key.c revision 1.20 1 /* $NetBSD: key.c,v 1.20 2004/06/10 01:28:25 jonathan Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.20 2004/06/10 01:28:25 jonathan Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66
67 #include <net/if.h>
68 #include <net/route.h>
69 #include <net/raw_cb.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #ifdef INET
76 #include <netinet/ip_var.h>
77 #endif
78
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet6/in6_var.h>
82 #include <netinet6/ip6_var.h>
83 #endif /* INET6 */
84
85 #ifdef INET
86 #include <netinet/in_pcb.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/in6_pcb.h>
90 #endif /* INET6 */
91
92 #include <net/pfkeyv2.h>
93 #include <netipsec/keydb.h>
94 #include <netipsec/key.h>
95 #include <netipsec/keysock.h>
96 #include <netipsec/key_debug.h>
97
98 #include <netipsec/ipsec.h>
99 #ifdef INET6
100 #include <netipsec/ipsec6.h>
101 #endif
102
103 #include <netipsec/xform.h>
104 #include <netipsec/ipsec_osdep.h>
105
106 #include <machine/stdarg.h>
107
108
109 #include <net/net_osdep.h>
110
111 #define FULLMASK 0xff
112 #define _BITS(bytes) ((bytes) << 3)
113
114 /*
115 * Note on SA reference counting:
116 * - SAs that are not in DEAD state will have (total external reference + 1)
117 * following value in reference count field. they cannot be freed and are
118 * referenced from SA header.
119 * - SAs that are in DEAD state will have (total external reference)
120 * in reference count field. they are ready to be freed. reference from
121 * SA header will be removed in key_delsav(), when the reference count
122 * field hits 0 (= no external reference other than from SA header.
123 */
124
125 u_int32_t key_debug_level = 0;
126 static u_int key_spi_trycnt = 1000;
127 static u_int32_t key_spi_minval = 0x100;
128 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
129 static u_int32_t policy_id = 0;
130 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
131 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
132 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
133 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
134 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
135
136 static u_int32_t acq_seq = 0;
137 static int key_tick_init_random = 0;
138
139 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
140 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
141 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
142 /* registed list */
143 #ifndef IPSEC_NONBLOCK_ACQUIRE
144 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
145 #endif
146 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
147
148 /* search order for SAs */
149 static u_int saorder_state_valid[] = {
150 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
151 /*
152 * This order is important because we must select the oldest SA
153 * for outbound processing. For inbound, This is not important.
154 */
155 };
156 static u_int saorder_state_alive[] = {
157 /* except DEAD */
158 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
159 };
160 static u_int saorder_state_any[] = {
161 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
162 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
163 };
164
165 static const int minsize[] = {
166 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
167 sizeof(struct sadb_sa), /* SADB_EXT_SA */
168 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
169 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
170 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
171 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
172 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
173 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
174 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
175 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
176 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
177 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
178 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
179 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
180 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
181 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
182 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
183 0, /* SADB_X_EXT_KMPRIVATE */
184 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
185 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
186 };
187 static const int maxsize[] = {
188 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
189 sizeof(struct sadb_sa), /* SADB_EXT_SA */
190 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
191 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
192 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
193 0, /* SADB_EXT_ADDRESS_SRC */
194 0, /* SADB_EXT_ADDRESS_DST */
195 0, /* SADB_EXT_ADDRESS_PROXY */
196 0, /* SADB_EXT_KEY_AUTH */
197 0, /* SADB_EXT_KEY_ENCRYPT */
198 0, /* SADB_EXT_IDENTITY_SRC */
199 0, /* SADB_EXT_IDENTITY_DST */
200 0, /* SADB_EXT_SENSITIVITY */
201 0, /* SADB_EXT_PROPOSAL */
202 0, /* SADB_EXT_SUPPORTED_AUTH */
203 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
204 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
205 0, /* SADB_X_EXT_KMPRIVATE */
206 0, /* SADB_X_EXT_POLICY */
207 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
208 };
209
210 static int ipsec_esp_keymin = 256;
211 static int ipsec_esp_auth = 0;
212 static int ipsec_ah_keymin = 128;
213
214 #ifdef SYSCTL_DECL
215 SYSCTL_DECL(_net_key);
216 #endif
217
218 #ifdef SYSCTL_INT
219 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
220 &key_debug_level, 0, "");
221
222 /* max count of trial for the decision of spi value */
223 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
224 &key_spi_trycnt, 0, "");
225
226 /* minimum spi value to allocate automatically. */
227 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
228 &key_spi_minval, 0, "");
229
230 /* maximun spi value to allocate automatically. */
231 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
232 &key_spi_maxval, 0, "");
233
234 /* interval to initialize randseed */
235 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
236 &key_int_random, 0, "");
237
238 /* lifetime for larval SA */
239 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
240 &key_larval_lifetime, 0, "");
241
242 /* counter for blocking to send SADB_ACQUIRE to IKEd */
243 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
244 &key_blockacq_count, 0, "");
245
246 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
247 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
248 &key_blockacq_lifetime, 0, "");
249
250 /* ESP auth */
251 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
252 &ipsec_esp_auth, 0, "");
253
254 /* minimum ESP key length */
255 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
256 &ipsec_esp_keymin, 0, "");
257
258 /* minimum AH key length */
259 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
260 &ipsec_ah_keymin, 0, "");
261
262 /* perfered old SA rather than new SA */
263 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
264 &key_prefered_oldsa, 0, "");
265 #endif /* SYSCTL_INT */
266
267 #ifndef LIST_FOREACH
268 #define LIST_FOREACH(elm, head, field) \
269 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
270 #endif
271 #define __LIST_CHAINED(elm) \
272 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
273 #define LIST_INSERT_TAIL(head, elm, type, field) \
274 do {\
275 struct type *curelm = LIST_FIRST(head); \
276 if (curelm == NULL) {\
277 LIST_INSERT_HEAD(head, elm, field); \
278 } else { \
279 while (LIST_NEXT(curelm, field)) \
280 curelm = LIST_NEXT(curelm, field);\
281 LIST_INSERT_AFTER(curelm, elm, field);\
282 }\
283 } while (0)
284
285 #define KEY_CHKSASTATE(head, sav, name) \
286 do { \
287 if ((head) != (sav)) { \
288 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
289 (name), (head), (sav))); \
290 continue; \
291 } \
292 } while (0)
293
294 #define KEY_CHKSPDIR(head, sp, name) \
295 do { \
296 if ((head) != (sp)) { \
297 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
298 "anyway continue.\n", \
299 (name), (head), (sp))); \
300 } \
301 } while (0)
302
303 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
304
305 #if 1
306 #define KMALLOC(p, t, n) \
307 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
308 #define KFREE(p) \
309 free((caddr_t)(p), M_SECA)
310 #else
311 #define KMALLOC(p, t, n) \
312 do { \
313 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
314 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
315 __FILE__, __LINE__, (p), #t, n); \
316 } while (0)
317
318 #define KFREE(p) \
319 do { \
320 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
321 free((caddr_t)(p), M_SECA); \
322 } while (0)
323 #endif
324
325 /*
326 * set parameters into secpolicyindex buffer.
327 * Must allocate secpolicyindex buffer passed to this function.
328 */
329 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
330 do { \
331 bzero((idx), sizeof(struct secpolicyindex)); \
332 (idx)->dir = (_dir); \
333 (idx)->prefs = (ps); \
334 (idx)->prefd = (pd); \
335 (idx)->ul_proto = (ulp); \
336 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
337 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
338 } while (0)
339
340 /*
341 * set parameters into secasindex buffer.
342 * Must allocate secasindex buffer before calling this function.
343 */
344 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
345 do { \
346 bzero((idx), sizeof(struct secasindex)); \
347 (idx)->proto = (p); \
348 (idx)->mode = (m); \
349 (idx)->reqid = (r); \
350 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
351 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
352 } while (0)
353
354 /* key statistics */
355 struct _keystat {
356 u_long getspi_count; /* the avarage of count to try to get new SPI */
357 } keystat;
358
359 struct sadb_msghdr {
360 struct sadb_msg *msg;
361 struct sadb_ext *ext[SADB_EXT_MAX + 1];
362 int extoff[SADB_EXT_MAX + 1];
363 int extlen[SADB_EXT_MAX + 1];
364 };
365
366 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
367 static void key_freesp_so __P((struct secpolicy **));
368 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
369 static void key_delsp __P((struct secpolicy *));
370 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
371 static struct secpolicy *key_getspbyid __P((u_int32_t));
372 static u_int32_t key_newreqid __P((void));
373 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
374 const struct sadb_msghdr *, int, int, ...));
375 static int key_spdadd __P((struct socket *, struct mbuf *,
376 const struct sadb_msghdr *));
377 static u_int32_t key_getnewspid __P((void));
378 static int key_spddelete __P((struct socket *, struct mbuf *,
379 const struct sadb_msghdr *));
380 static int key_spddelete2 __P((struct socket *, struct mbuf *,
381 const struct sadb_msghdr *));
382 static int key_spdget __P((struct socket *, struct mbuf *,
383 const struct sadb_msghdr *));
384 static int key_spdflush __P((struct socket *, struct mbuf *,
385 const struct sadb_msghdr *));
386 static int key_spddump __P((struct socket *, struct mbuf *,
387 const struct sadb_msghdr *));
388 static struct mbuf * key_setspddump __P((int *errorp, pid_t));
389 static struct mbuf * key_setspddump_chain __P((int *errorp, int *lenp, pid_t pid));
390 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
391 u_int8_t, u_int32_t, pid_t));
392 static u_int key_getspreqmsglen __P((struct secpolicy *));
393 static int key_spdexpire __P((struct secpolicy *));
394 static struct secashead *key_newsah __P((struct secasindex *));
395 static void key_delsah __P((struct secashead *));
396 static struct secasvar *key_newsav __P((struct mbuf *,
397 const struct sadb_msghdr *, struct secashead *, int *,
398 const char*, int));
399 #define KEY_NEWSAV(m, sadb, sah, e) \
400 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
401 static void key_delsav __P((struct secasvar *));
402 static struct secashead *key_getsah __P((struct secasindex *));
403 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
404 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
405 static int key_setsaval __P((struct secasvar *, struct mbuf *,
406 const struct sadb_msghdr *));
407 static int key_mature __P((struct secasvar *));
408 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
409 u_int8_t, u_int32_t, u_int32_t));
410 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
411 u_int32_t, pid_t, u_int16_t));
412 static struct mbuf *key_setsadbsa __P((struct secasvar *));
413 static struct mbuf *key_setsadbaddr __P((u_int16_t,
414 const struct sockaddr *, u_int8_t, u_int16_t));
415 #if 0
416 static struct mbuf *key_setsadbident __P((u_int16_t, u_int16_t, caddr_t,
417 int, u_int64_t));
418 #endif
419 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
420 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
421 u_int32_t));
422 static void *key_newbuf __P((const void *, u_int));
423 #ifdef INET6
424 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
425 #endif
426
427 /* flags for key_cmpsaidx() */
428 #define CMP_HEAD 1 /* protocol, addresses. */
429 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
430 #define CMP_REQID 3 /* additionally HEAD, reaid. */
431 #define CMP_EXACTLY 4 /* all elements. */
432 static int key_cmpsaidx
433 __P((const struct secasindex *, const struct secasindex *, int));
434
435 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
436 static int key_bbcmp __P((const void *, const void *, u_int));
437 static void key_srandom __P((void));
438 static u_int16_t key_satype2proto __P((u_int8_t));
439 static u_int8_t key_proto2satype __P((u_int16_t));
440
441 static int key_getspi __P((struct socket *, struct mbuf *,
442 const struct sadb_msghdr *));
443 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
444 struct secasindex *));
445 static int key_update __P((struct socket *, struct mbuf *,
446 const struct sadb_msghdr *));
447 #ifdef IPSEC_DOSEQCHECK
448 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
449 #endif
450 static int key_add __P((struct socket *, struct mbuf *,
451 const struct sadb_msghdr *));
452 static int key_setident __P((struct secashead *, struct mbuf *,
453 const struct sadb_msghdr *));
454 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
455 const struct sadb_msghdr *));
456 static int key_delete __P((struct socket *, struct mbuf *,
457 const struct sadb_msghdr *));
458 static int key_get __P((struct socket *, struct mbuf *,
459 const struct sadb_msghdr *));
460
461 static void key_getcomb_setlifetime __P((struct sadb_comb *));
462 static struct mbuf *key_getcomb_esp __P((void));
463 static struct mbuf *key_getcomb_ah __P((void));
464 static struct mbuf *key_getcomb_ipcomp __P((void));
465 static struct mbuf *key_getprop __P((const struct secasindex *));
466
467 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
468 #ifndef IPSEC_NONBLOCK_ACQUIRE
469 static struct secacq *key_newacq __P((const struct secasindex *));
470 static struct secacq *key_getacq __P((const struct secasindex *));
471 static struct secacq *key_getacqbyseq __P((u_int32_t));
472 #endif
473 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
474 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
475 static int key_acquire2 __P((struct socket *, struct mbuf *,
476 const struct sadb_msghdr *));
477 static int key_register __P((struct socket *, struct mbuf *,
478 const struct sadb_msghdr *));
479 static int key_expire __P((struct secasvar *));
480 static int key_flush __P((struct socket *, struct mbuf *,
481 const struct sadb_msghdr *));
482 static struct mbuf *key_setdump_chain __P((u_int8_t req_satype, int *errorp,
483 int *lenp, pid_t pid));
484 static int key_dump __P((struct socket *, struct mbuf *,
485 const struct sadb_msghdr *));
486 static int key_promisc __P((struct socket *, struct mbuf *,
487 const struct sadb_msghdr *));
488 static int key_senderror __P((struct socket *, struct mbuf *, int));
489 static int key_validate_ext __P((const struct sadb_ext *, int));
490 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
491 #if 0
492 static const char *key_getfqdn __P((void));
493 static const char *key_getuserfqdn __P((void));
494 #endif
495 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
496 static __inline void key_sp_dead __P((struct secpolicy *));
497 static void key_sp_unlink __P((struct secpolicy *sp));
498
499 static struct mbuf *key_alloc_mbuf __P((int));
500 struct callout key_timehandler_ch;
501
502 #define SA_ADDREF(p) do { \
503 (p)->refcnt++; \
504 IPSEC_ASSERT((p)->refcnt != 0, \
505 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
506 } while (0)
507 #define SA_DELREF(p) do { \
508 IPSEC_ASSERT((p)->refcnt > 0, \
509 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
510 (p)->refcnt--; \
511 } while (0)
512
513 #define SP_ADDREF(p) do { \
514 (p)->refcnt++; \
515 IPSEC_ASSERT((p)->refcnt != 0, \
516 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
517 } while (0)
518 #define SP_DELREF(p) do { \
519 IPSEC_ASSERT((p)->refcnt > 0, \
520 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
521 (p)->refcnt--; \
522 } while (0)
523
524
525 static __inline void
526 key_sp_dead(struct secpolicy *sp)
527 {
528
529 /* mark the SP dead */
530 sp->state = IPSEC_SPSTATE_DEAD;
531 }
532
533 static void
534 key_sp_unlink(struct secpolicy *sp)
535 {
536
537 /* remove from SP index */
538 if (__LIST_CHAINED(sp)) {
539 LIST_REMOVE(sp, chain);
540 /* Release refcount held just for being on chain */
541 KEY_FREESP(&sp);
542 }
543 }
544
545
546 /*
547 * Return 0 when there are known to be no SP's for the specified
548 * direction. Otherwise return 1. This is used by IPsec code
549 * to optimize performance.
550 */
551 int
552 key_havesp(u_int dir)
553 {
554 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
555 LIST_FIRST(&sptree[dir]) != NULL : 1);
556 }
557
558 /* %%% IPsec policy management */
559 /*
560 * allocating a SP for OUTBOUND or INBOUND packet.
561 * Must call key_freesp() later.
562 * OUT: NULL: not found
563 * others: found and return the pointer.
564 */
565 struct secpolicy *
566 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
567 {
568 struct secpolicy *sp;
569 int s;
570
571 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
572 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
573 ("key_allocsp: invalid direction %u", dir));
574
575 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
576 printf("DP key_allocsp from %s:%u\n", where, tag));
577
578 /* get a SP entry */
579 s = splsoftnet(); /*called from softclock()*/
580 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
581 printf("*** objects\n");
582 kdebug_secpolicyindex(spidx));
583
584 LIST_FOREACH(sp, &sptree[dir], chain) {
585 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
586 printf("*** in SPD\n");
587 kdebug_secpolicyindex(&sp->spidx));
588
589 if (sp->state == IPSEC_SPSTATE_DEAD)
590 continue;
591 if (key_cmpspidx_withmask(&sp->spidx, spidx))
592 goto found;
593 }
594 sp = NULL;
595 found:
596 if (sp) {
597 /* sanity check */
598 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
599
600 /* found a SPD entry */
601 sp->lastused = time_second;
602 SP_ADDREF(sp);
603 }
604 splx(s);
605
606 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
607 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n",
608 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
609 return sp;
610 }
611
612 /*
613 * allocating a SP for OUTBOUND or INBOUND packet.
614 * Must call key_freesp() later.
615 * OUT: NULL: not found
616 * others: found and return the pointer.
617 */
618 struct secpolicy *
619 key_allocsp2(u_int32_t spi,
620 union sockaddr_union *dst,
621 u_int8_t proto,
622 u_int dir,
623 const char* where, int tag)
624 {
625 struct secpolicy *sp;
626 int s;
627
628 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
629 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
630 ("key_allocsp2: invalid direction %u", dir));
631
632 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
633 printf("DP key_allocsp2 from %s:%u\n", where, tag));
634
635 /* get a SP entry */
636 s = splsoftnet(); /*called from softclock()*/
637 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
638 printf("*** objects\n");
639 printf("spi %u proto %u dir %u\n", spi, proto, dir);
640 kdebug_sockaddr(&dst->sa));
641
642 LIST_FOREACH(sp, &sptree[dir], chain) {
643 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
644 printf("*** in SPD\n");
645 kdebug_secpolicyindex(&sp->spidx));
646
647 if (sp->state == IPSEC_SPSTATE_DEAD)
648 continue;
649 /* compare simple values, then dst address */
650 if (sp->spidx.ul_proto != proto)
651 continue;
652 /* NB: spi's must exist and match */
653 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
654 continue;
655 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
656 goto found;
657 }
658 sp = NULL;
659 found:
660 if (sp) {
661 /* sanity check */
662 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
663
664 /* found a SPD entry */
665 sp->lastused = time_second;
666 SP_ADDREF(sp);
667 }
668 splx(s);
669
670 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
671 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n",
672 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
673 return sp;
674 }
675
676 /*
677 * return a policy that matches this particular inbound packet.
678 * XXX slow
679 */
680 struct secpolicy *
681 key_gettunnel(const struct sockaddr *osrc,
682 const struct sockaddr *odst,
683 const struct sockaddr *isrc,
684 const struct sockaddr *idst,
685 const char* where, int tag)
686 {
687 struct secpolicy *sp;
688 const int dir = IPSEC_DIR_INBOUND;
689 int s;
690 struct ipsecrequest *r1, *r2, *p;
691 struct secpolicyindex spidx;
692
693 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
694 printf("DP key_gettunnel from %s:%u\n", where, tag));
695
696 if (isrc->sa_family != idst->sa_family) {
697 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
698 isrc->sa_family, idst->sa_family));
699 sp = NULL;
700 goto done;
701 }
702
703 s = splsoftnet(); /*called from softclock()*/
704 LIST_FOREACH(sp, &sptree[dir], chain) {
705 if (sp->state == IPSEC_SPSTATE_DEAD)
706 continue;
707
708 r1 = r2 = NULL;
709 for (p = sp->req; p; p = p->next) {
710 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
711 continue;
712
713 r1 = r2;
714 r2 = p;
715
716 if (!r1) {
717 /* here we look at address matches only */
718 spidx = sp->spidx;
719 if (isrc->sa_len > sizeof(spidx.src) ||
720 idst->sa_len > sizeof(spidx.dst))
721 continue;
722 bcopy(isrc, &spidx.src, isrc->sa_len);
723 bcopy(idst, &spidx.dst, idst->sa_len);
724 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
725 continue;
726 } else {
727 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
728 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
729 continue;
730 }
731
732 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
733 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
734 continue;
735
736 goto found;
737 }
738 }
739 sp = NULL;
740 found:
741 if (sp) {
742 sp->lastused = time_second;
743 SP_ADDREF(sp);
744 }
745 splx(s);
746 done:
747 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
748 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n",
749 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
750 return sp;
751 }
752
753 /*
754 * allocating an SA entry for an *OUTBOUND* packet.
755 * checking each request entries in SP, and acquire an SA if need.
756 * OUT: 0: there are valid requests.
757 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
758 */
759 int
760 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
761 {
762 u_int level;
763 int error;
764
765 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
766 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
767 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
768 saidx->mode == IPSEC_MODE_TUNNEL,
769 ("key_checkrequest: unexpected policy %u", saidx->mode));
770
771 /* get current level */
772 level = ipsec_get_reqlevel(isr);
773
774 /*
775 * XXX guard against protocol callbacks from the crypto
776 * thread as they reference ipsecrequest.sav which we
777 * temporarily null out below. Need to rethink how we
778 * handle bundled SA's in the callback thread.
779 */
780 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
781 #if 0
782 /*
783 * We do allocate new SA only if the state of SA in the holder is
784 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
785 */
786 if (isr->sav != NULL) {
787 if (isr->sav->sah == NULL)
788 panic("key_checkrequest: sah is null.\n");
789 if (isr->sav == (struct secasvar *)LIST_FIRST(
790 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
791 KEY_FREESAV(&isr->sav);
792 isr->sav = NULL;
793 }
794 }
795 #else
796 /*
797 * we free any SA stashed in the IPsec request because a different
798 * SA may be involved each time this request is checked, either
799 * because new SAs are being configured, or this request is
800 * associated with an unconnected datagram socket, or this request
801 * is associated with a system default policy.
802 *
803 * The operation may have negative impact to performance. We may
804 * want to check cached SA carefully, rather than picking new SA
805 * every time.
806 */
807 if (isr->sav != NULL) {
808 KEY_FREESAV(&isr->sav);
809 isr->sav = NULL;
810 }
811 #endif
812
813 /*
814 * new SA allocation if no SA found.
815 * key_allocsa_policy should allocate the oldest SA available.
816 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
817 */
818 if (isr->sav == NULL)
819 isr->sav = key_allocsa_policy(saidx);
820
821 /* When there is SA. */
822 if (isr->sav != NULL) {
823 if (isr->sav->state != SADB_SASTATE_MATURE &&
824 isr->sav->state != SADB_SASTATE_DYING)
825 return EINVAL;
826 return 0;
827 }
828
829 /* there is no SA */
830 error = key_acquire(saidx, isr->sp);
831 if (error != 0) {
832 /* XXX What should I do ? */
833 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
834 "from key_acquire.\n", error));
835 return error;
836 }
837
838 if (level != IPSEC_LEVEL_REQUIRE) {
839 /* XXX sigh, the interface to this routine is botched */
840 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
841 return 0;
842 } else {
843 return ENOENT;
844 }
845 }
846
847 /*
848 * allocating a SA for policy entry from SAD.
849 * NOTE: searching SAD of aliving state.
850 * OUT: NULL: not found.
851 * others: found and return the pointer.
852 */
853 static struct secasvar *
854 key_allocsa_policy(const struct secasindex *saidx)
855 {
856 struct secashead *sah;
857 struct secasvar *sav;
858 u_int stateidx, state;
859
860 LIST_FOREACH(sah, &sahtree, chain) {
861 if (sah->state == SADB_SASTATE_DEAD)
862 continue;
863 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
864 goto found;
865 }
866
867 return NULL;
868
869 found:
870
871 /* search valid state */
872 for (stateidx = 0;
873 stateidx < _ARRAYLEN(saorder_state_valid);
874 stateidx++) {
875
876 state = saorder_state_valid[stateidx];
877
878 sav = key_do_allocsa_policy(sah, state);
879 if (sav != NULL)
880 return sav;
881 }
882
883 return NULL;
884 }
885
886 /*
887 * searching SAD with direction, protocol, mode and state.
888 * called by key_allocsa_policy().
889 * OUT:
890 * NULL : not found
891 * others : found, pointer to a SA.
892 */
893 static struct secasvar *
894 key_do_allocsa_policy(struct secashead *sah, u_int state)
895 {
896 struct secasvar *sav, *nextsav, *candidate, *d;
897
898 /* initilize */
899 candidate = NULL;
900
901 for (sav = LIST_FIRST(&sah->savtree[state]);
902 sav != NULL;
903 sav = nextsav) {
904
905 nextsav = LIST_NEXT(sav, chain);
906
907 /* sanity check */
908 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
909
910 /* initialize */
911 if (candidate == NULL) {
912 candidate = sav;
913 continue;
914 }
915
916 /* Which SA is the better ? */
917
918 /* sanity check 2 */
919 if (candidate->lft_c == NULL || sav->lft_c == NULL)
920 panic("key_do_allocsa_policy: "
921 "lifetime_current is NULL.\n");
922
923 /* What the best method is to compare ? */
924 if (key_prefered_oldsa) {
925 if (candidate->lft_c->sadb_lifetime_addtime >
926 sav->lft_c->sadb_lifetime_addtime) {
927 candidate = sav;
928 }
929 continue;
930 /*NOTREACHED*/
931 }
932
933 /* prefered new sa rather than old sa */
934 if (candidate->lft_c->sadb_lifetime_addtime <
935 sav->lft_c->sadb_lifetime_addtime) {
936 d = candidate;
937 candidate = sav;
938 } else
939 d = sav;
940
941 /*
942 * prepared to delete the SA when there is more
943 * suitable candidate and the lifetime of the SA is not
944 * permanent.
945 */
946 if (d->lft_c->sadb_lifetime_addtime != 0) {
947 struct mbuf *m, *result;
948
949 key_sa_chgstate(d, SADB_SASTATE_DEAD);
950
951 IPSEC_ASSERT(d->refcnt > 0,
952 ("key_do_allocsa_policy: bogus ref count"));
953 m = key_setsadbmsg(SADB_DELETE, 0,
954 d->sah->saidx.proto, 0, 0, d->refcnt - 1);
955 if (!m)
956 goto msgfail;
957 result = m;
958
959 /* set sadb_address for saidx's. */
960 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
961 &d->sah->saidx.src.sa,
962 d->sah->saidx.src.sa.sa_len << 3,
963 IPSEC_ULPROTO_ANY);
964 if (!m)
965 goto msgfail;
966 m_cat(result, m);
967
968 /* set sadb_address for saidx's. */
969 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
970 &d->sah->saidx.src.sa,
971 d->sah->saidx.src.sa.sa_len << 3,
972 IPSEC_ULPROTO_ANY);
973 if (!m)
974 goto msgfail;
975 m_cat(result, m);
976
977 /* create SA extension */
978 m = key_setsadbsa(d);
979 if (!m)
980 goto msgfail;
981 m_cat(result, m);
982
983 if (result->m_len < sizeof(struct sadb_msg)) {
984 result = m_pullup(result,
985 sizeof(struct sadb_msg));
986 if (result == NULL)
987 goto msgfail;
988 }
989
990 result->m_pkthdr.len = 0;
991 for (m = result; m; m = m->m_next)
992 result->m_pkthdr.len += m->m_len;
993 mtod(result, struct sadb_msg *)->sadb_msg_len =
994 PFKEY_UNIT64(result->m_pkthdr.len);
995
996 if (key_sendup_mbuf(NULL, result,
997 KEY_SENDUP_REGISTERED))
998 goto msgfail;
999 msgfail:
1000 KEY_FREESAV(&d);
1001 }
1002 }
1003
1004 if (candidate) {
1005 SA_ADDREF(candidate);
1006 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1007 printf("DP allocsa_policy cause "
1008 "refcnt++:%d SA:%p\n",
1009 candidate->refcnt, candidate));
1010 }
1011 return candidate;
1012 }
1013
1014 /*
1015 * allocating a usable SA entry for a *INBOUND* packet.
1016 * Must call key_freesav() later.
1017 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1018 * NULL: not found, or error occurred.
1019 *
1020 * In the comparison, no source address is used--for RFC2401 conformance.
1021 * To quote, from section 4.1:
1022 * A security association is uniquely identified by a triple consisting
1023 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1024 * security protocol (AH or ESP) identifier.
1025 * Note that, however, we do need to keep source address in IPsec SA.
1026 * IKE specification and PF_KEY specification do assume that we
1027 * keep source address in IPsec SA. We see a tricky situation here.
1028 */
1029 struct secasvar *
1030 key_allocsa(
1031 union sockaddr_union *dst,
1032 u_int proto,
1033 u_int32_t spi,
1034 const char* where, int tag)
1035 {
1036 struct secashead *sah;
1037 struct secasvar *sav;
1038 u_int stateidx, state;
1039 int s;
1040
1041 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1042
1043 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1044 printf("DP key_allocsa from %s:%u\n", where, tag));
1045
1046 /*
1047 * searching SAD.
1048 * XXX: to be checked internal IP header somewhere. Also when
1049 * IPsec tunnel packet is received. But ESP tunnel mode is
1050 * encrypted so we can't check internal IP header.
1051 */
1052 s = splsoftnet(); /*called from softclock()*/
1053 LIST_FOREACH(sah, &sahtree, chain) {
1054 /* search valid state */
1055 for (stateidx = 0;
1056 stateidx < _ARRAYLEN(saorder_state_valid);
1057 stateidx++) {
1058 state = saorder_state_valid[stateidx];
1059 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1060 /* sanity check */
1061 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1062 /* do not return entries w/ unusable state */
1063 if (sav->state != SADB_SASTATE_MATURE &&
1064 sav->state != SADB_SASTATE_DYING)
1065 continue;
1066 if (proto != sav->sah->saidx.proto)
1067 continue;
1068 if (spi != sav->spi)
1069 continue;
1070 #if 0 /* don't check src */
1071 /* check src address */
1072 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1073 continue;
1074 #endif
1075 /* check dst address */
1076 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1077 continue;
1078 SA_ADDREF(sav);
1079 goto done;
1080 }
1081 }
1082 }
1083 sav = NULL;
1084 done:
1085 splx(s);
1086
1087 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1088 printf("DP key_allocsa return SA:%p; refcnt %u\n",
1089 sav, sav ? sav->refcnt : 0));
1090 return sav;
1091 }
1092
1093 /*
1094 * Must be called after calling key_allocsp().
1095 * For both the packet without socket and key_freeso().
1096 */
1097 void
1098 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1099 {
1100 struct secpolicy *sp = *spp;
1101
1102 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1103
1104 SP_DELREF(sp);
1105
1106 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1107 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1108 sp, sp->id, where, tag, sp->refcnt));
1109
1110 if (sp->refcnt == 0) {
1111 *spp = NULL;
1112 key_delsp(sp);
1113 }
1114 }
1115
1116 /*
1117 * Must be called after calling key_allocsp().
1118 * For the packet with socket.
1119 */
1120 void
1121 key_freeso(struct socket *so)
1122 {
1123 /* sanity check */
1124 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1125
1126 switch (so->so_proto->pr_domain->dom_family) {
1127 #ifdef INET
1128 case PF_INET:
1129 {
1130 struct inpcb *pcb = sotoinpcb(so);
1131
1132 /* Does it have a PCB ? */
1133 if (pcb == NULL)
1134 return;
1135 key_freesp_so(&pcb->inp_sp->sp_in);
1136 key_freesp_so(&pcb->inp_sp->sp_out);
1137 }
1138 break;
1139 #endif
1140 #ifdef INET6
1141 case PF_INET6:
1142 {
1143 #ifdef HAVE_NRL_INPCB
1144 struct inpcb *pcb = sotoinpcb(so);
1145
1146 /* Does it have a PCB ? */
1147 if (pcb == NULL)
1148 return;
1149 key_freesp_so(&pcb->inp_sp->sp_in);
1150 key_freesp_so(&pcb->inp_sp->sp_out);
1151 #else
1152 struct in6pcb *pcb = sotoin6pcb(so);
1153
1154 /* Does it have a PCB ? */
1155 if (pcb == NULL)
1156 return;
1157 key_freesp_so(&pcb->in6p_sp->sp_in);
1158 key_freesp_so(&pcb->in6p_sp->sp_out);
1159 #endif
1160 }
1161 break;
1162 #endif /* INET6 */
1163 default:
1164 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1165 so->so_proto->pr_domain->dom_family));
1166 return;
1167 }
1168 }
1169
1170 static void
1171 key_freesp_so(struct secpolicy **sp)
1172 {
1173 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1174
1175 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1176 (*sp)->policy == IPSEC_POLICY_BYPASS)
1177 return;
1178
1179 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1180 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1181 KEY_FREESP(sp);
1182 }
1183
1184 /*
1185 * Must be called after calling key_allocsa().
1186 * This function is called by key_freesp() to free some SA allocated
1187 * for a policy.
1188 */
1189 void
1190 key_freesav(struct secasvar **psav, const char* where, int tag)
1191 {
1192 struct secasvar *sav = *psav;
1193
1194 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1195
1196 SA_DELREF(sav);
1197
1198 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1199 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1200 sav, (u_long)ntohl(sav->spi),
1201 where, tag, sav->refcnt));
1202
1203 if (sav->refcnt == 0) {
1204 *psav = NULL;
1205 key_delsav(sav);
1206 }
1207 }
1208
1209 /* %%% SPD management */
1210 /*
1211 * free security policy entry.
1212 */
1213 static void
1214 key_delsp(struct secpolicy *sp)
1215 {
1216 int s;
1217
1218 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1219
1220 key_sp_dead(sp);
1221
1222 IPSEC_ASSERT(sp->refcnt == 0,
1223 ("key_delsp: SP with references deleted (refcnt %u)",
1224 sp->refcnt));
1225
1226 s = splsoftnet(); /*called from softclock()*/
1227
1228 {
1229 struct ipsecrequest *isr = sp->req, *nextisr;
1230
1231 while (isr != NULL) {
1232 if (isr->sav != NULL) {
1233 KEY_FREESAV(&isr->sav);
1234 isr->sav = NULL;
1235 }
1236
1237 nextisr = isr->next;
1238 KFREE(isr);
1239 isr = nextisr;
1240 }
1241 }
1242
1243 KFREE(sp);
1244
1245 splx(s);
1246 }
1247
1248 /*
1249 * search SPD
1250 * OUT: NULL : not found
1251 * others : found, pointer to a SP.
1252 */
1253 static struct secpolicy *
1254 key_getsp(struct secpolicyindex *spidx)
1255 {
1256 struct secpolicy *sp;
1257
1258 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1259
1260 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1261 if (sp->state == IPSEC_SPSTATE_DEAD)
1262 continue;
1263 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1264 SP_ADDREF(sp);
1265 return sp;
1266 }
1267 }
1268
1269 return NULL;
1270 }
1271
1272 /*
1273 * get SP by index.
1274 * OUT: NULL : not found
1275 * others : found, pointer to a SP.
1276 */
1277 static struct secpolicy *
1278 key_getspbyid(u_int32_t id)
1279 {
1280 struct secpolicy *sp;
1281
1282 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1283 if (sp->state == IPSEC_SPSTATE_DEAD)
1284 continue;
1285 if (sp->id == id) {
1286 SP_ADDREF(sp);
1287 return sp;
1288 }
1289 }
1290
1291 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1292 if (sp->state == IPSEC_SPSTATE_DEAD)
1293 continue;
1294 if (sp->id == id) {
1295 SP_ADDREF(sp);
1296 return sp;
1297 }
1298 }
1299
1300 return NULL;
1301 }
1302
1303 struct secpolicy *
1304 key_newsp(const char* where, int tag)
1305 {
1306 struct secpolicy *newsp = NULL;
1307
1308 newsp = (struct secpolicy *)
1309 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1310 if (newsp) {
1311 newsp->refcnt = 1;
1312 newsp->req = NULL;
1313 }
1314
1315 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1316 printf("DP key_newsp from %s:%u return SP:%p\n",
1317 where, tag, newsp));
1318 return newsp;
1319 }
1320
1321 /*
1322 * create secpolicy structure from sadb_x_policy structure.
1323 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1324 * so must be set properly later.
1325 */
1326 struct secpolicy *
1327 key_msg2sp(xpl0, len, error)
1328 struct sadb_x_policy *xpl0;
1329 size_t len;
1330 int *error;
1331 {
1332 struct secpolicy *newsp;
1333
1334 /* sanity check */
1335 if (xpl0 == NULL)
1336 panic("key_msg2sp: NULL pointer was passed.\n");
1337 if (len < sizeof(*xpl0))
1338 panic("key_msg2sp: invalid length.\n");
1339 if (len != PFKEY_EXTLEN(xpl0)) {
1340 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1341 *error = EINVAL;
1342 return NULL;
1343 }
1344
1345 if ((newsp = KEY_NEWSP()) == NULL) {
1346 *error = ENOBUFS;
1347 return NULL;
1348 }
1349
1350 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1351 newsp->policy = xpl0->sadb_x_policy_type;
1352
1353 /* check policy */
1354 switch (xpl0->sadb_x_policy_type) {
1355 case IPSEC_POLICY_DISCARD:
1356 case IPSEC_POLICY_NONE:
1357 case IPSEC_POLICY_ENTRUST:
1358 case IPSEC_POLICY_BYPASS:
1359 newsp->req = NULL;
1360 break;
1361
1362 case IPSEC_POLICY_IPSEC:
1363 {
1364 int tlen;
1365 struct sadb_x_ipsecrequest *xisr;
1366 struct ipsecrequest **p_isr = &newsp->req;
1367
1368 /* validity check */
1369 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1370 ipseclog((LOG_DEBUG,
1371 "key_msg2sp: Invalid msg length.\n"));
1372 KEY_FREESP(&newsp);
1373 *error = EINVAL;
1374 return NULL;
1375 }
1376
1377 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1378 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1379
1380 while (tlen > 0) {
1381 /* length check */
1382 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1383 ipseclog((LOG_DEBUG, "key_msg2sp: "
1384 "invalid ipsecrequest length.\n"));
1385 KEY_FREESP(&newsp);
1386 *error = EINVAL;
1387 return NULL;
1388 }
1389
1390 /* allocate request buffer */
1391 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1392 if ((*p_isr) == NULL) {
1393 ipseclog((LOG_DEBUG,
1394 "key_msg2sp: No more memory.\n"));
1395 KEY_FREESP(&newsp);
1396 *error = ENOBUFS;
1397 return NULL;
1398 }
1399 bzero(*p_isr, sizeof(**p_isr));
1400
1401 /* set values */
1402 (*p_isr)->next = NULL;
1403
1404 switch (xisr->sadb_x_ipsecrequest_proto) {
1405 case IPPROTO_ESP:
1406 case IPPROTO_AH:
1407 case IPPROTO_IPCOMP:
1408 break;
1409 default:
1410 ipseclog((LOG_DEBUG,
1411 "key_msg2sp: invalid proto type=%u\n",
1412 xisr->sadb_x_ipsecrequest_proto));
1413 KEY_FREESP(&newsp);
1414 *error = EPROTONOSUPPORT;
1415 return NULL;
1416 }
1417 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1418
1419 switch (xisr->sadb_x_ipsecrequest_mode) {
1420 case IPSEC_MODE_TRANSPORT:
1421 case IPSEC_MODE_TUNNEL:
1422 break;
1423 case IPSEC_MODE_ANY:
1424 default:
1425 ipseclog((LOG_DEBUG,
1426 "key_msg2sp: invalid mode=%u\n",
1427 xisr->sadb_x_ipsecrequest_mode));
1428 KEY_FREESP(&newsp);
1429 *error = EINVAL;
1430 return NULL;
1431 }
1432 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1433
1434 switch (xisr->sadb_x_ipsecrequest_level) {
1435 case IPSEC_LEVEL_DEFAULT:
1436 case IPSEC_LEVEL_USE:
1437 case IPSEC_LEVEL_REQUIRE:
1438 break;
1439 case IPSEC_LEVEL_UNIQUE:
1440 /* validity check */
1441 /*
1442 * If range violation of reqid, kernel will
1443 * update it, don't refuse it.
1444 */
1445 if (xisr->sadb_x_ipsecrequest_reqid
1446 > IPSEC_MANUAL_REQID_MAX) {
1447 ipseclog((LOG_DEBUG,
1448 "key_msg2sp: reqid=%d range "
1449 "violation, updated by kernel.\n",
1450 xisr->sadb_x_ipsecrequest_reqid));
1451 xisr->sadb_x_ipsecrequest_reqid = 0;
1452 }
1453
1454 /* allocate new reqid id if reqid is zero. */
1455 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1456 u_int32_t reqid;
1457 if ((reqid = key_newreqid()) == 0) {
1458 KEY_FREESP(&newsp);
1459 *error = ENOBUFS;
1460 return NULL;
1461 }
1462 (*p_isr)->saidx.reqid = reqid;
1463 xisr->sadb_x_ipsecrequest_reqid = reqid;
1464 } else {
1465 /* set it for manual keying. */
1466 (*p_isr)->saidx.reqid =
1467 xisr->sadb_x_ipsecrequest_reqid;
1468 }
1469 break;
1470
1471 default:
1472 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1473 xisr->sadb_x_ipsecrequest_level));
1474 KEY_FREESP(&newsp);
1475 *error = EINVAL;
1476 return NULL;
1477 }
1478 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1479
1480 /* set IP addresses if there */
1481 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1482 struct sockaddr *paddr;
1483
1484 paddr = (struct sockaddr *)(xisr + 1);
1485
1486 /* validity check */
1487 if (paddr->sa_len
1488 > sizeof((*p_isr)->saidx.src)) {
1489 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1490 "address length.\n"));
1491 KEY_FREESP(&newsp);
1492 *error = EINVAL;
1493 return NULL;
1494 }
1495 bcopy(paddr, &(*p_isr)->saidx.src,
1496 paddr->sa_len);
1497
1498 paddr = (struct sockaddr *)((caddr_t)paddr
1499 + paddr->sa_len);
1500
1501 /* validity check */
1502 if (paddr->sa_len
1503 > sizeof((*p_isr)->saidx.dst)) {
1504 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1505 "address length.\n"));
1506 KEY_FREESP(&newsp);
1507 *error = EINVAL;
1508 return NULL;
1509 }
1510 bcopy(paddr, &(*p_isr)->saidx.dst,
1511 paddr->sa_len);
1512 }
1513
1514 (*p_isr)->sav = NULL;
1515 (*p_isr)->sp = newsp;
1516
1517 /* initialization for the next. */
1518 p_isr = &(*p_isr)->next;
1519 tlen -= xisr->sadb_x_ipsecrequest_len;
1520
1521 /* validity check */
1522 if (tlen < 0) {
1523 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1524 KEY_FREESP(&newsp);
1525 *error = EINVAL;
1526 return NULL;
1527 }
1528
1529 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1530 + xisr->sadb_x_ipsecrequest_len);
1531 }
1532 }
1533 break;
1534 default:
1535 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1536 KEY_FREESP(&newsp);
1537 *error = EINVAL;
1538 return NULL;
1539 }
1540
1541 *error = 0;
1542 return newsp;
1543 }
1544
1545 static u_int32_t
1546 key_newreqid()
1547 {
1548 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1549
1550 auto_reqid = (auto_reqid == ~0
1551 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1552
1553 /* XXX should be unique check */
1554
1555 return auto_reqid;
1556 }
1557
1558 /*
1559 * copy secpolicy struct to sadb_x_policy structure indicated.
1560 */
1561 struct mbuf *
1562 key_sp2msg(sp)
1563 struct secpolicy *sp;
1564 {
1565 struct sadb_x_policy *xpl;
1566 int tlen;
1567 caddr_t p;
1568 struct mbuf *m;
1569
1570 /* sanity check. */
1571 if (sp == NULL)
1572 panic("key_sp2msg: NULL pointer was passed.\n");
1573
1574 tlen = key_getspreqmsglen(sp);
1575
1576 m = key_alloc_mbuf(tlen);
1577 if (!m || m->m_next) { /*XXX*/
1578 if (m)
1579 m_freem(m);
1580 return NULL;
1581 }
1582
1583 m->m_len = tlen;
1584 m->m_next = NULL;
1585 xpl = mtod(m, struct sadb_x_policy *);
1586 bzero(xpl, tlen);
1587
1588 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1589 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1590 xpl->sadb_x_policy_type = sp->policy;
1591 xpl->sadb_x_policy_dir = sp->spidx.dir;
1592 xpl->sadb_x_policy_id = sp->id;
1593 p = (caddr_t)xpl + sizeof(*xpl);
1594
1595 /* if is the policy for ipsec ? */
1596 if (sp->policy == IPSEC_POLICY_IPSEC) {
1597 struct sadb_x_ipsecrequest *xisr;
1598 struct ipsecrequest *isr;
1599
1600 for (isr = sp->req; isr != NULL; isr = isr->next) {
1601
1602 xisr = (struct sadb_x_ipsecrequest *)p;
1603
1604 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1605 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1606 xisr->sadb_x_ipsecrequest_level = isr->level;
1607 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1608
1609 p += sizeof(*xisr);
1610 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1611 p += isr->saidx.src.sa.sa_len;
1612 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1613 p += isr->saidx.src.sa.sa_len;
1614
1615 xisr->sadb_x_ipsecrequest_len =
1616 PFKEY_ALIGN8(sizeof(*xisr)
1617 + isr->saidx.src.sa.sa_len
1618 + isr->saidx.dst.sa.sa_len);
1619 }
1620 }
1621
1622 return m;
1623 }
1624
1625 /* m will not be freed nor modified */
1626 static struct mbuf *
1627 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1628 int ndeep, int nitem, ...)
1629 {
1630 va_list ap;
1631 int idx;
1632 int i;
1633 struct mbuf *result = NULL, *n;
1634 int len;
1635
1636 if (m == NULL || mhp == NULL)
1637 panic("null pointer passed to key_gather");
1638
1639 va_start(ap, nitem);
1640 for (i = 0; i < nitem; i++) {
1641 idx = va_arg(ap, int);
1642 if (idx < 0 || idx > SADB_EXT_MAX)
1643 goto fail;
1644 /* don't attempt to pull empty extension */
1645 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1646 continue;
1647 if (idx != SADB_EXT_RESERVED &&
1648 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1649 continue;
1650
1651 if (idx == SADB_EXT_RESERVED) {
1652 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1653 #ifdef DIAGNOSTIC
1654 if (len > MHLEN)
1655 panic("assumption failed");
1656 #endif
1657 MGETHDR(n, M_DONTWAIT, MT_DATA);
1658 if (!n)
1659 goto fail;
1660 n->m_len = len;
1661 n->m_next = NULL;
1662 m_copydata(m, 0, sizeof(struct sadb_msg),
1663 mtod(n, caddr_t));
1664 } else if (i < ndeep) {
1665 len = mhp->extlen[idx];
1666 n = key_alloc_mbuf(len);
1667 if (!n || n->m_next) { /*XXX*/
1668 if (n)
1669 m_freem(n);
1670 goto fail;
1671 }
1672 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1673 mtod(n, caddr_t));
1674 } else {
1675 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1676 M_DONTWAIT);
1677 }
1678 if (n == NULL)
1679 goto fail;
1680
1681 if (result)
1682 m_cat(result, n);
1683 else
1684 result = n;
1685 }
1686 va_end(ap);
1687
1688 if ((result->m_flags & M_PKTHDR) != 0) {
1689 result->m_pkthdr.len = 0;
1690 for (n = result; n; n = n->m_next)
1691 result->m_pkthdr.len += n->m_len;
1692 }
1693
1694 return result;
1695
1696 fail:
1697 va_end(ap);
1698 m_freem(result);
1699 return NULL;
1700 }
1701
1702 /*
1703 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1704 * add an entry to SP database, when received
1705 * <base, address(SD), (lifetime(H),) policy>
1706 * from the user(?).
1707 * Adding to SP database,
1708 * and send
1709 * <base, address(SD), (lifetime(H),) policy>
1710 * to the socket which was send.
1711 *
1712 * SPDADD set a unique policy entry.
1713 * SPDSETIDX like SPDADD without a part of policy requests.
1714 * SPDUPDATE replace a unique policy entry.
1715 *
1716 * m will always be freed.
1717 */
1718 static int
1719 key_spdadd(so, m, mhp)
1720 struct socket *so;
1721 struct mbuf *m;
1722 const struct sadb_msghdr *mhp;
1723 {
1724 struct sadb_address *src0, *dst0;
1725 struct sadb_x_policy *xpl0, *xpl;
1726 struct sadb_lifetime *lft = NULL;
1727 struct secpolicyindex spidx;
1728 struct secpolicy *newsp;
1729 int error;
1730
1731 /* sanity check */
1732 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1733 panic("key_spdadd: NULL pointer is passed.\n");
1734
1735 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1736 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1737 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1738 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1739 return key_senderror(so, m, EINVAL);
1740 }
1741 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1742 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1743 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1744 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1745 return key_senderror(so, m, EINVAL);
1746 }
1747 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1748 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1749 < sizeof(struct sadb_lifetime)) {
1750 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1751 return key_senderror(so, m, EINVAL);
1752 }
1753 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1754 }
1755
1756 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1757 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1758 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1759
1760 #if defined(__NetBSD__) && defined(INET6)
1761 /*
1762 * On NetBSD, FAST_IPSEC and INET6 can be configured together,
1763 * but FAST_IPSEC does not protect IPv6 traffic.
1764 * Rather than silently leaking IPv6 traffic for which IPsec
1765 * is configured, forbid specifying IPsec for IPv6 traffic.
1766 *
1767 * (On FreeBSD, both FAST_IPSEC and INET6 gives a compile-time error.)
1768 */
1769 if (((const struct sockaddr *)(src0 + 1))->sa_family == AF_INET6 ||
1770 ((const struct sockaddr *)(dst0 + 1))->sa_family == AF_INET6) {
1771 static int v6_warned = 0;
1772
1773 if (v6_warned == 0) {
1774 printf("key_spdadd: FAST_IPSEC does not support IPv6.");
1775 printf("Check syslog for more per-SPD warnings.\n");
1776 v6_warned++;
1777 }
1778 log(LOG_WARNING,
1779 "FAST_IPSEC does not support PF_INET6 SPDs. "
1780 "Request refused.\n");
1781
1782 return EOPNOTSUPP; /* EPROTOTYPE? EAFNOSUPPORT? */
1783 }
1784 #endif /* __NetBSD__ && INET6 */
1785
1786 /* make secindex */
1787 /* XXX boundary check against sa_len */
1788 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1789 src0 + 1,
1790 dst0 + 1,
1791 src0->sadb_address_prefixlen,
1792 dst0->sadb_address_prefixlen,
1793 src0->sadb_address_proto,
1794 &spidx);
1795
1796 /* checking the direciton. */
1797 switch (xpl0->sadb_x_policy_dir) {
1798 case IPSEC_DIR_INBOUND:
1799 case IPSEC_DIR_OUTBOUND:
1800 break;
1801 default:
1802 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1803 mhp->msg->sadb_msg_errno = EINVAL;
1804 return 0;
1805 }
1806
1807 /* check policy */
1808 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1809 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1810 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1811 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1812 return key_senderror(so, m, EINVAL);
1813 }
1814
1815 /* policy requests are mandatory when action is ipsec. */
1816 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1817 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1818 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1819 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1820 return key_senderror(so, m, EINVAL);
1821 }
1822
1823 /*
1824 * checking there is SP already or not.
1825 * SPDUPDATE doesn't depend on whether there is a SP or not.
1826 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1827 * then error.
1828 */
1829 newsp = key_getsp(&spidx);
1830 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1831 if (newsp) {
1832 key_sp_dead(newsp);
1833 key_sp_unlink(newsp); /* XXX jrs ordering */
1834 KEY_FREESP(&newsp);
1835 newsp = NULL;
1836 }
1837 } else {
1838 if (newsp != NULL) {
1839 KEY_FREESP(&newsp);
1840 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1841 return key_senderror(so, m, EEXIST);
1842 }
1843 }
1844
1845 /* allocation new SP entry */
1846 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1847 return key_senderror(so, m, error);
1848 }
1849
1850 if ((newsp->id = key_getnewspid()) == 0) {
1851 KFREE(newsp);
1852 return key_senderror(so, m, ENOBUFS);
1853 }
1854
1855 /* XXX boundary check against sa_len */
1856 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1857 src0 + 1,
1858 dst0 + 1,
1859 src0->sadb_address_prefixlen,
1860 dst0->sadb_address_prefixlen,
1861 src0->sadb_address_proto,
1862 &newsp->spidx);
1863
1864 /* sanity check on addr pair */
1865 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1866 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1867 KFREE(newsp);
1868 return key_senderror(so, m, EINVAL);
1869 }
1870 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1871 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1872 KFREE(newsp);
1873 return key_senderror(so, m, EINVAL);
1874 }
1875 #if 1
1876 if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1877 struct sockaddr *sa;
1878 sa = (struct sockaddr *)(src0 + 1);
1879 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1880 KFREE(newsp);
1881 return key_senderror(so, m, EINVAL);
1882 }
1883 }
1884 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1885 struct sockaddr *sa;
1886 sa = (struct sockaddr *)(dst0 + 1);
1887 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1888 KFREE(newsp);
1889 return key_senderror(so, m, EINVAL);
1890 }
1891 }
1892 #endif
1893
1894 newsp->created = time_second;
1895 newsp->lastused = newsp->created;
1896 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1897 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1898
1899 newsp->refcnt = 1; /* do not reclaim until I say I do */
1900 newsp->state = IPSEC_SPSTATE_ALIVE;
1901 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1902
1903 /* delete the entry in spacqtree */
1904 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1905 struct secspacq *spacq;
1906 if ((spacq = key_getspacq(&spidx)) != NULL) {
1907 /* reset counter in order to deletion by timehandler. */
1908 spacq->created = time_second;
1909 spacq->count = 0;
1910 }
1911 }
1912
1913 #if defined(__NetBSD__)
1914 /* Invalidate all cached SPD pointers in the PCBs. */
1915 ipsec_invalpcbcacheall();
1916
1917 #if defined(GATEWAY)
1918 /* Invalidate the ipflow cache, as well. */
1919 ipflow_invalidate_all();
1920 #endif
1921 #endif /* __NetBSD__ */
1922
1923 {
1924 struct mbuf *n, *mpolicy;
1925 struct sadb_msg *newmsg;
1926 int off;
1927
1928 /* create new sadb_msg to reply. */
1929 if (lft) {
1930 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1931 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1932 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1933 } else {
1934 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1935 SADB_X_EXT_POLICY,
1936 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1937 }
1938 if (!n)
1939 return key_senderror(so, m, ENOBUFS);
1940
1941 if (n->m_len < sizeof(*newmsg)) {
1942 n = m_pullup(n, sizeof(*newmsg));
1943 if (!n)
1944 return key_senderror(so, m, ENOBUFS);
1945 }
1946 newmsg = mtod(n, struct sadb_msg *);
1947 newmsg->sadb_msg_errno = 0;
1948 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1949
1950 off = 0;
1951 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1952 sizeof(*xpl), &off);
1953 if (mpolicy == NULL) {
1954 /* n is already freed */
1955 return key_senderror(so, m, ENOBUFS);
1956 }
1957 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1958 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1959 m_freem(n);
1960 return key_senderror(so, m, EINVAL);
1961 }
1962 xpl->sadb_x_policy_id = newsp->id;
1963
1964 m_freem(m);
1965 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1966 }
1967 }
1968
1969 /*
1970 * get new policy id.
1971 * OUT:
1972 * 0: failure.
1973 * others: success.
1974 */
1975 static u_int32_t
1976 key_getnewspid()
1977 {
1978 u_int32_t newid = 0;
1979 int count = key_spi_trycnt; /* XXX */
1980 struct secpolicy *sp;
1981
1982 /* when requesting to allocate spi ranged */
1983 while (count--) {
1984 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1985
1986 if ((sp = key_getspbyid(newid)) == NULL)
1987 break;
1988
1989 KEY_FREESP(&sp);
1990 }
1991
1992 if (count == 0 || newid == 0) {
1993 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
1994 return 0;
1995 }
1996
1997 return newid;
1998 }
1999
2000 /*
2001 * SADB_SPDDELETE processing
2002 * receive
2003 * <base, address(SD), policy(*)>
2004 * from the user(?), and set SADB_SASTATE_DEAD,
2005 * and send,
2006 * <base, address(SD), policy(*)>
2007 * to the ikmpd.
2008 * policy(*) including direction of policy.
2009 *
2010 * m will always be freed.
2011 */
2012 static int
2013 key_spddelete(so, m, mhp)
2014 struct socket *so;
2015 struct mbuf *m;
2016 const struct sadb_msghdr *mhp;
2017 {
2018 struct sadb_address *src0, *dst0;
2019 struct sadb_x_policy *xpl0;
2020 struct secpolicyindex spidx;
2021 struct secpolicy *sp;
2022
2023 /* sanity check */
2024 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2025 panic("key_spddelete: NULL pointer is passed.\n");
2026
2027 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2028 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2029 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2030 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2031 return key_senderror(so, m, EINVAL);
2032 }
2033 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2034 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2035 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2036 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2037 return key_senderror(so, m, EINVAL);
2038 }
2039
2040 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2041 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2042 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2043
2044 /* make secindex */
2045 /* XXX boundary check against sa_len */
2046 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2047 src0 + 1,
2048 dst0 + 1,
2049 src0->sadb_address_prefixlen,
2050 dst0->sadb_address_prefixlen,
2051 src0->sadb_address_proto,
2052 &spidx);
2053
2054 /* checking the direciton. */
2055 switch (xpl0->sadb_x_policy_dir) {
2056 case IPSEC_DIR_INBOUND:
2057 case IPSEC_DIR_OUTBOUND:
2058 break;
2059 default:
2060 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2061 return key_senderror(so, m, EINVAL);
2062 }
2063
2064 /* Is there SP in SPD ? */
2065 if ((sp = key_getsp(&spidx)) == NULL) {
2066 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2067 return key_senderror(so, m, EINVAL);
2068 }
2069
2070 /* save policy id to buffer to be returned. */
2071 xpl0->sadb_x_policy_id = sp->id;
2072
2073 key_sp_dead(sp);
2074 key_sp_unlink(sp); /* XXX jrs ordering */
2075 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2076
2077 #if defined(__NetBSD__)
2078 /* Invalidate all cached SPD pointers in the PCBs. */
2079 ipsec_invalpcbcacheall();
2080
2081 /* We're deleting policy; no need to invalidate the ipflow cache. */
2082 #endif /* __NetBSD__ */
2083
2084 {
2085 struct mbuf *n;
2086 struct sadb_msg *newmsg;
2087
2088 /* create new sadb_msg to reply. */
2089 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2090 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2091 if (!n)
2092 return key_senderror(so, m, ENOBUFS);
2093
2094 newmsg = mtod(n, struct sadb_msg *);
2095 newmsg->sadb_msg_errno = 0;
2096 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2097
2098 m_freem(m);
2099 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2100 }
2101 }
2102
2103 /*
2104 * SADB_SPDDELETE2 processing
2105 * receive
2106 * <base, policy(*)>
2107 * from the user(?), and set SADB_SASTATE_DEAD,
2108 * and send,
2109 * <base, policy(*)>
2110 * to the ikmpd.
2111 * policy(*) including direction of policy.
2112 *
2113 * m will always be freed.
2114 */
2115 static int
2116 key_spddelete2(so, m, mhp)
2117 struct socket *so;
2118 struct mbuf *m;
2119 const struct sadb_msghdr *mhp;
2120 {
2121 u_int32_t id;
2122 struct secpolicy *sp;
2123
2124 /* sanity check */
2125 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2126 panic("key_spddelete2: NULL pointer is passed.\n");
2127
2128 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2129 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2130 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2131 key_senderror(so, m, EINVAL);
2132 return 0;
2133 }
2134
2135 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2136
2137 /* Is there SP in SPD ? */
2138 if ((sp = key_getspbyid(id)) == NULL) {
2139 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2140 key_senderror(so, m, EINVAL);
2141 }
2142
2143 key_sp_dead(sp);
2144 key_sp_unlink(sp); /* XXX jrs ordering */
2145 KEY_FREESP(&sp); /* ref gained by key_getsp */
2146 sp = NULL;
2147
2148 #if defined(__NetBSD__)
2149 /* Invalidate all cached SPD pointers in the PCBs. */
2150 ipsec_invalpcbcacheall();
2151
2152 /* We're deleting policy; no need to invalidate the ipflow cache. */
2153 #endif /* __NetBSD__ */
2154
2155 {
2156 struct mbuf *n, *nn;
2157 struct sadb_msg *newmsg;
2158 int off, len;
2159
2160 /* create new sadb_msg to reply. */
2161 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2162
2163 if (len > MCLBYTES)
2164 return key_senderror(so, m, ENOBUFS);
2165 MGETHDR(n, M_DONTWAIT, MT_DATA);
2166 if (n && len > MHLEN) {
2167 MCLGET(n, M_DONTWAIT);
2168 if ((n->m_flags & M_EXT) == 0) {
2169 m_freem(n);
2170 n = NULL;
2171 }
2172 }
2173 if (!n)
2174 return key_senderror(so, m, ENOBUFS);
2175
2176 n->m_len = len;
2177 n->m_next = NULL;
2178 off = 0;
2179
2180 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2181 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2182
2183 #ifdef DIAGNOSTIC
2184 if (off != len)
2185 panic("length inconsistency in key_spddelete2");
2186 #endif
2187
2188 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2189 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2190 if (!n->m_next) {
2191 m_freem(n);
2192 return key_senderror(so, m, ENOBUFS);
2193 }
2194
2195 n->m_pkthdr.len = 0;
2196 for (nn = n; nn; nn = nn->m_next)
2197 n->m_pkthdr.len += nn->m_len;
2198
2199 newmsg = mtod(n, struct sadb_msg *);
2200 newmsg->sadb_msg_errno = 0;
2201 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2202
2203 m_freem(m);
2204 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2205 }
2206 }
2207
2208 /*
2209 * SADB_X_GET processing
2210 * receive
2211 * <base, policy(*)>
2212 * from the user(?),
2213 * and send,
2214 * <base, address(SD), policy>
2215 * to the ikmpd.
2216 * policy(*) including direction of policy.
2217 *
2218 * m will always be freed.
2219 */
2220 static int
2221 key_spdget(so, m, mhp)
2222 struct socket *so;
2223 struct mbuf *m;
2224 const struct sadb_msghdr *mhp;
2225 {
2226 u_int32_t id;
2227 struct secpolicy *sp;
2228 struct mbuf *n;
2229
2230 /* sanity check */
2231 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2232 panic("key_spdget: NULL pointer is passed.\n");
2233
2234 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2235 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2236 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2237 return key_senderror(so, m, EINVAL);
2238 }
2239
2240 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2241
2242 /* Is there SP in SPD ? */
2243 if ((sp = key_getspbyid(id)) == NULL) {
2244 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2245 return key_senderror(so, m, ENOENT);
2246 }
2247
2248 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2249 if (n != NULL) {
2250 m_freem(m);
2251 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2252 } else
2253 return key_senderror(so, m, ENOBUFS);
2254 }
2255
2256 /*
2257 * SADB_X_SPDACQUIRE processing.
2258 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2259 * send
2260 * <base, policy(*)>
2261 * to KMD, and expect to receive
2262 * <base> with SADB_X_SPDACQUIRE if error occurred,
2263 * or
2264 * <base, policy>
2265 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2266 * policy(*) is without policy requests.
2267 *
2268 * 0 : succeed
2269 * others: error number
2270 */
2271 int
2272 key_spdacquire(sp)
2273 struct secpolicy *sp;
2274 {
2275 struct mbuf *result = NULL, *m;
2276 struct secspacq *newspacq;
2277 int error;
2278
2279 /* sanity check */
2280 if (sp == NULL)
2281 panic("key_spdacquire: NULL pointer is passed.\n");
2282 if (sp->req != NULL)
2283 panic("key_spdacquire: called but there is request.\n");
2284 if (sp->policy != IPSEC_POLICY_IPSEC)
2285 panic("key_spdacquire: policy mismathed. IPsec is expected.\n");
2286
2287 /* Get an entry to check whether sent message or not. */
2288 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2289 if (key_blockacq_count < newspacq->count) {
2290 /* reset counter and do send message. */
2291 newspacq->count = 0;
2292 } else {
2293 /* increment counter and do nothing. */
2294 newspacq->count++;
2295 return 0;
2296 }
2297 } else {
2298 /* make new entry for blocking to send SADB_ACQUIRE. */
2299 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2300 return ENOBUFS;
2301
2302 /* add to acqtree */
2303 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2304 }
2305
2306 /* create new sadb_msg to reply. */
2307 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2308 if (!m) {
2309 error = ENOBUFS;
2310 goto fail;
2311 }
2312 result = m;
2313
2314 result->m_pkthdr.len = 0;
2315 for (m = result; m; m = m->m_next)
2316 result->m_pkthdr.len += m->m_len;
2317
2318 mtod(result, struct sadb_msg *)->sadb_msg_len =
2319 PFKEY_UNIT64(result->m_pkthdr.len);
2320
2321 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2322
2323 fail:
2324 if (result)
2325 m_freem(result);
2326 return error;
2327 }
2328
2329 /*
2330 * SADB_SPDFLUSH processing
2331 * receive
2332 * <base>
2333 * from the user, and free all entries in secpctree.
2334 * and send,
2335 * <base>
2336 * to the user.
2337 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2338 *
2339 * m will always be freed.
2340 */
2341 static int
2342 key_spdflush(so, m, mhp)
2343 struct socket *so;
2344 struct mbuf *m;
2345 const struct sadb_msghdr *mhp;
2346 {
2347 struct sadb_msg *newmsg;
2348 struct secpolicy *sp;
2349 u_int dir;
2350
2351 /* sanity check */
2352 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2353 panic("key_spdflush: NULL pointer is passed.\n");
2354
2355 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2356 return key_senderror(so, m, EINVAL);
2357
2358 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2359 struct secpolicy * nextsp;
2360 for (sp = LIST_FIRST(&sptree[dir]);
2361 sp != NULL;
2362 sp = nextsp) {
2363
2364 nextsp = LIST_NEXT(sp, chain);
2365 if (sp->state == IPSEC_SPSTATE_DEAD)
2366 continue;
2367 key_sp_dead(sp);
2368 key_sp_unlink(sp);
2369 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2370 continue;
2371 }
2372 }
2373
2374 #if defined(__NetBSD__)
2375 /* Invalidate all cached SPD pointers in the PCBs. */
2376 ipsec_invalpcbcacheall();
2377
2378 /* We're deleting policy; no need to invalidate the ipflow cache. */
2379 #endif /* __NetBSD__ */
2380
2381 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2382 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2383 return key_senderror(so, m, ENOBUFS);
2384 }
2385
2386 if (m->m_next)
2387 m_freem(m->m_next);
2388 m->m_next = NULL;
2389 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2390 newmsg = mtod(m, struct sadb_msg *);
2391 newmsg->sadb_msg_errno = 0;
2392 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2393
2394 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2395 }
2396
2397 static struct sockaddr key_src = { 2, PF_KEY, };
2398
2399 static struct mbuf *
2400 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2401 {
2402 struct secpolicy *sp;
2403 int cnt;
2404 u_int dir;
2405 struct mbuf *m, *n, *prev;
2406 int totlen;
2407
2408 *lenp = 0;
2409
2410 /* search SPD entry and get buffer size. */
2411 cnt = 0;
2412 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2413 LIST_FOREACH(sp, &sptree[dir], chain) {
2414 cnt++;
2415 }
2416 }
2417
2418 if (cnt == 0) {
2419 *errorp = ENOENT;
2420 return (NULL);
2421 }
2422
2423 m = NULL;
2424 prev = m;
2425 totlen = 0;
2426 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2427 LIST_FOREACH(sp, &sptree[dir], chain) {
2428 --cnt;
2429 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2430
2431 if (!n) {
2432 *errorp = ENOBUFS;
2433 if (m) m_freem(m);
2434 return (NULL);
2435 }
2436
2437 totlen += n->m_pkthdr.len;
2438 if (!m) {
2439 m = n;
2440 } else {
2441 prev->m_nextpkt = n;
2442 }
2443 prev = n;
2444 }
2445 }
2446
2447 *lenp = totlen;
2448 *errorp = 0;
2449 return (m);
2450 }
2451
2452 /*
2453 * SADB_SPDDUMP processing
2454 * receive
2455 * <base>
2456 * from the user, and dump all SP leaves
2457 * and send,
2458 * <base> .....
2459 * to the ikmpd.
2460 *
2461 * m will always be freed.
2462 */
2463 static int
2464 key_spddump(so, m0, mhp)
2465 struct socket *so;
2466 struct mbuf *m0;
2467 const struct sadb_msghdr *mhp;
2468 {
2469 struct mbuf *n;
2470 int error, len;
2471 int ok, s;
2472 pid_t pid;
2473
2474 /* sanity check */
2475 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2476 panic("key_spddump: NULL pointer is passed.\n");
2477
2478
2479 pid = mhp->msg->sadb_msg_pid;
2480 /*
2481 * If the requestor has insufficient socket-buffer space
2482 * for the entire chain, nobody gets any response to the DUMP.
2483 * XXX For now, only the requestor ever gets anything.
2484 * Moreover, if the requestor has any space at all, they receive
2485 * the entire chain, otherwise the request is refused with ENOBUFS.
2486 */
2487 if (sbspace(&so->so_rcv) <= 0) {
2488 return key_senderror(so, m0, ENOBUFS);
2489 }
2490
2491 s = splsoftnet();
2492 n = key_setspddump_chain(&error, &len, pid);
2493 splx(s);
2494
2495 if (n == NULL) {
2496 return key_senderror(so, m0, ENOENT);
2497 }
2498 pfkeystat.in_total++;
2499 pfkeystat.in_bytes += len;
2500
2501 /*
2502 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2503 * The requestor receives either the entire chain, or an
2504 * error message with ENOBUFS.
2505 */
2506
2507 /*
2508 * sbappendchainwith record takes the chain of entries, one
2509 * packet-record per SPD entry, prepends the key_src sockaddr
2510 * to each packet-record, links the sockaddr mbufs into a new
2511 * list of records, then appends the entire resulting
2512 * list to the requesting socket.
2513 */
2514 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2515 n, SB_PRIO_ONESHOT_OVERFLOW);
2516
2517 if (!ok) {
2518 pfkeystat.in_nomem++;
2519 m_freem(n);
2520 return key_senderror(so, m0, ENOBUFS);
2521 }
2522
2523 m_freem(m0);
2524 return error;
2525 }
2526
2527 static struct mbuf *
2528 key_setdumpsp(sp, type, seq, pid)
2529 struct secpolicy *sp;
2530 u_int8_t type;
2531 u_int32_t seq;
2532 pid_t pid;
2533 {
2534 struct mbuf *result = NULL, *m;
2535
2536 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2537 if (!m)
2538 goto fail;
2539 result = m;
2540
2541 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2542 &sp->spidx.src.sa, sp->spidx.prefs,
2543 sp->spidx.ul_proto);
2544 if (!m)
2545 goto fail;
2546 m_cat(result, m);
2547
2548 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2549 &sp->spidx.dst.sa, sp->spidx.prefd,
2550 sp->spidx.ul_proto);
2551 if (!m)
2552 goto fail;
2553 m_cat(result, m);
2554
2555 m = key_sp2msg(sp);
2556 if (!m)
2557 goto fail;
2558 m_cat(result, m);
2559
2560 if ((result->m_flags & M_PKTHDR) == 0)
2561 goto fail;
2562
2563 if (result->m_len < sizeof(struct sadb_msg)) {
2564 result = m_pullup(result, sizeof(struct sadb_msg));
2565 if (result == NULL)
2566 goto fail;
2567 }
2568
2569 result->m_pkthdr.len = 0;
2570 for (m = result; m; m = m->m_next)
2571 result->m_pkthdr.len += m->m_len;
2572
2573 mtod(result, struct sadb_msg *)->sadb_msg_len =
2574 PFKEY_UNIT64(result->m_pkthdr.len);
2575
2576 return result;
2577
2578 fail:
2579 m_freem(result);
2580 return NULL;
2581 }
2582
2583 /*
2584 * get PFKEY message length for security policy and request.
2585 */
2586 static u_int
2587 key_getspreqmsglen(sp)
2588 struct secpolicy *sp;
2589 {
2590 u_int tlen;
2591
2592 tlen = sizeof(struct sadb_x_policy);
2593
2594 /* if is the policy for ipsec ? */
2595 if (sp->policy != IPSEC_POLICY_IPSEC)
2596 return tlen;
2597
2598 /* get length of ipsec requests */
2599 {
2600 struct ipsecrequest *isr;
2601 int len;
2602
2603 for (isr = sp->req; isr != NULL; isr = isr->next) {
2604 len = sizeof(struct sadb_x_ipsecrequest)
2605 + isr->saidx.src.sa.sa_len
2606 + isr->saidx.dst.sa.sa_len;
2607
2608 tlen += PFKEY_ALIGN8(len);
2609 }
2610 }
2611
2612 return tlen;
2613 }
2614
2615 /*
2616 * SADB_SPDEXPIRE processing
2617 * send
2618 * <base, address(SD), lifetime(CH), policy>
2619 * to KMD by PF_KEY.
2620 *
2621 * OUT: 0 : succeed
2622 * others : error number
2623 */
2624 static int
2625 key_spdexpire(sp)
2626 struct secpolicy *sp;
2627 {
2628 int s;
2629 struct mbuf *result = NULL, *m;
2630 int len;
2631 int error = -1;
2632 struct sadb_lifetime *lt;
2633
2634 /* XXX: Why do we lock ? */
2635 s = splsoftnet(); /*called from softclock()*/
2636
2637 /* sanity check */
2638 if (sp == NULL)
2639 panic("key_spdexpire: NULL pointer is passed.\n");
2640
2641 /* set msg header */
2642 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2643 if (!m) {
2644 error = ENOBUFS;
2645 goto fail;
2646 }
2647 result = m;
2648
2649 /* create lifetime extension (current and hard) */
2650 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2651 m = key_alloc_mbuf(len);
2652 if (!m || m->m_next) { /*XXX*/
2653 if (m)
2654 m_freem(m);
2655 error = ENOBUFS;
2656 goto fail;
2657 }
2658 bzero(mtod(m, caddr_t), len);
2659 lt = mtod(m, struct sadb_lifetime *);
2660 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2661 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2662 lt->sadb_lifetime_allocations = 0;
2663 lt->sadb_lifetime_bytes = 0;
2664 lt->sadb_lifetime_addtime = sp->created;
2665 lt->sadb_lifetime_usetime = sp->lastused;
2666 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2667 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2668 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2669 lt->sadb_lifetime_allocations = 0;
2670 lt->sadb_lifetime_bytes = 0;
2671 lt->sadb_lifetime_addtime = sp->lifetime;
2672 lt->sadb_lifetime_usetime = sp->validtime;
2673 m_cat(result, m);
2674
2675 /* set sadb_address for source */
2676 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2677 &sp->spidx.src.sa,
2678 sp->spidx.prefs, sp->spidx.ul_proto);
2679 if (!m) {
2680 error = ENOBUFS;
2681 goto fail;
2682 }
2683 m_cat(result, m);
2684
2685 /* set sadb_address for destination */
2686 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2687 &sp->spidx.dst.sa,
2688 sp->spidx.prefd, sp->spidx.ul_proto);
2689 if (!m) {
2690 error = ENOBUFS;
2691 goto fail;
2692 }
2693 m_cat(result, m);
2694
2695 /* set secpolicy */
2696 m = key_sp2msg(sp);
2697 if (!m) {
2698 error = ENOBUFS;
2699 goto fail;
2700 }
2701 m_cat(result, m);
2702
2703 if ((result->m_flags & M_PKTHDR) == 0) {
2704 error = EINVAL;
2705 goto fail;
2706 }
2707
2708 if (result->m_len < sizeof(struct sadb_msg)) {
2709 result = m_pullup(result, sizeof(struct sadb_msg));
2710 if (result == NULL) {
2711 error = ENOBUFS;
2712 goto fail;
2713 }
2714 }
2715
2716 result->m_pkthdr.len = 0;
2717 for (m = result; m; m = m->m_next)
2718 result->m_pkthdr.len += m->m_len;
2719
2720 mtod(result, struct sadb_msg *)->sadb_msg_len =
2721 PFKEY_UNIT64(result->m_pkthdr.len);
2722
2723 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2724
2725 fail:
2726 if (result)
2727 m_freem(result);
2728 splx(s);
2729 return error;
2730 }
2731
2732 /* %%% SAD management */
2733 /*
2734 * allocating a memory for new SA head, and copy from the values of mhp.
2735 * OUT: NULL : failure due to the lack of memory.
2736 * others : pointer to new SA head.
2737 */
2738 static struct secashead *
2739 key_newsah(saidx)
2740 struct secasindex *saidx;
2741 {
2742 struct secashead *newsah;
2743
2744 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2745
2746 newsah = (struct secashead *)
2747 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2748 if (newsah != NULL) {
2749 int i;
2750 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2751 LIST_INIT(&newsah->savtree[i]);
2752 newsah->saidx = *saidx;
2753
2754 /* add to saidxtree */
2755 newsah->state = SADB_SASTATE_MATURE;
2756 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2757 }
2758 return(newsah);
2759 }
2760
2761 /*
2762 * delete SA index and all SA registerd.
2763 */
2764 static void
2765 key_delsah(sah)
2766 struct secashead *sah;
2767 {
2768 struct secasvar *sav, *nextsav;
2769 u_int stateidx, state;
2770 int s;
2771 int zombie = 0;
2772
2773 /* sanity check */
2774 if (sah == NULL)
2775 panic("key_delsah: NULL pointer is passed.\n");
2776
2777 s = splsoftnet(); /*called from softclock()*/
2778
2779 /* searching all SA registerd in the secindex. */
2780 for (stateidx = 0;
2781 stateidx < _ARRAYLEN(saorder_state_any);
2782 stateidx++) {
2783
2784 state = saorder_state_any[stateidx];
2785 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2786 sav != NULL;
2787 sav = nextsav) {
2788
2789 nextsav = LIST_NEXT(sav, chain);
2790
2791 if (sav->refcnt == 0) {
2792 /* sanity check */
2793 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2794 KEY_FREESAV(&sav);
2795 } else {
2796 /* give up to delete this sa */
2797 zombie++;
2798 }
2799 }
2800 }
2801
2802 /* don't delete sah only if there are savs. */
2803 if (zombie) {
2804 splx(s);
2805 return;
2806 }
2807
2808 if (sah->sa_route.ro_rt) {
2809 RTFREE(sah->sa_route.ro_rt);
2810 sah->sa_route.ro_rt = (struct rtentry *)NULL;
2811 }
2812
2813 /* remove from tree of SA index */
2814 if (__LIST_CHAINED(sah))
2815 LIST_REMOVE(sah, chain);
2816
2817 KFREE(sah);
2818
2819 splx(s);
2820 return;
2821 }
2822
2823 /*
2824 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2825 * and copy the values of mhp into new buffer.
2826 * When SAD message type is GETSPI:
2827 * to set sequence number from acq_seq++,
2828 * to set zero to SPI.
2829 * not to call key_setsava().
2830 * OUT: NULL : fail
2831 * others : pointer to new secasvar.
2832 *
2833 * does not modify mbuf. does not free mbuf on error.
2834 */
2835 static struct secasvar *
2836 key_newsav(m, mhp, sah, errp, where, tag)
2837 struct mbuf *m;
2838 const struct sadb_msghdr *mhp;
2839 struct secashead *sah;
2840 int *errp;
2841 const char* where;
2842 int tag;
2843 {
2844 struct secasvar *newsav;
2845 const struct sadb_sa *xsa;
2846
2847 /* sanity check */
2848 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2849 panic("key_newsa: NULL pointer is passed.\n");
2850
2851 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2852 if (newsav == NULL) {
2853 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2854 *errp = ENOBUFS;
2855 goto done;
2856 }
2857 bzero((caddr_t)newsav, sizeof(struct secasvar));
2858
2859 switch (mhp->msg->sadb_msg_type) {
2860 case SADB_GETSPI:
2861 newsav->spi = 0;
2862
2863 #ifdef IPSEC_DOSEQCHECK
2864 /* sync sequence number */
2865 if (mhp->msg->sadb_msg_seq == 0)
2866 newsav->seq =
2867 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2868 else
2869 #endif
2870 newsav->seq = mhp->msg->sadb_msg_seq;
2871 break;
2872
2873 case SADB_ADD:
2874 /* sanity check */
2875 if (mhp->ext[SADB_EXT_SA] == NULL) {
2876 KFREE(newsav), newsav = NULL;
2877 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2878 *errp = EINVAL;
2879 goto done;
2880 }
2881 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2882 newsav->spi = xsa->sadb_sa_spi;
2883 newsav->seq = mhp->msg->sadb_msg_seq;
2884 break;
2885 default:
2886 KFREE(newsav), newsav = NULL;
2887 *errp = EINVAL;
2888 goto done;
2889 }
2890
2891 /* copy sav values */
2892 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2893 *errp = key_setsaval(newsav, m, mhp);
2894 if (*errp) {
2895 KFREE(newsav), newsav = NULL;
2896 goto done;
2897 }
2898 }
2899
2900 /* reset created */
2901 newsav->created = time_second;
2902 newsav->pid = mhp->msg->sadb_msg_pid;
2903
2904 /* add to satree */
2905 newsav->sah = sah;
2906 newsav->refcnt = 1;
2907 newsav->state = SADB_SASTATE_LARVAL;
2908 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2909 secasvar, chain);
2910 done:
2911 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2912 printf("DP key_newsav from %s:%u return SP:%p\n",
2913 where, tag, newsav));
2914
2915 return newsav;
2916 }
2917
2918 /*
2919 * free() SA variable entry.
2920 */
2921 static void
2922 key_delsav(sav)
2923 struct secasvar *sav;
2924 {
2925 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
2926 IPSEC_ASSERT(sav->refcnt == 0,
2927 ("key_delsav: reference count %u > 0", sav->refcnt));
2928
2929 /* remove from SA header */
2930 if (__LIST_CHAINED(sav))
2931 LIST_REMOVE(sav, chain);
2932
2933 /*
2934 * Cleanup xform state. Note that zeroize'ing causes the
2935 * keys to be cleared; otherwise we must do it ourself.
2936 */
2937 if (sav->tdb_xform != NULL) {
2938 sav->tdb_xform->xf_zeroize(sav);
2939 sav->tdb_xform = NULL;
2940 } else {
2941 if (sav->key_auth != NULL)
2942 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2943 if (sav->key_enc != NULL)
2944 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2945 }
2946 if (sav->key_auth != NULL) {
2947 KFREE(sav->key_auth);
2948 sav->key_auth = NULL;
2949 }
2950 if (sav->key_enc != NULL) {
2951 KFREE(sav->key_enc);
2952 sav->key_enc = NULL;
2953 }
2954 if (sav->sched) {
2955 bzero(sav->sched, sav->schedlen);
2956 KFREE(sav->sched);
2957 sav->sched = NULL;
2958 }
2959 if (sav->replay != NULL) {
2960 KFREE(sav->replay);
2961 sav->replay = NULL;
2962 }
2963 if (sav->lft_c != NULL) {
2964 KFREE(sav->lft_c);
2965 sav->lft_c = NULL;
2966 }
2967 if (sav->lft_h != NULL) {
2968 KFREE(sav->lft_h);
2969 sav->lft_h = NULL;
2970 }
2971 if (sav->lft_s != NULL) {
2972 KFREE(sav->lft_s);
2973 sav->lft_s = NULL;
2974 }
2975 if (sav->iv != NULL) {
2976 KFREE(sav->iv);
2977 sav->iv = NULL;
2978 }
2979
2980 KFREE(sav);
2981
2982 return;
2983 }
2984
2985 /*
2986 * search SAD.
2987 * OUT:
2988 * NULL : not found
2989 * others : found, pointer to a SA.
2990 */
2991 static struct secashead *
2992 key_getsah(saidx)
2993 struct secasindex *saidx;
2994 {
2995 struct secashead *sah;
2996
2997 LIST_FOREACH(sah, &sahtree, chain) {
2998 if (sah->state == SADB_SASTATE_DEAD)
2999 continue;
3000 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3001 return sah;
3002 }
3003
3004 return NULL;
3005 }
3006
3007 /*
3008 * check not to be duplicated SPI.
3009 * NOTE: this function is too slow due to searching all SAD.
3010 * OUT:
3011 * NULL : not found
3012 * others : found, pointer to a SA.
3013 */
3014 static struct secasvar *
3015 key_checkspidup(saidx, spi)
3016 struct secasindex *saidx;
3017 u_int32_t spi;
3018 {
3019 struct secashead *sah;
3020 struct secasvar *sav;
3021
3022 /* check address family */
3023 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3024 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3025 return NULL;
3026 }
3027
3028 /* check all SAD */
3029 LIST_FOREACH(sah, &sahtree, chain) {
3030 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3031 continue;
3032 sav = key_getsavbyspi(sah, spi);
3033 if (sav != NULL)
3034 return sav;
3035 }
3036
3037 return NULL;
3038 }
3039
3040 /*
3041 * search SAD litmited alive SA, protocol, SPI.
3042 * OUT:
3043 * NULL : not found
3044 * others : found, pointer to a SA.
3045 */
3046 static struct secasvar *
3047 key_getsavbyspi(sah, spi)
3048 struct secashead *sah;
3049 u_int32_t spi;
3050 {
3051 struct secasvar *sav;
3052 u_int stateidx, state;
3053
3054 /* search all status */
3055 for (stateidx = 0;
3056 stateidx < _ARRAYLEN(saorder_state_alive);
3057 stateidx++) {
3058
3059 state = saorder_state_alive[stateidx];
3060 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3061
3062 /* sanity check */
3063 if (sav->state != state) {
3064 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3065 "invalid sav->state (queue: %d SA: %d)\n",
3066 state, sav->state));
3067 continue;
3068 }
3069
3070 if (sav->spi == spi)
3071 return sav;
3072 }
3073 }
3074
3075 return NULL;
3076 }
3077
3078 /*
3079 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3080 * You must update these if need.
3081 * OUT: 0: success.
3082 * !0: failure.
3083 *
3084 * does not modify mbuf. does not free mbuf on error.
3085 */
3086 static int
3087 key_setsaval(sav, m, mhp)
3088 struct secasvar *sav;
3089 struct mbuf *m;
3090 const struct sadb_msghdr *mhp;
3091 {
3092 int error = 0;
3093
3094 /* sanity check */
3095 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3096 panic("key_setsaval: NULL pointer is passed.\n");
3097
3098 /* initialization */
3099 sav->replay = NULL;
3100 sav->key_auth = NULL;
3101 sav->key_enc = NULL;
3102 sav->sched = NULL;
3103 sav->schedlen = 0;
3104 sav->iv = NULL;
3105 sav->lft_c = NULL;
3106 sav->lft_h = NULL;
3107 sav->lft_s = NULL;
3108 sav->tdb_xform = NULL; /* transform */
3109 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3110 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3111 sav->tdb_compalgxform = NULL; /* compression algorithm */
3112
3113 /* SA */
3114 if (mhp->ext[SADB_EXT_SA] != NULL) {
3115 const struct sadb_sa *sa0;
3116
3117 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3118 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3119 error = EINVAL;
3120 goto fail;
3121 }
3122
3123 sav->alg_auth = sa0->sadb_sa_auth;
3124 sav->alg_enc = sa0->sadb_sa_encrypt;
3125 sav->flags = sa0->sadb_sa_flags;
3126
3127 /* replay window */
3128 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3129 sav->replay = (struct secreplay *)
3130 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3131 if (sav->replay == NULL) {
3132 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3133 error = ENOBUFS;
3134 goto fail;
3135 }
3136 if (sa0->sadb_sa_replay != 0)
3137 sav->replay->bitmap = (caddr_t)(sav->replay+1);
3138 sav->replay->wsize = sa0->sadb_sa_replay;
3139 }
3140 }
3141
3142 /* Authentication keys */
3143 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3144 const struct sadb_key *key0;
3145 int len;
3146
3147 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3148 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3149
3150 error = 0;
3151 if (len < sizeof(*key0)) {
3152 error = EINVAL;
3153 goto fail;
3154 }
3155 switch (mhp->msg->sadb_msg_satype) {
3156 case SADB_SATYPE_AH:
3157 case SADB_SATYPE_ESP:
3158 case SADB_X_SATYPE_TCPSIGNATURE:
3159 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3160 sav->alg_auth != SADB_X_AALG_NULL)
3161 error = EINVAL;
3162 break;
3163 case SADB_X_SATYPE_IPCOMP:
3164 default:
3165 error = EINVAL;
3166 break;
3167 }
3168 if (error) {
3169 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3170 goto fail;
3171 }
3172
3173 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3174 if (sav->key_auth == NULL) {
3175 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3176 error = ENOBUFS;
3177 goto fail;
3178 }
3179 }
3180
3181 /* Encryption key */
3182 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3183 const struct sadb_key *key0;
3184 int len;
3185
3186 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3187 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3188
3189 error = 0;
3190 if (len < sizeof(*key0)) {
3191 error = EINVAL;
3192 goto fail;
3193 }
3194 switch (mhp->msg->sadb_msg_satype) {
3195 case SADB_SATYPE_ESP:
3196 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3197 sav->alg_enc != SADB_EALG_NULL) {
3198 error = EINVAL;
3199 break;
3200 }
3201 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3202 if (sav->key_enc == NULL) {
3203 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3204 error = ENOBUFS;
3205 goto fail;
3206 }
3207 break;
3208 case SADB_X_SATYPE_IPCOMP:
3209 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3210 error = EINVAL;
3211 sav->key_enc = NULL; /*just in case*/
3212 break;
3213 case SADB_SATYPE_AH:
3214 case SADB_X_SATYPE_TCPSIGNATURE:
3215 default:
3216 error = EINVAL;
3217 break;
3218 }
3219 if (error) {
3220 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3221 goto fail;
3222 }
3223 }
3224
3225 /* set iv */
3226 sav->ivlen = 0;
3227
3228 switch (mhp->msg->sadb_msg_satype) {
3229 case SADB_SATYPE_AH:
3230 error = xform_init(sav, XF_AH);
3231 break;
3232 case SADB_SATYPE_ESP:
3233 error = xform_init(sav, XF_ESP);
3234 break;
3235 case SADB_X_SATYPE_IPCOMP:
3236 error = xform_init(sav, XF_IPCOMP);
3237 break;
3238 case SADB_X_SATYPE_TCPSIGNATURE:
3239 error = xform_init(sav, XF_TCPSIGNATURE);
3240 break;
3241 }
3242 if (error) {
3243 ipseclog((LOG_DEBUG,
3244 "key_setsaval: unable to initialize SA type %u.\n",
3245 mhp->msg->sadb_msg_satype));
3246 goto fail;
3247 }
3248
3249 /* reset created */
3250 sav->created = time_second;
3251
3252 /* make lifetime for CURRENT */
3253 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3254 sizeof(struct sadb_lifetime));
3255 if (sav->lft_c == NULL) {
3256 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3257 error = ENOBUFS;
3258 goto fail;
3259 }
3260
3261 sav->lft_c->sadb_lifetime_len =
3262 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3263 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3264 sav->lft_c->sadb_lifetime_allocations = 0;
3265 sav->lft_c->sadb_lifetime_bytes = 0;
3266 sav->lft_c->sadb_lifetime_addtime = time_second;
3267 sav->lft_c->sadb_lifetime_usetime = 0;
3268
3269 /* lifetimes for HARD and SOFT */
3270 {
3271 const struct sadb_lifetime *lft0;
3272
3273 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3274 if (lft0 != NULL) {
3275 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3276 error = EINVAL;
3277 goto fail;
3278 }
3279 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3280 sizeof(*lft0));
3281 if (sav->lft_h == NULL) {
3282 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3283 error = ENOBUFS;
3284 goto fail;
3285 }
3286 /* to be initialize ? */
3287 }
3288
3289 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3290 if (lft0 != NULL) {
3291 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3292 error = EINVAL;
3293 goto fail;
3294 }
3295 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3296 sizeof(*lft0));
3297 if (sav->lft_s == NULL) {
3298 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3299 error = ENOBUFS;
3300 goto fail;
3301 }
3302 /* to be initialize ? */
3303 }
3304 }
3305
3306 return 0;
3307
3308 fail:
3309 /* initialization */
3310 if (sav->replay != NULL) {
3311 KFREE(sav->replay);
3312 sav->replay = NULL;
3313 }
3314 if (sav->key_auth != NULL) {
3315 KFREE(sav->key_auth);
3316 sav->key_auth = NULL;
3317 }
3318 if (sav->key_enc != NULL) {
3319 KFREE(sav->key_enc);
3320 sav->key_enc = NULL;
3321 }
3322 if (sav->sched) {
3323 KFREE(sav->sched);
3324 sav->sched = NULL;
3325 }
3326 if (sav->iv != NULL) {
3327 KFREE(sav->iv);
3328 sav->iv = NULL;
3329 }
3330 if (sav->lft_c != NULL) {
3331 KFREE(sav->lft_c);
3332 sav->lft_c = NULL;
3333 }
3334 if (sav->lft_h != NULL) {
3335 KFREE(sav->lft_h);
3336 sav->lft_h = NULL;
3337 }
3338 if (sav->lft_s != NULL) {
3339 KFREE(sav->lft_s);
3340 sav->lft_s = NULL;
3341 }
3342
3343 return error;
3344 }
3345
3346 /*
3347 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3348 * OUT: 0: valid
3349 * other: errno
3350 */
3351 static int
3352 key_mature(sav)
3353 struct secasvar *sav;
3354 {
3355 int error;
3356
3357 /* check SPI value */
3358 switch (sav->sah->saidx.proto) {
3359 case IPPROTO_ESP:
3360 case IPPROTO_AH:
3361 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) {
3362 ipseclog((LOG_DEBUG,
3363 "key_mature: illegal range of SPI %u.\n",
3364 (u_int32_t)ntohl(sav->spi)));
3365 return EINVAL;
3366 }
3367 break;
3368 }
3369
3370 /* check satype */
3371 switch (sav->sah->saidx.proto) {
3372 case IPPROTO_ESP:
3373 /* check flags */
3374 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3375 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3376 ipseclog((LOG_DEBUG, "key_mature: "
3377 "invalid flag (derived) given to old-esp.\n"));
3378 return EINVAL;
3379 }
3380 error = xform_init(sav, XF_ESP);
3381 break;
3382 case IPPROTO_AH:
3383 /* check flags */
3384 if (sav->flags & SADB_X_EXT_DERIV) {
3385 ipseclog((LOG_DEBUG, "key_mature: "
3386 "invalid flag (derived) given to AH SA.\n"));
3387 return EINVAL;
3388 }
3389 if (sav->alg_enc != SADB_EALG_NONE) {
3390 ipseclog((LOG_DEBUG, "key_mature: "
3391 "protocol and algorithm mismated.\n"));
3392 return(EINVAL);
3393 }
3394 error = xform_init(sav, XF_AH);
3395 break;
3396 case IPPROTO_IPCOMP:
3397 if (sav->alg_auth != SADB_AALG_NONE) {
3398 ipseclog((LOG_DEBUG, "key_mature: "
3399 "protocol and algorithm mismated.\n"));
3400 return(EINVAL);
3401 }
3402 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3403 && ntohl(sav->spi) >= 0x10000) {
3404 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3405 return(EINVAL);
3406 }
3407 error = xform_init(sav, XF_IPCOMP);
3408 break;
3409 case IPPROTO_TCP:
3410 if (sav->alg_enc != SADB_EALG_NONE) {
3411 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3412 "mismated.\n", __func__));
3413 return(EINVAL);
3414 }
3415 error = xform_init(sav, XF_TCPSIGNATURE);
3416 break;
3417 default:
3418 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3419 error = EPROTONOSUPPORT;
3420 break;
3421 }
3422 if (error == 0)
3423 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3424 return (error);
3425 }
3426
3427 /*
3428 * subroutine for SADB_GET and SADB_DUMP.
3429 */
3430 static struct mbuf *
3431 key_setdumpsa(sav, type, satype, seq, pid)
3432 struct secasvar *sav;
3433 u_int8_t type, satype;
3434 u_int32_t seq, pid;
3435 {
3436 struct mbuf *result = NULL, *tres = NULL, *m;
3437 int l = 0;
3438 int i;
3439 void *p;
3440 int dumporder[] = {
3441 SADB_EXT_SA, SADB_X_EXT_SA2,
3442 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3443 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3444 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3445 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3446 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3447 };
3448
3449 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3450 if (m == NULL)
3451 goto fail;
3452 result = m;
3453
3454 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3455 m = NULL;
3456 p = NULL;
3457 switch (dumporder[i]) {
3458 case SADB_EXT_SA:
3459 m = key_setsadbsa(sav);
3460 if (!m)
3461 goto fail;
3462 break;
3463
3464 case SADB_X_EXT_SA2:
3465 m = key_setsadbxsa2(sav->sah->saidx.mode,
3466 sav->replay ? sav->replay->count : 0,
3467 sav->sah->saidx.reqid);
3468 if (!m)
3469 goto fail;
3470 break;
3471
3472 case SADB_EXT_ADDRESS_SRC:
3473 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3474 &sav->sah->saidx.src.sa,
3475 FULLMASK, IPSEC_ULPROTO_ANY);
3476 if (!m)
3477 goto fail;
3478 break;
3479
3480 case SADB_EXT_ADDRESS_DST:
3481 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3482 &sav->sah->saidx.dst.sa,
3483 FULLMASK, IPSEC_ULPROTO_ANY);
3484 if (!m)
3485 goto fail;
3486 break;
3487
3488 case SADB_EXT_KEY_AUTH:
3489 if (!sav->key_auth)
3490 continue;
3491 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3492 p = sav->key_auth;
3493 break;
3494
3495 case SADB_EXT_KEY_ENCRYPT:
3496 if (!sav->key_enc)
3497 continue;
3498 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3499 p = sav->key_enc;
3500 break;
3501
3502 case SADB_EXT_LIFETIME_CURRENT:
3503 if (!sav->lft_c)
3504 continue;
3505 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3506 p = sav->lft_c;
3507 break;
3508
3509 case SADB_EXT_LIFETIME_HARD:
3510 if (!sav->lft_h)
3511 continue;
3512 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3513 p = sav->lft_h;
3514 break;
3515
3516 case SADB_EXT_LIFETIME_SOFT:
3517 if (!sav->lft_s)
3518 continue;
3519 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3520 p = sav->lft_s;
3521 break;
3522
3523 case SADB_EXT_ADDRESS_PROXY:
3524 case SADB_EXT_IDENTITY_SRC:
3525 case SADB_EXT_IDENTITY_DST:
3526 /* XXX: should we brought from SPD ? */
3527 case SADB_EXT_SENSITIVITY:
3528 default:
3529 continue;
3530 }
3531
3532 if ((!m && !p) || (m && p))
3533 goto fail;
3534 if (p && tres) {
3535 M_PREPEND(tres, l, M_DONTWAIT);
3536 if (!tres)
3537 goto fail;
3538 bcopy(p, mtod(tres, caddr_t), l);
3539 continue;
3540 }
3541 if (p) {
3542 m = key_alloc_mbuf(l);
3543 if (!m)
3544 goto fail;
3545 m_copyback(m, 0, l, p);
3546 }
3547
3548 if (tres)
3549 m_cat(m, tres);
3550 tres = m;
3551 }
3552
3553 m_cat(result, tres);
3554
3555 if (result->m_len < sizeof(struct sadb_msg)) {
3556 result = m_pullup(result, sizeof(struct sadb_msg));
3557 if (result == NULL)
3558 goto fail;
3559 }
3560
3561 result->m_pkthdr.len = 0;
3562 for (m = result; m; m = m->m_next)
3563 result->m_pkthdr.len += m->m_len;
3564
3565 mtod(result, struct sadb_msg *)->sadb_msg_len =
3566 PFKEY_UNIT64(result->m_pkthdr.len);
3567
3568 return result;
3569
3570 fail:
3571 m_freem(result);
3572 m_freem(tres);
3573 return NULL;
3574 }
3575
3576 /*
3577 * set data into sadb_msg.
3578 */
3579 static struct mbuf *
3580 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3581 u_int8_t type, satype;
3582 u_int16_t tlen;
3583 u_int32_t seq;
3584 pid_t pid;
3585 u_int16_t reserved;
3586 {
3587 struct mbuf *m;
3588 struct sadb_msg *p;
3589 int len;
3590
3591 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3592 if (len > MCLBYTES)
3593 return NULL;
3594 MGETHDR(m, M_DONTWAIT, MT_DATA);
3595 if (m && len > MHLEN) {
3596 MCLGET(m, M_DONTWAIT);
3597 if ((m->m_flags & M_EXT) == 0) {
3598 m_freem(m);
3599 m = NULL;
3600 }
3601 }
3602 if (!m)
3603 return NULL;
3604 m->m_pkthdr.len = m->m_len = len;
3605 m->m_next = NULL;
3606
3607 p = mtod(m, struct sadb_msg *);
3608
3609 bzero(p, len);
3610 p->sadb_msg_version = PF_KEY_V2;
3611 p->sadb_msg_type = type;
3612 p->sadb_msg_errno = 0;
3613 p->sadb_msg_satype = satype;
3614 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3615 p->sadb_msg_reserved = reserved;
3616 p->sadb_msg_seq = seq;
3617 p->sadb_msg_pid = (u_int32_t)pid;
3618
3619 return m;
3620 }
3621
3622 /*
3623 * copy secasvar data into sadb_address.
3624 */
3625 static struct mbuf *
3626 key_setsadbsa(sav)
3627 struct secasvar *sav;
3628 {
3629 struct mbuf *m;
3630 struct sadb_sa *p;
3631 int len;
3632
3633 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3634 m = key_alloc_mbuf(len);
3635 if (!m || m->m_next) { /*XXX*/
3636 if (m)
3637 m_freem(m);
3638 return NULL;
3639 }
3640
3641 p = mtod(m, struct sadb_sa *);
3642
3643 bzero(p, len);
3644 p->sadb_sa_len = PFKEY_UNIT64(len);
3645 p->sadb_sa_exttype = SADB_EXT_SA;
3646 p->sadb_sa_spi = sav->spi;
3647 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3648 p->sadb_sa_state = sav->state;
3649 p->sadb_sa_auth = sav->alg_auth;
3650 p->sadb_sa_encrypt = sav->alg_enc;
3651 p->sadb_sa_flags = sav->flags;
3652
3653 return m;
3654 }
3655
3656 /*
3657 * set data into sadb_address.
3658 */
3659 static struct mbuf *
3660 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3661 u_int16_t exttype;
3662 const struct sockaddr *saddr;
3663 u_int8_t prefixlen;
3664 u_int16_t ul_proto;
3665 {
3666 struct mbuf *m;
3667 struct sadb_address *p;
3668 size_t len;
3669
3670 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3671 PFKEY_ALIGN8(saddr->sa_len);
3672 m = key_alloc_mbuf(len);
3673 if (!m || m->m_next) { /*XXX*/
3674 if (m)
3675 m_freem(m);
3676 return NULL;
3677 }
3678
3679 p = mtod(m, struct sadb_address *);
3680
3681 bzero(p, len);
3682 p->sadb_address_len = PFKEY_UNIT64(len);
3683 p->sadb_address_exttype = exttype;
3684 p->sadb_address_proto = ul_proto;
3685 if (prefixlen == FULLMASK) {
3686 switch (saddr->sa_family) {
3687 case AF_INET:
3688 prefixlen = sizeof(struct in_addr) << 3;
3689 break;
3690 case AF_INET6:
3691 prefixlen = sizeof(struct in6_addr) << 3;
3692 break;
3693 default:
3694 ; /*XXX*/
3695 }
3696 }
3697 p->sadb_address_prefixlen = prefixlen;
3698 p->sadb_address_reserved = 0;
3699
3700 bcopy(saddr,
3701 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3702 saddr->sa_len);
3703
3704 return m;
3705 }
3706
3707 #if 0
3708 /*
3709 * set data into sadb_ident.
3710 */
3711 static struct mbuf *
3712 key_setsadbident(exttype, idtype, string, stringlen, id)
3713 u_int16_t exttype, idtype;
3714 caddr_t string;
3715 int stringlen;
3716 u_int64_t id;
3717 {
3718 struct mbuf *m;
3719 struct sadb_ident *p;
3720 size_t len;
3721
3722 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3723 m = key_alloc_mbuf(len);
3724 if (!m || m->m_next) { /*XXX*/
3725 if (m)
3726 m_freem(m);
3727 return NULL;
3728 }
3729
3730 p = mtod(m, struct sadb_ident *);
3731
3732 bzero(p, len);
3733 p->sadb_ident_len = PFKEY_UNIT64(len);
3734 p->sadb_ident_exttype = exttype;
3735 p->sadb_ident_type = idtype;
3736 p->sadb_ident_reserved = 0;
3737 p->sadb_ident_id = id;
3738
3739 bcopy(string,
3740 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3741 stringlen);
3742
3743 return m;
3744 }
3745 #endif
3746
3747 /*
3748 * set data into sadb_x_sa2.
3749 */
3750 static struct mbuf *
3751 key_setsadbxsa2(mode, seq, reqid)
3752 u_int8_t mode;
3753 u_int32_t seq, reqid;
3754 {
3755 struct mbuf *m;
3756 struct sadb_x_sa2 *p;
3757 size_t len;
3758
3759 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3760 m = key_alloc_mbuf(len);
3761 if (!m || m->m_next) { /*XXX*/
3762 if (m)
3763 m_freem(m);
3764 return NULL;
3765 }
3766
3767 p = mtod(m, struct sadb_x_sa2 *);
3768
3769 bzero(p, len);
3770 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3771 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3772 p->sadb_x_sa2_mode = mode;
3773 p->sadb_x_sa2_reserved1 = 0;
3774 p->sadb_x_sa2_reserved2 = 0;
3775 p->sadb_x_sa2_sequence = seq;
3776 p->sadb_x_sa2_reqid = reqid;
3777
3778 return m;
3779 }
3780
3781 /*
3782 * set data into sadb_x_policy
3783 */
3784 static struct mbuf *
3785 key_setsadbxpolicy(type, dir, id)
3786 u_int16_t type;
3787 u_int8_t dir;
3788 u_int32_t id;
3789 {
3790 struct mbuf *m;
3791 struct sadb_x_policy *p;
3792 size_t len;
3793
3794 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3795 m = key_alloc_mbuf(len);
3796 if (!m || m->m_next) { /*XXX*/
3797 if (m)
3798 m_freem(m);
3799 return NULL;
3800 }
3801
3802 p = mtod(m, struct sadb_x_policy *);
3803
3804 bzero(p, len);
3805 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3806 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3807 p->sadb_x_policy_type = type;
3808 p->sadb_x_policy_dir = dir;
3809 p->sadb_x_policy_id = id;
3810
3811 return m;
3812 }
3813
3814 /* %%% utilities */
3815 /*
3816 * copy a buffer into the new buffer allocated.
3817 */
3818 static void *
3819 key_newbuf(src, len)
3820 const void *src;
3821 u_int len;
3822 {
3823 caddr_t new;
3824
3825 KMALLOC(new, caddr_t, len);
3826 if (new == NULL) {
3827 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
3828 return NULL;
3829 }
3830 bcopy(src, new, len);
3831
3832 return new;
3833 }
3834
3835 /* compare my own address
3836 * OUT: 1: true, i.e. my address.
3837 * 0: false
3838 */
3839 int
3840 key_ismyaddr(sa)
3841 struct sockaddr *sa;
3842 {
3843 #ifdef INET
3844 struct sockaddr_in *sin;
3845 struct in_ifaddr *ia;
3846 #endif
3847
3848 /* sanity check */
3849 if (sa == NULL)
3850 panic("key_ismyaddr: NULL pointer is passed.\n");
3851
3852 switch (sa->sa_family) {
3853 #ifdef INET
3854 case AF_INET:
3855 sin = (struct sockaddr_in *)sa;
3856 for (ia = in_ifaddrhead.tqh_first; ia;
3857 ia = ia->ia_link.tqe_next)
3858 {
3859 if (sin->sin_family == ia->ia_addr.sin_family &&
3860 sin->sin_len == ia->ia_addr.sin_len &&
3861 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3862 {
3863 return 1;
3864 }
3865 }
3866 break;
3867 #endif
3868 #ifdef INET6
3869 case AF_INET6:
3870 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3871 #endif
3872 }
3873
3874 return 0;
3875 }
3876
3877 #ifdef INET6
3878 /*
3879 * compare my own address for IPv6.
3880 * 1: ours
3881 * 0: other
3882 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3883 */
3884 #include <netinet6/in6_var.h>
3885
3886 static int
3887 key_ismyaddr6(sin6)
3888 struct sockaddr_in6 *sin6;
3889 {
3890 struct in6_ifaddr *ia;
3891 struct in6_multi *in6m;
3892
3893 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3894 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3895 (struct sockaddr *)&ia->ia_addr, 0) == 0)
3896 return 1;
3897
3898 /*
3899 * XXX Multicast
3900 * XXX why do we care about multlicast here while we don't care
3901 * about IPv4 multicast??
3902 * XXX scope
3903 */
3904 in6m = NULL;
3905 #ifdef __FreeBSD__
3906 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3907 #else
3908 for ((in6m) = ia->ia6_multiaddrs.lh_first;
3909 (in6m) != NULL &&
3910 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
3911 (in6m) = in6m->in6m_entry.le_next)
3912 continue;
3913 #endif
3914 if (in6m)
3915 return 1;
3916 }
3917
3918 /* loopback, just for safety */
3919 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3920 return 1;
3921
3922 return 0;
3923 }
3924 #endif /*INET6*/
3925
3926 /*
3927 * compare two secasindex structure.
3928 * flag can specify to compare 2 saidxes.
3929 * compare two secasindex structure without both mode and reqid.
3930 * don't compare port.
3931 * IN:
3932 * saidx0: source, it can be in SAD.
3933 * saidx1: object.
3934 * OUT:
3935 * 1 : equal
3936 * 0 : not equal
3937 */
3938 static int
3939 key_cmpsaidx(
3940 const struct secasindex *saidx0,
3941 const struct secasindex *saidx1,
3942 int flag)
3943 {
3944 /* sanity */
3945 if (saidx0 == NULL && saidx1 == NULL)
3946 return 1;
3947
3948 if (saidx0 == NULL || saidx1 == NULL)
3949 return 0;
3950
3951 if (saidx0->proto != saidx1->proto)
3952 return 0;
3953
3954 if (flag == CMP_EXACTLY) {
3955 if (saidx0->mode != saidx1->mode)
3956 return 0;
3957 if (saidx0->reqid != saidx1->reqid)
3958 return 0;
3959 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3960 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3961 return 0;
3962 } else {
3963
3964 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3965 if (flag == CMP_MODE_REQID
3966 ||flag == CMP_REQID) {
3967 /*
3968 * If reqid of SPD is non-zero, unique SA is required.
3969 * The result must be of same reqid in this case.
3970 */
3971 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3972 return 0;
3973 }
3974
3975 if (flag == CMP_MODE_REQID) {
3976 if (saidx0->mode != IPSEC_MODE_ANY
3977 && saidx0->mode != saidx1->mode)
3978 return 0;
3979 }
3980
3981 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3982 return 0;
3983 }
3984 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3985 return 0;
3986 }
3987 }
3988
3989 return 1;
3990 }
3991
3992 /*
3993 * compare two secindex structure exactly.
3994 * IN:
3995 * spidx0: source, it is often in SPD.
3996 * spidx1: object, it is often from PFKEY message.
3997 * OUT:
3998 * 1 : equal
3999 * 0 : not equal
4000 */
4001 int
4002 key_cmpspidx_exactly(
4003 struct secpolicyindex *spidx0,
4004 struct secpolicyindex *spidx1)
4005 {
4006 /* sanity */
4007 if (spidx0 == NULL && spidx1 == NULL)
4008 return 1;
4009
4010 if (spidx0 == NULL || spidx1 == NULL)
4011 return 0;
4012
4013 if (spidx0->prefs != spidx1->prefs
4014 || spidx0->prefd != spidx1->prefd
4015 || spidx0->ul_proto != spidx1->ul_proto)
4016 return 0;
4017
4018 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4019 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4020 }
4021
4022 /*
4023 * compare two secindex structure with mask.
4024 * IN:
4025 * spidx0: source, it is often in SPD.
4026 * spidx1: object, it is often from IP header.
4027 * OUT:
4028 * 1 : equal
4029 * 0 : not equal
4030 */
4031 int
4032 key_cmpspidx_withmask(
4033 struct secpolicyindex *spidx0,
4034 struct secpolicyindex *spidx1)
4035 {
4036 /* sanity */
4037 if (spidx0 == NULL && spidx1 == NULL)
4038 return 1;
4039
4040 if (spidx0 == NULL || spidx1 == NULL)
4041 return 0;
4042
4043 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4044 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4045 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4046 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4047 return 0;
4048
4049 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4050 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4051 && spidx0->ul_proto != spidx1->ul_proto)
4052 return 0;
4053
4054 switch (spidx0->src.sa.sa_family) {
4055 case AF_INET:
4056 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4057 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4058 return 0;
4059 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4060 &spidx1->src.sin.sin_addr, spidx0->prefs))
4061 return 0;
4062 break;
4063 case AF_INET6:
4064 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4065 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4066 return 0;
4067 /*
4068 * scope_id check. if sin6_scope_id is 0, we regard it
4069 * as a wildcard scope, which matches any scope zone ID.
4070 */
4071 if (spidx0->src.sin6.sin6_scope_id &&
4072 spidx1->src.sin6.sin6_scope_id &&
4073 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4074 return 0;
4075 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4076 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4077 return 0;
4078 break;
4079 default:
4080 /* XXX */
4081 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4082 return 0;
4083 break;
4084 }
4085
4086 switch (spidx0->dst.sa.sa_family) {
4087 case AF_INET:
4088 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4089 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4090 return 0;
4091 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4092 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4093 return 0;
4094 break;
4095 case AF_INET6:
4096 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4097 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4098 return 0;
4099 /*
4100 * scope_id check. if sin6_scope_id is 0, we regard it
4101 * as a wildcard scope, which matches any scope zone ID.
4102 */
4103 if (spidx0->src.sin6.sin6_scope_id &&
4104 spidx1->src.sin6.sin6_scope_id &&
4105 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4106 return 0;
4107 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4108 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4109 return 0;
4110 break;
4111 default:
4112 /* XXX */
4113 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4114 return 0;
4115 break;
4116 }
4117
4118 /* XXX Do we check other field ? e.g. flowinfo */
4119
4120 return 1;
4121 }
4122
4123 /* returns 0 on match */
4124 static int
4125 key_sockaddrcmp(
4126 const struct sockaddr *sa1,
4127 const struct sockaddr *sa2,
4128 int port)
4129 {
4130 #ifdef satosin
4131 #undef satosin
4132 #endif
4133 #define satosin(s) ((const struct sockaddr_in *)s)
4134 #ifdef satosin6
4135 #undef satosin6
4136 #endif
4137 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4138 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4139 return 1;
4140
4141 switch (sa1->sa_family) {
4142 case AF_INET:
4143 if (sa1->sa_len != sizeof(struct sockaddr_in))
4144 return 1;
4145 if (satosin(sa1)->sin_addr.s_addr !=
4146 satosin(sa2)->sin_addr.s_addr) {
4147 return 1;
4148 }
4149 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4150 return 1;
4151 break;
4152 case AF_INET6:
4153 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4154 return 1; /*EINVAL*/
4155 if (satosin6(sa1)->sin6_scope_id !=
4156 satosin6(sa2)->sin6_scope_id) {
4157 return 1;
4158 }
4159 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4160 &satosin6(sa2)->sin6_addr)) {
4161 return 1;
4162 }
4163 if (port &&
4164 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4165 return 1;
4166 }
4167 default:
4168 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4169 return 1;
4170 break;
4171 }
4172
4173 return 0;
4174 #undef satosin
4175 #undef satosin6
4176 }
4177
4178 /*
4179 * compare two buffers with mask.
4180 * IN:
4181 * addr1: source
4182 * addr2: object
4183 * bits: Number of bits to compare
4184 * OUT:
4185 * 1 : equal
4186 * 0 : not equal
4187 */
4188 static int
4189 key_bbcmp(const void *a1, const void *a2, u_int bits)
4190 {
4191 const unsigned char *p1 = a1;
4192 const unsigned char *p2 = a2;
4193
4194 /* XXX: This could be considerably faster if we compare a word
4195 * at a time, but it is complicated on LSB Endian machines */
4196
4197 /* Handle null pointers */
4198 if (p1 == NULL || p2 == NULL)
4199 return (p1 == p2);
4200
4201 while (bits >= 8) {
4202 if (*p1++ != *p2++)
4203 return 0;
4204 bits -= 8;
4205 }
4206
4207 if (bits > 0) {
4208 u_int8_t mask = ~((1<<(8-bits))-1);
4209 if ((*p1 & mask) != (*p2 & mask))
4210 return 0;
4211 }
4212 return 1; /* Match! */
4213 }
4214
4215 /*
4216 * time handler.
4217 * scanning SPD and SAD to check status for each entries,
4218 * and do to remove or to expire.
4219 * XXX: year 2038 problem may remain.
4220 */
4221 void
4222 key_timehandler(void* arg)
4223 {
4224 u_int dir;
4225 int s;
4226 time_t now = time_second;
4227
4228 s = splsoftnet(); /*called from softclock()*/
4229
4230 /* SPD */
4231 {
4232 struct secpolicy *sp, *nextsp;
4233
4234 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4235 for (sp = LIST_FIRST(&sptree[dir]);
4236 sp != NULL;
4237 sp = nextsp) {
4238
4239 nextsp = LIST_NEXT(sp, chain);
4240
4241 if (sp->state == IPSEC_SPSTATE_DEAD) {
4242 key_sp_unlink(sp); /*XXX*/
4243
4244 /* 'sp' dead; continue transfers to
4245 * 'sp = nextsp'
4246 */
4247 continue;
4248 }
4249
4250 if (sp->lifetime == 0 && sp->validtime == 0)
4251 continue;
4252
4253 /* the deletion will occur next time */
4254 if ((sp->lifetime && now - sp->created > sp->lifetime)
4255 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4256 key_sp_dead(sp);
4257 key_spdexpire(sp);
4258 continue;
4259 }
4260 }
4261 }
4262 }
4263
4264 /* SAD */
4265 {
4266 struct secashead *sah, *nextsah;
4267 struct secasvar *sav, *nextsav;
4268
4269 for (sah = LIST_FIRST(&sahtree);
4270 sah != NULL;
4271 sah = nextsah) {
4272
4273 nextsah = LIST_NEXT(sah, chain);
4274
4275 /* if sah has been dead, then delete it and process next sah. */
4276 if (sah->state == SADB_SASTATE_DEAD) {
4277 key_delsah(sah);
4278 continue;
4279 }
4280
4281 /* if LARVAL entry doesn't become MATURE, delete it. */
4282 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4283 sav != NULL;
4284 sav = nextsav) {
4285
4286 nextsav = LIST_NEXT(sav, chain);
4287
4288 if (now - sav->created > key_larval_lifetime) {
4289 KEY_FREESAV(&sav);
4290 }
4291 }
4292
4293 /*
4294 * check MATURE entry to start to send expire message
4295 * whether or not.
4296 */
4297 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4298 sav != NULL;
4299 sav = nextsav) {
4300
4301 nextsav = LIST_NEXT(sav, chain);
4302
4303 /* we don't need to check. */
4304 if (sav->lft_s == NULL)
4305 continue;
4306
4307 /* sanity check */
4308 if (sav->lft_c == NULL) {
4309 ipseclog((LOG_DEBUG,"key_timehandler: "
4310 "There is no CURRENT time, why?\n"));
4311 continue;
4312 }
4313
4314 /* check SOFT lifetime */
4315 if (sav->lft_s->sadb_lifetime_addtime != 0
4316 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4317 /*
4318 * check SA to be used whether or not.
4319 * when SA hasn't been used, delete it.
4320 */
4321 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4322 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4323 KEY_FREESAV(&sav);
4324 } else {
4325 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4326 /*
4327 * XXX If we keep to send expire
4328 * message in the status of
4329 * DYING. Do remove below code.
4330 */
4331 key_expire(sav);
4332 }
4333 }
4334 /* check SOFT lifetime by bytes */
4335 /*
4336 * XXX I don't know the way to delete this SA
4337 * when new SA is installed. Caution when it's
4338 * installed too big lifetime by time.
4339 */
4340 else if (sav->lft_s->sadb_lifetime_bytes != 0
4341 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4342
4343 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4344 /*
4345 * XXX If we keep to send expire
4346 * message in the status of
4347 * DYING. Do remove below code.
4348 */
4349 key_expire(sav);
4350 }
4351 }
4352
4353 /* check DYING entry to change status to DEAD. */
4354 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4355 sav != NULL;
4356 sav = nextsav) {
4357
4358 nextsav = LIST_NEXT(sav, chain);
4359
4360 /* we don't need to check. */
4361 if (sav->lft_h == NULL)
4362 continue;
4363
4364 /* sanity check */
4365 if (sav->lft_c == NULL) {
4366 ipseclog((LOG_DEBUG, "key_timehandler: "
4367 "There is no CURRENT time, why?\n"));
4368 continue;
4369 }
4370
4371 if (sav->lft_h->sadb_lifetime_addtime != 0
4372 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4373 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4374 KEY_FREESAV(&sav);
4375 }
4376 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4377 else if (sav->lft_s != NULL
4378 && sav->lft_s->sadb_lifetime_addtime != 0
4379 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4380 /*
4381 * XXX: should be checked to be
4382 * installed the valid SA.
4383 */
4384
4385 /*
4386 * If there is no SA then sending
4387 * expire message.
4388 */
4389 key_expire(sav);
4390 }
4391 #endif
4392 /* check HARD lifetime by bytes */
4393 else if (sav->lft_h->sadb_lifetime_bytes != 0
4394 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4395 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4396 KEY_FREESAV(&sav);
4397 }
4398 }
4399
4400 /* delete entry in DEAD */
4401 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4402 sav != NULL;
4403 sav = nextsav) {
4404
4405 nextsav = LIST_NEXT(sav, chain);
4406
4407 /* sanity check */
4408 if (sav->state != SADB_SASTATE_DEAD) {
4409 ipseclog((LOG_DEBUG, "key_timehandler: "
4410 "invalid sav->state "
4411 "(queue: %d SA: %d): "
4412 "kill it anyway\n",
4413 SADB_SASTATE_DEAD, sav->state));
4414 }
4415
4416 /*
4417 * do not call key_freesav() here.
4418 * sav should already be freed, and sav->refcnt
4419 * shows other references to sav
4420 * (such as from SPD).
4421 */
4422 }
4423 }
4424 }
4425
4426 #ifndef IPSEC_NONBLOCK_ACQUIRE
4427 /* ACQ tree */
4428 {
4429 struct secacq *acq, *nextacq;
4430
4431 for (acq = LIST_FIRST(&acqtree);
4432 acq != NULL;
4433 acq = nextacq) {
4434
4435 nextacq = LIST_NEXT(acq, chain);
4436
4437 if (now - acq->created > key_blockacq_lifetime
4438 && __LIST_CHAINED(acq)) {
4439 LIST_REMOVE(acq, chain);
4440 KFREE(acq);
4441 }
4442 }
4443 }
4444 #endif
4445
4446 /* SP ACQ tree */
4447 {
4448 struct secspacq *acq, *nextacq;
4449
4450 for (acq = LIST_FIRST(&spacqtree);
4451 acq != NULL;
4452 acq = nextacq) {
4453
4454 nextacq = LIST_NEXT(acq, chain);
4455
4456 if (now - acq->created > key_blockacq_lifetime
4457 && __LIST_CHAINED(acq)) {
4458 LIST_REMOVE(acq, chain);
4459 KFREE(acq);
4460 }
4461 }
4462 }
4463
4464 /* initialize random seed */
4465 if (key_tick_init_random++ > key_int_random) {
4466 key_tick_init_random = 0;
4467 key_srandom();
4468 }
4469
4470 #ifndef IPSEC_DEBUG2
4471 /* do exchange to tick time !! */
4472 callout_reset(&key_timehandler_ch, hz, key_timehandler, (void *)0);
4473 #endif /* IPSEC_DEBUG2 */
4474
4475 splx(s);
4476 return;
4477 }
4478
4479 #ifdef __NetBSD__
4480 void srandom(int arg);
4481 void srandom(int arg) {return;}
4482 #endif
4483
4484 /*
4485 * to initialize a seed for random()
4486 */
4487 static void
4488 key_srandom()
4489 {
4490 srandom(time_second);
4491 }
4492
4493 u_long
4494 key_random()
4495 {
4496 u_long value;
4497
4498 key_randomfill(&value, sizeof(value));
4499 return value;
4500 }
4501
4502 void
4503 key_randomfill(p, l)
4504 void *p;
4505 size_t l;
4506 {
4507 size_t n;
4508 u_long v;
4509 static int warn = 1;
4510
4511 n = 0;
4512 n = (size_t)read_random(p, (u_int)l);
4513 /* last resort */
4514 while (n < l) {
4515 v = random();
4516 bcopy(&v, (u_int8_t *)p + n,
4517 l - n < sizeof(v) ? l - n : sizeof(v));
4518 n += sizeof(v);
4519
4520 if (warn) {
4521 printf("WARNING: pseudo-random number generator "
4522 "used for IPsec processing\n");
4523 warn = 0;
4524 }
4525 }
4526 }
4527
4528 /*
4529 * map SADB_SATYPE_* to IPPROTO_*.
4530 * if satype == SADB_SATYPE then satype is mapped to ~0.
4531 * OUT:
4532 * 0: invalid satype.
4533 */
4534 static u_int16_t
4535 key_satype2proto(satype)
4536 u_int8_t satype;
4537 {
4538 switch (satype) {
4539 case SADB_SATYPE_UNSPEC:
4540 return IPSEC_PROTO_ANY;
4541 case SADB_SATYPE_AH:
4542 return IPPROTO_AH;
4543 case SADB_SATYPE_ESP:
4544 return IPPROTO_ESP;
4545 case SADB_X_SATYPE_IPCOMP:
4546 return IPPROTO_IPCOMP;
4547 case SADB_X_SATYPE_TCPSIGNATURE:
4548 return IPPROTO_TCP;
4549 default:
4550 return 0;
4551 }
4552 /* NOTREACHED */
4553 }
4554
4555 /*
4556 * map IPPROTO_* to SADB_SATYPE_*
4557 * OUT:
4558 * 0: invalid protocol type.
4559 */
4560 static u_int8_t
4561 key_proto2satype(proto)
4562 u_int16_t proto;
4563 {
4564 switch (proto) {
4565 case IPPROTO_AH:
4566 return SADB_SATYPE_AH;
4567 case IPPROTO_ESP:
4568 return SADB_SATYPE_ESP;
4569 case IPPROTO_IPCOMP:
4570 return SADB_X_SATYPE_IPCOMP;
4571 case IPPROTO_TCP:
4572 return SADB_X_SATYPE_TCPSIGNATURE;
4573 default:
4574 return 0;
4575 }
4576 /* NOTREACHED */
4577 }
4578
4579 /* %%% PF_KEY */
4580 /*
4581 * SADB_GETSPI processing is to receive
4582 * <base, (SA2), src address, dst address, (SPI range)>
4583 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4584 * tree with the status of LARVAL, and send
4585 * <base, SA(*), address(SD)>
4586 * to the IKMPd.
4587 *
4588 * IN: mhp: pointer to the pointer to each header.
4589 * OUT: NULL if fail.
4590 * other if success, return pointer to the message to send.
4591 */
4592 static int
4593 key_getspi(so, m, mhp)
4594 struct socket *so;
4595 struct mbuf *m;
4596 const struct sadb_msghdr *mhp;
4597 {
4598 struct sadb_address *src0, *dst0;
4599 struct secasindex saidx;
4600 struct secashead *newsah;
4601 struct secasvar *newsav;
4602 u_int8_t proto;
4603 u_int32_t spi;
4604 u_int8_t mode;
4605 u_int32_t reqid;
4606 int error;
4607
4608 /* sanity check */
4609 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4610 panic("key_getspi: NULL pointer is passed.\n");
4611
4612 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4613 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4614 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4615 return key_senderror(so, m, EINVAL);
4616 }
4617 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4618 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4619 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4620 return key_senderror(so, m, EINVAL);
4621 }
4622 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4623 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4624 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4625 } else {
4626 mode = IPSEC_MODE_ANY;
4627 reqid = 0;
4628 }
4629
4630 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4631 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4632
4633 /* map satype to proto */
4634 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4635 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4636 return key_senderror(so, m, EINVAL);
4637 }
4638
4639 /* make sure if port number is zero. */
4640 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4641 case AF_INET:
4642 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4643 sizeof(struct sockaddr_in))
4644 return key_senderror(so, m, EINVAL);
4645 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4646 break;
4647 case AF_INET6:
4648 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4649 sizeof(struct sockaddr_in6))
4650 return key_senderror(so, m, EINVAL);
4651 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4652 break;
4653 default:
4654 ; /*???*/
4655 }
4656 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4657 case AF_INET:
4658 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4659 sizeof(struct sockaddr_in))
4660 return key_senderror(so, m, EINVAL);
4661 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4662 break;
4663 case AF_INET6:
4664 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4665 sizeof(struct sockaddr_in6))
4666 return key_senderror(so, m, EINVAL);
4667 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4668 break;
4669 default:
4670 ; /*???*/
4671 }
4672
4673 /* XXX boundary check against sa_len */
4674 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4675
4676 /* SPI allocation */
4677 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4678 &saidx);
4679 if (spi == 0)
4680 return key_senderror(so, m, EINVAL);
4681
4682 /* get a SA index */
4683 if ((newsah = key_getsah(&saidx)) == NULL) {
4684 /* create a new SA index */
4685 if ((newsah = key_newsah(&saidx)) == NULL) {
4686 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4687 return key_senderror(so, m, ENOBUFS);
4688 }
4689 }
4690
4691 /* get a new SA */
4692 /* XXX rewrite */
4693 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4694 if (newsav == NULL) {
4695 /* XXX don't free new SA index allocated in above. */
4696 return key_senderror(so, m, error);
4697 }
4698
4699 /* set spi */
4700 newsav->spi = htonl(spi);
4701
4702 #ifndef IPSEC_NONBLOCK_ACQUIRE
4703 /* delete the entry in acqtree */
4704 if (mhp->msg->sadb_msg_seq != 0) {
4705 struct secacq *acq;
4706 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4707 /* reset counter in order to deletion by timehandler. */
4708 acq->created = time_second;
4709 acq->count = 0;
4710 }
4711 }
4712 #endif
4713
4714 {
4715 struct mbuf *n, *nn;
4716 struct sadb_sa *m_sa;
4717 struct sadb_msg *newmsg;
4718 int off, len;
4719
4720 /* create new sadb_msg to reply. */
4721 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4722 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4723 if (len > MCLBYTES)
4724 return key_senderror(so, m, ENOBUFS);
4725
4726 MGETHDR(n, M_DONTWAIT, MT_DATA);
4727 if (len > MHLEN) {
4728 MCLGET(n, M_DONTWAIT);
4729 if ((n->m_flags & M_EXT) == 0) {
4730 m_freem(n);
4731 n = NULL;
4732 }
4733 }
4734 if (!n)
4735 return key_senderror(so, m, ENOBUFS);
4736
4737 n->m_len = len;
4738 n->m_next = NULL;
4739 off = 0;
4740
4741 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4742 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4743
4744 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4745 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4746 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4747 m_sa->sadb_sa_spi = htonl(spi);
4748 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4749
4750 #ifdef DIAGNOSTIC
4751 if (off != len)
4752 panic("length inconsistency in key_getspi");
4753 #endif
4754
4755 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4756 SADB_EXT_ADDRESS_DST);
4757 if (!n->m_next) {
4758 m_freem(n);
4759 return key_senderror(so, m, ENOBUFS);
4760 }
4761
4762 if (n->m_len < sizeof(struct sadb_msg)) {
4763 n = m_pullup(n, sizeof(struct sadb_msg));
4764 if (n == NULL)
4765 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4766 }
4767
4768 n->m_pkthdr.len = 0;
4769 for (nn = n; nn; nn = nn->m_next)
4770 n->m_pkthdr.len += nn->m_len;
4771
4772 newmsg = mtod(n, struct sadb_msg *);
4773 newmsg->sadb_msg_seq = newsav->seq;
4774 newmsg->sadb_msg_errno = 0;
4775 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4776
4777 m_freem(m);
4778 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4779 }
4780 }
4781
4782 /*
4783 * allocating new SPI
4784 * called by key_getspi().
4785 * OUT:
4786 * 0: failure.
4787 * others: success.
4788 */
4789 static u_int32_t
4790 key_do_getnewspi(spirange, saidx)
4791 struct sadb_spirange *spirange;
4792 struct secasindex *saidx;
4793 {
4794 u_int32_t newspi;
4795 u_int32_t min, max;
4796 int count = key_spi_trycnt;
4797
4798 /* set spi range to allocate */
4799 if (spirange != NULL) {
4800 min = spirange->sadb_spirange_min;
4801 max = spirange->sadb_spirange_max;
4802 } else {
4803 min = key_spi_minval;
4804 max = key_spi_maxval;
4805 }
4806 /* IPCOMP needs 2-byte SPI */
4807 if (saidx->proto == IPPROTO_IPCOMP) {
4808 u_int32_t t;
4809 if (min >= 0x10000)
4810 min = 0xffff;
4811 if (max >= 0x10000)
4812 max = 0xffff;
4813 if (min > max) {
4814 t = min; min = max; max = t;
4815 }
4816 }
4817
4818 if (min == max) {
4819 if (key_checkspidup(saidx, min) != NULL) {
4820 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", min));
4821 return 0;
4822 }
4823
4824 count--; /* taking one cost. */
4825 newspi = min;
4826
4827 } else {
4828
4829 /* init SPI */
4830 newspi = 0;
4831
4832 /* when requesting to allocate spi ranged */
4833 while (count--) {
4834 /* generate pseudo-random SPI value ranged. */
4835 newspi = min + (key_random() % (max - min + 1));
4836
4837 if (key_checkspidup(saidx, newspi) == NULL)
4838 break;
4839 }
4840
4841 if (count == 0 || newspi == 0) {
4842 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
4843 return 0;
4844 }
4845 }
4846
4847 /* statistics */
4848 keystat.getspi_count =
4849 (keystat.getspi_count + key_spi_trycnt - count) / 2;
4850
4851 return newspi;
4852 }
4853
4854 /*
4855 * SADB_UPDATE processing
4856 * receive
4857 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4858 * key(AE), (identity(SD),) (sensitivity)>
4859 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4860 * and send
4861 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4862 * (identity(SD),) (sensitivity)>
4863 * to the ikmpd.
4864 *
4865 * m will always be freed.
4866 */
4867 static int
4868 key_update(so, m, mhp)
4869 struct socket *so;
4870 struct mbuf *m;
4871 const struct sadb_msghdr *mhp;
4872 {
4873 struct sadb_sa *sa0;
4874 struct sadb_address *src0, *dst0;
4875 struct secasindex saidx;
4876 struct secashead *sah;
4877 struct secasvar *sav;
4878 u_int16_t proto;
4879 u_int8_t mode;
4880 u_int32_t reqid;
4881 int error;
4882
4883 /* sanity check */
4884 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4885 panic("key_update: NULL pointer is passed.\n");
4886
4887 /* map satype to proto */
4888 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4889 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
4890 return key_senderror(so, m, EINVAL);
4891 }
4892
4893 if (mhp->ext[SADB_EXT_SA] == NULL ||
4894 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4895 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4896 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4897 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4898 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4899 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4900 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4901 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4902 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4903 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4904 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4905 return key_senderror(so, m, EINVAL);
4906 }
4907 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4908 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4909 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4910 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4911 return key_senderror(so, m, EINVAL);
4912 }
4913 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4914 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4915 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4916 } else {
4917 mode = IPSEC_MODE_ANY;
4918 reqid = 0;
4919 }
4920 /* XXX boundary checking for other extensions */
4921
4922 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4923 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4924 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4925
4926 /* XXX boundary check against sa_len */
4927 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4928
4929 /* get a SA header */
4930 if ((sah = key_getsah(&saidx)) == NULL) {
4931 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
4932 return key_senderror(so, m, ENOENT);
4933 }
4934
4935 /* set spidx if there */
4936 /* XXX rewrite */
4937 error = key_setident(sah, m, mhp);
4938 if (error)
4939 return key_senderror(so, m, error);
4940
4941 /* find a SA with sequence number. */
4942 #ifdef IPSEC_DOSEQCHECK
4943 if (mhp->msg->sadb_msg_seq != 0
4944 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4945 ipseclog((LOG_DEBUG,
4946 "key_update: no larval SA with sequence %u exists.\n",
4947 mhp->msg->sadb_msg_seq));
4948 return key_senderror(so, m, ENOENT);
4949 }
4950 #else
4951 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
4952 ipseclog((LOG_DEBUG,
4953 "key_update: no such a SA found (spi:%u)\n",
4954 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4955 return key_senderror(so, m, EINVAL);
4956 }
4957 #endif
4958
4959 /* validity check */
4960 if (sav->sah->saidx.proto != proto) {
4961 ipseclog((LOG_DEBUG,
4962 "key_update: protocol mismatched (DB=%u param=%u)\n",
4963 sav->sah->saidx.proto, proto));
4964 return key_senderror(so, m, EINVAL);
4965 }
4966 #ifdef IPSEC_DOSEQCHECK
4967 if (sav->spi != sa0->sadb_sa_spi) {
4968 ipseclog((LOG_DEBUG,
4969 "key_update: SPI mismatched (DB:%u param:%u)\n",
4970 (u_int32_t)ntohl(sav->spi),
4971 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4972 return key_senderror(so, m, EINVAL);
4973 }
4974 #endif
4975 if (sav->pid != mhp->msg->sadb_msg_pid) {
4976 ipseclog((LOG_DEBUG,
4977 "key_update: pid mismatched (DB:%u param:%u)\n",
4978 sav->pid, mhp->msg->sadb_msg_pid));
4979 return key_senderror(so, m, EINVAL);
4980 }
4981
4982 /* copy sav values */
4983 error = key_setsaval(sav, m, mhp);
4984 if (error) {
4985 KEY_FREESAV(&sav);
4986 return key_senderror(so, m, error);
4987 }
4988
4989 /* check SA values to be mature. */
4990 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4991 KEY_FREESAV(&sav);
4992 return key_senderror(so, m, 0);
4993 }
4994
4995 {
4996 struct mbuf *n;
4997
4998 /* set msg buf from mhp */
4999 n = key_getmsgbuf_x1(m, mhp);
5000 if (n == NULL) {
5001 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5002 return key_senderror(so, m, ENOBUFS);
5003 }
5004
5005 m_freem(m);
5006 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5007 }
5008 }
5009
5010 /*
5011 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5012 * only called by key_update().
5013 * OUT:
5014 * NULL : not found
5015 * others : found, pointer to a SA.
5016 */
5017 #ifdef IPSEC_DOSEQCHECK
5018 static struct secasvar *
5019 key_getsavbyseq(sah, seq)
5020 struct secashead *sah;
5021 u_int32_t seq;
5022 {
5023 struct secasvar *sav;
5024 u_int state;
5025
5026 state = SADB_SASTATE_LARVAL;
5027
5028 /* search SAD with sequence number ? */
5029 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5030
5031 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5032
5033 if (sav->seq == seq) {
5034 SA_ADDREF(sav);
5035 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5036 printf("DP key_getsavbyseq cause "
5037 "refcnt++:%d SA:%p\n",
5038 sav->refcnt, sav));
5039 return sav;
5040 }
5041 }
5042
5043 return NULL;
5044 }
5045 #endif
5046
5047 /*
5048 * SADB_ADD processing
5049 * add an entry to SA database, when received
5050 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5051 * key(AE), (identity(SD),) (sensitivity)>
5052 * from the ikmpd,
5053 * and send
5054 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5055 * (identity(SD),) (sensitivity)>
5056 * to the ikmpd.
5057 *
5058 * IGNORE identity and sensitivity messages.
5059 *
5060 * m will always be freed.
5061 */
5062 static int
5063 key_add(so, m, mhp)
5064 struct socket *so;
5065 struct mbuf *m;
5066 const struct sadb_msghdr *mhp;
5067 {
5068 struct sadb_sa *sa0;
5069 struct sadb_address *src0, *dst0;
5070 struct secasindex saidx;
5071 struct secashead *newsah;
5072 struct secasvar *newsav;
5073 u_int16_t proto;
5074 u_int8_t mode;
5075 u_int32_t reqid;
5076 int error;
5077
5078 /* sanity check */
5079 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5080 panic("key_add: NULL pointer is passed.\n");
5081
5082 /* map satype to proto */
5083 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5084 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5085 return key_senderror(so, m, EINVAL);
5086 }
5087
5088 if (mhp->ext[SADB_EXT_SA] == NULL ||
5089 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5090 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5091 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5092 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5093 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5094 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5095 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5096 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5097 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5098 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5099 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5100 return key_senderror(so, m, EINVAL);
5101 }
5102 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5103 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5104 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5105 /* XXX need more */
5106 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5107 return key_senderror(so, m, EINVAL);
5108 }
5109 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5110 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5111 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5112 } else {
5113 mode = IPSEC_MODE_ANY;
5114 reqid = 0;
5115 }
5116
5117 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5118 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5119 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5120
5121 /* XXX boundary check against sa_len */
5122 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5123
5124 /* get a SA header */
5125 if ((newsah = key_getsah(&saidx)) == NULL) {
5126 /* create a new SA header */
5127 if ((newsah = key_newsah(&saidx)) == NULL) {
5128 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5129 return key_senderror(so, m, ENOBUFS);
5130 }
5131 }
5132
5133 /* set spidx if there */
5134 /* XXX rewrite */
5135 error = key_setident(newsah, m, mhp);
5136 if (error) {
5137 return key_senderror(so, m, error);
5138 }
5139
5140 /* create new SA entry. */
5141 /* We can create new SA only if SPI is differenct. */
5142 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5143 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5144 return key_senderror(so, m, EEXIST);
5145 }
5146 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5147 if (newsav == NULL) {
5148 return key_senderror(so, m, error);
5149 }
5150
5151 /* check SA values to be mature. */
5152 if ((error = key_mature(newsav)) != 0) {
5153 KEY_FREESAV(&newsav);
5154 return key_senderror(so, m, error);
5155 }
5156
5157 /*
5158 * don't call key_freesav() here, as we would like to keep the SA
5159 * in the database on success.
5160 */
5161
5162 {
5163 struct mbuf *n;
5164
5165 /* set msg buf from mhp */
5166 n = key_getmsgbuf_x1(m, mhp);
5167 if (n == NULL) {
5168 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5169 return key_senderror(so, m, ENOBUFS);
5170 }
5171
5172 m_freem(m);
5173 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5174 }
5175 }
5176
5177 /* m is retained */
5178 static int
5179 key_setident(sah, m, mhp)
5180 struct secashead *sah;
5181 struct mbuf *m;
5182 const struct sadb_msghdr *mhp;
5183 {
5184 const struct sadb_ident *idsrc, *iddst;
5185 int idsrclen, iddstlen;
5186
5187 /* sanity check */
5188 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5189 panic("key_setident: NULL pointer is passed.\n");
5190
5191 /* don't make buffer if not there */
5192 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5193 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5194 sah->idents = NULL;
5195 sah->identd = NULL;
5196 return 0;
5197 }
5198
5199 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5200 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5201 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5202 return EINVAL;
5203 }
5204
5205 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5206 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5207 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5208 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5209
5210 /* validity check */
5211 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5212 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5213 return EINVAL;
5214 }
5215
5216 switch (idsrc->sadb_ident_type) {
5217 case SADB_IDENTTYPE_PREFIX:
5218 case SADB_IDENTTYPE_FQDN:
5219 case SADB_IDENTTYPE_USERFQDN:
5220 default:
5221 /* XXX do nothing */
5222 sah->idents = NULL;
5223 sah->identd = NULL;
5224 return 0;
5225 }
5226
5227 /* make structure */
5228 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5229 if (sah->idents == NULL) {
5230 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5231 return ENOBUFS;
5232 }
5233 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5234 if (sah->identd == NULL) {
5235 KFREE(sah->idents);
5236 sah->idents = NULL;
5237 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5238 return ENOBUFS;
5239 }
5240 bcopy(idsrc, sah->idents, idsrclen);
5241 bcopy(iddst, sah->identd, iddstlen);
5242
5243 return 0;
5244 }
5245
5246 /*
5247 * m will not be freed on return.
5248 * it is caller's responsibility to free the result.
5249 */
5250 static struct mbuf *
5251 key_getmsgbuf_x1(m, mhp)
5252 struct mbuf *m;
5253 const struct sadb_msghdr *mhp;
5254 {
5255 struct mbuf *n;
5256
5257 /* sanity check */
5258 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5259 panic("key_getmsgbuf_x1: NULL pointer is passed.\n");
5260
5261 /* create new sadb_msg to reply. */
5262 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5263 SADB_EXT_SA, SADB_X_EXT_SA2,
5264 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5265 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5266 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5267 if (!n)
5268 return NULL;
5269
5270 if (n->m_len < sizeof(struct sadb_msg)) {
5271 n = m_pullup(n, sizeof(struct sadb_msg));
5272 if (n == NULL)
5273 return NULL;
5274 }
5275 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5276 mtod(n, struct sadb_msg *)->sadb_msg_len =
5277 PFKEY_UNIT64(n->m_pkthdr.len);
5278
5279 return n;
5280 }
5281
5282 static int key_delete_all __P((struct socket *, struct mbuf *,
5283 const struct sadb_msghdr *, u_int16_t));
5284
5285 /*
5286 * SADB_DELETE processing
5287 * receive
5288 * <base, SA(*), address(SD)>
5289 * from the ikmpd, and set SADB_SASTATE_DEAD,
5290 * and send,
5291 * <base, SA(*), address(SD)>
5292 * to the ikmpd.
5293 *
5294 * m will always be freed.
5295 */
5296 static int
5297 key_delete(so, m, mhp)
5298 struct socket *so;
5299 struct mbuf *m;
5300 const struct sadb_msghdr *mhp;
5301 {
5302 struct sadb_sa *sa0;
5303 struct sadb_address *src0, *dst0;
5304 struct secasindex saidx;
5305 struct secashead *sah;
5306 struct secasvar *sav = NULL;
5307 u_int16_t proto;
5308
5309 /* sanity check */
5310 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5311 panic("key_delete: NULL pointer is passed.\n");
5312
5313 /* map satype to proto */
5314 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5315 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5316 return key_senderror(so, m, EINVAL);
5317 }
5318
5319 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5320 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5321 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5322 return key_senderror(so, m, EINVAL);
5323 }
5324
5325 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5326 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5327 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5328 return key_senderror(so, m, EINVAL);
5329 }
5330
5331 if (mhp->ext[SADB_EXT_SA] == NULL) {
5332 /*
5333 * Caller wants us to delete all non-LARVAL SAs
5334 * that match the src/dst. This is used during
5335 * IKE INITIAL-CONTACT.
5336 */
5337 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5338 return key_delete_all(so, m, mhp, proto);
5339 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5340 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5341 return key_senderror(so, m, EINVAL);
5342 }
5343
5344 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5345 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5346 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5347
5348 /* XXX boundary check against sa_len */
5349 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5350
5351 /* get a SA header */
5352 LIST_FOREACH(sah, &sahtree, chain) {
5353 if (sah->state == SADB_SASTATE_DEAD)
5354 continue;
5355 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5356 continue;
5357
5358 /* get a SA with SPI. */
5359 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5360 if (sav)
5361 break;
5362 }
5363 if (sah == NULL) {
5364 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5365 return key_senderror(so, m, ENOENT);
5366 }
5367
5368 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5369 KEY_FREESAV(&sav);
5370
5371 {
5372 struct mbuf *n;
5373 struct sadb_msg *newmsg;
5374
5375 /* create new sadb_msg to reply. */
5376 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5377 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5378 if (!n)
5379 return key_senderror(so, m, ENOBUFS);
5380
5381 if (n->m_len < sizeof(struct sadb_msg)) {
5382 n = m_pullup(n, sizeof(struct sadb_msg));
5383 if (n == NULL)
5384 return key_senderror(so, m, ENOBUFS);
5385 }
5386 newmsg = mtod(n, struct sadb_msg *);
5387 newmsg->sadb_msg_errno = 0;
5388 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5389
5390 m_freem(m);
5391 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5392 }
5393 }
5394
5395 /*
5396 * delete all SAs for src/dst. Called from key_delete().
5397 */
5398 static int
5399 key_delete_all(so, m, mhp, proto)
5400 struct socket *so;
5401 struct mbuf *m;
5402 const struct sadb_msghdr *mhp;
5403 u_int16_t proto;
5404 {
5405 struct sadb_address *src0, *dst0;
5406 struct secasindex saidx;
5407 struct secashead *sah;
5408 struct secasvar *sav, *nextsav;
5409 u_int stateidx, state;
5410
5411 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5412 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5413
5414 /* XXX boundary check against sa_len */
5415 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5416
5417 LIST_FOREACH(sah, &sahtree, chain) {
5418 if (sah->state == SADB_SASTATE_DEAD)
5419 continue;
5420 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5421 continue;
5422
5423 /* Delete all non-LARVAL SAs. */
5424 for (stateidx = 0;
5425 stateidx < _ARRAYLEN(saorder_state_alive);
5426 stateidx++) {
5427 state = saorder_state_alive[stateidx];
5428 if (state == SADB_SASTATE_LARVAL)
5429 continue;
5430 for (sav = LIST_FIRST(&sah->savtree[state]);
5431 sav != NULL; sav = nextsav) {
5432 nextsav = LIST_NEXT(sav, chain);
5433 /* sanity check */
5434 if (sav->state != state) {
5435 ipseclog((LOG_DEBUG, "key_delete_all: "
5436 "invalid sav->state "
5437 "(queue: %d SA: %d)\n",
5438 state, sav->state));
5439 continue;
5440 }
5441
5442 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5443 KEY_FREESAV(&sav);
5444 }
5445 }
5446 }
5447 {
5448 struct mbuf *n;
5449 struct sadb_msg *newmsg;
5450
5451 /* create new sadb_msg to reply. */
5452 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5453 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5454 if (!n)
5455 return key_senderror(so, m, ENOBUFS);
5456
5457 if (n->m_len < sizeof(struct sadb_msg)) {
5458 n = m_pullup(n, sizeof(struct sadb_msg));
5459 if (n == NULL)
5460 return key_senderror(so, m, ENOBUFS);
5461 }
5462 newmsg = mtod(n, struct sadb_msg *);
5463 newmsg->sadb_msg_errno = 0;
5464 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5465
5466 m_freem(m);
5467 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5468 }
5469 }
5470
5471 /*
5472 * SADB_GET processing
5473 * receive
5474 * <base, SA(*), address(SD)>
5475 * from the ikmpd, and get a SP and a SA to respond,
5476 * and send,
5477 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5478 * (identity(SD),) (sensitivity)>
5479 * to the ikmpd.
5480 *
5481 * m will always be freed.
5482 */
5483 static int
5484 key_get(so, m, mhp)
5485 struct socket *so;
5486 struct mbuf *m;
5487 const struct sadb_msghdr *mhp;
5488 {
5489 struct sadb_sa *sa0;
5490 struct sadb_address *src0, *dst0;
5491 struct secasindex saidx;
5492 struct secashead *sah;
5493 struct secasvar *sav = NULL;
5494 u_int16_t proto;
5495
5496 /* sanity check */
5497 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5498 panic("key_get: NULL pointer is passed.\n");
5499
5500 /* map satype to proto */
5501 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5502 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5503 return key_senderror(so, m, EINVAL);
5504 }
5505
5506 if (mhp->ext[SADB_EXT_SA] == NULL ||
5507 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5508 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5509 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5510 return key_senderror(so, m, EINVAL);
5511 }
5512 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5513 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5514 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5515 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5516 return key_senderror(so, m, EINVAL);
5517 }
5518
5519 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5520 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5521 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5522
5523 /* XXX boundary check against sa_len */
5524 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5525
5526 /* get a SA header */
5527 LIST_FOREACH(sah, &sahtree, chain) {
5528 if (sah->state == SADB_SASTATE_DEAD)
5529 continue;
5530 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5531 continue;
5532
5533 /* get a SA with SPI. */
5534 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5535 if (sav)
5536 break;
5537 }
5538 if (sah == NULL) {
5539 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5540 return key_senderror(so, m, ENOENT);
5541 }
5542
5543 {
5544 struct mbuf *n;
5545 u_int8_t satype;
5546
5547 /* map proto to satype */
5548 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5549 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5550 return key_senderror(so, m, EINVAL);
5551 }
5552
5553 /* create new sadb_msg to reply. */
5554 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5555 mhp->msg->sadb_msg_pid);
5556 if (!n)
5557 return key_senderror(so, m, ENOBUFS);
5558
5559 m_freem(m);
5560 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5561 }
5562 }
5563
5564 /* XXX make it sysctl-configurable? */
5565 static void
5566 key_getcomb_setlifetime(comb)
5567 struct sadb_comb *comb;
5568 {
5569
5570 comb->sadb_comb_soft_allocations = 1;
5571 comb->sadb_comb_hard_allocations = 1;
5572 comb->sadb_comb_soft_bytes = 0;
5573 comb->sadb_comb_hard_bytes = 0;
5574 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5575 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5576 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5577 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5578 }
5579
5580 /*
5581 * XXX reorder combinations by preference
5582 * XXX no idea if the user wants ESP authentication or not
5583 */
5584 static struct mbuf *
5585 key_getcomb_esp()
5586 {
5587 struct sadb_comb *comb;
5588 struct enc_xform *algo;
5589 struct mbuf *result = NULL, *m, *n;
5590 int encmin;
5591 int i, off, o;
5592 int totlen;
5593 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5594
5595 m = NULL;
5596 for (i = 1; i <= SADB_EALG_MAX; i++) {
5597 algo = esp_algorithm_lookup(i);
5598 if (algo == NULL)
5599 continue;
5600
5601 /* discard algorithms with key size smaller than system min */
5602 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5603 continue;
5604 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5605 encmin = ipsec_esp_keymin;
5606 else
5607 encmin = _BITS(algo->minkey);
5608
5609 if (ipsec_esp_auth)
5610 m = key_getcomb_ah();
5611 else {
5612 IPSEC_ASSERT(l <= MLEN,
5613 ("key_getcomb_esp: l=%u > MLEN=%lu",
5614 l, (u_long) MLEN));
5615 MGET(m, M_DONTWAIT, MT_DATA);
5616 if (m) {
5617 M_ALIGN(m, l);
5618 m->m_len = l;
5619 m->m_next = NULL;
5620 bzero(mtod(m, caddr_t), m->m_len);
5621 }
5622 }
5623 if (!m)
5624 goto fail;
5625
5626 totlen = 0;
5627 for (n = m; n; n = n->m_next)
5628 totlen += n->m_len;
5629 IPSEC_ASSERT((totlen % l) == 0,
5630 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
5631
5632 for (off = 0; off < totlen; off += l) {
5633 n = m_pulldown(m, off, l, &o);
5634 if (!n) {
5635 /* m is already freed */
5636 goto fail;
5637 }
5638 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5639 bzero(comb, sizeof(*comb));
5640 key_getcomb_setlifetime(comb);
5641 comb->sadb_comb_encrypt = i;
5642 comb->sadb_comb_encrypt_minbits = encmin;
5643 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5644 }
5645
5646 if (!result)
5647 result = m;
5648 else
5649 m_cat(result, m);
5650 }
5651
5652 return result;
5653
5654 fail:
5655 if (result)
5656 m_freem(result);
5657 return NULL;
5658 }
5659
5660 static void
5661 key_getsizes_ah(
5662 const struct auth_hash *ah,
5663 int alg,
5664 u_int16_t* min,
5665 u_int16_t* max)
5666 {
5667 *min = *max = ah->keysize;
5668 if (ah->keysize == 0) {
5669 /*
5670 * Transform takes arbitrary key size but algorithm
5671 * key size is restricted. Enforce this here.
5672 */
5673 switch (alg) {
5674 case SADB_X_AALG_MD5: *min = *max = 16; break;
5675 case SADB_X_AALG_SHA: *min = *max = 20; break;
5676 case SADB_X_AALG_NULL: *min = 1; *max = 256; break;
5677 default:
5678 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
5679 alg));
5680 break;
5681 }
5682 }
5683 }
5684
5685 /*
5686 * XXX reorder combinations by preference
5687 */
5688 static struct mbuf *
5689 key_getcomb_ah()
5690 {
5691 struct sadb_comb *comb;
5692 struct auth_hash *algo;
5693 struct mbuf *m;
5694 u_int16_t minkeysize, maxkeysize;
5695 int i;
5696 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5697
5698 m = NULL;
5699 for (i = 1; i <= SADB_AALG_MAX; i++) {
5700 #if 1
5701 /* we prefer HMAC algorithms, not old algorithms */
5702 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5703 continue;
5704 #endif
5705 algo = ah_algorithm_lookup(i);
5706 if (!algo)
5707 continue;
5708 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5709 /* discard algorithms with key size smaller than system min */
5710 if (_BITS(minkeysize) < ipsec_ah_keymin)
5711 continue;
5712
5713 if (!m) {
5714 IPSEC_ASSERT(l <= MLEN,
5715 ("key_getcomb_ah: l=%u > MLEN=%lu",
5716 l, (u_long) MLEN));
5717 MGET(m, M_DONTWAIT, MT_DATA);
5718 if (m) {
5719 M_ALIGN(m, l);
5720 m->m_len = l;
5721 m->m_next = NULL;
5722 }
5723 } else
5724 M_PREPEND(m, l, M_DONTWAIT);
5725 if (!m)
5726 return NULL;
5727
5728 comb = mtod(m, struct sadb_comb *);
5729 bzero(comb, sizeof(*comb));
5730 key_getcomb_setlifetime(comb);
5731 comb->sadb_comb_auth = i;
5732 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5733 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5734 }
5735
5736 return m;
5737 }
5738
5739 /*
5740 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
5741 * XXX reorder combinations by preference
5742 */
5743 static struct mbuf *
5744 key_getcomb_ipcomp()
5745 {
5746 struct sadb_comb *comb;
5747 struct comp_algo *algo;
5748 struct mbuf *m;
5749 int i;
5750 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5751
5752 m = NULL;
5753 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5754 algo = ipcomp_algorithm_lookup(i);
5755 if (!algo)
5756 continue;
5757
5758 if (!m) {
5759 IPSEC_ASSERT(l <= MLEN,
5760 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
5761 l, (u_long) MLEN));
5762 MGET(m, M_DONTWAIT, MT_DATA);
5763 if (m) {
5764 M_ALIGN(m, l);
5765 m->m_len = l;
5766 m->m_next = NULL;
5767 }
5768 } else
5769 M_PREPEND(m, l, M_DONTWAIT);
5770 if (!m)
5771 return NULL;
5772
5773 comb = mtod(m, struct sadb_comb *);
5774 bzero(comb, sizeof(*comb));
5775 key_getcomb_setlifetime(comb);
5776 comb->sadb_comb_encrypt = i;
5777 /* what should we set into sadb_comb_*_{min,max}bits? */
5778 }
5779
5780 return m;
5781 }
5782
5783 /*
5784 * XXX no way to pass mode (transport/tunnel) to userland
5785 * XXX replay checking?
5786 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5787 */
5788 static struct mbuf *
5789 key_getprop(saidx)
5790 const struct secasindex *saidx;
5791 {
5792 struct sadb_prop *prop;
5793 struct mbuf *m, *n;
5794 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5795 int totlen;
5796
5797 switch (saidx->proto) {
5798 case IPPROTO_ESP:
5799 m = key_getcomb_esp();
5800 break;
5801 case IPPROTO_AH:
5802 m = key_getcomb_ah();
5803 break;
5804 case IPPROTO_IPCOMP:
5805 m = key_getcomb_ipcomp();
5806 break;
5807 default:
5808 return NULL;
5809 }
5810
5811 if (!m)
5812 return NULL;
5813 M_PREPEND(m, l, M_DONTWAIT);
5814 if (!m)
5815 return NULL;
5816
5817 totlen = 0;
5818 for (n = m; n; n = n->m_next)
5819 totlen += n->m_len;
5820
5821 prop = mtod(m, struct sadb_prop *);
5822 bzero(prop, sizeof(*prop));
5823 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5824 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5825 prop->sadb_prop_replay = 32; /* XXX */
5826
5827 return m;
5828 }
5829
5830 /*
5831 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5832 * send
5833 * <base, SA, address(SD), (address(P)), x_policy,
5834 * (identity(SD),) (sensitivity,) proposal>
5835 * to KMD, and expect to receive
5836 * <base> with SADB_ACQUIRE if error occurred,
5837 * or
5838 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
5839 * from KMD by PF_KEY.
5840 *
5841 * XXX x_policy is outside of RFC2367 (KAME extension).
5842 * XXX sensitivity is not supported.
5843 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5844 * see comment for key_getcomb_ipcomp().
5845 *
5846 * OUT:
5847 * 0 : succeed
5848 * others: error number
5849 */
5850 static int
5851 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5852 {
5853 struct mbuf *result = NULL, *m;
5854 #ifndef IPSEC_NONBLOCK_ACQUIRE
5855 struct secacq *newacq;
5856 #endif
5857 u_int8_t satype;
5858 int error = -1;
5859 u_int32_t seq;
5860
5861 /* sanity check */
5862 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
5863 satype = key_proto2satype(saidx->proto);
5864 IPSEC_ASSERT(satype != 0,
5865 ("key_acquire: null satype, protocol %u", saidx->proto));
5866
5867 #ifndef IPSEC_NONBLOCK_ACQUIRE
5868 /*
5869 * We never do anything about acquirng SA. There is anather
5870 * solution that kernel blocks to send SADB_ACQUIRE message until
5871 * getting something message from IKEd. In later case, to be
5872 * managed with ACQUIRING list.
5873 */
5874 /* Get an entry to check whether sending message or not. */
5875 if ((newacq = key_getacq(saidx)) != NULL) {
5876 if (key_blockacq_count < newacq->count) {
5877 /* reset counter and do send message. */
5878 newacq->count = 0;
5879 } else {
5880 /* increment counter and do nothing. */
5881 newacq->count++;
5882 return 0;
5883 }
5884 } else {
5885 /* make new entry for blocking to send SADB_ACQUIRE. */
5886 if ((newacq = key_newacq(saidx)) == NULL)
5887 return ENOBUFS;
5888
5889 /* add to acqtree */
5890 LIST_INSERT_HEAD(&acqtree, newacq, chain);
5891 }
5892 #endif
5893
5894
5895 #ifndef IPSEC_NONBLOCK_ACQUIRE
5896 seq = newacq->seq;
5897 #else
5898 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
5899 #endif
5900 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5901 if (!m) {
5902 error = ENOBUFS;
5903 goto fail;
5904 }
5905 result = m;
5906
5907 /* set sadb_address for saidx's. */
5908 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5909 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5910 if (!m) {
5911 error = ENOBUFS;
5912 goto fail;
5913 }
5914 m_cat(result, m);
5915
5916 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5917 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5918 if (!m) {
5919 error = ENOBUFS;
5920 goto fail;
5921 }
5922 m_cat(result, m);
5923
5924 /* XXX proxy address (optional) */
5925
5926 /* set sadb_x_policy */
5927 if (sp) {
5928 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5929 if (!m) {
5930 error = ENOBUFS;
5931 goto fail;
5932 }
5933 m_cat(result, m);
5934 }
5935
5936 /* XXX identity (optional) */
5937 #if 0
5938 if (idexttype && fqdn) {
5939 /* create identity extension (FQDN) */
5940 struct sadb_ident *id;
5941 int fqdnlen;
5942
5943 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
5944 id = (struct sadb_ident *)p;
5945 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5946 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5947 id->sadb_ident_exttype = idexttype;
5948 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5949 bcopy(fqdn, id + 1, fqdnlen);
5950 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5951 }
5952
5953 if (idexttype) {
5954 /* create identity extension (USERFQDN) */
5955 struct sadb_ident *id;
5956 int userfqdnlen;
5957
5958 if (userfqdn) {
5959 /* +1 for terminating-NUL */
5960 userfqdnlen = strlen(userfqdn) + 1;
5961 } else
5962 userfqdnlen = 0;
5963 id = (struct sadb_ident *)p;
5964 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5965 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5966 id->sadb_ident_exttype = idexttype;
5967 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5968 /* XXX is it correct? */
5969 if (curproc && curproc->p_cred)
5970 id->sadb_ident_id = curproc->p_cred->p_ruid;
5971 if (userfqdn && userfqdnlen)
5972 bcopy(userfqdn, id + 1, userfqdnlen);
5973 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5974 }
5975 #endif
5976
5977 /* XXX sensitivity (optional) */
5978
5979 /* create proposal/combination extension */
5980 m = key_getprop(saidx);
5981 #if 0
5982 /*
5983 * spec conformant: always attach proposal/combination extension,
5984 * the problem is that we have no way to attach it for ipcomp,
5985 * due to the way sadb_comb is declared in RFC2367.
5986 */
5987 if (!m) {
5988 error = ENOBUFS;
5989 goto fail;
5990 }
5991 m_cat(result, m);
5992 #else
5993 /*
5994 * outside of spec; make proposal/combination extension optional.
5995 */
5996 if (m)
5997 m_cat(result, m);
5998 #endif
5999
6000 if ((result->m_flags & M_PKTHDR) == 0) {
6001 error = EINVAL;
6002 goto fail;
6003 }
6004
6005 if (result->m_len < sizeof(struct sadb_msg)) {
6006 result = m_pullup(result, sizeof(struct sadb_msg));
6007 if (result == NULL) {
6008 error = ENOBUFS;
6009 goto fail;
6010 }
6011 }
6012
6013 result->m_pkthdr.len = 0;
6014 for (m = result; m; m = m->m_next)
6015 result->m_pkthdr.len += m->m_len;
6016
6017 mtod(result, struct sadb_msg *)->sadb_msg_len =
6018 PFKEY_UNIT64(result->m_pkthdr.len);
6019
6020 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6021
6022 fail:
6023 if (result)
6024 m_freem(result);
6025 return error;
6026 }
6027
6028 #ifndef IPSEC_NONBLOCK_ACQUIRE
6029 static struct secacq *
6030 key_newacq(const struct secasindex *saidx)
6031 {
6032 struct secacq *newacq;
6033
6034 /* get new entry */
6035 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6036 if (newacq == NULL) {
6037 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6038 return NULL;
6039 }
6040 bzero(newacq, sizeof(*newacq));
6041
6042 /* copy secindex */
6043 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6044 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6045 newacq->created = time_second;
6046 newacq->count = 0;
6047
6048 return newacq;
6049 }
6050
6051 static struct secacq *
6052 key_getacq(const struct secasindex *saidx)
6053 {
6054 struct secacq *acq;
6055
6056 LIST_FOREACH(acq, &acqtree, chain) {
6057 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6058 return acq;
6059 }
6060
6061 return NULL;
6062 }
6063
6064 static struct secacq *
6065 key_getacqbyseq(seq)
6066 u_int32_t seq;
6067 {
6068 struct secacq *acq;
6069
6070 LIST_FOREACH(acq, &acqtree, chain) {
6071 if (acq->seq == seq)
6072 return acq;
6073 }
6074
6075 return NULL;
6076 }
6077 #endif
6078
6079 static struct secspacq *
6080 key_newspacq(spidx)
6081 struct secpolicyindex *spidx;
6082 {
6083 struct secspacq *acq;
6084
6085 /* get new entry */
6086 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6087 if (acq == NULL) {
6088 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6089 return NULL;
6090 }
6091 bzero(acq, sizeof(*acq));
6092
6093 /* copy secindex */
6094 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6095 acq->created = time_second;
6096 acq->count = 0;
6097
6098 return acq;
6099 }
6100
6101 static struct secspacq *
6102 key_getspacq(spidx)
6103 struct secpolicyindex *spidx;
6104 {
6105 struct secspacq *acq;
6106
6107 LIST_FOREACH(acq, &spacqtree, chain) {
6108 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6109 return acq;
6110 }
6111
6112 return NULL;
6113 }
6114
6115 /*
6116 * SADB_ACQUIRE processing,
6117 * in first situation, is receiving
6118 * <base>
6119 * from the ikmpd, and clear sequence of its secasvar entry.
6120 *
6121 * In second situation, is receiving
6122 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6123 * from a user land process, and return
6124 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6125 * to the socket.
6126 *
6127 * m will always be freed.
6128 */
6129 static int
6130 key_acquire2(so, m, mhp)
6131 struct socket *so;
6132 struct mbuf *m;
6133 const struct sadb_msghdr *mhp;
6134 {
6135 const struct sadb_address *src0, *dst0;
6136 struct secasindex saidx;
6137 struct secashead *sah;
6138 u_int16_t proto;
6139 int error;
6140
6141 /* sanity check */
6142 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6143 panic("key_acquire2: NULL pointer is passed.\n");
6144
6145 /*
6146 * Error message from KMd.
6147 * We assume that if error was occurred in IKEd, the length of PFKEY
6148 * message is equal to the size of sadb_msg structure.
6149 * We do not raise error even if error occurred in this function.
6150 */
6151 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6152 #ifndef IPSEC_NONBLOCK_ACQUIRE
6153 struct secacq *acq;
6154
6155 /* check sequence number */
6156 if (mhp->msg->sadb_msg_seq == 0) {
6157 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6158 m_freem(m);
6159 return 0;
6160 }
6161
6162 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6163 /*
6164 * the specified larval SA is already gone, or we got
6165 * a bogus sequence number. we can silently ignore it.
6166 */
6167 m_freem(m);
6168 return 0;
6169 }
6170
6171 /* reset acq counter in order to deletion by timehander. */
6172 acq->created = time_second;
6173 acq->count = 0;
6174 #endif
6175 m_freem(m);
6176 return 0;
6177 }
6178
6179 /*
6180 * This message is from user land.
6181 */
6182
6183 /* map satype to proto */
6184 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6185 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6186 return key_senderror(so, m, EINVAL);
6187 }
6188
6189 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6190 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6191 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6192 /* error */
6193 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6194 return key_senderror(so, m, EINVAL);
6195 }
6196 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6197 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6198 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6199 /* error */
6200 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6201 return key_senderror(so, m, EINVAL);
6202 }
6203
6204 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6205 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6206
6207 /* XXX boundary check against sa_len */
6208 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6209
6210 /* get a SA index */
6211 LIST_FOREACH(sah, &sahtree, chain) {
6212 if (sah->state == SADB_SASTATE_DEAD)
6213 continue;
6214 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6215 break;
6216 }
6217 if (sah != NULL) {
6218 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6219 return key_senderror(so, m, EEXIST);
6220 }
6221
6222 error = key_acquire(&saidx, NULL);
6223 if (error != 0) {
6224 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6225 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6226 return key_senderror(so, m, error);
6227 }
6228
6229 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6230 }
6231
6232 /*
6233 * SADB_REGISTER processing.
6234 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6235 * receive
6236 * <base>
6237 * from the ikmpd, and register a socket to send PF_KEY messages,
6238 * and send
6239 * <base, supported>
6240 * to KMD by PF_KEY.
6241 * If socket is detached, must free from regnode.
6242 *
6243 * m will always be freed.
6244 */
6245 static int
6246 key_register(so, m, mhp)
6247 struct socket *so;
6248 struct mbuf *m;
6249 const struct sadb_msghdr *mhp;
6250 {
6251 struct secreg *reg, *newreg = 0;
6252
6253 /* sanity check */
6254 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6255 panic("key_register: NULL pointer is passed.\n");
6256
6257 /* check for invalid register message */
6258 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6259 return key_senderror(so, m, EINVAL);
6260
6261 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6262 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6263 goto setmsg;
6264
6265 /* check whether existing or not */
6266 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6267 if (reg->so == so) {
6268 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6269 return key_senderror(so, m, EEXIST);
6270 }
6271 }
6272
6273 /* create regnode */
6274 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6275 if (newreg == NULL) {
6276 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6277 return key_senderror(so, m, ENOBUFS);
6278 }
6279 bzero((caddr_t)newreg, sizeof(*newreg));
6280
6281 newreg->so = so;
6282 ((struct keycb *)sotorawcb(so))->kp_registered++;
6283
6284 /* add regnode to regtree. */
6285 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6286
6287 setmsg:
6288 {
6289 struct mbuf *n;
6290 struct sadb_msg *newmsg;
6291 struct sadb_supported *sup;
6292 u_int len, alen, elen;
6293 int off;
6294 int i;
6295 struct sadb_alg *alg;
6296
6297 /* create new sadb_msg to reply. */
6298 alen = 0;
6299 for (i = 1; i <= SADB_AALG_MAX; i++) {
6300 if (ah_algorithm_lookup(i))
6301 alen += sizeof(struct sadb_alg);
6302 }
6303 if (alen)
6304 alen += sizeof(struct sadb_supported);
6305 elen = 0;
6306 for (i = 1; i <= SADB_EALG_MAX; i++) {
6307 if (esp_algorithm_lookup(i))
6308 elen += sizeof(struct sadb_alg);
6309 }
6310 if (elen)
6311 elen += sizeof(struct sadb_supported);
6312
6313 len = sizeof(struct sadb_msg) + alen + elen;
6314
6315 if (len > MCLBYTES)
6316 return key_senderror(so, m, ENOBUFS);
6317
6318 MGETHDR(n, M_DONTWAIT, MT_DATA);
6319 if (len > MHLEN) {
6320 MCLGET(n, M_DONTWAIT);
6321 if ((n->m_flags & M_EXT) == 0) {
6322 m_freem(n);
6323 n = NULL;
6324 }
6325 }
6326 if (!n)
6327 return key_senderror(so, m, ENOBUFS);
6328
6329 n->m_pkthdr.len = n->m_len = len;
6330 n->m_next = NULL;
6331 off = 0;
6332
6333 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6334 newmsg = mtod(n, struct sadb_msg *);
6335 newmsg->sadb_msg_errno = 0;
6336 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6337 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6338
6339 /* for authentication algorithm */
6340 if (alen) {
6341 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6342 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6343 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6344 off += PFKEY_ALIGN8(sizeof(*sup));
6345
6346 for (i = 1; i <= SADB_AALG_MAX; i++) {
6347 struct auth_hash *aalgo;
6348 u_int16_t minkeysize, maxkeysize;
6349
6350 aalgo = ah_algorithm_lookup(i);
6351 if (!aalgo)
6352 continue;
6353 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6354 alg->sadb_alg_id = i;
6355 alg->sadb_alg_ivlen = 0;
6356 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6357 alg->sadb_alg_minbits = _BITS(minkeysize);
6358 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6359 off += PFKEY_ALIGN8(sizeof(*alg));
6360 }
6361 }
6362
6363 /* for encryption algorithm */
6364 if (elen) {
6365 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6366 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6367 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6368 off += PFKEY_ALIGN8(sizeof(*sup));
6369
6370 for (i = 1; i <= SADB_EALG_MAX; i++) {
6371 struct enc_xform *ealgo;
6372
6373 ealgo = esp_algorithm_lookup(i);
6374 if (!ealgo)
6375 continue;
6376 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6377 alg->sadb_alg_id = i;
6378 alg->sadb_alg_ivlen = ealgo->blocksize;
6379 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6380 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6381 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6382 }
6383 }
6384
6385 #ifdef DIGAGNOSTIC
6386 if (off != len)
6387 panic("length assumption failed in key_register");
6388 #endif
6389
6390 m_freem(m);
6391 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6392 }
6393 }
6394
6395 /*
6396 * free secreg entry registered.
6397 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6398 */
6399 void
6400 key_freereg(so)
6401 struct socket *so;
6402 {
6403 struct secreg *reg;
6404 int i;
6405
6406 /* sanity check */
6407 if (so == NULL)
6408 panic("key_freereg: NULL pointer is passed.\n");
6409
6410 /*
6411 * check whether existing or not.
6412 * check all type of SA, because there is a potential that
6413 * one socket is registered to multiple type of SA.
6414 */
6415 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6416 LIST_FOREACH(reg, ®tree[i], chain) {
6417 if (reg->so == so
6418 && __LIST_CHAINED(reg)) {
6419 LIST_REMOVE(reg, chain);
6420 KFREE(reg);
6421 break;
6422 }
6423 }
6424 }
6425
6426 return;
6427 }
6428
6429 /*
6430 * SADB_EXPIRE processing
6431 * send
6432 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6433 * to KMD by PF_KEY.
6434 * NOTE: We send only soft lifetime extension.
6435 *
6436 * OUT: 0 : succeed
6437 * others : error number
6438 */
6439 static int
6440 key_expire(sav)
6441 struct secasvar *sav;
6442 {
6443 int s;
6444 int satype;
6445 struct mbuf *result = NULL, *m;
6446 int len;
6447 int error = -1;
6448 struct sadb_lifetime *lt;
6449
6450 /* XXX: Why do we lock ? */
6451 s = splsoftnet(); /*called from softclock()*/
6452
6453 /* sanity check */
6454 if (sav == NULL)
6455 panic("key_expire: NULL pointer is passed.\n");
6456 if (sav->sah == NULL)
6457 panic("key_expire: Why was SA index in SA NULL.\n");
6458 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6459 panic("key_expire: invalid proto is passed.\n");
6460
6461 /* set msg header */
6462 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6463 if (!m) {
6464 error = ENOBUFS;
6465 goto fail;
6466 }
6467 result = m;
6468
6469 /* create SA extension */
6470 m = key_setsadbsa(sav);
6471 if (!m) {
6472 error = ENOBUFS;
6473 goto fail;
6474 }
6475 m_cat(result, m);
6476
6477 /* create SA extension */
6478 m = key_setsadbxsa2(sav->sah->saidx.mode,
6479 sav->replay ? sav->replay->count : 0,
6480 sav->sah->saidx.reqid);
6481 if (!m) {
6482 error = ENOBUFS;
6483 goto fail;
6484 }
6485 m_cat(result, m);
6486
6487 /* create lifetime extension (current and soft) */
6488 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6489 m = key_alloc_mbuf(len);
6490 if (!m || m->m_next) { /*XXX*/
6491 if (m)
6492 m_freem(m);
6493 error = ENOBUFS;
6494 goto fail;
6495 }
6496 bzero(mtod(m, caddr_t), len);
6497 lt = mtod(m, struct sadb_lifetime *);
6498 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6499 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6500 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6501 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6502 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6503 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6504 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6505 bcopy(sav->lft_s, lt, sizeof(*lt));
6506 m_cat(result, m);
6507
6508 /* set sadb_address for source */
6509 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6510 &sav->sah->saidx.src.sa,
6511 FULLMASK, IPSEC_ULPROTO_ANY);
6512 if (!m) {
6513 error = ENOBUFS;
6514 goto fail;
6515 }
6516 m_cat(result, m);
6517
6518 /* set sadb_address for destination */
6519 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6520 &sav->sah->saidx.dst.sa,
6521 FULLMASK, IPSEC_ULPROTO_ANY);
6522 if (!m) {
6523 error = ENOBUFS;
6524 goto fail;
6525 }
6526 m_cat(result, m);
6527
6528 if ((result->m_flags & M_PKTHDR) == 0) {
6529 error = EINVAL;
6530 goto fail;
6531 }
6532
6533 if (result->m_len < sizeof(struct sadb_msg)) {
6534 result = m_pullup(result, sizeof(struct sadb_msg));
6535 if (result == NULL) {
6536 error = ENOBUFS;
6537 goto fail;
6538 }
6539 }
6540
6541 result->m_pkthdr.len = 0;
6542 for (m = result; m; m = m->m_next)
6543 result->m_pkthdr.len += m->m_len;
6544
6545 mtod(result, struct sadb_msg *)->sadb_msg_len =
6546 PFKEY_UNIT64(result->m_pkthdr.len);
6547
6548 splx(s);
6549 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6550
6551 fail:
6552 if (result)
6553 m_freem(result);
6554 splx(s);
6555 return error;
6556 }
6557
6558 /*
6559 * SADB_FLUSH processing
6560 * receive
6561 * <base>
6562 * from the ikmpd, and free all entries in secastree.
6563 * and send,
6564 * <base>
6565 * to the ikmpd.
6566 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6567 *
6568 * m will always be freed.
6569 */
6570 static int
6571 key_flush(so, m, mhp)
6572 struct socket *so;
6573 struct mbuf *m;
6574 const struct sadb_msghdr *mhp;
6575 {
6576 struct sadb_msg *newmsg;
6577 struct secashead *sah, *nextsah;
6578 struct secasvar *sav, *nextsav;
6579 u_int16_t proto;
6580 u_int8_t state;
6581 u_int stateidx;
6582
6583 /* sanity check */
6584 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6585 panic("key_flush: NULL pointer is passed.\n");
6586
6587 /* map satype to proto */
6588 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6589 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6590 return key_senderror(so, m, EINVAL);
6591 }
6592
6593 /* no SATYPE specified, i.e. flushing all SA. */
6594 for (sah = LIST_FIRST(&sahtree);
6595 sah != NULL;
6596 sah = nextsah) {
6597 nextsah = LIST_NEXT(sah, chain);
6598
6599 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6600 && proto != sah->saidx.proto)
6601 continue;
6602
6603 for (stateidx = 0;
6604 stateidx < _ARRAYLEN(saorder_state_alive);
6605 stateidx++) {
6606 state = saorder_state_any[stateidx];
6607 for (sav = LIST_FIRST(&sah->savtree[state]);
6608 sav != NULL;
6609 sav = nextsav) {
6610
6611 nextsav = LIST_NEXT(sav, chain);
6612
6613 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6614 KEY_FREESAV(&sav);
6615 }
6616 }
6617
6618 sah->state = SADB_SASTATE_DEAD;
6619 }
6620
6621 if (m->m_len < sizeof(struct sadb_msg) ||
6622 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6623 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
6624 return key_senderror(so, m, ENOBUFS);
6625 }
6626
6627 if (m->m_next)
6628 m_freem(m->m_next);
6629 m->m_next = NULL;
6630 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6631 newmsg = mtod(m, struct sadb_msg *);
6632 newmsg->sadb_msg_errno = 0;
6633 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6634
6635 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6636 }
6637
6638
6639 static struct mbuf *
6640 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6641 {
6642 struct secashead *sah;
6643 struct secasvar *sav;
6644 u_int16_t proto;
6645 u_int stateidx;
6646 u_int8_t satype;
6647 u_int8_t state;
6648 int cnt;
6649 struct mbuf *m, *n, *prev;
6650 int totlen;
6651
6652 *lenp = 0;
6653
6654 /* map satype to proto */
6655 if ((proto = key_satype2proto(req_satype)) == 0) {
6656 *errorp = EINVAL;
6657 return (NULL);
6658 }
6659
6660 /* count sav entries to be sent to userland. */
6661 cnt = 0;
6662 LIST_FOREACH(sah, &sahtree, chain) {
6663 if (req_satype != SADB_SATYPE_UNSPEC &&
6664 proto != sah->saidx.proto)
6665 continue;
6666
6667 for (stateidx = 0;
6668 stateidx < _ARRAYLEN(saorder_state_any);
6669 stateidx++) {
6670 state = saorder_state_any[stateidx];
6671 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6672 cnt++;
6673 }
6674 }
6675 }
6676
6677 if (cnt == 0) {
6678 *errorp = ENOENT;
6679 return (NULL);
6680 }
6681
6682 /* send this to the userland, one at a time. */
6683 m = NULL;
6684 prev = m;
6685 LIST_FOREACH(sah, &sahtree, chain) {
6686 if (req_satype != SADB_SATYPE_UNSPEC &&
6687 proto != sah->saidx.proto)
6688 continue;
6689
6690 /* map proto to satype */
6691 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6692 m_freem(m);
6693 *errorp = EINVAL;
6694 return (NULL);
6695 }
6696
6697 for (stateidx = 0;
6698 stateidx < _ARRAYLEN(saorder_state_any);
6699 stateidx++) {
6700 state = saorder_state_any[stateidx];
6701 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6702 n = key_setdumpsa(sav, SADB_DUMP, satype,
6703 --cnt, pid);
6704 if (!n) {
6705 m_freem(m);
6706 *errorp = ENOBUFS;
6707 return (NULL);
6708 }
6709
6710 totlen += n->m_pkthdr.len;
6711 if (!m)
6712 m = n;
6713 else
6714 prev->m_nextpkt = n;
6715 prev = n;
6716 }
6717 }
6718 }
6719
6720 if (!m) {
6721 *errorp = EINVAL;
6722 return (NULL);
6723 }
6724
6725 if ((m->m_flags & M_PKTHDR) != 0) {
6726 m->m_pkthdr.len = 0;
6727 for (n = m; n; n = n->m_next)
6728 m->m_pkthdr.len += n->m_len;
6729 }
6730
6731 *errorp = 0;
6732 return (m);
6733 }
6734
6735 /*
6736 * SADB_DUMP processing
6737 * dump all entries including status of DEAD in SAD.
6738 * receive
6739 * <base>
6740 * from the ikmpd, and dump all secasvar leaves
6741 * and send,
6742 * <base> .....
6743 * to the ikmpd.
6744 *
6745 * m will always be freed.
6746 */
6747 static int
6748 key_dump(so, m0, mhp)
6749 struct socket *so;
6750 struct mbuf *m0;
6751 const struct sadb_msghdr *mhp;
6752 {
6753 u_int16_t proto;
6754 u_int8_t satype;
6755 struct mbuf *n;
6756 int s;
6757 int error, len, ok;
6758
6759 /* sanity check */
6760 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
6761 panic("key_dump: NULL pointer is passed.\n");
6762
6763 /* map satype to proto */
6764 satype = mhp->msg->sadb_msg_satype;
6765 if ((proto = key_satype2proto(satype)) == 0) {
6766 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
6767 return key_senderror(so, m0, EINVAL);
6768 }
6769
6770 /*
6771 * If the requestor has insufficient socket-buffer space
6772 * for the entire chain, nobody gets any response to the DUMP.
6773 * XXX For now, only the requestor ever gets anything.
6774 * Moreover, if the requestor has any space at all, they receive
6775 * the entire chain, otherwise the request is refused with ENOBUFS.
6776 */
6777 if (sbspace(&so->so_rcv) <= 0) {
6778 return key_senderror(so, m0, ENOBUFS);
6779 }
6780
6781 s = splsoftnet();
6782 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
6783 splx(s);
6784
6785 if (n == NULL) {
6786 return key_senderror(so, m0, ENOENT);
6787 }
6788 pfkeystat.in_total++;
6789 pfkeystat.in_bytes += len;
6790
6791 /*
6792 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
6793 * The requestor receives either the entire chain, or an
6794 * error message with ENOBUFS.
6795 *
6796 * sbappendaddrchain() takes the chain of entries, one
6797 * packet-record per SPD entry, prepends the key_src sockaddr
6798 * to each packet-record, links the sockaddr mbufs into a new
6799 * list of records, then appends the entire resulting
6800 * list to the requesting socket.
6801 */
6802 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
6803 n, SB_PRIO_ONESHOT_OVERFLOW);
6804
6805 if (!ok) {
6806 pfkeystat.in_nomem++;
6807 m_freem(n);
6808 return key_senderror(so, m0, ENOBUFS);
6809 }
6810
6811 m_freem(m0);
6812 return 0;
6813 }
6814
6815 /*
6816 * SADB_X_PROMISC processing
6817 *
6818 * m will always be freed.
6819 */
6820 static int
6821 key_promisc(so, m, mhp)
6822 struct socket *so;
6823 struct mbuf *m;
6824 const struct sadb_msghdr *mhp;
6825 {
6826 int olen;
6827
6828 /* sanity check */
6829 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6830 panic("key_promisc: NULL pointer is passed.\n");
6831
6832 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6833
6834 if (olen < sizeof(struct sadb_msg)) {
6835 #if 1
6836 return key_senderror(so, m, EINVAL);
6837 #else
6838 m_freem(m);
6839 return 0;
6840 #endif
6841 } else if (olen == sizeof(struct sadb_msg)) {
6842 /* enable/disable promisc mode */
6843 struct keycb *kp;
6844
6845 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6846 return key_senderror(so, m, EINVAL);
6847 mhp->msg->sadb_msg_errno = 0;
6848 switch (mhp->msg->sadb_msg_satype) {
6849 case 0:
6850 case 1:
6851 kp->kp_promisc = mhp->msg->sadb_msg_satype;
6852 break;
6853 default:
6854 return key_senderror(so, m, EINVAL);
6855 }
6856
6857 /* send the original message back to everyone */
6858 mhp->msg->sadb_msg_errno = 0;
6859 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6860 } else {
6861 /* send packet as is */
6862
6863 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6864
6865 /* TODO: if sadb_msg_seq is specified, send to specific pid */
6866 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6867 }
6868 }
6869
6870 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6871 const struct sadb_msghdr *)) = {
6872 NULL, /* SADB_RESERVED */
6873 key_getspi, /* SADB_GETSPI */
6874 key_update, /* SADB_UPDATE */
6875 key_add, /* SADB_ADD */
6876 key_delete, /* SADB_DELETE */
6877 key_get, /* SADB_GET */
6878 key_acquire2, /* SADB_ACQUIRE */
6879 key_register, /* SADB_REGISTER */
6880 NULL, /* SADB_EXPIRE */
6881 key_flush, /* SADB_FLUSH */
6882 key_dump, /* SADB_DUMP */
6883 key_promisc, /* SADB_X_PROMISC */
6884 NULL, /* SADB_X_PCHANGE */
6885 key_spdadd, /* SADB_X_SPDUPDATE */
6886 key_spdadd, /* SADB_X_SPDADD */
6887 key_spddelete, /* SADB_X_SPDDELETE */
6888 key_spdget, /* SADB_X_SPDGET */
6889 NULL, /* SADB_X_SPDACQUIRE */
6890 key_spddump, /* SADB_X_SPDDUMP */
6891 key_spdflush, /* SADB_X_SPDFLUSH */
6892 key_spdadd, /* SADB_X_SPDSETIDX */
6893 NULL, /* SADB_X_SPDEXPIRE */
6894 key_spddelete2, /* SADB_X_SPDDELETE2 */
6895 };
6896
6897 /*
6898 * parse sadb_msg buffer to process PFKEYv2,
6899 * and create a data to response if needed.
6900 * I think to be dealed with mbuf directly.
6901 * IN:
6902 * msgp : pointer to pointer to a received buffer pulluped.
6903 * This is rewrited to response.
6904 * so : pointer to socket.
6905 * OUT:
6906 * length for buffer to send to user process.
6907 */
6908 int
6909 key_parse(m, so)
6910 struct mbuf *m;
6911 struct socket *so;
6912 {
6913 struct sadb_msg *msg;
6914 struct sadb_msghdr mh;
6915 u_int orglen;
6916 int error;
6917 int target;
6918
6919 /* sanity check */
6920 if (m == NULL || so == NULL)
6921 panic("key_parse: NULL pointer is passed.\n");
6922
6923 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
6924 KEYDEBUG(KEYDEBUG_KEY_DUMP,
6925 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
6926 kdebug_sadb(msg));
6927 #endif
6928
6929 if (m->m_len < sizeof(struct sadb_msg)) {
6930 m = m_pullup(m, sizeof(struct sadb_msg));
6931 if (!m)
6932 return ENOBUFS;
6933 }
6934 msg = mtod(m, struct sadb_msg *);
6935 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6936 target = KEY_SENDUP_ONE;
6937
6938 if ((m->m_flags & M_PKTHDR) == 0 ||
6939 m->m_pkthdr.len != m->m_pkthdr.len) {
6940 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
6941 pfkeystat.out_invlen++;
6942 error = EINVAL;
6943 goto senderror;
6944 }
6945
6946 if (msg->sadb_msg_version != PF_KEY_V2) {
6947 ipseclog((LOG_DEBUG,
6948 "key_parse: PF_KEY version %u is mismatched.\n",
6949 msg->sadb_msg_version));
6950 pfkeystat.out_invver++;
6951 error = EINVAL;
6952 goto senderror;
6953 }
6954
6955 if (msg->sadb_msg_type > SADB_MAX) {
6956 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
6957 msg->sadb_msg_type));
6958 pfkeystat.out_invmsgtype++;
6959 error = EINVAL;
6960 goto senderror;
6961 }
6962
6963 /* for old-fashioned code - should be nuked */
6964 if (m->m_pkthdr.len > MCLBYTES) {
6965 m_freem(m);
6966 return ENOBUFS;
6967 }
6968 if (m->m_next) {
6969 struct mbuf *n;
6970
6971 MGETHDR(n, M_DONTWAIT, MT_DATA);
6972 if (n && m->m_pkthdr.len > MHLEN) {
6973 MCLGET(n, M_DONTWAIT);
6974 if ((n->m_flags & M_EXT) == 0) {
6975 m_free(n);
6976 n = NULL;
6977 }
6978 }
6979 if (!n) {
6980 m_freem(m);
6981 return ENOBUFS;
6982 }
6983 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6984 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6985 n->m_next = NULL;
6986 m_freem(m);
6987 m = n;
6988 }
6989
6990 /* align the mbuf chain so that extensions are in contiguous region. */
6991 error = key_align(m, &mh);
6992 if (error)
6993 return error;
6994
6995 if (m->m_next) { /*XXX*/
6996 m_freem(m);
6997 return ENOBUFS;
6998 }
6999
7000 msg = mh.msg;
7001
7002 /* check SA type */
7003 switch (msg->sadb_msg_satype) {
7004 case SADB_SATYPE_UNSPEC:
7005 switch (msg->sadb_msg_type) {
7006 case SADB_GETSPI:
7007 case SADB_UPDATE:
7008 case SADB_ADD:
7009 case SADB_DELETE:
7010 case SADB_GET:
7011 case SADB_ACQUIRE:
7012 case SADB_EXPIRE:
7013 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7014 "when msg type=%u.\n", msg->sadb_msg_type));
7015 pfkeystat.out_invsatype++;
7016 error = EINVAL;
7017 goto senderror;
7018 }
7019 break;
7020 case SADB_SATYPE_AH:
7021 case SADB_SATYPE_ESP:
7022 case SADB_X_SATYPE_IPCOMP:
7023 case SADB_X_SATYPE_TCPSIGNATURE:
7024 switch (msg->sadb_msg_type) {
7025 case SADB_X_SPDADD:
7026 case SADB_X_SPDDELETE:
7027 case SADB_X_SPDGET:
7028 case SADB_X_SPDDUMP:
7029 case SADB_X_SPDFLUSH:
7030 case SADB_X_SPDSETIDX:
7031 case SADB_X_SPDUPDATE:
7032 case SADB_X_SPDDELETE2:
7033 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7034 msg->sadb_msg_type));
7035 pfkeystat.out_invsatype++;
7036 error = EINVAL;
7037 goto senderror;
7038 }
7039 break;
7040 case SADB_SATYPE_RSVP:
7041 case SADB_SATYPE_OSPFV2:
7042 case SADB_SATYPE_RIPV2:
7043 case SADB_SATYPE_MIP:
7044 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7045 msg->sadb_msg_satype));
7046 pfkeystat.out_invsatype++;
7047 error = EOPNOTSUPP;
7048 goto senderror;
7049 case 1: /* XXX: What does it do? */
7050 if (msg->sadb_msg_type == SADB_X_PROMISC)
7051 break;
7052 /*FALLTHROUGH*/
7053 default:
7054 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7055 msg->sadb_msg_satype));
7056 pfkeystat.out_invsatype++;
7057 error = EINVAL;
7058 goto senderror;
7059 }
7060
7061 /* check field of upper layer protocol and address family */
7062 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7063 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7064 struct sadb_address *src0, *dst0;
7065 u_int plen;
7066
7067 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7068 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7069
7070 /* check upper layer protocol */
7071 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7072 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7073 pfkeystat.out_invaddr++;
7074 error = EINVAL;
7075 goto senderror;
7076 }
7077
7078 /* check family */
7079 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7080 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7081 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7082 pfkeystat.out_invaddr++;
7083 error = EINVAL;
7084 goto senderror;
7085 }
7086 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7087 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7088 ipseclog((LOG_DEBUG,
7089 "key_parse: address struct size mismatched.\n"));
7090 pfkeystat.out_invaddr++;
7091 error = EINVAL;
7092 goto senderror;
7093 }
7094
7095 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7096 case AF_INET:
7097 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7098 sizeof(struct sockaddr_in)) {
7099 pfkeystat.out_invaddr++;
7100 error = EINVAL;
7101 goto senderror;
7102 }
7103 break;
7104 case AF_INET6:
7105 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7106 sizeof(struct sockaddr_in6)) {
7107 pfkeystat.out_invaddr++;
7108 error = EINVAL;
7109 goto senderror;
7110 }
7111 break;
7112 default:
7113 ipseclog((LOG_DEBUG,
7114 "key_parse: unsupported address family.\n"));
7115 pfkeystat.out_invaddr++;
7116 error = EAFNOSUPPORT;
7117 goto senderror;
7118 }
7119
7120 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7121 case AF_INET:
7122 plen = sizeof(struct in_addr) << 3;
7123 break;
7124 case AF_INET6:
7125 plen = sizeof(struct in6_addr) << 3;
7126 break;
7127 default:
7128 plen = 0; /*fool gcc*/
7129 break;
7130 }
7131
7132 /* check max prefix length */
7133 if (src0->sadb_address_prefixlen > plen ||
7134 dst0->sadb_address_prefixlen > plen) {
7135 ipseclog((LOG_DEBUG,
7136 "key_parse: illegal prefixlen.\n"));
7137 pfkeystat.out_invaddr++;
7138 error = EINVAL;
7139 goto senderror;
7140 }
7141
7142 /*
7143 * prefixlen == 0 is valid because there can be a case when
7144 * all addresses are matched.
7145 */
7146 }
7147
7148 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7149 key_typesw[msg->sadb_msg_type] == NULL) {
7150 pfkeystat.out_invmsgtype++;
7151 error = EINVAL;
7152 goto senderror;
7153 }
7154
7155 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7156
7157 senderror:
7158 msg->sadb_msg_errno = error;
7159 return key_sendup_mbuf(so, m, target);
7160 }
7161
7162 static int
7163 key_senderror(so, m, code)
7164 struct socket *so;
7165 struct mbuf *m;
7166 int code;
7167 {
7168 struct sadb_msg *msg;
7169
7170 if (m->m_len < sizeof(struct sadb_msg))
7171 panic("invalid mbuf passed to key_senderror");
7172
7173 msg = mtod(m, struct sadb_msg *);
7174 msg->sadb_msg_errno = code;
7175 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7176 }
7177
7178 /*
7179 * set the pointer to each header into message buffer.
7180 * m will be freed on error.
7181 * XXX larger-than-MCLBYTES extension?
7182 */
7183 static int
7184 key_align(m, mhp)
7185 struct mbuf *m;
7186 struct sadb_msghdr *mhp;
7187 {
7188 struct mbuf *n;
7189 struct sadb_ext *ext;
7190 size_t off, end;
7191 int extlen;
7192 int toff;
7193
7194 /* sanity check */
7195 if (m == NULL || mhp == NULL)
7196 panic("key_align: NULL pointer is passed.\n");
7197 if (m->m_len < sizeof(struct sadb_msg))
7198 panic("invalid mbuf passed to key_align");
7199
7200 /* initialize */
7201 bzero(mhp, sizeof(*mhp));
7202
7203 mhp->msg = mtod(m, struct sadb_msg *);
7204 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7205
7206 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7207 extlen = end; /*just in case extlen is not updated*/
7208 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7209 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7210 if (!n) {
7211 /* m is already freed */
7212 return ENOBUFS;
7213 }
7214 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7215
7216 /* set pointer */
7217 switch (ext->sadb_ext_type) {
7218 case SADB_EXT_SA:
7219 case SADB_EXT_ADDRESS_SRC:
7220 case SADB_EXT_ADDRESS_DST:
7221 case SADB_EXT_ADDRESS_PROXY:
7222 case SADB_EXT_LIFETIME_CURRENT:
7223 case SADB_EXT_LIFETIME_HARD:
7224 case SADB_EXT_LIFETIME_SOFT:
7225 case SADB_EXT_KEY_AUTH:
7226 case SADB_EXT_KEY_ENCRYPT:
7227 case SADB_EXT_IDENTITY_SRC:
7228 case SADB_EXT_IDENTITY_DST:
7229 case SADB_EXT_SENSITIVITY:
7230 case SADB_EXT_PROPOSAL:
7231 case SADB_EXT_SUPPORTED_AUTH:
7232 case SADB_EXT_SUPPORTED_ENCRYPT:
7233 case SADB_EXT_SPIRANGE:
7234 case SADB_X_EXT_POLICY:
7235 case SADB_X_EXT_SA2:
7236 /* duplicate check */
7237 /*
7238 * XXX Are there duplication payloads of either
7239 * KEY_AUTH or KEY_ENCRYPT ?
7240 */
7241 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7242 ipseclog((LOG_DEBUG,
7243 "key_align: duplicate ext_type %u "
7244 "is passed.\n", ext->sadb_ext_type));
7245 m_freem(m);
7246 pfkeystat.out_dupext++;
7247 return EINVAL;
7248 }
7249 break;
7250 default:
7251 ipseclog((LOG_DEBUG,
7252 "key_align: invalid ext_type %u is passed.\n",
7253 ext->sadb_ext_type));
7254 m_freem(m);
7255 pfkeystat.out_invexttype++;
7256 return EINVAL;
7257 }
7258
7259 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7260
7261 if (key_validate_ext(ext, extlen)) {
7262 m_freem(m);
7263 pfkeystat.out_invlen++;
7264 return EINVAL;
7265 }
7266
7267 n = m_pulldown(m, off, extlen, &toff);
7268 if (!n) {
7269 /* m is already freed */
7270 return ENOBUFS;
7271 }
7272 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7273
7274 mhp->ext[ext->sadb_ext_type] = ext;
7275 mhp->extoff[ext->sadb_ext_type] = off;
7276 mhp->extlen[ext->sadb_ext_type] = extlen;
7277 }
7278
7279 if (off != end) {
7280 m_freem(m);
7281 pfkeystat.out_invlen++;
7282 return EINVAL;
7283 }
7284
7285 return 0;
7286 }
7287
7288 static int
7289 key_validate_ext(ext, len)
7290 const struct sadb_ext *ext;
7291 int len;
7292 {
7293 const struct sockaddr *sa;
7294 enum { NONE, ADDR } checktype = NONE;
7295 int baselen = 0;
7296 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7297
7298 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7299 return EINVAL;
7300
7301 /* if it does not match minimum/maximum length, bail */
7302 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7303 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7304 return EINVAL;
7305 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7306 return EINVAL;
7307 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7308 return EINVAL;
7309
7310 /* more checks based on sadb_ext_type XXX need more */
7311 switch (ext->sadb_ext_type) {
7312 case SADB_EXT_ADDRESS_SRC:
7313 case SADB_EXT_ADDRESS_DST:
7314 case SADB_EXT_ADDRESS_PROXY:
7315 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7316 checktype = ADDR;
7317 break;
7318 case SADB_EXT_IDENTITY_SRC:
7319 case SADB_EXT_IDENTITY_DST:
7320 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7321 SADB_X_IDENTTYPE_ADDR) {
7322 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7323 checktype = ADDR;
7324 } else
7325 checktype = NONE;
7326 break;
7327 default:
7328 checktype = NONE;
7329 break;
7330 }
7331
7332 switch (checktype) {
7333 case NONE:
7334 break;
7335 case ADDR:
7336 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7337 if (len < baselen + sal)
7338 return EINVAL;
7339 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7340 return EINVAL;
7341 break;
7342 }
7343
7344 return 0;
7345 }
7346
7347 void
7348 key_init()
7349 {
7350 int i;
7351
7352 callout_init(&key_timehandler_ch);
7353
7354 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7355 LIST_INIT(&sptree[i]);
7356 }
7357
7358 LIST_INIT(&sahtree);
7359
7360 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7361 LIST_INIT(®tree[i]);
7362 }
7363
7364 #ifndef IPSEC_NONBLOCK_ACQUIRE
7365 LIST_INIT(&acqtree);
7366 #endif
7367 LIST_INIT(&spacqtree);
7368
7369 /* system default */
7370 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7371 ip4_def_policy.refcnt++; /*never reclaim this*/
7372
7373
7374 #ifndef IPSEC_DEBUG2
7375 callout_reset(&key_timehandler_ch, hz, key_timehandler, (void *)0);
7376 #endif /*IPSEC_DEBUG2*/
7377
7378 /* initialize key statistics */
7379 keystat.getspi_count = 1;
7380
7381 printf("IPsec: Initialized Security Association Processing.\n");
7382
7383 return;
7384 }
7385
7386 /*
7387 * XXX: maybe This function is called after INBOUND IPsec processing.
7388 *
7389 * Special check for tunnel-mode packets.
7390 * We must make some checks for consistency between inner and outer IP header.
7391 *
7392 * xxx more checks to be provided
7393 */
7394 int
7395 key_checktunnelsanity(sav, family, src, dst)
7396 struct secasvar *sav;
7397 u_int family;
7398 caddr_t src;
7399 caddr_t dst;
7400 {
7401 /* sanity check */
7402 if (sav->sah == NULL)
7403 panic("sav->sah == NULL at key_checktunnelsanity");
7404
7405 /* XXX: check inner IP header */
7406
7407 return 1;
7408 }
7409
7410 #if 0
7411 #define hostnamelen strlen(hostname)
7412
7413 /*
7414 * Get FQDN for the host.
7415 * If the administrator configured hostname (by hostname(1)) without
7416 * domain name, returns nothing.
7417 */
7418 static const char *
7419 key_getfqdn()
7420 {
7421 int i;
7422 int hasdot;
7423 static char fqdn[MAXHOSTNAMELEN + 1];
7424
7425 if (!hostnamelen)
7426 return NULL;
7427
7428 /* check if it comes with domain name. */
7429 hasdot = 0;
7430 for (i = 0; i < hostnamelen; i++) {
7431 if (hostname[i] == '.')
7432 hasdot++;
7433 }
7434 if (!hasdot)
7435 return NULL;
7436
7437 /* NOTE: hostname may not be NUL-terminated. */
7438 bzero(fqdn, sizeof(fqdn));
7439 bcopy(hostname, fqdn, hostnamelen);
7440 fqdn[hostnamelen] = '\0';
7441 return fqdn;
7442 }
7443
7444 /*
7445 * get username@FQDN for the host/user.
7446 */
7447 static const char *
7448 key_getuserfqdn()
7449 {
7450 const char *host;
7451 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7452 struct proc *p = curproc;
7453 char *q;
7454
7455 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7456 return NULL;
7457 if (!(host = key_getfqdn()))
7458 return NULL;
7459
7460 /* NOTE: s_login may not be-NUL terminated. */
7461 bzero(userfqdn, sizeof(userfqdn));
7462 bcopy(p->p_pgrp->pg_session->s_login, userfqdn, MAXLOGNAME);
7463 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7464 q = userfqdn + strlen(userfqdn);
7465 *q++ = '@';
7466 bcopy(host, q, strlen(host));
7467 q += strlen(host);
7468 *q++ = '\0';
7469
7470 return userfqdn;
7471 }
7472 #endif
7473
7474 /* record data transfer on SA, and update timestamps */
7475 void
7476 key_sa_recordxfer(sav, m)
7477 struct secasvar *sav;
7478 struct mbuf *m;
7479 {
7480 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7481 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7482 if (!sav->lft_c)
7483 return;
7484
7485 /*
7486 * XXX Currently, there is a difference of bytes size
7487 * between inbound and outbound processing.
7488 */
7489 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7490 /* to check bytes lifetime is done in key_timehandler(). */
7491
7492 /*
7493 * We use the number of packets as the unit of
7494 * sadb_lifetime_allocations. We increment the variable
7495 * whenever {esp,ah}_{in,out}put is called.
7496 */
7497 sav->lft_c->sadb_lifetime_allocations++;
7498 /* XXX check for expires? */
7499
7500 /*
7501 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7502 * in seconds. HARD and SOFT lifetime are measured by the time
7503 * difference (again in seconds) from sadb_lifetime_usetime.
7504 *
7505 * usetime
7506 * v expire expire
7507 * -----+-----+--------+---> t
7508 * <--------------> HARD
7509 * <-----> SOFT
7510 */
7511 sav->lft_c->sadb_lifetime_usetime = time_second;
7512 /* XXX check for expires? */
7513
7514 return;
7515 }
7516
7517 /* dumb version */
7518 void
7519 key_sa_routechange(dst)
7520 struct sockaddr *dst;
7521 {
7522 struct secashead *sah;
7523 struct route *ro;
7524
7525 LIST_FOREACH(sah, &sahtree, chain) {
7526 ro = &sah->sa_route;
7527 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7528 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7529 RTFREE(ro->ro_rt);
7530 ro->ro_rt = (struct rtentry *)NULL;
7531 }
7532 }
7533
7534 return;
7535 }
7536
7537 static void
7538 key_sa_chgstate(sav, state)
7539 struct secasvar *sav;
7540 u_int8_t state;
7541 {
7542 if (sav == NULL)
7543 panic("key_sa_chgstate called with sav == NULL");
7544
7545 if (sav->state == state)
7546 return;
7547
7548 if (__LIST_CHAINED(sav))
7549 LIST_REMOVE(sav, chain);
7550
7551 sav->state = state;
7552 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7553 }
7554
7555 void
7556 key_sa_stir_iv(sav)
7557 struct secasvar *sav;
7558 {
7559
7560 if (!sav->iv)
7561 panic("key_sa_stir_iv called with sav == NULL");
7562 key_randomfill(sav->iv, sav->ivlen);
7563 }
7564
7565 /* XXX too much? */
7566 static struct mbuf *
7567 key_alloc_mbuf(l)
7568 int l;
7569 {
7570 struct mbuf *m = NULL, *n;
7571 int len, t;
7572
7573 len = l;
7574 while (len > 0) {
7575 MGET(n, M_DONTWAIT, MT_DATA);
7576 if (n && len > MLEN)
7577 MCLGET(n, M_DONTWAIT);
7578 if (!n) {
7579 m_freem(m);
7580 return NULL;
7581 }
7582
7583 n->m_next = NULL;
7584 n->m_len = 0;
7585 n->m_len = M_TRAILINGSPACE(n);
7586 /* use the bottom of mbuf, hoping we can prepend afterwards */
7587 if (n->m_len > len) {
7588 t = (n->m_len - len) & ~(sizeof(long) - 1);
7589 n->m_data += t;
7590 n->m_len = len;
7591 }
7592
7593 len -= n->m_len;
7594
7595 if (m)
7596 m_cat(m, n);
7597 else
7598 m = n;
7599 }
7600
7601 return m;
7602 }
7603
7604 static struct mbuf *
7605 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7606 {
7607 struct secashead *sah;
7608 struct secasvar *sav;
7609 u_int16_t proto;
7610 u_int stateidx;
7611 u_int8_t satype;
7612 u_int8_t state;
7613 int cnt;
7614 struct mbuf *m, *n;
7615
7616 /* map satype to proto */
7617 if ((proto = key_satype2proto(req_satype)) == 0) {
7618 *errorp = EINVAL;
7619 return (NULL);
7620 }
7621
7622 /* count sav entries to be sent to the userland. */
7623 cnt = 0;
7624 LIST_FOREACH(sah, &sahtree, chain) {
7625 if (req_satype != SADB_SATYPE_UNSPEC &&
7626 proto != sah->saidx.proto)
7627 continue;
7628
7629 for (stateidx = 0;
7630 stateidx < _ARRAYLEN(saorder_state_any);
7631 stateidx++) {
7632 state = saorder_state_any[stateidx];
7633 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7634 cnt++;
7635 }
7636 }
7637 }
7638
7639 if (cnt == 0) {
7640 *errorp = ENOENT;
7641 return (NULL);
7642 }
7643
7644 /* send this to the userland, one at a time. */
7645 m = NULL;
7646 LIST_FOREACH(sah, &sahtree, chain) {
7647 if (req_satype != SADB_SATYPE_UNSPEC &&
7648 proto != sah->saidx.proto)
7649 continue;
7650
7651 /* map proto to satype */
7652 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7653 m_freem(m);
7654 *errorp = EINVAL;
7655 return (NULL);
7656 }
7657
7658 for (stateidx = 0;
7659 stateidx < _ARRAYLEN(saorder_state_any);
7660 stateidx++) {
7661 state = saorder_state_any[stateidx];
7662 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7663 n = key_setdumpsa(sav, SADB_DUMP, satype,
7664 --cnt, pid);
7665 if (!n) {
7666 m_freem(m);
7667 *errorp = ENOBUFS;
7668 return (NULL);
7669 }
7670
7671 if (!m)
7672 m = n;
7673 else
7674 m_cat(m, n);
7675 }
7676 }
7677 }
7678
7679 if (!m) {
7680 *errorp = EINVAL;
7681 return (NULL);
7682 }
7683
7684 if ((m->m_flags & M_PKTHDR) != 0) {
7685 m->m_pkthdr.len = 0;
7686 for (n = m; n; n = n->m_next)
7687 m->m_pkthdr.len += n->m_len;
7688 }
7689
7690 *errorp = 0;
7691 return (m);
7692 }
7693
7694 static struct mbuf *
7695 key_setspddump(int *errorp, pid_t pid)
7696 {
7697 struct secpolicy *sp;
7698 int cnt;
7699 u_int dir;
7700 struct mbuf *m, *n;
7701
7702 /* search SPD entry and get buffer size. */
7703 cnt = 0;
7704 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7705 LIST_FOREACH(sp, &sptree[dir], chain) {
7706 cnt++;
7707 }
7708 }
7709
7710 if (cnt == 0) {
7711 *errorp = ENOENT;
7712 return (NULL);
7713 }
7714
7715 m = NULL;
7716 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7717 LIST_FOREACH(sp, &sptree[dir], chain) {
7718 --cnt;
7719 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
7720
7721 if (!n) {
7722 *errorp = ENOBUFS;
7723 m_freem(m);
7724 return (NULL);
7725 }
7726 if (!m)
7727 m = n;
7728 else {
7729 m->m_pkthdr.len += n->m_pkthdr.len;
7730 m_cat(m, n);
7731 }
7732 }
7733 }
7734
7735 *errorp = 0;
7736 return (m);
7737 }
7738
7739 static int
7740 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
7741 {
7742 struct mbuf *m, *n;
7743 int err2 = 0;
7744 char *p, *ep;
7745 size_t len;
7746 int s, error;
7747
7748 if (newp)
7749 return (EPERM);
7750 if (namelen != 1)
7751 return (EINVAL);
7752
7753 s = splsoftnet();
7754 m = key_setdump(name[0], &error, l->l_proc->p_pid);
7755 splx(s);
7756 if (!m)
7757 return (error);
7758 if (!oldp)
7759 *oldlenp = m->m_pkthdr.len;
7760 else {
7761 p = oldp;
7762 if (*oldlenp < m->m_pkthdr.len) {
7763 err2 = ENOMEM;
7764 ep = p + *oldlenp;
7765 } else {
7766 *oldlenp = m->m_pkthdr.len;
7767 ep = p + m->m_pkthdr.len;
7768 }
7769 for (n = m; n; n = n->m_next) {
7770 len = (ep - p < n->m_len) ?
7771 ep - p : n->m_len;
7772 error = copyout(mtod(n, const void *), p, len);
7773 p += len;
7774 if (error)
7775 break;
7776 }
7777 if (error == 0)
7778 error = err2;
7779 }
7780 m_freem(m);
7781
7782 return (error);
7783 }
7784
7785 static int
7786 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
7787 {
7788 struct mbuf *m, *n;
7789 int err2 = 0;
7790 char *p, *ep;
7791 size_t len;
7792 int s, error;
7793
7794 if (newp)
7795 return (EPERM);
7796 if (namelen != 0)
7797 return (EINVAL);
7798
7799 s = splsoftnet();
7800 m = key_setspddump(&error, l->l_proc->p_pid);
7801 splx(s);
7802 if (!m)
7803 return (error);
7804 if (!oldp)
7805 *oldlenp = m->m_pkthdr.len;
7806 else {
7807 p = oldp;
7808 if (*oldlenp < m->m_pkthdr.len) {
7809 err2 = ENOMEM;
7810 ep = p + *oldlenp;
7811 } else {
7812 *oldlenp = m->m_pkthdr.len;
7813 ep = p + m->m_pkthdr.len;
7814 }
7815 for (n = m; n; n = n->m_next) {
7816 len = (ep - p < n->m_len) ?
7817 ep - p : n->m_len;
7818 error = copyout(mtod(n, const void *), p, len);
7819 p += len;
7820 if (error)
7821 break;
7822 }
7823 if (error == 0)
7824 error = err2;
7825 }
7826 m_freem(m);
7827
7828 return (error);
7829 }
7830
7831 /*
7832 * Create sysctl tree for native FAST_IPSEC key knobs, originally
7833 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
7834 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
7835 * and in any case the part of our sysctl namespace used for dumping the
7836 * SPD and SA database *HAS* to be compatible with the KAME sysctl
7837 * namespace, for API reasons.
7838 *
7839 * Pending a consensus on the right way to fix this, add a level of
7840 * indirection in how we number the `native' FAST_IPSEC key nodes;
7841 * and (as requested by Andrew Brown) move registration of the
7842 * KAME-compatible names to a separate function.
7843 */
7844 #if 0
7845 # define FAST_IPSEC_PFKEY PF_KEY_V2
7846 # define FAST_IPSEC_PFKEY_NAME "keyv2"
7847 #else
7848 # define FAST_IPSEC_PFKEY PF_KEY
7849 # define FAST_IPSEC_PFKEY_NAME "key"
7850 #endif
7851
7852 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
7853 {
7854
7855 sysctl_createv(clog, 0, NULL, NULL,
7856 CTLFLAG_PERMANENT,
7857 CTLTYPE_NODE, "net", NULL,
7858 NULL, 0, NULL, 0,
7859 CTL_NET, CTL_EOL);
7860 sysctl_createv(clog, 0, NULL, NULL,
7861 CTLFLAG_PERMANENT,
7862 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL,
7863 NULL, 0, NULL, 0,
7864 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL);
7865
7866 sysctl_createv(clog, 0, NULL, NULL,
7867 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7868 CTLTYPE_INT, "debug", NULL,
7869 NULL, 0, &key_debug_level, 0,
7870 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
7871 sysctl_createv(clog, 0, NULL, NULL,
7872 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7873 CTLTYPE_INT, "spi_try", NULL,
7874 NULL, 0, &key_spi_trycnt, 0,
7875 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
7876 sysctl_createv(clog, 0, NULL, NULL,
7877 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7878 CTLTYPE_INT, "spi_min_value", NULL,
7879 NULL, 0, &key_spi_minval, 0,
7880 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
7881 sysctl_createv(clog, 0, NULL, NULL,
7882 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7883 CTLTYPE_INT, "spi_max_value", NULL,
7884 NULL, 0, &key_spi_maxval, 0,
7885 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
7886 sysctl_createv(clog, 0, NULL, NULL,
7887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7888 CTLTYPE_INT, "random_int", NULL,
7889 NULL, 0, &key_int_random, 0,
7890 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
7891 sysctl_createv(clog, 0, NULL, NULL,
7892 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7893 CTLTYPE_INT, "larval_lifetime", NULL,
7894 NULL, 0, &key_larval_lifetime, 0,
7895 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
7896 sysctl_createv(clog, 0, NULL, NULL,
7897 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7898 CTLTYPE_INT, "blockacq_count", NULL,
7899 NULL, 0, &key_blockacq_count, 0,
7900 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
7901 sysctl_createv(clog, 0, NULL, NULL,
7902 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7903 CTLTYPE_INT, "blockacq_lifetime", NULL,
7904 NULL, 0, &key_blockacq_lifetime, 0,
7905 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
7906 sysctl_createv(clog, 0, NULL, NULL,
7907 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7908 CTLTYPE_INT, "esp_keymin", NULL,
7909 NULL, 0, &ipsec_esp_keymin, 0,
7910 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
7911 sysctl_createv(clog, 0, NULL, NULL,
7912 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7913 CTLTYPE_INT, "prefered_oldsa", NULL,
7914 NULL, 0, &key_prefered_oldsa, 0,
7915 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
7916 sysctl_createv(clog, 0, NULL, NULL,
7917 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7918 CTLTYPE_INT, "esp_auth", NULL,
7919 NULL, 0, &ipsec_esp_auth, 0,
7920 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
7921 sysctl_createv(clog, 0, NULL, NULL,
7922 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7923 CTLTYPE_INT, "ah_keymin", NULL,
7924 NULL, 0, &ipsec_ah_keymin, 0,
7925 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
7926 }
7927
7928 /*
7929 * Register sysctl names used by setkey(8). For historical reasons,
7930 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
7931 * for both FAST_IPSEC and KAME IPSEC.
7932 */
7933 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC")
7934 {
7935
7936 /* Make sure net.key exists before we register nodes underneath it. */
7937 sysctl_createv(clog, 0, NULL, NULL,
7938 CTLFLAG_PERMANENT,
7939 CTLTYPE_NODE, "net", NULL,
7940 NULL, 0, NULL, 0,
7941 CTL_NET, CTL_EOL);
7942 sysctl_createv(clog, 0, NULL, NULL,
7943 CTLFLAG_PERMANENT,
7944 CTLTYPE_NODE, "key", NULL,
7945 NULL, 0, NULL, 0,
7946 CTL_NET, PF_KEY, CTL_EOL);
7947
7948 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
7949 sysctl_createv(clog, 0, NULL, NULL,
7950 CTLFLAG_PERMANENT,
7951 CTLTYPE_STRUCT, "dumpsa", NULL,
7952 sysctl_net_key_dumpsa, 0, NULL, 0,
7953 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
7954 sysctl_createv(clog, 0, NULL, NULL,
7955 CTLFLAG_PERMANENT,
7956 CTLTYPE_STRUCT, "dumpsp", NULL,
7957 sysctl_net_key_dumpsp, 0, NULL, 0,
7958 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
7959 }
7960