key.c revision 1.181 1 /* $NetBSD: key.c,v 1.181 2017/07/13 01:22:44 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.181 2017/07/13 01:22:44 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/errno.h>
58 #include <sys/proc.h>
59 #include <sys/queue.h>
60 #include <sys/syslog.h>
61 #include <sys/once.h>
62 #include <sys/cprng.h>
63 #include <sys/psref.h>
64 #include <sys/lwp.h>
65 #include <sys/workqueue.h>
66 #include <sys/kmem.h>
67 #include <sys/cpu.h>
68 #include <sys/atomic.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipcomp.h>
108
109
110 #include <net/net_osdep.h>
111
112 #define FULLMASK 0xff
113 #define _BITS(bytes) ((bytes) << 3)
114
115 #define PORT_NONE 0
116 #define PORT_LOOSE 1
117 #define PORT_STRICT 2
118
119 percpu_t *pfkeystat_percpu;
120
121 /*
122 * Note on SA reference counting:
123 * - SAs that are not in DEAD state will have (total external reference + 1)
124 * following value in reference count field. they cannot be freed and are
125 * referenced from SA header.
126 * - SAs that are in DEAD state will have (total external reference)
127 * in reference count field. they are ready to be freed. reference from
128 * SA header will be removed in key_delsav(), when the reference count
129 * field hits 0 (= no external reference other than from SA header.
130 */
131
132 u_int32_t key_debug_level = 0;
133 static u_int key_spi_trycnt = 1000;
134 static u_int32_t key_spi_minval = 0x100;
135 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
136 static u_int32_t policy_id = 0;
137 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
138 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
139 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
140 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
141 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
142
143 static u_int32_t acq_seq = 0;
144
145 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
146 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 /* registed list */
149 #ifndef IPSEC_NONBLOCK_ACQUIRE
150 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
151 #endif
152 #ifdef notyet
153 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
154 #endif
155
156 /*
157 * Protect regtree, acqtree and items stored in the lists.
158 */
159 static kmutex_t key_mtx __cacheline_aligned;
160
161 /* search order for SAs */
162 /*
163 * This order is important because we must select the oldest SA
164 * for outbound processing. For inbound, This is not important.
165 */
166 static const u_int saorder_state_valid_prefer_old[] = {
167 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
168 };
169 static const u_int saorder_state_valid_prefer_new[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 };
172
173 static const u_int saorder_state_alive[] = {
174 /* except DEAD */
175 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
176 };
177 static const u_int saorder_state_any[] = {
178 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
179 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
180 };
181
182 #define SASTATE_ALIVE_FOREACH(s) \
183 for (int _i = 0; \
184 _i < __arraycount(saorder_state_alive) ? \
185 (s) = saorder_state_alive[_i], true : false; \
186 _i++)
187 #define SASTATE_ANY_FOREACH(s) \
188 for (int _i = 0; \
189 _i < __arraycount(saorder_state_any) ? \
190 (s) = saorder_state_any[_i], true : false; \
191 _i++)
192
193 static const int minsize[] = {
194 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
195 sizeof(struct sadb_sa), /* SADB_EXT_SA */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
202 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
203 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
205 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
206 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
207 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
209 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
210 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
211 0, /* SADB_X_EXT_KMPRIVATE */
212 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
213 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
214 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
215 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
217 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
218 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221 static const int maxsize[] = {
222 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
223 sizeof(struct sadb_sa), /* SADB_EXT_SA */
224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
225 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
227 0, /* SADB_EXT_ADDRESS_SRC */
228 0, /* SADB_EXT_ADDRESS_DST */
229 0, /* SADB_EXT_ADDRESS_PROXY */
230 0, /* SADB_EXT_KEY_AUTH */
231 0, /* SADB_EXT_KEY_ENCRYPT */
232 0, /* SADB_EXT_IDENTITY_SRC */
233 0, /* SADB_EXT_IDENTITY_DST */
234 0, /* SADB_EXT_SENSITIVITY */
235 0, /* SADB_EXT_PROPOSAL */
236 0, /* SADB_EXT_SUPPORTED_AUTH */
237 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
238 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
239 0, /* SADB_X_EXT_KMPRIVATE */
240 0, /* SADB_X_EXT_POLICY */
241 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
242 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
243 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
244 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
245 0, /* SADB_X_EXT_NAT_T_OAI */
246 0, /* SADB_X_EXT_NAT_T_OAR */
247 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
248 };
249
250 static int ipsec_esp_keymin = 256;
251 static int ipsec_esp_auth = 0;
252 static int ipsec_ah_keymin = 128;
253
254 #ifdef SYSCTL_DECL
255 SYSCTL_DECL(_net_key);
256 #endif
257
258 #ifdef SYSCTL_INT
259 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
260 &key_debug_level, 0, "");
261
262 /* max count of trial for the decision of spi value */
263 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
264 &key_spi_trycnt, 0, "");
265
266 /* minimum spi value to allocate automatically. */
267 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
268 &key_spi_minval, 0, "");
269
270 /* maximun spi value to allocate automatically. */
271 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
272 &key_spi_maxval, 0, "");
273
274 /* interval to initialize randseed */
275 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
276 &key_int_random, 0, "");
277
278 /* lifetime for larval SA */
279 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
280 &key_larval_lifetime, 0, "");
281
282 /* counter for blocking to send SADB_ACQUIRE to IKEd */
283 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
284 &key_blockacq_count, 0, "");
285
286 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
287 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
288 &key_blockacq_lifetime, 0, "");
289
290 /* ESP auth */
291 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
292 &ipsec_esp_auth, 0, "");
293
294 /* minimum ESP key length */
295 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
296 &ipsec_esp_keymin, 0, "");
297
298 /* minimum AH key length */
299 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
300 &ipsec_ah_keymin, 0, "");
301
302 /* perfered old SA rather than new SA */
303 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
304 &key_prefered_oldsa, 0, "");
305 #endif /* SYSCTL_INT */
306
307 #define __LIST_CHAINED(elm) \
308 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
309 #define LIST_INSERT_TAIL(head, elm, type, field) \
310 do {\
311 struct type *curelm = LIST_FIRST(head); \
312 if (curelm == NULL) {\
313 LIST_INSERT_HEAD(head, elm, field); \
314 } else { \
315 while (LIST_NEXT(curelm, field)) \
316 curelm = LIST_NEXT(curelm, field);\
317 LIST_INSERT_AFTER(curelm, elm, field);\
318 }\
319 } while (0)
320
321 #define KEY_CHKSASTATE(head, sav) \
322 /* do */ { \
323 if ((head) != (sav)) { \
324 IPSECLOG(LOG_DEBUG, \
325 "state mismatched (TREE=%d SA=%d)\n", \
326 (head), (sav)); \
327 continue; \
328 } \
329 } /* while (0) */
330
331 #define KEY_CHKSPDIR(head, sp) \
332 do { \
333 if ((head) != (sp)) { \
334 IPSECLOG(LOG_DEBUG, \
335 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
336 (head), (sp)); \
337 } \
338 } while (0)
339
340 /*
341 * set parameters into secasindex buffer.
342 * Must allocate secasindex buffer before calling this function.
343 */
344 static int
345 key_setsecasidx(int, int, int, const struct sockaddr *,
346 const struct sockaddr *, struct secasindex *);
347
348 /* key statistics */
349 struct _keystat {
350 u_long getspi_count; /* the avarage of count to try to get new SPI */
351 } keystat;
352
353 struct sadb_msghdr {
354 struct sadb_msg *msg;
355 struct sadb_ext *ext[SADB_EXT_MAX + 1];
356 int extoff[SADB_EXT_MAX + 1];
357 int extlen[SADB_EXT_MAX + 1];
358 };
359
360 static void
361 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
362
363 static const struct sockaddr *
364 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
365 {
366
367 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
368 }
369
370 static struct mbuf *
371 key_fill_replymsg(struct mbuf *m, int seq)
372 {
373 struct sadb_msg *msg;
374
375 if (m->m_len < sizeof(*msg)) {
376 m = m_pullup(m, sizeof(*msg));
377 if (m == NULL)
378 return NULL;
379 }
380 msg = mtod(m, struct sadb_msg *);
381 msg->sadb_msg_errno = 0;
382 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
383 if (seq != 0)
384 msg->sadb_msg_seq = seq;
385
386 return m;
387 }
388
389 static struct secasvar *key_allocsa_policy (const struct secasindex *);
390 #if 0
391 static void key_freeso(struct socket *);
392 static void key_freesp_so(struct secpolicy **);
393 #endif
394 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
395 static void key_delsp (struct secpolicy *);
396 static struct secpolicy *key_getsp (const struct secpolicyindex *);
397 static struct secpolicy *key_getspbyid (u_int32_t);
398 static u_int16_t key_newreqid (void);
399 static struct mbuf *key_gather_mbuf (struct mbuf *,
400 const struct sadb_msghdr *, int, int, ...);
401 static int key_api_spdadd(struct socket *, struct mbuf *,
402 const struct sadb_msghdr *);
403 static u_int32_t key_getnewspid (void);
404 static int key_api_spddelete(struct socket *, struct mbuf *,
405 const struct sadb_msghdr *);
406 static int key_api_spddelete2(struct socket *, struct mbuf *,
407 const struct sadb_msghdr *);
408 static int key_api_spdget(struct socket *, struct mbuf *,
409 const struct sadb_msghdr *);
410 static int key_api_spdflush(struct socket *, struct mbuf *,
411 const struct sadb_msghdr *);
412 static int key_api_spddump(struct socket *, struct mbuf *,
413 const struct sadb_msghdr *);
414 static struct mbuf * key_setspddump (int *errorp, pid_t);
415 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
416 static int key_api_nat_map(struct socket *, struct mbuf *,
417 const struct sadb_msghdr *);
418 static struct mbuf *key_setdumpsp (struct secpolicy *,
419 u_int8_t, u_int32_t, pid_t);
420 static u_int key_getspreqmsglen (const struct secpolicy *);
421 static int key_spdexpire (struct secpolicy *);
422 static struct secashead *key_newsah (const struct secasindex *);
423 static void key_delsah (struct secashead *);
424 static struct secasvar *key_newsav(struct mbuf *,
425 const struct sadb_msghdr *, int *, const char*, int);
426 #define KEY_NEWSAV(m, sadb, e) \
427 key_newsav(m, sadb, e, __func__, __LINE__)
428 static void key_delsav (struct secasvar *);
429 static struct secashead *key_getsah(const struct secasindex *, int);
430 static bool key_checkspidup(const struct secasindex *, u_int32_t);
431 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
432 static int key_setsaval (struct secasvar *, struct mbuf *,
433 const struct sadb_msghdr *);
434 static void key_freesaval(struct secasvar *);
435 static int key_init_xform(struct secasvar *);
436 static void key_clear_xform(struct secasvar *);
437 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
438 u_int8_t, u_int32_t, u_int32_t);
439 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
440 static struct mbuf *key_setsadbxtype (u_int16_t);
441 static struct mbuf *key_setsadbxfrag (u_int16_t);
442 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
443 static int key_checksalen (const union sockaddr_union *);
444 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
445 u_int32_t, pid_t, u_int16_t);
446 static struct mbuf *key_setsadbsa (struct secasvar *);
447 static struct mbuf *key_setsadbaddr (u_int16_t,
448 const struct sockaddr *, u_int8_t, u_int16_t);
449 #if 0
450 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
451 int, u_int64_t);
452 #endif
453 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
454 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
455 u_int32_t);
456 static void *key_newbuf (const void *, u_int);
457 #ifdef INET6
458 static int key_ismyaddr6 (const struct sockaddr_in6 *);
459 #endif
460
461 static void sysctl_net_keyv2_setup(struct sysctllog **);
462 static void sysctl_net_key_compat_setup(struct sysctllog **);
463
464 /* flags for key_saidx_match() */
465 #define CMP_HEAD 1 /* protocol, addresses. */
466 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
467 #define CMP_REQID 3 /* additionally HEAD, reaid. */
468 #define CMP_EXACTLY 4 /* all elements. */
469 static int key_saidx_match(const struct secasindex *,
470 const struct secasindex *, int);
471
472 static int key_sockaddr_match(const struct sockaddr *,
473 const struct sockaddr *, int);
474 static int key_bb_match_withmask(const void *, const void *, u_int);
475 static u_int16_t key_satype2proto (u_int8_t);
476 static u_int8_t key_proto2satype (u_int16_t);
477
478 static int key_spidx_match_exactly(const struct secpolicyindex *,
479 const struct secpolicyindex *);
480 static int key_spidx_match_withmask(const struct secpolicyindex *,
481 const struct secpolicyindex *);
482
483 static int key_api_getspi(struct socket *, struct mbuf *,
484 const struct sadb_msghdr *);
485 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
486 const struct secasindex *);
487 static int key_handle_natt_info (struct secasvar *,
488 const struct sadb_msghdr *);
489 static int key_set_natt_ports (union sockaddr_union *,
490 union sockaddr_union *,
491 const struct sadb_msghdr *);
492 static int key_api_update(struct socket *, struct mbuf *,
493 const struct sadb_msghdr *);
494 #ifdef IPSEC_DOSEQCHECK
495 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
496 #endif
497 static int key_api_add(struct socket *, struct mbuf *,
498 const struct sadb_msghdr *);
499 static int key_setident (struct secashead *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
502 const struct sadb_msghdr *);
503 static int key_api_delete(struct socket *, struct mbuf *,
504 const struct sadb_msghdr *);
505 static int key_api_get(struct socket *, struct mbuf *,
506 const struct sadb_msghdr *);
507
508 static void key_getcomb_setlifetime (struct sadb_comb *);
509 static struct mbuf *key_getcomb_esp (void);
510 static struct mbuf *key_getcomb_ah (void);
511 static struct mbuf *key_getcomb_ipcomp (void);
512 static struct mbuf *key_getprop (const struct secasindex *);
513
514 static int key_acquire (const struct secasindex *, struct secpolicy *);
515 #ifndef IPSEC_NONBLOCK_ACQUIRE
516 static struct secacq *key_newacq (const struct secasindex *);
517 static struct secacq *key_getacq (const struct secasindex *);
518 static struct secacq *key_getacqbyseq (u_int32_t);
519 #endif
520 #ifdef notyet
521 static struct secspacq *key_newspacq (const struct secpolicyindex *);
522 static struct secspacq *key_getspacq (const struct secpolicyindex *);
523 #endif
524 static int key_api_acquire(struct socket *, struct mbuf *,
525 const struct sadb_msghdr *);
526 static int key_api_register(struct socket *, struct mbuf *,
527 const struct sadb_msghdr *);
528 static int key_expire (struct secasvar *);
529 static int key_api_flush(struct socket *, struct mbuf *,
530 const struct sadb_msghdr *);
531 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
532 int *lenp, pid_t pid);
533 static int key_api_dump(struct socket *, struct mbuf *,
534 const struct sadb_msghdr *);
535 static int key_api_promisc(struct socket *, struct mbuf *,
536 const struct sadb_msghdr *);
537 static int key_senderror (struct socket *, struct mbuf *, int);
538 static int key_validate_ext (const struct sadb_ext *, int);
539 static int key_align (struct mbuf *, struct sadb_msghdr *);
540 #if 0
541 static const char *key_getfqdn (void);
542 static const char *key_getuserfqdn (void);
543 #endif
544 static void key_sa_chgstate (struct secasvar *, u_int8_t);
545 static inline void key_sp_dead (struct secpolicy *);
546 static void key_sp_unlink (struct secpolicy *sp);
547
548 static struct mbuf *key_alloc_mbuf (int);
549
550 static void key_timehandler(void *);
551 static void key_timehandler_work(struct work *, void *);
552 static struct callout key_timehandler_ch;
553 static struct workqueue *key_timehandler_wq;
554 static struct work key_timehandler_wk;
555
556 #ifdef IPSEC_REF_DEBUG
557 #define REFLOG(label, p, where, tag) \
558 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
559 (where), (tag), (p)->refcnt, (p))
560 #else
561 #define REFLOG(label, p, where, tag) do {} while (0)
562 #endif
563
564 #define SA_ADDREF(p) do { \
565 atomic_inc_uint(&(p)->refcnt); \
566 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
567 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
568 } while (0)
569 #define SA_ADDREF2(p, where, tag) do { \
570 atomic_inc_uint(&(p)->refcnt); \
571 REFLOG("SA_ADDREF", (p), (where), (tag)); \
572 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
573 } while (0)
574 #define SA_DELREF(p) do { \
575 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
576 atomic_dec_uint(&(p)->refcnt); \
577 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
578 } while (0)
579 #define SA_DELREF2(p, nv, where, tag) do { \
580 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
581 nv = atomic_dec_uint_nv(&(p)->refcnt); \
582 REFLOG("SA_DELREF", (p), (where), (tag)); \
583 } while (0)
584
585 #define SP_ADDREF(p) do { \
586 atomic_inc_uint(&(p)->refcnt); \
587 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
588 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
589 } while (0)
590 #define SP_ADDREF2(p, where, tag) do { \
591 atomic_inc_uint(&(p)->refcnt); \
592 REFLOG("SP_ADDREF", (p), (where), (tag)); \
593 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
594 } while (0)
595 #define SP_DELREF(p) do { \
596 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
597 atomic_dec_uint(&(p)->refcnt); \
598 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
599 } while (0)
600 #define SP_DELREF2(p, nv, where, tag) do { \
601 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
602 nv = atomic_dec_uint_nv(&(p)->refcnt); \
603 REFLOG("SP_DELREF", (p), (where), (tag)); \
604 } while (0)
605
606
607 static inline void
608 key_sp_dead(struct secpolicy *sp)
609 {
610
611 /* mark the SP dead */
612 sp->state = IPSEC_SPSTATE_DEAD;
613 }
614
615 static void
616 key_sp_unlink(struct secpolicy *sp)
617 {
618
619 /* remove from SP index */
620 KASSERT(__LIST_CHAINED(sp));
621 LIST_REMOVE(sp, chain);
622 /* Release refcount held just for being on chain */
623 KEY_FREESP(&sp);
624 }
625
626
627 /*
628 * Return 0 when there are known to be no SP's for the specified
629 * direction. Otherwise return 1. This is used by IPsec code
630 * to optimize performance.
631 */
632 int
633 key_havesp(u_int dir)
634 {
635 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
636 !LIST_EMPTY(&sptree[dir]) : 1);
637 }
638
639 /* %%% IPsec policy management */
640 /*
641 * allocating a SP for OUTBOUND or INBOUND packet.
642 * Must call key_freesp() later.
643 * OUT: NULL: not found
644 * others: found and return the pointer.
645 */
646 struct secpolicy *
647 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
648 u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
652
653 KASSERT(spidx != NULL);
654 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
655
656 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
657
658 /* get a SP entry */
659 s = splsoftnet(); /*called from softclock()*/
660 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
661 printf("*** objects\n");
662 kdebug_secpolicyindex(spidx);
663 }
664
665 LIST_FOREACH(sp, &sptree[dir], chain) {
666 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
667 printf("*** in SPD\n");
668 kdebug_secpolicyindex(&sp->spidx);
669 }
670
671 if (sp->state == IPSEC_SPSTATE_DEAD)
672 continue;
673 if (key_spidx_match_withmask(&sp->spidx, spidx))
674 goto found;
675 }
676 sp = NULL;
677 found:
678 if (sp) {
679 /* sanity check */
680 KEY_CHKSPDIR(sp->spidx.dir, dir);
681
682 /* found a SPD entry */
683 sp->lastused = time_uptime;
684 SP_ADDREF2(sp, where, tag);
685 }
686 splx(s);
687
688 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
689 "DP return SP:%p (ID=%u) refcnt %u\n",
690 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
691 return sp;
692 }
693
694 /*
695 * allocating a SP for OUTBOUND or INBOUND packet.
696 * Must call key_freesp() later.
697 * OUT: NULL: not found
698 * others: found and return the pointer.
699 */
700 struct secpolicy *
701 key_lookup_sp(u_int32_t spi,
702 const union sockaddr_union *dst,
703 u_int8_t proto,
704 u_int dir,
705 const char* where, int tag)
706 {
707 struct secpolicy *sp;
708 int s;
709
710 KASSERT(dst != NULL);
711 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
712
713 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
714
715 /* get a SP entry */
716 s = splsoftnet(); /*called from softclock()*/
717 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
718 printf("*** objects\n");
719 printf("spi %u proto %u dir %u\n", spi, proto, dir);
720 kdebug_sockaddr(&dst->sa);
721 }
722
723 LIST_FOREACH(sp, &sptree[dir], chain) {
724 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
725 printf("*** in SPD\n");
726 kdebug_secpolicyindex(&sp->spidx);
727 }
728
729 if (sp->state == IPSEC_SPSTATE_DEAD)
730 continue;
731 /* compare simple values, then dst address */
732 if (sp->spidx.ul_proto != proto)
733 continue;
734 /* NB: spi's must exist and match */
735 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
736 continue;
737 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
738 goto found;
739 }
740 sp = NULL;
741 found:
742 if (sp) {
743 /* sanity check */
744 KEY_CHKSPDIR(sp->spidx.dir, dir);
745
746 /* found a SPD entry */
747 sp->lastused = time_uptime;
748 SP_ADDREF2(sp, where, tag);
749 }
750 splx(s);
751
752 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
753 "DP return SP:%p (ID=%u) refcnt %u\n",
754 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
755 return sp;
756 }
757
758 /*
759 * return a policy that matches this particular inbound packet.
760 * XXX slow
761 */
762 struct secpolicy *
763 key_gettunnel(const struct sockaddr *osrc,
764 const struct sockaddr *odst,
765 const struct sockaddr *isrc,
766 const struct sockaddr *idst,
767 const char* where, int tag)
768 {
769 struct secpolicy *sp;
770 const int dir = IPSEC_DIR_INBOUND;
771 int s;
772 struct ipsecrequest *r1, *r2, *p;
773 struct secpolicyindex spidx;
774
775 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
776
777 if (isrc->sa_family != idst->sa_family) {
778 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
779 isrc->sa_family, idst->sa_family);
780 sp = NULL;
781 goto done;
782 }
783
784 s = splsoftnet(); /*called from softclock()*/
785 LIST_FOREACH(sp, &sptree[dir], chain) {
786 if (sp->state == IPSEC_SPSTATE_DEAD)
787 continue;
788
789 r1 = r2 = NULL;
790 for (p = sp->req; p; p = p->next) {
791 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
792 continue;
793
794 r1 = r2;
795 r2 = p;
796
797 if (!r1) {
798 /* here we look at address matches only */
799 spidx = sp->spidx;
800 if (isrc->sa_len > sizeof(spidx.src) ||
801 idst->sa_len > sizeof(spidx.dst))
802 continue;
803 memcpy(&spidx.src, isrc, isrc->sa_len);
804 memcpy(&spidx.dst, idst, idst->sa_len);
805 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
806 continue;
807 } else {
808 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
809 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
810 continue;
811 }
812
813 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
814 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
815 continue;
816
817 goto found;
818 }
819 }
820 sp = NULL;
821 found:
822 if (sp) {
823 sp->lastused = time_uptime;
824 SP_ADDREF2(sp, where, tag);
825 }
826 splx(s);
827 done:
828 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
829 "DP return SP:%p (ID=%u) refcnt %u\n",
830 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
831 return sp;
832 }
833
834 /*
835 * allocating an SA entry for an *OUTBOUND* packet.
836 * checking each request entries in SP, and acquire an SA if need.
837 * OUT: 0: there are valid requests.
838 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
839 */
840 int
841 key_checkrequest(struct ipsecrequest *isr)
842 {
843 u_int level;
844 int error;
845 struct secasvar *oldsav = NULL;
846 const struct secasindex *saidx = &isr->saidx;
847
848 KASSERT(isr != NULL);
849 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
850 saidx->mode == IPSEC_MODE_TUNNEL,
851 "unexpected policy %u", saidx->mode);
852
853 /* get current level */
854 level = ipsec_get_reqlevel(isr);
855
856 /*
857 * XXX guard against protocol callbacks from the crypto
858 * thread as they reference ipsecrequest.sav which we
859 * temporarily null out below. Need to rethink how we
860 * handle bundled SA's in the callback thread.
861 */
862 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
863 #if 0
864 /*
865 * We do allocate new SA only if the state of SA in the holder is
866 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
867 */
868 if (isr->sav != NULL) {
869 if (isr->sav == (struct secasvar *)LIST_FIRST(
870 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
871 KEY_FREESAV(&isr->sav);
872 isr->sav = NULL;
873 }
874 }
875 #else
876 /*
877 * we free any SA stashed in the IPsec request because a different
878 * SA may be involved each time this request is checked, either
879 * because new SAs are being configured, or this request is
880 * associated with an unconnected datagram socket, or this request
881 * is associated with a system default policy.
882 *
883 * The operation may have negative impact to performance. We may
884 * want to check cached SA carefully, rather than picking new SA
885 * every time.
886 */
887 if (isr->sav != NULL)
888 oldsav = isr->sav;
889 #endif
890
891 /*
892 * new SA allocation if no SA found.
893 * key_allocsa_policy should allocate the oldest SA available.
894 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
895 */
896 isr->sav = key_allocsa_policy(saidx);
897 membar_producer();
898 if (oldsav != NULL)
899 KEY_FREESAV(&oldsav);
900
901 /* When there is SA. */
902 if (isr->sav != NULL)
903 return 0;
904
905 /* there is no SA */
906 error = key_acquire(saidx, isr->sp);
907 if (error != 0) {
908 /* XXX What should I do ? */
909 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
910 error);
911 return error;
912 }
913
914 if (level != IPSEC_LEVEL_REQUIRE) {
915 /* XXX sigh, the interface to this routine is botched */
916 KASSERTMSG(isr->sav == NULL, "unexpected SA");
917 return 0;
918 } else {
919 return ENOENT;
920 }
921 }
922
923 /*
924 * allocating a SA for policy entry from SAD.
925 * NOTE: searching SAD of aliving state.
926 * OUT: NULL: not found.
927 * others: found and return the pointer.
928 */
929 static struct secasvar *
930 key_allocsa_policy(const struct secasindex *saidx)
931 {
932 struct secashead *sah;
933 struct secasvar *sav;
934 u_int stateidx, state;
935 const u_int *saorder_state_valid;
936 int arraysize;
937
938 sah = key_getsah(saidx, CMP_MODE_REQID);
939 if (sah == NULL)
940 return NULL;
941
942 /*
943 * search a valid state list for outbound packet.
944 * This search order is important.
945 */
946 if (key_prefered_oldsa) {
947 saorder_state_valid = saorder_state_valid_prefer_old;
948 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
949 } else {
950 saorder_state_valid = saorder_state_valid_prefer_new;
951 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
952 }
953
954 /* search valid state */
955 for (stateidx = 0;
956 stateidx < arraysize;
957 stateidx++) {
958
959 state = saorder_state_valid[stateidx];
960
961 sav = key_do_allocsa_policy(sah, state);
962 if (sav != NULL)
963 return sav;
964 }
965
966 return NULL;
967 }
968
969 static void
970 key_sendup_message_delete(struct secasvar *sav)
971 {
972 struct mbuf *m, *result = 0;
973 uint8_t satype;
974
975 satype = key_proto2satype(sav->sah->saidx.proto);
976 if (satype == 0)
977 goto msgfail;
978
979 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
980 if (m == NULL)
981 goto msgfail;
982 result = m;
983
984 /* set sadb_address for saidx's. */
985 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
986 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
987 if (m == NULL)
988 goto msgfail;
989 m_cat(result, m);
990
991 /* set sadb_address for saidx's. */
992 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
993 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
994 if (m == NULL)
995 goto msgfail;
996 m_cat(result, m);
997
998 /* create SA extension */
999 m = key_setsadbsa(sav);
1000 if (m == NULL)
1001 goto msgfail;
1002 m_cat(result, m);
1003
1004 if (result->m_len < sizeof(struct sadb_msg)) {
1005 result = m_pullup(result, sizeof(struct sadb_msg));
1006 if (result == NULL)
1007 goto msgfail;
1008 }
1009
1010 result->m_pkthdr.len = 0;
1011 for (m = result; m; m = m->m_next)
1012 result->m_pkthdr.len += m->m_len;
1013 mtod(result, struct sadb_msg *)->sadb_msg_len =
1014 PFKEY_UNIT64(result->m_pkthdr.len);
1015
1016 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1017 result = NULL;
1018 msgfail:
1019 if (result)
1020 m_freem(result);
1021 }
1022
1023 /*
1024 * searching SAD with direction, protocol, mode and state.
1025 * called by key_allocsa_policy().
1026 * OUT:
1027 * NULL : not found
1028 * others : found, pointer to a SA.
1029 */
1030 static struct secasvar *
1031 key_do_allocsa_policy(struct secashead *sah, u_int state)
1032 {
1033 struct secasvar *sav, *candidate, *d;
1034
1035 /* initilize */
1036 candidate = NULL;
1037
1038 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1039 /* sanity check */
1040 KEY_CHKSASTATE(sav->state, state);
1041
1042 /* initialize */
1043 if (candidate == NULL) {
1044 candidate = sav;
1045 continue;
1046 }
1047
1048 /* Which SA is the better ? */
1049
1050 /* sanity check 2 */
1051 KASSERT(candidate->lft_c != NULL);
1052 KASSERT(sav->lft_c != NULL);
1053
1054 /* What the best method is to compare ? */
1055 if (key_prefered_oldsa) {
1056 if (candidate->lft_c->sadb_lifetime_addtime >
1057 sav->lft_c->sadb_lifetime_addtime) {
1058 candidate = sav;
1059 }
1060 continue;
1061 /*NOTREACHED*/
1062 }
1063
1064 /* prefered new sa rather than old sa */
1065 if (candidate->lft_c->sadb_lifetime_addtime <
1066 sav->lft_c->sadb_lifetime_addtime) {
1067 d = candidate;
1068 candidate = sav;
1069 } else
1070 d = sav;
1071
1072 /*
1073 * prepared to delete the SA when there is more
1074 * suitable candidate and the lifetime of the SA is not
1075 * permanent.
1076 */
1077 if (d->lft_c->sadb_lifetime_addtime != 0) {
1078 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1079 KASSERT(d->refcnt > 0);
1080 key_sendup_message_delete(d);
1081 KEY_FREESAV(&d);
1082 }
1083 }
1084
1085 if (candidate) {
1086 SA_ADDREF(candidate);
1087 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1088 "DP cause refcnt++:%d SA:%p\n",
1089 candidate->refcnt, candidate);
1090 }
1091 return candidate;
1092 }
1093
1094 /*
1095 * allocating a usable SA entry for a *INBOUND* packet.
1096 * Must call key_freesav() later.
1097 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1098 * NULL: not found, or error occurred.
1099 *
1100 * In the comparison, no source address is used--for RFC2401 conformance.
1101 * To quote, from section 4.1:
1102 * A security association is uniquely identified by a triple consisting
1103 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1104 * security protocol (AH or ESP) identifier.
1105 * Note that, however, we do need to keep source address in IPsec SA.
1106 * IKE specification and PF_KEY specification do assume that we
1107 * keep source address in IPsec SA. We see a tricky situation here.
1108 *
1109 * sport and dport are used for NAT-T. network order is always used.
1110 */
1111 struct secasvar *
1112 key_lookup_sa(
1113 const union sockaddr_union *dst,
1114 u_int proto,
1115 u_int32_t spi,
1116 u_int16_t sport,
1117 u_int16_t dport,
1118 const char* where, int tag)
1119 {
1120 struct secashead *sah;
1121 struct secasvar *sav;
1122 u_int stateidx, state;
1123 const u_int *saorder_state_valid;
1124 int arraysize, chkport;
1125 int s;
1126
1127 int must_check_spi = 1;
1128 int must_check_alg = 0;
1129 u_int16_t cpi = 0;
1130 u_int8_t algo = 0;
1131
1132 if ((sport != 0) && (dport != 0))
1133 chkport = PORT_STRICT;
1134 else
1135 chkport = PORT_NONE;
1136
1137 KASSERT(dst != NULL);
1138
1139 /*
1140 * XXX IPCOMP case
1141 * We use cpi to define spi here. In the case where cpi <=
1142 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1143 * the real spi. In this case, don't check the spi but check the
1144 * algorithm
1145 */
1146
1147 if (proto == IPPROTO_IPCOMP) {
1148 u_int32_t tmp;
1149 tmp = ntohl(spi);
1150 cpi = (u_int16_t) tmp;
1151 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1152 algo = (u_int8_t) cpi;
1153 must_check_spi = 0;
1154 must_check_alg = 1;
1155 }
1156 }
1157 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1158 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1159 where, tag, must_check_spi, must_check_alg);
1160
1161
1162 /*
1163 * searching SAD.
1164 * XXX: to be checked internal IP header somewhere. Also when
1165 * IPsec tunnel packet is received. But ESP tunnel mode is
1166 * encrypted so we can't check internal IP header.
1167 */
1168 s = splsoftnet(); /*called from softclock()*/
1169 if (key_prefered_oldsa) {
1170 saorder_state_valid = saorder_state_valid_prefer_old;
1171 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1172 } else {
1173 saorder_state_valid = saorder_state_valid_prefer_new;
1174 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1175 }
1176 LIST_FOREACH(sah, &sahtree, chain) {
1177 /* search valid state */
1178 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1179 state = saorder_state_valid[stateidx];
1180 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1181 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1182 "try match spi %#x, %#x\n",
1183 ntohl(spi), ntohl(sav->spi));
1184 /* sanity check */
1185 KEY_CHKSASTATE(sav->state, state);
1186 /* do not return entries w/ unusable state */
1187 if (!SADB_SASTATE_USABLE_P(sav)) {
1188 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1189 "bad state %d\n", sav->state);
1190 continue;
1191 }
1192 if (proto != sav->sah->saidx.proto) {
1193 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1194 "proto fail %d != %d\n",
1195 proto, sav->sah->saidx.proto);
1196 continue;
1197 }
1198 if (must_check_spi && spi != sav->spi) {
1199 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1200 "spi fail %#x != %#x\n",
1201 ntohl(spi), ntohl(sav->spi));
1202 continue;
1203 }
1204 /* XXX only on the ipcomp case */
1205 if (must_check_alg && algo != sav->alg_comp) {
1206 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1207 "algo fail %d != %d\n",
1208 algo, sav->alg_comp);
1209 continue;
1210 }
1211
1212 #if 0 /* don't check src */
1213 /* Fix port in src->sa */
1214
1215 /* check src address */
1216 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1217 continue;
1218 #endif
1219 /* fix port of dst address XXX*/
1220 key_porttosaddr(__UNCONST(dst), dport);
1221 /* check dst address */
1222 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1223 continue;
1224 SA_ADDREF2(sav, where, tag);
1225 goto done;
1226 }
1227 }
1228 }
1229 sav = NULL;
1230 done:
1231 splx(s);
1232
1233 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1234 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1235 return sav;
1236 }
1237
1238 void
1239 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1240 {
1241
1242 SP_ADDREF2(sp, where, tag);
1243
1244 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1245 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1246 sp, sp->id, where, tag, sp->refcnt);
1247 }
1248
1249 /*
1250 * Must be called after calling key_lookup_sp*().
1251 * For both the packet without socket and key_freeso().
1252 */
1253 void
1254 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1255 {
1256 struct secpolicy *sp = *spp;
1257 unsigned int nv;
1258
1259 KASSERT(sp != NULL);
1260
1261 SP_DELREF2(sp, nv, where, tag);
1262
1263 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1264 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1265 sp, sp->id, where, tag, nv);
1266
1267 if (nv == 0) {
1268 *spp = NULL;
1269 key_delsp(sp);
1270 }
1271 }
1272
1273 #if 0
1274 /*
1275 * Must be called after calling key_lookup_sp*().
1276 * For the packet with socket.
1277 */
1278 static void
1279 key_freeso(struct socket *so)
1280 {
1281 /* sanity check */
1282 KASSERT(so != NULL);
1283
1284 switch (so->so_proto->pr_domain->dom_family) {
1285 #ifdef INET
1286 case PF_INET:
1287 {
1288 struct inpcb *pcb = sotoinpcb(so);
1289
1290 /* Does it have a PCB ? */
1291 if (pcb == NULL)
1292 return;
1293
1294 struct inpcbpolicy *sp = pcb->inp_sp;
1295 key_freesp_so(&sp->sp_in);
1296 key_freesp_so(&sp->sp_out);
1297 }
1298 break;
1299 #endif
1300 #ifdef INET6
1301 case PF_INET6:
1302 {
1303 #ifdef HAVE_NRL_INPCB
1304 struct inpcb *pcb = sotoinpcb(so);
1305 struct inpcbpolicy *sp = pcb->inp_sp;
1306
1307 /* Does it have a PCB ? */
1308 if (pcb == NULL)
1309 return;
1310 key_freesp_so(&sp->sp_in);
1311 key_freesp_so(&sp->sp_out);
1312 #else
1313 struct in6pcb *pcb = sotoin6pcb(so);
1314
1315 /* Does it have a PCB ? */
1316 if (pcb == NULL)
1317 return;
1318 key_freesp_so(&pcb->in6p_sp->sp_in);
1319 key_freesp_so(&pcb->in6p_sp->sp_out);
1320 #endif
1321 }
1322 break;
1323 #endif /* INET6 */
1324 default:
1325 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1326 so->so_proto->pr_domain->dom_family);
1327 return;
1328 }
1329 }
1330
1331 static void
1332 key_freesp_so(struct secpolicy **sp)
1333 {
1334
1335 KASSERT(sp != NULL);
1336 KASSERT(*sp != NULL);
1337
1338 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1339 (*sp)->policy == IPSEC_POLICY_BYPASS)
1340 return;
1341
1342 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1343 "invalid policy %u", (*sp)->policy);
1344 KEY_FREESP(sp);
1345 }
1346 #endif
1347
1348 /*
1349 * Must be called after calling key_lookup_sa().
1350 * This function is called by key_freesp() to free some SA allocated
1351 * for a policy.
1352 */
1353 void
1354 key_freesav(struct secasvar **psav, const char* where, int tag)
1355 {
1356 struct secasvar *sav = *psav;
1357 unsigned int nv;
1358
1359 KASSERT(sav != NULL);
1360
1361 SA_DELREF2(sav, nv, where, tag);
1362
1363 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1364 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1365 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1366
1367 if (nv == 0) {
1368 *psav = NULL;
1369
1370 /* remove from SA header */
1371 KASSERT(__LIST_CHAINED(sav));
1372 LIST_REMOVE(sav, chain);
1373
1374 key_delsav(sav);
1375 }
1376 }
1377
1378 /* %%% SPD management */
1379 /*
1380 * free security policy entry.
1381 */
1382 static void
1383 key_delsp(struct secpolicy *sp)
1384 {
1385 int s;
1386
1387 KASSERT(sp != NULL);
1388
1389 key_sp_dead(sp);
1390
1391 KASSERTMSG(sp->refcnt == 0,
1392 "SP with references deleted (refcnt %u)", sp->refcnt);
1393
1394 s = splsoftnet(); /*called from softclock()*/
1395
1396 {
1397 struct ipsecrequest *isr = sp->req, *nextisr;
1398
1399 while (isr != NULL) {
1400 if (isr->sav != NULL) {
1401 KEY_FREESAV(&isr->sav);
1402 isr->sav = NULL;
1403 }
1404
1405 nextisr = isr->next;
1406 kmem_intr_free(isr, sizeof(*isr));
1407 isr = nextisr;
1408 }
1409 }
1410
1411 kmem_intr_free(sp, sizeof(*sp));
1412
1413 splx(s);
1414 }
1415
1416 /*
1417 * search SPD
1418 * OUT: NULL : not found
1419 * others : found, pointer to a SP.
1420 */
1421 static struct secpolicy *
1422 key_getsp(const struct secpolicyindex *spidx)
1423 {
1424 struct secpolicy *sp;
1425
1426 KASSERT(spidx != NULL);
1427
1428 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1429 if (sp->state == IPSEC_SPSTATE_DEAD)
1430 continue;
1431 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1432 SP_ADDREF(sp);
1433 return sp;
1434 }
1435 }
1436
1437 return NULL;
1438 }
1439
1440 /*
1441 * get SP by index.
1442 * OUT: NULL : not found
1443 * others : found, pointer to a SP.
1444 */
1445 static struct secpolicy *
1446 key_getspbyid(u_int32_t id)
1447 {
1448 struct secpolicy *sp;
1449
1450 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1451 if (sp->state == IPSEC_SPSTATE_DEAD)
1452 continue;
1453 if (sp->id == id) {
1454 SP_ADDREF(sp);
1455 return sp;
1456 }
1457 }
1458
1459 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1460 if (sp->state == IPSEC_SPSTATE_DEAD)
1461 continue;
1462 if (sp->id == id) {
1463 SP_ADDREF(sp);
1464 return sp;
1465 }
1466 }
1467
1468 return NULL;
1469 }
1470
1471 struct secpolicy *
1472 key_newsp(const char* where, int tag)
1473 {
1474 struct secpolicy *newsp = NULL;
1475
1476 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1477 if (newsp != NULL)
1478 newsp->refcnt = 1;
1479
1480 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1481 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1482 return newsp;
1483 }
1484
1485 /*
1486 * create secpolicy structure from sadb_x_policy structure.
1487 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1488 * so must be set properly later.
1489 */
1490 struct secpolicy *
1491 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1492 {
1493 struct secpolicy *newsp;
1494
1495 KASSERT(!cpu_softintr_p());
1496 KASSERT(xpl0 != NULL);
1497 KASSERT(len >= sizeof(*xpl0));
1498
1499 if (len != PFKEY_EXTLEN(xpl0)) {
1500 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1501 *error = EINVAL;
1502 return NULL;
1503 }
1504
1505 newsp = KEY_NEWSP();
1506 if (newsp == NULL) {
1507 *error = ENOBUFS;
1508 return NULL;
1509 }
1510
1511 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1512 newsp->policy = xpl0->sadb_x_policy_type;
1513
1514 /* check policy */
1515 switch (xpl0->sadb_x_policy_type) {
1516 case IPSEC_POLICY_DISCARD:
1517 case IPSEC_POLICY_NONE:
1518 case IPSEC_POLICY_ENTRUST:
1519 case IPSEC_POLICY_BYPASS:
1520 newsp->req = NULL;
1521 *error = 0;
1522 return newsp;
1523
1524 case IPSEC_POLICY_IPSEC:
1525 /* Continued */
1526 break;
1527 default:
1528 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1529 KEY_FREESP(&newsp);
1530 *error = EINVAL;
1531 return NULL;
1532 }
1533
1534 /* IPSEC_POLICY_IPSEC */
1535 {
1536 int tlen;
1537 const struct sadb_x_ipsecrequest *xisr;
1538 uint16_t xisr_reqid;
1539 struct ipsecrequest **p_isr = &newsp->req;
1540
1541 /* validity check */
1542 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1543 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1544 *error = EINVAL;
1545 goto free_exit;
1546 }
1547
1548 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1549 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1550
1551 while (tlen > 0) {
1552 /* length check */
1553 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1554 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1555 *error = EINVAL;
1556 goto free_exit;
1557 }
1558
1559 /* allocate request buffer */
1560 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1561
1562 /* set values */
1563 (*p_isr)->next = NULL;
1564
1565 switch (xisr->sadb_x_ipsecrequest_proto) {
1566 case IPPROTO_ESP:
1567 case IPPROTO_AH:
1568 case IPPROTO_IPCOMP:
1569 break;
1570 default:
1571 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1572 xisr->sadb_x_ipsecrequest_proto);
1573 *error = EPROTONOSUPPORT;
1574 goto free_exit;
1575 }
1576 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1577
1578 switch (xisr->sadb_x_ipsecrequest_mode) {
1579 case IPSEC_MODE_TRANSPORT:
1580 case IPSEC_MODE_TUNNEL:
1581 break;
1582 case IPSEC_MODE_ANY:
1583 default:
1584 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1585 xisr->sadb_x_ipsecrequest_mode);
1586 *error = EINVAL;
1587 goto free_exit;
1588 }
1589 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1590
1591 switch (xisr->sadb_x_ipsecrequest_level) {
1592 case IPSEC_LEVEL_DEFAULT:
1593 case IPSEC_LEVEL_USE:
1594 case IPSEC_LEVEL_REQUIRE:
1595 break;
1596 case IPSEC_LEVEL_UNIQUE:
1597 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1598 /* validity check */
1599 /*
1600 * If range violation of reqid, kernel will
1601 * update it, don't refuse it.
1602 */
1603 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1604 IPSECLOG(LOG_DEBUG,
1605 "reqid=%d range "
1606 "violation, updated by kernel.\n",
1607 xisr_reqid);
1608 xisr_reqid = 0;
1609 }
1610
1611 /* allocate new reqid id if reqid is zero. */
1612 if (xisr_reqid == 0) {
1613 u_int16_t reqid = key_newreqid();
1614 if (reqid == 0) {
1615 *error = ENOBUFS;
1616 goto free_exit;
1617 }
1618 (*p_isr)->saidx.reqid = reqid;
1619 } else {
1620 /* set it for manual keying. */
1621 (*p_isr)->saidx.reqid = xisr_reqid;
1622 }
1623 break;
1624
1625 default:
1626 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1627 xisr->sadb_x_ipsecrequest_level);
1628 *error = EINVAL;
1629 goto free_exit;
1630 }
1631 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1632
1633 /* set IP addresses if there */
1634 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1635 const struct sockaddr *paddr;
1636
1637 paddr = (const struct sockaddr *)(xisr + 1);
1638
1639 /* validity check */
1640 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1641 IPSECLOG(LOG_DEBUG, "invalid request "
1642 "address length.\n");
1643 *error = EINVAL;
1644 goto free_exit;
1645 }
1646 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1647
1648 paddr = (const struct sockaddr *)((const char *)paddr
1649 + paddr->sa_len);
1650
1651 /* validity check */
1652 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1653 IPSECLOG(LOG_DEBUG, "invalid request "
1654 "address length.\n");
1655 *error = EINVAL;
1656 goto free_exit;
1657 }
1658 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1659 }
1660
1661 (*p_isr)->sav = NULL;
1662 (*p_isr)->sp = newsp;
1663
1664 /* initialization for the next. */
1665 p_isr = &(*p_isr)->next;
1666 tlen -= xisr->sadb_x_ipsecrequest_len;
1667
1668 /* validity check */
1669 if (tlen < 0) {
1670 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1671 *error = EINVAL;
1672 goto free_exit;
1673 }
1674
1675 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1676 xisr->sadb_x_ipsecrequest_len);
1677 }
1678 }
1679
1680 *error = 0;
1681 return newsp;
1682
1683 free_exit:
1684 KEY_FREESP(&newsp);
1685 return NULL;
1686 }
1687
1688 static u_int16_t
1689 key_newreqid(void)
1690 {
1691 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1692
1693 auto_reqid = (auto_reqid == 0xffff ?
1694 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1695
1696 /* XXX should be unique check */
1697
1698 return auto_reqid;
1699 }
1700
1701 /*
1702 * copy secpolicy struct to sadb_x_policy structure indicated.
1703 */
1704 struct mbuf *
1705 key_sp2msg(const struct secpolicy *sp)
1706 {
1707 struct sadb_x_policy *xpl;
1708 int tlen;
1709 char *p;
1710 struct mbuf *m;
1711
1712 KASSERT(sp != NULL);
1713
1714 tlen = key_getspreqmsglen(sp);
1715
1716 m = key_alloc_mbuf(tlen);
1717 if (!m || m->m_next) { /*XXX*/
1718 if (m)
1719 m_freem(m);
1720 return NULL;
1721 }
1722
1723 m->m_len = tlen;
1724 m->m_next = NULL;
1725 xpl = mtod(m, struct sadb_x_policy *);
1726 memset(xpl, 0, tlen);
1727
1728 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1729 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1730 xpl->sadb_x_policy_type = sp->policy;
1731 xpl->sadb_x_policy_dir = sp->spidx.dir;
1732 xpl->sadb_x_policy_id = sp->id;
1733 p = (char *)xpl + sizeof(*xpl);
1734
1735 /* if is the policy for ipsec ? */
1736 if (sp->policy == IPSEC_POLICY_IPSEC) {
1737 struct sadb_x_ipsecrequest *xisr;
1738 struct ipsecrequest *isr;
1739
1740 for (isr = sp->req; isr != NULL; isr = isr->next) {
1741
1742 xisr = (struct sadb_x_ipsecrequest *)p;
1743
1744 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1745 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1746 xisr->sadb_x_ipsecrequest_level = isr->level;
1747 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1748
1749 p += sizeof(*xisr);
1750 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1751 p += isr->saidx.src.sa.sa_len;
1752 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1753 p += isr->saidx.src.sa.sa_len;
1754
1755 xisr->sadb_x_ipsecrequest_len =
1756 PFKEY_ALIGN8(sizeof(*xisr)
1757 + isr->saidx.src.sa.sa_len
1758 + isr->saidx.dst.sa.sa_len);
1759 }
1760 }
1761
1762 return m;
1763 }
1764
1765 /* m will not be freed nor modified */
1766 static struct mbuf *
1767 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1768 int ndeep, int nitem, ...)
1769 {
1770 va_list ap;
1771 int idx;
1772 int i;
1773 struct mbuf *result = NULL, *n;
1774 int len;
1775
1776 KASSERT(m != NULL);
1777 KASSERT(mhp != NULL);
1778
1779 va_start(ap, nitem);
1780 for (i = 0; i < nitem; i++) {
1781 idx = va_arg(ap, int);
1782 if (idx < 0 || idx > SADB_EXT_MAX)
1783 goto fail;
1784 /* don't attempt to pull empty extension */
1785 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1786 continue;
1787 if (idx != SADB_EXT_RESERVED &&
1788 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1789 continue;
1790
1791 if (idx == SADB_EXT_RESERVED) {
1792 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1793 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1794 MGETHDR(n, M_DONTWAIT, MT_DATA);
1795 if (!n)
1796 goto fail;
1797 n->m_len = len;
1798 n->m_next = NULL;
1799 m_copydata(m, 0, sizeof(struct sadb_msg),
1800 mtod(n, void *));
1801 } else if (i < ndeep) {
1802 len = mhp->extlen[idx];
1803 n = key_alloc_mbuf(len);
1804 if (!n || n->m_next) { /*XXX*/
1805 if (n)
1806 m_freem(n);
1807 goto fail;
1808 }
1809 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1810 mtod(n, void *));
1811 } else {
1812 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1813 M_DONTWAIT);
1814 }
1815 if (n == NULL)
1816 goto fail;
1817
1818 if (result)
1819 m_cat(result, n);
1820 else
1821 result = n;
1822 }
1823 va_end(ap);
1824
1825 if (result && (result->m_flags & M_PKTHDR) != 0) {
1826 result->m_pkthdr.len = 0;
1827 for (n = result; n; n = n->m_next)
1828 result->m_pkthdr.len += n->m_len;
1829 }
1830
1831 return result;
1832
1833 fail:
1834 va_end(ap);
1835 m_freem(result);
1836 return NULL;
1837 }
1838
1839 /*
1840 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1841 * add an entry to SP database, when received
1842 * <base, address(SD), (lifetime(H),) policy>
1843 * from the user(?).
1844 * Adding to SP database,
1845 * and send
1846 * <base, address(SD), (lifetime(H),) policy>
1847 * to the socket which was send.
1848 *
1849 * SPDADD set a unique policy entry.
1850 * SPDSETIDX like SPDADD without a part of policy requests.
1851 * SPDUPDATE replace a unique policy entry.
1852 *
1853 * m will always be freed.
1854 */
1855 static int
1856 key_api_spdadd(struct socket *so, struct mbuf *m,
1857 const struct sadb_msghdr *mhp)
1858 {
1859 const struct sockaddr *src, *dst;
1860 const struct sadb_x_policy *xpl0;
1861 struct sadb_x_policy *xpl;
1862 const struct sadb_lifetime *lft = NULL;
1863 struct secpolicyindex spidx;
1864 struct secpolicy *newsp;
1865 int error;
1866
1867 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1868 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1869 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1870 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1871 return key_senderror(so, m, EINVAL);
1872 }
1873 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1874 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1875 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1876 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1877 return key_senderror(so, m, EINVAL);
1878 }
1879 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1880 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1881 sizeof(struct sadb_lifetime)) {
1882 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1883 return key_senderror(so, m, EINVAL);
1884 }
1885 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1886 }
1887
1888 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1889
1890 /* checking the direciton. */
1891 switch (xpl0->sadb_x_policy_dir) {
1892 case IPSEC_DIR_INBOUND:
1893 case IPSEC_DIR_OUTBOUND:
1894 break;
1895 default:
1896 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1897 return key_senderror(so, m, EINVAL);
1898 }
1899
1900 /* check policy */
1901 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
1902 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1903 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1904 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1905 return key_senderror(so, m, EINVAL);
1906 }
1907
1908 /* policy requests are mandatory when action is ipsec. */
1909 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1910 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1911 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1912 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1913 return key_senderror(so, m, EINVAL);
1914 }
1915
1916 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1917 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1918
1919 /* sanity check on addr pair */
1920 if (src->sa_family != dst->sa_family)
1921 return key_senderror(so, m, EINVAL);
1922 if (src->sa_len != dst->sa_len)
1923 return key_senderror(so, m, EINVAL);
1924
1925 key_init_spidx_bymsghdr(&spidx, mhp);
1926
1927 /*
1928 * checking there is SP already or not.
1929 * SPDUPDATE doesn't depend on whether there is a SP or not.
1930 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1931 * then error.
1932 */
1933 {
1934 struct secpolicy *sp;
1935
1936 sp = key_getsp(&spidx);
1937 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1938 if (sp) {
1939 key_sp_dead(sp);
1940 key_sp_unlink(sp); /* XXX jrs ordering */
1941 KEY_FREESP(&sp);
1942 }
1943 } else {
1944 if (sp != NULL) {
1945 KEY_FREESP(&sp);
1946 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1947 return key_senderror(so, m, EEXIST);
1948 }
1949 }
1950 }
1951
1952 /* allocation new SP entry */
1953 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1954 if (newsp == NULL) {
1955 return key_senderror(so, m, error);
1956 }
1957
1958 newsp->id = key_getnewspid();
1959 if (newsp->id == 0) {
1960 kmem_free(newsp, sizeof(*newsp));
1961 return key_senderror(so, m, ENOBUFS);
1962 }
1963
1964 newsp->spidx = spidx;
1965 newsp->created = time_uptime;
1966 newsp->lastused = newsp->created;
1967 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1968 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1969
1970 newsp->refcnt = 1; /* do not reclaim until I say I do */
1971 newsp->state = IPSEC_SPSTATE_ALIVE;
1972 if (newsp->policy == IPSEC_POLICY_IPSEC)
1973 KASSERT(newsp->req != NULL);
1974 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1975
1976 #ifdef notyet
1977 /* delete the entry in spacqtree */
1978 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1979 struct secspacq *spacq = key_getspacq(&spidx);
1980 if (spacq != NULL) {
1981 /* reset counter in order to deletion by timehandler. */
1982 spacq->created = time_uptime;
1983 spacq->count = 0;
1984 }
1985 }
1986 #endif
1987
1988 /* Invalidate all cached SPD pointers in the PCBs. */
1989 ipsec_invalpcbcacheall();
1990
1991 #if defined(GATEWAY)
1992 /* Invalidate the ipflow cache, as well. */
1993 ipflow_invalidate_all(0);
1994 #ifdef INET6
1995 if (in6_present)
1996 ip6flow_invalidate_all(0);
1997 #endif /* INET6 */
1998 #endif /* GATEWAY */
1999
2000 {
2001 struct mbuf *n, *mpolicy;
2002 int off;
2003
2004 /* create new sadb_msg to reply. */
2005 if (lft) {
2006 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2007 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2008 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2009 } else {
2010 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2011 SADB_X_EXT_POLICY,
2012 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2013 }
2014 if (!n)
2015 return key_senderror(so, m, ENOBUFS);
2016
2017 n = key_fill_replymsg(n, 0);
2018 if (n == NULL)
2019 return key_senderror(so, m, ENOBUFS);
2020
2021 off = 0;
2022 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2023 sizeof(*xpl), &off);
2024 if (mpolicy == NULL) {
2025 /* n is already freed */
2026 return key_senderror(so, m, ENOBUFS);
2027 }
2028 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2029 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2030 m_freem(n);
2031 return key_senderror(so, m, EINVAL);
2032 }
2033 xpl->sadb_x_policy_id = newsp->id;
2034
2035 m_freem(m);
2036 key_update_used();
2037 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2038 }
2039 }
2040
2041 /*
2042 * get new policy id.
2043 * OUT:
2044 * 0: failure.
2045 * others: success.
2046 */
2047 static u_int32_t
2048 key_getnewspid(void)
2049 {
2050 u_int32_t newid = 0;
2051 int count = key_spi_trycnt; /* XXX */
2052 struct secpolicy *sp;
2053
2054 /* when requesting to allocate spi ranged */
2055 while (count--) {
2056 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2057
2058 sp = key_getspbyid(newid);
2059 if (sp == NULL)
2060 break;
2061
2062 KEY_FREESP(&sp);
2063 }
2064
2065 if (count == 0 || newid == 0) {
2066 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2067 return 0;
2068 }
2069
2070 return newid;
2071 }
2072
2073 /*
2074 * SADB_SPDDELETE processing
2075 * receive
2076 * <base, address(SD), policy(*)>
2077 * from the user(?), and set SADB_SASTATE_DEAD,
2078 * and send,
2079 * <base, address(SD), policy(*)>
2080 * to the ikmpd.
2081 * policy(*) including direction of policy.
2082 *
2083 * m will always be freed.
2084 */
2085 static int
2086 key_api_spddelete(struct socket *so, struct mbuf *m,
2087 const struct sadb_msghdr *mhp)
2088 {
2089 struct sadb_x_policy *xpl0;
2090 struct secpolicyindex spidx;
2091 struct secpolicy *sp;
2092
2093 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2094 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2095 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2096 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2097 return key_senderror(so, m, EINVAL);
2098 }
2099 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2100 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2101 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2102 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2103 return key_senderror(so, m, EINVAL);
2104 }
2105
2106 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2107
2108 /* checking the direciton. */
2109 switch (xpl0->sadb_x_policy_dir) {
2110 case IPSEC_DIR_INBOUND:
2111 case IPSEC_DIR_OUTBOUND:
2112 break;
2113 default:
2114 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2115 return key_senderror(so, m, EINVAL);
2116 }
2117
2118 /* make secindex */
2119 key_init_spidx_bymsghdr(&spidx, mhp);
2120
2121 /* Is there SP in SPD ? */
2122 sp = key_getsp(&spidx);
2123 if (sp == NULL) {
2124 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2125 return key_senderror(so, m, EINVAL);
2126 }
2127
2128 /* save policy id to buffer to be returned. */
2129 xpl0->sadb_x_policy_id = sp->id;
2130
2131 key_sp_dead(sp);
2132 key_sp_unlink(sp); /* XXX jrs ordering */
2133 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2134
2135 /* Invalidate all cached SPD pointers in the PCBs. */
2136 ipsec_invalpcbcacheall();
2137
2138 /* We're deleting policy; no need to invalidate the ipflow cache. */
2139
2140 {
2141 struct mbuf *n;
2142
2143 /* create new sadb_msg to reply. */
2144 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2145 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2146 if (!n)
2147 return key_senderror(so, m, ENOBUFS);
2148
2149 n = key_fill_replymsg(n, 0);
2150 if (n == NULL)
2151 return key_senderror(so, m, ENOBUFS);
2152
2153 m_freem(m);
2154 key_update_used();
2155 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2156 }
2157 }
2158
2159 /*
2160 * SADB_SPDDELETE2 processing
2161 * receive
2162 * <base, policy(*)>
2163 * from the user(?), and set SADB_SASTATE_DEAD,
2164 * and send,
2165 * <base, policy(*)>
2166 * to the ikmpd.
2167 * policy(*) including direction of policy.
2168 *
2169 * m will always be freed.
2170 */
2171 static int
2172 key_api_spddelete2(struct socket *so, struct mbuf *m,
2173 const struct sadb_msghdr *mhp)
2174 {
2175 u_int32_t id;
2176 struct secpolicy *sp;
2177
2178 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2179 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2180 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2181 return key_senderror(so, m, EINVAL);
2182 }
2183
2184 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2185
2186 /* Is there SP in SPD ? */
2187 sp = key_getspbyid(id);
2188 if (sp == NULL) {
2189 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2190 return key_senderror(so, m, EINVAL);
2191 }
2192
2193 key_sp_dead(sp);
2194 key_sp_unlink(sp); /* XXX jrs ordering */
2195 KEY_FREESP(&sp); /* ref gained by key_getsp */
2196 sp = NULL;
2197
2198 /* Invalidate all cached SPD pointers in the PCBs. */
2199 ipsec_invalpcbcacheall();
2200
2201 /* We're deleting policy; no need to invalidate the ipflow cache. */
2202
2203 {
2204 struct mbuf *n, *nn;
2205 int off, len;
2206
2207 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2208
2209 /* create new sadb_msg to reply. */
2210 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2211
2212 MGETHDR(n, M_DONTWAIT, MT_DATA);
2213 if (n && len > MHLEN) {
2214 MCLGET(n, M_DONTWAIT);
2215 if ((n->m_flags & M_EXT) == 0) {
2216 m_freem(n);
2217 n = NULL;
2218 }
2219 }
2220 if (!n)
2221 return key_senderror(so, m, ENOBUFS);
2222
2223 n->m_len = len;
2224 n->m_next = NULL;
2225 off = 0;
2226
2227 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2228 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2229
2230 KASSERTMSG(off == len, "length inconsistency");
2231
2232 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2233 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2234 if (!n->m_next) {
2235 m_freem(n);
2236 return key_senderror(so, m, ENOBUFS);
2237 }
2238
2239 n->m_pkthdr.len = 0;
2240 for (nn = n; nn; nn = nn->m_next)
2241 n->m_pkthdr.len += nn->m_len;
2242
2243 n = key_fill_replymsg(n, 0);
2244 if (n == NULL)
2245 return key_senderror(so, m, ENOBUFS);
2246
2247 m_freem(m);
2248 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2249 }
2250 }
2251
2252 /*
2253 * SADB_X_GET processing
2254 * receive
2255 * <base, policy(*)>
2256 * from the user(?),
2257 * and send,
2258 * <base, address(SD), policy>
2259 * to the ikmpd.
2260 * policy(*) including direction of policy.
2261 *
2262 * m will always be freed.
2263 */
2264 static int
2265 key_api_spdget(struct socket *so, struct mbuf *m,
2266 const struct sadb_msghdr *mhp)
2267 {
2268 u_int32_t id;
2269 struct secpolicy *sp;
2270 struct mbuf *n;
2271
2272 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2273 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2274 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2275 return key_senderror(so, m, EINVAL);
2276 }
2277
2278 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2279
2280 /* Is there SP in SPD ? */
2281 sp = key_getspbyid(id);
2282 if (sp == NULL) {
2283 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2284 return key_senderror(so, m, ENOENT);
2285 }
2286
2287 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2288 mhp->msg->sadb_msg_pid);
2289 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2290 if (n != NULL) {
2291 m_freem(m);
2292 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2293 } else
2294 return key_senderror(so, m, ENOBUFS);
2295 }
2296
2297 #ifdef notyet
2298 /*
2299 * SADB_X_SPDACQUIRE processing.
2300 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2301 * send
2302 * <base, policy(*)>
2303 * to KMD, and expect to receive
2304 * <base> with SADB_X_SPDACQUIRE if error occurred,
2305 * or
2306 * <base, policy>
2307 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2308 * policy(*) is without policy requests.
2309 *
2310 * 0 : succeed
2311 * others: error number
2312 */
2313 int
2314 key_spdacquire(const struct secpolicy *sp)
2315 {
2316 struct mbuf *result = NULL, *m;
2317 struct secspacq *newspacq;
2318 int error;
2319
2320 KASSERT(sp != NULL);
2321 KASSERTMSG(sp->req == NULL, "called but there is request");
2322 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2323 "policy mismathed. IPsec is expected");
2324
2325 /* Get an entry to check whether sent message or not. */
2326 newspacq = key_getspacq(&sp->spidx);
2327 if (newspacq != NULL) {
2328 if (key_blockacq_count < newspacq->count) {
2329 /* reset counter and do send message. */
2330 newspacq->count = 0;
2331 } else {
2332 /* increment counter and do nothing. */
2333 newspacq->count++;
2334 return 0;
2335 }
2336 } else {
2337 /* make new entry for blocking to send SADB_ACQUIRE. */
2338 newspacq = key_newspacq(&sp->spidx);
2339 if (newspacq == NULL)
2340 return ENOBUFS;
2341
2342 /* add to acqtree */
2343 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2344 }
2345
2346 /* create new sadb_msg to reply. */
2347 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2348 if (!m) {
2349 error = ENOBUFS;
2350 goto fail;
2351 }
2352 result = m;
2353
2354 result->m_pkthdr.len = 0;
2355 for (m = result; m; m = m->m_next)
2356 result->m_pkthdr.len += m->m_len;
2357
2358 mtod(result, struct sadb_msg *)->sadb_msg_len =
2359 PFKEY_UNIT64(result->m_pkthdr.len);
2360
2361 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2362
2363 fail:
2364 if (result)
2365 m_freem(result);
2366 return error;
2367 }
2368 #endif /* notyet */
2369
2370 /*
2371 * SADB_SPDFLUSH processing
2372 * receive
2373 * <base>
2374 * from the user, and free all entries in secpctree.
2375 * and send,
2376 * <base>
2377 * to the user.
2378 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2379 *
2380 * m will always be freed.
2381 */
2382 static int
2383 key_api_spdflush(struct socket *so, struct mbuf *m,
2384 const struct sadb_msghdr *mhp)
2385 {
2386 struct sadb_msg *newmsg;
2387 struct secpolicy *sp;
2388 u_int dir;
2389
2390 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2391 return key_senderror(so, m, EINVAL);
2392
2393 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2394 struct secpolicy * nextsp;
2395 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2396 if (sp->state == IPSEC_SPSTATE_DEAD)
2397 continue;
2398 key_sp_dead(sp);
2399 key_sp_unlink(sp);
2400 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2401 continue;
2402 }
2403 }
2404
2405 /* Invalidate all cached SPD pointers in the PCBs. */
2406 ipsec_invalpcbcacheall();
2407
2408 /* We're deleting policy; no need to invalidate the ipflow cache. */
2409
2410 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2411 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2412 return key_senderror(so, m, ENOBUFS);
2413 }
2414
2415 if (m->m_next)
2416 m_freem(m->m_next);
2417 m->m_next = NULL;
2418 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2419 newmsg = mtod(m, struct sadb_msg *);
2420 newmsg->sadb_msg_errno = 0;
2421 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2422
2423 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2424 }
2425
2426 static struct sockaddr key_src = {
2427 .sa_len = 2,
2428 .sa_family = PF_KEY,
2429 };
2430
2431 static struct mbuf *
2432 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2433 {
2434 struct secpolicy *sp;
2435 int cnt;
2436 u_int dir;
2437 struct mbuf *m, *n, *prev;
2438 int totlen;
2439
2440 *lenp = 0;
2441
2442 /* search SPD entry and get buffer size. */
2443 cnt = 0;
2444 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2445 LIST_FOREACH(sp, &sptree[dir], chain) {
2446 cnt++;
2447 }
2448 }
2449
2450 if (cnt == 0) {
2451 *errorp = ENOENT;
2452 return (NULL);
2453 }
2454
2455 m = NULL;
2456 prev = m;
2457 totlen = 0;
2458 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2459 LIST_FOREACH(sp, &sptree[dir], chain) {
2460 --cnt;
2461 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2462
2463 if (!n) {
2464 *errorp = ENOBUFS;
2465 if (m)
2466 m_freem(m);
2467 return (NULL);
2468 }
2469
2470 totlen += n->m_pkthdr.len;
2471 if (!m) {
2472 m = n;
2473 } else {
2474 prev->m_nextpkt = n;
2475 }
2476 prev = n;
2477 }
2478 }
2479
2480 *lenp = totlen;
2481 *errorp = 0;
2482 return (m);
2483 }
2484
2485 /*
2486 * SADB_SPDDUMP processing
2487 * receive
2488 * <base>
2489 * from the user, and dump all SP leaves
2490 * and send,
2491 * <base> .....
2492 * to the ikmpd.
2493 *
2494 * m will always be freed.
2495 */
2496 static int
2497 key_api_spddump(struct socket *so, struct mbuf *m0,
2498 const struct sadb_msghdr *mhp)
2499 {
2500 struct mbuf *n;
2501 int error, len;
2502 int ok, s;
2503 pid_t pid;
2504
2505 pid = mhp->msg->sadb_msg_pid;
2506 /*
2507 * If the requestor has insufficient socket-buffer space
2508 * for the entire chain, nobody gets any response to the DUMP.
2509 * XXX For now, only the requestor ever gets anything.
2510 * Moreover, if the requestor has any space at all, they receive
2511 * the entire chain, otherwise the request is refused with ENOBUFS.
2512 */
2513 if (sbspace(&so->so_rcv) <= 0) {
2514 return key_senderror(so, m0, ENOBUFS);
2515 }
2516
2517 s = splsoftnet();
2518 n = key_setspddump_chain(&error, &len, pid);
2519 splx(s);
2520
2521 if (n == NULL) {
2522 return key_senderror(so, m0, ENOENT);
2523 }
2524 {
2525 uint64_t *ps = PFKEY_STAT_GETREF();
2526 ps[PFKEY_STAT_IN_TOTAL]++;
2527 ps[PFKEY_STAT_IN_BYTES] += len;
2528 PFKEY_STAT_PUTREF();
2529 }
2530
2531 /*
2532 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2533 * The requestor receives either the entire chain, or an
2534 * error message with ENOBUFS.
2535 */
2536
2537 /*
2538 * sbappendchainwith record takes the chain of entries, one
2539 * packet-record per SPD entry, prepends the key_src sockaddr
2540 * to each packet-record, links the sockaddr mbufs into a new
2541 * list of records, then appends the entire resulting
2542 * list to the requesting socket.
2543 */
2544 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2545 SB_PRIO_ONESHOT_OVERFLOW);
2546
2547 if (!ok) {
2548 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2549 m_freem(n);
2550 return key_senderror(so, m0, ENOBUFS);
2551 }
2552
2553 m_freem(m0);
2554 return error;
2555 }
2556
2557 /*
2558 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2559 */
2560 static int
2561 key_api_nat_map(struct socket *so, struct mbuf *m,
2562 const struct sadb_msghdr *mhp)
2563 {
2564 struct sadb_x_nat_t_type *type;
2565 struct sadb_x_nat_t_port *sport;
2566 struct sadb_x_nat_t_port *dport;
2567 struct sadb_address *iaddr, *raddr;
2568 struct sadb_x_nat_t_frag *frag;
2569
2570 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2571 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2572 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2573 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2574 return key_senderror(so, m, EINVAL);
2575 }
2576 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2577 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2578 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2579 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2580 return key_senderror(so, m, EINVAL);
2581 }
2582
2583 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2584 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2585 IPSECLOG(LOG_DEBUG, "invalid message\n");
2586 return key_senderror(so, m, EINVAL);
2587 }
2588
2589 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2590 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2591 IPSECLOG(LOG_DEBUG, "invalid message\n");
2592 return key_senderror(so, m, EINVAL);
2593 }
2594
2595 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2596 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2597 IPSECLOG(LOG_DEBUG, "invalid message\n");
2598 return key_senderror(so, m, EINVAL);
2599 }
2600
2601 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2602 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2603 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2604 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2605 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2606 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2607
2608 /*
2609 * XXX handle that, it should also contain a SA, or anything
2610 * that enable to update the SA information.
2611 */
2612
2613 return 0;
2614 }
2615
2616 static struct mbuf *
2617 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2618 {
2619 struct mbuf *result = NULL, *m;
2620
2621 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2622 if (!m)
2623 goto fail;
2624 result = m;
2625
2626 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2627 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2628 if (!m)
2629 goto fail;
2630 m_cat(result, m);
2631
2632 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2633 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2634 if (!m)
2635 goto fail;
2636 m_cat(result, m);
2637
2638 m = key_sp2msg(sp);
2639 if (!m)
2640 goto fail;
2641 m_cat(result, m);
2642
2643 if ((result->m_flags & M_PKTHDR) == 0)
2644 goto fail;
2645
2646 if (result->m_len < sizeof(struct sadb_msg)) {
2647 result = m_pullup(result, sizeof(struct sadb_msg));
2648 if (result == NULL)
2649 goto fail;
2650 }
2651
2652 result->m_pkthdr.len = 0;
2653 for (m = result; m; m = m->m_next)
2654 result->m_pkthdr.len += m->m_len;
2655
2656 mtod(result, struct sadb_msg *)->sadb_msg_len =
2657 PFKEY_UNIT64(result->m_pkthdr.len);
2658
2659 return result;
2660
2661 fail:
2662 m_freem(result);
2663 return NULL;
2664 }
2665
2666 /*
2667 * get PFKEY message length for security policy and request.
2668 */
2669 static u_int
2670 key_getspreqmsglen(const struct secpolicy *sp)
2671 {
2672 u_int tlen;
2673
2674 tlen = sizeof(struct sadb_x_policy);
2675
2676 /* if is the policy for ipsec ? */
2677 if (sp->policy != IPSEC_POLICY_IPSEC)
2678 return tlen;
2679
2680 /* get length of ipsec requests */
2681 {
2682 const struct ipsecrequest *isr;
2683 int len;
2684
2685 for (isr = sp->req; isr != NULL; isr = isr->next) {
2686 len = sizeof(struct sadb_x_ipsecrequest)
2687 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2688
2689 tlen += PFKEY_ALIGN8(len);
2690 }
2691 }
2692
2693 return tlen;
2694 }
2695
2696 /*
2697 * SADB_SPDEXPIRE processing
2698 * send
2699 * <base, address(SD), lifetime(CH), policy>
2700 * to KMD by PF_KEY.
2701 *
2702 * OUT: 0 : succeed
2703 * others : error number
2704 */
2705 static int
2706 key_spdexpire(struct secpolicy *sp)
2707 {
2708 int s;
2709 struct mbuf *result = NULL, *m;
2710 int len;
2711 int error = -1;
2712 struct sadb_lifetime *lt;
2713
2714 /* XXX: Why do we lock ? */
2715 s = splsoftnet(); /*called from softclock()*/
2716
2717 KASSERT(sp != NULL);
2718
2719 /* set msg header */
2720 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2721 if (!m) {
2722 error = ENOBUFS;
2723 goto fail;
2724 }
2725 result = m;
2726
2727 /* create lifetime extension (current and hard) */
2728 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2729 m = key_alloc_mbuf(len);
2730 if (!m || m->m_next) { /*XXX*/
2731 if (m)
2732 m_freem(m);
2733 error = ENOBUFS;
2734 goto fail;
2735 }
2736 memset(mtod(m, void *), 0, len);
2737 lt = mtod(m, struct sadb_lifetime *);
2738 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2739 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2740 lt->sadb_lifetime_allocations = 0;
2741 lt->sadb_lifetime_bytes = 0;
2742 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2743 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2744 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2745 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2746 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2747 lt->sadb_lifetime_allocations = 0;
2748 lt->sadb_lifetime_bytes = 0;
2749 lt->sadb_lifetime_addtime = sp->lifetime;
2750 lt->sadb_lifetime_usetime = sp->validtime;
2751 m_cat(result, m);
2752
2753 /* set sadb_address for source */
2754 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2755 sp->spidx.prefs, sp->spidx.ul_proto);
2756 if (!m) {
2757 error = ENOBUFS;
2758 goto fail;
2759 }
2760 m_cat(result, m);
2761
2762 /* set sadb_address for destination */
2763 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2764 sp->spidx.prefd, sp->spidx.ul_proto);
2765 if (!m) {
2766 error = ENOBUFS;
2767 goto fail;
2768 }
2769 m_cat(result, m);
2770
2771 /* set secpolicy */
2772 m = key_sp2msg(sp);
2773 if (!m) {
2774 error = ENOBUFS;
2775 goto fail;
2776 }
2777 m_cat(result, m);
2778
2779 if ((result->m_flags & M_PKTHDR) == 0) {
2780 error = EINVAL;
2781 goto fail;
2782 }
2783
2784 if (result->m_len < sizeof(struct sadb_msg)) {
2785 result = m_pullup(result, sizeof(struct sadb_msg));
2786 if (result == NULL) {
2787 error = ENOBUFS;
2788 goto fail;
2789 }
2790 }
2791
2792 result->m_pkthdr.len = 0;
2793 for (m = result; m; m = m->m_next)
2794 result->m_pkthdr.len += m->m_len;
2795
2796 mtod(result, struct sadb_msg *)->sadb_msg_len =
2797 PFKEY_UNIT64(result->m_pkthdr.len);
2798
2799 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2800
2801 fail:
2802 if (result)
2803 m_freem(result);
2804 splx(s);
2805 return error;
2806 }
2807
2808 /* %%% SAD management */
2809 /*
2810 * allocating a memory for new SA head, and copy from the values of mhp.
2811 * OUT: NULL : failure due to the lack of memory.
2812 * others : pointer to new SA head.
2813 */
2814 static struct secashead *
2815 key_newsah(const struct secasindex *saidx)
2816 {
2817 struct secashead *newsah;
2818 int i;
2819
2820 KASSERT(saidx != NULL);
2821
2822 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2823 for (i = 0; i < __arraycount(newsah->savtree); i++)
2824 LIST_INIT(&newsah->savtree[i]);
2825 newsah->saidx = *saidx;
2826
2827 /* add to saidxtree */
2828 newsah->state = SADB_SASTATE_MATURE;
2829 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2830
2831 return newsah;
2832 }
2833
2834 /*
2835 * delete SA index and all SA registerd.
2836 */
2837 static void
2838 key_delsah(struct secashead *sah)
2839 {
2840 struct secasvar *sav;
2841 u_int state;
2842 int s;
2843 int zombie = 0;
2844
2845 KASSERT(!cpu_softintr_p());
2846 KASSERT(sah != NULL);
2847
2848 s = splsoftnet();
2849
2850 /* searching all SA registerd in the secindex. */
2851 SASTATE_ANY_FOREACH(state) {
2852 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2853 /* give up to delete this sa */
2854 zombie++;
2855 }
2856 }
2857
2858 /* don't delete sah only if there are savs. */
2859 if (zombie) {
2860 splx(s);
2861 return;
2862 }
2863
2864 rtcache_free(&sah->sa_route);
2865
2866 /* remove from tree of SA index */
2867 KASSERT(__LIST_CHAINED(sah));
2868 LIST_REMOVE(sah, chain);
2869
2870 if (sah->idents != NULL)
2871 kmem_free(sah->idents, sah->idents_len);
2872 if (sah->identd != NULL)
2873 kmem_free(sah->identd, sah->identd_len);
2874
2875 kmem_free(sah, sizeof(*sah));
2876
2877 splx(s);
2878 return;
2879 }
2880
2881 /*
2882 * allocating a new SA with LARVAL state.
2883 * key_api_add() and key_api_getspi() call,
2884 * and copy the values of mhp into new buffer.
2885 * When SAD message type is GETSPI:
2886 * to set sequence number from acq_seq++,
2887 * to set zero to SPI.
2888 * not to call key_setsava().
2889 * OUT: NULL : fail
2890 * others : pointer to new secasvar.
2891 *
2892 * does not modify mbuf. does not free mbuf on error.
2893 */
2894 static struct secasvar *
2895 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2896 int *errp, const char* where, int tag)
2897 {
2898 struct secasvar *newsav;
2899 const struct sadb_sa *xsa;
2900
2901 KASSERT(!cpu_softintr_p());
2902 KASSERT(m != NULL);
2903 KASSERT(mhp != NULL);
2904 KASSERT(mhp->msg != NULL);
2905
2906 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2907
2908 switch (mhp->msg->sadb_msg_type) {
2909 case SADB_GETSPI:
2910 newsav->spi = 0;
2911
2912 #ifdef IPSEC_DOSEQCHECK
2913 /* sync sequence number */
2914 if (mhp->msg->sadb_msg_seq == 0)
2915 newsav->seq =
2916 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2917 else
2918 #endif
2919 newsav->seq = mhp->msg->sadb_msg_seq;
2920 break;
2921
2922 case SADB_ADD:
2923 /* sanity check */
2924 if (mhp->ext[SADB_EXT_SA] == NULL) {
2925 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2926 *errp = EINVAL;
2927 goto error;
2928 }
2929 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2930 newsav->spi = xsa->sadb_sa_spi;
2931 newsav->seq = mhp->msg->sadb_msg_seq;
2932 break;
2933 default:
2934 *errp = EINVAL;
2935 goto error;
2936 }
2937
2938 /* copy sav values */
2939 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2940 *errp = key_setsaval(newsav, m, mhp);
2941 if (*errp)
2942 goto error;
2943 }
2944
2945 /* reset created */
2946 newsav->created = time_uptime;
2947 newsav->pid = mhp->msg->sadb_msg_pid;
2948
2949 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2950 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2951 return newsav;
2952
2953 error:
2954 KASSERT(*errp != 0);
2955 kmem_free(newsav, sizeof(*newsav));
2956 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2957 "DP from %s:%u return SA:NULL\n", where, tag);
2958 return NULL;
2959 }
2960
2961
2962 static void
2963 key_clear_xform(struct secasvar *sav)
2964 {
2965
2966 /*
2967 * Cleanup xform state. Note that zeroize'ing causes the
2968 * keys to be cleared; otherwise we must do it ourself.
2969 */
2970 if (sav->tdb_xform != NULL) {
2971 sav->tdb_xform->xf_zeroize(sav);
2972 sav->tdb_xform = NULL;
2973 } else {
2974 if (sav->key_auth != NULL)
2975 explicit_memset(_KEYBUF(sav->key_auth), 0,
2976 _KEYLEN(sav->key_auth));
2977 if (sav->key_enc != NULL)
2978 explicit_memset(_KEYBUF(sav->key_enc), 0,
2979 _KEYLEN(sav->key_enc));
2980 }
2981 }
2982
2983 /*
2984 * free() SA variable entry.
2985 */
2986 static void
2987 key_delsav(struct secasvar *sav)
2988 {
2989
2990 KASSERT(sav != NULL);
2991 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
2992
2993 key_clear_xform(sav);
2994 key_freesaval(sav);
2995 kmem_intr_free(sav, sizeof(*sav));
2996
2997 return;
2998 }
2999
3000 /*
3001 * search SAD.
3002 * OUT:
3003 * NULL : not found
3004 * others : found, pointer to a SA.
3005 */
3006 static struct secashead *
3007 key_getsah(const struct secasindex *saidx, int flag)
3008 {
3009 struct secashead *sah;
3010
3011 LIST_FOREACH(sah, &sahtree, chain) {
3012 if (sah->state == SADB_SASTATE_DEAD)
3013 continue;
3014 if (key_saidx_match(&sah->saidx, saidx, flag))
3015 return sah;
3016 }
3017
3018 return NULL;
3019 }
3020
3021 /*
3022 * check not to be duplicated SPI.
3023 * NOTE: this function is too slow due to searching all SAD.
3024 * OUT:
3025 * NULL : not found
3026 * others : found, pointer to a SA.
3027 */
3028 static bool
3029 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3030 {
3031 struct secashead *sah;
3032 struct secasvar *sav;
3033
3034 /* check address family */
3035 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3036 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3037 return false;
3038 }
3039
3040 /* check all SAD */
3041 LIST_FOREACH(sah, &sahtree, chain) {
3042 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3043 continue;
3044 sav = key_getsavbyspi(sah, spi);
3045 if (sav != NULL) {
3046 KEY_FREESAV(&sav);
3047 return true;
3048 }
3049 }
3050
3051 return false;
3052 }
3053
3054 /*
3055 * search SAD litmited alive SA, protocol, SPI.
3056 * OUT:
3057 * NULL : not found
3058 * others : found, pointer to a SA.
3059 */
3060 static struct secasvar *
3061 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3062 {
3063 struct secasvar *sav;
3064 u_int state;
3065
3066 /* search all status */
3067 SASTATE_ALIVE_FOREACH(state) {
3068 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3069
3070 /* sanity check */
3071 if (sav->state != state) {
3072 IPSECLOG(LOG_DEBUG,
3073 "invalid sav->state (queue: %d SA: %d)\n",
3074 state, sav->state);
3075 continue;
3076 }
3077
3078 if (sav->spi == spi) {
3079 SA_ADDREF(sav);
3080 return sav;
3081 }
3082 }
3083 }
3084
3085 return NULL;
3086 }
3087
3088 /*
3089 * Free allocated data to member variables of sav:
3090 * sav->replay, sav->key_* and sav->lft_*.
3091 */
3092 static void
3093 key_freesaval(struct secasvar *sav)
3094 {
3095
3096 KASSERT(sav->refcnt == 0);
3097
3098 if (sav->replay != NULL)
3099 kmem_intr_free(sav->replay, sav->replay_len);
3100 if (sav->key_auth != NULL)
3101 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3102 if (sav->key_enc != NULL)
3103 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3104 if (sav->lft_c != NULL)
3105 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3106 if (sav->lft_h != NULL)
3107 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3108 if (sav->lft_s != NULL)
3109 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3110 }
3111
3112 /*
3113 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3114 * You must update these if need.
3115 * OUT: 0: success.
3116 * !0: failure.
3117 *
3118 * does not modify mbuf. does not free mbuf on error.
3119 */
3120 static int
3121 key_setsaval(struct secasvar *sav, struct mbuf *m,
3122 const struct sadb_msghdr *mhp)
3123 {
3124 int error = 0;
3125
3126 KASSERT(!cpu_softintr_p());
3127 KASSERT(m != NULL);
3128 KASSERT(mhp != NULL);
3129 KASSERT(mhp->msg != NULL);
3130
3131 /* We shouldn't initialize sav variables while someone uses it. */
3132 KASSERT(sav->refcnt == 0);
3133
3134 /* SA */
3135 if (mhp->ext[SADB_EXT_SA] != NULL) {
3136 const struct sadb_sa *sa0;
3137
3138 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3139 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3140 error = EINVAL;
3141 goto fail;
3142 }
3143
3144 sav->alg_auth = sa0->sadb_sa_auth;
3145 sav->alg_enc = sa0->sadb_sa_encrypt;
3146 sav->flags = sa0->sadb_sa_flags;
3147
3148 /* replay window */
3149 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3150 size_t len = sizeof(struct secreplay) +
3151 sa0->sadb_sa_replay;
3152 sav->replay = kmem_zalloc(len, KM_SLEEP);
3153 sav->replay_len = len;
3154 if (sa0->sadb_sa_replay != 0)
3155 sav->replay->bitmap = (char*)(sav->replay+1);
3156 sav->replay->wsize = sa0->sadb_sa_replay;
3157 }
3158 }
3159
3160 /* Authentication keys */
3161 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3162 const struct sadb_key *key0;
3163 int len;
3164
3165 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3166 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3167
3168 error = 0;
3169 if (len < sizeof(*key0)) {
3170 error = EINVAL;
3171 goto fail;
3172 }
3173 switch (mhp->msg->sadb_msg_satype) {
3174 case SADB_SATYPE_AH:
3175 case SADB_SATYPE_ESP:
3176 case SADB_X_SATYPE_TCPSIGNATURE:
3177 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3178 sav->alg_auth != SADB_X_AALG_NULL)
3179 error = EINVAL;
3180 break;
3181 case SADB_X_SATYPE_IPCOMP:
3182 default:
3183 error = EINVAL;
3184 break;
3185 }
3186 if (error) {
3187 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3188 goto fail;
3189 }
3190
3191 sav->key_auth = key_newbuf(key0, len);
3192 sav->key_auth_len = len;
3193 }
3194
3195 /* Encryption key */
3196 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3197 const struct sadb_key *key0;
3198 int len;
3199
3200 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3201 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3202
3203 error = 0;
3204 if (len < sizeof(*key0)) {
3205 error = EINVAL;
3206 goto fail;
3207 }
3208 switch (mhp->msg->sadb_msg_satype) {
3209 case SADB_SATYPE_ESP:
3210 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3211 sav->alg_enc != SADB_EALG_NULL) {
3212 error = EINVAL;
3213 break;
3214 }
3215 sav->key_enc = key_newbuf(key0, len);
3216 sav->key_enc_len = len;
3217 break;
3218 case SADB_X_SATYPE_IPCOMP:
3219 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3220 error = EINVAL;
3221 sav->key_enc = NULL; /*just in case*/
3222 break;
3223 case SADB_SATYPE_AH:
3224 case SADB_X_SATYPE_TCPSIGNATURE:
3225 default:
3226 error = EINVAL;
3227 break;
3228 }
3229 if (error) {
3230 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3231 goto fail;
3232 }
3233 }
3234
3235 /* set iv */
3236 sav->ivlen = 0;
3237
3238 switch (mhp->msg->sadb_msg_satype) {
3239 case SADB_SATYPE_AH:
3240 error = xform_init(sav, XF_AH);
3241 break;
3242 case SADB_SATYPE_ESP:
3243 error = xform_init(sav, XF_ESP);
3244 break;
3245 case SADB_X_SATYPE_IPCOMP:
3246 error = xform_init(sav, XF_IPCOMP);
3247 break;
3248 case SADB_X_SATYPE_TCPSIGNATURE:
3249 error = xform_init(sav, XF_TCPSIGNATURE);
3250 break;
3251 }
3252 if (error) {
3253 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3254 mhp->msg->sadb_msg_satype);
3255 goto fail;
3256 }
3257
3258 /* reset created */
3259 sav->created = time_uptime;
3260
3261 /* make lifetime for CURRENT */
3262 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3263
3264 sav->lft_c->sadb_lifetime_len =
3265 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3266 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3267 sav->lft_c->sadb_lifetime_allocations = 0;
3268 sav->lft_c->sadb_lifetime_bytes = 0;
3269 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3270 sav->lft_c->sadb_lifetime_usetime = 0;
3271
3272 /* lifetimes for HARD and SOFT */
3273 {
3274 const struct sadb_lifetime *lft0;
3275
3276 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3277 if (lft0 != NULL) {
3278 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3279 error = EINVAL;
3280 goto fail;
3281 }
3282 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3283 }
3284
3285 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3286 if (lft0 != NULL) {
3287 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3288 error = EINVAL;
3289 goto fail;
3290 }
3291 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3292 /* to be initialize ? */
3293 }
3294 }
3295
3296 return 0;
3297
3298 fail:
3299 key_clear_xform(sav);
3300 key_freesaval(sav);
3301
3302 return error;
3303 }
3304
3305 /*
3306 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3307 * OUT: 0: valid
3308 * other: errno
3309 */
3310 static int
3311 key_init_xform(struct secasvar *sav)
3312 {
3313 int error;
3314
3315 /* We shouldn't initialize sav variables while someone uses it. */
3316 KASSERT(sav->refcnt == 0);
3317
3318 /* check SPI value */
3319 switch (sav->sah->saidx.proto) {
3320 case IPPROTO_ESP:
3321 case IPPROTO_AH:
3322 if (ntohl(sav->spi) <= 255) {
3323 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3324 (u_int32_t)ntohl(sav->spi));
3325 return EINVAL;
3326 }
3327 break;
3328 }
3329
3330 /* check satype */
3331 switch (sav->sah->saidx.proto) {
3332 case IPPROTO_ESP:
3333 /* check flags */
3334 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3335 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3336 IPSECLOG(LOG_DEBUG,
3337 "invalid flag (derived) given to old-esp.\n");
3338 return EINVAL;
3339 }
3340 error = xform_init(sav, XF_ESP);
3341 break;
3342 case IPPROTO_AH:
3343 /* check flags */
3344 if (sav->flags & SADB_X_EXT_DERIV) {
3345 IPSECLOG(LOG_DEBUG,
3346 "invalid flag (derived) given to AH SA.\n");
3347 return EINVAL;
3348 }
3349 if (sav->alg_enc != SADB_EALG_NONE) {
3350 IPSECLOG(LOG_DEBUG,
3351 "protocol and algorithm mismated.\n");
3352 return(EINVAL);
3353 }
3354 error = xform_init(sav, XF_AH);
3355 break;
3356 case IPPROTO_IPCOMP:
3357 if (sav->alg_auth != SADB_AALG_NONE) {
3358 IPSECLOG(LOG_DEBUG,
3359 "protocol and algorithm mismated.\n");
3360 return(EINVAL);
3361 }
3362 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3363 && ntohl(sav->spi) >= 0x10000) {
3364 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3365 return(EINVAL);
3366 }
3367 error = xform_init(sav, XF_IPCOMP);
3368 break;
3369 case IPPROTO_TCP:
3370 if (sav->alg_enc != SADB_EALG_NONE) {
3371 IPSECLOG(LOG_DEBUG,
3372 "protocol and algorithm mismated.\n");
3373 return(EINVAL);
3374 }
3375 error = xform_init(sav, XF_TCPSIGNATURE);
3376 break;
3377 default:
3378 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3379 error = EPROTONOSUPPORT;
3380 break;
3381 }
3382
3383 return error;
3384 }
3385
3386 /*
3387 * subroutine for SADB_GET and SADB_DUMP.
3388 */
3389 static struct mbuf *
3390 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3391 u_int32_t seq, u_int32_t pid)
3392 {
3393 struct mbuf *result = NULL, *tres = NULL, *m;
3394 int l = 0;
3395 int i;
3396 void *p;
3397 struct sadb_lifetime lt;
3398 int dumporder[] = {
3399 SADB_EXT_SA, SADB_X_EXT_SA2,
3400 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3401 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3402 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3403 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3404 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3405 SADB_X_EXT_NAT_T_TYPE,
3406 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3407 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3408 SADB_X_EXT_NAT_T_FRAG,
3409
3410 };
3411
3412 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3413 if (m == NULL)
3414 goto fail;
3415 result = m;
3416
3417 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3418 m = NULL;
3419 p = NULL;
3420 switch (dumporder[i]) {
3421 case SADB_EXT_SA:
3422 m = key_setsadbsa(sav);
3423 break;
3424
3425 case SADB_X_EXT_SA2:
3426 m = key_setsadbxsa2(sav->sah->saidx.mode,
3427 sav->replay ? sav->replay->count : 0,
3428 sav->sah->saidx.reqid);
3429 break;
3430
3431 case SADB_EXT_ADDRESS_SRC:
3432 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3433 &sav->sah->saidx.src.sa,
3434 FULLMASK, IPSEC_ULPROTO_ANY);
3435 break;
3436
3437 case SADB_EXT_ADDRESS_DST:
3438 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3439 &sav->sah->saidx.dst.sa,
3440 FULLMASK, IPSEC_ULPROTO_ANY);
3441 break;
3442
3443 case SADB_EXT_KEY_AUTH:
3444 if (!sav->key_auth)
3445 continue;
3446 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3447 p = sav->key_auth;
3448 break;
3449
3450 case SADB_EXT_KEY_ENCRYPT:
3451 if (!sav->key_enc)
3452 continue;
3453 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3454 p = sav->key_enc;
3455 break;
3456
3457 case SADB_EXT_LIFETIME_CURRENT:
3458 KASSERT(sav->lft_c != NULL);
3459 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3460 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3461 lt.sadb_lifetime_addtime =
3462 time_mono_to_wall(lt.sadb_lifetime_addtime);
3463 lt.sadb_lifetime_usetime =
3464 time_mono_to_wall(lt.sadb_lifetime_usetime);
3465 p = <
3466 break;
3467
3468 case SADB_EXT_LIFETIME_HARD:
3469 if (!sav->lft_h)
3470 continue;
3471 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3472 p = sav->lft_h;
3473 break;
3474
3475 case SADB_EXT_LIFETIME_SOFT:
3476 if (!sav->lft_s)
3477 continue;
3478 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3479 p = sav->lft_s;
3480 break;
3481
3482 case SADB_X_EXT_NAT_T_TYPE:
3483 m = key_setsadbxtype(sav->natt_type);
3484 break;
3485
3486 case SADB_X_EXT_NAT_T_DPORT:
3487 if (sav->natt_type == 0)
3488 continue;
3489 m = key_setsadbxport(
3490 key_portfromsaddr(&sav->sah->saidx.dst),
3491 SADB_X_EXT_NAT_T_DPORT);
3492 break;
3493
3494 case SADB_X_EXT_NAT_T_SPORT:
3495 if (sav->natt_type == 0)
3496 continue;
3497 m = key_setsadbxport(
3498 key_portfromsaddr(&sav->sah->saidx.src),
3499 SADB_X_EXT_NAT_T_SPORT);
3500 break;
3501
3502 case SADB_X_EXT_NAT_T_FRAG:
3503 /* don't send frag info if not set */
3504 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3505 continue;
3506 m = key_setsadbxfrag(sav->esp_frag);
3507 break;
3508
3509 case SADB_X_EXT_NAT_T_OAI:
3510 case SADB_X_EXT_NAT_T_OAR:
3511 continue;
3512
3513 case SADB_EXT_ADDRESS_PROXY:
3514 case SADB_EXT_IDENTITY_SRC:
3515 case SADB_EXT_IDENTITY_DST:
3516 /* XXX: should we brought from SPD ? */
3517 case SADB_EXT_SENSITIVITY:
3518 default:
3519 continue;
3520 }
3521
3522 KASSERT(!(m && p));
3523 if (!m && !p)
3524 goto fail;
3525 if (p && tres) {
3526 M_PREPEND(tres, l, M_DONTWAIT);
3527 if (!tres)
3528 goto fail;
3529 memcpy(mtod(tres, void *), p, l);
3530 continue;
3531 }
3532 if (p) {
3533 m = key_alloc_mbuf(l);
3534 if (!m)
3535 goto fail;
3536 m_copyback(m, 0, l, p);
3537 }
3538
3539 if (tres)
3540 m_cat(m, tres);
3541 tres = m;
3542 }
3543
3544 m_cat(result, tres);
3545 tres = NULL; /* avoid free on error below */
3546
3547 if (result->m_len < sizeof(struct sadb_msg)) {
3548 result = m_pullup(result, sizeof(struct sadb_msg));
3549 if (result == NULL)
3550 goto fail;
3551 }
3552
3553 result->m_pkthdr.len = 0;
3554 for (m = result; m; m = m->m_next)
3555 result->m_pkthdr.len += m->m_len;
3556
3557 mtod(result, struct sadb_msg *)->sadb_msg_len =
3558 PFKEY_UNIT64(result->m_pkthdr.len);
3559
3560 return result;
3561
3562 fail:
3563 m_freem(result);
3564 m_freem(tres);
3565 return NULL;
3566 }
3567
3568
3569 /*
3570 * set a type in sadb_x_nat_t_type
3571 */
3572 static struct mbuf *
3573 key_setsadbxtype(u_int16_t type)
3574 {
3575 struct mbuf *m;
3576 size_t len;
3577 struct sadb_x_nat_t_type *p;
3578
3579 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3580
3581 m = key_alloc_mbuf(len);
3582 if (!m || m->m_next) { /*XXX*/
3583 if (m)
3584 m_freem(m);
3585 return NULL;
3586 }
3587
3588 p = mtod(m, struct sadb_x_nat_t_type *);
3589
3590 memset(p, 0, len);
3591 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3592 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3593 p->sadb_x_nat_t_type_type = type;
3594
3595 return m;
3596 }
3597 /*
3598 * set a port in sadb_x_nat_t_port. port is in network order
3599 */
3600 static struct mbuf *
3601 key_setsadbxport(u_int16_t port, u_int16_t type)
3602 {
3603 struct mbuf *m;
3604 size_t len;
3605 struct sadb_x_nat_t_port *p;
3606
3607 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3608
3609 m = key_alloc_mbuf(len);
3610 if (!m || m->m_next) { /*XXX*/
3611 if (m)
3612 m_freem(m);
3613 return NULL;
3614 }
3615
3616 p = mtod(m, struct sadb_x_nat_t_port *);
3617
3618 memset(p, 0, len);
3619 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3620 p->sadb_x_nat_t_port_exttype = type;
3621 p->sadb_x_nat_t_port_port = port;
3622
3623 return m;
3624 }
3625
3626 /*
3627 * set fragmentation info in sadb_x_nat_t_frag
3628 */
3629 static struct mbuf *
3630 key_setsadbxfrag(u_int16_t flen)
3631 {
3632 struct mbuf *m;
3633 size_t len;
3634 struct sadb_x_nat_t_frag *p;
3635
3636 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3637
3638 m = key_alloc_mbuf(len);
3639 if (!m || m->m_next) { /*XXX*/
3640 if (m)
3641 m_freem(m);
3642 return NULL;
3643 }
3644
3645 p = mtod(m, struct sadb_x_nat_t_frag *);
3646
3647 memset(p, 0, len);
3648 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3649 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3650 p->sadb_x_nat_t_frag_fraglen = flen;
3651
3652 return m;
3653 }
3654
3655 /*
3656 * Get port from sockaddr, port is in network order
3657 */
3658 u_int16_t
3659 key_portfromsaddr(const union sockaddr_union *saddr)
3660 {
3661 u_int16_t port;
3662
3663 switch (saddr->sa.sa_family) {
3664 case AF_INET: {
3665 port = saddr->sin.sin_port;
3666 break;
3667 }
3668 #ifdef INET6
3669 case AF_INET6: {
3670 port = saddr->sin6.sin6_port;
3671 break;
3672 }
3673 #endif
3674 default:
3675 printf("%s: unexpected address family\n", __func__);
3676 port = 0;
3677 break;
3678 }
3679
3680 return port;
3681 }
3682
3683
3684 /*
3685 * Set port is struct sockaddr. port is in network order
3686 */
3687 static void
3688 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3689 {
3690 switch (saddr->sa.sa_family) {
3691 case AF_INET: {
3692 saddr->sin.sin_port = port;
3693 break;
3694 }
3695 #ifdef INET6
3696 case AF_INET6: {
3697 saddr->sin6.sin6_port = port;
3698 break;
3699 }
3700 #endif
3701 default:
3702 printf("%s: unexpected address family %d\n", __func__,
3703 saddr->sa.sa_family);
3704 break;
3705 }
3706
3707 return;
3708 }
3709
3710 /*
3711 * Safety check sa_len
3712 */
3713 static int
3714 key_checksalen(const union sockaddr_union *saddr)
3715 {
3716 switch (saddr->sa.sa_family) {
3717 case AF_INET:
3718 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3719 return -1;
3720 break;
3721 #ifdef INET6
3722 case AF_INET6:
3723 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3724 return -1;
3725 break;
3726 #endif
3727 default:
3728 printf("%s: unexpected sa_family %d\n", __func__,
3729 saddr->sa.sa_family);
3730 return -1;
3731 break;
3732 }
3733 return 0;
3734 }
3735
3736
3737 /*
3738 * set data into sadb_msg.
3739 */
3740 static struct mbuf *
3741 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3742 u_int32_t seq, pid_t pid, u_int16_t reserved)
3743 {
3744 struct mbuf *m;
3745 struct sadb_msg *p;
3746 int len;
3747
3748 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3749
3750 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3751
3752 MGETHDR(m, M_DONTWAIT, MT_DATA);
3753 if (m && len > MHLEN) {
3754 MCLGET(m, M_DONTWAIT);
3755 if ((m->m_flags & M_EXT) == 0) {
3756 m_freem(m);
3757 m = NULL;
3758 }
3759 }
3760 if (!m)
3761 return NULL;
3762 m->m_pkthdr.len = m->m_len = len;
3763 m->m_next = NULL;
3764
3765 p = mtod(m, struct sadb_msg *);
3766
3767 memset(p, 0, len);
3768 p->sadb_msg_version = PF_KEY_V2;
3769 p->sadb_msg_type = type;
3770 p->sadb_msg_errno = 0;
3771 p->sadb_msg_satype = satype;
3772 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3773 p->sadb_msg_reserved = reserved;
3774 p->sadb_msg_seq = seq;
3775 p->sadb_msg_pid = (u_int32_t)pid;
3776
3777 return m;
3778 }
3779
3780 /*
3781 * copy secasvar data into sadb_address.
3782 */
3783 static struct mbuf *
3784 key_setsadbsa(struct secasvar *sav)
3785 {
3786 struct mbuf *m;
3787 struct sadb_sa *p;
3788 int len;
3789
3790 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3791 m = key_alloc_mbuf(len);
3792 if (!m || m->m_next) { /*XXX*/
3793 if (m)
3794 m_freem(m);
3795 return NULL;
3796 }
3797
3798 p = mtod(m, struct sadb_sa *);
3799
3800 memset(p, 0, len);
3801 p->sadb_sa_len = PFKEY_UNIT64(len);
3802 p->sadb_sa_exttype = SADB_EXT_SA;
3803 p->sadb_sa_spi = sav->spi;
3804 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3805 p->sadb_sa_state = sav->state;
3806 p->sadb_sa_auth = sav->alg_auth;
3807 p->sadb_sa_encrypt = sav->alg_enc;
3808 p->sadb_sa_flags = sav->flags;
3809
3810 return m;
3811 }
3812
3813 /*
3814 * set data into sadb_address.
3815 */
3816 static struct mbuf *
3817 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3818 u_int8_t prefixlen, u_int16_t ul_proto)
3819 {
3820 struct mbuf *m;
3821 struct sadb_address *p;
3822 size_t len;
3823
3824 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3825 PFKEY_ALIGN8(saddr->sa_len);
3826 m = key_alloc_mbuf(len);
3827 if (!m || m->m_next) { /*XXX*/
3828 if (m)
3829 m_freem(m);
3830 return NULL;
3831 }
3832
3833 p = mtod(m, struct sadb_address *);
3834
3835 memset(p, 0, len);
3836 p->sadb_address_len = PFKEY_UNIT64(len);
3837 p->sadb_address_exttype = exttype;
3838 p->sadb_address_proto = ul_proto;
3839 if (prefixlen == FULLMASK) {
3840 switch (saddr->sa_family) {
3841 case AF_INET:
3842 prefixlen = sizeof(struct in_addr) << 3;
3843 break;
3844 case AF_INET6:
3845 prefixlen = sizeof(struct in6_addr) << 3;
3846 break;
3847 default:
3848 ; /*XXX*/
3849 }
3850 }
3851 p->sadb_address_prefixlen = prefixlen;
3852 p->sadb_address_reserved = 0;
3853
3854 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3855 saddr, saddr->sa_len);
3856
3857 return m;
3858 }
3859
3860 #if 0
3861 /*
3862 * set data into sadb_ident.
3863 */
3864 static struct mbuf *
3865 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3866 void *string, int stringlen, u_int64_t id)
3867 {
3868 struct mbuf *m;
3869 struct sadb_ident *p;
3870 size_t len;
3871
3872 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3873 m = key_alloc_mbuf(len);
3874 if (!m || m->m_next) { /*XXX*/
3875 if (m)
3876 m_freem(m);
3877 return NULL;
3878 }
3879
3880 p = mtod(m, struct sadb_ident *);
3881
3882 memset(p, 0, len);
3883 p->sadb_ident_len = PFKEY_UNIT64(len);
3884 p->sadb_ident_exttype = exttype;
3885 p->sadb_ident_type = idtype;
3886 p->sadb_ident_reserved = 0;
3887 p->sadb_ident_id = id;
3888
3889 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3890 string, stringlen);
3891
3892 return m;
3893 }
3894 #endif
3895
3896 /*
3897 * set data into sadb_x_sa2.
3898 */
3899 static struct mbuf *
3900 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3901 {
3902 struct mbuf *m;
3903 struct sadb_x_sa2 *p;
3904 size_t len;
3905
3906 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3907 m = key_alloc_mbuf(len);
3908 if (!m || m->m_next) { /*XXX*/
3909 if (m)
3910 m_freem(m);
3911 return NULL;
3912 }
3913
3914 p = mtod(m, struct sadb_x_sa2 *);
3915
3916 memset(p, 0, len);
3917 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3918 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3919 p->sadb_x_sa2_mode = mode;
3920 p->sadb_x_sa2_reserved1 = 0;
3921 p->sadb_x_sa2_reserved2 = 0;
3922 p->sadb_x_sa2_sequence = seq;
3923 p->sadb_x_sa2_reqid = reqid;
3924
3925 return m;
3926 }
3927
3928 /*
3929 * set data into sadb_x_policy
3930 */
3931 static struct mbuf *
3932 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3933 {
3934 struct mbuf *m;
3935 struct sadb_x_policy *p;
3936 size_t len;
3937
3938 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3939 m = key_alloc_mbuf(len);
3940 if (!m || m->m_next) { /*XXX*/
3941 if (m)
3942 m_freem(m);
3943 return NULL;
3944 }
3945
3946 p = mtod(m, struct sadb_x_policy *);
3947
3948 memset(p, 0, len);
3949 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3950 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3951 p->sadb_x_policy_type = type;
3952 p->sadb_x_policy_dir = dir;
3953 p->sadb_x_policy_id = id;
3954
3955 return m;
3956 }
3957
3958 /* %%% utilities */
3959 /*
3960 * copy a buffer into the new buffer allocated.
3961 */
3962 static void *
3963 key_newbuf(const void *src, u_int len)
3964 {
3965 void *new;
3966
3967 new = kmem_alloc(len, KM_SLEEP);
3968 memcpy(new, src, len);
3969
3970 return new;
3971 }
3972
3973 /* compare my own address
3974 * OUT: 1: true, i.e. my address.
3975 * 0: false
3976 */
3977 int
3978 key_ismyaddr(const struct sockaddr *sa)
3979 {
3980 #ifdef INET
3981 const struct sockaddr_in *sin;
3982 const struct in_ifaddr *ia;
3983 int s;
3984 #endif
3985
3986 KASSERT(sa != NULL);
3987
3988 switch (sa->sa_family) {
3989 #ifdef INET
3990 case AF_INET:
3991 sin = (const struct sockaddr_in *)sa;
3992 s = pserialize_read_enter();
3993 IN_ADDRLIST_READER_FOREACH(ia) {
3994 if (sin->sin_family == ia->ia_addr.sin_family &&
3995 sin->sin_len == ia->ia_addr.sin_len &&
3996 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3997 {
3998 pserialize_read_exit(s);
3999 return 1;
4000 }
4001 }
4002 pserialize_read_exit(s);
4003 break;
4004 #endif
4005 #ifdef INET6
4006 case AF_INET6:
4007 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4008 #endif
4009 }
4010
4011 return 0;
4012 }
4013
4014 #ifdef INET6
4015 /*
4016 * compare my own address for IPv6.
4017 * 1: ours
4018 * 0: other
4019 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4020 */
4021 #include <netinet6/in6_var.h>
4022
4023 static int
4024 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4025 {
4026 struct in6_ifaddr *ia;
4027 int s;
4028 struct psref psref;
4029 int bound;
4030 int ours = 1;
4031
4032 bound = curlwp_bind();
4033 s = pserialize_read_enter();
4034 IN6_ADDRLIST_READER_FOREACH(ia) {
4035 bool ingroup;
4036
4037 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4038 (const struct sockaddr *)&ia->ia_addr, 0)) {
4039 pserialize_read_exit(s);
4040 goto ours;
4041 }
4042 ia6_acquire(ia, &psref);
4043 pserialize_read_exit(s);
4044
4045 /*
4046 * XXX Multicast
4047 * XXX why do we care about multlicast here while we don't care
4048 * about IPv4 multicast??
4049 * XXX scope
4050 */
4051 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4052 if (ingroup) {
4053 ia6_release(ia, &psref);
4054 goto ours;
4055 }
4056
4057 s = pserialize_read_enter();
4058 ia6_release(ia, &psref);
4059 }
4060 pserialize_read_exit(s);
4061
4062 /* loopback, just for safety */
4063 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4064 goto ours;
4065
4066 ours = 0;
4067 ours:
4068 curlwp_bindx(bound);
4069
4070 return ours;
4071 }
4072 #endif /*INET6*/
4073
4074 /*
4075 * compare two secasindex structure.
4076 * flag can specify to compare 2 saidxes.
4077 * compare two secasindex structure without both mode and reqid.
4078 * don't compare port.
4079 * IN:
4080 * saidx0: source, it can be in SAD.
4081 * saidx1: object.
4082 * OUT:
4083 * 1 : equal
4084 * 0 : not equal
4085 */
4086 static int
4087 key_saidx_match(
4088 const struct secasindex *saidx0,
4089 const struct secasindex *saidx1,
4090 int flag)
4091 {
4092 int chkport;
4093 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4094
4095 KASSERT(saidx0 != NULL);
4096 KASSERT(saidx1 != NULL);
4097
4098 /* sanity */
4099 if (saidx0->proto != saidx1->proto)
4100 return 0;
4101
4102 if (flag == CMP_EXACTLY) {
4103 if (saidx0->mode != saidx1->mode)
4104 return 0;
4105 if (saidx0->reqid != saidx1->reqid)
4106 return 0;
4107 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4108 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4109 return 0;
4110 } else {
4111
4112 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4113 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4114 /*
4115 * If reqid of SPD is non-zero, unique SA is required.
4116 * The result must be of same reqid in this case.
4117 */
4118 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4119 return 0;
4120 }
4121
4122 if (flag == CMP_MODE_REQID) {
4123 if (saidx0->mode != IPSEC_MODE_ANY &&
4124 saidx0->mode != saidx1->mode)
4125 return 0;
4126 }
4127
4128
4129 sa0src = &saidx0->src.sa;
4130 sa0dst = &saidx0->dst.sa;
4131 sa1src = &saidx1->src.sa;
4132 sa1dst = &saidx1->dst.sa;
4133 /*
4134 * If NAT-T is enabled, check ports for tunnel mode.
4135 * Don't do it for transport mode, as there is no
4136 * port information available in the SP.
4137 * Also don't check ports if they are set to zero
4138 * in the SPD: This means we have a non-generated
4139 * SPD which can't know UDP ports.
4140 */
4141 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4142 chkport = PORT_LOOSE;
4143 else
4144 chkport = PORT_NONE;
4145
4146 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4147 return 0;
4148 }
4149 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4150 return 0;
4151 }
4152 }
4153
4154 return 1;
4155 }
4156
4157 /*
4158 * compare two secindex structure exactly.
4159 * IN:
4160 * spidx0: source, it is often in SPD.
4161 * spidx1: object, it is often from PFKEY message.
4162 * OUT:
4163 * 1 : equal
4164 * 0 : not equal
4165 */
4166 static int
4167 key_spidx_match_exactly(
4168 const struct secpolicyindex *spidx0,
4169 const struct secpolicyindex *spidx1)
4170 {
4171
4172 KASSERT(spidx0 != NULL);
4173 KASSERT(spidx1 != NULL);
4174
4175 /* sanity */
4176 if (spidx0->prefs != spidx1->prefs ||
4177 spidx0->prefd != spidx1->prefd ||
4178 spidx0->ul_proto != spidx1->ul_proto)
4179 return 0;
4180
4181 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4182 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4183 }
4184
4185 /*
4186 * compare two secindex structure with mask.
4187 * IN:
4188 * spidx0: source, it is often in SPD.
4189 * spidx1: object, it is often from IP header.
4190 * OUT:
4191 * 1 : equal
4192 * 0 : not equal
4193 */
4194 static int
4195 key_spidx_match_withmask(
4196 const struct secpolicyindex *spidx0,
4197 const struct secpolicyindex *spidx1)
4198 {
4199
4200 KASSERT(spidx0 != NULL);
4201 KASSERT(spidx1 != NULL);
4202
4203 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4204 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4205 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4206 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4207 return 0;
4208
4209 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4210 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4211 spidx0->ul_proto != spidx1->ul_proto)
4212 return 0;
4213
4214 switch (spidx0->src.sa.sa_family) {
4215 case AF_INET:
4216 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4217 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4218 return 0;
4219 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4220 &spidx1->src.sin.sin_addr, spidx0->prefs))
4221 return 0;
4222 break;
4223 case AF_INET6:
4224 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4225 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4226 return 0;
4227 /*
4228 * scope_id check. if sin6_scope_id is 0, we regard it
4229 * as a wildcard scope, which matches any scope zone ID.
4230 */
4231 if (spidx0->src.sin6.sin6_scope_id &&
4232 spidx1->src.sin6.sin6_scope_id &&
4233 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4234 return 0;
4235 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4236 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4237 return 0;
4238 break;
4239 default:
4240 /* XXX */
4241 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4242 return 0;
4243 break;
4244 }
4245
4246 switch (spidx0->dst.sa.sa_family) {
4247 case AF_INET:
4248 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4249 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4250 return 0;
4251 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4252 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4253 return 0;
4254 break;
4255 case AF_INET6:
4256 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4257 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4258 return 0;
4259 /*
4260 * scope_id check. if sin6_scope_id is 0, we regard it
4261 * as a wildcard scope, which matches any scope zone ID.
4262 */
4263 if (spidx0->src.sin6.sin6_scope_id &&
4264 spidx1->src.sin6.sin6_scope_id &&
4265 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4266 return 0;
4267 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4268 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4269 return 0;
4270 break;
4271 default:
4272 /* XXX */
4273 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4274 return 0;
4275 break;
4276 }
4277
4278 /* XXX Do we check other field ? e.g. flowinfo */
4279
4280 return 1;
4281 }
4282
4283 /* returns 0 on match */
4284 static int
4285 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4286 {
4287 switch (howport) {
4288 case PORT_NONE:
4289 return 0;
4290 case PORT_LOOSE:
4291 if (port1 == 0 || port2 == 0)
4292 return 0;
4293 /*FALLTHROUGH*/
4294 case PORT_STRICT:
4295 if (port1 != port2) {
4296 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4297 "port fail %d != %d\n", port1, port2);
4298 return 1;
4299 }
4300 return 0;
4301 default:
4302 KASSERT(0);
4303 return 1;
4304 }
4305 }
4306
4307 /* returns 1 on match */
4308 static int
4309 key_sockaddr_match(
4310 const struct sockaddr *sa1,
4311 const struct sockaddr *sa2,
4312 int howport)
4313 {
4314 const struct sockaddr_in *sin1, *sin2;
4315 const struct sockaddr_in6 *sin61, *sin62;
4316
4317 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4318 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4319 "fam/len fail %d != %d || %d != %d\n",
4320 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4321 sa2->sa_len);
4322 return 0;
4323 }
4324
4325 switch (sa1->sa_family) {
4326 case AF_INET:
4327 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4328 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4329 "len fail %d != %zu\n",
4330 sa1->sa_len, sizeof(struct sockaddr_in));
4331 return 0;
4332 }
4333 sin1 = (const struct sockaddr_in *)sa1;
4334 sin2 = (const struct sockaddr_in *)sa2;
4335 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4336 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4337 "addr fail %#x != %#x\n",
4338 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4339 return 0;
4340 }
4341 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4342 return 0;
4343 }
4344 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4345 "addr success %#x[%d] == %#x[%d]\n",
4346 sin1->sin_addr.s_addr, sin1->sin_port,
4347 sin2->sin_addr.s_addr, sin2->sin_port);
4348 break;
4349 case AF_INET6:
4350 sin61 = (const struct sockaddr_in6 *)sa1;
4351 sin62 = (const struct sockaddr_in6 *)sa2;
4352 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4353 return 0; /*EINVAL*/
4354
4355 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4356 return 0;
4357 }
4358 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4359 return 0;
4360 }
4361 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4362 return 0;
4363 }
4364 break;
4365 default:
4366 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4367 return 0;
4368 break;
4369 }
4370
4371 return 1;
4372 }
4373
4374 /*
4375 * compare two buffers with mask.
4376 * IN:
4377 * addr1: source
4378 * addr2: object
4379 * bits: Number of bits to compare
4380 * OUT:
4381 * 1 : equal
4382 * 0 : not equal
4383 */
4384 static int
4385 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4386 {
4387 const unsigned char *p1 = a1;
4388 const unsigned char *p2 = a2;
4389
4390 /* XXX: This could be considerably faster if we compare a word
4391 * at a time, but it is complicated on LSB Endian machines */
4392
4393 /* Handle null pointers */
4394 if (p1 == NULL || p2 == NULL)
4395 return (p1 == p2);
4396
4397 while (bits >= 8) {
4398 if (*p1++ != *p2++)
4399 return 0;
4400 bits -= 8;
4401 }
4402
4403 if (bits > 0) {
4404 u_int8_t mask = ~((1<<(8-bits))-1);
4405 if ((*p1 & mask) != (*p2 & mask))
4406 return 0;
4407 }
4408 return 1; /* Match! */
4409 }
4410
4411 static void
4412 key_timehandler_spd(time_t now)
4413 {
4414 u_int dir;
4415 struct secpolicy *sp, *nextsp;
4416
4417 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4418 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4419 if (sp->state == IPSEC_SPSTATE_DEAD) {
4420 key_sp_unlink(sp); /*XXX*/
4421
4422 /* 'sp' dead; continue transfers to
4423 * 'sp = nextsp'
4424 */
4425 continue;
4426 }
4427
4428 if (sp->lifetime == 0 && sp->validtime == 0)
4429 continue;
4430
4431 /* the deletion will occur next time */
4432 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4433 (sp->validtime && now - sp->lastused > sp->validtime)) {
4434 key_sp_dead(sp);
4435 key_spdexpire(sp);
4436 continue;
4437 }
4438 }
4439 }
4440 }
4441
4442 static void
4443 key_timehandler_sad(time_t now)
4444 {
4445 struct secashead *sah, *nextsah;
4446 struct secasvar *sav, *nextsav;
4447
4448 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4449 /* if sah has been dead, then delete it and process next sah. */
4450 if (sah->state == SADB_SASTATE_DEAD) {
4451 key_delsah(sah);
4452 continue;
4453 }
4454
4455 /* if LARVAL entry doesn't become MATURE, delete it. */
4456 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4457 chain, nextsav) {
4458 if (now - sav->created > key_larval_lifetime) {
4459 KEY_FREESAV(&sav);
4460 }
4461 }
4462
4463 /*
4464 * check MATURE entry to start to send expire message
4465 * whether or not.
4466 */
4467 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4468 chain, nextsav) {
4469 /* we don't need to check. */
4470 if (sav->lft_s == NULL)
4471 continue;
4472
4473 /* sanity check */
4474 KASSERT(sav->lft_c != NULL);
4475
4476 /* check SOFT lifetime */
4477 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4478 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4479 /*
4480 * check SA to be used whether or not.
4481 * when SA hasn't been used, delete it.
4482 */
4483 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4484 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4485 KEY_FREESAV(&sav);
4486 } else {
4487 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4488 /*
4489 * XXX If we keep to send expire
4490 * message in the status of
4491 * DYING. Do remove below code.
4492 */
4493 key_expire(sav);
4494 }
4495 }
4496 /* check SOFT lifetime by bytes */
4497 /*
4498 * XXX I don't know the way to delete this SA
4499 * when new SA is installed. Caution when it's
4500 * installed too big lifetime by time.
4501 */
4502 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4503 sav->lft_s->sadb_lifetime_bytes <
4504 sav->lft_c->sadb_lifetime_bytes) {
4505
4506 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4507 /*
4508 * XXX If we keep to send expire
4509 * message in the status of
4510 * DYING. Do remove below code.
4511 */
4512 key_expire(sav);
4513 }
4514 }
4515
4516 /* check DYING entry to change status to DEAD. */
4517 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4518 chain, nextsav) {
4519 /* we don't need to check. */
4520 if (sav->lft_h == NULL)
4521 continue;
4522
4523 /* sanity check */
4524 KASSERT(sav->lft_c != NULL);
4525
4526 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4527 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4528 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4529 KEY_FREESAV(&sav);
4530 }
4531 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4532 else if (sav->lft_s != NULL
4533 && sav->lft_s->sadb_lifetime_addtime != 0
4534 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4535 /*
4536 * XXX: should be checked to be
4537 * installed the valid SA.
4538 */
4539
4540 /*
4541 * If there is no SA then sending
4542 * expire message.
4543 */
4544 key_expire(sav);
4545 }
4546 #endif
4547 /* check HARD lifetime by bytes */
4548 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4549 sav->lft_h->sadb_lifetime_bytes <
4550 sav->lft_c->sadb_lifetime_bytes) {
4551 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4552 KEY_FREESAV(&sav);
4553 }
4554 }
4555
4556 /* delete entry in DEAD */
4557 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4558 chain, nextsav) {
4559 /* sanity check */
4560 if (sav->state != SADB_SASTATE_DEAD) {
4561 IPSECLOG(LOG_DEBUG,
4562 "invalid sav->state (queue: %d SA: %d): "
4563 "kill it anyway\n",
4564 SADB_SASTATE_DEAD, sav->state);
4565 }
4566
4567 /*
4568 * do not call key_freesav() here.
4569 * sav should already be freed, and sav->refcnt
4570 * shows other references to sav
4571 * (such as from SPD).
4572 */
4573 }
4574 }
4575 }
4576
4577 static void
4578 key_timehandler_acq(time_t now)
4579 {
4580 #ifndef IPSEC_NONBLOCK_ACQUIRE
4581 struct secacq *acq, *nextacq;
4582
4583 restart:
4584 mutex_enter(&key_mtx);
4585 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4586 if (now - acq->created > key_blockacq_lifetime) {
4587 LIST_REMOVE(acq, chain);
4588 mutex_exit(&key_mtx);
4589 kmem_free(acq, sizeof(*acq));
4590 goto restart;
4591 }
4592 }
4593 mutex_exit(&key_mtx);
4594 #endif
4595 }
4596
4597 static void
4598 key_timehandler_spacq(time_t now)
4599 {
4600 #ifdef notyet
4601 struct secspacq *acq, *nextacq;
4602
4603 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4604 if (now - acq->created > key_blockacq_lifetime) {
4605 KASSERT(__LIST_CHAINED(acq));
4606 LIST_REMOVE(acq, chain);
4607 kmem_free(acq, sizeof(*acq));
4608 }
4609 }
4610 #endif
4611 }
4612
4613 /*
4614 * time handler.
4615 * scanning SPD and SAD to check status for each entries,
4616 * and do to remove or to expire.
4617 */
4618 static void
4619 key_timehandler_work(struct work *wk, void *arg)
4620 {
4621 int s;
4622 time_t now = time_uptime;
4623
4624 s = splsoftnet();
4625 mutex_enter(softnet_lock);
4626
4627 key_timehandler_spd(now);
4628 key_timehandler_sad(now);
4629 key_timehandler_acq(now);
4630 key_timehandler_spacq(now);
4631
4632 /* do exchange to tick time !! */
4633 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4634
4635 mutex_exit(softnet_lock);
4636 splx(s);
4637 return;
4638 }
4639
4640 static void
4641 key_timehandler(void *arg)
4642 {
4643
4644 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4645 }
4646
4647 u_long
4648 key_random(void)
4649 {
4650 u_long value;
4651
4652 key_randomfill(&value, sizeof(value));
4653 return value;
4654 }
4655
4656 void
4657 key_randomfill(void *p, size_t l)
4658 {
4659
4660 cprng_fast(p, l);
4661 }
4662
4663 /*
4664 * map SADB_SATYPE_* to IPPROTO_*.
4665 * if satype == SADB_SATYPE then satype is mapped to ~0.
4666 * OUT:
4667 * 0: invalid satype.
4668 */
4669 static u_int16_t
4670 key_satype2proto(u_int8_t satype)
4671 {
4672 switch (satype) {
4673 case SADB_SATYPE_UNSPEC:
4674 return IPSEC_PROTO_ANY;
4675 case SADB_SATYPE_AH:
4676 return IPPROTO_AH;
4677 case SADB_SATYPE_ESP:
4678 return IPPROTO_ESP;
4679 case SADB_X_SATYPE_IPCOMP:
4680 return IPPROTO_IPCOMP;
4681 case SADB_X_SATYPE_TCPSIGNATURE:
4682 return IPPROTO_TCP;
4683 default:
4684 return 0;
4685 }
4686 /* NOTREACHED */
4687 }
4688
4689 /*
4690 * map IPPROTO_* to SADB_SATYPE_*
4691 * OUT:
4692 * 0: invalid protocol type.
4693 */
4694 static u_int8_t
4695 key_proto2satype(u_int16_t proto)
4696 {
4697 switch (proto) {
4698 case IPPROTO_AH:
4699 return SADB_SATYPE_AH;
4700 case IPPROTO_ESP:
4701 return SADB_SATYPE_ESP;
4702 case IPPROTO_IPCOMP:
4703 return SADB_X_SATYPE_IPCOMP;
4704 case IPPROTO_TCP:
4705 return SADB_X_SATYPE_TCPSIGNATURE;
4706 default:
4707 return 0;
4708 }
4709 /* NOTREACHED */
4710 }
4711
4712 static int
4713 key_setsecasidx(int proto, int mode, int reqid,
4714 const struct sockaddr *src, const struct sockaddr *dst,
4715 struct secasindex * saidx)
4716 {
4717 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4718 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4719
4720 /* sa len safety check */
4721 if (key_checksalen(src_u) != 0)
4722 return -1;
4723 if (key_checksalen(dst_u) != 0)
4724 return -1;
4725
4726 memset(saidx, 0, sizeof(*saidx));
4727 saidx->proto = proto;
4728 saidx->mode = mode;
4729 saidx->reqid = reqid;
4730 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4731 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4732
4733 key_porttosaddr(&((saidx)->src), 0);
4734 key_porttosaddr(&((saidx)->dst), 0);
4735 return 0;
4736 }
4737
4738 static void
4739 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4740 const struct sadb_msghdr *mhp)
4741 {
4742 const struct sadb_address *src0, *dst0;
4743 const struct sockaddr *src, *dst;
4744 const struct sadb_x_policy *xpl0;
4745
4746 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4747 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4748 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4749 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4750 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4751
4752 memset(spidx, 0, sizeof(*spidx));
4753 spidx->dir = xpl0->sadb_x_policy_dir;
4754 spidx->prefs = src0->sadb_address_prefixlen;
4755 spidx->prefd = dst0->sadb_address_prefixlen;
4756 spidx->ul_proto = src0->sadb_address_proto;
4757 /* XXX boundary check against sa_len */
4758 memcpy(&spidx->src, src, src->sa_len);
4759 memcpy(&spidx->dst, dst, dst->sa_len);
4760 }
4761
4762 /* %%% PF_KEY */
4763 /*
4764 * SADB_GETSPI processing is to receive
4765 * <base, (SA2), src address, dst address, (SPI range)>
4766 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4767 * tree with the status of LARVAL, and send
4768 * <base, SA(*), address(SD)>
4769 * to the IKMPd.
4770 *
4771 * IN: mhp: pointer to the pointer to each header.
4772 * OUT: NULL if fail.
4773 * other if success, return pointer to the message to send.
4774 */
4775 static int
4776 key_api_getspi(struct socket *so, struct mbuf *m,
4777 const struct sadb_msghdr *mhp)
4778 {
4779 const struct sockaddr *src, *dst;
4780 struct secasindex saidx;
4781 struct secashead *newsah;
4782 struct secasvar *newsav;
4783 u_int8_t proto;
4784 u_int32_t spi;
4785 u_int8_t mode;
4786 u_int16_t reqid;
4787 int error;
4788
4789 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4790 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4791 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4792 return key_senderror(so, m, EINVAL);
4793 }
4794 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4795 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4796 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4797 return key_senderror(so, m, EINVAL);
4798 }
4799 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4800 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4801 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4802 } else {
4803 mode = IPSEC_MODE_ANY;
4804 reqid = 0;
4805 }
4806
4807 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4808 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4809
4810 /* map satype to proto */
4811 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4812 if (proto == 0) {
4813 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4814 return key_senderror(so, m, EINVAL);
4815 }
4816
4817
4818 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4819 if (error != 0)
4820 return key_senderror(so, m, EINVAL);
4821
4822 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4823 if (error != 0)
4824 return key_senderror(so, m, EINVAL);
4825
4826 /* SPI allocation */
4827 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4828 &saidx);
4829 if (spi == 0)
4830 return key_senderror(so, m, EINVAL);
4831
4832 /* get a SA index */
4833 newsah = key_getsah(&saidx, CMP_REQID);
4834 if (newsah == NULL) {
4835 /* create a new SA index */
4836 newsah = key_newsah(&saidx);
4837 if (newsah == NULL) {
4838 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4839 return key_senderror(so, m, ENOBUFS);
4840 }
4841 }
4842
4843 /* get a new SA */
4844 /* XXX rewrite */
4845 newsav = KEY_NEWSAV(m, mhp, &error);
4846 if (newsav == NULL) {
4847 /* XXX don't free new SA index allocated in above. */
4848 return key_senderror(so, m, error);
4849 }
4850
4851 /* set spi */
4852 newsav->spi = htonl(spi);
4853
4854 /* add to satree */
4855 newsav->refcnt = 1;
4856 newsav->sah = newsah;
4857 newsav->state = SADB_SASTATE_LARVAL;
4858 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_LARVAL], newsav,
4859 secasvar, chain);
4860
4861 #ifndef IPSEC_NONBLOCK_ACQUIRE
4862 /* delete the entry in acqtree */
4863 if (mhp->msg->sadb_msg_seq != 0) {
4864 struct secacq *acq;
4865 mutex_enter(&key_mtx);
4866 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4867 if (acq != NULL) {
4868 /* reset counter in order to deletion by timehandler. */
4869 acq->created = time_uptime;
4870 acq->count = 0;
4871 }
4872 mutex_exit(&key_mtx);
4873 }
4874 #endif
4875
4876 {
4877 struct mbuf *n, *nn;
4878 struct sadb_sa *m_sa;
4879 int off, len;
4880
4881 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4882 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4883
4884 /* create new sadb_msg to reply. */
4885 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4886 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4887
4888 MGETHDR(n, M_DONTWAIT, MT_DATA);
4889 if (len > MHLEN) {
4890 MCLGET(n, M_DONTWAIT);
4891 if ((n->m_flags & M_EXT) == 0) {
4892 m_freem(n);
4893 n = NULL;
4894 }
4895 }
4896 if (!n)
4897 return key_senderror(so, m, ENOBUFS);
4898
4899 n->m_len = len;
4900 n->m_next = NULL;
4901 off = 0;
4902
4903 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4904 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4905
4906 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4907 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4908 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4909 m_sa->sadb_sa_spi = htonl(spi);
4910 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4911
4912 KASSERTMSG(off == len, "length inconsistency");
4913
4914 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4915 SADB_EXT_ADDRESS_DST);
4916 if (!n->m_next) {
4917 m_freem(n);
4918 return key_senderror(so, m, ENOBUFS);
4919 }
4920
4921 if (n->m_len < sizeof(struct sadb_msg)) {
4922 n = m_pullup(n, sizeof(struct sadb_msg));
4923 if (n == NULL)
4924 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4925 }
4926
4927 n->m_pkthdr.len = 0;
4928 for (nn = n; nn; nn = nn->m_next)
4929 n->m_pkthdr.len += nn->m_len;
4930
4931 key_fill_replymsg(n, newsav->seq);
4932
4933 m_freem(m);
4934 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4935 }
4936 }
4937
4938 /*
4939 * allocating new SPI
4940 * called by key_api_getspi().
4941 * OUT:
4942 * 0: failure.
4943 * others: success.
4944 */
4945 static u_int32_t
4946 key_do_getnewspi(const struct sadb_spirange *spirange,
4947 const struct secasindex *saidx)
4948 {
4949 u_int32_t newspi;
4950 u_int32_t spmin, spmax;
4951 int count = key_spi_trycnt;
4952
4953 /* set spi range to allocate */
4954 if (spirange != NULL) {
4955 spmin = spirange->sadb_spirange_min;
4956 spmax = spirange->sadb_spirange_max;
4957 } else {
4958 spmin = key_spi_minval;
4959 spmax = key_spi_maxval;
4960 }
4961 /* IPCOMP needs 2-byte SPI */
4962 if (saidx->proto == IPPROTO_IPCOMP) {
4963 u_int32_t t;
4964 if (spmin >= 0x10000)
4965 spmin = 0xffff;
4966 if (spmax >= 0x10000)
4967 spmax = 0xffff;
4968 if (spmin > spmax) {
4969 t = spmin; spmin = spmax; spmax = t;
4970 }
4971 }
4972
4973 if (spmin == spmax) {
4974 if (key_checkspidup(saidx, htonl(spmin))) {
4975 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
4976 return 0;
4977 }
4978
4979 count--; /* taking one cost. */
4980 newspi = spmin;
4981
4982 } else {
4983
4984 /* init SPI */
4985 newspi = 0;
4986
4987 /* when requesting to allocate spi ranged */
4988 while (count--) {
4989 /* generate pseudo-random SPI value ranged. */
4990 newspi = spmin + (key_random() % (spmax - spmin + 1));
4991
4992 if (!key_checkspidup(saidx, htonl(newspi)))
4993 break;
4994 }
4995
4996 if (count == 0 || newspi == 0) {
4997 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
4998 return 0;
4999 }
5000 }
5001
5002 /* statistics */
5003 keystat.getspi_count =
5004 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5005
5006 return newspi;
5007 }
5008
5009 static int
5010 key_handle_natt_info(struct secasvar *sav,
5011 const struct sadb_msghdr *mhp)
5012 {
5013 const char *msg = "?" ;
5014 struct sadb_x_nat_t_type *type;
5015 struct sadb_x_nat_t_port *sport, *dport;
5016 struct sadb_address *iaddr, *raddr;
5017 struct sadb_x_nat_t_frag *frag;
5018
5019 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5020 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5021 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5022 return 0;
5023
5024 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5025 msg = "TYPE";
5026 goto bad;
5027 }
5028
5029 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5030 msg = "SPORT";
5031 goto bad;
5032 }
5033
5034 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5035 msg = "DPORT";
5036 goto bad;
5037 }
5038
5039 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5040 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5041 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5042 msg = "OAI";
5043 goto bad;
5044 }
5045 }
5046
5047 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5048 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5049 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5050 msg = "OAR";
5051 goto bad;
5052 }
5053 }
5054
5055 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5056 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5057 msg = "FRAG";
5058 goto bad;
5059 }
5060 }
5061
5062 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5063 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5064 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5065 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5066 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5067 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5068
5069 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5070 type->sadb_x_nat_t_type_type,
5071 ntohs(sport->sadb_x_nat_t_port_port),
5072 ntohs(dport->sadb_x_nat_t_port_port));
5073
5074 sav->natt_type = type->sadb_x_nat_t_type_type;
5075 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5076 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5077 if (frag)
5078 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5079 else
5080 sav->esp_frag = IP_MAXPACKET;
5081
5082 return 0;
5083 bad:
5084 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5085 __USE(msg);
5086 return -1;
5087 }
5088
5089 /* Just update the IPSEC_NAT_T ports if present */
5090 static int
5091 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5092 const struct sadb_msghdr *mhp)
5093 {
5094 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5095 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5096 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5097 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5098
5099 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5100 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5101 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5102 struct sadb_x_nat_t_type *type;
5103 struct sadb_x_nat_t_port *sport;
5104 struct sadb_x_nat_t_port *dport;
5105
5106 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5107 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5108 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5109 IPSECLOG(LOG_DEBUG, "invalid message\n");
5110 return -1;
5111 }
5112
5113 type = (struct sadb_x_nat_t_type *)
5114 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5115 sport = (struct sadb_x_nat_t_port *)
5116 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5117 dport = (struct sadb_x_nat_t_port *)
5118 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5119
5120 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5121 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5122
5123 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5124 type->sadb_x_nat_t_type_type,
5125 ntohs(sport->sadb_x_nat_t_port_port),
5126 ntohs(dport->sadb_x_nat_t_port_port));
5127 }
5128
5129 return 0;
5130 }
5131
5132
5133 /*
5134 * SADB_UPDATE processing
5135 * receive
5136 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5137 * key(AE), (identity(SD),) (sensitivity)>
5138 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5139 * and send
5140 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5141 * (identity(SD),) (sensitivity)>
5142 * to the ikmpd.
5143 *
5144 * m will always be freed.
5145 */
5146 static int
5147 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5148 {
5149 struct sadb_sa *sa0;
5150 const struct sockaddr *src, *dst;
5151 struct secasindex saidx;
5152 struct secashead *sah;
5153 struct secasvar *sav, *newsav;
5154 u_int16_t proto;
5155 u_int8_t mode;
5156 u_int16_t reqid;
5157 int error;
5158
5159 /* map satype to proto */
5160 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5161 if (proto == 0) {
5162 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5163 return key_senderror(so, m, EINVAL);
5164 }
5165
5166 if (mhp->ext[SADB_EXT_SA] == NULL ||
5167 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5168 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5169 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5170 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5171 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5172 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5173 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5174 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5175 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5176 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5177 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5178 return key_senderror(so, m, EINVAL);
5179 }
5180 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5181 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5182 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5183 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5184 return key_senderror(so, m, EINVAL);
5185 }
5186 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5187 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5188 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5189 } else {
5190 mode = IPSEC_MODE_ANY;
5191 reqid = 0;
5192 }
5193 /* XXX boundary checking for other extensions */
5194
5195 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5196 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5197 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5198
5199 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5200 if (error != 0)
5201 return key_senderror(so, m, EINVAL);
5202
5203 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5204 if (error != 0)
5205 return key_senderror(so, m, EINVAL);
5206
5207 /* get a SA header */
5208 sah = key_getsah(&saidx, CMP_REQID);
5209 if (sah == NULL) {
5210 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5211 return key_senderror(so, m, ENOENT);
5212 }
5213
5214 /* set spidx if there */
5215 /* XXX rewrite */
5216 error = key_setident(sah, m, mhp);
5217 if (error)
5218 return key_senderror(so, m, error);
5219
5220 /* find a SA with sequence number. */
5221 #ifdef IPSEC_DOSEQCHECK
5222 if (mhp->msg->sadb_msg_seq != 0) {
5223 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5224 if (sav == NULL) {
5225 IPSECLOG(LOG_DEBUG,
5226 "no larval SA with sequence %u exists.\n",
5227 mhp->msg->sadb_msg_seq);
5228 return key_senderror(so, m, ENOENT);
5229 }
5230 }
5231 #else
5232 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5233 if (sav == NULL) {
5234 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5235 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5236 return key_senderror(so, m, EINVAL);
5237 }
5238 #endif
5239
5240 /* validity check */
5241 if (sav->sah->saidx.proto != proto) {
5242 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5243 sav->sah->saidx.proto, proto);
5244 error = EINVAL;
5245 goto error;
5246 }
5247 #ifdef IPSEC_DOSEQCHECK
5248 if (sav->spi != sa0->sadb_sa_spi) {
5249 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5250 (u_int32_t)ntohl(sav->spi),
5251 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5252 error = EINVAL;
5253 goto error;
5254 }
5255 #endif
5256 if (sav->pid != mhp->msg->sadb_msg_pid) {
5257 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5258 sav->pid, mhp->msg->sadb_msg_pid);
5259 error = EINVAL;
5260 goto error;
5261 }
5262
5263 /*
5264 * Allocate a new SA instead of modifying the existing SA directly
5265 * to avoid race conditions.
5266 */
5267 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5268
5269 /* copy sav values */
5270 newsav->spi = sav->spi;
5271 newsav->seq = sav->seq;
5272 newsav->created = sav->created;
5273 newsav->pid = sav->pid;
5274 newsav->sah = sav->sah;
5275
5276 error = key_setsaval(newsav, m, mhp);
5277 if (error) {
5278 key_delsav(newsav);
5279 goto error;
5280 }
5281
5282 error = key_handle_natt_info(newsav, mhp);
5283 if (error != 0) {
5284 key_delsav(newsav);
5285 goto error;
5286 }
5287
5288 error = key_init_xform(newsav);
5289 if (error != 0) {
5290 key_delsav(newsav);
5291 goto error;
5292 }
5293
5294 /* add to satree */
5295 newsav->refcnt = 1;
5296 newsav->state = SADB_SASTATE_MATURE;
5297 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_MATURE], newsav,
5298 secasvar, chain);
5299
5300 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5301 KEY_FREESAV(&sav);
5302 KEY_FREESAV(&sav);
5303
5304 {
5305 struct mbuf *n;
5306
5307 /* set msg buf from mhp */
5308 n = key_getmsgbuf_x1(m, mhp);
5309 if (n == NULL) {
5310 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5311 return key_senderror(so, m, ENOBUFS);
5312 }
5313
5314 m_freem(m);
5315 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5316 }
5317 error:
5318 KEY_FREESAV(&sav);
5319 return key_senderror(so, m, error);
5320 }
5321
5322 /*
5323 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5324 * only called by key_api_update().
5325 * OUT:
5326 * NULL : not found
5327 * others : found, pointer to a SA.
5328 */
5329 #ifdef IPSEC_DOSEQCHECK
5330 static struct secasvar *
5331 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5332 {
5333 struct secasvar *sav;
5334 u_int state;
5335
5336 state = SADB_SASTATE_LARVAL;
5337
5338 /* search SAD with sequence number ? */
5339 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5340
5341 KEY_CHKSASTATE(state, sav->state);
5342
5343 if (sav->seq == seq) {
5344 SA_ADDREF(sav);
5345 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5346 "DP cause refcnt++:%d SA:%p\n",
5347 sav->refcnt, sav);
5348 return sav;
5349 }
5350 }
5351
5352 return NULL;
5353 }
5354 #endif
5355
5356 /*
5357 * SADB_ADD processing
5358 * add an entry to SA database, when received
5359 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5360 * key(AE), (identity(SD),) (sensitivity)>
5361 * from the ikmpd,
5362 * and send
5363 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5364 * (identity(SD),) (sensitivity)>
5365 * to the ikmpd.
5366 *
5367 * IGNORE identity and sensitivity messages.
5368 *
5369 * m will always be freed.
5370 */
5371 static int
5372 key_api_add(struct socket *so, struct mbuf *m,
5373 const struct sadb_msghdr *mhp)
5374 {
5375 struct sadb_sa *sa0;
5376 const struct sockaddr *src, *dst;
5377 struct secasindex saidx;
5378 struct secashead *newsah;
5379 struct secasvar *newsav;
5380 u_int16_t proto;
5381 u_int8_t mode;
5382 u_int16_t reqid;
5383 int error;
5384
5385 /* map satype to proto */
5386 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5387 if (proto == 0) {
5388 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5389 return key_senderror(so, m, EINVAL);
5390 }
5391
5392 if (mhp->ext[SADB_EXT_SA] == NULL ||
5393 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5394 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5395 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5396 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5397 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5398 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5399 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5400 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5401 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5402 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5403 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5404 return key_senderror(so, m, EINVAL);
5405 }
5406 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5407 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5408 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5409 /* XXX need more */
5410 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5411 return key_senderror(so, m, EINVAL);
5412 }
5413 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5414 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5415 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5416 } else {
5417 mode = IPSEC_MODE_ANY;
5418 reqid = 0;
5419 }
5420
5421 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5422 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5423 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5424
5425 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5426 if (error != 0)
5427 return key_senderror(so, m, EINVAL);
5428
5429 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5430 if (error != 0)
5431 return key_senderror(so, m, EINVAL);
5432
5433 /* get a SA header */
5434 newsah = key_getsah(&saidx, CMP_REQID);
5435 if (newsah == NULL) {
5436 /* create a new SA header */
5437 newsah = key_newsah(&saidx);
5438 if (newsah == NULL) {
5439 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5440 return key_senderror(so, m, ENOBUFS);
5441 }
5442 }
5443
5444 /* set spidx if there */
5445 /* XXX rewrite */
5446 error = key_setident(newsah, m, mhp);
5447 if (error) {
5448 return key_senderror(so, m, error);
5449 }
5450
5451 {
5452 struct secasvar *sav;
5453
5454 /* We can create new SA only if SPI is differenct. */
5455 sav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5456 if (sav != NULL) {
5457 KEY_FREESAV(&sav);
5458 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5459 return key_senderror(so, m, EEXIST);
5460 }
5461 }
5462
5463 /* create new SA entry. */
5464 newsav = KEY_NEWSAV(m, mhp, &error);
5465 if (newsav == NULL) {
5466 return key_senderror(so, m, error);
5467 }
5468 newsav->sah = newsah;
5469
5470 error = key_handle_natt_info(newsav, mhp);
5471 if (error != 0) {
5472 key_delsav(newsav);
5473 return key_senderror(so, m, EINVAL);
5474 }
5475
5476 error = key_init_xform(newsav);
5477 if (error != 0) {
5478 key_delsav(newsav);
5479 return key_senderror(so, m, error);
5480 }
5481
5482 /* add to satree */
5483 newsav->refcnt = 1;
5484 newsav->state = SADB_SASTATE_MATURE;
5485 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], newsav,
5486 secasvar, chain);
5487
5488 /*
5489 * don't call key_freesav() here, as we would like to keep the SA
5490 * in the database on success.
5491 */
5492
5493 {
5494 struct mbuf *n;
5495
5496 /* set msg buf from mhp */
5497 n = key_getmsgbuf_x1(m, mhp);
5498 if (n == NULL) {
5499 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5500 return key_senderror(so, m, ENOBUFS);
5501 }
5502
5503 m_freem(m);
5504 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5505 }
5506 }
5507
5508 /* m is retained */
5509 static int
5510 key_setident(struct secashead *sah, struct mbuf *m,
5511 const struct sadb_msghdr *mhp)
5512 {
5513 const struct sadb_ident *idsrc, *iddst;
5514 int idsrclen, iddstlen;
5515
5516 KASSERT(!cpu_softintr_p());
5517 KASSERT(sah != NULL);
5518 KASSERT(m != NULL);
5519 KASSERT(mhp != NULL);
5520 KASSERT(mhp->msg != NULL);
5521
5522 /*
5523 * Can be called with an existing sah from key_api_update().
5524 */
5525 if (sah->idents != NULL) {
5526 kmem_free(sah->idents, sah->idents_len);
5527 sah->idents = NULL;
5528 sah->idents_len = 0;
5529 }
5530 if (sah->identd != NULL) {
5531 kmem_free(sah->identd, sah->identd_len);
5532 sah->identd = NULL;
5533 sah->identd_len = 0;
5534 }
5535
5536 /* don't make buffer if not there */
5537 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5538 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5539 sah->idents = NULL;
5540 sah->identd = NULL;
5541 return 0;
5542 }
5543
5544 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5545 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5546 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5547 return EINVAL;
5548 }
5549
5550 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5551 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5552 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5553 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5554
5555 /* validity check */
5556 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5557 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5558 return EINVAL;
5559 }
5560
5561 switch (idsrc->sadb_ident_type) {
5562 case SADB_IDENTTYPE_PREFIX:
5563 case SADB_IDENTTYPE_FQDN:
5564 case SADB_IDENTTYPE_USERFQDN:
5565 default:
5566 /* XXX do nothing */
5567 sah->idents = NULL;
5568 sah->identd = NULL;
5569 return 0;
5570 }
5571
5572 /* make structure */
5573 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5574 sah->idents_len = idsrclen;
5575 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5576 sah->identd_len = iddstlen;
5577 memcpy(sah->idents, idsrc, idsrclen);
5578 memcpy(sah->identd, iddst, iddstlen);
5579
5580 return 0;
5581 }
5582
5583 /*
5584 * m will not be freed on return.
5585 * it is caller's responsibility to free the result.
5586 */
5587 static struct mbuf *
5588 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5589 {
5590 struct mbuf *n;
5591
5592 KASSERT(m != NULL);
5593 KASSERT(mhp != NULL);
5594 KASSERT(mhp->msg != NULL);
5595
5596 /* create new sadb_msg to reply. */
5597 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5598 SADB_EXT_SA, SADB_X_EXT_SA2,
5599 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5600 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5601 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5602 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5603 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5604 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5605 if (!n)
5606 return NULL;
5607
5608 if (n->m_len < sizeof(struct sadb_msg)) {
5609 n = m_pullup(n, sizeof(struct sadb_msg));
5610 if (n == NULL)
5611 return NULL;
5612 }
5613 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5614 mtod(n, struct sadb_msg *)->sadb_msg_len =
5615 PFKEY_UNIT64(n->m_pkthdr.len);
5616
5617 return n;
5618 }
5619
5620 static int key_delete_all (struct socket *, struct mbuf *,
5621 const struct sadb_msghdr *, u_int16_t);
5622
5623 /*
5624 * SADB_DELETE processing
5625 * receive
5626 * <base, SA(*), address(SD)>
5627 * from the ikmpd, and set SADB_SASTATE_DEAD,
5628 * and send,
5629 * <base, SA(*), address(SD)>
5630 * to the ikmpd.
5631 *
5632 * m will always be freed.
5633 */
5634 static int
5635 key_api_delete(struct socket *so, struct mbuf *m,
5636 const struct sadb_msghdr *mhp)
5637 {
5638 struct sadb_sa *sa0;
5639 const struct sockaddr *src, *dst;
5640 struct secasindex saidx;
5641 struct secashead *sah;
5642 struct secasvar *sav = NULL;
5643 u_int16_t proto;
5644 int error;
5645
5646 /* map satype to proto */
5647 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5648 if (proto == 0) {
5649 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5650 return key_senderror(so, m, EINVAL);
5651 }
5652
5653 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5654 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5655 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5656 return key_senderror(so, m, EINVAL);
5657 }
5658
5659 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5660 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5661 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5662 return key_senderror(so, m, EINVAL);
5663 }
5664
5665 if (mhp->ext[SADB_EXT_SA] == NULL) {
5666 /*
5667 * Caller wants us to delete all non-LARVAL SAs
5668 * that match the src/dst. This is used during
5669 * IKE INITIAL-CONTACT.
5670 */
5671 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5672 return key_delete_all(so, m, mhp, proto);
5673 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5674 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5675 return key_senderror(so, m, EINVAL);
5676 }
5677
5678 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5679 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5680 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5681
5682 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5683 if (error != 0)
5684 return key_senderror(so, m, EINVAL);
5685
5686 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5687 if (error != 0)
5688 return key_senderror(so, m, EINVAL);
5689
5690 /* get a SA header */
5691 sah = key_getsah(&saidx, CMP_HEAD);
5692 if (sah != NULL) {
5693 /* get a SA with SPI. */
5694 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5695 }
5696
5697 if (sav == NULL) {
5698 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5699 return key_senderror(so, m, ENOENT);
5700 }
5701
5702 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5703 KEY_FREESAV(&sav);
5704 KEY_FREESAV(&sav);
5705
5706 {
5707 struct mbuf *n;
5708
5709 /* create new sadb_msg to reply. */
5710 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5711 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5712 if (!n)
5713 return key_senderror(so, m, ENOBUFS);
5714
5715 n = key_fill_replymsg(n, 0);
5716 if (n == NULL)
5717 return key_senderror(so, m, ENOBUFS);
5718
5719 m_freem(m);
5720 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5721 }
5722 }
5723
5724 /*
5725 * delete all SAs for src/dst. Called from key_api_delete().
5726 */
5727 static int
5728 key_delete_all(struct socket *so, struct mbuf *m,
5729 const struct sadb_msghdr *mhp, u_int16_t proto)
5730 {
5731 const struct sockaddr *src, *dst;
5732 struct secasindex saidx;
5733 struct secashead *sah;
5734 struct secasvar *sav, *nextsav;
5735 u_int state;
5736 int error;
5737
5738 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5739 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5740
5741 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5742 if (error != 0)
5743 return key_senderror(so, m, EINVAL);
5744
5745 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5746 if (error != 0)
5747 return key_senderror(so, m, EINVAL);
5748
5749 sah = key_getsah(&saidx, CMP_HEAD);
5750 if (sah != NULL) {
5751 /* Delete all non-LARVAL SAs. */
5752 SASTATE_ALIVE_FOREACH(state) {
5753 if (state == SADB_SASTATE_LARVAL)
5754 continue;
5755 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5756 nextsav) {
5757 /* sanity check */
5758 if (sav->state != state) {
5759 IPSECLOG(LOG_DEBUG,
5760 "invalid sav->state "
5761 "(queue: %d SA: %d)\n",
5762 state, sav->state);
5763 continue;
5764 }
5765
5766 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5767 KEY_FREESAV(&sav);
5768 }
5769 }
5770 }
5771 {
5772 struct mbuf *n;
5773
5774 /* create new sadb_msg to reply. */
5775 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5776 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5777 if (!n)
5778 return key_senderror(so, m, ENOBUFS);
5779
5780 n = key_fill_replymsg(n, 0);
5781 if (n == NULL)
5782 return key_senderror(so, m, ENOBUFS);
5783
5784 m_freem(m);
5785 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5786 }
5787 }
5788
5789 /*
5790 * SADB_GET processing
5791 * receive
5792 * <base, SA(*), address(SD)>
5793 * from the ikmpd, and get a SP and a SA to respond,
5794 * and send,
5795 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5796 * (identity(SD),) (sensitivity)>
5797 * to the ikmpd.
5798 *
5799 * m will always be freed.
5800 */
5801 static int
5802 key_api_get(struct socket *so, struct mbuf *m,
5803 const struct sadb_msghdr *mhp)
5804 {
5805 struct sadb_sa *sa0;
5806 const struct sockaddr *src, *dst;
5807 struct secasindex saidx;
5808 struct secashead *sah;
5809 struct secasvar *sav = NULL;
5810 u_int16_t proto;
5811 int error;
5812
5813 /* map satype to proto */
5814 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5815 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5816 return key_senderror(so, m, EINVAL);
5817 }
5818
5819 if (mhp->ext[SADB_EXT_SA] == NULL ||
5820 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5821 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5822 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5823 return key_senderror(so, m, EINVAL);
5824 }
5825 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5826 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5827 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5828 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5829 return key_senderror(so, m, EINVAL);
5830 }
5831
5832 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5833 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5834 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5835
5836 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5837 if (error != 0)
5838 return key_senderror(so, m, EINVAL);
5839
5840 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5841 if (error != 0)
5842 return key_senderror(so, m, EINVAL);
5843
5844 /* get a SA header */
5845 sah = key_getsah(&saidx, CMP_HEAD);
5846 if (sah != NULL) {
5847 /* get a SA with SPI. */
5848 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5849 }
5850 if (sav == NULL) {
5851 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5852 return key_senderror(so, m, ENOENT);
5853 }
5854
5855 {
5856 struct mbuf *n;
5857 u_int8_t satype;
5858
5859 /* map proto to satype */
5860 satype = key_proto2satype(sah->saidx.proto);
5861 if (satype == 0) {
5862 KEY_FREESAV(&sav);
5863 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5864 return key_senderror(so, m, EINVAL);
5865 }
5866
5867 /* create new sadb_msg to reply. */
5868 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5869 mhp->msg->sadb_msg_pid);
5870 KEY_FREESAV(&sav);
5871 if (!n)
5872 return key_senderror(so, m, ENOBUFS);
5873
5874 m_freem(m);
5875 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5876 }
5877 }
5878
5879 /* XXX make it sysctl-configurable? */
5880 static void
5881 key_getcomb_setlifetime(struct sadb_comb *comb)
5882 {
5883
5884 comb->sadb_comb_soft_allocations = 1;
5885 comb->sadb_comb_hard_allocations = 1;
5886 comb->sadb_comb_soft_bytes = 0;
5887 comb->sadb_comb_hard_bytes = 0;
5888 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5889 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5890 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5891 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5892 }
5893
5894 /*
5895 * XXX reorder combinations by preference
5896 * XXX no idea if the user wants ESP authentication or not
5897 */
5898 static struct mbuf *
5899 key_getcomb_esp(void)
5900 {
5901 struct sadb_comb *comb;
5902 const struct enc_xform *algo;
5903 struct mbuf *result = NULL, *m, *n;
5904 int encmin;
5905 int i, off, o;
5906 int totlen;
5907 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5908
5909 m = NULL;
5910 for (i = 1; i <= SADB_EALG_MAX; i++) {
5911 algo = esp_algorithm_lookup(i);
5912 if (algo == NULL)
5913 continue;
5914
5915 /* discard algorithms with key size smaller than system min */
5916 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5917 continue;
5918 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5919 encmin = ipsec_esp_keymin;
5920 else
5921 encmin = _BITS(algo->minkey);
5922
5923 if (ipsec_esp_auth)
5924 m = key_getcomb_ah();
5925 else {
5926 KASSERTMSG(l <= MLEN,
5927 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5928 MGET(m, M_DONTWAIT, MT_DATA);
5929 if (m) {
5930 M_ALIGN(m, l);
5931 m->m_len = l;
5932 m->m_next = NULL;
5933 memset(mtod(m, void *), 0, m->m_len);
5934 }
5935 }
5936 if (!m)
5937 goto fail;
5938
5939 totlen = 0;
5940 for (n = m; n; n = n->m_next)
5941 totlen += n->m_len;
5942 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5943
5944 for (off = 0; off < totlen; off += l) {
5945 n = m_pulldown(m, off, l, &o);
5946 if (!n) {
5947 /* m is already freed */
5948 goto fail;
5949 }
5950 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5951 memset(comb, 0, sizeof(*comb));
5952 key_getcomb_setlifetime(comb);
5953 comb->sadb_comb_encrypt = i;
5954 comb->sadb_comb_encrypt_minbits = encmin;
5955 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5956 }
5957
5958 if (!result)
5959 result = m;
5960 else
5961 m_cat(result, m);
5962 }
5963
5964 return result;
5965
5966 fail:
5967 if (result)
5968 m_freem(result);
5969 return NULL;
5970 }
5971
5972 static void
5973 key_getsizes_ah(const struct auth_hash *ah, int alg,
5974 u_int16_t* ksmin, u_int16_t* ksmax)
5975 {
5976 *ksmin = *ksmax = ah->keysize;
5977 if (ah->keysize == 0) {
5978 /*
5979 * Transform takes arbitrary key size but algorithm
5980 * key size is restricted. Enforce this here.
5981 */
5982 switch (alg) {
5983 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
5984 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
5985 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
5986 default:
5987 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
5988 break;
5989 }
5990 }
5991 }
5992
5993 /*
5994 * XXX reorder combinations by preference
5995 */
5996 static struct mbuf *
5997 key_getcomb_ah(void)
5998 {
5999 struct sadb_comb *comb;
6000 const struct auth_hash *algo;
6001 struct mbuf *m;
6002 u_int16_t minkeysize, maxkeysize;
6003 int i;
6004 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6005
6006 m = NULL;
6007 for (i = 1; i <= SADB_AALG_MAX; i++) {
6008 #if 1
6009 /* we prefer HMAC algorithms, not old algorithms */
6010 if (i != SADB_AALG_SHA1HMAC &&
6011 i != SADB_AALG_MD5HMAC &&
6012 i != SADB_X_AALG_SHA2_256 &&
6013 i != SADB_X_AALG_SHA2_384 &&
6014 i != SADB_X_AALG_SHA2_512)
6015 continue;
6016 #endif
6017 algo = ah_algorithm_lookup(i);
6018 if (!algo)
6019 continue;
6020 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6021 /* discard algorithms with key size smaller than system min */
6022 if (_BITS(minkeysize) < ipsec_ah_keymin)
6023 continue;
6024
6025 if (!m) {
6026 KASSERTMSG(l <= MLEN,
6027 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6028 MGET(m, M_DONTWAIT, MT_DATA);
6029 if (m) {
6030 M_ALIGN(m, l);
6031 m->m_len = l;
6032 m->m_next = NULL;
6033 }
6034 } else
6035 M_PREPEND(m, l, M_DONTWAIT);
6036 if (!m)
6037 return NULL;
6038
6039 if (m->m_len < sizeof(struct sadb_comb)) {
6040 m = m_pullup(m, sizeof(struct sadb_comb));
6041 if (m == NULL)
6042 return NULL;
6043 }
6044
6045 comb = mtod(m, struct sadb_comb *);
6046 memset(comb, 0, sizeof(*comb));
6047 key_getcomb_setlifetime(comb);
6048 comb->sadb_comb_auth = i;
6049 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6050 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6051 }
6052
6053 return m;
6054 }
6055
6056 /*
6057 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6058 * XXX reorder combinations by preference
6059 */
6060 static struct mbuf *
6061 key_getcomb_ipcomp(void)
6062 {
6063 struct sadb_comb *comb;
6064 const struct comp_algo *algo;
6065 struct mbuf *m;
6066 int i;
6067 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6068
6069 m = NULL;
6070 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6071 algo = ipcomp_algorithm_lookup(i);
6072 if (!algo)
6073 continue;
6074
6075 if (!m) {
6076 KASSERTMSG(l <= MLEN,
6077 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6078 MGET(m, M_DONTWAIT, MT_DATA);
6079 if (m) {
6080 M_ALIGN(m, l);
6081 m->m_len = l;
6082 m->m_next = NULL;
6083 }
6084 } else
6085 M_PREPEND(m, l, M_DONTWAIT);
6086 if (!m)
6087 return NULL;
6088
6089 if (m->m_len < sizeof(struct sadb_comb)) {
6090 m = m_pullup(m, sizeof(struct sadb_comb));
6091 if (m == NULL)
6092 return NULL;
6093 }
6094
6095 comb = mtod(m, struct sadb_comb *);
6096 memset(comb, 0, sizeof(*comb));
6097 key_getcomb_setlifetime(comb);
6098 comb->sadb_comb_encrypt = i;
6099 /* what should we set into sadb_comb_*_{min,max}bits? */
6100 }
6101
6102 return m;
6103 }
6104
6105 /*
6106 * XXX no way to pass mode (transport/tunnel) to userland
6107 * XXX replay checking?
6108 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6109 */
6110 static struct mbuf *
6111 key_getprop(const struct secasindex *saidx)
6112 {
6113 struct sadb_prop *prop;
6114 struct mbuf *m, *n;
6115 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6116 int totlen;
6117
6118 switch (saidx->proto) {
6119 case IPPROTO_ESP:
6120 m = key_getcomb_esp();
6121 break;
6122 case IPPROTO_AH:
6123 m = key_getcomb_ah();
6124 break;
6125 case IPPROTO_IPCOMP:
6126 m = key_getcomb_ipcomp();
6127 break;
6128 default:
6129 return NULL;
6130 }
6131
6132 if (!m)
6133 return NULL;
6134 M_PREPEND(m, l, M_DONTWAIT);
6135 if (!m)
6136 return NULL;
6137
6138 totlen = 0;
6139 for (n = m; n; n = n->m_next)
6140 totlen += n->m_len;
6141
6142 prop = mtod(m, struct sadb_prop *);
6143 memset(prop, 0, sizeof(*prop));
6144 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6145 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6146 prop->sadb_prop_replay = 32; /* XXX */
6147
6148 return m;
6149 }
6150
6151 /*
6152 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6153 * send
6154 * <base, SA, address(SD), (address(P)), x_policy,
6155 * (identity(SD),) (sensitivity,) proposal>
6156 * to KMD, and expect to receive
6157 * <base> with SADB_ACQUIRE if error occurred,
6158 * or
6159 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6160 * from KMD by PF_KEY.
6161 *
6162 * XXX x_policy is outside of RFC2367 (KAME extension).
6163 * XXX sensitivity is not supported.
6164 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6165 * see comment for key_getcomb_ipcomp().
6166 *
6167 * OUT:
6168 * 0 : succeed
6169 * others: error number
6170 */
6171 static int
6172 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6173 {
6174 struct mbuf *result = NULL, *m;
6175 #ifndef IPSEC_NONBLOCK_ACQUIRE
6176 struct secacq *newacq;
6177 #endif
6178 u_int8_t satype;
6179 int error = -1;
6180 u_int32_t seq;
6181
6182 /* sanity check */
6183 KASSERT(saidx != NULL);
6184 satype = key_proto2satype(saidx->proto);
6185 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6186
6187 #ifndef IPSEC_NONBLOCK_ACQUIRE
6188 /*
6189 * We never do anything about acquirng SA. There is anather
6190 * solution that kernel blocks to send SADB_ACQUIRE message until
6191 * getting something message from IKEd. In later case, to be
6192 * managed with ACQUIRING list.
6193 */
6194 /* Get an entry to check whether sending message or not. */
6195 mutex_enter(&key_mtx);
6196 newacq = key_getacq(saidx);
6197 if (newacq != NULL) {
6198 if (key_blockacq_count < newacq->count) {
6199 /* reset counter and do send message. */
6200 newacq->count = 0;
6201 } else {
6202 /* increment counter and do nothing. */
6203 newacq->count++;
6204 mutex_exit(&key_mtx);
6205 return 0;
6206 }
6207 } else {
6208 /* make new entry for blocking to send SADB_ACQUIRE. */
6209 newacq = key_newacq(saidx);
6210 if (newacq == NULL)
6211 return ENOBUFS;
6212
6213 /* add to acqtree */
6214 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6215 }
6216
6217 seq = newacq->seq;
6218 mutex_exit(&key_mtx);
6219 #else
6220 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6221 #endif
6222 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6223 if (!m) {
6224 error = ENOBUFS;
6225 goto fail;
6226 }
6227 result = m;
6228
6229 /* set sadb_address for saidx's. */
6230 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6231 IPSEC_ULPROTO_ANY);
6232 if (!m) {
6233 error = ENOBUFS;
6234 goto fail;
6235 }
6236 m_cat(result, m);
6237
6238 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6239 IPSEC_ULPROTO_ANY);
6240 if (!m) {
6241 error = ENOBUFS;
6242 goto fail;
6243 }
6244 m_cat(result, m);
6245
6246 /* XXX proxy address (optional) */
6247
6248 /* set sadb_x_policy */
6249 if (sp) {
6250 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6251 if (!m) {
6252 error = ENOBUFS;
6253 goto fail;
6254 }
6255 m_cat(result, m);
6256 }
6257
6258 /* XXX identity (optional) */
6259 #if 0
6260 if (idexttype && fqdn) {
6261 /* create identity extension (FQDN) */
6262 struct sadb_ident *id;
6263 int fqdnlen;
6264
6265 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6266 id = (struct sadb_ident *)p;
6267 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6268 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6269 id->sadb_ident_exttype = idexttype;
6270 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6271 memcpy(id + 1, fqdn, fqdnlen);
6272 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6273 }
6274
6275 if (idexttype) {
6276 /* create identity extension (USERFQDN) */
6277 struct sadb_ident *id;
6278 int userfqdnlen;
6279
6280 if (userfqdn) {
6281 /* +1 for terminating-NUL */
6282 userfqdnlen = strlen(userfqdn) + 1;
6283 } else
6284 userfqdnlen = 0;
6285 id = (struct sadb_ident *)p;
6286 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6287 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6288 id->sadb_ident_exttype = idexttype;
6289 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6290 /* XXX is it correct? */
6291 if (curlwp)
6292 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6293 if (userfqdn && userfqdnlen)
6294 memcpy(id + 1, userfqdn, userfqdnlen);
6295 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6296 }
6297 #endif
6298
6299 /* XXX sensitivity (optional) */
6300
6301 /* create proposal/combination extension */
6302 m = key_getprop(saidx);
6303 #if 0
6304 /*
6305 * spec conformant: always attach proposal/combination extension,
6306 * the problem is that we have no way to attach it for ipcomp,
6307 * due to the way sadb_comb is declared in RFC2367.
6308 */
6309 if (!m) {
6310 error = ENOBUFS;
6311 goto fail;
6312 }
6313 m_cat(result, m);
6314 #else
6315 /*
6316 * outside of spec; make proposal/combination extension optional.
6317 */
6318 if (m)
6319 m_cat(result, m);
6320 #endif
6321
6322 if ((result->m_flags & M_PKTHDR) == 0) {
6323 error = EINVAL;
6324 goto fail;
6325 }
6326
6327 if (result->m_len < sizeof(struct sadb_msg)) {
6328 result = m_pullup(result, sizeof(struct sadb_msg));
6329 if (result == NULL) {
6330 error = ENOBUFS;
6331 goto fail;
6332 }
6333 }
6334
6335 result->m_pkthdr.len = 0;
6336 for (m = result; m; m = m->m_next)
6337 result->m_pkthdr.len += m->m_len;
6338
6339 mtod(result, struct sadb_msg *)->sadb_msg_len =
6340 PFKEY_UNIT64(result->m_pkthdr.len);
6341
6342 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6343
6344 fail:
6345 if (result)
6346 m_freem(result);
6347 return error;
6348 }
6349
6350 #ifndef IPSEC_NONBLOCK_ACQUIRE
6351 static struct secacq *
6352 key_newacq(const struct secasindex *saidx)
6353 {
6354 struct secacq *newacq;
6355
6356 /* get new entry */
6357 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6358 if (newacq == NULL) {
6359 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6360 return NULL;
6361 }
6362
6363 /* copy secindex */
6364 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6365 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6366 newacq->created = time_uptime;
6367 newacq->count = 0;
6368
6369 return newacq;
6370 }
6371
6372 static struct secacq *
6373 key_getacq(const struct secasindex *saidx)
6374 {
6375 struct secacq *acq;
6376
6377 KASSERT(mutex_owned(&key_mtx));
6378
6379 LIST_FOREACH(acq, &acqtree, chain) {
6380 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6381 return acq;
6382 }
6383
6384 return NULL;
6385 }
6386
6387 static struct secacq *
6388 key_getacqbyseq(u_int32_t seq)
6389 {
6390 struct secacq *acq;
6391
6392 KASSERT(mutex_owned(&key_mtx));
6393
6394 LIST_FOREACH(acq, &acqtree, chain) {
6395 if (acq->seq == seq)
6396 return acq;
6397 }
6398
6399 return NULL;
6400 }
6401 #endif
6402
6403 #ifdef notyet
6404 static struct secspacq *
6405 key_newspacq(const struct secpolicyindex *spidx)
6406 {
6407 struct secspacq *acq;
6408
6409 /* get new entry */
6410 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6411 if (acq == NULL) {
6412 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6413 return NULL;
6414 }
6415
6416 /* copy secindex */
6417 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6418 acq->created = time_uptime;
6419 acq->count = 0;
6420
6421 return acq;
6422 }
6423
6424 static struct secspacq *
6425 key_getspacq(const struct secpolicyindex *spidx)
6426 {
6427 struct secspacq *acq;
6428
6429 LIST_FOREACH(acq, &spacqtree, chain) {
6430 if (key_spidx_match_exactly(spidx, &acq->spidx))
6431 return acq;
6432 }
6433
6434 return NULL;
6435 }
6436 #endif /* notyet */
6437
6438 /*
6439 * SADB_ACQUIRE processing,
6440 * in first situation, is receiving
6441 * <base>
6442 * from the ikmpd, and clear sequence of its secasvar entry.
6443 *
6444 * In second situation, is receiving
6445 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6446 * from a user land process, and return
6447 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6448 * to the socket.
6449 *
6450 * m will always be freed.
6451 */
6452 static int
6453 key_api_acquire(struct socket *so, struct mbuf *m,
6454 const struct sadb_msghdr *mhp)
6455 {
6456 const struct sockaddr *src, *dst;
6457 struct secasindex saidx;
6458 struct secashead *sah;
6459 u_int16_t proto;
6460 int error;
6461
6462 /*
6463 * Error message from KMd.
6464 * We assume that if error was occurred in IKEd, the length of PFKEY
6465 * message is equal to the size of sadb_msg structure.
6466 * We do not raise error even if error occurred in this function.
6467 */
6468 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6469 #ifndef IPSEC_NONBLOCK_ACQUIRE
6470 struct secacq *acq;
6471
6472 /* check sequence number */
6473 if (mhp->msg->sadb_msg_seq == 0) {
6474 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6475 m_freem(m);
6476 return 0;
6477 }
6478
6479 mutex_enter(&key_mtx);
6480 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6481 if (acq == NULL) {
6482 mutex_exit(&key_mtx);
6483 /*
6484 * the specified larval SA is already gone, or we got
6485 * a bogus sequence number. we can silently ignore it.
6486 */
6487 m_freem(m);
6488 return 0;
6489 }
6490
6491 /* reset acq counter in order to deletion by timehander. */
6492 acq->created = time_uptime;
6493 acq->count = 0;
6494 mutex_exit(&key_mtx);
6495 #endif
6496 m_freem(m);
6497 return 0;
6498 }
6499
6500 /*
6501 * This message is from user land.
6502 */
6503
6504 /* map satype to proto */
6505 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6506 if (proto == 0) {
6507 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6508 return key_senderror(so, m, EINVAL);
6509 }
6510
6511 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6512 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6513 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6514 /* error */
6515 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6516 return key_senderror(so, m, EINVAL);
6517 }
6518 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6519 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6520 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6521 /* error */
6522 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6523 return key_senderror(so, m, EINVAL);
6524 }
6525
6526 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6527 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6528
6529 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6530 if (error != 0)
6531 return key_senderror(so, m, EINVAL);
6532
6533 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6534 if (error != 0)
6535 return key_senderror(so, m, EINVAL);
6536
6537 /* get a SA index */
6538 sah = key_getsah(&saidx, CMP_MODE_REQID);
6539 if (sah != NULL) {
6540 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6541 return key_senderror(so, m, EEXIST);
6542 }
6543
6544 error = key_acquire(&saidx, NULL);
6545 if (error != 0) {
6546 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6547 error);
6548 return key_senderror(so, m, error);
6549 }
6550
6551 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6552 }
6553
6554 /*
6555 * SADB_REGISTER processing.
6556 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6557 * receive
6558 * <base>
6559 * from the ikmpd, and register a socket to send PF_KEY messages,
6560 * and send
6561 * <base, supported>
6562 * to KMD by PF_KEY.
6563 * If socket is detached, must free from regnode.
6564 *
6565 * m will always be freed.
6566 */
6567 static int
6568 key_api_register(struct socket *so, struct mbuf *m,
6569 const struct sadb_msghdr *mhp)
6570 {
6571 struct secreg *reg, *newreg = 0;
6572
6573 /* check for invalid register message */
6574 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6575 return key_senderror(so, m, EINVAL);
6576
6577 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6578 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6579 goto setmsg;
6580
6581 /* Allocate regnode in advance, out of mutex */
6582 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6583
6584 /* check whether existing or not */
6585 mutex_enter(&key_mtx);
6586 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6587 if (reg->so == so) {
6588 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6589 mutex_exit(&key_mtx);
6590 kmem_free(newreg, sizeof(*newreg));
6591 return key_senderror(so, m, EEXIST);
6592 }
6593 }
6594
6595 newreg->so = so;
6596 ((struct keycb *)sotorawcb(so))->kp_registered++;
6597
6598 /* add regnode to regtree. */
6599 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6600 mutex_exit(&key_mtx);
6601
6602 setmsg:
6603 {
6604 struct mbuf *n;
6605 struct sadb_supported *sup;
6606 u_int len, alen, elen;
6607 int off;
6608 int i;
6609 struct sadb_alg *alg;
6610
6611 /* create new sadb_msg to reply. */
6612 alen = 0;
6613 for (i = 1; i <= SADB_AALG_MAX; i++) {
6614 if (ah_algorithm_lookup(i))
6615 alen += sizeof(struct sadb_alg);
6616 }
6617 if (alen)
6618 alen += sizeof(struct sadb_supported);
6619 elen = 0;
6620 for (i = 1; i <= SADB_EALG_MAX; i++) {
6621 if (esp_algorithm_lookup(i))
6622 elen += sizeof(struct sadb_alg);
6623 }
6624 if (elen)
6625 elen += sizeof(struct sadb_supported);
6626
6627 len = sizeof(struct sadb_msg) + alen + elen;
6628
6629 if (len > MCLBYTES)
6630 return key_senderror(so, m, ENOBUFS);
6631
6632 MGETHDR(n, M_DONTWAIT, MT_DATA);
6633 if (len > MHLEN) {
6634 MCLGET(n, M_DONTWAIT);
6635 if ((n->m_flags & M_EXT) == 0) {
6636 m_freem(n);
6637 n = NULL;
6638 }
6639 }
6640 if (!n)
6641 return key_senderror(so, m, ENOBUFS);
6642
6643 n->m_pkthdr.len = n->m_len = len;
6644 n->m_next = NULL;
6645 off = 0;
6646
6647 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6648 n = key_fill_replymsg(n, 0);
6649 if (n == NULL)
6650 return key_senderror(so, m, ENOBUFS);
6651
6652 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6653
6654 /* for authentication algorithm */
6655 if (alen) {
6656 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6657 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6658 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6659 off += PFKEY_ALIGN8(sizeof(*sup));
6660
6661 for (i = 1; i <= SADB_AALG_MAX; i++) {
6662 const struct auth_hash *aalgo;
6663 u_int16_t minkeysize, maxkeysize;
6664
6665 aalgo = ah_algorithm_lookup(i);
6666 if (!aalgo)
6667 continue;
6668 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6669 alg->sadb_alg_id = i;
6670 alg->sadb_alg_ivlen = 0;
6671 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6672 alg->sadb_alg_minbits = _BITS(minkeysize);
6673 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6674 off += PFKEY_ALIGN8(sizeof(*alg));
6675 }
6676 }
6677
6678 /* for encryption algorithm */
6679 if (elen) {
6680 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6681 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6682 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6683 off += PFKEY_ALIGN8(sizeof(*sup));
6684
6685 for (i = 1; i <= SADB_EALG_MAX; i++) {
6686 const struct enc_xform *ealgo;
6687
6688 ealgo = esp_algorithm_lookup(i);
6689 if (!ealgo)
6690 continue;
6691 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6692 alg->sadb_alg_id = i;
6693 alg->sadb_alg_ivlen = ealgo->blocksize;
6694 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6695 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6696 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6697 }
6698 }
6699
6700 KASSERTMSG(off == len, "length inconsistency");
6701
6702 m_freem(m);
6703 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6704 }
6705 }
6706
6707 /*
6708 * free secreg entry registered.
6709 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6710 */
6711 void
6712 key_freereg(struct socket *so)
6713 {
6714 struct secreg *reg;
6715 int i;
6716
6717 KASSERT(!cpu_softintr_p());
6718 KASSERT(so != NULL);
6719
6720 /*
6721 * check whether existing or not.
6722 * check all type of SA, because there is a potential that
6723 * one socket is registered to multiple type of SA.
6724 */
6725 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6726 mutex_enter(&key_mtx);
6727 LIST_FOREACH(reg, ®tree[i], chain) {
6728 if (reg->so == so) {
6729 LIST_REMOVE(reg, chain);
6730 break;
6731 }
6732 }
6733 mutex_exit(&key_mtx);
6734 if (reg != NULL)
6735 kmem_free(reg, sizeof(*reg));
6736 }
6737
6738 return;
6739 }
6740
6741 /*
6742 * SADB_EXPIRE processing
6743 * send
6744 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6745 * to KMD by PF_KEY.
6746 * NOTE: We send only soft lifetime extension.
6747 *
6748 * OUT: 0 : succeed
6749 * others : error number
6750 */
6751 static int
6752 key_expire(struct secasvar *sav)
6753 {
6754 int s;
6755 int satype;
6756 struct mbuf *result = NULL, *m;
6757 int len;
6758 int error = -1;
6759 struct sadb_lifetime *lt;
6760
6761 /* XXX: Why do we lock ? */
6762 s = splsoftnet(); /*called from softclock()*/
6763
6764 KASSERT(sav != NULL);
6765
6766 satype = key_proto2satype(sav->sah->saidx.proto);
6767 KASSERTMSG(satype != 0, "invalid proto is passed");
6768
6769 /* set msg header */
6770 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6771 if (!m) {
6772 error = ENOBUFS;
6773 goto fail;
6774 }
6775 result = m;
6776
6777 /* create SA extension */
6778 m = key_setsadbsa(sav);
6779 if (!m) {
6780 error = ENOBUFS;
6781 goto fail;
6782 }
6783 m_cat(result, m);
6784
6785 /* create SA extension */
6786 m = key_setsadbxsa2(sav->sah->saidx.mode,
6787 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6788 if (!m) {
6789 error = ENOBUFS;
6790 goto fail;
6791 }
6792 m_cat(result, m);
6793
6794 /* create lifetime extension (current and soft) */
6795 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6796 m = key_alloc_mbuf(len);
6797 if (!m || m->m_next) { /*XXX*/
6798 if (m)
6799 m_freem(m);
6800 error = ENOBUFS;
6801 goto fail;
6802 }
6803 memset(mtod(m, void *), 0, len);
6804 lt = mtod(m, struct sadb_lifetime *);
6805 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6806 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6807 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6808 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6809 lt->sadb_lifetime_addtime =
6810 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6811 lt->sadb_lifetime_usetime =
6812 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6813 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6814 memcpy(lt, sav->lft_s, sizeof(*lt));
6815 m_cat(result, m);
6816
6817 /* set sadb_address for source */
6818 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6819 FULLMASK, IPSEC_ULPROTO_ANY);
6820 if (!m) {
6821 error = ENOBUFS;
6822 goto fail;
6823 }
6824 m_cat(result, m);
6825
6826 /* set sadb_address for destination */
6827 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6828 FULLMASK, IPSEC_ULPROTO_ANY);
6829 if (!m) {
6830 error = ENOBUFS;
6831 goto fail;
6832 }
6833 m_cat(result, m);
6834
6835 if ((result->m_flags & M_PKTHDR) == 0) {
6836 error = EINVAL;
6837 goto fail;
6838 }
6839
6840 if (result->m_len < sizeof(struct sadb_msg)) {
6841 result = m_pullup(result, sizeof(struct sadb_msg));
6842 if (result == NULL) {
6843 error = ENOBUFS;
6844 goto fail;
6845 }
6846 }
6847
6848 result->m_pkthdr.len = 0;
6849 for (m = result; m; m = m->m_next)
6850 result->m_pkthdr.len += m->m_len;
6851
6852 mtod(result, struct sadb_msg *)->sadb_msg_len =
6853 PFKEY_UNIT64(result->m_pkthdr.len);
6854
6855 splx(s);
6856 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6857
6858 fail:
6859 if (result)
6860 m_freem(result);
6861 splx(s);
6862 return error;
6863 }
6864
6865 /*
6866 * SADB_FLUSH processing
6867 * receive
6868 * <base>
6869 * from the ikmpd, and free all entries in secastree.
6870 * and send,
6871 * <base>
6872 * to the ikmpd.
6873 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6874 *
6875 * m will always be freed.
6876 */
6877 static int
6878 key_api_flush(struct socket *so, struct mbuf *m,
6879 const struct sadb_msghdr *mhp)
6880 {
6881 struct sadb_msg *newmsg;
6882 struct secashead *sah;
6883 struct secasvar *sav, *nextsav;
6884 u_int16_t proto;
6885 u_int8_t state;
6886
6887 /* map satype to proto */
6888 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6889 if (proto == 0) {
6890 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6891 return key_senderror(so, m, EINVAL);
6892 }
6893
6894 /* no SATYPE specified, i.e. flushing all SA. */
6895 LIST_FOREACH(sah, &sahtree, chain) {
6896 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6897 proto != sah->saidx.proto)
6898 continue;
6899
6900 SASTATE_ALIVE_FOREACH(state) {
6901 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6902 nextsav) {
6903 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6904 KEY_FREESAV(&sav);
6905 }
6906 }
6907
6908 sah->state = SADB_SASTATE_DEAD;
6909 }
6910
6911 if (m->m_len < sizeof(struct sadb_msg) ||
6912 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6913 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6914 return key_senderror(so, m, ENOBUFS);
6915 }
6916
6917 if (m->m_next)
6918 m_freem(m->m_next);
6919 m->m_next = NULL;
6920 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6921 newmsg = mtod(m, struct sadb_msg *);
6922 newmsg->sadb_msg_errno = 0;
6923 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6924
6925 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6926 }
6927
6928
6929 static struct mbuf *
6930 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6931 {
6932 struct secashead *sah;
6933 struct secasvar *sav;
6934 u_int16_t proto;
6935 u_int8_t satype;
6936 u_int8_t state;
6937 int cnt;
6938 struct mbuf *m, *n, *prev;
6939
6940 *lenp = 0;
6941
6942 /* map satype to proto */
6943 proto = key_satype2proto(req_satype);
6944 if (proto == 0) {
6945 *errorp = EINVAL;
6946 return (NULL);
6947 }
6948
6949 /* count sav entries to be sent to userland. */
6950 cnt = 0;
6951 LIST_FOREACH(sah, &sahtree, chain) {
6952 if (req_satype != SADB_SATYPE_UNSPEC &&
6953 proto != sah->saidx.proto)
6954 continue;
6955
6956 SASTATE_ANY_FOREACH(state) {
6957 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6958 cnt++;
6959 }
6960 }
6961 }
6962
6963 if (cnt == 0) {
6964 *errorp = ENOENT;
6965 return (NULL);
6966 }
6967
6968 /* send this to the userland, one at a time. */
6969 m = NULL;
6970 prev = m;
6971 LIST_FOREACH(sah, &sahtree, chain) {
6972 if (req_satype != SADB_SATYPE_UNSPEC &&
6973 proto != sah->saidx.proto)
6974 continue;
6975
6976 /* map proto to satype */
6977 satype = key_proto2satype(sah->saidx.proto);
6978 if (satype == 0) {
6979 m_freem(m);
6980 *errorp = EINVAL;
6981 return (NULL);
6982 }
6983
6984 SASTATE_ANY_FOREACH(state) {
6985 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6986 n = key_setdumpsa(sav, SADB_DUMP, satype,
6987 --cnt, pid);
6988 if (!n) {
6989 m_freem(m);
6990 *errorp = ENOBUFS;
6991 return (NULL);
6992 }
6993
6994 if (!m)
6995 m = n;
6996 else
6997 prev->m_nextpkt = n;
6998 prev = n;
6999 }
7000 }
7001 }
7002
7003 if (!m) {
7004 *errorp = EINVAL;
7005 return (NULL);
7006 }
7007
7008 if ((m->m_flags & M_PKTHDR) != 0) {
7009 m->m_pkthdr.len = 0;
7010 for (n = m; n; n = n->m_next)
7011 m->m_pkthdr.len += n->m_len;
7012 }
7013
7014 *errorp = 0;
7015 return (m);
7016 }
7017
7018 /*
7019 * SADB_DUMP processing
7020 * dump all entries including status of DEAD in SAD.
7021 * receive
7022 * <base>
7023 * from the ikmpd, and dump all secasvar leaves
7024 * and send,
7025 * <base> .....
7026 * to the ikmpd.
7027 *
7028 * m will always be freed.
7029 */
7030 static int
7031 key_api_dump(struct socket *so, struct mbuf *m0,
7032 const struct sadb_msghdr *mhp)
7033 {
7034 u_int16_t proto;
7035 u_int8_t satype;
7036 struct mbuf *n;
7037 int s;
7038 int error, len, ok;
7039
7040 /* map satype to proto */
7041 satype = mhp->msg->sadb_msg_satype;
7042 proto = key_satype2proto(satype);
7043 if (proto == 0) {
7044 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7045 return key_senderror(so, m0, EINVAL);
7046 }
7047
7048 /*
7049 * If the requestor has insufficient socket-buffer space
7050 * for the entire chain, nobody gets any response to the DUMP.
7051 * XXX For now, only the requestor ever gets anything.
7052 * Moreover, if the requestor has any space at all, they receive
7053 * the entire chain, otherwise the request is refused with ENOBUFS.
7054 */
7055 if (sbspace(&so->so_rcv) <= 0) {
7056 return key_senderror(so, m0, ENOBUFS);
7057 }
7058
7059 s = splsoftnet();
7060 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7061 splx(s);
7062
7063 if (n == NULL) {
7064 return key_senderror(so, m0, ENOENT);
7065 }
7066 {
7067 uint64_t *ps = PFKEY_STAT_GETREF();
7068 ps[PFKEY_STAT_IN_TOTAL]++;
7069 ps[PFKEY_STAT_IN_BYTES] += len;
7070 PFKEY_STAT_PUTREF();
7071 }
7072
7073 /*
7074 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7075 * The requestor receives either the entire chain, or an
7076 * error message with ENOBUFS.
7077 *
7078 * sbappendaddrchain() takes the chain of entries, one
7079 * packet-record per SPD entry, prepends the key_src sockaddr
7080 * to each packet-record, links the sockaddr mbufs into a new
7081 * list of records, then appends the entire resulting
7082 * list to the requesting socket.
7083 */
7084 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7085 SB_PRIO_ONESHOT_OVERFLOW);
7086
7087 if (!ok) {
7088 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7089 m_freem(n);
7090 return key_senderror(so, m0, ENOBUFS);
7091 }
7092
7093 m_freem(m0);
7094 return 0;
7095 }
7096
7097 /*
7098 * SADB_X_PROMISC processing
7099 *
7100 * m will always be freed.
7101 */
7102 static int
7103 key_api_promisc(struct socket *so, struct mbuf *m,
7104 const struct sadb_msghdr *mhp)
7105 {
7106 int olen;
7107
7108 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7109
7110 if (olen < sizeof(struct sadb_msg)) {
7111 #if 1
7112 return key_senderror(so, m, EINVAL);
7113 #else
7114 m_freem(m);
7115 return 0;
7116 #endif
7117 } else if (olen == sizeof(struct sadb_msg)) {
7118 /* enable/disable promisc mode */
7119 struct keycb *kp = (struct keycb *)sotorawcb(so);
7120 if (kp == NULL)
7121 return key_senderror(so, m, EINVAL);
7122 mhp->msg->sadb_msg_errno = 0;
7123 switch (mhp->msg->sadb_msg_satype) {
7124 case 0:
7125 case 1:
7126 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7127 break;
7128 default:
7129 return key_senderror(so, m, EINVAL);
7130 }
7131
7132 /* send the original message back to everyone */
7133 mhp->msg->sadb_msg_errno = 0;
7134 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7135 } else {
7136 /* send packet as is */
7137
7138 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7139
7140 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7141 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7142 }
7143 }
7144
7145 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7146 const struct sadb_msghdr *) = {
7147 NULL, /* SADB_RESERVED */
7148 key_api_getspi, /* SADB_GETSPI */
7149 key_api_update, /* SADB_UPDATE */
7150 key_api_add, /* SADB_ADD */
7151 key_api_delete, /* SADB_DELETE */
7152 key_api_get, /* SADB_GET */
7153 key_api_acquire, /* SADB_ACQUIRE */
7154 key_api_register, /* SADB_REGISTER */
7155 NULL, /* SADB_EXPIRE */
7156 key_api_flush, /* SADB_FLUSH */
7157 key_api_dump, /* SADB_DUMP */
7158 key_api_promisc, /* SADB_X_PROMISC */
7159 NULL, /* SADB_X_PCHANGE */
7160 key_api_spdadd, /* SADB_X_SPDUPDATE */
7161 key_api_spdadd, /* SADB_X_SPDADD */
7162 key_api_spddelete, /* SADB_X_SPDDELETE */
7163 key_api_spdget, /* SADB_X_SPDGET */
7164 NULL, /* SADB_X_SPDACQUIRE */
7165 key_api_spddump, /* SADB_X_SPDDUMP */
7166 key_api_spdflush, /* SADB_X_SPDFLUSH */
7167 key_api_spdadd, /* SADB_X_SPDSETIDX */
7168 NULL, /* SADB_X_SPDEXPIRE */
7169 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7170 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7171 };
7172
7173 /*
7174 * parse sadb_msg buffer to process PFKEYv2,
7175 * and create a data to response if needed.
7176 * I think to be dealed with mbuf directly.
7177 * IN:
7178 * msgp : pointer to pointer to a received buffer pulluped.
7179 * This is rewrited to response.
7180 * so : pointer to socket.
7181 * OUT:
7182 * length for buffer to send to user process.
7183 */
7184 int
7185 key_parse(struct mbuf *m, struct socket *so)
7186 {
7187 struct sadb_msg *msg;
7188 struct sadb_msghdr mh;
7189 u_int orglen;
7190 int error;
7191
7192 KASSERT(m != NULL);
7193 KASSERT(so != NULL);
7194
7195 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7196 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7197 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7198 kdebug_sadb(msg);
7199 }
7200 #endif
7201
7202 if (m->m_len < sizeof(struct sadb_msg)) {
7203 m = m_pullup(m, sizeof(struct sadb_msg));
7204 if (!m)
7205 return ENOBUFS;
7206 }
7207 msg = mtod(m, struct sadb_msg *);
7208 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7209
7210 if ((m->m_flags & M_PKTHDR) == 0 ||
7211 m->m_pkthdr.len != orglen) {
7212 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7213 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7214 error = EINVAL;
7215 goto senderror;
7216 }
7217
7218 if (msg->sadb_msg_version != PF_KEY_V2) {
7219 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7220 msg->sadb_msg_version);
7221 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7222 error = EINVAL;
7223 goto senderror;
7224 }
7225
7226 if (msg->sadb_msg_type > SADB_MAX) {
7227 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7228 msg->sadb_msg_type);
7229 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7230 error = EINVAL;
7231 goto senderror;
7232 }
7233
7234 /* for old-fashioned code - should be nuked */
7235 if (m->m_pkthdr.len > MCLBYTES) {
7236 m_freem(m);
7237 return ENOBUFS;
7238 }
7239 if (m->m_next) {
7240 struct mbuf *n;
7241
7242 MGETHDR(n, M_DONTWAIT, MT_DATA);
7243 if (n && m->m_pkthdr.len > MHLEN) {
7244 MCLGET(n, M_DONTWAIT);
7245 if ((n->m_flags & M_EXT) == 0) {
7246 m_free(n);
7247 n = NULL;
7248 }
7249 }
7250 if (!n) {
7251 m_freem(m);
7252 return ENOBUFS;
7253 }
7254 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7255 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7256 n->m_next = NULL;
7257 m_freem(m);
7258 m = n;
7259 }
7260
7261 /* align the mbuf chain so that extensions are in contiguous region. */
7262 error = key_align(m, &mh);
7263 if (error)
7264 return error;
7265
7266 if (m->m_next) { /*XXX*/
7267 m_freem(m);
7268 return ENOBUFS;
7269 }
7270
7271 msg = mh.msg;
7272
7273 /* check SA type */
7274 switch (msg->sadb_msg_satype) {
7275 case SADB_SATYPE_UNSPEC:
7276 switch (msg->sadb_msg_type) {
7277 case SADB_GETSPI:
7278 case SADB_UPDATE:
7279 case SADB_ADD:
7280 case SADB_DELETE:
7281 case SADB_GET:
7282 case SADB_ACQUIRE:
7283 case SADB_EXPIRE:
7284 IPSECLOG(LOG_DEBUG,
7285 "must specify satype when msg type=%u.\n",
7286 msg->sadb_msg_type);
7287 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7288 error = EINVAL;
7289 goto senderror;
7290 }
7291 break;
7292 case SADB_SATYPE_AH:
7293 case SADB_SATYPE_ESP:
7294 case SADB_X_SATYPE_IPCOMP:
7295 case SADB_X_SATYPE_TCPSIGNATURE:
7296 switch (msg->sadb_msg_type) {
7297 case SADB_X_SPDADD:
7298 case SADB_X_SPDDELETE:
7299 case SADB_X_SPDGET:
7300 case SADB_X_SPDDUMP:
7301 case SADB_X_SPDFLUSH:
7302 case SADB_X_SPDSETIDX:
7303 case SADB_X_SPDUPDATE:
7304 case SADB_X_SPDDELETE2:
7305 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7306 msg->sadb_msg_type);
7307 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7308 error = EINVAL;
7309 goto senderror;
7310 }
7311 break;
7312 case SADB_SATYPE_RSVP:
7313 case SADB_SATYPE_OSPFV2:
7314 case SADB_SATYPE_RIPV2:
7315 case SADB_SATYPE_MIP:
7316 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7317 msg->sadb_msg_satype);
7318 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7319 error = EOPNOTSUPP;
7320 goto senderror;
7321 case 1: /* XXX: What does it do? */
7322 if (msg->sadb_msg_type == SADB_X_PROMISC)
7323 break;
7324 /*FALLTHROUGH*/
7325 default:
7326 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7327 msg->sadb_msg_satype);
7328 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7329 error = EINVAL;
7330 goto senderror;
7331 }
7332
7333 /* check field of upper layer protocol and address family */
7334 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7335 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7336 struct sadb_address *src0, *dst0;
7337 u_int plen;
7338
7339 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7340 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7341
7342 /* check upper layer protocol */
7343 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7344 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7345 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7346 error = EINVAL;
7347 goto senderror;
7348 }
7349
7350 /* check family */
7351 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7352 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7353 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7354 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7355 error = EINVAL;
7356 goto senderror;
7357 }
7358 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7359 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7360 IPSECLOG(LOG_DEBUG,
7361 "address struct size mismatched.\n");
7362 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7363 error = EINVAL;
7364 goto senderror;
7365 }
7366
7367 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7368 case AF_INET:
7369 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7370 sizeof(struct sockaddr_in)) {
7371 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7372 error = EINVAL;
7373 goto senderror;
7374 }
7375 break;
7376 case AF_INET6:
7377 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7378 sizeof(struct sockaddr_in6)) {
7379 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7380 error = EINVAL;
7381 goto senderror;
7382 }
7383 break;
7384 default:
7385 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7386 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7387 error = EAFNOSUPPORT;
7388 goto senderror;
7389 }
7390
7391 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7392 case AF_INET:
7393 plen = sizeof(struct in_addr) << 3;
7394 break;
7395 case AF_INET6:
7396 plen = sizeof(struct in6_addr) << 3;
7397 break;
7398 default:
7399 plen = 0; /*fool gcc*/
7400 break;
7401 }
7402
7403 /* check max prefix length */
7404 if (src0->sadb_address_prefixlen > plen ||
7405 dst0->sadb_address_prefixlen > plen) {
7406 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7407 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7408 error = EINVAL;
7409 goto senderror;
7410 }
7411
7412 /*
7413 * prefixlen == 0 is valid because there can be a case when
7414 * all addresses are matched.
7415 */
7416 }
7417
7418 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7419 key_api_typesw[msg->sadb_msg_type] == NULL) {
7420 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7421 error = EINVAL;
7422 goto senderror;
7423 }
7424
7425 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7426
7427 senderror:
7428 return key_senderror(so, m, error);
7429 }
7430
7431 static int
7432 key_senderror(struct socket *so, struct mbuf *m, int code)
7433 {
7434 struct sadb_msg *msg;
7435
7436 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7437
7438 msg = mtod(m, struct sadb_msg *);
7439 msg->sadb_msg_errno = code;
7440 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7441 }
7442
7443 /*
7444 * set the pointer to each header into message buffer.
7445 * m will be freed on error.
7446 * XXX larger-than-MCLBYTES extension?
7447 */
7448 static int
7449 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7450 {
7451 struct mbuf *n;
7452 struct sadb_ext *ext;
7453 size_t off, end;
7454 int extlen;
7455 int toff;
7456
7457 KASSERT(m != NULL);
7458 KASSERT(mhp != NULL);
7459 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7460
7461 /* initialize */
7462 memset(mhp, 0, sizeof(*mhp));
7463
7464 mhp->msg = mtod(m, struct sadb_msg *);
7465 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7466
7467 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7468 extlen = end; /*just in case extlen is not updated*/
7469 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7470 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7471 if (!n) {
7472 /* m is already freed */
7473 return ENOBUFS;
7474 }
7475 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7476
7477 /* set pointer */
7478 switch (ext->sadb_ext_type) {
7479 case SADB_EXT_SA:
7480 case SADB_EXT_ADDRESS_SRC:
7481 case SADB_EXT_ADDRESS_DST:
7482 case SADB_EXT_ADDRESS_PROXY:
7483 case SADB_EXT_LIFETIME_CURRENT:
7484 case SADB_EXT_LIFETIME_HARD:
7485 case SADB_EXT_LIFETIME_SOFT:
7486 case SADB_EXT_KEY_AUTH:
7487 case SADB_EXT_KEY_ENCRYPT:
7488 case SADB_EXT_IDENTITY_SRC:
7489 case SADB_EXT_IDENTITY_DST:
7490 case SADB_EXT_SENSITIVITY:
7491 case SADB_EXT_PROPOSAL:
7492 case SADB_EXT_SUPPORTED_AUTH:
7493 case SADB_EXT_SUPPORTED_ENCRYPT:
7494 case SADB_EXT_SPIRANGE:
7495 case SADB_X_EXT_POLICY:
7496 case SADB_X_EXT_SA2:
7497 case SADB_X_EXT_NAT_T_TYPE:
7498 case SADB_X_EXT_NAT_T_SPORT:
7499 case SADB_X_EXT_NAT_T_DPORT:
7500 case SADB_X_EXT_NAT_T_OAI:
7501 case SADB_X_EXT_NAT_T_OAR:
7502 case SADB_X_EXT_NAT_T_FRAG:
7503 /* duplicate check */
7504 /*
7505 * XXX Are there duplication payloads of either
7506 * KEY_AUTH or KEY_ENCRYPT ?
7507 */
7508 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7509 IPSECLOG(LOG_DEBUG,
7510 "duplicate ext_type %u is passed.\n",
7511 ext->sadb_ext_type);
7512 m_freem(m);
7513 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7514 return EINVAL;
7515 }
7516 break;
7517 default:
7518 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7519 ext->sadb_ext_type);
7520 m_freem(m);
7521 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7522 return EINVAL;
7523 }
7524
7525 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7526
7527 if (key_validate_ext(ext, extlen)) {
7528 m_freem(m);
7529 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7530 return EINVAL;
7531 }
7532
7533 n = m_pulldown(m, off, extlen, &toff);
7534 if (!n) {
7535 /* m is already freed */
7536 return ENOBUFS;
7537 }
7538 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7539
7540 mhp->ext[ext->sadb_ext_type] = ext;
7541 mhp->extoff[ext->sadb_ext_type] = off;
7542 mhp->extlen[ext->sadb_ext_type] = extlen;
7543 }
7544
7545 if (off != end) {
7546 m_freem(m);
7547 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7548 return EINVAL;
7549 }
7550
7551 return 0;
7552 }
7553
7554 static int
7555 key_validate_ext(const struct sadb_ext *ext, int len)
7556 {
7557 const struct sockaddr *sa;
7558 enum { NONE, ADDR } checktype = NONE;
7559 int baselen = 0;
7560 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7561
7562 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7563 return EINVAL;
7564
7565 /* if it does not match minimum/maximum length, bail */
7566 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7567 ext->sadb_ext_type >= __arraycount(maxsize))
7568 return EINVAL;
7569 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7570 return EINVAL;
7571 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7572 return EINVAL;
7573
7574 /* more checks based on sadb_ext_type XXX need more */
7575 switch (ext->sadb_ext_type) {
7576 case SADB_EXT_ADDRESS_SRC:
7577 case SADB_EXT_ADDRESS_DST:
7578 case SADB_EXT_ADDRESS_PROXY:
7579 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7580 checktype = ADDR;
7581 break;
7582 case SADB_EXT_IDENTITY_SRC:
7583 case SADB_EXT_IDENTITY_DST:
7584 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7585 SADB_X_IDENTTYPE_ADDR) {
7586 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7587 checktype = ADDR;
7588 } else
7589 checktype = NONE;
7590 break;
7591 default:
7592 checktype = NONE;
7593 break;
7594 }
7595
7596 switch (checktype) {
7597 case NONE:
7598 break;
7599 case ADDR:
7600 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7601 if (len < baselen + sal)
7602 return EINVAL;
7603 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7604 return EINVAL;
7605 break;
7606 }
7607
7608 return 0;
7609 }
7610
7611 static int
7612 key_do_init(void)
7613 {
7614 int i, error;
7615
7616 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7617
7618 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7619
7620 callout_init(&key_timehandler_ch, 0);
7621 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7622 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7623 if (error != 0)
7624 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7625
7626 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7627 LIST_INIT(&sptree[i]);
7628 }
7629
7630 LIST_INIT(&sahtree);
7631
7632 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7633 LIST_INIT(®tree[i]);
7634 }
7635
7636 #ifndef IPSEC_NONBLOCK_ACQUIRE
7637 LIST_INIT(&acqtree);
7638 #endif
7639 #ifdef notyet
7640 LIST_INIT(&spacqtree);
7641 #endif
7642
7643 /* system default */
7644 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7645 ip4_def_policy.refcnt++; /*never reclaim this*/
7646
7647 #ifdef INET6
7648 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7649 ip6_def_policy.refcnt++; /*never reclaim this*/
7650 #endif
7651
7652 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7653
7654 /* initialize key statistics */
7655 keystat.getspi_count = 1;
7656
7657 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7658
7659 return (0);
7660 }
7661
7662 void
7663 key_init(void)
7664 {
7665 static ONCE_DECL(key_init_once);
7666
7667 sysctl_net_keyv2_setup(NULL);
7668 sysctl_net_key_compat_setup(NULL);
7669
7670 RUN_ONCE(&key_init_once, key_do_init);
7671 }
7672
7673 /*
7674 * XXX: maybe This function is called after INBOUND IPsec processing.
7675 *
7676 * Special check for tunnel-mode packets.
7677 * We must make some checks for consistency between inner and outer IP header.
7678 *
7679 * xxx more checks to be provided
7680 */
7681 int
7682 key_checktunnelsanity(
7683 struct secasvar *sav,
7684 u_int family,
7685 void *src,
7686 void *dst
7687 )
7688 {
7689
7690 /* XXX: check inner IP header */
7691
7692 return 1;
7693 }
7694
7695 #if 0
7696 #define hostnamelen strlen(hostname)
7697
7698 /*
7699 * Get FQDN for the host.
7700 * If the administrator configured hostname (by hostname(1)) without
7701 * domain name, returns nothing.
7702 */
7703 static const char *
7704 key_getfqdn(void)
7705 {
7706 int i;
7707 int hasdot;
7708 static char fqdn[MAXHOSTNAMELEN + 1];
7709
7710 if (!hostnamelen)
7711 return NULL;
7712
7713 /* check if it comes with domain name. */
7714 hasdot = 0;
7715 for (i = 0; i < hostnamelen; i++) {
7716 if (hostname[i] == '.')
7717 hasdot++;
7718 }
7719 if (!hasdot)
7720 return NULL;
7721
7722 /* NOTE: hostname may not be NUL-terminated. */
7723 memset(fqdn, 0, sizeof(fqdn));
7724 memcpy(fqdn, hostname, hostnamelen);
7725 fqdn[hostnamelen] = '\0';
7726 return fqdn;
7727 }
7728
7729 /*
7730 * get username@FQDN for the host/user.
7731 */
7732 static const char *
7733 key_getuserfqdn(void)
7734 {
7735 const char *host;
7736 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7737 struct proc *p = curproc;
7738 char *q;
7739
7740 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7741 return NULL;
7742 if (!(host = key_getfqdn()))
7743 return NULL;
7744
7745 /* NOTE: s_login may not be-NUL terminated. */
7746 memset(userfqdn, 0, sizeof(userfqdn));
7747 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7748 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7749 q = userfqdn + strlen(userfqdn);
7750 *q++ = '@';
7751 memcpy(q, host, strlen(host));
7752 q += strlen(host);
7753 *q++ = '\0';
7754
7755 return userfqdn;
7756 }
7757 #endif
7758
7759 /* record data transfer on SA, and update timestamps */
7760 void
7761 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7762 {
7763
7764 KASSERT(sav != NULL);
7765 KASSERT(sav->lft_c != NULL);
7766 KASSERT(m != NULL);
7767
7768 /*
7769 * XXX Currently, there is a difference of bytes size
7770 * between inbound and outbound processing.
7771 */
7772 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7773 /* to check bytes lifetime is done in key_timehandler(). */
7774
7775 /*
7776 * We use the number of packets as the unit of
7777 * sadb_lifetime_allocations. We increment the variable
7778 * whenever {esp,ah}_{in,out}put is called.
7779 */
7780 sav->lft_c->sadb_lifetime_allocations++;
7781 /* XXX check for expires? */
7782
7783 /*
7784 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7785 * in seconds. HARD and SOFT lifetime are measured by the time
7786 * difference (again in seconds) from sadb_lifetime_usetime.
7787 *
7788 * usetime
7789 * v expire expire
7790 * -----+-----+--------+---> t
7791 * <--------------> HARD
7792 * <-----> SOFT
7793 */
7794 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7795 /* XXX check for expires? */
7796
7797 return;
7798 }
7799
7800 /* dumb version */
7801 void
7802 key_sa_routechange(struct sockaddr *dst)
7803 {
7804 struct secashead *sah;
7805 struct route *ro;
7806 const struct sockaddr *sa;
7807
7808 LIST_FOREACH(sah, &sahtree, chain) {
7809 ro = &sah->sa_route;
7810 sa = rtcache_getdst(ro);
7811 if (sa != NULL && dst->sa_len == sa->sa_len &&
7812 memcmp(dst, sa, dst->sa_len) == 0)
7813 rtcache_free(ro);
7814 }
7815
7816 return;
7817 }
7818
7819 static void
7820 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7821 {
7822
7823 KASSERT(sav != NULL);
7824
7825 if (sav->state == state)
7826 return;
7827
7828 KASSERT(__LIST_CHAINED(sav));
7829 LIST_REMOVE(sav, chain);
7830
7831 sav->state = state;
7832 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7833 }
7834
7835 /* XXX too much? */
7836 static struct mbuf *
7837 key_alloc_mbuf(int l)
7838 {
7839 struct mbuf *m = NULL, *n;
7840 int len, t;
7841
7842 len = l;
7843 while (len > 0) {
7844 MGET(n, M_DONTWAIT, MT_DATA);
7845 if (n && len > MLEN)
7846 MCLGET(n, M_DONTWAIT);
7847 if (!n) {
7848 m_freem(m);
7849 return NULL;
7850 }
7851
7852 n->m_next = NULL;
7853 n->m_len = 0;
7854 n->m_len = M_TRAILINGSPACE(n);
7855 /* use the bottom of mbuf, hoping we can prepend afterwards */
7856 if (n->m_len > len) {
7857 t = (n->m_len - len) & ~(sizeof(long) - 1);
7858 n->m_data += t;
7859 n->m_len = len;
7860 }
7861
7862 len -= n->m_len;
7863
7864 if (m)
7865 m_cat(m, n);
7866 else
7867 m = n;
7868 }
7869
7870 return m;
7871 }
7872
7873 static struct mbuf *
7874 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7875 {
7876 struct secashead *sah;
7877 struct secasvar *sav;
7878 u_int16_t proto;
7879 u_int8_t satype;
7880 u_int8_t state;
7881 int cnt;
7882 struct mbuf *m, *n;
7883
7884 /* map satype to proto */
7885 proto = key_satype2proto(req_satype);
7886 if (proto == 0) {
7887 *errorp = EINVAL;
7888 return (NULL);
7889 }
7890
7891 /* count sav entries to be sent to the userland. */
7892 cnt = 0;
7893 LIST_FOREACH(sah, &sahtree, chain) {
7894 if (req_satype != SADB_SATYPE_UNSPEC &&
7895 proto != sah->saidx.proto)
7896 continue;
7897
7898 SASTATE_ANY_FOREACH(state) {
7899 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7900 cnt++;
7901 }
7902 }
7903 }
7904
7905 if (cnt == 0) {
7906 *errorp = ENOENT;
7907 return (NULL);
7908 }
7909
7910 /* send this to the userland, one at a time. */
7911 m = NULL;
7912 LIST_FOREACH(sah, &sahtree, chain) {
7913 if (req_satype != SADB_SATYPE_UNSPEC &&
7914 proto != sah->saidx.proto)
7915 continue;
7916
7917 /* map proto to satype */
7918 satype = key_proto2satype(sah->saidx.proto);
7919 if (satype == 0) {
7920 m_freem(m);
7921 *errorp = EINVAL;
7922 return (NULL);
7923 }
7924
7925 SASTATE_ANY_FOREACH(state) {
7926 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7927 n = key_setdumpsa(sav, SADB_DUMP, satype,
7928 --cnt, pid);
7929 if (!n) {
7930 m_freem(m);
7931 *errorp = ENOBUFS;
7932 return (NULL);
7933 }
7934
7935 if (!m)
7936 m = n;
7937 else
7938 m_cat(m, n);
7939 }
7940 }
7941 }
7942
7943 if (!m) {
7944 *errorp = EINVAL;
7945 return (NULL);
7946 }
7947
7948 if ((m->m_flags & M_PKTHDR) != 0) {
7949 m->m_pkthdr.len = 0;
7950 for (n = m; n; n = n->m_next)
7951 m->m_pkthdr.len += n->m_len;
7952 }
7953
7954 *errorp = 0;
7955 return (m);
7956 }
7957
7958 static struct mbuf *
7959 key_setspddump(int *errorp, pid_t pid)
7960 {
7961 struct secpolicy *sp;
7962 int cnt;
7963 u_int dir;
7964 struct mbuf *m, *n;
7965
7966 /* search SPD entry and get buffer size. */
7967 cnt = 0;
7968 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7969 LIST_FOREACH(sp, &sptree[dir], chain) {
7970 cnt++;
7971 }
7972 }
7973
7974 if (cnt == 0) {
7975 *errorp = ENOENT;
7976 return (NULL);
7977 }
7978
7979 m = NULL;
7980 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7981 LIST_FOREACH(sp, &sptree[dir], chain) {
7982 --cnt;
7983 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
7984
7985 if (!n) {
7986 *errorp = ENOBUFS;
7987 m_freem(m);
7988 return (NULL);
7989 }
7990 if (!m)
7991 m = n;
7992 else {
7993 m->m_pkthdr.len += n->m_pkthdr.len;
7994 m_cat(m, n);
7995 }
7996 }
7997 }
7998
7999 *errorp = 0;
8000 return (m);
8001 }
8002
8003 int
8004 key_get_used(void) {
8005 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8006 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8007 }
8008
8009 void
8010 key_update_used(void)
8011 {
8012 switch (ipsec_enabled) {
8013 default:
8014 case 0:
8015 #ifdef notyet
8016 /* XXX: racy */
8017 ipsec_used = 0;
8018 #endif
8019 break;
8020 case 1:
8021 #ifndef notyet
8022 /* XXX: racy */
8023 if (!ipsec_used)
8024 #endif
8025 ipsec_used = key_get_used();
8026 break;
8027 case 2:
8028 ipsec_used = 1;
8029 break;
8030 }
8031 }
8032
8033 static int
8034 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8035 {
8036 struct mbuf *m, *n;
8037 int err2 = 0;
8038 char *p, *ep;
8039 size_t len;
8040 int s, error;
8041
8042 if (newp)
8043 return (EPERM);
8044 if (namelen != 1)
8045 return (EINVAL);
8046
8047 s = splsoftnet();
8048 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8049 splx(s);
8050 if (!m)
8051 return (error);
8052 if (!oldp)
8053 *oldlenp = m->m_pkthdr.len;
8054 else {
8055 p = oldp;
8056 if (*oldlenp < m->m_pkthdr.len) {
8057 err2 = ENOMEM;
8058 ep = p + *oldlenp;
8059 } else {
8060 *oldlenp = m->m_pkthdr.len;
8061 ep = p + m->m_pkthdr.len;
8062 }
8063 for (n = m; n; n = n->m_next) {
8064 len = (ep - p < n->m_len) ?
8065 ep - p : n->m_len;
8066 error = copyout(mtod(n, const void *), p, len);
8067 p += len;
8068 if (error)
8069 break;
8070 }
8071 if (error == 0)
8072 error = err2;
8073 }
8074 m_freem(m);
8075
8076 return (error);
8077 }
8078
8079 static int
8080 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8081 {
8082 struct mbuf *m, *n;
8083 int err2 = 0;
8084 char *p, *ep;
8085 size_t len;
8086 int s, error;
8087
8088 if (newp)
8089 return (EPERM);
8090 if (namelen != 0)
8091 return (EINVAL);
8092
8093 s = splsoftnet();
8094 m = key_setspddump(&error, l->l_proc->p_pid);
8095 splx(s);
8096 if (!m)
8097 return (error);
8098 if (!oldp)
8099 *oldlenp = m->m_pkthdr.len;
8100 else {
8101 p = oldp;
8102 if (*oldlenp < m->m_pkthdr.len) {
8103 err2 = ENOMEM;
8104 ep = p + *oldlenp;
8105 } else {
8106 *oldlenp = m->m_pkthdr.len;
8107 ep = p + m->m_pkthdr.len;
8108 }
8109 for (n = m; n; n = n->m_next) {
8110 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8111 error = copyout(mtod(n, const void *), p, len);
8112 p += len;
8113 if (error)
8114 break;
8115 }
8116 if (error == 0)
8117 error = err2;
8118 }
8119 m_freem(m);
8120
8121 return (error);
8122 }
8123
8124 /*
8125 * Create sysctl tree for native IPSEC key knobs, originally
8126 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8127 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8128 * and in any case the part of our sysctl namespace used for dumping the
8129 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8130 * namespace, for API reasons.
8131 *
8132 * Pending a consensus on the right way to fix this, add a level of
8133 * indirection in how we number the `native' IPSEC key nodes;
8134 * and (as requested by Andrew Brown) move registration of the
8135 * KAME-compatible names to a separate function.
8136 */
8137 #if 0
8138 # define IPSEC_PFKEY PF_KEY_V2
8139 # define IPSEC_PFKEY_NAME "keyv2"
8140 #else
8141 # define IPSEC_PFKEY PF_KEY
8142 # define IPSEC_PFKEY_NAME "key"
8143 #endif
8144
8145 static int
8146 sysctl_net_key_stats(SYSCTLFN_ARGS)
8147 {
8148
8149 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8150 }
8151
8152 static void
8153 sysctl_net_keyv2_setup(struct sysctllog **clog)
8154 {
8155
8156 sysctl_createv(clog, 0, NULL, NULL,
8157 CTLFLAG_PERMANENT,
8158 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8159 NULL, 0, NULL, 0,
8160 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8161
8162 sysctl_createv(clog, 0, NULL, NULL,
8163 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8164 CTLTYPE_INT, "debug", NULL,
8165 NULL, 0, &key_debug_level, 0,
8166 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8167 sysctl_createv(clog, 0, NULL, NULL,
8168 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8169 CTLTYPE_INT, "spi_try", NULL,
8170 NULL, 0, &key_spi_trycnt, 0,
8171 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8172 sysctl_createv(clog, 0, NULL, NULL,
8173 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8174 CTLTYPE_INT, "spi_min_value", NULL,
8175 NULL, 0, &key_spi_minval, 0,
8176 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8177 sysctl_createv(clog, 0, NULL, NULL,
8178 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8179 CTLTYPE_INT, "spi_max_value", NULL,
8180 NULL, 0, &key_spi_maxval, 0,
8181 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8182 sysctl_createv(clog, 0, NULL, NULL,
8183 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8184 CTLTYPE_INT, "random_int", NULL,
8185 NULL, 0, &key_int_random, 0,
8186 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8187 sysctl_createv(clog, 0, NULL, NULL,
8188 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8189 CTLTYPE_INT, "larval_lifetime", NULL,
8190 NULL, 0, &key_larval_lifetime, 0,
8191 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8192 sysctl_createv(clog, 0, NULL, NULL,
8193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8194 CTLTYPE_INT, "blockacq_count", NULL,
8195 NULL, 0, &key_blockacq_count, 0,
8196 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8197 sysctl_createv(clog, 0, NULL, NULL,
8198 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8199 CTLTYPE_INT, "blockacq_lifetime", NULL,
8200 NULL, 0, &key_blockacq_lifetime, 0,
8201 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8202 sysctl_createv(clog, 0, NULL, NULL,
8203 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8204 CTLTYPE_INT, "esp_keymin", NULL,
8205 NULL, 0, &ipsec_esp_keymin, 0,
8206 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8207 sysctl_createv(clog, 0, NULL, NULL,
8208 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8209 CTLTYPE_INT, "prefered_oldsa", NULL,
8210 NULL, 0, &key_prefered_oldsa, 0,
8211 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8212 sysctl_createv(clog, 0, NULL, NULL,
8213 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8214 CTLTYPE_INT, "esp_auth", NULL,
8215 NULL, 0, &ipsec_esp_auth, 0,
8216 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8217 sysctl_createv(clog, 0, NULL, NULL,
8218 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8219 CTLTYPE_INT, "ah_keymin", NULL,
8220 NULL, 0, &ipsec_ah_keymin, 0,
8221 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8222 sysctl_createv(clog, 0, NULL, NULL,
8223 CTLFLAG_PERMANENT,
8224 CTLTYPE_STRUCT, "stats",
8225 SYSCTL_DESCR("PF_KEY statistics"),
8226 sysctl_net_key_stats, 0, NULL, 0,
8227 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8228 }
8229
8230 /*
8231 * Register sysctl names used by setkey(8). For historical reasons,
8232 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8233 * for both IPSEC and KAME IPSEC.
8234 */
8235 static void
8236 sysctl_net_key_compat_setup(struct sysctllog **clog)
8237 {
8238
8239 sysctl_createv(clog, 0, NULL, NULL,
8240 CTLFLAG_PERMANENT,
8241 CTLTYPE_NODE, "key", NULL,
8242 NULL, 0, NULL, 0,
8243 CTL_NET, PF_KEY, CTL_EOL);
8244
8245 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8246 sysctl_createv(clog, 0, NULL, NULL,
8247 CTLFLAG_PERMANENT,
8248 CTLTYPE_STRUCT, "dumpsa", NULL,
8249 sysctl_net_key_dumpsa, 0, NULL, 0,
8250 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8251 sysctl_createv(clog, 0, NULL, NULL,
8252 CTLFLAG_PERMANENT,
8253 CTLTYPE_STRUCT, "dumpsp", NULL,
8254 sysctl_net_key_dumpsp, 0, NULL, 0,
8255 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8256 }
8257