547 if (!tres)
3548 goto fail;
3549 memcpy(mtod(tres, void *), p, l);
3550 continue;
3551 }
3552 if (p) {
3553 m = key_alloc_mbuf(l);
3554 if (!m)
3555 goto fail;
3556 m_copyback(m, 0, l, p);
3557 }
3558
3559 if (tres)
3560 m_cat(m, tres);
3561 tres = m;
3562 }
3563
3564 m_cat(result, tres);
3565 tres = NULL; /* avoid free on error below */
3566
3567 if (result->m_len < sizeof(struct sadb_msg)) {
3568 result = m_pullup(result, sizeof(struct sadb_msg));
3569 if (result == NULL)
3570 goto fail;
3571 }
3572
3573 result->m_pkthdr.len = 0;
3574 for (m = result; m; m = m->m_next)
3575 result->m_pkthdr.len += m->m_len;
3576
3577 mtod(result, struct sadb_msg *)->sadb_msg_len =
3578 PFKEY_UNIT64(result->m_pkthdr.len);
3579
3580 return result;
3581
3582 fail:
3583 m_freem(result);
3584 m_freem(tres);
3585 return NULL;
3586 }
3587
3588
3589 /*
3590 * set a type in sadb_x_nat_t_type
3591 */
3592 static struct mbuf *
3593 key_setsadbxtype(u_int16_t type)
3594 {
3595 struct mbuf *m;
3596 size_t len;
3597 struct sadb_x_nat_t_type *p;
3598
3599 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3600
3601 m = key_alloc_mbuf(len);
3602 if (!m || m->m_next) { /*XXX*/
3603 if (m)
3604 m_freem(m);
3605 return NULL;
3606 }
3607
3608 p = mtod(m, struct sadb_x_nat_t_type *);
3609
3610 memset(p, 0, len);
3611 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3612 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3613 p->sadb_x_nat_t_type_type = type;
3614
3615 return m;
3616 }
3617 /*
3618 * set a port in sadb_x_nat_t_port. port is in network order
3619 */
3620 static struct mbuf *
3621 key_setsadbxport(u_int16_t port, u_int16_t type)
3622 {
3623 struct mbuf *m;
3624 size_t len;
3625 struct sadb_x_nat_t_port *p;
3626
3627 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3628
3629 m = key_alloc_mbuf(len);
3630 if (!m || m->m_next) { /*XXX*/
3631 if (m)
3632 m_freem(m);
3633 return NULL;
3634 }
3635
3636 p = mtod(m, struct sadb_x_nat_t_port *);
3637
3638 memset(p, 0, len);
3639 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3640 p->sadb_x_nat_t_port_exttype = type;
3641 p->sadb_x_nat_t_port_port = port;
3642
3643 return m;
3644 }
3645
3646 /*
3647 * set fragmentation info in sadb_x_nat_t_frag
3648 */
3649 static struct mbuf *
3650 key_setsadbxfrag(u_int16_t flen)
3651 {
3652 struct mbuf *m;
3653 size_t len;
3654 struct sadb_x_nat_t_frag *p;
3655
3656 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3657
3658 m = key_alloc_mbuf(len);
3659 if (!m || m->m_next) { /*XXX*/
3660 if (m)
3661 m_freem(m);
3662 return NULL;
3663 }
3664
3665 p = mtod(m, struct sadb_x_nat_t_frag *);
3666
3667 memset(p, 0, len);
3668 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3669 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3670 p->sadb_x_nat_t_frag_fraglen = flen;
3671
3672 return m;
3673 }
3674
3675 /*
3676 * Get port from sockaddr, port is in network order
3677 */
3678 u_int16_t
3679 key_portfromsaddr(const union sockaddr_union *saddr)
3680 {
3681 u_int16_t port;
3682
3683 switch (saddr->sa.sa_family) {
3684 case AF_INET: {
3685 port = saddr->sin.sin_port;
3686 break;
3687 }
3688 #ifdef INET6
3689 case AF_INET6: {
3690 port = saddr->sin6.sin6_port;
3691 break;
3692 }
3693 #endif
3694 default:
3695 printf("%s: unexpected address family\n", __func__);
3696 port = 0;
3697 break;
3698 }
3699
3700 return port;
3701 }
3702
3703
3704 /*
3705 * Set port is struct sockaddr. port is in network order
3706 */
3707 static void
3708 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3709 {
3710 switch (saddr->sa.sa_family) {
3711 case AF_INET: {
3712 saddr->sin.sin_port = port;
3713 break;
3714 }
3715 #ifdef INET6
3716 case AF_INET6: {
3717 saddr->sin6.sin6_port = port;
3718 break;
3719 }
3720 #endif
3721 default:
3722 printf("%s: unexpected address family %d\n", __func__,
3723 saddr->sa.sa_family);
3724 break;
3725 }
3726
3727 return;
3728 }
3729
3730 /*
3731 * Safety check sa_len
3732 */
3733 static int
3734 key_checksalen(const union sockaddr_union *saddr)
3735 {
3736 switch (saddr->sa.sa_family) {
3737 case AF_INET:
3738 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3739 return -1;
3740 break;
3741 #ifdef INET6
3742 case AF_INET6:
3743 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3744 return -1;
3745 break;
3746 #endif
3747 default:
3748 printf("%s: unexpected sa_family %d\n", __func__,
3749 saddr->sa.sa_family);
3750 return -1;
3751 break;
3752 }
3753 return 0;
3754 }
3755
3756
3757 /*
3758 * set data into sadb_msg.
3759 */
3760 static struct mbuf *
3761 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3762 u_int32_t seq, pid_t pid, u_int16_t reserved)
3763 {
3764 struct mbuf *m;
3765 struct sadb_msg *p;
3766 int len;
3767
3768 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3769
3770 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3771
3772 MGETHDR(m, M_DONTWAIT, MT_DATA);
3773 if (m && len > MHLEN) {
3774 MCLGET(m, M_DONTWAIT);
3775 if ((m->m_flags & M_EXT) == 0) {
3776 m_freem(m);
3777 m = NULL;
3778 }
3779 }
3780 if (!m)
3781 return NULL;
3782 m->m_pkthdr.len = m->m_len = len;
3783 m->m_next = NULL;
3784
3785 p = mtod(m, struct sadb_msg *);
3786
3787 memset(p, 0, len);
3788 p->sadb_msg_version = PF_KEY_V2;
3789 p->sadb_msg_type = type;
3790 p->sadb_msg_errno = 0;
3791 p->sadb_msg_satype = satype;
3792 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3793 p->sadb_msg_reserved = reserved;
3794 p->sadb_msg_seq = seq;
3795 p->sadb_msg_pid = (u_int32_t)pid;
3796
3797 return m;
3798 }
3799
3800 /*
3801 * copy secasvar data into sadb_address.
3802 */
3803 static struct mbuf *
3804 key_setsadbsa(struct secasvar *sav)
3805 {
3806 struct mbuf *m;
3807 struct sadb_sa *p;
3808 int len;
3809
3810 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3811 m = key_alloc_mbuf(len);
3812 if (!m || m->m_next) { /*XXX*/
3813 if (m)
3814 m_freem(m);
3815 return NULL;
3816 }
3817
3818 p = mtod(m, struct sadb_sa *);
3819
3820 memset(p, 0, len);
3821 p->sadb_sa_len = PFKEY_UNIT64(len);
3822 p->sadb_sa_exttype = SADB_EXT_SA;
3823 p->sadb_sa_spi = sav->spi;
3824 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3825 p->sadb_sa_state = sav->state;
3826 p->sadb_sa_auth = sav->alg_auth;
3827 p->sadb_sa_encrypt = sav->alg_enc;
3828 p->sadb_sa_flags = sav->flags;
3829
3830 return m;
3831 }
3832
3833 /*
3834 * set data into sadb_address.
3835 */
3836 static struct mbuf *
3837 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3838 u_int8_t prefixlen, u_int16_t ul_proto)
3839 {
3840 struct mbuf *m;
3841 struct sadb_address *p;
3842 size_t len;
3843
3844 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3845 PFKEY_ALIGN8(saddr->sa_len);
3846 m = key_alloc_mbuf(len);
3847 if (!m || m->m_next) { /*XXX*/
3848 if (m)
3849 m_freem(m);
3850 return NULL;
3851 }
3852
3853 p = mtod(m, struct sadb_address *);
3854
3855 memset(p, 0, len);
3856 p->sadb_address_len = PFKEY_UNIT64(len);
3857 p->sadb_address_exttype = exttype;
3858 p->sadb_address_proto = ul_proto;
3859 if (prefixlen == FULLMASK) {
3860 switch (saddr->sa_family) {
3861 case AF_INET:
3862 prefixlen = sizeof(struct in_addr) << 3;
3863 break;
3864 case AF_INET6:
3865 prefixlen = sizeof(struct in6_addr) << 3;
3866 break;
3867 default:
3868 ; /*XXX*/
3869 }
3870 }
3871 p->sadb_address_prefixlen = prefixlen;
3872 p->sadb_address_reserved = 0;
3873
3874 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3875 saddr, saddr->sa_len);
3876
3877 return m;
3878 }
3879
3880 #if 0
3881 /*
3882 * set data into sadb_ident.
3883 */
3884 static struct mbuf *
3885 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3886 void *string, int stringlen, u_int64_t id)
3887 {
3888 struct mbuf *m;
3889 struct sadb_ident *p;
3890 size_t len;
3891
3892 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3893 m = key_alloc_mbuf(len);
3894 if (!m || m->m_next) { /*XXX*/
3895 if (m)
3896 m_freem(m);
3897 return NULL;
3898 }
3899
3900 p = mtod(m, struct sadb_ident *);
3901
3902 memset(p, 0, len);
3903 p->sadb_ident_len = PFKEY_UNIT64(len);
3904 p->sadb_ident_exttype = exttype;
3905 p->sadb_ident_type = idtype;
3906 p->sadb_ident_reserved = 0;
3907 p->sadb_ident_id = id;
3908
3909 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3910 string, stringlen);
3911
3912 return m;
3913 }
3914 #endif
3915
3916 /*
3917 * set data into sadb_x_sa2.
3918 */
3919 static struct mbuf *
3920 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3921 {
3922 struct mbuf *m;
3923 struct sadb_x_sa2 *p;
3924 size_t len;
3925
3926 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3927 m = key_alloc_mbuf(len);
3928 if (!m || m->m_next) { /*XXX*/
3929 if (m)
3930 m_freem(m);
3931 return NULL;
3932 }
3933
3934 p = mtod(m, struct sadb_x_sa2 *);
3935
3936 memset(p, 0, len);
3937 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3938 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3939 p->sadb_x_sa2_mode = mode;
3940 p->sadb_x_sa2_reserved1 = 0;
3941 p->sadb_x_sa2_reserved2 = 0;
3942 p->sadb_x_sa2_sequence = seq;
3943 p->sadb_x_sa2_reqid = reqid;
3944
3945 return m;
3946 }
3947
3948 /*
3949 * set data into sadb_x_policy
3950 */
3951 static struct mbuf *
3952 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3953 {
3954 struct mbuf *m;
3955 struct sadb_x_policy *p;
3956 size_t len;
3957
3958 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3959 m = key_alloc_mbuf(len);
3960 if (!m || m->m_next) { /*XXX*/
3961 if (m)
3962 m_freem(m);
3963 return NULL;
3964 }
3965
3966 p = mtod(m, struct sadb_x_policy *);
3967
3968 memset(p, 0, len);
3969 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3970 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3971 p->sadb_x_policy_type = type;
3972 p->sadb_x_policy_dir = dir;
3973 p->sadb_x_policy_id = id;
3974
3975 return m;
3976 }
3977
3978 /* %%% utilities */
3979 /*
3980 * copy a buffer into the new buffer allocated.
3981 */
3982 static void *
3983 key_newbuf(const void *src, u_int len)
3984 {
3985 void *new;
3986
3987 new = kmem_alloc(len, KM_SLEEP);
3988 memcpy(new, src, len);
3989
3990 return new;
3991 }
3992
3993 /* compare my own address
3994 * OUT: 1: true, i.e. my address.
3995 * 0: false
3996 */
3997 int
3998 key_ismyaddr(const struct sockaddr *sa)
3999 {
4000 #ifdef INET
4001 const struct sockaddr_in *sin;
4002 const struct in_ifaddr *ia;
4003 int s;
4004 #endif
4005
4006 KASSERT(sa != NULL);
4007
4008 switch (sa->sa_family) {
4009 #ifdef INET
4010 case AF_INET:
4011 sin = (const struct sockaddr_in *)sa;
4012 s = pserialize_read_enter();
4013 IN_ADDRLIST_READER_FOREACH(ia) {
4014 if (sin->sin_family == ia->ia_addr.sin_family &&
4015 sin->sin_len == ia->ia_addr.sin_len &&
4016 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4017 {
4018 pserialize_read_exit(s);
4019 return 1;
4020 }
4021 }
4022 pserialize_read_exit(s);
4023 break;
4024 #endif
4025 #ifdef INET6
4026 case AF_INET6:
4027 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4028 #endif
4029 }
4030
4031 return 0;
4032 }
4033
4034 #ifdef INET6
4035 /*
4036 * compare my own address for IPv6.
4037 * 1: ours
4038 * 0: other
4039 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4040 */
4041 #include <netinet6/in6_var.h>
4042
4043 static int
4044 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4045 {
4046 struct in6_ifaddr *ia;
4047 int s;
4048 struct psref psref;
4049 int bound;
4050 int ours = 1;
4051
4052 bound = curlwp_bind();
4053 s = pserialize_read_enter();
4054 IN6_ADDRLIST_READER_FOREACH(ia) {
4055 bool ingroup;
4056
4057 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4058 (const struct sockaddr *)&ia->ia_addr, 0)) {
4059 pserialize_read_exit(s);
4060 goto ours;
4061 }
4062 ia6_acquire(ia, &psref);
4063 pserialize_read_exit(s);
4064
4065 /*
4066 * XXX Multicast
4067 * XXX why do we care about multlicast here while we don't care
4068 * about IPv4 multicast??
4069 * XXX scope
4070 */
4071 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4072 if (ingroup) {
4073 ia6_release(ia, &psref);
4074 goto ours;
4075 }
4076
4077 s = pserialize_read_enter();
4078 ia6_release(ia, &psref);
4079 }
4080 pserialize_read_exit(s);
4081
4082 /* loopback, just for safety */
4083 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4084 goto ours;
4085
4086 ours = 0;
4087 ours:
4088 curlwp_bindx(bound);
4089
4090 return ours;
4091 }
4092 #endif /*INET6*/
4093
4094 /*
4095 * compare two secasindex structure.
4096 * flag can specify to compare 2 saidxes.
4097 * compare two secasindex structure without both mode and reqid.
4098 * don't compare port.
4099 * IN:
4100 * saidx0: source, it can be in SAD.
4101 * saidx1: object.
4102 * OUT:
4103 * 1 : equal
4104 * 0 : not equal
4105 */
4106 static int
4107 key_saidx_match(
4108 const struct secasindex *saidx0,
4109 const struct secasindex *saidx1,
4110 int flag)
4111 {
4112 int chkport;
4113 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4114
4115 KASSERT(saidx0 != NULL);
4116 KASSERT(saidx1 != NULL);
4117
4118 /* sanity */
4119 if (saidx0->proto != saidx1->proto)
4120 return 0;
4121
4122 if (flag == CMP_EXACTLY) {
4123 if (saidx0->mode != saidx1->mode)
4124 return 0;
4125 if (saidx0->reqid != saidx1->reqid)
4126 return 0;
4127 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4128 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4129 return 0;
4130 } else {
4131
4132 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4133 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4134 /*
4135 * If reqid of SPD is non-zero, unique SA is required.
4136 * The result must be of same reqid in this case.
4137 */
4138 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4139 return 0;
4140 }
4141
4142 if (flag == CMP_MODE_REQID) {
4143 if (saidx0->mode != IPSEC_MODE_ANY &&
4144 saidx0->mode != saidx1->mode)
4145 return 0;
4146 }
4147
4148
4149 sa0src = &saidx0->src.sa;
4150 sa0dst = &saidx0->dst.sa;
4151 sa1src = &saidx1->src.sa;
4152 sa1dst = &saidx1->dst.sa;
4153 /*
4154 * If NAT-T is enabled, check ports for tunnel mode.
4155 * Don't do it for transport mode, as there is no
4156 * port information available in the SP.
4157 * Also don't check ports if they are set to zero
4158 * in the SPD: This means we have a non-generated
4159 * SPD which can't know UDP ports.
4160 */
4161 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4162 chkport = PORT_LOOSE;
4163 else
4164 chkport = PORT_NONE;
4165
4166 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4167 return 0;
4168 }
4169 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4170 return 0;
4171 }
4172 }
4173
4174 return 1;
4175 }
4176
4177 /*
4178 * compare two secindex structure exactly.
4179 * IN:
4180 * spidx0: source, it is often in SPD.
4181 * spidx1: object, it is often from PFKEY message.
4182 * OUT:
4183 * 1 : equal
4184 * 0 : not equal
4185 */
4186 static int
4187 key_spidx_match_exactly(
4188 const struct secpolicyindex *spidx0,
4189 const struct secpolicyindex *spidx1)
4190 {
4191
4192 KASSERT(spidx0 != NULL);
4193 KASSERT(spidx1 != NULL);
4194
4195 /* sanity */
4196 if (spidx0->prefs != spidx1->prefs ||
4197 spidx0->prefd != spidx1->prefd ||
4198 spidx0->ul_proto != spidx1->ul_proto)
4199 return 0;
4200
4201 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4202 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4203 }
4204
4205 /*
4206 * compare two secindex structure with mask.
4207 * IN:
4208 * spidx0: source, it is often in SPD.
4209 * spidx1: object, it is often from IP header.
4210 * OUT:
4211 * 1 : equal
4212 * 0 : not equal
4213 */
4214 static int
4215 key_spidx_match_withmask(
4216 const struct secpolicyindex *spidx0,
4217 const struct secpolicyindex *spidx1)
4218 {
4219
4220 KASSERT(spidx0 != NULL);
4221 KASSERT(spidx1 != NULL);
4222
4223 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4224 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4225 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4226 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4227 return 0;
4228
4229 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4230 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4231 spidx0->ul_proto != spidx1->ul_proto)
4232 return 0;
4233
4234 switch (spidx0->src.sa.sa_family) {
4235 case AF_INET:
4236 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4237 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4238 return 0;
4239 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4240 &spidx1->src.sin.sin_addr, spidx0->prefs))
4241 return 0;
4242 break;
4243 case AF_INET6:
4244 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4245 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4246 return 0;
4247 /*
4248 * scope_id check. if sin6_scope_id is 0, we regard it
4249 * as a wildcard scope, which matches any scope zone ID.
4250 */
4251 if (spidx0->src.sin6.sin6_scope_id &&
4252 spidx1->src.sin6.sin6_scope_id &&
4253 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4254 return 0;
4255 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4256 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4257 return 0;
4258 break;
4259 default:
4260 /* XXX */
4261 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4262 return 0;
4263 break;
4264 }
4265
4266 switch (spidx0->dst.sa.sa_family) {
4267 case AF_INET:
4268 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4269 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4270 return 0;
4271 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4272 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4273 return 0;
4274 break;
4275 case AF_INET6:
4276 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4277 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4278 return 0;
4279 /*
4280 * scope_id check. if sin6_scope_id is 0, we regard it
4281 * as a wildcard scope, which matches any scope zone ID.
4282 */
4283 if (spidx0->src.sin6.sin6_scope_id &&
4284 spidx1->src.sin6.sin6_scope_id &&
4285 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4286 return 0;
4287 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4288 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4289 return 0;
4290 break;
4291 default:
4292 /* XXX */
4293 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4294 return 0;
4295 break;
4296 }
4297
4298 /* XXX Do we check other field ? e.g. flowinfo */
4299
4300 return 1;
4301 }
4302
4303 /* returns 0 on match */
4304 static int
4305 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4306 {
4307 switch (howport) {
4308 case PORT_NONE:
4309 return 0;
4310 case PORT_LOOSE:
4311 if (port1 == 0 || port2 == 0)
4312 return 0;
4313 /*FALLTHROUGH*/
4314 case PORT_STRICT:
4315 if (port1 != port2) {
4316 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4317 "port fail %d != %d\n", port1, port2);
4318 return 1;
4319 }
4320 return 0;
4321 default:
4322 KASSERT(0);
4323 return 1;
4324 }
4325 }
4326
4327 /* returns 1 on match */
4328 static int
4329 key_sockaddr_match(
4330 const struct sockaddr *sa1,
4331 const struct sockaddr *sa2,
4332 int howport)
4333 {
4334 const struct sockaddr_in *sin1, *sin2;
4335 const struct sockaddr_in6 *sin61, *sin62;
4336
4337 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4338 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4339 "fam/len fail %d != %d || %d != %d\n",
4340 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4341 sa2->sa_len);
4342 return 0;
4343 }
4344
4345 switch (sa1->sa_family) {
4346 case AF_INET:
4347 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4348 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4349 "len fail %d != %zu\n",
4350 sa1->sa_len, sizeof(struct sockaddr_in));
4351 return 0;
4352 }
4353 sin1 = (const struct sockaddr_in *)sa1;
4354 sin2 = (const struct sockaddr_in *)sa2;
4355 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4356 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4357 "addr fail %#x != %#x\n",
4358 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4359 return 0;
4360 }
4361 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4362 return 0;
4363 }
4364 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4365 "addr success %#x[%d] == %#x[%d]\n",
4366 sin1->sin_addr.s_addr, sin1->sin_port,
4367 sin2->sin_addr.s_addr, sin2->sin_port);
4368 break;
4369 case AF_INET6:
4370 sin61 = (const struct sockaddr_in6 *)sa1;
4371 sin62 = (const struct sockaddr_in6 *)sa2;
4372 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4373 return 0; /*EINVAL*/
4374
4375 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4376 return 0;
4377 }
4378 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4379 return 0;
4380 }
4381 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4382 return 0;
4383 }
4384 break;
4385 default:
4386 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4387 return 0;
4388 break;
4389 }
4390
4391 return 1;
4392 }
4393
4394 /*
4395 * compare two buffers with mask.
4396 * IN:
4397 * addr1: source
4398 * addr2: object
4399 * bits: Number of bits to compare
4400 * OUT:
4401 * 1 : equal
4402 * 0 : not equal
4403 */
4404 static int
4405 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4406 {
4407 const unsigned char *p1 = a1;
4408 const unsigned char *p2 = a2;
4409
4410 /* XXX: This could be considerably faster if we compare a word
4411 * at a time, but it is complicated on LSB Endian machines */
4412
4413 /* Handle null pointers */
4414 if (p1 == NULL || p2 == NULL)
4415 return (p1 == p2);
4416
4417 while (bits >= 8) {
4418 if (*p1++ != *p2++)
4419 return 0;
4420 bits -= 8;
4421 }
4422
4423 if (bits > 0) {
4424 u_int8_t mask = ~((1<<(8-bits))-1);
4425 if ((*p1 & mask) != (*p2 & mask))
4426 return 0;
4427 }
4428 return 1; /* Match! */
4429 }
4430
4431 static void
4432 key_timehandler_spd(time_t now)
4433 {
4434 u_int dir;
4435 struct secpolicy *sp, *nextsp;
4436
4437 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4438 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4439 if (sp->state == IPSEC_SPSTATE_DEAD) {
4440 key_sp_unlink(sp); /*XXX*/
4441
4442 /* 'sp' dead; continue transfers to
4443 * 'sp = nextsp'
4444 */
4445 continue;
4446 }
4447
4448 if (sp->lifetime == 0 && sp->validtime == 0)
4449 continue;
4450
4451 /* the deletion will occur next time */
4452 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4453 (sp->validtime && now - sp->lastused > sp->validtime)) {
4454 key_sp_dead(sp);
4455 key_spdexpire(sp);
4456 continue;
4457 }
4458 }
4459 }
4460 }
4461
4462 static void
4463 key_timehandler_sad(time_t now)
4464 {
4465 struct secashead *sah, *nextsah;
4466 struct secasvar *sav, *nextsav;
4467
4468 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4469 /* if sah has been dead, then delete it and process next sah. */
4470 if (sah->state == SADB_SASTATE_DEAD) {
4471 key_delsah(sah);
4472 continue;
4473 }
4474
4475 /* if LARVAL entry doesn't become MATURE, delete it. */
4476 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4477 chain, nextsav) {
4478 if (now - sav->created > key_larval_lifetime) {
4479 KEY_FREESAV(&sav);
4480 }
4481 }
4482
4483 /*
4484 * check MATURE entry to start to send expire message
4485 * whether or not.
4486 */
4487 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4488 chain, nextsav) {
4489 /* we don't need to check. */
4490 if (sav->lft_s == NULL)
4491 continue;
4492
4493 /* sanity check */
4494 if (sav->lft_c == NULL) {
4495 IPSECLOG(LOG_DEBUG,
4496 "There is no CURRENT time, why?\n");
4497 continue;
4498 }
4499
4500 /* check SOFT lifetime */
4501 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4502 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4503 /*
4504 * check SA to be used whether or not.
4505 * when SA hasn't been used, delete it.
4506 */
4507 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4508 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4509 KEY_FREESAV(&sav);
4510 } else {
4511 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4512 /*
4513 * XXX If we keep to send expire
4514 * message in the status of
4515 * DYING. Do remove below code.
4516 */
4517 key_expire(sav);
4518 }
4519 }
4520 /* check SOFT lifetime by bytes */
4521 /*
4522 * XXX I don't know the way to delete this SA
4523 * when new SA is installed. Caution when it's
4524 * installed too big lifetime by time.
4525 */
4526 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4527 sav->lft_s->sadb_lifetime_bytes <
4528 sav->lft_c->sadb_lifetime_bytes) {
4529
4530 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4531 /*
4532 * XXX If we keep to send expire
4533 * message in the status of
4534 * DYING. Do remove below code.
4535 */
4536 key_expire(sav);
4537 }
4538 }
4539
4540 /* check DYING entry to change status to DEAD. */
4541 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4542 chain, nextsav) {
4543 /* we don't need to check. */
4544 if (sav->lft_h == NULL)
4545 continue;
4546
4547 /* sanity check */
4548 if (sav->lft_c == NULL) {
4549 IPSECLOG(LOG_DEBUG,
4550 "There is no CURRENT time, why?\n");
4551 continue;
4552 }
4553
4554 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4555 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4556 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4557 KEY_FREESAV(&sav);
4558 }
4559 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4560 else if (sav->lft_s != NULL
4561 && sav->lft_s->sadb_lifetime_addtime != 0
4562 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4563 /*
4564 * XXX: should be checked to be
4565 * installed the valid SA.
4566 */
4567
4568 /*
4569 * If there is no SA then sending
4570 * expire message.
4571 */
4572 key_expire(sav);
4573 }
4574 #endif
4575 /* check HARD lifetime by bytes */
4576 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4577 sav->lft_h->sadb_lifetime_bytes <
4578 sav->lft_c->sadb_lifetime_bytes) {
4579 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4580 KEY_FREESAV(&sav);
4581 }
4582 }
4583
4584 /* delete entry in DEAD */
4585 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4586 chain, nextsav) {
4587 /* sanity check */
4588 if (sav->state != SADB_SASTATE_DEAD) {
4589 IPSECLOG(LOG_DEBUG,
4590 "invalid sav->state (queue: %d SA: %d): "
4591 "kill it anyway\n",
4592 SADB_SASTATE_DEAD, sav->state);
4593 }
4594
4595 /*
4596 * do not call key_freesav() here.
4597 * sav should already be freed, and sav->refcnt
4598 * shows other references to sav
4599 * (such as from SPD).
4600 */
4601 }
4602 }
4603 }
4604
4605 static void
4606 key_timehandler_acq(time_t now)
4607 {
4608 #ifndef IPSEC_NONBLOCK_ACQUIRE
4609 struct secacq *acq, *nextacq;
4610
4611 restart:
4612 mutex_enter(&key_mtx);
4613 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4614 if (now - acq->created > key_blockacq_lifetime) {
4615 LIST_REMOVE(acq, chain);
4616 mutex_exit(&key_mtx);
4617 kmem_free(acq, sizeof(*acq));
4618 goto restart;
4619 }
4620 }
4621 mutex_exit(&key_mtx);
4622 #endif
4623 }
4624
4625 static void
4626 key_timehandler_spacq(time_t now)
4627 {
4628 #ifdef notyet
4629 struct secspacq *acq, *nextacq;
4630
4631 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4632 if (now - acq->created > key_blockacq_lifetime) {
4633 KASSERT(__LIST_CHAINED(acq));
4634 LIST_REMOVE(acq, chain);
4635 kmem_free(acq, sizeof(*acq));
4636 }
4637 }
4638 #endif
4639 }
4640
4641 /*
4642 * time handler.
4643 * scanning SPD and SAD to check status for each entries,
4644 * and do to remove or to expire.
4645 */
4646 static void
4647 key_timehandler_work(struct work *wk, void *arg)
4648 {
4649 int s;
4650 time_t now = time_uptime;
4651
4652 s = splsoftnet();
4653 mutex_enter(softnet_lock);
4654
4655 key_timehandler_spd(now);
4656 key_timehandler_sad(now);
4657 key_timehandler_acq(now);
4658 key_timehandler_spacq(now);
4659
4660 /* do exchange to tick time !! */
4661 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4662
4663 mutex_exit(softnet_lock);
4664 splx(s);
4665 return;
4666 }
4667
4668 static void
4669 key_timehandler(void *arg)
4670 {
4671
4672 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4673 }
4674
4675 u_long
4676 key_random(void)
4677 {
4678 u_long value;
4679
4680 key_randomfill(&value, sizeof(value));
4681 return value;
4682 }
4683
4684 void
4685 key_randomfill(void *p, size_t l)
4686 {
4687
4688 cprng_fast(p, l);
4689 }
4690
4691 /*
4692 * map SADB_SATYPE_* to IPPROTO_*.
4693 * if satype == SADB_SATYPE then satype is mapped to ~0.
4694 * OUT:
4695 * 0: invalid satype.
4696 */
4697 static u_int16_t
4698 key_satype2proto(u_int8_t satype)
4699 {
4700 switch (satype) {
4701 case SADB_SATYPE_UNSPEC:
4702 return IPSEC_PROTO_ANY;
4703 case SADB_SATYPE_AH:
4704 return IPPROTO_AH;
4705 case SADB_SATYPE_ESP:
4706 return IPPROTO_ESP;
4707 case SADB_X_SATYPE_IPCOMP:
4708 return IPPROTO_IPCOMP;
4709 case SADB_X_SATYPE_TCPSIGNATURE:
4710 return IPPROTO_TCP;
4711 default:
4712 return 0;
4713 }
4714 /* NOTREACHED */
4715 }
4716
4717 /*
4718 * map IPPROTO_* to SADB_SATYPE_*
4719 * OUT:
4720 * 0: invalid protocol type.
4721 */
4722 static u_int8_t
4723 key_proto2satype(u_int16_t proto)
4724 {
4725 switch (proto) {
4726 case IPPROTO_AH:
4727 return SADB_SATYPE_AH;
4728 case IPPROTO_ESP:
4729 return SADB_SATYPE_ESP;
4730 case IPPROTO_IPCOMP:
4731 return SADB_X_SATYPE_IPCOMP;
4732 case IPPROTO_TCP:
4733 return SADB_X_SATYPE_TCPSIGNATURE;
4734 default:
4735 return 0;
4736 }
4737 /* NOTREACHED */
4738 }
4739
4740 static int
4741 key_setsecasidx(int proto, int mode, int reqid,
4742 const struct sockaddr *src, const struct sockaddr *dst,
4743 struct secasindex * saidx)
4744 {
4745 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4746 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4747
4748 /* sa len safety check */
4749 if (key_checksalen(src_u) != 0)
4750 return -1;
4751 if (key_checksalen(dst_u) != 0)
4752 return -1;
4753
4754 memset(saidx, 0, sizeof(*saidx));
4755 saidx->proto = proto;
4756 saidx->mode = mode;
4757 saidx->reqid = reqid;
4758 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4759 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4760
4761 key_porttosaddr(&((saidx)->src), 0);
4762 key_porttosaddr(&((saidx)->dst), 0);
4763 return 0;
4764 }
4765
4766 static void
4767 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4768 const struct sadb_msghdr *mhp)
4769 {
4770 const struct sadb_address *src0, *dst0;
4771 const struct sockaddr *src, *dst;
4772 const struct sadb_x_policy *xpl0;
4773
4774 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4775 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4776 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4777 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4778 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4779
4780 memset(spidx, 0, sizeof(*spidx));
4781 spidx->dir = xpl0->sadb_x_policy_dir;
4782 spidx->prefs = src0->sadb_address_prefixlen;
4783 spidx->prefd = dst0->sadb_address_prefixlen;
4784 spidx->ul_proto = src0->sadb_address_proto;
4785 /* XXX boundary check against sa_len */
4786 memcpy(&spidx->src, src, src->sa_len);
4787 memcpy(&spidx->dst, dst, dst->sa_len);
4788 }
4789
4790 /* %%% PF_KEY */
4791 /*
4792 * SADB_GETSPI processing is to receive
4793 * <base, (SA2), src address, dst address, (SPI range)>
4794 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4795 * tree with the status of LARVAL, and send
4796 * <base, SA(*), address(SD)>
4797 * to the IKMPd.
4798 *
4799 * IN: mhp: pointer to the pointer to each header.
4800 * OUT: NULL if fail.
4801 * other if success, return pointer to the message to send.
4802 */
4803 static int
4804 key_api_getspi(struct socket *so, struct mbuf *m,
4805 const struct sadb_msghdr *mhp)
4806 {
4807 const struct sockaddr *src, *dst;
4808 struct secasindex saidx;
4809 struct secashead *newsah;
4810 struct secasvar *newsav;
4811 u_int8_t proto;
4812 u_int32_t spi;
4813 u_int8_t mode;
4814 u_int16_t reqid;
4815 int error;
4816
4817 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4818 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4819 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4820 return key_senderror(so, m, EINVAL);
4821 }
4822 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4823 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4824 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4825 return key_senderror(so, m, EINVAL);
4826 }
4827 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4828 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4829 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4830 } else {
4831 mode = IPSEC_MODE_ANY;
4832 reqid = 0;
4833 }
4834
4835 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4836 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4837
4838 /* map satype to proto */
4839 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4840 if (proto == 0) {
4841 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4842 return key_senderror(so, m, EINVAL);
4843 }
4844
4845
4846 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4847 if (error != 0)
4848 return key_senderror(so, m, EINVAL);
4849
4850 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4851 if (error != 0)
4852 return key_senderror(so, m, EINVAL);
4853
4854 /* SPI allocation */
4855 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4856 &saidx);
4857 if (spi == 0)
4858 return key_senderror(so, m, EINVAL);
4859
4860 /* get a SA index */
4861 newsah = key_getsah(&saidx, CMP_REQID);
4862 if (newsah == NULL) {
4863 /* create a new SA index */
4864 newsah = key_newsah(&saidx);
4865 if (newsah == NULL) {
4866 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4867 return key_senderror(so, m, ENOBUFS);
4868 }
4869 }
4870
4871 /* get a new SA */
4872 /* XXX rewrite */
4873 newsav = KEY_NEWSAV(m, mhp, &error);
4874 if (newsav == NULL) {
4875 /* XXX don't free new SA index allocated in above. */
4876 return key_senderror(so, m, error);
4877 }
4878
4879 /* set spi */
4880 newsav->spi = htonl(spi);
4881
4882 /* add to satree */
4883 newsav->refcnt = 1;
4884 newsav->sah = newsah;
4885 newsav->state = SADB_SASTATE_LARVAL;
4886 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_LARVAL], newsav,
4887 secasvar, chain);
4888
4889 #ifndef IPSEC_NONBLOCK_ACQUIRE
4890 /* delete the entry in acqtree */
4891 if (mhp->msg->sadb_msg_seq != 0) {
4892 struct secacq *acq;
4893 mutex_enter(&key_mtx);
4894 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4895 if (acq != NULL) {
4896 /* reset counter in order to deletion by timehandler. */
4897 acq->created = time_uptime;
4898 acq->count = 0;
4899 }
4900 mutex_exit(&key_mtx);
4901 }
4902 #endif
4903
4904 {
4905 struct mbuf *n, *nn;
4906 struct sadb_sa *m_sa;
4907 int off, len;
4908
4909 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4910 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4911
4912 /* create new sadb_msg to reply. */
4913 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4914 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4915
4916 MGETHDR(n, M_DONTWAIT, MT_DATA);
4917 if (len > MHLEN) {
4918 MCLGET(n, M_DONTWAIT);
4919 if ((n->m_flags & M_EXT) == 0) {
4920 m_freem(n);
4921 n = NULL;
4922 }
4923 }
4924 if (!n)
4925 return key_senderror(so, m, ENOBUFS);
4926
4927 n->m_len = len;
4928 n->m_next = NULL;
4929 off = 0;
4930
4931 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4932 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4933
4934 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4935 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4936 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4937 m_sa->sadb_sa_spi = htonl(spi);
4938 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4939
4940 KASSERTMSG(off == len, "length inconsistency");
4941
4942 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4943 SADB_EXT_ADDRESS_DST);
4944 if (!n->m_next) {
4945 m_freem(n);
4946 return key_senderror(so, m, ENOBUFS);
4947 }
4948
4949 if (n->m_len < sizeof(struct sadb_msg)) {
4950 n = m_pullup(n, sizeof(struct sadb_msg));
4951 if (n == NULL)
4952 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4953 }
4954
4955 n->m_pkthdr.len = 0;
4956 for (nn = n; nn; nn = nn->m_next)
4957 n->m_pkthdr.len += nn->m_len;
4958
4959 key_fill_replymsg(n, newsav->seq);
4960
4961 m_freem(m);
4962 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4963 }
4964 }
4965
4966 /*
4967 * allocating new SPI
4968 * called by key_api_getspi().
4969 * OUT:
4970 * 0: failure.
4971 * others: success.
4972 */
4973 static u_int32_t
4974 key_do_getnewspi(const struct sadb_spirange *spirange,
4975 const struct secasindex *saidx)
4976 {
4977 u_int32_t newspi;
4978 u_int32_t spmin, spmax;
4979 int count = key_spi_trycnt;
4980
4981 /* set spi range to allocate */
4982 if (spirange != NULL) {
4983 spmin = spirange->sadb_spirange_min;
4984 spmax = spirange->sadb_spirange_max;
4985 } else {
4986 spmin = key_spi_minval;
4987 spmax = key_spi_maxval;
4988 }
4989 /* IPCOMP needs 2-byte SPI */
4990 if (saidx->proto == IPPROTO_IPCOMP) {
4991 u_int32_t t;
4992 if (spmin >= 0x10000)
4993 spmin = 0xffff;
4994 if (spmax >= 0x10000)
4995 spmax = 0xffff;
4996 if (spmin > spmax) {
4997 t = spmin; spmin = spmax; spmax = t;
4998 }
4999 }
5000
5001 if (spmin == spmax) {
5002 if (key_checkspidup(saidx, htonl(spmin))) {
5003 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5004 return 0;
5005 }
5006
5007 count--; /* taking one cost. */
5008 newspi = spmin;
5009
5010 } else {
5011
5012 /* init SPI */
5013 newspi = 0;
5014
5015 /* when requesting to allocate spi ranged */
5016 while (count--) {
5017 /* generate pseudo-random SPI value ranged. */
5018 newspi = spmin + (key_random() % (spmax - spmin + 1));
5019
5020 if (!key_checkspidup(saidx, htonl(newspi)))
5021 break;
5022 }
5023
5024 if (count == 0 || newspi == 0) {
5025 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5026 return 0;
5027 }
5028 }
5029
5030 /* statistics */
5031 keystat.getspi_count =
5032 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5033
5034 return newspi;
5035 }
5036
5037 static int
5038 key_handle_natt_info(struct secasvar *sav,
5039 const struct sadb_msghdr *mhp)
5040 {
5041 const char *msg = "?" ;
5042 struct sadb_x_nat_t_type *type;
5043 struct sadb_x_nat_t_port *sport, *dport;
5044 struct sadb_address *iaddr, *raddr;
5045 struct sadb_x_nat_t_frag *frag;
5046
5047 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5048 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5049 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5050 return 0;
5051
5052 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5053 msg = "TYPE";
5054 goto bad;
5055 }
5056
5057 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5058 msg = "SPORT";
5059 goto bad;
5060 }
5061
5062 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5063 msg = "DPORT";
5064 goto bad;
5065 }
5066
5067 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5068 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5069 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5070 msg = "OAI";
5071 goto bad;
5072 }
5073 }
5074
5075 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5076 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5077 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5078 msg = "OAR";
5079 goto bad;
5080 }
5081 }
5082
5083 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5084 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5085 msg = "FRAG";
5086 goto bad;
5087 }
5088 }
5089
5090 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5091 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5092 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5093 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5094 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5095 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5096
5097 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5098 type->sadb_x_nat_t_type_type,
5099 ntohs(sport->sadb_x_nat_t_port_port),
5100 ntohs(dport->sadb_x_nat_t_port_port));
5101
5102 sav->natt_type = type->sadb_x_nat_t_type_type;
5103 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5104 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5105 if (frag)
5106 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5107 else
5108 sav->esp_frag = IP_MAXPACKET;
5109
5110 return 0;
5111 bad:
5112 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5113 __USE(msg);
5114 return -1;
5115 }
5116
5117 /* Just update the IPSEC_NAT_T ports if present */
5118 static int
5119 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5120 const struct sadb_msghdr *mhp)
5121 {
5122 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5123 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5124 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5125 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5126
5127 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5128 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5129 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5130 struct sadb_x_nat_t_type *type;
5131 struct sadb_x_nat_t_port *sport;
5132 struct sadb_x_nat_t_port *dport;
5133
5134 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5135 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5136 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5137 IPSECLOG(LOG_DEBUG, "invalid message\n");
5138 return -1;
5139 }
5140
5141 type = (struct sadb_x_nat_t_type *)
5142 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5143 sport = (struct sadb_x_nat_t_port *)
5144 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5145 dport = (struct sadb_x_nat_t_port *)
5146 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5147
5148 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5149 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5150
5151 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5152 type->sadb_x_nat_t_type_type,
5153 ntohs(sport->sadb_x_nat_t_port_port),
5154 ntohs(dport->sadb_x_nat_t_port_port));
5155 }
5156
5157 return 0;
5158 }
5159
5160
5161 /*
5162 * SADB_UPDATE processing
5163 * receive
5164 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5165 * key(AE), (identity(SD),) (sensitivity)>
5166 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5167 * and send
5168 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5169 * (identity(SD),) (sensitivity)>
5170 * to the ikmpd.
5171 *
5172 * m will always be freed.
5173 */
5174 static int
5175 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5176 {
5177 struct sadb_sa *sa0;
5178 const struct sockaddr *src, *dst;
5179 struct secasindex saidx;
5180 struct secashead *sah;
5181 struct secasvar *sav, *newsav;
5182 u_int16_t proto;
5183 u_int8_t mode;
5184 u_int16_t reqid;
5185 int error;
5186
5187 /* map satype to proto */
5188 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5189 if (proto == 0) {
5190 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5191 return key_senderror(so, m, EINVAL);
5192 }
5193
5194 if (mhp->ext[SADB_EXT_SA] == NULL ||
5195 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5196 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5197 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5198 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5199 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5200 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5201 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5202 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5203 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5204 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5205 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5206 return key_senderror(so, m, EINVAL);
5207 }
5208 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5209 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5210 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5211 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5212 return key_senderror(so, m, EINVAL);
5213 }
5214 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5215 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5216 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5217 } else {
5218 mode = IPSEC_MODE_ANY;
5219 reqid = 0;
5220 }
5221 /* XXX boundary checking for other extensions */
5222
5223 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5224 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5225 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5226
5227 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5228 if (error != 0)
5229 return key_senderror(so, m, EINVAL);
5230
5231 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5232 if (error != 0)
5233 return key_senderror(so, m, EINVAL);
5234
5235 /* get a SA header */
5236 sah = key_getsah(&saidx, CMP_REQID);
5237 if (sah == NULL) {
5238 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5239 return key_senderror(so, m, ENOENT);
5240 }
5241
5242 /* set spidx if there */
5243 /* XXX rewrite */
5244 error = key_setident(sah, m, mhp);
5245 if (error)
5246 return key_senderror(so, m, error);
5247
5248 /* find a SA with sequence number. */
5249 #ifdef IPSEC_DOSEQCHECK
5250 if (mhp->msg->sadb_msg_seq != 0) {
5251 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5252 if (sav == NULL) {
5253 IPSECLOG(LOG_DEBUG,
5254 "no larval SA with sequence %u exists.\n",
5255 mhp->msg->sadb_msg_seq);
5256 return key_senderror(so, m, ENOENT);
5257 }
5258 }
5259 #else
5260 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5261 if (sav == NULL) {
5262 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5263 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5264 return key_senderror(so, m, EINVAL);
5265 }
5266 #endif
5267
5268 /* validity check */
5269 if (sav->sah->saidx.proto != proto) {
5270 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5271 sav->sah->saidx.proto, proto);
5272 error = EINVAL;
5273 goto error;
5274 }
5275 #ifdef IPSEC_DOSEQCHECK
5276 if (sav->spi != sa0->sadb_sa_spi) {
5277 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5278 (u_int32_t)ntohl(sav->spi),
5279 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5280 error = EINVAL;
5281 goto error;
5282 }
5283 #endif
5284 if (sav->pid != mhp->msg->sadb_msg_pid) {
5285 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5286 sav->pid, mhp->msg->sadb_msg_pid);
5287 error = EINVAL;
5288 goto error;
5289 }
5290
5291 /*
5292 * Allocate a new SA instead of modifying the existing SA directly
5293 * to avoid race conditions.
5294 */
5295 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5296
5297 /* copy sav values */
5298 newsav->spi = sav->spi;
5299 newsav->seq = sav->seq;
5300 newsav->created = sav->created;
5301 newsav->pid = sav->pid;
5302 newsav->sah = sav->sah;
5303
5304 error = key_setsaval(newsav, m, mhp);
5305 if (error) {
5306 key_delsav(newsav);
5307 goto error;
5308 }
5309
5310 error = key_handle_natt_info(newsav, mhp);
5311 if (error != 0) {
5312 key_delsav(newsav);
5313 goto error;
5314 }
5315
5316 error = key_init_xform(newsav);
5317 if (error != 0) {
5318 key_delsav(newsav);
5319 goto error;
5320 }
5321
5322 /* add to satree */
5323 newsav->refcnt = 1;
5324 newsav->state = SADB_SASTATE_MATURE;
5325 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_MATURE], newsav,
5326 secasvar, chain);
5327
5328 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5329 KEY_FREESAV(&sav);
5330 KEY_FREESAV(&sav);
5331
5332 {
5333 struct mbuf *n;
5334
5335 /* set msg buf from mhp */
5336 n = key_getmsgbuf_x1(m, mhp);
5337 if (n == NULL) {
5338 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5339 return key_senderror(so, m, ENOBUFS);
5340 }
5341
5342 m_freem(m);
5343 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5344 }
5345 error:
5346 KEY_FREESAV(&sav);
5347 return key_senderror(so, m, error);
5348 }
5349
5350 /*
5351 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5352 * only called by key_api_update().
5353 * OUT:
5354 * NULL : not found
5355 * others : found, pointer to a SA.
5356 */
5357 #ifdef IPSEC_DOSEQCHECK
5358 static struct secasvar *
5359 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5360 {
5361 struct secasvar *sav;
5362 u_int state;
5363
5364 state = SADB_SASTATE_LARVAL;
5365
5366 /* search SAD with sequence number ? */
5367 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5368
5369 KEY_CHKSASTATE(state, sav->state);
5370
5371 if (sav->seq == seq) {
5372 SA_ADDREF(sav);
5373 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5374 "DP cause refcnt++:%d SA:%p\n",
5375 sav->refcnt, sav);
5376 return sav;
5377 }
5378 }
5379
5380 return NULL;
5381 }
5382 #endif
5383
5384 /*
5385 * SADB_ADD processing
5386 * add an entry to SA database, when received
5387 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5388 * key(AE), (identity(SD),) (sensitivity)>
5389 * from the ikmpd,
5390 * and send
5391 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5392 * (identity(SD),) (sensitivity)>
5393 * to the ikmpd.
5394 *
5395 * IGNORE identity and sensitivity messages.
5396 *
5397 * m will always be freed.
5398 */
5399 static int
5400 key_api_add(struct socket *so, struct mbuf *m,
5401 const struct sadb_msghdr *mhp)
5402 {
5403 struct sadb_sa *sa0;
5404 const struct sockaddr *src, *dst;
5405 struct secasindex saidx;
5406 struct secashead *newsah;
5407 struct secasvar *newsav;
5408 u_int16_t proto;
5409 u_int8_t mode;
5410 u_int16_t reqid;
5411 int error;
5412
5413 /* map satype to proto */
5414 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5415 if (proto == 0) {
5416 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5417 return key_senderror(so, m, EINVAL);
5418 }
5419
5420 if (mhp->ext[SADB_EXT_SA] == NULL ||
5421 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5422 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5423 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5424 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5425 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5426 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5427 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5428 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5429 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5430 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5431 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5432 return key_senderror(so, m, EINVAL);
5433 }
5434 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5435 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5436 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5437 /* XXX need more */
5438 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5439 return key_senderror(so, m, EINVAL);
5440 }
5441 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5442 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5443 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5444 } else {
5445 mode = IPSEC_MODE_ANY;
5446 reqid = 0;
5447 }
5448
5449 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5450 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5451 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5452
5453 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5454 if (error != 0)
5455 return key_senderror(so, m, EINVAL);
5456
5457 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5458 if (error != 0)
5459 return key_senderror(so, m, EINVAL);
5460
5461 /* get a SA header */
5462 newsah = key_getsah(&saidx, CMP_REQID);
5463 if (newsah == NULL) {
5464 /* create a new SA header */
5465 newsah = key_newsah(&saidx);
5466 if (newsah == NULL) {
5467 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5468 return key_senderror(so, m, ENOBUFS);
5469 }
5470 }
5471
5472 /* set spidx if there */
5473 /* XXX rewrite */
5474 error = key_setident(newsah, m, mhp);
5475 if (error) {
5476 return key_senderror(so, m, error);
5477 }
5478
5479 {
5480 struct secasvar *sav;
5481
5482 /* We can create new SA only if SPI is differenct. */
5483 sav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5484 if (sav != NULL) {
5485 KEY_FREESAV(&sav);
5486 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5487 return key_senderror(so, m, EEXIST);
5488 }
5489 }
5490
5491 /* create new SA entry. */
5492 newsav = KEY_NEWSAV(m, mhp, &error);
5493 if (newsav == NULL) {
5494 return key_senderror(so, m, error);
5495 }
5496 newsav->sah = newsah;
5497
5498 error = key_handle_natt_info(newsav, mhp);
5499 if (error != 0) {
5500 key_delsav(newsav);
5501 return key_senderror(so, m, EINVAL);
5502 }
5503
5504 error = key_init_xform(newsav);
5505 if (error != 0) {
5506 key_delsav(newsav);
5507 return key_senderror(so, m, error);
5508 }
5509
5510 /* add to satree */
5511 newsav->refcnt = 1;
5512 newsav->state = SADB_SASTATE_MATURE;
5513 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], newsav,
5514 secasvar, chain);
5515
5516 /*
5517 * don't call key_freesav() here, as we would like to keep the SA
5518 * in the database on success.
5519 */
5520
5521 {
5522 struct mbuf *n;
5523
5524 /* set msg buf from mhp */
5525 n = key_getmsgbuf_x1(m, mhp);
5526 if (n == NULL) {
5527 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5528 return key_senderror(so, m, ENOBUFS);
5529 }
5530
5531 m_freem(m);
5532 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5533 }
5534 }
5535
5536 /* m is retained */
5537 static int
5538 key_setident(struct secashead *sah, struct mbuf *m,
5539 const struct sadb_msghdr *mhp)
5540 {
5541 const struct sadb_ident *idsrc, *iddst;
5542 int idsrclen, iddstlen;
5543
5544 KASSERT(!cpu_softintr_p());
5545 KASSERT(sah != NULL);
5546 KASSERT(m != NULL);
5547 KASSERT(mhp != NULL);
5548 KASSERT(mhp->msg != NULL);
5549
5550 /*
5551 * Can be called with an existing sah from key_api_update().
5552 */
5553 if (sah->idents != NULL) {
5554 kmem_free(sah->idents, sah->idents_len);
5555 sah->idents = NULL;
5556 sah->idents_len = 0;
5557 }
5558 if (sah->identd != NULL) {
5559 kmem_free(sah->identd, sah->identd_len);
5560 sah->identd = NULL;
5561 sah->identd_len = 0;
5562 }
5563
5564 /* don't make buffer if not there */
5565 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5566 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5567 sah->idents = NULL;
5568 sah->identd = NULL;
5569 return 0;
5570 }
5571
5572 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5573 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5574 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5575 return EINVAL;
5576 }
5577
5578 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5579 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5580 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5581 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5582
5583 /* validity check */
5584 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5585 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5586 return EINVAL;
5587 }
5588
5589 switch (idsrc->sadb_ident_type) {
5590 case SADB_IDENTTYPE_PREFIX:
5591 case SADB_IDENTTYPE_FQDN:
5592 case SADB_IDENTTYPE_USERFQDN:
5593 default:
5594 /* XXX do nothing */
5595 sah->idents = NULL;
5596 sah->identd = NULL;
5597 return 0;
5598 }
5599
5600 /* make structure */
5601 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5602 sah->idents_len = idsrclen;
5603 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5604 sah->identd_len = iddstlen;
5605 memcpy(sah->idents, idsrc, idsrclen);
5606 memcpy(sah->identd, iddst, iddstlen);
5607
5608 return 0;
5609 }
5610
5611 /*
5612 * m will not be freed on return.
5613 * it is caller's responsibility to free the result.
5614 */
5615 static struct mbuf *
5616 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5617 {
5618 struct mbuf *n;
5619
5620 KASSERT(m != NULL);
5621 KASSERT(mhp != NULL);
5622 KASSERT(mhp->msg != NULL);
5623
5624 /* create new sadb_msg to reply. */
5625 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5626 SADB_EXT_SA, SADB_X_EXT_SA2,
5627 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5628 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5629 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5630 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5631 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5632 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5633 if (!n)
5634 return NULL;
5635
5636 if (n->m_len < sizeof(struct sadb_msg)) {
5637 n = m_pullup(n, sizeof(struct sadb_msg));
5638 if (n == NULL)
5639 return NULL;
5640 }
5641 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5642 mtod(n, struct sadb_msg *)->sadb_msg_len =
5643 PFKEY_UNIT64(n->m_pkthdr.len);
5644
5645 return n;
5646 }
5647
5648 static int key_delete_all (struct socket *, struct mbuf *,
5649 const struct sadb_msghdr *, u_int16_t);
5650
5651 /*
5652 * SADB_DELETE processing
5653 * receive
5654 * <base, SA(*), address(SD)>
5655 * from the ikmpd, and set SADB_SASTATE_DEAD,
5656 * and send,
5657 * <base, SA(*), address(SD)>
5658 * to the ikmpd.
5659 *
5660 * m will always be freed.
5661 */
5662 static int
5663 key_api_delete(struct socket *so, struct mbuf *m,
5664 const struct sadb_msghdr *mhp)
5665 {
5666 struct sadb_sa *sa0;
5667 const struct sockaddr *src, *dst;
5668 struct secasindex saidx;
5669 struct secashead *sah;
5670 struct secasvar *sav = NULL;
5671 u_int16_t proto;
5672 int error;
5673
5674 /* map satype to proto */
5675 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5676 if (proto == 0) {
5677 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5678 return key_senderror(so, m, EINVAL);
5679 }
5680
5681 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5682 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5683 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5684 return key_senderror(so, m, EINVAL);
5685 }
5686
5687 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5688 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5689 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5690 return key_senderror(so, m, EINVAL);
5691 }
5692
5693 if (mhp->ext[SADB_EXT_SA] == NULL) {
5694 /*
5695 * Caller wants us to delete all non-LARVAL SAs
5696 * that match the src/dst. This is used during
5697 * IKE INITIAL-CONTACT.
5698 */
5699 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5700 return key_delete_all(so, m, mhp, proto);
5701 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5702 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5703 return key_senderror(so, m, EINVAL);
5704 }
5705
5706 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5707 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5708 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5709
5710 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5711 if (error != 0)
5712 return key_senderror(so, m, EINVAL);
5713
5714 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5715 if (error != 0)
5716 return key_senderror(so, m, EINVAL);
5717
5718 /* get a SA header */
5719 sah = key_getsah(&saidx, CMP_HEAD);
5720 if (sah != NULL) {
5721 /* get a SA with SPI. */
5722 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5723 }
5724
5725 if (sav == NULL) {
5726 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5727 return key_senderror(so, m, ENOENT);
5728 }
5729
5730 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5731 KEY_FREESAV(&sav);
5732 KEY_FREESAV(&sav);
5733
5734 {
5735 struct mbuf *n;
5736
5737 /* create new sadb_msg to reply. */
5738 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5739 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5740 if (!n)
5741 return key_senderror(so, m, ENOBUFS);
5742
5743 n = key_fill_replymsg(n, 0);
5744 if (n == NULL)
5745 return key_senderror(so, m, ENOBUFS);
5746
5747 m_freem(m);
5748 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5749 }
5750 }
5751
5752 /*
5753 * delete all SAs for src/dst. Called from key_api_delete().
5754 */
5755 static int
5756 key_delete_all(struct socket *so, struct mbuf *m,
5757 const struct sadb_msghdr *mhp, u_int16_t proto)
5758 {
5759 const struct sockaddr *src, *dst;
5760 struct secasindex saidx;
5761 struct secashead *sah;
5762 struct secasvar *sav, *nextsav;
5763 u_int state;
5764 int error;
5765
5766 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5767 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5768
5769 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5770 if (error != 0)
5771 return key_senderror(so, m, EINVAL);
5772
5773 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5774 if (error != 0)
5775 return key_senderror(so, m, EINVAL);
5776
5777 sah = key_getsah(&saidx, CMP_HEAD);
5778 if (sah != NULL) {
5779 /* Delete all non-LARVAL SAs. */
5780 SASTATE_ALIVE_FOREACH(state) {
5781 if (state == SADB_SASTATE_LARVAL)
5782 continue;
5783 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5784 nextsav) {
5785 /* sanity check */
5786 if (sav->state != state) {
5787 IPSECLOG(LOG_DEBUG,
5788 "invalid sav->state "
5789 "(queue: %d SA: %d)\n",
5790 state, sav->state);
5791 continue;
5792 }
5793
5794 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5795 KEY_FREESAV(&sav);
5796 }
5797 }
5798 }
5799 {
5800 struct mbuf *n;
5801
5802 /* create new sadb_msg to reply. */
5803 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5804 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5805 if (!n)
5806 return key_senderror(so, m, ENOBUFS);
5807
5808 n = key_fill_replymsg(n, 0);
5809 if (n == NULL)
5810 return key_senderror(so, m, ENOBUFS);
5811
5812 m_freem(m);
5813 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5814 }
5815 }
5816
5817 /*
5818 * SADB_GET processing
5819 * receive
5820 * <base, SA(*), address(SD)>
5821 * from the ikmpd, and get a SP and a SA to respond,
5822 * and send,
5823 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5824 * (identity(SD),) (sensitivity)>
5825 * to the ikmpd.
5826 *
5827 * m will always be freed.
5828 */
5829 static int
5830 key_api_get(struct socket *so, struct mbuf *m,
5831 const struct sadb_msghdr *mhp)
5832 {
5833 struct sadb_sa *sa0;
5834 const struct sockaddr *src, *dst;
5835 struct secasindex saidx;
5836 struct secashead *sah;
5837 struct secasvar *sav = NULL;
5838 u_int16_t proto;
5839 int error;
5840
5841 /* map satype to proto */
5842 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5843 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5844 return key_senderror(so, m, EINVAL);
5845 }
5846
5847 if (mhp->ext[SADB_EXT_SA] == NULL ||
5848 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5849 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5850 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5851 return key_senderror(so, m, EINVAL);
5852 }
5853 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5854 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5855 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5856 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5857 return key_senderror(so, m, EINVAL);
5858 }
5859
5860 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5861 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5862 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5863
5864 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5865 if (error != 0)
5866 return key_senderror(so, m, EINVAL);
5867
5868 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5869 if (error != 0)
5870 return key_senderror(so, m, EINVAL);
5871
5872 /* get a SA header */
5873 sah = key_getsah(&saidx, CMP_HEAD);
5874 if (sah != NULL) {
5875 /* get a SA with SPI. */
5876 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5877 }
5878 if (sav == NULL) {
5879 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5880 return key_senderror(so, m, ENOENT);
5881 }
5882
5883 {
5884 struct mbuf *n;
5885 u_int8_t satype;
5886
5887 /* map proto to satype */
5888 satype = key_proto2satype(sah->saidx.proto);
5889 if (satype == 0) {
5890 KEY_FREESAV(&sav);
5891 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5892 return key_senderror(so, m, EINVAL);
5893 }
5894
5895 /* create new sadb_msg to reply. */
5896 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5897 mhp->msg->sadb_msg_pid);
5898 KEY_FREESAV(&sav);
5899 if (!n)
5900 return key_senderror(so, m, ENOBUFS);
5901
5902 m_freem(m);
5903 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5904 }
5905 }
5906
5907 /* XXX make it sysctl-configurable? */
5908 static void
5909 key_getcomb_setlifetime(struct sadb_comb *comb)
5910 {
5911
5912 comb->sadb_comb_soft_allocations = 1;
5913 comb->sadb_comb_hard_allocations = 1;
5914 comb->sadb_comb_soft_bytes = 0;
5915 comb->sadb_comb_hard_bytes = 0;
5916 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5917 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5918 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5919 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5920 }
5921
5922 /*
5923 * XXX reorder combinations by preference
5924 * XXX no idea if the user wants ESP authentication or not
5925 */
5926 static struct mbuf *
5927 key_getcomb_esp(void)
5928 {
5929 struct sadb_comb *comb;
5930 const struct enc_xform *algo;
5931 struct mbuf *result = NULL, *m, *n;
5932 int encmin;
5933 int i, off, o;
5934 int totlen;
5935 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5936
5937 m = NULL;
5938 for (i = 1; i <= SADB_EALG_MAX; i++) {
5939 algo = esp_algorithm_lookup(i);
5940 if (algo == NULL)
5941 continue;
5942
5943 /* discard algorithms with key size smaller than system min */
5944 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5945 continue;
5946 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5947 encmin = ipsec_esp_keymin;
5948 else
5949 encmin = _BITS(algo->minkey);
5950
5951 if (ipsec_esp_auth)
5952 m = key_getcomb_ah();
5953 else {
5954 KASSERTMSG(l <= MLEN,
5955 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5956 MGET(m, M_DONTWAIT, MT_DATA);
5957 if (m) {
5958 M_ALIGN(m, l);
5959 m->m_len = l;
5960 m->m_next = NULL;
5961 memset(mtod(m, void *), 0, m->m_len);
5962 }
5963 }
5964 if (!m)
5965 goto fail;
5966
5967 totlen = 0;
5968 for (n = m; n; n = n->m_next)
5969 totlen += n->m_len;
5970 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5971
5972 for (off = 0; off < totlen; off += l) {
5973 n = m_pulldown(m, off, l, &o);
5974 if (!n) {
5975 /* m is already freed */
5976 goto fail;
5977 }
5978 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5979 memset(comb, 0, sizeof(*comb));
5980 key_getcomb_setlifetime(comb);
5981 comb->sadb_comb_encrypt = i;
5982 comb->sadb_comb_encrypt_minbits = encmin;
5983 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5984 }
5985
5986 if (!result)
5987 result = m;
5988 else
5989 m_cat(result, m);
5990 }
5991
5992 return result;
5993
5994 fail:
5995 if (result)
5996 m_freem(result);
5997 return NULL;
5998 }
5999
6000 static void
6001 key_getsizes_ah(const struct auth_hash *ah, int alg,
6002 u_int16_t* ksmin, u_int16_t* ksmax)
6003 {
6004 *ksmin = *ksmax = ah->keysize;
6005 if (ah->keysize == 0) {
6006 /*
6007 * Transform takes arbitrary key size but algorithm
6008 * key size is restricted. Enforce this here.
6009 */
6010 switch (alg) {
6011 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6012 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6013 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6014 default:
6015 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6016 break;
6017 }
6018 }
6019 }
6020
6021 /*
6022 * XXX reorder combinations by preference
6023 */
6024 static struct mbuf *
6025 key_getcomb_ah(void)
6026 {
6027 struct sadb_comb *comb;
6028 const struct auth_hash *algo;
6029 struct mbuf *m;
6030 u_int16_t minkeysize, maxkeysize;
6031 int i;
6032 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6033
6034 m = NULL;
6035 for (i = 1; i <= SADB_AALG_MAX; i++) {
6036 #if 1
6037 /* we prefer HMAC algorithms, not old algorithms */
6038 if (i != SADB_AALG_SHA1HMAC &&
6039 i != SADB_AALG_MD5HMAC &&
6040 i != SADB_X_AALG_SHA2_256 &&
6041 i != SADB_X_AALG_SHA2_384 &&
6042 i != SADB_X_AALG_SHA2_512)
6043 continue;
6044 #endif
6045 algo = ah_algorithm_lookup(i);
6046 if (!algo)
6047 continue;
6048 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6049 /* discard algorithms with key size smaller than system min */
6050 if (_BITS(minkeysize) < ipsec_ah_keymin)
6051 continue;
6052
6053 if (!m) {
6054 KASSERTMSG(l <= MLEN,
6055 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6056 MGET(m, M_DONTWAIT, MT_DATA);
6057 if (m) {
6058 M_ALIGN(m, l);
6059 m->m_len = l;
6060 m->m_next = NULL;
6061 }
6062 } else
6063 M_PREPEND(m, l, M_DONTWAIT);
6064 if (!m)
6065 return NULL;
6066
6067 if (m->m_len < sizeof(struct sadb_comb)) {
6068 m = m_pullup(m, sizeof(struct sadb_comb));
6069 if (m == NULL)
6070 return NULL;
6071 }
6072
6073 comb = mtod(m, struct sadb_comb *);
6074 memset(comb, 0, sizeof(*comb));
6075 key_getcomb_setlifetime(comb);
6076 comb->sadb_comb_auth = i;
6077 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6078 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6079 }
6080
6081 return m;
6082 }
6083
6084 /*
6085 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6086 * XXX reorder combinations by preference
6087 */
6088 static struct mbuf *
6089 key_getcomb_ipcomp(void)
6090 {
6091 struct sadb_comb *comb;
6092 const struct comp_algo *algo;
6093 struct mbuf *m;
6094 int i;
6095 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6096
6097 m = NULL;
6098 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6099 algo = ipcomp_algorithm_lookup(i);
6100 if (!algo)
6101 continue;
6102
6103 if (!m) {
6104 KASSERTMSG(l <= MLEN,
6105 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6106 MGET(m, M_DONTWAIT, MT_DATA);
6107 if (m) {
6108 M_ALIGN(m, l);
6109 m->m_len = l;
6110 m->m_next = NULL;
6111 }
6112 } else
6113 M_PREPEND(m, l, M_DONTWAIT);
6114 if (!m)
6115 return NULL;
6116
6117 if (m->m_len < sizeof(struct sadb_comb)) {
6118 m = m_pullup(m, sizeof(struct sadb_comb));
6119 if (m == NULL)
6120 return NULL;
6121 }
6122
6123 comb = mtod(m, struct sadb_comb *);
6124 memset(comb, 0, sizeof(*comb));
6125 key_getcomb_setlifetime(comb);
6126 comb->sadb_comb_encrypt = i;
6127 /* what should we set into sadb_comb_*_{min,max}bits? */
6128 }
6129
6130 return m;
6131 }
6132
6133 /*
6134 * XXX no way to pass mode (transport/tunnel) to userland
6135 * XXX replay checking?
6136 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6137 */
6138 static struct mbuf *
6139 key_getprop(const struct secasindex *saidx)
6140 {
6141 struct sadb_prop *prop;
6142 struct mbuf *m, *n;
6143 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6144 int totlen;
6145
6146 switch (saidx->proto) {
6147 case IPPROTO_ESP:
6148 m = key_getcomb_esp();
6149 break;
6150 case IPPROTO_AH:
6151 m = key_getcomb_ah();
6152 break;
6153 case IPPROTO_IPCOMP:
6154 m = key_getcomb_ipcomp();
6155 break;
6156 default:
6157 return NULL;
6158 }
6159
6160 if (!m)
6161 return NULL;
6162 M_PREPEND(m, l, M_DONTWAIT);
6163 if (!m)
6164 return NULL;
6165
6166 totlen = 0;
6167 for (n = m; n; n = n->m_next)
6168 totlen += n->m_len;
6169
6170 prop = mtod(m, struct sadb_prop *);
6171 memset(prop, 0, sizeof(*prop));
6172 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6173 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6174 prop->sadb_prop_replay = 32; /* XXX */
6175
6176 return m;
6177 }
6178
6179 /*
6180 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6181 * send
6182 * <base, SA, address(SD), (address(P)), x_policy,
6183 * (identity(SD),) (sensitivity,) proposal>
6184 * to KMD, and expect to receive
6185 * <base> with SADB_ACQUIRE if error occurred,
6186 * or
6187 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6188 * from KMD by PF_KEY.
6189 *
6190 * XXX x_policy is outside of RFC2367 (KAME extension).
6191 * XXX sensitivity is not supported.
6192 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6193 * see comment for key_getcomb_ipcomp().
6194 *
6195 * OUT:
6196 * 0 : succeed
6197 * others: error number
6198 */
6199 static int
6200 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6201 {
6202 struct mbuf *result = NULL, *m;
6203 #ifndef IPSEC_NONBLOCK_ACQUIRE
6204 struct secacq *newacq;
6205 #endif
6206 u_int8_t satype;
6207 int error = -1;
6208 u_int32_t seq;
6209
6210 /* sanity check */
6211 KASSERT(saidx != NULL);
6212 satype = key_proto2satype(saidx->proto);
6213 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6214
6215 #ifndef IPSEC_NONBLOCK_ACQUIRE
6216 /*
6217 * We never do anything about acquirng SA. There is anather
6218 * solution that kernel blocks to send SADB_ACQUIRE message until
6219 * getting something message from IKEd. In later case, to be
6220 * managed with ACQUIRING list.
6221 */
6222 /* Get an entry to check whether sending message or not. */
6223 mutex_enter(&key_mtx);
6224 newacq = key_getacq(saidx);
6225 if (newacq != NULL) {
6226 if (key_blockacq_count < newacq->count) {
6227 /* reset counter and do send message. */
6228 newacq->count = 0;
6229 } else {
6230 /* increment counter and do nothing. */
6231 newacq->count++;
6232 mutex_exit(&key_mtx);
6233 return 0;
6234 }
6235 } else {
6236 /* make new entry for blocking to send SADB_ACQUIRE. */
6237 newacq = key_newacq(saidx);
6238 if (newacq == NULL)
6239 return ENOBUFS;
6240
6241 /* add to acqtree */
6242 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6243 }
6244
6245 seq = newacq->seq;
6246 mutex_exit(&key_mtx);
6247 #else
6248 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6249 #endif
6250 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6251 if (!m) {
6252 error = ENOBUFS;
6253 goto fail;
6254 }
6255 result = m;
6256
6257 /* set sadb_address for saidx's. */
6258 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6259 IPSEC_ULPROTO_ANY);
6260 if (!m) {
6261 error = ENOBUFS;
6262 goto fail;
6263 }
6264 m_cat(result, m);
6265
6266 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6267 IPSEC_ULPROTO_ANY);
6268 if (!m) {
6269 error = ENOBUFS;
6270 goto fail;
6271 }
6272 m_cat(result, m);
6273
6274 /* XXX proxy address (optional) */
6275
6276 /* set sadb_x_policy */
6277 if (sp) {
6278 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6279 if (!m) {
6280 error = ENOBUFS;
6281 goto fail;
6282 }
6283 m_cat(result, m);
6284 }
6285
6286 /* XXX identity (optional) */
6287 #if 0
6288 if (idexttype && fqdn) {
6289 /* create identity extension (FQDN) */
6290 struct sadb_ident *id;
6291 int fqdnlen;
6292
6293 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6294 id = (struct sadb_ident *)p;
6295 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6296 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6297 id->sadb_ident_exttype = idexttype;
6298 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6299 memcpy(id + 1, fqdn, fqdnlen);
6300 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6301 }
6302
6303 if (idexttype) {
6304 /* create identity extension (USERFQDN) */
6305 struct sadb_ident *id;
6306 int userfqdnlen;
6307
6308 if (userfqdn) {
6309 /* +1 for terminating-NUL */
6310 userfqdnlen = strlen(userfqdn) + 1;
6311 } else
6312 userfqdnlen = 0;
6313 id = (struct sadb_ident *)p;
6314 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6315 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6316 id->sadb_ident_exttype = idexttype;
6317 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6318 /* XXX is it correct? */
6319 if (curlwp)
6320 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6321 if (userfqdn && userfqdnlen)
6322 memcpy(id + 1, userfqdn, userfqdnlen);
6323 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6324 }
6325 #endif
6326
6327 /* XXX sensitivity (optional) */
6328
6329 /* create proposal/combination extension */
6330 m = key_getprop(saidx);
6331 #if 0
6332 /*
6333 * spec conformant: always attach proposal/combination extension,
6334 * the problem is that we have no way to attach it for ipcomp,
6335 * due to the way sadb_comb is declared in RFC2367.
6336 */
6337 if (!m) {
6338 error = ENOBUFS;
6339 goto fail;
6340 }
6341 m_cat(result, m);
6342 #else
6343 /*
6344 * outside of spec; make proposal/combination extension optional.
6345 */
6346 if (m)
6347 m_cat(result, m);
6348 #endif
6349
6350 if ((result->m_flags & M_PKTHDR) == 0) {
6351 error = EINVAL;
6352 goto fail;
6353 }
6354
6355 if (result->m_len < sizeof(struct sadb_msg)) {
6356 result = m_pullup(result, sizeof(struct sadb_msg));
6357 if (result == NULL) {
6358 error = ENOBUFS;
6359 goto fail;
6360 }
6361 }
6362
6363 result->m_pkthdr.len = 0;
6364 for (m = result; m; m = m->m_next)
6365 result->m_pkthdr.len += m->m_len;
6366
6367 mtod(result, struct sadb_msg *)->sadb_msg_len =
6368 PFKEY_UNIT64(result->m_pkthdr.len);
6369
6370 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6371
6372 fail:
6373 if (result)
6374 m_freem(result);
6375 return error;
6376 }
6377
6378 #ifndef IPSEC_NONBLOCK_ACQUIRE
6379 static struct secacq *
6380 key_newacq(const struct secasindex *saidx)
6381 {
6382 struct secacq *newacq;
6383
6384 /* get new entry */
6385 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6386 if (newacq == NULL) {
6387 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6388 return NULL;
6389 }
6390
6391 /* copy secindex */
6392 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6393 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6394 newacq->created = time_uptime;
6395 newacq->count = 0;
6396
6397 return newacq;
6398 }
6399
6400 static struct secacq *
6401 key_getacq(const struct secasindex *saidx)
6402 {
6403 struct secacq *acq;
6404
6405 KASSERT(mutex_owned(&key_mtx));
6406
6407 LIST_FOREACH(acq, &acqtree, chain) {
6408 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6409 return acq;
6410 }
6411
6412 return NULL;
6413 }
6414
6415 static struct secacq *
6416 key_getacqbyseq(u_int32_t seq)
6417 {
6418 struct secacq *acq;
6419
6420 KASSERT(mutex_owned(&key_mtx));
6421
6422 LIST_FOREACH(acq, &acqtree, chain) {
6423 if (acq->seq == seq)
6424 return acq;
6425 }
6426
6427 return NULL;
6428 }
6429 #endif
6430
6431 #ifdef notyet
6432 static struct secspacq *
6433 key_newspacq(const struct secpolicyindex *spidx)
6434 {
6435 struct secspacq *acq;
6436
6437 /* get new entry */
6438 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6439 if (acq == NULL) {
6440 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6441 return NULL;
6442 }
6443
6444 /* copy secindex */
6445 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6446 acq->created = time_uptime;
6447 acq->count = 0;
6448
6449 return acq;
6450 }
6451
6452 static struct secspacq *
6453 key_getspacq(const struct secpolicyindex *spidx)
6454 {
6455 struct secspacq *acq;
6456
6457 LIST_FOREACH(acq, &spacqtree, chain) {
6458 if (key_spidx_match_exactly(spidx, &acq->spidx))
6459 return acq;
6460 }
6461
6462 return NULL;
6463 }
6464 #endif /* notyet */
6465
6466 /*
6467 * SADB_ACQUIRE processing,
6468 * in first situation, is receiving
6469 * <base>
6470 * from the ikmpd, and clear sequence of its secasvar entry.
6471 *
6472 * In second situation, is receiving
6473 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6474 * from a user land process, and return
6475 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6476 * to the socket.
6477 *
6478 * m will always be freed.
6479 */
6480 static int
6481 key_api_acquire(struct socket *so, struct mbuf *m,
6482 const struct sadb_msghdr *mhp)
6483 {
6484 const struct sockaddr *src, *dst;
6485 struct secasindex saidx;
6486 struct secashead *sah;
6487 u_int16_t proto;
6488 int error;
6489
6490 /*
6491 * Error message from KMd.
6492 * We assume that if error was occurred in IKEd, the length of PFKEY
6493 * message is equal to the size of sadb_msg structure.
6494 * We do not raise error even if error occurred in this function.
6495 */
6496 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6497 #ifndef IPSEC_NONBLOCK_ACQUIRE
6498 struct secacq *acq;
6499
6500 /* check sequence number */
6501 if (mhp->msg->sadb_msg_seq == 0) {
6502 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6503 m_freem(m);
6504 return 0;
6505 }
6506
6507 mutex_enter(&key_mtx);
6508 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6509 if (acq == NULL) {
6510 mutex_exit(&key_mtx);
6511 /*
6512 * the specified larval SA is already gone, or we got
6513 * a bogus sequence number. we can silently ignore it.
6514 */
6515 m_freem(m);
6516 return 0;
6517 }
6518
6519 /* reset acq counter in order to deletion by timehander. */
6520 acq->created = time_uptime;
6521 acq->count = 0;
6522 mutex_exit(&key_mtx);
6523 #endif
6524 m_freem(m);
6525 return 0;
6526 }
6527
6528 /*
6529 * This message is from user land.
6530 */
6531
6532 /* map satype to proto */
6533 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6534 if (proto == 0) {
6535 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6536 return key_senderror(so, m, EINVAL);
6537 }
6538
6539 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6540 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6541 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6542 /* error */
6543 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6544 return key_senderror(so, m, EINVAL);
6545 }
6546 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6547 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6548 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6549 /* error */
6550 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6551 return key_senderror(so, m, EINVAL);
6552 }
6553
6554 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6555 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6556
6557 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6558 if (error != 0)
6559 return key_senderror(so, m, EINVAL);
6560
6561 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6562 if (error != 0)
6563 return key_senderror(so, m, EINVAL);
6564
6565 /* get a SA index */
6566 sah = key_getsah(&saidx, CMP_MODE_REQID);
6567 if (sah != NULL) {
6568 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6569 return key_senderror(so, m, EEXIST);
6570 }
6571
6572 error = key_acquire(&saidx, NULL);
6573 if (error != 0) {
6574 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6575 error);
6576 return key_senderror(so, m, error);
6577 }
6578
6579 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6580 }
6581
6582 /*
6583 * SADB_REGISTER processing.
6584 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6585 * receive
6586 * <base>
6587 * from the ikmpd, and register a socket to send PF_KEY messages,
6588 * and send
6589 * <base, supported>
6590 * to KMD by PF_KEY.
6591 * If socket is detached, must free from regnode.
6592 *
6593 * m will always be freed.
6594 */
6595 static int
6596 key_api_register(struct socket *so, struct mbuf *m,
6597 const struct sadb_msghdr *mhp)
6598 {
6599 struct secreg *reg, *newreg = 0;
6600
6601 /* check for invalid register message */
6602 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6603 return key_senderror(so, m, EINVAL);
6604
6605 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6606 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6607 goto setmsg;
6608
6609 /* Allocate regnode in advance, out of mutex */
6610 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6611
6612 /* check whether existing or not */
6613 mutex_enter(&key_mtx);
6614 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6615 if (reg->so == so) {
6616 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6617 mutex_exit(&key_mtx);
6618 kmem_free(newreg, sizeof(*newreg));
6619 return key_senderror(so, m, EEXIST);
6620 }
6621 }
6622
6623 newreg->so = so;
6624 ((struct keycb *)sotorawcb(so))->kp_registered++;
6625
6626 /* add regnode to regtree. */
6627 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6628 mutex_exit(&key_mtx);
6629
6630 setmsg:
6631 {
6632 struct mbuf *n;
6633 struct sadb_supported *sup;
6634 u_int len, alen, elen;
6635 int off;
6636 int i;
6637 struct sadb_alg *alg;
6638
6639 /* create new sadb_msg to reply. */
6640 alen = 0;
6641 for (i = 1; i <= SADB_AALG_MAX; i++) {
6642 if (ah_algorithm_lookup(i))
6643 alen += sizeof(struct sadb_alg);
6644 }
6645 if (alen)
6646 alen += sizeof(struct sadb_supported);
6647 elen = 0;
6648 for (i = 1; i <= SADB_EALG_MAX; i++) {
6649 if (esp_algorithm_lookup(i))
6650 elen += sizeof(struct sadb_alg);
6651 }
6652 if (elen)
6653 elen += sizeof(struct sadb_supported);
6654
6655 len = sizeof(struct sadb_msg) + alen + elen;
6656
6657 if (len > MCLBYTES)
6658 return key_senderror(so, m, ENOBUFS);
6659
6660 MGETHDR(n, M_DONTWAIT, MT_DATA);
6661 if (len > MHLEN) {
6662 MCLGET(n, M_DONTWAIT);
6663 if ((n->m_flags & M_EXT) == 0) {
6664 m_freem(n);
6665 n = NULL;
6666 }
6667 }
6668 if (!n)
6669 return key_senderror(so, m, ENOBUFS);
6670
6671 n->m_pkthdr.len = n->m_len = len;
6672 n->m_next = NULL;
6673 off = 0;
6674
6675 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6676 n = key_fill_replymsg(n, 0);
6677 if (n == NULL)
6678 return key_senderror(so, m, ENOBUFS);
6679
6680 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6681
6682 /* for authentication algorithm */
6683 if (alen) {
6684 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6685 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6686 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6687 off += PFKEY_ALIGN8(sizeof(*sup));
6688
6689 for (i = 1; i <= SADB_AALG_MAX; i++) {
6690 const struct auth_hash *aalgo;
6691 u_int16_t minkeysize, maxkeysize;
6692
6693 aalgo = ah_algorithm_lookup(i);
6694 if (!aalgo)
6695 continue;
6696 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6697 alg->sadb_alg_id = i;
6698 alg->sadb_alg_ivlen = 0;
6699 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6700 alg->sadb_alg_minbits = _BITS(minkeysize);
6701 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6702 off += PFKEY_ALIGN8(sizeof(*alg));
6703 }
6704 }
6705
6706 /* for encryption algorithm */
6707 if (elen) {
6708 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6709 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6710 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6711 off += PFKEY_ALIGN8(sizeof(*sup));
6712
6713 for (i = 1; i <= SADB_EALG_MAX; i++) {
6714 const struct enc_xform *ealgo;
6715
6716 ealgo = esp_algorithm_lookup(i);
6717 if (!ealgo)
6718 continue;
6719 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6720 alg->sadb_alg_id = i;
6721 alg->sadb_alg_ivlen = ealgo->blocksize;
6722 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6723 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6724 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6725 }
6726 }
6727
6728 KASSERTMSG(off == len, "length inconsistency");
6729
6730 m_freem(m);
6731 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6732 }
6733 }
6734
6735 /*
6736 * free secreg entry registered.
6737 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6738 */
6739 void
6740 key_freereg(struct socket *so)
6741 {
6742 struct secreg *reg;
6743 int i;
6744
6745 KASSERT(!cpu_softintr_p());
6746 KASSERT(so != NULL);
6747
6748 /*
6749 * check whether existing or not.
6750 * check all type of SA, because there is a potential that
6751 * one socket is registered to multiple type of SA.
6752 */
6753 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6754 mutex_enter(&key_mtx);
6755 LIST_FOREACH(reg, ®tree[i], chain) {
6756 if (reg->so == so) {
6757 LIST_REMOVE(reg, chain);
6758 break;
6759 }
6760 }
6761 mutex_exit(&key_mtx);
6762 if (reg != NULL)
6763 kmem_free(reg, sizeof(*reg));
6764 }
6765
6766 return;
6767 }
6768
6769 /*
6770 * SADB_EXPIRE processing
6771 * send
6772 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6773 * to KMD by PF_KEY.
6774 * NOTE: We send only soft lifetime extension.
6775 *
6776 * OUT: 0 : succeed
6777 * others : error number
6778 */
6779 static int
6780 key_expire(struct secasvar *sav)
6781 {
6782 int s;
6783 int satype;
6784 struct mbuf *result = NULL, *m;
6785 int len;
6786 int error = -1;
6787 struct sadb_lifetime *lt;
6788
6789 /* XXX: Why do we lock ? */
6790 s = splsoftnet(); /*called from softclock()*/
6791
6792 KASSERT(sav != NULL);
6793 KASSERT(sav->sah != NULL);
6794
6795 satype = key_proto2satype(sav->sah->saidx.proto);
6796 KASSERTMSG(satype != 0, "invalid proto is passed");
6797
6798 /* set msg header */
6799 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6800 if (!m) {
6801 error = ENOBUFS;
6802 goto fail;
6803 }
6804 result = m;
6805
6806 /* create SA extension */
6807 m = key_setsadbsa(sav);
6808 if (!m) {
6809 error = ENOBUFS;
6810 goto fail;
6811 }
6812 m_cat(result, m);
6813
6814 /* create SA extension */
6815 m = key_setsadbxsa2(sav->sah->saidx.mode,
6816 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6817 if (!m) {
6818 error = ENOBUFS;
6819 goto fail;
6820 }
6821 m_cat(result, m);
6822
6823 /* create lifetime extension (current and soft) */
6824 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6825 m = key_alloc_mbuf(len);
6826 if (!m || m->m_next) { /*XXX*/
6827 if (m)
6828 m_freem(m);
6829 error = ENOBUFS;
6830 goto fail;
6831 }
6832 memset(mtod(m, void *), 0, len);
6833 lt = mtod(m, struct sadb_lifetime *);
6834 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6835 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6836 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6837 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6838 lt->sadb_lifetime_addtime =
6839 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6840 lt->sadb_lifetime_usetime =
6841 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6842 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6843 memcpy(lt, sav->lft_s, sizeof(*lt));
6844 m_cat(result, m);
6845
6846 /* set sadb_address for source */
6847 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6848 FULLMASK, IPSEC_ULPROTO_ANY);
6849 if (!m) {
6850 error = ENOBUFS;
6851 goto fail;
6852 }
6853 m_cat(result, m);
6854
6855 /* set sadb_address for destination */
6856 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6857 FULLMASK, IPSEC_ULPROTO_ANY);
6858 if (!m) {
6859 error = ENOBUFS;
6860 goto fail;
6861 }
6862 m_cat(result, m);
6863
6864 if ((result->m_flags & M_PKTHDR) == 0) {
6865 error = EINVAL;
6866 goto fail;
6867 }
6868
6869 if (result->m_len < sizeof(struct sadb_msg)) {
6870 result = m_pullup(result, sizeof(struct sadb_msg));
6871 if (result == NULL) {
6872 error = ENOBUFS;
6873 goto fail;
6874 }
6875 }
6876
6877 result->m_pkthdr.len = 0;
6878 for (m = result; m; m = m->m_next)
6879 result->m_pkthdr.len += m->m_len;
6880
6881 mtod(result, struct sadb_msg *)->sadb_msg_len =
6882 PFKEY_UNIT64(result->m_pkthdr.len);
6883
6884 splx(s);
6885 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6886
6887 fail:
6888 if (result)
6889 m_freem(result);
6890 splx(s);
6891 return error;
6892 }
6893
6894 /*
6895 * SADB_FLUSH processing
6896 * receive
6897 * <base>
6898 * from the ikmpd, and free all entries in secastree.
6899 * and send,
6900 * <base>
6901 * to the ikmpd.
6902 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6903 *
6904 * m will always be freed.
6905 */
6906 static int
6907 key_api_flush(struct socket *so, struct mbuf *m,
6908 const struct sadb_msghdr *mhp)
6909 {
6910 struct sadb_msg *newmsg;
6911 struct secashead *sah;
6912 struct secasvar *sav, *nextsav;
6913 u_int16_t proto;
6914 u_int8_t state;
6915
6916 /* map satype to proto */
6917 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6918 if (proto == 0) {
6919 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6920 return key_senderror(so, m, EINVAL);
6921 }
6922
6923 /* no SATYPE specified, i.e. flushing all SA. */
6924 LIST_FOREACH(sah, &sahtree, chain) {
6925 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6926 proto != sah->saidx.proto)
6927 continue;
6928
6929 SASTATE_ALIVE_FOREACH(state) {
6930 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6931 nextsav) {
6932 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6933 KEY_FREESAV(&sav);
6934 }
6935 }
6936
6937 sah->state = SADB_SASTATE_DEAD;
6938 }
6939
6940 if (m->m_len < sizeof(struct sadb_msg) ||
6941 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6942 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6943 return key_senderror(so, m, ENOBUFS);
6944 }
6945
6946 if (m->m_next)
6947 m_freem(m->m_next);
6948 m->m_next = NULL;
6949 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6950 newmsg = mtod(m, struct sadb_msg *);
6951 newmsg->sadb_msg_errno = 0;
6952 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6953
6954 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6955 }
6956
6957
6958 static struct mbuf *
6959 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6960 {
6961 struct secashead *sah;
6962 struct secasvar *sav;
6963 u_int16_t proto;
6964 u_int8_t satype;
6965 u_int8_t state;
6966 int cnt;
6967 struct mbuf *m, *n, *prev;
6968
6969 *lenp = 0;
6970
6971 /* map satype to proto */
6972 proto = key_satype2proto(req_satype);
6973 if (proto == 0) {
6974 *errorp = EINVAL;
6975 return (NULL);
6976 }
6977
6978 /* count sav entries to be sent to userland. */
6979 cnt = 0;
6980 LIST_FOREACH(sah, &sahtree, chain) {
6981 if (req_satype != SADB_SATYPE_UNSPEC &&
6982 proto != sah->saidx.proto)
6983 continue;
6984
6985 SASTATE_ANY_FOREACH(state) {
6986 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6987 cnt++;
6988 }
6989 }
6990 }
6991
6992 if (cnt == 0) {
6993 *errorp = ENOENT;
6994 return (NULL);
6995 }
6996
6997 /* send this to the userland, one at a time. */
6998 m = NULL;
6999 prev = m;
7000 LIST_FOREACH(sah, &sahtree, chain) {
7001 if (req_satype != SADB_SATYPE_UNSPEC &&
7002 proto != sah->saidx.proto)
7003 continue;
7004
7005 /* map proto to satype */
7006 satype = key_proto2satype(sah->saidx.proto);
7007 if (satype == 0) {
7008 m_freem(m);
7009 *errorp = EINVAL;
7010 return (NULL);
7011 }
7012
7013 SASTATE_ANY_FOREACH(state) {
7014 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7015 n = key_setdumpsa(sav, SADB_DUMP, satype,
7016 --cnt, pid);
7017 if (!n) {
7018 m_freem(m);
7019 *errorp = ENOBUFS;
7020 return (NULL);
7021 }
7022
7023 if (!m)
7024 m = n;
7025 else
7026 prev->m_nextpkt = n;
7027 prev = n;
7028 }
7029 }
7030 }
7031
7032 if (!m) {
7033 *errorp = EINVAL;
7034 return (NULL);
7035 }
7036
7037 if ((m->m_flags & M_PKTHDR) != 0) {
7038 m->m_pkthdr.len = 0;
7039 for (n = m; n; n = n->m_next)
7040 m->m_pkthdr.len += n->m_len;
7041 }
7042
7043 *errorp = 0;
7044 return (m);
7045 }
7046
7047 /*
7048 * SADB_DUMP processing
7049 * dump all entries including status of DEAD in SAD.
7050 * receive
7051 * <base>
7052 * from the ikmpd, and dump all secasvar leaves
7053 * and send,
7054 * <base> .....
7055 * to the ikmpd.
7056 *
7057 * m will always be freed.
7058 */
7059 static int
7060 key_api_dump(struct socket *so, struct mbuf *m0,
7061 const struct sadb_msghdr *mhp)
7062 {
7063 u_int16_t proto;
7064 u_int8_t satype;
7065 struct mbuf *n;
7066 int s;
7067 int error, len, ok;
7068
7069 /* map satype to proto */
7070 satype = mhp->msg->sadb_msg_satype;
7071 proto = key_satype2proto(satype);
7072 if (proto == 0) {
7073 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7074 return key_senderror(so, m0, EINVAL);
7075 }
7076
7077 /*
7078 * If the requestor has insufficient socket-buffer space
7079 * for the entire chain, nobody gets any response to the DUMP.
7080 * XXX For now, only the requestor ever gets anything.
7081 * Moreover, if the requestor has any space at all, they receive
7082 * the entire chain, otherwise the request is refused with ENOBUFS.
7083 */
7084 if (sbspace(&so->so_rcv) <= 0) {
7085 return key_senderror(so, m0, ENOBUFS);
7086 }
7087
7088 s = splsoftnet();
7089 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7090 splx(s);
7091
7092 if (n == NULL) {
7093 return key_senderror(so, m0, ENOENT);
7094 }
7095 {
7096 uint64_t *ps = PFKEY_STAT_GETREF();
7097 ps[PFKEY_STAT_IN_TOTAL]++;
7098 ps[PFKEY_STAT_IN_BYTES] += len;
7099 PFKEY_STAT_PUTREF();
7100 }
7101
7102 /*
7103 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7104 * The requestor receives either the entire chain, or an
7105 * error message with ENOBUFS.
7106 *
7107 * sbappendaddrchain() takes the chain of entries, one
7108 * packet-record per SPD entry, prepends the key_src sockaddr
7109 * to each packet-record, links the sockaddr mbufs into a new
7110 * list of records, then appends the entire resulting
7111 * list to the requesting socket.
7112 */
7113 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7114 SB_PRIO_ONESHOT_OVERFLOW);
7115
7116 if (!ok) {
7117 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7118 m_freem(n);
7119 return key_senderror(so, m0, ENOBUFS);
7120 }
7121
7122 m_freem(m0);
7123 return 0;
7124 }
7125
7126 /*
7127 * SADB_X_PROMISC processing
7128 *
7129 * m will always be freed.
7130 */
7131 static int
7132 key_api_promisc(struct socket *so, struct mbuf *m,
7133 const struct sadb_msghdr *mhp)
7134 {
7135 int olen;
7136
7137 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7138
7139 if (olen < sizeof(struct sadb_msg)) {
7140 #if 1
7141 return key_senderror(so, m, EINVAL);
7142 #else
7143 m_freem(m);
7144 return 0;
7145 #endif
7146 } else if (olen == sizeof(struct sadb_msg)) {
7147 /* enable/disable promisc mode */
7148 struct keycb *kp = (struct keycb *)sotorawcb(so);
7149 if (kp == NULL)
7150 return key_senderror(so, m, EINVAL);
7151 mhp->msg->sadb_msg_errno = 0;
7152 switch (mhp->msg->sadb_msg_satype) {
7153 case 0:
7154 case 1:
7155 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7156 break;
7157 default:
7158 return key_senderror(so, m, EINVAL);
7159 }
7160
7161 /* send the original message back to everyone */
7162 mhp->msg->sadb_msg_errno = 0;
7163 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7164 } else {
7165 /* send packet as is */
7166
7167 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7168
7169 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7170 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7171 }
7172 }
7173
7174 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7175 const struct sadb_msghdr *) = {
7176 NULL, /* SADB_RESERVED */
7177 key_api_getspi, /* SADB_GETSPI */
7178 key_api_update, /* SADB_UPDATE */
7179 key_api_add, /* SADB_ADD */
7180 key_api_delete, /* SADB_DELETE */
7181 key_api_get, /* SADB_GET */
7182 key_api_acquire, /* SADB_ACQUIRE */
7183 key_api_register, /* SADB_REGISTER */
7184 NULL, /* SADB_EXPIRE */
7185 key_api_flush, /* SADB_FLUSH */
7186 key_api_dump, /* SADB_DUMP */
7187 key_api_promisc, /* SADB_X_PROMISC */
7188 NULL, /* SADB_X_PCHANGE */
7189 key_api_spdadd, /* SADB_X_SPDUPDATE */
7190 key_api_spdadd, /* SADB_X_SPDADD */
7191 key_api_spddelete, /* SADB_X_SPDDELETE */
7192 key_api_spdget, /* SADB_X_SPDGET */
7193 NULL, /* SADB_X_SPDACQUIRE */
7194 key_api_spddump, /* SADB_X_SPDDUMP */
7195 key_api_spdflush, /* SADB_X_SPDFLUSH */
7196 key_api_spdadd, /* SADB_X_SPDSETIDX */
7197 NULL, /* SADB_X_SPDEXPIRE */
7198 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7199 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7200 };
7201
7202 /*
7203 * parse sadb_msg buffer to process PFKEYv2,
7204 * and create a data to response if needed.
7205 * I think to be dealed with mbuf directly.
7206 * IN:
7207 * msgp : pointer to pointer to a received buffer pulluped.
7208 * This is rewrited to response.
7209 * so : pointer to socket.
7210 * OUT:
7211 * length for buffer to send to user process.
7212 */
7213 int
7214 key_parse(struct mbuf *m, struct socket *so)
7215 {
7216 struct sadb_msg *msg;
7217 struct sadb_msghdr mh;
7218 u_int orglen;
7219 int error;
7220
7221 KASSERT(m != NULL);
7222 KASSERT(so != NULL);
7223
7224 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7225 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7226 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7227 kdebug_sadb(msg);
7228 }
7229 #endif
7230
7231 if (m->m_len < sizeof(struct sadb_msg)) {
7232 m = m_pullup(m, sizeof(struct sadb_msg));
7233 if (!m)
7234 return ENOBUFS;
7235 }
7236 msg = mtod(m, struct sadb_msg *);
7237 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7238
7239 if ((m->m_flags & M_PKTHDR) == 0 ||
7240 m->m_pkthdr.len != orglen) {
7241 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7242 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7243 error = EINVAL;
7244 goto senderror;
7245 }
7246
7247 if (msg->sadb_msg_version != PF_KEY_V2) {
7248 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7249 msg->sadb_msg_version);
7250 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7251 error = EINVAL;
7252 goto senderror;
7253 }
7254
7255 if (msg->sadb_msg_type > SADB_MAX) {
7256 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7257 msg->sadb_msg_type);
7258 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7259 error = EINVAL;
7260 goto senderror;
7261 }
7262
7263 /* for old-fashioned code - should be nuked */
7264 if (m->m_pkthdr.len > MCLBYTES) {
7265 m_freem(m);
7266 return ENOBUFS;
7267 }
7268 if (m->m_next) {
7269 struct mbuf *n;
7270
7271 MGETHDR(n, M_DONTWAIT, MT_DATA);
7272 if (n && m->m_pkthdr.len > MHLEN) {
7273 MCLGET(n, M_DONTWAIT);
7274 if ((n->m_flags & M_EXT) == 0) {
7275 m_free(n);
7276 n = NULL;
7277 }
7278 }
7279 if (!n) {
7280 m_freem(m);
7281 return ENOBUFS;
7282 }
7283 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7284 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7285 n->m_next = NULL;
7286 m_freem(m);
7287 m = n;
7288 }
7289
7290 /* align the mbuf chain so that extensions are in contiguous region. */
7291 error = key_align(m, &mh);
7292 if (error)
7293 return error;
7294
7295 if (m->m_next) { /*XXX*/
7296 m_freem(m);
7297 return ENOBUFS;
7298 }
7299
7300 msg = mh.msg;
7301
7302 /* check SA type */
7303 switch (msg->sadb_msg_satype) {
7304 case SADB_SATYPE_UNSPEC:
7305 switch (msg->sadb_msg_type) {
7306 case SADB_GETSPI:
7307 case SADB_UPDATE:
7308 case SADB_ADD:
7309 case SADB_DELETE:
7310 case SADB_GET:
7311 case SADB_ACQUIRE:
7312 case SADB_EXPIRE:
7313 IPSECLOG(LOG_DEBUG,
7314 "must specify satype when msg type=%u.\n",
7315 msg->sadb_msg_type);
7316 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7317 error = EINVAL;
7318 goto senderror;
7319 }
7320 break;
7321 case SADB_SATYPE_AH:
7322 case SADB_SATYPE_ESP:
7323 case SADB_X_SATYPE_IPCOMP:
7324 case SADB_X_SATYPE_TCPSIGNATURE:
7325 switch (msg->sadb_msg_type) {
7326 case SADB_X_SPDADD:
7327 case SADB_X_SPDDELETE:
7328 case SADB_X_SPDGET:
7329 case SADB_X_SPDDUMP:
7330 case SADB_X_SPDFLUSH:
7331 case SADB_X_SPDSETIDX:
7332 case SADB_X_SPDUPDATE:
7333 case SADB_X_SPDDELETE2:
7334 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7335 msg->sadb_msg_type);
7336 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7337 error = EINVAL;
7338 goto senderror;
7339 }
7340 break;
7341 case SADB_SATYPE_RSVP:
7342 case SADB_SATYPE_OSPFV2:
7343 case SADB_SATYPE_RIPV2:
7344 case SADB_SATYPE_MIP:
7345 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7346 msg->sadb_msg_satype);
7347 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7348 error = EOPNOTSUPP;
7349 goto senderror;
7350 case 1: /* XXX: What does it do? */
7351 if (msg->sadb_msg_type == SADB_X_PROMISC)
7352 break;
7353 /*FALLTHROUGH*/
7354 default:
7355 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7356 msg->sadb_msg_satype);
7357 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7358 error = EINVAL;
7359 goto senderror;
7360 }
7361
7362 /* check field of upper layer protocol and address family */
7363 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7364 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7365 struct sadb_address *src0, *dst0;
7366 u_int plen;
7367
7368 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7369 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7370
7371 /* check upper layer protocol */
7372 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7373 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7374 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7375 error = EINVAL;
7376 goto senderror;
7377 }
7378
7379 /* check family */
7380 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7381 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7382 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7383 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7384 error = EINVAL;
7385 goto senderror;
7386 }
7387 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7388 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7389 IPSECLOG(LOG_DEBUG,
7390 "address struct size mismatched.\n");
7391 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7392 error = EINVAL;
7393 goto senderror;
7394 }
7395
7396 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7397 case AF_INET:
7398 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7399 sizeof(struct sockaddr_in)) {
7400 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7401 error = EINVAL;
7402 goto senderror;
7403 }
7404 break;
7405 case AF_INET6:
7406 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7407 sizeof(struct sockaddr_in6)) {
7408 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7409 error = EINVAL;
7410 goto senderror;
7411 }
7412 break;
7413 default:
7414 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7415 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7416 error = EAFNOSUPPORT;
7417 goto senderror;
7418 }
7419
7420 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7421 case AF_INET:
7422 plen = sizeof(struct in_addr) << 3;
7423 break;
7424 case AF_INET6:
7425 plen = sizeof(struct in6_addr) << 3;
7426 break;
7427 default:
7428 plen = 0; /*fool gcc*/
7429 break;
7430 }
7431
7432 /* check max prefix length */
7433 if (src0->sadb_address_prefixlen > plen ||
7434 dst0->sadb_address_prefixlen > plen) {
7435 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7436 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7437 error = EINVAL;
7438 goto senderror;
7439 }
7440
7441 /*
7442 * prefixlen == 0 is valid because there can be a case when
7443 * all addresses are matched.
7444 */
7445 }
7446
7447 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7448 key_api_typesw[msg->sadb_msg_type] == NULL) {
7449 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7450 error = EINVAL;
7451 goto senderror;
7452 }
7453
7454 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7455
7456 senderror:
7457 return key_senderror(so, m, error);
7458 }
7459
7460 static int
7461 key_senderror(struct socket *so, struct mbuf *m, int code)
7462 {
7463 struct sadb_msg *msg;
7464
7465 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7466
7467 msg = mtod(m, struct sadb_msg *);
7468 msg->sadb_msg_errno = code;
7469 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7470 }
7471
7472 /*
7473 * set the pointer to each header into message buffer.
7474 * m will be freed on error.
7475 * XXX larger-than-MCLBYTES extension?
7476 */
7477 static int
7478 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7479 {
7480 struct mbuf *n;
7481 struct sadb_ext *ext;
7482 size_t off, end;
7483 int extlen;
7484 int toff;
7485
7486 KASSERT(m != NULL);
7487 KASSERT(mhp != NULL);
7488 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7489
7490 /* initialize */
7491 memset(mhp, 0, sizeof(*mhp));
7492
7493 mhp->msg = mtod(m, struct sadb_msg *);
7494 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7495
7496 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7497 extlen = end; /*just in case extlen is not updated*/
7498 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7499 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7500 if (!n) {
7501 /* m is already freed */
7502 return ENOBUFS;
7503 }
7504 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7505
7506 /* set pointer */
7507 switch (ext->sadb_ext_type) {
7508 case SADB_EXT_SA:
7509 case SADB_EXT_ADDRESS_SRC:
7510 case SADB_EXT_ADDRESS_DST:
7511 case SADB_EXT_ADDRESS_PROXY:
7512 case SADB_EXT_LIFETIME_CURRENT:
7513 case SADB_EXT_LIFETIME_HARD:
7514 case SADB_EXT_LIFETIME_SOFT:
7515 case SADB_EXT_KEY_AUTH:
7516 case SADB_EXT_KEY_ENCRYPT:
7517 case SADB_EXT_IDENTITY_SRC:
7518 case SADB_EXT_IDENTITY_DST:
7519 case SADB_EXT_SENSITIVITY:
7520 case SADB_EXT_PROPOSAL:
7521 case SADB_EXT_SUPPORTED_AUTH:
7522 case SADB_EXT_SUPPORTED_ENCRYPT:
7523 case SADB_EXT_SPIRANGE:
7524 case SADB_X_EXT_POLICY:
7525 case SADB_X_EXT_SA2:
7526 case SADB_X_EXT_NAT_T_TYPE:
7527 case SADB_X_EXT_NAT_T_SPORT:
7528 case SADB_X_EXT_NAT_T_DPORT:
7529 case SADB_X_EXT_NAT_T_OAI:
7530 case SADB_X_EXT_NAT_T_OAR:
7531 case SADB_X_EXT_NAT_T_FRAG:
7532 /* duplicate check */
7533 /*
7534 * XXX Are there duplication payloads of either
7535 * KEY_AUTH or KEY_ENCRYPT ?
7536 */
7537 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7538 IPSECLOG(LOG_DEBUG,
7539 "duplicate ext_type %u is passed.\n",
7540 ext->sadb_ext_type);
7541 m_freem(m);
7542 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7543 return EINVAL;
7544 }
7545 break;
7546 default:
7547 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7548 ext->sadb_ext_type);
7549 m_freem(m);
7550 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7551 return EINVAL;
7552 }
7553
7554 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7555
7556 if (key_validate_ext(ext, extlen)) {
7557 m_freem(m);
7558 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7559 return EINVAL;
7560 }
7561
7562 n = m_pulldown(m, off, extlen, &toff);
7563 if (!n) {
7564 /* m is already freed */
7565 return ENOBUFS;
7566 }
7567 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7568
7569 mhp->ext[ext->sadb_ext_type] = ext;
7570 mhp->extoff[ext->sadb_ext_type] = off;
7571 mhp->extlen[ext->sadb_ext_type] = extlen;
7572 }
7573
7574 if (off != end) {
7575 m_freem(m);
7576 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7577 return EINVAL;
7578 }
7579
7580 return 0;
7581 }
7582
7583 static int
7584 key_validate_ext(const struct sadb_ext *ext, int len)
7585 {
7586 const struct sockaddr *sa;
7587 enum { NONE, ADDR } checktype = NONE;
7588 int baselen = 0;
7589 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7590
7591 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7592 return EINVAL;
7593
7594 /* if it does not match minimum/maximum length, bail */
7595 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7596 ext->sadb_ext_type >= __arraycount(maxsize))
7597 return EINVAL;
7598 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7599 return EINVAL;
7600 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7601 return EINVAL;
7602
7603 /* more checks based on sadb_ext_type XXX need more */
7604 switch (ext->sadb_ext_type) {
7605 case SADB_EXT_ADDRESS_SRC:
7606 case SADB_EXT_ADDRESS_DST:
7607 case SADB_EXT_ADDRESS_PROXY:
7608 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7609 checktype = ADDR;
7610 break;
7611 case SADB_EXT_IDENTITY_SRC:
7612 case SADB_EXT_IDENTITY_DST:
7613 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7614 SADB_X_IDENTTYPE_ADDR) {
7615 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7616 checktype = ADDR;
7617 } else
7618 checktype = NONE;
7619 break;
7620 default:
7621 checktype = NONE;
7622 break;
7623 }
7624
7625 switch (checktype) {
7626 case NONE:
7627 break;
7628 case ADDR:
7629 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7630 if (len < baselen + sal)
7631 return EINVAL;
7632 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7633 return EINVAL;
7634 break;
7635 }
7636
7637 return 0;
7638 }
7639
7640 static int
7641 key_do_init(void)
7642 {
7643 int i, error;
7644
7645 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7646
7647 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7648
7649 callout_init(&key_timehandler_ch, 0);
7650 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7651 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7652 if (error != 0)
7653 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7654
7655 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7656 LIST_INIT(&sptree[i]);
7657 }
7658
7659 LIST_INIT(&sahtree);
7660
7661 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7662 LIST_INIT(®tree[i]);
7663 }
7664
7665 #ifndef IPSEC_NONBLOCK_ACQUIRE
7666 LIST_INIT(&acqtree);
7667 #endif
7668 #ifdef notyet
7669 LIST_INIT(&spacqtree);
7670 #endif
7671
7672 /* system default */
7673 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7674 ip4_def_policy.refcnt++; /*never reclaim this*/
7675
7676 #ifdef INET6
7677 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7678 ip6_def_policy.refcnt++; /*never reclaim this*/
7679 #endif
7680
7681 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7682
7683 /* initialize key statistics */
7684 keystat.getspi_count = 1;
7685
7686 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7687
7688 return (0);
7689 }
7690
7691 void
7692 key_init(void)
7693 {
7694 static ONCE_DECL(key_init_once);
7695
7696 sysctl_net_keyv2_setup(NULL);
7697 sysctl_net_key_compat_setup(NULL);
7698
7699 RUN_ONCE(&key_init_once, key_do_init);
7700 }
7701
7702 /*
7703 * XXX: maybe This function is called after INBOUND IPsec processing.
7704 *
7705 * Special check for tunnel-mode packets.
7706 * We must make some checks for consistency between inner and outer IP header.
7707 *
7708 * xxx more checks to be provided
7709 */
7710 int
7711 key_checktunnelsanity(
7712 struct secasvar *sav,
7713 u_int family,
7714 void *src,
7715 void *dst
7716 )
7717 {
7718
7719 KASSERT(sav->sah != NULL);
7720
7721 /* XXX: check inner IP header */
7722
7723 return 1;
7724 }
7725
7726 #if 0
7727 #define hostnamelen strlen(hostname)
7728
7729 /*
7730 * Get FQDN for the host.
7731 * If the administrator configured hostname (by hostname(1)) without
7732 * domain name, returns nothing.
7733 */
7734 static const char *
7735 key_getfqdn(void)
7736 {
7737 int i;
7738 int hasdot;
7739 static char fqdn[MAXHOSTNAMELEN + 1];
7740
7741 if (!hostnamelen)
7742 return NULL;
7743
7744 /* check if it comes with domain name. */
7745 hasdot = 0;
7746 for (i = 0; i < hostnamelen; i++) {
7747 if (hostname[i] == '.')
7748 hasdot++;
7749 }
7750 if (!hasdot)
7751 return NULL;
7752
7753 /* NOTE: hostname may not be NUL-terminated. */
7754 memset(fqdn, 0, sizeof(fqdn));
7755 memcpy(fqdn, hostname, hostnamelen);
7756 fqdn[hostnamelen] = '\0';
7757 return fqdn;
7758 }
7759
7760 /*
7761 * get username@FQDN for the host/user.
7762 */
7763 static const char *
7764 key_getuserfqdn(void)
7765 {
7766 const char *host;
7767 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7768 struct proc *p = curproc;
7769 char *q;
7770
7771 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7772 return NULL;
7773 if (!(host = key_getfqdn()))
7774 return NULL;
7775
7776 /* NOTE: s_login may not be-NUL terminated. */
7777 memset(userfqdn, 0, sizeof(userfqdn));
7778 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7779 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7780 q = userfqdn + strlen(userfqdn);
7781 *q++ = '@';
7782 memcpy(q, host, strlen(host));
7783 q += strlen(host);
7784 *q++ = '\0';
7785
7786 return userfqdn;
7787 }
7788 #endif
7789
7790 /* record data transfer on SA, and update timestamps */
7791 void
7792 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7793 {
7794
7795 KASSERT(sav != NULL);
7796 KASSERT(m != NULL);
7797 if (!sav->lft_c)
7798 return;
7799
7800 /*
7801 * XXX Currently, there is a difference of bytes size
7802 * between inbound and outbound processing.
7803 */
7804 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7805 /* to check bytes lifetime is done in key_timehandler(). */
7806
7807 /*
7808 * We use the number of packets as the unit of
7809 * sadb_lifetime_allocations. We increment the variable
7810 * whenever {esp,ah}_{in,out}put is called.
7811 */
7812 sav->lft_c->sadb_lifetime_allocations++;
7813 /* XXX check for expires? */
7814
7815 /*
7816 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7817 * in seconds. HARD and SOFT lifetime are measured by the time
7818 * difference (again in seconds) from sadb_lifetime_usetime.
7819 *
7820 * usetime
7821 * v expire expire
7822 * -----+-----+--------+---> t
7823 * <--------------> HARD
7824 * <-----> SOFT
7825 */
7826 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7827 /* XXX check for expires? */
7828
7829 return;
7830 }
7831
7832 /* dumb version */
7833 void
7834 key_sa_routechange(struct sockaddr *dst)
7835 {
7836 struct secashead *sah;
7837 struct route *ro;
7838 const struct sockaddr *sa;
7839
7840 LIST_FOREACH(sah, &sahtree, chain) {
7841 ro = &sah->sa_route;
7842 sa = rtcache_getdst(ro);
7843 if (sa != NULL && dst->sa_len == sa->sa_len &&
7844 memcmp(dst, sa, dst->sa_len) == 0)
7845 rtcache_free(ro);
7846 }
7847
7848 return;
7849 }
7850
7851 static void
7852 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7853 {
7854
7855 KASSERT(sav != NULL);
7856
7857 if (sav->state == state)
7858 return;
7859
7860 KASSERT(__LIST_CHAINED(sav));
7861 LIST_REMOVE(sav, chain);
7862
7863 sav->state = state;
7864 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7865 }
7866
7867 /* XXX too much? */
7868 static struct mbuf *
7869 key_alloc_mbuf(int l)
7870 {
7871 struct mbuf *m = NULL, *n;
7872 int len, t;
7873
7874 len = l;
7875 while (len > 0) {
7876 MGET(n, M_DONTWAIT, MT_DATA);
7877 if (n && len > MLEN)
7878 MCLGET(n, M_DONTWAIT);
7879 if (!n) {
7880 m_freem(m);
7881 return NULL;
7882 }
7883
7884 n->m_next = NULL;
7885 n->m_len = 0;
7886 n->m_len = M_TRAILINGSPACE(n);
7887 /* use the bottom of mbuf, hoping we can prepend afterwards */
7888 if (n->m_len > len) {
7889 t = (n->m_len - len) & ~(sizeof(long) - 1);
7890 n->m_data += t;
7891 n->m_len = len;
7892 }
7893
7894 len -= n->m_len;
7895
7896 if (m)
7897 m_cat(m, n);
7898 else
7899 m = n;
7900 }
7901
7902 return m;
7903 }
7904
7905 static struct mbuf *
7906 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7907 {
7908 struct secashead *sah;
7909 struct secasvar *sav;
7910 u_int16_t proto;
7911 u_int8_t satype;
7912 u_int8_t state;
7913 int cnt;
7914 struct mbuf *m, *n;
7915
7916 /* map satype to proto */
7917 proto = key_satype2proto(req_satype);
7918 if (proto == 0) {
7919 *errorp = EINVAL;
7920 return (NULL);
7921 }
7922
7923 /* count sav entries to be sent to the userland. */
7924 cnt = 0;
7925 LIST_FOREACH(sah, &sahtree, chain) {
7926 if (req_satype != SADB_SATYPE_UNSPEC &&
7927 proto != sah->saidx.proto)
7928 continue;
7929
7930 SASTATE_ANY_FOREACH(state) {
7931 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7932 cnt++;
7933 }
7934 }
7935 }
7936
7937 if (cnt == 0) {
7938 *errorp = ENOENT;
7939 return (NULL);
7940 }
7941
7942 /* send this to the userland, one at a time. */
7943 m = NULL;
7944 LIST_FOREACH(sah, &sahtree, chain) {
7945 if (req_satype != SADB_SATYPE_UNSPEC &&
7946 proto != sah->saidx.proto)
7947 continue;
7948
7949 /* map proto to satype */
7950 satype = key_proto2satype(sah->saidx.proto);
7951 if (satype == 0) {
7952 m_freem(m);
7953 *errorp = EINVAL;
7954 return (NULL);
7955 }
7956
7957 SASTATE_ANY_FOREACH(state) {
7958 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7959 n = key_setdumpsa(sav, SADB_DUMP, satype,
7960 --cnt, pid);
7961 if (!n) {
7962 m_freem(m);
7963 *errorp = ENOBUFS;
7964 return (NULL);
7965 }
7966
7967 if (!m)
7968 m = n;
7969 else
7970 m_cat(m, n);
7971 }
7972 }
7973 }
7974
7975 if (!m) {
7976 *errorp = EINVAL;
7977 return (NULL);
7978 }
7979
7980 if ((m->m_flags & M_PKTHDR) != 0) {
7981 m->m_pkthdr.len = 0;
7982 for (n = m; n; n = n->m_next)
7983 m->m_pkthdr.len += n->m_len;
7984 }
7985
7986 *errorp = 0;
7987 return (m);
7988 }
7989
7990 static struct mbuf *
7991 key_setspddump(int *errorp, pid_t pid)
7992 {
7993 struct secpolicy *sp;
7994 int cnt;
7995 u_int dir;
7996 struct mbuf *m, *n;
7997
7998 /* search SPD entry and get buffer size. */
7999 cnt = 0;
8000 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8001 LIST_FOREACH(sp, &sptree[dir], chain) {
8002 cnt++;
8003 }
8004 }
8005
8006 if (cnt == 0) {
8007 *errorp = ENOENT;
8008 return (NULL);
8009 }
8010
8011 m = NULL;
8012 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8013 LIST_FOREACH(sp, &sptree[dir], chain) {
8014 --cnt;
8015 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8016
8017 if (!n) {
8018 *errorp = ENOBUFS;
8019 m_freem(m);
8020 return (NULL);
8021 }
8022 if (!m)
8023 m = n;
8024 else {
8025 m->m_pkthdr.len += n->m_pkthdr.len;
8026 m_cat(m, n);
8027 }
8028 }
8029 }
8030
8031 *errorp = 0;
8032 return (m);
8033 }
8034
8035 int
8036 key_get_used(void) {
8037 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8038 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8039 }
8040
8041 void
8042 key_update_used(void)
8043 {
8044 switch (ipsec_enabled) {
8045 default:
8046 case 0:
8047 #ifdef notyet
8048 /* XXX: racy */
8049 ipsec_used = 0;
8050 #endif
8051 break;
8052 case 1:
8053 #ifndef notyet
8054 /* XXX: racy */
8055 if (!ipsec_used)
8056 #endif
8057 ipsec_used = key_get_used();
8058 break;
8059 case 2:
8060 ipsec_used = 1;
8061 break;
8062 }
8063 }
8064
8065 static int
8066 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8067 {
8068 struct mbuf *m, *n;
8069 int err2 = 0;
8070 char *p, *ep;
8071 size_t len;
8072 int s, error;
8073
8074 if (newp)
8075 return (EPERM);
8076 if (namelen != 1)
8077 return (EINVAL);
8078
8079 s = splsoftnet();
8080 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8081 splx(s);
8082 if (!m)
8083 return (error);
8084 if (!oldp)
8085 *oldlenp = m->m_pkthdr.len;
8086 else {
8087 p = oldp;
8088 if (*oldlenp < m->m_pkthdr.len) {
8089 err2 = ENOMEM;
8090 ep = p + *oldlenp;
8091 } else {
8092 *oldlenp = m->m_pkthdr.len;
8093 ep = p + m->m_pkthdr.len;
8094 }
8095 for (n = m; n; n = n->m_next) {
8096 len = (ep - p < n->m_len) ?
8097 ep - p : n->m_len;
8098 error = copyout(mtod(n, const void *), p, len);
8099 p += len;
8100 if (error)
8101 break;
8102 }
8103 if (error == 0)
8104 error = err2;
8105 }
8106 m_freem(m);
8107
8108 return (error);
8109 }
8110
8111 static int
8112 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8113 {
8114 struct mbuf *m, *n;
8115 int err2 = 0;
8116 char *p, *ep;
8117 size_t len;
8118 int s, error;
8119
8120 if (newp)
8121 return (EPERM);
8122 if (namelen != 0)
8123 return (EINVAL);
8124
8125 s = splsoftnet();
8126 m = key_setspddump(&error, l->l_proc->p_pid);
8127 splx(s);
8128 if (!m)
8129 return (error);
8130 if (!oldp)
8131 *oldlenp = m->m_pkthdr.len;
8132 else {
8133 p = oldp;
8134 if (*oldlenp < m->m_pkthdr.len) {
8135 err2 = ENOMEM;
8136 ep = p + *oldlenp;
8137 } else {
8138 *oldlenp = m->m_pkthdr.len;
8139 ep = p + m->m_pkthdr.len;
8140 }
8141 for (n = m; n; n = n->m_next) {
8142 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8143 error = copyout(mtod(n, const void *), p, len);
8144 p += len;
8145 if (error)
8146 break;
8147 }
8148 if (error == 0)
8149 error = err2;
8150 }
8151 m_freem(m);
8152
8153 return (error);
8154 }
8155
8156 /*
8157 * Create sysctl tree for native IPSEC key knobs, originally
8158 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8159 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8160 * and in any case the part of our sysctl namespace used for dumping the
8161 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8162 * namespace, for API reasons.
8163 *
8164 * Pending a consensus on the right way to fix this, add a level of
8165 * indirection in how we number the `native' IPSEC key nodes;
8166 * and (as requested by Andrew Brown) move registration of the
8167 * KAME-compatible names to a separate function.
8168 */
8169 #if 0
8170 # define IPSEC_PFKEY PF_KEY_V2
8171 # define IPSEC_PFKEY_NAME "keyv2"
8172 #else
8173 # define IPSEC_PFKEY PF_KEY
8174 # define IPSEC_PFKEY_NAME "key"
8175 #endif
8176
8177 static int
8178 sysctl_net_key_stats(SYSCTLFN_ARGS)
8179 {
8180
8181 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8182 }
8183
8184 static void
8185 sysctl_net_keyv2_setup(struct sysctllog **clog)
8186 {
8187
8188 sysctl_createv(clog, 0, NULL, NULL,
8189 CTLFLAG_PERMANENT,
8190 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8191 NULL, 0, NULL, 0,
8192 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8193
8194 sysctl_createv(clog, 0, NULL, NULL,
8195 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8196 CTLTYPE_INT, "debug", NULL,
8197 NULL, 0, &key_debug_level, 0,
8198 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8199 sysctl_createv(clog, 0, NULL, NULL,
8200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8201 CTLTYPE_INT, "spi_try", NULL,
8202 NULL, 0, &key_spi_trycnt, 0,
8203 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8204 sysctl_createv(clog, 0, NULL, NULL,
8205 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8206 CTLTYPE_INT, "spi_min_value", NULL,
8207 NULL, 0, &key_spi_minval, 0,
8208 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8209 sysctl_createv(clog, 0, NULL, NULL,
8210 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8211 CTLTYPE_INT, "spi_max_value", NULL,
8212 NULL, 0, &key_spi_maxval, 0,
8213 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8214 sysctl_createv(clog, 0, NULL, NULL,
8215 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8216 CTLTYPE_INT, "random_int", NULL,
8217 NULL, 0, &key_int_random, 0,
8218 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8219 sysctl_createv(clog, 0, NULL, NULL,
8220 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8221 CTLTYPE_INT, "larval_lifetime", NULL,
8222 NULL, 0, &key_larval_lifetime, 0,
8223 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8224 sysctl_createv(clog, 0, NULL, NULL,
8225 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8226 CTLTYPE_INT, "blockacq_count", NULL,
8227 NULL, 0, &key_blockacq_count, 0,
8228 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8229 sysctl_createv(clog, 0, NULL, NULL,
8230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8231 CTLTYPE_INT, "blockacq_lifetime", NULL,
8232 NULL, 0, &key_blockacq_lifetime, 0,
8233 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8234 sysctl_createv(clog, 0, NULL, NULL,
8235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8236 CTLTYPE_INT, "esp_keymin", NULL,
8237 NULL, 0, &ipsec_esp_keymin, 0,
8238 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8239 sysctl_createv(clog, 0, NULL, NULL,
8240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8241 CTLTYPE_INT, "prefered_oldsa", NULL,
8242 NULL, 0, &key_prefered_oldsa, 0,
8243 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8244 sysctl_createv(clog, 0, NULL, NULL,
8245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8246 CTLTYPE_INT, "esp_auth", NULL,
8247 NULL, 0, &ipsec_esp_auth, 0,
8248 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8249 sysctl_createv(clog, 0, NULL, NULL,
8250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8251 CTLTYPE_INT, "ah_keymin", NULL,
8252 NULL, 0, &ipsec_ah_keymin, 0,
8253 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8254 sysctl_createv(clog, 0, NULL, NULL,
8255 CTLFLAG_PERMANENT,
8256 CTLTYPE_STRUCT, "stats",
8257 SYSCTL_DESCR("PF_KEY statistics"),
8258 sysctl_net_key_stats, 0, NULL, 0,
8259 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8260 }
8261
8262 /*
8263 * Register sysctl names used by setkey(8). For historical reasons,
8264 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8265 * for both IPSEC and KAME IPSEC.
8266 */
8267 static void
8268 sysctl_net_key_compat_setup(struct sysctllog **clog)
8269 {
8270
8271 sysctl_createv(clog, 0, NULL, NULL,
8272 CTLFLAG_PERMANENT,
8273 CTLTYPE_NODE, "key", NULL,
8274 NULL, 0, NULL, 0,
8275 CTL_NET, PF_KEY, CTL_EOL);
8276
8277 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8278 sysctl_createv(clog, 0, NULL, NULL,
8279 CTLFLAG_PERMANENT,
8280 CTLTYPE_STRUCT, "dumpsa", NULL,
8281 sysctl_net_key_dumpsa, 0, NULL, 0,
8282 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8283 sysctl_createv(clog, 0, NULL, NULL,
8284 CTLFLAG_PERMANENT,
8285 CTLTYPE_STRUCT, "dumpsp", NULL,
8286 sysctl_net_key_dumpsp, 0, NULL, 0,
8287 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8288 }
8289