key.c revision 1.193 1 /* $NetBSD: key.c,v 1.193 2017/07/26 03:59:59 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.193 2017/07/26 03:59:59 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #endif
46
47 #include <sys/types.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/domain.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/errno.h>
58 #include <sys/proc.h>
59 #include <sys/queue.h>
60 #include <sys/syslog.h>
61 #include <sys/once.h>
62 #include <sys/cprng.h>
63 #include <sys/psref.h>
64 #include <sys/lwp.h>
65 #include <sys/workqueue.h>
66 #include <sys/kmem.h>
67 #include <sys/cpu.h>
68 #include <sys/atomic.h>
69
70 #include <net/if.h>
71 #include <net/route.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipcomp.h>
108
109
110 #include <net/net_osdep.h>
111
112 #define FULLMASK 0xff
113 #define _BITS(bytes) ((bytes) << 3)
114
115 #define PORT_NONE 0
116 #define PORT_LOOSE 1
117 #define PORT_STRICT 2
118
119 percpu_t *pfkeystat_percpu;
120
121 /*
122 * Note on SA reference counting:
123 * - SAs that are not in DEAD state will have (total external reference + 1)
124 * following value in reference count field. they cannot be freed and are
125 * referenced from SA header.
126 * - SAs that are in DEAD state will have (total external reference)
127 * in reference count field. they are ready to be freed. reference from
128 * SA header will be removed in key_delsav(), when the reference count
129 * field hits 0 (= no external reference other than from SA header.
130 */
131
132 u_int32_t key_debug_level = 0;
133 static u_int key_spi_trycnt = 1000;
134 static u_int32_t key_spi_minval = 0x100;
135 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
136 static u_int32_t policy_id = 0;
137 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
138 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
139 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
140 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
141 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
142
143 static u_int32_t acq_seq = 0;
144
145 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
146 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 /* registed list */
149 #ifndef IPSEC_NONBLOCK_ACQUIRE
150 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
151 #endif
152 #ifdef notyet
153 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
154 #endif
155
156 /*
157 * Protect regtree, acqtree and items stored in the lists.
158 */
159 static kmutex_t key_mtx __cacheline_aligned;
160
161 /* search order for SAs */
162 /*
163 * This order is important because we must select the oldest SA
164 * for outbound processing. For inbound, This is not important.
165 */
166 static const u_int saorder_state_valid_prefer_old[] = {
167 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
168 };
169 static const u_int saorder_state_valid_prefer_new[] = {
170 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
171 };
172
173 static const u_int saorder_state_alive[] = {
174 /* except DEAD */
175 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
176 };
177 static const u_int saorder_state_any[] = {
178 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
179 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
180 };
181
182 #define SASTATE_ALIVE_FOREACH(s) \
183 for (int _i = 0; \
184 _i < __arraycount(saorder_state_alive) ? \
185 (s) = saorder_state_alive[_i], true : false; \
186 _i++)
187 #define SASTATE_ANY_FOREACH(s) \
188 for (int _i = 0; \
189 _i < __arraycount(saorder_state_any) ? \
190 (s) = saorder_state_any[_i], true : false; \
191 _i++)
192
193 static const int minsize[] = {
194 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
195 sizeof(struct sadb_sa), /* SADB_EXT_SA */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
201 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
202 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
203 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
205 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
206 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
207 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
209 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
210 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
211 0, /* SADB_X_EXT_KMPRIVATE */
212 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
213 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
214 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
215 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
217 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
218 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221 static const int maxsize[] = {
222 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
223 sizeof(struct sadb_sa), /* SADB_EXT_SA */
224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
225 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
226 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
227 0, /* SADB_EXT_ADDRESS_SRC */
228 0, /* SADB_EXT_ADDRESS_DST */
229 0, /* SADB_EXT_ADDRESS_PROXY */
230 0, /* SADB_EXT_KEY_AUTH */
231 0, /* SADB_EXT_KEY_ENCRYPT */
232 0, /* SADB_EXT_IDENTITY_SRC */
233 0, /* SADB_EXT_IDENTITY_DST */
234 0, /* SADB_EXT_SENSITIVITY */
235 0, /* SADB_EXT_PROPOSAL */
236 0, /* SADB_EXT_SUPPORTED_AUTH */
237 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
238 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
239 0, /* SADB_X_EXT_KMPRIVATE */
240 0, /* SADB_X_EXT_POLICY */
241 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
242 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
243 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
244 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
245 0, /* SADB_X_EXT_NAT_T_OAI */
246 0, /* SADB_X_EXT_NAT_T_OAR */
247 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
248 };
249
250 static int ipsec_esp_keymin = 256;
251 static int ipsec_esp_auth = 0;
252 static int ipsec_ah_keymin = 128;
253
254 #ifdef SYSCTL_DECL
255 SYSCTL_DECL(_net_key);
256 #endif
257
258 #ifdef SYSCTL_INT
259 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
260 &key_debug_level, 0, "");
261
262 /* max count of trial for the decision of spi value */
263 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
264 &key_spi_trycnt, 0, "");
265
266 /* minimum spi value to allocate automatically. */
267 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
268 &key_spi_minval, 0, "");
269
270 /* maximun spi value to allocate automatically. */
271 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
272 &key_spi_maxval, 0, "");
273
274 /* interval to initialize randseed */
275 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
276 &key_int_random, 0, "");
277
278 /* lifetime for larval SA */
279 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
280 &key_larval_lifetime, 0, "");
281
282 /* counter for blocking to send SADB_ACQUIRE to IKEd */
283 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
284 &key_blockacq_count, 0, "");
285
286 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
287 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
288 &key_blockacq_lifetime, 0, "");
289
290 /* ESP auth */
291 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
292 &ipsec_esp_auth, 0, "");
293
294 /* minimum ESP key length */
295 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
296 &ipsec_esp_keymin, 0, "");
297
298 /* minimum AH key length */
299 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
300 &ipsec_ah_keymin, 0, "");
301
302 /* perfered old SA rather than new SA */
303 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
304 &key_prefered_oldsa, 0, "");
305 #endif /* SYSCTL_INT */
306
307 #define __LIST_CHAINED(elm) \
308 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
309 #define LIST_INSERT_TAIL(head, elm, type, field) \
310 do {\
311 struct type *curelm = LIST_FIRST(head); \
312 if (curelm == NULL) {\
313 LIST_INSERT_HEAD(head, elm, field); \
314 } else { \
315 while (LIST_NEXT(curelm, field)) \
316 curelm = LIST_NEXT(curelm, field);\
317 LIST_INSERT_AFTER(curelm, elm, field);\
318 }\
319 } while (0)
320
321 #define KEY_CHKSASTATE(head, sav) \
322 /* do */ { \
323 if ((head) != (sav)) { \
324 IPSECLOG(LOG_DEBUG, \
325 "state mismatched (TREE=%d SA=%d)\n", \
326 (head), (sav)); \
327 continue; \
328 } \
329 } /* while (0) */
330
331 #define KEY_CHKSPDIR(head, sp) \
332 do { \
333 if ((head) != (sp)) { \
334 IPSECLOG(LOG_DEBUG, \
335 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
336 (head), (sp)); \
337 } \
338 } while (0)
339
340 /*
341 * set parameters into secasindex buffer.
342 * Must allocate secasindex buffer before calling this function.
343 */
344 static int
345 key_setsecasidx(int, int, int, const struct sockaddr *,
346 const struct sockaddr *, struct secasindex *);
347
348 /* key statistics */
349 struct _keystat {
350 u_long getspi_count; /* the avarage of count to try to get new SPI */
351 } keystat;
352
353 struct sadb_msghdr {
354 struct sadb_msg *msg;
355 struct sadb_ext *ext[SADB_EXT_MAX + 1];
356 int extoff[SADB_EXT_MAX + 1];
357 int extlen[SADB_EXT_MAX + 1];
358 };
359
360 static void
361 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
362
363 static const struct sockaddr *
364 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
365 {
366
367 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
368 }
369
370 static struct mbuf *
371 key_fill_replymsg(struct mbuf *m, int seq)
372 {
373 struct sadb_msg *msg;
374
375 if (m->m_len < sizeof(*msg)) {
376 m = m_pullup(m, sizeof(*msg));
377 if (m == NULL)
378 return NULL;
379 }
380 msg = mtod(m, struct sadb_msg *);
381 msg->sadb_msg_errno = 0;
382 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
383 if (seq != 0)
384 msg->sadb_msg_seq = seq;
385
386 return m;
387 }
388
389 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
390 #if 0
391 static void key_freeso(struct socket *);
392 static void key_freesp_so(struct secpolicy **);
393 #endif
394 static void key_delsp (struct secpolicy *);
395 static struct secpolicy *key_getsp (const struct secpolicyindex *);
396 static struct secpolicy *key_getspbyid (u_int32_t);
397 static u_int16_t key_newreqid (void);
398 static struct mbuf *key_gather_mbuf (struct mbuf *,
399 const struct sadb_msghdr *, int, int, ...);
400 static int key_api_spdadd(struct socket *, struct mbuf *,
401 const struct sadb_msghdr *);
402 static u_int32_t key_getnewspid (void);
403 static int key_api_spddelete(struct socket *, struct mbuf *,
404 const struct sadb_msghdr *);
405 static int key_api_spddelete2(struct socket *, struct mbuf *,
406 const struct sadb_msghdr *);
407 static int key_api_spdget(struct socket *, struct mbuf *,
408 const struct sadb_msghdr *);
409 static int key_api_spdflush(struct socket *, struct mbuf *,
410 const struct sadb_msghdr *);
411 static int key_api_spddump(struct socket *, struct mbuf *,
412 const struct sadb_msghdr *);
413 static struct mbuf * key_setspddump (int *errorp, pid_t);
414 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
415 static int key_api_nat_map(struct socket *, struct mbuf *,
416 const struct sadb_msghdr *);
417 static struct mbuf *key_setdumpsp (struct secpolicy *,
418 u_int8_t, u_int32_t, pid_t);
419 static u_int key_getspreqmsglen (const struct secpolicy *);
420 static int key_spdexpire (struct secpolicy *);
421 static struct secashead *key_newsah (const struct secasindex *);
422 static void key_delsah (struct secashead *);
423 static struct secasvar *key_newsav(struct mbuf *,
424 const struct sadb_msghdr *, int *, const char*, int);
425 #define KEY_NEWSAV(m, sadb, e) \
426 key_newsav(m, sadb, e, __func__, __LINE__)
427 static void key_delsav (struct secasvar *);
428 static struct secashead *key_getsah(const struct secasindex *, int);
429 static bool key_checkspidup(const struct secasindex *, u_int32_t);
430 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
431 static int key_setsaval (struct secasvar *, struct mbuf *,
432 const struct sadb_msghdr *);
433 static void key_freesaval(struct secasvar *);
434 static int key_init_xform(struct secasvar *);
435 static void key_clear_xform(struct secasvar *);
436 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
437 u_int8_t, u_int32_t, u_int32_t);
438 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
439 static struct mbuf *key_setsadbxtype (u_int16_t);
440 static struct mbuf *key_setsadbxfrag (u_int16_t);
441 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
442 static int key_checksalen (const union sockaddr_union *);
443 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
444 u_int32_t, pid_t, u_int16_t);
445 static struct mbuf *key_setsadbsa (struct secasvar *);
446 static struct mbuf *key_setsadbaddr (u_int16_t,
447 const struct sockaddr *, u_int8_t, u_int16_t);
448 #if 0
449 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
450 int, u_int64_t);
451 #endif
452 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
453 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
454 u_int32_t);
455 static void *key_newbuf (const void *, u_int);
456 #ifdef INET6
457 static int key_ismyaddr6 (const struct sockaddr_in6 *);
458 #endif
459
460 static void sysctl_net_keyv2_setup(struct sysctllog **);
461 static void sysctl_net_key_compat_setup(struct sysctllog **);
462
463 /* flags for key_saidx_match() */
464 #define CMP_HEAD 1 /* protocol, addresses. */
465 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
466 #define CMP_REQID 3 /* additionally HEAD, reaid. */
467 #define CMP_EXACTLY 4 /* all elements. */
468 static int key_saidx_match(const struct secasindex *,
469 const struct secasindex *, int);
470
471 static int key_sockaddr_match(const struct sockaddr *,
472 const struct sockaddr *, int);
473 static int key_bb_match_withmask(const void *, const void *, u_int);
474 static u_int16_t key_satype2proto (u_int8_t);
475 static u_int8_t key_proto2satype (u_int16_t);
476
477 static int key_spidx_match_exactly(const struct secpolicyindex *,
478 const struct secpolicyindex *);
479 static int key_spidx_match_withmask(const struct secpolicyindex *,
480 const struct secpolicyindex *);
481
482 static int key_api_getspi(struct socket *, struct mbuf *,
483 const struct sadb_msghdr *);
484 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
485 const struct secasindex *);
486 static int key_handle_natt_info (struct secasvar *,
487 const struct sadb_msghdr *);
488 static int key_set_natt_ports (union sockaddr_union *,
489 union sockaddr_union *,
490 const struct sadb_msghdr *);
491 static int key_api_update(struct socket *, struct mbuf *,
492 const struct sadb_msghdr *);
493 #ifdef IPSEC_DOSEQCHECK
494 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
495 #endif
496 static int key_api_add(struct socket *, struct mbuf *,
497 const struct sadb_msghdr *);
498 static int key_setident (struct secashead *, struct mbuf *,
499 const struct sadb_msghdr *);
500 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
501 const struct sadb_msghdr *);
502 static int key_api_delete(struct socket *, struct mbuf *,
503 const struct sadb_msghdr *);
504 static int key_api_get(struct socket *, struct mbuf *,
505 const struct sadb_msghdr *);
506
507 static void key_getcomb_setlifetime (struct sadb_comb *);
508 static struct mbuf *key_getcomb_esp (void);
509 static struct mbuf *key_getcomb_ah (void);
510 static struct mbuf *key_getcomb_ipcomp (void);
511 static struct mbuf *key_getprop (const struct secasindex *);
512
513 static int key_acquire (const struct secasindex *, struct secpolicy *);
514 #ifndef IPSEC_NONBLOCK_ACQUIRE
515 static struct secacq *key_newacq (const struct secasindex *);
516 static struct secacq *key_getacq (const struct secasindex *);
517 static struct secacq *key_getacqbyseq (u_int32_t);
518 #endif
519 #ifdef notyet
520 static struct secspacq *key_newspacq (const struct secpolicyindex *);
521 static struct secspacq *key_getspacq (const struct secpolicyindex *);
522 #endif
523 static int key_api_acquire(struct socket *, struct mbuf *,
524 const struct sadb_msghdr *);
525 static int key_api_register(struct socket *, struct mbuf *,
526 const struct sadb_msghdr *);
527 static int key_expire (struct secasvar *);
528 static int key_api_flush(struct socket *, struct mbuf *,
529 const struct sadb_msghdr *);
530 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
531 int *lenp, pid_t pid);
532 static int key_api_dump(struct socket *, struct mbuf *,
533 const struct sadb_msghdr *);
534 static int key_api_promisc(struct socket *, struct mbuf *,
535 const struct sadb_msghdr *);
536 static int key_senderror (struct socket *, struct mbuf *, int);
537 static int key_validate_ext (const struct sadb_ext *, int);
538 static int key_align (struct mbuf *, struct sadb_msghdr *);
539 #if 0
540 static const char *key_getfqdn (void);
541 static const char *key_getuserfqdn (void);
542 #endif
543 static void key_sa_chgstate (struct secasvar *, u_int8_t);
544 static inline void key_sp_dead (struct secpolicy *);
545 static void key_sp_unlink (struct secpolicy *sp);
546
547 static struct mbuf *key_alloc_mbuf (int);
548
549 static void key_timehandler(void *);
550 static void key_timehandler_work(struct work *, void *);
551 static struct callout key_timehandler_ch;
552 static struct workqueue *key_timehandler_wq;
553 static struct work key_timehandler_wk;
554
555 #ifdef IPSEC_REF_DEBUG
556 #define REFLOG(label, p, where, tag) \
557 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
558 (where), (tag), (p)->refcnt, (p))
559 #else
560 #define REFLOG(label, p, where, tag) do {} while (0)
561 #endif
562
563 #define SA_ADDREF(p) do { \
564 atomic_inc_uint(&(p)->refcnt); \
565 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
566 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
567 } while (0)
568 #define SA_ADDREF2(p, where, tag) do { \
569 atomic_inc_uint(&(p)->refcnt); \
570 REFLOG("SA_ADDREF", (p), (where), (tag)); \
571 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
572 } while (0)
573 #define SA_DELREF(p) do { \
574 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
575 atomic_dec_uint(&(p)->refcnt); \
576 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
577 } while (0)
578 #define SA_DELREF2(p, nv, where, tag) do { \
579 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
580 nv = atomic_dec_uint_nv(&(p)->refcnt); \
581 REFLOG("SA_DELREF", (p), (where), (tag)); \
582 } while (0)
583
584 #define SP_ADDREF(p) do { \
585 atomic_inc_uint(&(p)->refcnt); \
586 REFLOG("SP_ADDREF", (p), __func__, __LINE__); \
587 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
588 } while (0)
589 #define SP_ADDREF2(p, where, tag) do { \
590 atomic_inc_uint(&(p)->refcnt); \
591 REFLOG("SP_ADDREF", (p), (where), (tag)); \
592 KASSERTMSG((p)->refcnt != 0, "SP refcnt overflow"); \
593 } while (0)
594 #define SP_DELREF(p) do { \
595 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
596 atomic_dec_uint(&(p)->refcnt); \
597 REFLOG("SP_DELREF", (p), __func__, __LINE__); \
598 } while (0)
599 #define SP_DELREF2(p, nv, where, tag) do { \
600 KASSERTMSG((p)->refcnt > 0, "SP refcnt underflow"); \
601 nv = atomic_dec_uint_nv(&(p)->refcnt); \
602 REFLOG("SP_DELREF", (p), (where), (tag)); \
603 } while (0)
604
605 u_int
606 key_sp_refcnt(const struct secpolicy *sp)
607 {
608
609 if (sp == NULL)
610 return 0;
611
612 return sp->refcnt;
613 }
614
615 static inline void
616 key_sp_dead(struct secpolicy *sp)
617 {
618
619 /* mark the SP dead */
620 sp->state = IPSEC_SPSTATE_DEAD;
621 }
622
623 static void
624 key_sp_unlink(struct secpolicy *sp)
625 {
626
627 /* remove from SP index */
628 KASSERT(__LIST_CHAINED(sp));
629 LIST_REMOVE(sp, chain);
630 /* Release refcount held just for being on chain */
631 KEY_FREESP(&sp);
632 }
633
634
635 /*
636 * Return 0 when there are known to be no SP's for the specified
637 * direction. Otherwise return 1. This is used by IPsec code
638 * to optimize performance.
639 */
640 int
641 key_havesp(u_int dir)
642 {
643 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
644 !LIST_EMPTY(&sptree[dir]) : 1);
645 }
646
647 /* %%% IPsec policy management */
648 /*
649 * allocating a SP for OUTBOUND or INBOUND packet.
650 * Must call key_freesp() later.
651 * OUT: NULL: not found
652 * others: found and return the pointer.
653 */
654 struct secpolicy *
655 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
656 u_int dir, const char* where, int tag)
657 {
658 struct secpolicy *sp;
659 int s;
660
661 KASSERT(spidx != NULL);
662 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
663
664 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
665
666 /* get a SP entry */
667 s = splsoftnet(); /*called from softclock()*/
668 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
669 printf("*** objects\n");
670 kdebug_secpolicyindex(spidx);
671 }
672
673 LIST_FOREACH(sp, &sptree[dir], chain) {
674 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
675 printf("*** in SPD\n");
676 kdebug_secpolicyindex(&sp->spidx);
677 }
678
679 if (sp->state == IPSEC_SPSTATE_DEAD)
680 continue;
681 if (key_spidx_match_withmask(&sp->spidx, spidx))
682 goto found;
683 }
684 sp = NULL;
685 found:
686 if (sp) {
687 /* sanity check */
688 KEY_CHKSPDIR(sp->spidx.dir, dir);
689
690 /* found a SPD entry */
691 sp->lastused = time_uptime;
692 SP_ADDREF2(sp, where, tag);
693 }
694 splx(s);
695
696 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
697 "DP return SP:%p (ID=%u) refcnt %u\n",
698 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
699 return sp;
700 }
701
702 /*
703 * return a policy that matches this particular inbound packet.
704 * XXX slow
705 */
706 struct secpolicy *
707 key_gettunnel(const struct sockaddr *osrc,
708 const struct sockaddr *odst,
709 const struct sockaddr *isrc,
710 const struct sockaddr *idst,
711 const char* where, int tag)
712 {
713 struct secpolicy *sp;
714 const int dir = IPSEC_DIR_INBOUND;
715 int s;
716 struct ipsecrequest *r1, *r2, *p;
717 struct secpolicyindex spidx;
718
719 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
720
721 if (isrc->sa_family != idst->sa_family) {
722 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
723 isrc->sa_family, idst->sa_family);
724 sp = NULL;
725 goto done;
726 }
727
728 s = splsoftnet(); /*called from softclock()*/
729 LIST_FOREACH(sp, &sptree[dir], chain) {
730 if (sp->state == IPSEC_SPSTATE_DEAD)
731 continue;
732
733 r1 = r2 = NULL;
734 for (p = sp->req; p; p = p->next) {
735 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
736 continue;
737
738 r1 = r2;
739 r2 = p;
740
741 if (!r1) {
742 /* here we look at address matches only */
743 spidx = sp->spidx;
744 if (isrc->sa_len > sizeof(spidx.src) ||
745 idst->sa_len > sizeof(spidx.dst))
746 continue;
747 memcpy(&spidx.src, isrc, isrc->sa_len);
748 memcpy(&spidx.dst, idst, idst->sa_len);
749 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
750 continue;
751 } else {
752 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
753 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
754 continue;
755 }
756
757 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
758 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
759 continue;
760
761 goto found;
762 }
763 }
764 sp = NULL;
765 found:
766 if (sp) {
767 sp->lastused = time_uptime;
768 SP_ADDREF2(sp, where, tag);
769 }
770 splx(s);
771 done:
772 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
773 "DP return SP:%p (ID=%u) refcnt %u\n",
774 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
775 return sp;
776 }
777
778 /*
779 * allocating an SA entry for an *OUTBOUND* packet.
780 * checking each request entries in SP, and acquire an SA if need.
781 * OUT: 0: there are valid requests.
782 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
783 */
784 int
785 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
786 {
787 u_int level;
788 int error;
789 const struct secasindex *saidx = &isr->saidx;
790 struct secasvar *sav;
791
792 KASSERT(isr != NULL);
793 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
794 saidx->mode == IPSEC_MODE_TUNNEL,
795 "unexpected policy %u", saidx->mode);
796
797 /* get current level */
798 level = ipsec_get_reqlevel(isr);
799
800 /*
801 * XXX guard against protocol callbacks from the crypto
802 * thread as they reference ipsecrequest.sav which we
803 * temporarily null out below. Need to rethink how we
804 * handle bundled SA's in the callback thread.
805 */
806 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
807
808 sav = key_lookup_sa_bysaidx(saidx);
809 if (sav != NULL) {
810 *ret = sav;
811 return 0;
812 }
813
814 /* there is no SA */
815 error = key_acquire(saidx, isr->sp);
816 if (error != 0) {
817 /* XXX What should I do ? */
818 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
819 error);
820 return error;
821 }
822
823 if (level != IPSEC_LEVEL_REQUIRE) {
824 /* XXX sigh, the interface to this routine is botched */
825 *ret = NULL;
826 return 0;
827 } else {
828 return ENOENT;
829 }
830 }
831
832 /*
833 * looking up a SA for policy entry from SAD.
834 * NOTE: searching SAD of aliving state.
835 * OUT: NULL: not found.
836 * others: found and return the pointer.
837 */
838 static struct secasvar *
839 key_lookup_sa_bysaidx(const struct secasindex *saidx)
840 {
841 struct secashead *sah;
842 struct secasvar *sav;
843 u_int stateidx, state;
844 const u_int *saorder_state_valid;
845 int arraysize;
846
847 sah = key_getsah(saidx, CMP_MODE_REQID);
848 if (sah == NULL)
849 return NULL;
850
851 /*
852 * search a valid state list for outbound packet.
853 * This search order is important.
854 */
855 if (key_prefered_oldsa) {
856 saorder_state_valid = saorder_state_valid_prefer_old;
857 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
858 } else {
859 saorder_state_valid = saorder_state_valid_prefer_new;
860 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
861 }
862
863 /* search valid state */
864 for (stateidx = 0;
865 stateidx < arraysize;
866 stateidx++) {
867
868 state = saorder_state_valid[stateidx];
869
870 if (key_prefered_oldsa)
871 sav = LIST_FIRST(&sah->savtree[state]);
872 else {
873 /* XXX need O(1) lookup */
874 struct secasvar *last = NULL;
875
876 LIST_FOREACH(sav, &sah->savtree[state], chain)
877 last = sav;
878 sav = last;
879 }
880 if (sav != NULL) {
881 SA_ADDREF(sav);
882 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
883 "DP cause refcnt++:%d SA:%p\n",
884 sav->refcnt, sav);
885 return sav;
886 }
887 }
888
889 return NULL;
890 }
891
892 #if 0
893 static void
894 key_sendup_message_delete(struct secasvar *sav)
895 {
896 struct mbuf *m, *result = 0;
897 uint8_t satype;
898
899 satype = key_proto2satype(sav->sah->saidx.proto);
900 if (satype == 0)
901 goto msgfail;
902
903 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
904 if (m == NULL)
905 goto msgfail;
906 result = m;
907
908 /* set sadb_address for saidx's. */
909 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
910 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
911 if (m == NULL)
912 goto msgfail;
913 m_cat(result, m);
914
915 /* set sadb_address for saidx's. */
916 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
917 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
918 if (m == NULL)
919 goto msgfail;
920 m_cat(result, m);
921
922 /* create SA extension */
923 m = key_setsadbsa(sav);
924 if (m == NULL)
925 goto msgfail;
926 m_cat(result, m);
927
928 if (result->m_len < sizeof(struct sadb_msg)) {
929 result = m_pullup(result, sizeof(struct sadb_msg));
930 if (result == NULL)
931 goto msgfail;
932 }
933
934 result->m_pkthdr.len = 0;
935 for (m = result; m; m = m->m_next)
936 result->m_pkthdr.len += m->m_len;
937 mtod(result, struct sadb_msg *)->sadb_msg_len =
938 PFKEY_UNIT64(result->m_pkthdr.len);
939
940 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
941 result = NULL;
942 msgfail:
943 if (result)
944 m_freem(result);
945 }
946 #endif
947
948 /*
949 * allocating a usable SA entry for a *INBOUND* packet.
950 * Must call key_freesav() later.
951 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
952 * NULL: not found, or error occurred.
953 *
954 * In the comparison, no source address is used--for RFC2401 conformance.
955 * To quote, from section 4.1:
956 * A security association is uniquely identified by a triple consisting
957 * of a Security Parameter Index (SPI), an IP Destination Address, and a
958 * security protocol (AH or ESP) identifier.
959 * Note that, however, we do need to keep source address in IPsec SA.
960 * IKE specification and PF_KEY specification do assume that we
961 * keep source address in IPsec SA. We see a tricky situation here.
962 *
963 * sport and dport are used for NAT-T. network order is always used.
964 */
965 struct secasvar *
966 key_lookup_sa(
967 const union sockaddr_union *dst,
968 u_int proto,
969 u_int32_t spi,
970 u_int16_t sport,
971 u_int16_t dport,
972 const char* where, int tag)
973 {
974 struct secashead *sah;
975 struct secasvar *sav;
976 u_int stateidx, state;
977 const u_int *saorder_state_valid;
978 int arraysize, chkport;
979 int s;
980
981 int must_check_spi = 1;
982 int must_check_alg = 0;
983 u_int16_t cpi = 0;
984 u_int8_t algo = 0;
985
986 if ((sport != 0) && (dport != 0))
987 chkport = PORT_STRICT;
988 else
989 chkport = PORT_NONE;
990
991 KASSERT(dst != NULL);
992
993 /*
994 * XXX IPCOMP case
995 * We use cpi to define spi here. In the case where cpi <=
996 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
997 * the real spi. In this case, don't check the spi but check the
998 * algorithm
999 */
1000
1001 if (proto == IPPROTO_IPCOMP) {
1002 u_int32_t tmp;
1003 tmp = ntohl(spi);
1004 cpi = (u_int16_t) tmp;
1005 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1006 algo = (u_int8_t) cpi;
1007 must_check_spi = 0;
1008 must_check_alg = 1;
1009 }
1010 }
1011 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1012 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1013 where, tag, must_check_spi, must_check_alg);
1014
1015
1016 /*
1017 * searching SAD.
1018 * XXX: to be checked internal IP header somewhere. Also when
1019 * IPsec tunnel packet is received. But ESP tunnel mode is
1020 * encrypted so we can't check internal IP header.
1021 */
1022 s = splsoftnet(); /*called from softclock()*/
1023 if (key_prefered_oldsa) {
1024 saorder_state_valid = saorder_state_valid_prefer_old;
1025 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1026 } else {
1027 saorder_state_valid = saorder_state_valid_prefer_new;
1028 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1029 }
1030 LIST_FOREACH(sah, &sahtree, chain) {
1031 /* search valid state */
1032 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1033 state = saorder_state_valid[stateidx];
1034 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1035 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1036 "try match spi %#x, %#x\n",
1037 ntohl(spi), ntohl(sav->spi));
1038 /* sanity check */
1039 KEY_CHKSASTATE(sav->state, state);
1040 /* do not return entries w/ unusable state */
1041 if (!SADB_SASTATE_USABLE_P(sav)) {
1042 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1043 "bad state %d\n", sav->state);
1044 continue;
1045 }
1046 if (proto != sav->sah->saidx.proto) {
1047 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1048 "proto fail %d != %d\n",
1049 proto, sav->sah->saidx.proto);
1050 continue;
1051 }
1052 if (must_check_spi && spi != sav->spi) {
1053 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1054 "spi fail %#x != %#x\n",
1055 ntohl(spi), ntohl(sav->spi));
1056 continue;
1057 }
1058 /* XXX only on the ipcomp case */
1059 if (must_check_alg && algo != sav->alg_comp) {
1060 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1061 "algo fail %d != %d\n",
1062 algo, sav->alg_comp);
1063 continue;
1064 }
1065
1066 #if 0 /* don't check src */
1067 /* Fix port in src->sa */
1068
1069 /* check src address */
1070 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1071 continue;
1072 #endif
1073 /* fix port of dst address XXX*/
1074 key_porttosaddr(__UNCONST(dst), dport);
1075 /* check dst address */
1076 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1077 continue;
1078 SA_ADDREF2(sav, where, tag);
1079 goto done;
1080 }
1081 }
1082 }
1083 sav = NULL;
1084 done:
1085 splx(s);
1086
1087 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1088 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1089 return sav;
1090 }
1091
1092 static void
1093 key_validate_savlist(const struct secashead *sah, const u_int state)
1094 {
1095 #ifdef DEBUG
1096 struct secasvar *sav, *next;
1097
1098 /*
1099 * The list should be sorted by lft_c->sadb_lifetime_addtime
1100 * in ascending order.
1101 */
1102 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, next) {
1103 if (next != NULL &&
1104 sav->lft_c != NULL && next->lft_c != NULL) {
1105 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1106 next->lft_c->sadb_lifetime_addtime,
1107 "savlist is not sorted: sah=%p, state=%d, "
1108 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1109 sav->lft_c->sadb_lifetime_addtime,
1110 next->lft_c->sadb_lifetime_addtime);
1111 }
1112 }
1113 #endif
1114 }
1115
1116 void
1117 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1118 {
1119
1120 SP_ADDREF2(sp, where, tag);
1121
1122 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1123 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1124 sp, sp->id, where, tag, key_sp_refcnt(sp));
1125 }
1126
1127 void
1128 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1129 {
1130
1131 SA_ADDREF2(sav, where, tag);
1132
1133 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1134 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1135 sav->refcnt, sav, where, tag);
1136 }
1137
1138 /*
1139 * Must be called after calling key_lookup_sp*().
1140 * For both the packet without socket and key_freeso().
1141 */
1142 void
1143 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1144 {
1145 struct secpolicy *sp = *spp;
1146 unsigned int nv;
1147
1148 KASSERT(sp != NULL);
1149
1150 SP_DELREF2(sp, nv, where, tag);
1151
1152 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1153 "DP SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1154 sp, sp->id, where, tag, nv);
1155
1156 if (nv == 0) {
1157 *spp = NULL;
1158 key_delsp(sp);
1159 }
1160 }
1161
1162 #if 0
1163 /*
1164 * Must be called after calling key_lookup_sp*().
1165 * For the packet with socket.
1166 */
1167 static void
1168 key_freeso(struct socket *so)
1169 {
1170 /* sanity check */
1171 KASSERT(so != NULL);
1172
1173 switch (so->so_proto->pr_domain->dom_family) {
1174 #ifdef INET
1175 case PF_INET:
1176 {
1177 struct inpcb *pcb = sotoinpcb(so);
1178
1179 /* Does it have a PCB ? */
1180 if (pcb == NULL)
1181 return;
1182
1183 struct inpcbpolicy *sp = pcb->inp_sp;
1184 key_freesp_so(&sp->sp_in);
1185 key_freesp_so(&sp->sp_out);
1186 }
1187 break;
1188 #endif
1189 #ifdef INET6
1190 case PF_INET6:
1191 {
1192 #ifdef HAVE_NRL_INPCB
1193 struct inpcb *pcb = sotoinpcb(so);
1194 struct inpcbpolicy *sp = pcb->inp_sp;
1195
1196 /* Does it have a PCB ? */
1197 if (pcb == NULL)
1198 return;
1199 key_freesp_so(&sp->sp_in);
1200 key_freesp_so(&sp->sp_out);
1201 #else
1202 struct in6pcb *pcb = sotoin6pcb(so);
1203
1204 /* Does it have a PCB ? */
1205 if (pcb == NULL)
1206 return;
1207 key_freesp_so(&pcb->in6p_sp->sp_in);
1208 key_freesp_so(&pcb->in6p_sp->sp_out);
1209 #endif
1210 }
1211 break;
1212 #endif /* INET6 */
1213 default:
1214 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1215 so->so_proto->pr_domain->dom_family);
1216 return;
1217 }
1218 }
1219
1220 static void
1221 key_freesp_so(struct secpolicy **sp)
1222 {
1223
1224 KASSERT(sp != NULL);
1225 KASSERT(*sp != NULL);
1226
1227 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1228 (*sp)->policy == IPSEC_POLICY_BYPASS)
1229 return;
1230
1231 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1232 "invalid policy %u", (*sp)->policy);
1233 KEY_FREESP(sp);
1234 }
1235 #endif
1236
1237 /*
1238 * Must be called after calling key_lookup_sa().
1239 * This function is called by key_freesp() to free some SA allocated
1240 * for a policy.
1241 */
1242 void
1243 key_freesav(struct secasvar **psav, const char* where, int tag)
1244 {
1245 struct secasvar *sav = *psav;
1246 unsigned int nv;
1247
1248 KASSERT(sav != NULL);
1249
1250 SA_DELREF2(sav, nv, where, tag);
1251
1252 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1253 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1254 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1255
1256 if (nv == 0) {
1257 *psav = NULL;
1258
1259 /* remove from SA header */
1260 KASSERT(__LIST_CHAINED(sav));
1261 LIST_REMOVE(sav, chain);
1262
1263 key_delsav(sav);
1264 }
1265 }
1266
1267 /* %%% SPD management */
1268 /*
1269 * free security policy entry.
1270 */
1271 static void
1272 key_delsp(struct secpolicy *sp)
1273 {
1274 int s;
1275
1276 KASSERT(sp != NULL);
1277
1278 key_sp_dead(sp);
1279
1280 KASSERTMSG(sp->refcnt == 0,
1281 "SP with references deleted (refcnt %u)", sp->refcnt);
1282
1283 s = splsoftnet(); /*called from softclock()*/
1284
1285 {
1286 struct ipsecrequest *isr = sp->req, *nextisr;
1287
1288 while (isr != NULL) {
1289 nextisr = isr->next;
1290 kmem_intr_free(isr, sizeof(*isr));
1291 isr = nextisr;
1292 }
1293 }
1294
1295 kmem_intr_free(sp, sizeof(*sp));
1296
1297 splx(s);
1298 }
1299
1300 /*
1301 * search SPD
1302 * OUT: NULL : not found
1303 * others : found, pointer to a SP.
1304 */
1305 static struct secpolicy *
1306 key_getsp(const struct secpolicyindex *spidx)
1307 {
1308 struct secpolicy *sp;
1309
1310 KASSERT(spidx != NULL);
1311
1312 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1313 if (sp->state == IPSEC_SPSTATE_DEAD)
1314 continue;
1315 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1316 SP_ADDREF(sp);
1317 return sp;
1318 }
1319 }
1320
1321 return NULL;
1322 }
1323
1324 /*
1325 * get SP by index.
1326 * OUT: NULL : not found
1327 * others : found, pointer to a SP.
1328 */
1329 static struct secpolicy *
1330 key_getspbyid(u_int32_t id)
1331 {
1332 struct secpolicy *sp;
1333
1334 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1335 if (sp->state == IPSEC_SPSTATE_DEAD)
1336 continue;
1337 if (sp->id == id) {
1338 SP_ADDREF(sp);
1339 return sp;
1340 }
1341 }
1342
1343 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1344 if (sp->state == IPSEC_SPSTATE_DEAD)
1345 continue;
1346 if (sp->id == id) {
1347 SP_ADDREF(sp);
1348 return sp;
1349 }
1350 }
1351
1352 return NULL;
1353 }
1354
1355 struct secpolicy *
1356 key_newsp(const char* where, int tag)
1357 {
1358 struct secpolicy *newsp = NULL;
1359
1360 newsp = kmem_intr_zalloc(sizeof(struct secpolicy), KM_NOSLEEP);
1361 if (newsp != NULL)
1362 newsp->refcnt = 1;
1363
1364 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1365 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1366 return newsp;
1367 }
1368
1369 /*
1370 * create secpolicy structure from sadb_x_policy structure.
1371 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1372 * so must be set properly later.
1373 */
1374 struct secpolicy *
1375 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1376 {
1377 struct secpolicy *newsp;
1378
1379 KASSERT(!cpu_softintr_p());
1380 KASSERT(xpl0 != NULL);
1381 KASSERT(len >= sizeof(*xpl0));
1382
1383 if (len != PFKEY_EXTLEN(xpl0)) {
1384 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1385 *error = EINVAL;
1386 return NULL;
1387 }
1388
1389 newsp = KEY_NEWSP();
1390 if (newsp == NULL) {
1391 *error = ENOBUFS;
1392 return NULL;
1393 }
1394
1395 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1396 newsp->policy = xpl0->sadb_x_policy_type;
1397
1398 /* check policy */
1399 switch (xpl0->sadb_x_policy_type) {
1400 case IPSEC_POLICY_DISCARD:
1401 case IPSEC_POLICY_NONE:
1402 case IPSEC_POLICY_ENTRUST:
1403 case IPSEC_POLICY_BYPASS:
1404 newsp->req = NULL;
1405 *error = 0;
1406 return newsp;
1407
1408 case IPSEC_POLICY_IPSEC:
1409 /* Continued */
1410 break;
1411 default:
1412 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1413 KEY_FREESP(&newsp);
1414 *error = EINVAL;
1415 return NULL;
1416 }
1417
1418 /* IPSEC_POLICY_IPSEC */
1419 {
1420 int tlen;
1421 const struct sadb_x_ipsecrequest *xisr;
1422 uint16_t xisr_reqid;
1423 struct ipsecrequest **p_isr = &newsp->req;
1424
1425 /* validity check */
1426 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1427 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1428 *error = EINVAL;
1429 goto free_exit;
1430 }
1431
1432 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1433 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1434
1435 while (tlen > 0) {
1436 /* length check */
1437 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1438 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1439 *error = EINVAL;
1440 goto free_exit;
1441 }
1442
1443 /* allocate request buffer */
1444 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1445
1446 /* set values */
1447 (*p_isr)->next = NULL;
1448
1449 switch (xisr->sadb_x_ipsecrequest_proto) {
1450 case IPPROTO_ESP:
1451 case IPPROTO_AH:
1452 case IPPROTO_IPCOMP:
1453 break;
1454 default:
1455 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1456 xisr->sadb_x_ipsecrequest_proto);
1457 *error = EPROTONOSUPPORT;
1458 goto free_exit;
1459 }
1460 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1461
1462 switch (xisr->sadb_x_ipsecrequest_mode) {
1463 case IPSEC_MODE_TRANSPORT:
1464 case IPSEC_MODE_TUNNEL:
1465 break;
1466 case IPSEC_MODE_ANY:
1467 default:
1468 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1469 xisr->sadb_x_ipsecrequest_mode);
1470 *error = EINVAL;
1471 goto free_exit;
1472 }
1473 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1474
1475 switch (xisr->sadb_x_ipsecrequest_level) {
1476 case IPSEC_LEVEL_DEFAULT:
1477 case IPSEC_LEVEL_USE:
1478 case IPSEC_LEVEL_REQUIRE:
1479 break;
1480 case IPSEC_LEVEL_UNIQUE:
1481 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1482 /* validity check */
1483 /*
1484 * If range violation of reqid, kernel will
1485 * update it, don't refuse it.
1486 */
1487 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1488 IPSECLOG(LOG_DEBUG,
1489 "reqid=%d range "
1490 "violation, updated by kernel.\n",
1491 xisr_reqid);
1492 xisr_reqid = 0;
1493 }
1494
1495 /* allocate new reqid id if reqid is zero. */
1496 if (xisr_reqid == 0) {
1497 u_int16_t reqid = key_newreqid();
1498 if (reqid == 0) {
1499 *error = ENOBUFS;
1500 goto free_exit;
1501 }
1502 (*p_isr)->saidx.reqid = reqid;
1503 } else {
1504 /* set it for manual keying. */
1505 (*p_isr)->saidx.reqid = xisr_reqid;
1506 }
1507 break;
1508
1509 default:
1510 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1511 xisr->sadb_x_ipsecrequest_level);
1512 *error = EINVAL;
1513 goto free_exit;
1514 }
1515 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1516
1517 /* set IP addresses if there */
1518 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1519 const struct sockaddr *paddr;
1520
1521 paddr = (const struct sockaddr *)(xisr + 1);
1522
1523 /* validity check */
1524 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1525 IPSECLOG(LOG_DEBUG, "invalid request "
1526 "address length.\n");
1527 *error = EINVAL;
1528 goto free_exit;
1529 }
1530 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1531
1532 paddr = (const struct sockaddr *)((const char *)paddr
1533 + paddr->sa_len);
1534
1535 /* validity check */
1536 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1537 IPSECLOG(LOG_DEBUG, "invalid request "
1538 "address length.\n");
1539 *error = EINVAL;
1540 goto free_exit;
1541 }
1542 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1543 }
1544
1545 (*p_isr)->sp = newsp;
1546
1547 /* initialization for the next. */
1548 p_isr = &(*p_isr)->next;
1549 tlen -= xisr->sadb_x_ipsecrequest_len;
1550
1551 /* validity check */
1552 if (tlen < 0) {
1553 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1554 *error = EINVAL;
1555 goto free_exit;
1556 }
1557
1558 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1559 xisr->sadb_x_ipsecrequest_len);
1560 }
1561 }
1562
1563 *error = 0;
1564 return newsp;
1565
1566 free_exit:
1567 KEY_FREESP(&newsp);
1568 return NULL;
1569 }
1570
1571 static u_int16_t
1572 key_newreqid(void)
1573 {
1574 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1575
1576 auto_reqid = (auto_reqid == 0xffff ?
1577 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1578
1579 /* XXX should be unique check */
1580
1581 return auto_reqid;
1582 }
1583
1584 /*
1585 * copy secpolicy struct to sadb_x_policy structure indicated.
1586 */
1587 struct mbuf *
1588 key_sp2msg(const struct secpolicy *sp)
1589 {
1590 struct sadb_x_policy *xpl;
1591 int tlen;
1592 char *p;
1593 struct mbuf *m;
1594
1595 KASSERT(sp != NULL);
1596
1597 tlen = key_getspreqmsglen(sp);
1598
1599 m = key_alloc_mbuf(tlen);
1600 if (!m || m->m_next) { /*XXX*/
1601 if (m)
1602 m_freem(m);
1603 return NULL;
1604 }
1605
1606 m->m_len = tlen;
1607 m->m_next = NULL;
1608 xpl = mtod(m, struct sadb_x_policy *);
1609 memset(xpl, 0, tlen);
1610
1611 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1612 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1613 xpl->sadb_x_policy_type = sp->policy;
1614 xpl->sadb_x_policy_dir = sp->spidx.dir;
1615 xpl->sadb_x_policy_id = sp->id;
1616 p = (char *)xpl + sizeof(*xpl);
1617
1618 /* if is the policy for ipsec ? */
1619 if (sp->policy == IPSEC_POLICY_IPSEC) {
1620 struct sadb_x_ipsecrequest *xisr;
1621 struct ipsecrequest *isr;
1622
1623 for (isr = sp->req; isr != NULL; isr = isr->next) {
1624
1625 xisr = (struct sadb_x_ipsecrequest *)p;
1626
1627 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1628 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1629 xisr->sadb_x_ipsecrequest_level = isr->level;
1630 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1631
1632 p += sizeof(*xisr);
1633 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1634 p += isr->saidx.src.sa.sa_len;
1635 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1636 p += isr->saidx.src.sa.sa_len;
1637
1638 xisr->sadb_x_ipsecrequest_len =
1639 PFKEY_ALIGN8(sizeof(*xisr)
1640 + isr->saidx.src.sa.sa_len
1641 + isr->saidx.dst.sa.sa_len);
1642 }
1643 }
1644
1645 return m;
1646 }
1647
1648 /* m will not be freed nor modified */
1649 static struct mbuf *
1650 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1651 int ndeep, int nitem, ...)
1652 {
1653 va_list ap;
1654 int idx;
1655 int i;
1656 struct mbuf *result = NULL, *n;
1657 int len;
1658
1659 KASSERT(m != NULL);
1660 KASSERT(mhp != NULL);
1661
1662 va_start(ap, nitem);
1663 for (i = 0; i < nitem; i++) {
1664 idx = va_arg(ap, int);
1665 if (idx < 0 || idx > SADB_EXT_MAX)
1666 goto fail;
1667 /* don't attempt to pull empty extension */
1668 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1669 continue;
1670 if (idx != SADB_EXT_RESERVED &&
1671 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1672 continue;
1673
1674 if (idx == SADB_EXT_RESERVED) {
1675 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1676 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1677 MGETHDR(n, M_DONTWAIT, MT_DATA);
1678 if (!n)
1679 goto fail;
1680 n->m_len = len;
1681 n->m_next = NULL;
1682 m_copydata(m, 0, sizeof(struct sadb_msg),
1683 mtod(n, void *));
1684 } else if (i < ndeep) {
1685 len = mhp->extlen[idx];
1686 n = key_alloc_mbuf(len);
1687 if (!n || n->m_next) { /*XXX*/
1688 if (n)
1689 m_freem(n);
1690 goto fail;
1691 }
1692 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1693 mtod(n, void *));
1694 } else {
1695 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1696 M_DONTWAIT);
1697 }
1698 if (n == NULL)
1699 goto fail;
1700
1701 if (result)
1702 m_cat(result, n);
1703 else
1704 result = n;
1705 }
1706 va_end(ap);
1707
1708 if (result && (result->m_flags & M_PKTHDR) != 0) {
1709 result->m_pkthdr.len = 0;
1710 for (n = result; n; n = n->m_next)
1711 result->m_pkthdr.len += n->m_len;
1712 }
1713
1714 return result;
1715
1716 fail:
1717 va_end(ap);
1718 m_freem(result);
1719 return NULL;
1720 }
1721
1722 /*
1723 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1724 * add an entry to SP database, when received
1725 * <base, address(SD), (lifetime(H),) policy>
1726 * from the user(?).
1727 * Adding to SP database,
1728 * and send
1729 * <base, address(SD), (lifetime(H),) policy>
1730 * to the socket which was send.
1731 *
1732 * SPDADD set a unique policy entry.
1733 * SPDSETIDX like SPDADD without a part of policy requests.
1734 * SPDUPDATE replace a unique policy entry.
1735 *
1736 * m will always be freed.
1737 */
1738 static int
1739 key_api_spdadd(struct socket *so, struct mbuf *m,
1740 const struct sadb_msghdr *mhp)
1741 {
1742 const struct sockaddr *src, *dst;
1743 const struct sadb_x_policy *xpl0;
1744 struct sadb_x_policy *xpl;
1745 const struct sadb_lifetime *lft = NULL;
1746 struct secpolicyindex spidx;
1747 struct secpolicy *newsp;
1748 int error;
1749
1750 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1751 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1752 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1753 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1754 return key_senderror(so, m, EINVAL);
1755 }
1756 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1757 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1758 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1759 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1760 return key_senderror(so, m, EINVAL);
1761 }
1762 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1763 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1764 sizeof(struct sadb_lifetime)) {
1765 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1766 return key_senderror(so, m, EINVAL);
1767 }
1768 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1769 }
1770
1771 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1772
1773 /* checking the direciton. */
1774 switch (xpl0->sadb_x_policy_dir) {
1775 case IPSEC_DIR_INBOUND:
1776 case IPSEC_DIR_OUTBOUND:
1777 break;
1778 default:
1779 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1780 return key_senderror(so, m, EINVAL);
1781 }
1782
1783 /* check policy */
1784 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
1785 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1786 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1787 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1788 return key_senderror(so, m, EINVAL);
1789 }
1790
1791 /* policy requests are mandatory when action is ipsec. */
1792 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1793 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1794 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1795 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1796 return key_senderror(so, m, EINVAL);
1797 }
1798
1799 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1800 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1801
1802 /* sanity check on addr pair */
1803 if (src->sa_family != dst->sa_family)
1804 return key_senderror(so, m, EINVAL);
1805 if (src->sa_len != dst->sa_len)
1806 return key_senderror(so, m, EINVAL);
1807
1808 key_init_spidx_bymsghdr(&spidx, mhp);
1809
1810 /*
1811 * checking there is SP already or not.
1812 * SPDUPDATE doesn't depend on whether there is a SP or not.
1813 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1814 * then error.
1815 */
1816 {
1817 struct secpolicy *sp;
1818
1819 sp = key_getsp(&spidx);
1820 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1821 if (sp) {
1822 key_sp_dead(sp);
1823 key_sp_unlink(sp); /* XXX jrs ordering */
1824 KEY_FREESP(&sp);
1825 }
1826 } else {
1827 if (sp != NULL) {
1828 KEY_FREESP(&sp);
1829 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1830 return key_senderror(so, m, EEXIST);
1831 }
1832 }
1833 }
1834
1835 /* allocation new SP entry */
1836 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1837 if (newsp == NULL) {
1838 return key_senderror(so, m, error);
1839 }
1840
1841 newsp->id = key_getnewspid();
1842 if (newsp->id == 0) {
1843 kmem_free(newsp, sizeof(*newsp));
1844 return key_senderror(so, m, ENOBUFS);
1845 }
1846
1847 newsp->spidx = spidx;
1848 newsp->created = time_uptime;
1849 newsp->lastused = newsp->created;
1850 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1851 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1852
1853 newsp->refcnt = 1; /* do not reclaim until I say I do */
1854 newsp->state = IPSEC_SPSTATE_ALIVE;
1855 if (newsp->policy == IPSEC_POLICY_IPSEC)
1856 KASSERT(newsp->req != NULL);
1857 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1858
1859 #ifdef notyet
1860 /* delete the entry in spacqtree */
1861 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1862 struct secspacq *spacq = key_getspacq(&spidx);
1863 if (spacq != NULL) {
1864 /* reset counter in order to deletion by timehandler. */
1865 spacq->created = time_uptime;
1866 spacq->count = 0;
1867 }
1868 }
1869 #endif
1870
1871 /* Invalidate all cached SPD pointers in the PCBs. */
1872 ipsec_invalpcbcacheall();
1873
1874 #if defined(GATEWAY)
1875 /* Invalidate the ipflow cache, as well. */
1876 ipflow_invalidate_all(0);
1877 #ifdef INET6
1878 if (in6_present)
1879 ip6flow_invalidate_all(0);
1880 #endif /* INET6 */
1881 #endif /* GATEWAY */
1882
1883 {
1884 struct mbuf *n, *mpolicy;
1885 int off;
1886
1887 /* create new sadb_msg to reply. */
1888 if (lft) {
1889 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1890 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1891 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1892 } else {
1893 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1894 SADB_X_EXT_POLICY,
1895 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1896 }
1897 if (!n)
1898 return key_senderror(so, m, ENOBUFS);
1899
1900 n = key_fill_replymsg(n, 0);
1901 if (n == NULL)
1902 return key_senderror(so, m, ENOBUFS);
1903
1904 off = 0;
1905 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1906 sizeof(*xpl), &off);
1907 if (mpolicy == NULL) {
1908 /* n is already freed */
1909 return key_senderror(so, m, ENOBUFS);
1910 }
1911 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
1912 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1913 m_freem(n);
1914 return key_senderror(so, m, EINVAL);
1915 }
1916 xpl->sadb_x_policy_id = newsp->id;
1917
1918 m_freem(m);
1919 key_update_used();
1920 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1921 }
1922 }
1923
1924 /*
1925 * get new policy id.
1926 * OUT:
1927 * 0: failure.
1928 * others: success.
1929 */
1930 static u_int32_t
1931 key_getnewspid(void)
1932 {
1933 u_int32_t newid = 0;
1934 int count = key_spi_trycnt; /* XXX */
1935 struct secpolicy *sp;
1936
1937 /* when requesting to allocate spi ranged */
1938 while (count--) {
1939 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1940
1941 sp = key_getspbyid(newid);
1942 if (sp == NULL)
1943 break;
1944
1945 KEY_FREESP(&sp);
1946 }
1947
1948 if (count == 0 || newid == 0) {
1949 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
1950 return 0;
1951 }
1952
1953 return newid;
1954 }
1955
1956 /*
1957 * SADB_SPDDELETE processing
1958 * receive
1959 * <base, address(SD), policy(*)>
1960 * from the user(?), and set SADB_SASTATE_DEAD,
1961 * and send,
1962 * <base, address(SD), policy(*)>
1963 * to the ikmpd.
1964 * policy(*) including direction of policy.
1965 *
1966 * m will always be freed.
1967 */
1968 static int
1969 key_api_spddelete(struct socket *so, struct mbuf *m,
1970 const struct sadb_msghdr *mhp)
1971 {
1972 struct sadb_x_policy *xpl0;
1973 struct secpolicyindex spidx;
1974 struct secpolicy *sp;
1975
1976 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1977 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1978 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1979 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1980 return key_senderror(so, m, EINVAL);
1981 }
1982 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1983 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1984 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1985 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1986 return key_senderror(so, m, EINVAL);
1987 }
1988
1989 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1990
1991 /* checking the direciton. */
1992 switch (xpl0->sadb_x_policy_dir) {
1993 case IPSEC_DIR_INBOUND:
1994 case IPSEC_DIR_OUTBOUND:
1995 break;
1996 default:
1997 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1998 return key_senderror(so, m, EINVAL);
1999 }
2000
2001 /* make secindex */
2002 key_init_spidx_bymsghdr(&spidx, mhp);
2003
2004 /* Is there SP in SPD ? */
2005 sp = key_getsp(&spidx);
2006 if (sp == NULL) {
2007 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2008 return key_senderror(so, m, EINVAL);
2009 }
2010
2011 /* save policy id to buffer to be returned. */
2012 xpl0->sadb_x_policy_id = sp->id;
2013
2014 key_sp_dead(sp);
2015 key_sp_unlink(sp); /* XXX jrs ordering */
2016 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2017
2018 /* Invalidate all cached SPD pointers in the PCBs. */
2019 ipsec_invalpcbcacheall();
2020
2021 /* We're deleting policy; no need to invalidate the ipflow cache. */
2022
2023 {
2024 struct mbuf *n;
2025
2026 /* create new sadb_msg to reply. */
2027 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2028 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2029 if (!n)
2030 return key_senderror(so, m, ENOBUFS);
2031
2032 n = key_fill_replymsg(n, 0);
2033 if (n == NULL)
2034 return key_senderror(so, m, ENOBUFS);
2035
2036 m_freem(m);
2037 key_update_used();
2038 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2039 }
2040 }
2041
2042 /*
2043 * SADB_SPDDELETE2 processing
2044 * receive
2045 * <base, policy(*)>
2046 * from the user(?), and set SADB_SASTATE_DEAD,
2047 * and send,
2048 * <base, policy(*)>
2049 * to the ikmpd.
2050 * policy(*) including direction of policy.
2051 *
2052 * m will always be freed.
2053 */
2054 static int
2055 key_api_spddelete2(struct socket *so, struct mbuf *m,
2056 const struct sadb_msghdr *mhp)
2057 {
2058 u_int32_t id;
2059 struct secpolicy *sp;
2060
2061 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2062 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2063 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2064 return key_senderror(so, m, EINVAL);
2065 }
2066
2067 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2068
2069 /* Is there SP in SPD ? */
2070 sp = key_getspbyid(id);
2071 if (sp == NULL) {
2072 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2073 return key_senderror(so, m, EINVAL);
2074 }
2075
2076 key_sp_dead(sp);
2077 key_sp_unlink(sp); /* XXX jrs ordering */
2078 KEY_FREESP(&sp); /* ref gained by key_getsp */
2079 sp = NULL;
2080
2081 /* Invalidate all cached SPD pointers in the PCBs. */
2082 ipsec_invalpcbcacheall();
2083
2084 /* We're deleting policy; no need to invalidate the ipflow cache. */
2085
2086 {
2087 struct mbuf *n, *nn;
2088 int off, len;
2089
2090 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2091
2092 /* create new sadb_msg to reply. */
2093 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2094
2095 MGETHDR(n, M_DONTWAIT, MT_DATA);
2096 if (n && len > MHLEN) {
2097 MCLGET(n, M_DONTWAIT);
2098 if ((n->m_flags & M_EXT) == 0) {
2099 m_freem(n);
2100 n = NULL;
2101 }
2102 }
2103 if (!n)
2104 return key_senderror(so, m, ENOBUFS);
2105
2106 n->m_len = len;
2107 n->m_next = NULL;
2108 off = 0;
2109
2110 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2111 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2112
2113 KASSERTMSG(off == len, "length inconsistency");
2114
2115 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2116 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2117 if (!n->m_next) {
2118 m_freem(n);
2119 return key_senderror(so, m, ENOBUFS);
2120 }
2121
2122 n->m_pkthdr.len = 0;
2123 for (nn = n; nn; nn = nn->m_next)
2124 n->m_pkthdr.len += nn->m_len;
2125
2126 n = key_fill_replymsg(n, 0);
2127 if (n == NULL)
2128 return key_senderror(so, m, ENOBUFS);
2129
2130 m_freem(m);
2131 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2132 }
2133 }
2134
2135 /*
2136 * SADB_X_GET processing
2137 * receive
2138 * <base, policy(*)>
2139 * from the user(?),
2140 * and send,
2141 * <base, address(SD), policy>
2142 * to the ikmpd.
2143 * policy(*) including direction of policy.
2144 *
2145 * m will always be freed.
2146 */
2147 static int
2148 key_api_spdget(struct socket *so, struct mbuf *m,
2149 const struct sadb_msghdr *mhp)
2150 {
2151 u_int32_t id;
2152 struct secpolicy *sp;
2153 struct mbuf *n;
2154
2155 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2156 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2157 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2158 return key_senderror(so, m, EINVAL);
2159 }
2160
2161 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2162
2163 /* Is there SP in SPD ? */
2164 sp = key_getspbyid(id);
2165 if (sp == NULL) {
2166 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2167 return key_senderror(so, m, ENOENT);
2168 }
2169
2170 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2171 mhp->msg->sadb_msg_pid);
2172 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2173 if (n != NULL) {
2174 m_freem(m);
2175 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2176 } else
2177 return key_senderror(so, m, ENOBUFS);
2178 }
2179
2180 #ifdef notyet
2181 /*
2182 * SADB_X_SPDACQUIRE processing.
2183 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2184 * send
2185 * <base, policy(*)>
2186 * to KMD, and expect to receive
2187 * <base> with SADB_X_SPDACQUIRE if error occurred,
2188 * or
2189 * <base, policy>
2190 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2191 * policy(*) is without policy requests.
2192 *
2193 * 0 : succeed
2194 * others: error number
2195 */
2196 int
2197 key_spdacquire(const struct secpolicy *sp)
2198 {
2199 struct mbuf *result = NULL, *m;
2200 struct secspacq *newspacq;
2201 int error;
2202
2203 KASSERT(sp != NULL);
2204 KASSERTMSG(sp->req == NULL, "called but there is request");
2205 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2206 "policy mismathed. IPsec is expected");
2207
2208 /* Get an entry to check whether sent message or not. */
2209 newspacq = key_getspacq(&sp->spidx);
2210 if (newspacq != NULL) {
2211 if (key_blockacq_count < newspacq->count) {
2212 /* reset counter and do send message. */
2213 newspacq->count = 0;
2214 } else {
2215 /* increment counter and do nothing. */
2216 newspacq->count++;
2217 return 0;
2218 }
2219 } else {
2220 /* make new entry for blocking to send SADB_ACQUIRE. */
2221 newspacq = key_newspacq(&sp->spidx);
2222 if (newspacq == NULL)
2223 return ENOBUFS;
2224
2225 /* add to acqtree */
2226 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2227 }
2228
2229 /* create new sadb_msg to reply. */
2230 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2231 if (!m) {
2232 error = ENOBUFS;
2233 goto fail;
2234 }
2235 result = m;
2236
2237 result->m_pkthdr.len = 0;
2238 for (m = result; m; m = m->m_next)
2239 result->m_pkthdr.len += m->m_len;
2240
2241 mtod(result, struct sadb_msg *)->sadb_msg_len =
2242 PFKEY_UNIT64(result->m_pkthdr.len);
2243
2244 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2245
2246 fail:
2247 if (result)
2248 m_freem(result);
2249 return error;
2250 }
2251 #endif /* notyet */
2252
2253 /*
2254 * SADB_SPDFLUSH processing
2255 * receive
2256 * <base>
2257 * from the user, and free all entries in secpctree.
2258 * and send,
2259 * <base>
2260 * to the user.
2261 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2262 *
2263 * m will always be freed.
2264 */
2265 static int
2266 key_api_spdflush(struct socket *so, struct mbuf *m,
2267 const struct sadb_msghdr *mhp)
2268 {
2269 struct sadb_msg *newmsg;
2270 struct secpolicy *sp;
2271 u_int dir;
2272
2273 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2274 return key_senderror(so, m, EINVAL);
2275
2276 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2277 struct secpolicy * nextsp;
2278 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
2279 if (sp->state == IPSEC_SPSTATE_DEAD)
2280 continue;
2281 key_sp_dead(sp);
2282 key_sp_unlink(sp);
2283 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2284 continue;
2285 }
2286 }
2287
2288 /* Invalidate all cached SPD pointers in the PCBs. */
2289 ipsec_invalpcbcacheall();
2290
2291 /* We're deleting policy; no need to invalidate the ipflow cache. */
2292
2293 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2294 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2295 return key_senderror(so, m, ENOBUFS);
2296 }
2297
2298 if (m->m_next)
2299 m_freem(m->m_next);
2300 m->m_next = NULL;
2301 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2302 newmsg = mtod(m, struct sadb_msg *);
2303 newmsg->sadb_msg_errno = 0;
2304 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2305
2306 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2307 }
2308
2309 static struct sockaddr key_src = {
2310 .sa_len = 2,
2311 .sa_family = PF_KEY,
2312 };
2313
2314 static struct mbuf *
2315 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2316 {
2317 struct secpolicy *sp;
2318 int cnt;
2319 u_int dir;
2320 struct mbuf *m, *n, *prev;
2321 int totlen;
2322
2323 *lenp = 0;
2324
2325 /* search SPD entry and get buffer size. */
2326 cnt = 0;
2327 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2328 LIST_FOREACH(sp, &sptree[dir], chain) {
2329 cnt++;
2330 }
2331 }
2332
2333 if (cnt == 0) {
2334 *errorp = ENOENT;
2335 return (NULL);
2336 }
2337
2338 m = NULL;
2339 prev = m;
2340 totlen = 0;
2341 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2342 LIST_FOREACH(sp, &sptree[dir], chain) {
2343 --cnt;
2344 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2345
2346 if (!n) {
2347 *errorp = ENOBUFS;
2348 if (m)
2349 m_freem(m);
2350 return (NULL);
2351 }
2352
2353 totlen += n->m_pkthdr.len;
2354 if (!m) {
2355 m = n;
2356 } else {
2357 prev->m_nextpkt = n;
2358 }
2359 prev = n;
2360 }
2361 }
2362
2363 *lenp = totlen;
2364 *errorp = 0;
2365 return (m);
2366 }
2367
2368 /*
2369 * SADB_SPDDUMP processing
2370 * receive
2371 * <base>
2372 * from the user, and dump all SP leaves
2373 * and send,
2374 * <base> .....
2375 * to the ikmpd.
2376 *
2377 * m will always be freed.
2378 */
2379 static int
2380 key_api_spddump(struct socket *so, struct mbuf *m0,
2381 const struct sadb_msghdr *mhp)
2382 {
2383 struct mbuf *n;
2384 int error, len;
2385 int ok, s;
2386 pid_t pid;
2387
2388 pid = mhp->msg->sadb_msg_pid;
2389 /*
2390 * If the requestor has insufficient socket-buffer space
2391 * for the entire chain, nobody gets any response to the DUMP.
2392 * XXX For now, only the requestor ever gets anything.
2393 * Moreover, if the requestor has any space at all, they receive
2394 * the entire chain, otherwise the request is refused with ENOBUFS.
2395 */
2396 if (sbspace(&so->so_rcv) <= 0) {
2397 return key_senderror(so, m0, ENOBUFS);
2398 }
2399
2400 s = splsoftnet();
2401 n = key_setspddump_chain(&error, &len, pid);
2402 splx(s);
2403
2404 if (n == NULL) {
2405 return key_senderror(so, m0, ENOENT);
2406 }
2407 {
2408 uint64_t *ps = PFKEY_STAT_GETREF();
2409 ps[PFKEY_STAT_IN_TOTAL]++;
2410 ps[PFKEY_STAT_IN_BYTES] += len;
2411 PFKEY_STAT_PUTREF();
2412 }
2413
2414 /*
2415 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2416 * The requestor receives either the entire chain, or an
2417 * error message with ENOBUFS.
2418 */
2419
2420 /*
2421 * sbappendchainwith record takes the chain of entries, one
2422 * packet-record per SPD entry, prepends the key_src sockaddr
2423 * to each packet-record, links the sockaddr mbufs into a new
2424 * list of records, then appends the entire resulting
2425 * list to the requesting socket.
2426 */
2427 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2428 SB_PRIO_ONESHOT_OVERFLOW);
2429
2430 if (!ok) {
2431 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2432 m_freem(n);
2433 return key_senderror(so, m0, ENOBUFS);
2434 }
2435
2436 m_freem(m0);
2437 return error;
2438 }
2439
2440 /*
2441 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2442 */
2443 static int
2444 key_api_nat_map(struct socket *so, struct mbuf *m,
2445 const struct sadb_msghdr *mhp)
2446 {
2447 struct sadb_x_nat_t_type *type;
2448 struct sadb_x_nat_t_port *sport;
2449 struct sadb_x_nat_t_port *dport;
2450 struct sadb_address *iaddr, *raddr;
2451 struct sadb_x_nat_t_frag *frag;
2452
2453 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2454 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2455 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2456 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2457 return key_senderror(so, m, EINVAL);
2458 }
2459 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2460 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2461 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2462 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2463 return key_senderror(so, m, EINVAL);
2464 }
2465
2466 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2467 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2468 IPSECLOG(LOG_DEBUG, "invalid message\n");
2469 return key_senderror(so, m, EINVAL);
2470 }
2471
2472 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2473 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2474 IPSECLOG(LOG_DEBUG, "invalid message\n");
2475 return key_senderror(so, m, EINVAL);
2476 }
2477
2478 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2479 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2480 IPSECLOG(LOG_DEBUG, "invalid message\n");
2481 return key_senderror(so, m, EINVAL);
2482 }
2483
2484 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2485 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2486 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2487 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2488 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2489 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2490
2491 /*
2492 * XXX handle that, it should also contain a SA, or anything
2493 * that enable to update the SA information.
2494 */
2495
2496 return 0;
2497 }
2498
2499 static struct mbuf *
2500 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2501 {
2502 struct mbuf *result = NULL, *m;
2503
2504 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2505 key_sp_refcnt(sp));
2506 if (!m)
2507 goto fail;
2508 result = m;
2509
2510 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2511 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2512 if (!m)
2513 goto fail;
2514 m_cat(result, m);
2515
2516 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2517 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2518 if (!m)
2519 goto fail;
2520 m_cat(result, m);
2521
2522 m = key_sp2msg(sp);
2523 if (!m)
2524 goto fail;
2525 m_cat(result, m);
2526
2527 if ((result->m_flags & M_PKTHDR) == 0)
2528 goto fail;
2529
2530 if (result->m_len < sizeof(struct sadb_msg)) {
2531 result = m_pullup(result, sizeof(struct sadb_msg));
2532 if (result == NULL)
2533 goto fail;
2534 }
2535
2536 result->m_pkthdr.len = 0;
2537 for (m = result; m; m = m->m_next)
2538 result->m_pkthdr.len += m->m_len;
2539
2540 mtod(result, struct sadb_msg *)->sadb_msg_len =
2541 PFKEY_UNIT64(result->m_pkthdr.len);
2542
2543 return result;
2544
2545 fail:
2546 m_freem(result);
2547 return NULL;
2548 }
2549
2550 /*
2551 * get PFKEY message length for security policy and request.
2552 */
2553 static u_int
2554 key_getspreqmsglen(const struct secpolicy *sp)
2555 {
2556 u_int tlen;
2557
2558 tlen = sizeof(struct sadb_x_policy);
2559
2560 /* if is the policy for ipsec ? */
2561 if (sp->policy != IPSEC_POLICY_IPSEC)
2562 return tlen;
2563
2564 /* get length of ipsec requests */
2565 {
2566 const struct ipsecrequest *isr;
2567 int len;
2568
2569 for (isr = sp->req; isr != NULL; isr = isr->next) {
2570 len = sizeof(struct sadb_x_ipsecrequest)
2571 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2572
2573 tlen += PFKEY_ALIGN8(len);
2574 }
2575 }
2576
2577 return tlen;
2578 }
2579
2580 /*
2581 * SADB_SPDEXPIRE processing
2582 * send
2583 * <base, address(SD), lifetime(CH), policy>
2584 * to KMD by PF_KEY.
2585 *
2586 * OUT: 0 : succeed
2587 * others : error number
2588 */
2589 static int
2590 key_spdexpire(struct secpolicy *sp)
2591 {
2592 int s;
2593 struct mbuf *result = NULL, *m;
2594 int len;
2595 int error = -1;
2596 struct sadb_lifetime *lt;
2597
2598 /* XXX: Why do we lock ? */
2599 s = splsoftnet(); /*called from softclock()*/
2600
2601 KASSERT(sp != NULL);
2602
2603 /* set msg header */
2604 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2605 if (!m) {
2606 error = ENOBUFS;
2607 goto fail;
2608 }
2609 result = m;
2610
2611 /* create lifetime extension (current and hard) */
2612 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2613 m = key_alloc_mbuf(len);
2614 if (!m || m->m_next) { /*XXX*/
2615 if (m)
2616 m_freem(m);
2617 error = ENOBUFS;
2618 goto fail;
2619 }
2620 memset(mtod(m, void *), 0, len);
2621 lt = mtod(m, struct sadb_lifetime *);
2622 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2623 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2624 lt->sadb_lifetime_allocations = 0;
2625 lt->sadb_lifetime_bytes = 0;
2626 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2627 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2628 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2629 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2630 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2631 lt->sadb_lifetime_allocations = 0;
2632 lt->sadb_lifetime_bytes = 0;
2633 lt->sadb_lifetime_addtime = sp->lifetime;
2634 lt->sadb_lifetime_usetime = sp->validtime;
2635 m_cat(result, m);
2636
2637 /* set sadb_address for source */
2638 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2639 sp->spidx.prefs, sp->spidx.ul_proto);
2640 if (!m) {
2641 error = ENOBUFS;
2642 goto fail;
2643 }
2644 m_cat(result, m);
2645
2646 /* set sadb_address for destination */
2647 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2648 sp->spidx.prefd, sp->spidx.ul_proto);
2649 if (!m) {
2650 error = ENOBUFS;
2651 goto fail;
2652 }
2653 m_cat(result, m);
2654
2655 /* set secpolicy */
2656 m = key_sp2msg(sp);
2657 if (!m) {
2658 error = ENOBUFS;
2659 goto fail;
2660 }
2661 m_cat(result, m);
2662
2663 if ((result->m_flags & M_PKTHDR) == 0) {
2664 error = EINVAL;
2665 goto fail;
2666 }
2667
2668 if (result->m_len < sizeof(struct sadb_msg)) {
2669 result = m_pullup(result, sizeof(struct sadb_msg));
2670 if (result == NULL) {
2671 error = ENOBUFS;
2672 goto fail;
2673 }
2674 }
2675
2676 result->m_pkthdr.len = 0;
2677 for (m = result; m; m = m->m_next)
2678 result->m_pkthdr.len += m->m_len;
2679
2680 mtod(result, struct sadb_msg *)->sadb_msg_len =
2681 PFKEY_UNIT64(result->m_pkthdr.len);
2682
2683 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2684
2685 fail:
2686 if (result)
2687 m_freem(result);
2688 splx(s);
2689 return error;
2690 }
2691
2692 /* %%% SAD management */
2693 /*
2694 * allocating a memory for new SA head, and copy from the values of mhp.
2695 * OUT: NULL : failure due to the lack of memory.
2696 * others : pointer to new SA head.
2697 */
2698 static struct secashead *
2699 key_newsah(const struct secasindex *saidx)
2700 {
2701 struct secashead *newsah;
2702 int i;
2703
2704 KASSERT(saidx != NULL);
2705
2706 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2707 for (i = 0; i < __arraycount(newsah->savtree); i++)
2708 LIST_INIT(&newsah->savtree[i]);
2709 newsah->saidx = *saidx;
2710
2711 /* add to saidxtree */
2712 newsah->state = SADB_SASTATE_MATURE;
2713 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2714
2715 return newsah;
2716 }
2717
2718 /*
2719 * delete SA index and all SA registerd.
2720 */
2721 static void
2722 key_delsah(struct secashead *sah)
2723 {
2724 struct secasvar *sav;
2725 u_int state;
2726 int s;
2727 int zombie = 0;
2728
2729 KASSERT(!cpu_softintr_p());
2730 KASSERT(sah != NULL);
2731
2732 s = splsoftnet();
2733
2734 /* searching all SA registerd in the secindex. */
2735 SASTATE_ANY_FOREACH(state) {
2736 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2737 /* give up to delete this sa */
2738 zombie++;
2739 }
2740 }
2741
2742 /* don't delete sah only if there are savs. */
2743 if (zombie) {
2744 splx(s);
2745 return;
2746 }
2747
2748 rtcache_free(&sah->sa_route);
2749
2750 /* remove from tree of SA index */
2751 KASSERT(__LIST_CHAINED(sah));
2752 LIST_REMOVE(sah, chain);
2753
2754 if (sah->idents != NULL)
2755 kmem_free(sah->idents, sah->idents_len);
2756 if (sah->identd != NULL)
2757 kmem_free(sah->identd, sah->identd_len);
2758
2759 kmem_free(sah, sizeof(*sah));
2760
2761 splx(s);
2762 return;
2763 }
2764
2765 /*
2766 * allocating a new SA with LARVAL state.
2767 * key_api_add() and key_api_getspi() call,
2768 * and copy the values of mhp into new buffer.
2769 * When SAD message type is GETSPI:
2770 * to set sequence number from acq_seq++,
2771 * to set zero to SPI.
2772 * not to call key_setsava().
2773 * OUT: NULL : fail
2774 * others : pointer to new secasvar.
2775 *
2776 * does not modify mbuf. does not free mbuf on error.
2777 */
2778 static struct secasvar *
2779 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2780 int *errp, const char* where, int tag)
2781 {
2782 struct secasvar *newsav;
2783 const struct sadb_sa *xsa;
2784
2785 KASSERT(!cpu_softintr_p());
2786 KASSERT(m != NULL);
2787 KASSERT(mhp != NULL);
2788 KASSERT(mhp->msg != NULL);
2789
2790 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2791
2792 switch (mhp->msg->sadb_msg_type) {
2793 case SADB_GETSPI:
2794 newsav->spi = 0;
2795
2796 #ifdef IPSEC_DOSEQCHECK
2797 /* sync sequence number */
2798 if (mhp->msg->sadb_msg_seq == 0)
2799 newsav->seq =
2800 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2801 else
2802 #endif
2803 newsav->seq = mhp->msg->sadb_msg_seq;
2804 break;
2805
2806 case SADB_ADD:
2807 /* sanity check */
2808 if (mhp->ext[SADB_EXT_SA] == NULL) {
2809 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2810 *errp = EINVAL;
2811 goto error;
2812 }
2813 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2814 newsav->spi = xsa->sadb_sa_spi;
2815 newsav->seq = mhp->msg->sadb_msg_seq;
2816 break;
2817 default:
2818 *errp = EINVAL;
2819 goto error;
2820 }
2821
2822 /* copy sav values */
2823 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2824 *errp = key_setsaval(newsav, m, mhp);
2825 if (*errp)
2826 goto error;
2827 }
2828
2829 /* reset created */
2830 newsav->created = time_uptime;
2831 newsav->pid = mhp->msg->sadb_msg_pid;
2832
2833 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2834 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2835 return newsav;
2836
2837 error:
2838 KASSERT(*errp != 0);
2839 kmem_free(newsav, sizeof(*newsav));
2840 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2841 "DP from %s:%u return SA:NULL\n", where, tag);
2842 return NULL;
2843 }
2844
2845
2846 static void
2847 key_clear_xform(struct secasvar *sav)
2848 {
2849
2850 /*
2851 * Cleanup xform state. Note that zeroize'ing causes the
2852 * keys to be cleared; otherwise we must do it ourself.
2853 */
2854 if (sav->tdb_xform != NULL) {
2855 sav->tdb_xform->xf_zeroize(sav);
2856 sav->tdb_xform = NULL;
2857 } else {
2858 if (sav->key_auth != NULL)
2859 explicit_memset(_KEYBUF(sav->key_auth), 0,
2860 _KEYLEN(sav->key_auth));
2861 if (sav->key_enc != NULL)
2862 explicit_memset(_KEYBUF(sav->key_enc), 0,
2863 _KEYLEN(sav->key_enc));
2864 }
2865 }
2866
2867 /*
2868 * free() SA variable entry.
2869 */
2870 static void
2871 key_delsav(struct secasvar *sav)
2872 {
2873
2874 KASSERT(sav != NULL);
2875 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
2876
2877 key_clear_xform(sav);
2878 key_freesaval(sav);
2879 kmem_intr_free(sav, sizeof(*sav));
2880
2881 return;
2882 }
2883
2884 /*
2885 * search SAD.
2886 * OUT:
2887 * NULL : not found
2888 * others : found, pointer to a SA.
2889 */
2890 static struct secashead *
2891 key_getsah(const struct secasindex *saidx, int flag)
2892 {
2893 struct secashead *sah;
2894
2895 LIST_FOREACH(sah, &sahtree, chain) {
2896 if (sah->state == SADB_SASTATE_DEAD)
2897 continue;
2898 if (key_saidx_match(&sah->saidx, saidx, flag))
2899 return sah;
2900 }
2901
2902 return NULL;
2903 }
2904
2905 /*
2906 * check not to be duplicated SPI.
2907 * NOTE: this function is too slow due to searching all SAD.
2908 * OUT:
2909 * NULL : not found
2910 * others : found, pointer to a SA.
2911 */
2912 static bool
2913 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
2914 {
2915 struct secashead *sah;
2916 struct secasvar *sav;
2917
2918 /* check address family */
2919 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2920 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
2921 return false;
2922 }
2923
2924 /* check all SAD */
2925 LIST_FOREACH(sah, &sahtree, chain) {
2926 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2927 continue;
2928 sav = key_getsavbyspi(sah, spi);
2929 if (sav != NULL) {
2930 KEY_FREESAV(&sav);
2931 return true;
2932 }
2933 }
2934
2935 return false;
2936 }
2937
2938 /*
2939 * search SAD litmited alive SA, protocol, SPI.
2940 * OUT:
2941 * NULL : not found
2942 * others : found, pointer to a SA.
2943 */
2944 static struct secasvar *
2945 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
2946 {
2947 struct secasvar *sav;
2948 u_int state;
2949
2950 /* search all status */
2951 SASTATE_ALIVE_FOREACH(state) {
2952 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2953
2954 /* sanity check */
2955 if (sav->state != state) {
2956 IPSECLOG(LOG_DEBUG,
2957 "invalid sav->state (queue: %d SA: %d)\n",
2958 state, sav->state);
2959 continue;
2960 }
2961
2962 if (sav->spi == spi) {
2963 SA_ADDREF(sav);
2964 return sav;
2965 }
2966 }
2967 }
2968
2969 return NULL;
2970 }
2971
2972 /*
2973 * Free allocated data to member variables of sav:
2974 * sav->replay, sav->key_* and sav->lft_*.
2975 */
2976 static void
2977 key_freesaval(struct secasvar *sav)
2978 {
2979
2980 KASSERT(sav->refcnt == 0);
2981
2982 if (sav->replay != NULL)
2983 kmem_intr_free(sav->replay, sav->replay_len);
2984 if (sav->key_auth != NULL)
2985 kmem_intr_free(sav->key_auth, sav->key_auth_len);
2986 if (sav->key_enc != NULL)
2987 kmem_intr_free(sav->key_enc, sav->key_enc_len);
2988 if (sav->lft_c != NULL)
2989 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
2990 if (sav->lft_h != NULL)
2991 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
2992 if (sav->lft_s != NULL)
2993 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
2994 }
2995
2996 /*
2997 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2998 * You must update these if need.
2999 * OUT: 0: success.
3000 * !0: failure.
3001 *
3002 * does not modify mbuf. does not free mbuf on error.
3003 */
3004 static int
3005 key_setsaval(struct secasvar *sav, struct mbuf *m,
3006 const struct sadb_msghdr *mhp)
3007 {
3008 int error = 0;
3009
3010 KASSERT(!cpu_softintr_p());
3011 KASSERT(m != NULL);
3012 KASSERT(mhp != NULL);
3013 KASSERT(mhp->msg != NULL);
3014
3015 /* We shouldn't initialize sav variables while someone uses it. */
3016 KASSERT(sav->refcnt == 0);
3017
3018 /* SA */
3019 if (mhp->ext[SADB_EXT_SA] != NULL) {
3020 const struct sadb_sa *sa0;
3021
3022 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3023 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3024 error = EINVAL;
3025 goto fail;
3026 }
3027
3028 sav->alg_auth = sa0->sadb_sa_auth;
3029 sav->alg_enc = sa0->sadb_sa_encrypt;
3030 sav->flags = sa0->sadb_sa_flags;
3031
3032 /* replay window */
3033 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3034 size_t len = sizeof(struct secreplay) +
3035 sa0->sadb_sa_replay;
3036 sav->replay = kmem_zalloc(len, KM_SLEEP);
3037 sav->replay_len = len;
3038 if (sa0->sadb_sa_replay != 0)
3039 sav->replay->bitmap = (char*)(sav->replay+1);
3040 sav->replay->wsize = sa0->sadb_sa_replay;
3041 }
3042 }
3043
3044 /* Authentication keys */
3045 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3046 const struct sadb_key *key0;
3047 int len;
3048
3049 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3050 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3051
3052 error = 0;
3053 if (len < sizeof(*key0)) {
3054 error = EINVAL;
3055 goto fail;
3056 }
3057 switch (mhp->msg->sadb_msg_satype) {
3058 case SADB_SATYPE_AH:
3059 case SADB_SATYPE_ESP:
3060 case SADB_X_SATYPE_TCPSIGNATURE:
3061 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3062 sav->alg_auth != SADB_X_AALG_NULL)
3063 error = EINVAL;
3064 break;
3065 case SADB_X_SATYPE_IPCOMP:
3066 default:
3067 error = EINVAL;
3068 break;
3069 }
3070 if (error) {
3071 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3072 goto fail;
3073 }
3074
3075 sav->key_auth = key_newbuf(key0, len);
3076 sav->key_auth_len = len;
3077 }
3078
3079 /* Encryption key */
3080 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3081 const struct sadb_key *key0;
3082 int len;
3083
3084 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3085 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3086
3087 error = 0;
3088 if (len < sizeof(*key0)) {
3089 error = EINVAL;
3090 goto fail;
3091 }
3092 switch (mhp->msg->sadb_msg_satype) {
3093 case SADB_SATYPE_ESP:
3094 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3095 sav->alg_enc != SADB_EALG_NULL) {
3096 error = EINVAL;
3097 break;
3098 }
3099 sav->key_enc = key_newbuf(key0, len);
3100 sav->key_enc_len = len;
3101 break;
3102 case SADB_X_SATYPE_IPCOMP:
3103 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3104 error = EINVAL;
3105 sav->key_enc = NULL; /*just in case*/
3106 break;
3107 case SADB_SATYPE_AH:
3108 case SADB_X_SATYPE_TCPSIGNATURE:
3109 default:
3110 error = EINVAL;
3111 break;
3112 }
3113 if (error) {
3114 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3115 goto fail;
3116 }
3117 }
3118
3119 /* set iv */
3120 sav->ivlen = 0;
3121
3122 switch (mhp->msg->sadb_msg_satype) {
3123 case SADB_SATYPE_AH:
3124 error = xform_init(sav, XF_AH);
3125 break;
3126 case SADB_SATYPE_ESP:
3127 error = xform_init(sav, XF_ESP);
3128 break;
3129 case SADB_X_SATYPE_IPCOMP:
3130 error = xform_init(sav, XF_IPCOMP);
3131 break;
3132 case SADB_X_SATYPE_TCPSIGNATURE:
3133 error = xform_init(sav, XF_TCPSIGNATURE);
3134 break;
3135 }
3136 if (error) {
3137 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3138 mhp->msg->sadb_msg_satype);
3139 goto fail;
3140 }
3141
3142 /* reset created */
3143 sav->created = time_uptime;
3144
3145 /* make lifetime for CURRENT */
3146 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3147
3148 sav->lft_c->sadb_lifetime_len =
3149 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3150 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3151 sav->lft_c->sadb_lifetime_allocations = 0;
3152 sav->lft_c->sadb_lifetime_bytes = 0;
3153 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3154 sav->lft_c->sadb_lifetime_usetime = 0;
3155
3156 /* lifetimes for HARD and SOFT */
3157 {
3158 const struct sadb_lifetime *lft0;
3159
3160 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3161 if (lft0 != NULL) {
3162 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3163 error = EINVAL;
3164 goto fail;
3165 }
3166 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3167 }
3168
3169 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3170 if (lft0 != NULL) {
3171 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3172 error = EINVAL;
3173 goto fail;
3174 }
3175 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3176 /* to be initialize ? */
3177 }
3178 }
3179
3180 return 0;
3181
3182 fail:
3183 key_clear_xform(sav);
3184 key_freesaval(sav);
3185
3186 return error;
3187 }
3188
3189 /*
3190 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3191 * OUT: 0: valid
3192 * other: errno
3193 */
3194 static int
3195 key_init_xform(struct secasvar *sav)
3196 {
3197 int error;
3198
3199 /* We shouldn't initialize sav variables while someone uses it. */
3200 KASSERT(sav->refcnt == 0);
3201
3202 /* check SPI value */
3203 switch (sav->sah->saidx.proto) {
3204 case IPPROTO_ESP:
3205 case IPPROTO_AH:
3206 if (ntohl(sav->spi) <= 255) {
3207 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3208 (u_int32_t)ntohl(sav->spi));
3209 return EINVAL;
3210 }
3211 break;
3212 }
3213
3214 /* check satype */
3215 switch (sav->sah->saidx.proto) {
3216 case IPPROTO_ESP:
3217 /* check flags */
3218 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3219 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3220 IPSECLOG(LOG_DEBUG,
3221 "invalid flag (derived) given to old-esp.\n");
3222 return EINVAL;
3223 }
3224 error = xform_init(sav, XF_ESP);
3225 break;
3226 case IPPROTO_AH:
3227 /* check flags */
3228 if (sav->flags & SADB_X_EXT_DERIV) {
3229 IPSECLOG(LOG_DEBUG,
3230 "invalid flag (derived) given to AH SA.\n");
3231 return EINVAL;
3232 }
3233 if (sav->alg_enc != SADB_EALG_NONE) {
3234 IPSECLOG(LOG_DEBUG,
3235 "protocol and algorithm mismated.\n");
3236 return(EINVAL);
3237 }
3238 error = xform_init(sav, XF_AH);
3239 break;
3240 case IPPROTO_IPCOMP:
3241 if (sav->alg_auth != SADB_AALG_NONE) {
3242 IPSECLOG(LOG_DEBUG,
3243 "protocol and algorithm mismated.\n");
3244 return(EINVAL);
3245 }
3246 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3247 && ntohl(sav->spi) >= 0x10000) {
3248 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3249 return(EINVAL);
3250 }
3251 error = xform_init(sav, XF_IPCOMP);
3252 break;
3253 case IPPROTO_TCP:
3254 if (sav->alg_enc != SADB_EALG_NONE) {
3255 IPSECLOG(LOG_DEBUG,
3256 "protocol and algorithm mismated.\n");
3257 return(EINVAL);
3258 }
3259 error = xform_init(sav, XF_TCPSIGNATURE);
3260 break;
3261 default:
3262 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3263 error = EPROTONOSUPPORT;
3264 break;
3265 }
3266
3267 return error;
3268 }
3269
3270 /*
3271 * subroutine for SADB_GET and SADB_DUMP.
3272 */
3273 static struct mbuf *
3274 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3275 u_int32_t seq, u_int32_t pid)
3276 {
3277 struct mbuf *result = NULL, *tres = NULL, *m;
3278 int l = 0;
3279 int i;
3280 void *p;
3281 struct sadb_lifetime lt;
3282 int dumporder[] = {
3283 SADB_EXT_SA, SADB_X_EXT_SA2,
3284 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3285 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3286 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3287 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3288 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3289 SADB_X_EXT_NAT_T_TYPE,
3290 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3291 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3292 SADB_X_EXT_NAT_T_FRAG,
3293
3294 };
3295
3296 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3297 if (m == NULL)
3298 goto fail;
3299 result = m;
3300
3301 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3302 m = NULL;
3303 p = NULL;
3304 switch (dumporder[i]) {
3305 case SADB_EXT_SA:
3306 m = key_setsadbsa(sav);
3307 break;
3308
3309 case SADB_X_EXT_SA2:
3310 m = key_setsadbxsa2(sav->sah->saidx.mode,
3311 sav->replay ? sav->replay->count : 0,
3312 sav->sah->saidx.reqid);
3313 break;
3314
3315 case SADB_EXT_ADDRESS_SRC:
3316 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3317 &sav->sah->saidx.src.sa,
3318 FULLMASK, IPSEC_ULPROTO_ANY);
3319 break;
3320
3321 case SADB_EXT_ADDRESS_DST:
3322 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3323 &sav->sah->saidx.dst.sa,
3324 FULLMASK, IPSEC_ULPROTO_ANY);
3325 break;
3326
3327 case SADB_EXT_KEY_AUTH:
3328 if (!sav->key_auth)
3329 continue;
3330 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3331 p = sav->key_auth;
3332 break;
3333
3334 case SADB_EXT_KEY_ENCRYPT:
3335 if (!sav->key_enc)
3336 continue;
3337 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3338 p = sav->key_enc;
3339 break;
3340
3341 case SADB_EXT_LIFETIME_CURRENT:
3342 KASSERT(sav->lft_c != NULL);
3343 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3344 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3345 lt.sadb_lifetime_addtime =
3346 time_mono_to_wall(lt.sadb_lifetime_addtime);
3347 lt.sadb_lifetime_usetime =
3348 time_mono_to_wall(lt.sadb_lifetime_usetime);
3349 p = <
3350 break;
3351
3352 case SADB_EXT_LIFETIME_HARD:
3353 if (!sav->lft_h)
3354 continue;
3355 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3356 p = sav->lft_h;
3357 break;
3358
3359 case SADB_EXT_LIFETIME_SOFT:
3360 if (!sav->lft_s)
3361 continue;
3362 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3363 p = sav->lft_s;
3364 break;
3365
3366 case SADB_X_EXT_NAT_T_TYPE:
3367 m = key_setsadbxtype(sav->natt_type);
3368 break;
3369
3370 case SADB_X_EXT_NAT_T_DPORT:
3371 if (sav->natt_type == 0)
3372 continue;
3373 m = key_setsadbxport(
3374 key_portfromsaddr(&sav->sah->saidx.dst),
3375 SADB_X_EXT_NAT_T_DPORT);
3376 break;
3377
3378 case SADB_X_EXT_NAT_T_SPORT:
3379 if (sav->natt_type == 0)
3380 continue;
3381 m = key_setsadbxport(
3382 key_portfromsaddr(&sav->sah->saidx.src),
3383 SADB_X_EXT_NAT_T_SPORT);
3384 break;
3385
3386 case SADB_X_EXT_NAT_T_FRAG:
3387 /* don't send frag info if not set */
3388 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3389 continue;
3390 m = key_setsadbxfrag(sav->esp_frag);
3391 break;
3392
3393 case SADB_X_EXT_NAT_T_OAI:
3394 case SADB_X_EXT_NAT_T_OAR:
3395 continue;
3396
3397 case SADB_EXT_ADDRESS_PROXY:
3398 case SADB_EXT_IDENTITY_SRC:
3399 case SADB_EXT_IDENTITY_DST:
3400 /* XXX: should we brought from SPD ? */
3401 case SADB_EXT_SENSITIVITY:
3402 default:
3403 continue;
3404 }
3405
3406 KASSERT(!(m && p));
3407 if (!m && !p)
3408 goto fail;
3409 if (p && tres) {
3410 M_PREPEND(tres, l, M_DONTWAIT);
3411 if (!tres)
3412 goto fail;
3413 memcpy(mtod(tres, void *), p, l);
3414 continue;
3415 }
3416 if (p) {
3417 m = key_alloc_mbuf(l);
3418 if (!m)
3419 goto fail;
3420 m_copyback(m, 0, l, p);
3421 }
3422
3423 if (tres)
3424 m_cat(m, tres);
3425 tres = m;
3426 }
3427
3428 m_cat(result, tres);
3429 tres = NULL; /* avoid free on error below */
3430
3431 if (result->m_len < sizeof(struct sadb_msg)) {
3432 result = m_pullup(result, sizeof(struct sadb_msg));
3433 if (result == NULL)
3434 goto fail;
3435 }
3436
3437 result->m_pkthdr.len = 0;
3438 for (m = result; m; m = m->m_next)
3439 result->m_pkthdr.len += m->m_len;
3440
3441 mtod(result, struct sadb_msg *)->sadb_msg_len =
3442 PFKEY_UNIT64(result->m_pkthdr.len);
3443
3444 return result;
3445
3446 fail:
3447 m_freem(result);
3448 m_freem(tres);
3449 return NULL;
3450 }
3451
3452
3453 /*
3454 * set a type in sadb_x_nat_t_type
3455 */
3456 static struct mbuf *
3457 key_setsadbxtype(u_int16_t type)
3458 {
3459 struct mbuf *m;
3460 size_t len;
3461 struct sadb_x_nat_t_type *p;
3462
3463 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3464
3465 m = key_alloc_mbuf(len);
3466 if (!m || m->m_next) { /*XXX*/
3467 if (m)
3468 m_freem(m);
3469 return NULL;
3470 }
3471
3472 p = mtod(m, struct sadb_x_nat_t_type *);
3473
3474 memset(p, 0, len);
3475 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3476 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3477 p->sadb_x_nat_t_type_type = type;
3478
3479 return m;
3480 }
3481 /*
3482 * set a port in sadb_x_nat_t_port. port is in network order
3483 */
3484 static struct mbuf *
3485 key_setsadbxport(u_int16_t port, u_int16_t type)
3486 {
3487 struct mbuf *m;
3488 size_t len;
3489 struct sadb_x_nat_t_port *p;
3490
3491 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3492
3493 m = key_alloc_mbuf(len);
3494 if (!m || m->m_next) { /*XXX*/
3495 if (m)
3496 m_freem(m);
3497 return NULL;
3498 }
3499
3500 p = mtod(m, struct sadb_x_nat_t_port *);
3501
3502 memset(p, 0, len);
3503 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3504 p->sadb_x_nat_t_port_exttype = type;
3505 p->sadb_x_nat_t_port_port = port;
3506
3507 return m;
3508 }
3509
3510 /*
3511 * set fragmentation info in sadb_x_nat_t_frag
3512 */
3513 static struct mbuf *
3514 key_setsadbxfrag(u_int16_t flen)
3515 {
3516 struct mbuf *m;
3517 size_t len;
3518 struct sadb_x_nat_t_frag *p;
3519
3520 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3521
3522 m = key_alloc_mbuf(len);
3523 if (!m || m->m_next) { /*XXX*/
3524 if (m)
3525 m_freem(m);
3526 return NULL;
3527 }
3528
3529 p = mtod(m, struct sadb_x_nat_t_frag *);
3530
3531 memset(p, 0, len);
3532 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3533 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3534 p->sadb_x_nat_t_frag_fraglen = flen;
3535
3536 return m;
3537 }
3538
3539 /*
3540 * Get port from sockaddr, port is in network order
3541 */
3542 u_int16_t
3543 key_portfromsaddr(const union sockaddr_union *saddr)
3544 {
3545 u_int16_t port;
3546
3547 switch (saddr->sa.sa_family) {
3548 case AF_INET: {
3549 port = saddr->sin.sin_port;
3550 break;
3551 }
3552 #ifdef INET6
3553 case AF_INET6: {
3554 port = saddr->sin6.sin6_port;
3555 break;
3556 }
3557 #endif
3558 default:
3559 printf("%s: unexpected address family\n", __func__);
3560 port = 0;
3561 break;
3562 }
3563
3564 return port;
3565 }
3566
3567
3568 /*
3569 * Set port is struct sockaddr. port is in network order
3570 */
3571 static void
3572 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3573 {
3574 switch (saddr->sa.sa_family) {
3575 case AF_INET: {
3576 saddr->sin.sin_port = port;
3577 break;
3578 }
3579 #ifdef INET6
3580 case AF_INET6: {
3581 saddr->sin6.sin6_port = port;
3582 break;
3583 }
3584 #endif
3585 default:
3586 printf("%s: unexpected address family %d\n", __func__,
3587 saddr->sa.sa_family);
3588 break;
3589 }
3590
3591 return;
3592 }
3593
3594 /*
3595 * Safety check sa_len
3596 */
3597 static int
3598 key_checksalen(const union sockaddr_union *saddr)
3599 {
3600 switch (saddr->sa.sa_family) {
3601 case AF_INET:
3602 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3603 return -1;
3604 break;
3605 #ifdef INET6
3606 case AF_INET6:
3607 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3608 return -1;
3609 break;
3610 #endif
3611 default:
3612 printf("%s: unexpected sa_family %d\n", __func__,
3613 saddr->sa.sa_family);
3614 return -1;
3615 break;
3616 }
3617 return 0;
3618 }
3619
3620
3621 /*
3622 * set data into sadb_msg.
3623 */
3624 static struct mbuf *
3625 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3626 u_int32_t seq, pid_t pid, u_int16_t reserved)
3627 {
3628 struct mbuf *m;
3629 struct sadb_msg *p;
3630 int len;
3631
3632 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3633
3634 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3635
3636 MGETHDR(m, M_DONTWAIT, MT_DATA);
3637 if (m && len > MHLEN) {
3638 MCLGET(m, M_DONTWAIT);
3639 if ((m->m_flags & M_EXT) == 0) {
3640 m_freem(m);
3641 m = NULL;
3642 }
3643 }
3644 if (!m)
3645 return NULL;
3646 m->m_pkthdr.len = m->m_len = len;
3647 m->m_next = NULL;
3648
3649 p = mtod(m, struct sadb_msg *);
3650
3651 memset(p, 0, len);
3652 p->sadb_msg_version = PF_KEY_V2;
3653 p->sadb_msg_type = type;
3654 p->sadb_msg_errno = 0;
3655 p->sadb_msg_satype = satype;
3656 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3657 p->sadb_msg_reserved = reserved;
3658 p->sadb_msg_seq = seq;
3659 p->sadb_msg_pid = (u_int32_t)pid;
3660
3661 return m;
3662 }
3663
3664 /*
3665 * copy secasvar data into sadb_address.
3666 */
3667 static struct mbuf *
3668 key_setsadbsa(struct secasvar *sav)
3669 {
3670 struct mbuf *m;
3671 struct sadb_sa *p;
3672 int len;
3673
3674 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3675 m = key_alloc_mbuf(len);
3676 if (!m || m->m_next) { /*XXX*/
3677 if (m)
3678 m_freem(m);
3679 return NULL;
3680 }
3681
3682 p = mtod(m, struct sadb_sa *);
3683
3684 memset(p, 0, len);
3685 p->sadb_sa_len = PFKEY_UNIT64(len);
3686 p->sadb_sa_exttype = SADB_EXT_SA;
3687 p->sadb_sa_spi = sav->spi;
3688 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3689 p->sadb_sa_state = sav->state;
3690 p->sadb_sa_auth = sav->alg_auth;
3691 p->sadb_sa_encrypt = sav->alg_enc;
3692 p->sadb_sa_flags = sav->flags;
3693
3694 return m;
3695 }
3696
3697 /*
3698 * set data into sadb_address.
3699 */
3700 static struct mbuf *
3701 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3702 u_int8_t prefixlen, u_int16_t ul_proto)
3703 {
3704 struct mbuf *m;
3705 struct sadb_address *p;
3706 size_t len;
3707
3708 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3709 PFKEY_ALIGN8(saddr->sa_len);
3710 m = key_alloc_mbuf(len);
3711 if (!m || m->m_next) { /*XXX*/
3712 if (m)
3713 m_freem(m);
3714 return NULL;
3715 }
3716
3717 p = mtod(m, struct sadb_address *);
3718
3719 memset(p, 0, len);
3720 p->sadb_address_len = PFKEY_UNIT64(len);
3721 p->sadb_address_exttype = exttype;
3722 p->sadb_address_proto = ul_proto;
3723 if (prefixlen == FULLMASK) {
3724 switch (saddr->sa_family) {
3725 case AF_INET:
3726 prefixlen = sizeof(struct in_addr) << 3;
3727 break;
3728 case AF_INET6:
3729 prefixlen = sizeof(struct in6_addr) << 3;
3730 break;
3731 default:
3732 ; /*XXX*/
3733 }
3734 }
3735 p->sadb_address_prefixlen = prefixlen;
3736 p->sadb_address_reserved = 0;
3737
3738 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3739 saddr, saddr->sa_len);
3740
3741 return m;
3742 }
3743
3744 #if 0
3745 /*
3746 * set data into sadb_ident.
3747 */
3748 static struct mbuf *
3749 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3750 void *string, int stringlen, u_int64_t id)
3751 {
3752 struct mbuf *m;
3753 struct sadb_ident *p;
3754 size_t len;
3755
3756 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3757 m = key_alloc_mbuf(len);
3758 if (!m || m->m_next) { /*XXX*/
3759 if (m)
3760 m_freem(m);
3761 return NULL;
3762 }
3763
3764 p = mtod(m, struct sadb_ident *);
3765
3766 memset(p, 0, len);
3767 p->sadb_ident_len = PFKEY_UNIT64(len);
3768 p->sadb_ident_exttype = exttype;
3769 p->sadb_ident_type = idtype;
3770 p->sadb_ident_reserved = 0;
3771 p->sadb_ident_id = id;
3772
3773 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3774 string, stringlen);
3775
3776 return m;
3777 }
3778 #endif
3779
3780 /*
3781 * set data into sadb_x_sa2.
3782 */
3783 static struct mbuf *
3784 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3785 {
3786 struct mbuf *m;
3787 struct sadb_x_sa2 *p;
3788 size_t len;
3789
3790 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3791 m = key_alloc_mbuf(len);
3792 if (!m || m->m_next) { /*XXX*/
3793 if (m)
3794 m_freem(m);
3795 return NULL;
3796 }
3797
3798 p = mtod(m, struct sadb_x_sa2 *);
3799
3800 memset(p, 0, len);
3801 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3802 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3803 p->sadb_x_sa2_mode = mode;
3804 p->sadb_x_sa2_reserved1 = 0;
3805 p->sadb_x_sa2_reserved2 = 0;
3806 p->sadb_x_sa2_sequence = seq;
3807 p->sadb_x_sa2_reqid = reqid;
3808
3809 return m;
3810 }
3811
3812 /*
3813 * set data into sadb_x_policy
3814 */
3815 static struct mbuf *
3816 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3817 {
3818 struct mbuf *m;
3819 struct sadb_x_policy *p;
3820 size_t len;
3821
3822 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3823 m = key_alloc_mbuf(len);
3824 if (!m || m->m_next) { /*XXX*/
3825 if (m)
3826 m_freem(m);
3827 return NULL;
3828 }
3829
3830 p = mtod(m, struct sadb_x_policy *);
3831
3832 memset(p, 0, len);
3833 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3834 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3835 p->sadb_x_policy_type = type;
3836 p->sadb_x_policy_dir = dir;
3837 p->sadb_x_policy_id = id;
3838
3839 return m;
3840 }
3841
3842 /* %%% utilities */
3843 /*
3844 * copy a buffer into the new buffer allocated.
3845 */
3846 static void *
3847 key_newbuf(const void *src, u_int len)
3848 {
3849 void *new;
3850
3851 new = kmem_alloc(len, KM_SLEEP);
3852 memcpy(new, src, len);
3853
3854 return new;
3855 }
3856
3857 /* compare my own address
3858 * OUT: 1: true, i.e. my address.
3859 * 0: false
3860 */
3861 int
3862 key_ismyaddr(const struct sockaddr *sa)
3863 {
3864 #ifdef INET
3865 const struct sockaddr_in *sin;
3866 const struct in_ifaddr *ia;
3867 int s;
3868 #endif
3869
3870 KASSERT(sa != NULL);
3871
3872 switch (sa->sa_family) {
3873 #ifdef INET
3874 case AF_INET:
3875 sin = (const struct sockaddr_in *)sa;
3876 s = pserialize_read_enter();
3877 IN_ADDRLIST_READER_FOREACH(ia) {
3878 if (sin->sin_family == ia->ia_addr.sin_family &&
3879 sin->sin_len == ia->ia_addr.sin_len &&
3880 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3881 {
3882 pserialize_read_exit(s);
3883 return 1;
3884 }
3885 }
3886 pserialize_read_exit(s);
3887 break;
3888 #endif
3889 #ifdef INET6
3890 case AF_INET6:
3891 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
3892 #endif
3893 }
3894
3895 return 0;
3896 }
3897
3898 #ifdef INET6
3899 /*
3900 * compare my own address for IPv6.
3901 * 1: ours
3902 * 0: other
3903 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3904 */
3905 #include <netinet6/in6_var.h>
3906
3907 static int
3908 key_ismyaddr6(const struct sockaddr_in6 *sin6)
3909 {
3910 struct in6_ifaddr *ia;
3911 int s;
3912 struct psref psref;
3913 int bound;
3914 int ours = 1;
3915
3916 bound = curlwp_bind();
3917 s = pserialize_read_enter();
3918 IN6_ADDRLIST_READER_FOREACH(ia) {
3919 bool ingroup;
3920
3921 if (key_sockaddr_match((const struct sockaddr *)&sin6,
3922 (const struct sockaddr *)&ia->ia_addr, 0)) {
3923 pserialize_read_exit(s);
3924 goto ours;
3925 }
3926 ia6_acquire(ia, &psref);
3927 pserialize_read_exit(s);
3928
3929 /*
3930 * XXX Multicast
3931 * XXX why do we care about multlicast here while we don't care
3932 * about IPv4 multicast??
3933 * XXX scope
3934 */
3935 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
3936 if (ingroup) {
3937 ia6_release(ia, &psref);
3938 goto ours;
3939 }
3940
3941 s = pserialize_read_enter();
3942 ia6_release(ia, &psref);
3943 }
3944 pserialize_read_exit(s);
3945
3946 /* loopback, just for safety */
3947 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3948 goto ours;
3949
3950 ours = 0;
3951 ours:
3952 curlwp_bindx(bound);
3953
3954 return ours;
3955 }
3956 #endif /*INET6*/
3957
3958 /*
3959 * compare two secasindex structure.
3960 * flag can specify to compare 2 saidxes.
3961 * compare two secasindex structure without both mode and reqid.
3962 * don't compare port.
3963 * IN:
3964 * saidx0: source, it can be in SAD.
3965 * saidx1: object.
3966 * OUT:
3967 * 1 : equal
3968 * 0 : not equal
3969 */
3970 static int
3971 key_saidx_match(
3972 const struct secasindex *saidx0,
3973 const struct secasindex *saidx1,
3974 int flag)
3975 {
3976 int chkport;
3977 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
3978
3979 KASSERT(saidx0 != NULL);
3980 KASSERT(saidx1 != NULL);
3981
3982 /* sanity */
3983 if (saidx0->proto != saidx1->proto)
3984 return 0;
3985
3986 if (flag == CMP_EXACTLY) {
3987 if (saidx0->mode != saidx1->mode)
3988 return 0;
3989 if (saidx0->reqid != saidx1->reqid)
3990 return 0;
3991 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3992 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3993 return 0;
3994 } else {
3995
3996 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3997 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
3998 /*
3999 * If reqid of SPD is non-zero, unique SA is required.
4000 * The result must be of same reqid in this case.
4001 */
4002 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4003 return 0;
4004 }
4005
4006 if (flag == CMP_MODE_REQID) {
4007 if (saidx0->mode != IPSEC_MODE_ANY &&
4008 saidx0->mode != saidx1->mode)
4009 return 0;
4010 }
4011
4012
4013 sa0src = &saidx0->src.sa;
4014 sa0dst = &saidx0->dst.sa;
4015 sa1src = &saidx1->src.sa;
4016 sa1dst = &saidx1->dst.sa;
4017 /*
4018 * If NAT-T is enabled, check ports for tunnel mode.
4019 * Don't do it for transport mode, as there is no
4020 * port information available in the SP.
4021 * Also don't check ports if they are set to zero
4022 * in the SPD: This means we have a non-generated
4023 * SPD which can't know UDP ports.
4024 */
4025 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4026 chkport = PORT_LOOSE;
4027 else
4028 chkport = PORT_NONE;
4029
4030 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4031 return 0;
4032 }
4033 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4034 return 0;
4035 }
4036 }
4037
4038 return 1;
4039 }
4040
4041 /*
4042 * compare two secindex structure exactly.
4043 * IN:
4044 * spidx0: source, it is often in SPD.
4045 * spidx1: object, it is often from PFKEY message.
4046 * OUT:
4047 * 1 : equal
4048 * 0 : not equal
4049 */
4050 static int
4051 key_spidx_match_exactly(
4052 const struct secpolicyindex *spidx0,
4053 const struct secpolicyindex *spidx1)
4054 {
4055
4056 KASSERT(spidx0 != NULL);
4057 KASSERT(spidx1 != NULL);
4058
4059 /* sanity */
4060 if (spidx0->prefs != spidx1->prefs ||
4061 spidx0->prefd != spidx1->prefd ||
4062 spidx0->ul_proto != spidx1->ul_proto)
4063 return 0;
4064
4065 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4066 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4067 }
4068
4069 /*
4070 * compare two secindex structure with mask.
4071 * IN:
4072 * spidx0: source, it is often in SPD.
4073 * spidx1: object, it is often from IP header.
4074 * OUT:
4075 * 1 : equal
4076 * 0 : not equal
4077 */
4078 static int
4079 key_spidx_match_withmask(
4080 const struct secpolicyindex *spidx0,
4081 const struct secpolicyindex *spidx1)
4082 {
4083
4084 KASSERT(spidx0 != NULL);
4085 KASSERT(spidx1 != NULL);
4086
4087 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4088 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4089 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4090 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4091 return 0;
4092
4093 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4094 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4095 spidx0->ul_proto != spidx1->ul_proto)
4096 return 0;
4097
4098 switch (spidx0->src.sa.sa_family) {
4099 case AF_INET:
4100 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4101 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4102 return 0;
4103 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4104 &spidx1->src.sin.sin_addr, spidx0->prefs))
4105 return 0;
4106 break;
4107 case AF_INET6:
4108 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4109 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4110 return 0;
4111 /*
4112 * scope_id check. if sin6_scope_id is 0, we regard it
4113 * as a wildcard scope, which matches any scope zone ID.
4114 */
4115 if (spidx0->src.sin6.sin6_scope_id &&
4116 spidx1->src.sin6.sin6_scope_id &&
4117 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4118 return 0;
4119 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4120 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4121 return 0;
4122 break;
4123 default:
4124 /* XXX */
4125 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4126 return 0;
4127 break;
4128 }
4129
4130 switch (spidx0->dst.sa.sa_family) {
4131 case AF_INET:
4132 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4133 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4134 return 0;
4135 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4136 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4137 return 0;
4138 break;
4139 case AF_INET6:
4140 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4141 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4142 return 0;
4143 /*
4144 * scope_id check. if sin6_scope_id is 0, we regard it
4145 * as a wildcard scope, which matches any scope zone ID.
4146 */
4147 if (spidx0->src.sin6.sin6_scope_id &&
4148 spidx1->src.sin6.sin6_scope_id &&
4149 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4150 return 0;
4151 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4152 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4153 return 0;
4154 break;
4155 default:
4156 /* XXX */
4157 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4158 return 0;
4159 break;
4160 }
4161
4162 /* XXX Do we check other field ? e.g. flowinfo */
4163
4164 return 1;
4165 }
4166
4167 /* returns 0 on match */
4168 static int
4169 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4170 {
4171 switch (howport) {
4172 case PORT_NONE:
4173 return 0;
4174 case PORT_LOOSE:
4175 if (port1 == 0 || port2 == 0)
4176 return 0;
4177 /*FALLTHROUGH*/
4178 case PORT_STRICT:
4179 if (port1 != port2) {
4180 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4181 "port fail %d != %d\n", port1, port2);
4182 return 1;
4183 }
4184 return 0;
4185 default:
4186 KASSERT(0);
4187 return 1;
4188 }
4189 }
4190
4191 /* returns 1 on match */
4192 static int
4193 key_sockaddr_match(
4194 const struct sockaddr *sa1,
4195 const struct sockaddr *sa2,
4196 int howport)
4197 {
4198 const struct sockaddr_in *sin1, *sin2;
4199 const struct sockaddr_in6 *sin61, *sin62;
4200
4201 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4202 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4203 "fam/len fail %d != %d || %d != %d\n",
4204 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4205 sa2->sa_len);
4206 return 0;
4207 }
4208
4209 switch (sa1->sa_family) {
4210 case AF_INET:
4211 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4212 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4213 "len fail %d != %zu\n",
4214 sa1->sa_len, sizeof(struct sockaddr_in));
4215 return 0;
4216 }
4217 sin1 = (const struct sockaddr_in *)sa1;
4218 sin2 = (const struct sockaddr_in *)sa2;
4219 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4220 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4221 "addr fail %#x != %#x\n",
4222 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4223 return 0;
4224 }
4225 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4226 return 0;
4227 }
4228 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4229 "addr success %#x[%d] == %#x[%d]\n",
4230 sin1->sin_addr.s_addr, sin1->sin_port,
4231 sin2->sin_addr.s_addr, sin2->sin_port);
4232 break;
4233 case AF_INET6:
4234 sin61 = (const struct sockaddr_in6 *)sa1;
4235 sin62 = (const struct sockaddr_in6 *)sa2;
4236 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4237 return 0; /*EINVAL*/
4238
4239 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4240 return 0;
4241 }
4242 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4243 return 0;
4244 }
4245 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4246 return 0;
4247 }
4248 break;
4249 default:
4250 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4251 return 0;
4252 break;
4253 }
4254
4255 return 1;
4256 }
4257
4258 /*
4259 * compare two buffers with mask.
4260 * IN:
4261 * addr1: source
4262 * addr2: object
4263 * bits: Number of bits to compare
4264 * OUT:
4265 * 1 : equal
4266 * 0 : not equal
4267 */
4268 static int
4269 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4270 {
4271 const unsigned char *p1 = a1;
4272 const unsigned char *p2 = a2;
4273
4274 /* XXX: This could be considerably faster if we compare a word
4275 * at a time, but it is complicated on LSB Endian machines */
4276
4277 /* Handle null pointers */
4278 if (p1 == NULL || p2 == NULL)
4279 return (p1 == p2);
4280
4281 while (bits >= 8) {
4282 if (*p1++ != *p2++)
4283 return 0;
4284 bits -= 8;
4285 }
4286
4287 if (bits > 0) {
4288 u_int8_t mask = ~((1<<(8-bits))-1);
4289 if ((*p1 & mask) != (*p2 & mask))
4290 return 0;
4291 }
4292 return 1; /* Match! */
4293 }
4294
4295 static void
4296 key_timehandler_spd(time_t now)
4297 {
4298 u_int dir;
4299 struct secpolicy *sp, *nextsp;
4300
4301 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4302 LIST_FOREACH_SAFE(sp, &sptree[dir], chain, nextsp) {
4303 if (sp->state == IPSEC_SPSTATE_DEAD) {
4304 key_sp_unlink(sp); /*XXX*/
4305
4306 /* 'sp' dead; continue transfers to
4307 * 'sp = nextsp'
4308 */
4309 continue;
4310 }
4311
4312 if (sp->lifetime == 0 && sp->validtime == 0)
4313 continue;
4314
4315 /* the deletion will occur next time */
4316 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4317 (sp->validtime && now - sp->lastused > sp->validtime)) {
4318 key_sp_dead(sp);
4319 key_spdexpire(sp);
4320 continue;
4321 }
4322 }
4323 }
4324 }
4325
4326 static void
4327 key_timehandler_sad(time_t now)
4328 {
4329 struct secashead *sah, *nextsah;
4330 struct secasvar *sav, *nextsav;
4331
4332 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4333 /* if sah has been dead, then delete it and process next sah. */
4334 if (sah->state == SADB_SASTATE_DEAD) {
4335 key_delsah(sah);
4336 continue;
4337 }
4338
4339 /* if LARVAL entry doesn't become MATURE, delete it. */
4340 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4341 chain, nextsav) {
4342 if (now - sav->created > key_larval_lifetime) {
4343 KEY_FREESAV(&sav);
4344 }
4345 }
4346
4347 /*
4348 * check MATURE entry to start to send expire message
4349 * whether or not.
4350 */
4351 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4352 chain, nextsav) {
4353 /* we don't need to check. */
4354 if (sav->lft_s == NULL)
4355 continue;
4356
4357 /* sanity check */
4358 KASSERT(sav->lft_c != NULL);
4359
4360 /* check SOFT lifetime */
4361 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4362 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4363 /*
4364 * check SA to be used whether or not.
4365 * when SA hasn't been used, delete it.
4366 */
4367 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4368 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4369 KEY_FREESAV(&sav);
4370 } else {
4371 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4372 /*
4373 * XXX If we keep to send expire
4374 * message in the status of
4375 * DYING. Do remove below code.
4376 */
4377 key_expire(sav);
4378 }
4379 }
4380 /* check SOFT lifetime by bytes */
4381 /*
4382 * XXX I don't know the way to delete this SA
4383 * when new SA is installed. Caution when it's
4384 * installed too big lifetime by time.
4385 */
4386 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4387 sav->lft_s->sadb_lifetime_bytes <
4388 sav->lft_c->sadb_lifetime_bytes) {
4389
4390 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4391 /*
4392 * XXX If we keep to send expire
4393 * message in the status of
4394 * DYING. Do remove below code.
4395 */
4396 key_expire(sav);
4397 }
4398 }
4399
4400 /* check DYING entry to change status to DEAD. */
4401 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4402 chain, nextsav) {
4403 /* we don't need to check. */
4404 if (sav->lft_h == NULL)
4405 continue;
4406
4407 /* sanity check */
4408 KASSERT(sav->lft_c != NULL);
4409
4410 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4411 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4412 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4413 KEY_FREESAV(&sav);
4414 }
4415 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4416 else if (sav->lft_s != NULL
4417 && sav->lft_s->sadb_lifetime_addtime != 0
4418 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4419 /*
4420 * XXX: should be checked to be
4421 * installed the valid SA.
4422 */
4423
4424 /*
4425 * If there is no SA then sending
4426 * expire message.
4427 */
4428 key_expire(sav);
4429 }
4430 #endif
4431 /* check HARD lifetime by bytes */
4432 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4433 sav->lft_h->sadb_lifetime_bytes <
4434 sav->lft_c->sadb_lifetime_bytes) {
4435 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4436 KEY_FREESAV(&sav);
4437 }
4438 }
4439
4440 /* delete entry in DEAD */
4441 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4442 chain, nextsav) {
4443 /* sanity check */
4444 if (sav->state != SADB_SASTATE_DEAD) {
4445 IPSECLOG(LOG_DEBUG,
4446 "invalid sav->state (queue: %d SA: %d): "
4447 "kill it anyway\n",
4448 SADB_SASTATE_DEAD, sav->state);
4449 }
4450
4451 /*
4452 * do not call key_freesav() here.
4453 * sav should already be freed, and sav->refcnt
4454 * shows other references to sav
4455 * (such as from SPD).
4456 */
4457 }
4458 }
4459 }
4460
4461 static void
4462 key_timehandler_acq(time_t now)
4463 {
4464 #ifndef IPSEC_NONBLOCK_ACQUIRE
4465 struct secacq *acq, *nextacq;
4466
4467 restart:
4468 mutex_enter(&key_mtx);
4469 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4470 if (now - acq->created > key_blockacq_lifetime) {
4471 LIST_REMOVE(acq, chain);
4472 mutex_exit(&key_mtx);
4473 kmem_free(acq, sizeof(*acq));
4474 goto restart;
4475 }
4476 }
4477 mutex_exit(&key_mtx);
4478 #endif
4479 }
4480
4481 static void
4482 key_timehandler_spacq(time_t now)
4483 {
4484 #ifdef notyet
4485 struct secspacq *acq, *nextacq;
4486
4487 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4488 if (now - acq->created > key_blockacq_lifetime) {
4489 KASSERT(__LIST_CHAINED(acq));
4490 LIST_REMOVE(acq, chain);
4491 kmem_free(acq, sizeof(*acq));
4492 }
4493 }
4494 #endif
4495 }
4496
4497 /*
4498 * time handler.
4499 * scanning SPD and SAD to check status for each entries,
4500 * and do to remove or to expire.
4501 */
4502 static void
4503 key_timehandler_work(struct work *wk, void *arg)
4504 {
4505 int s;
4506 time_t now = time_uptime;
4507
4508 s = splsoftnet();
4509 mutex_enter(softnet_lock);
4510
4511 key_timehandler_spd(now);
4512 key_timehandler_sad(now);
4513 key_timehandler_acq(now);
4514 key_timehandler_spacq(now);
4515
4516 /* do exchange to tick time !! */
4517 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4518
4519 mutex_exit(softnet_lock);
4520 splx(s);
4521 return;
4522 }
4523
4524 static void
4525 key_timehandler(void *arg)
4526 {
4527
4528 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4529 }
4530
4531 u_long
4532 key_random(void)
4533 {
4534 u_long value;
4535
4536 key_randomfill(&value, sizeof(value));
4537 return value;
4538 }
4539
4540 void
4541 key_randomfill(void *p, size_t l)
4542 {
4543
4544 cprng_fast(p, l);
4545 }
4546
4547 /*
4548 * map SADB_SATYPE_* to IPPROTO_*.
4549 * if satype == SADB_SATYPE then satype is mapped to ~0.
4550 * OUT:
4551 * 0: invalid satype.
4552 */
4553 static u_int16_t
4554 key_satype2proto(u_int8_t satype)
4555 {
4556 switch (satype) {
4557 case SADB_SATYPE_UNSPEC:
4558 return IPSEC_PROTO_ANY;
4559 case SADB_SATYPE_AH:
4560 return IPPROTO_AH;
4561 case SADB_SATYPE_ESP:
4562 return IPPROTO_ESP;
4563 case SADB_X_SATYPE_IPCOMP:
4564 return IPPROTO_IPCOMP;
4565 case SADB_X_SATYPE_TCPSIGNATURE:
4566 return IPPROTO_TCP;
4567 default:
4568 return 0;
4569 }
4570 /* NOTREACHED */
4571 }
4572
4573 /*
4574 * map IPPROTO_* to SADB_SATYPE_*
4575 * OUT:
4576 * 0: invalid protocol type.
4577 */
4578 static u_int8_t
4579 key_proto2satype(u_int16_t proto)
4580 {
4581 switch (proto) {
4582 case IPPROTO_AH:
4583 return SADB_SATYPE_AH;
4584 case IPPROTO_ESP:
4585 return SADB_SATYPE_ESP;
4586 case IPPROTO_IPCOMP:
4587 return SADB_X_SATYPE_IPCOMP;
4588 case IPPROTO_TCP:
4589 return SADB_X_SATYPE_TCPSIGNATURE;
4590 default:
4591 return 0;
4592 }
4593 /* NOTREACHED */
4594 }
4595
4596 static int
4597 key_setsecasidx(int proto, int mode, int reqid,
4598 const struct sockaddr *src, const struct sockaddr *dst,
4599 struct secasindex * saidx)
4600 {
4601 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4602 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4603
4604 /* sa len safety check */
4605 if (key_checksalen(src_u) != 0)
4606 return -1;
4607 if (key_checksalen(dst_u) != 0)
4608 return -1;
4609
4610 memset(saidx, 0, sizeof(*saidx));
4611 saidx->proto = proto;
4612 saidx->mode = mode;
4613 saidx->reqid = reqid;
4614 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4615 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4616
4617 key_porttosaddr(&((saidx)->src), 0);
4618 key_porttosaddr(&((saidx)->dst), 0);
4619 return 0;
4620 }
4621
4622 static void
4623 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4624 const struct sadb_msghdr *mhp)
4625 {
4626 const struct sadb_address *src0, *dst0;
4627 const struct sockaddr *src, *dst;
4628 const struct sadb_x_policy *xpl0;
4629
4630 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4631 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4632 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4633 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4634 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4635
4636 memset(spidx, 0, sizeof(*spidx));
4637 spidx->dir = xpl0->sadb_x_policy_dir;
4638 spidx->prefs = src0->sadb_address_prefixlen;
4639 spidx->prefd = dst0->sadb_address_prefixlen;
4640 spidx->ul_proto = src0->sadb_address_proto;
4641 /* XXX boundary check against sa_len */
4642 memcpy(&spidx->src, src, src->sa_len);
4643 memcpy(&spidx->dst, dst, dst->sa_len);
4644 }
4645
4646 /* %%% PF_KEY */
4647 /*
4648 * SADB_GETSPI processing is to receive
4649 * <base, (SA2), src address, dst address, (SPI range)>
4650 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4651 * tree with the status of LARVAL, and send
4652 * <base, SA(*), address(SD)>
4653 * to the IKMPd.
4654 *
4655 * IN: mhp: pointer to the pointer to each header.
4656 * OUT: NULL if fail.
4657 * other if success, return pointer to the message to send.
4658 */
4659 static int
4660 key_api_getspi(struct socket *so, struct mbuf *m,
4661 const struct sadb_msghdr *mhp)
4662 {
4663 const struct sockaddr *src, *dst;
4664 struct secasindex saidx;
4665 struct secashead *newsah;
4666 struct secasvar *newsav;
4667 u_int8_t proto;
4668 u_int32_t spi;
4669 u_int8_t mode;
4670 u_int16_t reqid;
4671 int error;
4672
4673 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4674 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4675 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4676 return key_senderror(so, m, EINVAL);
4677 }
4678 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4679 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4680 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4681 return key_senderror(so, m, EINVAL);
4682 }
4683 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4684 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4685 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4686 } else {
4687 mode = IPSEC_MODE_ANY;
4688 reqid = 0;
4689 }
4690
4691 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4692 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4693
4694 /* map satype to proto */
4695 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4696 if (proto == 0) {
4697 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4698 return key_senderror(so, m, EINVAL);
4699 }
4700
4701
4702 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4703 if (error != 0)
4704 return key_senderror(so, m, EINVAL);
4705
4706 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4707 if (error != 0)
4708 return key_senderror(so, m, EINVAL);
4709
4710 /* SPI allocation */
4711 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4712 &saidx);
4713 if (spi == 0)
4714 return key_senderror(so, m, EINVAL);
4715
4716 /* get a SA index */
4717 newsah = key_getsah(&saidx, CMP_REQID);
4718 if (newsah == NULL) {
4719 /* create a new SA index */
4720 newsah = key_newsah(&saidx);
4721 if (newsah == NULL) {
4722 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4723 return key_senderror(so, m, ENOBUFS);
4724 }
4725 }
4726
4727 /* get a new SA */
4728 /* XXX rewrite */
4729 newsav = KEY_NEWSAV(m, mhp, &error);
4730 if (newsav == NULL) {
4731 /* XXX don't free new SA index allocated in above. */
4732 return key_senderror(so, m, error);
4733 }
4734
4735 /* set spi */
4736 newsav->spi = htonl(spi);
4737
4738 /* add to satree */
4739 newsav->refcnt = 1;
4740 newsav->sah = newsah;
4741 newsav->state = SADB_SASTATE_LARVAL;
4742 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_LARVAL], newsav,
4743 secasvar, chain);
4744 key_validate_savlist(newsah, SADB_SASTATE_LARVAL);
4745
4746 #ifndef IPSEC_NONBLOCK_ACQUIRE
4747 /* delete the entry in acqtree */
4748 if (mhp->msg->sadb_msg_seq != 0) {
4749 struct secacq *acq;
4750 mutex_enter(&key_mtx);
4751 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4752 if (acq != NULL) {
4753 /* reset counter in order to deletion by timehandler. */
4754 acq->created = time_uptime;
4755 acq->count = 0;
4756 }
4757 mutex_exit(&key_mtx);
4758 }
4759 #endif
4760
4761 {
4762 struct mbuf *n, *nn;
4763 struct sadb_sa *m_sa;
4764 int off, len;
4765
4766 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4767 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4768
4769 /* create new sadb_msg to reply. */
4770 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4771 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4772
4773 MGETHDR(n, M_DONTWAIT, MT_DATA);
4774 if (len > MHLEN) {
4775 MCLGET(n, M_DONTWAIT);
4776 if ((n->m_flags & M_EXT) == 0) {
4777 m_freem(n);
4778 n = NULL;
4779 }
4780 }
4781 if (!n)
4782 return key_senderror(so, m, ENOBUFS);
4783
4784 n->m_len = len;
4785 n->m_next = NULL;
4786 off = 0;
4787
4788 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4789 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4790
4791 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4792 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4793 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4794 m_sa->sadb_sa_spi = htonl(spi);
4795 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4796
4797 KASSERTMSG(off == len, "length inconsistency");
4798
4799 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4800 SADB_EXT_ADDRESS_DST);
4801 if (!n->m_next) {
4802 m_freem(n);
4803 return key_senderror(so, m, ENOBUFS);
4804 }
4805
4806 if (n->m_len < sizeof(struct sadb_msg)) {
4807 n = m_pullup(n, sizeof(struct sadb_msg));
4808 if (n == NULL)
4809 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4810 }
4811
4812 n->m_pkthdr.len = 0;
4813 for (nn = n; nn; nn = nn->m_next)
4814 n->m_pkthdr.len += nn->m_len;
4815
4816 key_fill_replymsg(n, newsav->seq);
4817
4818 m_freem(m);
4819 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4820 }
4821 }
4822
4823 /*
4824 * allocating new SPI
4825 * called by key_api_getspi().
4826 * OUT:
4827 * 0: failure.
4828 * others: success.
4829 */
4830 static u_int32_t
4831 key_do_getnewspi(const struct sadb_spirange *spirange,
4832 const struct secasindex *saidx)
4833 {
4834 u_int32_t newspi;
4835 u_int32_t spmin, spmax;
4836 int count = key_spi_trycnt;
4837
4838 /* set spi range to allocate */
4839 if (spirange != NULL) {
4840 spmin = spirange->sadb_spirange_min;
4841 spmax = spirange->sadb_spirange_max;
4842 } else {
4843 spmin = key_spi_minval;
4844 spmax = key_spi_maxval;
4845 }
4846 /* IPCOMP needs 2-byte SPI */
4847 if (saidx->proto == IPPROTO_IPCOMP) {
4848 u_int32_t t;
4849 if (spmin >= 0x10000)
4850 spmin = 0xffff;
4851 if (spmax >= 0x10000)
4852 spmax = 0xffff;
4853 if (spmin > spmax) {
4854 t = spmin; spmin = spmax; spmax = t;
4855 }
4856 }
4857
4858 if (spmin == spmax) {
4859 if (key_checkspidup(saidx, htonl(spmin))) {
4860 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
4861 return 0;
4862 }
4863
4864 count--; /* taking one cost. */
4865 newspi = spmin;
4866
4867 } else {
4868
4869 /* init SPI */
4870 newspi = 0;
4871
4872 /* when requesting to allocate spi ranged */
4873 while (count--) {
4874 /* generate pseudo-random SPI value ranged. */
4875 newspi = spmin + (key_random() % (spmax - spmin + 1));
4876
4877 if (!key_checkspidup(saidx, htonl(newspi)))
4878 break;
4879 }
4880
4881 if (count == 0 || newspi == 0) {
4882 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
4883 return 0;
4884 }
4885 }
4886
4887 /* statistics */
4888 keystat.getspi_count =
4889 (keystat.getspi_count + key_spi_trycnt - count) / 2;
4890
4891 return newspi;
4892 }
4893
4894 static int
4895 key_handle_natt_info(struct secasvar *sav,
4896 const struct sadb_msghdr *mhp)
4897 {
4898 const char *msg = "?" ;
4899 struct sadb_x_nat_t_type *type;
4900 struct sadb_x_nat_t_port *sport, *dport;
4901 struct sadb_address *iaddr, *raddr;
4902 struct sadb_x_nat_t_frag *frag;
4903
4904 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
4905 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
4906 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
4907 return 0;
4908
4909 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
4910 msg = "TYPE";
4911 goto bad;
4912 }
4913
4914 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
4915 msg = "SPORT";
4916 goto bad;
4917 }
4918
4919 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4920 msg = "DPORT";
4921 goto bad;
4922 }
4923
4924 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
4925 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
4926 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
4927 msg = "OAI";
4928 goto bad;
4929 }
4930 }
4931
4932 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
4933 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
4934 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
4935 msg = "OAR";
4936 goto bad;
4937 }
4938 }
4939
4940 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
4941 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
4942 msg = "FRAG";
4943 goto bad;
4944 }
4945 }
4946
4947 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
4948 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4949 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4950 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
4951 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
4952 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
4953
4954 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
4955 type->sadb_x_nat_t_type_type,
4956 ntohs(sport->sadb_x_nat_t_port_port),
4957 ntohs(dport->sadb_x_nat_t_port_port));
4958
4959 sav->natt_type = type->sadb_x_nat_t_type_type;
4960 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
4961 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
4962 if (frag)
4963 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
4964 else
4965 sav->esp_frag = IP_MAXPACKET;
4966
4967 return 0;
4968 bad:
4969 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
4970 __USE(msg);
4971 return -1;
4972 }
4973
4974 /* Just update the IPSEC_NAT_T ports if present */
4975 static int
4976 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
4977 const struct sadb_msghdr *mhp)
4978 {
4979 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4980 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
4981 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4982 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
4983
4984 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
4985 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
4986 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
4987 struct sadb_x_nat_t_type *type;
4988 struct sadb_x_nat_t_port *sport;
4989 struct sadb_x_nat_t_port *dport;
4990
4991 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
4992 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
4993 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
4994 IPSECLOG(LOG_DEBUG, "invalid message\n");
4995 return -1;
4996 }
4997
4998 type = (struct sadb_x_nat_t_type *)
4999 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5000 sport = (struct sadb_x_nat_t_port *)
5001 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5002 dport = (struct sadb_x_nat_t_port *)
5003 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5004
5005 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5006 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5007
5008 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5009 type->sadb_x_nat_t_type_type,
5010 ntohs(sport->sadb_x_nat_t_port_port),
5011 ntohs(dport->sadb_x_nat_t_port_port));
5012 }
5013
5014 return 0;
5015 }
5016
5017
5018 /*
5019 * SADB_UPDATE processing
5020 * receive
5021 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5022 * key(AE), (identity(SD),) (sensitivity)>
5023 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5024 * and send
5025 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5026 * (identity(SD),) (sensitivity)>
5027 * to the ikmpd.
5028 *
5029 * m will always be freed.
5030 */
5031 static int
5032 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5033 {
5034 struct sadb_sa *sa0;
5035 const struct sockaddr *src, *dst;
5036 struct secasindex saidx;
5037 struct secashead *sah;
5038 struct secasvar *sav, *newsav;
5039 u_int16_t proto;
5040 u_int8_t mode;
5041 u_int16_t reqid;
5042 int error;
5043
5044 /* map satype to proto */
5045 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5046 if (proto == 0) {
5047 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5048 return key_senderror(so, m, EINVAL);
5049 }
5050
5051 if (mhp->ext[SADB_EXT_SA] == NULL ||
5052 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5053 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5054 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5055 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5056 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5057 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5058 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5059 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5060 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5061 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5062 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5063 return key_senderror(so, m, EINVAL);
5064 }
5065 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5066 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5067 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5068 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5069 return key_senderror(so, m, EINVAL);
5070 }
5071 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5072 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5073 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5074 } else {
5075 mode = IPSEC_MODE_ANY;
5076 reqid = 0;
5077 }
5078 /* XXX boundary checking for other extensions */
5079
5080 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5081 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5082 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5083
5084 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5085 if (error != 0)
5086 return key_senderror(so, m, EINVAL);
5087
5088 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5089 if (error != 0)
5090 return key_senderror(so, m, EINVAL);
5091
5092 /* get a SA header */
5093 sah = key_getsah(&saidx, CMP_REQID);
5094 if (sah == NULL) {
5095 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5096 return key_senderror(so, m, ENOENT);
5097 }
5098
5099 /* set spidx if there */
5100 /* XXX rewrite */
5101 error = key_setident(sah, m, mhp);
5102 if (error)
5103 return key_senderror(so, m, error);
5104
5105 /* find a SA with sequence number. */
5106 #ifdef IPSEC_DOSEQCHECK
5107 if (mhp->msg->sadb_msg_seq != 0) {
5108 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5109 if (sav == NULL) {
5110 IPSECLOG(LOG_DEBUG,
5111 "no larval SA with sequence %u exists.\n",
5112 mhp->msg->sadb_msg_seq);
5113 return key_senderror(so, m, ENOENT);
5114 }
5115 }
5116 #else
5117 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5118 if (sav == NULL) {
5119 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5120 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5121 return key_senderror(so, m, EINVAL);
5122 }
5123 #endif
5124
5125 /* validity check */
5126 if (sav->sah->saidx.proto != proto) {
5127 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5128 sav->sah->saidx.proto, proto);
5129 error = EINVAL;
5130 goto error;
5131 }
5132 #ifdef IPSEC_DOSEQCHECK
5133 if (sav->spi != sa0->sadb_sa_spi) {
5134 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5135 (u_int32_t)ntohl(sav->spi),
5136 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5137 error = EINVAL;
5138 goto error;
5139 }
5140 #endif
5141 if (sav->pid != mhp->msg->sadb_msg_pid) {
5142 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5143 sav->pid, mhp->msg->sadb_msg_pid);
5144 error = EINVAL;
5145 goto error;
5146 }
5147
5148 /*
5149 * Allocate a new SA instead of modifying the existing SA directly
5150 * to avoid race conditions.
5151 */
5152 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5153
5154 /* copy sav values */
5155 newsav->spi = sav->spi;
5156 newsav->seq = sav->seq;
5157 newsav->created = sav->created;
5158 newsav->pid = sav->pid;
5159 newsav->sah = sav->sah;
5160
5161 error = key_setsaval(newsav, m, mhp);
5162 if (error) {
5163 key_delsav(newsav);
5164 goto error;
5165 }
5166
5167 error = key_handle_natt_info(newsav, mhp);
5168 if (error != 0) {
5169 key_delsav(newsav);
5170 goto error;
5171 }
5172
5173 error = key_init_xform(newsav);
5174 if (error != 0) {
5175 key_delsav(newsav);
5176 goto error;
5177 }
5178
5179 /* add to satree */
5180 newsav->refcnt = 1;
5181 newsav->state = SADB_SASTATE_MATURE;
5182 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_MATURE], newsav,
5183 secasvar, chain);
5184 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5185
5186 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5187 KEY_FREESAV(&sav);
5188 KEY_FREESAV(&sav);
5189
5190 {
5191 struct mbuf *n;
5192
5193 /* set msg buf from mhp */
5194 n = key_getmsgbuf_x1(m, mhp);
5195 if (n == NULL) {
5196 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5197 return key_senderror(so, m, ENOBUFS);
5198 }
5199
5200 m_freem(m);
5201 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5202 }
5203 error:
5204 KEY_FREESAV(&sav);
5205 return key_senderror(so, m, error);
5206 }
5207
5208 /*
5209 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5210 * only called by key_api_update().
5211 * OUT:
5212 * NULL : not found
5213 * others : found, pointer to a SA.
5214 */
5215 #ifdef IPSEC_DOSEQCHECK
5216 static struct secasvar *
5217 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5218 {
5219 struct secasvar *sav;
5220 u_int state;
5221
5222 state = SADB_SASTATE_LARVAL;
5223
5224 /* search SAD with sequence number ? */
5225 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5226
5227 KEY_CHKSASTATE(state, sav->state);
5228
5229 if (sav->seq == seq) {
5230 SA_ADDREF(sav);
5231 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5232 "DP cause refcnt++:%d SA:%p\n",
5233 sav->refcnt, sav);
5234 return sav;
5235 }
5236 }
5237
5238 return NULL;
5239 }
5240 #endif
5241
5242 /*
5243 * SADB_ADD processing
5244 * add an entry to SA database, when received
5245 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5246 * key(AE), (identity(SD),) (sensitivity)>
5247 * from the ikmpd,
5248 * and send
5249 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5250 * (identity(SD),) (sensitivity)>
5251 * to the ikmpd.
5252 *
5253 * IGNORE identity and sensitivity messages.
5254 *
5255 * m will always be freed.
5256 */
5257 static int
5258 key_api_add(struct socket *so, struct mbuf *m,
5259 const struct sadb_msghdr *mhp)
5260 {
5261 struct sadb_sa *sa0;
5262 const struct sockaddr *src, *dst;
5263 struct secasindex saidx;
5264 struct secashead *newsah;
5265 struct secasvar *newsav;
5266 u_int16_t proto;
5267 u_int8_t mode;
5268 u_int16_t reqid;
5269 int error;
5270
5271 /* map satype to proto */
5272 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5273 if (proto == 0) {
5274 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5275 return key_senderror(so, m, EINVAL);
5276 }
5277
5278 if (mhp->ext[SADB_EXT_SA] == NULL ||
5279 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5280 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5281 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5282 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5283 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5284 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5285 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5286 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5287 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5288 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5289 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5290 return key_senderror(so, m, EINVAL);
5291 }
5292 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5293 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5294 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5295 /* XXX need more */
5296 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5297 return key_senderror(so, m, EINVAL);
5298 }
5299 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5300 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5301 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5302 } else {
5303 mode = IPSEC_MODE_ANY;
5304 reqid = 0;
5305 }
5306
5307 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5308 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5309 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5310
5311 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5312 if (error != 0)
5313 return key_senderror(so, m, EINVAL);
5314
5315 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5316 if (error != 0)
5317 return key_senderror(so, m, EINVAL);
5318
5319 /* get a SA header */
5320 newsah = key_getsah(&saidx, CMP_REQID);
5321 if (newsah == NULL) {
5322 /* create a new SA header */
5323 newsah = key_newsah(&saidx);
5324 if (newsah == NULL) {
5325 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5326 return key_senderror(so, m, ENOBUFS);
5327 }
5328 }
5329
5330 /* set spidx if there */
5331 /* XXX rewrite */
5332 error = key_setident(newsah, m, mhp);
5333 if (error) {
5334 return key_senderror(so, m, error);
5335 }
5336
5337 {
5338 struct secasvar *sav;
5339
5340 /* We can create new SA only if SPI is differenct. */
5341 sav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5342 if (sav != NULL) {
5343 KEY_FREESAV(&sav);
5344 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5345 return key_senderror(so, m, EEXIST);
5346 }
5347 }
5348
5349 /* create new SA entry. */
5350 newsav = KEY_NEWSAV(m, mhp, &error);
5351 if (newsav == NULL) {
5352 return key_senderror(so, m, error);
5353 }
5354 newsav->sah = newsah;
5355
5356 error = key_handle_natt_info(newsav, mhp);
5357 if (error != 0) {
5358 key_delsav(newsav);
5359 return key_senderror(so, m, EINVAL);
5360 }
5361
5362 error = key_init_xform(newsav);
5363 if (error != 0) {
5364 key_delsav(newsav);
5365 return key_senderror(so, m, error);
5366 }
5367
5368 /* add to satree */
5369 newsav->refcnt = 1;
5370 newsav->state = SADB_SASTATE_MATURE;
5371 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], newsav,
5372 secasvar, chain);
5373 key_validate_savlist(newsah, SADB_SASTATE_MATURE);
5374
5375 /*
5376 * don't call key_freesav() here, as we would like to keep the SA
5377 * in the database on success.
5378 */
5379
5380 {
5381 struct mbuf *n;
5382
5383 /* set msg buf from mhp */
5384 n = key_getmsgbuf_x1(m, mhp);
5385 if (n == NULL) {
5386 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5387 return key_senderror(so, m, ENOBUFS);
5388 }
5389
5390 m_freem(m);
5391 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5392 }
5393 }
5394
5395 /* m is retained */
5396 static int
5397 key_setident(struct secashead *sah, struct mbuf *m,
5398 const struct sadb_msghdr *mhp)
5399 {
5400 const struct sadb_ident *idsrc, *iddst;
5401 int idsrclen, iddstlen;
5402
5403 KASSERT(!cpu_softintr_p());
5404 KASSERT(sah != NULL);
5405 KASSERT(m != NULL);
5406 KASSERT(mhp != NULL);
5407 KASSERT(mhp->msg != NULL);
5408
5409 /*
5410 * Can be called with an existing sah from key_api_update().
5411 */
5412 if (sah->idents != NULL) {
5413 kmem_free(sah->idents, sah->idents_len);
5414 sah->idents = NULL;
5415 sah->idents_len = 0;
5416 }
5417 if (sah->identd != NULL) {
5418 kmem_free(sah->identd, sah->identd_len);
5419 sah->identd = NULL;
5420 sah->identd_len = 0;
5421 }
5422
5423 /* don't make buffer if not there */
5424 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5425 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5426 sah->idents = NULL;
5427 sah->identd = NULL;
5428 return 0;
5429 }
5430
5431 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5432 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5433 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5434 return EINVAL;
5435 }
5436
5437 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5438 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5439 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5440 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5441
5442 /* validity check */
5443 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5444 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5445 return EINVAL;
5446 }
5447
5448 switch (idsrc->sadb_ident_type) {
5449 case SADB_IDENTTYPE_PREFIX:
5450 case SADB_IDENTTYPE_FQDN:
5451 case SADB_IDENTTYPE_USERFQDN:
5452 default:
5453 /* XXX do nothing */
5454 sah->idents = NULL;
5455 sah->identd = NULL;
5456 return 0;
5457 }
5458
5459 /* make structure */
5460 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5461 sah->idents_len = idsrclen;
5462 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5463 sah->identd_len = iddstlen;
5464 memcpy(sah->idents, idsrc, idsrclen);
5465 memcpy(sah->identd, iddst, iddstlen);
5466
5467 return 0;
5468 }
5469
5470 /*
5471 * m will not be freed on return.
5472 * it is caller's responsibility to free the result.
5473 */
5474 static struct mbuf *
5475 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5476 {
5477 struct mbuf *n;
5478
5479 KASSERT(m != NULL);
5480 KASSERT(mhp != NULL);
5481 KASSERT(mhp->msg != NULL);
5482
5483 /* create new sadb_msg to reply. */
5484 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5485 SADB_EXT_SA, SADB_X_EXT_SA2,
5486 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5487 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5488 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5489 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5490 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5491 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5492 if (!n)
5493 return NULL;
5494
5495 if (n->m_len < sizeof(struct sadb_msg)) {
5496 n = m_pullup(n, sizeof(struct sadb_msg));
5497 if (n == NULL)
5498 return NULL;
5499 }
5500 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5501 mtod(n, struct sadb_msg *)->sadb_msg_len =
5502 PFKEY_UNIT64(n->m_pkthdr.len);
5503
5504 return n;
5505 }
5506
5507 static int key_delete_all (struct socket *, struct mbuf *,
5508 const struct sadb_msghdr *, u_int16_t);
5509
5510 /*
5511 * SADB_DELETE processing
5512 * receive
5513 * <base, SA(*), address(SD)>
5514 * from the ikmpd, and set SADB_SASTATE_DEAD,
5515 * and send,
5516 * <base, SA(*), address(SD)>
5517 * to the ikmpd.
5518 *
5519 * m will always be freed.
5520 */
5521 static int
5522 key_api_delete(struct socket *so, struct mbuf *m,
5523 const struct sadb_msghdr *mhp)
5524 {
5525 struct sadb_sa *sa0;
5526 const struct sockaddr *src, *dst;
5527 struct secasindex saidx;
5528 struct secashead *sah;
5529 struct secasvar *sav = NULL;
5530 u_int16_t proto;
5531 int error;
5532
5533 /* map satype to proto */
5534 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5535 if (proto == 0) {
5536 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5537 return key_senderror(so, m, EINVAL);
5538 }
5539
5540 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5541 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5542 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5543 return key_senderror(so, m, EINVAL);
5544 }
5545
5546 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5547 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5548 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5549 return key_senderror(so, m, EINVAL);
5550 }
5551
5552 if (mhp->ext[SADB_EXT_SA] == NULL) {
5553 /*
5554 * Caller wants us to delete all non-LARVAL SAs
5555 * that match the src/dst. This is used during
5556 * IKE INITIAL-CONTACT.
5557 */
5558 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5559 return key_delete_all(so, m, mhp, proto);
5560 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5561 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5562 return key_senderror(so, m, EINVAL);
5563 }
5564
5565 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5566 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5567 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5568
5569 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5570 if (error != 0)
5571 return key_senderror(so, m, EINVAL);
5572
5573 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5574 if (error != 0)
5575 return key_senderror(so, m, EINVAL);
5576
5577 /* get a SA header */
5578 sah = key_getsah(&saidx, CMP_HEAD);
5579 if (sah != NULL) {
5580 /* get a SA with SPI. */
5581 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5582 }
5583
5584 if (sav == NULL) {
5585 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5586 return key_senderror(so, m, ENOENT);
5587 }
5588
5589 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5590 KEY_FREESAV(&sav);
5591 KEY_FREESAV(&sav);
5592
5593 {
5594 struct mbuf *n;
5595
5596 /* create new sadb_msg to reply. */
5597 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5598 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5599 if (!n)
5600 return key_senderror(so, m, ENOBUFS);
5601
5602 n = key_fill_replymsg(n, 0);
5603 if (n == NULL)
5604 return key_senderror(so, m, ENOBUFS);
5605
5606 m_freem(m);
5607 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5608 }
5609 }
5610
5611 /*
5612 * delete all SAs for src/dst. Called from key_api_delete().
5613 */
5614 static int
5615 key_delete_all(struct socket *so, struct mbuf *m,
5616 const struct sadb_msghdr *mhp, u_int16_t proto)
5617 {
5618 const struct sockaddr *src, *dst;
5619 struct secasindex saidx;
5620 struct secashead *sah;
5621 struct secasvar *sav, *nextsav;
5622 u_int state;
5623 int error;
5624
5625 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5626 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5627
5628 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5629 if (error != 0)
5630 return key_senderror(so, m, EINVAL);
5631
5632 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5633 if (error != 0)
5634 return key_senderror(so, m, EINVAL);
5635
5636 sah = key_getsah(&saidx, CMP_HEAD);
5637 if (sah != NULL) {
5638 /* Delete all non-LARVAL SAs. */
5639 SASTATE_ALIVE_FOREACH(state) {
5640 if (state == SADB_SASTATE_LARVAL)
5641 continue;
5642 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5643 nextsav) {
5644 /* sanity check */
5645 if (sav->state != state) {
5646 IPSECLOG(LOG_DEBUG,
5647 "invalid sav->state "
5648 "(queue: %d SA: %d)\n",
5649 state, sav->state);
5650 continue;
5651 }
5652
5653 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5654 KEY_FREESAV(&sav);
5655 }
5656 }
5657 }
5658 {
5659 struct mbuf *n;
5660
5661 /* create new sadb_msg to reply. */
5662 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5663 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5664 if (!n)
5665 return key_senderror(so, m, ENOBUFS);
5666
5667 n = key_fill_replymsg(n, 0);
5668 if (n == NULL)
5669 return key_senderror(so, m, ENOBUFS);
5670
5671 m_freem(m);
5672 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5673 }
5674 }
5675
5676 /*
5677 * SADB_GET processing
5678 * receive
5679 * <base, SA(*), address(SD)>
5680 * from the ikmpd, and get a SP and a SA to respond,
5681 * and send,
5682 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5683 * (identity(SD),) (sensitivity)>
5684 * to the ikmpd.
5685 *
5686 * m will always be freed.
5687 */
5688 static int
5689 key_api_get(struct socket *so, struct mbuf *m,
5690 const struct sadb_msghdr *mhp)
5691 {
5692 struct sadb_sa *sa0;
5693 const struct sockaddr *src, *dst;
5694 struct secasindex saidx;
5695 struct secashead *sah;
5696 struct secasvar *sav = NULL;
5697 u_int16_t proto;
5698 int error;
5699
5700 /* map satype to proto */
5701 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5702 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5703 return key_senderror(so, m, EINVAL);
5704 }
5705
5706 if (mhp->ext[SADB_EXT_SA] == NULL ||
5707 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5708 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5709 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5710 return key_senderror(so, m, EINVAL);
5711 }
5712 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5713 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5714 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5715 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5716 return key_senderror(so, m, EINVAL);
5717 }
5718
5719 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5720 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5721 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5722
5723 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5724 if (error != 0)
5725 return key_senderror(so, m, EINVAL);
5726
5727 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5728 if (error != 0)
5729 return key_senderror(so, m, EINVAL);
5730
5731 /* get a SA header */
5732 sah = key_getsah(&saidx, CMP_HEAD);
5733 if (sah != NULL) {
5734 /* get a SA with SPI. */
5735 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5736 }
5737 if (sav == NULL) {
5738 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5739 return key_senderror(so, m, ENOENT);
5740 }
5741
5742 {
5743 struct mbuf *n;
5744 u_int8_t satype;
5745
5746 /* map proto to satype */
5747 satype = key_proto2satype(sah->saidx.proto);
5748 if (satype == 0) {
5749 KEY_FREESAV(&sav);
5750 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5751 return key_senderror(so, m, EINVAL);
5752 }
5753
5754 /* create new sadb_msg to reply. */
5755 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5756 mhp->msg->sadb_msg_pid);
5757 KEY_FREESAV(&sav);
5758 if (!n)
5759 return key_senderror(so, m, ENOBUFS);
5760
5761 m_freem(m);
5762 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5763 }
5764 }
5765
5766 /* XXX make it sysctl-configurable? */
5767 static void
5768 key_getcomb_setlifetime(struct sadb_comb *comb)
5769 {
5770
5771 comb->sadb_comb_soft_allocations = 1;
5772 comb->sadb_comb_hard_allocations = 1;
5773 comb->sadb_comb_soft_bytes = 0;
5774 comb->sadb_comb_hard_bytes = 0;
5775 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5776 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
5777 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
5778 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5779 }
5780
5781 /*
5782 * XXX reorder combinations by preference
5783 * XXX no idea if the user wants ESP authentication or not
5784 */
5785 static struct mbuf *
5786 key_getcomb_esp(void)
5787 {
5788 struct sadb_comb *comb;
5789 const struct enc_xform *algo;
5790 struct mbuf *result = NULL, *m, *n;
5791 int encmin;
5792 int i, off, o;
5793 int totlen;
5794 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5795
5796 m = NULL;
5797 for (i = 1; i <= SADB_EALG_MAX; i++) {
5798 algo = esp_algorithm_lookup(i);
5799 if (algo == NULL)
5800 continue;
5801
5802 /* discard algorithms with key size smaller than system min */
5803 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5804 continue;
5805 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5806 encmin = ipsec_esp_keymin;
5807 else
5808 encmin = _BITS(algo->minkey);
5809
5810 if (ipsec_esp_auth)
5811 m = key_getcomb_ah();
5812 else {
5813 KASSERTMSG(l <= MLEN,
5814 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5815 MGET(m, M_DONTWAIT, MT_DATA);
5816 if (m) {
5817 M_ALIGN(m, l);
5818 m->m_len = l;
5819 m->m_next = NULL;
5820 memset(mtod(m, void *), 0, m->m_len);
5821 }
5822 }
5823 if (!m)
5824 goto fail;
5825
5826 totlen = 0;
5827 for (n = m; n; n = n->m_next)
5828 totlen += n->m_len;
5829 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5830
5831 for (off = 0; off < totlen; off += l) {
5832 n = m_pulldown(m, off, l, &o);
5833 if (!n) {
5834 /* m is already freed */
5835 goto fail;
5836 }
5837 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5838 memset(comb, 0, sizeof(*comb));
5839 key_getcomb_setlifetime(comb);
5840 comb->sadb_comb_encrypt = i;
5841 comb->sadb_comb_encrypt_minbits = encmin;
5842 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5843 }
5844
5845 if (!result)
5846 result = m;
5847 else
5848 m_cat(result, m);
5849 }
5850
5851 return result;
5852
5853 fail:
5854 if (result)
5855 m_freem(result);
5856 return NULL;
5857 }
5858
5859 static void
5860 key_getsizes_ah(const struct auth_hash *ah, int alg,
5861 u_int16_t* ksmin, u_int16_t* ksmax)
5862 {
5863 *ksmin = *ksmax = ah->keysize;
5864 if (ah->keysize == 0) {
5865 /*
5866 * Transform takes arbitrary key size but algorithm
5867 * key size is restricted. Enforce this here.
5868 */
5869 switch (alg) {
5870 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
5871 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
5872 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
5873 default:
5874 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
5875 break;
5876 }
5877 }
5878 }
5879
5880 /*
5881 * XXX reorder combinations by preference
5882 */
5883 static struct mbuf *
5884 key_getcomb_ah(void)
5885 {
5886 struct sadb_comb *comb;
5887 const struct auth_hash *algo;
5888 struct mbuf *m;
5889 u_int16_t minkeysize, maxkeysize;
5890 int i;
5891 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5892
5893 m = NULL;
5894 for (i = 1; i <= SADB_AALG_MAX; i++) {
5895 #if 1
5896 /* we prefer HMAC algorithms, not old algorithms */
5897 if (i != SADB_AALG_SHA1HMAC &&
5898 i != SADB_AALG_MD5HMAC &&
5899 i != SADB_X_AALG_SHA2_256 &&
5900 i != SADB_X_AALG_SHA2_384 &&
5901 i != SADB_X_AALG_SHA2_512)
5902 continue;
5903 #endif
5904 algo = ah_algorithm_lookup(i);
5905 if (!algo)
5906 continue;
5907 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5908 /* discard algorithms with key size smaller than system min */
5909 if (_BITS(minkeysize) < ipsec_ah_keymin)
5910 continue;
5911
5912 if (!m) {
5913 KASSERTMSG(l <= MLEN,
5914 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5915 MGET(m, M_DONTWAIT, MT_DATA);
5916 if (m) {
5917 M_ALIGN(m, l);
5918 m->m_len = l;
5919 m->m_next = NULL;
5920 }
5921 } else
5922 M_PREPEND(m, l, M_DONTWAIT);
5923 if (!m)
5924 return NULL;
5925
5926 if (m->m_len < sizeof(struct sadb_comb)) {
5927 m = m_pullup(m, sizeof(struct sadb_comb));
5928 if (m == NULL)
5929 return NULL;
5930 }
5931
5932 comb = mtod(m, struct sadb_comb *);
5933 memset(comb, 0, sizeof(*comb));
5934 key_getcomb_setlifetime(comb);
5935 comb->sadb_comb_auth = i;
5936 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5937 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5938 }
5939
5940 return m;
5941 }
5942
5943 /*
5944 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
5945 * XXX reorder combinations by preference
5946 */
5947 static struct mbuf *
5948 key_getcomb_ipcomp(void)
5949 {
5950 struct sadb_comb *comb;
5951 const struct comp_algo *algo;
5952 struct mbuf *m;
5953 int i;
5954 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5955
5956 m = NULL;
5957 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5958 algo = ipcomp_algorithm_lookup(i);
5959 if (!algo)
5960 continue;
5961
5962 if (!m) {
5963 KASSERTMSG(l <= MLEN,
5964 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5965 MGET(m, M_DONTWAIT, MT_DATA);
5966 if (m) {
5967 M_ALIGN(m, l);
5968 m->m_len = l;
5969 m->m_next = NULL;
5970 }
5971 } else
5972 M_PREPEND(m, l, M_DONTWAIT);
5973 if (!m)
5974 return NULL;
5975
5976 if (m->m_len < sizeof(struct sadb_comb)) {
5977 m = m_pullup(m, sizeof(struct sadb_comb));
5978 if (m == NULL)
5979 return NULL;
5980 }
5981
5982 comb = mtod(m, struct sadb_comb *);
5983 memset(comb, 0, sizeof(*comb));
5984 key_getcomb_setlifetime(comb);
5985 comb->sadb_comb_encrypt = i;
5986 /* what should we set into sadb_comb_*_{min,max}bits? */
5987 }
5988
5989 return m;
5990 }
5991
5992 /*
5993 * XXX no way to pass mode (transport/tunnel) to userland
5994 * XXX replay checking?
5995 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5996 */
5997 static struct mbuf *
5998 key_getprop(const struct secasindex *saidx)
5999 {
6000 struct sadb_prop *prop;
6001 struct mbuf *m, *n;
6002 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6003 int totlen;
6004
6005 switch (saidx->proto) {
6006 case IPPROTO_ESP:
6007 m = key_getcomb_esp();
6008 break;
6009 case IPPROTO_AH:
6010 m = key_getcomb_ah();
6011 break;
6012 case IPPROTO_IPCOMP:
6013 m = key_getcomb_ipcomp();
6014 break;
6015 default:
6016 return NULL;
6017 }
6018
6019 if (!m)
6020 return NULL;
6021 M_PREPEND(m, l, M_DONTWAIT);
6022 if (!m)
6023 return NULL;
6024
6025 totlen = 0;
6026 for (n = m; n; n = n->m_next)
6027 totlen += n->m_len;
6028
6029 prop = mtod(m, struct sadb_prop *);
6030 memset(prop, 0, sizeof(*prop));
6031 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6032 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6033 prop->sadb_prop_replay = 32; /* XXX */
6034
6035 return m;
6036 }
6037
6038 /*
6039 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6040 * send
6041 * <base, SA, address(SD), (address(P)), x_policy,
6042 * (identity(SD),) (sensitivity,) proposal>
6043 * to KMD, and expect to receive
6044 * <base> with SADB_ACQUIRE if error occurred,
6045 * or
6046 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6047 * from KMD by PF_KEY.
6048 *
6049 * XXX x_policy is outside of RFC2367 (KAME extension).
6050 * XXX sensitivity is not supported.
6051 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6052 * see comment for key_getcomb_ipcomp().
6053 *
6054 * OUT:
6055 * 0 : succeed
6056 * others: error number
6057 */
6058 static int
6059 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6060 {
6061 struct mbuf *result = NULL, *m;
6062 #ifndef IPSEC_NONBLOCK_ACQUIRE
6063 struct secacq *newacq;
6064 #endif
6065 u_int8_t satype;
6066 int error = -1;
6067 u_int32_t seq;
6068
6069 /* sanity check */
6070 KASSERT(saidx != NULL);
6071 satype = key_proto2satype(saidx->proto);
6072 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6073
6074 #ifndef IPSEC_NONBLOCK_ACQUIRE
6075 /*
6076 * We never do anything about acquirng SA. There is anather
6077 * solution that kernel blocks to send SADB_ACQUIRE message until
6078 * getting something message from IKEd. In later case, to be
6079 * managed with ACQUIRING list.
6080 */
6081 /* Get an entry to check whether sending message or not. */
6082 mutex_enter(&key_mtx);
6083 newacq = key_getacq(saidx);
6084 if (newacq != NULL) {
6085 if (key_blockacq_count < newacq->count) {
6086 /* reset counter and do send message. */
6087 newacq->count = 0;
6088 } else {
6089 /* increment counter and do nothing. */
6090 newacq->count++;
6091 mutex_exit(&key_mtx);
6092 return 0;
6093 }
6094 } else {
6095 /* make new entry for blocking to send SADB_ACQUIRE. */
6096 newacq = key_newacq(saidx);
6097 if (newacq == NULL)
6098 return ENOBUFS;
6099
6100 /* add to acqtree */
6101 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6102 }
6103
6104 seq = newacq->seq;
6105 mutex_exit(&key_mtx);
6106 #else
6107 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6108 #endif
6109 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6110 if (!m) {
6111 error = ENOBUFS;
6112 goto fail;
6113 }
6114 result = m;
6115
6116 /* set sadb_address for saidx's. */
6117 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6118 IPSEC_ULPROTO_ANY);
6119 if (!m) {
6120 error = ENOBUFS;
6121 goto fail;
6122 }
6123 m_cat(result, m);
6124
6125 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6126 IPSEC_ULPROTO_ANY);
6127 if (!m) {
6128 error = ENOBUFS;
6129 goto fail;
6130 }
6131 m_cat(result, m);
6132
6133 /* XXX proxy address (optional) */
6134
6135 /* set sadb_x_policy */
6136 if (sp) {
6137 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6138 if (!m) {
6139 error = ENOBUFS;
6140 goto fail;
6141 }
6142 m_cat(result, m);
6143 }
6144
6145 /* XXX identity (optional) */
6146 #if 0
6147 if (idexttype && fqdn) {
6148 /* create identity extension (FQDN) */
6149 struct sadb_ident *id;
6150 int fqdnlen;
6151
6152 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6153 id = (struct sadb_ident *)p;
6154 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6155 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6156 id->sadb_ident_exttype = idexttype;
6157 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6158 memcpy(id + 1, fqdn, fqdnlen);
6159 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6160 }
6161
6162 if (idexttype) {
6163 /* create identity extension (USERFQDN) */
6164 struct sadb_ident *id;
6165 int userfqdnlen;
6166
6167 if (userfqdn) {
6168 /* +1 for terminating-NUL */
6169 userfqdnlen = strlen(userfqdn) + 1;
6170 } else
6171 userfqdnlen = 0;
6172 id = (struct sadb_ident *)p;
6173 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6174 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6175 id->sadb_ident_exttype = idexttype;
6176 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6177 /* XXX is it correct? */
6178 if (curlwp)
6179 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6180 if (userfqdn && userfqdnlen)
6181 memcpy(id + 1, userfqdn, userfqdnlen);
6182 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6183 }
6184 #endif
6185
6186 /* XXX sensitivity (optional) */
6187
6188 /* create proposal/combination extension */
6189 m = key_getprop(saidx);
6190 #if 0
6191 /*
6192 * spec conformant: always attach proposal/combination extension,
6193 * the problem is that we have no way to attach it for ipcomp,
6194 * due to the way sadb_comb is declared in RFC2367.
6195 */
6196 if (!m) {
6197 error = ENOBUFS;
6198 goto fail;
6199 }
6200 m_cat(result, m);
6201 #else
6202 /*
6203 * outside of spec; make proposal/combination extension optional.
6204 */
6205 if (m)
6206 m_cat(result, m);
6207 #endif
6208
6209 if ((result->m_flags & M_PKTHDR) == 0) {
6210 error = EINVAL;
6211 goto fail;
6212 }
6213
6214 if (result->m_len < sizeof(struct sadb_msg)) {
6215 result = m_pullup(result, sizeof(struct sadb_msg));
6216 if (result == NULL) {
6217 error = ENOBUFS;
6218 goto fail;
6219 }
6220 }
6221
6222 result->m_pkthdr.len = 0;
6223 for (m = result; m; m = m->m_next)
6224 result->m_pkthdr.len += m->m_len;
6225
6226 mtod(result, struct sadb_msg *)->sadb_msg_len =
6227 PFKEY_UNIT64(result->m_pkthdr.len);
6228
6229 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6230
6231 fail:
6232 if (result)
6233 m_freem(result);
6234 return error;
6235 }
6236
6237 #ifndef IPSEC_NONBLOCK_ACQUIRE
6238 static struct secacq *
6239 key_newacq(const struct secasindex *saidx)
6240 {
6241 struct secacq *newacq;
6242
6243 /* get new entry */
6244 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6245 if (newacq == NULL) {
6246 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6247 return NULL;
6248 }
6249
6250 /* copy secindex */
6251 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6252 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6253 newacq->created = time_uptime;
6254 newacq->count = 0;
6255
6256 return newacq;
6257 }
6258
6259 static struct secacq *
6260 key_getacq(const struct secasindex *saidx)
6261 {
6262 struct secacq *acq;
6263
6264 KASSERT(mutex_owned(&key_mtx));
6265
6266 LIST_FOREACH(acq, &acqtree, chain) {
6267 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6268 return acq;
6269 }
6270
6271 return NULL;
6272 }
6273
6274 static struct secacq *
6275 key_getacqbyseq(u_int32_t seq)
6276 {
6277 struct secacq *acq;
6278
6279 KASSERT(mutex_owned(&key_mtx));
6280
6281 LIST_FOREACH(acq, &acqtree, chain) {
6282 if (acq->seq == seq)
6283 return acq;
6284 }
6285
6286 return NULL;
6287 }
6288 #endif
6289
6290 #ifdef notyet
6291 static struct secspacq *
6292 key_newspacq(const struct secpolicyindex *spidx)
6293 {
6294 struct secspacq *acq;
6295
6296 /* get new entry */
6297 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6298 if (acq == NULL) {
6299 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6300 return NULL;
6301 }
6302
6303 /* copy secindex */
6304 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6305 acq->created = time_uptime;
6306 acq->count = 0;
6307
6308 return acq;
6309 }
6310
6311 static struct secspacq *
6312 key_getspacq(const struct secpolicyindex *spidx)
6313 {
6314 struct secspacq *acq;
6315
6316 LIST_FOREACH(acq, &spacqtree, chain) {
6317 if (key_spidx_match_exactly(spidx, &acq->spidx))
6318 return acq;
6319 }
6320
6321 return NULL;
6322 }
6323 #endif /* notyet */
6324
6325 /*
6326 * SADB_ACQUIRE processing,
6327 * in first situation, is receiving
6328 * <base>
6329 * from the ikmpd, and clear sequence of its secasvar entry.
6330 *
6331 * In second situation, is receiving
6332 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6333 * from a user land process, and return
6334 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6335 * to the socket.
6336 *
6337 * m will always be freed.
6338 */
6339 static int
6340 key_api_acquire(struct socket *so, struct mbuf *m,
6341 const struct sadb_msghdr *mhp)
6342 {
6343 const struct sockaddr *src, *dst;
6344 struct secasindex saidx;
6345 struct secashead *sah;
6346 u_int16_t proto;
6347 int error;
6348
6349 /*
6350 * Error message from KMd.
6351 * We assume that if error was occurred in IKEd, the length of PFKEY
6352 * message is equal to the size of sadb_msg structure.
6353 * We do not raise error even if error occurred in this function.
6354 */
6355 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6356 #ifndef IPSEC_NONBLOCK_ACQUIRE
6357 struct secacq *acq;
6358
6359 /* check sequence number */
6360 if (mhp->msg->sadb_msg_seq == 0) {
6361 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6362 m_freem(m);
6363 return 0;
6364 }
6365
6366 mutex_enter(&key_mtx);
6367 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6368 if (acq == NULL) {
6369 mutex_exit(&key_mtx);
6370 /*
6371 * the specified larval SA is already gone, or we got
6372 * a bogus sequence number. we can silently ignore it.
6373 */
6374 m_freem(m);
6375 return 0;
6376 }
6377
6378 /* reset acq counter in order to deletion by timehander. */
6379 acq->created = time_uptime;
6380 acq->count = 0;
6381 mutex_exit(&key_mtx);
6382 #endif
6383 m_freem(m);
6384 return 0;
6385 }
6386
6387 /*
6388 * This message is from user land.
6389 */
6390
6391 /* map satype to proto */
6392 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6393 if (proto == 0) {
6394 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6395 return key_senderror(so, m, EINVAL);
6396 }
6397
6398 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6399 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6400 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6401 /* error */
6402 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6403 return key_senderror(so, m, EINVAL);
6404 }
6405 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6406 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6407 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6408 /* error */
6409 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6410 return key_senderror(so, m, EINVAL);
6411 }
6412
6413 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6414 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6415
6416 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6417 if (error != 0)
6418 return key_senderror(so, m, EINVAL);
6419
6420 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6421 if (error != 0)
6422 return key_senderror(so, m, EINVAL);
6423
6424 /* get a SA index */
6425 sah = key_getsah(&saidx, CMP_MODE_REQID);
6426 if (sah != NULL) {
6427 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6428 return key_senderror(so, m, EEXIST);
6429 }
6430
6431 error = key_acquire(&saidx, NULL);
6432 if (error != 0) {
6433 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6434 error);
6435 return key_senderror(so, m, error);
6436 }
6437
6438 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6439 }
6440
6441 /*
6442 * SADB_REGISTER processing.
6443 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6444 * receive
6445 * <base>
6446 * from the ikmpd, and register a socket to send PF_KEY messages,
6447 * and send
6448 * <base, supported>
6449 * to KMD by PF_KEY.
6450 * If socket is detached, must free from regnode.
6451 *
6452 * m will always be freed.
6453 */
6454 static int
6455 key_api_register(struct socket *so, struct mbuf *m,
6456 const struct sadb_msghdr *mhp)
6457 {
6458 struct secreg *reg, *newreg = 0;
6459
6460 /* check for invalid register message */
6461 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6462 return key_senderror(so, m, EINVAL);
6463
6464 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6465 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6466 goto setmsg;
6467
6468 /* Allocate regnode in advance, out of mutex */
6469 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6470
6471 /* check whether existing or not */
6472 mutex_enter(&key_mtx);
6473 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6474 if (reg->so == so) {
6475 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6476 mutex_exit(&key_mtx);
6477 kmem_free(newreg, sizeof(*newreg));
6478 return key_senderror(so, m, EEXIST);
6479 }
6480 }
6481
6482 newreg->so = so;
6483 ((struct keycb *)sotorawcb(so))->kp_registered++;
6484
6485 /* add regnode to regtree. */
6486 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6487 mutex_exit(&key_mtx);
6488
6489 setmsg:
6490 {
6491 struct mbuf *n;
6492 struct sadb_supported *sup;
6493 u_int len, alen, elen;
6494 int off;
6495 int i;
6496 struct sadb_alg *alg;
6497
6498 /* create new sadb_msg to reply. */
6499 alen = 0;
6500 for (i = 1; i <= SADB_AALG_MAX; i++) {
6501 if (ah_algorithm_lookup(i))
6502 alen += sizeof(struct sadb_alg);
6503 }
6504 if (alen)
6505 alen += sizeof(struct sadb_supported);
6506 elen = 0;
6507 for (i = 1; i <= SADB_EALG_MAX; i++) {
6508 if (esp_algorithm_lookup(i))
6509 elen += sizeof(struct sadb_alg);
6510 }
6511 if (elen)
6512 elen += sizeof(struct sadb_supported);
6513
6514 len = sizeof(struct sadb_msg) + alen + elen;
6515
6516 if (len > MCLBYTES)
6517 return key_senderror(so, m, ENOBUFS);
6518
6519 MGETHDR(n, M_DONTWAIT, MT_DATA);
6520 if (len > MHLEN) {
6521 MCLGET(n, M_DONTWAIT);
6522 if ((n->m_flags & M_EXT) == 0) {
6523 m_freem(n);
6524 n = NULL;
6525 }
6526 }
6527 if (!n)
6528 return key_senderror(so, m, ENOBUFS);
6529
6530 n->m_pkthdr.len = n->m_len = len;
6531 n->m_next = NULL;
6532 off = 0;
6533
6534 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6535 n = key_fill_replymsg(n, 0);
6536 if (n == NULL)
6537 return key_senderror(so, m, ENOBUFS);
6538
6539 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6540
6541 /* for authentication algorithm */
6542 if (alen) {
6543 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6544 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6545 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6546 off += PFKEY_ALIGN8(sizeof(*sup));
6547
6548 for (i = 1; i <= SADB_AALG_MAX; i++) {
6549 const struct auth_hash *aalgo;
6550 u_int16_t minkeysize, maxkeysize;
6551
6552 aalgo = ah_algorithm_lookup(i);
6553 if (!aalgo)
6554 continue;
6555 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6556 alg->sadb_alg_id = i;
6557 alg->sadb_alg_ivlen = 0;
6558 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6559 alg->sadb_alg_minbits = _BITS(minkeysize);
6560 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6561 off += PFKEY_ALIGN8(sizeof(*alg));
6562 }
6563 }
6564
6565 /* for encryption algorithm */
6566 if (elen) {
6567 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6568 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6569 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6570 off += PFKEY_ALIGN8(sizeof(*sup));
6571
6572 for (i = 1; i <= SADB_EALG_MAX; i++) {
6573 const struct enc_xform *ealgo;
6574
6575 ealgo = esp_algorithm_lookup(i);
6576 if (!ealgo)
6577 continue;
6578 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6579 alg->sadb_alg_id = i;
6580 alg->sadb_alg_ivlen = ealgo->blocksize;
6581 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6582 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6583 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6584 }
6585 }
6586
6587 KASSERTMSG(off == len, "length inconsistency");
6588
6589 m_freem(m);
6590 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6591 }
6592 }
6593
6594 /*
6595 * free secreg entry registered.
6596 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6597 */
6598 void
6599 key_freereg(struct socket *so)
6600 {
6601 struct secreg *reg;
6602 int i;
6603
6604 KASSERT(!cpu_softintr_p());
6605 KASSERT(so != NULL);
6606
6607 /*
6608 * check whether existing or not.
6609 * check all type of SA, because there is a potential that
6610 * one socket is registered to multiple type of SA.
6611 */
6612 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6613 mutex_enter(&key_mtx);
6614 LIST_FOREACH(reg, ®tree[i], chain) {
6615 if (reg->so == so) {
6616 LIST_REMOVE(reg, chain);
6617 break;
6618 }
6619 }
6620 mutex_exit(&key_mtx);
6621 if (reg != NULL)
6622 kmem_free(reg, sizeof(*reg));
6623 }
6624
6625 return;
6626 }
6627
6628 /*
6629 * SADB_EXPIRE processing
6630 * send
6631 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6632 * to KMD by PF_KEY.
6633 * NOTE: We send only soft lifetime extension.
6634 *
6635 * OUT: 0 : succeed
6636 * others : error number
6637 */
6638 static int
6639 key_expire(struct secasvar *sav)
6640 {
6641 int s;
6642 int satype;
6643 struct mbuf *result = NULL, *m;
6644 int len;
6645 int error = -1;
6646 struct sadb_lifetime *lt;
6647
6648 /* XXX: Why do we lock ? */
6649 s = splsoftnet(); /*called from softclock()*/
6650
6651 KASSERT(sav != NULL);
6652
6653 satype = key_proto2satype(sav->sah->saidx.proto);
6654 KASSERTMSG(satype != 0, "invalid proto is passed");
6655
6656 /* set msg header */
6657 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6658 if (!m) {
6659 error = ENOBUFS;
6660 goto fail;
6661 }
6662 result = m;
6663
6664 /* create SA extension */
6665 m = key_setsadbsa(sav);
6666 if (!m) {
6667 error = ENOBUFS;
6668 goto fail;
6669 }
6670 m_cat(result, m);
6671
6672 /* create SA extension */
6673 m = key_setsadbxsa2(sav->sah->saidx.mode,
6674 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6675 if (!m) {
6676 error = ENOBUFS;
6677 goto fail;
6678 }
6679 m_cat(result, m);
6680
6681 /* create lifetime extension (current and soft) */
6682 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6683 m = key_alloc_mbuf(len);
6684 if (!m || m->m_next) { /*XXX*/
6685 if (m)
6686 m_freem(m);
6687 error = ENOBUFS;
6688 goto fail;
6689 }
6690 memset(mtod(m, void *), 0, len);
6691 lt = mtod(m, struct sadb_lifetime *);
6692 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6693 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6694 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6695 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6696 lt->sadb_lifetime_addtime =
6697 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6698 lt->sadb_lifetime_usetime =
6699 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6700 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6701 memcpy(lt, sav->lft_s, sizeof(*lt));
6702 m_cat(result, m);
6703
6704 /* set sadb_address for source */
6705 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6706 FULLMASK, IPSEC_ULPROTO_ANY);
6707 if (!m) {
6708 error = ENOBUFS;
6709 goto fail;
6710 }
6711 m_cat(result, m);
6712
6713 /* set sadb_address for destination */
6714 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6715 FULLMASK, IPSEC_ULPROTO_ANY);
6716 if (!m) {
6717 error = ENOBUFS;
6718 goto fail;
6719 }
6720 m_cat(result, m);
6721
6722 if ((result->m_flags & M_PKTHDR) == 0) {
6723 error = EINVAL;
6724 goto fail;
6725 }
6726
6727 if (result->m_len < sizeof(struct sadb_msg)) {
6728 result = m_pullup(result, sizeof(struct sadb_msg));
6729 if (result == NULL) {
6730 error = ENOBUFS;
6731 goto fail;
6732 }
6733 }
6734
6735 result->m_pkthdr.len = 0;
6736 for (m = result; m; m = m->m_next)
6737 result->m_pkthdr.len += m->m_len;
6738
6739 mtod(result, struct sadb_msg *)->sadb_msg_len =
6740 PFKEY_UNIT64(result->m_pkthdr.len);
6741
6742 splx(s);
6743 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6744
6745 fail:
6746 if (result)
6747 m_freem(result);
6748 splx(s);
6749 return error;
6750 }
6751
6752 /*
6753 * SADB_FLUSH processing
6754 * receive
6755 * <base>
6756 * from the ikmpd, and free all entries in secastree.
6757 * and send,
6758 * <base>
6759 * to the ikmpd.
6760 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6761 *
6762 * m will always be freed.
6763 */
6764 static int
6765 key_api_flush(struct socket *so, struct mbuf *m,
6766 const struct sadb_msghdr *mhp)
6767 {
6768 struct sadb_msg *newmsg;
6769 struct secashead *sah;
6770 struct secasvar *sav, *nextsav;
6771 u_int16_t proto;
6772 u_int8_t state;
6773
6774 /* map satype to proto */
6775 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6776 if (proto == 0) {
6777 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6778 return key_senderror(so, m, EINVAL);
6779 }
6780
6781 /* no SATYPE specified, i.e. flushing all SA. */
6782 LIST_FOREACH(sah, &sahtree, chain) {
6783 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6784 proto != sah->saidx.proto)
6785 continue;
6786
6787 SASTATE_ALIVE_FOREACH(state) {
6788 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6789 nextsav) {
6790 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6791 KEY_FREESAV(&sav);
6792 }
6793 }
6794
6795 sah->state = SADB_SASTATE_DEAD;
6796 }
6797
6798 if (m->m_len < sizeof(struct sadb_msg) ||
6799 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6800 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6801 return key_senderror(so, m, ENOBUFS);
6802 }
6803
6804 if (m->m_next)
6805 m_freem(m->m_next);
6806 m->m_next = NULL;
6807 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6808 newmsg = mtod(m, struct sadb_msg *);
6809 newmsg->sadb_msg_errno = 0;
6810 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6811
6812 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6813 }
6814
6815
6816 static struct mbuf *
6817 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6818 {
6819 struct secashead *sah;
6820 struct secasvar *sav;
6821 u_int16_t proto;
6822 u_int8_t satype;
6823 u_int8_t state;
6824 int cnt;
6825 struct mbuf *m, *n, *prev;
6826
6827 *lenp = 0;
6828
6829 /* map satype to proto */
6830 proto = key_satype2proto(req_satype);
6831 if (proto == 0) {
6832 *errorp = EINVAL;
6833 return (NULL);
6834 }
6835
6836 /* count sav entries to be sent to userland. */
6837 cnt = 0;
6838 LIST_FOREACH(sah, &sahtree, chain) {
6839 if (req_satype != SADB_SATYPE_UNSPEC &&
6840 proto != sah->saidx.proto)
6841 continue;
6842
6843 SASTATE_ANY_FOREACH(state) {
6844 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6845 cnt++;
6846 }
6847 }
6848 }
6849
6850 if (cnt == 0) {
6851 *errorp = ENOENT;
6852 return (NULL);
6853 }
6854
6855 /* send this to the userland, one at a time. */
6856 m = NULL;
6857 prev = m;
6858 LIST_FOREACH(sah, &sahtree, chain) {
6859 if (req_satype != SADB_SATYPE_UNSPEC &&
6860 proto != sah->saidx.proto)
6861 continue;
6862
6863 /* map proto to satype */
6864 satype = key_proto2satype(sah->saidx.proto);
6865 if (satype == 0) {
6866 m_freem(m);
6867 *errorp = EINVAL;
6868 return (NULL);
6869 }
6870
6871 SASTATE_ANY_FOREACH(state) {
6872 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6873 n = key_setdumpsa(sav, SADB_DUMP, satype,
6874 --cnt, pid);
6875 if (!n) {
6876 m_freem(m);
6877 *errorp = ENOBUFS;
6878 return (NULL);
6879 }
6880
6881 if (!m)
6882 m = n;
6883 else
6884 prev->m_nextpkt = n;
6885 prev = n;
6886 }
6887 }
6888 }
6889
6890 if (!m) {
6891 *errorp = EINVAL;
6892 return (NULL);
6893 }
6894
6895 if ((m->m_flags & M_PKTHDR) != 0) {
6896 m->m_pkthdr.len = 0;
6897 for (n = m; n; n = n->m_next)
6898 m->m_pkthdr.len += n->m_len;
6899 }
6900
6901 *errorp = 0;
6902 return (m);
6903 }
6904
6905 /*
6906 * SADB_DUMP processing
6907 * dump all entries including status of DEAD in SAD.
6908 * receive
6909 * <base>
6910 * from the ikmpd, and dump all secasvar leaves
6911 * and send,
6912 * <base> .....
6913 * to the ikmpd.
6914 *
6915 * m will always be freed.
6916 */
6917 static int
6918 key_api_dump(struct socket *so, struct mbuf *m0,
6919 const struct sadb_msghdr *mhp)
6920 {
6921 u_int16_t proto;
6922 u_int8_t satype;
6923 struct mbuf *n;
6924 int s;
6925 int error, len, ok;
6926
6927 /* map satype to proto */
6928 satype = mhp->msg->sadb_msg_satype;
6929 proto = key_satype2proto(satype);
6930 if (proto == 0) {
6931 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6932 return key_senderror(so, m0, EINVAL);
6933 }
6934
6935 /*
6936 * If the requestor has insufficient socket-buffer space
6937 * for the entire chain, nobody gets any response to the DUMP.
6938 * XXX For now, only the requestor ever gets anything.
6939 * Moreover, if the requestor has any space at all, they receive
6940 * the entire chain, otherwise the request is refused with ENOBUFS.
6941 */
6942 if (sbspace(&so->so_rcv) <= 0) {
6943 return key_senderror(so, m0, ENOBUFS);
6944 }
6945
6946 s = splsoftnet();
6947 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
6948 splx(s);
6949
6950 if (n == NULL) {
6951 return key_senderror(so, m0, ENOENT);
6952 }
6953 {
6954 uint64_t *ps = PFKEY_STAT_GETREF();
6955 ps[PFKEY_STAT_IN_TOTAL]++;
6956 ps[PFKEY_STAT_IN_BYTES] += len;
6957 PFKEY_STAT_PUTREF();
6958 }
6959
6960 /*
6961 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
6962 * The requestor receives either the entire chain, or an
6963 * error message with ENOBUFS.
6964 *
6965 * sbappendaddrchain() takes the chain of entries, one
6966 * packet-record per SPD entry, prepends the key_src sockaddr
6967 * to each packet-record, links the sockaddr mbufs into a new
6968 * list of records, then appends the entire resulting
6969 * list to the requesting socket.
6970 */
6971 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
6972 SB_PRIO_ONESHOT_OVERFLOW);
6973
6974 if (!ok) {
6975 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
6976 m_freem(n);
6977 return key_senderror(so, m0, ENOBUFS);
6978 }
6979
6980 m_freem(m0);
6981 return 0;
6982 }
6983
6984 /*
6985 * SADB_X_PROMISC processing
6986 *
6987 * m will always be freed.
6988 */
6989 static int
6990 key_api_promisc(struct socket *so, struct mbuf *m,
6991 const struct sadb_msghdr *mhp)
6992 {
6993 int olen;
6994
6995 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6996
6997 if (olen < sizeof(struct sadb_msg)) {
6998 #if 1
6999 return key_senderror(so, m, EINVAL);
7000 #else
7001 m_freem(m);
7002 return 0;
7003 #endif
7004 } else if (olen == sizeof(struct sadb_msg)) {
7005 /* enable/disable promisc mode */
7006 struct keycb *kp = (struct keycb *)sotorawcb(so);
7007 if (kp == NULL)
7008 return key_senderror(so, m, EINVAL);
7009 mhp->msg->sadb_msg_errno = 0;
7010 switch (mhp->msg->sadb_msg_satype) {
7011 case 0:
7012 case 1:
7013 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7014 break;
7015 default:
7016 return key_senderror(so, m, EINVAL);
7017 }
7018
7019 /* send the original message back to everyone */
7020 mhp->msg->sadb_msg_errno = 0;
7021 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7022 } else {
7023 /* send packet as is */
7024
7025 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7026
7027 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7028 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7029 }
7030 }
7031
7032 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7033 const struct sadb_msghdr *) = {
7034 NULL, /* SADB_RESERVED */
7035 key_api_getspi, /* SADB_GETSPI */
7036 key_api_update, /* SADB_UPDATE */
7037 key_api_add, /* SADB_ADD */
7038 key_api_delete, /* SADB_DELETE */
7039 key_api_get, /* SADB_GET */
7040 key_api_acquire, /* SADB_ACQUIRE */
7041 key_api_register, /* SADB_REGISTER */
7042 NULL, /* SADB_EXPIRE */
7043 key_api_flush, /* SADB_FLUSH */
7044 key_api_dump, /* SADB_DUMP */
7045 key_api_promisc, /* SADB_X_PROMISC */
7046 NULL, /* SADB_X_PCHANGE */
7047 key_api_spdadd, /* SADB_X_SPDUPDATE */
7048 key_api_spdadd, /* SADB_X_SPDADD */
7049 key_api_spddelete, /* SADB_X_SPDDELETE */
7050 key_api_spdget, /* SADB_X_SPDGET */
7051 NULL, /* SADB_X_SPDACQUIRE */
7052 key_api_spddump, /* SADB_X_SPDDUMP */
7053 key_api_spdflush, /* SADB_X_SPDFLUSH */
7054 key_api_spdadd, /* SADB_X_SPDSETIDX */
7055 NULL, /* SADB_X_SPDEXPIRE */
7056 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7057 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7058 };
7059
7060 /*
7061 * parse sadb_msg buffer to process PFKEYv2,
7062 * and create a data to response if needed.
7063 * I think to be dealed with mbuf directly.
7064 * IN:
7065 * msgp : pointer to pointer to a received buffer pulluped.
7066 * This is rewrited to response.
7067 * so : pointer to socket.
7068 * OUT:
7069 * length for buffer to send to user process.
7070 */
7071 int
7072 key_parse(struct mbuf *m, struct socket *so)
7073 {
7074 struct sadb_msg *msg;
7075 struct sadb_msghdr mh;
7076 u_int orglen;
7077 int error;
7078
7079 KASSERT(m != NULL);
7080 KASSERT(so != NULL);
7081
7082 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7083 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7084 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7085 kdebug_sadb(msg);
7086 }
7087 #endif
7088
7089 if (m->m_len < sizeof(struct sadb_msg)) {
7090 m = m_pullup(m, sizeof(struct sadb_msg));
7091 if (!m)
7092 return ENOBUFS;
7093 }
7094 msg = mtod(m, struct sadb_msg *);
7095 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7096
7097 if ((m->m_flags & M_PKTHDR) == 0 ||
7098 m->m_pkthdr.len != orglen) {
7099 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7100 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7101 error = EINVAL;
7102 goto senderror;
7103 }
7104
7105 if (msg->sadb_msg_version != PF_KEY_V2) {
7106 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7107 msg->sadb_msg_version);
7108 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7109 error = EINVAL;
7110 goto senderror;
7111 }
7112
7113 if (msg->sadb_msg_type > SADB_MAX) {
7114 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7115 msg->sadb_msg_type);
7116 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7117 error = EINVAL;
7118 goto senderror;
7119 }
7120
7121 /* for old-fashioned code - should be nuked */
7122 if (m->m_pkthdr.len > MCLBYTES) {
7123 m_freem(m);
7124 return ENOBUFS;
7125 }
7126 if (m->m_next) {
7127 struct mbuf *n;
7128
7129 MGETHDR(n, M_DONTWAIT, MT_DATA);
7130 if (n && m->m_pkthdr.len > MHLEN) {
7131 MCLGET(n, M_DONTWAIT);
7132 if ((n->m_flags & M_EXT) == 0) {
7133 m_free(n);
7134 n = NULL;
7135 }
7136 }
7137 if (!n) {
7138 m_freem(m);
7139 return ENOBUFS;
7140 }
7141 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7142 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7143 n->m_next = NULL;
7144 m_freem(m);
7145 m = n;
7146 }
7147
7148 /* align the mbuf chain so that extensions are in contiguous region. */
7149 error = key_align(m, &mh);
7150 if (error)
7151 return error;
7152
7153 if (m->m_next) { /*XXX*/
7154 m_freem(m);
7155 return ENOBUFS;
7156 }
7157
7158 msg = mh.msg;
7159
7160 /* check SA type */
7161 switch (msg->sadb_msg_satype) {
7162 case SADB_SATYPE_UNSPEC:
7163 switch (msg->sadb_msg_type) {
7164 case SADB_GETSPI:
7165 case SADB_UPDATE:
7166 case SADB_ADD:
7167 case SADB_DELETE:
7168 case SADB_GET:
7169 case SADB_ACQUIRE:
7170 case SADB_EXPIRE:
7171 IPSECLOG(LOG_DEBUG,
7172 "must specify satype when msg type=%u.\n",
7173 msg->sadb_msg_type);
7174 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7175 error = EINVAL;
7176 goto senderror;
7177 }
7178 break;
7179 case SADB_SATYPE_AH:
7180 case SADB_SATYPE_ESP:
7181 case SADB_X_SATYPE_IPCOMP:
7182 case SADB_X_SATYPE_TCPSIGNATURE:
7183 switch (msg->sadb_msg_type) {
7184 case SADB_X_SPDADD:
7185 case SADB_X_SPDDELETE:
7186 case SADB_X_SPDGET:
7187 case SADB_X_SPDDUMP:
7188 case SADB_X_SPDFLUSH:
7189 case SADB_X_SPDSETIDX:
7190 case SADB_X_SPDUPDATE:
7191 case SADB_X_SPDDELETE2:
7192 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7193 msg->sadb_msg_type);
7194 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7195 error = EINVAL;
7196 goto senderror;
7197 }
7198 break;
7199 case SADB_SATYPE_RSVP:
7200 case SADB_SATYPE_OSPFV2:
7201 case SADB_SATYPE_RIPV2:
7202 case SADB_SATYPE_MIP:
7203 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7204 msg->sadb_msg_satype);
7205 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7206 error = EOPNOTSUPP;
7207 goto senderror;
7208 case 1: /* XXX: What does it do? */
7209 if (msg->sadb_msg_type == SADB_X_PROMISC)
7210 break;
7211 /*FALLTHROUGH*/
7212 default:
7213 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7214 msg->sadb_msg_satype);
7215 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7216 error = EINVAL;
7217 goto senderror;
7218 }
7219
7220 /* check field of upper layer protocol and address family */
7221 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7222 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7223 struct sadb_address *src0, *dst0;
7224 u_int plen;
7225
7226 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7227 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7228
7229 /* check upper layer protocol */
7230 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7231 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7232 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7233 error = EINVAL;
7234 goto senderror;
7235 }
7236
7237 /* check family */
7238 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7239 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7240 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7241 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7242 error = EINVAL;
7243 goto senderror;
7244 }
7245 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7246 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7247 IPSECLOG(LOG_DEBUG,
7248 "address struct size mismatched.\n");
7249 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7250 error = EINVAL;
7251 goto senderror;
7252 }
7253
7254 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7255 case AF_INET:
7256 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7257 sizeof(struct sockaddr_in)) {
7258 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7259 error = EINVAL;
7260 goto senderror;
7261 }
7262 break;
7263 case AF_INET6:
7264 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7265 sizeof(struct sockaddr_in6)) {
7266 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7267 error = EINVAL;
7268 goto senderror;
7269 }
7270 break;
7271 default:
7272 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7273 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7274 error = EAFNOSUPPORT;
7275 goto senderror;
7276 }
7277
7278 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7279 case AF_INET:
7280 plen = sizeof(struct in_addr) << 3;
7281 break;
7282 case AF_INET6:
7283 plen = sizeof(struct in6_addr) << 3;
7284 break;
7285 default:
7286 plen = 0; /*fool gcc*/
7287 break;
7288 }
7289
7290 /* check max prefix length */
7291 if (src0->sadb_address_prefixlen > plen ||
7292 dst0->sadb_address_prefixlen > plen) {
7293 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7294 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7295 error = EINVAL;
7296 goto senderror;
7297 }
7298
7299 /*
7300 * prefixlen == 0 is valid because there can be a case when
7301 * all addresses are matched.
7302 */
7303 }
7304
7305 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7306 key_api_typesw[msg->sadb_msg_type] == NULL) {
7307 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7308 error = EINVAL;
7309 goto senderror;
7310 }
7311
7312 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7313
7314 senderror:
7315 return key_senderror(so, m, error);
7316 }
7317
7318 static int
7319 key_senderror(struct socket *so, struct mbuf *m, int code)
7320 {
7321 struct sadb_msg *msg;
7322
7323 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7324
7325 msg = mtod(m, struct sadb_msg *);
7326 msg->sadb_msg_errno = code;
7327 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7328 }
7329
7330 /*
7331 * set the pointer to each header into message buffer.
7332 * m will be freed on error.
7333 * XXX larger-than-MCLBYTES extension?
7334 */
7335 static int
7336 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7337 {
7338 struct mbuf *n;
7339 struct sadb_ext *ext;
7340 size_t off, end;
7341 int extlen;
7342 int toff;
7343
7344 KASSERT(m != NULL);
7345 KASSERT(mhp != NULL);
7346 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7347
7348 /* initialize */
7349 memset(mhp, 0, sizeof(*mhp));
7350
7351 mhp->msg = mtod(m, struct sadb_msg *);
7352 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7353
7354 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7355 extlen = end; /*just in case extlen is not updated*/
7356 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7357 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7358 if (!n) {
7359 /* m is already freed */
7360 return ENOBUFS;
7361 }
7362 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7363
7364 /* set pointer */
7365 switch (ext->sadb_ext_type) {
7366 case SADB_EXT_SA:
7367 case SADB_EXT_ADDRESS_SRC:
7368 case SADB_EXT_ADDRESS_DST:
7369 case SADB_EXT_ADDRESS_PROXY:
7370 case SADB_EXT_LIFETIME_CURRENT:
7371 case SADB_EXT_LIFETIME_HARD:
7372 case SADB_EXT_LIFETIME_SOFT:
7373 case SADB_EXT_KEY_AUTH:
7374 case SADB_EXT_KEY_ENCRYPT:
7375 case SADB_EXT_IDENTITY_SRC:
7376 case SADB_EXT_IDENTITY_DST:
7377 case SADB_EXT_SENSITIVITY:
7378 case SADB_EXT_PROPOSAL:
7379 case SADB_EXT_SUPPORTED_AUTH:
7380 case SADB_EXT_SUPPORTED_ENCRYPT:
7381 case SADB_EXT_SPIRANGE:
7382 case SADB_X_EXT_POLICY:
7383 case SADB_X_EXT_SA2:
7384 case SADB_X_EXT_NAT_T_TYPE:
7385 case SADB_X_EXT_NAT_T_SPORT:
7386 case SADB_X_EXT_NAT_T_DPORT:
7387 case SADB_X_EXT_NAT_T_OAI:
7388 case SADB_X_EXT_NAT_T_OAR:
7389 case SADB_X_EXT_NAT_T_FRAG:
7390 /* duplicate check */
7391 /*
7392 * XXX Are there duplication payloads of either
7393 * KEY_AUTH or KEY_ENCRYPT ?
7394 */
7395 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7396 IPSECLOG(LOG_DEBUG,
7397 "duplicate ext_type %u is passed.\n",
7398 ext->sadb_ext_type);
7399 m_freem(m);
7400 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7401 return EINVAL;
7402 }
7403 break;
7404 default:
7405 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7406 ext->sadb_ext_type);
7407 m_freem(m);
7408 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7409 return EINVAL;
7410 }
7411
7412 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7413
7414 if (key_validate_ext(ext, extlen)) {
7415 m_freem(m);
7416 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7417 return EINVAL;
7418 }
7419
7420 n = m_pulldown(m, off, extlen, &toff);
7421 if (!n) {
7422 /* m is already freed */
7423 return ENOBUFS;
7424 }
7425 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7426
7427 mhp->ext[ext->sadb_ext_type] = ext;
7428 mhp->extoff[ext->sadb_ext_type] = off;
7429 mhp->extlen[ext->sadb_ext_type] = extlen;
7430 }
7431
7432 if (off != end) {
7433 m_freem(m);
7434 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7435 return EINVAL;
7436 }
7437
7438 return 0;
7439 }
7440
7441 static int
7442 key_validate_ext(const struct sadb_ext *ext, int len)
7443 {
7444 const struct sockaddr *sa;
7445 enum { NONE, ADDR } checktype = NONE;
7446 int baselen = 0;
7447 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7448
7449 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7450 return EINVAL;
7451
7452 /* if it does not match minimum/maximum length, bail */
7453 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7454 ext->sadb_ext_type >= __arraycount(maxsize))
7455 return EINVAL;
7456 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7457 return EINVAL;
7458 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7459 return EINVAL;
7460
7461 /* more checks based on sadb_ext_type XXX need more */
7462 switch (ext->sadb_ext_type) {
7463 case SADB_EXT_ADDRESS_SRC:
7464 case SADB_EXT_ADDRESS_DST:
7465 case SADB_EXT_ADDRESS_PROXY:
7466 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7467 checktype = ADDR;
7468 break;
7469 case SADB_EXT_IDENTITY_SRC:
7470 case SADB_EXT_IDENTITY_DST:
7471 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7472 SADB_X_IDENTTYPE_ADDR) {
7473 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7474 checktype = ADDR;
7475 } else
7476 checktype = NONE;
7477 break;
7478 default:
7479 checktype = NONE;
7480 break;
7481 }
7482
7483 switch (checktype) {
7484 case NONE:
7485 break;
7486 case ADDR:
7487 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7488 if (len < baselen + sal)
7489 return EINVAL;
7490 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7491 return EINVAL;
7492 break;
7493 }
7494
7495 return 0;
7496 }
7497
7498 static int
7499 key_do_init(void)
7500 {
7501 int i, error;
7502
7503 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7504
7505 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7506
7507 callout_init(&key_timehandler_ch, 0);
7508 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7509 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7510 if (error != 0)
7511 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7512
7513 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7514 LIST_INIT(&sptree[i]);
7515 }
7516
7517 LIST_INIT(&sahtree);
7518
7519 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7520 LIST_INIT(®tree[i]);
7521 }
7522
7523 #ifndef IPSEC_NONBLOCK_ACQUIRE
7524 LIST_INIT(&acqtree);
7525 #endif
7526 #ifdef notyet
7527 LIST_INIT(&spacqtree);
7528 #endif
7529
7530 /* system default */
7531 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7532 ip4_def_policy.refcnt++; /*never reclaim this*/
7533
7534 #ifdef INET6
7535 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7536 ip6_def_policy.refcnt++; /*never reclaim this*/
7537 #endif
7538
7539 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7540
7541 /* initialize key statistics */
7542 keystat.getspi_count = 1;
7543
7544 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7545
7546 return (0);
7547 }
7548
7549 void
7550 key_init(void)
7551 {
7552 static ONCE_DECL(key_init_once);
7553
7554 sysctl_net_keyv2_setup(NULL);
7555 sysctl_net_key_compat_setup(NULL);
7556
7557 RUN_ONCE(&key_init_once, key_do_init);
7558 }
7559
7560 /*
7561 * XXX: maybe This function is called after INBOUND IPsec processing.
7562 *
7563 * Special check for tunnel-mode packets.
7564 * We must make some checks for consistency between inner and outer IP header.
7565 *
7566 * xxx more checks to be provided
7567 */
7568 int
7569 key_checktunnelsanity(
7570 struct secasvar *sav,
7571 u_int family,
7572 void *src,
7573 void *dst
7574 )
7575 {
7576
7577 /* XXX: check inner IP header */
7578
7579 return 1;
7580 }
7581
7582 #if 0
7583 #define hostnamelen strlen(hostname)
7584
7585 /*
7586 * Get FQDN for the host.
7587 * If the administrator configured hostname (by hostname(1)) without
7588 * domain name, returns nothing.
7589 */
7590 static const char *
7591 key_getfqdn(void)
7592 {
7593 int i;
7594 int hasdot;
7595 static char fqdn[MAXHOSTNAMELEN + 1];
7596
7597 if (!hostnamelen)
7598 return NULL;
7599
7600 /* check if it comes with domain name. */
7601 hasdot = 0;
7602 for (i = 0; i < hostnamelen; i++) {
7603 if (hostname[i] == '.')
7604 hasdot++;
7605 }
7606 if (!hasdot)
7607 return NULL;
7608
7609 /* NOTE: hostname may not be NUL-terminated. */
7610 memset(fqdn, 0, sizeof(fqdn));
7611 memcpy(fqdn, hostname, hostnamelen);
7612 fqdn[hostnamelen] = '\0';
7613 return fqdn;
7614 }
7615
7616 /*
7617 * get username@FQDN for the host/user.
7618 */
7619 static const char *
7620 key_getuserfqdn(void)
7621 {
7622 const char *host;
7623 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7624 struct proc *p = curproc;
7625 char *q;
7626
7627 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7628 return NULL;
7629 if (!(host = key_getfqdn()))
7630 return NULL;
7631
7632 /* NOTE: s_login may not be-NUL terminated. */
7633 memset(userfqdn, 0, sizeof(userfqdn));
7634 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7635 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7636 q = userfqdn + strlen(userfqdn);
7637 *q++ = '@';
7638 memcpy(q, host, strlen(host));
7639 q += strlen(host);
7640 *q++ = '\0';
7641
7642 return userfqdn;
7643 }
7644 #endif
7645
7646 /* record data transfer on SA, and update timestamps */
7647 void
7648 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7649 {
7650
7651 KASSERT(sav != NULL);
7652 KASSERT(sav->lft_c != NULL);
7653 KASSERT(m != NULL);
7654
7655 /*
7656 * XXX Currently, there is a difference of bytes size
7657 * between inbound and outbound processing.
7658 */
7659 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7660 /* to check bytes lifetime is done in key_timehandler(). */
7661
7662 /*
7663 * We use the number of packets as the unit of
7664 * sadb_lifetime_allocations. We increment the variable
7665 * whenever {esp,ah}_{in,out}put is called.
7666 */
7667 sav->lft_c->sadb_lifetime_allocations++;
7668 /* XXX check for expires? */
7669
7670 /*
7671 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7672 * in seconds. HARD and SOFT lifetime are measured by the time
7673 * difference (again in seconds) from sadb_lifetime_usetime.
7674 *
7675 * usetime
7676 * v expire expire
7677 * -----+-----+--------+---> t
7678 * <--------------> HARD
7679 * <-----> SOFT
7680 */
7681 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7682 /* XXX check for expires? */
7683
7684 return;
7685 }
7686
7687 /* dumb version */
7688 void
7689 key_sa_routechange(struct sockaddr *dst)
7690 {
7691 struct secashead *sah;
7692 struct route *ro;
7693 const struct sockaddr *sa;
7694
7695 LIST_FOREACH(sah, &sahtree, chain) {
7696 ro = &sah->sa_route;
7697 sa = rtcache_getdst(ro);
7698 if (sa != NULL && dst->sa_len == sa->sa_len &&
7699 memcmp(dst, sa, dst->sa_len) == 0)
7700 rtcache_free(ro);
7701 }
7702
7703 return;
7704 }
7705
7706 static void
7707 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7708 {
7709 struct secasvar *_sav;
7710
7711 KASSERT(sav != NULL);
7712
7713 if (sav->state == state)
7714 return;
7715
7716 KASSERT(__LIST_CHAINED(sav));
7717 LIST_REMOVE(sav, chain);
7718
7719 sav->state = state;
7720 if (!SADB_SASTATE_USABLE_P(sav)) {
7721 /* We don't need to care about the order */
7722 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7723 return;
7724 }
7725 /*
7726 * Sort the list by lft_c->sadb_lifetime_addtime
7727 * in ascending order.
7728 */
7729 LIST_FOREACH(_sav, &sav->sah->savtree[state], chain) {
7730 if (_sav->lft_c->sadb_lifetime_addtime >
7731 sav->lft_c->sadb_lifetime_addtime) {
7732 LIST_INSERT_BEFORE(_sav, sav, chain);
7733 break;
7734 }
7735 }
7736 if (_sav == NULL) {
7737 LIST_INSERT_TAIL(&sav->sah->savtree[state], sav, secasvar,
7738 chain);
7739 }
7740 key_validate_savlist(sav->sah, state);
7741 }
7742
7743 /* XXX too much? */
7744 static struct mbuf *
7745 key_alloc_mbuf(int l)
7746 {
7747 struct mbuf *m = NULL, *n;
7748 int len, t;
7749
7750 len = l;
7751 while (len > 0) {
7752 MGET(n, M_DONTWAIT, MT_DATA);
7753 if (n && len > MLEN)
7754 MCLGET(n, M_DONTWAIT);
7755 if (!n) {
7756 m_freem(m);
7757 return NULL;
7758 }
7759
7760 n->m_next = NULL;
7761 n->m_len = 0;
7762 n->m_len = M_TRAILINGSPACE(n);
7763 /* use the bottom of mbuf, hoping we can prepend afterwards */
7764 if (n->m_len > len) {
7765 t = (n->m_len - len) & ~(sizeof(long) - 1);
7766 n->m_data += t;
7767 n->m_len = len;
7768 }
7769
7770 len -= n->m_len;
7771
7772 if (m)
7773 m_cat(m, n);
7774 else
7775 m = n;
7776 }
7777
7778 return m;
7779 }
7780
7781 static struct mbuf *
7782 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7783 {
7784 struct secashead *sah;
7785 struct secasvar *sav;
7786 u_int16_t proto;
7787 u_int8_t satype;
7788 u_int8_t state;
7789 int cnt;
7790 struct mbuf *m, *n;
7791
7792 /* map satype to proto */
7793 proto = key_satype2proto(req_satype);
7794 if (proto == 0) {
7795 *errorp = EINVAL;
7796 return (NULL);
7797 }
7798
7799 /* count sav entries to be sent to the userland. */
7800 cnt = 0;
7801 LIST_FOREACH(sah, &sahtree, chain) {
7802 if (req_satype != SADB_SATYPE_UNSPEC &&
7803 proto != sah->saidx.proto)
7804 continue;
7805
7806 SASTATE_ANY_FOREACH(state) {
7807 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7808 cnt++;
7809 }
7810 }
7811 }
7812
7813 if (cnt == 0) {
7814 *errorp = ENOENT;
7815 return (NULL);
7816 }
7817
7818 /* send this to the userland, one at a time. */
7819 m = NULL;
7820 LIST_FOREACH(sah, &sahtree, chain) {
7821 if (req_satype != SADB_SATYPE_UNSPEC &&
7822 proto != sah->saidx.proto)
7823 continue;
7824
7825 /* map proto to satype */
7826 satype = key_proto2satype(sah->saidx.proto);
7827 if (satype == 0) {
7828 m_freem(m);
7829 *errorp = EINVAL;
7830 return (NULL);
7831 }
7832
7833 SASTATE_ANY_FOREACH(state) {
7834 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7835 n = key_setdumpsa(sav, SADB_DUMP, satype,
7836 --cnt, pid);
7837 if (!n) {
7838 m_freem(m);
7839 *errorp = ENOBUFS;
7840 return (NULL);
7841 }
7842
7843 if (!m)
7844 m = n;
7845 else
7846 m_cat(m, n);
7847 }
7848 }
7849 }
7850
7851 if (!m) {
7852 *errorp = EINVAL;
7853 return (NULL);
7854 }
7855
7856 if ((m->m_flags & M_PKTHDR) != 0) {
7857 m->m_pkthdr.len = 0;
7858 for (n = m; n; n = n->m_next)
7859 m->m_pkthdr.len += n->m_len;
7860 }
7861
7862 *errorp = 0;
7863 return (m);
7864 }
7865
7866 static struct mbuf *
7867 key_setspddump(int *errorp, pid_t pid)
7868 {
7869 struct secpolicy *sp;
7870 int cnt;
7871 u_int dir;
7872 struct mbuf *m, *n;
7873
7874 /* search SPD entry and get buffer size. */
7875 cnt = 0;
7876 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7877 LIST_FOREACH(sp, &sptree[dir], chain) {
7878 cnt++;
7879 }
7880 }
7881
7882 if (cnt == 0) {
7883 *errorp = ENOENT;
7884 return (NULL);
7885 }
7886
7887 m = NULL;
7888 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7889 LIST_FOREACH(sp, &sptree[dir], chain) {
7890 --cnt;
7891 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
7892
7893 if (!n) {
7894 *errorp = ENOBUFS;
7895 m_freem(m);
7896 return (NULL);
7897 }
7898 if (!m)
7899 m = n;
7900 else {
7901 m->m_pkthdr.len += n->m_pkthdr.len;
7902 m_cat(m, n);
7903 }
7904 }
7905 }
7906
7907 *errorp = 0;
7908 return (m);
7909 }
7910
7911 int
7912 key_get_used(void) {
7913 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
7914 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
7915 }
7916
7917 void
7918 key_update_used(void)
7919 {
7920 switch (ipsec_enabled) {
7921 default:
7922 case 0:
7923 #ifdef notyet
7924 /* XXX: racy */
7925 ipsec_used = 0;
7926 #endif
7927 break;
7928 case 1:
7929 #ifndef notyet
7930 /* XXX: racy */
7931 if (!ipsec_used)
7932 #endif
7933 ipsec_used = key_get_used();
7934 break;
7935 case 2:
7936 ipsec_used = 1;
7937 break;
7938 }
7939 }
7940
7941 static int
7942 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
7943 {
7944 struct mbuf *m, *n;
7945 int err2 = 0;
7946 char *p, *ep;
7947 size_t len;
7948 int s, error;
7949
7950 if (newp)
7951 return (EPERM);
7952 if (namelen != 1)
7953 return (EINVAL);
7954
7955 s = splsoftnet();
7956 m = key_setdump(name[0], &error, l->l_proc->p_pid);
7957 splx(s);
7958 if (!m)
7959 return (error);
7960 if (!oldp)
7961 *oldlenp = m->m_pkthdr.len;
7962 else {
7963 p = oldp;
7964 if (*oldlenp < m->m_pkthdr.len) {
7965 err2 = ENOMEM;
7966 ep = p + *oldlenp;
7967 } else {
7968 *oldlenp = m->m_pkthdr.len;
7969 ep = p + m->m_pkthdr.len;
7970 }
7971 for (n = m; n; n = n->m_next) {
7972 len = (ep - p < n->m_len) ?
7973 ep - p : n->m_len;
7974 error = copyout(mtod(n, const void *), p, len);
7975 p += len;
7976 if (error)
7977 break;
7978 }
7979 if (error == 0)
7980 error = err2;
7981 }
7982 m_freem(m);
7983
7984 return (error);
7985 }
7986
7987 static int
7988 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
7989 {
7990 struct mbuf *m, *n;
7991 int err2 = 0;
7992 char *p, *ep;
7993 size_t len;
7994 int s, error;
7995
7996 if (newp)
7997 return (EPERM);
7998 if (namelen != 0)
7999 return (EINVAL);
8000
8001 s = splsoftnet();
8002 m = key_setspddump(&error, l->l_proc->p_pid);
8003 splx(s);
8004 if (!m)
8005 return (error);
8006 if (!oldp)
8007 *oldlenp = m->m_pkthdr.len;
8008 else {
8009 p = oldp;
8010 if (*oldlenp < m->m_pkthdr.len) {
8011 err2 = ENOMEM;
8012 ep = p + *oldlenp;
8013 } else {
8014 *oldlenp = m->m_pkthdr.len;
8015 ep = p + m->m_pkthdr.len;
8016 }
8017 for (n = m; n; n = n->m_next) {
8018 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8019 error = copyout(mtod(n, const void *), p, len);
8020 p += len;
8021 if (error)
8022 break;
8023 }
8024 if (error == 0)
8025 error = err2;
8026 }
8027 m_freem(m);
8028
8029 return (error);
8030 }
8031
8032 /*
8033 * Create sysctl tree for native IPSEC key knobs, originally
8034 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8035 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8036 * and in any case the part of our sysctl namespace used for dumping the
8037 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8038 * namespace, for API reasons.
8039 *
8040 * Pending a consensus on the right way to fix this, add a level of
8041 * indirection in how we number the `native' IPSEC key nodes;
8042 * and (as requested by Andrew Brown) move registration of the
8043 * KAME-compatible names to a separate function.
8044 */
8045 #if 0
8046 # define IPSEC_PFKEY PF_KEY_V2
8047 # define IPSEC_PFKEY_NAME "keyv2"
8048 #else
8049 # define IPSEC_PFKEY PF_KEY
8050 # define IPSEC_PFKEY_NAME "key"
8051 #endif
8052
8053 static int
8054 sysctl_net_key_stats(SYSCTLFN_ARGS)
8055 {
8056
8057 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8058 }
8059
8060 static void
8061 sysctl_net_keyv2_setup(struct sysctllog **clog)
8062 {
8063
8064 sysctl_createv(clog, 0, NULL, NULL,
8065 CTLFLAG_PERMANENT,
8066 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8067 NULL, 0, NULL, 0,
8068 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8069
8070 sysctl_createv(clog, 0, NULL, NULL,
8071 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8072 CTLTYPE_INT, "debug", NULL,
8073 NULL, 0, &key_debug_level, 0,
8074 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8075 sysctl_createv(clog, 0, NULL, NULL,
8076 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8077 CTLTYPE_INT, "spi_try", NULL,
8078 NULL, 0, &key_spi_trycnt, 0,
8079 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8080 sysctl_createv(clog, 0, NULL, NULL,
8081 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8082 CTLTYPE_INT, "spi_min_value", NULL,
8083 NULL, 0, &key_spi_minval, 0,
8084 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8085 sysctl_createv(clog, 0, NULL, NULL,
8086 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8087 CTLTYPE_INT, "spi_max_value", NULL,
8088 NULL, 0, &key_spi_maxval, 0,
8089 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8090 sysctl_createv(clog, 0, NULL, NULL,
8091 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8092 CTLTYPE_INT, "random_int", NULL,
8093 NULL, 0, &key_int_random, 0,
8094 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8095 sysctl_createv(clog, 0, NULL, NULL,
8096 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8097 CTLTYPE_INT, "larval_lifetime", NULL,
8098 NULL, 0, &key_larval_lifetime, 0,
8099 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8100 sysctl_createv(clog, 0, NULL, NULL,
8101 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8102 CTLTYPE_INT, "blockacq_count", NULL,
8103 NULL, 0, &key_blockacq_count, 0,
8104 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8105 sysctl_createv(clog, 0, NULL, NULL,
8106 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8107 CTLTYPE_INT, "blockacq_lifetime", NULL,
8108 NULL, 0, &key_blockacq_lifetime, 0,
8109 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8110 sysctl_createv(clog, 0, NULL, NULL,
8111 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8112 CTLTYPE_INT, "esp_keymin", NULL,
8113 NULL, 0, &ipsec_esp_keymin, 0,
8114 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8115 sysctl_createv(clog, 0, NULL, NULL,
8116 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8117 CTLTYPE_INT, "prefered_oldsa", NULL,
8118 NULL, 0, &key_prefered_oldsa, 0,
8119 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8120 sysctl_createv(clog, 0, NULL, NULL,
8121 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8122 CTLTYPE_INT, "esp_auth", NULL,
8123 NULL, 0, &ipsec_esp_auth, 0,
8124 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8125 sysctl_createv(clog, 0, NULL, NULL,
8126 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8127 CTLTYPE_INT, "ah_keymin", NULL,
8128 NULL, 0, &ipsec_ah_keymin, 0,
8129 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8130 sysctl_createv(clog, 0, NULL, NULL,
8131 CTLFLAG_PERMANENT,
8132 CTLTYPE_STRUCT, "stats",
8133 SYSCTL_DESCR("PF_KEY statistics"),
8134 sysctl_net_key_stats, 0, NULL, 0,
8135 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8136 }
8137
8138 /*
8139 * Register sysctl names used by setkey(8). For historical reasons,
8140 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8141 * for both IPSEC and KAME IPSEC.
8142 */
8143 static void
8144 sysctl_net_key_compat_setup(struct sysctllog **clog)
8145 {
8146
8147 sysctl_createv(clog, 0, NULL, NULL,
8148 CTLFLAG_PERMANENT,
8149 CTLTYPE_NODE, "key", NULL,
8150 NULL, 0, NULL, 0,
8151 CTL_NET, PF_KEY, CTL_EOL);
8152
8153 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8154 sysctl_createv(clog, 0, NULL, NULL,
8155 CTLFLAG_PERMANENT,
8156 CTLTYPE_STRUCT, "dumpsa", NULL,
8157 sysctl_net_key_dumpsa, 0, NULL, 0,
8158 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8159 sysctl_createv(clog, 0, NULL, NULL,
8160 CTLFLAG_PERMANENT,
8161 CTLTYPE_STRUCT, "dumpsp", NULL,
8162 sysctl_net_key_dumpsp, 0, NULL, 0,
8163 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8164 }
8165