key.c revision 1.200 1 /* $NetBSD: key.c,v 1.200 2017/08/02 03:45:57 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.200 2017/08/02 03:45:57 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 /*
139 * Locking notes on SPD:
140 * - Modifications to the sptree must be done with holding key_sp_mtx
141 * which is a adaptive mutex
142 * - Read accesses to the sptree must be in critical sections of pserialize(9)
143 * - SP's lifetime is managed by localcount(9)
144 * - An SP that has been inserted to the sptree is initially referenced by none,
145 * i.e., a reference from the pstree isn't counted
146 * - When an SP is being destroyed, we change its state as DEAD, wait for
147 * references to the SP to be released, and then deallocate the SP
148 * (see key_unlink_sp)
149 * - Getting an SP
150 * - Normally we get an SP from the sptree by incrementing the reference count
151 * of the SP
152 * - We can gain another reference from a held SP only if we check its state
153 * and take its reference in a critical section of pserialize
154 * (see esp_output for example)
155 * - We may get an SP from an SP cache. See below
156 * - Updating member variables of an SP
157 * - Most member variables of an SP are immutable
158 * - Only sp->state and sp->lastused can be changed
159 * - sp->state of an SP is updated only when destroying it under key_sp_mtx
160 * - SP caches
161 * - SPs can be cached in PCBs
162 * - The lifetime of the caches is controlled by the global generation counter
163 * (ipsec_spdgen)
164 * - The global counter value is stored when an SP is cached
165 * - If the stored value is different from the global counter then the cache
166 * is considered invalidated
167 * - The counter is incremented when an SP is being destroyed
168 * - So checking the generation and taking a reference to an SP should be
169 * in a critical section of pserialize
170 * - Note that caching doesn't increment the reference counter of an SP
171 * - SPs in sockets
172 * - Userland programs can set a policy to a socket by
173 * setsockopt(IP_IPSEC_POLICY)
174 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
175 * the key_socksplist list (not the sptree)
176 * - Such a policy is destroyed when a corresponding socket is destroed,
177 * however, a socket can be destroyed in softint so we cannot destroy
178 * it directly instead we just mark it DEAD and delay the destruction
179 * until GC by the timer
180 */
181
182 u_int32_t key_debug_level = 0;
183 static u_int key_spi_trycnt = 1000;
184 static u_int32_t key_spi_minval = 0x100;
185 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
186 static u_int32_t policy_id = 0;
187 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
188 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
189 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
190 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
191 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
192
193 static u_int32_t acq_seq = 0;
194
195 static struct pslist_head sptree[IPSEC_DIR_MAX]; /* SPD */
196 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
197 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
198 /* registed list */
199 #ifndef IPSEC_NONBLOCK_ACQUIRE
200 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
201 #endif
202 #ifdef notyet
203 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
204 #endif
205
206 #define SPLIST_ENTRY_INIT(sp) \
207 PSLIST_ENTRY_INIT((sp), pslist_entry)
208 #define SPLIST_ENTRY_DESTROY(sp) \
209 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
210 #define SPLIST_WRITER_REMOVE(sp) \
211 PSLIST_WRITER_REMOVE((sp), pslist_entry)
212 #define SPLIST_READER_EMPTY(dir) \
213 (PSLIST_READER_FIRST(&sptree[(dir)], struct secpolicy, \
214 pslist_entry) == NULL)
215 #define SPLIST_READER_FOREACH(sp, dir) \
216 PSLIST_READER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
217 pslist_entry)
218 #define SPLIST_WRITER_FOREACH(sp, dir) \
219 PSLIST_WRITER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
220 pslist_entry)
221 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
222 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
223 #define SPLIST_WRITER_EMPTY(dir) \
224 (PSLIST_WRITER_FIRST(&sptree[(dir)], struct secpolicy, \
225 pslist_entry) == NULL)
226 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
227 PSLIST_WRITER_INSERT_HEAD(&sptree[(dir)], (sp), pslist_entry)
228 #define SPLIST_WRITER_NEXT(sp) \
229 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
230 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
231 do { \
232 if (SPLIST_WRITER_EMPTY((dir))) { \
233 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
234 } else { \
235 struct secpolicy *__sp; \
236 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
237 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
238 SPLIST_WRITER_INSERT_AFTER(__sp,\
239 (new)); \
240 break; \
241 } \
242 } \
243 } \
244 } while (0)
245
246 /*
247 * The list has SPs that are set to a socket via setsockopt(IP_IPSEC_POLICY)
248 * from userland. See ipsec_set_policy.
249 */
250 static struct pslist_head key_socksplist;
251
252 #define SOCKSPLIST_WRITER_FOREACH(sp) \
253 PSLIST_WRITER_FOREACH((sp), &key_socksplist, struct secpolicy, \
254 pslist_entry)
255 #define SOCKSPLIST_READER_EMPTY() \
256 (PSLIST_READER_FIRST(&key_socksplist, struct secpolicy, \
257 pslist_entry) == NULL)
258
259 /*
260 * Protect regtree, acqtree and items stored in the lists.
261 */
262 static kmutex_t key_mtx __cacheline_aligned;
263 static pserialize_t key_psz;
264 static kmutex_t key_sp_mtx __cacheline_aligned;
265 static kcondvar_t key_sp_cv __cacheline_aligned;
266
267 /* search order for SAs */
268 /*
269 * This order is important because we must select the oldest SA
270 * for outbound processing. For inbound, This is not important.
271 */
272 static const u_int saorder_state_valid_prefer_old[] = {
273 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
274 };
275 static const u_int saorder_state_valid_prefer_new[] = {
276 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
277 };
278
279 static const u_int saorder_state_alive[] = {
280 /* except DEAD */
281 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
282 };
283 static const u_int saorder_state_any[] = {
284 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
285 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
286 };
287
288 #define SASTATE_ALIVE_FOREACH(s) \
289 for (int _i = 0; \
290 _i < __arraycount(saorder_state_alive) ? \
291 (s) = saorder_state_alive[_i], true : false; \
292 _i++)
293 #define SASTATE_ANY_FOREACH(s) \
294 for (int _i = 0; \
295 _i < __arraycount(saorder_state_any) ? \
296 (s) = saorder_state_any[_i], true : false; \
297 _i++)
298
299 static const int minsize[] = {
300 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
301 sizeof(struct sadb_sa), /* SADB_EXT_SA */
302 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
303 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
304 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
305 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
306 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
307 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
308 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
309 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
310 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
311 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
312 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
313 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
314 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
315 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
316 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
317 0, /* SADB_X_EXT_KMPRIVATE */
318 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
319 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
320 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
321 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
322 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
323 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
324 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
325 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
326 };
327 static const int maxsize[] = {
328 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
329 sizeof(struct sadb_sa), /* SADB_EXT_SA */
330 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
331 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
332 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
333 0, /* SADB_EXT_ADDRESS_SRC */
334 0, /* SADB_EXT_ADDRESS_DST */
335 0, /* SADB_EXT_ADDRESS_PROXY */
336 0, /* SADB_EXT_KEY_AUTH */
337 0, /* SADB_EXT_KEY_ENCRYPT */
338 0, /* SADB_EXT_IDENTITY_SRC */
339 0, /* SADB_EXT_IDENTITY_DST */
340 0, /* SADB_EXT_SENSITIVITY */
341 0, /* SADB_EXT_PROPOSAL */
342 0, /* SADB_EXT_SUPPORTED_AUTH */
343 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
344 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
345 0, /* SADB_X_EXT_KMPRIVATE */
346 0, /* SADB_X_EXT_POLICY */
347 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
348 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
349 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
350 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
351 0, /* SADB_X_EXT_NAT_T_OAI */
352 0, /* SADB_X_EXT_NAT_T_OAR */
353 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
354 };
355
356 static int ipsec_esp_keymin = 256;
357 static int ipsec_esp_auth = 0;
358 static int ipsec_ah_keymin = 128;
359
360 #ifdef SYSCTL_DECL
361 SYSCTL_DECL(_net_key);
362 #endif
363
364 #ifdef SYSCTL_INT
365 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
366 &key_debug_level, 0, "");
367
368 /* max count of trial for the decision of spi value */
369 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
370 &key_spi_trycnt, 0, "");
371
372 /* minimum spi value to allocate automatically. */
373 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
374 &key_spi_minval, 0, "");
375
376 /* maximun spi value to allocate automatically. */
377 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
378 &key_spi_maxval, 0, "");
379
380 /* interval to initialize randseed */
381 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
382 &key_int_random, 0, "");
383
384 /* lifetime for larval SA */
385 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
386 &key_larval_lifetime, 0, "");
387
388 /* counter for blocking to send SADB_ACQUIRE to IKEd */
389 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
390 &key_blockacq_count, 0, "");
391
392 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
393 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
394 &key_blockacq_lifetime, 0, "");
395
396 /* ESP auth */
397 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
398 &ipsec_esp_auth, 0, "");
399
400 /* minimum ESP key length */
401 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
402 &ipsec_esp_keymin, 0, "");
403
404 /* minimum AH key length */
405 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
406 &ipsec_ah_keymin, 0, "");
407
408 /* perfered old SA rather than new SA */
409 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
410 &key_prefered_oldsa, 0, "");
411 #endif /* SYSCTL_INT */
412
413 #define __LIST_CHAINED(elm) \
414 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
415 #define LIST_INSERT_TAIL(head, elm, type, field) \
416 do {\
417 struct type *curelm = LIST_FIRST(head); \
418 if (curelm == NULL) {\
419 LIST_INSERT_HEAD(head, elm, field); \
420 } else { \
421 while (LIST_NEXT(curelm, field)) \
422 curelm = LIST_NEXT(curelm, field);\
423 LIST_INSERT_AFTER(curelm, elm, field);\
424 }\
425 } while (0)
426
427 #define KEY_CHKSASTATE(head, sav) \
428 /* do */ { \
429 if ((head) != (sav)) { \
430 IPSECLOG(LOG_DEBUG, \
431 "state mismatched (TREE=%d SA=%d)\n", \
432 (head), (sav)); \
433 continue; \
434 } \
435 } /* while (0) */
436
437 #define KEY_CHKSPDIR(head, sp) \
438 do { \
439 if ((head) != (sp)) { \
440 IPSECLOG(LOG_DEBUG, \
441 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
442 (head), (sp)); \
443 } \
444 } while (0)
445
446 /*
447 * set parameters into secasindex buffer.
448 * Must allocate secasindex buffer before calling this function.
449 */
450 static int
451 key_setsecasidx(int, int, int, const struct sockaddr *,
452 const struct sockaddr *, struct secasindex *);
453
454 /* key statistics */
455 struct _keystat {
456 u_long getspi_count; /* the avarage of count to try to get new SPI */
457 } keystat;
458
459 struct sadb_msghdr {
460 struct sadb_msg *msg;
461 struct sadb_ext *ext[SADB_EXT_MAX + 1];
462 int extoff[SADB_EXT_MAX + 1];
463 int extlen[SADB_EXT_MAX + 1];
464 };
465
466 static void
467 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
468
469 static const struct sockaddr *
470 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
471 {
472
473 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
474 }
475
476 static struct mbuf *
477 key_fill_replymsg(struct mbuf *m, int seq)
478 {
479 struct sadb_msg *msg;
480
481 if (m->m_len < sizeof(*msg)) {
482 m = m_pullup(m, sizeof(*msg));
483 if (m == NULL)
484 return NULL;
485 }
486 msg = mtod(m, struct sadb_msg *);
487 msg->sadb_msg_errno = 0;
488 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
489 if (seq != 0)
490 msg->sadb_msg_seq = seq;
491
492 return m;
493 }
494
495 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
496 #if 0
497 static void key_freeso(struct socket *);
498 static void key_freesp_so(struct secpolicy **);
499 #endif
500 static struct secpolicy *key_getsp (const struct secpolicyindex *);
501 static struct secpolicy *key_getspbyid (u_int32_t);
502 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
503 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
504 static void key_destroy_sp(struct secpolicy *);
505 static u_int16_t key_newreqid (void);
506 static struct mbuf *key_gather_mbuf (struct mbuf *,
507 const struct sadb_msghdr *, int, int, ...);
508 static int key_api_spdadd(struct socket *, struct mbuf *,
509 const struct sadb_msghdr *);
510 static u_int32_t key_getnewspid (void);
511 static int key_api_spddelete(struct socket *, struct mbuf *,
512 const struct sadb_msghdr *);
513 static int key_api_spddelete2(struct socket *, struct mbuf *,
514 const struct sadb_msghdr *);
515 static int key_api_spdget(struct socket *, struct mbuf *,
516 const struct sadb_msghdr *);
517 static int key_api_spdflush(struct socket *, struct mbuf *,
518 const struct sadb_msghdr *);
519 static int key_api_spddump(struct socket *, struct mbuf *,
520 const struct sadb_msghdr *);
521 static struct mbuf * key_setspddump (int *errorp, pid_t);
522 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
523 static int key_api_nat_map(struct socket *, struct mbuf *,
524 const struct sadb_msghdr *);
525 static struct mbuf *key_setdumpsp (struct secpolicy *,
526 u_int8_t, u_int32_t, pid_t);
527 static u_int key_getspreqmsglen (const struct secpolicy *);
528 static int key_spdexpire (struct secpolicy *);
529 static struct secashead *key_newsah (const struct secasindex *);
530 static void key_delsah (struct secashead *);
531 static struct secasvar *key_newsav(struct mbuf *,
532 const struct sadb_msghdr *, int *, const char*, int);
533 #define KEY_NEWSAV(m, sadb, e) \
534 key_newsav(m, sadb, e, __func__, __LINE__)
535 static void key_delsav (struct secasvar *);
536 static struct secashead *key_getsah(const struct secasindex *, int);
537 static bool key_checkspidup(const struct secasindex *, u_int32_t);
538 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
539 static int key_setsaval (struct secasvar *, struct mbuf *,
540 const struct sadb_msghdr *);
541 static void key_freesaval(struct secasvar *);
542 static int key_init_xform(struct secasvar *);
543 static void key_clear_xform(struct secasvar *);
544 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
545 u_int8_t, u_int32_t, u_int32_t);
546 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
547 static struct mbuf *key_setsadbxtype (u_int16_t);
548 static struct mbuf *key_setsadbxfrag (u_int16_t);
549 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
550 static int key_checksalen (const union sockaddr_union *);
551 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
552 u_int32_t, pid_t, u_int16_t);
553 static struct mbuf *key_setsadbsa (struct secasvar *);
554 static struct mbuf *key_setsadbaddr (u_int16_t,
555 const struct sockaddr *, u_int8_t, u_int16_t);
556 #if 0
557 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
558 int, u_int64_t);
559 #endif
560 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
561 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
562 u_int32_t);
563 static void *key_newbuf (const void *, u_int);
564 #ifdef INET6
565 static int key_ismyaddr6 (const struct sockaddr_in6 *);
566 #endif
567
568 static void sysctl_net_keyv2_setup(struct sysctllog **);
569 static void sysctl_net_key_compat_setup(struct sysctllog **);
570
571 /* flags for key_saidx_match() */
572 #define CMP_HEAD 1 /* protocol, addresses. */
573 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
574 #define CMP_REQID 3 /* additionally HEAD, reaid. */
575 #define CMP_EXACTLY 4 /* all elements. */
576 static int key_saidx_match(const struct secasindex *,
577 const struct secasindex *, int);
578
579 static int key_sockaddr_match(const struct sockaddr *,
580 const struct sockaddr *, int);
581 static int key_bb_match_withmask(const void *, const void *, u_int);
582 static u_int16_t key_satype2proto (u_int8_t);
583 static u_int8_t key_proto2satype (u_int16_t);
584
585 static int key_spidx_match_exactly(const struct secpolicyindex *,
586 const struct secpolicyindex *);
587 static int key_spidx_match_withmask(const struct secpolicyindex *,
588 const struct secpolicyindex *);
589
590 static int key_api_getspi(struct socket *, struct mbuf *,
591 const struct sadb_msghdr *);
592 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
593 const struct secasindex *);
594 static int key_handle_natt_info (struct secasvar *,
595 const struct sadb_msghdr *);
596 static int key_set_natt_ports (union sockaddr_union *,
597 union sockaddr_union *,
598 const struct sadb_msghdr *);
599 static int key_api_update(struct socket *, struct mbuf *,
600 const struct sadb_msghdr *);
601 #ifdef IPSEC_DOSEQCHECK
602 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
603 #endif
604 static int key_api_add(struct socket *, struct mbuf *,
605 const struct sadb_msghdr *);
606 static int key_setident (struct secashead *, struct mbuf *,
607 const struct sadb_msghdr *);
608 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
609 const struct sadb_msghdr *);
610 static int key_api_delete(struct socket *, struct mbuf *,
611 const struct sadb_msghdr *);
612 static int key_api_get(struct socket *, struct mbuf *,
613 const struct sadb_msghdr *);
614
615 static void key_getcomb_setlifetime (struct sadb_comb *);
616 static struct mbuf *key_getcomb_esp (void);
617 static struct mbuf *key_getcomb_ah (void);
618 static struct mbuf *key_getcomb_ipcomp (void);
619 static struct mbuf *key_getprop (const struct secasindex *);
620
621 static int key_acquire (const struct secasindex *, struct secpolicy *);
622 #ifndef IPSEC_NONBLOCK_ACQUIRE
623 static struct secacq *key_newacq (const struct secasindex *);
624 static struct secacq *key_getacq (const struct secasindex *);
625 static struct secacq *key_getacqbyseq (u_int32_t);
626 #endif
627 #ifdef notyet
628 static struct secspacq *key_newspacq (const struct secpolicyindex *);
629 static struct secspacq *key_getspacq (const struct secpolicyindex *);
630 #endif
631 static int key_api_acquire(struct socket *, struct mbuf *,
632 const struct sadb_msghdr *);
633 static int key_api_register(struct socket *, struct mbuf *,
634 const struct sadb_msghdr *);
635 static int key_expire (struct secasvar *);
636 static int key_api_flush(struct socket *, struct mbuf *,
637 const struct sadb_msghdr *);
638 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
639 int *lenp, pid_t pid);
640 static int key_api_dump(struct socket *, struct mbuf *,
641 const struct sadb_msghdr *);
642 static int key_api_promisc(struct socket *, struct mbuf *,
643 const struct sadb_msghdr *);
644 static int key_senderror (struct socket *, struct mbuf *, int);
645 static int key_validate_ext (const struct sadb_ext *, int);
646 static int key_align (struct mbuf *, struct sadb_msghdr *);
647 #if 0
648 static const char *key_getfqdn (void);
649 static const char *key_getuserfqdn (void);
650 #endif
651 static void key_sa_chgstate (struct secasvar *, u_int8_t);
652
653 static struct mbuf *key_alloc_mbuf (int);
654
655 static void key_timehandler(void *);
656 static void key_timehandler_work(struct work *, void *);
657 static struct callout key_timehandler_ch;
658 static struct workqueue *key_timehandler_wq;
659 static struct work key_timehandler_wk;
660
661 #ifdef IPSEC_REF_DEBUG
662 #define REFLOG(label, p, where, tag) \
663 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
664 (where), (tag), (p)->refcnt, (p))
665 #else
666 #define REFLOG(label, p, where, tag) do {} while (0)
667 #endif
668
669 #define SA_ADDREF(p) do { \
670 atomic_inc_uint(&(p)->refcnt); \
671 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
672 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
673 } while (0)
674 #define SA_ADDREF2(p, where, tag) do { \
675 atomic_inc_uint(&(p)->refcnt); \
676 REFLOG("SA_ADDREF", (p), (where), (tag)); \
677 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
678 } while (0)
679 #define SA_DELREF(p) do { \
680 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
681 atomic_dec_uint(&(p)->refcnt); \
682 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
683 } while (0)
684 #define SA_DELREF2(p, nv, where, tag) do { \
685 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
686 nv = atomic_dec_uint_nv(&(p)->refcnt); \
687 REFLOG("SA_DELREF", (p), (where), (tag)); \
688 } while (0)
689
690 u_int
691 key_sp_refcnt(const struct secpolicy *sp)
692 {
693
694 /* FIXME */
695 return 0;
696 }
697
698 /*
699 * Remove the sp from the sptree and wait for references to the sp
700 * to be released. key_sp_mtx must be held.
701 */
702 static void
703 key_unlink_sp(struct secpolicy *sp)
704 {
705
706 KASSERT(mutex_owned(&key_sp_mtx));
707
708 sp->state = IPSEC_SPSTATE_DEAD;
709 SPLIST_WRITER_REMOVE(sp);
710
711 /* Invalidate all cached SPD pointers in the PCBs. */
712 ipsec_invalpcbcacheall();
713
714 #ifdef NET_MPSAFE
715 KASSERT(mutex_ownable(softnet_lock));
716 pserialize_perform(key_psz);
717 #endif
718
719 localcount_drain(&sp->localcount, &key_sp_cv, &key_sp_mtx);
720 }
721
722 /*
723 * Return 0 when there are known to be no SP's for the specified
724 * direction. Otherwise return 1. This is used by IPsec code
725 * to optimize performance.
726 */
727 int
728 key_havesp(u_int dir)
729 {
730 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
731 !SPLIST_READER_EMPTY(dir) : 1);
732 }
733
734 /* %%% IPsec policy management */
735 /*
736 * allocating a SP for OUTBOUND or INBOUND packet.
737 * Must call key_freesp() later.
738 * OUT: NULL: not found
739 * others: found and return the pointer.
740 */
741 struct secpolicy *
742 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
743 u_int dir, const char* where, int tag)
744 {
745 struct secpolicy *sp;
746 int s;
747
748 KASSERT(spidx != NULL);
749 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
750
751 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
752
753 /* get a SP entry */
754 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
755 printf("*** objects\n");
756 kdebug_secpolicyindex(spidx);
757 }
758
759 s = pserialize_read_enter();
760 SPLIST_READER_FOREACH(sp, dir) {
761 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
762 printf("*** in SPD\n");
763 kdebug_secpolicyindex(&sp->spidx);
764 }
765
766 if (sp->state == IPSEC_SPSTATE_DEAD)
767 continue;
768 if (key_spidx_match_withmask(&sp->spidx, spidx))
769 goto found;
770 }
771 sp = NULL;
772 found:
773 if (sp) {
774 /* sanity check */
775 KEY_CHKSPDIR(sp->spidx.dir, dir);
776
777 /* found a SPD entry */
778 sp->lastused = time_uptime;
779 key_sp_ref(sp, where, tag);
780 }
781 pserialize_read_exit(s);
782
783 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
784 "DP return SP:%p (ID=%u) refcnt %u\n",
785 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
786 return sp;
787 }
788
789 /*
790 * return a policy that matches this particular inbound packet.
791 * XXX slow
792 */
793 struct secpolicy *
794 key_gettunnel(const struct sockaddr *osrc,
795 const struct sockaddr *odst,
796 const struct sockaddr *isrc,
797 const struct sockaddr *idst,
798 const char* where, int tag)
799 {
800 struct secpolicy *sp;
801 const int dir = IPSEC_DIR_INBOUND;
802 int s;
803 struct ipsecrequest *r1, *r2, *p;
804 struct secpolicyindex spidx;
805
806 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
807
808 if (isrc->sa_family != idst->sa_family) {
809 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
810 isrc->sa_family, idst->sa_family);
811 sp = NULL;
812 goto done;
813 }
814
815 s = pserialize_read_enter();
816 SPLIST_READER_FOREACH(sp, dir) {
817 if (sp->state == IPSEC_SPSTATE_DEAD)
818 continue;
819
820 r1 = r2 = NULL;
821 for (p = sp->req; p; p = p->next) {
822 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
823 continue;
824
825 r1 = r2;
826 r2 = p;
827
828 if (!r1) {
829 /* here we look at address matches only */
830 spidx = sp->spidx;
831 if (isrc->sa_len > sizeof(spidx.src) ||
832 idst->sa_len > sizeof(spidx.dst))
833 continue;
834 memcpy(&spidx.src, isrc, isrc->sa_len);
835 memcpy(&spidx.dst, idst, idst->sa_len);
836 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
837 continue;
838 } else {
839 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
840 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
841 continue;
842 }
843
844 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
845 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
846 continue;
847
848 goto found;
849 }
850 }
851 sp = NULL;
852 found:
853 if (sp) {
854 sp->lastused = time_uptime;
855 key_sp_ref(sp, where, tag);
856 }
857 pserialize_read_exit(s);
858 done:
859 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
860 "DP return SP:%p (ID=%u) refcnt %u\n",
861 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
862 return sp;
863 }
864
865 /*
866 * allocating an SA entry for an *OUTBOUND* packet.
867 * checking each request entries in SP, and acquire an SA if need.
868 * OUT: 0: there are valid requests.
869 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
870 */
871 int
872 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
873 {
874 u_int level;
875 int error;
876 const struct secasindex *saidx = &isr->saidx;
877 struct secasvar *sav;
878
879 KASSERT(isr != NULL);
880 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
881 saidx->mode == IPSEC_MODE_TUNNEL,
882 "unexpected policy %u", saidx->mode);
883
884 /* get current level */
885 level = ipsec_get_reqlevel(isr);
886
887 /*
888 * XXX guard against protocol callbacks from the crypto
889 * thread as they reference ipsecrequest.sav which we
890 * temporarily null out below. Need to rethink how we
891 * handle bundled SA's in the callback thread.
892 */
893 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
894
895 sav = key_lookup_sa_bysaidx(saidx);
896 if (sav != NULL) {
897 *ret = sav;
898 return 0;
899 }
900
901 /* there is no SA */
902 error = key_acquire(saidx, isr->sp);
903 if (error != 0) {
904 /* XXX What should I do ? */
905 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
906 error);
907 return error;
908 }
909
910 if (level != IPSEC_LEVEL_REQUIRE) {
911 /* XXX sigh, the interface to this routine is botched */
912 *ret = NULL;
913 return 0;
914 } else {
915 return ENOENT;
916 }
917 }
918
919 /*
920 * looking up a SA for policy entry from SAD.
921 * NOTE: searching SAD of aliving state.
922 * OUT: NULL: not found.
923 * others: found and return the pointer.
924 */
925 static struct secasvar *
926 key_lookup_sa_bysaidx(const struct secasindex *saidx)
927 {
928 struct secashead *sah;
929 struct secasvar *sav;
930 u_int stateidx, state;
931 const u_int *saorder_state_valid;
932 int arraysize;
933
934 sah = key_getsah(saidx, CMP_MODE_REQID);
935 if (sah == NULL)
936 return NULL;
937
938 /*
939 * search a valid state list for outbound packet.
940 * This search order is important.
941 */
942 if (key_prefered_oldsa) {
943 saorder_state_valid = saorder_state_valid_prefer_old;
944 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
945 } else {
946 saorder_state_valid = saorder_state_valid_prefer_new;
947 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
948 }
949
950 /* search valid state */
951 for (stateidx = 0;
952 stateidx < arraysize;
953 stateidx++) {
954
955 state = saorder_state_valid[stateidx];
956
957 if (key_prefered_oldsa)
958 sav = LIST_FIRST(&sah->savtree[state]);
959 else {
960 /* XXX need O(1) lookup */
961 struct secasvar *last = NULL;
962
963 LIST_FOREACH(sav, &sah->savtree[state], chain)
964 last = sav;
965 sav = last;
966 }
967 if (sav != NULL) {
968 SA_ADDREF(sav);
969 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
970 "DP cause refcnt++:%d SA:%p\n",
971 sav->refcnt, sav);
972 return sav;
973 }
974 }
975
976 return NULL;
977 }
978
979 #if 0
980 static void
981 key_sendup_message_delete(struct secasvar *sav)
982 {
983 struct mbuf *m, *result = 0;
984 uint8_t satype;
985
986 satype = key_proto2satype(sav->sah->saidx.proto);
987 if (satype == 0)
988 goto msgfail;
989
990 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
991 if (m == NULL)
992 goto msgfail;
993 result = m;
994
995 /* set sadb_address for saidx's. */
996 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
997 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
998 if (m == NULL)
999 goto msgfail;
1000 m_cat(result, m);
1001
1002 /* set sadb_address for saidx's. */
1003 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1004 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1005 if (m == NULL)
1006 goto msgfail;
1007 m_cat(result, m);
1008
1009 /* create SA extension */
1010 m = key_setsadbsa(sav);
1011 if (m == NULL)
1012 goto msgfail;
1013 m_cat(result, m);
1014
1015 if (result->m_len < sizeof(struct sadb_msg)) {
1016 result = m_pullup(result, sizeof(struct sadb_msg));
1017 if (result == NULL)
1018 goto msgfail;
1019 }
1020
1021 result->m_pkthdr.len = 0;
1022 for (m = result; m; m = m->m_next)
1023 result->m_pkthdr.len += m->m_len;
1024 mtod(result, struct sadb_msg *)->sadb_msg_len =
1025 PFKEY_UNIT64(result->m_pkthdr.len);
1026
1027 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1028 result = NULL;
1029 msgfail:
1030 if (result)
1031 m_freem(result);
1032 }
1033 #endif
1034
1035 /*
1036 * allocating a usable SA entry for a *INBOUND* packet.
1037 * Must call key_freesav() later.
1038 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1039 * NULL: not found, or error occurred.
1040 *
1041 * In the comparison, no source address is used--for RFC2401 conformance.
1042 * To quote, from section 4.1:
1043 * A security association is uniquely identified by a triple consisting
1044 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1045 * security protocol (AH or ESP) identifier.
1046 * Note that, however, we do need to keep source address in IPsec SA.
1047 * IKE specification and PF_KEY specification do assume that we
1048 * keep source address in IPsec SA. We see a tricky situation here.
1049 *
1050 * sport and dport are used for NAT-T. network order is always used.
1051 */
1052 struct secasvar *
1053 key_lookup_sa(
1054 const union sockaddr_union *dst,
1055 u_int proto,
1056 u_int32_t spi,
1057 u_int16_t sport,
1058 u_int16_t dport,
1059 const char* where, int tag)
1060 {
1061 struct secashead *sah;
1062 struct secasvar *sav;
1063 u_int stateidx, state;
1064 const u_int *saorder_state_valid;
1065 int arraysize, chkport;
1066 int s;
1067
1068 int must_check_spi = 1;
1069 int must_check_alg = 0;
1070 u_int16_t cpi = 0;
1071 u_int8_t algo = 0;
1072
1073 if ((sport != 0) && (dport != 0))
1074 chkport = PORT_STRICT;
1075 else
1076 chkport = PORT_NONE;
1077
1078 KASSERT(dst != NULL);
1079
1080 /*
1081 * XXX IPCOMP case
1082 * We use cpi to define spi here. In the case where cpi <=
1083 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1084 * the real spi. In this case, don't check the spi but check the
1085 * algorithm
1086 */
1087
1088 if (proto == IPPROTO_IPCOMP) {
1089 u_int32_t tmp;
1090 tmp = ntohl(spi);
1091 cpi = (u_int16_t) tmp;
1092 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1093 algo = (u_int8_t) cpi;
1094 must_check_spi = 0;
1095 must_check_alg = 1;
1096 }
1097 }
1098 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1099 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1100 where, tag, must_check_spi, must_check_alg);
1101
1102
1103 /*
1104 * searching SAD.
1105 * XXX: to be checked internal IP header somewhere. Also when
1106 * IPsec tunnel packet is received. But ESP tunnel mode is
1107 * encrypted so we can't check internal IP header.
1108 */
1109 s = splsoftnet(); /*called from softclock()*/
1110 if (key_prefered_oldsa) {
1111 saorder_state_valid = saorder_state_valid_prefer_old;
1112 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1113 } else {
1114 saorder_state_valid = saorder_state_valid_prefer_new;
1115 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1116 }
1117 LIST_FOREACH(sah, &sahtree, chain) {
1118 /* search valid state */
1119 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1120 state = saorder_state_valid[stateidx];
1121 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1122 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1123 "try match spi %#x, %#x\n",
1124 ntohl(spi), ntohl(sav->spi));
1125 /* sanity check */
1126 KEY_CHKSASTATE(sav->state, state);
1127 /* do not return entries w/ unusable state */
1128 if (!SADB_SASTATE_USABLE_P(sav)) {
1129 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1130 "bad state %d\n", sav->state);
1131 continue;
1132 }
1133 if (proto != sav->sah->saidx.proto) {
1134 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1135 "proto fail %d != %d\n",
1136 proto, sav->sah->saidx.proto);
1137 continue;
1138 }
1139 if (must_check_spi && spi != sav->spi) {
1140 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1141 "spi fail %#x != %#x\n",
1142 ntohl(spi), ntohl(sav->spi));
1143 continue;
1144 }
1145 /* XXX only on the ipcomp case */
1146 if (must_check_alg && algo != sav->alg_comp) {
1147 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1148 "algo fail %d != %d\n",
1149 algo, sav->alg_comp);
1150 continue;
1151 }
1152
1153 #if 0 /* don't check src */
1154 /* Fix port in src->sa */
1155
1156 /* check src address */
1157 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1158 continue;
1159 #endif
1160 /* fix port of dst address XXX*/
1161 key_porttosaddr(__UNCONST(dst), dport);
1162 /* check dst address */
1163 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1164 continue;
1165 SA_ADDREF2(sav, where, tag);
1166 goto done;
1167 }
1168 }
1169 }
1170 sav = NULL;
1171 done:
1172 splx(s);
1173
1174 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1175 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1176 return sav;
1177 }
1178
1179 static void
1180 key_validate_savlist(const struct secashead *sah, const u_int state)
1181 {
1182 #ifdef DEBUG
1183 struct secasvar *sav, *next;
1184
1185 /*
1186 * The list should be sorted by lft_c->sadb_lifetime_addtime
1187 * in ascending order.
1188 */
1189 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, next) {
1190 if (next != NULL &&
1191 sav->lft_c != NULL && next->lft_c != NULL) {
1192 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1193 next->lft_c->sadb_lifetime_addtime,
1194 "savlist is not sorted: sah=%p, state=%d, "
1195 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1196 sav->lft_c->sadb_lifetime_addtime,
1197 next->lft_c->sadb_lifetime_addtime);
1198 }
1199 }
1200 #endif
1201 }
1202
1203 void
1204 key_init_sp(struct secpolicy *sp)
1205 {
1206
1207 ASSERT_SLEEPABLE();
1208
1209 sp->state = IPSEC_SPSTATE_ALIVE;
1210 if (sp->policy == IPSEC_POLICY_IPSEC)
1211 KASSERT(sp->req != NULL);
1212 localcount_init(&sp->localcount);
1213 SPLIST_ENTRY_INIT(sp);
1214 }
1215
1216 void
1217 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1218 {
1219
1220 localcount_acquire(&sp->localcount);
1221
1222 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1223 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1224 sp, sp->id, where, tag, key_sp_refcnt(sp));
1225 }
1226
1227 void
1228 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1229 {
1230
1231 KASSERT(mutex_ownable(&key_sp_mtx));
1232
1233 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1234 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1235 sp, sp->id, where, tag, key_sp_refcnt(sp));
1236
1237 localcount_release(&sp->localcount, &key_sp_cv, &key_sp_mtx);
1238 }
1239
1240 void
1241 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1242 {
1243
1244 SA_ADDREF2(sav, where, tag);
1245
1246 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1247 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1248 sav->refcnt, sav, where, tag);
1249 }
1250
1251 #if 0
1252 /*
1253 * Must be called after calling key_lookup_sp*().
1254 * For the packet with socket.
1255 */
1256 static void
1257 key_freeso(struct socket *so)
1258 {
1259 /* sanity check */
1260 KASSERT(so != NULL);
1261
1262 switch (so->so_proto->pr_domain->dom_family) {
1263 #ifdef INET
1264 case PF_INET:
1265 {
1266 struct inpcb *pcb = sotoinpcb(so);
1267
1268 /* Does it have a PCB ? */
1269 if (pcb == NULL)
1270 return;
1271
1272 struct inpcbpolicy *sp = pcb->inp_sp;
1273 key_freesp_so(&sp->sp_in);
1274 key_freesp_so(&sp->sp_out);
1275 }
1276 break;
1277 #endif
1278 #ifdef INET6
1279 case PF_INET6:
1280 {
1281 #ifdef HAVE_NRL_INPCB
1282 struct inpcb *pcb = sotoinpcb(so);
1283 struct inpcbpolicy *sp = pcb->inp_sp;
1284
1285 /* Does it have a PCB ? */
1286 if (pcb == NULL)
1287 return;
1288 key_freesp_so(&sp->sp_in);
1289 key_freesp_so(&sp->sp_out);
1290 #else
1291 struct in6pcb *pcb = sotoin6pcb(so);
1292
1293 /* Does it have a PCB ? */
1294 if (pcb == NULL)
1295 return;
1296 key_freesp_so(&pcb->in6p_sp->sp_in);
1297 key_freesp_so(&pcb->in6p_sp->sp_out);
1298 #endif
1299 }
1300 break;
1301 #endif /* INET6 */
1302 default:
1303 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1304 so->so_proto->pr_domain->dom_family);
1305 return;
1306 }
1307 }
1308
1309 static void
1310 key_freesp_so(struct secpolicy **sp)
1311 {
1312
1313 KASSERT(sp != NULL);
1314 KASSERT(*sp != NULL);
1315
1316 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1317 (*sp)->policy == IPSEC_POLICY_BYPASS)
1318 return;
1319
1320 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1321 "invalid policy %u", (*sp)->policy);
1322 KEY_SP_UNREF(&sp);
1323 }
1324 #endif
1325
1326 /*
1327 * Must be called after calling key_lookup_sa().
1328 * This function is called by key_freesp() to free some SA allocated
1329 * for a policy.
1330 */
1331 void
1332 key_freesav(struct secasvar **psav, const char* where, int tag)
1333 {
1334 struct secasvar *sav = *psav;
1335 unsigned int nv;
1336
1337 KASSERT(sav != NULL);
1338
1339 SA_DELREF2(sav, nv, where, tag);
1340
1341 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1342 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1343 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1344
1345 if (nv == 0) {
1346 *psav = NULL;
1347
1348 /* remove from SA header */
1349 KASSERT(__LIST_CHAINED(sav));
1350 LIST_REMOVE(sav, chain);
1351
1352 key_delsav(sav);
1353 }
1354 }
1355
1356 /* %%% SPD management */
1357 /*
1358 * free security policy entry.
1359 */
1360 static void
1361 key_destroy_sp(struct secpolicy *sp)
1362 {
1363
1364 SPLIST_ENTRY_DESTROY(sp);
1365 localcount_fini(&sp->localcount);
1366
1367 key_free_sp(sp);
1368
1369 key_update_used();
1370 }
1371
1372 void
1373 key_free_sp(struct secpolicy *sp)
1374 {
1375 struct ipsecrequest *isr = sp->req, *nextisr;
1376
1377 while (isr != NULL) {
1378 nextisr = isr->next;
1379 kmem_free(isr, sizeof(*isr));
1380 isr = nextisr;
1381 }
1382
1383 kmem_free(sp, sizeof(*sp));
1384 }
1385
1386 void
1387 key_socksplist_add(struct secpolicy *sp)
1388 {
1389
1390 mutex_enter(&key_sp_mtx);
1391 PSLIST_WRITER_INSERT_HEAD(&key_socksplist, sp, pslist_entry);
1392 mutex_exit(&key_sp_mtx);
1393
1394 key_update_used();
1395 }
1396
1397 /*
1398 * search SPD
1399 * OUT: NULL : not found
1400 * others : found, pointer to a SP.
1401 */
1402 static struct secpolicy *
1403 key_getsp(const struct secpolicyindex *spidx)
1404 {
1405 struct secpolicy *sp;
1406 int s;
1407
1408 KASSERT(spidx != NULL);
1409
1410 s = pserialize_read_enter();
1411 SPLIST_READER_FOREACH(sp, spidx->dir) {
1412 if (sp->state == IPSEC_SPSTATE_DEAD)
1413 continue;
1414 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1415 KEY_SP_REF(sp);
1416 pserialize_read_exit(s);
1417 return sp;
1418 }
1419 }
1420 pserialize_read_exit(s);
1421
1422 return NULL;
1423 }
1424
1425 /*
1426 * search SPD and remove found SP
1427 * OUT: NULL : not found
1428 * others : found, pointer to a SP.
1429 */
1430 static struct secpolicy *
1431 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1432 {
1433 struct secpolicy *sp = NULL;
1434
1435 mutex_enter(&key_sp_mtx);
1436 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1437 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1438
1439 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1440 key_unlink_sp(sp);
1441 goto out;
1442 }
1443 }
1444 sp = NULL;
1445 out:
1446 mutex_exit(&key_sp_mtx);
1447
1448 return sp;
1449 }
1450
1451 /*
1452 * get SP by index.
1453 * OUT: NULL : not found
1454 * others : found, pointer to a SP.
1455 */
1456 static struct secpolicy *
1457 key_getspbyid(u_int32_t id)
1458 {
1459 struct secpolicy *sp;
1460 int s;
1461
1462 s = pserialize_read_enter();
1463 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1464 if (sp->state == IPSEC_SPSTATE_DEAD)
1465 continue;
1466 if (sp->id == id) {
1467 KEY_SP_REF(sp);
1468 goto out;
1469 }
1470 }
1471
1472 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1473 if (sp->state == IPSEC_SPSTATE_DEAD)
1474 continue;
1475 if (sp->id == id) {
1476 KEY_SP_REF(sp);
1477 goto out;
1478 }
1479 }
1480 out:
1481 pserialize_read_exit(s);
1482 return sp;
1483 }
1484
1485 /*
1486 * get SP by index, remove and return it.
1487 * OUT: NULL : not found
1488 * others : found, pointer to a SP.
1489 */
1490 static struct secpolicy *
1491 key_lookupbyid_and_remove_sp(u_int32_t id)
1492 {
1493 struct secpolicy *sp;
1494
1495 mutex_enter(&key_sp_mtx);
1496 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1497 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1498 if (sp->id == id)
1499 goto out;
1500 }
1501
1502 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1503 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1504 if (sp->id == id)
1505 goto out;
1506 }
1507 out:
1508 if (sp != NULL)
1509 key_unlink_sp(sp);
1510 mutex_exit(&key_sp_mtx);
1511 return sp;
1512 }
1513
1514 struct secpolicy *
1515 key_newsp(const char* where, int tag)
1516 {
1517 struct secpolicy *newsp = NULL;
1518
1519 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1520
1521 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1522 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1523 return newsp;
1524 }
1525
1526 /*
1527 * create secpolicy structure from sadb_x_policy structure.
1528 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1529 * so must be set properly later.
1530 */
1531 struct secpolicy *
1532 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1533 {
1534 struct secpolicy *newsp;
1535
1536 KASSERT(!cpu_softintr_p());
1537 KASSERT(xpl0 != NULL);
1538 KASSERT(len >= sizeof(*xpl0));
1539
1540 if (len != PFKEY_EXTLEN(xpl0)) {
1541 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1542 *error = EINVAL;
1543 return NULL;
1544 }
1545
1546 newsp = KEY_NEWSP();
1547 if (newsp == NULL) {
1548 *error = ENOBUFS;
1549 return NULL;
1550 }
1551
1552 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1553 newsp->policy = xpl0->sadb_x_policy_type;
1554
1555 /* check policy */
1556 switch (xpl0->sadb_x_policy_type) {
1557 case IPSEC_POLICY_DISCARD:
1558 case IPSEC_POLICY_NONE:
1559 case IPSEC_POLICY_ENTRUST:
1560 case IPSEC_POLICY_BYPASS:
1561 newsp->req = NULL;
1562 *error = 0;
1563 return newsp;
1564
1565 case IPSEC_POLICY_IPSEC:
1566 /* Continued */
1567 break;
1568 default:
1569 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1570 key_free_sp(newsp);
1571 *error = EINVAL;
1572 return NULL;
1573 }
1574
1575 /* IPSEC_POLICY_IPSEC */
1576 {
1577 int tlen;
1578 const struct sadb_x_ipsecrequest *xisr;
1579 uint16_t xisr_reqid;
1580 struct ipsecrequest **p_isr = &newsp->req;
1581
1582 /* validity check */
1583 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1584 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1585 *error = EINVAL;
1586 goto free_exit;
1587 }
1588
1589 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1590 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1591
1592 while (tlen > 0) {
1593 /* length check */
1594 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1595 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1596 *error = EINVAL;
1597 goto free_exit;
1598 }
1599
1600 /* allocate request buffer */
1601 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1602
1603 /* set values */
1604 (*p_isr)->next = NULL;
1605
1606 switch (xisr->sadb_x_ipsecrequest_proto) {
1607 case IPPROTO_ESP:
1608 case IPPROTO_AH:
1609 case IPPROTO_IPCOMP:
1610 break;
1611 default:
1612 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1613 xisr->sadb_x_ipsecrequest_proto);
1614 *error = EPROTONOSUPPORT;
1615 goto free_exit;
1616 }
1617 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1618
1619 switch (xisr->sadb_x_ipsecrequest_mode) {
1620 case IPSEC_MODE_TRANSPORT:
1621 case IPSEC_MODE_TUNNEL:
1622 break;
1623 case IPSEC_MODE_ANY:
1624 default:
1625 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1626 xisr->sadb_x_ipsecrequest_mode);
1627 *error = EINVAL;
1628 goto free_exit;
1629 }
1630 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1631
1632 switch (xisr->sadb_x_ipsecrequest_level) {
1633 case IPSEC_LEVEL_DEFAULT:
1634 case IPSEC_LEVEL_USE:
1635 case IPSEC_LEVEL_REQUIRE:
1636 break;
1637 case IPSEC_LEVEL_UNIQUE:
1638 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1639 /* validity check */
1640 /*
1641 * If range violation of reqid, kernel will
1642 * update it, don't refuse it.
1643 */
1644 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1645 IPSECLOG(LOG_DEBUG,
1646 "reqid=%d range "
1647 "violation, updated by kernel.\n",
1648 xisr_reqid);
1649 xisr_reqid = 0;
1650 }
1651
1652 /* allocate new reqid id if reqid is zero. */
1653 if (xisr_reqid == 0) {
1654 u_int16_t reqid = key_newreqid();
1655 if (reqid == 0) {
1656 *error = ENOBUFS;
1657 goto free_exit;
1658 }
1659 (*p_isr)->saidx.reqid = reqid;
1660 } else {
1661 /* set it for manual keying. */
1662 (*p_isr)->saidx.reqid = xisr_reqid;
1663 }
1664 break;
1665
1666 default:
1667 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1668 xisr->sadb_x_ipsecrequest_level);
1669 *error = EINVAL;
1670 goto free_exit;
1671 }
1672 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1673
1674 /* set IP addresses if there */
1675 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1676 const struct sockaddr *paddr;
1677
1678 paddr = (const struct sockaddr *)(xisr + 1);
1679
1680 /* validity check */
1681 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1682 IPSECLOG(LOG_DEBUG, "invalid request "
1683 "address length.\n");
1684 *error = EINVAL;
1685 goto free_exit;
1686 }
1687 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1688
1689 paddr = (const struct sockaddr *)((const char *)paddr
1690 + paddr->sa_len);
1691
1692 /* validity check */
1693 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1694 IPSECLOG(LOG_DEBUG, "invalid request "
1695 "address length.\n");
1696 *error = EINVAL;
1697 goto free_exit;
1698 }
1699 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1700 }
1701
1702 (*p_isr)->sp = newsp;
1703
1704 /* initialization for the next. */
1705 p_isr = &(*p_isr)->next;
1706 tlen -= xisr->sadb_x_ipsecrequest_len;
1707
1708 /* validity check */
1709 if (tlen < 0) {
1710 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1711 *error = EINVAL;
1712 goto free_exit;
1713 }
1714
1715 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1716 xisr->sadb_x_ipsecrequest_len);
1717 }
1718 }
1719
1720 *error = 0;
1721 return newsp;
1722
1723 free_exit:
1724 key_free_sp(newsp);
1725 return NULL;
1726 }
1727
1728 static u_int16_t
1729 key_newreqid(void)
1730 {
1731 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1732
1733 auto_reqid = (auto_reqid == 0xffff ?
1734 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1735
1736 /* XXX should be unique check */
1737
1738 return auto_reqid;
1739 }
1740
1741 /*
1742 * copy secpolicy struct to sadb_x_policy structure indicated.
1743 */
1744 struct mbuf *
1745 key_sp2msg(const struct secpolicy *sp)
1746 {
1747 struct sadb_x_policy *xpl;
1748 int tlen;
1749 char *p;
1750 struct mbuf *m;
1751
1752 KASSERT(sp != NULL);
1753
1754 tlen = key_getspreqmsglen(sp);
1755
1756 m = key_alloc_mbuf(tlen);
1757 if (!m || m->m_next) { /*XXX*/
1758 if (m)
1759 m_freem(m);
1760 return NULL;
1761 }
1762
1763 m->m_len = tlen;
1764 m->m_next = NULL;
1765 xpl = mtod(m, struct sadb_x_policy *);
1766 memset(xpl, 0, tlen);
1767
1768 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1769 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1770 xpl->sadb_x_policy_type = sp->policy;
1771 xpl->sadb_x_policy_dir = sp->spidx.dir;
1772 xpl->sadb_x_policy_id = sp->id;
1773 p = (char *)xpl + sizeof(*xpl);
1774
1775 /* if is the policy for ipsec ? */
1776 if (sp->policy == IPSEC_POLICY_IPSEC) {
1777 struct sadb_x_ipsecrequest *xisr;
1778 struct ipsecrequest *isr;
1779
1780 for (isr = sp->req; isr != NULL; isr = isr->next) {
1781
1782 xisr = (struct sadb_x_ipsecrequest *)p;
1783
1784 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1785 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1786 xisr->sadb_x_ipsecrequest_level = isr->level;
1787 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1788
1789 p += sizeof(*xisr);
1790 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1791 p += isr->saidx.src.sa.sa_len;
1792 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1793 p += isr->saidx.src.sa.sa_len;
1794
1795 xisr->sadb_x_ipsecrequest_len =
1796 PFKEY_ALIGN8(sizeof(*xisr)
1797 + isr->saidx.src.sa.sa_len
1798 + isr->saidx.dst.sa.sa_len);
1799 }
1800 }
1801
1802 return m;
1803 }
1804
1805 /* m will not be freed nor modified */
1806 static struct mbuf *
1807 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1808 int ndeep, int nitem, ...)
1809 {
1810 va_list ap;
1811 int idx;
1812 int i;
1813 struct mbuf *result = NULL, *n;
1814 int len;
1815
1816 KASSERT(m != NULL);
1817 KASSERT(mhp != NULL);
1818
1819 va_start(ap, nitem);
1820 for (i = 0; i < nitem; i++) {
1821 idx = va_arg(ap, int);
1822 if (idx < 0 || idx > SADB_EXT_MAX)
1823 goto fail;
1824 /* don't attempt to pull empty extension */
1825 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1826 continue;
1827 if (idx != SADB_EXT_RESERVED &&
1828 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1829 continue;
1830
1831 if (idx == SADB_EXT_RESERVED) {
1832 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1833 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1834 MGETHDR(n, M_DONTWAIT, MT_DATA);
1835 if (!n)
1836 goto fail;
1837 n->m_len = len;
1838 n->m_next = NULL;
1839 m_copydata(m, 0, sizeof(struct sadb_msg),
1840 mtod(n, void *));
1841 } else if (i < ndeep) {
1842 len = mhp->extlen[idx];
1843 n = key_alloc_mbuf(len);
1844 if (!n || n->m_next) { /*XXX*/
1845 if (n)
1846 m_freem(n);
1847 goto fail;
1848 }
1849 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1850 mtod(n, void *));
1851 } else {
1852 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1853 M_DONTWAIT);
1854 }
1855 if (n == NULL)
1856 goto fail;
1857
1858 if (result)
1859 m_cat(result, n);
1860 else
1861 result = n;
1862 }
1863 va_end(ap);
1864
1865 if (result && (result->m_flags & M_PKTHDR) != 0) {
1866 result->m_pkthdr.len = 0;
1867 for (n = result; n; n = n->m_next)
1868 result->m_pkthdr.len += n->m_len;
1869 }
1870
1871 return result;
1872
1873 fail:
1874 va_end(ap);
1875 m_freem(result);
1876 return NULL;
1877 }
1878
1879 /*
1880 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1881 * add an entry to SP database, when received
1882 * <base, address(SD), (lifetime(H),) policy>
1883 * from the user(?).
1884 * Adding to SP database,
1885 * and send
1886 * <base, address(SD), (lifetime(H),) policy>
1887 * to the socket which was send.
1888 *
1889 * SPDADD set a unique policy entry.
1890 * SPDSETIDX like SPDADD without a part of policy requests.
1891 * SPDUPDATE replace a unique policy entry.
1892 *
1893 * m will always be freed.
1894 */
1895 static int
1896 key_api_spdadd(struct socket *so, struct mbuf *m,
1897 const struct sadb_msghdr *mhp)
1898 {
1899 const struct sockaddr *src, *dst;
1900 const struct sadb_x_policy *xpl0;
1901 struct sadb_x_policy *xpl;
1902 const struct sadb_lifetime *lft = NULL;
1903 struct secpolicyindex spidx;
1904 struct secpolicy *newsp;
1905 int error;
1906
1907 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1908 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1909 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1910 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1911 return key_senderror(so, m, EINVAL);
1912 }
1913 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1914 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1915 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1916 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1917 return key_senderror(so, m, EINVAL);
1918 }
1919 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1920 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1921 sizeof(struct sadb_lifetime)) {
1922 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1923 return key_senderror(so, m, EINVAL);
1924 }
1925 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1926 }
1927
1928 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1929
1930 /* checking the direciton. */
1931 switch (xpl0->sadb_x_policy_dir) {
1932 case IPSEC_DIR_INBOUND:
1933 case IPSEC_DIR_OUTBOUND:
1934 break;
1935 default:
1936 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1937 return key_senderror(so, m, EINVAL);
1938 }
1939
1940 /* check policy */
1941 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
1942 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1943 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1944 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1945 return key_senderror(so, m, EINVAL);
1946 }
1947
1948 /* policy requests are mandatory when action is ipsec. */
1949 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1950 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1951 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1952 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1953 return key_senderror(so, m, EINVAL);
1954 }
1955
1956 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1957 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1958
1959 /* sanity check on addr pair */
1960 if (src->sa_family != dst->sa_family)
1961 return key_senderror(so, m, EINVAL);
1962 if (src->sa_len != dst->sa_len)
1963 return key_senderror(so, m, EINVAL);
1964
1965 key_init_spidx_bymsghdr(&spidx, mhp);
1966
1967 /*
1968 * checking there is SP already or not.
1969 * SPDUPDATE doesn't depend on whether there is a SP or not.
1970 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1971 * then error.
1972 */
1973 {
1974 struct secpolicy *sp;
1975
1976 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1977 sp = key_lookup_and_remove_sp(&spidx);
1978 if (sp != NULL)
1979 key_destroy_sp(sp);
1980 } else {
1981 sp = key_getsp(&spidx);
1982 if (sp != NULL) {
1983 KEY_SP_UNREF(&sp);
1984 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
1985 return key_senderror(so, m, EEXIST);
1986 }
1987 }
1988 }
1989
1990 /* allocation new SP entry */
1991 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
1992 if (newsp == NULL) {
1993 return key_senderror(so, m, error);
1994 }
1995
1996 newsp->id = key_getnewspid();
1997 if (newsp->id == 0) {
1998 kmem_free(newsp, sizeof(*newsp));
1999 return key_senderror(so, m, ENOBUFS);
2000 }
2001
2002 newsp->spidx = spidx;
2003 newsp->created = time_uptime;
2004 newsp->lastused = newsp->created;
2005 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2006 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2007
2008 key_init_sp(newsp);
2009
2010 mutex_enter(&key_sp_mtx);
2011 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2012 mutex_exit(&key_sp_mtx);
2013
2014 #ifdef notyet
2015 /* delete the entry in spacqtree */
2016 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2017 struct secspacq *spacq = key_getspacq(&spidx);
2018 if (spacq != NULL) {
2019 /* reset counter in order to deletion by timehandler. */
2020 spacq->created = time_uptime;
2021 spacq->count = 0;
2022 }
2023 }
2024 #endif
2025
2026 /* Invalidate all cached SPD pointers in the PCBs. */
2027 ipsec_invalpcbcacheall();
2028
2029 #if defined(GATEWAY)
2030 /* Invalidate the ipflow cache, as well. */
2031 ipflow_invalidate_all(0);
2032 #ifdef INET6
2033 if (in6_present)
2034 ip6flow_invalidate_all(0);
2035 #endif /* INET6 */
2036 #endif /* GATEWAY */
2037
2038 key_update_used();
2039
2040 {
2041 struct mbuf *n, *mpolicy;
2042 int off;
2043
2044 /* create new sadb_msg to reply. */
2045 if (lft) {
2046 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2047 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2048 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2049 } else {
2050 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2051 SADB_X_EXT_POLICY,
2052 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2053 }
2054 if (!n)
2055 return key_senderror(so, m, ENOBUFS);
2056
2057 n = key_fill_replymsg(n, 0);
2058 if (n == NULL)
2059 return key_senderror(so, m, ENOBUFS);
2060
2061 off = 0;
2062 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2063 sizeof(*xpl), &off);
2064 if (mpolicy == NULL) {
2065 /* n is already freed */
2066 return key_senderror(so, m, ENOBUFS);
2067 }
2068 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2069 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2070 m_freem(n);
2071 return key_senderror(so, m, EINVAL);
2072 }
2073 xpl->sadb_x_policy_id = newsp->id;
2074
2075 m_freem(m);
2076 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2077 }
2078 }
2079
2080 /*
2081 * get new policy id.
2082 * OUT:
2083 * 0: failure.
2084 * others: success.
2085 */
2086 static u_int32_t
2087 key_getnewspid(void)
2088 {
2089 u_int32_t newid = 0;
2090 int count = key_spi_trycnt; /* XXX */
2091 struct secpolicy *sp;
2092
2093 /* when requesting to allocate spi ranged */
2094 while (count--) {
2095 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2096
2097 sp = key_getspbyid(newid);
2098 if (sp == NULL)
2099 break;
2100
2101 KEY_SP_UNREF(&sp);
2102 }
2103
2104 if (count == 0 || newid == 0) {
2105 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2106 return 0;
2107 }
2108
2109 return newid;
2110 }
2111
2112 /*
2113 * SADB_SPDDELETE processing
2114 * receive
2115 * <base, address(SD), policy(*)>
2116 * from the user(?), and set SADB_SASTATE_DEAD,
2117 * and send,
2118 * <base, address(SD), policy(*)>
2119 * to the ikmpd.
2120 * policy(*) including direction of policy.
2121 *
2122 * m will always be freed.
2123 */
2124 static int
2125 key_api_spddelete(struct socket *so, struct mbuf *m,
2126 const struct sadb_msghdr *mhp)
2127 {
2128 struct sadb_x_policy *xpl0;
2129 struct secpolicyindex spidx;
2130 struct secpolicy *sp;
2131
2132 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2133 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2134 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2135 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2136 return key_senderror(so, m, EINVAL);
2137 }
2138 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2139 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2140 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2141 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2142 return key_senderror(so, m, EINVAL);
2143 }
2144
2145 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2146
2147 /* checking the direciton. */
2148 switch (xpl0->sadb_x_policy_dir) {
2149 case IPSEC_DIR_INBOUND:
2150 case IPSEC_DIR_OUTBOUND:
2151 break;
2152 default:
2153 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2154 return key_senderror(so, m, EINVAL);
2155 }
2156
2157 /* make secindex */
2158 key_init_spidx_bymsghdr(&spidx, mhp);
2159
2160 /* Is there SP in SPD ? */
2161 sp = key_lookup_and_remove_sp(&spidx);
2162 if (sp == NULL) {
2163 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2164 return key_senderror(so, m, EINVAL);
2165 }
2166
2167 /* save policy id to buffer to be returned. */
2168 xpl0->sadb_x_policy_id = sp->id;
2169
2170 key_destroy_sp(sp);
2171
2172 /* We're deleting policy; no need to invalidate the ipflow cache. */
2173
2174 {
2175 struct mbuf *n;
2176
2177 /* create new sadb_msg to reply. */
2178 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2179 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2180 if (!n)
2181 return key_senderror(so, m, ENOBUFS);
2182
2183 n = key_fill_replymsg(n, 0);
2184 if (n == NULL)
2185 return key_senderror(so, m, ENOBUFS);
2186
2187 m_freem(m);
2188 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2189 }
2190 }
2191
2192 /*
2193 * SADB_SPDDELETE2 processing
2194 * receive
2195 * <base, policy(*)>
2196 * from the user(?), and set SADB_SASTATE_DEAD,
2197 * and send,
2198 * <base, policy(*)>
2199 * to the ikmpd.
2200 * policy(*) including direction of policy.
2201 *
2202 * m will always be freed.
2203 */
2204 static int
2205 key_api_spddelete2(struct socket *so, struct mbuf *m,
2206 const struct sadb_msghdr *mhp)
2207 {
2208 u_int32_t id;
2209 struct secpolicy *sp;
2210
2211 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2212 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2213 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2214 return key_senderror(so, m, EINVAL);
2215 }
2216
2217 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2218
2219 /* Is there SP in SPD ? */
2220 sp = key_lookupbyid_and_remove_sp(id);
2221 if (sp == NULL) {
2222 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2223 return key_senderror(so, m, EINVAL);
2224 }
2225
2226 key_destroy_sp(sp);
2227
2228 /* We're deleting policy; no need to invalidate the ipflow cache. */
2229
2230 {
2231 struct mbuf *n, *nn;
2232 int off, len;
2233
2234 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2235
2236 /* create new sadb_msg to reply. */
2237 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2238
2239 MGETHDR(n, M_DONTWAIT, MT_DATA);
2240 if (n && len > MHLEN) {
2241 MCLGET(n, M_DONTWAIT);
2242 if ((n->m_flags & M_EXT) == 0) {
2243 m_freem(n);
2244 n = NULL;
2245 }
2246 }
2247 if (!n)
2248 return key_senderror(so, m, ENOBUFS);
2249
2250 n->m_len = len;
2251 n->m_next = NULL;
2252 off = 0;
2253
2254 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2255 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2256
2257 KASSERTMSG(off == len, "length inconsistency");
2258
2259 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2260 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2261 if (!n->m_next) {
2262 m_freem(n);
2263 return key_senderror(so, m, ENOBUFS);
2264 }
2265
2266 n->m_pkthdr.len = 0;
2267 for (nn = n; nn; nn = nn->m_next)
2268 n->m_pkthdr.len += nn->m_len;
2269
2270 n = key_fill_replymsg(n, 0);
2271 if (n == NULL)
2272 return key_senderror(so, m, ENOBUFS);
2273
2274 m_freem(m);
2275 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2276 }
2277 }
2278
2279 /*
2280 * SADB_X_GET processing
2281 * receive
2282 * <base, policy(*)>
2283 * from the user(?),
2284 * and send,
2285 * <base, address(SD), policy>
2286 * to the ikmpd.
2287 * policy(*) including direction of policy.
2288 *
2289 * m will always be freed.
2290 */
2291 static int
2292 key_api_spdget(struct socket *so, struct mbuf *m,
2293 const struct sadb_msghdr *mhp)
2294 {
2295 u_int32_t id;
2296 struct secpolicy *sp;
2297 struct mbuf *n;
2298
2299 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2300 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2301 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2302 return key_senderror(so, m, EINVAL);
2303 }
2304
2305 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2306
2307 /* Is there SP in SPD ? */
2308 sp = key_getspbyid(id);
2309 if (sp == NULL) {
2310 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2311 return key_senderror(so, m, ENOENT);
2312 }
2313
2314 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2315 mhp->msg->sadb_msg_pid);
2316 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2317 if (n != NULL) {
2318 m_freem(m);
2319 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2320 } else
2321 return key_senderror(so, m, ENOBUFS);
2322 }
2323
2324 #ifdef notyet
2325 /*
2326 * SADB_X_SPDACQUIRE processing.
2327 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2328 * send
2329 * <base, policy(*)>
2330 * to KMD, and expect to receive
2331 * <base> with SADB_X_SPDACQUIRE if error occurred,
2332 * or
2333 * <base, policy>
2334 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2335 * policy(*) is without policy requests.
2336 *
2337 * 0 : succeed
2338 * others: error number
2339 */
2340 int
2341 key_spdacquire(const struct secpolicy *sp)
2342 {
2343 struct mbuf *result = NULL, *m;
2344 struct secspacq *newspacq;
2345 int error;
2346
2347 KASSERT(sp != NULL);
2348 KASSERTMSG(sp->req == NULL, "called but there is request");
2349 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2350 "policy mismathed. IPsec is expected");
2351
2352 /* Get an entry to check whether sent message or not. */
2353 newspacq = key_getspacq(&sp->spidx);
2354 if (newspacq != NULL) {
2355 if (key_blockacq_count < newspacq->count) {
2356 /* reset counter and do send message. */
2357 newspacq->count = 0;
2358 } else {
2359 /* increment counter and do nothing. */
2360 newspacq->count++;
2361 return 0;
2362 }
2363 } else {
2364 /* make new entry for blocking to send SADB_ACQUIRE. */
2365 newspacq = key_newspacq(&sp->spidx);
2366 if (newspacq == NULL)
2367 return ENOBUFS;
2368
2369 /* add to acqtree */
2370 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2371 }
2372
2373 /* create new sadb_msg to reply. */
2374 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2375 if (!m) {
2376 error = ENOBUFS;
2377 goto fail;
2378 }
2379 result = m;
2380
2381 result->m_pkthdr.len = 0;
2382 for (m = result; m; m = m->m_next)
2383 result->m_pkthdr.len += m->m_len;
2384
2385 mtod(result, struct sadb_msg *)->sadb_msg_len =
2386 PFKEY_UNIT64(result->m_pkthdr.len);
2387
2388 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2389
2390 fail:
2391 if (result)
2392 m_freem(result);
2393 return error;
2394 }
2395 #endif /* notyet */
2396
2397 /*
2398 * SADB_SPDFLUSH processing
2399 * receive
2400 * <base>
2401 * from the user, and free all entries in secpctree.
2402 * and send,
2403 * <base>
2404 * to the user.
2405 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2406 *
2407 * m will always be freed.
2408 */
2409 static int
2410 key_api_spdflush(struct socket *so, struct mbuf *m,
2411 const struct sadb_msghdr *mhp)
2412 {
2413 struct sadb_msg *newmsg;
2414 struct secpolicy *sp;
2415 u_int dir;
2416
2417 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2418 return key_senderror(so, m, EINVAL);
2419
2420 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2421 retry:
2422 mutex_enter(&key_sp_mtx);
2423 SPLIST_WRITER_FOREACH(sp, dir) {
2424 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2425 key_unlink_sp(sp);
2426 mutex_exit(&key_sp_mtx);
2427 key_destroy_sp(sp);
2428 goto retry;
2429 }
2430 mutex_exit(&key_sp_mtx);
2431 }
2432
2433 /* We're deleting policy; no need to invalidate the ipflow cache. */
2434
2435 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2436 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2437 return key_senderror(so, m, ENOBUFS);
2438 }
2439
2440 if (m->m_next)
2441 m_freem(m->m_next);
2442 m->m_next = NULL;
2443 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2444 newmsg = mtod(m, struct sadb_msg *);
2445 newmsg->sadb_msg_errno = 0;
2446 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2447
2448 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2449 }
2450
2451 static struct sockaddr key_src = {
2452 .sa_len = 2,
2453 .sa_family = PF_KEY,
2454 };
2455
2456 static struct mbuf *
2457 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2458 {
2459 struct secpolicy *sp;
2460 int cnt;
2461 u_int dir;
2462 struct mbuf *m, *n, *prev;
2463 int totlen;
2464
2465 KASSERT(mutex_owned(&key_sp_mtx));
2466
2467 *lenp = 0;
2468
2469 /* search SPD entry and get buffer size. */
2470 cnt = 0;
2471 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2472 SPLIST_WRITER_FOREACH(sp, dir) {
2473 cnt++;
2474 }
2475 }
2476
2477 if (cnt == 0) {
2478 *errorp = ENOENT;
2479 return (NULL);
2480 }
2481
2482 m = NULL;
2483 prev = m;
2484 totlen = 0;
2485 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2486 SPLIST_WRITER_FOREACH(sp, dir) {
2487 --cnt;
2488 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2489
2490 if (!n) {
2491 *errorp = ENOBUFS;
2492 if (m)
2493 m_freem(m);
2494 return (NULL);
2495 }
2496
2497 totlen += n->m_pkthdr.len;
2498 if (!m) {
2499 m = n;
2500 } else {
2501 prev->m_nextpkt = n;
2502 }
2503 prev = n;
2504 }
2505 }
2506
2507 *lenp = totlen;
2508 *errorp = 0;
2509 return (m);
2510 }
2511
2512 /*
2513 * SADB_SPDDUMP processing
2514 * receive
2515 * <base>
2516 * from the user, and dump all SP leaves
2517 * and send,
2518 * <base> .....
2519 * to the ikmpd.
2520 *
2521 * m will always be freed.
2522 */
2523 static int
2524 key_api_spddump(struct socket *so, struct mbuf *m0,
2525 const struct sadb_msghdr *mhp)
2526 {
2527 struct mbuf *n;
2528 int error, len;
2529 int ok;
2530 pid_t pid;
2531
2532 pid = mhp->msg->sadb_msg_pid;
2533 /*
2534 * If the requestor has insufficient socket-buffer space
2535 * for the entire chain, nobody gets any response to the DUMP.
2536 * XXX For now, only the requestor ever gets anything.
2537 * Moreover, if the requestor has any space at all, they receive
2538 * the entire chain, otherwise the request is refused with ENOBUFS.
2539 */
2540 if (sbspace(&so->so_rcv) <= 0) {
2541 return key_senderror(so, m0, ENOBUFS);
2542 }
2543
2544 mutex_enter(&key_sp_mtx);
2545 n = key_setspddump_chain(&error, &len, pid);
2546 mutex_exit(&key_sp_mtx);
2547
2548 if (n == NULL) {
2549 return key_senderror(so, m0, ENOENT);
2550 }
2551 {
2552 uint64_t *ps = PFKEY_STAT_GETREF();
2553 ps[PFKEY_STAT_IN_TOTAL]++;
2554 ps[PFKEY_STAT_IN_BYTES] += len;
2555 PFKEY_STAT_PUTREF();
2556 }
2557
2558 /*
2559 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2560 * The requestor receives either the entire chain, or an
2561 * error message with ENOBUFS.
2562 */
2563
2564 /*
2565 * sbappendchainwith record takes the chain of entries, one
2566 * packet-record per SPD entry, prepends the key_src sockaddr
2567 * to each packet-record, links the sockaddr mbufs into a new
2568 * list of records, then appends the entire resulting
2569 * list to the requesting socket.
2570 */
2571 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2572 SB_PRIO_ONESHOT_OVERFLOW);
2573
2574 if (!ok) {
2575 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2576 m_freem(n);
2577 return key_senderror(so, m0, ENOBUFS);
2578 }
2579
2580 m_freem(m0);
2581 return error;
2582 }
2583
2584 /*
2585 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2586 */
2587 static int
2588 key_api_nat_map(struct socket *so, struct mbuf *m,
2589 const struct sadb_msghdr *mhp)
2590 {
2591 struct sadb_x_nat_t_type *type;
2592 struct sadb_x_nat_t_port *sport;
2593 struct sadb_x_nat_t_port *dport;
2594 struct sadb_address *iaddr, *raddr;
2595 struct sadb_x_nat_t_frag *frag;
2596
2597 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2598 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2599 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2600 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2601 return key_senderror(so, m, EINVAL);
2602 }
2603 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2604 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2605 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2606 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2607 return key_senderror(so, m, EINVAL);
2608 }
2609
2610 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2611 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2612 IPSECLOG(LOG_DEBUG, "invalid message\n");
2613 return key_senderror(so, m, EINVAL);
2614 }
2615
2616 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2617 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2618 IPSECLOG(LOG_DEBUG, "invalid message\n");
2619 return key_senderror(so, m, EINVAL);
2620 }
2621
2622 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2623 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2624 IPSECLOG(LOG_DEBUG, "invalid message\n");
2625 return key_senderror(so, m, EINVAL);
2626 }
2627
2628 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2629 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2630 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2631 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2632 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2633 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2634
2635 /*
2636 * XXX handle that, it should also contain a SA, or anything
2637 * that enable to update the SA information.
2638 */
2639
2640 return 0;
2641 }
2642
2643 static struct mbuf *
2644 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2645 {
2646 struct mbuf *result = NULL, *m;
2647
2648 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2649 key_sp_refcnt(sp));
2650 if (!m)
2651 goto fail;
2652 result = m;
2653
2654 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2655 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2656 if (!m)
2657 goto fail;
2658 m_cat(result, m);
2659
2660 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2661 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2662 if (!m)
2663 goto fail;
2664 m_cat(result, m);
2665
2666 m = key_sp2msg(sp);
2667 if (!m)
2668 goto fail;
2669 m_cat(result, m);
2670
2671 if ((result->m_flags & M_PKTHDR) == 0)
2672 goto fail;
2673
2674 if (result->m_len < sizeof(struct sadb_msg)) {
2675 result = m_pullup(result, sizeof(struct sadb_msg));
2676 if (result == NULL)
2677 goto fail;
2678 }
2679
2680 result->m_pkthdr.len = 0;
2681 for (m = result; m; m = m->m_next)
2682 result->m_pkthdr.len += m->m_len;
2683
2684 mtod(result, struct sadb_msg *)->sadb_msg_len =
2685 PFKEY_UNIT64(result->m_pkthdr.len);
2686
2687 return result;
2688
2689 fail:
2690 m_freem(result);
2691 return NULL;
2692 }
2693
2694 /*
2695 * get PFKEY message length for security policy and request.
2696 */
2697 static u_int
2698 key_getspreqmsglen(const struct secpolicy *sp)
2699 {
2700 u_int tlen;
2701
2702 tlen = sizeof(struct sadb_x_policy);
2703
2704 /* if is the policy for ipsec ? */
2705 if (sp->policy != IPSEC_POLICY_IPSEC)
2706 return tlen;
2707
2708 /* get length of ipsec requests */
2709 {
2710 const struct ipsecrequest *isr;
2711 int len;
2712
2713 for (isr = sp->req; isr != NULL; isr = isr->next) {
2714 len = sizeof(struct sadb_x_ipsecrequest)
2715 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2716
2717 tlen += PFKEY_ALIGN8(len);
2718 }
2719 }
2720
2721 return tlen;
2722 }
2723
2724 /*
2725 * SADB_SPDEXPIRE processing
2726 * send
2727 * <base, address(SD), lifetime(CH), policy>
2728 * to KMD by PF_KEY.
2729 *
2730 * OUT: 0 : succeed
2731 * others : error number
2732 */
2733 static int
2734 key_spdexpire(struct secpolicy *sp)
2735 {
2736 int s;
2737 struct mbuf *result = NULL, *m;
2738 int len;
2739 int error = -1;
2740 struct sadb_lifetime *lt;
2741
2742 /* XXX: Why do we lock ? */
2743 s = splsoftnet(); /*called from softclock()*/
2744
2745 KASSERT(sp != NULL);
2746
2747 /* set msg header */
2748 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2749 if (!m) {
2750 error = ENOBUFS;
2751 goto fail;
2752 }
2753 result = m;
2754
2755 /* create lifetime extension (current and hard) */
2756 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2757 m = key_alloc_mbuf(len);
2758 if (!m || m->m_next) { /*XXX*/
2759 if (m)
2760 m_freem(m);
2761 error = ENOBUFS;
2762 goto fail;
2763 }
2764 memset(mtod(m, void *), 0, len);
2765 lt = mtod(m, struct sadb_lifetime *);
2766 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2767 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2768 lt->sadb_lifetime_allocations = 0;
2769 lt->sadb_lifetime_bytes = 0;
2770 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2771 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2772 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2773 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2774 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2775 lt->sadb_lifetime_allocations = 0;
2776 lt->sadb_lifetime_bytes = 0;
2777 lt->sadb_lifetime_addtime = sp->lifetime;
2778 lt->sadb_lifetime_usetime = sp->validtime;
2779 m_cat(result, m);
2780
2781 /* set sadb_address for source */
2782 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2783 sp->spidx.prefs, sp->spidx.ul_proto);
2784 if (!m) {
2785 error = ENOBUFS;
2786 goto fail;
2787 }
2788 m_cat(result, m);
2789
2790 /* set sadb_address for destination */
2791 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2792 sp->spidx.prefd, sp->spidx.ul_proto);
2793 if (!m) {
2794 error = ENOBUFS;
2795 goto fail;
2796 }
2797 m_cat(result, m);
2798
2799 /* set secpolicy */
2800 m = key_sp2msg(sp);
2801 if (!m) {
2802 error = ENOBUFS;
2803 goto fail;
2804 }
2805 m_cat(result, m);
2806
2807 if ((result->m_flags & M_PKTHDR) == 0) {
2808 error = EINVAL;
2809 goto fail;
2810 }
2811
2812 if (result->m_len < sizeof(struct sadb_msg)) {
2813 result = m_pullup(result, sizeof(struct sadb_msg));
2814 if (result == NULL) {
2815 error = ENOBUFS;
2816 goto fail;
2817 }
2818 }
2819
2820 result->m_pkthdr.len = 0;
2821 for (m = result; m; m = m->m_next)
2822 result->m_pkthdr.len += m->m_len;
2823
2824 mtod(result, struct sadb_msg *)->sadb_msg_len =
2825 PFKEY_UNIT64(result->m_pkthdr.len);
2826
2827 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2828
2829 fail:
2830 if (result)
2831 m_freem(result);
2832 splx(s);
2833 return error;
2834 }
2835
2836 /* %%% SAD management */
2837 /*
2838 * allocating a memory for new SA head, and copy from the values of mhp.
2839 * OUT: NULL : failure due to the lack of memory.
2840 * others : pointer to new SA head.
2841 */
2842 static struct secashead *
2843 key_newsah(const struct secasindex *saidx)
2844 {
2845 struct secashead *newsah;
2846 int i;
2847
2848 KASSERT(saidx != NULL);
2849
2850 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2851 for (i = 0; i < __arraycount(newsah->savtree); i++)
2852 LIST_INIT(&newsah->savtree[i]);
2853 newsah->saidx = *saidx;
2854
2855 /* add to saidxtree */
2856 newsah->state = SADB_SASTATE_MATURE;
2857 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2858
2859 return newsah;
2860 }
2861
2862 /*
2863 * delete SA index and all SA registerd.
2864 */
2865 static void
2866 key_delsah(struct secashead *sah)
2867 {
2868 struct secasvar *sav;
2869 u_int state;
2870 int s;
2871 int zombie = 0;
2872
2873 KASSERT(!cpu_softintr_p());
2874 KASSERT(sah != NULL);
2875
2876 s = splsoftnet();
2877
2878 /* searching all SA registerd in the secindex. */
2879 SASTATE_ANY_FOREACH(state) {
2880 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2881 /* give up to delete this sa */
2882 zombie++;
2883 }
2884 }
2885
2886 /* don't delete sah only if there are savs. */
2887 if (zombie) {
2888 splx(s);
2889 return;
2890 }
2891
2892 rtcache_free(&sah->sa_route);
2893
2894 /* remove from tree of SA index */
2895 KASSERT(__LIST_CHAINED(sah));
2896 LIST_REMOVE(sah, chain);
2897
2898 if (sah->idents != NULL)
2899 kmem_free(sah->idents, sah->idents_len);
2900 if (sah->identd != NULL)
2901 kmem_free(sah->identd, sah->identd_len);
2902
2903 kmem_free(sah, sizeof(*sah));
2904
2905 splx(s);
2906 return;
2907 }
2908
2909 /*
2910 * allocating a new SA with LARVAL state.
2911 * key_api_add() and key_api_getspi() call,
2912 * and copy the values of mhp into new buffer.
2913 * When SAD message type is GETSPI:
2914 * to set sequence number from acq_seq++,
2915 * to set zero to SPI.
2916 * not to call key_setsava().
2917 * OUT: NULL : fail
2918 * others : pointer to new secasvar.
2919 *
2920 * does not modify mbuf. does not free mbuf on error.
2921 */
2922 static struct secasvar *
2923 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2924 int *errp, const char* where, int tag)
2925 {
2926 struct secasvar *newsav;
2927 const struct sadb_sa *xsa;
2928
2929 KASSERT(!cpu_softintr_p());
2930 KASSERT(m != NULL);
2931 KASSERT(mhp != NULL);
2932 KASSERT(mhp->msg != NULL);
2933
2934 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2935
2936 switch (mhp->msg->sadb_msg_type) {
2937 case SADB_GETSPI:
2938 newsav->spi = 0;
2939
2940 #ifdef IPSEC_DOSEQCHECK
2941 /* sync sequence number */
2942 if (mhp->msg->sadb_msg_seq == 0)
2943 newsav->seq =
2944 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2945 else
2946 #endif
2947 newsav->seq = mhp->msg->sadb_msg_seq;
2948 break;
2949
2950 case SADB_ADD:
2951 /* sanity check */
2952 if (mhp->ext[SADB_EXT_SA] == NULL) {
2953 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2954 *errp = EINVAL;
2955 goto error;
2956 }
2957 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2958 newsav->spi = xsa->sadb_sa_spi;
2959 newsav->seq = mhp->msg->sadb_msg_seq;
2960 break;
2961 default:
2962 *errp = EINVAL;
2963 goto error;
2964 }
2965
2966 /* copy sav values */
2967 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2968 *errp = key_setsaval(newsav, m, mhp);
2969 if (*errp)
2970 goto error;
2971 }
2972
2973 /* reset created */
2974 newsav->created = time_uptime;
2975 newsav->pid = mhp->msg->sadb_msg_pid;
2976
2977 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2978 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2979 return newsav;
2980
2981 error:
2982 KASSERT(*errp != 0);
2983 kmem_free(newsav, sizeof(*newsav));
2984 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2985 "DP from %s:%u return SA:NULL\n", where, tag);
2986 return NULL;
2987 }
2988
2989
2990 static void
2991 key_clear_xform(struct secasvar *sav)
2992 {
2993
2994 /*
2995 * Cleanup xform state. Note that zeroize'ing causes the
2996 * keys to be cleared; otherwise we must do it ourself.
2997 */
2998 if (sav->tdb_xform != NULL) {
2999 sav->tdb_xform->xf_zeroize(sav);
3000 sav->tdb_xform = NULL;
3001 } else {
3002 if (sav->key_auth != NULL)
3003 explicit_memset(_KEYBUF(sav->key_auth), 0,
3004 _KEYLEN(sav->key_auth));
3005 if (sav->key_enc != NULL)
3006 explicit_memset(_KEYBUF(sav->key_enc), 0,
3007 _KEYLEN(sav->key_enc));
3008 }
3009 }
3010
3011 /*
3012 * free() SA variable entry.
3013 */
3014 static void
3015 key_delsav(struct secasvar *sav)
3016 {
3017
3018 KASSERT(sav != NULL);
3019 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3020
3021 key_clear_xform(sav);
3022 key_freesaval(sav);
3023 kmem_intr_free(sav, sizeof(*sav));
3024
3025 return;
3026 }
3027
3028 /*
3029 * search SAD.
3030 * OUT:
3031 * NULL : not found
3032 * others : found, pointer to a SA.
3033 */
3034 static struct secashead *
3035 key_getsah(const struct secasindex *saidx, int flag)
3036 {
3037 struct secashead *sah;
3038
3039 LIST_FOREACH(sah, &sahtree, chain) {
3040 if (sah->state == SADB_SASTATE_DEAD)
3041 continue;
3042 if (key_saidx_match(&sah->saidx, saidx, flag))
3043 return sah;
3044 }
3045
3046 return NULL;
3047 }
3048
3049 /*
3050 * check not to be duplicated SPI.
3051 * NOTE: this function is too slow due to searching all SAD.
3052 * OUT:
3053 * NULL : not found
3054 * others : found, pointer to a SA.
3055 */
3056 static bool
3057 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3058 {
3059 struct secashead *sah;
3060 struct secasvar *sav;
3061
3062 /* check address family */
3063 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3064 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3065 return false;
3066 }
3067
3068 /* check all SAD */
3069 LIST_FOREACH(sah, &sahtree, chain) {
3070 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3071 continue;
3072 sav = key_getsavbyspi(sah, spi);
3073 if (sav != NULL) {
3074 KEY_FREESAV(&sav);
3075 return true;
3076 }
3077 }
3078
3079 return false;
3080 }
3081
3082 /*
3083 * search SAD litmited alive SA, protocol, SPI.
3084 * OUT:
3085 * NULL : not found
3086 * others : found, pointer to a SA.
3087 */
3088 static struct secasvar *
3089 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3090 {
3091 struct secasvar *sav;
3092 u_int state;
3093
3094 /* search all status */
3095 SASTATE_ALIVE_FOREACH(state) {
3096 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3097
3098 /* sanity check */
3099 if (sav->state != state) {
3100 IPSECLOG(LOG_DEBUG,
3101 "invalid sav->state (queue: %d SA: %d)\n",
3102 state, sav->state);
3103 continue;
3104 }
3105
3106 if (sav->spi == spi) {
3107 SA_ADDREF(sav);
3108 return sav;
3109 }
3110 }
3111 }
3112
3113 return NULL;
3114 }
3115
3116 /*
3117 * Free allocated data to member variables of sav:
3118 * sav->replay, sav->key_* and sav->lft_*.
3119 */
3120 static void
3121 key_freesaval(struct secasvar *sav)
3122 {
3123
3124 KASSERT(sav->refcnt == 0);
3125
3126 if (sav->replay != NULL)
3127 kmem_intr_free(sav->replay, sav->replay_len);
3128 if (sav->key_auth != NULL)
3129 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3130 if (sav->key_enc != NULL)
3131 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3132 if (sav->lft_c != NULL)
3133 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3134 if (sav->lft_h != NULL)
3135 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3136 if (sav->lft_s != NULL)
3137 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3138 }
3139
3140 /*
3141 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3142 * You must update these if need.
3143 * OUT: 0: success.
3144 * !0: failure.
3145 *
3146 * does not modify mbuf. does not free mbuf on error.
3147 */
3148 static int
3149 key_setsaval(struct secasvar *sav, struct mbuf *m,
3150 const struct sadb_msghdr *mhp)
3151 {
3152 int error = 0;
3153
3154 KASSERT(!cpu_softintr_p());
3155 KASSERT(m != NULL);
3156 KASSERT(mhp != NULL);
3157 KASSERT(mhp->msg != NULL);
3158
3159 /* We shouldn't initialize sav variables while someone uses it. */
3160 KASSERT(sav->refcnt == 0);
3161
3162 /* SA */
3163 if (mhp->ext[SADB_EXT_SA] != NULL) {
3164 const struct sadb_sa *sa0;
3165
3166 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3167 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3168 error = EINVAL;
3169 goto fail;
3170 }
3171
3172 sav->alg_auth = sa0->sadb_sa_auth;
3173 sav->alg_enc = sa0->sadb_sa_encrypt;
3174 sav->flags = sa0->sadb_sa_flags;
3175
3176 /* replay window */
3177 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3178 size_t len = sizeof(struct secreplay) +
3179 sa0->sadb_sa_replay;
3180 sav->replay = kmem_zalloc(len, KM_SLEEP);
3181 sav->replay_len = len;
3182 if (sa0->sadb_sa_replay != 0)
3183 sav->replay->bitmap = (char*)(sav->replay+1);
3184 sav->replay->wsize = sa0->sadb_sa_replay;
3185 }
3186 }
3187
3188 /* Authentication keys */
3189 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3190 const struct sadb_key *key0;
3191 int len;
3192
3193 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3194 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3195
3196 error = 0;
3197 if (len < sizeof(*key0)) {
3198 error = EINVAL;
3199 goto fail;
3200 }
3201 switch (mhp->msg->sadb_msg_satype) {
3202 case SADB_SATYPE_AH:
3203 case SADB_SATYPE_ESP:
3204 case SADB_X_SATYPE_TCPSIGNATURE:
3205 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3206 sav->alg_auth != SADB_X_AALG_NULL)
3207 error = EINVAL;
3208 break;
3209 case SADB_X_SATYPE_IPCOMP:
3210 default:
3211 error = EINVAL;
3212 break;
3213 }
3214 if (error) {
3215 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3216 goto fail;
3217 }
3218
3219 sav->key_auth = key_newbuf(key0, len);
3220 sav->key_auth_len = len;
3221 }
3222
3223 /* Encryption key */
3224 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3225 const struct sadb_key *key0;
3226 int len;
3227
3228 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3229 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3230
3231 error = 0;
3232 if (len < sizeof(*key0)) {
3233 error = EINVAL;
3234 goto fail;
3235 }
3236 switch (mhp->msg->sadb_msg_satype) {
3237 case SADB_SATYPE_ESP:
3238 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3239 sav->alg_enc != SADB_EALG_NULL) {
3240 error = EINVAL;
3241 break;
3242 }
3243 sav->key_enc = key_newbuf(key0, len);
3244 sav->key_enc_len = len;
3245 break;
3246 case SADB_X_SATYPE_IPCOMP:
3247 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3248 error = EINVAL;
3249 sav->key_enc = NULL; /*just in case*/
3250 break;
3251 case SADB_SATYPE_AH:
3252 case SADB_X_SATYPE_TCPSIGNATURE:
3253 default:
3254 error = EINVAL;
3255 break;
3256 }
3257 if (error) {
3258 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3259 goto fail;
3260 }
3261 }
3262
3263 /* set iv */
3264 sav->ivlen = 0;
3265
3266 switch (mhp->msg->sadb_msg_satype) {
3267 case SADB_SATYPE_AH:
3268 error = xform_init(sav, XF_AH);
3269 break;
3270 case SADB_SATYPE_ESP:
3271 error = xform_init(sav, XF_ESP);
3272 break;
3273 case SADB_X_SATYPE_IPCOMP:
3274 error = xform_init(sav, XF_IPCOMP);
3275 break;
3276 case SADB_X_SATYPE_TCPSIGNATURE:
3277 error = xform_init(sav, XF_TCPSIGNATURE);
3278 break;
3279 }
3280 if (error) {
3281 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3282 mhp->msg->sadb_msg_satype);
3283 goto fail;
3284 }
3285
3286 /* reset created */
3287 sav->created = time_uptime;
3288
3289 /* make lifetime for CURRENT */
3290 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3291
3292 sav->lft_c->sadb_lifetime_len =
3293 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3294 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3295 sav->lft_c->sadb_lifetime_allocations = 0;
3296 sav->lft_c->sadb_lifetime_bytes = 0;
3297 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3298 sav->lft_c->sadb_lifetime_usetime = 0;
3299
3300 /* lifetimes for HARD and SOFT */
3301 {
3302 const struct sadb_lifetime *lft0;
3303
3304 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3305 if (lft0 != NULL) {
3306 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3307 error = EINVAL;
3308 goto fail;
3309 }
3310 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3311 }
3312
3313 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3314 if (lft0 != NULL) {
3315 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3316 error = EINVAL;
3317 goto fail;
3318 }
3319 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3320 /* to be initialize ? */
3321 }
3322 }
3323
3324 return 0;
3325
3326 fail:
3327 key_clear_xform(sav);
3328 key_freesaval(sav);
3329
3330 return error;
3331 }
3332
3333 /*
3334 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3335 * OUT: 0: valid
3336 * other: errno
3337 */
3338 static int
3339 key_init_xform(struct secasvar *sav)
3340 {
3341 int error;
3342
3343 /* We shouldn't initialize sav variables while someone uses it. */
3344 KASSERT(sav->refcnt == 0);
3345
3346 /* check SPI value */
3347 switch (sav->sah->saidx.proto) {
3348 case IPPROTO_ESP:
3349 case IPPROTO_AH:
3350 if (ntohl(sav->spi) <= 255) {
3351 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3352 (u_int32_t)ntohl(sav->spi));
3353 return EINVAL;
3354 }
3355 break;
3356 }
3357
3358 /* check satype */
3359 switch (sav->sah->saidx.proto) {
3360 case IPPROTO_ESP:
3361 /* check flags */
3362 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3363 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3364 IPSECLOG(LOG_DEBUG,
3365 "invalid flag (derived) given to old-esp.\n");
3366 return EINVAL;
3367 }
3368 error = xform_init(sav, XF_ESP);
3369 break;
3370 case IPPROTO_AH:
3371 /* check flags */
3372 if (sav->flags & SADB_X_EXT_DERIV) {
3373 IPSECLOG(LOG_DEBUG,
3374 "invalid flag (derived) given to AH SA.\n");
3375 return EINVAL;
3376 }
3377 if (sav->alg_enc != SADB_EALG_NONE) {
3378 IPSECLOG(LOG_DEBUG,
3379 "protocol and algorithm mismated.\n");
3380 return(EINVAL);
3381 }
3382 error = xform_init(sav, XF_AH);
3383 break;
3384 case IPPROTO_IPCOMP:
3385 if (sav->alg_auth != SADB_AALG_NONE) {
3386 IPSECLOG(LOG_DEBUG,
3387 "protocol and algorithm mismated.\n");
3388 return(EINVAL);
3389 }
3390 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3391 && ntohl(sav->spi) >= 0x10000) {
3392 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3393 return(EINVAL);
3394 }
3395 error = xform_init(sav, XF_IPCOMP);
3396 break;
3397 case IPPROTO_TCP:
3398 if (sav->alg_enc != SADB_EALG_NONE) {
3399 IPSECLOG(LOG_DEBUG,
3400 "protocol and algorithm mismated.\n");
3401 return(EINVAL);
3402 }
3403 error = xform_init(sav, XF_TCPSIGNATURE);
3404 break;
3405 default:
3406 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3407 error = EPROTONOSUPPORT;
3408 break;
3409 }
3410
3411 return error;
3412 }
3413
3414 /*
3415 * subroutine for SADB_GET and SADB_DUMP.
3416 */
3417 static struct mbuf *
3418 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3419 u_int32_t seq, u_int32_t pid)
3420 {
3421 struct mbuf *result = NULL, *tres = NULL, *m;
3422 int l = 0;
3423 int i;
3424 void *p;
3425 struct sadb_lifetime lt;
3426 int dumporder[] = {
3427 SADB_EXT_SA, SADB_X_EXT_SA2,
3428 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3429 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3430 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3431 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3432 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3433 SADB_X_EXT_NAT_T_TYPE,
3434 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3435 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3436 SADB_X_EXT_NAT_T_FRAG,
3437
3438 };
3439
3440 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3441 if (m == NULL)
3442 goto fail;
3443 result = m;
3444
3445 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3446 m = NULL;
3447 p = NULL;
3448 switch (dumporder[i]) {
3449 case SADB_EXT_SA:
3450 m = key_setsadbsa(sav);
3451 break;
3452
3453 case SADB_X_EXT_SA2:
3454 m = key_setsadbxsa2(sav->sah->saidx.mode,
3455 sav->replay ? sav->replay->count : 0,
3456 sav->sah->saidx.reqid);
3457 break;
3458
3459 case SADB_EXT_ADDRESS_SRC:
3460 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3461 &sav->sah->saidx.src.sa,
3462 FULLMASK, IPSEC_ULPROTO_ANY);
3463 break;
3464
3465 case SADB_EXT_ADDRESS_DST:
3466 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3467 &sav->sah->saidx.dst.sa,
3468 FULLMASK, IPSEC_ULPROTO_ANY);
3469 break;
3470
3471 case SADB_EXT_KEY_AUTH:
3472 if (!sav->key_auth)
3473 continue;
3474 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3475 p = sav->key_auth;
3476 break;
3477
3478 case SADB_EXT_KEY_ENCRYPT:
3479 if (!sav->key_enc)
3480 continue;
3481 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3482 p = sav->key_enc;
3483 break;
3484
3485 case SADB_EXT_LIFETIME_CURRENT:
3486 KASSERT(sav->lft_c != NULL);
3487 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3488 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3489 lt.sadb_lifetime_addtime =
3490 time_mono_to_wall(lt.sadb_lifetime_addtime);
3491 lt.sadb_lifetime_usetime =
3492 time_mono_to_wall(lt.sadb_lifetime_usetime);
3493 p = <
3494 break;
3495
3496 case SADB_EXT_LIFETIME_HARD:
3497 if (!sav->lft_h)
3498 continue;
3499 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3500 p = sav->lft_h;
3501 break;
3502
3503 case SADB_EXT_LIFETIME_SOFT:
3504 if (!sav->lft_s)
3505 continue;
3506 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3507 p = sav->lft_s;
3508 break;
3509
3510 case SADB_X_EXT_NAT_T_TYPE:
3511 m = key_setsadbxtype(sav->natt_type);
3512 break;
3513
3514 case SADB_X_EXT_NAT_T_DPORT:
3515 if (sav->natt_type == 0)
3516 continue;
3517 m = key_setsadbxport(
3518 key_portfromsaddr(&sav->sah->saidx.dst),
3519 SADB_X_EXT_NAT_T_DPORT);
3520 break;
3521
3522 case SADB_X_EXT_NAT_T_SPORT:
3523 if (sav->natt_type == 0)
3524 continue;
3525 m = key_setsadbxport(
3526 key_portfromsaddr(&sav->sah->saidx.src),
3527 SADB_X_EXT_NAT_T_SPORT);
3528 break;
3529
3530 case SADB_X_EXT_NAT_T_FRAG:
3531 /* don't send frag info if not set */
3532 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3533 continue;
3534 m = key_setsadbxfrag(sav->esp_frag);
3535 break;
3536
3537 case SADB_X_EXT_NAT_T_OAI:
3538 case SADB_X_EXT_NAT_T_OAR:
3539 continue;
3540
3541 case SADB_EXT_ADDRESS_PROXY:
3542 case SADB_EXT_IDENTITY_SRC:
3543 case SADB_EXT_IDENTITY_DST:
3544 /* XXX: should we brought from SPD ? */
3545 case SADB_EXT_SENSITIVITY:
3546 default:
3547 continue;
3548 }
3549
3550 KASSERT(!(m && p));
3551 if (!m && !p)
3552 goto fail;
3553 if (p && tres) {
3554 M_PREPEND(tres, l, M_DONTWAIT);
3555 if (!tres)
3556 goto fail;
3557 memcpy(mtod(tres, void *), p, l);
3558 continue;
3559 }
3560 if (p) {
3561 m = key_alloc_mbuf(l);
3562 if (!m)
3563 goto fail;
3564 m_copyback(m, 0, l, p);
3565 }
3566
3567 if (tres)
3568 m_cat(m, tres);
3569 tres = m;
3570 }
3571
3572 m_cat(result, tres);
3573 tres = NULL; /* avoid free on error below */
3574
3575 if (result->m_len < sizeof(struct sadb_msg)) {
3576 result = m_pullup(result, sizeof(struct sadb_msg));
3577 if (result == NULL)
3578 goto fail;
3579 }
3580
3581 result->m_pkthdr.len = 0;
3582 for (m = result; m; m = m->m_next)
3583 result->m_pkthdr.len += m->m_len;
3584
3585 mtod(result, struct sadb_msg *)->sadb_msg_len =
3586 PFKEY_UNIT64(result->m_pkthdr.len);
3587
3588 return result;
3589
3590 fail:
3591 m_freem(result);
3592 m_freem(tres);
3593 return NULL;
3594 }
3595
3596
3597 /*
3598 * set a type in sadb_x_nat_t_type
3599 */
3600 static struct mbuf *
3601 key_setsadbxtype(u_int16_t type)
3602 {
3603 struct mbuf *m;
3604 size_t len;
3605 struct sadb_x_nat_t_type *p;
3606
3607 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3608
3609 m = key_alloc_mbuf(len);
3610 if (!m || m->m_next) { /*XXX*/
3611 if (m)
3612 m_freem(m);
3613 return NULL;
3614 }
3615
3616 p = mtod(m, struct sadb_x_nat_t_type *);
3617
3618 memset(p, 0, len);
3619 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3620 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3621 p->sadb_x_nat_t_type_type = type;
3622
3623 return m;
3624 }
3625 /*
3626 * set a port in sadb_x_nat_t_port. port is in network order
3627 */
3628 static struct mbuf *
3629 key_setsadbxport(u_int16_t port, u_int16_t type)
3630 {
3631 struct mbuf *m;
3632 size_t len;
3633 struct sadb_x_nat_t_port *p;
3634
3635 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3636
3637 m = key_alloc_mbuf(len);
3638 if (!m || m->m_next) { /*XXX*/
3639 if (m)
3640 m_freem(m);
3641 return NULL;
3642 }
3643
3644 p = mtod(m, struct sadb_x_nat_t_port *);
3645
3646 memset(p, 0, len);
3647 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3648 p->sadb_x_nat_t_port_exttype = type;
3649 p->sadb_x_nat_t_port_port = port;
3650
3651 return m;
3652 }
3653
3654 /*
3655 * set fragmentation info in sadb_x_nat_t_frag
3656 */
3657 static struct mbuf *
3658 key_setsadbxfrag(u_int16_t flen)
3659 {
3660 struct mbuf *m;
3661 size_t len;
3662 struct sadb_x_nat_t_frag *p;
3663
3664 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3665
3666 m = key_alloc_mbuf(len);
3667 if (!m || m->m_next) { /*XXX*/
3668 if (m)
3669 m_freem(m);
3670 return NULL;
3671 }
3672
3673 p = mtod(m, struct sadb_x_nat_t_frag *);
3674
3675 memset(p, 0, len);
3676 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3677 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3678 p->sadb_x_nat_t_frag_fraglen = flen;
3679
3680 return m;
3681 }
3682
3683 /*
3684 * Get port from sockaddr, port is in network order
3685 */
3686 u_int16_t
3687 key_portfromsaddr(const union sockaddr_union *saddr)
3688 {
3689 u_int16_t port;
3690
3691 switch (saddr->sa.sa_family) {
3692 case AF_INET: {
3693 port = saddr->sin.sin_port;
3694 break;
3695 }
3696 #ifdef INET6
3697 case AF_INET6: {
3698 port = saddr->sin6.sin6_port;
3699 break;
3700 }
3701 #endif
3702 default:
3703 printf("%s: unexpected address family\n", __func__);
3704 port = 0;
3705 break;
3706 }
3707
3708 return port;
3709 }
3710
3711
3712 /*
3713 * Set port is struct sockaddr. port is in network order
3714 */
3715 static void
3716 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3717 {
3718 switch (saddr->sa.sa_family) {
3719 case AF_INET: {
3720 saddr->sin.sin_port = port;
3721 break;
3722 }
3723 #ifdef INET6
3724 case AF_INET6: {
3725 saddr->sin6.sin6_port = port;
3726 break;
3727 }
3728 #endif
3729 default:
3730 printf("%s: unexpected address family %d\n", __func__,
3731 saddr->sa.sa_family);
3732 break;
3733 }
3734
3735 return;
3736 }
3737
3738 /*
3739 * Safety check sa_len
3740 */
3741 static int
3742 key_checksalen(const union sockaddr_union *saddr)
3743 {
3744 switch (saddr->sa.sa_family) {
3745 case AF_INET:
3746 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3747 return -1;
3748 break;
3749 #ifdef INET6
3750 case AF_INET6:
3751 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3752 return -1;
3753 break;
3754 #endif
3755 default:
3756 printf("%s: unexpected sa_family %d\n", __func__,
3757 saddr->sa.sa_family);
3758 return -1;
3759 break;
3760 }
3761 return 0;
3762 }
3763
3764
3765 /*
3766 * set data into sadb_msg.
3767 */
3768 static struct mbuf *
3769 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3770 u_int32_t seq, pid_t pid, u_int16_t reserved)
3771 {
3772 struct mbuf *m;
3773 struct sadb_msg *p;
3774 int len;
3775
3776 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3777
3778 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3779
3780 MGETHDR(m, M_DONTWAIT, MT_DATA);
3781 if (m && len > MHLEN) {
3782 MCLGET(m, M_DONTWAIT);
3783 if ((m->m_flags & M_EXT) == 0) {
3784 m_freem(m);
3785 m = NULL;
3786 }
3787 }
3788 if (!m)
3789 return NULL;
3790 m->m_pkthdr.len = m->m_len = len;
3791 m->m_next = NULL;
3792
3793 p = mtod(m, struct sadb_msg *);
3794
3795 memset(p, 0, len);
3796 p->sadb_msg_version = PF_KEY_V2;
3797 p->sadb_msg_type = type;
3798 p->sadb_msg_errno = 0;
3799 p->sadb_msg_satype = satype;
3800 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3801 p->sadb_msg_reserved = reserved;
3802 p->sadb_msg_seq = seq;
3803 p->sadb_msg_pid = (u_int32_t)pid;
3804
3805 return m;
3806 }
3807
3808 /*
3809 * copy secasvar data into sadb_address.
3810 */
3811 static struct mbuf *
3812 key_setsadbsa(struct secasvar *sav)
3813 {
3814 struct mbuf *m;
3815 struct sadb_sa *p;
3816 int len;
3817
3818 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3819 m = key_alloc_mbuf(len);
3820 if (!m || m->m_next) { /*XXX*/
3821 if (m)
3822 m_freem(m);
3823 return NULL;
3824 }
3825
3826 p = mtod(m, struct sadb_sa *);
3827
3828 memset(p, 0, len);
3829 p->sadb_sa_len = PFKEY_UNIT64(len);
3830 p->sadb_sa_exttype = SADB_EXT_SA;
3831 p->sadb_sa_spi = sav->spi;
3832 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3833 p->sadb_sa_state = sav->state;
3834 p->sadb_sa_auth = sav->alg_auth;
3835 p->sadb_sa_encrypt = sav->alg_enc;
3836 p->sadb_sa_flags = sav->flags;
3837
3838 return m;
3839 }
3840
3841 /*
3842 * set data into sadb_address.
3843 */
3844 static struct mbuf *
3845 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3846 u_int8_t prefixlen, u_int16_t ul_proto)
3847 {
3848 struct mbuf *m;
3849 struct sadb_address *p;
3850 size_t len;
3851
3852 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3853 PFKEY_ALIGN8(saddr->sa_len);
3854 m = key_alloc_mbuf(len);
3855 if (!m || m->m_next) { /*XXX*/
3856 if (m)
3857 m_freem(m);
3858 return NULL;
3859 }
3860
3861 p = mtod(m, struct sadb_address *);
3862
3863 memset(p, 0, len);
3864 p->sadb_address_len = PFKEY_UNIT64(len);
3865 p->sadb_address_exttype = exttype;
3866 p->sadb_address_proto = ul_proto;
3867 if (prefixlen == FULLMASK) {
3868 switch (saddr->sa_family) {
3869 case AF_INET:
3870 prefixlen = sizeof(struct in_addr) << 3;
3871 break;
3872 case AF_INET6:
3873 prefixlen = sizeof(struct in6_addr) << 3;
3874 break;
3875 default:
3876 ; /*XXX*/
3877 }
3878 }
3879 p->sadb_address_prefixlen = prefixlen;
3880 p->sadb_address_reserved = 0;
3881
3882 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3883 saddr, saddr->sa_len);
3884
3885 return m;
3886 }
3887
3888 #if 0
3889 /*
3890 * set data into sadb_ident.
3891 */
3892 static struct mbuf *
3893 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3894 void *string, int stringlen, u_int64_t id)
3895 {
3896 struct mbuf *m;
3897 struct sadb_ident *p;
3898 size_t len;
3899
3900 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3901 m = key_alloc_mbuf(len);
3902 if (!m || m->m_next) { /*XXX*/
3903 if (m)
3904 m_freem(m);
3905 return NULL;
3906 }
3907
3908 p = mtod(m, struct sadb_ident *);
3909
3910 memset(p, 0, len);
3911 p->sadb_ident_len = PFKEY_UNIT64(len);
3912 p->sadb_ident_exttype = exttype;
3913 p->sadb_ident_type = idtype;
3914 p->sadb_ident_reserved = 0;
3915 p->sadb_ident_id = id;
3916
3917 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3918 string, stringlen);
3919
3920 return m;
3921 }
3922 #endif
3923
3924 /*
3925 * set data into sadb_x_sa2.
3926 */
3927 static struct mbuf *
3928 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3929 {
3930 struct mbuf *m;
3931 struct sadb_x_sa2 *p;
3932 size_t len;
3933
3934 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3935 m = key_alloc_mbuf(len);
3936 if (!m || m->m_next) { /*XXX*/
3937 if (m)
3938 m_freem(m);
3939 return NULL;
3940 }
3941
3942 p = mtod(m, struct sadb_x_sa2 *);
3943
3944 memset(p, 0, len);
3945 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3946 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3947 p->sadb_x_sa2_mode = mode;
3948 p->sadb_x_sa2_reserved1 = 0;
3949 p->sadb_x_sa2_reserved2 = 0;
3950 p->sadb_x_sa2_sequence = seq;
3951 p->sadb_x_sa2_reqid = reqid;
3952
3953 return m;
3954 }
3955
3956 /*
3957 * set data into sadb_x_policy
3958 */
3959 static struct mbuf *
3960 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3961 {
3962 struct mbuf *m;
3963 struct sadb_x_policy *p;
3964 size_t len;
3965
3966 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3967 m = key_alloc_mbuf(len);
3968 if (!m || m->m_next) { /*XXX*/
3969 if (m)
3970 m_freem(m);
3971 return NULL;
3972 }
3973
3974 p = mtod(m, struct sadb_x_policy *);
3975
3976 memset(p, 0, len);
3977 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3978 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3979 p->sadb_x_policy_type = type;
3980 p->sadb_x_policy_dir = dir;
3981 p->sadb_x_policy_id = id;
3982
3983 return m;
3984 }
3985
3986 /* %%% utilities */
3987 /*
3988 * copy a buffer into the new buffer allocated.
3989 */
3990 static void *
3991 key_newbuf(const void *src, u_int len)
3992 {
3993 void *new;
3994
3995 new = kmem_alloc(len, KM_SLEEP);
3996 memcpy(new, src, len);
3997
3998 return new;
3999 }
4000
4001 /* compare my own address
4002 * OUT: 1: true, i.e. my address.
4003 * 0: false
4004 */
4005 int
4006 key_ismyaddr(const struct sockaddr *sa)
4007 {
4008 #ifdef INET
4009 const struct sockaddr_in *sin;
4010 const struct in_ifaddr *ia;
4011 int s;
4012 #endif
4013
4014 KASSERT(sa != NULL);
4015
4016 switch (sa->sa_family) {
4017 #ifdef INET
4018 case AF_INET:
4019 sin = (const struct sockaddr_in *)sa;
4020 s = pserialize_read_enter();
4021 IN_ADDRLIST_READER_FOREACH(ia) {
4022 if (sin->sin_family == ia->ia_addr.sin_family &&
4023 sin->sin_len == ia->ia_addr.sin_len &&
4024 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4025 {
4026 pserialize_read_exit(s);
4027 return 1;
4028 }
4029 }
4030 pserialize_read_exit(s);
4031 break;
4032 #endif
4033 #ifdef INET6
4034 case AF_INET6:
4035 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4036 #endif
4037 }
4038
4039 return 0;
4040 }
4041
4042 #ifdef INET6
4043 /*
4044 * compare my own address for IPv6.
4045 * 1: ours
4046 * 0: other
4047 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4048 */
4049 #include <netinet6/in6_var.h>
4050
4051 static int
4052 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4053 {
4054 struct in6_ifaddr *ia;
4055 int s;
4056 struct psref psref;
4057 int bound;
4058 int ours = 1;
4059
4060 bound = curlwp_bind();
4061 s = pserialize_read_enter();
4062 IN6_ADDRLIST_READER_FOREACH(ia) {
4063 bool ingroup;
4064
4065 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4066 (const struct sockaddr *)&ia->ia_addr, 0)) {
4067 pserialize_read_exit(s);
4068 goto ours;
4069 }
4070 ia6_acquire(ia, &psref);
4071 pserialize_read_exit(s);
4072
4073 /*
4074 * XXX Multicast
4075 * XXX why do we care about multlicast here while we don't care
4076 * about IPv4 multicast??
4077 * XXX scope
4078 */
4079 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4080 if (ingroup) {
4081 ia6_release(ia, &psref);
4082 goto ours;
4083 }
4084
4085 s = pserialize_read_enter();
4086 ia6_release(ia, &psref);
4087 }
4088 pserialize_read_exit(s);
4089
4090 /* loopback, just for safety */
4091 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4092 goto ours;
4093
4094 ours = 0;
4095 ours:
4096 curlwp_bindx(bound);
4097
4098 return ours;
4099 }
4100 #endif /*INET6*/
4101
4102 /*
4103 * compare two secasindex structure.
4104 * flag can specify to compare 2 saidxes.
4105 * compare two secasindex structure without both mode and reqid.
4106 * don't compare port.
4107 * IN:
4108 * saidx0: source, it can be in SAD.
4109 * saidx1: object.
4110 * OUT:
4111 * 1 : equal
4112 * 0 : not equal
4113 */
4114 static int
4115 key_saidx_match(
4116 const struct secasindex *saidx0,
4117 const struct secasindex *saidx1,
4118 int flag)
4119 {
4120 int chkport;
4121 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4122
4123 KASSERT(saidx0 != NULL);
4124 KASSERT(saidx1 != NULL);
4125
4126 /* sanity */
4127 if (saidx0->proto != saidx1->proto)
4128 return 0;
4129
4130 if (flag == CMP_EXACTLY) {
4131 if (saidx0->mode != saidx1->mode)
4132 return 0;
4133 if (saidx0->reqid != saidx1->reqid)
4134 return 0;
4135 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4136 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4137 return 0;
4138 } else {
4139
4140 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4141 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4142 /*
4143 * If reqid of SPD is non-zero, unique SA is required.
4144 * The result must be of same reqid in this case.
4145 */
4146 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4147 return 0;
4148 }
4149
4150 if (flag == CMP_MODE_REQID) {
4151 if (saidx0->mode != IPSEC_MODE_ANY &&
4152 saidx0->mode != saidx1->mode)
4153 return 0;
4154 }
4155
4156
4157 sa0src = &saidx0->src.sa;
4158 sa0dst = &saidx0->dst.sa;
4159 sa1src = &saidx1->src.sa;
4160 sa1dst = &saidx1->dst.sa;
4161 /*
4162 * If NAT-T is enabled, check ports for tunnel mode.
4163 * Don't do it for transport mode, as there is no
4164 * port information available in the SP.
4165 * Also don't check ports if they are set to zero
4166 * in the SPD: This means we have a non-generated
4167 * SPD which can't know UDP ports.
4168 */
4169 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4170 chkport = PORT_LOOSE;
4171 else
4172 chkport = PORT_NONE;
4173
4174 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4175 return 0;
4176 }
4177 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4178 return 0;
4179 }
4180 }
4181
4182 return 1;
4183 }
4184
4185 /*
4186 * compare two secindex structure exactly.
4187 * IN:
4188 * spidx0: source, it is often in SPD.
4189 * spidx1: object, it is often from PFKEY message.
4190 * OUT:
4191 * 1 : equal
4192 * 0 : not equal
4193 */
4194 static int
4195 key_spidx_match_exactly(
4196 const struct secpolicyindex *spidx0,
4197 const struct secpolicyindex *spidx1)
4198 {
4199
4200 KASSERT(spidx0 != NULL);
4201 KASSERT(spidx1 != NULL);
4202
4203 /* sanity */
4204 if (spidx0->prefs != spidx1->prefs ||
4205 spidx0->prefd != spidx1->prefd ||
4206 spidx0->ul_proto != spidx1->ul_proto)
4207 return 0;
4208
4209 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4210 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4211 }
4212
4213 /*
4214 * compare two secindex structure with mask.
4215 * IN:
4216 * spidx0: source, it is often in SPD.
4217 * spidx1: object, it is often from IP header.
4218 * OUT:
4219 * 1 : equal
4220 * 0 : not equal
4221 */
4222 static int
4223 key_spidx_match_withmask(
4224 const struct secpolicyindex *spidx0,
4225 const struct secpolicyindex *spidx1)
4226 {
4227
4228 KASSERT(spidx0 != NULL);
4229 KASSERT(spidx1 != NULL);
4230
4231 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4232 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4233 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4234 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4235 return 0;
4236
4237 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4238 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4239 spidx0->ul_proto != spidx1->ul_proto)
4240 return 0;
4241
4242 switch (spidx0->src.sa.sa_family) {
4243 case AF_INET:
4244 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4245 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4246 return 0;
4247 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4248 &spidx1->src.sin.sin_addr, spidx0->prefs))
4249 return 0;
4250 break;
4251 case AF_INET6:
4252 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4253 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4254 return 0;
4255 /*
4256 * scope_id check. if sin6_scope_id is 0, we regard it
4257 * as a wildcard scope, which matches any scope zone ID.
4258 */
4259 if (spidx0->src.sin6.sin6_scope_id &&
4260 spidx1->src.sin6.sin6_scope_id &&
4261 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4262 return 0;
4263 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4264 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4265 return 0;
4266 break;
4267 default:
4268 /* XXX */
4269 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4270 return 0;
4271 break;
4272 }
4273
4274 switch (spidx0->dst.sa.sa_family) {
4275 case AF_INET:
4276 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4277 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4278 return 0;
4279 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4280 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4281 return 0;
4282 break;
4283 case AF_INET6:
4284 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4285 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4286 return 0;
4287 /*
4288 * scope_id check. if sin6_scope_id is 0, we regard it
4289 * as a wildcard scope, which matches any scope zone ID.
4290 */
4291 if (spidx0->src.sin6.sin6_scope_id &&
4292 spidx1->src.sin6.sin6_scope_id &&
4293 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4294 return 0;
4295 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4296 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4297 return 0;
4298 break;
4299 default:
4300 /* XXX */
4301 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4302 return 0;
4303 break;
4304 }
4305
4306 /* XXX Do we check other field ? e.g. flowinfo */
4307
4308 return 1;
4309 }
4310
4311 /* returns 0 on match */
4312 static int
4313 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4314 {
4315 switch (howport) {
4316 case PORT_NONE:
4317 return 0;
4318 case PORT_LOOSE:
4319 if (port1 == 0 || port2 == 0)
4320 return 0;
4321 /*FALLTHROUGH*/
4322 case PORT_STRICT:
4323 if (port1 != port2) {
4324 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4325 "port fail %d != %d\n", port1, port2);
4326 return 1;
4327 }
4328 return 0;
4329 default:
4330 KASSERT(0);
4331 return 1;
4332 }
4333 }
4334
4335 /* returns 1 on match */
4336 static int
4337 key_sockaddr_match(
4338 const struct sockaddr *sa1,
4339 const struct sockaddr *sa2,
4340 int howport)
4341 {
4342 const struct sockaddr_in *sin1, *sin2;
4343 const struct sockaddr_in6 *sin61, *sin62;
4344
4345 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4346 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4347 "fam/len fail %d != %d || %d != %d\n",
4348 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4349 sa2->sa_len);
4350 return 0;
4351 }
4352
4353 switch (sa1->sa_family) {
4354 case AF_INET:
4355 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4356 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4357 "len fail %d != %zu\n",
4358 sa1->sa_len, sizeof(struct sockaddr_in));
4359 return 0;
4360 }
4361 sin1 = (const struct sockaddr_in *)sa1;
4362 sin2 = (const struct sockaddr_in *)sa2;
4363 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4364 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4365 "addr fail %#x != %#x\n",
4366 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4367 return 0;
4368 }
4369 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4370 return 0;
4371 }
4372 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4373 "addr success %#x[%d] == %#x[%d]\n",
4374 sin1->sin_addr.s_addr, sin1->sin_port,
4375 sin2->sin_addr.s_addr, sin2->sin_port);
4376 break;
4377 case AF_INET6:
4378 sin61 = (const struct sockaddr_in6 *)sa1;
4379 sin62 = (const struct sockaddr_in6 *)sa2;
4380 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4381 return 0; /*EINVAL*/
4382
4383 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4384 return 0;
4385 }
4386 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4387 return 0;
4388 }
4389 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4390 return 0;
4391 }
4392 break;
4393 default:
4394 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4395 return 0;
4396 break;
4397 }
4398
4399 return 1;
4400 }
4401
4402 /*
4403 * compare two buffers with mask.
4404 * IN:
4405 * addr1: source
4406 * addr2: object
4407 * bits: Number of bits to compare
4408 * OUT:
4409 * 1 : equal
4410 * 0 : not equal
4411 */
4412 static int
4413 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4414 {
4415 const unsigned char *p1 = a1;
4416 const unsigned char *p2 = a2;
4417
4418 /* XXX: This could be considerably faster if we compare a word
4419 * at a time, but it is complicated on LSB Endian machines */
4420
4421 /* Handle null pointers */
4422 if (p1 == NULL || p2 == NULL)
4423 return (p1 == p2);
4424
4425 while (bits >= 8) {
4426 if (*p1++ != *p2++)
4427 return 0;
4428 bits -= 8;
4429 }
4430
4431 if (bits > 0) {
4432 u_int8_t mask = ~((1<<(8-bits))-1);
4433 if ((*p1 & mask) != (*p2 & mask))
4434 return 0;
4435 }
4436 return 1; /* Match! */
4437 }
4438
4439 static void
4440 key_timehandler_spd(time_t now)
4441 {
4442 u_int dir;
4443 struct secpolicy *sp;
4444
4445 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4446 retry:
4447 mutex_enter(&key_sp_mtx);
4448 SPLIST_WRITER_FOREACH(sp, dir) {
4449 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4450
4451 if (sp->lifetime == 0 && sp->validtime == 0)
4452 continue;
4453
4454 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4455 (sp->validtime && now - sp->lastused > sp->validtime)) {
4456 key_unlink_sp(sp);
4457 mutex_exit(&key_sp_mtx);
4458 key_spdexpire(sp);
4459 key_destroy_sp(sp);
4460 goto retry;
4461 }
4462 }
4463 mutex_exit(&key_sp_mtx);
4464 }
4465
4466 retry_socksplist:
4467 mutex_enter(&key_sp_mtx);
4468 SOCKSPLIST_WRITER_FOREACH(sp) {
4469 if (sp->state != IPSEC_SPSTATE_DEAD)
4470 continue;
4471
4472 key_unlink_sp(sp);
4473 mutex_exit(&key_sp_mtx);
4474 key_destroy_sp(sp);
4475 goto retry_socksplist;
4476 }
4477 mutex_exit(&key_sp_mtx);
4478 }
4479
4480 static void
4481 key_timehandler_sad(time_t now)
4482 {
4483 struct secashead *sah, *nextsah;
4484 struct secasvar *sav, *nextsav;
4485
4486 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4487 /* if sah has been dead, then delete it and process next sah. */
4488 if (sah->state == SADB_SASTATE_DEAD) {
4489 key_delsah(sah);
4490 continue;
4491 }
4492
4493 /* if LARVAL entry doesn't become MATURE, delete it. */
4494 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4495 chain, nextsav) {
4496 if (now - sav->created > key_larval_lifetime) {
4497 KEY_FREESAV(&sav);
4498 }
4499 }
4500
4501 /*
4502 * check MATURE entry to start to send expire message
4503 * whether or not.
4504 */
4505 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4506 chain, nextsav) {
4507 /* we don't need to check. */
4508 if (sav->lft_s == NULL)
4509 continue;
4510
4511 /* sanity check */
4512 KASSERT(sav->lft_c != NULL);
4513
4514 /* check SOFT lifetime */
4515 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4516 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4517 /*
4518 * check SA to be used whether or not.
4519 * when SA hasn't been used, delete it.
4520 */
4521 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4522 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4523 KEY_FREESAV(&sav);
4524 } else {
4525 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4526 /*
4527 * XXX If we keep to send expire
4528 * message in the status of
4529 * DYING. Do remove below code.
4530 */
4531 key_expire(sav);
4532 }
4533 }
4534 /* check SOFT lifetime by bytes */
4535 /*
4536 * XXX I don't know the way to delete this SA
4537 * when new SA is installed. Caution when it's
4538 * installed too big lifetime by time.
4539 */
4540 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4541 sav->lft_s->sadb_lifetime_bytes <
4542 sav->lft_c->sadb_lifetime_bytes) {
4543
4544 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4545 /*
4546 * XXX If we keep to send expire
4547 * message in the status of
4548 * DYING. Do remove below code.
4549 */
4550 key_expire(sav);
4551 }
4552 }
4553
4554 /* check DYING entry to change status to DEAD. */
4555 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4556 chain, nextsav) {
4557 /* we don't need to check. */
4558 if (sav->lft_h == NULL)
4559 continue;
4560
4561 /* sanity check */
4562 KASSERT(sav->lft_c != NULL);
4563
4564 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4565 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4566 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4567 KEY_FREESAV(&sav);
4568 }
4569 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4570 else if (sav->lft_s != NULL
4571 && sav->lft_s->sadb_lifetime_addtime != 0
4572 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4573 /*
4574 * XXX: should be checked to be
4575 * installed the valid SA.
4576 */
4577
4578 /*
4579 * If there is no SA then sending
4580 * expire message.
4581 */
4582 key_expire(sav);
4583 }
4584 #endif
4585 /* check HARD lifetime by bytes */
4586 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4587 sav->lft_h->sadb_lifetime_bytes <
4588 sav->lft_c->sadb_lifetime_bytes) {
4589 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4590 KEY_FREESAV(&sav);
4591 }
4592 }
4593
4594 /* delete entry in DEAD */
4595 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4596 chain, nextsav) {
4597 /* sanity check */
4598 if (sav->state != SADB_SASTATE_DEAD) {
4599 IPSECLOG(LOG_DEBUG,
4600 "invalid sav->state (queue: %d SA: %d): "
4601 "kill it anyway\n",
4602 SADB_SASTATE_DEAD, sav->state);
4603 }
4604
4605 /*
4606 * do not call key_freesav() here.
4607 * sav should already be freed, and sav->refcnt
4608 * shows other references to sav
4609 * (such as from SPD).
4610 */
4611 }
4612 }
4613 }
4614
4615 static void
4616 key_timehandler_acq(time_t now)
4617 {
4618 #ifndef IPSEC_NONBLOCK_ACQUIRE
4619 struct secacq *acq, *nextacq;
4620
4621 restart:
4622 mutex_enter(&key_mtx);
4623 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4624 if (now - acq->created > key_blockacq_lifetime) {
4625 LIST_REMOVE(acq, chain);
4626 mutex_exit(&key_mtx);
4627 kmem_free(acq, sizeof(*acq));
4628 goto restart;
4629 }
4630 }
4631 mutex_exit(&key_mtx);
4632 #endif
4633 }
4634
4635 static void
4636 key_timehandler_spacq(time_t now)
4637 {
4638 #ifdef notyet
4639 struct secspacq *acq, *nextacq;
4640
4641 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4642 if (now - acq->created > key_blockacq_lifetime) {
4643 KASSERT(__LIST_CHAINED(acq));
4644 LIST_REMOVE(acq, chain);
4645 kmem_free(acq, sizeof(*acq));
4646 }
4647 }
4648 #endif
4649 }
4650
4651 /*
4652 * time handler.
4653 * scanning SPD and SAD to check status for each entries,
4654 * and do to remove or to expire.
4655 */
4656 static void
4657 key_timehandler_work(struct work *wk, void *arg)
4658 {
4659 time_t now = time_uptime;
4660 IPSEC_DECLARE_LOCK_VARIABLE;
4661
4662 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4663
4664 key_timehandler_spd(now);
4665 key_timehandler_sad(now);
4666 key_timehandler_acq(now);
4667 key_timehandler_spacq(now);
4668
4669 /* do exchange to tick time !! */
4670 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4671
4672 IPSEC_RELEASE_GLOBAL_LOCKS();
4673 return;
4674 }
4675
4676 static void
4677 key_timehandler(void *arg)
4678 {
4679
4680 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4681 }
4682
4683 u_long
4684 key_random(void)
4685 {
4686 u_long value;
4687
4688 key_randomfill(&value, sizeof(value));
4689 return value;
4690 }
4691
4692 void
4693 key_randomfill(void *p, size_t l)
4694 {
4695
4696 cprng_fast(p, l);
4697 }
4698
4699 /*
4700 * map SADB_SATYPE_* to IPPROTO_*.
4701 * if satype == SADB_SATYPE then satype is mapped to ~0.
4702 * OUT:
4703 * 0: invalid satype.
4704 */
4705 static u_int16_t
4706 key_satype2proto(u_int8_t satype)
4707 {
4708 switch (satype) {
4709 case SADB_SATYPE_UNSPEC:
4710 return IPSEC_PROTO_ANY;
4711 case SADB_SATYPE_AH:
4712 return IPPROTO_AH;
4713 case SADB_SATYPE_ESP:
4714 return IPPROTO_ESP;
4715 case SADB_X_SATYPE_IPCOMP:
4716 return IPPROTO_IPCOMP;
4717 case SADB_X_SATYPE_TCPSIGNATURE:
4718 return IPPROTO_TCP;
4719 default:
4720 return 0;
4721 }
4722 /* NOTREACHED */
4723 }
4724
4725 /*
4726 * map IPPROTO_* to SADB_SATYPE_*
4727 * OUT:
4728 * 0: invalid protocol type.
4729 */
4730 static u_int8_t
4731 key_proto2satype(u_int16_t proto)
4732 {
4733 switch (proto) {
4734 case IPPROTO_AH:
4735 return SADB_SATYPE_AH;
4736 case IPPROTO_ESP:
4737 return SADB_SATYPE_ESP;
4738 case IPPROTO_IPCOMP:
4739 return SADB_X_SATYPE_IPCOMP;
4740 case IPPROTO_TCP:
4741 return SADB_X_SATYPE_TCPSIGNATURE;
4742 default:
4743 return 0;
4744 }
4745 /* NOTREACHED */
4746 }
4747
4748 static int
4749 key_setsecasidx(int proto, int mode, int reqid,
4750 const struct sockaddr *src, const struct sockaddr *dst,
4751 struct secasindex * saidx)
4752 {
4753 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4754 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4755
4756 /* sa len safety check */
4757 if (key_checksalen(src_u) != 0)
4758 return -1;
4759 if (key_checksalen(dst_u) != 0)
4760 return -1;
4761
4762 memset(saidx, 0, sizeof(*saidx));
4763 saidx->proto = proto;
4764 saidx->mode = mode;
4765 saidx->reqid = reqid;
4766 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4767 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4768
4769 key_porttosaddr(&((saidx)->src), 0);
4770 key_porttosaddr(&((saidx)->dst), 0);
4771 return 0;
4772 }
4773
4774 static void
4775 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4776 const struct sadb_msghdr *mhp)
4777 {
4778 const struct sadb_address *src0, *dst0;
4779 const struct sockaddr *src, *dst;
4780 const struct sadb_x_policy *xpl0;
4781
4782 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4783 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4784 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4785 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4786 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4787
4788 memset(spidx, 0, sizeof(*spidx));
4789 spidx->dir = xpl0->sadb_x_policy_dir;
4790 spidx->prefs = src0->sadb_address_prefixlen;
4791 spidx->prefd = dst0->sadb_address_prefixlen;
4792 spidx->ul_proto = src0->sadb_address_proto;
4793 /* XXX boundary check against sa_len */
4794 memcpy(&spidx->src, src, src->sa_len);
4795 memcpy(&spidx->dst, dst, dst->sa_len);
4796 }
4797
4798 /* %%% PF_KEY */
4799 /*
4800 * SADB_GETSPI processing is to receive
4801 * <base, (SA2), src address, dst address, (SPI range)>
4802 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4803 * tree with the status of LARVAL, and send
4804 * <base, SA(*), address(SD)>
4805 * to the IKMPd.
4806 *
4807 * IN: mhp: pointer to the pointer to each header.
4808 * OUT: NULL if fail.
4809 * other if success, return pointer to the message to send.
4810 */
4811 static int
4812 key_api_getspi(struct socket *so, struct mbuf *m,
4813 const struct sadb_msghdr *mhp)
4814 {
4815 const struct sockaddr *src, *dst;
4816 struct secasindex saidx;
4817 struct secashead *newsah;
4818 struct secasvar *newsav;
4819 u_int8_t proto;
4820 u_int32_t spi;
4821 u_int8_t mode;
4822 u_int16_t reqid;
4823 int error;
4824
4825 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4826 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4827 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4828 return key_senderror(so, m, EINVAL);
4829 }
4830 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4831 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4832 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4833 return key_senderror(so, m, EINVAL);
4834 }
4835 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4836 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4837 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4838 } else {
4839 mode = IPSEC_MODE_ANY;
4840 reqid = 0;
4841 }
4842
4843 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4844 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4845
4846 /* map satype to proto */
4847 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4848 if (proto == 0) {
4849 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4850 return key_senderror(so, m, EINVAL);
4851 }
4852
4853
4854 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4855 if (error != 0)
4856 return key_senderror(so, m, EINVAL);
4857
4858 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4859 if (error != 0)
4860 return key_senderror(so, m, EINVAL);
4861
4862 /* SPI allocation */
4863 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4864 &saidx);
4865 if (spi == 0)
4866 return key_senderror(so, m, EINVAL);
4867
4868 /* get a SA index */
4869 newsah = key_getsah(&saidx, CMP_REQID);
4870 if (newsah == NULL) {
4871 /* create a new SA index */
4872 newsah = key_newsah(&saidx);
4873 if (newsah == NULL) {
4874 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4875 return key_senderror(so, m, ENOBUFS);
4876 }
4877 }
4878
4879 /* get a new SA */
4880 /* XXX rewrite */
4881 newsav = KEY_NEWSAV(m, mhp, &error);
4882 if (newsav == NULL) {
4883 /* XXX don't free new SA index allocated in above. */
4884 return key_senderror(so, m, error);
4885 }
4886
4887 /* set spi */
4888 newsav->spi = htonl(spi);
4889
4890 /* add to satree */
4891 newsav->refcnt = 1;
4892 newsav->sah = newsah;
4893 newsav->state = SADB_SASTATE_LARVAL;
4894 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_LARVAL], newsav,
4895 secasvar, chain);
4896 key_validate_savlist(newsah, SADB_SASTATE_LARVAL);
4897
4898 #ifndef IPSEC_NONBLOCK_ACQUIRE
4899 /* delete the entry in acqtree */
4900 if (mhp->msg->sadb_msg_seq != 0) {
4901 struct secacq *acq;
4902 mutex_enter(&key_mtx);
4903 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4904 if (acq != NULL) {
4905 /* reset counter in order to deletion by timehandler. */
4906 acq->created = time_uptime;
4907 acq->count = 0;
4908 }
4909 mutex_exit(&key_mtx);
4910 }
4911 #endif
4912
4913 {
4914 struct mbuf *n, *nn;
4915 struct sadb_sa *m_sa;
4916 int off, len;
4917
4918 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4919 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4920
4921 /* create new sadb_msg to reply. */
4922 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4923 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4924
4925 MGETHDR(n, M_DONTWAIT, MT_DATA);
4926 if (len > MHLEN) {
4927 MCLGET(n, M_DONTWAIT);
4928 if ((n->m_flags & M_EXT) == 0) {
4929 m_freem(n);
4930 n = NULL;
4931 }
4932 }
4933 if (!n)
4934 return key_senderror(so, m, ENOBUFS);
4935
4936 n->m_len = len;
4937 n->m_next = NULL;
4938 off = 0;
4939
4940 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4941 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4942
4943 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4944 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4945 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4946 m_sa->sadb_sa_spi = htonl(spi);
4947 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4948
4949 KASSERTMSG(off == len, "length inconsistency");
4950
4951 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4952 SADB_EXT_ADDRESS_DST);
4953 if (!n->m_next) {
4954 m_freem(n);
4955 return key_senderror(so, m, ENOBUFS);
4956 }
4957
4958 if (n->m_len < sizeof(struct sadb_msg)) {
4959 n = m_pullup(n, sizeof(struct sadb_msg));
4960 if (n == NULL)
4961 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4962 }
4963
4964 n->m_pkthdr.len = 0;
4965 for (nn = n; nn; nn = nn->m_next)
4966 n->m_pkthdr.len += nn->m_len;
4967
4968 key_fill_replymsg(n, newsav->seq);
4969
4970 m_freem(m);
4971 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4972 }
4973 }
4974
4975 /*
4976 * allocating new SPI
4977 * called by key_api_getspi().
4978 * OUT:
4979 * 0: failure.
4980 * others: success.
4981 */
4982 static u_int32_t
4983 key_do_getnewspi(const struct sadb_spirange *spirange,
4984 const struct secasindex *saidx)
4985 {
4986 u_int32_t newspi;
4987 u_int32_t spmin, spmax;
4988 int count = key_spi_trycnt;
4989
4990 /* set spi range to allocate */
4991 if (spirange != NULL) {
4992 spmin = spirange->sadb_spirange_min;
4993 spmax = spirange->sadb_spirange_max;
4994 } else {
4995 spmin = key_spi_minval;
4996 spmax = key_spi_maxval;
4997 }
4998 /* IPCOMP needs 2-byte SPI */
4999 if (saidx->proto == IPPROTO_IPCOMP) {
5000 u_int32_t t;
5001 if (spmin >= 0x10000)
5002 spmin = 0xffff;
5003 if (spmax >= 0x10000)
5004 spmax = 0xffff;
5005 if (spmin > spmax) {
5006 t = spmin; spmin = spmax; spmax = t;
5007 }
5008 }
5009
5010 if (spmin == spmax) {
5011 if (key_checkspidup(saidx, htonl(spmin))) {
5012 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5013 return 0;
5014 }
5015
5016 count--; /* taking one cost. */
5017 newspi = spmin;
5018
5019 } else {
5020
5021 /* init SPI */
5022 newspi = 0;
5023
5024 /* when requesting to allocate spi ranged */
5025 while (count--) {
5026 /* generate pseudo-random SPI value ranged. */
5027 newspi = spmin + (key_random() % (spmax - spmin + 1));
5028
5029 if (!key_checkspidup(saidx, htonl(newspi)))
5030 break;
5031 }
5032
5033 if (count == 0 || newspi == 0) {
5034 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5035 return 0;
5036 }
5037 }
5038
5039 /* statistics */
5040 keystat.getspi_count =
5041 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5042
5043 return newspi;
5044 }
5045
5046 static int
5047 key_handle_natt_info(struct secasvar *sav,
5048 const struct sadb_msghdr *mhp)
5049 {
5050 const char *msg = "?" ;
5051 struct sadb_x_nat_t_type *type;
5052 struct sadb_x_nat_t_port *sport, *dport;
5053 struct sadb_address *iaddr, *raddr;
5054 struct sadb_x_nat_t_frag *frag;
5055
5056 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5057 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5058 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5059 return 0;
5060
5061 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5062 msg = "TYPE";
5063 goto bad;
5064 }
5065
5066 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5067 msg = "SPORT";
5068 goto bad;
5069 }
5070
5071 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5072 msg = "DPORT";
5073 goto bad;
5074 }
5075
5076 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5077 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5078 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5079 msg = "OAI";
5080 goto bad;
5081 }
5082 }
5083
5084 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5085 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5086 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5087 msg = "OAR";
5088 goto bad;
5089 }
5090 }
5091
5092 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5093 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5094 msg = "FRAG";
5095 goto bad;
5096 }
5097 }
5098
5099 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5100 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5101 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5102 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5103 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5104 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5105
5106 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5107 type->sadb_x_nat_t_type_type,
5108 ntohs(sport->sadb_x_nat_t_port_port),
5109 ntohs(dport->sadb_x_nat_t_port_port));
5110
5111 sav->natt_type = type->sadb_x_nat_t_type_type;
5112 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5113 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5114 if (frag)
5115 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5116 else
5117 sav->esp_frag = IP_MAXPACKET;
5118
5119 return 0;
5120 bad:
5121 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5122 __USE(msg);
5123 return -1;
5124 }
5125
5126 /* Just update the IPSEC_NAT_T ports if present */
5127 static int
5128 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5129 const struct sadb_msghdr *mhp)
5130 {
5131 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5132 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5133 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5134 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5135
5136 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5137 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5138 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5139 struct sadb_x_nat_t_type *type;
5140 struct sadb_x_nat_t_port *sport;
5141 struct sadb_x_nat_t_port *dport;
5142
5143 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5144 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5145 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5146 IPSECLOG(LOG_DEBUG, "invalid message\n");
5147 return -1;
5148 }
5149
5150 type = (struct sadb_x_nat_t_type *)
5151 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5152 sport = (struct sadb_x_nat_t_port *)
5153 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5154 dport = (struct sadb_x_nat_t_port *)
5155 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5156
5157 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5158 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5159
5160 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5161 type->sadb_x_nat_t_type_type,
5162 ntohs(sport->sadb_x_nat_t_port_port),
5163 ntohs(dport->sadb_x_nat_t_port_port));
5164 }
5165
5166 return 0;
5167 }
5168
5169
5170 /*
5171 * SADB_UPDATE processing
5172 * receive
5173 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5174 * key(AE), (identity(SD),) (sensitivity)>
5175 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5176 * and send
5177 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5178 * (identity(SD),) (sensitivity)>
5179 * to the ikmpd.
5180 *
5181 * m will always be freed.
5182 */
5183 static int
5184 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5185 {
5186 struct sadb_sa *sa0;
5187 const struct sockaddr *src, *dst;
5188 struct secasindex saidx;
5189 struct secashead *sah;
5190 struct secasvar *sav, *newsav;
5191 u_int16_t proto;
5192 u_int8_t mode;
5193 u_int16_t reqid;
5194 int error;
5195
5196 /* map satype to proto */
5197 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5198 if (proto == 0) {
5199 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5200 return key_senderror(so, m, EINVAL);
5201 }
5202
5203 if (mhp->ext[SADB_EXT_SA] == NULL ||
5204 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5205 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5206 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5207 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5208 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5209 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5210 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5211 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5212 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5213 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5214 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5215 return key_senderror(so, m, EINVAL);
5216 }
5217 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5218 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5219 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5220 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5221 return key_senderror(so, m, EINVAL);
5222 }
5223 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5224 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5225 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5226 } else {
5227 mode = IPSEC_MODE_ANY;
5228 reqid = 0;
5229 }
5230 /* XXX boundary checking for other extensions */
5231
5232 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5233 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5234 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5235
5236 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5237 if (error != 0)
5238 return key_senderror(so, m, EINVAL);
5239
5240 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5241 if (error != 0)
5242 return key_senderror(so, m, EINVAL);
5243
5244 /* get a SA header */
5245 sah = key_getsah(&saidx, CMP_REQID);
5246 if (sah == NULL) {
5247 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5248 return key_senderror(so, m, ENOENT);
5249 }
5250
5251 /* set spidx if there */
5252 /* XXX rewrite */
5253 error = key_setident(sah, m, mhp);
5254 if (error)
5255 return key_senderror(so, m, error);
5256
5257 /* find a SA with sequence number. */
5258 #ifdef IPSEC_DOSEQCHECK
5259 if (mhp->msg->sadb_msg_seq != 0) {
5260 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5261 if (sav == NULL) {
5262 IPSECLOG(LOG_DEBUG,
5263 "no larval SA with sequence %u exists.\n",
5264 mhp->msg->sadb_msg_seq);
5265 return key_senderror(so, m, ENOENT);
5266 }
5267 }
5268 #else
5269 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5270 if (sav == NULL) {
5271 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5272 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5273 return key_senderror(so, m, EINVAL);
5274 }
5275 #endif
5276
5277 /* validity check */
5278 if (sav->sah->saidx.proto != proto) {
5279 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5280 sav->sah->saidx.proto, proto);
5281 error = EINVAL;
5282 goto error;
5283 }
5284 #ifdef IPSEC_DOSEQCHECK
5285 if (sav->spi != sa0->sadb_sa_spi) {
5286 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5287 (u_int32_t)ntohl(sav->spi),
5288 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5289 error = EINVAL;
5290 goto error;
5291 }
5292 #endif
5293 if (sav->pid != mhp->msg->sadb_msg_pid) {
5294 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5295 sav->pid, mhp->msg->sadb_msg_pid);
5296 error = EINVAL;
5297 goto error;
5298 }
5299
5300 /*
5301 * Allocate a new SA instead of modifying the existing SA directly
5302 * to avoid race conditions.
5303 */
5304 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5305
5306 /* copy sav values */
5307 newsav->spi = sav->spi;
5308 newsav->seq = sav->seq;
5309 newsav->created = sav->created;
5310 newsav->pid = sav->pid;
5311 newsav->sah = sav->sah;
5312
5313 error = key_setsaval(newsav, m, mhp);
5314 if (error) {
5315 key_delsav(newsav);
5316 goto error;
5317 }
5318
5319 error = key_handle_natt_info(newsav, mhp);
5320 if (error != 0) {
5321 key_delsav(newsav);
5322 goto error;
5323 }
5324
5325 error = key_init_xform(newsav);
5326 if (error != 0) {
5327 key_delsav(newsav);
5328 goto error;
5329 }
5330
5331 /* add to satree */
5332 newsav->refcnt = 1;
5333 newsav->state = SADB_SASTATE_MATURE;
5334 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_MATURE], newsav,
5335 secasvar, chain);
5336 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5337
5338 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5339 KEY_FREESAV(&sav);
5340 KEY_FREESAV(&sav);
5341
5342 {
5343 struct mbuf *n;
5344
5345 /* set msg buf from mhp */
5346 n = key_getmsgbuf_x1(m, mhp);
5347 if (n == NULL) {
5348 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5349 return key_senderror(so, m, ENOBUFS);
5350 }
5351
5352 m_freem(m);
5353 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5354 }
5355 error:
5356 KEY_FREESAV(&sav);
5357 return key_senderror(so, m, error);
5358 }
5359
5360 /*
5361 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5362 * only called by key_api_update().
5363 * OUT:
5364 * NULL : not found
5365 * others : found, pointer to a SA.
5366 */
5367 #ifdef IPSEC_DOSEQCHECK
5368 static struct secasvar *
5369 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5370 {
5371 struct secasvar *sav;
5372 u_int state;
5373
5374 state = SADB_SASTATE_LARVAL;
5375
5376 /* search SAD with sequence number ? */
5377 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5378
5379 KEY_CHKSASTATE(state, sav->state);
5380
5381 if (sav->seq == seq) {
5382 SA_ADDREF(sav);
5383 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5384 "DP cause refcnt++:%d SA:%p\n",
5385 sav->refcnt, sav);
5386 return sav;
5387 }
5388 }
5389
5390 return NULL;
5391 }
5392 #endif
5393
5394 /*
5395 * SADB_ADD processing
5396 * add an entry to SA database, when received
5397 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5398 * key(AE), (identity(SD),) (sensitivity)>
5399 * from the ikmpd,
5400 * and send
5401 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5402 * (identity(SD),) (sensitivity)>
5403 * to the ikmpd.
5404 *
5405 * IGNORE identity and sensitivity messages.
5406 *
5407 * m will always be freed.
5408 */
5409 static int
5410 key_api_add(struct socket *so, struct mbuf *m,
5411 const struct sadb_msghdr *mhp)
5412 {
5413 struct sadb_sa *sa0;
5414 const struct sockaddr *src, *dst;
5415 struct secasindex saidx;
5416 struct secashead *newsah;
5417 struct secasvar *newsav;
5418 u_int16_t proto;
5419 u_int8_t mode;
5420 u_int16_t reqid;
5421 int error;
5422
5423 /* map satype to proto */
5424 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5425 if (proto == 0) {
5426 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5427 return key_senderror(so, m, EINVAL);
5428 }
5429
5430 if (mhp->ext[SADB_EXT_SA] == NULL ||
5431 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5432 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5433 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5434 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5435 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5436 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5437 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5438 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5439 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5440 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5441 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5442 return key_senderror(so, m, EINVAL);
5443 }
5444 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5445 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5446 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5447 /* XXX need more */
5448 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5449 return key_senderror(so, m, EINVAL);
5450 }
5451 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5452 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5453 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5454 } else {
5455 mode = IPSEC_MODE_ANY;
5456 reqid = 0;
5457 }
5458
5459 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5460 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5461 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5462
5463 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5464 if (error != 0)
5465 return key_senderror(so, m, EINVAL);
5466
5467 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5468 if (error != 0)
5469 return key_senderror(so, m, EINVAL);
5470
5471 /* get a SA header */
5472 newsah = key_getsah(&saidx, CMP_REQID);
5473 if (newsah == NULL) {
5474 /* create a new SA header */
5475 newsah = key_newsah(&saidx);
5476 if (newsah == NULL) {
5477 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5478 return key_senderror(so, m, ENOBUFS);
5479 }
5480 }
5481
5482 /* set spidx if there */
5483 /* XXX rewrite */
5484 error = key_setident(newsah, m, mhp);
5485 if (error) {
5486 return key_senderror(so, m, error);
5487 }
5488
5489 {
5490 struct secasvar *sav;
5491
5492 /* We can create new SA only if SPI is differenct. */
5493 sav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5494 if (sav != NULL) {
5495 KEY_FREESAV(&sav);
5496 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5497 return key_senderror(so, m, EEXIST);
5498 }
5499 }
5500
5501 /* create new SA entry. */
5502 newsav = KEY_NEWSAV(m, mhp, &error);
5503 if (newsav == NULL) {
5504 return key_senderror(so, m, error);
5505 }
5506 newsav->sah = newsah;
5507
5508 error = key_handle_natt_info(newsav, mhp);
5509 if (error != 0) {
5510 key_delsav(newsav);
5511 return key_senderror(so, m, EINVAL);
5512 }
5513
5514 error = key_init_xform(newsav);
5515 if (error != 0) {
5516 key_delsav(newsav);
5517 return key_senderror(so, m, error);
5518 }
5519
5520 /* add to satree */
5521 newsav->refcnt = 1;
5522 newsav->state = SADB_SASTATE_MATURE;
5523 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], newsav,
5524 secasvar, chain);
5525 key_validate_savlist(newsah, SADB_SASTATE_MATURE);
5526
5527 /*
5528 * don't call key_freesav() here, as we would like to keep the SA
5529 * in the database on success.
5530 */
5531
5532 {
5533 struct mbuf *n;
5534
5535 /* set msg buf from mhp */
5536 n = key_getmsgbuf_x1(m, mhp);
5537 if (n == NULL) {
5538 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5539 return key_senderror(so, m, ENOBUFS);
5540 }
5541
5542 m_freem(m);
5543 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5544 }
5545 }
5546
5547 /* m is retained */
5548 static int
5549 key_setident(struct secashead *sah, struct mbuf *m,
5550 const struct sadb_msghdr *mhp)
5551 {
5552 const struct sadb_ident *idsrc, *iddst;
5553 int idsrclen, iddstlen;
5554
5555 KASSERT(!cpu_softintr_p());
5556 KASSERT(sah != NULL);
5557 KASSERT(m != NULL);
5558 KASSERT(mhp != NULL);
5559 KASSERT(mhp->msg != NULL);
5560
5561 /*
5562 * Can be called with an existing sah from key_api_update().
5563 */
5564 if (sah->idents != NULL) {
5565 kmem_free(sah->idents, sah->idents_len);
5566 sah->idents = NULL;
5567 sah->idents_len = 0;
5568 }
5569 if (sah->identd != NULL) {
5570 kmem_free(sah->identd, sah->identd_len);
5571 sah->identd = NULL;
5572 sah->identd_len = 0;
5573 }
5574
5575 /* don't make buffer if not there */
5576 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5577 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5578 sah->idents = NULL;
5579 sah->identd = NULL;
5580 return 0;
5581 }
5582
5583 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5584 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5585 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5586 return EINVAL;
5587 }
5588
5589 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5590 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5591 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5592 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5593
5594 /* validity check */
5595 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5596 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5597 return EINVAL;
5598 }
5599
5600 switch (idsrc->sadb_ident_type) {
5601 case SADB_IDENTTYPE_PREFIX:
5602 case SADB_IDENTTYPE_FQDN:
5603 case SADB_IDENTTYPE_USERFQDN:
5604 default:
5605 /* XXX do nothing */
5606 sah->idents = NULL;
5607 sah->identd = NULL;
5608 return 0;
5609 }
5610
5611 /* make structure */
5612 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5613 sah->idents_len = idsrclen;
5614 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5615 sah->identd_len = iddstlen;
5616 memcpy(sah->idents, idsrc, idsrclen);
5617 memcpy(sah->identd, iddst, iddstlen);
5618
5619 return 0;
5620 }
5621
5622 /*
5623 * m will not be freed on return.
5624 * it is caller's responsibility to free the result.
5625 */
5626 static struct mbuf *
5627 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5628 {
5629 struct mbuf *n;
5630
5631 KASSERT(m != NULL);
5632 KASSERT(mhp != NULL);
5633 KASSERT(mhp->msg != NULL);
5634
5635 /* create new sadb_msg to reply. */
5636 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5637 SADB_EXT_SA, SADB_X_EXT_SA2,
5638 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5639 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5640 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5641 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5642 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5643 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5644 if (!n)
5645 return NULL;
5646
5647 if (n->m_len < sizeof(struct sadb_msg)) {
5648 n = m_pullup(n, sizeof(struct sadb_msg));
5649 if (n == NULL)
5650 return NULL;
5651 }
5652 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5653 mtod(n, struct sadb_msg *)->sadb_msg_len =
5654 PFKEY_UNIT64(n->m_pkthdr.len);
5655
5656 return n;
5657 }
5658
5659 static int key_delete_all (struct socket *, struct mbuf *,
5660 const struct sadb_msghdr *, u_int16_t);
5661
5662 /*
5663 * SADB_DELETE processing
5664 * receive
5665 * <base, SA(*), address(SD)>
5666 * from the ikmpd, and set SADB_SASTATE_DEAD,
5667 * and send,
5668 * <base, SA(*), address(SD)>
5669 * to the ikmpd.
5670 *
5671 * m will always be freed.
5672 */
5673 static int
5674 key_api_delete(struct socket *so, struct mbuf *m,
5675 const struct sadb_msghdr *mhp)
5676 {
5677 struct sadb_sa *sa0;
5678 const struct sockaddr *src, *dst;
5679 struct secasindex saidx;
5680 struct secashead *sah;
5681 struct secasvar *sav = NULL;
5682 u_int16_t proto;
5683 int error;
5684
5685 /* map satype to proto */
5686 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5687 if (proto == 0) {
5688 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5689 return key_senderror(so, m, EINVAL);
5690 }
5691
5692 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5693 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5694 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5695 return key_senderror(so, m, EINVAL);
5696 }
5697
5698 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5699 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5700 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5701 return key_senderror(so, m, EINVAL);
5702 }
5703
5704 if (mhp->ext[SADB_EXT_SA] == NULL) {
5705 /*
5706 * Caller wants us to delete all non-LARVAL SAs
5707 * that match the src/dst. This is used during
5708 * IKE INITIAL-CONTACT.
5709 */
5710 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5711 return key_delete_all(so, m, mhp, proto);
5712 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5713 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5714 return key_senderror(so, m, EINVAL);
5715 }
5716
5717 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5718 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5719 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5720
5721 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5722 if (error != 0)
5723 return key_senderror(so, m, EINVAL);
5724
5725 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5726 if (error != 0)
5727 return key_senderror(so, m, EINVAL);
5728
5729 /* get a SA header */
5730 sah = key_getsah(&saidx, CMP_HEAD);
5731 if (sah != NULL) {
5732 /* get a SA with SPI. */
5733 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5734 }
5735
5736 if (sav == NULL) {
5737 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5738 return key_senderror(so, m, ENOENT);
5739 }
5740
5741 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5742 KEY_FREESAV(&sav);
5743 KEY_FREESAV(&sav);
5744
5745 {
5746 struct mbuf *n;
5747
5748 /* create new sadb_msg to reply. */
5749 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5750 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5751 if (!n)
5752 return key_senderror(so, m, ENOBUFS);
5753
5754 n = key_fill_replymsg(n, 0);
5755 if (n == NULL)
5756 return key_senderror(so, m, ENOBUFS);
5757
5758 m_freem(m);
5759 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5760 }
5761 }
5762
5763 /*
5764 * delete all SAs for src/dst. Called from key_api_delete().
5765 */
5766 static int
5767 key_delete_all(struct socket *so, struct mbuf *m,
5768 const struct sadb_msghdr *mhp, u_int16_t proto)
5769 {
5770 const struct sockaddr *src, *dst;
5771 struct secasindex saidx;
5772 struct secashead *sah;
5773 struct secasvar *sav, *nextsav;
5774 u_int state;
5775 int error;
5776
5777 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5778 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5779
5780 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5781 if (error != 0)
5782 return key_senderror(so, m, EINVAL);
5783
5784 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5785 if (error != 0)
5786 return key_senderror(so, m, EINVAL);
5787
5788 sah = key_getsah(&saidx, CMP_HEAD);
5789 if (sah != NULL) {
5790 /* Delete all non-LARVAL SAs. */
5791 SASTATE_ALIVE_FOREACH(state) {
5792 if (state == SADB_SASTATE_LARVAL)
5793 continue;
5794 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5795 nextsav) {
5796 /* sanity check */
5797 if (sav->state != state) {
5798 IPSECLOG(LOG_DEBUG,
5799 "invalid sav->state "
5800 "(queue: %d SA: %d)\n",
5801 state, sav->state);
5802 continue;
5803 }
5804
5805 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5806 KEY_FREESAV(&sav);
5807 }
5808 }
5809 }
5810 {
5811 struct mbuf *n;
5812
5813 /* create new sadb_msg to reply. */
5814 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5815 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5816 if (!n)
5817 return key_senderror(so, m, ENOBUFS);
5818
5819 n = key_fill_replymsg(n, 0);
5820 if (n == NULL)
5821 return key_senderror(so, m, ENOBUFS);
5822
5823 m_freem(m);
5824 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5825 }
5826 }
5827
5828 /*
5829 * SADB_GET processing
5830 * receive
5831 * <base, SA(*), address(SD)>
5832 * from the ikmpd, and get a SP and a SA to respond,
5833 * and send,
5834 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5835 * (identity(SD),) (sensitivity)>
5836 * to the ikmpd.
5837 *
5838 * m will always be freed.
5839 */
5840 static int
5841 key_api_get(struct socket *so, struct mbuf *m,
5842 const struct sadb_msghdr *mhp)
5843 {
5844 struct sadb_sa *sa0;
5845 const struct sockaddr *src, *dst;
5846 struct secasindex saidx;
5847 struct secashead *sah;
5848 struct secasvar *sav = NULL;
5849 u_int16_t proto;
5850 int error;
5851
5852 /* map satype to proto */
5853 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5854 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5855 return key_senderror(so, m, EINVAL);
5856 }
5857
5858 if (mhp->ext[SADB_EXT_SA] == NULL ||
5859 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5860 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5861 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5862 return key_senderror(so, m, EINVAL);
5863 }
5864 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5865 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5866 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5867 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5868 return key_senderror(so, m, EINVAL);
5869 }
5870
5871 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5872 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5873 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5874
5875 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5876 if (error != 0)
5877 return key_senderror(so, m, EINVAL);
5878
5879 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5880 if (error != 0)
5881 return key_senderror(so, m, EINVAL);
5882
5883 /* get a SA header */
5884 sah = key_getsah(&saidx, CMP_HEAD);
5885 if (sah != NULL) {
5886 /* get a SA with SPI. */
5887 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5888 }
5889 if (sav == NULL) {
5890 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5891 return key_senderror(so, m, ENOENT);
5892 }
5893
5894 {
5895 struct mbuf *n;
5896 u_int8_t satype;
5897
5898 /* map proto to satype */
5899 satype = key_proto2satype(sah->saidx.proto);
5900 if (satype == 0) {
5901 KEY_FREESAV(&sav);
5902 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5903 return key_senderror(so, m, EINVAL);
5904 }
5905
5906 /* create new sadb_msg to reply. */
5907 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5908 mhp->msg->sadb_msg_pid);
5909 KEY_FREESAV(&sav);
5910 if (!n)
5911 return key_senderror(so, m, ENOBUFS);
5912
5913 m_freem(m);
5914 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5915 }
5916 }
5917
5918 /* XXX make it sysctl-configurable? */
5919 static void
5920 key_getcomb_setlifetime(struct sadb_comb *comb)
5921 {
5922
5923 comb->sadb_comb_soft_allocations = 1;
5924 comb->sadb_comb_hard_allocations = 1;
5925 comb->sadb_comb_soft_bytes = 0;
5926 comb->sadb_comb_hard_bytes = 0;
5927 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5928 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
5929 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
5930 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5931 }
5932
5933 /*
5934 * XXX reorder combinations by preference
5935 * XXX no idea if the user wants ESP authentication or not
5936 */
5937 static struct mbuf *
5938 key_getcomb_esp(void)
5939 {
5940 struct sadb_comb *comb;
5941 const struct enc_xform *algo;
5942 struct mbuf *result = NULL, *m, *n;
5943 int encmin;
5944 int i, off, o;
5945 int totlen;
5946 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5947
5948 m = NULL;
5949 for (i = 1; i <= SADB_EALG_MAX; i++) {
5950 algo = esp_algorithm_lookup(i);
5951 if (algo == NULL)
5952 continue;
5953
5954 /* discard algorithms with key size smaller than system min */
5955 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5956 continue;
5957 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5958 encmin = ipsec_esp_keymin;
5959 else
5960 encmin = _BITS(algo->minkey);
5961
5962 if (ipsec_esp_auth)
5963 m = key_getcomb_ah();
5964 else {
5965 KASSERTMSG(l <= MLEN,
5966 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5967 MGET(m, M_DONTWAIT, MT_DATA);
5968 if (m) {
5969 M_ALIGN(m, l);
5970 m->m_len = l;
5971 m->m_next = NULL;
5972 memset(mtod(m, void *), 0, m->m_len);
5973 }
5974 }
5975 if (!m)
5976 goto fail;
5977
5978 totlen = 0;
5979 for (n = m; n; n = n->m_next)
5980 totlen += n->m_len;
5981 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
5982
5983 for (off = 0; off < totlen; off += l) {
5984 n = m_pulldown(m, off, l, &o);
5985 if (!n) {
5986 /* m is already freed */
5987 goto fail;
5988 }
5989 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5990 memset(comb, 0, sizeof(*comb));
5991 key_getcomb_setlifetime(comb);
5992 comb->sadb_comb_encrypt = i;
5993 comb->sadb_comb_encrypt_minbits = encmin;
5994 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5995 }
5996
5997 if (!result)
5998 result = m;
5999 else
6000 m_cat(result, m);
6001 }
6002
6003 return result;
6004
6005 fail:
6006 if (result)
6007 m_freem(result);
6008 return NULL;
6009 }
6010
6011 static void
6012 key_getsizes_ah(const struct auth_hash *ah, int alg,
6013 u_int16_t* ksmin, u_int16_t* ksmax)
6014 {
6015 *ksmin = *ksmax = ah->keysize;
6016 if (ah->keysize == 0) {
6017 /*
6018 * Transform takes arbitrary key size but algorithm
6019 * key size is restricted. Enforce this here.
6020 */
6021 switch (alg) {
6022 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6023 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6024 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6025 default:
6026 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6027 break;
6028 }
6029 }
6030 }
6031
6032 /*
6033 * XXX reorder combinations by preference
6034 */
6035 static struct mbuf *
6036 key_getcomb_ah(void)
6037 {
6038 struct sadb_comb *comb;
6039 const struct auth_hash *algo;
6040 struct mbuf *m;
6041 u_int16_t minkeysize, maxkeysize;
6042 int i;
6043 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6044
6045 m = NULL;
6046 for (i = 1; i <= SADB_AALG_MAX; i++) {
6047 #if 1
6048 /* we prefer HMAC algorithms, not old algorithms */
6049 if (i != SADB_AALG_SHA1HMAC &&
6050 i != SADB_AALG_MD5HMAC &&
6051 i != SADB_X_AALG_SHA2_256 &&
6052 i != SADB_X_AALG_SHA2_384 &&
6053 i != SADB_X_AALG_SHA2_512)
6054 continue;
6055 #endif
6056 algo = ah_algorithm_lookup(i);
6057 if (!algo)
6058 continue;
6059 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6060 /* discard algorithms with key size smaller than system min */
6061 if (_BITS(minkeysize) < ipsec_ah_keymin)
6062 continue;
6063
6064 if (!m) {
6065 KASSERTMSG(l <= MLEN,
6066 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6067 MGET(m, M_DONTWAIT, MT_DATA);
6068 if (m) {
6069 M_ALIGN(m, l);
6070 m->m_len = l;
6071 m->m_next = NULL;
6072 }
6073 } else
6074 M_PREPEND(m, l, M_DONTWAIT);
6075 if (!m)
6076 return NULL;
6077
6078 if (m->m_len < sizeof(struct sadb_comb)) {
6079 m = m_pullup(m, sizeof(struct sadb_comb));
6080 if (m == NULL)
6081 return NULL;
6082 }
6083
6084 comb = mtod(m, struct sadb_comb *);
6085 memset(comb, 0, sizeof(*comb));
6086 key_getcomb_setlifetime(comb);
6087 comb->sadb_comb_auth = i;
6088 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6089 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6090 }
6091
6092 return m;
6093 }
6094
6095 /*
6096 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6097 * XXX reorder combinations by preference
6098 */
6099 static struct mbuf *
6100 key_getcomb_ipcomp(void)
6101 {
6102 struct sadb_comb *comb;
6103 const struct comp_algo *algo;
6104 struct mbuf *m;
6105 int i;
6106 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6107
6108 m = NULL;
6109 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6110 algo = ipcomp_algorithm_lookup(i);
6111 if (!algo)
6112 continue;
6113
6114 if (!m) {
6115 KASSERTMSG(l <= MLEN,
6116 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6117 MGET(m, M_DONTWAIT, MT_DATA);
6118 if (m) {
6119 M_ALIGN(m, l);
6120 m->m_len = l;
6121 m->m_next = NULL;
6122 }
6123 } else
6124 M_PREPEND(m, l, M_DONTWAIT);
6125 if (!m)
6126 return NULL;
6127
6128 if (m->m_len < sizeof(struct sadb_comb)) {
6129 m = m_pullup(m, sizeof(struct sadb_comb));
6130 if (m == NULL)
6131 return NULL;
6132 }
6133
6134 comb = mtod(m, struct sadb_comb *);
6135 memset(comb, 0, sizeof(*comb));
6136 key_getcomb_setlifetime(comb);
6137 comb->sadb_comb_encrypt = i;
6138 /* what should we set into sadb_comb_*_{min,max}bits? */
6139 }
6140
6141 return m;
6142 }
6143
6144 /*
6145 * XXX no way to pass mode (transport/tunnel) to userland
6146 * XXX replay checking?
6147 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6148 */
6149 static struct mbuf *
6150 key_getprop(const struct secasindex *saidx)
6151 {
6152 struct sadb_prop *prop;
6153 struct mbuf *m, *n;
6154 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6155 int totlen;
6156
6157 switch (saidx->proto) {
6158 case IPPROTO_ESP:
6159 m = key_getcomb_esp();
6160 break;
6161 case IPPROTO_AH:
6162 m = key_getcomb_ah();
6163 break;
6164 case IPPROTO_IPCOMP:
6165 m = key_getcomb_ipcomp();
6166 break;
6167 default:
6168 return NULL;
6169 }
6170
6171 if (!m)
6172 return NULL;
6173 M_PREPEND(m, l, M_DONTWAIT);
6174 if (!m)
6175 return NULL;
6176
6177 totlen = 0;
6178 for (n = m; n; n = n->m_next)
6179 totlen += n->m_len;
6180
6181 prop = mtod(m, struct sadb_prop *);
6182 memset(prop, 0, sizeof(*prop));
6183 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6184 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6185 prop->sadb_prop_replay = 32; /* XXX */
6186
6187 return m;
6188 }
6189
6190 /*
6191 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6192 * send
6193 * <base, SA, address(SD), (address(P)), x_policy,
6194 * (identity(SD),) (sensitivity,) proposal>
6195 * to KMD, and expect to receive
6196 * <base> with SADB_ACQUIRE if error occurred,
6197 * or
6198 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6199 * from KMD by PF_KEY.
6200 *
6201 * XXX x_policy is outside of RFC2367 (KAME extension).
6202 * XXX sensitivity is not supported.
6203 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6204 * see comment for key_getcomb_ipcomp().
6205 *
6206 * OUT:
6207 * 0 : succeed
6208 * others: error number
6209 */
6210 static int
6211 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6212 {
6213 struct mbuf *result = NULL, *m;
6214 #ifndef IPSEC_NONBLOCK_ACQUIRE
6215 struct secacq *newacq;
6216 #endif
6217 u_int8_t satype;
6218 int error = -1;
6219 u_int32_t seq;
6220
6221 /* sanity check */
6222 KASSERT(saidx != NULL);
6223 satype = key_proto2satype(saidx->proto);
6224 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6225
6226 #ifndef IPSEC_NONBLOCK_ACQUIRE
6227 /*
6228 * We never do anything about acquirng SA. There is anather
6229 * solution that kernel blocks to send SADB_ACQUIRE message until
6230 * getting something message from IKEd. In later case, to be
6231 * managed with ACQUIRING list.
6232 */
6233 /* Get an entry to check whether sending message or not. */
6234 mutex_enter(&key_mtx);
6235 newacq = key_getacq(saidx);
6236 if (newacq != NULL) {
6237 if (key_blockacq_count < newacq->count) {
6238 /* reset counter and do send message. */
6239 newacq->count = 0;
6240 } else {
6241 /* increment counter and do nothing. */
6242 newacq->count++;
6243 mutex_exit(&key_mtx);
6244 return 0;
6245 }
6246 } else {
6247 /* make new entry for blocking to send SADB_ACQUIRE. */
6248 newacq = key_newacq(saidx);
6249 if (newacq == NULL)
6250 return ENOBUFS;
6251
6252 /* add to acqtree */
6253 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6254 }
6255
6256 seq = newacq->seq;
6257 mutex_exit(&key_mtx);
6258 #else
6259 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6260 #endif
6261 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6262 if (!m) {
6263 error = ENOBUFS;
6264 goto fail;
6265 }
6266 result = m;
6267
6268 /* set sadb_address for saidx's. */
6269 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6270 IPSEC_ULPROTO_ANY);
6271 if (!m) {
6272 error = ENOBUFS;
6273 goto fail;
6274 }
6275 m_cat(result, m);
6276
6277 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6278 IPSEC_ULPROTO_ANY);
6279 if (!m) {
6280 error = ENOBUFS;
6281 goto fail;
6282 }
6283 m_cat(result, m);
6284
6285 /* XXX proxy address (optional) */
6286
6287 /* set sadb_x_policy */
6288 if (sp) {
6289 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6290 if (!m) {
6291 error = ENOBUFS;
6292 goto fail;
6293 }
6294 m_cat(result, m);
6295 }
6296
6297 /* XXX identity (optional) */
6298 #if 0
6299 if (idexttype && fqdn) {
6300 /* create identity extension (FQDN) */
6301 struct sadb_ident *id;
6302 int fqdnlen;
6303
6304 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6305 id = (struct sadb_ident *)p;
6306 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6307 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6308 id->sadb_ident_exttype = idexttype;
6309 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6310 memcpy(id + 1, fqdn, fqdnlen);
6311 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6312 }
6313
6314 if (idexttype) {
6315 /* create identity extension (USERFQDN) */
6316 struct sadb_ident *id;
6317 int userfqdnlen;
6318
6319 if (userfqdn) {
6320 /* +1 for terminating-NUL */
6321 userfqdnlen = strlen(userfqdn) + 1;
6322 } else
6323 userfqdnlen = 0;
6324 id = (struct sadb_ident *)p;
6325 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6326 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6327 id->sadb_ident_exttype = idexttype;
6328 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6329 /* XXX is it correct? */
6330 if (curlwp)
6331 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6332 if (userfqdn && userfqdnlen)
6333 memcpy(id + 1, userfqdn, userfqdnlen);
6334 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6335 }
6336 #endif
6337
6338 /* XXX sensitivity (optional) */
6339
6340 /* create proposal/combination extension */
6341 m = key_getprop(saidx);
6342 #if 0
6343 /*
6344 * spec conformant: always attach proposal/combination extension,
6345 * the problem is that we have no way to attach it for ipcomp,
6346 * due to the way sadb_comb is declared in RFC2367.
6347 */
6348 if (!m) {
6349 error = ENOBUFS;
6350 goto fail;
6351 }
6352 m_cat(result, m);
6353 #else
6354 /*
6355 * outside of spec; make proposal/combination extension optional.
6356 */
6357 if (m)
6358 m_cat(result, m);
6359 #endif
6360
6361 if ((result->m_flags & M_PKTHDR) == 0) {
6362 error = EINVAL;
6363 goto fail;
6364 }
6365
6366 if (result->m_len < sizeof(struct sadb_msg)) {
6367 result = m_pullup(result, sizeof(struct sadb_msg));
6368 if (result == NULL) {
6369 error = ENOBUFS;
6370 goto fail;
6371 }
6372 }
6373
6374 result->m_pkthdr.len = 0;
6375 for (m = result; m; m = m->m_next)
6376 result->m_pkthdr.len += m->m_len;
6377
6378 mtod(result, struct sadb_msg *)->sadb_msg_len =
6379 PFKEY_UNIT64(result->m_pkthdr.len);
6380
6381 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6382
6383 fail:
6384 if (result)
6385 m_freem(result);
6386 return error;
6387 }
6388
6389 #ifndef IPSEC_NONBLOCK_ACQUIRE
6390 static struct secacq *
6391 key_newacq(const struct secasindex *saidx)
6392 {
6393 struct secacq *newacq;
6394
6395 /* get new entry */
6396 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6397 if (newacq == NULL) {
6398 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6399 return NULL;
6400 }
6401
6402 /* copy secindex */
6403 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6404 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6405 newacq->created = time_uptime;
6406 newacq->count = 0;
6407
6408 return newacq;
6409 }
6410
6411 static struct secacq *
6412 key_getacq(const struct secasindex *saidx)
6413 {
6414 struct secacq *acq;
6415
6416 KASSERT(mutex_owned(&key_mtx));
6417
6418 LIST_FOREACH(acq, &acqtree, chain) {
6419 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6420 return acq;
6421 }
6422
6423 return NULL;
6424 }
6425
6426 static struct secacq *
6427 key_getacqbyseq(u_int32_t seq)
6428 {
6429 struct secacq *acq;
6430
6431 KASSERT(mutex_owned(&key_mtx));
6432
6433 LIST_FOREACH(acq, &acqtree, chain) {
6434 if (acq->seq == seq)
6435 return acq;
6436 }
6437
6438 return NULL;
6439 }
6440 #endif
6441
6442 #ifdef notyet
6443 static struct secspacq *
6444 key_newspacq(const struct secpolicyindex *spidx)
6445 {
6446 struct secspacq *acq;
6447
6448 /* get new entry */
6449 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6450 if (acq == NULL) {
6451 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6452 return NULL;
6453 }
6454
6455 /* copy secindex */
6456 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6457 acq->created = time_uptime;
6458 acq->count = 0;
6459
6460 return acq;
6461 }
6462
6463 static struct secspacq *
6464 key_getspacq(const struct secpolicyindex *spidx)
6465 {
6466 struct secspacq *acq;
6467
6468 LIST_FOREACH(acq, &spacqtree, chain) {
6469 if (key_spidx_match_exactly(spidx, &acq->spidx))
6470 return acq;
6471 }
6472
6473 return NULL;
6474 }
6475 #endif /* notyet */
6476
6477 /*
6478 * SADB_ACQUIRE processing,
6479 * in first situation, is receiving
6480 * <base>
6481 * from the ikmpd, and clear sequence of its secasvar entry.
6482 *
6483 * In second situation, is receiving
6484 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6485 * from a user land process, and return
6486 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6487 * to the socket.
6488 *
6489 * m will always be freed.
6490 */
6491 static int
6492 key_api_acquire(struct socket *so, struct mbuf *m,
6493 const struct sadb_msghdr *mhp)
6494 {
6495 const struct sockaddr *src, *dst;
6496 struct secasindex saidx;
6497 struct secashead *sah;
6498 u_int16_t proto;
6499 int error;
6500
6501 /*
6502 * Error message from KMd.
6503 * We assume that if error was occurred in IKEd, the length of PFKEY
6504 * message is equal to the size of sadb_msg structure.
6505 * We do not raise error even if error occurred in this function.
6506 */
6507 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6508 #ifndef IPSEC_NONBLOCK_ACQUIRE
6509 struct secacq *acq;
6510
6511 /* check sequence number */
6512 if (mhp->msg->sadb_msg_seq == 0) {
6513 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6514 m_freem(m);
6515 return 0;
6516 }
6517
6518 mutex_enter(&key_mtx);
6519 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6520 if (acq == NULL) {
6521 mutex_exit(&key_mtx);
6522 /*
6523 * the specified larval SA is already gone, or we got
6524 * a bogus sequence number. we can silently ignore it.
6525 */
6526 m_freem(m);
6527 return 0;
6528 }
6529
6530 /* reset acq counter in order to deletion by timehander. */
6531 acq->created = time_uptime;
6532 acq->count = 0;
6533 mutex_exit(&key_mtx);
6534 #endif
6535 m_freem(m);
6536 return 0;
6537 }
6538
6539 /*
6540 * This message is from user land.
6541 */
6542
6543 /* map satype to proto */
6544 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6545 if (proto == 0) {
6546 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6547 return key_senderror(so, m, EINVAL);
6548 }
6549
6550 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6551 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6552 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6553 /* error */
6554 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6555 return key_senderror(so, m, EINVAL);
6556 }
6557 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6558 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6559 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6560 /* error */
6561 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6562 return key_senderror(so, m, EINVAL);
6563 }
6564
6565 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6566 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6567
6568 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6569 if (error != 0)
6570 return key_senderror(so, m, EINVAL);
6571
6572 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6573 if (error != 0)
6574 return key_senderror(so, m, EINVAL);
6575
6576 /* get a SA index */
6577 sah = key_getsah(&saidx, CMP_MODE_REQID);
6578 if (sah != NULL) {
6579 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6580 return key_senderror(so, m, EEXIST);
6581 }
6582
6583 error = key_acquire(&saidx, NULL);
6584 if (error != 0) {
6585 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6586 error);
6587 return key_senderror(so, m, error);
6588 }
6589
6590 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6591 }
6592
6593 /*
6594 * SADB_REGISTER processing.
6595 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6596 * receive
6597 * <base>
6598 * from the ikmpd, and register a socket to send PF_KEY messages,
6599 * and send
6600 * <base, supported>
6601 * to KMD by PF_KEY.
6602 * If socket is detached, must free from regnode.
6603 *
6604 * m will always be freed.
6605 */
6606 static int
6607 key_api_register(struct socket *so, struct mbuf *m,
6608 const struct sadb_msghdr *mhp)
6609 {
6610 struct secreg *reg, *newreg = 0;
6611
6612 /* check for invalid register message */
6613 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6614 return key_senderror(so, m, EINVAL);
6615
6616 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6617 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6618 goto setmsg;
6619
6620 /* Allocate regnode in advance, out of mutex */
6621 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6622
6623 /* check whether existing or not */
6624 mutex_enter(&key_mtx);
6625 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6626 if (reg->so == so) {
6627 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6628 mutex_exit(&key_mtx);
6629 kmem_free(newreg, sizeof(*newreg));
6630 return key_senderror(so, m, EEXIST);
6631 }
6632 }
6633
6634 newreg->so = so;
6635 ((struct keycb *)sotorawcb(so))->kp_registered++;
6636
6637 /* add regnode to regtree. */
6638 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6639 mutex_exit(&key_mtx);
6640
6641 setmsg:
6642 {
6643 struct mbuf *n;
6644 struct sadb_supported *sup;
6645 u_int len, alen, elen;
6646 int off;
6647 int i;
6648 struct sadb_alg *alg;
6649
6650 /* create new sadb_msg to reply. */
6651 alen = 0;
6652 for (i = 1; i <= SADB_AALG_MAX; i++) {
6653 if (ah_algorithm_lookup(i))
6654 alen += sizeof(struct sadb_alg);
6655 }
6656 if (alen)
6657 alen += sizeof(struct sadb_supported);
6658 elen = 0;
6659 for (i = 1; i <= SADB_EALG_MAX; i++) {
6660 if (esp_algorithm_lookup(i))
6661 elen += sizeof(struct sadb_alg);
6662 }
6663 if (elen)
6664 elen += sizeof(struct sadb_supported);
6665
6666 len = sizeof(struct sadb_msg) + alen + elen;
6667
6668 if (len > MCLBYTES)
6669 return key_senderror(so, m, ENOBUFS);
6670
6671 MGETHDR(n, M_DONTWAIT, MT_DATA);
6672 if (len > MHLEN) {
6673 MCLGET(n, M_DONTWAIT);
6674 if ((n->m_flags & M_EXT) == 0) {
6675 m_freem(n);
6676 n = NULL;
6677 }
6678 }
6679 if (!n)
6680 return key_senderror(so, m, ENOBUFS);
6681
6682 n->m_pkthdr.len = n->m_len = len;
6683 n->m_next = NULL;
6684 off = 0;
6685
6686 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6687 n = key_fill_replymsg(n, 0);
6688 if (n == NULL)
6689 return key_senderror(so, m, ENOBUFS);
6690
6691 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6692
6693 /* for authentication algorithm */
6694 if (alen) {
6695 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6696 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6697 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6698 off += PFKEY_ALIGN8(sizeof(*sup));
6699
6700 for (i = 1; i <= SADB_AALG_MAX; i++) {
6701 const struct auth_hash *aalgo;
6702 u_int16_t minkeysize, maxkeysize;
6703
6704 aalgo = ah_algorithm_lookup(i);
6705 if (!aalgo)
6706 continue;
6707 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6708 alg->sadb_alg_id = i;
6709 alg->sadb_alg_ivlen = 0;
6710 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6711 alg->sadb_alg_minbits = _BITS(minkeysize);
6712 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6713 off += PFKEY_ALIGN8(sizeof(*alg));
6714 }
6715 }
6716
6717 /* for encryption algorithm */
6718 if (elen) {
6719 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6720 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6721 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6722 off += PFKEY_ALIGN8(sizeof(*sup));
6723
6724 for (i = 1; i <= SADB_EALG_MAX; i++) {
6725 const struct enc_xform *ealgo;
6726
6727 ealgo = esp_algorithm_lookup(i);
6728 if (!ealgo)
6729 continue;
6730 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6731 alg->sadb_alg_id = i;
6732 alg->sadb_alg_ivlen = ealgo->blocksize;
6733 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6734 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6735 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6736 }
6737 }
6738
6739 KASSERTMSG(off == len, "length inconsistency");
6740
6741 m_freem(m);
6742 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6743 }
6744 }
6745
6746 /*
6747 * free secreg entry registered.
6748 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6749 */
6750 void
6751 key_freereg(struct socket *so)
6752 {
6753 struct secreg *reg;
6754 int i;
6755
6756 KASSERT(!cpu_softintr_p());
6757 KASSERT(so != NULL);
6758
6759 /*
6760 * check whether existing or not.
6761 * check all type of SA, because there is a potential that
6762 * one socket is registered to multiple type of SA.
6763 */
6764 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6765 mutex_enter(&key_mtx);
6766 LIST_FOREACH(reg, ®tree[i], chain) {
6767 if (reg->so == so) {
6768 LIST_REMOVE(reg, chain);
6769 break;
6770 }
6771 }
6772 mutex_exit(&key_mtx);
6773 if (reg != NULL)
6774 kmem_free(reg, sizeof(*reg));
6775 }
6776
6777 return;
6778 }
6779
6780 /*
6781 * SADB_EXPIRE processing
6782 * send
6783 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6784 * to KMD by PF_KEY.
6785 * NOTE: We send only soft lifetime extension.
6786 *
6787 * OUT: 0 : succeed
6788 * others : error number
6789 */
6790 static int
6791 key_expire(struct secasvar *sav)
6792 {
6793 int s;
6794 int satype;
6795 struct mbuf *result = NULL, *m;
6796 int len;
6797 int error = -1;
6798 struct sadb_lifetime *lt;
6799
6800 /* XXX: Why do we lock ? */
6801 s = splsoftnet(); /*called from softclock()*/
6802
6803 KASSERT(sav != NULL);
6804
6805 satype = key_proto2satype(sav->sah->saidx.proto);
6806 KASSERTMSG(satype != 0, "invalid proto is passed");
6807
6808 /* set msg header */
6809 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6810 if (!m) {
6811 error = ENOBUFS;
6812 goto fail;
6813 }
6814 result = m;
6815
6816 /* create SA extension */
6817 m = key_setsadbsa(sav);
6818 if (!m) {
6819 error = ENOBUFS;
6820 goto fail;
6821 }
6822 m_cat(result, m);
6823
6824 /* create SA extension */
6825 m = key_setsadbxsa2(sav->sah->saidx.mode,
6826 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6827 if (!m) {
6828 error = ENOBUFS;
6829 goto fail;
6830 }
6831 m_cat(result, m);
6832
6833 /* create lifetime extension (current and soft) */
6834 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6835 m = key_alloc_mbuf(len);
6836 if (!m || m->m_next) { /*XXX*/
6837 if (m)
6838 m_freem(m);
6839 error = ENOBUFS;
6840 goto fail;
6841 }
6842 memset(mtod(m, void *), 0, len);
6843 lt = mtod(m, struct sadb_lifetime *);
6844 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6845 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6846 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6847 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6848 lt->sadb_lifetime_addtime =
6849 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6850 lt->sadb_lifetime_usetime =
6851 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6852 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6853 memcpy(lt, sav->lft_s, sizeof(*lt));
6854 m_cat(result, m);
6855
6856 /* set sadb_address for source */
6857 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6858 FULLMASK, IPSEC_ULPROTO_ANY);
6859 if (!m) {
6860 error = ENOBUFS;
6861 goto fail;
6862 }
6863 m_cat(result, m);
6864
6865 /* set sadb_address for destination */
6866 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6867 FULLMASK, IPSEC_ULPROTO_ANY);
6868 if (!m) {
6869 error = ENOBUFS;
6870 goto fail;
6871 }
6872 m_cat(result, m);
6873
6874 if ((result->m_flags & M_PKTHDR) == 0) {
6875 error = EINVAL;
6876 goto fail;
6877 }
6878
6879 if (result->m_len < sizeof(struct sadb_msg)) {
6880 result = m_pullup(result, sizeof(struct sadb_msg));
6881 if (result == NULL) {
6882 error = ENOBUFS;
6883 goto fail;
6884 }
6885 }
6886
6887 result->m_pkthdr.len = 0;
6888 for (m = result; m; m = m->m_next)
6889 result->m_pkthdr.len += m->m_len;
6890
6891 mtod(result, struct sadb_msg *)->sadb_msg_len =
6892 PFKEY_UNIT64(result->m_pkthdr.len);
6893
6894 splx(s);
6895 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6896
6897 fail:
6898 if (result)
6899 m_freem(result);
6900 splx(s);
6901 return error;
6902 }
6903
6904 /*
6905 * SADB_FLUSH processing
6906 * receive
6907 * <base>
6908 * from the ikmpd, and free all entries in secastree.
6909 * and send,
6910 * <base>
6911 * to the ikmpd.
6912 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6913 *
6914 * m will always be freed.
6915 */
6916 static int
6917 key_api_flush(struct socket *so, struct mbuf *m,
6918 const struct sadb_msghdr *mhp)
6919 {
6920 struct sadb_msg *newmsg;
6921 struct secashead *sah;
6922 struct secasvar *sav, *nextsav;
6923 u_int16_t proto;
6924 u_int8_t state;
6925
6926 /* map satype to proto */
6927 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6928 if (proto == 0) {
6929 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6930 return key_senderror(so, m, EINVAL);
6931 }
6932
6933 /* no SATYPE specified, i.e. flushing all SA. */
6934 LIST_FOREACH(sah, &sahtree, chain) {
6935 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6936 proto != sah->saidx.proto)
6937 continue;
6938
6939 SASTATE_ALIVE_FOREACH(state) {
6940 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6941 nextsav) {
6942 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6943 KEY_FREESAV(&sav);
6944 }
6945 }
6946
6947 sah->state = SADB_SASTATE_DEAD;
6948 }
6949
6950 if (m->m_len < sizeof(struct sadb_msg) ||
6951 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6952 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6953 return key_senderror(so, m, ENOBUFS);
6954 }
6955
6956 if (m->m_next)
6957 m_freem(m->m_next);
6958 m->m_next = NULL;
6959 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6960 newmsg = mtod(m, struct sadb_msg *);
6961 newmsg->sadb_msg_errno = 0;
6962 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6963
6964 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6965 }
6966
6967
6968 static struct mbuf *
6969 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6970 {
6971 struct secashead *sah;
6972 struct secasvar *sav;
6973 u_int16_t proto;
6974 u_int8_t satype;
6975 u_int8_t state;
6976 int cnt;
6977 struct mbuf *m, *n, *prev;
6978
6979 *lenp = 0;
6980
6981 /* map satype to proto */
6982 proto = key_satype2proto(req_satype);
6983 if (proto == 0) {
6984 *errorp = EINVAL;
6985 return (NULL);
6986 }
6987
6988 /* count sav entries to be sent to userland. */
6989 cnt = 0;
6990 LIST_FOREACH(sah, &sahtree, chain) {
6991 if (req_satype != SADB_SATYPE_UNSPEC &&
6992 proto != sah->saidx.proto)
6993 continue;
6994
6995 SASTATE_ANY_FOREACH(state) {
6996 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6997 cnt++;
6998 }
6999 }
7000 }
7001
7002 if (cnt == 0) {
7003 *errorp = ENOENT;
7004 return (NULL);
7005 }
7006
7007 /* send this to the userland, one at a time. */
7008 m = NULL;
7009 prev = m;
7010 LIST_FOREACH(sah, &sahtree, chain) {
7011 if (req_satype != SADB_SATYPE_UNSPEC &&
7012 proto != sah->saidx.proto)
7013 continue;
7014
7015 /* map proto to satype */
7016 satype = key_proto2satype(sah->saidx.proto);
7017 if (satype == 0) {
7018 m_freem(m);
7019 *errorp = EINVAL;
7020 return (NULL);
7021 }
7022
7023 SASTATE_ANY_FOREACH(state) {
7024 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7025 n = key_setdumpsa(sav, SADB_DUMP, satype,
7026 --cnt, pid);
7027 if (!n) {
7028 m_freem(m);
7029 *errorp = ENOBUFS;
7030 return (NULL);
7031 }
7032
7033 if (!m)
7034 m = n;
7035 else
7036 prev->m_nextpkt = n;
7037 prev = n;
7038 }
7039 }
7040 }
7041
7042 if (!m) {
7043 *errorp = EINVAL;
7044 return (NULL);
7045 }
7046
7047 if ((m->m_flags & M_PKTHDR) != 0) {
7048 m->m_pkthdr.len = 0;
7049 for (n = m; n; n = n->m_next)
7050 m->m_pkthdr.len += n->m_len;
7051 }
7052
7053 *errorp = 0;
7054 return (m);
7055 }
7056
7057 /*
7058 * SADB_DUMP processing
7059 * dump all entries including status of DEAD in SAD.
7060 * receive
7061 * <base>
7062 * from the ikmpd, and dump all secasvar leaves
7063 * and send,
7064 * <base> .....
7065 * to the ikmpd.
7066 *
7067 * m will always be freed.
7068 */
7069 static int
7070 key_api_dump(struct socket *so, struct mbuf *m0,
7071 const struct sadb_msghdr *mhp)
7072 {
7073 u_int16_t proto;
7074 u_int8_t satype;
7075 struct mbuf *n;
7076 int s;
7077 int error, len, ok;
7078
7079 /* map satype to proto */
7080 satype = mhp->msg->sadb_msg_satype;
7081 proto = key_satype2proto(satype);
7082 if (proto == 0) {
7083 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7084 return key_senderror(so, m0, EINVAL);
7085 }
7086
7087 /*
7088 * If the requestor has insufficient socket-buffer space
7089 * for the entire chain, nobody gets any response to the DUMP.
7090 * XXX For now, only the requestor ever gets anything.
7091 * Moreover, if the requestor has any space at all, they receive
7092 * the entire chain, otherwise the request is refused with ENOBUFS.
7093 */
7094 if (sbspace(&so->so_rcv) <= 0) {
7095 return key_senderror(so, m0, ENOBUFS);
7096 }
7097
7098 s = splsoftnet();
7099 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7100 splx(s);
7101
7102 if (n == NULL) {
7103 return key_senderror(so, m0, ENOENT);
7104 }
7105 {
7106 uint64_t *ps = PFKEY_STAT_GETREF();
7107 ps[PFKEY_STAT_IN_TOTAL]++;
7108 ps[PFKEY_STAT_IN_BYTES] += len;
7109 PFKEY_STAT_PUTREF();
7110 }
7111
7112 /*
7113 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7114 * The requestor receives either the entire chain, or an
7115 * error message with ENOBUFS.
7116 *
7117 * sbappendaddrchain() takes the chain of entries, one
7118 * packet-record per SPD entry, prepends the key_src sockaddr
7119 * to each packet-record, links the sockaddr mbufs into a new
7120 * list of records, then appends the entire resulting
7121 * list to the requesting socket.
7122 */
7123 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7124 SB_PRIO_ONESHOT_OVERFLOW);
7125
7126 if (!ok) {
7127 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7128 m_freem(n);
7129 return key_senderror(so, m0, ENOBUFS);
7130 }
7131
7132 m_freem(m0);
7133 return 0;
7134 }
7135
7136 /*
7137 * SADB_X_PROMISC processing
7138 *
7139 * m will always be freed.
7140 */
7141 static int
7142 key_api_promisc(struct socket *so, struct mbuf *m,
7143 const struct sadb_msghdr *mhp)
7144 {
7145 int olen;
7146
7147 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7148
7149 if (olen < sizeof(struct sadb_msg)) {
7150 #if 1
7151 return key_senderror(so, m, EINVAL);
7152 #else
7153 m_freem(m);
7154 return 0;
7155 #endif
7156 } else if (olen == sizeof(struct sadb_msg)) {
7157 /* enable/disable promisc mode */
7158 struct keycb *kp = (struct keycb *)sotorawcb(so);
7159 if (kp == NULL)
7160 return key_senderror(so, m, EINVAL);
7161 mhp->msg->sadb_msg_errno = 0;
7162 switch (mhp->msg->sadb_msg_satype) {
7163 case 0:
7164 case 1:
7165 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7166 break;
7167 default:
7168 return key_senderror(so, m, EINVAL);
7169 }
7170
7171 /* send the original message back to everyone */
7172 mhp->msg->sadb_msg_errno = 0;
7173 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7174 } else {
7175 /* send packet as is */
7176
7177 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7178
7179 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7180 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7181 }
7182 }
7183
7184 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7185 const struct sadb_msghdr *) = {
7186 NULL, /* SADB_RESERVED */
7187 key_api_getspi, /* SADB_GETSPI */
7188 key_api_update, /* SADB_UPDATE */
7189 key_api_add, /* SADB_ADD */
7190 key_api_delete, /* SADB_DELETE */
7191 key_api_get, /* SADB_GET */
7192 key_api_acquire, /* SADB_ACQUIRE */
7193 key_api_register, /* SADB_REGISTER */
7194 NULL, /* SADB_EXPIRE */
7195 key_api_flush, /* SADB_FLUSH */
7196 key_api_dump, /* SADB_DUMP */
7197 key_api_promisc, /* SADB_X_PROMISC */
7198 NULL, /* SADB_X_PCHANGE */
7199 key_api_spdadd, /* SADB_X_SPDUPDATE */
7200 key_api_spdadd, /* SADB_X_SPDADD */
7201 key_api_spddelete, /* SADB_X_SPDDELETE */
7202 key_api_spdget, /* SADB_X_SPDGET */
7203 NULL, /* SADB_X_SPDACQUIRE */
7204 key_api_spddump, /* SADB_X_SPDDUMP */
7205 key_api_spdflush, /* SADB_X_SPDFLUSH */
7206 key_api_spdadd, /* SADB_X_SPDSETIDX */
7207 NULL, /* SADB_X_SPDEXPIRE */
7208 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7209 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7210 };
7211
7212 /*
7213 * parse sadb_msg buffer to process PFKEYv2,
7214 * and create a data to response if needed.
7215 * I think to be dealed with mbuf directly.
7216 * IN:
7217 * msgp : pointer to pointer to a received buffer pulluped.
7218 * This is rewrited to response.
7219 * so : pointer to socket.
7220 * OUT:
7221 * length for buffer to send to user process.
7222 */
7223 int
7224 key_parse(struct mbuf *m, struct socket *so)
7225 {
7226 struct sadb_msg *msg;
7227 struct sadb_msghdr mh;
7228 u_int orglen;
7229 int error;
7230
7231 KASSERT(m != NULL);
7232 KASSERT(so != NULL);
7233
7234 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7235 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7236 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7237 kdebug_sadb(msg);
7238 }
7239 #endif
7240
7241 if (m->m_len < sizeof(struct sadb_msg)) {
7242 m = m_pullup(m, sizeof(struct sadb_msg));
7243 if (!m)
7244 return ENOBUFS;
7245 }
7246 msg = mtod(m, struct sadb_msg *);
7247 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7248
7249 if ((m->m_flags & M_PKTHDR) == 0 ||
7250 m->m_pkthdr.len != orglen) {
7251 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7252 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7253 error = EINVAL;
7254 goto senderror;
7255 }
7256
7257 if (msg->sadb_msg_version != PF_KEY_V2) {
7258 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7259 msg->sadb_msg_version);
7260 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7261 error = EINVAL;
7262 goto senderror;
7263 }
7264
7265 if (msg->sadb_msg_type > SADB_MAX) {
7266 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7267 msg->sadb_msg_type);
7268 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7269 error = EINVAL;
7270 goto senderror;
7271 }
7272
7273 /* for old-fashioned code - should be nuked */
7274 if (m->m_pkthdr.len > MCLBYTES) {
7275 m_freem(m);
7276 return ENOBUFS;
7277 }
7278 if (m->m_next) {
7279 struct mbuf *n;
7280
7281 MGETHDR(n, M_DONTWAIT, MT_DATA);
7282 if (n && m->m_pkthdr.len > MHLEN) {
7283 MCLGET(n, M_DONTWAIT);
7284 if ((n->m_flags & M_EXT) == 0) {
7285 m_free(n);
7286 n = NULL;
7287 }
7288 }
7289 if (!n) {
7290 m_freem(m);
7291 return ENOBUFS;
7292 }
7293 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7294 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7295 n->m_next = NULL;
7296 m_freem(m);
7297 m = n;
7298 }
7299
7300 /* align the mbuf chain so that extensions are in contiguous region. */
7301 error = key_align(m, &mh);
7302 if (error)
7303 return error;
7304
7305 if (m->m_next) { /*XXX*/
7306 m_freem(m);
7307 return ENOBUFS;
7308 }
7309
7310 msg = mh.msg;
7311
7312 /* check SA type */
7313 switch (msg->sadb_msg_satype) {
7314 case SADB_SATYPE_UNSPEC:
7315 switch (msg->sadb_msg_type) {
7316 case SADB_GETSPI:
7317 case SADB_UPDATE:
7318 case SADB_ADD:
7319 case SADB_DELETE:
7320 case SADB_GET:
7321 case SADB_ACQUIRE:
7322 case SADB_EXPIRE:
7323 IPSECLOG(LOG_DEBUG,
7324 "must specify satype when msg type=%u.\n",
7325 msg->sadb_msg_type);
7326 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7327 error = EINVAL;
7328 goto senderror;
7329 }
7330 break;
7331 case SADB_SATYPE_AH:
7332 case SADB_SATYPE_ESP:
7333 case SADB_X_SATYPE_IPCOMP:
7334 case SADB_X_SATYPE_TCPSIGNATURE:
7335 switch (msg->sadb_msg_type) {
7336 case SADB_X_SPDADD:
7337 case SADB_X_SPDDELETE:
7338 case SADB_X_SPDGET:
7339 case SADB_X_SPDDUMP:
7340 case SADB_X_SPDFLUSH:
7341 case SADB_X_SPDSETIDX:
7342 case SADB_X_SPDUPDATE:
7343 case SADB_X_SPDDELETE2:
7344 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7345 msg->sadb_msg_type);
7346 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7347 error = EINVAL;
7348 goto senderror;
7349 }
7350 break;
7351 case SADB_SATYPE_RSVP:
7352 case SADB_SATYPE_OSPFV2:
7353 case SADB_SATYPE_RIPV2:
7354 case SADB_SATYPE_MIP:
7355 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7356 msg->sadb_msg_satype);
7357 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7358 error = EOPNOTSUPP;
7359 goto senderror;
7360 case 1: /* XXX: What does it do? */
7361 if (msg->sadb_msg_type == SADB_X_PROMISC)
7362 break;
7363 /*FALLTHROUGH*/
7364 default:
7365 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7366 msg->sadb_msg_satype);
7367 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7368 error = EINVAL;
7369 goto senderror;
7370 }
7371
7372 /* check field of upper layer protocol and address family */
7373 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7374 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7375 struct sadb_address *src0, *dst0;
7376 u_int plen;
7377
7378 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7379 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7380
7381 /* check upper layer protocol */
7382 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7383 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7384 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7385 error = EINVAL;
7386 goto senderror;
7387 }
7388
7389 /* check family */
7390 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7391 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7392 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7393 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7394 error = EINVAL;
7395 goto senderror;
7396 }
7397 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7398 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7399 IPSECLOG(LOG_DEBUG,
7400 "address struct size mismatched.\n");
7401 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7402 error = EINVAL;
7403 goto senderror;
7404 }
7405
7406 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7407 case AF_INET:
7408 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7409 sizeof(struct sockaddr_in)) {
7410 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7411 error = EINVAL;
7412 goto senderror;
7413 }
7414 break;
7415 case AF_INET6:
7416 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7417 sizeof(struct sockaddr_in6)) {
7418 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7419 error = EINVAL;
7420 goto senderror;
7421 }
7422 break;
7423 default:
7424 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7425 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7426 error = EAFNOSUPPORT;
7427 goto senderror;
7428 }
7429
7430 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7431 case AF_INET:
7432 plen = sizeof(struct in_addr) << 3;
7433 break;
7434 case AF_INET6:
7435 plen = sizeof(struct in6_addr) << 3;
7436 break;
7437 default:
7438 plen = 0; /*fool gcc*/
7439 break;
7440 }
7441
7442 /* check max prefix length */
7443 if (src0->sadb_address_prefixlen > plen ||
7444 dst0->sadb_address_prefixlen > plen) {
7445 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7446 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7447 error = EINVAL;
7448 goto senderror;
7449 }
7450
7451 /*
7452 * prefixlen == 0 is valid because there can be a case when
7453 * all addresses are matched.
7454 */
7455 }
7456
7457 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7458 key_api_typesw[msg->sadb_msg_type] == NULL) {
7459 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7460 error = EINVAL;
7461 goto senderror;
7462 }
7463
7464 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7465
7466 senderror:
7467 return key_senderror(so, m, error);
7468 }
7469
7470 static int
7471 key_senderror(struct socket *so, struct mbuf *m, int code)
7472 {
7473 struct sadb_msg *msg;
7474
7475 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7476
7477 msg = mtod(m, struct sadb_msg *);
7478 msg->sadb_msg_errno = code;
7479 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7480 }
7481
7482 /*
7483 * set the pointer to each header into message buffer.
7484 * m will be freed on error.
7485 * XXX larger-than-MCLBYTES extension?
7486 */
7487 static int
7488 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7489 {
7490 struct mbuf *n;
7491 struct sadb_ext *ext;
7492 size_t off, end;
7493 int extlen;
7494 int toff;
7495
7496 KASSERT(m != NULL);
7497 KASSERT(mhp != NULL);
7498 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7499
7500 /* initialize */
7501 memset(mhp, 0, sizeof(*mhp));
7502
7503 mhp->msg = mtod(m, struct sadb_msg *);
7504 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7505
7506 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7507 extlen = end; /*just in case extlen is not updated*/
7508 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7509 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7510 if (!n) {
7511 /* m is already freed */
7512 return ENOBUFS;
7513 }
7514 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7515
7516 /* set pointer */
7517 switch (ext->sadb_ext_type) {
7518 case SADB_EXT_SA:
7519 case SADB_EXT_ADDRESS_SRC:
7520 case SADB_EXT_ADDRESS_DST:
7521 case SADB_EXT_ADDRESS_PROXY:
7522 case SADB_EXT_LIFETIME_CURRENT:
7523 case SADB_EXT_LIFETIME_HARD:
7524 case SADB_EXT_LIFETIME_SOFT:
7525 case SADB_EXT_KEY_AUTH:
7526 case SADB_EXT_KEY_ENCRYPT:
7527 case SADB_EXT_IDENTITY_SRC:
7528 case SADB_EXT_IDENTITY_DST:
7529 case SADB_EXT_SENSITIVITY:
7530 case SADB_EXT_PROPOSAL:
7531 case SADB_EXT_SUPPORTED_AUTH:
7532 case SADB_EXT_SUPPORTED_ENCRYPT:
7533 case SADB_EXT_SPIRANGE:
7534 case SADB_X_EXT_POLICY:
7535 case SADB_X_EXT_SA2:
7536 case SADB_X_EXT_NAT_T_TYPE:
7537 case SADB_X_EXT_NAT_T_SPORT:
7538 case SADB_X_EXT_NAT_T_DPORT:
7539 case SADB_X_EXT_NAT_T_OAI:
7540 case SADB_X_EXT_NAT_T_OAR:
7541 case SADB_X_EXT_NAT_T_FRAG:
7542 /* duplicate check */
7543 /*
7544 * XXX Are there duplication payloads of either
7545 * KEY_AUTH or KEY_ENCRYPT ?
7546 */
7547 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7548 IPSECLOG(LOG_DEBUG,
7549 "duplicate ext_type %u is passed.\n",
7550 ext->sadb_ext_type);
7551 m_freem(m);
7552 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7553 return EINVAL;
7554 }
7555 break;
7556 default:
7557 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7558 ext->sadb_ext_type);
7559 m_freem(m);
7560 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7561 return EINVAL;
7562 }
7563
7564 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7565
7566 if (key_validate_ext(ext, extlen)) {
7567 m_freem(m);
7568 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7569 return EINVAL;
7570 }
7571
7572 n = m_pulldown(m, off, extlen, &toff);
7573 if (!n) {
7574 /* m is already freed */
7575 return ENOBUFS;
7576 }
7577 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7578
7579 mhp->ext[ext->sadb_ext_type] = ext;
7580 mhp->extoff[ext->sadb_ext_type] = off;
7581 mhp->extlen[ext->sadb_ext_type] = extlen;
7582 }
7583
7584 if (off != end) {
7585 m_freem(m);
7586 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7587 return EINVAL;
7588 }
7589
7590 return 0;
7591 }
7592
7593 static int
7594 key_validate_ext(const struct sadb_ext *ext, int len)
7595 {
7596 const struct sockaddr *sa;
7597 enum { NONE, ADDR } checktype = NONE;
7598 int baselen = 0;
7599 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7600
7601 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7602 return EINVAL;
7603
7604 /* if it does not match minimum/maximum length, bail */
7605 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7606 ext->sadb_ext_type >= __arraycount(maxsize))
7607 return EINVAL;
7608 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7609 return EINVAL;
7610 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7611 return EINVAL;
7612
7613 /* more checks based on sadb_ext_type XXX need more */
7614 switch (ext->sadb_ext_type) {
7615 case SADB_EXT_ADDRESS_SRC:
7616 case SADB_EXT_ADDRESS_DST:
7617 case SADB_EXT_ADDRESS_PROXY:
7618 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7619 checktype = ADDR;
7620 break;
7621 case SADB_EXT_IDENTITY_SRC:
7622 case SADB_EXT_IDENTITY_DST:
7623 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7624 SADB_X_IDENTTYPE_ADDR) {
7625 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7626 checktype = ADDR;
7627 } else
7628 checktype = NONE;
7629 break;
7630 default:
7631 checktype = NONE;
7632 break;
7633 }
7634
7635 switch (checktype) {
7636 case NONE:
7637 break;
7638 case ADDR:
7639 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7640 if (len < baselen + sal)
7641 return EINVAL;
7642 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7643 return EINVAL;
7644 break;
7645 }
7646
7647 return 0;
7648 }
7649
7650 static int
7651 key_do_init(void)
7652 {
7653 int i, error;
7654
7655 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7656 key_psz = pserialize_create();
7657 mutex_init(&key_sp_mtx, MUTEX_DEFAULT, IPL_NONE);
7658 cv_init(&key_sp_cv, "key_sp");
7659
7660 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7661
7662 callout_init(&key_timehandler_ch, 0);
7663 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7664 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7665 if (error != 0)
7666 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7667
7668 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7669 PSLIST_INIT(&sptree[i]);
7670 }
7671
7672 PSLIST_INIT(&key_socksplist);
7673
7674 LIST_INIT(&sahtree);
7675
7676 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7677 LIST_INIT(®tree[i]);
7678 }
7679
7680 #ifndef IPSEC_NONBLOCK_ACQUIRE
7681 LIST_INIT(&acqtree);
7682 #endif
7683 #ifdef notyet
7684 LIST_INIT(&spacqtree);
7685 #endif
7686
7687 /* system default */
7688 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7689 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
7690 localcount_init(&ip4_def_policy.localcount);
7691
7692 #ifdef INET6
7693 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7694 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
7695 localcount_init(&ip6_def_policy.localcount);
7696 #endif
7697
7698 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7699
7700 /* initialize key statistics */
7701 keystat.getspi_count = 1;
7702
7703 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7704
7705 return (0);
7706 }
7707
7708 void
7709 key_init(void)
7710 {
7711 static ONCE_DECL(key_init_once);
7712
7713 sysctl_net_keyv2_setup(NULL);
7714 sysctl_net_key_compat_setup(NULL);
7715
7716 RUN_ONCE(&key_init_once, key_do_init);
7717
7718 key_init_so();
7719 }
7720
7721 /*
7722 * XXX: maybe This function is called after INBOUND IPsec processing.
7723 *
7724 * Special check for tunnel-mode packets.
7725 * We must make some checks for consistency between inner and outer IP header.
7726 *
7727 * xxx more checks to be provided
7728 */
7729 int
7730 key_checktunnelsanity(
7731 struct secasvar *sav,
7732 u_int family,
7733 void *src,
7734 void *dst
7735 )
7736 {
7737
7738 /* XXX: check inner IP header */
7739
7740 return 1;
7741 }
7742
7743 #if 0
7744 #define hostnamelen strlen(hostname)
7745
7746 /*
7747 * Get FQDN for the host.
7748 * If the administrator configured hostname (by hostname(1)) without
7749 * domain name, returns nothing.
7750 */
7751 static const char *
7752 key_getfqdn(void)
7753 {
7754 int i;
7755 int hasdot;
7756 static char fqdn[MAXHOSTNAMELEN + 1];
7757
7758 if (!hostnamelen)
7759 return NULL;
7760
7761 /* check if it comes with domain name. */
7762 hasdot = 0;
7763 for (i = 0; i < hostnamelen; i++) {
7764 if (hostname[i] == '.')
7765 hasdot++;
7766 }
7767 if (!hasdot)
7768 return NULL;
7769
7770 /* NOTE: hostname may not be NUL-terminated. */
7771 memset(fqdn, 0, sizeof(fqdn));
7772 memcpy(fqdn, hostname, hostnamelen);
7773 fqdn[hostnamelen] = '\0';
7774 return fqdn;
7775 }
7776
7777 /*
7778 * get username@FQDN for the host/user.
7779 */
7780 static const char *
7781 key_getuserfqdn(void)
7782 {
7783 const char *host;
7784 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7785 struct proc *p = curproc;
7786 char *q;
7787
7788 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7789 return NULL;
7790 if (!(host = key_getfqdn()))
7791 return NULL;
7792
7793 /* NOTE: s_login may not be-NUL terminated. */
7794 memset(userfqdn, 0, sizeof(userfqdn));
7795 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7796 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7797 q = userfqdn + strlen(userfqdn);
7798 *q++ = '@';
7799 memcpy(q, host, strlen(host));
7800 q += strlen(host);
7801 *q++ = '\0';
7802
7803 return userfqdn;
7804 }
7805 #endif
7806
7807 /* record data transfer on SA, and update timestamps */
7808 void
7809 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7810 {
7811
7812 KASSERT(sav != NULL);
7813 KASSERT(sav->lft_c != NULL);
7814 KASSERT(m != NULL);
7815
7816 /*
7817 * XXX Currently, there is a difference of bytes size
7818 * between inbound and outbound processing.
7819 */
7820 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7821 /* to check bytes lifetime is done in key_timehandler(). */
7822
7823 /*
7824 * We use the number of packets as the unit of
7825 * sadb_lifetime_allocations. We increment the variable
7826 * whenever {esp,ah}_{in,out}put is called.
7827 */
7828 sav->lft_c->sadb_lifetime_allocations++;
7829 /* XXX check for expires? */
7830
7831 /*
7832 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7833 * in seconds. HARD and SOFT lifetime are measured by the time
7834 * difference (again in seconds) from sadb_lifetime_usetime.
7835 *
7836 * usetime
7837 * v expire expire
7838 * -----+-----+--------+---> t
7839 * <--------------> HARD
7840 * <-----> SOFT
7841 */
7842 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7843 /* XXX check for expires? */
7844
7845 return;
7846 }
7847
7848 /* dumb version */
7849 void
7850 key_sa_routechange(struct sockaddr *dst)
7851 {
7852 struct secashead *sah;
7853 struct route *ro;
7854 const struct sockaddr *sa;
7855
7856 LIST_FOREACH(sah, &sahtree, chain) {
7857 ro = &sah->sa_route;
7858 sa = rtcache_getdst(ro);
7859 if (sa != NULL && dst->sa_len == sa->sa_len &&
7860 memcmp(dst, sa, dst->sa_len) == 0)
7861 rtcache_free(ro);
7862 }
7863
7864 return;
7865 }
7866
7867 static void
7868 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7869 {
7870 struct secasvar *_sav;
7871
7872 KASSERT(sav != NULL);
7873
7874 if (sav->state == state)
7875 return;
7876
7877 KASSERT(__LIST_CHAINED(sav));
7878 LIST_REMOVE(sav, chain);
7879
7880 sav->state = state;
7881 if (!SADB_SASTATE_USABLE_P(sav)) {
7882 /* We don't need to care about the order */
7883 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7884 return;
7885 }
7886 /*
7887 * Sort the list by lft_c->sadb_lifetime_addtime
7888 * in ascending order.
7889 */
7890 LIST_FOREACH(_sav, &sav->sah->savtree[state], chain) {
7891 if (_sav->lft_c->sadb_lifetime_addtime >
7892 sav->lft_c->sadb_lifetime_addtime) {
7893 LIST_INSERT_BEFORE(_sav, sav, chain);
7894 break;
7895 }
7896 }
7897 if (_sav == NULL) {
7898 LIST_INSERT_TAIL(&sav->sah->savtree[state], sav, secasvar,
7899 chain);
7900 }
7901 key_validate_savlist(sav->sah, state);
7902 }
7903
7904 /* XXX too much? */
7905 static struct mbuf *
7906 key_alloc_mbuf(int l)
7907 {
7908 struct mbuf *m = NULL, *n;
7909 int len, t;
7910
7911 len = l;
7912 while (len > 0) {
7913 MGET(n, M_DONTWAIT, MT_DATA);
7914 if (n && len > MLEN)
7915 MCLGET(n, M_DONTWAIT);
7916 if (!n) {
7917 m_freem(m);
7918 return NULL;
7919 }
7920
7921 n->m_next = NULL;
7922 n->m_len = 0;
7923 n->m_len = M_TRAILINGSPACE(n);
7924 /* use the bottom of mbuf, hoping we can prepend afterwards */
7925 if (n->m_len > len) {
7926 t = (n->m_len - len) & ~(sizeof(long) - 1);
7927 n->m_data += t;
7928 n->m_len = len;
7929 }
7930
7931 len -= n->m_len;
7932
7933 if (m)
7934 m_cat(m, n);
7935 else
7936 m = n;
7937 }
7938
7939 return m;
7940 }
7941
7942 static struct mbuf *
7943 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7944 {
7945 struct secashead *sah;
7946 struct secasvar *sav;
7947 u_int16_t proto;
7948 u_int8_t satype;
7949 u_int8_t state;
7950 int cnt;
7951 struct mbuf *m, *n;
7952
7953 /* map satype to proto */
7954 proto = key_satype2proto(req_satype);
7955 if (proto == 0) {
7956 *errorp = EINVAL;
7957 return (NULL);
7958 }
7959
7960 /* count sav entries to be sent to the userland. */
7961 cnt = 0;
7962 LIST_FOREACH(sah, &sahtree, chain) {
7963 if (req_satype != SADB_SATYPE_UNSPEC &&
7964 proto != sah->saidx.proto)
7965 continue;
7966
7967 SASTATE_ANY_FOREACH(state) {
7968 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7969 cnt++;
7970 }
7971 }
7972 }
7973
7974 if (cnt == 0) {
7975 *errorp = ENOENT;
7976 return (NULL);
7977 }
7978
7979 /* send this to the userland, one at a time. */
7980 m = NULL;
7981 LIST_FOREACH(sah, &sahtree, chain) {
7982 if (req_satype != SADB_SATYPE_UNSPEC &&
7983 proto != sah->saidx.proto)
7984 continue;
7985
7986 /* map proto to satype */
7987 satype = key_proto2satype(sah->saidx.proto);
7988 if (satype == 0) {
7989 m_freem(m);
7990 *errorp = EINVAL;
7991 return (NULL);
7992 }
7993
7994 SASTATE_ANY_FOREACH(state) {
7995 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7996 n = key_setdumpsa(sav, SADB_DUMP, satype,
7997 --cnt, pid);
7998 if (!n) {
7999 m_freem(m);
8000 *errorp = ENOBUFS;
8001 return (NULL);
8002 }
8003
8004 if (!m)
8005 m = n;
8006 else
8007 m_cat(m, n);
8008 }
8009 }
8010 }
8011
8012 if (!m) {
8013 *errorp = EINVAL;
8014 return (NULL);
8015 }
8016
8017 if ((m->m_flags & M_PKTHDR) != 0) {
8018 m->m_pkthdr.len = 0;
8019 for (n = m; n; n = n->m_next)
8020 m->m_pkthdr.len += n->m_len;
8021 }
8022
8023 *errorp = 0;
8024 return (m);
8025 }
8026
8027 static struct mbuf *
8028 key_setspddump(int *errorp, pid_t pid)
8029 {
8030 struct secpolicy *sp;
8031 int cnt;
8032 u_int dir;
8033 struct mbuf *m, *n;
8034
8035 KASSERT(mutex_owned(&key_sp_mtx));
8036
8037 /* search SPD entry and get buffer size. */
8038 cnt = 0;
8039 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8040 SPLIST_WRITER_FOREACH(sp, dir) {
8041 cnt++;
8042 }
8043 }
8044
8045 if (cnt == 0) {
8046 *errorp = ENOENT;
8047 return (NULL);
8048 }
8049
8050 m = NULL;
8051 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8052 SPLIST_WRITER_FOREACH(sp, dir) {
8053 --cnt;
8054 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8055
8056 if (!n) {
8057 *errorp = ENOBUFS;
8058 m_freem(m);
8059 return (NULL);
8060 }
8061 if (!m)
8062 m = n;
8063 else {
8064 m->m_pkthdr.len += n->m_pkthdr.len;
8065 m_cat(m, n);
8066 }
8067 }
8068 }
8069
8070 *errorp = 0;
8071 return (m);
8072 }
8073
8074 int
8075 key_get_used(void) {
8076 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8077 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8078 !SOCKSPLIST_READER_EMPTY();
8079 }
8080
8081 void
8082 key_update_used(void)
8083 {
8084 switch (ipsec_enabled) {
8085 default:
8086 case 0:
8087 #ifdef notyet
8088 /* XXX: racy */
8089 ipsec_used = 0;
8090 #endif
8091 break;
8092 case 1:
8093 #ifndef notyet
8094 /* XXX: racy */
8095 if (!ipsec_used)
8096 #endif
8097 ipsec_used = key_get_used();
8098 break;
8099 case 2:
8100 ipsec_used = 1;
8101 break;
8102 }
8103 }
8104
8105 static int
8106 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8107 {
8108 struct mbuf *m, *n;
8109 int err2 = 0;
8110 char *p, *ep;
8111 size_t len;
8112 int s, error;
8113
8114 if (newp)
8115 return (EPERM);
8116 if (namelen != 1)
8117 return (EINVAL);
8118
8119 s = splsoftnet();
8120 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8121 splx(s);
8122 if (!m)
8123 return (error);
8124 if (!oldp)
8125 *oldlenp = m->m_pkthdr.len;
8126 else {
8127 p = oldp;
8128 if (*oldlenp < m->m_pkthdr.len) {
8129 err2 = ENOMEM;
8130 ep = p + *oldlenp;
8131 } else {
8132 *oldlenp = m->m_pkthdr.len;
8133 ep = p + m->m_pkthdr.len;
8134 }
8135 for (n = m; n; n = n->m_next) {
8136 len = (ep - p < n->m_len) ?
8137 ep - p : n->m_len;
8138 error = copyout(mtod(n, const void *), p, len);
8139 p += len;
8140 if (error)
8141 break;
8142 }
8143 if (error == 0)
8144 error = err2;
8145 }
8146 m_freem(m);
8147
8148 return (error);
8149 }
8150
8151 static int
8152 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8153 {
8154 struct mbuf *m, *n;
8155 int err2 = 0;
8156 char *p, *ep;
8157 size_t len;
8158 int error;
8159
8160 if (newp)
8161 return (EPERM);
8162 if (namelen != 0)
8163 return (EINVAL);
8164
8165 mutex_enter(&key_sp_mtx);
8166 m = key_setspddump(&error, l->l_proc->p_pid);
8167 mutex_exit(&key_sp_mtx);
8168 if (!m)
8169 return (error);
8170 if (!oldp)
8171 *oldlenp = m->m_pkthdr.len;
8172 else {
8173 p = oldp;
8174 if (*oldlenp < m->m_pkthdr.len) {
8175 err2 = ENOMEM;
8176 ep = p + *oldlenp;
8177 } else {
8178 *oldlenp = m->m_pkthdr.len;
8179 ep = p + m->m_pkthdr.len;
8180 }
8181 for (n = m; n; n = n->m_next) {
8182 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8183 error = copyout(mtod(n, const void *), p, len);
8184 p += len;
8185 if (error)
8186 break;
8187 }
8188 if (error == 0)
8189 error = err2;
8190 }
8191 m_freem(m);
8192
8193 return (error);
8194 }
8195
8196 /*
8197 * Create sysctl tree for native IPSEC key knobs, originally
8198 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8199 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8200 * and in any case the part of our sysctl namespace used for dumping the
8201 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8202 * namespace, for API reasons.
8203 *
8204 * Pending a consensus on the right way to fix this, add a level of
8205 * indirection in how we number the `native' IPSEC key nodes;
8206 * and (as requested by Andrew Brown) move registration of the
8207 * KAME-compatible names to a separate function.
8208 */
8209 #if 0
8210 # define IPSEC_PFKEY PF_KEY_V2
8211 # define IPSEC_PFKEY_NAME "keyv2"
8212 #else
8213 # define IPSEC_PFKEY PF_KEY
8214 # define IPSEC_PFKEY_NAME "key"
8215 #endif
8216
8217 static int
8218 sysctl_net_key_stats(SYSCTLFN_ARGS)
8219 {
8220
8221 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8222 }
8223
8224 static void
8225 sysctl_net_keyv2_setup(struct sysctllog **clog)
8226 {
8227
8228 sysctl_createv(clog, 0, NULL, NULL,
8229 CTLFLAG_PERMANENT,
8230 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8231 NULL, 0, NULL, 0,
8232 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8233
8234 sysctl_createv(clog, 0, NULL, NULL,
8235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8236 CTLTYPE_INT, "debug", NULL,
8237 NULL, 0, &key_debug_level, 0,
8238 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8239 sysctl_createv(clog, 0, NULL, NULL,
8240 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8241 CTLTYPE_INT, "spi_try", NULL,
8242 NULL, 0, &key_spi_trycnt, 0,
8243 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8244 sysctl_createv(clog, 0, NULL, NULL,
8245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8246 CTLTYPE_INT, "spi_min_value", NULL,
8247 NULL, 0, &key_spi_minval, 0,
8248 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8249 sysctl_createv(clog, 0, NULL, NULL,
8250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8251 CTLTYPE_INT, "spi_max_value", NULL,
8252 NULL, 0, &key_spi_maxval, 0,
8253 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8254 sysctl_createv(clog, 0, NULL, NULL,
8255 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8256 CTLTYPE_INT, "random_int", NULL,
8257 NULL, 0, &key_int_random, 0,
8258 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8259 sysctl_createv(clog, 0, NULL, NULL,
8260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8261 CTLTYPE_INT, "larval_lifetime", NULL,
8262 NULL, 0, &key_larval_lifetime, 0,
8263 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8264 sysctl_createv(clog, 0, NULL, NULL,
8265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8266 CTLTYPE_INT, "blockacq_count", NULL,
8267 NULL, 0, &key_blockacq_count, 0,
8268 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8269 sysctl_createv(clog, 0, NULL, NULL,
8270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8271 CTLTYPE_INT, "blockacq_lifetime", NULL,
8272 NULL, 0, &key_blockacq_lifetime, 0,
8273 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8274 sysctl_createv(clog, 0, NULL, NULL,
8275 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8276 CTLTYPE_INT, "esp_keymin", NULL,
8277 NULL, 0, &ipsec_esp_keymin, 0,
8278 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8279 sysctl_createv(clog, 0, NULL, NULL,
8280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8281 CTLTYPE_INT, "prefered_oldsa", NULL,
8282 NULL, 0, &key_prefered_oldsa, 0,
8283 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8284 sysctl_createv(clog, 0, NULL, NULL,
8285 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8286 CTLTYPE_INT, "esp_auth", NULL,
8287 NULL, 0, &ipsec_esp_auth, 0,
8288 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8289 sysctl_createv(clog, 0, NULL, NULL,
8290 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8291 CTLTYPE_INT, "ah_keymin", NULL,
8292 NULL, 0, &ipsec_ah_keymin, 0,
8293 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8294 sysctl_createv(clog, 0, NULL, NULL,
8295 CTLFLAG_PERMANENT,
8296 CTLTYPE_STRUCT, "stats",
8297 SYSCTL_DESCR("PF_KEY statistics"),
8298 sysctl_net_key_stats, 0, NULL, 0,
8299 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8300 }
8301
8302 /*
8303 * Register sysctl names used by setkey(8). For historical reasons,
8304 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8305 * for both IPSEC and KAME IPSEC.
8306 */
8307 static void
8308 sysctl_net_key_compat_setup(struct sysctllog **clog)
8309 {
8310
8311 sysctl_createv(clog, 0, NULL, NULL,
8312 CTLFLAG_PERMANENT,
8313 CTLTYPE_NODE, "key", NULL,
8314 NULL, 0, NULL, 0,
8315 CTL_NET, PF_KEY, CTL_EOL);
8316
8317 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8318 sysctl_createv(clog, 0, NULL, NULL,
8319 CTLFLAG_PERMANENT,
8320 CTLTYPE_STRUCT, "dumpsa", NULL,
8321 sysctl_net_key_dumpsa, 0, NULL, 0,
8322 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8323 sysctl_createv(clog, 0, NULL, NULL,
8324 CTLFLAG_PERMANENT,
8325 CTLTYPE_STRUCT, "dumpsp", NULL,
8326 sysctl_net_key_dumpsp, 0, NULL, 0,
8327 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8328 }
8329