key.c revision 1.202 1 /* $NetBSD: key.c,v 1.202 2017/08/03 06:30:04 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.202 2017/08/03 06:30:04 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 /*
139 * Locking notes on SPD:
140 * - Modifications to the sptree must be done with holding key_sp_mtx
141 * which is a adaptive mutex
142 * - Read accesses to the sptree must be in critical sections of pserialize(9)
143 * - SP's lifetime is managed by localcount(9)
144 * - An SP that has been inserted to the sptree is initially referenced by none,
145 * i.e., a reference from the pstree isn't counted
146 * - When an SP is being destroyed, we change its state as DEAD, wait for
147 * references to the SP to be released, and then deallocate the SP
148 * (see key_unlink_sp)
149 * - Getting an SP
150 * - Normally we get an SP from the sptree by incrementing the reference count
151 * of the SP
152 * - We can gain another reference from a held SP only if we check its state
153 * and take its reference in a critical section of pserialize
154 * (see esp_output for example)
155 * - We may get an SP from an SP cache. See below
156 * - Updating member variables of an SP
157 * - Most member variables of an SP are immutable
158 * - Only sp->state and sp->lastused can be changed
159 * - sp->state of an SP is updated only when destroying it under key_sp_mtx
160 * - SP caches
161 * - SPs can be cached in PCBs
162 * - The lifetime of the caches is controlled by the global generation counter
163 * (ipsec_spdgen)
164 * - The global counter value is stored when an SP is cached
165 * - If the stored value is different from the global counter then the cache
166 * is considered invalidated
167 * - The counter is incremented when an SP is being destroyed
168 * - So checking the generation and taking a reference to an SP should be
169 * in a critical section of pserialize
170 * - Note that caching doesn't increment the reference counter of an SP
171 * - SPs in sockets
172 * - Userland programs can set a policy to a socket by
173 * setsockopt(IP_IPSEC_POLICY)
174 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
175 * the key_socksplist list (not the sptree)
176 * - Such a policy is destroyed when a corresponding socket is destroed,
177 * however, a socket can be destroyed in softint so we cannot destroy
178 * it directly instead we just mark it DEAD and delay the destruction
179 * until GC by the timer
180 */
181
182 u_int32_t key_debug_level = 0;
183 static u_int key_spi_trycnt = 1000;
184 static u_int32_t key_spi_minval = 0x100;
185 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
186 static u_int32_t policy_id = 0;
187 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
188 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
189 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
190 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
191 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
192
193 static u_int32_t acq_seq = 0;
194
195 static struct pslist_head sptree[IPSEC_DIR_MAX]; /* SPD */
196 static struct pslist_head sahtree; /* SAD */
197 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
198 /* registed list */
199 #ifndef IPSEC_NONBLOCK_ACQUIRE
200 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
201 #endif
202 #ifdef notyet
203 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
204 #endif
205
206 #define SPLIST_ENTRY_INIT(sp) \
207 PSLIST_ENTRY_INIT((sp), pslist_entry)
208 #define SPLIST_ENTRY_DESTROY(sp) \
209 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
210 #define SPLIST_WRITER_REMOVE(sp) \
211 PSLIST_WRITER_REMOVE((sp), pslist_entry)
212 #define SPLIST_READER_EMPTY(dir) \
213 (PSLIST_READER_FIRST(&sptree[(dir)], struct secpolicy, \
214 pslist_entry) == NULL)
215 #define SPLIST_READER_FOREACH(sp, dir) \
216 PSLIST_READER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
217 pslist_entry)
218 #define SPLIST_WRITER_FOREACH(sp, dir) \
219 PSLIST_WRITER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
220 pslist_entry)
221 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
222 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
223 #define SPLIST_WRITER_EMPTY(dir) \
224 (PSLIST_WRITER_FIRST(&sptree[(dir)], struct secpolicy, \
225 pslist_entry) == NULL)
226 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
227 PSLIST_WRITER_INSERT_HEAD(&sptree[(dir)], (sp), pslist_entry)
228 #define SPLIST_WRITER_NEXT(sp) \
229 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
230 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
231 do { \
232 if (SPLIST_WRITER_EMPTY((dir))) { \
233 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
234 } else { \
235 struct secpolicy *__sp; \
236 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
237 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
238 SPLIST_WRITER_INSERT_AFTER(__sp,\
239 (new)); \
240 break; \
241 } \
242 } \
243 } \
244 } while (0)
245
246 #define SAHLIST_ENTRY_INIT(sah) \
247 PSLIST_ENTRY_INIT((sah), pslist_entry)
248 #define SAHLIST_ENTRY_DESTROY(sah) \
249 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
250 #define SAHLIST_WRITER_REMOVE(sah) \
251 PSLIST_WRITER_REMOVE((sah), pslist_entry)
252 #define SAHLIST_READER_FOREACH(sah) \
253 PSLIST_READER_FOREACH((sah), &sahtree, struct secashead, \
254 pslist_entry)
255 #define SAHLIST_WRITER_FOREACH(sah) \
256 PSLIST_WRITER_FOREACH((sah), &sahtree, struct secashead, \
257 pslist_entry)
258 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
259 PSLIST_WRITER_INSERT_HEAD(&sahtree, (sah), pslist_entry)
260
261 /*
262 * The list has SPs that are set to a socket via setsockopt(IP_IPSEC_POLICY)
263 * from userland. See ipsec_set_policy.
264 */
265 static struct pslist_head key_socksplist;
266
267 #define SOCKSPLIST_WRITER_FOREACH(sp) \
268 PSLIST_WRITER_FOREACH((sp), &key_socksplist, struct secpolicy, \
269 pslist_entry)
270 #define SOCKSPLIST_READER_EMPTY() \
271 (PSLIST_READER_FIRST(&key_socksplist, struct secpolicy, \
272 pslist_entry) == NULL)
273
274 /*
275 * Protect regtree, acqtree and items stored in the lists.
276 */
277 static kmutex_t key_mtx __cacheline_aligned;
278 static pserialize_t key_psz;
279 static kmutex_t key_sp_mtx __cacheline_aligned;
280 static kcondvar_t key_sp_cv __cacheline_aligned;
281
282 /* search order for SAs */
283 /*
284 * This order is important because we must select the oldest SA
285 * for outbound processing. For inbound, This is not important.
286 */
287 static const u_int saorder_state_valid_prefer_old[] = {
288 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
289 };
290 static const u_int saorder_state_valid_prefer_new[] = {
291 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
292 };
293
294 static const u_int saorder_state_alive[] = {
295 /* except DEAD */
296 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
297 };
298 static const u_int saorder_state_any[] = {
299 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
300 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
301 };
302
303 #define SASTATE_ALIVE_FOREACH(s) \
304 for (int _i = 0; \
305 _i < __arraycount(saorder_state_alive) ? \
306 (s) = saorder_state_alive[_i], true : false; \
307 _i++)
308 #define SASTATE_ANY_FOREACH(s) \
309 for (int _i = 0; \
310 _i < __arraycount(saorder_state_any) ? \
311 (s) = saorder_state_any[_i], true : false; \
312 _i++)
313
314 static const int minsize[] = {
315 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
316 sizeof(struct sadb_sa), /* SADB_EXT_SA */
317 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
318 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
319 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
320 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
321 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
322 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
323 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
324 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
325 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
326 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
327 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
328 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
329 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
330 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
331 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
332 0, /* SADB_X_EXT_KMPRIVATE */
333 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
334 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
335 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
336 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
337 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
338 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
339 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
340 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
341 };
342 static const int maxsize[] = {
343 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
344 sizeof(struct sadb_sa), /* SADB_EXT_SA */
345 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
346 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
347 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
348 0, /* SADB_EXT_ADDRESS_SRC */
349 0, /* SADB_EXT_ADDRESS_DST */
350 0, /* SADB_EXT_ADDRESS_PROXY */
351 0, /* SADB_EXT_KEY_AUTH */
352 0, /* SADB_EXT_KEY_ENCRYPT */
353 0, /* SADB_EXT_IDENTITY_SRC */
354 0, /* SADB_EXT_IDENTITY_DST */
355 0, /* SADB_EXT_SENSITIVITY */
356 0, /* SADB_EXT_PROPOSAL */
357 0, /* SADB_EXT_SUPPORTED_AUTH */
358 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
359 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
360 0, /* SADB_X_EXT_KMPRIVATE */
361 0, /* SADB_X_EXT_POLICY */
362 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
363 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
364 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
365 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
366 0, /* SADB_X_EXT_NAT_T_OAI */
367 0, /* SADB_X_EXT_NAT_T_OAR */
368 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
369 };
370
371 static int ipsec_esp_keymin = 256;
372 static int ipsec_esp_auth = 0;
373 static int ipsec_ah_keymin = 128;
374
375 #ifdef SYSCTL_DECL
376 SYSCTL_DECL(_net_key);
377 #endif
378
379 #ifdef SYSCTL_INT
380 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
381 &key_debug_level, 0, "");
382
383 /* max count of trial for the decision of spi value */
384 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
385 &key_spi_trycnt, 0, "");
386
387 /* minimum spi value to allocate automatically. */
388 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
389 &key_spi_minval, 0, "");
390
391 /* maximun spi value to allocate automatically. */
392 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
393 &key_spi_maxval, 0, "");
394
395 /* interval to initialize randseed */
396 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
397 &key_int_random, 0, "");
398
399 /* lifetime for larval SA */
400 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
401 &key_larval_lifetime, 0, "");
402
403 /* counter for blocking to send SADB_ACQUIRE to IKEd */
404 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
405 &key_blockacq_count, 0, "");
406
407 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
408 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
409 &key_blockacq_lifetime, 0, "");
410
411 /* ESP auth */
412 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
413 &ipsec_esp_auth, 0, "");
414
415 /* minimum ESP key length */
416 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
417 &ipsec_esp_keymin, 0, "");
418
419 /* minimum AH key length */
420 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
421 &ipsec_ah_keymin, 0, "");
422
423 /* perfered old SA rather than new SA */
424 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
425 &key_prefered_oldsa, 0, "");
426 #endif /* SYSCTL_INT */
427
428 #define __LIST_CHAINED(elm) \
429 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
430 #define LIST_INSERT_TAIL(head, elm, type, field) \
431 do {\
432 struct type *curelm = LIST_FIRST(head); \
433 if (curelm == NULL) {\
434 LIST_INSERT_HEAD(head, elm, field); \
435 } else { \
436 while (LIST_NEXT(curelm, field)) \
437 curelm = LIST_NEXT(curelm, field);\
438 LIST_INSERT_AFTER(curelm, elm, field);\
439 }\
440 } while (0)
441
442 #define KEY_CHKSASTATE(head, sav) \
443 /* do */ { \
444 if ((head) != (sav)) { \
445 IPSECLOG(LOG_DEBUG, \
446 "state mismatched (TREE=%d SA=%d)\n", \
447 (head), (sav)); \
448 continue; \
449 } \
450 } /* while (0) */
451
452 #define KEY_CHKSPDIR(head, sp) \
453 do { \
454 if ((head) != (sp)) { \
455 IPSECLOG(LOG_DEBUG, \
456 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
457 (head), (sp)); \
458 } \
459 } while (0)
460
461 /*
462 * set parameters into secasindex buffer.
463 * Must allocate secasindex buffer before calling this function.
464 */
465 static int
466 key_setsecasidx(int, int, int, const struct sockaddr *,
467 const struct sockaddr *, struct secasindex *);
468
469 /* key statistics */
470 struct _keystat {
471 u_long getspi_count; /* the avarage of count to try to get new SPI */
472 } keystat;
473
474 struct sadb_msghdr {
475 struct sadb_msg *msg;
476 struct sadb_ext *ext[SADB_EXT_MAX + 1];
477 int extoff[SADB_EXT_MAX + 1];
478 int extlen[SADB_EXT_MAX + 1];
479 };
480
481 static void
482 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
483
484 static const struct sockaddr *
485 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
486 {
487
488 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
489 }
490
491 static struct mbuf *
492 key_fill_replymsg(struct mbuf *m, int seq)
493 {
494 struct sadb_msg *msg;
495
496 if (m->m_len < sizeof(*msg)) {
497 m = m_pullup(m, sizeof(*msg));
498 if (m == NULL)
499 return NULL;
500 }
501 msg = mtod(m, struct sadb_msg *);
502 msg->sadb_msg_errno = 0;
503 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
504 if (seq != 0)
505 msg->sadb_msg_seq = seq;
506
507 return m;
508 }
509
510 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
511 #if 0
512 static void key_freeso(struct socket *);
513 static void key_freesp_so(struct secpolicy **);
514 #endif
515 static struct secpolicy *key_getsp (const struct secpolicyindex *);
516 static struct secpolicy *key_getspbyid (u_int32_t);
517 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
518 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
519 static void key_destroy_sp(struct secpolicy *);
520 static u_int16_t key_newreqid (void);
521 static struct mbuf *key_gather_mbuf (struct mbuf *,
522 const struct sadb_msghdr *, int, int, ...);
523 static int key_api_spdadd(struct socket *, struct mbuf *,
524 const struct sadb_msghdr *);
525 static u_int32_t key_getnewspid (void);
526 static int key_api_spddelete(struct socket *, struct mbuf *,
527 const struct sadb_msghdr *);
528 static int key_api_spddelete2(struct socket *, struct mbuf *,
529 const struct sadb_msghdr *);
530 static int key_api_spdget(struct socket *, struct mbuf *,
531 const struct sadb_msghdr *);
532 static int key_api_spdflush(struct socket *, struct mbuf *,
533 const struct sadb_msghdr *);
534 static int key_api_spddump(struct socket *, struct mbuf *,
535 const struct sadb_msghdr *);
536 static struct mbuf * key_setspddump (int *errorp, pid_t);
537 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
538 static int key_api_nat_map(struct socket *, struct mbuf *,
539 const struct sadb_msghdr *);
540 static struct mbuf *key_setdumpsp (struct secpolicy *,
541 u_int8_t, u_int32_t, pid_t);
542 static u_int key_getspreqmsglen (const struct secpolicy *);
543 static int key_spdexpire (struct secpolicy *);
544 static struct secashead *key_newsah (const struct secasindex *);
545 static void key_delsah (struct secashead *);
546 static struct secasvar *key_newsav(struct mbuf *,
547 const struct sadb_msghdr *, int *, const char*, int);
548 #define KEY_NEWSAV(m, sadb, e) \
549 key_newsav(m, sadb, e, __func__, __LINE__)
550 static void key_delsav (struct secasvar *);
551 static struct secashead *key_getsah(const struct secasindex *, int);
552 static bool key_checkspidup(const struct secasindex *, u_int32_t);
553 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
554 static int key_setsaval (struct secasvar *, struct mbuf *,
555 const struct sadb_msghdr *);
556 static void key_freesaval(struct secasvar *);
557 static int key_init_xform(struct secasvar *);
558 static void key_clear_xform(struct secasvar *);
559 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
560 u_int8_t, u_int32_t, u_int32_t);
561 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
562 static struct mbuf *key_setsadbxtype (u_int16_t);
563 static struct mbuf *key_setsadbxfrag (u_int16_t);
564 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
565 static int key_checksalen (const union sockaddr_union *);
566 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
567 u_int32_t, pid_t, u_int16_t);
568 static struct mbuf *key_setsadbsa (struct secasvar *);
569 static struct mbuf *key_setsadbaddr (u_int16_t,
570 const struct sockaddr *, u_int8_t, u_int16_t);
571 #if 0
572 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
573 int, u_int64_t);
574 #endif
575 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
576 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
577 u_int32_t);
578 static void *key_newbuf (const void *, u_int);
579 #ifdef INET6
580 static int key_ismyaddr6 (const struct sockaddr_in6 *);
581 #endif
582
583 static void sysctl_net_keyv2_setup(struct sysctllog **);
584 static void sysctl_net_key_compat_setup(struct sysctllog **);
585
586 /* flags for key_saidx_match() */
587 #define CMP_HEAD 1 /* protocol, addresses. */
588 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
589 #define CMP_REQID 3 /* additionally HEAD, reaid. */
590 #define CMP_EXACTLY 4 /* all elements. */
591 static int key_saidx_match(const struct secasindex *,
592 const struct secasindex *, int);
593
594 static int key_sockaddr_match(const struct sockaddr *,
595 const struct sockaddr *, int);
596 static int key_bb_match_withmask(const void *, const void *, u_int);
597 static u_int16_t key_satype2proto (u_int8_t);
598 static u_int8_t key_proto2satype (u_int16_t);
599
600 static int key_spidx_match_exactly(const struct secpolicyindex *,
601 const struct secpolicyindex *);
602 static int key_spidx_match_withmask(const struct secpolicyindex *,
603 const struct secpolicyindex *);
604
605 static int key_api_getspi(struct socket *, struct mbuf *,
606 const struct sadb_msghdr *);
607 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
608 const struct secasindex *);
609 static int key_handle_natt_info (struct secasvar *,
610 const struct sadb_msghdr *);
611 static int key_set_natt_ports (union sockaddr_union *,
612 union sockaddr_union *,
613 const struct sadb_msghdr *);
614 static int key_api_update(struct socket *, struct mbuf *,
615 const struct sadb_msghdr *);
616 #ifdef IPSEC_DOSEQCHECK
617 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
618 #endif
619 static int key_api_add(struct socket *, struct mbuf *,
620 const struct sadb_msghdr *);
621 static int key_setident (struct secashead *, struct mbuf *,
622 const struct sadb_msghdr *);
623 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
624 const struct sadb_msghdr *);
625 static int key_api_delete(struct socket *, struct mbuf *,
626 const struct sadb_msghdr *);
627 static int key_api_get(struct socket *, struct mbuf *,
628 const struct sadb_msghdr *);
629
630 static void key_getcomb_setlifetime (struct sadb_comb *);
631 static struct mbuf *key_getcomb_esp (void);
632 static struct mbuf *key_getcomb_ah (void);
633 static struct mbuf *key_getcomb_ipcomp (void);
634 static struct mbuf *key_getprop (const struct secasindex *);
635
636 static int key_acquire (const struct secasindex *, struct secpolicy *);
637 #ifndef IPSEC_NONBLOCK_ACQUIRE
638 static struct secacq *key_newacq (const struct secasindex *);
639 static struct secacq *key_getacq (const struct secasindex *);
640 static struct secacq *key_getacqbyseq (u_int32_t);
641 #endif
642 #ifdef notyet
643 static struct secspacq *key_newspacq (const struct secpolicyindex *);
644 static struct secspacq *key_getspacq (const struct secpolicyindex *);
645 #endif
646 static int key_api_acquire(struct socket *, struct mbuf *,
647 const struct sadb_msghdr *);
648 static int key_api_register(struct socket *, struct mbuf *,
649 const struct sadb_msghdr *);
650 static int key_expire (struct secasvar *);
651 static int key_api_flush(struct socket *, struct mbuf *,
652 const struct sadb_msghdr *);
653 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
654 int *lenp, pid_t pid);
655 static int key_api_dump(struct socket *, struct mbuf *,
656 const struct sadb_msghdr *);
657 static int key_api_promisc(struct socket *, struct mbuf *,
658 const struct sadb_msghdr *);
659 static int key_senderror (struct socket *, struct mbuf *, int);
660 static int key_validate_ext (const struct sadb_ext *, int);
661 static int key_align (struct mbuf *, struct sadb_msghdr *);
662 #if 0
663 static const char *key_getfqdn (void);
664 static const char *key_getuserfqdn (void);
665 #endif
666 static void key_sa_chgstate (struct secasvar *, u_int8_t);
667
668 static struct mbuf *key_alloc_mbuf (int);
669
670 static void key_timehandler(void *);
671 static void key_timehandler_work(struct work *, void *);
672 static struct callout key_timehandler_ch;
673 static struct workqueue *key_timehandler_wq;
674 static struct work key_timehandler_wk;
675
676 #ifdef IPSEC_REF_DEBUG
677 #define REFLOG(label, p, where, tag) \
678 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
679 (where), (tag), (p)->refcnt, (p))
680 #else
681 #define REFLOG(label, p, where, tag) do {} while (0)
682 #endif
683
684 #define SA_ADDREF(p) do { \
685 atomic_inc_uint(&(p)->refcnt); \
686 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
687 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
688 } while (0)
689 #define SA_ADDREF2(p, where, tag) do { \
690 atomic_inc_uint(&(p)->refcnt); \
691 REFLOG("SA_ADDREF", (p), (where), (tag)); \
692 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
693 } while (0)
694 #define SA_DELREF(p) do { \
695 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
696 atomic_dec_uint(&(p)->refcnt); \
697 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
698 } while (0)
699 #define SA_DELREF2(p, nv, where, tag) do { \
700 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
701 nv = atomic_dec_uint_nv(&(p)->refcnt); \
702 REFLOG("SA_DELREF", (p), (where), (tag)); \
703 } while (0)
704
705 u_int
706 key_sp_refcnt(const struct secpolicy *sp)
707 {
708
709 /* FIXME */
710 return 0;
711 }
712
713 /*
714 * Remove the sp from the sptree and wait for references to the sp
715 * to be released. key_sp_mtx must be held.
716 */
717 static void
718 key_unlink_sp(struct secpolicy *sp)
719 {
720
721 KASSERT(mutex_owned(&key_sp_mtx));
722
723 sp->state = IPSEC_SPSTATE_DEAD;
724 SPLIST_WRITER_REMOVE(sp);
725
726 /* Invalidate all cached SPD pointers in the PCBs. */
727 ipsec_invalpcbcacheall();
728
729 #ifdef NET_MPSAFE
730 KASSERT(mutex_ownable(softnet_lock));
731 pserialize_perform(key_psz);
732 #endif
733
734 localcount_drain(&sp->localcount, &key_sp_cv, &key_sp_mtx);
735 }
736
737 /*
738 * Return 0 when there are known to be no SP's for the specified
739 * direction. Otherwise return 1. This is used by IPsec code
740 * to optimize performance.
741 */
742 int
743 key_havesp(u_int dir)
744 {
745 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
746 !SPLIST_READER_EMPTY(dir) : 1);
747 }
748
749 /* %%% IPsec policy management */
750 /*
751 * allocating a SP for OUTBOUND or INBOUND packet.
752 * Must call key_freesp() later.
753 * OUT: NULL: not found
754 * others: found and return the pointer.
755 */
756 struct secpolicy *
757 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
758 u_int dir, const char* where, int tag)
759 {
760 struct secpolicy *sp;
761 int s;
762
763 KASSERT(spidx != NULL);
764 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
765
766 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
767
768 /* get a SP entry */
769 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
770 printf("*** objects\n");
771 kdebug_secpolicyindex(spidx);
772 }
773
774 s = pserialize_read_enter();
775 SPLIST_READER_FOREACH(sp, dir) {
776 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
777 printf("*** in SPD\n");
778 kdebug_secpolicyindex(&sp->spidx);
779 }
780
781 if (sp->state == IPSEC_SPSTATE_DEAD)
782 continue;
783 if (key_spidx_match_withmask(&sp->spidx, spidx))
784 goto found;
785 }
786 sp = NULL;
787 found:
788 if (sp) {
789 /* sanity check */
790 KEY_CHKSPDIR(sp->spidx.dir, dir);
791
792 /* found a SPD entry */
793 sp->lastused = time_uptime;
794 key_sp_ref(sp, where, tag);
795 }
796 pserialize_read_exit(s);
797
798 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
799 "DP return SP:%p (ID=%u) refcnt %u\n",
800 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
801 return sp;
802 }
803
804 /*
805 * return a policy that matches this particular inbound packet.
806 * XXX slow
807 */
808 struct secpolicy *
809 key_gettunnel(const struct sockaddr *osrc,
810 const struct sockaddr *odst,
811 const struct sockaddr *isrc,
812 const struct sockaddr *idst,
813 const char* where, int tag)
814 {
815 struct secpolicy *sp;
816 const int dir = IPSEC_DIR_INBOUND;
817 int s;
818 struct ipsecrequest *r1, *r2, *p;
819 struct secpolicyindex spidx;
820
821 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
822
823 if (isrc->sa_family != idst->sa_family) {
824 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
825 isrc->sa_family, idst->sa_family);
826 sp = NULL;
827 goto done;
828 }
829
830 s = pserialize_read_enter();
831 SPLIST_READER_FOREACH(sp, dir) {
832 if (sp->state == IPSEC_SPSTATE_DEAD)
833 continue;
834
835 r1 = r2 = NULL;
836 for (p = sp->req; p; p = p->next) {
837 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
838 continue;
839
840 r1 = r2;
841 r2 = p;
842
843 if (!r1) {
844 /* here we look at address matches only */
845 spidx = sp->spidx;
846 if (isrc->sa_len > sizeof(spidx.src) ||
847 idst->sa_len > sizeof(spidx.dst))
848 continue;
849 memcpy(&spidx.src, isrc, isrc->sa_len);
850 memcpy(&spidx.dst, idst, idst->sa_len);
851 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
852 continue;
853 } else {
854 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
855 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
856 continue;
857 }
858
859 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
860 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
861 continue;
862
863 goto found;
864 }
865 }
866 sp = NULL;
867 found:
868 if (sp) {
869 sp->lastused = time_uptime;
870 key_sp_ref(sp, where, tag);
871 }
872 pserialize_read_exit(s);
873 done:
874 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
875 "DP return SP:%p (ID=%u) refcnt %u\n",
876 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
877 return sp;
878 }
879
880 /*
881 * allocating an SA entry for an *OUTBOUND* packet.
882 * checking each request entries in SP, and acquire an SA if need.
883 * OUT: 0: there are valid requests.
884 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
885 */
886 int
887 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
888 {
889 u_int level;
890 int error;
891 const struct secasindex *saidx = &isr->saidx;
892 struct secasvar *sav;
893
894 KASSERT(isr != NULL);
895 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
896 saidx->mode == IPSEC_MODE_TUNNEL,
897 "unexpected policy %u", saidx->mode);
898
899 /* get current level */
900 level = ipsec_get_reqlevel(isr);
901
902 /*
903 * XXX guard against protocol callbacks from the crypto
904 * thread as they reference ipsecrequest.sav which we
905 * temporarily null out below. Need to rethink how we
906 * handle bundled SA's in the callback thread.
907 */
908 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
909
910 sav = key_lookup_sa_bysaidx(saidx);
911 if (sav != NULL) {
912 *ret = sav;
913 return 0;
914 }
915
916 /* there is no SA */
917 error = key_acquire(saidx, isr->sp);
918 if (error != 0) {
919 /* XXX What should I do ? */
920 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
921 error);
922 return error;
923 }
924
925 if (level != IPSEC_LEVEL_REQUIRE) {
926 /* XXX sigh, the interface to this routine is botched */
927 *ret = NULL;
928 return 0;
929 } else {
930 return ENOENT;
931 }
932 }
933
934 /*
935 * looking up a SA for policy entry from SAD.
936 * NOTE: searching SAD of aliving state.
937 * OUT: NULL: not found.
938 * others: found and return the pointer.
939 */
940 static struct secasvar *
941 key_lookup_sa_bysaidx(const struct secasindex *saidx)
942 {
943 struct secashead *sah;
944 struct secasvar *sav;
945 u_int stateidx, state;
946 const u_int *saorder_state_valid;
947 int arraysize;
948
949 sah = key_getsah(saidx, CMP_MODE_REQID);
950 if (sah == NULL)
951 return NULL;
952
953 /*
954 * search a valid state list for outbound packet.
955 * This search order is important.
956 */
957 if (key_prefered_oldsa) {
958 saorder_state_valid = saorder_state_valid_prefer_old;
959 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
960 } else {
961 saorder_state_valid = saorder_state_valid_prefer_new;
962 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
963 }
964
965 /* search valid state */
966 for (stateidx = 0;
967 stateidx < arraysize;
968 stateidx++) {
969
970 state = saorder_state_valid[stateidx];
971
972 if (key_prefered_oldsa)
973 sav = LIST_FIRST(&sah->savtree[state]);
974 else {
975 /* XXX need O(1) lookup */
976 struct secasvar *last = NULL;
977
978 LIST_FOREACH(sav, &sah->savtree[state], chain)
979 last = sav;
980 sav = last;
981 }
982 if (sav != NULL) {
983 SA_ADDREF(sav);
984 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
985 "DP cause refcnt++:%d SA:%p\n",
986 sav->refcnt, sav);
987 return sav;
988 }
989 }
990
991 return NULL;
992 }
993
994 #if 0
995 static void
996 key_sendup_message_delete(struct secasvar *sav)
997 {
998 struct mbuf *m, *result = 0;
999 uint8_t satype;
1000
1001 satype = key_proto2satype(sav->sah->saidx.proto);
1002 if (satype == 0)
1003 goto msgfail;
1004
1005 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
1006 if (m == NULL)
1007 goto msgfail;
1008 result = m;
1009
1010 /* set sadb_address for saidx's. */
1011 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1012 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1013 if (m == NULL)
1014 goto msgfail;
1015 m_cat(result, m);
1016
1017 /* set sadb_address for saidx's. */
1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1019 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1020 if (m == NULL)
1021 goto msgfail;
1022 m_cat(result, m);
1023
1024 /* create SA extension */
1025 m = key_setsadbsa(sav);
1026 if (m == NULL)
1027 goto msgfail;
1028 m_cat(result, m);
1029
1030 if (result->m_len < sizeof(struct sadb_msg)) {
1031 result = m_pullup(result, sizeof(struct sadb_msg));
1032 if (result == NULL)
1033 goto msgfail;
1034 }
1035
1036 result->m_pkthdr.len = 0;
1037 for (m = result; m; m = m->m_next)
1038 result->m_pkthdr.len += m->m_len;
1039 mtod(result, struct sadb_msg *)->sadb_msg_len =
1040 PFKEY_UNIT64(result->m_pkthdr.len);
1041
1042 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1043 result = NULL;
1044 msgfail:
1045 if (result)
1046 m_freem(result);
1047 }
1048 #endif
1049
1050 /*
1051 * allocating a usable SA entry for a *INBOUND* packet.
1052 * Must call key_freesav() later.
1053 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1054 * NULL: not found, or error occurred.
1055 *
1056 * In the comparison, no source address is used--for RFC2401 conformance.
1057 * To quote, from section 4.1:
1058 * A security association is uniquely identified by a triple consisting
1059 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1060 * security protocol (AH or ESP) identifier.
1061 * Note that, however, we do need to keep source address in IPsec SA.
1062 * IKE specification and PF_KEY specification do assume that we
1063 * keep source address in IPsec SA. We see a tricky situation here.
1064 *
1065 * sport and dport are used for NAT-T. network order is always used.
1066 */
1067 struct secasvar *
1068 key_lookup_sa(
1069 const union sockaddr_union *dst,
1070 u_int proto,
1071 u_int32_t spi,
1072 u_int16_t sport,
1073 u_int16_t dport,
1074 const char* where, int tag)
1075 {
1076 struct secashead *sah;
1077 struct secasvar *sav;
1078 u_int stateidx, state;
1079 const u_int *saorder_state_valid;
1080 int arraysize, chkport;
1081 int s;
1082
1083 int must_check_spi = 1;
1084 int must_check_alg = 0;
1085 u_int16_t cpi = 0;
1086 u_int8_t algo = 0;
1087
1088 if ((sport != 0) && (dport != 0))
1089 chkport = PORT_STRICT;
1090 else
1091 chkport = PORT_NONE;
1092
1093 KASSERT(dst != NULL);
1094
1095 /*
1096 * XXX IPCOMP case
1097 * We use cpi to define spi here. In the case where cpi <=
1098 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1099 * the real spi. In this case, don't check the spi but check the
1100 * algorithm
1101 */
1102
1103 if (proto == IPPROTO_IPCOMP) {
1104 u_int32_t tmp;
1105 tmp = ntohl(spi);
1106 cpi = (u_int16_t) tmp;
1107 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1108 algo = (u_int8_t) cpi;
1109 must_check_spi = 0;
1110 must_check_alg = 1;
1111 }
1112 }
1113 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1114 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1115 where, tag, must_check_spi, must_check_alg);
1116
1117
1118 /*
1119 * searching SAD.
1120 * XXX: to be checked internal IP header somewhere. Also when
1121 * IPsec tunnel packet is received. But ESP tunnel mode is
1122 * encrypted so we can't check internal IP header.
1123 */
1124 s = splsoftnet(); /*called from softclock()*/
1125 if (key_prefered_oldsa) {
1126 saorder_state_valid = saorder_state_valid_prefer_old;
1127 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1128 } else {
1129 saorder_state_valid = saorder_state_valid_prefer_new;
1130 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1131 }
1132 SAHLIST_READER_FOREACH(sah) {
1133 /* search valid state */
1134 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1135 state = saorder_state_valid[stateidx];
1136 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1137 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1138 "try match spi %#x, %#x\n",
1139 ntohl(spi), ntohl(sav->spi));
1140 /* sanity check */
1141 KEY_CHKSASTATE(sav->state, state);
1142 /* do not return entries w/ unusable state */
1143 if (!SADB_SASTATE_USABLE_P(sav)) {
1144 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1145 "bad state %d\n", sav->state);
1146 continue;
1147 }
1148 if (proto != sav->sah->saidx.proto) {
1149 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1150 "proto fail %d != %d\n",
1151 proto, sav->sah->saidx.proto);
1152 continue;
1153 }
1154 if (must_check_spi && spi != sav->spi) {
1155 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1156 "spi fail %#x != %#x\n",
1157 ntohl(spi), ntohl(sav->spi));
1158 continue;
1159 }
1160 /* XXX only on the ipcomp case */
1161 if (must_check_alg && algo != sav->alg_comp) {
1162 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1163 "algo fail %d != %d\n",
1164 algo, sav->alg_comp);
1165 continue;
1166 }
1167
1168 #if 0 /* don't check src */
1169 /* Fix port in src->sa */
1170
1171 /* check src address */
1172 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1173 continue;
1174 #endif
1175 /* fix port of dst address XXX*/
1176 key_porttosaddr(__UNCONST(dst), dport);
1177 /* check dst address */
1178 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1179 continue;
1180 SA_ADDREF2(sav, where, tag);
1181 goto done;
1182 }
1183 }
1184 }
1185 sav = NULL;
1186 done:
1187 splx(s);
1188
1189 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1190 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1191 return sav;
1192 }
1193
1194 static void
1195 key_validate_savlist(const struct secashead *sah, const u_int state)
1196 {
1197 #ifdef DEBUG
1198 struct secasvar *sav, *next;
1199
1200 /*
1201 * The list should be sorted by lft_c->sadb_lifetime_addtime
1202 * in ascending order.
1203 */
1204 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, next) {
1205 if (next != NULL &&
1206 sav->lft_c != NULL && next->lft_c != NULL) {
1207 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1208 next->lft_c->sadb_lifetime_addtime,
1209 "savlist is not sorted: sah=%p, state=%d, "
1210 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1211 sav->lft_c->sadb_lifetime_addtime,
1212 next->lft_c->sadb_lifetime_addtime);
1213 }
1214 }
1215 #endif
1216 }
1217
1218 void
1219 key_init_sp(struct secpolicy *sp)
1220 {
1221
1222 ASSERT_SLEEPABLE();
1223
1224 sp->state = IPSEC_SPSTATE_ALIVE;
1225 if (sp->policy == IPSEC_POLICY_IPSEC)
1226 KASSERT(sp->req != NULL);
1227 localcount_init(&sp->localcount);
1228 SPLIST_ENTRY_INIT(sp);
1229 }
1230
1231 void
1232 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1233 {
1234
1235 localcount_acquire(&sp->localcount);
1236
1237 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1238 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1239 sp, sp->id, where, tag, key_sp_refcnt(sp));
1240 }
1241
1242 void
1243 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1244 {
1245
1246 KASSERT(mutex_ownable(&key_sp_mtx));
1247
1248 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1249 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1250 sp, sp->id, where, tag, key_sp_refcnt(sp));
1251
1252 localcount_release(&sp->localcount, &key_sp_cv, &key_sp_mtx);
1253 }
1254
1255 void
1256 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1257 {
1258
1259 SA_ADDREF2(sav, where, tag);
1260
1261 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1262 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1263 sav->refcnt, sav, where, tag);
1264 }
1265
1266 #if 0
1267 /*
1268 * Must be called after calling key_lookup_sp*().
1269 * For the packet with socket.
1270 */
1271 static void
1272 key_freeso(struct socket *so)
1273 {
1274 /* sanity check */
1275 KASSERT(so != NULL);
1276
1277 switch (so->so_proto->pr_domain->dom_family) {
1278 #ifdef INET
1279 case PF_INET:
1280 {
1281 struct inpcb *pcb = sotoinpcb(so);
1282
1283 /* Does it have a PCB ? */
1284 if (pcb == NULL)
1285 return;
1286
1287 struct inpcbpolicy *sp = pcb->inp_sp;
1288 key_freesp_so(&sp->sp_in);
1289 key_freesp_so(&sp->sp_out);
1290 }
1291 break;
1292 #endif
1293 #ifdef INET6
1294 case PF_INET6:
1295 {
1296 #ifdef HAVE_NRL_INPCB
1297 struct inpcb *pcb = sotoinpcb(so);
1298 struct inpcbpolicy *sp = pcb->inp_sp;
1299
1300 /* Does it have a PCB ? */
1301 if (pcb == NULL)
1302 return;
1303 key_freesp_so(&sp->sp_in);
1304 key_freesp_so(&sp->sp_out);
1305 #else
1306 struct in6pcb *pcb = sotoin6pcb(so);
1307
1308 /* Does it have a PCB ? */
1309 if (pcb == NULL)
1310 return;
1311 key_freesp_so(&pcb->in6p_sp->sp_in);
1312 key_freesp_so(&pcb->in6p_sp->sp_out);
1313 #endif
1314 }
1315 break;
1316 #endif /* INET6 */
1317 default:
1318 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1319 so->so_proto->pr_domain->dom_family);
1320 return;
1321 }
1322 }
1323
1324 static void
1325 key_freesp_so(struct secpolicy **sp)
1326 {
1327
1328 KASSERT(sp != NULL);
1329 KASSERT(*sp != NULL);
1330
1331 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1332 (*sp)->policy == IPSEC_POLICY_BYPASS)
1333 return;
1334
1335 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1336 "invalid policy %u", (*sp)->policy);
1337 KEY_SP_UNREF(&sp);
1338 }
1339 #endif
1340
1341 /*
1342 * Must be called after calling key_lookup_sa().
1343 * This function is called by key_freesp() to free some SA allocated
1344 * for a policy.
1345 */
1346 void
1347 key_freesav(struct secasvar **psav, const char* where, int tag)
1348 {
1349 struct secasvar *sav = *psav;
1350 unsigned int nv;
1351
1352 KASSERT(sav != NULL);
1353
1354 SA_DELREF2(sav, nv, where, tag);
1355
1356 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1357 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1358 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1359
1360 if (nv == 0) {
1361 *psav = NULL;
1362
1363 /* remove from SA header */
1364 KASSERT(__LIST_CHAINED(sav));
1365 LIST_REMOVE(sav, chain);
1366
1367 key_delsav(sav);
1368 }
1369 }
1370
1371 /* %%% SPD management */
1372 /*
1373 * free security policy entry.
1374 */
1375 static void
1376 key_destroy_sp(struct secpolicy *sp)
1377 {
1378
1379 SPLIST_ENTRY_DESTROY(sp);
1380 localcount_fini(&sp->localcount);
1381
1382 key_free_sp(sp);
1383
1384 key_update_used();
1385 }
1386
1387 void
1388 key_free_sp(struct secpolicy *sp)
1389 {
1390 struct ipsecrequest *isr = sp->req, *nextisr;
1391
1392 while (isr != NULL) {
1393 nextisr = isr->next;
1394 kmem_free(isr, sizeof(*isr));
1395 isr = nextisr;
1396 }
1397
1398 kmem_free(sp, sizeof(*sp));
1399 }
1400
1401 void
1402 key_socksplist_add(struct secpolicy *sp)
1403 {
1404
1405 mutex_enter(&key_sp_mtx);
1406 PSLIST_WRITER_INSERT_HEAD(&key_socksplist, sp, pslist_entry);
1407 mutex_exit(&key_sp_mtx);
1408
1409 key_update_used();
1410 }
1411
1412 /*
1413 * search SPD
1414 * OUT: NULL : not found
1415 * others : found, pointer to a SP.
1416 */
1417 static struct secpolicy *
1418 key_getsp(const struct secpolicyindex *spidx)
1419 {
1420 struct secpolicy *sp;
1421 int s;
1422
1423 KASSERT(spidx != NULL);
1424
1425 s = pserialize_read_enter();
1426 SPLIST_READER_FOREACH(sp, spidx->dir) {
1427 if (sp->state == IPSEC_SPSTATE_DEAD)
1428 continue;
1429 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1430 KEY_SP_REF(sp);
1431 pserialize_read_exit(s);
1432 return sp;
1433 }
1434 }
1435 pserialize_read_exit(s);
1436
1437 return NULL;
1438 }
1439
1440 /*
1441 * search SPD and remove found SP
1442 * OUT: NULL : not found
1443 * others : found, pointer to a SP.
1444 */
1445 static struct secpolicy *
1446 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1447 {
1448 struct secpolicy *sp = NULL;
1449
1450 mutex_enter(&key_sp_mtx);
1451 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1452 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1453
1454 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1455 key_unlink_sp(sp);
1456 goto out;
1457 }
1458 }
1459 sp = NULL;
1460 out:
1461 mutex_exit(&key_sp_mtx);
1462
1463 return sp;
1464 }
1465
1466 /*
1467 * get SP by index.
1468 * OUT: NULL : not found
1469 * others : found, pointer to a SP.
1470 */
1471 static struct secpolicy *
1472 key_getspbyid(u_int32_t id)
1473 {
1474 struct secpolicy *sp;
1475 int s;
1476
1477 s = pserialize_read_enter();
1478 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1479 if (sp->state == IPSEC_SPSTATE_DEAD)
1480 continue;
1481 if (sp->id == id) {
1482 KEY_SP_REF(sp);
1483 goto out;
1484 }
1485 }
1486
1487 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1488 if (sp->state == IPSEC_SPSTATE_DEAD)
1489 continue;
1490 if (sp->id == id) {
1491 KEY_SP_REF(sp);
1492 goto out;
1493 }
1494 }
1495 out:
1496 pserialize_read_exit(s);
1497 return sp;
1498 }
1499
1500 /*
1501 * get SP by index, remove and return it.
1502 * OUT: NULL : not found
1503 * others : found, pointer to a SP.
1504 */
1505 static struct secpolicy *
1506 key_lookupbyid_and_remove_sp(u_int32_t id)
1507 {
1508 struct secpolicy *sp;
1509
1510 mutex_enter(&key_sp_mtx);
1511 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1512 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1513 if (sp->id == id)
1514 goto out;
1515 }
1516
1517 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1518 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1519 if (sp->id == id)
1520 goto out;
1521 }
1522 out:
1523 if (sp != NULL)
1524 key_unlink_sp(sp);
1525 mutex_exit(&key_sp_mtx);
1526 return sp;
1527 }
1528
1529 struct secpolicy *
1530 key_newsp(const char* where, int tag)
1531 {
1532 struct secpolicy *newsp = NULL;
1533
1534 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1535
1536 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1537 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1538 return newsp;
1539 }
1540
1541 /*
1542 * create secpolicy structure from sadb_x_policy structure.
1543 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1544 * so must be set properly later.
1545 */
1546 struct secpolicy *
1547 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1548 {
1549 struct secpolicy *newsp;
1550
1551 KASSERT(!cpu_softintr_p());
1552 KASSERT(xpl0 != NULL);
1553 KASSERT(len >= sizeof(*xpl0));
1554
1555 if (len != PFKEY_EXTLEN(xpl0)) {
1556 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1557 *error = EINVAL;
1558 return NULL;
1559 }
1560
1561 newsp = KEY_NEWSP();
1562 if (newsp == NULL) {
1563 *error = ENOBUFS;
1564 return NULL;
1565 }
1566
1567 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1568 newsp->policy = xpl0->sadb_x_policy_type;
1569
1570 /* check policy */
1571 switch (xpl0->sadb_x_policy_type) {
1572 case IPSEC_POLICY_DISCARD:
1573 case IPSEC_POLICY_NONE:
1574 case IPSEC_POLICY_ENTRUST:
1575 case IPSEC_POLICY_BYPASS:
1576 newsp->req = NULL;
1577 *error = 0;
1578 return newsp;
1579
1580 case IPSEC_POLICY_IPSEC:
1581 /* Continued */
1582 break;
1583 default:
1584 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1585 key_free_sp(newsp);
1586 *error = EINVAL;
1587 return NULL;
1588 }
1589
1590 /* IPSEC_POLICY_IPSEC */
1591 {
1592 int tlen;
1593 const struct sadb_x_ipsecrequest *xisr;
1594 uint16_t xisr_reqid;
1595 struct ipsecrequest **p_isr = &newsp->req;
1596
1597 /* validity check */
1598 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1599 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1600 *error = EINVAL;
1601 goto free_exit;
1602 }
1603
1604 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1605 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1606
1607 while (tlen > 0) {
1608 /* length check */
1609 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1610 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1611 *error = EINVAL;
1612 goto free_exit;
1613 }
1614
1615 /* allocate request buffer */
1616 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1617
1618 /* set values */
1619 (*p_isr)->next = NULL;
1620
1621 switch (xisr->sadb_x_ipsecrequest_proto) {
1622 case IPPROTO_ESP:
1623 case IPPROTO_AH:
1624 case IPPROTO_IPCOMP:
1625 break;
1626 default:
1627 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1628 xisr->sadb_x_ipsecrequest_proto);
1629 *error = EPROTONOSUPPORT;
1630 goto free_exit;
1631 }
1632 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1633
1634 switch (xisr->sadb_x_ipsecrequest_mode) {
1635 case IPSEC_MODE_TRANSPORT:
1636 case IPSEC_MODE_TUNNEL:
1637 break;
1638 case IPSEC_MODE_ANY:
1639 default:
1640 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1641 xisr->sadb_x_ipsecrequest_mode);
1642 *error = EINVAL;
1643 goto free_exit;
1644 }
1645 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1646
1647 switch (xisr->sadb_x_ipsecrequest_level) {
1648 case IPSEC_LEVEL_DEFAULT:
1649 case IPSEC_LEVEL_USE:
1650 case IPSEC_LEVEL_REQUIRE:
1651 break;
1652 case IPSEC_LEVEL_UNIQUE:
1653 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1654 /* validity check */
1655 /*
1656 * If range violation of reqid, kernel will
1657 * update it, don't refuse it.
1658 */
1659 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1660 IPSECLOG(LOG_DEBUG,
1661 "reqid=%d range "
1662 "violation, updated by kernel.\n",
1663 xisr_reqid);
1664 xisr_reqid = 0;
1665 }
1666
1667 /* allocate new reqid id if reqid is zero. */
1668 if (xisr_reqid == 0) {
1669 u_int16_t reqid = key_newreqid();
1670 if (reqid == 0) {
1671 *error = ENOBUFS;
1672 goto free_exit;
1673 }
1674 (*p_isr)->saidx.reqid = reqid;
1675 } else {
1676 /* set it for manual keying. */
1677 (*p_isr)->saidx.reqid = xisr_reqid;
1678 }
1679 break;
1680
1681 default:
1682 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1683 xisr->sadb_x_ipsecrequest_level);
1684 *error = EINVAL;
1685 goto free_exit;
1686 }
1687 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1688
1689 /* set IP addresses if there */
1690 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1691 const struct sockaddr *paddr;
1692
1693 paddr = (const struct sockaddr *)(xisr + 1);
1694
1695 /* validity check */
1696 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1697 IPSECLOG(LOG_DEBUG, "invalid request "
1698 "address length.\n");
1699 *error = EINVAL;
1700 goto free_exit;
1701 }
1702 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1703
1704 paddr = (const struct sockaddr *)((const char *)paddr
1705 + paddr->sa_len);
1706
1707 /* validity check */
1708 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1709 IPSECLOG(LOG_DEBUG, "invalid request "
1710 "address length.\n");
1711 *error = EINVAL;
1712 goto free_exit;
1713 }
1714 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1715 }
1716
1717 (*p_isr)->sp = newsp;
1718
1719 /* initialization for the next. */
1720 p_isr = &(*p_isr)->next;
1721 tlen -= xisr->sadb_x_ipsecrequest_len;
1722
1723 /* validity check */
1724 if (tlen < 0) {
1725 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1726 *error = EINVAL;
1727 goto free_exit;
1728 }
1729
1730 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1731 xisr->sadb_x_ipsecrequest_len);
1732 }
1733 }
1734
1735 *error = 0;
1736 return newsp;
1737
1738 free_exit:
1739 key_free_sp(newsp);
1740 return NULL;
1741 }
1742
1743 static u_int16_t
1744 key_newreqid(void)
1745 {
1746 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1747
1748 auto_reqid = (auto_reqid == 0xffff ?
1749 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1750
1751 /* XXX should be unique check */
1752
1753 return auto_reqid;
1754 }
1755
1756 /*
1757 * copy secpolicy struct to sadb_x_policy structure indicated.
1758 */
1759 struct mbuf *
1760 key_sp2msg(const struct secpolicy *sp)
1761 {
1762 struct sadb_x_policy *xpl;
1763 int tlen;
1764 char *p;
1765 struct mbuf *m;
1766
1767 KASSERT(sp != NULL);
1768
1769 tlen = key_getspreqmsglen(sp);
1770
1771 m = key_alloc_mbuf(tlen);
1772 if (!m || m->m_next) { /*XXX*/
1773 if (m)
1774 m_freem(m);
1775 return NULL;
1776 }
1777
1778 m->m_len = tlen;
1779 m->m_next = NULL;
1780 xpl = mtod(m, struct sadb_x_policy *);
1781 memset(xpl, 0, tlen);
1782
1783 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1784 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1785 xpl->sadb_x_policy_type = sp->policy;
1786 xpl->sadb_x_policy_dir = sp->spidx.dir;
1787 xpl->sadb_x_policy_id = sp->id;
1788 p = (char *)xpl + sizeof(*xpl);
1789
1790 /* if is the policy for ipsec ? */
1791 if (sp->policy == IPSEC_POLICY_IPSEC) {
1792 struct sadb_x_ipsecrequest *xisr;
1793 struct ipsecrequest *isr;
1794
1795 for (isr = sp->req; isr != NULL; isr = isr->next) {
1796
1797 xisr = (struct sadb_x_ipsecrequest *)p;
1798
1799 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1800 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1801 xisr->sadb_x_ipsecrequest_level = isr->level;
1802 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1803
1804 p += sizeof(*xisr);
1805 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1806 p += isr->saidx.src.sa.sa_len;
1807 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1808 p += isr->saidx.src.sa.sa_len;
1809
1810 xisr->sadb_x_ipsecrequest_len =
1811 PFKEY_ALIGN8(sizeof(*xisr)
1812 + isr->saidx.src.sa.sa_len
1813 + isr->saidx.dst.sa.sa_len);
1814 }
1815 }
1816
1817 return m;
1818 }
1819
1820 /* m will not be freed nor modified */
1821 static struct mbuf *
1822 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1823 int ndeep, int nitem, ...)
1824 {
1825 va_list ap;
1826 int idx;
1827 int i;
1828 struct mbuf *result = NULL, *n;
1829 int len;
1830
1831 KASSERT(m != NULL);
1832 KASSERT(mhp != NULL);
1833
1834 va_start(ap, nitem);
1835 for (i = 0; i < nitem; i++) {
1836 idx = va_arg(ap, int);
1837 if (idx < 0 || idx > SADB_EXT_MAX)
1838 goto fail;
1839 /* don't attempt to pull empty extension */
1840 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1841 continue;
1842 if (idx != SADB_EXT_RESERVED &&
1843 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1844 continue;
1845
1846 if (idx == SADB_EXT_RESERVED) {
1847 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1848 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1849 MGETHDR(n, M_DONTWAIT, MT_DATA);
1850 if (!n)
1851 goto fail;
1852 n->m_len = len;
1853 n->m_next = NULL;
1854 m_copydata(m, 0, sizeof(struct sadb_msg),
1855 mtod(n, void *));
1856 } else if (i < ndeep) {
1857 len = mhp->extlen[idx];
1858 n = key_alloc_mbuf(len);
1859 if (!n || n->m_next) { /*XXX*/
1860 if (n)
1861 m_freem(n);
1862 goto fail;
1863 }
1864 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1865 mtod(n, void *));
1866 } else {
1867 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1868 M_DONTWAIT);
1869 }
1870 if (n == NULL)
1871 goto fail;
1872
1873 if (result)
1874 m_cat(result, n);
1875 else
1876 result = n;
1877 }
1878 va_end(ap);
1879
1880 if (result && (result->m_flags & M_PKTHDR) != 0) {
1881 result->m_pkthdr.len = 0;
1882 for (n = result; n; n = n->m_next)
1883 result->m_pkthdr.len += n->m_len;
1884 }
1885
1886 return result;
1887
1888 fail:
1889 va_end(ap);
1890 m_freem(result);
1891 return NULL;
1892 }
1893
1894 /*
1895 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1896 * add an entry to SP database, when received
1897 * <base, address(SD), (lifetime(H),) policy>
1898 * from the user(?).
1899 * Adding to SP database,
1900 * and send
1901 * <base, address(SD), (lifetime(H),) policy>
1902 * to the socket which was send.
1903 *
1904 * SPDADD set a unique policy entry.
1905 * SPDSETIDX like SPDADD without a part of policy requests.
1906 * SPDUPDATE replace a unique policy entry.
1907 *
1908 * m will always be freed.
1909 */
1910 static int
1911 key_api_spdadd(struct socket *so, struct mbuf *m,
1912 const struct sadb_msghdr *mhp)
1913 {
1914 const struct sockaddr *src, *dst;
1915 const struct sadb_x_policy *xpl0;
1916 struct sadb_x_policy *xpl;
1917 const struct sadb_lifetime *lft = NULL;
1918 struct secpolicyindex spidx;
1919 struct secpolicy *newsp;
1920 int error;
1921
1922 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1923 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1924 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1925 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1926 return key_senderror(so, m, EINVAL);
1927 }
1928 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1929 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1930 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1931 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1932 return key_senderror(so, m, EINVAL);
1933 }
1934 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1935 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1936 sizeof(struct sadb_lifetime)) {
1937 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1938 return key_senderror(so, m, EINVAL);
1939 }
1940 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1941 }
1942
1943 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1944
1945 /* checking the direciton. */
1946 switch (xpl0->sadb_x_policy_dir) {
1947 case IPSEC_DIR_INBOUND:
1948 case IPSEC_DIR_OUTBOUND:
1949 break;
1950 default:
1951 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1952 return key_senderror(so, m, EINVAL);
1953 }
1954
1955 /* check policy */
1956 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
1957 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
1958 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1959 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
1960 return key_senderror(so, m, EINVAL);
1961 }
1962
1963 /* policy requests are mandatory when action is ipsec. */
1964 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
1965 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
1966 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1967 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
1968 return key_senderror(so, m, EINVAL);
1969 }
1970
1971 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
1972 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
1973
1974 /* sanity check on addr pair */
1975 if (src->sa_family != dst->sa_family)
1976 return key_senderror(so, m, EINVAL);
1977 if (src->sa_len != dst->sa_len)
1978 return key_senderror(so, m, EINVAL);
1979
1980 key_init_spidx_bymsghdr(&spidx, mhp);
1981
1982 /*
1983 * checking there is SP already or not.
1984 * SPDUPDATE doesn't depend on whether there is a SP or not.
1985 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1986 * then error.
1987 */
1988 {
1989 struct secpolicy *sp;
1990
1991 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1992 sp = key_lookup_and_remove_sp(&spidx);
1993 if (sp != NULL)
1994 key_destroy_sp(sp);
1995 } else {
1996 sp = key_getsp(&spidx);
1997 if (sp != NULL) {
1998 KEY_SP_UNREF(&sp);
1999 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2000 return key_senderror(so, m, EEXIST);
2001 }
2002 }
2003 }
2004
2005 /* allocation new SP entry */
2006 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2007 if (newsp == NULL) {
2008 return key_senderror(so, m, error);
2009 }
2010
2011 newsp->id = key_getnewspid();
2012 if (newsp->id == 0) {
2013 kmem_free(newsp, sizeof(*newsp));
2014 return key_senderror(so, m, ENOBUFS);
2015 }
2016
2017 newsp->spidx = spidx;
2018 newsp->created = time_uptime;
2019 newsp->lastused = newsp->created;
2020 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2021 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2022
2023 key_init_sp(newsp);
2024
2025 mutex_enter(&key_sp_mtx);
2026 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2027 mutex_exit(&key_sp_mtx);
2028
2029 #ifdef notyet
2030 /* delete the entry in spacqtree */
2031 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2032 struct secspacq *spacq = key_getspacq(&spidx);
2033 if (spacq != NULL) {
2034 /* reset counter in order to deletion by timehandler. */
2035 spacq->created = time_uptime;
2036 spacq->count = 0;
2037 }
2038 }
2039 #endif
2040
2041 /* Invalidate all cached SPD pointers in the PCBs. */
2042 ipsec_invalpcbcacheall();
2043
2044 #if defined(GATEWAY)
2045 /* Invalidate the ipflow cache, as well. */
2046 ipflow_invalidate_all(0);
2047 #ifdef INET6
2048 if (in6_present)
2049 ip6flow_invalidate_all(0);
2050 #endif /* INET6 */
2051 #endif /* GATEWAY */
2052
2053 key_update_used();
2054
2055 {
2056 struct mbuf *n, *mpolicy;
2057 int off;
2058
2059 /* create new sadb_msg to reply. */
2060 if (lft) {
2061 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2062 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2063 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2064 } else {
2065 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2066 SADB_X_EXT_POLICY,
2067 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2068 }
2069 if (!n)
2070 return key_senderror(so, m, ENOBUFS);
2071
2072 n = key_fill_replymsg(n, 0);
2073 if (n == NULL)
2074 return key_senderror(so, m, ENOBUFS);
2075
2076 off = 0;
2077 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2078 sizeof(*xpl), &off);
2079 if (mpolicy == NULL) {
2080 /* n is already freed */
2081 return key_senderror(so, m, ENOBUFS);
2082 }
2083 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2084 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2085 m_freem(n);
2086 return key_senderror(so, m, EINVAL);
2087 }
2088 xpl->sadb_x_policy_id = newsp->id;
2089
2090 m_freem(m);
2091 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2092 }
2093 }
2094
2095 /*
2096 * get new policy id.
2097 * OUT:
2098 * 0: failure.
2099 * others: success.
2100 */
2101 static u_int32_t
2102 key_getnewspid(void)
2103 {
2104 u_int32_t newid = 0;
2105 int count = key_spi_trycnt; /* XXX */
2106 struct secpolicy *sp;
2107
2108 /* when requesting to allocate spi ranged */
2109 while (count--) {
2110 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2111
2112 sp = key_getspbyid(newid);
2113 if (sp == NULL)
2114 break;
2115
2116 KEY_SP_UNREF(&sp);
2117 }
2118
2119 if (count == 0 || newid == 0) {
2120 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2121 return 0;
2122 }
2123
2124 return newid;
2125 }
2126
2127 /*
2128 * SADB_SPDDELETE processing
2129 * receive
2130 * <base, address(SD), policy(*)>
2131 * from the user(?), and set SADB_SASTATE_DEAD,
2132 * and send,
2133 * <base, address(SD), policy(*)>
2134 * to the ikmpd.
2135 * policy(*) including direction of policy.
2136 *
2137 * m will always be freed.
2138 */
2139 static int
2140 key_api_spddelete(struct socket *so, struct mbuf *m,
2141 const struct sadb_msghdr *mhp)
2142 {
2143 struct sadb_x_policy *xpl0;
2144 struct secpolicyindex spidx;
2145 struct secpolicy *sp;
2146
2147 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2148 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2149 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2150 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2151 return key_senderror(so, m, EINVAL);
2152 }
2153 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2154 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2155 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2156 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2157 return key_senderror(so, m, EINVAL);
2158 }
2159
2160 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2161
2162 /* checking the direciton. */
2163 switch (xpl0->sadb_x_policy_dir) {
2164 case IPSEC_DIR_INBOUND:
2165 case IPSEC_DIR_OUTBOUND:
2166 break;
2167 default:
2168 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2169 return key_senderror(so, m, EINVAL);
2170 }
2171
2172 /* make secindex */
2173 key_init_spidx_bymsghdr(&spidx, mhp);
2174
2175 /* Is there SP in SPD ? */
2176 sp = key_lookup_and_remove_sp(&spidx);
2177 if (sp == NULL) {
2178 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2179 return key_senderror(so, m, EINVAL);
2180 }
2181
2182 /* save policy id to buffer to be returned. */
2183 xpl0->sadb_x_policy_id = sp->id;
2184
2185 key_destroy_sp(sp);
2186
2187 /* We're deleting policy; no need to invalidate the ipflow cache. */
2188
2189 {
2190 struct mbuf *n;
2191
2192 /* create new sadb_msg to reply. */
2193 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2194 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2195 if (!n)
2196 return key_senderror(so, m, ENOBUFS);
2197
2198 n = key_fill_replymsg(n, 0);
2199 if (n == NULL)
2200 return key_senderror(so, m, ENOBUFS);
2201
2202 m_freem(m);
2203 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2204 }
2205 }
2206
2207 /*
2208 * SADB_SPDDELETE2 processing
2209 * receive
2210 * <base, policy(*)>
2211 * from the user(?), and set SADB_SASTATE_DEAD,
2212 * and send,
2213 * <base, policy(*)>
2214 * to the ikmpd.
2215 * policy(*) including direction of policy.
2216 *
2217 * m will always be freed.
2218 */
2219 static int
2220 key_api_spddelete2(struct socket *so, struct mbuf *m,
2221 const struct sadb_msghdr *mhp)
2222 {
2223 u_int32_t id;
2224 struct secpolicy *sp;
2225
2226 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2227 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2228 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2229 return key_senderror(so, m, EINVAL);
2230 }
2231
2232 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2233
2234 /* Is there SP in SPD ? */
2235 sp = key_lookupbyid_and_remove_sp(id);
2236 if (sp == NULL) {
2237 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2238 return key_senderror(so, m, EINVAL);
2239 }
2240
2241 key_destroy_sp(sp);
2242
2243 /* We're deleting policy; no need to invalidate the ipflow cache. */
2244
2245 {
2246 struct mbuf *n, *nn;
2247 int off, len;
2248
2249 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2250
2251 /* create new sadb_msg to reply. */
2252 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2253
2254 MGETHDR(n, M_DONTWAIT, MT_DATA);
2255 if (n && len > MHLEN) {
2256 MCLGET(n, M_DONTWAIT);
2257 if ((n->m_flags & M_EXT) == 0) {
2258 m_freem(n);
2259 n = NULL;
2260 }
2261 }
2262 if (!n)
2263 return key_senderror(so, m, ENOBUFS);
2264
2265 n->m_len = len;
2266 n->m_next = NULL;
2267 off = 0;
2268
2269 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2270 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2271
2272 KASSERTMSG(off == len, "length inconsistency");
2273
2274 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2275 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2276 if (!n->m_next) {
2277 m_freem(n);
2278 return key_senderror(so, m, ENOBUFS);
2279 }
2280
2281 n->m_pkthdr.len = 0;
2282 for (nn = n; nn; nn = nn->m_next)
2283 n->m_pkthdr.len += nn->m_len;
2284
2285 n = key_fill_replymsg(n, 0);
2286 if (n == NULL)
2287 return key_senderror(so, m, ENOBUFS);
2288
2289 m_freem(m);
2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2291 }
2292 }
2293
2294 /*
2295 * SADB_X_GET processing
2296 * receive
2297 * <base, policy(*)>
2298 * from the user(?),
2299 * and send,
2300 * <base, address(SD), policy>
2301 * to the ikmpd.
2302 * policy(*) including direction of policy.
2303 *
2304 * m will always be freed.
2305 */
2306 static int
2307 key_api_spdget(struct socket *so, struct mbuf *m,
2308 const struct sadb_msghdr *mhp)
2309 {
2310 u_int32_t id;
2311 struct secpolicy *sp;
2312 struct mbuf *n;
2313
2314 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2315 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2316 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2317 return key_senderror(so, m, EINVAL);
2318 }
2319
2320 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2321
2322 /* Is there SP in SPD ? */
2323 sp = key_getspbyid(id);
2324 if (sp == NULL) {
2325 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2326 return key_senderror(so, m, ENOENT);
2327 }
2328
2329 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2330 mhp->msg->sadb_msg_pid);
2331 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2332 if (n != NULL) {
2333 m_freem(m);
2334 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2335 } else
2336 return key_senderror(so, m, ENOBUFS);
2337 }
2338
2339 #ifdef notyet
2340 /*
2341 * SADB_X_SPDACQUIRE processing.
2342 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2343 * send
2344 * <base, policy(*)>
2345 * to KMD, and expect to receive
2346 * <base> with SADB_X_SPDACQUIRE if error occurred,
2347 * or
2348 * <base, policy>
2349 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2350 * policy(*) is without policy requests.
2351 *
2352 * 0 : succeed
2353 * others: error number
2354 */
2355 int
2356 key_spdacquire(const struct secpolicy *sp)
2357 {
2358 struct mbuf *result = NULL, *m;
2359 struct secspacq *newspacq;
2360 int error;
2361
2362 KASSERT(sp != NULL);
2363 KASSERTMSG(sp->req == NULL, "called but there is request");
2364 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2365 "policy mismathed. IPsec is expected");
2366
2367 /* Get an entry to check whether sent message or not. */
2368 newspacq = key_getspacq(&sp->spidx);
2369 if (newspacq != NULL) {
2370 if (key_blockacq_count < newspacq->count) {
2371 /* reset counter and do send message. */
2372 newspacq->count = 0;
2373 } else {
2374 /* increment counter and do nothing. */
2375 newspacq->count++;
2376 return 0;
2377 }
2378 } else {
2379 /* make new entry for blocking to send SADB_ACQUIRE. */
2380 newspacq = key_newspacq(&sp->spidx);
2381 if (newspacq == NULL)
2382 return ENOBUFS;
2383
2384 /* add to acqtree */
2385 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2386 }
2387
2388 /* create new sadb_msg to reply. */
2389 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2390 if (!m) {
2391 error = ENOBUFS;
2392 goto fail;
2393 }
2394 result = m;
2395
2396 result->m_pkthdr.len = 0;
2397 for (m = result; m; m = m->m_next)
2398 result->m_pkthdr.len += m->m_len;
2399
2400 mtod(result, struct sadb_msg *)->sadb_msg_len =
2401 PFKEY_UNIT64(result->m_pkthdr.len);
2402
2403 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2404
2405 fail:
2406 if (result)
2407 m_freem(result);
2408 return error;
2409 }
2410 #endif /* notyet */
2411
2412 /*
2413 * SADB_SPDFLUSH processing
2414 * receive
2415 * <base>
2416 * from the user, and free all entries in secpctree.
2417 * and send,
2418 * <base>
2419 * to the user.
2420 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2421 *
2422 * m will always be freed.
2423 */
2424 static int
2425 key_api_spdflush(struct socket *so, struct mbuf *m,
2426 const struct sadb_msghdr *mhp)
2427 {
2428 struct sadb_msg *newmsg;
2429 struct secpolicy *sp;
2430 u_int dir;
2431
2432 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2433 return key_senderror(so, m, EINVAL);
2434
2435 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2436 retry:
2437 mutex_enter(&key_sp_mtx);
2438 SPLIST_WRITER_FOREACH(sp, dir) {
2439 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2440 key_unlink_sp(sp);
2441 mutex_exit(&key_sp_mtx);
2442 key_destroy_sp(sp);
2443 goto retry;
2444 }
2445 mutex_exit(&key_sp_mtx);
2446 }
2447
2448 /* We're deleting policy; no need to invalidate the ipflow cache. */
2449
2450 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2451 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2452 return key_senderror(so, m, ENOBUFS);
2453 }
2454
2455 if (m->m_next)
2456 m_freem(m->m_next);
2457 m->m_next = NULL;
2458 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2459 newmsg = mtod(m, struct sadb_msg *);
2460 newmsg->sadb_msg_errno = 0;
2461 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2462
2463 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2464 }
2465
2466 static struct sockaddr key_src = {
2467 .sa_len = 2,
2468 .sa_family = PF_KEY,
2469 };
2470
2471 static struct mbuf *
2472 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2473 {
2474 struct secpolicy *sp;
2475 int cnt;
2476 u_int dir;
2477 struct mbuf *m, *n, *prev;
2478 int totlen;
2479
2480 KASSERT(mutex_owned(&key_sp_mtx));
2481
2482 *lenp = 0;
2483
2484 /* search SPD entry and get buffer size. */
2485 cnt = 0;
2486 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2487 SPLIST_WRITER_FOREACH(sp, dir) {
2488 cnt++;
2489 }
2490 }
2491
2492 if (cnt == 0) {
2493 *errorp = ENOENT;
2494 return (NULL);
2495 }
2496
2497 m = NULL;
2498 prev = m;
2499 totlen = 0;
2500 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2501 SPLIST_WRITER_FOREACH(sp, dir) {
2502 --cnt;
2503 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2504
2505 if (!n) {
2506 *errorp = ENOBUFS;
2507 if (m)
2508 m_freem(m);
2509 return (NULL);
2510 }
2511
2512 totlen += n->m_pkthdr.len;
2513 if (!m) {
2514 m = n;
2515 } else {
2516 prev->m_nextpkt = n;
2517 }
2518 prev = n;
2519 }
2520 }
2521
2522 *lenp = totlen;
2523 *errorp = 0;
2524 return (m);
2525 }
2526
2527 /*
2528 * SADB_SPDDUMP processing
2529 * receive
2530 * <base>
2531 * from the user, and dump all SP leaves
2532 * and send,
2533 * <base> .....
2534 * to the ikmpd.
2535 *
2536 * m will always be freed.
2537 */
2538 static int
2539 key_api_spddump(struct socket *so, struct mbuf *m0,
2540 const struct sadb_msghdr *mhp)
2541 {
2542 struct mbuf *n;
2543 int error, len;
2544 int ok;
2545 pid_t pid;
2546
2547 pid = mhp->msg->sadb_msg_pid;
2548 /*
2549 * If the requestor has insufficient socket-buffer space
2550 * for the entire chain, nobody gets any response to the DUMP.
2551 * XXX For now, only the requestor ever gets anything.
2552 * Moreover, if the requestor has any space at all, they receive
2553 * the entire chain, otherwise the request is refused with ENOBUFS.
2554 */
2555 if (sbspace(&so->so_rcv) <= 0) {
2556 return key_senderror(so, m0, ENOBUFS);
2557 }
2558
2559 mutex_enter(&key_sp_mtx);
2560 n = key_setspddump_chain(&error, &len, pid);
2561 mutex_exit(&key_sp_mtx);
2562
2563 if (n == NULL) {
2564 return key_senderror(so, m0, ENOENT);
2565 }
2566 {
2567 uint64_t *ps = PFKEY_STAT_GETREF();
2568 ps[PFKEY_STAT_IN_TOTAL]++;
2569 ps[PFKEY_STAT_IN_BYTES] += len;
2570 PFKEY_STAT_PUTREF();
2571 }
2572
2573 /*
2574 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2575 * The requestor receives either the entire chain, or an
2576 * error message with ENOBUFS.
2577 */
2578
2579 /*
2580 * sbappendchainwith record takes the chain of entries, one
2581 * packet-record per SPD entry, prepends the key_src sockaddr
2582 * to each packet-record, links the sockaddr mbufs into a new
2583 * list of records, then appends the entire resulting
2584 * list to the requesting socket.
2585 */
2586 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2587 SB_PRIO_ONESHOT_OVERFLOW);
2588
2589 if (!ok) {
2590 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2591 m_freem(n);
2592 return key_senderror(so, m0, ENOBUFS);
2593 }
2594
2595 m_freem(m0);
2596 return error;
2597 }
2598
2599 /*
2600 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2601 */
2602 static int
2603 key_api_nat_map(struct socket *so, struct mbuf *m,
2604 const struct sadb_msghdr *mhp)
2605 {
2606 struct sadb_x_nat_t_type *type;
2607 struct sadb_x_nat_t_port *sport;
2608 struct sadb_x_nat_t_port *dport;
2609 struct sadb_address *iaddr, *raddr;
2610 struct sadb_x_nat_t_frag *frag;
2611
2612 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2613 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2614 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2615 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2616 return key_senderror(so, m, EINVAL);
2617 }
2618 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2619 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2620 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2621 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2622 return key_senderror(so, m, EINVAL);
2623 }
2624
2625 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2626 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2627 IPSECLOG(LOG_DEBUG, "invalid message\n");
2628 return key_senderror(so, m, EINVAL);
2629 }
2630
2631 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2632 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2633 IPSECLOG(LOG_DEBUG, "invalid message\n");
2634 return key_senderror(so, m, EINVAL);
2635 }
2636
2637 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2638 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2639 IPSECLOG(LOG_DEBUG, "invalid message\n");
2640 return key_senderror(so, m, EINVAL);
2641 }
2642
2643 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2644 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2645 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2646 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2647 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2648 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2649
2650 /*
2651 * XXX handle that, it should also contain a SA, or anything
2652 * that enable to update the SA information.
2653 */
2654
2655 return 0;
2656 }
2657
2658 static struct mbuf *
2659 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2660 {
2661 struct mbuf *result = NULL, *m;
2662
2663 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2664 key_sp_refcnt(sp));
2665 if (!m)
2666 goto fail;
2667 result = m;
2668
2669 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2670 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2671 if (!m)
2672 goto fail;
2673 m_cat(result, m);
2674
2675 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2676 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2677 if (!m)
2678 goto fail;
2679 m_cat(result, m);
2680
2681 m = key_sp2msg(sp);
2682 if (!m)
2683 goto fail;
2684 m_cat(result, m);
2685
2686 if ((result->m_flags & M_PKTHDR) == 0)
2687 goto fail;
2688
2689 if (result->m_len < sizeof(struct sadb_msg)) {
2690 result = m_pullup(result, sizeof(struct sadb_msg));
2691 if (result == NULL)
2692 goto fail;
2693 }
2694
2695 result->m_pkthdr.len = 0;
2696 for (m = result; m; m = m->m_next)
2697 result->m_pkthdr.len += m->m_len;
2698
2699 mtod(result, struct sadb_msg *)->sadb_msg_len =
2700 PFKEY_UNIT64(result->m_pkthdr.len);
2701
2702 return result;
2703
2704 fail:
2705 m_freem(result);
2706 return NULL;
2707 }
2708
2709 /*
2710 * get PFKEY message length for security policy and request.
2711 */
2712 static u_int
2713 key_getspreqmsglen(const struct secpolicy *sp)
2714 {
2715 u_int tlen;
2716
2717 tlen = sizeof(struct sadb_x_policy);
2718
2719 /* if is the policy for ipsec ? */
2720 if (sp->policy != IPSEC_POLICY_IPSEC)
2721 return tlen;
2722
2723 /* get length of ipsec requests */
2724 {
2725 const struct ipsecrequest *isr;
2726 int len;
2727
2728 for (isr = sp->req; isr != NULL; isr = isr->next) {
2729 len = sizeof(struct sadb_x_ipsecrequest)
2730 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2731
2732 tlen += PFKEY_ALIGN8(len);
2733 }
2734 }
2735
2736 return tlen;
2737 }
2738
2739 /*
2740 * SADB_SPDEXPIRE processing
2741 * send
2742 * <base, address(SD), lifetime(CH), policy>
2743 * to KMD by PF_KEY.
2744 *
2745 * OUT: 0 : succeed
2746 * others : error number
2747 */
2748 static int
2749 key_spdexpire(struct secpolicy *sp)
2750 {
2751 int s;
2752 struct mbuf *result = NULL, *m;
2753 int len;
2754 int error = -1;
2755 struct sadb_lifetime *lt;
2756
2757 /* XXX: Why do we lock ? */
2758 s = splsoftnet(); /*called from softclock()*/
2759
2760 KASSERT(sp != NULL);
2761
2762 /* set msg header */
2763 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2764 if (!m) {
2765 error = ENOBUFS;
2766 goto fail;
2767 }
2768 result = m;
2769
2770 /* create lifetime extension (current and hard) */
2771 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2772 m = key_alloc_mbuf(len);
2773 if (!m || m->m_next) { /*XXX*/
2774 if (m)
2775 m_freem(m);
2776 error = ENOBUFS;
2777 goto fail;
2778 }
2779 memset(mtod(m, void *), 0, len);
2780 lt = mtod(m, struct sadb_lifetime *);
2781 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2782 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2783 lt->sadb_lifetime_allocations = 0;
2784 lt->sadb_lifetime_bytes = 0;
2785 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2786 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2787 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2788 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2789 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2790 lt->sadb_lifetime_allocations = 0;
2791 lt->sadb_lifetime_bytes = 0;
2792 lt->sadb_lifetime_addtime = sp->lifetime;
2793 lt->sadb_lifetime_usetime = sp->validtime;
2794 m_cat(result, m);
2795
2796 /* set sadb_address for source */
2797 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2798 sp->spidx.prefs, sp->spidx.ul_proto);
2799 if (!m) {
2800 error = ENOBUFS;
2801 goto fail;
2802 }
2803 m_cat(result, m);
2804
2805 /* set sadb_address for destination */
2806 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2807 sp->spidx.prefd, sp->spidx.ul_proto);
2808 if (!m) {
2809 error = ENOBUFS;
2810 goto fail;
2811 }
2812 m_cat(result, m);
2813
2814 /* set secpolicy */
2815 m = key_sp2msg(sp);
2816 if (!m) {
2817 error = ENOBUFS;
2818 goto fail;
2819 }
2820 m_cat(result, m);
2821
2822 if ((result->m_flags & M_PKTHDR) == 0) {
2823 error = EINVAL;
2824 goto fail;
2825 }
2826
2827 if (result->m_len < sizeof(struct sadb_msg)) {
2828 result = m_pullup(result, sizeof(struct sadb_msg));
2829 if (result == NULL) {
2830 error = ENOBUFS;
2831 goto fail;
2832 }
2833 }
2834
2835 result->m_pkthdr.len = 0;
2836 for (m = result; m; m = m->m_next)
2837 result->m_pkthdr.len += m->m_len;
2838
2839 mtod(result, struct sadb_msg *)->sadb_msg_len =
2840 PFKEY_UNIT64(result->m_pkthdr.len);
2841
2842 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2843
2844 fail:
2845 if (result)
2846 m_freem(result);
2847 splx(s);
2848 return error;
2849 }
2850
2851 /* %%% SAD management */
2852 /*
2853 * allocating a memory for new SA head, and copy from the values of mhp.
2854 * OUT: NULL : failure due to the lack of memory.
2855 * others : pointer to new SA head.
2856 */
2857 static struct secashead *
2858 key_newsah(const struct secasindex *saidx)
2859 {
2860 struct secashead *newsah;
2861 int i;
2862
2863 KASSERT(saidx != NULL);
2864
2865 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2866 for (i = 0; i < __arraycount(newsah->savtree); i++)
2867 LIST_INIT(&newsah->savtree[i]);
2868 newsah->saidx = *saidx;
2869
2870 /* add to saidxtree */
2871 newsah->state = SADB_SASTATE_MATURE;
2872 SAHLIST_ENTRY_INIT(newsah);
2873 SAHLIST_WRITER_INSERT_HEAD(newsah);
2874
2875 return newsah;
2876 }
2877
2878 /*
2879 * delete SA index and all SA registerd.
2880 */
2881 static void
2882 key_delsah(struct secashead *sah)
2883 {
2884 struct secasvar *sav;
2885 u_int state;
2886 int s;
2887 int zombie = 0;
2888
2889 KASSERT(!cpu_softintr_p());
2890 KASSERT(sah != NULL);
2891
2892 s = splsoftnet();
2893
2894 /* searching all SA registerd in the secindex. */
2895 SASTATE_ANY_FOREACH(state) {
2896 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2897 /* give up to delete this sa */
2898 zombie++;
2899 }
2900 }
2901
2902 /* don't delete sah only if there are savs. */
2903 if (zombie) {
2904 splx(s);
2905 return;
2906 }
2907
2908 rtcache_free(&sah->sa_route);
2909
2910 /* remove from tree of SA index */
2911 SAHLIST_WRITER_REMOVE(sah);
2912
2913 if (sah->idents != NULL)
2914 kmem_free(sah->idents, sah->idents_len);
2915 if (sah->identd != NULL)
2916 kmem_free(sah->identd, sah->identd_len);
2917
2918 SAHLIST_ENTRY_DESTROY(sah);
2919 kmem_free(sah, sizeof(*sah));
2920
2921 splx(s);
2922 return;
2923 }
2924
2925 /*
2926 * allocating a new SA with LARVAL state.
2927 * key_api_add() and key_api_getspi() call,
2928 * and copy the values of mhp into new buffer.
2929 * When SAD message type is GETSPI:
2930 * to set sequence number from acq_seq++,
2931 * to set zero to SPI.
2932 * not to call key_setsava().
2933 * OUT: NULL : fail
2934 * others : pointer to new secasvar.
2935 *
2936 * does not modify mbuf. does not free mbuf on error.
2937 */
2938 static struct secasvar *
2939 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2940 int *errp, const char* where, int tag)
2941 {
2942 struct secasvar *newsav;
2943 const struct sadb_sa *xsa;
2944
2945 KASSERT(!cpu_softintr_p());
2946 KASSERT(m != NULL);
2947 KASSERT(mhp != NULL);
2948 KASSERT(mhp->msg != NULL);
2949
2950 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2951
2952 switch (mhp->msg->sadb_msg_type) {
2953 case SADB_GETSPI:
2954 newsav->spi = 0;
2955
2956 #ifdef IPSEC_DOSEQCHECK
2957 /* sync sequence number */
2958 if (mhp->msg->sadb_msg_seq == 0)
2959 newsav->seq =
2960 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2961 else
2962 #endif
2963 newsav->seq = mhp->msg->sadb_msg_seq;
2964 break;
2965
2966 case SADB_ADD:
2967 /* sanity check */
2968 if (mhp->ext[SADB_EXT_SA] == NULL) {
2969 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2970 *errp = EINVAL;
2971 goto error;
2972 }
2973 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2974 newsav->spi = xsa->sadb_sa_spi;
2975 newsav->seq = mhp->msg->sadb_msg_seq;
2976 break;
2977 default:
2978 *errp = EINVAL;
2979 goto error;
2980 }
2981
2982 /* copy sav values */
2983 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2984 *errp = key_setsaval(newsav, m, mhp);
2985 if (*errp)
2986 goto error;
2987 } else {
2988 /* We don't allow lft_c to be NULL */
2989 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
2990 KM_SLEEP);
2991 }
2992
2993 /* reset created */
2994 newsav->created = time_uptime;
2995 newsav->pid = mhp->msg->sadb_msg_pid;
2996
2997 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
2998 "DP from %s:%u return SA:%p\n", where, tag, newsav);
2999 return newsav;
3000
3001 error:
3002 KASSERT(*errp != 0);
3003 kmem_free(newsav, sizeof(*newsav));
3004 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3005 "DP from %s:%u return SA:NULL\n", where, tag);
3006 return NULL;
3007 }
3008
3009
3010 static void
3011 key_clear_xform(struct secasvar *sav)
3012 {
3013
3014 /*
3015 * Cleanup xform state. Note that zeroize'ing causes the
3016 * keys to be cleared; otherwise we must do it ourself.
3017 */
3018 if (sav->tdb_xform != NULL) {
3019 sav->tdb_xform->xf_zeroize(sav);
3020 sav->tdb_xform = NULL;
3021 } else {
3022 if (sav->key_auth != NULL)
3023 explicit_memset(_KEYBUF(sav->key_auth), 0,
3024 _KEYLEN(sav->key_auth));
3025 if (sav->key_enc != NULL)
3026 explicit_memset(_KEYBUF(sav->key_enc), 0,
3027 _KEYLEN(sav->key_enc));
3028 }
3029 }
3030
3031 /*
3032 * free() SA variable entry.
3033 */
3034 static void
3035 key_delsav(struct secasvar *sav)
3036 {
3037
3038 KASSERT(sav != NULL);
3039 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3040
3041 key_clear_xform(sav);
3042 key_freesaval(sav);
3043 kmem_intr_free(sav, sizeof(*sav));
3044
3045 return;
3046 }
3047
3048 /*
3049 * search SAD.
3050 * OUT:
3051 * NULL : not found
3052 * others : found, pointer to a SA.
3053 */
3054 static struct secashead *
3055 key_getsah(const struct secasindex *saidx, int flag)
3056 {
3057 struct secashead *sah;
3058
3059 SAHLIST_READER_FOREACH(sah) {
3060 if (sah->state == SADB_SASTATE_DEAD)
3061 continue;
3062 if (key_saidx_match(&sah->saidx, saidx, flag))
3063 return sah;
3064 }
3065
3066 return NULL;
3067 }
3068
3069 /*
3070 * check not to be duplicated SPI.
3071 * NOTE: this function is too slow due to searching all SAD.
3072 * OUT:
3073 * NULL : not found
3074 * others : found, pointer to a SA.
3075 */
3076 static bool
3077 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3078 {
3079 struct secashead *sah;
3080 struct secasvar *sav;
3081
3082 /* check address family */
3083 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3084 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3085 return false;
3086 }
3087
3088 /* check all SAD */
3089 SAHLIST_READER_FOREACH(sah) {
3090 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3091 continue;
3092 sav = key_getsavbyspi(sah, spi);
3093 if (sav != NULL) {
3094 KEY_FREESAV(&sav);
3095 return true;
3096 }
3097 }
3098
3099 return false;
3100 }
3101
3102 /*
3103 * search SAD litmited alive SA, protocol, SPI.
3104 * OUT:
3105 * NULL : not found
3106 * others : found, pointer to a SA.
3107 */
3108 static struct secasvar *
3109 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3110 {
3111 struct secasvar *sav;
3112 u_int state;
3113
3114 /* search all status */
3115 SASTATE_ALIVE_FOREACH(state) {
3116 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3117
3118 /* sanity check */
3119 if (sav->state != state) {
3120 IPSECLOG(LOG_DEBUG,
3121 "invalid sav->state (queue: %d SA: %d)\n",
3122 state, sav->state);
3123 continue;
3124 }
3125
3126 if (sav->spi == spi) {
3127 SA_ADDREF(sav);
3128 return sav;
3129 }
3130 }
3131 }
3132
3133 return NULL;
3134 }
3135
3136 /*
3137 * Free allocated data to member variables of sav:
3138 * sav->replay, sav->key_* and sav->lft_*.
3139 */
3140 static void
3141 key_freesaval(struct secasvar *sav)
3142 {
3143
3144 KASSERT(sav->refcnt == 0);
3145
3146 if (sav->replay != NULL)
3147 kmem_intr_free(sav->replay, sav->replay_len);
3148 if (sav->key_auth != NULL)
3149 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3150 if (sav->key_enc != NULL)
3151 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3152 if (sav->lft_c != NULL)
3153 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3154 if (sav->lft_h != NULL)
3155 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3156 if (sav->lft_s != NULL)
3157 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3158 }
3159
3160 /*
3161 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3162 * You must update these if need.
3163 * OUT: 0: success.
3164 * !0: failure.
3165 *
3166 * does not modify mbuf. does not free mbuf on error.
3167 */
3168 static int
3169 key_setsaval(struct secasvar *sav, struct mbuf *m,
3170 const struct sadb_msghdr *mhp)
3171 {
3172 int error = 0;
3173
3174 KASSERT(!cpu_softintr_p());
3175 KASSERT(m != NULL);
3176 KASSERT(mhp != NULL);
3177 KASSERT(mhp->msg != NULL);
3178
3179 /* We shouldn't initialize sav variables while someone uses it. */
3180 KASSERT(sav->refcnt == 0);
3181
3182 /* SA */
3183 if (mhp->ext[SADB_EXT_SA] != NULL) {
3184 const struct sadb_sa *sa0;
3185
3186 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3187 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3188 error = EINVAL;
3189 goto fail;
3190 }
3191
3192 sav->alg_auth = sa0->sadb_sa_auth;
3193 sav->alg_enc = sa0->sadb_sa_encrypt;
3194 sav->flags = sa0->sadb_sa_flags;
3195
3196 /* replay window */
3197 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3198 size_t len = sizeof(struct secreplay) +
3199 sa0->sadb_sa_replay;
3200 sav->replay = kmem_zalloc(len, KM_SLEEP);
3201 sav->replay_len = len;
3202 if (sa0->sadb_sa_replay != 0)
3203 sav->replay->bitmap = (char*)(sav->replay+1);
3204 sav->replay->wsize = sa0->sadb_sa_replay;
3205 }
3206 }
3207
3208 /* Authentication keys */
3209 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3210 const struct sadb_key *key0;
3211 int len;
3212
3213 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3214 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3215
3216 error = 0;
3217 if (len < sizeof(*key0)) {
3218 error = EINVAL;
3219 goto fail;
3220 }
3221 switch (mhp->msg->sadb_msg_satype) {
3222 case SADB_SATYPE_AH:
3223 case SADB_SATYPE_ESP:
3224 case SADB_X_SATYPE_TCPSIGNATURE:
3225 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3226 sav->alg_auth != SADB_X_AALG_NULL)
3227 error = EINVAL;
3228 break;
3229 case SADB_X_SATYPE_IPCOMP:
3230 default:
3231 error = EINVAL;
3232 break;
3233 }
3234 if (error) {
3235 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3236 goto fail;
3237 }
3238
3239 sav->key_auth = key_newbuf(key0, len);
3240 sav->key_auth_len = len;
3241 }
3242
3243 /* Encryption key */
3244 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3245 const struct sadb_key *key0;
3246 int len;
3247
3248 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3249 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3250
3251 error = 0;
3252 if (len < sizeof(*key0)) {
3253 error = EINVAL;
3254 goto fail;
3255 }
3256 switch (mhp->msg->sadb_msg_satype) {
3257 case SADB_SATYPE_ESP:
3258 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3259 sav->alg_enc != SADB_EALG_NULL) {
3260 error = EINVAL;
3261 break;
3262 }
3263 sav->key_enc = key_newbuf(key0, len);
3264 sav->key_enc_len = len;
3265 break;
3266 case SADB_X_SATYPE_IPCOMP:
3267 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3268 error = EINVAL;
3269 sav->key_enc = NULL; /*just in case*/
3270 break;
3271 case SADB_SATYPE_AH:
3272 case SADB_X_SATYPE_TCPSIGNATURE:
3273 default:
3274 error = EINVAL;
3275 break;
3276 }
3277 if (error) {
3278 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3279 goto fail;
3280 }
3281 }
3282
3283 /* set iv */
3284 sav->ivlen = 0;
3285
3286 switch (mhp->msg->sadb_msg_satype) {
3287 case SADB_SATYPE_AH:
3288 error = xform_init(sav, XF_AH);
3289 break;
3290 case SADB_SATYPE_ESP:
3291 error = xform_init(sav, XF_ESP);
3292 break;
3293 case SADB_X_SATYPE_IPCOMP:
3294 error = xform_init(sav, XF_IPCOMP);
3295 break;
3296 case SADB_X_SATYPE_TCPSIGNATURE:
3297 error = xform_init(sav, XF_TCPSIGNATURE);
3298 break;
3299 }
3300 if (error) {
3301 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3302 mhp->msg->sadb_msg_satype);
3303 goto fail;
3304 }
3305
3306 /* reset created */
3307 sav->created = time_uptime;
3308
3309 /* make lifetime for CURRENT */
3310 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3311
3312 sav->lft_c->sadb_lifetime_len =
3313 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3314 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3315 sav->lft_c->sadb_lifetime_allocations = 0;
3316 sav->lft_c->sadb_lifetime_bytes = 0;
3317 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3318 sav->lft_c->sadb_lifetime_usetime = 0;
3319
3320 /* lifetimes for HARD and SOFT */
3321 {
3322 const struct sadb_lifetime *lft0;
3323
3324 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3325 if (lft0 != NULL) {
3326 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3327 error = EINVAL;
3328 goto fail;
3329 }
3330 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3331 }
3332
3333 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3334 if (lft0 != NULL) {
3335 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3336 error = EINVAL;
3337 goto fail;
3338 }
3339 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3340 /* to be initialize ? */
3341 }
3342 }
3343
3344 return 0;
3345
3346 fail:
3347 key_clear_xform(sav);
3348 key_freesaval(sav);
3349
3350 return error;
3351 }
3352
3353 /*
3354 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3355 * OUT: 0: valid
3356 * other: errno
3357 */
3358 static int
3359 key_init_xform(struct secasvar *sav)
3360 {
3361 int error;
3362
3363 /* We shouldn't initialize sav variables while someone uses it. */
3364 KASSERT(sav->refcnt == 0);
3365
3366 /* check SPI value */
3367 switch (sav->sah->saidx.proto) {
3368 case IPPROTO_ESP:
3369 case IPPROTO_AH:
3370 if (ntohl(sav->spi) <= 255) {
3371 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3372 (u_int32_t)ntohl(sav->spi));
3373 return EINVAL;
3374 }
3375 break;
3376 }
3377
3378 /* check satype */
3379 switch (sav->sah->saidx.proto) {
3380 case IPPROTO_ESP:
3381 /* check flags */
3382 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3383 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3384 IPSECLOG(LOG_DEBUG,
3385 "invalid flag (derived) given to old-esp.\n");
3386 return EINVAL;
3387 }
3388 error = xform_init(sav, XF_ESP);
3389 break;
3390 case IPPROTO_AH:
3391 /* check flags */
3392 if (sav->flags & SADB_X_EXT_DERIV) {
3393 IPSECLOG(LOG_DEBUG,
3394 "invalid flag (derived) given to AH SA.\n");
3395 return EINVAL;
3396 }
3397 if (sav->alg_enc != SADB_EALG_NONE) {
3398 IPSECLOG(LOG_DEBUG,
3399 "protocol and algorithm mismated.\n");
3400 return(EINVAL);
3401 }
3402 error = xform_init(sav, XF_AH);
3403 break;
3404 case IPPROTO_IPCOMP:
3405 if (sav->alg_auth != SADB_AALG_NONE) {
3406 IPSECLOG(LOG_DEBUG,
3407 "protocol and algorithm mismated.\n");
3408 return(EINVAL);
3409 }
3410 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3411 && ntohl(sav->spi) >= 0x10000) {
3412 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3413 return(EINVAL);
3414 }
3415 error = xform_init(sav, XF_IPCOMP);
3416 break;
3417 case IPPROTO_TCP:
3418 if (sav->alg_enc != SADB_EALG_NONE) {
3419 IPSECLOG(LOG_DEBUG,
3420 "protocol and algorithm mismated.\n");
3421 return(EINVAL);
3422 }
3423 error = xform_init(sav, XF_TCPSIGNATURE);
3424 break;
3425 default:
3426 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3427 error = EPROTONOSUPPORT;
3428 break;
3429 }
3430
3431 return error;
3432 }
3433
3434 /*
3435 * subroutine for SADB_GET and SADB_DUMP.
3436 */
3437 static struct mbuf *
3438 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3439 u_int32_t seq, u_int32_t pid)
3440 {
3441 struct mbuf *result = NULL, *tres = NULL, *m;
3442 int l = 0;
3443 int i;
3444 void *p;
3445 struct sadb_lifetime lt;
3446 int dumporder[] = {
3447 SADB_EXT_SA, SADB_X_EXT_SA2,
3448 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3449 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3450 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3451 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3452 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3453 SADB_X_EXT_NAT_T_TYPE,
3454 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3455 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3456 SADB_X_EXT_NAT_T_FRAG,
3457
3458 };
3459
3460 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3461 if (m == NULL)
3462 goto fail;
3463 result = m;
3464
3465 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3466 m = NULL;
3467 p = NULL;
3468 switch (dumporder[i]) {
3469 case SADB_EXT_SA:
3470 m = key_setsadbsa(sav);
3471 break;
3472
3473 case SADB_X_EXT_SA2:
3474 m = key_setsadbxsa2(sav->sah->saidx.mode,
3475 sav->replay ? sav->replay->count : 0,
3476 sav->sah->saidx.reqid);
3477 break;
3478
3479 case SADB_EXT_ADDRESS_SRC:
3480 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3481 &sav->sah->saidx.src.sa,
3482 FULLMASK, IPSEC_ULPROTO_ANY);
3483 break;
3484
3485 case SADB_EXT_ADDRESS_DST:
3486 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3487 &sav->sah->saidx.dst.sa,
3488 FULLMASK, IPSEC_ULPROTO_ANY);
3489 break;
3490
3491 case SADB_EXT_KEY_AUTH:
3492 if (!sav->key_auth)
3493 continue;
3494 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3495 p = sav->key_auth;
3496 break;
3497
3498 case SADB_EXT_KEY_ENCRYPT:
3499 if (!sav->key_enc)
3500 continue;
3501 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3502 p = sav->key_enc;
3503 break;
3504
3505 case SADB_EXT_LIFETIME_CURRENT:
3506 KASSERT(sav->lft_c != NULL);
3507 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3508 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3509 lt.sadb_lifetime_addtime =
3510 time_mono_to_wall(lt.sadb_lifetime_addtime);
3511 lt.sadb_lifetime_usetime =
3512 time_mono_to_wall(lt.sadb_lifetime_usetime);
3513 p = <
3514 break;
3515
3516 case SADB_EXT_LIFETIME_HARD:
3517 if (!sav->lft_h)
3518 continue;
3519 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3520 p = sav->lft_h;
3521 break;
3522
3523 case SADB_EXT_LIFETIME_SOFT:
3524 if (!sav->lft_s)
3525 continue;
3526 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3527 p = sav->lft_s;
3528 break;
3529
3530 case SADB_X_EXT_NAT_T_TYPE:
3531 m = key_setsadbxtype(sav->natt_type);
3532 break;
3533
3534 case SADB_X_EXT_NAT_T_DPORT:
3535 if (sav->natt_type == 0)
3536 continue;
3537 m = key_setsadbxport(
3538 key_portfromsaddr(&sav->sah->saidx.dst),
3539 SADB_X_EXT_NAT_T_DPORT);
3540 break;
3541
3542 case SADB_X_EXT_NAT_T_SPORT:
3543 if (sav->natt_type == 0)
3544 continue;
3545 m = key_setsadbxport(
3546 key_portfromsaddr(&sav->sah->saidx.src),
3547 SADB_X_EXT_NAT_T_SPORT);
3548 break;
3549
3550 case SADB_X_EXT_NAT_T_FRAG:
3551 /* don't send frag info if not set */
3552 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3553 continue;
3554 m = key_setsadbxfrag(sav->esp_frag);
3555 break;
3556
3557 case SADB_X_EXT_NAT_T_OAI:
3558 case SADB_X_EXT_NAT_T_OAR:
3559 continue;
3560
3561 case SADB_EXT_ADDRESS_PROXY:
3562 case SADB_EXT_IDENTITY_SRC:
3563 case SADB_EXT_IDENTITY_DST:
3564 /* XXX: should we brought from SPD ? */
3565 case SADB_EXT_SENSITIVITY:
3566 default:
3567 continue;
3568 }
3569
3570 KASSERT(!(m && p));
3571 if (!m && !p)
3572 goto fail;
3573 if (p && tres) {
3574 M_PREPEND(tres, l, M_DONTWAIT);
3575 if (!tres)
3576 goto fail;
3577 memcpy(mtod(tres, void *), p, l);
3578 continue;
3579 }
3580 if (p) {
3581 m = key_alloc_mbuf(l);
3582 if (!m)
3583 goto fail;
3584 m_copyback(m, 0, l, p);
3585 }
3586
3587 if (tres)
3588 m_cat(m, tres);
3589 tres = m;
3590 }
3591
3592 m_cat(result, tres);
3593 tres = NULL; /* avoid free on error below */
3594
3595 if (result->m_len < sizeof(struct sadb_msg)) {
3596 result = m_pullup(result, sizeof(struct sadb_msg));
3597 if (result == NULL)
3598 goto fail;
3599 }
3600
3601 result->m_pkthdr.len = 0;
3602 for (m = result; m; m = m->m_next)
3603 result->m_pkthdr.len += m->m_len;
3604
3605 mtod(result, struct sadb_msg *)->sadb_msg_len =
3606 PFKEY_UNIT64(result->m_pkthdr.len);
3607
3608 return result;
3609
3610 fail:
3611 m_freem(result);
3612 m_freem(tres);
3613 return NULL;
3614 }
3615
3616
3617 /*
3618 * set a type in sadb_x_nat_t_type
3619 */
3620 static struct mbuf *
3621 key_setsadbxtype(u_int16_t type)
3622 {
3623 struct mbuf *m;
3624 size_t len;
3625 struct sadb_x_nat_t_type *p;
3626
3627 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3628
3629 m = key_alloc_mbuf(len);
3630 if (!m || m->m_next) { /*XXX*/
3631 if (m)
3632 m_freem(m);
3633 return NULL;
3634 }
3635
3636 p = mtod(m, struct sadb_x_nat_t_type *);
3637
3638 memset(p, 0, len);
3639 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3640 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3641 p->sadb_x_nat_t_type_type = type;
3642
3643 return m;
3644 }
3645 /*
3646 * set a port in sadb_x_nat_t_port. port is in network order
3647 */
3648 static struct mbuf *
3649 key_setsadbxport(u_int16_t port, u_int16_t type)
3650 {
3651 struct mbuf *m;
3652 size_t len;
3653 struct sadb_x_nat_t_port *p;
3654
3655 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3656
3657 m = key_alloc_mbuf(len);
3658 if (!m || m->m_next) { /*XXX*/
3659 if (m)
3660 m_freem(m);
3661 return NULL;
3662 }
3663
3664 p = mtod(m, struct sadb_x_nat_t_port *);
3665
3666 memset(p, 0, len);
3667 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3668 p->sadb_x_nat_t_port_exttype = type;
3669 p->sadb_x_nat_t_port_port = port;
3670
3671 return m;
3672 }
3673
3674 /*
3675 * set fragmentation info in sadb_x_nat_t_frag
3676 */
3677 static struct mbuf *
3678 key_setsadbxfrag(u_int16_t flen)
3679 {
3680 struct mbuf *m;
3681 size_t len;
3682 struct sadb_x_nat_t_frag *p;
3683
3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3685
3686 m = key_alloc_mbuf(len);
3687 if (!m || m->m_next) { /*XXX*/
3688 if (m)
3689 m_freem(m);
3690 return NULL;
3691 }
3692
3693 p = mtod(m, struct sadb_x_nat_t_frag *);
3694
3695 memset(p, 0, len);
3696 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3697 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3698 p->sadb_x_nat_t_frag_fraglen = flen;
3699
3700 return m;
3701 }
3702
3703 /*
3704 * Get port from sockaddr, port is in network order
3705 */
3706 u_int16_t
3707 key_portfromsaddr(const union sockaddr_union *saddr)
3708 {
3709 u_int16_t port;
3710
3711 switch (saddr->sa.sa_family) {
3712 case AF_INET: {
3713 port = saddr->sin.sin_port;
3714 break;
3715 }
3716 #ifdef INET6
3717 case AF_INET6: {
3718 port = saddr->sin6.sin6_port;
3719 break;
3720 }
3721 #endif
3722 default:
3723 printf("%s: unexpected address family\n", __func__);
3724 port = 0;
3725 break;
3726 }
3727
3728 return port;
3729 }
3730
3731
3732 /*
3733 * Set port is struct sockaddr. port is in network order
3734 */
3735 static void
3736 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3737 {
3738 switch (saddr->sa.sa_family) {
3739 case AF_INET: {
3740 saddr->sin.sin_port = port;
3741 break;
3742 }
3743 #ifdef INET6
3744 case AF_INET6: {
3745 saddr->sin6.sin6_port = port;
3746 break;
3747 }
3748 #endif
3749 default:
3750 printf("%s: unexpected address family %d\n", __func__,
3751 saddr->sa.sa_family);
3752 break;
3753 }
3754
3755 return;
3756 }
3757
3758 /*
3759 * Safety check sa_len
3760 */
3761 static int
3762 key_checksalen(const union sockaddr_union *saddr)
3763 {
3764 switch (saddr->sa.sa_family) {
3765 case AF_INET:
3766 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3767 return -1;
3768 break;
3769 #ifdef INET6
3770 case AF_INET6:
3771 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3772 return -1;
3773 break;
3774 #endif
3775 default:
3776 printf("%s: unexpected sa_family %d\n", __func__,
3777 saddr->sa.sa_family);
3778 return -1;
3779 break;
3780 }
3781 return 0;
3782 }
3783
3784
3785 /*
3786 * set data into sadb_msg.
3787 */
3788 static struct mbuf *
3789 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3790 u_int32_t seq, pid_t pid, u_int16_t reserved)
3791 {
3792 struct mbuf *m;
3793 struct sadb_msg *p;
3794 int len;
3795
3796 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3797
3798 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3799
3800 MGETHDR(m, M_DONTWAIT, MT_DATA);
3801 if (m && len > MHLEN) {
3802 MCLGET(m, M_DONTWAIT);
3803 if ((m->m_flags & M_EXT) == 0) {
3804 m_freem(m);
3805 m = NULL;
3806 }
3807 }
3808 if (!m)
3809 return NULL;
3810 m->m_pkthdr.len = m->m_len = len;
3811 m->m_next = NULL;
3812
3813 p = mtod(m, struct sadb_msg *);
3814
3815 memset(p, 0, len);
3816 p->sadb_msg_version = PF_KEY_V2;
3817 p->sadb_msg_type = type;
3818 p->sadb_msg_errno = 0;
3819 p->sadb_msg_satype = satype;
3820 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3821 p->sadb_msg_reserved = reserved;
3822 p->sadb_msg_seq = seq;
3823 p->sadb_msg_pid = (u_int32_t)pid;
3824
3825 return m;
3826 }
3827
3828 /*
3829 * copy secasvar data into sadb_address.
3830 */
3831 static struct mbuf *
3832 key_setsadbsa(struct secasvar *sav)
3833 {
3834 struct mbuf *m;
3835 struct sadb_sa *p;
3836 int len;
3837
3838 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3839 m = key_alloc_mbuf(len);
3840 if (!m || m->m_next) { /*XXX*/
3841 if (m)
3842 m_freem(m);
3843 return NULL;
3844 }
3845
3846 p = mtod(m, struct sadb_sa *);
3847
3848 memset(p, 0, len);
3849 p->sadb_sa_len = PFKEY_UNIT64(len);
3850 p->sadb_sa_exttype = SADB_EXT_SA;
3851 p->sadb_sa_spi = sav->spi;
3852 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3853 p->sadb_sa_state = sav->state;
3854 p->sadb_sa_auth = sav->alg_auth;
3855 p->sadb_sa_encrypt = sav->alg_enc;
3856 p->sadb_sa_flags = sav->flags;
3857
3858 return m;
3859 }
3860
3861 /*
3862 * set data into sadb_address.
3863 */
3864 static struct mbuf *
3865 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3866 u_int8_t prefixlen, u_int16_t ul_proto)
3867 {
3868 struct mbuf *m;
3869 struct sadb_address *p;
3870 size_t len;
3871
3872 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3873 PFKEY_ALIGN8(saddr->sa_len);
3874 m = key_alloc_mbuf(len);
3875 if (!m || m->m_next) { /*XXX*/
3876 if (m)
3877 m_freem(m);
3878 return NULL;
3879 }
3880
3881 p = mtod(m, struct sadb_address *);
3882
3883 memset(p, 0, len);
3884 p->sadb_address_len = PFKEY_UNIT64(len);
3885 p->sadb_address_exttype = exttype;
3886 p->sadb_address_proto = ul_proto;
3887 if (prefixlen == FULLMASK) {
3888 switch (saddr->sa_family) {
3889 case AF_INET:
3890 prefixlen = sizeof(struct in_addr) << 3;
3891 break;
3892 case AF_INET6:
3893 prefixlen = sizeof(struct in6_addr) << 3;
3894 break;
3895 default:
3896 ; /*XXX*/
3897 }
3898 }
3899 p->sadb_address_prefixlen = prefixlen;
3900 p->sadb_address_reserved = 0;
3901
3902 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3903 saddr, saddr->sa_len);
3904
3905 return m;
3906 }
3907
3908 #if 0
3909 /*
3910 * set data into sadb_ident.
3911 */
3912 static struct mbuf *
3913 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3914 void *string, int stringlen, u_int64_t id)
3915 {
3916 struct mbuf *m;
3917 struct sadb_ident *p;
3918 size_t len;
3919
3920 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3921 m = key_alloc_mbuf(len);
3922 if (!m || m->m_next) { /*XXX*/
3923 if (m)
3924 m_freem(m);
3925 return NULL;
3926 }
3927
3928 p = mtod(m, struct sadb_ident *);
3929
3930 memset(p, 0, len);
3931 p->sadb_ident_len = PFKEY_UNIT64(len);
3932 p->sadb_ident_exttype = exttype;
3933 p->sadb_ident_type = idtype;
3934 p->sadb_ident_reserved = 0;
3935 p->sadb_ident_id = id;
3936
3937 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3938 string, stringlen);
3939
3940 return m;
3941 }
3942 #endif
3943
3944 /*
3945 * set data into sadb_x_sa2.
3946 */
3947 static struct mbuf *
3948 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3949 {
3950 struct mbuf *m;
3951 struct sadb_x_sa2 *p;
3952 size_t len;
3953
3954 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3955 m = key_alloc_mbuf(len);
3956 if (!m || m->m_next) { /*XXX*/
3957 if (m)
3958 m_freem(m);
3959 return NULL;
3960 }
3961
3962 p = mtod(m, struct sadb_x_sa2 *);
3963
3964 memset(p, 0, len);
3965 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3966 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3967 p->sadb_x_sa2_mode = mode;
3968 p->sadb_x_sa2_reserved1 = 0;
3969 p->sadb_x_sa2_reserved2 = 0;
3970 p->sadb_x_sa2_sequence = seq;
3971 p->sadb_x_sa2_reqid = reqid;
3972
3973 return m;
3974 }
3975
3976 /*
3977 * set data into sadb_x_policy
3978 */
3979 static struct mbuf *
3980 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3981 {
3982 struct mbuf *m;
3983 struct sadb_x_policy *p;
3984 size_t len;
3985
3986 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3987 m = key_alloc_mbuf(len);
3988 if (!m || m->m_next) { /*XXX*/
3989 if (m)
3990 m_freem(m);
3991 return NULL;
3992 }
3993
3994 p = mtod(m, struct sadb_x_policy *);
3995
3996 memset(p, 0, len);
3997 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3998 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3999 p->sadb_x_policy_type = type;
4000 p->sadb_x_policy_dir = dir;
4001 p->sadb_x_policy_id = id;
4002
4003 return m;
4004 }
4005
4006 /* %%% utilities */
4007 /*
4008 * copy a buffer into the new buffer allocated.
4009 */
4010 static void *
4011 key_newbuf(const void *src, u_int len)
4012 {
4013 void *new;
4014
4015 new = kmem_alloc(len, KM_SLEEP);
4016 memcpy(new, src, len);
4017
4018 return new;
4019 }
4020
4021 /* compare my own address
4022 * OUT: 1: true, i.e. my address.
4023 * 0: false
4024 */
4025 int
4026 key_ismyaddr(const struct sockaddr *sa)
4027 {
4028 #ifdef INET
4029 const struct sockaddr_in *sin;
4030 const struct in_ifaddr *ia;
4031 int s;
4032 #endif
4033
4034 KASSERT(sa != NULL);
4035
4036 switch (sa->sa_family) {
4037 #ifdef INET
4038 case AF_INET:
4039 sin = (const struct sockaddr_in *)sa;
4040 s = pserialize_read_enter();
4041 IN_ADDRLIST_READER_FOREACH(ia) {
4042 if (sin->sin_family == ia->ia_addr.sin_family &&
4043 sin->sin_len == ia->ia_addr.sin_len &&
4044 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4045 {
4046 pserialize_read_exit(s);
4047 return 1;
4048 }
4049 }
4050 pserialize_read_exit(s);
4051 break;
4052 #endif
4053 #ifdef INET6
4054 case AF_INET6:
4055 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4056 #endif
4057 }
4058
4059 return 0;
4060 }
4061
4062 #ifdef INET6
4063 /*
4064 * compare my own address for IPv6.
4065 * 1: ours
4066 * 0: other
4067 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4068 */
4069 #include <netinet6/in6_var.h>
4070
4071 static int
4072 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4073 {
4074 struct in6_ifaddr *ia;
4075 int s;
4076 struct psref psref;
4077 int bound;
4078 int ours = 1;
4079
4080 bound = curlwp_bind();
4081 s = pserialize_read_enter();
4082 IN6_ADDRLIST_READER_FOREACH(ia) {
4083 bool ingroup;
4084
4085 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4086 (const struct sockaddr *)&ia->ia_addr, 0)) {
4087 pserialize_read_exit(s);
4088 goto ours;
4089 }
4090 ia6_acquire(ia, &psref);
4091 pserialize_read_exit(s);
4092
4093 /*
4094 * XXX Multicast
4095 * XXX why do we care about multlicast here while we don't care
4096 * about IPv4 multicast??
4097 * XXX scope
4098 */
4099 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4100 if (ingroup) {
4101 ia6_release(ia, &psref);
4102 goto ours;
4103 }
4104
4105 s = pserialize_read_enter();
4106 ia6_release(ia, &psref);
4107 }
4108 pserialize_read_exit(s);
4109
4110 /* loopback, just for safety */
4111 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4112 goto ours;
4113
4114 ours = 0;
4115 ours:
4116 curlwp_bindx(bound);
4117
4118 return ours;
4119 }
4120 #endif /*INET6*/
4121
4122 /*
4123 * compare two secasindex structure.
4124 * flag can specify to compare 2 saidxes.
4125 * compare two secasindex structure without both mode and reqid.
4126 * don't compare port.
4127 * IN:
4128 * saidx0: source, it can be in SAD.
4129 * saidx1: object.
4130 * OUT:
4131 * 1 : equal
4132 * 0 : not equal
4133 */
4134 static int
4135 key_saidx_match(
4136 const struct secasindex *saidx0,
4137 const struct secasindex *saidx1,
4138 int flag)
4139 {
4140 int chkport;
4141 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4142
4143 KASSERT(saidx0 != NULL);
4144 KASSERT(saidx1 != NULL);
4145
4146 /* sanity */
4147 if (saidx0->proto != saidx1->proto)
4148 return 0;
4149
4150 if (flag == CMP_EXACTLY) {
4151 if (saidx0->mode != saidx1->mode)
4152 return 0;
4153 if (saidx0->reqid != saidx1->reqid)
4154 return 0;
4155 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4156 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4157 return 0;
4158 } else {
4159
4160 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4161 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4162 /*
4163 * If reqid of SPD is non-zero, unique SA is required.
4164 * The result must be of same reqid in this case.
4165 */
4166 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4167 return 0;
4168 }
4169
4170 if (flag == CMP_MODE_REQID) {
4171 if (saidx0->mode != IPSEC_MODE_ANY &&
4172 saidx0->mode != saidx1->mode)
4173 return 0;
4174 }
4175
4176
4177 sa0src = &saidx0->src.sa;
4178 sa0dst = &saidx0->dst.sa;
4179 sa1src = &saidx1->src.sa;
4180 sa1dst = &saidx1->dst.sa;
4181 /*
4182 * If NAT-T is enabled, check ports for tunnel mode.
4183 * Don't do it for transport mode, as there is no
4184 * port information available in the SP.
4185 * Also don't check ports if they are set to zero
4186 * in the SPD: This means we have a non-generated
4187 * SPD which can't know UDP ports.
4188 */
4189 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4190 chkport = PORT_LOOSE;
4191 else
4192 chkport = PORT_NONE;
4193
4194 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4195 return 0;
4196 }
4197 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4198 return 0;
4199 }
4200 }
4201
4202 return 1;
4203 }
4204
4205 /*
4206 * compare two secindex structure exactly.
4207 * IN:
4208 * spidx0: source, it is often in SPD.
4209 * spidx1: object, it is often from PFKEY message.
4210 * OUT:
4211 * 1 : equal
4212 * 0 : not equal
4213 */
4214 static int
4215 key_spidx_match_exactly(
4216 const struct secpolicyindex *spidx0,
4217 const struct secpolicyindex *spidx1)
4218 {
4219
4220 KASSERT(spidx0 != NULL);
4221 KASSERT(spidx1 != NULL);
4222
4223 /* sanity */
4224 if (spidx0->prefs != spidx1->prefs ||
4225 spidx0->prefd != spidx1->prefd ||
4226 spidx0->ul_proto != spidx1->ul_proto)
4227 return 0;
4228
4229 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4230 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4231 }
4232
4233 /*
4234 * compare two secindex structure with mask.
4235 * IN:
4236 * spidx0: source, it is often in SPD.
4237 * spidx1: object, it is often from IP header.
4238 * OUT:
4239 * 1 : equal
4240 * 0 : not equal
4241 */
4242 static int
4243 key_spidx_match_withmask(
4244 const struct secpolicyindex *spidx0,
4245 const struct secpolicyindex *spidx1)
4246 {
4247
4248 KASSERT(spidx0 != NULL);
4249 KASSERT(spidx1 != NULL);
4250
4251 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4252 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4253 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4254 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4255 return 0;
4256
4257 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4258 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4259 spidx0->ul_proto != spidx1->ul_proto)
4260 return 0;
4261
4262 switch (spidx0->src.sa.sa_family) {
4263 case AF_INET:
4264 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4265 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4266 return 0;
4267 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4268 &spidx1->src.sin.sin_addr, spidx0->prefs))
4269 return 0;
4270 break;
4271 case AF_INET6:
4272 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4273 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4274 return 0;
4275 /*
4276 * scope_id check. if sin6_scope_id is 0, we regard it
4277 * as a wildcard scope, which matches any scope zone ID.
4278 */
4279 if (spidx0->src.sin6.sin6_scope_id &&
4280 spidx1->src.sin6.sin6_scope_id &&
4281 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4282 return 0;
4283 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4284 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4285 return 0;
4286 break;
4287 default:
4288 /* XXX */
4289 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4290 return 0;
4291 break;
4292 }
4293
4294 switch (spidx0->dst.sa.sa_family) {
4295 case AF_INET:
4296 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4297 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4298 return 0;
4299 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4300 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4301 return 0;
4302 break;
4303 case AF_INET6:
4304 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4305 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4306 return 0;
4307 /*
4308 * scope_id check. if sin6_scope_id is 0, we regard it
4309 * as a wildcard scope, which matches any scope zone ID.
4310 */
4311 if (spidx0->src.sin6.sin6_scope_id &&
4312 spidx1->src.sin6.sin6_scope_id &&
4313 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4314 return 0;
4315 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4316 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4317 return 0;
4318 break;
4319 default:
4320 /* XXX */
4321 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4322 return 0;
4323 break;
4324 }
4325
4326 /* XXX Do we check other field ? e.g. flowinfo */
4327
4328 return 1;
4329 }
4330
4331 /* returns 0 on match */
4332 static int
4333 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4334 {
4335 switch (howport) {
4336 case PORT_NONE:
4337 return 0;
4338 case PORT_LOOSE:
4339 if (port1 == 0 || port2 == 0)
4340 return 0;
4341 /*FALLTHROUGH*/
4342 case PORT_STRICT:
4343 if (port1 != port2) {
4344 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4345 "port fail %d != %d\n", port1, port2);
4346 return 1;
4347 }
4348 return 0;
4349 default:
4350 KASSERT(0);
4351 return 1;
4352 }
4353 }
4354
4355 /* returns 1 on match */
4356 static int
4357 key_sockaddr_match(
4358 const struct sockaddr *sa1,
4359 const struct sockaddr *sa2,
4360 int howport)
4361 {
4362 const struct sockaddr_in *sin1, *sin2;
4363 const struct sockaddr_in6 *sin61, *sin62;
4364
4365 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4366 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4367 "fam/len fail %d != %d || %d != %d\n",
4368 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4369 sa2->sa_len);
4370 return 0;
4371 }
4372
4373 switch (sa1->sa_family) {
4374 case AF_INET:
4375 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4376 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4377 "len fail %d != %zu\n",
4378 sa1->sa_len, sizeof(struct sockaddr_in));
4379 return 0;
4380 }
4381 sin1 = (const struct sockaddr_in *)sa1;
4382 sin2 = (const struct sockaddr_in *)sa2;
4383 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4384 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4385 "addr fail %#x != %#x\n",
4386 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4387 return 0;
4388 }
4389 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4390 return 0;
4391 }
4392 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4393 "addr success %#x[%d] == %#x[%d]\n",
4394 sin1->sin_addr.s_addr, sin1->sin_port,
4395 sin2->sin_addr.s_addr, sin2->sin_port);
4396 break;
4397 case AF_INET6:
4398 sin61 = (const struct sockaddr_in6 *)sa1;
4399 sin62 = (const struct sockaddr_in6 *)sa2;
4400 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4401 return 0; /*EINVAL*/
4402
4403 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4404 return 0;
4405 }
4406 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4407 return 0;
4408 }
4409 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4410 return 0;
4411 }
4412 break;
4413 default:
4414 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4415 return 0;
4416 break;
4417 }
4418
4419 return 1;
4420 }
4421
4422 /*
4423 * compare two buffers with mask.
4424 * IN:
4425 * addr1: source
4426 * addr2: object
4427 * bits: Number of bits to compare
4428 * OUT:
4429 * 1 : equal
4430 * 0 : not equal
4431 */
4432 static int
4433 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4434 {
4435 const unsigned char *p1 = a1;
4436 const unsigned char *p2 = a2;
4437
4438 /* XXX: This could be considerably faster if we compare a word
4439 * at a time, but it is complicated on LSB Endian machines */
4440
4441 /* Handle null pointers */
4442 if (p1 == NULL || p2 == NULL)
4443 return (p1 == p2);
4444
4445 while (bits >= 8) {
4446 if (*p1++ != *p2++)
4447 return 0;
4448 bits -= 8;
4449 }
4450
4451 if (bits > 0) {
4452 u_int8_t mask = ~((1<<(8-bits))-1);
4453 if ((*p1 & mask) != (*p2 & mask))
4454 return 0;
4455 }
4456 return 1; /* Match! */
4457 }
4458
4459 static void
4460 key_timehandler_spd(time_t now)
4461 {
4462 u_int dir;
4463 struct secpolicy *sp;
4464
4465 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4466 retry:
4467 mutex_enter(&key_sp_mtx);
4468 SPLIST_WRITER_FOREACH(sp, dir) {
4469 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4470
4471 if (sp->lifetime == 0 && sp->validtime == 0)
4472 continue;
4473
4474 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4475 (sp->validtime && now - sp->lastused > sp->validtime)) {
4476 key_unlink_sp(sp);
4477 mutex_exit(&key_sp_mtx);
4478 key_spdexpire(sp);
4479 key_destroy_sp(sp);
4480 goto retry;
4481 }
4482 }
4483 mutex_exit(&key_sp_mtx);
4484 }
4485
4486 retry_socksplist:
4487 mutex_enter(&key_sp_mtx);
4488 SOCKSPLIST_WRITER_FOREACH(sp) {
4489 if (sp->state != IPSEC_SPSTATE_DEAD)
4490 continue;
4491
4492 key_unlink_sp(sp);
4493 mutex_exit(&key_sp_mtx);
4494 key_destroy_sp(sp);
4495 goto retry_socksplist;
4496 }
4497 mutex_exit(&key_sp_mtx);
4498 }
4499
4500 static void
4501 key_timehandler_sad(time_t now)
4502 {
4503 struct secashead *sah;
4504 struct secasvar *sav, *nextsav;
4505
4506 restart:
4507 SAHLIST_WRITER_FOREACH(sah) {
4508 /* if sah has been dead, then delete it and process next sah. */
4509 if (sah->state == SADB_SASTATE_DEAD) {
4510 key_delsah(sah);
4511 goto restart;
4512 }
4513
4514 /* if LARVAL entry doesn't become MATURE, delete it. */
4515 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL],
4516 chain, nextsav) {
4517 if (now - sav->created > key_larval_lifetime) {
4518 KEY_FREESAV(&sav);
4519 }
4520 }
4521
4522 /*
4523 * check MATURE entry to start to send expire message
4524 * whether or not.
4525 */
4526 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE],
4527 chain, nextsav) {
4528 /* we don't need to check. */
4529 if (sav->lft_s == NULL)
4530 continue;
4531
4532 /* sanity check */
4533 KASSERT(sav->lft_c != NULL);
4534
4535 /* check SOFT lifetime */
4536 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4537 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4538 /*
4539 * check SA to be used whether or not.
4540 * when SA hasn't been used, delete it.
4541 */
4542 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4543 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4544 KEY_FREESAV(&sav);
4545 } else {
4546 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4547 /*
4548 * XXX If we keep to send expire
4549 * message in the status of
4550 * DYING. Do remove below code.
4551 */
4552 key_expire(sav);
4553 }
4554 }
4555 /* check SOFT lifetime by bytes */
4556 /*
4557 * XXX I don't know the way to delete this SA
4558 * when new SA is installed. Caution when it's
4559 * installed too big lifetime by time.
4560 */
4561 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4562 sav->lft_s->sadb_lifetime_bytes <
4563 sav->lft_c->sadb_lifetime_bytes) {
4564
4565 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4566 /*
4567 * XXX If we keep to send expire
4568 * message in the status of
4569 * DYING. Do remove below code.
4570 */
4571 key_expire(sav);
4572 }
4573 }
4574
4575 /* check DYING entry to change status to DEAD. */
4576 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING],
4577 chain, nextsav) {
4578 /* we don't need to check. */
4579 if (sav->lft_h == NULL)
4580 continue;
4581
4582 /* sanity check */
4583 KASSERT(sav->lft_c != NULL);
4584
4585 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4586 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4587 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4588 KEY_FREESAV(&sav);
4589 }
4590 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4591 else if (sav->lft_s != NULL
4592 && sav->lft_s->sadb_lifetime_addtime != 0
4593 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4594 /*
4595 * XXX: should be checked to be
4596 * installed the valid SA.
4597 */
4598
4599 /*
4600 * If there is no SA then sending
4601 * expire message.
4602 */
4603 key_expire(sav);
4604 }
4605 #endif
4606 /* check HARD lifetime by bytes */
4607 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4608 sav->lft_h->sadb_lifetime_bytes <
4609 sav->lft_c->sadb_lifetime_bytes) {
4610 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4611 KEY_FREESAV(&sav);
4612 }
4613 }
4614
4615 /* delete entry in DEAD */
4616 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD],
4617 chain, nextsav) {
4618 /* sanity check */
4619 if (sav->state != SADB_SASTATE_DEAD) {
4620 IPSECLOG(LOG_DEBUG,
4621 "invalid sav->state (queue: %d SA: %d): "
4622 "kill it anyway\n",
4623 SADB_SASTATE_DEAD, sav->state);
4624 }
4625
4626 /*
4627 * do not call key_freesav() here.
4628 * sav should already be freed, and sav->refcnt
4629 * shows other references to sav
4630 * (such as from SPD).
4631 */
4632 }
4633 }
4634 }
4635
4636 static void
4637 key_timehandler_acq(time_t now)
4638 {
4639 #ifndef IPSEC_NONBLOCK_ACQUIRE
4640 struct secacq *acq, *nextacq;
4641
4642 restart:
4643 mutex_enter(&key_mtx);
4644 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4645 if (now - acq->created > key_blockacq_lifetime) {
4646 LIST_REMOVE(acq, chain);
4647 mutex_exit(&key_mtx);
4648 kmem_free(acq, sizeof(*acq));
4649 goto restart;
4650 }
4651 }
4652 mutex_exit(&key_mtx);
4653 #endif
4654 }
4655
4656 static void
4657 key_timehandler_spacq(time_t now)
4658 {
4659 #ifdef notyet
4660 struct secspacq *acq, *nextacq;
4661
4662 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4663 if (now - acq->created > key_blockacq_lifetime) {
4664 KASSERT(__LIST_CHAINED(acq));
4665 LIST_REMOVE(acq, chain);
4666 kmem_free(acq, sizeof(*acq));
4667 }
4668 }
4669 #endif
4670 }
4671
4672 /*
4673 * time handler.
4674 * scanning SPD and SAD to check status for each entries,
4675 * and do to remove or to expire.
4676 */
4677 static void
4678 key_timehandler_work(struct work *wk, void *arg)
4679 {
4680 time_t now = time_uptime;
4681 IPSEC_DECLARE_LOCK_VARIABLE;
4682
4683 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4684
4685 key_timehandler_spd(now);
4686 key_timehandler_sad(now);
4687 key_timehandler_acq(now);
4688 key_timehandler_spacq(now);
4689
4690 /* do exchange to tick time !! */
4691 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4692
4693 IPSEC_RELEASE_GLOBAL_LOCKS();
4694 return;
4695 }
4696
4697 static void
4698 key_timehandler(void *arg)
4699 {
4700
4701 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4702 }
4703
4704 u_long
4705 key_random(void)
4706 {
4707 u_long value;
4708
4709 key_randomfill(&value, sizeof(value));
4710 return value;
4711 }
4712
4713 void
4714 key_randomfill(void *p, size_t l)
4715 {
4716
4717 cprng_fast(p, l);
4718 }
4719
4720 /*
4721 * map SADB_SATYPE_* to IPPROTO_*.
4722 * if satype == SADB_SATYPE then satype is mapped to ~0.
4723 * OUT:
4724 * 0: invalid satype.
4725 */
4726 static u_int16_t
4727 key_satype2proto(u_int8_t satype)
4728 {
4729 switch (satype) {
4730 case SADB_SATYPE_UNSPEC:
4731 return IPSEC_PROTO_ANY;
4732 case SADB_SATYPE_AH:
4733 return IPPROTO_AH;
4734 case SADB_SATYPE_ESP:
4735 return IPPROTO_ESP;
4736 case SADB_X_SATYPE_IPCOMP:
4737 return IPPROTO_IPCOMP;
4738 case SADB_X_SATYPE_TCPSIGNATURE:
4739 return IPPROTO_TCP;
4740 default:
4741 return 0;
4742 }
4743 /* NOTREACHED */
4744 }
4745
4746 /*
4747 * map IPPROTO_* to SADB_SATYPE_*
4748 * OUT:
4749 * 0: invalid protocol type.
4750 */
4751 static u_int8_t
4752 key_proto2satype(u_int16_t proto)
4753 {
4754 switch (proto) {
4755 case IPPROTO_AH:
4756 return SADB_SATYPE_AH;
4757 case IPPROTO_ESP:
4758 return SADB_SATYPE_ESP;
4759 case IPPROTO_IPCOMP:
4760 return SADB_X_SATYPE_IPCOMP;
4761 case IPPROTO_TCP:
4762 return SADB_X_SATYPE_TCPSIGNATURE;
4763 default:
4764 return 0;
4765 }
4766 /* NOTREACHED */
4767 }
4768
4769 static int
4770 key_setsecasidx(int proto, int mode, int reqid,
4771 const struct sockaddr *src, const struct sockaddr *dst,
4772 struct secasindex * saidx)
4773 {
4774 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4775 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4776
4777 /* sa len safety check */
4778 if (key_checksalen(src_u) != 0)
4779 return -1;
4780 if (key_checksalen(dst_u) != 0)
4781 return -1;
4782
4783 memset(saidx, 0, sizeof(*saidx));
4784 saidx->proto = proto;
4785 saidx->mode = mode;
4786 saidx->reqid = reqid;
4787 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4788 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4789
4790 key_porttosaddr(&((saidx)->src), 0);
4791 key_porttosaddr(&((saidx)->dst), 0);
4792 return 0;
4793 }
4794
4795 static void
4796 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4797 const struct sadb_msghdr *mhp)
4798 {
4799 const struct sadb_address *src0, *dst0;
4800 const struct sockaddr *src, *dst;
4801 const struct sadb_x_policy *xpl0;
4802
4803 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4804 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4805 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4806 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4807 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4808
4809 memset(spidx, 0, sizeof(*spidx));
4810 spidx->dir = xpl0->sadb_x_policy_dir;
4811 spidx->prefs = src0->sadb_address_prefixlen;
4812 spidx->prefd = dst0->sadb_address_prefixlen;
4813 spidx->ul_proto = src0->sadb_address_proto;
4814 /* XXX boundary check against sa_len */
4815 memcpy(&spidx->src, src, src->sa_len);
4816 memcpy(&spidx->dst, dst, dst->sa_len);
4817 }
4818
4819 /* %%% PF_KEY */
4820 /*
4821 * SADB_GETSPI processing is to receive
4822 * <base, (SA2), src address, dst address, (SPI range)>
4823 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4824 * tree with the status of LARVAL, and send
4825 * <base, SA(*), address(SD)>
4826 * to the IKMPd.
4827 *
4828 * IN: mhp: pointer to the pointer to each header.
4829 * OUT: NULL if fail.
4830 * other if success, return pointer to the message to send.
4831 */
4832 static int
4833 key_api_getspi(struct socket *so, struct mbuf *m,
4834 const struct sadb_msghdr *mhp)
4835 {
4836 const struct sockaddr *src, *dst;
4837 struct secasindex saidx;
4838 struct secashead *newsah;
4839 struct secasvar *newsav;
4840 u_int8_t proto;
4841 u_int32_t spi;
4842 u_int8_t mode;
4843 u_int16_t reqid;
4844 int error;
4845
4846 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4847 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4848 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4849 return key_senderror(so, m, EINVAL);
4850 }
4851 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4852 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4853 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4854 return key_senderror(so, m, EINVAL);
4855 }
4856 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4857 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4858 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4859 } else {
4860 mode = IPSEC_MODE_ANY;
4861 reqid = 0;
4862 }
4863
4864 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4865 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4866
4867 /* map satype to proto */
4868 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4869 if (proto == 0) {
4870 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4871 return key_senderror(so, m, EINVAL);
4872 }
4873
4874
4875 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4876 if (error != 0)
4877 return key_senderror(so, m, EINVAL);
4878
4879 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4880 if (error != 0)
4881 return key_senderror(so, m, EINVAL);
4882
4883 /* SPI allocation */
4884 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4885 &saidx);
4886 if (spi == 0)
4887 return key_senderror(so, m, EINVAL);
4888
4889 /* get a SA index */
4890 newsah = key_getsah(&saidx, CMP_REQID);
4891 if (newsah == NULL) {
4892 /* create a new SA index */
4893 newsah = key_newsah(&saidx);
4894 if (newsah == NULL) {
4895 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4896 return key_senderror(so, m, ENOBUFS);
4897 }
4898 }
4899
4900 /* get a new SA */
4901 /* XXX rewrite */
4902 newsav = KEY_NEWSAV(m, mhp, &error);
4903 if (newsav == NULL) {
4904 /* XXX don't free new SA index allocated in above. */
4905 return key_senderror(so, m, error);
4906 }
4907
4908 /* set spi */
4909 newsav->spi = htonl(spi);
4910
4911 /* add to satree */
4912 newsav->refcnt = 1;
4913 newsav->sah = newsah;
4914 newsav->state = SADB_SASTATE_LARVAL;
4915 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_LARVAL], newsav,
4916 secasvar, chain);
4917 key_validate_savlist(newsah, SADB_SASTATE_LARVAL);
4918
4919 #ifndef IPSEC_NONBLOCK_ACQUIRE
4920 /* delete the entry in acqtree */
4921 if (mhp->msg->sadb_msg_seq != 0) {
4922 struct secacq *acq;
4923 mutex_enter(&key_mtx);
4924 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4925 if (acq != NULL) {
4926 /* reset counter in order to deletion by timehandler. */
4927 acq->created = time_uptime;
4928 acq->count = 0;
4929 }
4930 mutex_exit(&key_mtx);
4931 }
4932 #endif
4933
4934 {
4935 struct mbuf *n, *nn;
4936 struct sadb_sa *m_sa;
4937 int off, len;
4938
4939 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4940 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4941
4942 /* create new sadb_msg to reply. */
4943 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4944 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4945
4946 MGETHDR(n, M_DONTWAIT, MT_DATA);
4947 if (len > MHLEN) {
4948 MCLGET(n, M_DONTWAIT);
4949 if ((n->m_flags & M_EXT) == 0) {
4950 m_freem(n);
4951 n = NULL;
4952 }
4953 }
4954 if (!n)
4955 return key_senderror(so, m, ENOBUFS);
4956
4957 n->m_len = len;
4958 n->m_next = NULL;
4959 off = 0;
4960
4961 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4962 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4963
4964 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4965 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4966 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4967 m_sa->sadb_sa_spi = htonl(spi);
4968 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4969
4970 KASSERTMSG(off == len, "length inconsistency");
4971
4972 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4973 SADB_EXT_ADDRESS_DST);
4974 if (!n->m_next) {
4975 m_freem(n);
4976 return key_senderror(so, m, ENOBUFS);
4977 }
4978
4979 if (n->m_len < sizeof(struct sadb_msg)) {
4980 n = m_pullup(n, sizeof(struct sadb_msg));
4981 if (n == NULL)
4982 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4983 }
4984
4985 n->m_pkthdr.len = 0;
4986 for (nn = n; nn; nn = nn->m_next)
4987 n->m_pkthdr.len += nn->m_len;
4988
4989 key_fill_replymsg(n, newsav->seq);
4990
4991 m_freem(m);
4992 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4993 }
4994 }
4995
4996 /*
4997 * allocating new SPI
4998 * called by key_api_getspi().
4999 * OUT:
5000 * 0: failure.
5001 * others: success.
5002 */
5003 static u_int32_t
5004 key_do_getnewspi(const struct sadb_spirange *spirange,
5005 const struct secasindex *saidx)
5006 {
5007 u_int32_t newspi;
5008 u_int32_t spmin, spmax;
5009 int count = key_spi_trycnt;
5010
5011 /* set spi range to allocate */
5012 if (spirange != NULL) {
5013 spmin = spirange->sadb_spirange_min;
5014 spmax = spirange->sadb_spirange_max;
5015 } else {
5016 spmin = key_spi_minval;
5017 spmax = key_spi_maxval;
5018 }
5019 /* IPCOMP needs 2-byte SPI */
5020 if (saidx->proto == IPPROTO_IPCOMP) {
5021 u_int32_t t;
5022 if (spmin >= 0x10000)
5023 spmin = 0xffff;
5024 if (spmax >= 0x10000)
5025 spmax = 0xffff;
5026 if (spmin > spmax) {
5027 t = spmin; spmin = spmax; spmax = t;
5028 }
5029 }
5030
5031 if (spmin == spmax) {
5032 if (key_checkspidup(saidx, htonl(spmin))) {
5033 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5034 return 0;
5035 }
5036
5037 count--; /* taking one cost. */
5038 newspi = spmin;
5039
5040 } else {
5041
5042 /* init SPI */
5043 newspi = 0;
5044
5045 /* when requesting to allocate spi ranged */
5046 while (count--) {
5047 /* generate pseudo-random SPI value ranged. */
5048 newspi = spmin + (key_random() % (spmax - spmin + 1));
5049
5050 if (!key_checkspidup(saidx, htonl(newspi)))
5051 break;
5052 }
5053
5054 if (count == 0 || newspi == 0) {
5055 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5056 return 0;
5057 }
5058 }
5059
5060 /* statistics */
5061 keystat.getspi_count =
5062 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5063
5064 return newspi;
5065 }
5066
5067 static int
5068 key_handle_natt_info(struct secasvar *sav,
5069 const struct sadb_msghdr *mhp)
5070 {
5071 const char *msg = "?" ;
5072 struct sadb_x_nat_t_type *type;
5073 struct sadb_x_nat_t_port *sport, *dport;
5074 struct sadb_address *iaddr, *raddr;
5075 struct sadb_x_nat_t_frag *frag;
5076
5077 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5078 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5079 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5080 return 0;
5081
5082 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5083 msg = "TYPE";
5084 goto bad;
5085 }
5086
5087 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5088 msg = "SPORT";
5089 goto bad;
5090 }
5091
5092 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5093 msg = "DPORT";
5094 goto bad;
5095 }
5096
5097 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5098 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5099 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5100 msg = "OAI";
5101 goto bad;
5102 }
5103 }
5104
5105 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5106 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5107 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5108 msg = "OAR";
5109 goto bad;
5110 }
5111 }
5112
5113 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5114 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5115 msg = "FRAG";
5116 goto bad;
5117 }
5118 }
5119
5120 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5121 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5122 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5123 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5124 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5125 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5126
5127 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5128 type->sadb_x_nat_t_type_type,
5129 ntohs(sport->sadb_x_nat_t_port_port),
5130 ntohs(dport->sadb_x_nat_t_port_port));
5131
5132 sav->natt_type = type->sadb_x_nat_t_type_type;
5133 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5134 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5135 if (frag)
5136 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5137 else
5138 sav->esp_frag = IP_MAXPACKET;
5139
5140 return 0;
5141 bad:
5142 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5143 __USE(msg);
5144 return -1;
5145 }
5146
5147 /* Just update the IPSEC_NAT_T ports if present */
5148 static int
5149 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5150 const struct sadb_msghdr *mhp)
5151 {
5152 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5153 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5154 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5155 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5156
5157 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5158 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5159 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5160 struct sadb_x_nat_t_type *type;
5161 struct sadb_x_nat_t_port *sport;
5162 struct sadb_x_nat_t_port *dport;
5163
5164 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5165 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5166 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5167 IPSECLOG(LOG_DEBUG, "invalid message\n");
5168 return -1;
5169 }
5170
5171 type = (struct sadb_x_nat_t_type *)
5172 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5173 sport = (struct sadb_x_nat_t_port *)
5174 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5175 dport = (struct sadb_x_nat_t_port *)
5176 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5177
5178 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5179 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5180
5181 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5182 type->sadb_x_nat_t_type_type,
5183 ntohs(sport->sadb_x_nat_t_port_port),
5184 ntohs(dport->sadb_x_nat_t_port_port));
5185 }
5186
5187 return 0;
5188 }
5189
5190
5191 /*
5192 * SADB_UPDATE processing
5193 * receive
5194 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5195 * key(AE), (identity(SD),) (sensitivity)>
5196 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5197 * and send
5198 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5199 * (identity(SD),) (sensitivity)>
5200 * to the ikmpd.
5201 *
5202 * m will always be freed.
5203 */
5204 static int
5205 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5206 {
5207 struct sadb_sa *sa0;
5208 const struct sockaddr *src, *dst;
5209 struct secasindex saidx;
5210 struct secashead *sah;
5211 struct secasvar *sav, *newsav;
5212 u_int16_t proto;
5213 u_int8_t mode;
5214 u_int16_t reqid;
5215 int error;
5216
5217 /* map satype to proto */
5218 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5219 if (proto == 0) {
5220 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5221 return key_senderror(so, m, EINVAL);
5222 }
5223
5224 if (mhp->ext[SADB_EXT_SA] == NULL ||
5225 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5226 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5227 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5228 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5229 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5230 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5231 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5232 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5233 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5234 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5235 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5236 return key_senderror(so, m, EINVAL);
5237 }
5238 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5239 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5240 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5241 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5242 return key_senderror(so, m, EINVAL);
5243 }
5244 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5245 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5246 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5247 } else {
5248 mode = IPSEC_MODE_ANY;
5249 reqid = 0;
5250 }
5251 /* XXX boundary checking for other extensions */
5252
5253 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5254 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5255 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5256
5257 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5258 if (error != 0)
5259 return key_senderror(so, m, EINVAL);
5260
5261 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5262 if (error != 0)
5263 return key_senderror(so, m, EINVAL);
5264
5265 /* get a SA header */
5266 sah = key_getsah(&saidx, CMP_REQID);
5267 if (sah == NULL) {
5268 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5269 return key_senderror(so, m, ENOENT);
5270 }
5271
5272 /* set spidx if there */
5273 /* XXX rewrite */
5274 error = key_setident(sah, m, mhp);
5275 if (error)
5276 return key_senderror(so, m, error);
5277
5278 /* find a SA with sequence number. */
5279 #ifdef IPSEC_DOSEQCHECK
5280 if (mhp->msg->sadb_msg_seq != 0) {
5281 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5282 if (sav == NULL) {
5283 IPSECLOG(LOG_DEBUG,
5284 "no larval SA with sequence %u exists.\n",
5285 mhp->msg->sadb_msg_seq);
5286 return key_senderror(so, m, ENOENT);
5287 }
5288 }
5289 #else
5290 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5291 if (sav == NULL) {
5292 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5293 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5294 return key_senderror(so, m, EINVAL);
5295 }
5296 #endif
5297
5298 /* validity check */
5299 if (sav->sah->saidx.proto != proto) {
5300 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5301 sav->sah->saidx.proto, proto);
5302 error = EINVAL;
5303 goto error;
5304 }
5305 #ifdef IPSEC_DOSEQCHECK
5306 if (sav->spi != sa0->sadb_sa_spi) {
5307 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5308 (u_int32_t)ntohl(sav->spi),
5309 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5310 error = EINVAL;
5311 goto error;
5312 }
5313 #endif
5314 if (sav->pid != mhp->msg->sadb_msg_pid) {
5315 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5316 sav->pid, mhp->msg->sadb_msg_pid);
5317 error = EINVAL;
5318 goto error;
5319 }
5320
5321 /*
5322 * Allocate a new SA instead of modifying the existing SA directly
5323 * to avoid race conditions.
5324 */
5325 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5326
5327 /* copy sav values */
5328 newsav->spi = sav->spi;
5329 newsav->seq = sav->seq;
5330 newsav->created = sav->created;
5331 newsav->pid = sav->pid;
5332 newsav->sah = sav->sah;
5333
5334 error = key_setsaval(newsav, m, mhp);
5335 if (error) {
5336 key_delsav(newsav);
5337 goto error;
5338 }
5339
5340 error = key_handle_natt_info(newsav, mhp);
5341 if (error != 0) {
5342 key_delsav(newsav);
5343 goto error;
5344 }
5345
5346 error = key_init_xform(newsav);
5347 if (error != 0) {
5348 key_delsav(newsav);
5349 goto error;
5350 }
5351
5352 /* add to satree */
5353 newsav->refcnt = 1;
5354 newsav->state = SADB_SASTATE_MATURE;
5355 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_MATURE], newsav,
5356 secasvar, chain);
5357 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5358
5359 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5360 KEY_FREESAV(&sav);
5361 KEY_FREESAV(&sav);
5362
5363 {
5364 struct mbuf *n;
5365
5366 /* set msg buf from mhp */
5367 n = key_getmsgbuf_x1(m, mhp);
5368 if (n == NULL) {
5369 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5370 return key_senderror(so, m, ENOBUFS);
5371 }
5372
5373 m_freem(m);
5374 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5375 }
5376 error:
5377 KEY_FREESAV(&sav);
5378 return key_senderror(so, m, error);
5379 }
5380
5381 /*
5382 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5383 * only called by key_api_update().
5384 * OUT:
5385 * NULL : not found
5386 * others : found, pointer to a SA.
5387 */
5388 #ifdef IPSEC_DOSEQCHECK
5389 static struct secasvar *
5390 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5391 {
5392 struct secasvar *sav;
5393 u_int state;
5394
5395 state = SADB_SASTATE_LARVAL;
5396
5397 /* search SAD with sequence number ? */
5398 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5399
5400 KEY_CHKSASTATE(state, sav->state);
5401
5402 if (sav->seq == seq) {
5403 SA_ADDREF(sav);
5404 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5405 "DP cause refcnt++:%d SA:%p\n",
5406 sav->refcnt, sav);
5407 return sav;
5408 }
5409 }
5410
5411 return NULL;
5412 }
5413 #endif
5414
5415 /*
5416 * SADB_ADD processing
5417 * add an entry to SA database, when received
5418 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5419 * key(AE), (identity(SD),) (sensitivity)>
5420 * from the ikmpd,
5421 * and send
5422 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5423 * (identity(SD),) (sensitivity)>
5424 * to the ikmpd.
5425 *
5426 * IGNORE identity and sensitivity messages.
5427 *
5428 * m will always be freed.
5429 */
5430 static int
5431 key_api_add(struct socket *so, struct mbuf *m,
5432 const struct sadb_msghdr *mhp)
5433 {
5434 struct sadb_sa *sa0;
5435 const struct sockaddr *src, *dst;
5436 struct secasindex saidx;
5437 struct secashead *newsah;
5438 struct secasvar *newsav;
5439 u_int16_t proto;
5440 u_int8_t mode;
5441 u_int16_t reqid;
5442 int error;
5443
5444 /* map satype to proto */
5445 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5446 if (proto == 0) {
5447 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5448 return key_senderror(so, m, EINVAL);
5449 }
5450
5451 if (mhp->ext[SADB_EXT_SA] == NULL ||
5452 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5453 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5454 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5455 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5456 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5457 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5458 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5459 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5460 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5461 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5462 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5463 return key_senderror(so, m, EINVAL);
5464 }
5465 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5466 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5467 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5468 /* XXX need more */
5469 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5470 return key_senderror(so, m, EINVAL);
5471 }
5472 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5473 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5474 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5475 } else {
5476 mode = IPSEC_MODE_ANY;
5477 reqid = 0;
5478 }
5479
5480 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5481 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5482 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5483
5484 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5485 if (error != 0)
5486 return key_senderror(so, m, EINVAL);
5487
5488 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5489 if (error != 0)
5490 return key_senderror(so, m, EINVAL);
5491
5492 /* get a SA header */
5493 newsah = key_getsah(&saidx, CMP_REQID);
5494 if (newsah == NULL) {
5495 /* create a new SA header */
5496 newsah = key_newsah(&saidx);
5497 if (newsah == NULL) {
5498 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5499 return key_senderror(so, m, ENOBUFS);
5500 }
5501 }
5502
5503 /* set spidx if there */
5504 /* XXX rewrite */
5505 error = key_setident(newsah, m, mhp);
5506 if (error) {
5507 return key_senderror(so, m, error);
5508 }
5509
5510 {
5511 struct secasvar *sav;
5512
5513 /* We can create new SA only if SPI is differenct. */
5514 sav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5515 if (sav != NULL) {
5516 KEY_FREESAV(&sav);
5517 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5518 return key_senderror(so, m, EEXIST);
5519 }
5520 }
5521
5522 /* create new SA entry. */
5523 newsav = KEY_NEWSAV(m, mhp, &error);
5524 if (newsav == NULL) {
5525 return key_senderror(so, m, error);
5526 }
5527 newsav->sah = newsah;
5528
5529 error = key_handle_natt_info(newsav, mhp);
5530 if (error != 0) {
5531 key_delsav(newsav);
5532 return key_senderror(so, m, EINVAL);
5533 }
5534
5535 error = key_init_xform(newsav);
5536 if (error != 0) {
5537 key_delsav(newsav);
5538 return key_senderror(so, m, error);
5539 }
5540
5541 /* add to satree */
5542 newsav->refcnt = 1;
5543 newsav->state = SADB_SASTATE_MATURE;
5544 LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], newsav,
5545 secasvar, chain);
5546 key_validate_savlist(newsah, SADB_SASTATE_MATURE);
5547
5548 /*
5549 * don't call key_freesav() here, as we would like to keep the SA
5550 * in the database on success.
5551 */
5552
5553 {
5554 struct mbuf *n;
5555
5556 /* set msg buf from mhp */
5557 n = key_getmsgbuf_x1(m, mhp);
5558 if (n == NULL) {
5559 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5560 return key_senderror(so, m, ENOBUFS);
5561 }
5562
5563 m_freem(m);
5564 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5565 }
5566 }
5567
5568 /* m is retained */
5569 static int
5570 key_setident(struct secashead *sah, struct mbuf *m,
5571 const struct sadb_msghdr *mhp)
5572 {
5573 const struct sadb_ident *idsrc, *iddst;
5574 int idsrclen, iddstlen;
5575
5576 KASSERT(!cpu_softintr_p());
5577 KASSERT(sah != NULL);
5578 KASSERT(m != NULL);
5579 KASSERT(mhp != NULL);
5580 KASSERT(mhp->msg != NULL);
5581
5582 /*
5583 * Can be called with an existing sah from key_api_update().
5584 */
5585 if (sah->idents != NULL) {
5586 kmem_free(sah->idents, sah->idents_len);
5587 sah->idents = NULL;
5588 sah->idents_len = 0;
5589 }
5590 if (sah->identd != NULL) {
5591 kmem_free(sah->identd, sah->identd_len);
5592 sah->identd = NULL;
5593 sah->identd_len = 0;
5594 }
5595
5596 /* don't make buffer if not there */
5597 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5598 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5599 sah->idents = NULL;
5600 sah->identd = NULL;
5601 return 0;
5602 }
5603
5604 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5605 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5606 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5607 return EINVAL;
5608 }
5609
5610 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5611 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5612 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5613 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5614
5615 /* validity check */
5616 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5617 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5618 return EINVAL;
5619 }
5620
5621 switch (idsrc->sadb_ident_type) {
5622 case SADB_IDENTTYPE_PREFIX:
5623 case SADB_IDENTTYPE_FQDN:
5624 case SADB_IDENTTYPE_USERFQDN:
5625 default:
5626 /* XXX do nothing */
5627 sah->idents = NULL;
5628 sah->identd = NULL;
5629 return 0;
5630 }
5631
5632 /* make structure */
5633 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5634 sah->idents_len = idsrclen;
5635 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5636 sah->identd_len = iddstlen;
5637 memcpy(sah->idents, idsrc, idsrclen);
5638 memcpy(sah->identd, iddst, iddstlen);
5639
5640 return 0;
5641 }
5642
5643 /*
5644 * m will not be freed on return.
5645 * it is caller's responsibility to free the result.
5646 */
5647 static struct mbuf *
5648 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5649 {
5650 struct mbuf *n;
5651
5652 KASSERT(m != NULL);
5653 KASSERT(mhp != NULL);
5654 KASSERT(mhp->msg != NULL);
5655
5656 /* create new sadb_msg to reply. */
5657 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5658 SADB_EXT_SA, SADB_X_EXT_SA2,
5659 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5660 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5661 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5662 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5663 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5664 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5665 if (!n)
5666 return NULL;
5667
5668 if (n->m_len < sizeof(struct sadb_msg)) {
5669 n = m_pullup(n, sizeof(struct sadb_msg));
5670 if (n == NULL)
5671 return NULL;
5672 }
5673 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5674 mtod(n, struct sadb_msg *)->sadb_msg_len =
5675 PFKEY_UNIT64(n->m_pkthdr.len);
5676
5677 return n;
5678 }
5679
5680 static int key_delete_all (struct socket *, struct mbuf *,
5681 const struct sadb_msghdr *, u_int16_t);
5682
5683 /*
5684 * SADB_DELETE processing
5685 * receive
5686 * <base, SA(*), address(SD)>
5687 * from the ikmpd, and set SADB_SASTATE_DEAD,
5688 * and send,
5689 * <base, SA(*), address(SD)>
5690 * to the ikmpd.
5691 *
5692 * m will always be freed.
5693 */
5694 static int
5695 key_api_delete(struct socket *so, struct mbuf *m,
5696 const struct sadb_msghdr *mhp)
5697 {
5698 struct sadb_sa *sa0;
5699 const struct sockaddr *src, *dst;
5700 struct secasindex saidx;
5701 struct secashead *sah;
5702 struct secasvar *sav = NULL;
5703 u_int16_t proto;
5704 int error;
5705
5706 /* map satype to proto */
5707 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5708 if (proto == 0) {
5709 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5710 return key_senderror(so, m, EINVAL);
5711 }
5712
5713 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5714 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5715 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5716 return key_senderror(so, m, EINVAL);
5717 }
5718
5719 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5720 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5721 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5722 return key_senderror(so, m, EINVAL);
5723 }
5724
5725 if (mhp->ext[SADB_EXT_SA] == NULL) {
5726 /*
5727 * Caller wants us to delete all non-LARVAL SAs
5728 * that match the src/dst. This is used during
5729 * IKE INITIAL-CONTACT.
5730 */
5731 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5732 return key_delete_all(so, m, mhp, proto);
5733 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5734 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5735 return key_senderror(so, m, EINVAL);
5736 }
5737
5738 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5739 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5740 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5741
5742 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5743 if (error != 0)
5744 return key_senderror(so, m, EINVAL);
5745
5746 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5747 if (error != 0)
5748 return key_senderror(so, m, EINVAL);
5749
5750 /* get a SA header */
5751 sah = key_getsah(&saidx, CMP_HEAD);
5752 if (sah != NULL) {
5753 /* get a SA with SPI. */
5754 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5755 }
5756
5757 if (sav == NULL) {
5758 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5759 return key_senderror(so, m, ENOENT);
5760 }
5761
5762 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5763 KEY_FREESAV(&sav);
5764 KEY_FREESAV(&sav);
5765
5766 {
5767 struct mbuf *n;
5768
5769 /* create new sadb_msg to reply. */
5770 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5771 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5772 if (!n)
5773 return key_senderror(so, m, ENOBUFS);
5774
5775 n = key_fill_replymsg(n, 0);
5776 if (n == NULL)
5777 return key_senderror(so, m, ENOBUFS);
5778
5779 m_freem(m);
5780 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5781 }
5782 }
5783
5784 /*
5785 * delete all SAs for src/dst. Called from key_api_delete().
5786 */
5787 static int
5788 key_delete_all(struct socket *so, struct mbuf *m,
5789 const struct sadb_msghdr *mhp, u_int16_t proto)
5790 {
5791 const struct sockaddr *src, *dst;
5792 struct secasindex saidx;
5793 struct secashead *sah;
5794 struct secasvar *sav, *nextsav;
5795 u_int state;
5796 int error;
5797
5798 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5799 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5800
5801 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5802 if (error != 0)
5803 return key_senderror(so, m, EINVAL);
5804
5805 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5806 if (error != 0)
5807 return key_senderror(so, m, EINVAL);
5808
5809 sah = key_getsah(&saidx, CMP_HEAD);
5810 if (sah != NULL) {
5811 /* Delete all non-LARVAL SAs. */
5812 SASTATE_ALIVE_FOREACH(state) {
5813 if (state == SADB_SASTATE_LARVAL)
5814 continue;
5815 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
5816 nextsav) {
5817 /* sanity check */
5818 if (sav->state != state) {
5819 IPSECLOG(LOG_DEBUG,
5820 "invalid sav->state "
5821 "(queue: %d SA: %d)\n",
5822 state, sav->state);
5823 continue;
5824 }
5825
5826 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5827 KEY_FREESAV(&sav);
5828 }
5829 }
5830 }
5831 {
5832 struct mbuf *n;
5833
5834 /* create new sadb_msg to reply. */
5835 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5836 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5837 if (!n)
5838 return key_senderror(so, m, ENOBUFS);
5839
5840 n = key_fill_replymsg(n, 0);
5841 if (n == NULL)
5842 return key_senderror(so, m, ENOBUFS);
5843
5844 m_freem(m);
5845 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5846 }
5847 }
5848
5849 /*
5850 * SADB_GET processing
5851 * receive
5852 * <base, SA(*), address(SD)>
5853 * from the ikmpd, and get a SP and a SA to respond,
5854 * and send,
5855 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5856 * (identity(SD),) (sensitivity)>
5857 * to the ikmpd.
5858 *
5859 * m will always be freed.
5860 */
5861 static int
5862 key_api_get(struct socket *so, struct mbuf *m,
5863 const struct sadb_msghdr *mhp)
5864 {
5865 struct sadb_sa *sa0;
5866 const struct sockaddr *src, *dst;
5867 struct secasindex saidx;
5868 struct secashead *sah;
5869 struct secasvar *sav = NULL;
5870 u_int16_t proto;
5871 int error;
5872
5873 /* map satype to proto */
5874 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5875 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5876 return key_senderror(so, m, EINVAL);
5877 }
5878
5879 if (mhp->ext[SADB_EXT_SA] == NULL ||
5880 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5881 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5882 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5883 return key_senderror(so, m, EINVAL);
5884 }
5885 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5886 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5887 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5888 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5889 return key_senderror(so, m, EINVAL);
5890 }
5891
5892 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5893 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5894 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5895
5896 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5897 if (error != 0)
5898 return key_senderror(so, m, EINVAL);
5899
5900 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5901 if (error != 0)
5902 return key_senderror(so, m, EINVAL);
5903
5904 /* get a SA header */
5905 sah = key_getsah(&saidx, CMP_HEAD);
5906 if (sah != NULL) {
5907 /* get a SA with SPI. */
5908 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5909 }
5910 if (sav == NULL) {
5911 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5912 return key_senderror(so, m, ENOENT);
5913 }
5914
5915 {
5916 struct mbuf *n;
5917 u_int8_t satype;
5918
5919 /* map proto to satype */
5920 satype = key_proto2satype(sah->saidx.proto);
5921 if (satype == 0) {
5922 KEY_FREESAV(&sav);
5923 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5924 return key_senderror(so, m, EINVAL);
5925 }
5926
5927 /* create new sadb_msg to reply. */
5928 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5929 mhp->msg->sadb_msg_pid);
5930 KEY_FREESAV(&sav);
5931 if (!n)
5932 return key_senderror(so, m, ENOBUFS);
5933
5934 m_freem(m);
5935 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5936 }
5937 }
5938
5939 /* XXX make it sysctl-configurable? */
5940 static void
5941 key_getcomb_setlifetime(struct sadb_comb *comb)
5942 {
5943
5944 comb->sadb_comb_soft_allocations = 1;
5945 comb->sadb_comb_hard_allocations = 1;
5946 comb->sadb_comb_soft_bytes = 0;
5947 comb->sadb_comb_hard_bytes = 0;
5948 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5949 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
5950 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
5951 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5952 }
5953
5954 /*
5955 * XXX reorder combinations by preference
5956 * XXX no idea if the user wants ESP authentication or not
5957 */
5958 static struct mbuf *
5959 key_getcomb_esp(void)
5960 {
5961 struct sadb_comb *comb;
5962 const struct enc_xform *algo;
5963 struct mbuf *result = NULL, *m, *n;
5964 int encmin;
5965 int i, off, o;
5966 int totlen;
5967 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5968
5969 m = NULL;
5970 for (i = 1; i <= SADB_EALG_MAX; i++) {
5971 algo = esp_algorithm_lookup(i);
5972 if (algo == NULL)
5973 continue;
5974
5975 /* discard algorithms with key size smaller than system min */
5976 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5977 continue;
5978 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5979 encmin = ipsec_esp_keymin;
5980 else
5981 encmin = _BITS(algo->minkey);
5982
5983 if (ipsec_esp_auth)
5984 m = key_getcomb_ah();
5985 else {
5986 KASSERTMSG(l <= MLEN,
5987 "l=%u > MLEN=%lu", l, (u_long) MLEN);
5988 MGET(m, M_DONTWAIT, MT_DATA);
5989 if (m) {
5990 M_ALIGN(m, l);
5991 m->m_len = l;
5992 m->m_next = NULL;
5993 memset(mtod(m, void *), 0, m->m_len);
5994 }
5995 }
5996 if (!m)
5997 goto fail;
5998
5999 totlen = 0;
6000 for (n = m; n; n = n->m_next)
6001 totlen += n->m_len;
6002 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6003
6004 for (off = 0; off < totlen; off += l) {
6005 n = m_pulldown(m, off, l, &o);
6006 if (!n) {
6007 /* m is already freed */
6008 goto fail;
6009 }
6010 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6011 memset(comb, 0, sizeof(*comb));
6012 key_getcomb_setlifetime(comb);
6013 comb->sadb_comb_encrypt = i;
6014 comb->sadb_comb_encrypt_minbits = encmin;
6015 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6016 }
6017
6018 if (!result)
6019 result = m;
6020 else
6021 m_cat(result, m);
6022 }
6023
6024 return result;
6025
6026 fail:
6027 if (result)
6028 m_freem(result);
6029 return NULL;
6030 }
6031
6032 static void
6033 key_getsizes_ah(const struct auth_hash *ah, int alg,
6034 u_int16_t* ksmin, u_int16_t* ksmax)
6035 {
6036 *ksmin = *ksmax = ah->keysize;
6037 if (ah->keysize == 0) {
6038 /*
6039 * Transform takes arbitrary key size but algorithm
6040 * key size is restricted. Enforce this here.
6041 */
6042 switch (alg) {
6043 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6044 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6045 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6046 default:
6047 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6048 break;
6049 }
6050 }
6051 }
6052
6053 /*
6054 * XXX reorder combinations by preference
6055 */
6056 static struct mbuf *
6057 key_getcomb_ah(void)
6058 {
6059 struct sadb_comb *comb;
6060 const struct auth_hash *algo;
6061 struct mbuf *m;
6062 u_int16_t minkeysize, maxkeysize;
6063 int i;
6064 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6065
6066 m = NULL;
6067 for (i = 1; i <= SADB_AALG_MAX; i++) {
6068 #if 1
6069 /* we prefer HMAC algorithms, not old algorithms */
6070 if (i != SADB_AALG_SHA1HMAC &&
6071 i != SADB_AALG_MD5HMAC &&
6072 i != SADB_X_AALG_SHA2_256 &&
6073 i != SADB_X_AALG_SHA2_384 &&
6074 i != SADB_X_AALG_SHA2_512)
6075 continue;
6076 #endif
6077 algo = ah_algorithm_lookup(i);
6078 if (!algo)
6079 continue;
6080 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6081 /* discard algorithms with key size smaller than system min */
6082 if (_BITS(minkeysize) < ipsec_ah_keymin)
6083 continue;
6084
6085 if (!m) {
6086 KASSERTMSG(l <= MLEN,
6087 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6088 MGET(m, M_DONTWAIT, MT_DATA);
6089 if (m) {
6090 M_ALIGN(m, l);
6091 m->m_len = l;
6092 m->m_next = NULL;
6093 }
6094 } else
6095 M_PREPEND(m, l, M_DONTWAIT);
6096 if (!m)
6097 return NULL;
6098
6099 if (m->m_len < sizeof(struct sadb_comb)) {
6100 m = m_pullup(m, sizeof(struct sadb_comb));
6101 if (m == NULL)
6102 return NULL;
6103 }
6104
6105 comb = mtod(m, struct sadb_comb *);
6106 memset(comb, 0, sizeof(*comb));
6107 key_getcomb_setlifetime(comb);
6108 comb->sadb_comb_auth = i;
6109 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6110 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6111 }
6112
6113 return m;
6114 }
6115
6116 /*
6117 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6118 * XXX reorder combinations by preference
6119 */
6120 static struct mbuf *
6121 key_getcomb_ipcomp(void)
6122 {
6123 struct sadb_comb *comb;
6124 const struct comp_algo *algo;
6125 struct mbuf *m;
6126 int i;
6127 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6128
6129 m = NULL;
6130 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6131 algo = ipcomp_algorithm_lookup(i);
6132 if (!algo)
6133 continue;
6134
6135 if (!m) {
6136 KASSERTMSG(l <= MLEN,
6137 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6138 MGET(m, M_DONTWAIT, MT_DATA);
6139 if (m) {
6140 M_ALIGN(m, l);
6141 m->m_len = l;
6142 m->m_next = NULL;
6143 }
6144 } else
6145 M_PREPEND(m, l, M_DONTWAIT);
6146 if (!m)
6147 return NULL;
6148
6149 if (m->m_len < sizeof(struct sadb_comb)) {
6150 m = m_pullup(m, sizeof(struct sadb_comb));
6151 if (m == NULL)
6152 return NULL;
6153 }
6154
6155 comb = mtod(m, struct sadb_comb *);
6156 memset(comb, 0, sizeof(*comb));
6157 key_getcomb_setlifetime(comb);
6158 comb->sadb_comb_encrypt = i;
6159 /* what should we set into sadb_comb_*_{min,max}bits? */
6160 }
6161
6162 return m;
6163 }
6164
6165 /*
6166 * XXX no way to pass mode (transport/tunnel) to userland
6167 * XXX replay checking?
6168 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6169 */
6170 static struct mbuf *
6171 key_getprop(const struct secasindex *saidx)
6172 {
6173 struct sadb_prop *prop;
6174 struct mbuf *m, *n;
6175 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6176 int totlen;
6177
6178 switch (saidx->proto) {
6179 case IPPROTO_ESP:
6180 m = key_getcomb_esp();
6181 break;
6182 case IPPROTO_AH:
6183 m = key_getcomb_ah();
6184 break;
6185 case IPPROTO_IPCOMP:
6186 m = key_getcomb_ipcomp();
6187 break;
6188 default:
6189 return NULL;
6190 }
6191
6192 if (!m)
6193 return NULL;
6194 M_PREPEND(m, l, M_DONTWAIT);
6195 if (!m)
6196 return NULL;
6197
6198 totlen = 0;
6199 for (n = m; n; n = n->m_next)
6200 totlen += n->m_len;
6201
6202 prop = mtod(m, struct sadb_prop *);
6203 memset(prop, 0, sizeof(*prop));
6204 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6205 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6206 prop->sadb_prop_replay = 32; /* XXX */
6207
6208 return m;
6209 }
6210
6211 /*
6212 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6213 * send
6214 * <base, SA, address(SD), (address(P)), x_policy,
6215 * (identity(SD),) (sensitivity,) proposal>
6216 * to KMD, and expect to receive
6217 * <base> with SADB_ACQUIRE if error occurred,
6218 * or
6219 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6220 * from KMD by PF_KEY.
6221 *
6222 * XXX x_policy is outside of RFC2367 (KAME extension).
6223 * XXX sensitivity is not supported.
6224 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6225 * see comment for key_getcomb_ipcomp().
6226 *
6227 * OUT:
6228 * 0 : succeed
6229 * others: error number
6230 */
6231 static int
6232 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6233 {
6234 struct mbuf *result = NULL, *m;
6235 #ifndef IPSEC_NONBLOCK_ACQUIRE
6236 struct secacq *newacq;
6237 #endif
6238 u_int8_t satype;
6239 int error = -1;
6240 u_int32_t seq;
6241
6242 /* sanity check */
6243 KASSERT(saidx != NULL);
6244 satype = key_proto2satype(saidx->proto);
6245 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6246
6247 #ifndef IPSEC_NONBLOCK_ACQUIRE
6248 /*
6249 * We never do anything about acquirng SA. There is anather
6250 * solution that kernel blocks to send SADB_ACQUIRE message until
6251 * getting something message from IKEd. In later case, to be
6252 * managed with ACQUIRING list.
6253 */
6254 /* Get an entry to check whether sending message or not. */
6255 mutex_enter(&key_mtx);
6256 newacq = key_getacq(saidx);
6257 if (newacq != NULL) {
6258 if (key_blockacq_count < newacq->count) {
6259 /* reset counter and do send message. */
6260 newacq->count = 0;
6261 } else {
6262 /* increment counter and do nothing. */
6263 newacq->count++;
6264 mutex_exit(&key_mtx);
6265 return 0;
6266 }
6267 } else {
6268 /* make new entry for blocking to send SADB_ACQUIRE. */
6269 newacq = key_newacq(saidx);
6270 if (newacq == NULL)
6271 return ENOBUFS;
6272
6273 /* add to acqtree */
6274 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6275 }
6276
6277 seq = newacq->seq;
6278 mutex_exit(&key_mtx);
6279 #else
6280 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6281 #endif
6282 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6283 if (!m) {
6284 error = ENOBUFS;
6285 goto fail;
6286 }
6287 result = m;
6288
6289 /* set sadb_address for saidx's. */
6290 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6291 IPSEC_ULPROTO_ANY);
6292 if (!m) {
6293 error = ENOBUFS;
6294 goto fail;
6295 }
6296 m_cat(result, m);
6297
6298 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6299 IPSEC_ULPROTO_ANY);
6300 if (!m) {
6301 error = ENOBUFS;
6302 goto fail;
6303 }
6304 m_cat(result, m);
6305
6306 /* XXX proxy address (optional) */
6307
6308 /* set sadb_x_policy */
6309 if (sp) {
6310 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6311 if (!m) {
6312 error = ENOBUFS;
6313 goto fail;
6314 }
6315 m_cat(result, m);
6316 }
6317
6318 /* XXX identity (optional) */
6319 #if 0
6320 if (idexttype && fqdn) {
6321 /* create identity extension (FQDN) */
6322 struct sadb_ident *id;
6323 int fqdnlen;
6324
6325 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6326 id = (struct sadb_ident *)p;
6327 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6328 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6329 id->sadb_ident_exttype = idexttype;
6330 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6331 memcpy(id + 1, fqdn, fqdnlen);
6332 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6333 }
6334
6335 if (idexttype) {
6336 /* create identity extension (USERFQDN) */
6337 struct sadb_ident *id;
6338 int userfqdnlen;
6339
6340 if (userfqdn) {
6341 /* +1 for terminating-NUL */
6342 userfqdnlen = strlen(userfqdn) + 1;
6343 } else
6344 userfqdnlen = 0;
6345 id = (struct sadb_ident *)p;
6346 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6347 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6348 id->sadb_ident_exttype = idexttype;
6349 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6350 /* XXX is it correct? */
6351 if (curlwp)
6352 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6353 if (userfqdn && userfqdnlen)
6354 memcpy(id + 1, userfqdn, userfqdnlen);
6355 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6356 }
6357 #endif
6358
6359 /* XXX sensitivity (optional) */
6360
6361 /* create proposal/combination extension */
6362 m = key_getprop(saidx);
6363 #if 0
6364 /*
6365 * spec conformant: always attach proposal/combination extension,
6366 * the problem is that we have no way to attach it for ipcomp,
6367 * due to the way sadb_comb is declared in RFC2367.
6368 */
6369 if (!m) {
6370 error = ENOBUFS;
6371 goto fail;
6372 }
6373 m_cat(result, m);
6374 #else
6375 /*
6376 * outside of spec; make proposal/combination extension optional.
6377 */
6378 if (m)
6379 m_cat(result, m);
6380 #endif
6381
6382 if ((result->m_flags & M_PKTHDR) == 0) {
6383 error = EINVAL;
6384 goto fail;
6385 }
6386
6387 if (result->m_len < sizeof(struct sadb_msg)) {
6388 result = m_pullup(result, sizeof(struct sadb_msg));
6389 if (result == NULL) {
6390 error = ENOBUFS;
6391 goto fail;
6392 }
6393 }
6394
6395 result->m_pkthdr.len = 0;
6396 for (m = result; m; m = m->m_next)
6397 result->m_pkthdr.len += m->m_len;
6398
6399 mtod(result, struct sadb_msg *)->sadb_msg_len =
6400 PFKEY_UNIT64(result->m_pkthdr.len);
6401
6402 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6403
6404 fail:
6405 if (result)
6406 m_freem(result);
6407 return error;
6408 }
6409
6410 #ifndef IPSEC_NONBLOCK_ACQUIRE
6411 static struct secacq *
6412 key_newacq(const struct secasindex *saidx)
6413 {
6414 struct secacq *newacq;
6415
6416 /* get new entry */
6417 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6418 if (newacq == NULL) {
6419 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6420 return NULL;
6421 }
6422
6423 /* copy secindex */
6424 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6425 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6426 newacq->created = time_uptime;
6427 newacq->count = 0;
6428
6429 return newacq;
6430 }
6431
6432 static struct secacq *
6433 key_getacq(const struct secasindex *saidx)
6434 {
6435 struct secacq *acq;
6436
6437 KASSERT(mutex_owned(&key_mtx));
6438
6439 LIST_FOREACH(acq, &acqtree, chain) {
6440 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6441 return acq;
6442 }
6443
6444 return NULL;
6445 }
6446
6447 static struct secacq *
6448 key_getacqbyseq(u_int32_t seq)
6449 {
6450 struct secacq *acq;
6451
6452 KASSERT(mutex_owned(&key_mtx));
6453
6454 LIST_FOREACH(acq, &acqtree, chain) {
6455 if (acq->seq == seq)
6456 return acq;
6457 }
6458
6459 return NULL;
6460 }
6461 #endif
6462
6463 #ifdef notyet
6464 static struct secspacq *
6465 key_newspacq(const struct secpolicyindex *spidx)
6466 {
6467 struct secspacq *acq;
6468
6469 /* get new entry */
6470 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6471 if (acq == NULL) {
6472 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6473 return NULL;
6474 }
6475
6476 /* copy secindex */
6477 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6478 acq->created = time_uptime;
6479 acq->count = 0;
6480
6481 return acq;
6482 }
6483
6484 static struct secspacq *
6485 key_getspacq(const struct secpolicyindex *spidx)
6486 {
6487 struct secspacq *acq;
6488
6489 LIST_FOREACH(acq, &spacqtree, chain) {
6490 if (key_spidx_match_exactly(spidx, &acq->spidx))
6491 return acq;
6492 }
6493
6494 return NULL;
6495 }
6496 #endif /* notyet */
6497
6498 /*
6499 * SADB_ACQUIRE processing,
6500 * in first situation, is receiving
6501 * <base>
6502 * from the ikmpd, and clear sequence of its secasvar entry.
6503 *
6504 * In second situation, is receiving
6505 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6506 * from a user land process, and return
6507 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6508 * to the socket.
6509 *
6510 * m will always be freed.
6511 */
6512 static int
6513 key_api_acquire(struct socket *so, struct mbuf *m,
6514 const struct sadb_msghdr *mhp)
6515 {
6516 const struct sockaddr *src, *dst;
6517 struct secasindex saidx;
6518 struct secashead *sah;
6519 u_int16_t proto;
6520 int error;
6521
6522 /*
6523 * Error message from KMd.
6524 * We assume that if error was occurred in IKEd, the length of PFKEY
6525 * message is equal to the size of sadb_msg structure.
6526 * We do not raise error even if error occurred in this function.
6527 */
6528 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6529 #ifndef IPSEC_NONBLOCK_ACQUIRE
6530 struct secacq *acq;
6531
6532 /* check sequence number */
6533 if (mhp->msg->sadb_msg_seq == 0) {
6534 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6535 m_freem(m);
6536 return 0;
6537 }
6538
6539 mutex_enter(&key_mtx);
6540 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6541 if (acq == NULL) {
6542 mutex_exit(&key_mtx);
6543 /*
6544 * the specified larval SA is already gone, or we got
6545 * a bogus sequence number. we can silently ignore it.
6546 */
6547 m_freem(m);
6548 return 0;
6549 }
6550
6551 /* reset acq counter in order to deletion by timehander. */
6552 acq->created = time_uptime;
6553 acq->count = 0;
6554 mutex_exit(&key_mtx);
6555 #endif
6556 m_freem(m);
6557 return 0;
6558 }
6559
6560 /*
6561 * This message is from user land.
6562 */
6563
6564 /* map satype to proto */
6565 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6566 if (proto == 0) {
6567 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6568 return key_senderror(so, m, EINVAL);
6569 }
6570
6571 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6572 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6573 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6574 /* error */
6575 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6576 return key_senderror(so, m, EINVAL);
6577 }
6578 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6579 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6580 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6581 /* error */
6582 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6583 return key_senderror(so, m, EINVAL);
6584 }
6585
6586 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6587 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6588
6589 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6590 if (error != 0)
6591 return key_senderror(so, m, EINVAL);
6592
6593 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6594 if (error != 0)
6595 return key_senderror(so, m, EINVAL);
6596
6597 /* get a SA index */
6598 sah = key_getsah(&saidx, CMP_MODE_REQID);
6599 if (sah != NULL) {
6600 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6601 return key_senderror(so, m, EEXIST);
6602 }
6603
6604 error = key_acquire(&saidx, NULL);
6605 if (error != 0) {
6606 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6607 error);
6608 return key_senderror(so, m, error);
6609 }
6610
6611 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6612 }
6613
6614 /*
6615 * SADB_REGISTER processing.
6616 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6617 * receive
6618 * <base>
6619 * from the ikmpd, and register a socket to send PF_KEY messages,
6620 * and send
6621 * <base, supported>
6622 * to KMD by PF_KEY.
6623 * If socket is detached, must free from regnode.
6624 *
6625 * m will always be freed.
6626 */
6627 static int
6628 key_api_register(struct socket *so, struct mbuf *m,
6629 const struct sadb_msghdr *mhp)
6630 {
6631 struct secreg *reg, *newreg = 0;
6632
6633 /* check for invalid register message */
6634 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6635 return key_senderror(so, m, EINVAL);
6636
6637 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6638 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6639 goto setmsg;
6640
6641 /* Allocate regnode in advance, out of mutex */
6642 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6643
6644 /* check whether existing or not */
6645 mutex_enter(&key_mtx);
6646 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6647 if (reg->so == so) {
6648 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6649 mutex_exit(&key_mtx);
6650 kmem_free(newreg, sizeof(*newreg));
6651 return key_senderror(so, m, EEXIST);
6652 }
6653 }
6654
6655 newreg->so = so;
6656 ((struct keycb *)sotorawcb(so))->kp_registered++;
6657
6658 /* add regnode to regtree. */
6659 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6660 mutex_exit(&key_mtx);
6661
6662 setmsg:
6663 {
6664 struct mbuf *n;
6665 struct sadb_supported *sup;
6666 u_int len, alen, elen;
6667 int off;
6668 int i;
6669 struct sadb_alg *alg;
6670
6671 /* create new sadb_msg to reply. */
6672 alen = 0;
6673 for (i = 1; i <= SADB_AALG_MAX; i++) {
6674 if (ah_algorithm_lookup(i))
6675 alen += sizeof(struct sadb_alg);
6676 }
6677 if (alen)
6678 alen += sizeof(struct sadb_supported);
6679 elen = 0;
6680 for (i = 1; i <= SADB_EALG_MAX; i++) {
6681 if (esp_algorithm_lookup(i))
6682 elen += sizeof(struct sadb_alg);
6683 }
6684 if (elen)
6685 elen += sizeof(struct sadb_supported);
6686
6687 len = sizeof(struct sadb_msg) + alen + elen;
6688
6689 if (len > MCLBYTES)
6690 return key_senderror(so, m, ENOBUFS);
6691
6692 MGETHDR(n, M_DONTWAIT, MT_DATA);
6693 if (len > MHLEN) {
6694 MCLGET(n, M_DONTWAIT);
6695 if ((n->m_flags & M_EXT) == 0) {
6696 m_freem(n);
6697 n = NULL;
6698 }
6699 }
6700 if (!n)
6701 return key_senderror(so, m, ENOBUFS);
6702
6703 n->m_pkthdr.len = n->m_len = len;
6704 n->m_next = NULL;
6705 off = 0;
6706
6707 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6708 n = key_fill_replymsg(n, 0);
6709 if (n == NULL)
6710 return key_senderror(so, m, ENOBUFS);
6711
6712 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6713
6714 /* for authentication algorithm */
6715 if (alen) {
6716 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6717 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6718 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6719 off += PFKEY_ALIGN8(sizeof(*sup));
6720
6721 for (i = 1; i <= SADB_AALG_MAX; i++) {
6722 const struct auth_hash *aalgo;
6723 u_int16_t minkeysize, maxkeysize;
6724
6725 aalgo = ah_algorithm_lookup(i);
6726 if (!aalgo)
6727 continue;
6728 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6729 alg->sadb_alg_id = i;
6730 alg->sadb_alg_ivlen = 0;
6731 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6732 alg->sadb_alg_minbits = _BITS(minkeysize);
6733 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6734 off += PFKEY_ALIGN8(sizeof(*alg));
6735 }
6736 }
6737
6738 /* for encryption algorithm */
6739 if (elen) {
6740 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6741 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6742 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6743 off += PFKEY_ALIGN8(sizeof(*sup));
6744
6745 for (i = 1; i <= SADB_EALG_MAX; i++) {
6746 const struct enc_xform *ealgo;
6747
6748 ealgo = esp_algorithm_lookup(i);
6749 if (!ealgo)
6750 continue;
6751 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6752 alg->sadb_alg_id = i;
6753 alg->sadb_alg_ivlen = ealgo->blocksize;
6754 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6755 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6756 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6757 }
6758 }
6759
6760 KASSERTMSG(off == len, "length inconsistency");
6761
6762 m_freem(m);
6763 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6764 }
6765 }
6766
6767 /*
6768 * free secreg entry registered.
6769 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6770 */
6771 void
6772 key_freereg(struct socket *so)
6773 {
6774 struct secreg *reg;
6775 int i;
6776
6777 KASSERT(!cpu_softintr_p());
6778 KASSERT(so != NULL);
6779
6780 /*
6781 * check whether existing or not.
6782 * check all type of SA, because there is a potential that
6783 * one socket is registered to multiple type of SA.
6784 */
6785 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6786 mutex_enter(&key_mtx);
6787 LIST_FOREACH(reg, ®tree[i], chain) {
6788 if (reg->so == so) {
6789 LIST_REMOVE(reg, chain);
6790 break;
6791 }
6792 }
6793 mutex_exit(&key_mtx);
6794 if (reg != NULL)
6795 kmem_free(reg, sizeof(*reg));
6796 }
6797
6798 return;
6799 }
6800
6801 /*
6802 * SADB_EXPIRE processing
6803 * send
6804 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6805 * to KMD by PF_KEY.
6806 * NOTE: We send only soft lifetime extension.
6807 *
6808 * OUT: 0 : succeed
6809 * others : error number
6810 */
6811 static int
6812 key_expire(struct secasvar *sav)
6813 {
6814 int s;
6815 int satype;
6816 struct mbuf *result = NULL, *m;
6817 int len;
6818 int error = -1;
6819 struct sadb_lifetime *lt;
6820
6821 /* XXX: Why do we lock ? */
6822 s = splsoftnet(); /*called from softclock()*/
6823
6824 KASSERT(sav != NULL);
6825
6826 satype = key_proto2satype(sav->sah->saidx.proto);
6827 KASSERTMSG(satype != 0, "invalid proto is passed");
6828
6829 /* set msg header */
6830 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6831 if (!m) {
6832 error = ENOBUFS;
6833 goto fail;
6834 }
6835 result = m;
6836
6837 /* create SA extension */
6838 m = key_setsadbsa(sav);
6839 if (!m) {
6840 error = ENOBUFS;
6841 goto fail;
6842 }
6843 m_cat(result, m);
6844
6845 /* create SA extension */
6846 m = key_setsadbxsa2(sav->sah->saidx.mode,
6847 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6848 if (!m) {
6849 error = ENOBUFS;
6850 goto fail;
6851 }
6852 m_cat(result, m);
6853
6854 /* create lifetime extension (current and soft) */
6855 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6856 m = key_alloc_mbuf(len);
6857 if (!m || m->m_next) { /*XXX*/
6858 if (m)
6859 m_freem(m);
6860 error = ENOBUFS;
6861 goto fail;
6862 }
6863 memset(mtod(m, void *), 0, len);
6864 lt = mtod(m, struct sadb_lifetime *);
6865 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6866 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6867 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6868 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6869 lt->sadb_lifetime_addtime =
6870 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6871 lt->sadb_lifetime_usetime =
6872 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6873 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6874 memcpy(lt, sav->lft_s, sizeof(*lt));
6875 m_cat(result, m);
6876
6877 /* set sadb_address for source */
6878 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6879 FULLMASK, IPSEC_ULPROTO_ANY);
6880 if (!m) {
6881 error = ENOBUFS;
6882 goto fail;
6883 }
6884 m_cat(result, m);
6885
6886 /* set sadb_address for destination */
6887 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6888 FULLMASK, IPSEC_ULPROTO_ANY);
6889 if (!m) {
6890 error = ENOBUFS;
6891 goto fail;
6892 }
6893 m_cat(result, m);
6894
6895 if ((result->m_flags & M_PKTHDR) == 0) {
6896 error = EINVAL;
6897 goto fail;
6898 }
6899
6900 if (result->m_len < sizeof(struct sadb_msg)) {
6901 result = m_pullup(result, sizeof(struct sadb_msg));
6902 if (result == NULL) {
6903 error = ENOBUFS;
6904 goto fail;
6905 }
6906 }
6907
6908 result->m_pkthdr.len = 0;
6909 for (m = result; m; m = m->m_next)
6910 result->m_pkthdr.len += m->m_len;
6911
6912 mtod(result, struct sadb_msg *)->sadb_msg_len =
6913 PFKEY_UNIT64(result->m_pkthdr.len);
6914
6915 splx(s);
6916 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6917
6918 fail:
6919 if (result)
6920 m_freem(result);
6921 splx(s);
6922 return error;
6923 }
6924
6925 /*
6926 * SADB_FLUSH processing
6927 * receive
6928 * <base>
6929 * from the ikmpd, and free all entries in secastree.
6930 * and send,
6931 * <base>
6932 * to the ikmpd.
6933 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6934 *
6935 * m will always be freed.
6936 */
6937 static int
6938 key_api_flush(struct socket *so, struct mbuf *m,
6939 const struct sadb_msghdr *mhp)
6940 {
6941 struct sadb_msg *newmsg;
6942 struct secashead *sah;
6943 struct secasvar *sav, *nextsav;
6944 u_int16_t proto;
6945 u_int8_t state;
6946
6947 /* map satype to proto */
6948 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6949 if (proto == 0) {
6950 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6951 return key_senderror(so, m, EINVAL);
6952 }
6953
6954 /* no SATYPE specified, i.e. flushing all SA. */
6955 SAHLIST_READER_FOREACH(sah) {
6956 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
6957 proto != sah->saidx.proto)
6958 continue;
6959
6960 SASTATE_ALIVE_FOREACH(state) {
6961 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain,
6962 nextsav) {
6963 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6964 KEY_FREESAV(&sav);
6965 }
6966 }
6967
6968 sah->state = SADB_SASTATE_DEAD;
6969 }
6970
6971 if (m->m_len < sizeof(struct sadb_msg) ||
6972 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6973 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6974 return key_senderror(so, m, ENOBUFS);
6975 }
6976
6977 if (m->m_next)
6978 m_freem(m->m_next);
6979 m->m_next = NULL;
6980 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6981 newmsg = mtod(m, struct sadb_msg *);
6982 newmsg->sadb_msg_errno = 0;
6983 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6984
6985 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6986 }
6987
6988
6989 static struct mbuf *
6990 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6991 {
6992 struct secashead *sah;
6993 struct secasvar *sav;
6994 u_int16_t proto;
6995 u_int8_t satype;
6996 u_int8_t state;
6997 int cnt;
6998 struct mbuf *m, *n, *prev;
6999
7000 *lenp = 0;
7001
7002 /* map satype to proto */
7003 proto = key_satype2proto(req_satype);
7004 if (proto == 0) {
7005 *errorp = EINVAL;
7006 return (NULL);
7007 }
7008
7009 /* count sav entries to be sent to userland. */
7010 cnt = 0;
7011 SAHLIST_READER_FOREACH(sah) {
7012 if (req_satype != SADB_SATYPE_UNSPEC &&
7013 proto != sah->saidx.proto)
7014 continue;
7015
7016 SASTATE_ANY_FOREACH(state) {
7017 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7018 cnt++;
7019 }
7020 }
7021 }
7022
7023 if (cnt == 0) {
7024 *errorp = ENOENT;
7025 return (NULL);
7026 }
7027
7028 /* send this to the userland, one at a time. */
7029 m = NULL;
7030 prev = m;
7031 SAHLIST_READER_FOREACH(sah) {
7032 if (req_satype != SADB_SATYPE_UNSPEC &&
7033 proto != sah->saidx.proto)
7034 continue;
7035
7036 /* map proto to satype */
7037 satype = key_proto2satype(sah->saidx.proto);
7038 if (satype == 0) {
7039 m_freem(m);
7040 *errorp = EINVAL;
7041 return (NULL);
7042 }
7043
7044 SASTATE_ANY_FOREACH(state) {
7045 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7046 n = key_setdumpsa(sav, SADB_DUMP, satype,
7047 --cnt, pid);
7048 if (!n) {
7049 m_freem(m);
7050 *errorp = ENOBUFS;
7051 return (NULL);
7052 }
7053
7054 if (!m)
7055 m = n;
7056 else
7057 prev->m_nextpkt = n;
7058 prev = n;
7059 }
7060 }
7061 }
7062
7063 if (!m) {
7064 *errorp = EINVAL;
7065 return (NULL);
7066 }
7067
7068 if ((m->m_flags & M_PKTHDR) != 0) {
7069 m->m_pkthdr.len = 0;
7070 for (n = m; n; n = n->m_next)
7071 m->m_pkthdr.len += n->m_len;
7072 }
7073
7074 *errorp = 0;
7075 return (m);
7076 }
7077
7078 /*
7079 * SADB_DUMP processing
7080 * dump all entries including status of DEAD in SAD.
7081 * receive
7082 * <base>
7083 * from the ikmpd, and dump all secasvar leaves
7084 * and send,
7085 * <base> .....
7086 * to the ikmpd.
7087 *
7088 * m will always be freed.
7089 */
7090 static int
7091 key_api_dump(struct socket *so, struct mbuf *m0,
7092 const struct sadb_msghdr *mhp)
7093 {
7094 u_int16_t proto;
7095 u_int8_t satype;
7096 struct mbuf *n;
7097 int s;
7098 int error, len, ok;
7099
7100 /* map satype to proto */
7101 satype = mhp->msg->sadb_msg_satype;
7102 proto = key_satype2proto(satype);
7103 if (proto == 0) {
7104 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7105 return key_senderror(so, m0, EINVAL);
7106 }
7107
7108 /*
7109 * If the requestor has insufficient socket-buffer space
7110 * for the entire chain, nobody gets any response to the DUMP.
7111 * XXX For now, only the requestor ever gets anything.
7112 * Moreover, if the requestor has any space at all, they receive
7113 * the entire chain, otherwise the request is refused with ENOBUFS.
7114 */
7115 if (sbspace(&so->so_rcv) <= 0) {
7116 return key_senderror(so, m0, ENOBUFS);
7117 }
7118
7119 s = splsoftnet();
7120 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7121 splx(s);
7122
7123 if (n == NULL) {
7124 return key_senderror(so, m0, ENOENT);
7125 }
7126 {
7127 uint64_t *ps = PFKEY_STAT_GETREF();
7128 ps[PFKEY_STAT_IN_TOTAL]++;
7129 ps[PFKEY_STAT_IN_BYTES] += len;
7130 PFKEY_STAT_PUTREF();
7131 }
7132
7133 /*
7134 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7135 * The requestor receives either the entire chain, or an
7136 * error message with ENOBUFS.
7137 *
7138 * sbappendaddrchain() takes the chain of entries, one
7139 * packet-record per SPD entry, prepends the key_src sockaddr
7140 * to each packet-record, links the sockaddr mbufs into a new
7141 * list of records, then appends the entire resulting
7142 * list to the requesting socket.
7143 */
7144 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7145 SB_PRIO_ONESHOT_OVERFLOW);
7146
7147 if (!ok) {
7148 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7149 m_freem(n);
7150 return key_senderror(so, m0, ENOBUFS);
7151 }
7152
7153 m_freem(m0);
7154 return 0;
7155 }
7156
7157 /*
7158 * SADB_X_PROMISC processing
7159 *
7160 * m will always be freed.
7161 */
7162 static int
7163 key_api_promisc(struct socket *so, struct mbuf *m,
7164 const struct sadb_msghdr *mhp)
7165 {
7166 int olen;
7167
7168 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7169
7170 if (olen < sizeof(struct sadb_msg)) {
7171 #if 1
7172 return key_senderror(so, m, EINVAL);
7173 #else
7174 m_freem(m);
7175 return 0;
7176 #endif
7177 } else if (olen == sizeof(struct sadb_msg)) {
7178 /* enable/disable promisc mode */
7179 struct keycb *kp = (struct keycb *)sotorawcb(so);
7180 if (kp == NULL)
7181 return key_senderror(so, m, EINVAL);
7182 mhp->msg->sadb_msg_errno = 0;
7183 switch (mhp->msg->sadb_msg_satype) {
7184 case 0:
7185 case 1:
7186 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7187 break;
7188 default:
7189 return key_senderror(so, m, EINVAL);
7190 }
7191
7192 /* send the original message back to everyone */
7193 mhp->msg->sadb_msg_errno = 0;
7194 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7195 } else {
7196 /* send packet as is */
7197
7198 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7199
7200 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7201 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7202 }
7203 }
7204
7205 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7206 const struct sadb_msghdr *) = {
7207 NULL, /* SADB_RESERVED */
7208 key_api_getspi, /* SADB_GETSPI */
7209 key_api_update, /* SADB_UPDATE */
7210 key_api_add, /* SADB_ADD */
7211 key_api_delete, /* SADB_DELETE */
7212 key_api_get, /* SADB_GET */
7213 key_api_acquire, /* SADB_ACQUIRE */
7214 key_api_register, /* SADB_REGISTER */
7215 NULL, /* SADB_EXPIRE */
7216 key_api_flush, /* SADB_FLUSH */
7217 key_api_dump, /* SADB_DUMP */
7218 key_api_promisc, /* SADB_X_PROMISC */
7219 NULL, /* SADB_X_PCHANGE */
7220 key_api_spdadd, /* SADB_X_SPDUPDATE */
7221 key_api_spdadd, /* SADB_X_SPDADD */
7222 key_api_spddelete, /* SADB_X_SPDDELETE */
7223 key_api_spdget, /* SADB_X_SPDGET */
7224 NULL, /* SADB_X_SPDACQUIRE */
7225 key_api_spddump, /* SADB_X_SPDDUMP */
7226 key_api_spdflush, /* SADB_X_SPDFLUSH */
7227 key_api_spdadd, /* SADB_X_SPDSETIDX */
7228 NULL, /* SADB_X_SPDEXPIRE */
7229 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7230 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7231 };
7232
7233 /*
7234 * parse sadb_msg buffer to process PFKEYv2,
7235 * and create a data to response if needed.
7236 * I think to be dealed with mbuf directly.
7237 * IN:
7238 * msgp : pointer to pointer to a received buffer pulluped.
7239 * This is rewrited to response.
7240 * so : pointer to socket.
7241 * OUT:
7242 * length for buffer to send to user process.
7243 */
7244 int
7245 key_parse(struct mbuf *m, struct socket *so)
7246 {
7247 struct sadb_msg *msg;
7248 struct sadb_msghdr mh;
7249 u_int orglen;
7250 int error;
7251
7252 KASSERT(m != NULL);
7253 KASSERT(so != NULL);
7254
7255 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7256 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7257 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7258 kdebug_sadb(msg);
7259 }
7260 #endif
7261
7262 if (m->m_len < sizeof(struct sadb_msg)) {
7263 m = m_pullup(m, sizeof(struct sadb_msg));
7264 if (!m)
7265 return ENOBUFS;
7266 }
7267 msg = mtod(m, struct sadb_msg *);
7268 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7269
7270 if ((m->m_flags & M_PKTHDR) == 0 ||
7271 m->m_pkthdr.len != orglen) {
7272 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7273 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7274 error = EINVAL;
7275 goto senderror;
7276 }
7277
7278 if (msg->sadb_msg_version != PF_KEY_V2) {
7279 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7280 msg->sadb_msg_version);
7281 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7282 error = EINVAL;
7283 goto senderror;
7284 }
7285
7286 if (msg->sadb_msg_type > SADB_MAX) {
7287 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7288 msg->sadb_msg_type);
7289 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7290 error = EINVAL;
7291 goto senderror;
7292 }
7293
7294 /* for old-fashioned code - should be nuked */
7295 if (m->m_pkthdr.len > MCLBYTES) {
7296 m_freem(m);
7297 return ENOBUFS;
7298 }
7299 if (m->m_next) {
7300 struct mbuf *n;
7301
7302 MGETHDR(n, M_DONTWAIT, MT_DATA);
7303 if (n && m->m_pkthdr.len > MHLEN) {
7304 MCLGET(n, M_DONTWAIT);
7305 if ((n->m_flags & M_EXT) == 0) {
7306 m_free(n);
7307 n = NULL;
7308 }
7309 }
7310 if (!n) {
7311 m_freem(m);
7312 return ENOBUFS;
7313 }
7314 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7315 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7316 n->m_next = NULL;
7317 m_freem(m);
7318 m = n;
7319 }
7320
7321 /* align the mbuf chain so that extensions are in contiguous region. */
7322 error = key_align(m, &mh);
7323 if (error)
7324 return error;
7325
7326 if (m->m_next) { /*XXX*/
7327 m_freem(m);
7328 return ENOBUFS;
7329 }
7330
7331 msg = mh.msg;
7332
7333 /* check SA type */
7334 switch (msg->sadb_msg_satype) {
7335 case SADB_SATYPE_UNSPEC:
7336 switch (msg->sadb_msg_type) {
7337 case SADB_GETSPI:
7338 case SADB_UPDATE:
7339 case SADB_ADD:
7340 case SADB_DELETE:
7341 case SADB_GET:
7342 case SADB_ACQUIRE:
7343 case SADB_EXPIRE:
7344 IPSECLOG(LOG_DEBUG,
7345 "must specify satype when msg type=%u.\n",
7346 msg->sadb_msg_type);
7347 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7348 error = EINVAL;
7349 goto senderror;
7350 }
7351 break;
7352 case SADB_SATYPE_AH:
7353 case SADB_SATYPE_ESP:
7354 case SADB_X_SATYPE_IPCOMP:
7355 case SADB_X_SATYPE_TCPSIGNATURE:
7356 switch (msg->sadb_msg_type) {
7357 case SADB_X_SPDADD:
7358 case SADB_X_SPDDELETE:
7359 case SADB_X_SPDGET:
7360 case SADB_X_SPDDUMP:
7361 case SADB_X_SPDFLUSH:
7362 case SADB_X_SPDSETIDX:
7363 case SADB_X_SPDUPDATE:
7364 case SADB_X_SPDDELETE2:
7365 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7366 msg->sadb_msg_type);
7367 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7368 error = EINVAL;
7369 goto senderror;
7370 }
7371 break;
7372 case SADB_SATYPE_RSVP:
7373 case SADB_SATYPE_OSPFV2:
7374 case SADB_SATYPE_RIPV2:
7375 case SADB_SATYPE_MIP:
7376 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7377 msg->sadb_msg_satype);
7378 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7379 error = EOPNOTSUPP;
7380 goto senderror;
7381 case 1: /* XXX: What does it do? */
7382 if (msg->sadb_msg_type == SADB_X_PROMISC)
7383 break;
7384 /*FALLTHROUGH*/
7385 default:
7386 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7387 msg->sadb_msg_satype);
7388 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7389 error = EINVAL;
7390 goto senderror;
7391 }
7392
7393 /* check field of upper layer protocol and address family */
7394 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7395 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7396 struct sadb_address *src0, *dst0;
7397 u_int plen;
7398
7399 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7400 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7401
7402 /* check upper layer protocol */
7403 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7404 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7405 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7406 error = EINVAL;
7407 goto senderror;
7408 }
7409
7410 /* check family */
7411 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7412 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7413 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7414 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7415 error = EINVAL;
7416 goto senderror;
7417 }
7418 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7419 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7420 IPSECLOG(LOG_DEBUG,
7421 "address struct size mismatched.\n");
7422 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7423 error = EINVAL;
7424 goto senderror;
7425 }
7426
7427 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7428 case AF_INET:
7429 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7430 sizeof(struct sockaddr_in)) {
7431 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7432 error = EINVAL;
7433 goto senderror;
7434 }
7435 break;
7436 case AF_INET6:
7437 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7438 sizeof(struct sockaddr_in6)) {
7439 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7440 error = EINVAL;
7441 goto senderror;
7442 }
7443 break;
7444 default:
7445 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7446 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7447 error = EAFNOSUPPORT;
7448 goto senderror;
7449 }
7450
7451 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7452 case AF_INET:
7453 plen = sizeof(struct in_addr) << 3;
7454 break;
7455 case AF_INET6:
7456 plen = sizeof(struct in6_addr) << 3;
7457 break;
7458 default:
7459 plen = 0; /*fool gcc*/
7460 break;
7461 }
7462
7463 /* check max prefix length */
7464 if (src0->sadb_address_prefixlen > plen ||
7465 dst0->sadb_address_prefixlen > plen) {
7466 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7467 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7468 error = EINVAL;
7469 goto senderror;
7470 }
7471
7472 /*
7473 * prefixlen == 0 is valid because there can be a case when
7474 * all addresses are matched.
7475 */
7476 }
7477
7478 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7479 key_api_typesw[msg->sadb_msg_type] == NULL) {
7480 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7481 error = EINVAL;
7482 goto senderror;
7483 }
7484
7485 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7486
7487 senderror:
7488 return key_senderror(so, m, error);
7489 }
7490
7491 static int
7492 key_senderror(struct socket *so, struct mbuf *m, int code)
7493 {
7494 struct sadb_msg *msg;
7495
7496 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7497
7498 msg = mtod(m, struct sadb_msg *);
7499 msg->sadb_msg_errno = code;
7500 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7501 }
7502
7503 /*
7504 * set the pointer to each header into message buffer.
7505 * m will be freed on error.
7506 * XXX larger-than-MCLBYTES extension?
7507 */
7508 static int
7509 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7510 {
7511 struct mbuf *n;
7512 struct sadb_ext *ext;
7513 size_t off, end;
7514 int extlen;
7515 int toff;
7516
7517 KASSERT(m != NULL);
7518 KASSERT(mhp != NULL);
7519 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7520
7521 /* initialize */
7522 memset(mhp, 0, sizeof(*mhp));
7523
7524 mhp->msg = mtod(m, struct sadb_msg *);
7525 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7526
7527 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7528 extlen = end; /*just in case extlen is not updated*/
7529 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7530 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7531 if (!n) {
7532 /* m is already freed */
7533 return ENOBUFS;
7534 }
7535 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7536
7537 /* set pointer */
7538 switch (ext->sadb_ext_type) {
7539 case SADB_EXT_SA:
7540 case SADB_EXT_ADDRESS_SRC:
7541 case SADB_EXT_ADDRESS_DST:
7542 case SADB_EXT_ADDRESS_PROXY:
7543 case SADB_EXT_LIFETIME_CURRENT:
7544 case SADB_EXT_LIFETIME_HARD:
7545 case SADB_EXT_LIFETIME_SOFT:
7546 case SADB_EXT_KEY_AUTH:
7547 case SADB_EXT_KEY_ENCRYPT:
7548 case SADB_EXT_IDENTITY_SRC:
7549 case SADB_EXT_IDENTITY_DST:
7550 case SADB_EXT_SENSITIVITY:
7551 case SADB_EXT_PROPOSAL:
7552 case SADB_EXT_SUPPORTED_AUTH:
7553 case SADB_EXT_SUPPORTED_ENCRYPT:
7554 case SADB_EXT_SPIRANGE:
7555 case SADB_X_EXT_POLICY:
7556 case SADB_X_EXT_SA2:
7557 case SADB_X_EXT_NAT_T_TYPE:
7558 case SADB_X_EXT_NAT_T_SPORT:
7559 case SADB_X_EXT_NAT_T_DPORT:
7560 case SADB_X_EXT_NAT_T_OAI:
7561 case SADB_X_EXT_NAT_T_OAR:
7562 case SADB_X_EXT_NAT_T_FRAG:
7563 /* duplicate check */
7564 /*
7565 * XXX Are there duplication payloads of either
7566 * KEY_AUTH or KEY_ENCRYPT ?
7567 */
7568 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7569 IPSECLOG(LOG_DEBUG,
7570 "duplicate ext_type %u is passed.\n",
7571 ext->sadb_ext_type);
7572 m_freem(m);
7573 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7574 return EINVAL;
7575 }
7576 break;
7577 default:
7578 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7579 ext->sadb_ext_type);
7580 m_freem(m);
7581 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7582 return EINVAL;
7583 }
7584
7585 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7586
7587 if (key_validate_ext(ext, extlen)) {
7588 m_freem(m);
7589 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7590 return EINVAL;
7591 }
7592
7593 n = m_pulldown(m, off, extlen, &toff);
7594 if (!n) {
7595 /* m is already freed */
7596 return ENOBUFS;
7597 }
7598 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7599
7600 mhp->ext[ext->sadb_ext_type] = ext;
7601 mhp->extoff[ext->sadb_ext_type] = off;
7602 mhp->extlen[ext->sadb_ext_type] = extlen;
7603 }
7604
7605 if (off != end) {
7606 m_freem(m);
7607 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7608 return EINVAL;
7609 }
7610
7611 return 0;
7612 }
7613
7614 static int
7615 key_validate_ext(const struct sadb_ext *ext, int len)
7616 {
7617 const struct sockaddr *sa;
7618 enum { NONE, ADDR } checktype = NONE;
7619 int baselen = 0;
7620 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7621
7622 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7623 return EINVAL;
7624
7625 /* if it does not match minimum/maximum length, bail */
7626 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7627 ext->sadb_ext_type >= __arraycount(maxsize))
7628 return EINVAL;
7629 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7630 return EINVAL;
7631 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7632 return EINVAL;
7633
7634 /* more checks based on sadb_ext_type XXX need more */
7635 switch (ext->sadb_ext_type) {
7636 case SADB_EXT_ADDRESS_SRC:
7637 case SADB_EXT_ADDRESS_DST:
7638 case SADB_EXT_ADDRESS_PROXY:
7639 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7640 checktype = ADDR;
7641 break;
7642 case SADB_EXT_IDENTITY_SRC:
7643 case SADB_EXT_IDENTITY_DST:
7644 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7645 SADB_X_IDENTTYPE_ADDR) {
7646 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7647 checktype = ADDR;
7648 } else
7649 checktype = NONE;
7650 break;
7651 default:
7652 checktype = NONE;
7653 break;
7654 }
7655
7656 switch (checktype) {
7657 case NONE:
7658 break;
7659 case ADDR:
7660 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7661 if (len < baselen + sal)
7662 return EINVAL;
7663 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7664 return EINVAL;
7665 break;
7666 }
7667
7668 return 0;
7669 }
7670
7671 static int
7672 key_do_init(void)
7673 {
7674 int i, error;
7675
7676 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7677 key_psz = pserialize_create();
7678 mutex_init(&key_sp_mtx, MUTEX_DEFAULT, IPL_NONE);
7679 cv_init(&key_sp_cv, "key_sp");
7680
7681 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7682
7683 callout_init(&key_timehandler_ch, 0);
7684 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7685 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7686 if (error != 0)
7687 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7688
7689 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7690 PSLIST_INIT(&sptree[i]);
7691 }
7692
7693 PSLIST_INIT(&key_socksplist);
7694
7695 PSLIST_INIT(&sahtree);
7696
7697 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7698 LIST_INIT(®tree[i]);
7699 }
7700
7701 #ifndef IPSEC_NONBLOCK_ACQUIRE
7702 LIST_INIT(&acqtree);
7703 #endif
7704 #ifdef notyet
7705 LIST_INIT(&spacqtree);
7706 #endif
7707
7708 /* system default */
7709 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7710 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
7711 localcount_init(&ip4_def_policy.localcount);
7712
7713 #ifdef INET6
7714 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7715 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
7716 localcount_init(&ip6_def_policy.localcount);
7717 #endif
7718
7719 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7720
7721 /* initialize key statistics */
7722 keystat.getspi_count = 1;
7723
7724 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7725
7726 return (0);
7727 }
7728
7729 void
7730 key_init(void)
7731 {
7732 static ONCE_DECL(key_init_once);
7733
7734 sysctl_net_keyv2_setup(NULL);
7735 sysctl_net_key_compat_setup(NULL);
7736
7737 RUN_ONCE(&key_init_once, key_do_init);
7738
7739 key_init_so();
7740 }
7741
7742 /*
7743 * XXX: maybe This function is called after INBOUND IPsec processing.
7744 *
7745 * Special check for tunnel-mode packets.
7746 * We must make some checks for consistency between inner and outer IP header.
7747 *
7748 * xxx more checks to be provided
7749 */
7750 int
7751 key_checktunnelsanity(
7752 struct secasvar *sav,
7753 u_int family,
7754 void *src,
7755 void *dst
7756 )
7757 {
7758
7759 /* XXX: check inner IP header */
7760
7761 return 1;
7762 }
7763
7764 #if 0
7765 #define hostnamelen strlen(hostname)
7766
7767 /*
7768 * Get FQDN for the host.
7769 * If the administrator configured hostname (by hostname(1)) without
7770 * domain name, returns nothing.
7771 */
7772 static const char *
7773 key_getfqdn(void)
7774 {
7775 int i;
7776 int hasdot;
7777 static char fqdn[MAXHOSTNAMELEN + 1];
7778
7779 if (!hostnamelen)
7780 return NULL;
7781
7782 /* check if it comes with domain name. */
7783 hasdot = 0;
7784 for (i = 0; i < hostnamelen; i++) {
7785 if (hostname[i] == '.')
7786 hasdot++;
7787 }
7788 if (!hasdot)
7789 return NULL;
7790
7791 /* NOTE: hostname may not be NUL-terminated. */
7792 memset(fqdn, 0, sizeof(fqdn));
7793 memcpy(fqdn, hostname, hostnamelen);
7794 fqdn[hostnamelen] = '\0';
7795 return fqdn;
7796 }
7797
7798 /*
7799 * get username@FQDN for the host/user.
7800 */
7801 static const char *
7802 key_getuserfqdn(void)
7803 {
7804 const char *host;
7805 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7806 struct proc *p = curproc;
7807 char *q;
7808
7809 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7810 return NULL;
7811 if (!(host = key_getfqdn()))
7812 return NULL;
7813
7814 /* NOTE: s_login may not be-NUL terminated. */
7815 memset(userfqdn, 0, sizeof(userfqdn));
7816 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7817 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7818 q = userfqdn + strlen(userfqdn);
7819 *q++ = '@';
7820 memcpy(q, host, strlen(host));
7821 q += strlen(host);
7822 *q++ = '\0';
7823
7824 return userfqdn;
7825 }
7826 #endif
7827
7828 /* record data transfer on SA, and update timestamps */
7829 void
7830 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7831 {
7832
7833 KASSERT(sav != NULL);
7834 KASSERT(sav->lft_c != NULL);
7835 KASSERT(m != NULL);
7836
7837 /*
7838 * XXX Currently, there is a difference of bytes size
7839 * between inbound and outbound processing.
7840 */
7841 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7842 /* to check bytes lifetime is done in key_timehandler(). */
7843
7844 /*
7845 * We use the number of packets as the unit of
7846 * sadb_lifetime_allocations. We increment the variable
7847 * whenever {esp,ah}_{in,out}put is called.
7848 */
7849 sav->lft_c->sadb_lifetime_allocations++;
7850 /* XXX check for expires? */
7851
7852 /*
7853 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7854 * in seconds. HARD and SOFT lifetime are measured by the time
7855 * difference (again in seconds) from sadb_lifetime_usetime.
7856 *
7857 * usetime
7858 * v expire expire
7859 * -----+-----+--------+---> t
7860 * <--------------> HARD
7861 * <-----> SOFT
7862 */
7863 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7864 /* XXX check for expires? */
7865
7866 return;
7867 }
7868
7869 /* dumb version */
7870 void
7871 key_sa_routechange(struct sockaddr *dst)
7872 {
7873 struct secashead *sah;
7874 struct route *ro;
7875 const struct sockaddr *sa;
7876
7877 SAHLIST_READER_FOREACH(sah) {
7878 ro = &sah->sa_route;
7879 sa = rtcache_getdst(ro);
7880 if (sa != NULL && dst->sa_len == sa->sa_len &&
7881 memcmp(dst, sa, dst->sa_len) == 0)
7882 rtcache_free(ro);
7883 }
7884
7885 return;
7886 }
7887
7888 static void
7889 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7890 {
7891 struct secasvar *_sav;
7892
7893 KASSERT(sav != NULL);
7894
7895 if (sav->state == state)
7896 return;
7897
7898 KASSERT(__LIST_CHAINED(sav));
7899 LIST_REMOVE(sav, chain);
7900
7901 sav->state = state;
7902 if (!SADB_SASTATE_USABLE_P(sav)) {
7903 /* We don't need to care about the order */
7904 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7905 return;
7906 }
7907 /*
7908 * Sort the list by lft_c->sadb_lifetime_addtime
7909 * in ascending order.
7910 */
7911 LIST_FOREACH(_sav, &sav->sah->savtree[state], chain) {
7912 if (_sav->lft_c->sadb_lifetime_addtime >
7913 sav->lft_c->sadb_lifetime_addtime) {
7914 LIST_INSERT_BEFORE(_sav, sav, chain);
7915 break;
7916 }
7917 }
7918 if (_sav == NULL) {
7919 LIST_INSERT_TAIL(&sav->sah->savtree[state], sav, secasvar,
7920 chain);
7921 }
7922 key_validate_savlist(sav->sah, state);
7923 }
7924
7925 /* XXX too much? */
7926 static struct mbuf *
7927 key_alloc_mbuf(int l)
7928 {
7929 struct mbuf *m = NULL, *n;
7930 int len, t;
7931
7932 len = l;
7933 while (len > 0) {
7934 MGET(n, M_DONTWAIT, MT_DATA);
7935 if (n && len > MLEN)
7936 MCLGET(n, M_DONTWAIT);
7937 if (!n) {
7938 m_freem(m);
7939 return NULL;
7940 }
7941
7942 n->m_next = NULL;
7943 n->m_len = 0;
7944 n->m_len = M_TRAILINGSPACE(n);
7945 /* use the bottom of mbuf, hoping we can prepend afterwards */
7946 if (n->m_len > len) {
7947 t = (n->m_len - len) & ~(sizeof(long) - 1);
7948 n->m_data += t;
7949 n->m_len = len;
7950 }
7951
7952 len -= n->m_len;
7953
7954 if (m)
7955 m_cat(m, n);
7956 else
7957 m = n;
7958 }
7959
7960 return m;
7961 }
7962
7963 static struct mbuf *
7964 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7965 {
7966 struct secashead *sah;
7967 struct secasvar *sav;
7968 u_int16_t proto;
7969 u_int8_t satype;
7970 u_int8_t state;
7971 int cnt;
7972 struct mbuf *m, *n;
7973
7974 /* map satype to proto */
7975 proto = key_satype2proto(req_satype);
7976 if (proto == 0) {
7977 *errorp = EINVAL;
7978 return (NULL);
7979 }
7980
7981 /* count sav entries to be sent to the userland. */
7982 cnt = 0;
7983 SAHLIST_READER_FOREACH(sah) {
7984 if (req_satype != SADB_SATYPE_UNSPEC &&
7985 proto != sah->saidx.proto)
7986 continue;
7987
7988 SASTATE_ANY_FOREACH(state) {
7989 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7990 cnt++;
7991 }
7992 }
7993 }
7994
7995 if (cnt == 0) {
7996 *errorp = ENOENT;
7997 return (NULL);
7998 }
7999
8000 /* send this to the userland, one at a time. */
8001 m = NULL;
8002 SAHLIST_READER_FOREACH(sah) {
8003 if (req_satype != SADB_SATYPE_UNSPEC &&
8004 proto != sah->saidx.proto)
8005 continue;
8006
8007 /* map proto to satype */
8008 satype = key_proto2satype(sah->saidx.proto);
8009 if (satype == 0) {
8010 m_freem(m);
8011 *errorp = EINVAL;
8012 return (NULL);
8013 }
8014
8015 SASTATE_ANY_FOREACH(state) {
8016 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8017 n = key_setdumpsa(sav, SADB_DUMP, satype,
8018 --cnt, pid);
8019 if (!n) {
8020 m_freem(m);
8021 *errorp = ENOBUFS;
8022 return (NULL);
8023 }
8024
8025 if (!m)
8026 m = n;
8027 else
8028 m_cat(m, n);
8029 }
8030 }
8031 }
8032
8033 if (!m) {
8034 *errorp = EINVAL;
8035 return (NULL);
8036 }
8037
8038 if ((m->m_flags & M_PKTHDR) != 0) {
8039 m->m_pkthdr.len = 0;
8040 for (n = m; n; n = n->m_next)
8041 m->m_pkthdr.len += n->m_len;
8042 }
8043
8044 *errorp = 0;
8045 return (m);
8046 }
8047
8048 static struct mbuf *
8049 key_setspddump(int *errorp, pid_t pid)
8050 {
8051 struct secpolicy *sp;
8052 int cnt;
8053 u_int dir;
8054 struct mbuf *m, *n;
8055
8056 KASSERT(mutex_owned(&key_sp_mtx));
8057
8058 /* search SPD entry and get buffer size. */
8059 cnt = 0;
8060 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8061 SPLIST_WRITER_FOREACH(sp, dir) {
8062 cnt++;
8063 }
8064 }
8065
8066 if (cnt == 0) {
8067 *errorp = ENOENT;
8068 return (NULL);
8069 }
8070
8071 m = NULL;
8072 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8073 SPLIST_WRITER_FOREACH(sp, dir) {
8074 --cnt;
8075 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8076
8077 if (!n) {
8078 *errorp = ENOBUFS;
8079 m_freem(m);
8080 return (NULL);
8081 }
8082 if (!m)
8083 m = n;
8084 else {
8085 m->m_pkthdr.len += n->m_pkthdr.len;
8086 m_cat(m, n);
8087 }
8088 }
8089 }
8090
8091 *errorp = 0;
8092 return (m);
8093 }
8094
8095 int
8096 key_get_used(void) {
8097 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8098 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8099 !SOCKSPLIST_READER_EMPTY();
8100 }
8101
8102 void
8103 key_update_used(void)
8104 {
8105 switch (ipsec_enabled) {
8106 default:
8107 case 0:
8108 #ifdef notyet
8109 /* XXX: racy */
8110 ipsec_used = 0;
8111 #endif
8112 break;
8113 case 1:
8114 #ifndef notyet
8115 /* XXX: racy */
8116 if (!ipsec_used)
8117 #endif
8118 ipsec_used = key_get_used();
8119 break;
8120 case 2:
8121 ipsec_used = 1;
8122 break;
8123 }
8124 }
8125
8126 static int
8127 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8128 {
8129 struct mbuf *m, *n;
8130 int err2 = 0;
8131 char *p, *ep;
8132 size_t len;
8133 int s, error;
8134
8135 if (newp)
8136 return (EPERM);
8137 if (namelen != 1)
8138 return (EINVAL);
8139
8140 s = splsoftnet();
8141 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8142 splx(s);
8143 if (!m)
8144 return (error);
8145 if (!oldp)
8146 *oldlenp = m->m_pkthdr.len;
8147 else {
8148 p = oldp;
8149 if (*oldlenp < m->m_pkthdr.len) {
8150 err2 = ENOMEM;
8151 ep = p + *oldlenp;
8152 } else {
8153 *oldlenp = m->m_pkthdr.len;
8154 ep = p + m->m_pkthdr.len;
8155 }
8156 for (n = m; n; n = n->m_next) {
8157 len = (ep - p < n->m_len) ?
8158 ep - p : n->m_len;
8159 error = copyout(mtod(n, const void *), p, len);
8160 p += len;
8161 if (error)
8162 break;
8163 }
8164 if (error == 0)
8165 error = err2;
8166 }
8167 m_freem(m);
8168
8169 return (error);
8170 }
8171
8172 static int
8173 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8174 {
8175 struct mbuf *m, *n;
8176 int err2 = 0;
8177 char *p, *ep;
8178 size_t len;
8179 int error;
8180
8181 if (newp)
8182 return (EPERM);
8183 if (namelen != 0)
8184 return (EINVAL);
8185
8186 mutex_enter(&key_sp_mtx);
8187 m = key_setspddump(&error, l->l_proc->p_pid);
8188 mutex_exit(&key_sp_mtx);
8189 if (!m)
8190 return (error);
8191 if (!oldp)
8192 *oldlenp = m->m_pkthdr.len;
8193 else {
8194 p = oldp;
8195 if (*oldlenp < m->m_pkthdr.len) {
8196 err2 = ENOMEM;
8197 ep = p + *oldlenp;
8198 } else {
8199 *oldlenp = m->m_pkthdr.len;
8200 ep = p + m->m_pkthdr.len;
8201 }
8202 for (n = m; n; n = n->m_next) {
8203 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8204 error = copyout(mtod(n, const void *), p, len);
8205 p += len;
8206 if (error)
8207 break;
8208 }
8209 if (error == 0)
8210 error = err2;
8211 }
8212 m_freem(m);
8213
8214 return (error);
8215 }
8216
8217 /*
8218 * Create sysctl tree for native IPSEC key knobs, originally
8219 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8220 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8221 * and in any case the part of our sysctl namespace used for dumping the
8222 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8223 * namespace, for API reasons.
8224 *
8225 * Pending a consensus on the right way to fix this, add a level of
8226 * indirection in how we number the `native' IPSEC key nodes;
8227 * and (as requested by Andrew Brown) move registration of the
8228 * KAME-compatible names to a separate function.
8229 */
8230 #if 0
8231 # define IPSEC_PFKEY PF_KEY_V2
8232 # define IPSEC_PFKEY_NAME "keyv2"
8233 #else
8234 # define IPSEC_PFKEY PF_KEY
8235 # define IPSEC_PFKEY_NAME "key"
8236 #endif
8237
8238 static int
8239 sysctl_net_key_stats(SYSCTLFN_ARGS)
8240 {
8241
8242 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8243 }
8244
8245 static void
8246 sysctl_net_keyv2_setup(struct sysctllog **clog)
8247 {
8248
8249 sysctl_createv(clog, 0, NULL, NULL,
8250 CTLFLAG_PERMANENT,
8251 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8252 NULL, 0, NULL, 0,
8253 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8254
8255 sysctl_createv(clog, 0, NULL, NULL,
8256 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8257 CTLTYPE_INT, "debug", NULL,
8258 NULL, 0, &key_debug_level, 0,
8259 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8260 sysctl_createv(clog, 0, NULL, NULL,
8261 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8262 CTLTYPE_INT, "spi_try", NULL,
8263 NULL, 0, &key_spi_trycnt, 0,
8264 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8265 sysctl_createv(clog, 0, NULL, NULL,
8266 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8267 CTLTYPE_INT, "spi_min_value", NULL,
8268 NULL, 0, &key_spi_minval, 0,
8269 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8270 sysctl_createv(clog, 0, NULL, NULL,
8271 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8272 CTLTYPE_INT, "spi_max_value", NULL,
8273 NULL, 0, &key_spi_maxval, 0,
8274 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8275 sysctl_createv(clog, 0, NULL, NULL,
8276 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8277 CTLTYPE_INT, "random_int", NULL,
8278 NULL, 0, &key_int_random, 0,
8279 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8280 sysctl_createv(clog, 0, NULL, NULL,
8281 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8282 CTLTYPE_INT, "larval_lifetime", NULL,
8283 NULL, 0, &key_larval_lifetime, 0,
8284 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8285 sysctl_createv(clog, 0, NULL, NULL,
8286 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8287 CTLTYPE_INT, "blockacq_count", NULL,
8288 NULL, 0, &key_blockacq_count, 0,
8289 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8290 sysctl_createv(clog, 0, NULL, NULL,
8291 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8292 CTLTYPE_INT, "blockacq_lifetime", NULL,
8293 NULL, 0, &key_blockacq_lifetime, 0,
8294 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8295 sysctl_createv(clog, 0, NULL, NULL,
8296 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8297 CTLTYPE_INT, "esp_keymin", NULL,
8298 NULL, 0, &ipsec_esp_keymin, 0,
8299 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8300 sysctl_createv(clog, 0, NULL, NULL,
8301 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8302 CTLTYPE_INT, "prefered_oldsa", NULL,
8303 NULL, 0, &key_prefered_oldsa, 0,
8304 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8305 sysctl_createv(clog, 0, NULL, NULL,
8306 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8307 CTLTYPE_INT, "esp_auth", NULL,
8308 NULL, 0, &ipsec_esp_auth, 0,
8309 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8310 sysctl_createv(clog, 0, NULL, NULL,
8311 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8312 CTLTYPE_INT, "ah_keymin", NULL,
8313 NULL, 0, &ipsec_ah_keymin, 0,
8314 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8315 sysctl_createv(clog, 0, NULL, NULL,
8316 CTLFLAG_PERMANENT,
8317 CTLTYPE_STRUCT, "stats",
8318 SYSCTL_DESCR("PF_KEY statistics"),
8319 sysctl_net_key_stats, 0, NULL, 0,
8320 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8321 }
8322
8323 /*
8324 * Register sysctl names used by setkey(8). For historical reasons,
8325 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8326 * for both IPSEC and KAME IPSEC.
8327 */
8328 static void
8329 sysctl_net_key_compat_setup(struct sysctllog **clog)
8330 {
8331
8332 sysctl_createv(clog, 0, NULL, NULL,
8333 CTLFLAG_PERMANENT,
8334 CTLTYPE_NODE, "key", NULL,
8335 NULL, 0, NULL, 0,
8336 CTL_NET, PF_KEY, CTL_EOL);
8337
8338 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8339 sysctl_createv(clog, 0, NULL, NULL,
8340 CTLFLAG_PERMANENT,
8341 CTLTYPE_STRUCT, "dumpsa", NULL,
8342 sysctl_net_key_dumpsa, 0, NULL, 0,
8343 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8344 sysctl_createv(clog, 0, NULL, NULL,
8345 CTLFLAG_PERMANENT,
8346 CTLTYPE_STRUCT, "dumpsp", NULL,
8347 sysctl_net_key_dumpsp, 0, NULL, 0,
8348 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8349 }
8350