key.c revision 1.182 1 /* $NetBSD: key.c,v 1.182 2017/07/14 01:24:23 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.182 2017/07/14 01:24:23 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/errno.h>
58 #include <sys/proc.h>
59 #include <sys/queue.h>
60 #include <sys/syslog.h>
61 #include <sys/once.h>
62 #include <sys/cprng.h>
63 #include <sys/psref.h>
64 #include <sys/lwp.h>
65 #include <sys/workqueue.h>
66 #include <sys/kmem.h>
67 #include <sys/cpu.h>
68 #include <sys/atomic.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipcomp.h>
108
109
110 #include <net/net_osdep.h>
111
112 #define FULLMASK 0xff
113 #define _BITS(bytes) ((bytes) << 3)
114
115 #define PORT_NONE 0
116 #define PORT_LOOSE 1
117 #define PORT_STRICT 2
118
119 percpu_t *pfkeystat_percpu;
120
121 /*
122 * Note on SA reference counting:
123 * - SAs that are not in DEAD state will have (total external reference + 1)
124 * following value in reference count field. they cannot be freed and are
125 * referenced from SA header.
126 * - SAs that are in DEAD state will have (total external reference)
127 * in reference count field. they are ready to be freed. reference from
128 * SA header will be removed in key_delsav(), when the reference count
129 * field hits 0 (= no external reference other than from SA header.
130 */
131
132 u_int32_t key_debug_level = 0;
133 static u_int key_spi_trycnt = 1000;
134 static u_int32_t key_spi_minval = 0x100;
135 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
136 static u_int32_t policy_id = 0;
137 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
138 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
139 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
140 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
141 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
142
143 static u_int32_t acq_seq = 0;
144
145 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
146 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 /* registed list */
149 #ifndef IPSEC_NONBLOCK_ACQUIRE
150 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
151 #endif
152 #ifdef notyet
153 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
154 #endif
155
156 /*
157 * Protect regtree, acqtree and items stored in the lists.
158 */
159 static kmutex_t key_mtx __cacheline_aligned;
160
161 /* search order for SAs */
162 /*
163 * This order is important because we must select the oldest SA
164 * for outbound processing. For inbound, This is not important.
165 */
166 static const u_int saorder_state_valid_prefer_old[] = {
167 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
168 };
169 static const u_int saorder_state_valid_prefer_new[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 };
172
173 static const u_int saorder_state_alive[] = {
174 /* except DEAD */
175 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
176 };
177 static const u_int saorder_state_any[] = {
178 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
179 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
180 };
181
182 #define SASTATE_ALIVE_FOREACH(s) \
183 for (int _i = 0; \
184 _i < __arraycount(saorder_state_alive) ? \
185 (s) = saorder_state_alive[_i], true : false; \
186 _i++)
187 #define SASTATE_ANY_FOREACH(s) \
188 for (int _i = 0; \
189 _i < __arraycount(saorder_state_any) ? \
190 (s) = saorder_state_any[_i], true : false; \
191 _i++)
192
193 static const int minsize[] = {
194 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
195 sizeof(struct sadb_sa), /* SADB_EXT_SA */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
202 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
203 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
205 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
206 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
207 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
209 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
210 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
211 0, /* SADB_X_EXT_KMPRIVATE */
212 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
213 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
214 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
215 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
217 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
218 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221 static const int maxsize[] = {
222 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
223 sizeof(struct sadb_sa), /* SADB_EXT_SA */
224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
225 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
227 0, /* SADB_EXT_ADDRESS_SRC */
228 0, /* SADB_EXT_ADDRESS_DST */
229 0, /* SADB_EXT_ADDRESS_PROXY */
230 0, /* SADB_EXT_KEY_AUTH */
231 0, /* SADB_EXT_KEY_ENCRYPT */
232 0, /* SADB_EXT_IDENTITY_SRC */
233 0, /* SADB_EXT_IDENTITY_DST */
234 0, /* SADB_EXT_SENSITIVITY */
235 0, /* SADB_EXT_PROPOSAL */
236 0, /* SADB_EXT_SUPPORTED_AUTH */
237 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
238 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
239 0, /* SADB_X_EXT_KMPRIVATE */
240 0, /* SADB_X_EXT_POLICY */
241 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
242 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
243 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
244 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
245 0, /* SADB_X_EXT_NAT_T_OAI */
246 0, /* SADB_X_EXT_NAT_T_OAR */
247 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
248 };
249
250 static int ipsec_esp_keymin = 256;
251 static int ipsec_esp_auth = 0;
252 static int ipsec_ah_keymin = 128;
253
254 #ifdef SYSCTL_DECL
255 SYSCTL_DECL(_net_key);
256 #endif
257
258 #ifdef SYSCTL_INT
259 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
260 &key_debug_level, 0, "");
261
262 /* max count of trial for the decision of spi value */
263 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
264 &key_spi_trycnt, 0, "");
265
266 /* minimum spi value to allocate automatically. */
267 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
268 &key_spi_minval, 0, "");
269
270 /* maximun spi value to allocate automatically. */
271 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
272 &key_spi_maxval, 0, "");
273
274 /* interval to initialize randseed */
275 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
276 &key_int_random, 0, "");
277
278 /* lifetime for larval SA */
279 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
280 &key_larval_lifetime, 0, "");
281
282 /* counter for blocking to send SADB_ACQUIRE to IKEd */
283 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
284 &key_blockacq_count, 0, "");
285
286 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
287 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
288 &key_blockacq_lifetime, 0, "");
289
290 /* ESP auth */
291 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
292 &ipsec_esp_auth, 0, "");
293
294 /* minimum ESP key length */
295 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
296 &ipsec_esp_keymin, 0, "");
297
298 /* minimum AH key length */
299 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
300 &ipsec_ah_keymin, 0, "");
301
302 /* perfered old SA rather than new SA */
303 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
304 &key_prefered_oldsa, 0, "");
305 #endif /* SYSCTL_INT */
306
307 #define __LIST_CHAINED(elm) \
308 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
309 #define LIST_INSERT_TAIL(head, elm, type, field) \
310 do {\
311 struct type *curelm = LIST_FIRST(head); \
312 if (curelm == NULL) {\
313 LIST_INSERT_HEAD(head, elm, field); \
314 } else { \
315 while (LIST_NEXT(curelm, field)) \
316 curelm = LIST_NEXT(curelm, field);\
317 LIST_INSERT_AFTER(curelm, elm, field);\
318 }\
319 } while (0)
320
321 #define KEY_CHKSASTATE(head, sav) \
322 /* do */ { \
323 if ((head) != (sav)) { \
324 IPSECLOG(LOG_DEBUG, \
325 "state mismatched (TREE=%d SA=%d)\n", \
326 (head), (sav)); \
327 continue; \
328 } \
329 } /* while (0) */
330
331 #define KEY_CHKSPDIR(head, sp) \
332 do { \
333 if ((head) != (sp)) { \
334 IPSECLOG(LOG_DEBUG, \
335 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
336 (head), (sp)); \
337 } \
338 } while (0)
339
340 /*
341 * set parameters into secasindex buffer.
342 * Must allocate secasindex buffer before calling this function.
343 */
344 static int
345 key_setsecasidx(int, int, int, const struct sockaddr *,
346 const struct sockaddr *, struct secasindex *);
347
348 /* key statistics */
349 struct _keystat {
350 u_long getspi_count; /* the avarage of count to try to get new SPI */
351 } keystat;
352
353 struct sadb_msghdr {
354 struct sadb_msg *msg;
355 struct sadb_ext *ext[SADB_EXT_MAX + 1];
356 int extoff[SADB_EXT_MAX + 1];
357 int extlen[SADB_EXT_MAX + 1];
358 };
359
360 static void
361 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
362
363 static const struct sockaddr *
364 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
365 {
366
367 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
368 }
369
370 static struct mbuf *
371 key_fill_replymsg(struct mbuf *m, int seq)
372 {
373 struct sadb_msg *msg;
374
375 if (m->m_len < sizeof(*msg)) {
376 m = m_pullup(m, sizeof(*msg));
377 if (m == NULL)
378 return NULL;
379 }
380 msg = mtod(m, struct sadb_msg *);
381 msg->sadb_msg_errno = 0;
382 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
383 if (seq != 0)
384 msg->sadb_msg_seq = seq;
385
386 return m;
387 }
388
389 static struct secasvar *key_allocsa_policy (const struct secasindex *);
390 #if 0
391 static void key_freeso(struct socket *);
392 static void key_freesp_so(struct secpolicy **);
393 #endif
394 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
395 static void key_delsp (struct secpolicy *);
396 static struct secpolicy *key_getsp (const struct secpolicyindex *);
397 static struct secpolicy *key_getspbyid (u_int32_t);
398 static u_int16_t key_newreqid (void);
399 static struct mbuf *key_gather_mbuf (struct mbuf *,
400 const struct sadb_msghdr *, int, int, ...);
401 static int key_api_spdadd(struct socket *, struct mbuf *,
402 const struct sadb_msghdr *);
403 static u_int32_t key_getnewspid (void);
404 static int key_api_spddelete(struct socket *, struct mbuf *,
405 const struct sadb_msghdr *);
406 static int key_api_spddelete2(struct socket *, struct mbuf *,
407 const struct sadb_msghdr *);
408 static int key_api_spdget(struct socket *, struct mbuf *,
409 const struct sadb_msghdr *);
410 static int key_api_spdflush(struct socket *, struct mbuf *,
411 const struct sadb_msghdr *);
412 static int key_api_spddump(struct socket *, struct mbuf *,
413 const struct sadb_msghdr *);
414 static struct mbuf * key_setspddump (int *errorp, pid_t);
415 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
416 static int key_api_nat_map(struct socket *, struct mbuf *,
417 const struct sadb_msghdr *);
418 static struct mbuf *key_setdumpsp (struct secpolicy *,
419 u_int8_t, u_int32_t, pid_t);
420 static u_int key_getspreqmsglen (const struct secpolicy *);
421 static int key_spdexpire (struct secpolicy *);
422 static struct secashead *key_newsah (const struct secasindex *);
423 static void key_delsah (struct secashead *);
424 static struct secasvar *key_newsav(struct mbuf *,
425 const struct sadb_msghdr *, int *, const char*, int);
426 #define KEY_NEWSAV(m, sadb, e) \
427 key_newsav(m, sadb, e, __func__, __LINE__)
428 static void key_delsav (struct secasvar *);
429 static struct secashead *key_getsah(const struct secasindex *, int);
430 static bool key_checkspidup(const struct secasindex *, u_int32_t);
431 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
432 static int key_setsaval (struct secasvar *, struct mbuf *,
433 const struct sadb_msghdr *);
434 static void key_freesaval(struct secasvar *);
435 static int key_init_xform(struct secasvar *);
436 static void key_clear_xform(struct secasvar *);
437 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
438 u_int8_t, u_int32_t, u_int32_t);
439 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
440 static struct mbuf *key_setsadbxtype (u_int16_t);
441 static struct mbuf *key_setsadbxfrag (u_int16_t);
442 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
443 static int key_checksalen (const union sockaddr_union *);
444 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
445 u_int32_t, pid_t, u_int16_t);
446 static struct mbuf *key_setsadbsa (struct secasvar *);
447 static struct mbuf *key_setsadbaddr (u_int16_t,
448 const struct sockaddr *, u_int8_t, u_int16_t);
449 #if 0
450 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
451 int, u_int64_t);
452 #endif
453 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
454 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
455 u_int32_t);
456 static void *key_newbuf (const void *, u_int);
457 #ifdef INET6
458 static int key_ismyaddr6 (const struct sockaddr_in6 *);
459 #endif
460
461 static void sysctl_net_keyv2_setup(struct sysctllog **);
462 static void sysctl_net_key_compat_setup(struct sysctllog **);
463
464 /* flags for key_saidx_match() */
465 #define CMP_HEAD 1 /* protocol, addresses. */
466 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
467 #define CMP_REQID 3 /* additionally HEAD, reaid. */
468 #define CMP_EXACTLY 4 /* all elements. */
469 static int key_saidx_match(const struct secasindex *,
470 const struct secasindex *, int);
471
472 static int key_sockaddr_match(const struct sockaddr *,
473 const struct sockaddr *, int);
474 static int key_bb_match_withmask(const void *, const void *, u_int);
475 static u_int16_t key_satype2proto (u_int8_t);
476 static u_int8_t key_proto2satype (u_int16_t);
477
478 static int key_spidx_match_exactly(const struct secpolicyindex *,
479 const struct secpolicyindex *);
480 static int key_spidx_match_withmask(const struct secpolicyindex *,
481 const struct secpolicyindex *);
482
483 static int key_api_getspi(struct socket *, struct mbuf *,
484 const struct sadb_msghdr *);
485 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
486 const struct secasindex *);
487 static int key_handle_natt_info (struct secasvar *,
488 const struct sadb_msghdr *);
489 static int key_set_natt_ports (union sockaddr_union *,
490 union sockaddr_union *,
491 const struct sadb_msghdr *);
492 static int key_api_update(struct socket *, struct mbuf *,
493 const struct sadb_msghdr *);
494 #ifdef IPSEC_DOSEQCHECK
495 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
496 #endif
497 static int key_api_add(struct socket *, struct mbuf *,
498 const struct sadb_msghdr *);
499 static int key_setident (struct secashead *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
502 const struct sadb_msghdr *);
503 static int key_api_delete(struct socket *, struct mbuf *,
504 const struct sadb_msghdr *);
505 static int key_api_get(struct socket *, struct mbuf *,
506 const struct sadb_msghdr *);
507
508 static void key_getcomb_setlifetime (struct sadb_comb *);
509 static struct mbuf *key_getcomb_esp (void);
510 static struct mbuf *key_getcomb_ah (void);
511 static struct mbuf *key_getcomb_ipcomp (void);
512 static struct mbuf *key_getprop (const struct secasindex *);
513
514 static int key_acquire (const struct secasindex *, struct secpolicy *);
515 #ifndef IPSEC_NONBLOCK_ACQUIRE
516 static struct secacq *key_newacq (const struct secasindex *);
517 static struct secacq *key_getacq (const struct secasindex *);
518 static struct secacq *key_getacqbyseq (u_int32_t);
519 #endif
520 #ifdef notyet
521 static struct secspacq *key_newspacq (const struct secpolicyindex *);
522 static struct secspacq *key_getspacq (const struct secpolicyindex *);
523 #endif
524 static int key_api_acquire(struct socket *, struct mbuf *,
525 const struct sadb_msghdr *);
526 static int key_api_register(struct socket *, struct mbuf *,
527 const struct sadb_msghdr *);
528 static int key_expire (struct secasvar *);
529 static int key_api_flush(struct socket *, struct mbuf *,
530 const struct sadb_msghdr *);
531 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
532 int *lenp, pid_t pid);
533 static int key_api_dump(struct socket *, struct mbuf *,
534 const struct sadb_msghdr *);
535 static int key_api_promisc(struct socket *, struct mbuf *,
536 const struct sadb_msghdr *);
537 static int key_senderror (struct socket *, struct mbuf *, int);
538 static int key_validate_ext (const struct sadb_ext *, int);
539 static int key_align (struct mbuf *, struct sadb_msghdr *);
540 #if 0
541 static const char *key_getfqdn (void);
542 static const char *key_getuserfqdn (void);
543 #endif
544 static void key_sa_chgstate (struct secasvar *, u_int8_t);
545 static inline void key_sp_dead (struct secpolicy *);
546 static void key_sp_unlink (struct secpolicy *sp);
547
548 static struct mbuf *key_alloc_mbuf (int);
549
550 static void key_timehandler(void *);
551 static void key_timehandler_work(struct work *, void *);
552 static struct callout key_timehandler_ch;
553 static struct workqueue *key_timehandler_wq;
554 static struct work key_timehandler_wk;
555
556 #ifdef IPSEC_REF_DEBUG
557 #define REFLOG(label, p, where, tag) \
558 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
559 (where), (tag), (p)->refcnt, (p))
560 #else
561 #define REFLOG(label, p, where, tag) do {} while (0)
562 #endif
563
564 #define SA_ADDREF(p) do { \
565 atomic_inc_uint(&(p)->refcnt); \
566 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
567 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
568 } while (0)
569 #define SA_ADDREF2(p, where, tag) do { \
570 atomic_inc_uint(&(p)->refcnt); \
571 REFLOG("SA_ADDREF", (p), (where), (tag)); \
572 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
573 } while (0)
574 #define SA_DELREF(p) do { \
575 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
576 atomic_dec_uint(&(p)->refcnt); \
577 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
578 } while (0)
579 #define SA_DELREF2(p, nv, where, tag) do { \
580 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
581 nv = atomic_dec_uint_nv(&(p)->refcnt); \
582 REFLOG("SA_DELREF", (p), (where), (tag)); \
583 } while (0)
584
585 #define SP_ADDREF(p) do { \
586 atomic_inc_uint(&(p)->refcnt); \
587 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
588 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
589 } while (0)
590 #define SP_ADDREF2(p, where, tag) do { \
591 atomic_inc_uint(&(p)->refcnt); \
592 REFLOG("SP_ADDREF", (p), (where), (tag)); \
593 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
594 } while (0)
595 #define SP_DELREF(p) do { \
596 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
597 atomic_dec_uint(&(p)->refcnt); \
598 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
599 } while (0)
600 #define SP_DELREF2(p, nv, where, tag) do { \
601 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
602 nv = atomic_dec_uint_nv(&(p)->refcnt); \
603 REFLOG("SP_DELREF", (p), (where), (tag)); \
604 } while (0)
605
606
607 static inline void
608 key_sp_dead(struct secpolicy *sp)
609 {
610
611 /* mark the SP dead */
612 sp->state = IPSEC_SPSTATE_DEAD;
613 }
614
615 static void
616 key_sp_unlink(struct secpolicy *sp)
617 {
618
619 /* remove from SP index */
620 KASSERT(__LIST_CHAINED(sp));
621 LIST_REMOVE(sp, chain);
622 /* Release refcount held just for being on chain */
623 KEY_FREESP(&sp);
624 }
625
626
627 /*
628 * Return 0 when there are known to be no SP's for the specified
629 * direction. Otherwise return 1. This is used by IPsec code
630 * to optimize performance.
631 */
632 int
633 key_havesp(u_int dir)
634 {
635 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
636 !LIST_EMPTY(&sptree[dir]) : 1);
637 }
638
639 /* %%% IPsec policy management */
640 /*
641 * allocating a SP for OUTBOUND or INBOUND packet.
642 * Must call key_freesp() later.
643 * OUT: NULL: not found
644 * others: found and return the pointer.
645 */
646 struct secpolicy *
647 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
648 u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
652
653 KASSERT(spidx != NULL);
654 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
655
656 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
657
658 /* get a SP entry */
659 s = splsoftnet(); /*called from softclock()*/
660 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
661 printf("*** objects\n");
662 kdebug_secpolicyindex(spidx);
663 }
664
665 LIST_FOREACH(sp, &sptree[dir], chain) {
666 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
667 printf("*** in SPD\n");
668 kdebug_secpolicyindex(&sp->spidx);
669 }
670
671 if (sp->state == IPSEC_SPSTATE_DEAD)
672 continue;
673 if (key_spidx_match_withmask(&sp->spidx, spidx))
674 goto found;
675 }
676 sp = NULL;
677 found:
678 if (sp) {
679 /* sanity check */
680 KEY_CHKSPDIR(sp->spidx.dir, dir);
681
682 /* found a SPD entry */
683 sp->lastused = time_uptime;
684 SP_ADDREF2(sp, where, tag);
685 }
686 splx(s);
687
688 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
689 "DP return SP:%p (ID=%u) refcnt %u\n",
690 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
691 return sp;
692 }
693
694 /*
695 * allocating a SP for OUTBOUND or INBOUND packet.
696 * Must call key_freesp() later.
697 * OUT: NULL: not found
698 * others: found and return the pointer.
699 */
700 struct secpolicy *
701 key_lookup_sp(u_int32_t spi,
702 const union sockaddr_union *dst,
703 u_int8_t proto,
704 u_int dir,
705 const char* where, int tag)
706 {
707 struct secpolicy *sp;
708 int s;
709
710 KASSERT(dst != NULL);
711 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
712
713 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
714
715 /* get a SP entry */
716 s = splsoftnet(); /*called from softclock()*/
717 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
718 printf("*** objects\n");
719 printf("spi %u proto %u dir %u\n", spi, proto, dir);
720 kdebug_sockaddr(&dst->sa);
721 }
722
723 LIST_FOREACH(sp, &sptree[dir], chain) {
724 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
725 printf("*** in SPD\n");
726 kdebug_secpolicyindex(&sp->spidx);
727 }
728
729 if (sp->state == IPSEC_SPSTATE_DEAD)
730 continue;
731 /* compare simple values, then dst address */
732 if (sp->spidx.ul_proto != proto)
733 continue;
734 /* NB: spi's must exist and match */
735 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
736 continue;
737 if (key_sockaddr_match(&sp->spidx.dst.sa, &dst->sa, PORT_STRICT))
738 goto found;
739 }
740 sp = NULL;
741 found:
742 if (sp) {
743 /* sanity check */
744 KEY_CHKSPDIR(sp->spidx.dir, dir);
745
746 /* found a SPD entry */
747 sp->lastused = time_uptime;
748 SP_ADDREF2(sp, where, tag);
749 }
750 splx(s);
751
752 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
753 "DP return SP:%p (ID=%u) refcnt %u\n",
754 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
755 return sp;
756 }
757
758 /*
759 * return a policy that matches this particular inbound packet.
760 * XXX slow
761 */
762 struct secpolicy *
763 key_gettunnel(const struct sockaddr *osrc,
764 const struct sockaddr *odst,
765 const struct sockaddr *isrc,
766 const struct sockaddr *idst,
767 const char* where, int tag)
768 {
769 struct secpolicy *sp;
770 const int dir = IPSEC_DIR_INBOUND;
771 int s;
772 struct ipsecrequest *r1, *r2, *p;
773 struct secpolicyindex spidx;
774
775 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
776
777 if (isrc->sa_family != idst->sa_family) {
778 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
779 isrc->sa_family, idst->sa_family);
780 sp = NULL;
781 goto done;
782 }
783
784 s = splsoftnet(); /*called from softclock()*/
785 LIST_FOREACH(sp, &sptree[dir], chain) {
786 if (sp->state == IPSEC_SPSTATE_DEAD)
787 continue;
788
789 r1 = r2 = NULL;
790 for (p = sp->req; p; p = p->next) {
791 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
792 continue;
793
794 r1 = r2;
795 r2 = p;
796
797 if (!r1) {
798 /* here we look at address matches only */
799 spidx = sp->spidx;
800 if (isrc->sa_len > sizeof(spidx.src) ||
801 idst->sa_len > sizeof(spidx.dst))
802 continue;
803 memcpy(&spidx.src, isrc, isrc->sa_len);
804 memcpy(&spidx.dst, idst, idst->sa_len);
805 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
806 continue;
807 } else {
808 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
809 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
810 continue;
811 }
812
813 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
814 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
815 continue;
816
817 goto found;
818 }
819 }
820 sp = NULL;
821 found:
822 if (sp) {
823 sp->lastused = time_uptime;
824 SP_ADDREF2(sp, where, tag);
825 }
826 splx(s);
827 done:
828 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
829 "DP return SP:%p (ID=%u) refcnt %u\n",
830 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0);
831 return sp;
832 }
833
834 /*
835 * allocating an SA entry for an *OUTBOUND* packet.
836 * checking each request entries in SP, and acquire an SA if need.
837 * OUT: 0: there are valid requests.
838 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
839 */
840 int
841 key_checkrequest(struct ipsecrequest *isr)
842 {
843 u_int level;
844 int error;
845 struct secasvar *oldsav = NULL;
846 const struct secasindex *saidx = &isr->saidx;
847
848 KASSERT(isr != NULL);
849 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
850 saidx->mode == IPSEC_MODE_TUNNEL,
851 "unexpected policy %u", saidx->mode);
852
853 /* get current level */
854 level = ipsec_get_reqlevel(isr);
855
856 /*
857 * XXX guard against protocol callbacks from the crypto
858 * thread as they reference ipsecrequest.sav which we
859 * temporarily null out below. Need to rethink how we
860 * handle bundled SA's in the callback thread.
861 */
862 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
863 #if 0
864 /*
865 * We do allocate new SA only if the state of SA in the holder is
866 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
867 */
868 if (isr->sav != NULL) {
869 if (isr->sav == (struct secasvar *)LIST_FIRST(
870 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
871 KEY_FREESAV(&isr->sav);
872 isr->sav = NULL;
873 }
874 }
875 #else
876 /*
877 * we free any SA stashed in the IPsec request because a different
878 * SA may be involved each time this request is checked, either
879 * because new SAs are being configured, or this request is
880 * associated with an unconnected datagram socket, or this request
881 * is associated with a system default policy.
882 *
883 * The operation may have negative impact to performance. We may
884 * want to check cached SA carefully, rather than picking new SA
885 * every time.
886 */
887 if (isr->sav != NULL)
888 oldsav = isr->sav;
889 #endif
890
891 /*
892 * new SA allocation if no SA found.
893 * key_allocsa_policy should allocate the oldest SA available.
894 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
895 */
896 isr->sav = key_allocsa_policy(saidx);
897 membar_producer();
898 if (oldsav != NULL)
899 KEY_FREESAV(&oldsav);
900
901 /* When there is SA. */
902 if (isr->sav != NULL)
903 return 0;
904
905 /* there is no SA */
906 error = key_acquire(saidx, isr->sp);
907 if (error != 0) {
908 /* XXX What should I do ? */
909 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
910 error);
911 return error;
912 }
913
914 if (level != IPSEC_LEVEL_REQUIRE) {
915 /* XXX sigh, the interface to this routine is botched */
916 KASSERTMSG(isr->sav == NULL, "unexpected SA");
917 return 0;
918 } else {
919 return ENOENT;
920 }
921 }
922
923 /*
924 * allocating a SA for policy entry from SAD.
925 * NOTE: searching SAD of aliving state.
926 * OUT: NULL: not found.
927 * others: found and return the pointer.
928 */
929 static struct secasvar *
930 key_allocsa_policy(const struct secasindex *saidx)
931 {
932 struct secashead *sah;
933 struct secasvar *sav;
934 u_int stateidx, state;
935 const u_int *saorder_state_valid;
936 int arraysize;
937
938 sah = key_getsah(saidx, CMP_MODE_REQID);
939 if (sah == NULL)
940 return NULL;
941
942 /*
943 * search a valid state list for outbound packet.
944 * This search order is important.
945 */
946 if (key_prefered_oldsa) {
947 saorder_state_valid = saorder_state_valid_prefer_old;
948 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
949 } else {
950 saorder_state_valid = saorder_state_valid_prefer_new;
951 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
952 }
953
954 /* search valid state */
955 for (stateidx = 0;
956 stateidx < arraysize;
957 stateidx++) {
958
959 state = saorder_state_valid[stateidx];
960
961 sav = key_do_allocsa_policy(sah, state);
962 if (sav != NULL)
963 return sav;
964 }
965
966 return NULL;
967 }
968
969 static void
970 key_sendup_message_delete(struct secasvar *sav)
971 {
972 struct mbuf *m, *result = 0;
973 uint8_t satype;
974
975 satype = key_proto2satype(sav->sah->saidx.proto);
976 if (satype == 0)
977 goto msgfail;
978
979 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
980 if (m == NULL)
981 goto msgfail;
982 result = m;
983
984 /* set sadb_address for saidx's. */
985 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
986 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
987 if (m == NULL)
988 goto msgfail;
989 m_cat(result, m);
990
991 /* set sadb_address for saidx's. */
992 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
993 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
994 if (m == NULL)
995 goto msgfail;
996 m_cat(result, m);
997
998 /* create SA extension */
999 m = key_setsadbsa(sav);
1000 if (m == NULL)
1001 goto msgfail;
1002 m_cat(result, m);
1003
1004 if (result->m_len < sizeof(struct sadb_msg)) {
1005 result = m_pullup(result, sizeof(struct sadb_msg));
1006 if (result == NULL)
1007 goto msgfail;
1008 }
1009
1010 result->m_pkthdr.len = 0;
1011 for (m = result; m; m = m->m_next)
1012 result->m_pkthdr.len += m->m_len;
1013 mtod(result, struct sadb_msg *)->sadb_msg_len =
1014 PFKEY_UNIT64(result->m_pkthdr.len);
1015
1016 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1017 result = NULL;
1018 msgfail:
1019 if (result)
1020 m_freem(result);
1021 }
1022
1023 /*
1024 * searching SAD with direction, protocol, mode and state.
1025 * called by key_allocsa_policy().
1026 * OUT:
1027 * NULL : not found
1028 * others : found, pointer to a SA.
1029 */
1030 static struct secasvar *
1031 key_do_allocsa_policy(struct secashead *sah, u_int state)
1032 {
1033 struct secasvar *sav, *candidate, *d;
1034
1035 /* initilize */
1036 candidate = NULL;
1037
1038 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1039 /* sanity check */
1040 KEY_CHKSASTATE(sav->state, state);
1041
1042 /* initialize */
1043 if (candidate == NULL) {
1044 candidate = sav;
1045 continue;
1046 }
1047
1048 /* Which SA is the better ? */
1049
1050 /* sanity check 2 */
1051 KASSERT(candidate->lft_c != NULL);
1052 KASSERT(sav->lft_c != NULL);
1053
1054 /* What the best method is to compare ? */
1055 if (key_prefered_oldsa) {
1056 if (candidate->lft_c->sadb_lifetime_addtime >
1057 sav->lft_c->sadb_lifetime_addtime) {
1058 candidate = sav;
1059 }
1060 continue;
1061 /*NOTREACHED*/
1062 }
1063
1064 /* prefered new sa rather than old sa */
1065 if (candidate->lft_c->sadb_lifetime_addtime <
1066 sav->lft_c->sadb_lifetime_addtime) {
1067 d = candidate;
1068 candidate = sav;
1069 } else
1070 d = sav;
1071
1072 /*
1073 * prepared to delete the SA when there is more
1074 * suitable candidate and the lifetime of the SA is not
1075 * permanent.
1076 */
1077 if (d->lft_c->sadb_lifetime_addtime != 0) {
1078 key_sa_chgstate(d, SADB_SASTATE_DEAD);
1079 KASSERT(d->refcnt > 0);
1080 key_sendup_message_delete(d);
1081 KEY_FREESAV(&d);
1082 }
1083 }
1084
1085 if (candidate) {
1086 SA_ADDREF(candidate);
1087 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1088 "DP cause refcnt++:%d SA:%p\n",
1089 candidate->refcnt, candidate);
1090 }
1091 return candidate;
1092 }
1093
1094 /*
1095 * allocating a usable SA entry for a *INBOUND* packet.
1096 * Must call key_freesav() later.
1097 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1098 * NULL: not found, or error occurred.
1099 *
1100 * In the comparison, no source address is used--for RFC2401 conformance.
1101 * To quote, from section 4.1:
1102 * A security association is uniquely identified by a triple consisting
1103 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1104 * security protocol (AH or ESP) identifier.
1105 * Note that, however, we do need to keep source address in IPsec SA.
1106 * IKE specification and PF_KEY specification do assume that we
1107 * keep source address in IPsec SA. We see a tricky situation here.
1108 *
1109 * sport and dport are used for NAT-T. network order is always used.
1110 */
1111 struct secasvar *
1112 key_lookup_sa(
1113 const union sockaddr_union *dst,
1114 u_int proto,
1115 u_int32_t spi,
1116 u_int16_t sport,
1117 u_int16_t dport,
1118 const char* where, int tag)
1119 {
1120 struct secashead *sah;
1121 struct secasvar *sav;
1122 u_int stateidx, state;
1123 const u_int *saorder_state_valid;
1124 int arraysize, chkport;
1125 int s;
1126
1127 int must_check_spi = 1;
1128 int must_check_alg = 0;
1129 u_int16_t cpi = 0;
1130 u_int8_t algo = 0;
1131
1132 if ((sport != 0) && (dport != 0))
1133 chkport = PORT_STRICT;
1134 else
1135 chkport = PORT_NONE;
1136
1137 KASSERT(dst != NULL);
1138
1139 /*
1140 * XXX IPCOMP case
1141 * We use cpi to define spi here. In the case where cpi <=
1142 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1143 * the real spi. In this case, don't check the spi but check the
1144 * algorithm
1145 */
1146
1147 if (proto == IPPROTO_IPCOMP) {
1148 u_int32_t tmp;
1149 tmp = ntohl(spi);
1150 cpi = (u_int16_t) tmp;
1151 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1152 algo = (u_int8_t) cpi;
1153 must_check_spi = 0;
1154 must_check_alg = 1;
1155 }
1156 }
1157 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1158 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1159 where, tag, must_check_spi, must_check_alg);
1160
1161
1162 /*
1163 * searching SAD.
1164 * XXX: to be checked internal IP header somewhere. Also when
1165 * IPsec tunnel packet is received. But ESP tunnel mode is
1166 * encrypted so we can't check internal IP header.
1167 */
1168 s = splsoftnet(); /*called from softclock()*/
1169 if (key_prefered_oldsa) {
1170 saorder_state_valid = saorder_state_valid_prefer_old;
1171 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1172 } else {
1173 saorder_state_valid = saorder_state_valid_prefer_new;
1174 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1175 }
1176 LIST_FOREACH(sah, &sahtree, chain) {
1177 /* search valid state */
1178 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1179 state = saorder_state_valid[stateidx];
1180 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1181 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1182 "try match spi %#x, %#x\n",
1183 ntohl(spi), ntohl(sav->spi));
1184 /* sanity check */
1185 KEY_CHKSASTATE(sav->state, state);
1186 /* do not return entries w/ unusable state */
1187 if (!SADB_SASTATE_USABLE_P(sav)) {
1188 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1189 "bad state %d\n", sav->state);
1190 continue;
1191 }
1192 if (proto != sav->sah->saidx.proto) {
1193 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1194 "proto fail %d != %d\n",
1195 proto, sav->sah->saidx.proto);
1196 continue;
1197 }
1198 if (must_check_spi && spi != sav->spi) {
1199 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1200 "spi fail %#x != %#x\n",
1201 ntohl(spi), ntohl(sav->spi));
1202 continue;
1203 }
1204 /* XXX only on the ipcomp case */
1205 if (must_check_alg && algo != sav->alg_comp) {
1206 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1207 "algo fail %d != %d\n",
1208 algo, sav->alg_comp);
1209 continue;
1210 }
1211
1212 #if 0 /* don't check src */
1213 /* Fix port in src->sa */
1214
1215 /* check src address */
1216 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1217 continue;
1218 #endif
1219 /* fix port of dst address XXX*/
1220 key_porttosaddr(__UNCONST(dst), dport);
1221 /* check dst address */
1222 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1223 continue;
1224 SA_ADDREF2(sav, where, tag);
1225 goto done;
1226 }
1227 }
1228 }
1229 sav = NULL;
1230 done:
1231 splx(s);
1232
1233 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1234 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1235 return sav;
1236 }
1237
1238 void
1239 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1240 {
1241
1242 SP_ADDREF2(sp, where, tag);
1243
1244 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1245 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1246 sp, sp->id, where, tag, sp->refcnt);
1247 }
1248
1249 void
1250 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1251 {
1252
1253 SA_ADDREF2(sav, where, tag);
1254
1255 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1256 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1257 sav->refcnt, sav, where, tag);
1258 }
1259
1260 /*
1261 * Must be called after calling key_lookup_sp*().
1262 * For both the packet without socket and key_freeso().
1263 */
1264 void
1265 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1266 {
1267 struct secpolicy *sp = *spp;
1268 unsigned int nv;
1269
1270 KASSERT(sp != NULL);
1271
1272 SP_DELREF2(sp, nv, where, tag);
1273
1274 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1275 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1276 sp, sp->id, where, tag, nv);
1277
1278 if (nv == 0) {
1279 *spp = NULL;
1280 key_delsp(sp);
1281 }
1282 }
1283
1284 #if 0
1285 /*
1286 * Must be called after calling key_lookup_sp*().
1287 * For the packet with socket.
1288 */
1289 static void
1290 key_freeso(struct socket *so)
1291 {
1292 /* sanity check */
1293 KASSERT(so != NULL);
1294
1295 switch (so->so_proto->pr_domain->dom_family) {
1296 #ifdef INET
1297 case PF_INET:
1298 {
1299 struct inpcb *pcb = sotoinpcb(so);
1300
1301 /* Does it have a PCB ? */
1302 if (pcb == NULL)
1303 return;
1304
1305 struct inpcbpolicy *sp = pcb->inp_sp;
1306 key_freesp_so(&sp->sp_in);
1307 key_freesp_so(&sp->sp_out);
1308 }
1309 break;
1310 #endif
1311 #ifdef INET6
1312 case PF_INET6:
1313 {
1314 #ifdef HAVE_NRL_INPCB
1315 struct inpcb *pcb = sotoinpcb(so);
1316 struct inpcbpolicy *sp = pcb->inp_sp;
1317
1318 /* Does it have a PCB ? */
1319 if (pcb == NULL)
1320 return;
1321 key_freesp_so(&sp->sp_in);
1322 key_freesp_so(&sp->sp_out);
1323 #else
1324 struct in6pcb *pcb = sotoin6pcb(so);
1325
1326 /* Does it have a PCB ? */
1327 if (pcb == NULL)
1328 return;
1329 key_freesp_so(&pcb->in6p_sp->sp_in);
1330 key_freesp_so(&pcb->in6p_sp->sp_out);
1331 #endif
1332 }
1333 break;
1334 #endif /* INET6 */
1335 default:
1336 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1337 so->so_proto->pr_domain->dom_family);
1338 return;
1339 }
1340 }
1341
1342 static void
1343 key_freesp_so(struct secpolicy **sp)
1344 {
1345
1346 KASSERT(sp != NULL);
1347 KASSERT(*sp != NULL);
1348
1349 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1350 (*sp)->policy == IPSEC_POLICY_BYPASS)
1351 return;
1352
1353 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1354 "invalid policy %u", (*sp)->policy);
1355 KEY_FREESP(sp);
1356 }
1357 #endif
1358
1359 /*
1360 * Must be called after calling key_lookup_sa().
1361 * This function is called by key_freesp() to free some SA allocated
1362 * for a policy.
1363 */
1364 void
1365 key_freesav(struct secasvar **psav, const char* where, int tag)
1366 {
1367 struct secasvar *sav = *psav;
1368 unsigned int nv;
1369
1370 KASSERT(sav != NULL);
1371
1372 SA_DELREF2(sav, nv, where, tag);
1373
1374 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1375 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1376 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1377
1378 if (nv == 0) {
1379 *psav = NULL;
1380
1381 /* remove from SA header */
1382 KASSERT(__LIST_CHAINED(sav));
1383 LIST_REMOVE(sav, chain);
1384
1385 key_delsav(sav);
1386 }
1387 }
1388
1389 /* %%% SPD management */
1390 /*
1391 * free security policy entry.
1392 */
1393 static void
1394 key_delsp(struct secpolicy *sp)
1395 {
1396 int s;
1397
1398 KASSERT(sp != NULL);
1399
1400 key_sp_dead(sp);
1401
1402 KASSERTMSG(sp->refcnt == 0,
1403 "SP with references deleted (refcnt %u)", sp->refcnt);
1404
1405 s = splsoftnet(); /*called from softclock()*/
1406
1407 {
1408 struct ipsecrequest *isr = sp->req, *nextisr;
1409
1410 while (isr != NULL) {
1411 if (isr->sav != NULL) {
1412 KEY_FREESAV(&isr->sav);
1413 isr->sav = NULL;
1414 }
1415
1416 nextisr = isr->next;
1417 kmem_intr_free(isr, sizeof(*isr));
1418 isr = nextisr;
1419 }
1420 }
1421
1422 kmem_intr_free(sp, sizeof(*sp));
1423
1424 splx(s);
1425 }
1426
1427 /*
1428 * search SPD
1429 * OUT: NULL : not found
1430 * others : found, pointer to a SP.
1431 */
1432 static struct secpolicy *
1433 key_getsp(const struct secpolicyindex *spidx)
1434 {
1435 struct secpolicy *sp;
1436
1437 KASSERT(spidx != NULL);
1438
1439 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1440 if (sp->state == IPSEC_SPSTATE_DEAD)
1441 continue;
1442 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1443 SP_ADDREF(sp);
1444 return sp;
1445 }
1446 }
1447
1448 return NULL;
1449 }
1450
1451 /*
1452 * get SP by index.
1453 * OUT: NULL : not found
1454 * others : found, pointer to a SP.
1455 */
1456 static struct secpolicy *
1457 key_getspbyid(u_int32_t id)
1458 {
1459 struct secpolicy *sp;
1460
1461 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1462 if (sp->state == IPSEC_SPSTATE_DEAD)
1463 continue;
1464 if (sp->id == id) {
1465 SP_ADDREF(sp);
1466 return sp;
1467 }
1468 }
1469
1470 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1471 if (sp->state == IPSEC_SPSTATE_DEAD)
1472 continue;
1473 if (sp->id == id) {
1474 SP_ADDREF(sp);
1475 return sp;
1476 }
1477 }
1478
1479 return NULL;
1480 }
1481
1482 struct secpolicy *
1483 key_newsp(const char* where, int tag)
1484 {
1485 struct secpolicy *newsp = NULL;
1486
1487 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1488 if (newsp != NULL)
1489 newsp->refcnt = 1;
1490
1491 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1492 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1493 return newsp;
1494 }
1495
1496 /*
1497 * create secpolicy structure from sadb_x_policy structure.
1498 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1499 * so must be set properly later.
1500 */
1501 struct secpolicy *
1502 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1503 {
1504 struct secpolicy *newsp;
1505
1506 KASSERT(!cpu_softintr_p());
1507 KASSERT(xpl0 != NULL);
1508 KASSERT(len >= sizeof(*xpl0));
1509
1510 if (len != PFKEY_EXTLEN(xpl0)) {
1511 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1512 *error = EINVAL;
1513 return NULL;
1514 }
1515
1516 newsp = KEY_NEWSP();
1517 if (newsp == NULL) {
1518 *error = ENOBUFS;
1519 return NULL;
1520 }
1521
1522 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1523 newsp->policy = xpl0->sadb_x_policy_type;
1524
1525 /* check policy */
1526 switch (xpl0->sadb_x_policy_type) {
1527 case IPSEC_POLICY_DISCARD:
1528 case IPSEC_POLICY_NONE:
1529 case IPSEC_POLICY_ENTRUST:
1530 case IPSEC_POLICY_BYPASS:
1531 newsp->req = NULL;
1532 *error = 0;
1533 return newsp;
1534
1535 case IPSEC_POLICY_IPSEC:
1536 /* Continued */
1537 break;
1538 default:
1539 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1540 KEY_FREESP(&newsp);
1541 *error = EINVAL;
1542 return NULL;
1543 }
1544
1545 /* IPSEC_POLICY_IPSEC */
1546 {
1547 int tlen;
1548 const struct sadb_x_ipsecrequest *xisr;
1549 uint16_t xisr_reqid;
1550 struct ipsecrequest **p_isr = &newsp->req;
1551
1552 /* validity check */
1553 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1554 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1555 *error = EINVAL;
1556 goto free_exit;
1557 }
1558
1559 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1560 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1561
1562 while (tlen > 0) {
1563 /* length check */
1564 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1565 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1566 *error = EINVAL;
1567 goto free_exit;
1568 }
1569
1570 /* allocate request buffer */
1571 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1572
1573 /* set values */
1574 (*p_isr)->next = NULL;
1575
1576 switch (xisr->sadb_x_ipsecrequest_proto) {
1577 case IPPROTO_ESP:
1578 case IPPROTO_AH:
1579 case IPPROTO_IPCOMP:
1580 break;
1581 default:
1582 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1583 xisr->sadb_x_ipsecrequest_proto);
1584 *error = EPROTONOSUPPORT;
1585 goto free_exit;
1586 }
1587 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1588
1589 switch (xisr->sadb_x_ipsecrequest_mode) {
1590 case IPSEC_MODE_TRANSPORT:
1591 case IPSEC_MODE_TUNNEL:
1592 break;
1593 case IPSEC_MODE_ANY:
1594 default:
1595 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1596 xisr->sadb_x_ipsecrequest_mode);
1597 *error = EINVAL;
1598 goto free_exit;
1599 }
1600 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1601
1602 switch (xisr->sadb_x_ipsecrequest_level) {
1603 case IPSEC_LEVEL_DEFAULT:
1604 case IPSEC_LEVEL_USE:
1605 case IPSEC_LEVEL_REQUIRE:
1606 break;
1607 case IPSEC_LEVEL_UNIQUE:
1608 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1609 /* validity check */
1610 /*
1611 * If range violation of reqid, kernel will
1612 * update it, don't refuse it.
1613 */
1614 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1615 IPSECLOG(LOG_DEBUG,
1616 "reqid=%d range "
1617 "violation, updated by kernel.\n",
1618 xisr_reqid);
1619 xisr_reqid = 0;
1620 }
1621
1622 /* allocate new reqid id if reqid is zero. */
1623 if (xisr_reqid == 0) {
1624 u_int16_t reqid = key_newreqid();
1625 if (reqid == 0) {
1626 *error = ENOBUFS;
1627 goto free_exit;
1628 }
1629 (*p_isr)->saidx.reqid = reqid;
1630 } else {
1631 /* set it for manual keying. */
1632 (*p_isr)->saidx.reqid = xisr_reqid;
1633 }
1634 break;
1635
1636 default:
1637 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1638 xisr->sadb_x_ipsecrequest_level);
1639 *error = EINVAL;
1640 goto free_exit;
1641 }
1642 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1643
1644 /* set IP addresses if there */
1645 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1646 const struct sockaddr *paddr;
1647
1648 paddr = (const struct sockaddr *)(xisr + 1);
1649
1650 /* validity check */
1651 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1652 IPSECLOG(LOG_DEBUG, "invalid request "
1653 "address length.\n");
1654 *error = EINVAL;
1655 goto free_exit;
1656 }
1657 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1658
1659 paddr = (const struct sockaddr *)((const char *)paddr
1660 + paddr->sa_len);
1661
1662 /* validity check */
1663 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1664 IPSECLOG(LOG_DEBUG, "invalid request "
1665 "address length.\n");
1666 *error = EINVAL;
1667 goto free_exit;
1668 }
1669 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1670 }
1671
1672 (*p_isr)->sav = NULL;
1673 (*p_isr)->sp = newsp;
1674
1675 /* initialization for the next. */
1676 p_isr = &(*p_isr)->next;
1677 tlen -= xisr->sadb_x_ipsecrequest_len;
1678
1679 /* validity check */
1680 if (tlen < 0) {
1681 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1682 *error = EINVAL;
1683 goto free_exit;
1684 }
1685
1686 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1687 xisr->sadb_x_ipsecrequest_len);
1688 }
1689 }
1690
1691 *error = 0;
1692 return newsp;
1693
1694 free_exit:
1695 KEY_FREESP(&newsp);
1696 return NULL;
1697 }
1698
1699 static u_int16_t
1700 key_newreqid(void)
1701 {
1702 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1703
1704 auto_reqid = (auto_reqid == 0xffff ?
1705 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1706
1707 /* XXX should be unique check */
1708
1709 return auto_reqid;
1710 }
1711
1712 /*
1713 * copy secpolicy struct to sadb_x_policy structure indicated.
1714 */
1715 struct mbuf *
1716 key_sp2msg(const struct secpolicy *sp)
1717 {
1718 struct sadb_x_policy *xpl;
1719 int tlen;
1720 char *p;
1721 struct mbuf *m;
1722
1723 KASSERT(sp != NULL);
1724
1725 tlen = key_getspreqmsglen(sp);
1726
1727 m = key_alloc_mbuf(tlen);
1728 if (!m || m->m_next) { /*XXX*/
1729 if (m)
1730 m_freem(m);
1731 return NULL;
1732 }
1733
1734 m->m_len = tlen;
1735 m->m_next = NULL;
1736 xpl = mtod(m, struct sadb_x_policy *);
1737 memset(xpl, 0, tlen);
1738
1739 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1740 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1741 xpl->sadb_x_policy_type = sp->policy;
1742 xpl->sadb_x_policy_dir = sp->spidx.dir;
1743 xpl->sadb_x_policy_id = sp->id;
1744 p = (char *)xpl + sizeof(*xpl);
1745
1746 /* if is the policy for ipsec ? */
1747 if (sp->policy == IPSEC_POLICY_IPSEC) {
1748 struct sadb_x_ipsecrequest *xisr;
1749 struct ipsecrequest *isr;
1750
1751 for (isr = sp->req; isr != NULL; isr = isr->next) {
1752
1753 xisr = (struct sadb_x_ipsecrequest *)p;
1754
1755 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1756 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1757 xisr->sadb_x_ipsecrequest_level = isr->level;
1758 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1759
1760 p += sizeof(*xisr);
1761 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1762 p += isr->saidx.src.sa.sa_len;
1763 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1764 p += isr->saidx.src.sa.sa_len;
1765
1766 xisr->sadb_x_ipsecrequest_len =
1767 PFKEY_ALIGN8(sizeof(*xisr)
1768 + isr->saidx.src.sa.sa_len
1769 + isr->saidx.dst.sa.sa_len);
1770 }
1771 }
1772
1773 return m;
1774 }
1775
1776 /* m will not be freed nor modified */
1777 static struct mbuf *
1778 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1779 int ndeep, int nitem, ...)
1780 {
1781 va_list ap;
1782 int idx;
1783 int i;
1784 struct mbuf *result = NULL, *n;
1785 int len;
1786
1787 KASSERT(m != NULL);
1788 KASSERT(mhp != NULL);
1789
1790 va_start(ap, nitem);
1791 for (i = 0; i < nitem; i++) {
1792 idx = va_arg(ap, int);
1793 if (idx < 0 || idx > SADB_EXT_MAX)
1794 goto fail;
1795 /* don't attempt to pull empty extension */
1796 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1797 continue;
1798 if (idx != SADB_EXT_RESERVED &&
1799 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1800 continue;
1801
1802 if (idx == SADB_EXT_RESERVED) {
1803 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1804 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1805 MGETHDR(n, M_DONTWAIT, MT_DATA);
1806 if (!n)
1807 goto fail;
1808 n->m_len = len;
1809 n->m_next = NULL;
1810 m_copydata(m, 0, sizeof(struct sadb_msg),
1811 mtod(n, void *));
1812 } else if (i < ndeep) {
1813 len = mhp->extlen[idx];
1814 n = key_alloc_mbuf(len);
1815 if (!n || n->m_next) { /*XXX*/
1816 if (n)
1817 m_freem(n);
1818 goto fail;
1819 }
1820 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1821 mtod(n, void *));
1822 } else {
1823 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1824 M_DONTWAIT);
1825 }
1826 if (n == NULL)
1827 goto fail;
1828
1829 if (result)
1830 m_cat(result, n);
1831 else
1832 result = n;
1833 }
1834 va_end(ap);
1835
1836 if (result && (result->m_flags & M_PKTHDR) != 0) {
1837 result->m_pkthdr.len = 0;
1838 for (n = result; n; n = n->m_next)
1839 result->m_pkthdr.len += n->m_len;
1840 }
1841
1842 return result;
1843
1844 fail:
1845 va_end(ap);
1846 m_freem(result);
1847 return NULL;
1848 }
1849
1850 /*
1851 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1852 * add an entry to SP database, when received
1853 * <base, address(SD), (lifetime(H),) policy>
1854 * from the user(?).
1855 * Adding to SP database,
1856 * and send
1857 * <base, address(SD), (lifetime(H),) policy>
1858 * to the socket which was send.
1859 *
1860 * SPDADD set a unique policy entry.
1861 * SPDSETIDX like SPDADD without a part of policy requests.
1862 * SPDUPDATE replace a unique policy entry.
1863 *
1864 * m will always be freed.
1865 */
1866 static int
1867 key_api_spdadd(struct socket *so, struct mbuf *m,
1868 const struct sadb_msghdr *mhp)
1869 {
1870 const struct sockaddr *src, *dst;
1871 const struct sadb_x_policy *xpl0;
1872 struct sadb_x_policy *xpl;
1873 const struct sadb_lifetime *lft = NULL;
1874 struct secpolicyindex spidx;
1875 struct secpolicy *newsp;
1876 int error;
1877
1878 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1879 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1880 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1881 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1882 return key_senderror(so, m, EINVAL);
1883 }
1884 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1885 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1886 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1887 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1888 return key_senderror(so, m, EINVAL);
1889 }
1890 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1891 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1892 sizeof(struct sadb_lifetime)) {
1893 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1894 return key_senderror(so, m, EINVAL);
1895 }
1896 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1897 }
1898
1899 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1900
1901 /* checking the direciton. */
1902 switch (xpl0->sadb_x_policy_dir) {
1903 case IPSEC_DIR_INBOUND:
1904 case IPSEC_DIR_OUTBOUND:
1905 break;
1906 default:
1907 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1908 return key_senderror(so, m, EINVAL);
1909 }
1910
1911 /* check policy */
1912 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
1913 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1914 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1915 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1916 return key_senderror(so, m, EINVAL);
1917 }
1918
1919 /* policy requests are mandatory when action is ipsec. */
1920 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1921 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1922 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1923 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1924 return key_senderror(so, m, EINVAL);
1925 }
1926
1927 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1928 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1929
1930 /* sanity check on addr pair */
1931 if (src->sa_family != dst->sa_family)
1932 return key_senderror(so, m, EINVAL);
1933 if (src->sa_len != dst->sa_len)
1934 return key_senderror(so, m, EINVAL);
1935
1936 key_init_spidx_bymsghdr(&spidx, mhp);
1937
1938 /*
1939 * checking there is SP already or not.
1940 * SPDUPDATE doesn't depend on whether there is a SP or not.
1941 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1942 * then error.
1943 */
1944 {
1945 struct secpolicy *sp;
1946
1947 sp = key_getsp(&spidx);
1948 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1949 if (sp) {
1950 key_sp_dead(sp);
1951 key_sp_unlink(sp); /* XXX jrs ordering */
1952 KEY_FREESP(&sp);
1953 }
1954 } else {
1955 if (sp != NULL) {
1956 KEY_FREESP(&sp);
1957 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1958 return key_senderror(so, m, EEXIST);
1959 }
1960 }
1961 }
1962
1963 /* allocation new SP entry */
1964 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1965 if (newsp == NULL) {
1966 return key_senderror(so, m, error);
1967 }
1968
1969 newsp->id = key_getnewspid();
1970 if (newsp->id == 0) {
1971 kmem_free(newsp, sizeof(*newsp));
1972 return key_senderror(so, m, ENOBUFS);
1973 }
1974
1975 newsp->spidx = spidx;
1976 newsp->created = time_uptime;
1977 newsp->lastused = newsp->created;
1978 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1979 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1980
1981 newsp->refcnt = 1; /* do not reclaim until I say I do */
1982 newsp->state = IPSEC_SPSTATE_ALIVE;
1983 if (newsp->policy == IPSEC_POLICY_IPSEC)
1984 KASSERT(newsp->req != NULL);
1985 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1986
1987 #ifdef notyet
1988 /* delete the entry in spacqtree */
1989 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1990 struct secspacq *spacq = key_getspacq(&spidx);
1991 if (spacq != NULL) {
1992 /* reset counter in order to deletion by timehandler. */
1993 spacq->created = time_uptime;
1994 spacq->count = 0;
1995 }
1996 }
1997 #endif
1998
1999 /* Invalidate all cached SPD pointers in the PCBs. */
2000 ipsec_invalpcbcacheall();
2001
2002 #if defined(GATEWAY)
2003 /* Invalidate the ipflow cache, as well. */
2004 ipflow_invalidate_all(0);
2005 #ifdef INET6
2006 if (in6_present)
2007 ip6flow_invalidate_all(0);
2008 #endif /* INET6 */
2009 #endif /* GATEWAY */
2010
2011 {
2012 struct mbuf *n, *mpolicy;
2013 int off;
2014
2015 /* create new sadb_msg to reply. */
2016 if (lft) {
2017 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2018 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2019 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2020 } else {
2021 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2022 SADB_X_EXT_POLICY,
2023 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2024 }
2025 if (!n)
2026 return key_senderror(so, m, ENOBUFS);
2027
2028 n = key_fill_replymsg(n, 0);
2029 if (n == NULL)
2030 return key_senderror(so, m, ENOBUFS);
2031
2032 off = 0;
2033 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2034 sizeof(*xpl), &off);
2035 if (mpolicy == NULL) {
2036 /* n is already freed */
2037 return key_senderror(so, m, ENOBUFS);
2038 }
2039 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2040 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2041 m_freem(n);
2042 return key_senderror(so, m, EINVAL);
2043 }
2044 xpl->sadb_x_policy_id = newsp->id;
2045
2046 m_freem(m);
2047 key_update_used();
2048 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2049 }
2050 }
2051
2052 /*
2053 * get new policy id.
2054 * OUT:
2055 * 0: failure.
2056 * others: success.
2057 */
2058 static u_int32_t
2059 key_getnewspid(void)
2060 {
2061 u_int32_t newid = 0;
2062 int count = key_spi_trycnt; /* XXX */
2063 struct secpolicy *sp;
2064
2065 /* when requesting to allocate spi ranged */
2066 while (count--) {
2067 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2068
2069 sp = key_getspbyid(newid);
2070 if (sp == NULL)
2071 break;
2072
2073 KEY_FREESP(&sp);
2074 }
2075
2076 if (count == 0 || newid == 0) {
2077 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2078 return 0;
2079 }
2080
2081 return newid;
2082 }
2083
2084 /*
2085 * SADB_SPDDELETE processing
2086 * receive
2087 * <base, address(SD), policy(*)>
2088 * from the user(?), and set SADB_SASTATE_DEAD,
2089 * and send,
2090 * <base, address(SD), policy(*)>
2091 * to the ikmpd.
2092 * policy(*) including direction of policy.
2093 *
2094 * m will always be freed.
2095 */
2096 static int
2097 key_api_spddelete(struct socket *so, struct mbuf *m,
2098 const struct sadb_msghdr *mhp)
2099 {
2100 struct sadb_x_policy *xpl0;
2101 struct secpolicyindex spidx;
2102 struct secpolicy *sp;
2103
2104 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2105 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2106 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2107 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2108 return key_senderror(so, m, EINVAL);
2109 }
2110 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2111 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2112 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2113 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2114 return key_senderror(so, m, EINVAL);
2115 }
2116
2117 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2118
2119 /* checking the direciton. */
2120 switch (xpl0->sadb_x_policy_dir) {
2121 case IPSEC_DIR_INBOUND:
2122 case IPSEC_DIR_OUTBOUND:
2123 break;
2124 default:
2125 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2126 return key_senderror(so, m, EINVAL);
2127 }
2128
2129 /* make secindex */
2130 key_init_spidx_bymsghdr(&spidx, mhp);
2131
2132 /* Is there SP in SPD ? */
2133 sp = key_getsp(&spidx);
2134 if (sp == NULL) {
2135 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2136 return key_senderror(so, m, EINVAL);
2137 }
2138
2139 /* save policy id to buffer to be returned. */
2140 xpl0->sadb_x_policy_id = sp->id;
2141
2142 key_sp_dead(sp);
2143 key_sp_unlink(sp); /* XXX jrs ordering */
2144 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2145
2146 /* Invalidate all cached SPD pointers in the PCBs. */
2147 ipsec_invalpcbcacheall();
2148
2149 /* We're deleting policy; no need to invalidate the ipflow cache. */
2150
2151 {
2152 struct mbuf *n;
2153
2154 /* create new sadb_msg to reply. */
2155 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2156 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2157 if (!n)
2158 return key_senderror(so, m, ENOBUFS);
2159
2160 n = key_fill_replymsg(n, 0);
2161 if (n == NULL)
2162 return key_senderror(so, m, ENOBUFS);
2163
2164 m_freem(m);
2165 key_update_used();
2166 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2167 }
2168 }
2169
2170 /*
2171 * SADB_SPDDELETE2 processing
2172 * receive
2173 * <base, policy(*)>
2174 * from the user(?), and set SADB_SASTATE_DEAD,
2175 * and send,
2176 * <base, policy(*)>
2177 * to the ikmpd.
2178 * policy(*) including direction of policy.
2179 *
2180 * m will always be freed.
2181 */
2182 static int
2183 key_api_spddelete2(struct socket *so, struct mbuf *m,
2184 const struct sadb_msghdr *mhp)
2185 {
2186 u_int32_t id;
2187 struct secpolicy *sp;
2188
2189 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2190 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2191 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2192 return key_senderror(so, m, EINVAL);
2193 }
2194
2195 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2196
2197 /* Is there SP in SPD ? */
2198 sp = key_getspbyid(id);
2199 if (sp == NULL) {
2200 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2201 return key_senderror(so, m, EINVAL);
2202 }
2203
2204 key_sp_dead(sp);
2205 key_sp_unlink(sp); /* XXX jrs ordering */
2206 KEY_FREESP(&sp); /* ref gained by key_getsp */
2207 sp = NULL;
2208
2209 /* Invalidate all cached SPD pointers in the PCBs. */
2210 ipsec_invalpcbcacheall();
2211
2212 /* We're deleting policy; no need to invalidate the ipflow cache. */
2213
2214 {
2215 struct mbuf *n, *nn;
2216 int off, len;
2217
2218 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2219
2220 /* create new sadb_msg to reply. */
2221 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2222
2223 MGETHDR(n, M_DONTWAIT, MT_DATA);
2224 if (n && len > MHLEN) {
2225 MCLGET(n, M_DONTWAIT);
2226 if ((n->m_flags & M_EXT) == 0) {
2227 m_freem(n);
2228 n = NULL;
2229 }
2230 }
2231 if (!n)
2232 return key_senderror(so, m, ENOBUFS);
2233
2234 n->m_len = len;
2235 n->m_next = NULL;
2236 off = 0;
2237
2238 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2239 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2240
2241 KASSERTMSG(off == len, "length inconsistency");
2242
2243 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2244 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2245 if (!n->m_next) {
2246 m_freem(n);
2247 return key_senderror(so, m, ENOBUFS);
2248 }
2249
2250 n->m_pkthdr.len = 0;
2251 for (nn = n; nn; nn = nn->m_next)
2252 n->m_pkthdr.len += nn->m_len;
2253
2254 n = key_fill_replymsg(n, 0);
2255 if (n == NULL)
2256 return key_senderror(so, m, ENOBUFS);
2257
2258 m_freem(m);
2259 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2260 }
2261 }
2262
2263 /*
2264 * SADB_X_GET processing
2265 * receive
2266 * <base, policy(*)>
2267 * from the user(?),
2268 * and send,
2269 * <base, address(SD), policy>
2270 * to the ikmpd.
2271 * policy(*) including direction of policy.
2272 *
2273 * m will always be freed.
2274 */
2275 static int
2276 key_api_spdget(struct socket *so, struct mbuf *m,
2277 const struct sadb_msghdr *mhp)
2278 {
2279 u_int32_t id;
2280 struct secpolicy *sp;
2281 struct mbuf *n;
2282
2283 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2284 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2285 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2286 return key_senderror(so, m, EINVAL);
2287 }
2288
2289 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2290
2291 /* Is there SP in SPD ? */
2292 sp = key_getspbyid(id);
2293 if (sp == NULL) {
2294 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2295 return key_senderror(so, m, ENOENT);
2296 }
2297
2298 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2299 mhp->msg->sadb_msg_pid);
2300 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2301 if (n != NULL) {
2302 m_freem(m);
2303 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2304 } else
2305 return key_senderror(so, m, ENOBUFS);
2306 }
2307
2308 #ifdef notyet
2309 /*
2310 * SADB_X_SPDACQUIRE processing.
2311 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2312 * send
2313 * <base, policy(*)>
2314 * to KMD, and expect to receive
2315 * <base> with SADB_X_SPDACQUIRE if error occurred,
2316 * or
2317 * <base, policy>
2318 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2319 * policy(*) is without policy requests.
2320 *
2321 * 0 : succeed
2322 * others: error number
2323 */
2324 int
2325 key_spdacquire(const struct secpolicy *sp)
2326 {
2327 struct mbuf *result = NULL, *m;
2328 struct secspacq *newspacq;
2329 int error;
2330
2331 KASSERT(sp != NULL);
2332 KASSERTMSG(sp->req == NULL, "called but there is request");
2333 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2334 "policy mismathed. IPsec is expected");
2335
2336 /* Get an entry to check whether sent message or not. */
2337 newspacq = key_getspacq(&sp->spidx);
2338 if (newspacq != NULL) {
2339 if (key_blockacq_count < newspacq->count) {
2340 /* reset counter and do send message. */
2341 newspacq->count = 0;
2342 } else {
2343 /* increment counter and do nothing. */
2344 newspacq->count++;
2345 return 0;
2346 }
2347 } else {
2348 /* make new entry for blocking to send SADB_ACQUIRE. */
2349 newspacq = key_newspacq(&sp->spidx);
2350 if (newspacq == NULL)
2351 return ENOBUFS;
2352
2353 /* add to acqtree */
2354 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2355 }
2356
2357 /* create new sadb_msg to reply. */
2358 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2359 if (!m) {
2360 error = ENOBUFS;
2361 goto fail;
2362 }
2363 result = m;
2364
2365 result->m_pkthdr.len = 0;
2366 for (m = result; m; m = m->m_next)
2367 result->m_pkthdr.len += m->m_len;
2368
2369 mtod(result, struct sadb_msg *)->sadb_msg_len =
2370 PFKEY_UNIT64(result->m_pkthdr.len);
2371
2372 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2373
2374 fail:
2375 if (result)
2376 m_freem(result);
2377 return error;
2378 }
2379 #endif /* notyet */
2380
2381 /*
2382 * SADB_SPDFLUSH processing
2383 * receive
2384 * <base>
2385 * from the user, and free all entries in secpctree.
2386 * and send,
2387 * <base>
2388 * to the user.
2389 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2390 *
2391 * m will always be freed.
2392 */
2393 static int
2394 key_api_spdflush(struct socket *so, struct mbuf *m,
2395 const struct sadb_msghdr *mhp)
2396 {
2397 struct sadb_msg *newmsg;
2398 struct secpolicy *sp;
2399 u_int dir;
2400
2401 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2402 return key_senderror(so, m, EINVAL);
2403
2404 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2405 struct secpolicy * nextsp;
2406 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2407 if (sp->state == IPSEC_SPSTATE_DEAD)
2408 continue;
2409 key_sp_dead(sp);
2410 key_sp_unlink(sp);
2411 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2412 continue;
2413 }
2414 }
2415
2416 /* Invalidate all cached SPD pointers in the PCBs. */
2417 ipsec_invalpcbcacheall();
2418
2419 /* We're deleting policy; no need to invalidate the ipflow cache. */
2420
2421 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2422 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2423 return key_senderror(so, m, ENOBUFS);
2424 }
2425
2426 if (m->m_next)
2427 m_freem(m->m_next);
2428 m->m_next = NULL;
2429 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2430 newmsg = mtod(m, struct sadb_msg *);
2431 newmsg->sadb_msg_errno = 0;
2432 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2433
2434 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2435 }
2436
2437 static struct sockaddr key_src = {
2438 .sa_len = 2,
2439 .sa_family = PF_KEY,
2440 };
2441
2442 static struct mbuf *
2443 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2444 {
2445 struct secpolicy *sp;
2446 int cnt;
2447 u_int dir;
2448 struct mbuf *m, *n, *prev;
2449 int totlen;
2450
2451 *lenp = 0;
2452
2453 /* search SPD entry and get buffer size. */
2454 cnt = 0;
2455 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2456 LIST_FOREACH(sp, &sptree[dir], chain) {
2457 cnt++;
2458 }
2459 }
2460
2461 if (cnt == 0) {
2462 *errorp = ENOENT;
2463 return (NULL);
2464 }
2465
2466 m = NULL;
2467 prev = m;
2468 totlen = 0;
2469 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2470 LIST_FOREACH(sp, &sptree[dir], chain) {
2471 --cnt;
2472 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2473
2474 if (!n) {
2475 *errorp = ENOBUFS;
2476 if (m)
2477 m_freem(m);
2478 return (NULL);
2479 }
2480
2481 totlen += n->m_pkthdr.len;
2482 if (!m) {
2483 m = n;
2484 } else {
2485 prev->m_nextpkt = n;
2486 }
2487 prev = n;
2488 }
2489 }
2490
2491 *lenp = totlen;
2492 *errorp = 0;
2493 return (m);
2494 }
2495
2496 /*
2497 * SADB_SPDDUMP processing
2498 * receive
2499 * <base>
2500 * from the user, and dump all SP leaves
2501 * and send,
2502 * <base> .....
2503 * to the ikmpd.
2504 *
2505 * m will always be freed.
2506 */
2507 static int
2508 key_api_spddump(struct socket *so, struct mbuf *m0,
2509 const struct sadb_msghdr *mhp)
2510 {
2511 struct mbuf *n;
2512 int error, len;
2513 int ok, s;
2514 pid_t pid;
2515
2516 pid = mhp->msg->sadb_msg_pid;
2517 /*
2518 * If the requestor has insufficient socket-buffer space
2519 * for the entire chain, nobody gets any response to the DUMP.
2520 * XXX For now, only the requestor ever gets anything.
2521 * Moreover, if the requestor has any space at all, they receive
2522 * the entire chain, otherwise the request is refused with ENOBUFS.
2523 */
2524 if (sbspace(&so->so_rcv) <= 0) {
2525 return key_senderror(so, m0, ENOBUFS);
2526 }
2527
2528 s = splsoftnet();
2529 n = key_setspddump_chain(&error, &len, pid);
2530 splx(s);
2531
2532 if (n == NULL) {
2533 return key_senderror(so, m0, ENOENT);
2534 }
2535 {
2536 uint64_t *ps = PFKEY_STAT_GETREF();
2537 ps[PFKEY_STAT_IN_TOTAL]++;
2538 ps[PFKEY_STAT_IN_BYTES] += len;
2539 PFKEY_STAT_PUTREF();
2540 }
2541
2542 /*
2543 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2544 * The requestor receives either the entire chain, or an
2545 * error message with ENOBUFS.
2546 */
2547
2548 /*
2549 * sbappendchainwith record takes the chain of entries, one
2550 * packet-record per SPD entry, prepends the key_src sockaddr
2551 * to each packet-record, links the sockaddr mbufs into a new
2552 * list of records, then appends the entire resulting
2553 * list to the requesting socket.
2554 */
2555 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2556 SB_PRIO_ONESHOT_OVERFLOW);
2557
2558 if (!ok) {
2559 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2560 m_freem(n);
2561 return key_senderror(so, m0, ENOBUFS);
2562 }
2563
2564 m_freem(m0);
2565 return error;
2566 }
2567
2568 /*
2569 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2570 */
2571 static int
2572 key_api_nat_map(struct socket *so, struct mbuf *m,
2573 const struct sadb_msghdr *mhp)
2574 {
2575 struct sadb_x_nat_t_type *type;
2576 struct sadb_x_nat_t_port *sport;
2577 struct sadb_x_nat_t_port *dport;
2578 struct sadb_address *iaddr, *raddr;
2579 struct sadb_x_nat_t_frag *frag;
2580
2581 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2582 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2583 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2584 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2585 return key_senderror(so, m, EINVAL);
2586 }
2587 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2588 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2589 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2590 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2591 return key_senderror(so, m, EINVAL);
2592 }
2593
2594 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2595 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2596 IPSECLOG(LOG_DEBUG, "invalid message\n");
2597 return key_senderror(so, m, EINVAL);
2598 }
2599
2600 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2601 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2602 IPSECLOG(LOG_DEBUG, "invalid message\n");
2603 return key_senderror(so, m, EINVAL);
2604 }
2605
2606 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2607 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2608 IPSECLOG(LOG_DEBUG, "invalid message\n");
2609 return key_senderror(so, m, EINVAL);
2610 }
2611
2612 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2613 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2614 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2615 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2616 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2617 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2618
2619 /*
2620 * XXX handle that, it should also contain a SA, or anything
2621 * that enable to update the SA information.
2622 */
2623
2624 return 0;
2625 }
2626
2627 static struct mbuf *
2628 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2629 {
2630 struct mbuf *result = NULL, *m;
2631
2632 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2633 if (!m)
2634 goto fail;
2635 result = m;
2636
2637 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2638 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2639 if (!m)
2640 goto fail;
2641 m_cat(result, m);
2642
2643 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2644 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2645 if (!m)
2646 goto fail;
2647 m_cat(result, m);
2648
2649 m = key_sp2msg(sp);
2650 if (!m)
2651 goto fail;
2652 m_cat(result, m);
2653
2654 if ((result->m_flags & M_PKTHDR) == 0)
2655 goto fail;
2656
2657 if (result->m_len < sizeof(struct sadb_msg)) {
2658 result = m_pullup(result, sizeof(struct sadb_msg));
2659 if (result == NULL)
2660 goto fail;
2661 }
2662
2663 result->m_pkthdr.len = 0;
2664 for (m = result; m; m = m->m_next)
2665 result->m_pkthdr.len += m->m_len;
2666
2667 mtod(result, struct sadb_msg *)->sadb_msg_len =
2668 PFKEY_UNIT64(result->m_pkthdr.len);
2669
2670 return result;
2671
2672 fail:
2673 m_freem(result);
2674 return NULL;
2675 }
2676
2677 /*
2678 * get PFKEY message length for security policy and request.
2679 */
2680 static u_int
2681 key_getspreqmsglen(const struct secpolicy *sp)
2682 {
2683 u_int tlen;
2684
2685 tlen = sizeof(struct sadb_x_policy);
2686
2687 /* if is the policy for ipsec ? */
2688 if (sp->policy != IPSEC_POLICY_IPSEC)
2689 return tlen;
2690
2691 /* get length of ipsec requests */
2692 {
2693 const struct ipsecrequest *isr;
2694 int len;
2695
2696 for (isr = sp->req; isr != NULL; isr = isr->next) {
2697 len = sizeof(struct sadb_x_ipsecrequest)
2698 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2699
2700 tlen += PFKEY_ALIGN8(len);
2701 }
2702 }
2703
2704 return tlen;
2705 }
2706
2707 /*
2708 * SADB_SPDEXPIRE processing
2709 * send
2710 * <base, address(SD), lifetime(CH), policy>
2711 * to KMD by PF_KEY.
2712 *
2713 * OUT: 0 : succeed
2714 * others : error number
2715 */
2716 static int
2717 key_spdexpire(struct secpolicy *sp)
2718 {
2719 int s;
2720 struct mbuf *result = NULL, *m;
2721 int len;
2722 int error = -1;
2723 struct sadb_lifetime *lt;
2724
2725 /* XXX: Why do we lock ? */
2726 s = splsoftnet(); /*called from softclock()*/
2727
2728 KASSERT(sp != NULL);
2729
2730 /* set msg header */
2731 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2732 if (!m) {
2733 error = ENOBUFS;
2734 goto fail;
2735 }
2736 result = m;
2737
2738 /* create lifetime extension (current and hard) */
2739 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2740 m = key_alloc_mbuf(len);
2741 if (!m || m->m_next) { /*XXX*/
2742 if (m)
2743 m_freem(m);
2744 error = ENOBUFS;
2745 goto fail;
2746 }
2747 memset(mtod(m, void *), 0, len);
2748 lt = mtod(m, struct sadb_lifetime *);
2749 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2750 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2751 lt->sadb_lifetime_allocations = 0;
2752 lt->sadb_lifetime_bytes = 0;
2753 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2754 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2755 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2756 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2757 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2758 lt->sadb_lifetime_allocations = 0;
2759 lt->sadb_lifetime_bytes = 0;
2760 lt->sadb_lifetime_addtime = sp->lifetime;
2761 lt->sadb_lifetime_usetime = sp->validtime;
2762 m_cat(result, m);
2763
2764 /* set sadb_address for source */
2765 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2766 sp->spidx.prefs, sp->spidx.ul_proto);
2767 if (!m) {
2768 error = ENOBUFS;
2769 goto fail;
2770 }
2771 m_cat(result, m);
2772
2773 /* set sadb_address for destination */
2774 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2775 sp->spidx.prefd, sp->spidx.ul_proto);
2776 if (!m) {
2777 error = ENOBUFS;
2778 goto fail;
2779 }
2780 m_cat(result, m);
2781
2782 /* set secpolicy */
2783 m = key_sp2msg(sp);
2784 if (!m) {
2785 error = ENOBUFS;
2786 goto fail;
2787 }
2788 m_cat(result, m);
2789
2790 if ((result->m_flags & M_PKTHDR) == 0) {
2791 error = EINVAL;
2792 goto fail;
2793 }
2794
2795 if (result->m_len < sizeof(struct sadb_msg)) {
2796 result = m_pullup(result, sizeof(struct sadb_msg));
2797 if (result == NULL) {
2798 error = ENOBUFS;
2799 goto fail;
2800 }
2801 }
2802
2803 result->m_pkthdr.len = 0;
2804 for (m = result; m; m = m->m_next)
2805 result->m_pkthdr.len += m->m_len;
2806
2807 mtod(result, struct sadb_msg *)->sadb_msg_len =
2808 PFKEY_UNIT64(result->m_pkthdr.len);
2809
2810 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2811
2812 fail:
2813 if (result)
2814 m_freem(result);
2815 splx(s);
2816 return error;
2817 }
2818
2819 /* %%% SAD management */
2820 /*
2821 * allocating a memory for new SA head, and copy from the values of mhp.
2822 * OUT: NULL : failure due to the lack of memory.
2823 * others : pointer to new SA head.
2824 */
2825 static struct secashead *
2826 key_newsah(const struct secasindex *saidx)
2827 {
2828 struct secashead *newsah;
2829 int i;
2830
2831 KASSERT(saidx != NULL);
2832
2833 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2834 for (i = 0; i < __arraycount(newsah->savtree); i++)
2835 LIST_INIT(&newsah->savtree[i]);
2836 newsah->saidx = *saidx;
2837
2838 /* add to saidxtree */
2839 newsah->state = SADB_SASTATE_MATURE;
2840 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2841
2842 return newsah;
2843 }
2844
2845 /*
2846 * delete SA index and all SA registerd.
2847 */
2848 static void
2849 key_delsah(struct secashead *sah)
2850 {
2851 struct secasvar *sav;
2852 u_int state;
2853 int s;
2854 int zombie = 0;
2855
2856 KASSERT(!cpu_softintr_p());
2857 KASSERT(sah != NULL);
2858
2859 s = splsoftnet();
2860
2861 /* searching all SA registerd in the secindex. */
2862 SASTATE_ANY_FOREACH(state) {
2863 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2864 /* give up to delete this sa */
2865 zombie++;
2866 }
2867 }
2868
2869 /* don't delete sah only if there are savs. */
2870 if (zombie) {
2871 splx(s);
2872 return;
2873 }
2874
2875 rtcache_free(&sah->sa_route);
2876
2877 /* remove from tree of SA index */
2878 KASSERT(__LIST_CHAINED(sah));
2879 LIST_REMOVE(sah, chain);
2880
2881 if (sah->idents != NULL)
2882 kmem_free(sah->idents, sah->idents_len);
2883 if (sah->identd != NULL)
2884 kmem_free(sah->identd, sah->identd_len);
2885
2886 kmem_free(sah, sizeof(*sah));
2887
2888 splx(s);
2889 return;
2890 }
2891
2892 /*
2893 * allocating a new SA with LARVAL state.
2894 * key_api_add() and key_api_getspi() call,
2895 * and copy the values of mhp into new buffer.
2896 * When SAD message type is GETSPI:
2897 * to set sequence number from acq_seq++,
2898 * to set zero to SPI.
2899 * not to call key_setsava().
2900 * OUT: NULL : fail
2901 * others : pointer to new secasvar.
2902 *
2903 * does not modify mbuf. does not free mbuf on error.
2904 */
2905 static struct secasvar *
2906 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2907 int *errp, const char* where, int tag)
2908 {
2909 struct secasvar *newsav;
2910 const struct sadb_sa *xsa;
2911
2912 KASSERT(!cpu_softintr_p());
2913 KASSERT(m != NULL);
2914 KASSERT(mhp != NULL);
2915 KASSERT(mhp->msg != NULL);
2916
2917 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2918
2919 switch (mhp->msg->sadb_msg_type) {
2920 case SADB_GETSPI:
2921 newsav->spi = 0;
2922
2923 #ifdef IPSEC_DOSEQCHECK
2924 /* sync sequence number */
2925 if (mhp->msg->sadb_msg_seq == 0)
2926 newsav->seq =
2927 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2928 else
2929 #endif
2930 newsav->seq = mhp->msg->sadb_msg_seq;
2931 break;
2932
2933 case SADB_ADD:
2934 /* sanity check */
2935 if (mhp->ext[SADB_EXT_SA] == NULL) {
2936 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2937 *errp = EINVAL;
2938 goto error;
2939 }
2940 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2941 newsav->spi = xsa->sadb_sa_spi;
2942 newsav->seq = mhp->msg->sadb_msg_seq;
2943 break;
2944 default:
2945 *errp = EINVAL;
2946 goto error;
2947 }
2948
2949 /* copy sav values */
2950 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2951 *errp = key_setsaval(newsav, m, mhp);
2952 if (*errp)
2953 goto error;
2954 }
2955
2956 /* reset created */
2957 newsav->created = time_uptime;
2958 newsav->pid = mhp->msg->sadb_msg_pid;
2959
2960 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2961 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2962 return newsav;
2963
2964 error:
2965 KASSERT(*errp != 0);
2966 kmem_free(newsav, sizeof(*newsav));
2967 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2968 "DP from %s:%u return SA:NULL\n", where, tag);
2969 return NULL;
2970 }
2971
2972
2973 static void
2974 key_clear_xform(struct secasvar *sav)
2975 {
2976
2977 /*
2978 * Cleanup xform state. Note that zeroize'ing causes the
2979 * keys to be cleared; otherwise we must do it ourself.
2980 */
2981 if (sav->tdb_xform != NULL) {
2982 sav->tdb_xform->xf_zeroize(sav);
2983 sav->tdb_xform = NULL;
2984 } else {
2985 if (sav->key_auth != NULL)
2986 explicit_memset(_KEYBUF(sav->key_auth), 0,
2987 _KEYLEN(sav->key_auth));
2988 if (sav->key_enc != NULL)
2989 explicit_memset(_KEYBUF(sav->key_enc), 0,
2990 _KEYLEN(sav->key_enc));
2991 }
2992 }
2993
2994 /*
2995 * free() SA variable entry.
2996 */
2997 static void
2998 key_delsav(struct secasvar *sav)
2999 {
3000
3001 KASSERT(sav != NULL);
3002 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3003
3004 key_clear_xform(sav);
3005 key_freesaval(sav);
3006 kmem_intr_free(sav, sizeof(*sav));
3007
3008 return;
3009 }
3010
3011 /*
3012 * search SAD.
3013 * OUT:
3014 * NULL : not found
3015 * others : found, pointer to a SA.
3016 */
3017 static struct secashead *
3018 key_getsah(const struct secasindex *saidx, int flag)
3019 {
3020 struct secashead *sah;
3021
3022 LIST_FOREACH(sah, &sahtree, chain) {
3023 if (sah->state == SADB_SASTATE_DEAD)
3024 continue;
3025 if (key_saidx_match(&sah->saidx, saidx, flag))
3026 return sah;
3027 }
3028
3029 return NULL;
3030 }
3031
3032 /*
3033 * check not to be duplicated SPI.
3034 * NOTE: this function is too slow due to searching all SAD.
3035 * OUT:
3036 * NULL : not found
3037 * others : found, pointer to a SA.
3038 */
3039 static bool
3040 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3041 {
3042 struct secashead *sah;
3043 struct secasvar *sav;
3044
3045 /* check address family */
3046 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3047 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3048 return false;
3049 }
3050
3051 /* check all SAD */
3052 LIST_FOREACH(sah, &sahtree, chain) {
3053 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3054 continue;
3055 sav = key_getsavbyspi(sah, spi);
3056 if (sav != NULL) {
3057 KEY_FREESAV(&sav);
3058 return true;
3059 }
3060 }
3061
3062 return false;
3063 }
3064
3065 /*
3066 * search SAD litmited alive SA, protocol, SPI.
3067 * OUT:
3068 * NULL : not found
3069 * others : found, pointer to a SA.
3070 */
3071 static struct secasvar *
3072 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3073 {
3074 struct secasvar *sav;
3075 u_int state;
3076
3077 /* search all status */
3078 SASTATE_ALIVE_FOREACH(state) {
3079 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3080
3081 /* sanity check */
3082 if (sav->state != state) {
3083 IPSECLOG(LOG_DEBUG,
3084 "invalid sav->state (queue: %d SA: %d)\n",
3085 state, sav->state);
3086 continue;
3087 }
3088
3089 if (sav->spi == spi) {
3090 SA_ADDREF(sav);
3091 return sav;
3092 }
3093 }
3094 }
3095
3096 return NULL;
3097 }
3098
3099 /*
3100 * Free allocated data to member variables of sav:
3101 * sav->replay, sav->key_* and sav->lft_*.
3102 */
3103 static void
3104 key_freesaval(struct secasvar *sav)
3105 {
3106
3107 KASSERT(sav->refcnt == 0);
3108
3109 if (sav->replay != NULL)
3110 kmem_intr_free(sav->replay, sav->replay_len);
3111 if (sav->key_auth != NULL)
3112 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3113 if (sav->key_enc != NULL)
3114 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3115 if (sav->lft_c != NULL)
3116 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3117 if (sav->lft_h != NULL)
3118 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3119 if (sav->lft_s != NULL)
3120 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3121 }
3122
3123 /*
3124 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3125 * You must update these if need.
3126 * OUT: 0: success.
3127 * !0: failure.
3128 *
3129 * does not modify mbuf. does not free mbuf on error.
3130 */
3131 static int
3132 key_setsaval(struct secasvar *sav, struct mbuf *m,
3133 const struct sadb_msghdr *mhp)
3134 {
3135 int error = 0;
3136
3137 KASSERT(!cpu_softintr_p());
3138 KASSERT(m != NULL);
3139 KASSERT(mhp != NULL);
3140 KASSERT(mhp->msg != NULL);
3141
3142 /* We shouldn't initialize sav variables while someone uses it. */
3143 KASSERT(sav->refcnt == 0);
3144
3145 /* SA */
3146 if (mhp->ext[SADB_EXT_SA] != NULL) {
3147 const struct sadb_sa *sa0;
3148
3149 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3150 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3151 error = EINVAL;
3152 goto fail;
3153 }
3154
3155 sav->alg_auth = sa0->sadb_sa_auth;
3156 sav->alg_enc = sa0->sadb_sa_encrypt;
3157 sav->flags = sa0->sadb_sa_flags;
3158
3159 /* replay window */
3160 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3161 size_t len = sizeof(struct secreplay) +
3162 sa0->sadb_sa_replay;
3163 sav->replay = kmem_zalloc(len, KM_SLEEP);
3164 sav->replay_len = len;
3165 if (sa0->sadb_sa_replay != 0)
3166 sav->replay->bitmap = (char*)(sav->replay+1);
3167 sav->replay->wsize = sa0->sadb_sa_replay;
3168 }
3169 }
3170
3171 /* Authentication keys */
3172 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3173 const struct sadb_key *key0;
3174 int len;
3175
3176 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3177 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3178
3179 error = 0;
3180 if (len < sizeof(*key0)) {
3181 error = EINVAL;
3182 goto fail;
3183 }
3184 switch (mhp->msg->sadb_msg_satype) {
3185 case SADB_SATYPE_AH:
3186 case SADB_SATYPE_ESP:
3187 case SADB_X_SATYPE_TCPSIGNATURE:
3188 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3189 sav->alg_auth != SADB_X_AALG_NULL)
3190 error = EINVAL;
3191 break;
3192 case SADB_X_SATYPE_IPCOMP:
3193 default:
3194 error = EINVAL;
3195 break;
3196 }
3197 if (error) {
3198 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3199 goto fail;
3200 }
3201
3202 sav->key_auth = key_newbuf(key0, len);
3203 sav->key_auth_len = len;
3204 }
3205
3206 /* Encryption key */
3207 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3208 const struct sadb_key *key0;
3209 int len;
3210
3211 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3212 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3213
3214 error = 0;
3215 if (len < sizeof(*key0)) {
3216 error = EINVAL;
3217 goto fail;
3218 }
3219 switch (mhp->msg->sadb_msg_satype) {
3220 case SADB_SATYPE_ESP:
3221 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3222 sav->alg_enc != SADB_EALG_NULL) {
3223 error = EINVAL;
3224 break;
3225 }
3226 sav->key_enc = key_newbuf(key0, len);
3227 sav->key_enc_len = len;
3228 break;
3229 case SADB_X_SATYPE_IPCOMP:
3230 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3231 error = EINVAL;
3232 sav->key_enc = NULL; /*just in case*/
3233 break;
3234 case SADB_SATYPE_AH:
3235 case SADB_X_SATYPE_TCPSIGNATURE:
3236 default:
3237 error = EINVAL;
3238 break;
3239 }
3240 if (error) {
3241 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3242 goto fail;
3243 }
3244 }
3245
3246 /* set iv */
3247 sav->ivlen = 0;
3248
3249 switch (mhp->msg->sadb_msg_satype) {
3250 case SADB_SATYPE_AH:
3251 error = xform_init(sav, XF_AH);
3252 break;
3253 case SADB_SATYPE_ESP:
3254 error = xform_init(sav, XF_ESP);
3255 break;
3256 case SADB_X_SATYPE_IPCOMP:
3257 error = xform_init(sav, XF_IPCOMP);
3258 break;
3259 case SADB_X_SATYPE_TCPSIGNATURE:
3260 error = xform_init(sav, XF_TCPSIGNATURE);
3261 break;
3262 }
3263 if (error) {
3264 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3265 mhp->msg->sadb_msg_satype);
3266 goto fail;
3267 }
3268
3269 /* reset created */
3270 sav->created = time_uptime;
3271
3272 /* make lifetime for CURRENT */
3273 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3274
3275 sav->lft_c->sadb_lifetime_len =
3276 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3277 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3278 sav->lft_c->sadb_lifetime_allocations = 0;
3279 sav->lft_c->sadb_lifetime_bytes = 0;
3280 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3281 sav->lft_c->sadb_lifetime_usetime = 0;
3282
3283 /* lifetimes for HARD and SOFT */
3284 {
3285 const struct sadb_lifetime *lft0;
3286
3287 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3288 if (lft0 != NULL) {
3289 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3290 error = EINVAL;
3291 goto fail;
3292 }
3293 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3294 }
3295
3296 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3297 if (lft0 != NULL) {
3298 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3299 error = EINVAL;
3300 goto fail;
3301 }
3302 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3303 /* to be initialize ? */
3304 }
3305 }
3306
3307 return 0;
3308
3309 fail:
3310 key_clear_xform(sav);
3311 key_freesaval(sav);
3312
3313 return error;
3314 }
3315
3316 /*
3317 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3318 * OUT: 0: valid
3319 * other: errno
3320 */
3321 static int
3322 key_init_xform(struct secasvar *sav)
3323 {
3324 int error;
3325
3326 /* We shouldn't initialize sav variables while someone uses it. */
3327 KASSERT(sav->refcnt == 0);
3328
3329 /* check SPI value */
3330 switch (sav->sah->saidx.proto) {
3331 case IPPROTO_ESP:
3332 case IPPROTO_AH:
3333 if (ntohl(sav->spi) <= 255) {
3334 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3335 (u_int32_t)ntohl(sav->spi));
3336 return EINVAL;
3337 }
3338 break;
3339 }
3340
3341 /* check satype */
3342 switch (sav->sah->saidx.proto) {
3343 case IPPROTO_ESP:
3344 /* check flags */
3345 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3346 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3347 IPSECLOG(LOG_DEBUG,
3348 "invalid flag (derived) given to old-esp.\n");
3349 return EINVAL;
3350 }
3351 error = xform_init(sav, XF_ESP);
3352 break;
3353 case IPPROTO_AH:
3354 /* check flags */
3355 if (sav->flags & SADB_X_EXT_DERIV) {
3356 IPSECLOG(LOG_DEBUG,
3357 "invalid flag (derived) given to AH SA.\n");
3358 return EINVAL;
3359 }
3360 if (sav->alg_enc != SADB_EALG_NONE) {
3361 IPSECLOG(LOG_DEBUG,
3362 "protocol and algorithm mismated.\n");
3363 return(EINVAL);
3364 }
3365 error = xform_init(sav, XF_AH);
3366 break;
3367 case IPPROTO_IPCOMP:
3368 if (sav->alg_auth != SADB_AALG_NONE) {
3369 IPSECLOG(LOG_DEBUG,
3370 "protocol and algorithm mismated.\n");
3371 return(EINVAL);
3372 }
3373 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3374 && ntohl(sav->spi) >= 0x10000) {
3375 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3376 return(EINVAL);
3377 }
3378 error = xform_init(sav, XF_IPCOMP);
3379 break;
3380 case IPPROTO_TCP:
3381 if (sav->alg_enc != SADB_EALG_NONE) {
3382 IPSECLOG(LOG_DEBUG,
3383 "protocol and algorithm mismated.\n");
3384 return(EINVAL);
3385 }
3386 error = xform_init(sav, XF_TCPSIGNATURE);
3387 break;
3388 default:
3389 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3390 error = EPROTONOSUPPORT;
3391 break;
3392 }
3393
3394 return error;
3395 }
3396
3397 /*
3398 * subroutine for SADB_GET and SADB_DUMP.
3399 */
3400 static struct mbuf *
3401 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3402 u_int32_t seq, u_int32_t pid)
3403 {
3404 struct mbuf *result = NULL, *tres = NULL, *m;
3405 int l = 0;
3406 int i;
3407 void *p;
3408 struct sadb_lifetime lt;
3409 int dumporder[] = {
3410 SADB_EXT_SA, SADB_X_EXT_SA2,
3411 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3412 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3413 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3414 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3415 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3416 SADB_X_EXT_NAT_T_TYPE,
3417 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3418 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3419 SADB_X_EXT_NAT_T_FRAG,
3420
3421 };
3422
3423 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3424 if (m == NULL)
3425 goto fail;
3426 result = m;
3427
3428 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3429 m = NULL;
3430 p = NULL;
3431 switch (dumporder[i]) {
3432 case SADB_EXT_SA:
3433 m = key_setsadbsa(sav);
3434 break;
3435
3436 case SADB_X_EXT_SA2:
3437 m = key_setsadbxsa2(sav->sah->saidx.mode,
3438 sav->replay ? sav->replay->count : 0,
3439 sav->sah->saidx.reqid);
3440 break;
3441
3442 case SADB_EXT_ADDRESS_SRC:
3443 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3444 &sav->sah->saidx.src.sa,
3445 FULLMASK, IPSEC_ULPROTO_ANY);
3446 break;
3447
3448 case SADB_EXT_ADDRESS_DST:
3449 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3450 &sav->sah->saidx.dst.sa,
3451 FULLMASK, IPSEC_ULPROTO_ANY);
3452 break;
3453
3454 case SADB_EXT_KEY_AUTH:
3455 if (!sav->key_auth)
3456 continue;
3457 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3458 p = sav->key_auth;
3459 break;
3460
3461 case SADB_EXT_KEY_ENCRYPT:
3462 if (!sav->key_enc)
3463 continue;
3464 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3465 p = sav->key_enc;
3466 break;
3467
3468 case SADB_EXT_LIFETIME_CURRENT:
3469 KASSERT(sav->lft_c != NULL);
3470 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3471 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3472 lt.sadb_lifetime_addtime =
3473 time_mono_to_wall(lt.sadb_lifetime_addtime);
3474 lt.sadb_lifetime_usetime =
3475 time_mono_to_wall(lt.sadb_lifetime_usetime);
3476 p = <
3477 break;
3478
3479 case SADB_EXT_LIFETIME_HARD:
3480 if (!sav->lft_h)
3481 continue;
3482 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3483 p = sav->lft_h;
3484 break;
3485
3486 case SADB_EXT_LIFETIME_SOFT:
3487 if (!sav->lft_s)
3488 continue;
3489 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3490 p = sav->lft_s;
3491 break;
3492
3493 case SADB_X_EXT_NAT_T_TYPE:
3494 m = key_setsadbxtype(sav->natt_type);
3495 break;
3496
3497 case SADB_X_EXT_NAT_T_DPORT:
3498 if (sav->natt_type == 0)
3499 continue;
3500 m = key_setsadbxport(
3501 key_portfromsaddr(&sav->sah->saidx.dst),
3502 SADB_X_EXT_NAT_T_DPORT);
3503 break;
3504
3505 case SADB_X_EXT_NAT_T_SPORT:
3506 if (sav->natt_type == 0)
3507 continue;
3508 m = key_setsadbxport(
3509 key_portfromsaddr(&sav->sah->saidx.src),
3510 SADB_X_EXT_NAT_T_SPORT);
3511 break;
3512
3513 case SADB_X_EXT_NAT_T_FRAG:
3514 /* don't send frag info if not set */
3515 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3516 continue;
3517 m = key_setsadbxfrag(sav->esp_frag);
3518 break;
3519
3520 case SADB_X_EXT_NAT_T_OAI:
3521 case SADB_X_EXT_NAT_T_OAR:
3522 continue;
3523
3524 case SADB_EXT_ADDRESS_PROXY:
3525 case SADB_EXT_IDENTITY_SRC:
3526 case SADB_EXT_IDENTITY_DST:
3527 /* XXX: should we brought from SPD ? */
3528 case SADB_EXT_SENSITIVITY:
3529 default:
3530 continue;
3531 }
3532
3533 KASSERT(!(m && p));
3534 if (!m && !p)
3535 goto fail;
3536 if (p && tres) {
3537 M_PREPEND(tres, l, M_DONTWAIT);
3538 if (!tres)
3539 goto fail;
3540 memcpy(mtod(tres, void *), p, l);
3541 continue;
3542 }
3543 if (p) {
3544 m = key_alloc_mbuf(l);
3545 if (!m)
3546 goto fail;
3547 m_copyback(m, 0, l, p);
3548 }
3549
3550 if (tres)
3551 m_cat(m, tres);
3552 tres = m;
3553 }
3554
3555 m_cat(result, tres);
3556 tres = NULL; /* avoid free on error below */
3557
3558 if (result->m_len < sizeof(struct sadb_msg)) {
3559 result = m_pullup(result, sizeof(struct sadb_msg));
3560 if (result == NULL)
3561 goto fail;
3562 }
3563
3564 result->m_pkthdr.len = 0;
3565 for (m = result; m; m = m->m_next)
3566 result->m_pkthdr.len += m->m_len;
3567
3568 mtod(result, struct sadb_msg *)->sadb_msg_len =
3569 PFKEY_UNIT64(result->m_pkthdr.len);
3570
3571 return result;
3572
3573 fail:
3574 m_freem(result);
3575 m_freem(tres);
3576 return NULL;
3577 }
3578
3579
3580 /*
3581 * set a type in sadb_x_nat_t_type
3582 */
3583 static struct mbuf *
3584 key_setsadbxtype(u_int16_t type)
3585 {
3586 struct mbuf *m;
3587 size_t len;
3588 struct sadb_x_nat_t_type *p;
3589
3590 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3591
3592 m = key_alloc_mbuf(len);
3593 if (!m || m->m_next) { /*XXX*/
3594 if (m)
3595 m_freem(m);
3596 return NULL;
3597 }
3598
3599 p = mtod(m, struct sadb_x_nat_t_type *);
3600
3601 memset(p, 0, len);
3602 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3603 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3604 p->sadb_x_nat_t_type_type = type;
3605
3606 return m;
3607 }
3608 /*
3609 * set a port in sadb_x_nat_t_port. port is in network order
3610 */
3611 static struct mbuf *
3612 key_setsadbxport(u_int16_t port, u_int16_t type)
3613 {
3614 struct mbuf *m;
3615 size_t len;
3616 struct sadb_x_nat_t_port *p;
3617
3618 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3619
3620 m = key_alloc_mbuf(len);
3621 if (!m || m->m_next) { /*XXX*/
3622 if (m)
3623 m_freem(m);
3624 return NULL;
3625 }
3626
3627 p = mtod(m, struct sadb_x_nat_t_port *);
3628
3629 memset(p, 0, len);
3630 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3631 p->sadb_x_nat_t_port_exttype = type;
3632 p->sadb_x_nat_t_port_port = port;
3633
3634 return m;
3635 }
3636
3637 /*
3638 * set fragmentation info in sadb_x_nat_t_frag
3639 */
3640 static struct mbuf *
3641 key_setsadbxfrag(u_int16_t flen)
3642 {
3643 struct mbuf *m;
3644 size_t len;
3645 struct sadb_x_nat_t_frag *p;
3646
3647 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3648
3649 m = key_alloc_mbuf(len);
3650 if (!m || m->m_next) { /*XXX*/
3651 if (m)
3652 m_freem(m);
3653 return NULL;
3654 }
3655
3656 p = mtod(m, struct sadb_x_nat_t_frag *);
3657
3658 memset(p, 0, len);
3659 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3660 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3661 p->sadb_x_nat_t_frag_fraglen = flen;
3662
3663 return m;
3664 }
3665
3666 /*
3667 * Get port from sockaddr, port is in network order
3668 */
3669 u_int16_t
3670 key_portfromsaddr(const union sockaddr_union *saddr)
3671 {
3672 u_int16_t port;
3673
3674 switch (saddr->sa.sa_family) {
3675 case AF_INET: {
3676 port = saddr->sin.sin_port;
3677 break;
3678 }
3679 #ifdef INET6
3680 case AF_INET6: {
3681 port = saddr->sin6.sin6_port;
3682 break;
3683 }
3684 #endif
3685 default:
3686 printf("%s: unexpected address family\n", __func__);
3687 port = 0;
3688 break;
3689 }
3690
3691 return port;
3692 }
3693
3694
3695 /*
3696 * Set port is struct sockaddr. port is in network order
3697 */
3698 static void
3699 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3700 {
3701 switch (saddr->sa.sa_family) {
3702 case AF_INET: {
3703 saddr->sin.sin_port = port;
3704 break;
3705 }
3706 #ifdef INET6
3707 case AF_INET6: {
3708 saddr->sin6.sin6_port = port;
3709 break;
3710 }
3711 #endif
3712 default:
3713 printf("%s: unexpected address family %d\n", __func__,
3714 saddr->sa.sa_family);
3715 break;
3716 }
3717
3718 return;
3719 }
3720
3721 /*
3722 * Safety check sa_len
3723 */
3724 static int
3725 key_checksalen(const union sockaddr_union *saddr)
3726 {
3727 switch (saddr->sa.sa_family) {
3728 case AF_INET:
3729 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3730 return -1;
3731 break;
3732 #ifdef INET6
3733 case AF_INET6:
3734 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3735 return -1;
3736 break;
3737 #endif
3738 default:
3739 printf("%s: unexpected sa_family %d\n", __func__,
3740 saddr->sa.sa_family);
3741 return -1;
3742 break;
3743 }
3744 return 0;
3745 }
3746
3747
3748 /*
3749 * set data into sadb_msg.
3750 */
3751 static struct mbuf *
3752 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3753 u_int32_t seq, pid_t pid, u_int16_t reserved)
3754 {
3755 struct mbuf *m;
3756 struct sadb_msg *p;
3757 int len;
3758
3759 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3760
3761 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3762
3763 MGETHDR(m, M_DONTWAIT, MT_DATA);
3764 if (m && len > MHLEN) {
3765 MCLGET(m, M_DONTWAIT);
3766 if ((m->m_flags & M_EXT) == 0) {
3767 m_freem(m);
3768 m = NULL;
3769 }
3770 }
3771 if (!m)
3772 return NULL;
3773 m->m_pkthdr.len = m->m_len = len;
3774 m->m_next = NULL;
3775
3776 p = mtod(m, struct sadb_msg *);
3777
3778 memset(p, 0, len);
3779 p->sadb_msg_version = PF_KEY_V2;
3780 p->sadb_msg_type = type;
3781 p->sadb_msg_errno = 0;
3782 p->sadb_msg_satype = satype;
3783 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3784 p->sadb_msg_reserved = reserved;
3785 p->sadb_msg_seq = seq;
3786 p->sadb_msg_pid = (u_int32_t)pid;
3787
3788 return m;
3789 }
3790
3791 /*
3792 * copy secasvar data into sadb_address.
3793 */
3794 static struct mbuf *
3795 key_setsadbsa(struct secasvar *sav)
3796 {
3797 struct mbuf *m;
3798 struct sadb_sa *p;
3799 int len;
3800
3801 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3802 m = key_alloc_mbuf(len);
3803 if (!m || m->m_next) { /*XXX*/
3804 if (m)
3805 m_freem(m);
3806 return NULL;
3807 }
3808
3809 p = mtod(m, struct sadb_sa *);
3810
3811 memset(p, 0, len);
3812 p->sadb_sa_len = PFKEY_UNIT64(len);
3813 p->sadb_sa_exttype = SADB_EXT_SA;
3814 p->sadb_sa_spi = sav->spi;
3815 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3816 p->sadb_sa_state = sav->state;
3817 p->sadb_sa_auth = sav->alg_auth;
3818 p->sadb_sa_encrypt = sav->alg_enc;
3819 p->sadb_sa_flags = sav->flags;
3820
3821 return m;
3822 }
3823
3824 /*
3825 * set data into sadb_address.
3826 */
3827 static struct mbuf *
3828 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3829 u_int8_t prefixlen, u_int16_t ul_proto)
3830 {
3831 struct mbuf *m;
3832 struct sadb_address *p;
3833 size_t len;
3834
3835 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3836 PFKEY_ALIGN8(saddr->sa_len);
3837 m = key_alloc_mbuf(len);
3838 if (!m || m->m_next) { /*XXX*/
3839 if (m)
3840 m_freem(m);
3841 return NULL;
3842 }
3843
3844 p = mtod(m, struct sadb_address *);
3845
3846 memset(p, 0, len);
3847 p->sadb_address_len = PFKEY_UNIT64(len);
3848 p->sadb_address_exttype = exttype;
3849 p->sadb_address_proto = ul_proto;
3850 if (prefixlen == FULLMASK) {
3851 switch (saddr->sa_family) {
3852 case AF_INET:
3853 prefixlen = sizeof(struct in_addr) << 3;
3854 break;
3855 case AF_INET6:
3856 prefixlen = sizeof(struct in6_addr) << 3;
3857 break;
3858 default:
3859 ; /*XXX*/
3860 }
3861 }
3862 p->sadb_address_prefixlen = prefixlen;
3863 p->sadb_address_reserved = 0;
3864
3865 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3866 saddr, saddr->sa_len);
3867
3868 return m;
3869 }
3870
3871 #if 0
3872 /*
3873 * set data into sadb_ident.
3874 */
3875 static struct mbuf *
3876 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3877 void *string, int stringlen, u_int64_t id)
3878 {
3879 struct mbuf *m;
3880 struct sadb_ident *p;
3881 size_t len;
3882
3883 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3884 m = key_alloc_mbuf(len);
3885 if (!m || m->m_next) { /*XXX*/
3886 if (m)
3887 m_freem(m);
3888 return NULL;
3889 }
3890
3891 p = mtod(m, struct sadb_ident *);
3892
3893 memset(p, 0, len);
3894 p->sadb_ident_len = PFKEY_UNIT64(len);
3895 p->sadb_ident_exttype = exttype;
3896 p->sadb_ident_type = idtype;
3897 p->sadb_ident_reserved = 0;
3898 p->sadb_ident_id = id;
3899
3900 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3901 string, stringlen);
3902
3903 return m;
3904 }
3905 #endif
3906
3907 /*
3908 * set data into sadb_x_sa2.
3909 */
3910 static struct mbuf *
3911 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3912 {
3913 struct mbuf *m;
3914 struct sadb_x_sa2 *p;
3915 size_t len;
3916
3917 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3918 m = key_alloc_mbuf(len);
3919 if (!m || m->m_next) { /*XXX*/
3920 if (m)
3921 m_freem(m);
3922 return NULL;
3923 }
3924
3925 p = mtod(m, struct sadb_x_sa2 *);
3926
3927 memset(p, 0, len);
3928 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3929 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3930 p->sadb_x_sa2_mode = mode;
3931 p->sadb_x_sa2_reserved1 = 0;
3932 p->sadb_x_sa2_reserved2 = 0;
3933 p->sadb_x_sa2_sequence = seq;
3934 p->sadb_x_sa2_reqid = reqid;
3935
3936 return m;
3937 }
3938
3939 /*
3940 * set data into sadb_x_policy
3941 */
3942 static struct mbuf *
3943 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3944 {
3945 struct mbuf *m;
3946 struct sadb_x_policy *p;
3947 size_t len;
3948
3949 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3950 m = key_alloc_mbuf(len);
3951 if (!m || m->m_next) { /*XXX*/
3952 if (m)
3953 m_freem(m);
3954 return NULL;
3955 }
3956
3957 p = mtod(m, struct sadb_x_policy *);
3958
3959 memset(p, 0, len);
3960 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3961 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3962 p->sadb_x_policy_type = type;
3963 p->sadb_x_policy_dir = dir;
3964 p->sadb_x_policy_id = id;
3965
3966 return m;
3967 }
3968
3969 /* %%% utilities */
3970 /*
3971 * copy a buffer into the new buffer allocated.
3972 */
3973 static void *
3974 key_newbuf(const void *src, u_int len)
3975 {
3976 void *new;
3977
3978 new = kmem_alloc(len, KM_SLEEP);
3979 memcpy(new, src, len);
3980
3981 return new;
3982 }
3983
3984 /* compare my own address
3985 * OUT: 1: true, i.e. my address.
3986 * 0: false
3987 */
3988 int
3989 key_ismyaddr(const struct sockaddr *sa)
3990 {
3991 #ifdef INET
3992 const struct sockaddr_in *sin;
3993 const struct in_ifaddr *ia;
3994 int s;
3995 #endif
3996
3997 KASSERT(sa != NULL);
3998
3999 switch (sa->sa_family) {
4000 #ifdef INET
4001 case AF_INET:
4002 sin = (const struct sockaddr_in *)sa;
4003 s = pserialize_read_enter();
4004 IN_ADDRLIST_READER_FOREACH(ia) {
4005 if (sin->sin_family == ia->ia_addr.sin_family &&
4006 sin->sin_len == ia->ia_addr.sin_len &&
4007 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4008 {
4009 pserialize_read_exit(s);
4010 return 1;
4011 }
4012 }
4013 pserialize_read_exit(s);
4014 break;
4015 #endif
4016 #ifdef INET6
4017 case AF_INET6:
4018 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4019 #endif
4020 }
4021
4022 return 0;
4023 }
4024
4025 #ifdef INET6
4026 /*
4027 * compare my own address for IPv6.
4028 * 1: ours
4029 * 0: other
4030 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4031 */
4032 #include <netinet6/in6_var.h>
4033
4034 static int
4035 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4036 {
4037 struct in6_ifaddr *ia;
4038 int s;
4039 struct psref psref;
4040 int bound;
4041 int ours = 1;
4042
4043 bound = curlwp_bind();
4044 s = pserialize_read_enter();
4045 IN6_ADDRLIST_READER_FOREACH(ia) {
4046 bool ingroup;
4047
4048 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4049 (const struct sockaddr *)&ia->ia_addr, 0)) {
4050 pserialize_read_exit(s);
4051 goto ours;
4052 }
4053 ia6_acquire(ia, &psref);
4054 pserialize_read_exit(s);
4055
4056 /*
4057 * XXX Multicast
4058 * XXX why do we care about multlicast here while we don't care
4059 * about IPv4 multicast??
4060 * XXX scope
4061 */
4062 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4063 if (ingroup) {
4064 ia6_release(ia, &psref);
4065 goto ours;
4066 }
4067
4068 s = pserialize_read_enter();
4069 ia6_release(ia, &psref);
4070 }
4071 pserialize_read_exit(s);
4072
4073 /* loopback, just for safety */
4074 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4075 goto ours;
4076
4077 ours = 0;
4078 ours:
4079 curlwp_bindx(bound);
4080
4081 return ours;
4082 }
4083 #endif /*INET6*/
4084
4085 /*
4086 * compare two secasindex structure.
4087 * flag can specify to compare 2 saidxes.
4088 * compare two secasindex structure without both mode and reqid.
4089 * don't compare port.
4090 * IN:
4091 * saidx0: source, it can be in SAD.
4092 * saidx1: object.
4093 * OUT:
4094 * 1 : equal
4095 * 0 : not equal
4096 */
4097 static int
4098 key_saidx_match(
4099 const struct secasindex *saidx0,
4100 const struct secasindex *saidx1,
4101 int flag)
4102 {
4103 int chkport;
4104 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4105
4106 KASSERT(saidx0 != NULL);
4107 KASSERT(saidx1 != NULL);
4108
4109 /* sanity */
4110 if (saidx0->proto != saidx1->proto)
4111 return 0;
4112
4113 if (flag == CMP_EXACTLY) {
4114 if (saidx0->mode != saidx1->mode)
4115 return 0;
4116 if (saidx0->reqid != saidx1->reqid)
4117 return 0;
4118 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4119 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4120 return 0;
4121 } else {
4122
4123 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4124 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4125 /*
4126 * If reqid of SPD is non-zero, unique SA is required.
4127 * The result must be of same reqid in this case.
4128 */
4129 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4130 return 0;
4131 }
4132
4133 if (flag == CMP_MODE_REQID) {
4134 if (saidx0->mode != IPSEC_MODE_ANY &&
4135 saidx0->mode != saidx1->mode)
4136 return 0;
4137 }
4138
4139
4140 sa0src = &saidx0->src.sa;
4141 sa0dst = &saidx0->dst.sa;
4142 sa1src = &saidx1->src.sa;
4143 sa1dst = &saidx1->dst.sa;
4144 /*
4145 * If NAT-T is enabled, check ports for tunnel mode.
4146 * Don't do it for transport mode, as there is no
4147 * port information available in the SP.
4148 * Also don't check ports if they are set to zero
4149 * in the SPD: This means we have a non-generated
4150 * SPD which can't know UDP ports.
4151 */
4152 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4153 chkport = PORT_LOOSE;
4154 else
4155 chkport = PORT_NONE;
4156
4157 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4158 return 0;
4159 }
4160 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4161 return 0;
4162 }
4163 }
4164
4165 return 1;
4166 }
4167
4168 /*
4169 * compare two secindex structure exactly.
4170 * IN:
4171 * spidx0: source, it is often in SPD.
4172 * spidx1: object, it is often from PFKEY message.
4173 * OUT:
4174 * 1 : equal
4175 * 0 : not equal
4176 */
4177 static int
4178 key_spidx_match_exactly(
4179 const struct secpolicyindex *spidx0,
4180 const struct secpolicyindex *spidx1)
4181 {
4182
4183 KASSERT(spidx0 != NULL);
4184 KASSERT(spidx1 != NULL);
4185
4186 /* sanity */
4187 if (spidx0->prefs != spidx1->prefs ||
4188 spidx0->prefd != spidx1->prefd ||
4189 spidx0->ul_proto != spidx1->ul_proto)
4190 return 0;
4191
4192 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4193 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4194 }
4195
4196 /*
4197 * compare two secindex structure with mask.
4198 * IN:
4199 * spidx0: source, it is often in SPD.
4200 * spidx1: object, it is often from IP header.
4201 * OUT:
4202 * 1 : equal
4203 * 0 : not equal
4204 */
4205 static int
4206 key_spidx_match_withmask(
4207 const struct secpolicyindex *spidx0,
4208 const struct secpolicyindex *spidx1)
4209 {
4210
4211 KASSERT(spidx0 != NULL);
4212 KASSERT(spidx1 != NULL);
4213
4214 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4215 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4216 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4217 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4218 return 0;
4219
4220 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4221 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4222 spidx0->ul_proto != spidx1->ul_proto)
4223 return 0;
4224
4225 switch (spidx0->src.sa.sa_family) {
4226 case AF_INET:
4227 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4228 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4229 return 0;
4230 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4231 &spidx1->src.sin.sin_addr, spidx0->prefs))
4232 return 0;
4233 break;
4234 case AF_INET6:
4235 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4236 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4237 return 0;
4238 /*
4239 * scope_id check. if sin6_scope_id is 0, we regard it
4240 * as a wildcard scope, which matches any scope zone ID.
4241 */
4242 if (spidx0->src.sin6.sin6_scope_id &&
4243 spidx1->src.sin6.sin6_scope_id &&
4244 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4245 return 0;
4246 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4247 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4248 return 0;
4249 break;
4250 default:
4251 /* XXX */
4252 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4253 return 0;
4254 break;
4255 }
4256
4257 switch (spidx0->dst.sa.sa_family) {
4258 case AF_INET:
4259 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4260 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4261 return 0;
4262 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4263 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4264 return 0;
4265 break;
4266 case AF_INET6:
4267 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4268 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4269 return 0;
4270 /*
4271 * scope_id check. if sin6_scope_id is 0, we regard it
4272 * as a wildcard scope, which matches any scope zone ID.
4273 */
4274 if (spidx0->src.sin6.sin6_scope_id &&
4275 spidx1->src.sin6.sin6_scope_id &&
4276 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4277 return 0;
4278 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4279 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4280 return 0;
4281 break;
4282 default:
4283 /* XXX */
4284 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4285 return 0;
4286 break;
4287 }
4288
4289 /* XXX Do we check other field ? e.g. flowinfo */
4290
4291 return 1;
4292 }
4293
4294 /* returns 0 on match */
4295 static int
4296 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4297 {
4298 switch (howport) {
4299 case PORT_NONE:
4300 return 0;
4301 case PORT_LOOSE:
4302 if (port1 == 0 || port2 == 0)
4303 return 0;
4304 /*FALLTHROUGH*/
4305 case PORT_STRICT:
4306 if (port1 != port2) {
4307 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4308 "port fail %d != %d\n", port1, port2);
4309 return 1;
4310 }
4311 return 0;
4312 default:
4313 KASSERT(0);
4314 return 1;
4315 }
4316 }
4317
4318 /* returns 1 on match */
4319 static int
4320 key_sockaddr_match(
4321 const struct sockaddr *sa1,
4322 const struct sockaddr *sa2,
4323 int howport)
4324 {
4325 const struct sockaddr_in *sin1, *sin2;
4326 const struct sockaddr_in6 *sin61, *sin62;
4327
4328 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4329 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4330 "fam/len fail %d != %d || %d != %d\n",
4331 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4332 sa2->sa_len);
4333 return 0;
4334 }
4335
4336 switch (sa1->sa_family) {
4337 case AF_INET:
4338 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4339 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4340 "len fail %d != %zu\n",
4341 sa1->sa_len, sizeof(struct sockaddr_in));
4342 return 0;
4343 }
4344 sin1 = (const struct sockaddr_in *)sa1;
4345 sin2 = (const struct sockaddr_in *)sa2;
4346 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4347 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4348 "addr fail %#x != %#x\n",
4349 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4350 return 0;
4351 }
4352 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4353 return 0;
4354 }
4355 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4356 "addr success %#x[%d] == %#x[%d]\n",
4357 sin1->sin_addr.s_addr, sin1->sin_port,
4358 sin2->sin_addr.s_addr, sin2->sin_port);
4359 break;
4360 case AF_INET6:
4361 sin61 = (const struct sockaddr_in6 *)sa1;
4362 sin62 = (const struct sockaddr_in6 *)sa2;
4363 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4364 return 0; /*EINVAL*/
4365
4366 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4367 return 0;
4368 }
4369 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4370 return 0;
4371 }
4372 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4373 return 0;
4374 }
4375 break;
4376 default:
4377 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4378 return 0;
4379 break;
4380 }
4381
4382 return 1;
4383 }
4384
4385 /*
4386 * compare two buffers with mask.
4387 * IN:
4388 * addr1: source
4389 * addr2: object
4390 * bits: Number of bits to compare
4391 * OUT:
4392 * 1 : equal
4393 * 0 : not equal
4394 */
4395 static int
4396 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4397 {
4398 const unsigned char *p1 = a1;
4399 const unsigned char *p2 = a2;
4400
4401 /* XXX: This could be considerably faster if we compare a word
4402 * at a time, but it is complicated on LSB Endian machines */
4403
4404 /* Handle null pointers */
4405 if (p1 == NULL || p2 == NULL)
4406 return (p1 == p2);
4407
4408 while (bits >= 8) {
4409 if (*p1++ != *p2++)
4410 return 0;
4411 bits -= 8;
4412 }
4413
4414 if (bits > 0) {
4415 u_int8_t mask = ~((1<<(8-bits))-1);
4416 if ((*p1 & mask) != (*p2 & mask))
4417 return 0;
4418 }
4419 return 1; /* Match! */
4420 }
4421
4422 static void
4423 key_timehandler_spd(time_t now)
4424 {
4425 u_int dir;
4426 struct secpolicy *sp, *nextsp;
4427
4428 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4429 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4430 if (sp->state == IPSEC_SPSTATE_DEAD) {
4431 key_sp_unlink(sp); /*XXX*/
4432
4433 /* 'sp' dead; continue transfers to
4434 * 'sp = nextsp'
4435 */
4436 continue;
4437 }
4438
4439 if (sp->lifetime == 0 && sp->validtime == 0)
4440 continue;
4441
4442 /* the deletion will occur next time */
4443 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4444 (sp->validtime && now - sp->lastused > sp->validtime)) {
4445 key_sp_dead(sp);
4446 key_spdexpire(sp);
4447 continue;
4448 }
4449 }
4450 }
4451 }
4452
4453 static void
4454 key_timehandler_sad(time_t now)
4455 {
4456 struct secashead *sah, *nextsah;
4457 struct secasvar *sav, *nextsav;
4458
4459 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4460 /* if sah has been dead, then delete it and process next sah. */
4461 if (sah->state == SADB_SASTATE_DEAD) {
4462 key_delsah(sah);
4463 continue;
4464 }
4465
4466 /* if LARVAL entry doesn't become MATURE, delete it. */
4467 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4468 chain, nextsav) {
4469 if (now - sav->created > key_larval_lifetime) {
4470 KEY_FREESAV(&sav);
4471 }
4472 }
4473
4474 /*
4475 * check MATURE entry to start to send expire message
4476 * whether or not.
4477 */
4478 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4479 chain, nextsav) {
4480 /* we don't need to check. */
4481 if (sav->lft_s == NULL)
4482 continue;
4483
4484 /* sanity check */
4485 KASSERT(sav->lft_c != NULL);
4486
4487 /* check SOFT lifetime */
4488 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4489 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4490 /*
4491 * check SA to be used whether or not.
4492 * when SA hasn't been used, delete it.
4493 */
4494 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4495 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4496 KEY_FREESAV(&sav);
4497 } else {
4498 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4499 /*
4500 * XXX If we keep to send expire
4501 * message in the status of
4502 * DYING. Do remove below code.
4503 */
4504 key_expire(sav);
4505 }
4506 }
4507 /* check SOFT lifetime by bytes */
4508 /*
4509 * XXX I don't know the way to delete this SA
4510 * when new SA is installed. Caution when it's
4511 * installed too big lifetime by time.
4512 */
4513 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4514 sav->lft_s->sadb_lifetime_bytes <
4515 sav->lft_c->sadb_lifetime_bytes) {
4516
4517 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4518 /*
4519 * XXX If we keep to send expire
4520 * message in the status of
4521 * DYING. Do remove below code.
4522 */
4523 key_expire(sav);
4524 }
4525 }
4526
4527 /* check DYING entry to change status to DEAD. */
4528 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4529 chain, nextsav) {
4530 /* we don't need to check. */
4531 if (sav->lft_h == NULL)
4532 continue;
4533
4534 /* sanity check */
4535 KASSERT(sav->lft_c != NULL);
4536
4537 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4538 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4539 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4540 KEY_FREESAV(&sav);
4541 }
4542 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4543 else if (sav->lft_s != NULL
4544 && sav->lft_s->sadb_lifetime_addtime != 0
4545 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4546 /*
4547 * XXX: should be checked to be
4548 * installed the valid SA.
4549 */
4550
4551 /*
4552 * If there is no SA then sending
4553 * expire message.
4554 */
4555 key_expire(sav);
4556 }
4557 #endif
4558 /* check HARD lifetime by bytes */
4559 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4560 sav->lft_h->sadb_lifetime_bytes <
4561 sav->lft_c->sadb_lifetime_bytes) {
4562 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4563 KEY_FREESAV(&sav);
4564 }
4565 }
4566
4567 /* delete entry in DEAD */
4568 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4569 chain, nextsav) {
4570 /* sanity check */
4571 if (sav->state != SADB_SASTATE_DEAD) {
4572 IPSECLOG(LOG_DEBUG,
4573 "invalid sav->state (queue: %d SA: %d): "
4574 "kill it anyway\n",
4575 SADB_SASTATE_DEAD, sav->state);
4576 }
4577
4578 /*
4579 * do not call key_freesav() here.
4580 * sav should already be freed, and sav->refcnt
4581 * shows other references to sav
4582 * (such as from SPD).
4583 */
4584 }
4585 }
4586 }
4587
4588 static void
4589 key_timehandler_acq(time_t now)
4590 {
4591 #ifndef IPSEC_NONBLOCK_ACQUIRE
4592 struct secacq *acq, *nextacq;
4593
4594 restart:
4595 mutex_enter(&key_mtx);
4596 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4597 if (now - acq->created > key_blockacq_lifetime) {
4598 LIST_REMOVE(acq, chain);
4599 mutex_exit(&key_mtx);
4600 kmem_free(acq, sizeof(*acq));
4601 goto restart;
4602 }
4603 }
4604 mutex_exit(&key_mtx);
4605 #endif
4606 }
4607
4608 static void
4609 key_timehandler_spacq(time_t now)
4610 {
4611 #ifdef notyet
4612 struct secspacq *acq, *nextacq;
4613
4614 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4615 if (now - acq->created > key_blockacq_lifetime) {
4616 KASSERT(__LIST_CHAINED(acq));
4617 LIST_REMOVE(acq, chain);
4618 kmem_free(acq, sizeof(*acq));
4619 }
4620 }
4621 #endif
4622 }
4623
4624 /*
4625 * time handler.
4626 * scanning SPD and SAD to check status for each entries,
4627 * and do to remove or to expire.
4628 */
4629 static void
4630 key_timehandler_work(struct work *wk, void *arg)
4631 {
4632 int s;
4633 time_t now = time_uptime;
4634
4635 s = splsoftnet();
4636 mutex_enter(softnet_lock);
4637
4638 key_timehandler_spd(now);
4639 key_timehandler_sad(now);
4640 key_timehandler_acq(now);
4641 key_timehandler_spacq(now);
4642
4643 /* do exchange to tick time !! */
4644 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4645
4646 mutex_exit(softnet_lock);
4647 splx(s);
4648 return;
4649 }
4650
4651 static void
4652 key_timehandler(void *arg)
4653 {
4654
4655 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4656 }
4657
4658 u_long
4659 key_random(void)
4660 {
4661 u_long value;
4662
4663 key_randomfill(&value, sizeof(value));
4664 return value;
4665 }
4666
4667 void
4668 key_randomfill(void *p, size_t l)
4669 {
4670
4671 cprng_fast(p, l);
4672 }
4673
4674 /*
4675 * map SADB_SATYPE_* to IPPROTO_*.
4676 * if satype == SADB_SATYPE then satype is mapped to ~0.
4677 * OUT:
4678 * 0: invalid satype.
4679 */
4680 static u_int16_t
4681 key_satype2proto(u_int8_t satype)
4682 {
4683 switch (satype) {
4684 case SADB_SATYPE_UNSPEC:
4685 return IPSEC_PROTO_ANY;
4686 case SADB_SATYPE_AH:
4687 return IPPROTO_AH;
4688 case SADB_SATYPE_ESP:
4689 return IPPROTO_ESP;
4690 case SADB_X_SATYPE_IPCOMP:
4691 return IPPROTO_IPCOMP;
4692 case SADB_X_SATYPE_TCPSIGNATURE:
4693 return IPPROTO_TCP;
4694 default:
4695 return 0;
4696 }
4697 /* NOTREACHED */
4698 }
4699
4700 /*
4701 * map IPPROTO_* to SADB_SATYPE_*
4702 * OUT:
4703 * 0: invalid protocol type.
4704 */
4705 static u_int8_t
4706 key_proto2satype(u_int16_t proto)
4707 {
4708 switch (proto) {
4709 case IPPROTO_AH:
4710 return SADB_SATYPE_AH;
4711 case IPPROTO_ESP:
4712 return SADB_SATYPE_ESP;
4713 case IPPROTO_IPCOMP:
4714 return SADB_X_SATYPE_IPCOMP;
4715 case IPPROTO_TCP:
4716 return SADB_X_SATYPE_TCPSIGNATURE;
4717 default:
4718 return 0;
4719 }
4720 /* NOTREACHED */
4721 }
4722
4723 static int
4724 key_setsecasidx(int proto, int mode, int reqid,
4725 const struct sockaddr *src, const struct sockaddr *dst,
4726 struct secasindex * saidx)
4727 {
4728 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4729 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4730
4731 /* sa len safety check */
4732 if (key_checksalen(src_u) != 0)
4733 return -1;
4734 if (key_checksalen(dst_u) != 0)
4735 return -1;
4736
4737 memset(saidx, 0, sizeof(*saidx));
4738 saidx->proto = proto;
4739 saidx->mode = mode;
4740 saidx->reqid = reqid;
4741 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4742 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4743
4744 key_porttosaddr(&((saidx)->src), 0);
4745 key_porttosaddr(&((saidx)->dst), 0);
4746 return 0;
4747 }
4748
4749 static void
4750 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4751 const struct sadb_msghdr *mhp)
4752 {
4753 const struct sadb_address *src0, *dst0;
4754 const struct sockaddr *src, *dst;
4755 const struct sadb_x_policy *xpl0;
4756
4757 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4758 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4759 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4760 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4761 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4762
4763 memset(spidx, 0, sizeof(*spidx));
4764 spidx->dir = xpl0->sadb_x_policy_dir;
4765 spidx->prefs = src0->sadb_address_prefixlen;
4766 spidx->prefd = dst0->sadb_address_prefixlen;
4767 spidx->ul_proto = src0->sadb_address_proto;
4768 /* XXX boundary check against sa_len */
4769 memcpy(&spidx->src, src, src->sa_len);
4770 memcpy(&spidx->dst, dst, dst->sa_len);
4771 }
4772
4773 /* %%% PF_KEY */
4774 /*
4775 * SADB_GETSPI processing is to receive
4776 * <base, (SA2), src address, dst address, (SPI range)>
4777 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4778 * tree with the status of LARVAL, and send
4779 * <base, SA(*), address(SD)>
4780 * to the IKMPd.
4781 *
4782 * IN: mhp: pointer to the pointer to each header.
4783 * OUT: NULL if fail.
4784 * other if success, return pointer to the message to send.
4785 */
4786 static int
4787 key_api_getspi(struct socket *so, struct mbuf *m,
4788 const struct sadb_msghdr *mhp)
4789 {
4790 const struct sockaddr *src, *dst;
4791 struct secasindex saidx;
4792 struct secashead *newsah;
4793 struct secasvar *newsav;
4794 u_int8_t proto;
4795 u_int32_t spi;
4796 u_int8_t mode;
4797 u_int16_t reqid;
4798 int error;
4799
4800 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4801 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4802 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4803 return key_senderror(so, m, EINVAL);
4804 }
4805 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4806 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4807 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4808 return key_senderror(so, m, EINVAL);
4809 }
4810 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4811 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4812 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4813 } else {
4814 mode = IPSEC_MODE_ANY;
4815 reqid = 0;
4816 }
4817
4818 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4819 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4820
4821 /* map satype to proto */
4822 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4823 if (proto == 0) {
4824 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4825 return key_senderror(so, m, EINVAL);
4826 }
4827
4828
4829 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4830 if (error != 0)
4831 return key_senderror(so, m, EINVAL);
4832
4833 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4834 if (error != 0)
4835 return key_senderror(so, m, EINVAL);
4836
4837 /* SPI allocation */
4838 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4839 &saidx);
4840 if (spi == 0)
4841 return key_senderror(so, m, EINVAL);
4842
4843 /* get a SA index */
4844 newsah = key_getsah(&saidx, CMP_REQID);
4845 if (newsah == NULL) {
4846 /* create a new SA index */
4847 newsah = key_newsah(&saidx);
4848 if (newsah == NULL) {
4849 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4850 return key_senderror(so, m, ENOBUFS);
4851 }
4852 }
4853
4854 /* get a new SA */
4855 /* XXX rewrite */
4856 newsav = KEY_NEWSAV(m, mhp, &error);
4857 if (newsav == NULL) {
4858 /* XXX don't free new SA index allocated in above. */
4859 return key_senderror(so, m, error);
4860 }
4861
4862 /* set spi */
4863 newsav->spi = htonl(spi);
4864
4865 /* add to satree */
4866 newsav->refcnt = 1;
4867 newsav->sah = newsah;
4868 newsav->state = SADB_SASTATE_LARVAL;
4869 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_LARVAL], newsav,
4870 secasvar, chain);
4871
4872 #ifndef IPSEC_NONBLOCK_ACQUIRE
4873 /* delete the entry in acqtree */
4874 if (mhp->msg->sadb_msg_seq != 0) {
4875 struct secacq *acq;
4876 mutex_enter(&key_mtx);
4877 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4878 if (acq != NULL) {
4879 /* reset counter in order to deletion by timehandler. */
4880 acq->created = time_uptime;
4881 acq->count = 0;
4882 }
4883 mutex_exit(&key_mtx);
4884 }
4885 #endif
4886
4887 {
4888 struct mbuf *n, *nn;
4889 struct sadb_sa *m_sa;
4890 int off, len;
4891
4892 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4893 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4894
4895 /* create new sadb_msg to reply. */
4896 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4897 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4898
4899 MGETHDR(n, M_DONTWAIT, MT_DATA);
4900 if (len > MHLEN) {
4901 MCLGET(n, M_DONTWAIT);
4902 if ((n->m_flags & M_EXT) == 0) {
4903 m_freem(n);
4904 n = NULL;
4905 }
4906 }
4907 if (!n)
4908 return key_senderror(so, m, ENOBUFS);
4909
4910 n->m_len = len;
4911 n->m_next = NULL;
4912 off = 0;
4913
4914 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4915 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4916
4917 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4918 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4919 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4920 m_sa->sadb_sa_spi = htonl(spi);
4921 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4922
4923 KASSERTMSG(off == len, "length inconsistency");
4924
4925 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4926 SADB_EXT_ADDRESS_DST);
4927 if (!n->m_next) {
4928 m_freem(n);
4929 return key_senderror(so, m, ENOBUFS);
4930 }
4931
4932 if (n->m_len < sizeof(struct sadb_msg)) {
4933 n = m_pullup(n, sizeof(struct sadb_msg));
4934 if (n == NULL)
4935 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4936 }
4937
4938 n->m_pkthdr.len = 0;
4939 for (nn = n; nn; nn = nn->m_next)
4940 n->m_pkthdr.len += nn->m_len;
4941
4942 key_fill_replymsg(n, newsav->seq);
4943
4944 m_freem(m);
4945 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4946 }
4947 }
4948
4949 /*
4950 * allocating new SPI
4951 * called by key_api_getspi().
4952 * OUT:
4953 * 0: failure.
4954 * others: success.
4955 */
4956 static u_int32_t
4957 key_do_getnewspi(const struct sadb_spirange *spirange,
4958 const struct secasindex *saidx)
4959 {
4960 u_int32_t newspi;
4961 u_int32_t spmin, spmax;
4962 int count = key_spi_trycnt;
4963
4964 /* set spi range to allocate */
4965 if (spirange != NULL) {
4966 spmin = spirange->sadb_spirange_min;
4967 spmax = spirange->sadb_spirange_max;
4968 } else {
4969 spmin = key_spi_minval;
4970 spmax = key_spi_maxval;
4971 }
4972 /* IPCOMP needs 2-byte SPI */
4973 if (saidx->proto == IPPROTO_IPCOMP) {
4974 u_int32_t t;
4975 if (spmin >= 0x10000)
4976 spmin = 0xffff;
4977 if (spmax >= 0x10000)
4978 spmax = 0xffff;
4979 if (spmin > spmax) {
4980 t = spmin; spmin = spmax; spmax = t;
4981 }
4982 }
4983
4984 if (spmin == spmax) {
4985 if (key_checkspidup(saidx, htonl(spmin))) {
4986 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
4987 return 0;
4988 }
4989
4990 count--; /* taking one cost. */
4991 newspi = spmin;
4992
4993 } else {
4994
4995 /* init SPI */
4996 newspi = 0;
4997
4998 /* when requesting to allocate spi ranged */
4999 while (count--) {
5000 /* generate pseudo-random SPI value ranged. */
5001 newspi = spmin + (key_random() % (spmax - spmin + 1));
5002
5003 if (!key_checkspidup(saidx, htonl(newspi)))
5004 break;
5005 }
5006
5007 if (count == 0 || newspi == 0) {
5008 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5009 return 0;
5010 }
5011 }
5012
5013 /* statistics */
5014 keystat.getspi_count =
5015 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5016
5017 return newspi;
5018 }
5019
5020 static int
5021 key_handle_natt_info(struct secasvar *sav,
5022 const struct sadb_msghdr *mhp)
5023 {
5024 const char *msg = "?" ;
5025 struct sadb_x_nat_t_type *type;
5026 struct sadb_x_nat_t_port *sport, *dport;
5027 struct sadb_address *iaddr, *raddr;
5028 struct sadb_x_nat_t_frag *frag;
5029
5030 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5031 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5032 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5033 return 0;
5034
5035 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5036 msg = "TYPE";
5037 goto bad;
5038 }
5039
5040 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5041 msg = "SPORT";
5042 goto bad;
5043 }
5044
5045 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5046 msg = "DPORT";
5047 goto bad;
5048 }
5049
5050 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5051 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5052 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5053 msg = "OAI";
5054 goto bad;
5055 }
5056 }
5057
5058 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5059 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5060 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5061 msg = "OAR";
5062 goto bad;
5063 }
5064 }
5065
5066 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5067 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5068 msg = "FRAG";
5069 goto bad;
5070 }
5071 }
5072
5073 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5074 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5075 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5076 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5077 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5078 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5079
5080 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5081 type->sadb_x_nat_t_type_type,
5082 ntohs(sport->sadb_x_nat_t_port_port),
5083 ntohs(dport->sadb_x_nat_t_port_port));
5084
5085 sav->natt_type = type->sadb_x_nat_t_type_type;
5086 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5087 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5088 if (frag)
5089 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5090 else
5091 sav->esp_frag = IP_MAXPACKET;
5092
5093 return 0;
5094 bad:
5095 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5096 __USE(msg);
5097 return -1;
5098 }
5099
5100 /* Just update the IPSEC_NAT_T ports if present */
5101 static int
5102 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5103 const struct sadb_msghdr *mhp)
5104 {
5105 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5106 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5107 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5108 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5109
5110 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5111 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5112 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5113 struct sadb_x_nat_t_type *type;
5114 struct sadb_x_nat_t_port *sport;
5115 struct sadb_x_nat_t_port *dport;
5116
5117 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5118 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5119 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5120 IPSECLOG(LOG_DEBUG, "invalid message\n");
5121 return -1;
5122 }
5123
5124 type = (struct sadb_x_nat_t_type *)
5125 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5126 sport = (struct sadb_x_nat_t_port *)
5127 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5128 dport = (struct sadb_x_nat_t_port *)
5129 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5130
5131 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5132 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5133
5134 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5135 type->sadb_x_nat_t_type_type,
5136 ntohs(sport->sadb_x_nat_t_port_port),
5137 ntohs(dport->sadb_x_nat_t_port_port));
5138 }
5139
5140 return 0;
5141 }
5142
5143
5144 /*
5145 * SADB_UPDATE processing
5146 * receive
5147 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5148 * key(AE), (identity(SD),) (sensitivity)>
5149 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5150 * and send
5151 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5152 * (identity(SD),) (sensitivity)>
5153 * to the ikmpd.
5154 *
5155 * m will always be freed.
5156 */
5157 static int
5158 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5159 {
5160 struct sadb_sa *sa0;
5161 const struct sockaddr *src, *dst;
5162 struct secasindex saidx;
5163 struct secashead *sah;
5164 struct secasvar *sav, *newsav;
5165 u_int16_t proto;
5166 u_int8_t mode;
5167 u_int16_t reqid;
5168 int error;
5169
5170 /* map satype to proto */
5171 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5172 if (proto == 0) {
5173 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5174 return key_senderror(so, m, EINVAL);
5175 }
5176
5177 if (mhp->ext[SADB_EXT_SA] == NULL ||
5178 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5179 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5180 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5181 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5182 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5183 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5184 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5185 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5186 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5187 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5188 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5189 return key_senderror(so, m, EINVAL);
5190 }
5191 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5192 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5193 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5194 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5195 return key_senderror(so, m, EINVAL);
5196 }
5197 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5198 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5199 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5200 } else {
5201 mode = IPSEC_MODE_ANY;
5202 reqid = 0;
5203 }
5204 /* XXX boundary checking for other extensions */
5205
5206 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5207 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5208 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5209
5210 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5211 if (error != 0)
5212 return key_senderror(so, m, EINVAL);
5213
5214 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5215 if (error != 0)
5216 return key_senderror(so, m, EINVAL);
5217
5218 /* get a SA header */
5219 sah = key_getsah(&saidx, CMP_REQID);
5220 if (sah == NULL) {
5221 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5222 return key_senderror(so, m, ENOENT);
5223 }
5224
5225 /* set spidx if there */
5226 /* XXX rewrite */
5227 error = key_setident(sah, m, mhp);
5228 if (error)
5229 return key_senderror(so, m, error);
5230
5231 /* find a SA with sequence number. */
5232 #ifdef IPSEC_DOSEQCHECK
5233 if (mhp->msg->sadb_msg_seq != 0) {
5234 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5235 if (sav == NULL) {
5236 IPSECLOG(LOG_DEBUG,
5237 "no larval SA with sequence %u exists.\n",
5238 mhp->msg->sadb_msg_seq);
5239 return key_senderror(so, m, ENOENT);
5240 }
5241 }
5242 #else
5243 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5244 if (sav == NULL) {
5245 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5246 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5247 return key_senderror(so, m, EINVAL);
5248 }
5249 #endif
5250
5251 /* validity check */
5252 if (sav->sah->saidx.proto != proto) {
5253 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5254 sav->sah->saidx.proto, proto);
5255 error = EINVAL;
5256 goto error;
5257 }
5258 #ifdef IPSEC_DOSEQCHECK
5259 if (sav->spi != sa0->sadb_sa_spi) {
5260 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5261 (u_int32_t)ntohl(sav->spi),
5262 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5263 error = EINVAL;
5264 goto error;
5265 }
5266 #endif
5267 if (sav->pid != mhp->msg->sadb_msg_pid) {
5268 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5269 sav->pid, mhp->msg->sadb_msg_pid);
5270 error = EINVAL;
5271 goto error;
5272 }
5273
5274 /*
5275 * Allocate a new SA instead of modifying the existing SA directly
5276 * to avoid race conditions.
5277 */
5278 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5279
5280 /* copy sav values */
5281 newsav->spi = sav->spi;
5282 newsav->seq = sav->seq;
5283 newsav->created = sav->created;
5284 newsav->pid = sav->pid;
5285 newsav->sah = sav->sah;
5286
5287 error = key_setsaval(newsav, m, mhp);
5288 if (error) {
5289 key_delsav(newsav);
5290 goto error;
5291 }
5292
5293 error = key_handle_natt_info(newsav, mhp);
5294 if (error != 0) {
5295 key_delsav(newsav);
5296 goto error;
5297 }
5298
5299 error = key_init_xform(newsav);
5300 if (error != 0) {
5301 key_delsav(newsav);
5302 goto error;
5303 }
5304
5305 /* add to satree */
5306 newsav->refcnt = 1;
5307 newsav->state = SADB_SASTATE_MATURE;
5308 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_MATURE], newsav,
5309 secasvar, chain);
5310
5311 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5312 KEY_FREESAV(&sav);
5313 KEY_FREESAV(&sav);
5314
5315 {
5316 struct mbuf *n;
5317
5318 /* set msg buf from mhp */
5319 n = key_getmsgbuf_x1(m, mhp);
5320 if (n == NULL) {
5321 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5322 return key_senderror(so, m, ENOBUFS);
5323 }
5324
5325 m_freem(m);
5326 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5327 }
5328 error:
5329 KEY_FREESAV(&sav);
5330 return key_senderror(so, m, error);
5331 }
5332
5333 /*
5334 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5335 * only called by key_api_update().
5336 * OUT:
5337 * NULL : not found
5338 * others : found, pointer to a SA.
5339 */
5340 #ifdef IPSEC_DOSEQCHECK
5341 static struct secasvar *
5342 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5343 {
5344 struct secasvar *sav;
5345 u_int state;
5346
5347 state = SADB_SASTATE_LARVAL;
5348
5349 /* search SAD with sequence number ? */
5350 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5351
5352 KEY_CHKSASTATE(state, sav->state);
5353
5354 if (sav->seq == seq) {
5355 SA_ADDREF(sav);
5356 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5357 "DP cause refcnt++:%d SA:%p\n",
5358 sav->refcnt, sav);
5359 return sav;
5360 }
5361 }
5362
5363 return NULL;
5364 }
5365 #endif
5366
5367 /*
5368 * SADB_ADD processing
5369 * add an entry to SA database, when received
5370 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5371 * key(AE), (identity(SD),) (sensitivity)>
5372 * from the ikmpd,
5373 * and send
5374 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5375 * (identity(SD),) (sensitivity)>
5376 * to the ikmpd.
5377 *
5378 * IGNORE identity and sensitivity messages.
5379 *
5380 * m will always be freed.
5381 */
5382 static int
5383 key_api_add(struct socket *so, struct mbuf *m,
5384 const struct sadb_msghdr *mhp)
5385 {
5386 struct sadb_sa *sa0;
5387 const struct sockaddr *src, *dst;
5388 struct secasindex saidx;
5389 struct secashead *newsah;
5390 struct secasvar *newsav;
5391 u_int16_t proto;
5392 u_int8_t mode;
5393 u_int16_t reqid;
5394 int error;
5395
5396 /* map satype to proto */
5397 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5398 if (proto == 0) {
5399 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5400 return key_senderror(so, m, EINVAL);
5401 }
5402
5403 if (mhp->ext[SADB_EXT_SA] == NULL ||
5404 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5405 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5406 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5407 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5408 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5409 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5410 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5411 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5412 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5413 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5414 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5415 return key_senderror(so, m, EINVAL);
5416 }
5417 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5418 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5419 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5420 /* XXX need more */
5421 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5422 return key_senderror(so, m, EINVAL);
5423 }
5424 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5425 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5426 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5427 } else {
5428 mode = IPSEC_MODE_ANY;
5429 reqid = 0;
5430 }
5431
5432 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5433 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5434 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5435
5436 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5437 if (error != 0)
5438 return key_senderror(so, m, EINVAL);
5439
5440 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5441 if (error != 0)
5442 return key_senderror(so, m, EINVAL);
5443
5444 /* get a SA header */
5445 newsah = key_getsah(&saidx, CMP_REQID);
5446 if (newsah == NULL) {
5447 /* create a new SA header */
5448 newsah = key_newsah(&saidx);
5449 if (newsah == NULL) {
5450 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5451 return key_senderror(so, m, ENOBUFS);
5452 }
5453 }
5454
5455 /* set spidx if there */
5456 /* XXX rewrite */
5457 error = key_setident(newsah, m, mhp);
5458 if (error) {
5459 return key_senderror(so, m, error);
5460 }
5461
5462 {
5463 struct secasvar *sav;
5464
5465 /* We can create new SA only if SPI is differenct. */
5466 sav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5467 if (sav != NULL) {
5468 KEY_FREESAV(&sav);
5469 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5470 return key_senderror(so, m, EEXIST);
5471 }
5472 }
5473
5474 /* create new SA entry. */
5475 newsav = KEY_NEWSAV(m, mhp, &error);
5476 if (newsav == NULL) {
5477 return key_senderror(so, m, error);
5478 }
5479 newsav->sah = newsah;
5480
5481 error = key_handle_natt_info(newsav, mhp);
5482 if (error != 0) {
5483 key_delsav(newsav);
5484 return key_senderror(so, m, EINVAL);
5485 }
5486
5487 error = key_init_xform(newsav);
5488 if (error != 0) {
5489 key_delsav(newsav);
5490 return key_senderror(so, m, error);
5491 }
5492
5493 /* add to satree */
5494 newsav->refcnt = 1;
5495 newsav->state = SADB_SASTATE_MATURE;
5496 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], newsav,
5497 secasvar, chain);
5498
5499 /*
5500 * don't call key_freesav() here, as we would like to keep the SA
5501 * in the database on success.
5502 */
5503
5504 {
5505 struct mbuf *n;
5506
5507 /* set msg buf from mhp */
5508 n = key_getmsgbuf_x1(m, mhp);
5509 if (n == NULL) {
5510 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5511 return key_senderror(so, m, ENOBUFS);
5512 }
5513
5514 m_freem(m);
5515 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5516 }
5517 }
5518
5519 /* m is retained */
5520 static int
5521 key_setident(struct secashead *sah, struct mbuf *m,
5522 const struct sadb_msghdr *mhp)
5523 {
5524 const struct sadb_ident *idsrc, *iddst;
5525 int idsrclen, iddstlen;
5526
5527 KASSERT(!cpu_softintr_p());
5528 KASSERT(sah != NULL);
5529 KASSERT(m != NULL);
5530 KASSERT(mhp != NULL);
5531 KASSERT(mhp->msg != NULL);
5532
5533 /*
5534 * Can be called with an existing sah from key_api_update().
5535 */
5536 if (sah->idents != NULL) {
5537 kmem_free(sah->idents, sah->idents_len);
5538 sah->idents = NULL;
5539 sah->idents_len = 0;
5540 }
5541 if (sah->identd != NULL) {
5542 kmem_free(sah->identd, sah->identd_len);
5543 sah->identd = NULL;
5544 sah->identd_len = 0;
5545 }
5546
5547 /* don't make buffer if not there */
5548 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5549 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5550 sah->idents = NULL;
5551 sah->identd = NULL;
5552 return 0;
5553 }
5554
5555 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5556 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5557 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5558 return EINVAL;
5559 }
5560
5561 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5562 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5563 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5564 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5565
5566 /* validity check */
5567 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5568 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5569 return EINVAL;
5570 }
5571
5572 switch (idsrc->sadb_ident_type) {
5573 case SADB_IDENTTYPE_PREFIX:
5574 case SADB_IDENTTYPE_FQDN:
5575 case SADB_IDENTTYPE_USERFQDN:
5576 default:
5577 /* XXX do nothing */
5578 sah->idents = NULL;
5579 sah->identd = NULL;
5580 return 0;
5581 }
5582
5583 /* make structure */
5584 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5585 sah->idents_len = idsrclen;
5586 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5587 sah->identd_len = iddstlen;
5588 memcpy(sah->idents, idsrc, idsrclen);
5589 memcpy(sah->identd, iddst, iddstlen);
5590
5591 return 0;
5592 }
5593
5594 /*
5595 * m will not be freed on return.
5596 * it is caller's responsibility to free the result.
5597 */
5598 static struct mbuf *
5599 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5600 {
5601 struct mbuf *n;
5602
5603 KASSERT(m != NULL);
5604 KASSERT(mhp != NULL);
5605 KASSERT(mhp->msg != NULL);
5606
5607 /* create new sadb_msg to reply. */
5608 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5609 SADB_EXT_SA, SADB_X_EXT_SA2,
5610 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5611 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5612 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5613 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5614 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5615 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5616 if (!n)
5617 return NULL;
5618
5619 if (n->m_len < sizeof(struct sadb_msg)) {
5620 n = m_pullup(n, sizeof(struct sadb_msg));
5621 if (n == NULL)
5622 return NULL;
5623 }
5624 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5625 mtod(n, struct sadb_msg *)->sadb_msg_len =
5626 PFKEY_UNIT64(n->m_pkthdr.len);
5627
5628 return n;
5629 }
5630
5631 static int key_delete_all (struct socket *, struct mbuf *,
5632 const struct sadb_msghdr *, u_int16_t);
5633
5634 /*
5635 * SADB_DELETE processing
5636 * receive
5637 * <base, SA(*), address(SD)>
5638 * from the ikmpd, and set SADB_SASTATE_DEAD,
5639 * and send,
5640 * <base, SA(*), address(SD)>
5641 * to the ikmpd.
5642 *
5643 * m will always be freed.
5644 */
5645 static int
5646 key_api_delete(struct socket *so, struct mbuf *m,
5647 const struct sadb_msghdr *mhp)
5648 {
5649 struct sadb_sa *sa0;
5650 const struct sockaddr *src, *dst;
5651 struct secasindex saidx;
5652 struct secashead *sah;
5653 struct secasvar *sav = NULL;
5654 u_int16_t proto;
5655 int error;
5656
5657 /* map satype to proto */
5658 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5659 if (proto == 0) {
5660 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5661 return key_senderror(so, m, EINVAL);
5662 }
5663
5664 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5665 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5666 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5667 return key_senderror(so, m, EINVAL);
5668 }
5669
5670 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5671 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5672 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5673 return key_senderror(so, m, EINVAL);
5674 }
5675
5676 if (mhp->ext[SADB_EXT_SA] == NULL) {
5677 /*
5678 * Caller wants us to delete all non-LARVAL SAs
5679 * that match the src/dst. This is used during
5680 * IKE INITIAL-CONTACT.
5681 */
5682 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5683 return key_delete_all(so, m, mhp, proto);
5684 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5685 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5686 return key_senderror(so, m, EINVAL);
5687 }
5688
5689 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5690 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5691 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5692
5693 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5694 if (error != 0)
5695 return key_senderror(so, m, EINVAL);
5696
5697 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5698 if (error != 0)
5699 return key_senderror(so, m, EINVAL);
5700
5701 /* get a SA header */
5702 sah = key_getsah(&saidx, CMP_HEAD);
5703 if (sah != NULL) {
5704 /* get a SA with SPI. */
5705 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5706 }
5707
5708 if (sav == NULL) {
5709 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5710 return key_senderror(so, m, ENOENT);
5711 }
5712
5713 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5714 KEY_FREESAV(&sav);
5715 KEY_FREESAV(&sav);
5716
5717 {
5718 struct mbuf *n;
5719
5720 /* create new sadb_msg to reply. */
5721 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5722 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5723 if (!n)
5724 return key_senderror(so, m, ENOBUFS);
5725
5726 n = key_fill_replymsg(n, 0);
5727 if (n == NULL)
5728 return key_senderror(so, m, ENOBUFS);
5729
5730 m_freem(m);
5731 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5732 }
5733 }
5734
5735 /*
5736 * delete all SAs for src/dst. Called from key_api_delete().
5737 */
5738 static int
5739 key_delete_all(struct socket *so, struct mbuf *m,
5740 const struct sadb_msghdr *mhp, u_int16_t proto)
5741 {
5742 const struct sockaddr *src, *dst;
5743 struct secasindex saidx;
5744 struct secashead *sah;
5745 struct secasvar *sav, *nextsav;
5746 u_int state;
5747 int error;
5748
5749 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5750 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5751
5752 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5753 if (error != 0)
5754 return key_senderror(so, m, EINVAL);
5755
5756 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5757 if (error != 0)
5758 return key_senderror(so, m, EINVAL);
5759
5760 sah = key_getsah(&saidx, CMP_HEAD);
5761 if (sah != NULL) {
5762 /* Delete all non-LARVAL SAs. */
5763 SASTATE_ALIVE_FOREACH(state) {
5764 if (state == SADB_SASTATE_LARVAL)
5765 continue;
5766 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5767 nextsav) {
5768 /* sanity check */
5769 if (sav->state != state) {
5770 IPSECLOG(LOG_DEBUG,
5771 "invalid sav->state "
5772 "(queue: %d SA: %d)\n",
5773 state, sav->state);
5774 continue;
5775 }
5776
5777 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5778 KEY_FREESAV(&sav);
5779 }
5780 }
5781 }
5782 {
5783 struct mbuf *n;
5784
5785 /* create new sadb_msg to reply. */
5786 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5787 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5788 if (!n)
5789 return key_senderror(so, m, ENOBUFS);
5790
5791 n = key_fill_replymsg(n, 0);
5792 if (n == NULL)
5793 return key_senderror(so, m, ENOBUFS);
5794
5795 m_freem(m);
5796 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5797 }
5798 }
5799
5800 /*
5801 * SADB_GET processing
5802 * receive
5803 * <base, SA(*), address(SD)>
5804 * from the ikmpd, and get a SP and a SA to respond,
5805 * and send,
5806 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5807 * (identity(SD),) (sensitivity)>
5808 * to the ikmpd.
5809 *
5810 * m will always be freed.
5811 */
5812 static int
5813 key_api_get(struct socket *so, struct mbuf *m,
5814 const struct sadb_msghdr *mhp)
5815 {
5816 struct sadb_sa *sa0;
5817 const struct sockaddr *src, *dst;
5818 struct secasindex saidx;
5819 struct secashead *sah;
5820 struct secasvar *sav = NULL;
5821 u_int16_t proto;
5822 int error;
5823
5824 /* map satype to proto */
5825 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5826 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5827 return key_senderror(so, m, EINVAL);
5828 }
5829
5830 if (mhp->ext[SADB_EXT_SA] == NULL ||
5831 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5832 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5833 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5834 return key_senderror(so, m, EINVAL);
5835 }
5836 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5837 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5838 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5839 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5840 return key_senderror(so, m, EINVAL);
5841 }
5842
5843 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5844 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5845 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5846
5847 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5848 if (error != 0)
5849 return key_senderror(so, m, EINVAL);
5850
5851 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5852 if (error != 0)
5853 return key_senderror(so, m, EINVAL);
5854
5855 /* get a SA header */
5856 sah = key_getsah(&saidx, CMP_HEAD);
5857 if (sah != NULL) {
5858 /* get a SA with SPI. */
5859 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5860 }
5861 if (sav == NULL) {
5862 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5863 return key_senderror(so, m, ENOENT);
5864 }
5865
5866 {
5867 struct mbuf *n;
5868 u_int8_t satype;
5869
5870 /* map proto to satype */
5871 satype = key_proto2satype(sah->saidx.proto);
5872 if (satype == 0) {
5873 KEY_FREESAV(&sav);
5874 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5875 return key_senderror(so, m, EINVAL);
5876 }
5877
5878 /* create new sadb_msg to reply. */
5879 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5880 mhp->msg->sadb_msg_pid);
5881 KEY_FREESAV(&sav);
5882 if (!n)
5883 return key_senderror(so, m, ENOBUFS);
5884
5885 m_freem(m);
5886 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5887 }
5888 }
5889
5890 /* XXX make it sysctl-configurable? */
5891 static void
5892 key_getcomb_setlifetime(struct sadb_comb *comb)
5893 {
5894
5895 comb->sadb_comb_soft_allocations = 1;
5896 comb->sadb_comb_hard_allocations = 1;
5897 comb->sadb_comb_soft_bytes = 0;
5898 comb->sadb_comb_hard_bytes = 0;
5899 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5900 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5901 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5902 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5903 }
5904
5905 /*
5906 * XXX reorder combinations by preference
5907 * XXX no idea if the user wants ESP authentication or not
5908 */
5909 static struct mbuf *
5910 key_getcomb_esp(void)
5911 {
5912 struct sadb_comb *comb;
5913 const struct enc_xform *algo;
5914 struct mbuf *result = NULL, *m, *n;
5915 int encmin;
5916 int i, off, o;
5917 int totlen;
5918 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5919
5920 m = NULL;
5921 for (i = 1; i <= SADB_EALG_MAX; i++) {
5922 algo = esp_algorithm_lookup(i);
5923 if (algo == NULL)
5924 continue;
5925
5926 /* discard algorithms with key size smaller than system min */
5927 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5928 continue;
5929 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5930 encmin = ipsec_esp_keymin;
5931 else
5932 encmin = _BITS(algo->minkey);
5933
5934 if (ipsec_esp_auth)
5935 m = key_getcomb_ah();
5936 else {
5937 KASSERTMSG(l <= MLEN,
5938 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5939 MGET(m, M_DONTWAIT, MT_DATA);
5940 if (m) {
5941 M_ALIGN(m, l);
5942 m->m_len = l;
5943 m->m_next = NULL;
5944 memset(mtod(m, void *), 0, m->m_len);
5945 }
5946 }
5947 if (!m)
5948 goto fail;
5949
5950 totlen = 0;
5951 for (n = m; n; n = n->m_next)
5952 totlen += n->m_len;
5953 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5954
5955 for (off = 0; off < totlen; off += l) {
5956 n = m_pulldown(m, off, l, &o);
5957 if (!n) {
5958 /* m is already freed */
5959 goto fail;
5960 }
5961 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5962 memset(comb, 0, sizeof(*comb));
5963 key_getcomb_setlifetime(comb);
5964 comb->sadb_comb_encrypt = i;
5965 comb->sadb_comb_encrypt_minbits = encmin;
5966 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5967 }
5968
5969 if (!result)
5970 result = m;
5971 else
5972 m_cat(result, m);
5973 }
5974
5975 return result;
5976
5977 fail:
5978 if (result)
5979 m_freem(result);
5980 return NULL;
5981 }
5982
5983 static void
5984 key_getsizes_ah(const struct auth_hash *ah, int alg,
5985 u_int16_t* ksmin, u_int16_t* ksmax)
5986 {
5987 *ksmin = *ksmax = ah->keysize;
5988 if (ah->keysize == 0) {
5989 /*
5990 * Transform takes arbitrary key size but algorithm
5991 * key size is restricted. Enforce this here.
5992 */
5993 switch (alg) {
5994 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
5995 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
5996 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
5997 default:
5998 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
5999 break;
6000 }
6001 }
6002 }
6003
6004 /*
6005 * XXX reorder combinations by preference
6006 */
6007 static struct mbuf *
6008 key_getcomb_ah(void)
6009 {
6010 struct sadb_comb *comb;
6011 const struct auth_hash *algo;
6012 struct mbuf *m;
6013 u_int16_t minkeysize, maxkeysize;
6014 int i;
6015 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6016
6017 m = NULL;
6018 for (i = 1; i <= SADB_AALG_MAX; i++) {
6019 #if 1
6020 /* we prefer HMAC algorithms, not old algorithms */
6021 if (i != SADB_AALG_SHA1HMAC &&
6022 i != SADB_AALG_MD5HMAC &&
6023 i != SADB_X_AALG_SHA2_256 &&
6024 i != SADB_X_AALG_SHA2_384 &&
6025 i != SADB_X_AALG_SHA2_512)
6026 continue;
6027 #endif
6028 algo = ah_algorithm_lookup(i);
6029 if (!algo)
6030 continue;
6031 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6032 /* discard algorithms with key size smaller than system min */
6033 if (_BITS(minkeysize) < ipsec_ah_keymin)
6034 continue;
6035
6036 if (!m) {
6037 KASSERTMSG(l <= MLEN,
6038 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6039 MGET(m, M_DONTWAIT, MT_DATA);
6040 if (m) {
6041 M_ALIGN(m, l);
6042 m->m_len = l;
6043 m->m_next = NULL;
6044 }
6045 } else
6046 M_PREPEND(m, l, M_DONTWAIT);
6047 if (!m)
6048 return NULL;
6049
6050 if (m->m_len < sizeof(struct sadb_comb)) {
6051 m = m_pullup(m, sizeof(struct sadb_comb));
6052 if (m == NULL)
6053 return NULL;
6054 }
6055
6056 comb = mtod(m, struct sadb_comb *);
6057 memset(comb, 0, sizeof(*comb));
6058 key_getcomb_setlifetime(comb);
6059 comb->sadb_comb_auth = i;
6060 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6061 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6062 }
6063
6064 return m;
6065 }
6066
6067 /*
6068 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6069 * XXX reorder combinations by preference
6070 */
6071 static struct mbuf *
6072 key_getcomb_ipcomp(void)
6073 {
6074 struct sadb_comb *comb;
6075 const struct comp_algo *algo;
6076 struct mbuf *m;
6077 int i;
6078 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6079
6080 m = NULL;
6081 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6082 algo = ipcomp_algorithm_lookup(i);
6083 if (!algo)
6084 continue;
6085
6086 if (!m) {
6087 KASSERTMSG(l <= MLEN,
6088 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6089 MGET(m, M_DONTWAIT, MT_DATA);
6090 if (m) {
6091 M_ALIGN(m, l);
6092 m->m_len = l;
6093 m->m_next = NULL;
6094 }
6095 } else
6096 M_PREPEND(m, l, M_DONTWAIT);
6097 if (!m)
6098 return NULL;
6099
6100 if (m->m_len < sizeof(struct sadb_comb)) {
6101 m = m_pullup(m, sizeof(struct sadb_comb));
6102 if (m == NULL)
6103 return NULL;
6104 }
6105
6106 comb = mtod(m, struct sadb_comb *);
6107 memset(comb, 0, sizeof(*comb));
6108 key_getcomb_setlifetime(comb);
6109 comb->sadb_comb_encrypt = i;
6110 /* what should we set into sadb_comb_*_{min,max}bits? */
6111 }
6112
6113 return m;
6114 }
6115
6116 /*
6117 * XXX no way to pass mode (transport/tunnel) to userland
6118 * XXX replay checking?
6119 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6120 */
6121 static struct mbuf *
6122 key_getprop(const struct secasindex *saidx)
6123 {
6124 struct sadb_prop *prop;
6125 struct mbuf *m, *n;
6126 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6127 int totlen;
6128
6129 switch (saidx->proto) {
6130 case IPPROTO_ESP:
6131 m = key_getcomb_esp();
6132 break;
6133 case IPPROTO_AH:
6134 m = key_getcomb_ah();
6135 break;
6136 case IPPROTO_IPCOMP:
6137 m = key_getcomb_ipcomp();
6138 break;
6139 default:
6140 return NULL;
6141 }
6142
6143 if (!m)
6144 return NULL;
6145 M_PREPEND(m, l, M_DONTWAIT);
6146 if (!m)
6147 return NULL;
6148
6149 totlen = 0;
6150 for (n = m; n; n = n->m_next)
6151 totlen += n->m_len;
6152
6153 prop = mtod(m, struct sadb_prop *);
6154 memset(prop, 0, sizeof(*prop));
6155 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6156 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6157 prop->sadb_prop_replay = 32; /* XXX */
6158
6159 return m;
6160 }
6161
6162 /*
6163 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6164 * send
6165 * <base, SA, address(SD), (address(P)), x_policy,
6166 * (identity(SD),) (sensitivity,) proposal>
6167 * to KMD, and expect to receive
6168 * <base> with SADB_ACQUIRE if error occurred,
6169 * or
6170 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6171 * from KMD by PF_KEY.
6172 *
6173 * XXX x_policy is outside of RFC2367 (KAME extension).
6174 * XXX sensitivity is not supported.
6175 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6176 * see comment for key_getcomb_ipcomp().
6177 *
6178 * OUT:
6179 * 0 : succeed
6180 * others: error number
6181 */
6182 static int
6183 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6184 {
6185 struct mbuf *result = NULL, *m;
6186 #ifndef IPSEC_NONBLOCK_ACQUIRE
6187 struct secacq *newacq;
6188 #endif
6189 u_int8_t satype;
6190 int error = -1;
6191 u_int32_t seq;
6192
6193 /* sanity check */
6194 KASSERT(saidx != NULL);
6195 satype = key_proto2satype(saidx->proto);
6196 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6197
6198 #ifndef IPSEC_NONBLOCK_ACQUIRE
6199 /*
6200 * We never do anything about acquirng SA. There is anather
6201 * solution that kernel blocks to send SADB_ACQUIRE message until
6202 * getting something message from IKEd. In later case, to be
6203 * managed with ACQUIRING list.
6204 */
6205 /* Get an entry to check whether sending message or not. */
6206 mutex_enter(&key_mtx);
6207 newacq = key_getacq(saidx);
6208 if (newacq != NULL) {
6209 if (key_blockacq_count < newacq->count) {
6210 /* reset counter and do send message. */
6211 newacq->count = 0;
6212 } else {
6213 /* increment counter and do nothing. */
6214 newacq->count++;
6215 mutex_exit(&key_mtx);
6216 return 0;
6217 }
6218 } else {
6219 /* make new entry for blocking to send SADB_ACQUIRE. */
6220 newacq = key_newacq(saidx);
6221 if (newacq == NULL)
6222 return ENOBUFS;
6223
6224 /* add to acqtree */
6225 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6226 }
6227
6228 seq = newacq->seq;
6229 mutex_exit(&key_mtx);
6230 #else
6231 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6232 #endif
6233 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6234 if (!m) {
6235 error = ENOBUFS;
6236 goto fail;
6237 }
6238 result = m;
6239
6240 /* set sadb_address for saidx's. */
6241 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6242 IPSEC_ULPROTO_ANY);
6243 if (!m) {
6244 error = ENOBUFS;
6245 goto fail;
6246 }
6247 m_cat(result, m);
6248
6249 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6250 IPSEC_ULPROTO_ANY);
6251 if (!m) {
6252 error = ENOBUFS;
6253 goto fail;
6254 }
6255 m_cat(result, m);
6256
6257 /* XXX proxy address (optional) */
6258
6259 /* set sadb_x_policy */
6260 if (sp) {
6261 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6262 if (!m) {
6263 error = ENOBUFS;
6264 goto fail;
6265 }
6266 m_cat(result, m);
6267 }
6268
6269 /* XXX identity (optional) */
6270 #if 0
6271 if (idexttype && fqdn) {
6272 /* create identity extension (FQDN) */
6273 struct sadb_ident *id;
6274 int fqdnlen;
6275
6276 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6277 id = (struct sadb_ident *)p;
6278 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6279 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6280 id->sadb_ident_exttype = idexttype;
6281 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6282 memcpy(id + 1, fqdn, fqdnlen);
6283 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6284 }
6285
6286 if (idexttype) {
6287 /* create identity extension (USERFQDN) */
6288 struct sadb_ident *id;
6289 int userfqdnlen;
6290
6291 if (userfqdn) {
6292 /* +1 for terminating-NUL */
6293 userfqdnlen = strlen(userfqdn) + 1;
6294 } else
6295 userfqdnlen = 0;
6296 id = (struct sadb_ident *)p;
6297 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6298 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6299 id->sadb_ident_exttype = idexttype;
6300 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6301 /* XXX is it correct? */
6302 if (curlwp)
6303 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6304 if (userfqdn && userfqdnlen)
6305 memcpy(id + 1, userfqdn, userfqdnlen);
6306 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6307 }
6308 #endif
6309
6310 /* XXX sensitivity (optional) */
6311
6312 /* create proposal/combination extension */
6313 m = key_getprop(saidx);
6314 #if 0
6315 /*
6316 * spec conformant: always attach proposal/combination extension,
6317 * the problem is that we have no way to attach it for ipcomp,
6318 * due to the way sadb_comb is declared in RFC2367.
6319 */
6320 if (!m) {
6321 error = ENOBUFS;
6322 goto fail;
6323 }
6324 m_cat(result, m);
6325 #else
6326 /*
6327 * outside of spec; make proposal/combination extension optional.
6328 */
6329 if (m)
6330 m_cat(result, m);
6331 #endif
6332
6333 if ((result->m_flags & M_PKTHDR) == 0) {
6334 error = EINVAL;
6335 goto fail;
6336 }
6337
6338 if (result->m_len < sizeof(struct sadb_msg)) {
6339 result = m_pullup(result, sizeof(struct sadb_msg));
6340 if (result == NULL) {
6341 error = ENOBUFS;
6342 goto fail;
6343 }
6344 }
6345
6346 result->m_pkthdr.len = 0;
6347 for (m = result; m; m = m->m_next)
6348 result->m_pkthdr.len += m->m_len;
6349
6350 mtod(result, struct sadb_msg *)->sadb_msg_len =
6351 PFKEY_UNIT64(result->m_pkthdr.len);
6352
6353 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6354
6355 fail:
6356 if (result)
6357 m_freem(result);
6358 return error;
6359 }
6360
6361 #ifndef IPSEC_NONBLOCK_ACQUIRE
6362 static struct secacq *
6363 key_newacq(const struct secasindex *saidx)
6364 {
6365 struct secacq *newacq;
6366
6367 /* get new entry */
6368 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6369 if (newacq == NULL) {
6370 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6371 return NULL;
6372 }
6373
6374 /* copy secindex */
6375 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6376 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6377 newacq->created = time_uptime;
6378 newacq->count = 0;
6379
6380 return newacq;
6381 }
6382
6383 static struct secacq *
6384 key_getacq(const struct secasindex *saidx)
6385 {
6386 struct secacq *acq;
6387
6388 KASSERT(mutex_owned(&key_mtx));
6389
6390 LIST_FOREACH(acq, &acqtree, chain) {
6391 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6392 return acq;
6393 }
6394
6395 return NULL;
6396 }
6397
6398 static struct secacq *
6399 key_getacqbyseq(u_int32_t seq)
6400 {
6401 struct secacq *acq;
6402
6403 KASSERT(mutex_owned(&key_mtx));
6404
6405 LIST_FOREACH(acq, &acqtree, chain) {
6406 if (acq->seq == seq)
6407 return acq;
6408 }
6409
6410 return NULL;
6411 }
6412 #endif
6413
6414 #ifdef notyet
6415 static struct secspacq *
6416 key_newspacq(const struct secpolicyindex *spidx)
6417 {
6418 struct secspacq *acq;
6419
6420 /* get new entry */
6421 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6422 if (acq == NULL) {
6423 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6424 return NULL;
6425 }
6426
6427 /* copy secindex */
6428 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6429 acq->created = time_uptime;
6430 acq->count = 0;
6431
6432 return acq;
6433 }
6434
6435 static struct secspacq *
6436 key_getspacq(const struct secpolicyindex *spidx)
6437 {
6438 struct secspacq *acq;
6439
6440 LIST_FOREACH(acq, &spacqtree, chain) {
6441 if (key_spidx_match_exactly(spidx, &acq->spidx))
6442 return acq;
6443 }
6444
6445 return NULL;
6446 }
6447 #endif /* notyet */
6448
6449 /*
6450 * SADB_ACQUIRE processing,
6451 * in first situation, is receiving
6452 * <base>
6453 * from the ikmpd, and clear sequence of its secasvar entry.
6454 *
6455 * In second situation, is receiving
6456 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6457 * from a user land process, and return
6458 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6459 * to the socket.
6460 *
6461 * m will always be freed.
6462 */
6463 static int
6464 key_api_acquire(struct socket *so, struct mbuf *m,
6465 const struct sadb_msghdr *mhp)
6466 {
6467 const struct sockaddr *src, *dst;
6468 struct secasindex saidx;
6469 struct secashead *sah;
6470 u_int16_t proto;
6471 int error;
6472
6473 /*
6474 * Error message from KMd.
6475 * We assume that if error was occurred in IKEd, the length of PFKEY
6476 * message is equal to the size of sadb_msg structure.
6477 * We do not raise error even if error occurred in this function.
6478 */
6479 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6480 #ifndef IPSEC_NONBLOCK_ACQUIRE
6481 struct secacq *acq;
6482
6483 /* check sequence number */
6484 if (mhp->msg->sadb_msg_seq == 0) {
6485 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6486 m_freem(m);
6487 return 0;
6488 }
6489
6490 mutex_enter(&key_mtx);
6491 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6492 if (acq == NULL) {
6493 mutex_exit(&key_mtx);
6494 /*
6495 * the specified larval SA is already gone, or we got
6496 * a bogus sequence number. we can silently ignore it.
6497 */
6498 m_freem(m);
6499 return 0;
6500 }
6501
6502 /* reset acq counter in order to deletion by timehander. */
6503 acq->created = time_uptime;
6504 acq->count = 0;
6505 mutex_exit(&key_mtx);
6506 #endif
6507 m_freem(m);
6508 return 0;
6509 }
6510
6511 /*
6512 * This message is from user land.
6513 */
6514
6515 /* map satype to proto */
6516 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6517 if (proto == 0) {
6518 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6519 return key_senderror(so, m, EINVAL);
6520 }
6521
6522 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6523 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6524 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6525 /* error */
6526 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6527 return key_senderror(so, m, EINVAL);
6528 }
6529 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6530 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6531 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6532 /* error */
6533 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6534 return key_senderror(so, m, EINVAL);
6535 }
6536
6537 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6538 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6539
6540 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6541 if (error != 0)
6542 return key_senderror(so, m, EINVAL);
6543
6544 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6545 if (error != 0)
6546 return key_senderror(so, m, EINVAL);
6547
6548 /* get a SA index */
6549 sah = key_getsah(&saidx, CMP_MODE_REQID);
6550 if (sah != NULL) {
6551 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6552 return key_senderror(so, m, EEXIST);
6553 }
6554
6555 error = key_acquire(&saidx, NULL);
6556 if (error != 0) {
6557 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6558 error);
6559 return key_senderror(so, m, error);
6560 }
6561
6562 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6563 }
6564
6565 /*
6566 * SADB_REGISTER processing.
6567 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6568 * receive
6569 * <base>
6570 * from the ikmpd, and register a socket to send PF_KEY messages,
6571 * and send
6572 * <base, supported>
6573 * to KMD by PF_KEY.
6574 * If socket is detached, must free from regnode.
6575 *
6576 * m will always be freed.
6577 */
6578 static int
6579 key_api_register(struct socket *so, struct mbuf *m,
6580 const struct sadb_msghdr *mhp)
6581 {
6582 struct secreg *reg, *newreg = 0;
6583
6584 /* check for invalid register message */
6585 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6586 return key_senderror(so, m, EINVAL);
6587
6588 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6589 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6590 goto setmsg;
6591
6592 /* Allocate regnode in advance, out of mutex */
6593 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6594
6595 /* check whether existing or not */
6596 mutex_enter(&key_mtx);
6597 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6598 if (reg->so == so) {
6599 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6600 mutex_exit(&key_mtx);
6601 kmem_free(newreg, sizeof(*newreg));
6602 return key_senderror(so, m, EEXIST);
6603 }
6604 }
6605
6606 newreg->so = so;
6607 ((struct keycb *)sotorawcb(so))->kp_registered++;
6608
6609 /* add regnode to regtree. */
6610 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6611 mutex_exit(&key_mtx);
6612
6613 setmsg:
6614 {
6615 struct mbuf *n;
6616 struct sadb_supported *sup;
6617 u_int len, alen, elen;
6618 int off;
6619 int i;
6620 struct sadb_alg *alg;
6621
6622 /* create new sadb_msg to reply. */
6623 alen = 0;
6624 for (i = 1; i <= SADB_AALG_MAX; i++) {
6625 if (ah_algorithm_lookup(i))
6626 alen += sizeof(struct sadb_alg);
6627 }
6628 if (alen)
6629 alen += sizeof(struct sadb_supported);
6630 elen = 0;
6631 for (i = 1; i <= SADB_EALG_MAX; i++) {
6632 if (esp_algorithm_lookup(i))
6633 elen += sizeof(struct sadb_alg);
6634 }
6635 if (elen)
6636 elen += sizeof(struct sadb_supported);
6637
6638 len = sizeof(struct sadb_msg) + alen + elen;
6639
6640 if (len > MCLBYTES)
6641 return key_senderror(so, m, ENOBUFS);
6642
6643 MGETHDR(n, M_DONTWAIT, MT_DATA);
6644 if (len > MHLEN) {
6645 MCLGET(n, M_DONTWAIT);
6646 if ((n->m_flags & M_EXT) == 0) {
6647 m_freem(n);
6648 n = NULL;
6649 }
6650 }
6651 if (!n)
6652 return key_senderror(so, m, ENOBUFS);
6653
6654 n->m_pkthdr.len = n->m_len = len;
6655 n->m_next = NULL;
6656 off = 0;
6657
6658 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6659 n = key_fill_replymsg(n, 0);
6660 if (n == NULL)
6661 return key_senderror(so, m, ENOBUFS);
6662
6663 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6664
6665 /* for authentication algorithm */
6666 if (alen) {
6667 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6668 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6669 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6670 off += PFKEY_ALIGN8(sizeof(*sup));
6671
6672 for (i = 1; i <= SADB_AALG_MAX; i++) {
6673 const struct auth_hash *aalgo;
6674 u_int16_t minkeysize, maxkeysize;
6675
6676 aalgo = ah_algorithm_lookup(i);
6677 if (!aalgo)
6678 continue;
6679 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6680 alg->sadb_alg_id = i;
6681 alg->sadb_alg_ivlen = 0;
6682 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6683 alg->sadb_alg_minbits = _BITS(minkeysize);
6684 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6685 off += PFKEY_ALIGN8(sizeof(*alg));
6686 }
6687 }
6688
6689 /* for encryption algorithm */
6690 if (elen) {
6691 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6692 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6693 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6694 off += PFKEY_ALIGN8(sizeof(*sup));
6695
6696 for (i = 1; i <= SADB_EALG_MAX; i++) {
6697 const struct enc_xform *ealgo;
6698
6699 ealgo = esp_algorithm_lookup(i);
6700 if (!ealgo)
6701 continue;
6702 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6703 alg->sadb_alg_id = i;
6704 alg->sadb_alg_ivlen = ealgo->blocksize;
6705 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6706 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6707 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6708 }
6709 }
6710
6711 KASSERTMSG(off == len, "length inconsistency");
6712
6713 m_freem(m);
6714 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6715 }
6716 }
6717
6718 /*
6719 * free secreg entry registered.
6720 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6721 */
6722 void
6723 key_freereg(struct socket *so)
6724 {
6725 struct secreg *reg;
6726 int i;
6727
6728 KASSERT(!cpu_softintr_p());
6729 KASSERT(so != NULL);
6730
6731 /*
6732 * check whether existing or not.
6733 * check all type of SA, because there is a potential that
6734 * one socket is registered to multiple type of SA.
6735 */
6736 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6737 mutex_enter(&key_mtx);
6738 LIST_FOREACH(reg, ®tree[i], chain) {
6739 if (reg->so == so) {
6740 LIST_REMOVE(reg, chain);
6741 break;
6742 }
6743 }
6744 mutex_exit(&key_mtx);
6745 if (reg != NULL)
6746 kmem_free(reg, sizeof(*reg));
6747 }
6748
6749 return;
6750 }
6751
6752 /*
6753 * SADB_EXPIRE processing
6754 * send
6755 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6756 * to KMD by PF_KEY.
6757 * NOTE: We send only soft lifetime extension.
6758 *
6759 * OUT: 0 : succeed
6760 * others : error number
6761 */
6762 static int
6763 key_expire(struct secasvar *sav)
6764 {
6765 int s;
6766 int satype;
6767 struct mbuf *result = NULL, *m;
6768 int len;
6769 int error = -1;
6770 struct sadb_lifetime *lt;
6771
6772 /* XXX: Why do we lock ? */
6773 s = splsoftnet(); /*called from softclock()*/
6774
6775 KASSERT(sav != NULL);
6776
6777 satype = key_proto2satype(sav->sah->saidx.proto);
6778 KASSERTMSG(satype != 0, "invalid proto is passed");
6779
6780 /* set msg header */
6781 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6782 if (!m) {
6783 error = ENOBUFS;
6784 goto fail;
6785 }
6786 result = m;
6787
6788 /* create SA extension */
6789 m = key_setsadbsa(sav);
6790 if (!m) {
6791 error = ENOBUFS;
6792 goto fail;
6793 }
6794 m_cat(result, m);
6795
6796 /* create SA extension */
6797 m = key_setsadbxsa2(sav->sah->saidx.mode,
6798 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6799 if (!m) {
6800 error = ENOBUFS;
6801 goto fail;
6802 }
6803 m_cat(result, m);
6804
6805 /* create lifetime extension (current and soft) */
6806 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6807 m = key_alloc_mbuf(len);
6808 if (!m || m->m_next) { /*XXX*/
6809 if (m)
6810 m_freem(m);
6811 error = ENOBUFS;
6812 goto fail;
6813 }
6814 memset(mtod(m, void *), 0, len);
6815 lt = mtod(m, struct sadb_lifetime *);
6816 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6817 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6818 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6819 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6820 lt->sadb_lifetime_addtime =
6821 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6822 lt->sadb_lifetime_usetime =
6823 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6824 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6825 memcpy(lt, sav->lft_s, sizeof(*lt));
6826 m_cat(result, m);
6827
6828 /* set sadb_address for source */
6829 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6830 FULLMASK, IPSEC_ULPROTO_ANY);
6831 if (!m) {
6832 error = ENOBUFS;
6833 goto fail;
6834 }
6835 m_cat(result, m);
6836
6837 /* set sadb_address for destination */
6838 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6839 FULLMASK, IPSEC_ULPROTO_ANY);
6840 if (!m) {
6841 error = ENOBUFS;
6842 goto fail;
6843 }
6844 m_cat(result, m);
6845
6846 if ((result->m_flags & M_PKTHDR) == 0) {
6847 error = EINVAL;
6848 goto fail;
6849 }
6850
6851 if (result->m_len < sizeof(struct sadb_msg)) {
6852 result = m_pullup(result, sizeof(struct sadb_msg));
6853 if (result == NULL) {
6854 error = ENOBUFS;
6855 goto fail;
6856 }
6857 }
6858
6859 result->m_pkthdr.len = 0;
6860 for (m = result; m; m = m->m_next)
6861 result->m_pkthdr.len += m->m_len;
6862
6863 mtod(result, struct sadb_msg *)->sadb_msg_len =
6864 PFKEY_UNIT64(result->m_pkthdr.len);
6865
6866 splx(s);
6867 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6868
6869 fail:
6870 if (result)
6871 m_freem(result);
6872 splx(s);
6873 return error;
6874 }
6875
6876 /*
6877 * SADB_FLUSH processing
6878 * receive
6879 * <base>
6880 * from the ikmpd, and free all entries in secastree.
6881 * and send,
6882 * <base>
6883 * to the ikmpd.
6884 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6885 *
6886 * m will always be freed.
6887 */
6888 static int
6889 key_api_flush(struct socket *so, struct mbuf *m,
6890 const struct sadb_msghdr *mhp)
6891 {
6892 struct sadb_msg *newmsg;
6893 struct secashead *sah;
6894 struct secasvar *sav, *nextsav;
6895 u_int16_t proto;
6896 u_int8_t state;
6897
6898 /* map satype to proto */
6899 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6900 if (proto == 0) {
6901 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6902 return key_senderror(so, m, EINVAL);
6903 }
6904
6905 /* no SATYPE specified, i.e. flushing all SA. */
6906 LIST_FOREACH(sah, &sahtree, chain) {
6907 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6908 proto != sah->saidx.proto)
6909 continue;
6910
6911 SASTATE_ALIVE_FOREACH(state) {
6912 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6913 nextsav) {
6914 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6915 KEY_FREESAV(&sav);
6916 }
6917 }
6918
6919 sah->state = SADB_SASTATE_DEAD;
6920 }
6921
6922 if (m->m_len < sizeof(struct sadb_msg) ||
6923 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6924 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6925 return key_senderror(so, m, ENOBUFS);
6926 }
6927
6928 if (m->m_next)
6929 m_freem(m->m_next);
6930 m->m_next = NULL;
6931 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6932 newmsg = mtod(m, struct sadb_msg *);
6933 newmsg->sadb_msg_errno = 0;
6934 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6935
6936 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6937 }
6938
6939
6940 static struct mbuf *
6941 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6942 {
6943 struct secashead *sah;
6944 struct secasvar *sav;
6945 u_int16_t proto;
6946 u_int8_t satype;
6947 u_int8_t state;
6948 int cnt;
6949 struct mbuf *m, *n, *prev;
6950
6951 *lenp = 0;
6952
6953 /* map satype to proto */
6954 proto = key_satype2proto(req_satype);
6955 if (proto == 0) {
6956 *errorp = EINVAL;
6957 return (NULL);
6958 }
6959
6960 /* count sav entries to be sent to userland. */
6961 cnt = 0;
6962 LIST_FOREACH(sah, &sahtree, chain) {
6963 if (req_satype != SADB_SATYPE_UNSPEC &&
6964 proto != sah->saidx.proto)
6965 continue;
6966
6967 SASTATE_ANY_FOREACH(state) {
6968 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6969 cnt++;
6970 }
6971 }
6972 }
6973
6974 if (cnt == 0) {
6975 *errorp = ENOENT;
6976 return (NULL);
6977 }
6978
6979 /* send this to the userland, one at a time. */
6980 m = NULL;
6981 prev = m;
6982 LIST_FOREACH(sah, &sahtree, chain) {
6983 if (req_satype != SADB_SATYPE_UNSPEC &&
6984 proto != sah->saidx.proto)
6985 continue;
6986
6987 /* map proto to satype */
6988 satype = key_proto2satype(sah->saidx.proto);
6989 if (satype == 0) {
6990 m_freem(m);
6991 *errorp = EINVAL;
6992 return (NULL);
6993 }
6994
6995 SASTATE_ANY_FOREACH(state) {
6996 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6997 n = key_setdumpsa(sav, SADB_DUMP, satype,
6998 --cnt, pid);
6999 if (!n) {
7000 m_freem(m);
7001 *errorp = ENOBUFS;
7002 return (NULL);
7003 }
7004
7005 if (!m)
7006 m = n;
7007 else
7008 prev->m_nextpkt = n;
7009 prev = n;
7010 }
7011 }
7012 }
7013
7014 if (!m) {
7015 *errorp = EINVAL;
7016 return (NULL);
7017 }
7018
7019 if ((m->m_flags & M_PKTHDR) != 0) {
7020 m->m_pkthdr.len = 0;
7021 for (n = m; n; n = n->m_next)
7022 m->m_pkthdr.len += n->m_len;
7023 }
7024
7025 *errorp = 0;
7026 return (m);
7027 }
7028
7029 /*
7030 * SADB_DUMP processing
7031 * dump all entries including status of DEAD in SAD.
7032 * receive
7033 * <base>
7034 * from the ikmpd, and dump all secasvar leaves
7035 * and send,
7036 * <base> .....
7037 * to the ikmpd.
7038 *
7039 * m will always be freed.
7040 */
7041 static int
7042 key_api_dump(struct socket *so, struct mbuf *m0,
7043 const struct sadb_msghdr *mhp)
7044 {
7045 u_int16_t proto;
7046 u_int8_t satype;
7047 struct mbuf *n;
7048 int s;
7049 int error, len, ok;
7050
7051 /* map satype to proto */
7052 satype = mhp->msg->sadb_msg_satype;
7053 proto = key_satype2proto(satype);
7054 if (proto == 0) {
7055 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7056 return key_senderror(so, m0, EINVAL);
7057 }
7058
7059 /*
7060 * If the requestor has insufficient socket-buffer space
7061 * for the entire chain, nobody gets any response to the DUMP.
7062 * XXX For now, only the requestor ever gets anything.
7063 * Moreover, if the requestor has any space at all, they receive
7064 * the entire chain, otherwise the request is refused with ENOBUFS.
7065 */
7066 if (sbspace(&so->so_rcv) <= 0) {
7067 return key_senderror(so, m0, ENOBUFS);
7068 }
7069
7070 s = splsoftnet();
7071 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7072 splx(s);
7073
7074 if (n == NULL) {
7075 return key_senderror(so, m0, ENOENT);
7076 }
7077 {
7078 uint64_t *ps = PFKEY_STAT_GETREF();
7079 ps[PFKEY_STAT_IN_TOTAL]++;
7080 ps[PFKEY_STAT_IN_BYTES] += len;
7081 PFKEY_STAT_PUTREF();
7082 }
7083
7084 /*
7085 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7086 * The requestor receives either the entire chain, or an
7087 * error message with ENOBUFS.
7088 *
7089 * sbappendaddrchain() takes the chain of entries, one
7090 * packet-record per SPD entry, prepends the key_src sockaddr
7091 * to each packet-record, links the sockaddr mbufs into a new
7092 * list of records, then appends the entire resulting
7093 * list to the requesting socket.
7094 */
7095 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7096 SB_PRIO_ONESHOT_OVERFLOW);
7097
7098 if (!ok) {
7099 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7100 m_freem(n);
7101 return key_senderror(so, m0, ENOBUFS);
7102 }
7103
7104 m_freem(m0);
7105 return 0;
7106 }
7107
7108 /*
7109 * SADB_X_PROMISC processing
7110 *
7111 * m will always be freed.
7112 */
7113 static int
7114 key_api_promisc(struct socket *so, struct mbuf *m,
7115 const struct sadb_msghdr *mhp)
7116 {
7117 int olen;
7118
7119 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7120
7121 if (olen < sizeof(struct sadb_msg)) {
7122 #if 1
7123 return key_senderror(so, m, EINVAL);
7124 #else
7125 m_freem(m);
7126 return 0;
7127 #endif
7128 } else if (olen == sizeof(struct sadb_msg)) {
7129 /* enable/disable promisc mode */
7130 struct keycb *kp = (struct keycb *)sotorawcb(so);
7131 if (kp == NULL)
7132 return key_senderror(so, m, EINVAL);
7133 mhp->msg->sadb_msg_errno = 0;
7134 switch (mhp->msg->sadb_msg_satype) {
7135 case 0:
7136 case 1:
7137 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7138 break;
7139 default:
7140 return key_senderror(so, m, EINVAL);
7141 }
7142
7143 /* send the original message back to everyone */
7144 mhp->msg->sadb_msg_errno = 0;
7145 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7146 } else {
7147 /* send packet as is */
7148
7149 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7150
7151 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7152 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7153 }
7154 }
7155
7156 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7157 const struct sadb_msghdr *) = {
7158 NULL, /* SADB_RESERVED */
7159 key_api_getspi, /* SADB_GETSPI */
7160 key_api_update, /* SADB_UPDATE */
7161 key_api_add, /* SADB_ADD */
7162 key_api_delete, /* SADB_DELETE */
7163 key_api_get, /* SADB_GET */
7164 key_api_acquire, /* SADB_ACQUIRE */
7165 key_api_register, /* SADB_REGISTER */
7166 NULL, /* SADB_EXPIRE */
7167 key_api_flush, /* SADB_FLUSH */
7168 key_api_dump, /* SADB_DUMP */
7169 key_api_promisc, /* SADB_X_PROMISC */
7170 NULL, /* SADB_X_PCHANGE */
7171 key_api_spdadd, /* SADB_X_SPDUPDATE */
7172 key_api_spdadd, /* SADB_X_SPDADD */
7173 key_api_spddelete, /* SADB_X_SPDDELETE */
7174 key_api_spdget, /* SADB_X_SPDGET */
7175 NULL, /* SADB_X_SPDACQUIRE */
7176 key_api_spddump, /* SADB_X_SPDDUMP */
7177 key_api_spdflush, /* SADB_X_SPDFLUSH */
7178 key_api_spdadd, /* SADB_X_SPDSETIDX */
7179 NULL, /* SADB_X_SPDEXPIRE */
7180 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7181 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7182 };
7183
7184 /*
7185 * parse sadb_msg buffer to process PFKEYv2,
7186 * and create a data to response if needed.
7187 * I think to be dealed with mbuf directly.
7188 * IN:
7189 * msgp : pointer to pointer to a received buffer pulluped.
7190 * This is rewrited to response.
7191 * so : pointer to socket.
7192 * OUT:
7193 * length for buffer to send to user process.
7194 */
7195 int
7196 key_parse(struct mbuf *m, struct socket *so)
7197 {
7198 struct sadb_msg *msg;
7199 struct sadb_msghdr mh;
7200 u_int orglen;
7201 int error;
7202
7203 KASSERT(m != NULL);
7204 KASSERT(so != NULL);
7205
7206 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7207 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7208 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7209 kdebug_sadb(msg);
7210 }
7211 #endif
7212
7213 if (m->m_len < sizeof(struct sadb_msg)) {
7214 m = m_pullup(m, sizeof(struct sadb_msg));
7215 if (!m)
7216 return ENOBUFS;
7217 }
7218 msg = mtod(m, struct sadb_msg *);
7219 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7220
7221 if ((m->m_flags & M_PKTHDR) == 0 ||
7222 m->m_pkthdr.len != orglen) {
7223 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7224 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7225 error = EINVAL;
7226 goto senderror;
7227 }
7228
7229 if (msg->sadb_msg_version != PF_KEY_V2) {
7230 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7231 msg->sadb_msg_version);
7232 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7233 error = EINVAL;
7234 goto senderror;
7235 }
7236
7237 if (msg->sadb_msg_type > SADB_MAX) {
7238 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7239 msg->sadb_msg_type);
7240 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7241 error = EINVAL;
7242 goto senderror;
7243 }
7244
7245 /* for old-fashioned code - should be nuked */
7246 if (m->m_pkthdr.len > MCLBYTES) {
7247 m_freem(m);
7248 return ENOBUFS;
7249 }
7250 if (m->m_next) {
7251 struct mbuf *n;
7252
7253 MGETHDR(n, M_DONTWAIT, MT_DATA);
7254 if (n && m->m_pkthdr.len > MHLEN) {
7255 MCLGET(n, M_DONTWAIT);
7256 if ((n->m_flags & M_EXT) == 0) {
7257 m_free(n);
7258 n = NULL;
7259 }
7260 }
7261 if (!n) {
7262 m_freem(m);
7263 return ENOBUFS;
7264 }
7265 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7266 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7267 n->m_next = NULL;
7268 m_freem(m);
7269 m = n;
7270 }
7271
7272 /* align the mbuf chain so that extensions are in contiguous region. */
7273 error = key_align(m, &mh);
7274 if (error)
7275 return error;
7276
7277 if (m->m_next) { /*XXX*/
7278 m_freem(m);
7279 return ENOBUFS;
7280 }
7281
7282 msg = mh.msg;
7283
7284 /* check SA type */
7285 switch (msg->sadb_msg_satype) {
7286 case SADB_SATYPE_UNSPEC:
7287 switch (msg->sadb_msg_type) {
7288 case SADB_GETSPI:
7289 case SADB_UPDATE:
7290 case SADB_ADD:
7291 case SADB_DELETE:
7292 case SADB_GET:
7293 case SADB_ACQUIRE:
7294 case SADB_EXPIRE:
7295 IPSECLOG(LOG_DEBUG,
7296 "must specify satype when msg type=%u.\n",
7297 msg->sadb_msg_type);
7298 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7299 error = EINVAL;
7300 goto senderror;
7301 }
7302 break;
7303 case SADB_SATYPE_AH:
7304 case SADB_SATYPE_ESP:
7305 case SADB_X_SATYPE_IPCOMP:
7306 case SADB_X_SATYPE_TCPSIGNATURE:
7307 switch (msg->sadb_msg_type) {
7308 case SADB_X_SPDADD:
7309 case SADB_X_SPDDELETE:
7310 case SADB_X_SPDGET:
7311 case SADB_X_SPDDUMP:
7312 case SADB_X_SPDFLUSH:
7313 case SADB_X_SPDSETIDX:
7314 case SADB_X_SPDUPDATE:
7315 case SADB_X_SPDDELETE2:
7316 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7317 msg->sadb_msg_type);
7318 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7319 error = EINVAL;
7320 goto senderror;
7321 }
7322 break;
7323 case SADB_SATYPE_RSVP:
7324 case SADB_SATYPE_OSPFV2:
7325 case SADB_SATYPE_RIPV2:
7326 case SADB_SATYPE_MIP:
7327 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7328 msg->sadb_msg_satype);
7329 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7330 error = EOPNOTSUPP;
7331 goto senderror;
7332 case 1: /* XXX: What does it do? */
7333 if (msg->sadb_msg_type == SADB_X_PROMISC)
7334 break;
7335 /*FALLTHROUGH*/
7336 default:
7337 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7338 msg->sadb_msg_satype);
7339 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7340 error = EINVAL;
7341 goto senderror;
7342 }
7343
7344 /* check field of upper layer protocol and address family */
7345 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7346 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7347 struct sadb_address *src0, *dst0;
7348 u_int plen;
7349
7350 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7351 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7352
7353 /* check upper layer protocol */
7354 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7355 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7356 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7357 error = EINVAL;
7358 goto senderror;
7359 }
7360
7361 /* check family */
7362 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7363 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7364 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7365 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7366 error = EINVAL;
7367 goto senderror;
7368 }
7369 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7370 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7371 IPSECLOG(LOG_DEBUG,
7372 "address struct size mismatched.\n");
7373 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7374 error = EINVAL;
7375 goto senderror;
7376 }
7377
7378 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7379 case AF_INET:
7380 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7381 sizeof(struct sockaddr_in)) {
7382 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7383 error = EINVAL;
7384 goto senderror;
7385 }
7386 break;
7387 case AF_INET6:
7388 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7389 sizeof(struct sockaddr_in6)) {
7390 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7391 error = EINVAL;
7392 goto senderror;
7393 }
7394 break;
7395 default:
7396 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7397 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7398 error = EAFNOSUPPORT;
7399 goto senderror;
7400 }
7401
7402 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7403 case AF_INET:
7404 plen = sizeof(struct in_addr) << 3;
7405 break;
7406 case AF_INET6:
7407 plen = sizeof(struct in6_addr) << 3;
7408 break;
7409 default:
7410 plen = 0; /*fool gcc*/
7411 break;
7412 }
7413
7414 /* check max prefix length */
7415 if (src0->sadb_address_prefixlen > plen ||
7416 dst0->sadb_address_prefixlen > plen) {
7417 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7418 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7419 error = EINVAL;
7420 goto senderror;
7421 }
7422
7423 /*
7424 * prefixlen == 0 is valid because there can be a case when
7425 * all addresses are matched.
7426 */
7427 }
7428
7429 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7430 key_api_typesw[msg->sadb_msg_type] == NULL) {
7431 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7432 error = EINVAL;
7433 goto senderror;
7434 }
7435
7436 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7437
7438 senderror:
7439 return key_senderror(so, m, error);
7440 }
7441
7442 static int
7443 key_senderror(struct socket *so, struct mbuf *m, int code)
7444 {
7445 struct sadb_msg *msg;
7446
7447 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7448
7449 msg = mtod(m, struct sadb_msg *);
7450 msg->sadb_msg_errno = code;
7451 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7452 }
7453
7454 /*
7455 * set the pointer to each header into message buffer.
7456 * m will be freed on error.
7457 * XXX larger-than-MCLBYTES extension?
7458 */
7459 static int
7460 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7461 {
7462 struct mbuf *n;
7463 struct sadb_ext *ext;
7464 size_t off, end;
7465 int extlen;
7466 int toff;
7467
7468 KASSERT(m != NULL);
7469 KASSERT(mhp != NULL);
7470 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7471
7472 /* initialize */
7473 memset(mhp, 0, sizeof(*mhp));
7474
7475 mhp->msg = mtod(m, struct sadb_msg *);
7476 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7477
7478 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7479 extlen = end; /*just in case extlen is not updated*/
7480 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7481 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7482 if (!n) {
7483 /* m is already freed */
7484 return ENOBUFS;
7485 }
7486 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7487
7488 /* set pointer */
7489 switch (ext->sadb_ext_type) {
7490 case SADB_EXT_SA:
7491 case SADB_EXT_ADDRESS_SRC:
7492 case SADB_EXT_ADDRESS_DST:
7493 case SADB_EXT_ADDRESS_PROXY:
7494 case SADB_EXT_LIFETIME_CURRENT:
7495 case SADB_EXT_LIFETIME_HARD:
7496 case SADB_EXT_LIFETIME_SOFT:
7497 case SADB_EXT_KEY_AUTH:
7498 case SADB_EXT_KEY_ENCRYPT:
7499 case SADB_EXT_IDENTITY_SRC:
7500 case SADB_EXT_IDENTITY_DST:
7501 case SADB_EXT_SENSITIVITY:
7502 case SADB_EXT_PROPOSAL:
7503 case SADB_EXT_SUPPORTED_AUTH:
7504 case SADB_EXT_SUPPORTED_ENCRYPT:
7505 case SADB_EXT_SPIRANGE:
7506 case SADB_X_EXT_POLICY:
7507 case SADB_X_EXT_SA2:
7508 case SADB_X_EXT_NAT_T_TYPE:
7509 case SADB_X_EXT_NAT_T_SPORT:
7510 case SADB_X_EXT_NAT_T_DPORT:
7511 case SADB_X_EXT_NAT_T_OAI:
7512 case SADB_X_EXT_NAT_T_OAR:
7513 case SADB_X_EXT_NAT_T_FRAG:
7514 /* duplicate check */
7515 /*
7516 * XXX Are there duplication payloads of either
7517 * KEY_AUTH or KEY_ENCRYPT ?
7518 */
7519 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7520 IPSECLOG(LOG_DEBUG,
7521 "duplicate ext_type %u is passed.\n",
7522 ext->sadb_ext_type);
7523 m_freem(m);
7524 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7525 return EINVAL;
7526 }
7527 break;
7528 default:
7529 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7530 ext->sadb_ext_type);
7531 m_freem(m);
7532 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7533 return EINVAL;
7534 }
7535
7536 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7537
7538 if (key_validate_ext(ext, extlen)) {
7539 m_freem(m);
7540 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7541 return EINVAL;
7542 }
7543
7544 n = m_pulldown(m, off, extlen, &toff);
7545 if (!n) {
7546 /* m is already freed */
7547 return ENOBUFS;
7548 }
7549 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7550
7551 mhp->ext[ext->sadb_ext_type] = ext;
7552 mhp->extoff[ext->sadb_ext_type] = off;
7553 mhp->extlen[ext->sadb_ext_type] = extlen;
7554 }
7555
7556 if (off != end) {
7557 m_freem(m);
7558 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7559 return EINVAL;
7560 }
7561
7562 return 0;
7563 }
7564
7565 static int
7566 key_validate_ext(const struct sadb_ext *ext, int len)
7567 {
7568 const struct sockaddr *sa;
7569 enum { NONE, ADDR } checktype = NONE;
7570 int baselen = 0;
7571 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7572
7573 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7574 return EINVAL;
7575
7576 /* if it does not match minimum/maximum length, bail */
7577 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7578 ext->sadb_ext_type >= __arraycount(maxsize))
7579 return EINVAL;
7580 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7581 return EINVAL;
7582 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7583 return EINVAL;
7584
7585 /* more checks based on sadb_ext_type XXX need more */
7586 switch (ext->sadb_ext_type) {
7587 case SADB_EXT_ADDRESS_SRC:
7588 case SADB_EXT_ADDRESS_DST:
7589 case SADB_EXT_ADDRESS_PROXY:
7590 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7591 checktype = ADDR;
7592 break;
7593 case SADB_EXT_IDENTITY_SRC:
7594 case SADB_EXT_IDENTITY_DST:
7595 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7596 SADB_X_IDENTTYPE_ADDR) {
7597 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7598 checktype = ADDR;
7599 } else
7600 checktype = NONE;
7601 break;
7602 default:
7603 checktype = NONE;
7604 break;
7605 }
7606
7607 switch (checktype) {
7608 case NONE:
7609 break;
7610 case ADDR:
7611 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7612 if (len < baselen + sal)
7613 return EINVAL;
7614 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7615 return EINVAL;
7616 break;
7617 }
7618
7619 return 0;
7620 }
7621
7622 static int
7623 key_do_init(void)
7624 {
7625 int i, error;
7626
7627 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7628
7629 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7630
7631 callout_init(&key_timehandler_ch, 0);
7632 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7633 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7634 if (error != 0)
7635 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7636
7637 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7638 LIST_INIT(&sptree[i]);
7639 }
7640
7641 LIST_INIT(&sahtree);
7642
7643 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7644 LIST_INIT(®tree[i]);
7645 }
7646
7647 #ifndef IPSEC_NONBLOCK_ACQUIRE
7648 LIST_INIT(&acqtree);
7649 #endif
7650 #ifdef notyet
7651 LIST_INIT(&spacqtree);
7652 #endif
7653
7654 /* system default */
7655 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7656 ip4_def_policy.refcnt++; /*never reclaim this*/
7657
7658 #ifdef INET6
7659 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7660 ip6_def_policy.refcnt++; /*never reclaim this*/
7661 #endif
7662
7663 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7664
7665 /* initialize key statistics */
7666 keystat.getspi_count = 1;
7667
7668 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7669
7670 return (0);
7671 }
7672
7673 void
7674 key_init(void)
7675 {
7676 static ONCE_DECL(key_init_once);
7677
7678 sysctl_net_keyv2_setup(NULL);
7679 sysctl_net_key_compat_setup(NULL);
7680
7681 RUN_ONCE(&key_init_once, key_do_init);
7682 }
7683
7684 /*
7685 * XXX: maybe This function is called after INBOUND IPsec processing.
7686 *
7687 * Special check for tunnel-mode packets.
7688 * We must make some checks for consistency between inner and outer IP header.
7689 *
7690 * xxx more checks to be provided
7691 */
7692 int
7693 key_checktunnelsanity(
7694 struct secasvar *sav,
7695 u_int family,
7696 void *src,
7697 void *dst
7698 )
7699 {
7700
7701 /* XXX: check inner IP header */
7702
7703 return 1;
7704 }
7705
7706 #if 0
7707 #define hostnamelen strlen(hostname)
7708
7709 /*
7710 * Get FQDN for the host.
7711 * If the administrator configured hostname (by hostname(1)) without
7712 * domain name, returns nothing.
7713 */
7714 static const char *
7715 key_getfqdn(void)
7716 {
7717 int i;
7718 int hasdot;
7719 static char fqdn[MAXHOSTNAMELEN + 1];
7720
7721 if (!hostnamelen)
7722 return NULL;
7723
7724 /* check if it comes with domain name. */
7725 hasdot = 0;
7726 for (i = 0; i < hostnamelen; i++) {
7727 if (hostname[i] == '.')
7728 hasdot++;
7729 }
7730 if (!hasdot)
7731 return NULL;
7732
7733 /* NOTE: hostname may not be NUL-terminated. */
7734 memset(fqdn, 0, sizeof(fqdn));
7735 memcpy(fqdn, hostname, hostnamelen);
7736 fqdn[hostnamelen] = '\0';
7737 return fqdn;
7738 }
7739
7740 /*
7741 * get username@FQDN for the host/user.
7742 */
7743 static const char *
7744 key_getuserfqdn(void)
7745 {
7746 const char *host;
7747 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7748 struct proc *p = curproc;
7749 char *q;
7750
7751 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7752 return NULL;
7753 if (!(host = key_getfqdn()))
7754 return NULL;
7755
7756 /* NOTE: s_login may not be-NUL terminated. */
7757 memset(userfqdn, 0, sizeof(userfqdn));
7758 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7759 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7760 q = userfqdn + strlen(userfqdn);
7761 *q++ = '@';
7762 memcpy(q, host, strlen(host));
7763 q += strlen(host);
7764 *q++ = '\0';
7765
7766 return userfqdn;
7767 }
7768 #endif
7769
7770 /* record data transfer on SA, and update timestamps */
7771 void
7772 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7773 {
7774
7775 KASSERT(sav != NULL);
7776 KASSERT(sav->lft_c != NULL);
7777 KASSERT(m != NULL);
7778
7779 /*
7780 * XXX Currently, there is a difference of bytes size
7781 * between inbound and outbound processing.
7782 */
7783 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7784 /* to check bytes lifetime is done in key_timehandler(). */
7785
7786 /*
7787 * We use the number of packets as the unit of
7788 * sadb_lifetime_allocations. We increment the variable
7789 * whenever {esp,ah}_{in,out}put is called.
7790 */
7791 sav->lft_c->sadb_lifetime_allocations++;
7792 /* XXX check for expires? */
7793
7794 /*
7795 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7796 * in seconds. HARD and SOFT lifetime are measured by the time
7797 * difference (again in seconds) from sadb_lifetime_usetime.
7798 *
7799 * usetime
7800 * v expire expire
7801 * -----+-----+--------+---> t
7802 * <--------------> HARD
7803 * <-----> SOFT
7804 */
7805 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7806 /* XXX check for expires? */
7807
7808 return;
7809 }
7810
7811 /* dumb version */
7812 void
7813 key_sa_routechange(struct sockaddr *dst)
7814 {
7815 struct secashead *sah;
7816 struct route *ro;
7817 const struct sockaddr *sa;
7818
7819 LIST_FOREACH(sah, &sahtree, chain) {
7820 ro = &sah->sa_route;
7821 sa = rtcache_getdst(ro);
7822 if (sa != NULL && dst->sa_len == sa->sa_len &&
7823 memcmp(dst, sa, dst->sa_len) == 0)
7824 rtcache_free(ro);
7825 }
7826
7827 return;
7828 }
7829
7830 static void
7831 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7832 {
7833
7834 KASSERT(sav != NULL);
7835
7836 if (sav->state == state)
7837 return;
7838
7839 KASSERT(__LIST_CHAINED(sav));
7840 LIST_REMOVE(sav, chain);
7841
7842 sav->state = state;
7843 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7844 }
7845
7846 /* XXX too much? */
7847 static struct mbuf *
7848 key_alloc_mbuf(int l)
7849 {
7850 struct mbuf *m = NULL, *n;
7851 int len, t;
7852
7853 len = l;
7854 while (len > 0) {
7855 MGET(n, M_DONTWAIT, MT_DATA);
7856 if (n && len > MLEN)
7857 MCLGET(n, M_DONTWAIT);
7858 if (!n) {
7859 m_freem(m);
7860 return NULL;
7861 }
7862
7863 n->m_next = NULL;
7864 n->m_len = 0;
7865 n->m_len = M_TRAILINGSPACE(n);
7866 /* use the bottom of mbuf, hoping we can prepend afterwards */
7867 if (n->m_len > len) {
7868 t = (n->m_len - len) & ~(sizeof(long) - 1);
7869 n->m_data += t;
7870 n->m_len = len;
7871 }
7872
7873 len -= n->m_len;
7874
7875 if (m)
7876 m_cat(m, n);
7877 else
7878 m = n;
7879 }
7880
7881 return m;
7882 }
7883
7884 static struct mbuf *
7885 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7886 {
7887 struct secashead *sah;
7888 struct secasvar *sav;
7889 u_int16_t proto;
7890 u_int8_t satype;
7891 u_int8_t state;
7892 int cnt;
7893 struct mbuf *m, *n;
7894
7895 /* map satype to proto */
7896 proto = key_satype2proto(req_satype);
7897 if (proto == 0) {
7898 *errorp = EINVAL;
7899 return (NULL);
7900 }
7901
7902 /* count sav entries to be sent to the userland. */
7903 cnt = 0;
7904 LIST_FOREACH(sah, &sahtree, chain) {
7905 if (req_satype != SADB_SATYPE_UNSPEC &&
7906 proto != sah->saidx.proto)
7907 continue;
7908
7909 SASTATE_ANY_FOREACH(state) {
7910 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7911 cnt++;
7912 }
7913 }
7914 }
7915
7916 if (cnt == 0) {
7917 *errorp = ENOENT;
7918 return (NULL);
7919 }
7920
7921 /* send this to the userland, one at a time. */
7922 m = NULL;
7923 LIST_FOREACH(sah, &sahtree, chain) {
7924 if (req_satype != SADB_SATYPE_UNSPEC &&
7925 proto != sah->saidx.proto)
7926 continue;
7927
7928 /* map proto to satype */
7929 satype = key_proto2satype(sah->saidx.proto);
7930 if (satype == 0) {
7931 m_freem(m);
7932 *errorp = EINVAL;
7933 return (NULL);
7934 }
7935
7936 SASTATE_ANY_FOREACH(state) {
7937 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7938 n = key_setdumpsa(sav, SADB_DUMP, satype,
7939 --cnt, pid);
7940 if (!n) {
7941 m_freem(m);
7942 *errorp = ENOBUFS;
7943 return (NULL);
7944 }
7945
7946 if (!m)
7947 m = n;
7948 else
7949 m_cat(m, n);
7950 }
7951 }
7952 }
7953
7954 if (!m) {
7955 *errorp = EINVAL;
7956 return (NULL);
7957 }
7958
7959 if ((m->m_flags & M_PKTHDR) != 0) {
7960 m->m_pkthdr.len = 0;
7961 for (n = m; n; n = n->m_next)
7962 m->m_pkthdr.len += n->m_len;
7963 }
7964
7965 *errorp = 0;
7966 return (m);
7967 }
7968
7969 static struct mbuf *
7970 key_setspddump(int *errorp, pid_t pid)
7971 {
7972 struct secpolicy *sp;
7973 int cnt;
7974 u_int dir;
7975 struct mbuf *m, *n;
7976
7977 /* search SPD entry and get buffer size. */
7978 cnt = 0;
7979 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7980 LIST_FOREACH(sp, &sptree[dir], chain) {
7981 cnt++;
7982 }
7983 }
7984
7985 if (cnt == 0) {
7986 *errorp = ENOENT;
7987 return (NULL);
7988 }
7989
7990 m = NULL;
7991 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7992 LIST_FOREACH(sp, &sptree[dir], chain) {
7993 --cnt;
7994 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
7995
7996 if (!n) {
7997 *errorp = ENOBUFS;
7998 m_freem(m);
7999 return (NULL);
8000 }
8001 if (!m)
8002 m = n;
8003 else {
8004 m->m_pkthdr.len += n->m_pkthdr.len;
8005 m_cat(m, n);
8006 }
8007 }
8008 }
8009
8010 *errorp = 0;
8011 return (m);
8012 }
8013
8014 int
8015 key_get_used(void) {
8016 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8017 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8018 }
8019
8020 void
8021 key_update_used(void)
8022 {
8023 switch (ipsec_enabled) {
8024 default:
8025 case 0:
8026 #ifdef notyet
8027 /* XXX: racy */
8028 ipsec_used = 0;
8029 #endif
8030 break;
8031 case 1:
8032 #ifndef notyet
8033 /* XXX: racy */
8034 if (!ipsec_used)
8035 #endif
8036 ipsec_used = key_get_used();
8037 break;
8038 case 2:
8039 ipsec_used = 1;
8040 break;
8041 }
8042 }
8043
8044 static int
8045 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8046 {
8047 struct mbuf *m, *n;
8048 int err2 = 0;
8049 char *p, *ep;
8050 size_t len;
8051 int s, error;
8052
8053 if (newp)
8054 return (EPERM);
8055 if (namelen != 1)
8056 return (EINVAL);
8057
8058 s = splsoftnet();
8059 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8060 splx(s);
8061 if (!m)
8062 return (error);
8063 if (!oldp)
8064 *oldlenp = m->m_pkthdr.len;
8065 else {
8066 p = oldp;
8067 if (*oldlenp < m->m_pkthdr.len) {
8068 err2 = ENOMEM;
8069 ep = p + *oldlenp;
8070 } else {
8071 *oldlenp = m->m_pkthdr.len;
8072 ep = p + m->m_pkthdr.len;
8073 }
8074 for (n = m; n; n = n->m_next) {
8075 len = (ep - p < n->m_len) ?
8076 ep - p : n->m_len;
8077 error = copyout(mtod(n, const void *), p, len);
8078 p += len;
8079 if (error)
8080 break;
8081 }
8082 if (error == 0)
8083 error = err2;
8084 }
8085 m_freem(m);
8086
8087 return (error);
8088 }
8089
8090 static int
8091 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8092 {
8093 struct mbuf *m, *n;
8094 int err2 = 0;
8095 char *p, *ep;
8096 size_t len;
8097 int s, error;
8098
8099 if (newp)
8100 return (EPERM);
8101 if (namelen != 0)
8102 return (EINVAL);
8103
8104 s = splsoftnet();
8105 m = key_setspddump(&error, l->l_proc->p_pid);
8106 splx(s);
8107 if (!m)
8108 return (error);
8109 if (!oldp)
8110 *oldlenp = m->m_pkthdr.len;
8111 else {
8112 p = oldp;
8113 if (*oldlenp < m->m_pkthdr.len) {
8114 err2 = ENOMEM;
8115 ep = p + *oldlenp;
8116 } else {
8117 *oldlenp = m->m_pkthdr.len;
8118 ep = p + m->m_pkthdr.len;
8119 }
8120 for (n = m; n; n = n->m_next) {
8121 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8122 error = copyout(mtod(n, const void *), p, len);
8123 p += len;
8124 if (error)
8125 break;
8126 }
8127 if (error == 0)
8128 error = err2;
8129 }
8130 m_freem(m);
8131
8132 return (error);
8133 }
8134
8135 /*
8136 * Create sysctl tree for native IPSEC key knobs, originally
8137 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8138 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8139 * and in any case the part of our sysctl namespace used for dumping the
8140 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8141 * namespace, for API reasons.
8142 *
8143 * Pending a consensus on the right way to fix this, add a level of
8144 * indirection in how we number the `native' IPSEC key nodes;
8145 * and (as requested by Andrew Brown) move registration of the
8146 * KAME-compatible names to a separate function.
8147 */
8148 #if 0
8149 # define IPSEC_PFKEY PF_KEY_V2
8150 # define IPSEC_PFKEY_NAME "keyv2"
8151 #else
8152 # define IPSEC_PFKEY PF_KEY
8153 # define IPSEC_PFKEY_NAME "key"
8154 #endif
8155
8156 static int
8157 sysctl_net_key_stats(SYSCTLFN_ARGS)
8158 {
8159
8160 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8161 }
8162
8163 static void
8164 sysctl_net_keyv2_setup(struct sysctllog **clog)
8165 {
8166
8167 sysctl_createv(clog, 0, NULL, NULL,
8168 CTLFLAG_PERMANENT,
8169 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8170 NULL, 0, NULL, 0,
8171 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8172
8173 sysctl_createv(clog, 0, NULL, NULL,
8174 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8175 CTLTYPE_INT, "debug", NULL,
8176 NULL, 0, &key_debug_level, 0,
8177 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8178 sysctl_createv(clog, 0, NULL, NULL,
8179 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8180 CTLTYPE_INT, "spi_try", NULL,
8181 NULL, 0, &key_spi_trycnt, 0,
8182 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8183 sysctl_createv(clog, 0, NULL, NULL,
8184 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8185 CTLTYPE_INT, "spi_min_value", NULL,
8186 NULL, 0, &key_spi_minval, 0,
8187 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8188 sysctl_createv(clog, 0, NULL, NULL,
8189 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8190 CTLTYPE_INT, "spi_max_value", NULL,
8191 NULL, 0, &key_spi_maxval, 0,
8192 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8193 sysctl_createv(clog, 0, NULL, NULL,
8194 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8195 CTLTYPE_INT, "random_int", NULL,
8196 NULL, 0, &key_int_random, 0,
8197 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8198 sysctl_createv(clog, 0, NULL, NULL,
8199 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8200 CTLTYPE_INT, "larval_lifetime", NULL,
8201 NULL, 0, &key_larval_lifetime, 0,
8202 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8203 sysctl_createv(clog, 0, NULL, NULL,
8204 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8205 CTLTYPE_INT, "blockacq_count", NULL,
8206 NULL, 0, &key_blockacq_count, 0,
8207 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8208 sysctl_createv(clog, 0, NULL, NULL,
8209 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8210 CTLTYPE_INT, "blockacq_lifetime", NULL,
8211 NULL, 0, &key_blockacq_lifetime, 0,
8212 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8213 sysctl_createv(clog, 0, NULL, NULL,
8214 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8215 CTLTYPE_INT, "esp_keymin", NULL,
8216 NULL, 0, &ipsec_esp_keymin, 0,
8217 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8218 sysctl_createv(clog, 0, NULL, NULL,
8219 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8220 CTLTYPE_INT, "prefered_oldsa", NULL,
8221 NULL, 0, &key_prefered_oldsa, 0,
8222 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8223 sysctl_createv(clog, 0, NULL, NULL,
8224 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8225 CTLTYPE_INT, "esp_auth", NULL,
8226 NULL, 0, &ipsec_esp_auth, 0,
8227 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8228 sysctl_createv(clog, 0, NULL, NULL,
8229 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8230 CTLTYPE_INT, "ah_keymin", NULL,
8231 NULL, 0, &ipsec_ah_keymin, 0,
8232 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8233 sysctl_createv(clog, 0, NULL, NULL,
8234 CTLFLAG_PERMANENT,
8235 CTLTYPE_STRUCT, "stats",
8236 SYSCTL_DESCR("PF_KEY statistics"),
8237 sysctl_net_key_stats, 0, NULL, 0,
8238 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8239 }
8240
8241 /*
8242 * Register sysctl names used by setkey(8). For historical reasons,
8243 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8244 * for both IPSEC and KAME IPSEC.
8245 */
8246 static void
8247 sysctl_net_key_compat_setup(struct sysctllog **clog)
8248 {
8249
8250 sysctl_createv(clog, 0, NULL, NULL,
8251 CTLFLAG_PERMANENT,
8252 CTLTYPE_NODE, "key", NULL,
8253 NULL, 0, NULL, 0,
8254 CTL_NET, PF_KEY, CTL_EOL);
8255
8256 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8257 sysctl_createv(clog, 0, NULL, NULL,
8258 CTLFLAG_PERMANENT,
8259 CTLTYPE_STRUCT, "dumpsa", NULL,
8260 sysctl_net_key_dumpsa, 0, NULL, 0,
8261 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8262 sysctl_createv(clog, 0, NULL, NULL,
8263 CTLFLAG_PERMANENT,
8264 CTLTYPE_STRUCT, "dumpsp", NULL,
8265 sysctl_net_key_dumpsp, 0, NULL, 0,
8266 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8267 }
8268