key.c revision 1.204 1 /* $NetBSD: key.c,v 1.204 2017/08/03 06:31:16 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.204 2017/08/03 06:31:16 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 /*
139 * Locking notes on SPD:
140 * - Modifications to the sptree must be done with holding key_sp_mtx
141 * which is a adaptive mutex
142 * - Read accesses to the sptree must be in critical sections of pserialize(9)
143 * - SP's lifetime is managed by localcount(9)
144 * - An SP that has been inserted to the sptree is initially referenced by none,
145 * i.e., a reference from the pstree isn't counted
146 * - When an SP is being destroyed, we change its state as DEAD, wait for
147 * references to the SP to be released, and then deallocate the SP
148 * (see key_unlink_sp)
149 * - Getting an SP
150 * - Normally we get an SP from the sptree by incrementing the reference count
151 * of the SP
152 * - We can gain another reference from a held SP only if we check its state
153 * and take its reference in a critical section of pserialize
154 * (see esp_output for example)
155 * - We may get an SP from an SP cache. See below
156 * - Updating member variables of an SP
157 * - Most member variables of an SP are immutable
158 * - Only sp->state and sp->lastused can be changed
159 * - sp->state of an SP is updated only when destroying it under key_sp_mtx
160 * - SP caches
161 * - SPs can be cached in PCBs
162 * - The lifetime of the caches is controlled by the global generation counter
163 * (ipsec_spdgen)
164 * - The global counter value is stored when an SP is cached
165 * - If the stored value is different from the global counter then the cache
166 * is considered invalidated
167 * - The counter is incremented when an SP is being destroyed
168 * - So checking the generation and taking a reference to an SP should be
169 * in a critical section of pserialize
170 * - Note that caching doesn't increment the reference counter of an SP
171 * - SPs in sockets
172 * - Userland programs can set a policy to a socket by
173 * setsockopt(IP_IPSEC_POLICY)
174 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
175 * the key_socksplist list (not the sptree)
176 * - Such a policy is destroyed when a corresponding socket is destroed,
177 * however, a socket can be destroyed in softint so we cannot destroy
178 * it directly instead we just mark it DEAD and delay the destruction
179 * until GC by the timer
180 */
181
182 u_int32_t key_debug_level = 0;
183 static u_int key_spi_trycnt = 1000;
184 static u_int32_t key_spi_minval = 0x100;
185 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
186 static u_int32_t policy_id = 0;
187 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
188 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
189 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
190 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
191 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
192
193 static u_int32_t acq_seq = 0;
194
195 static struct pslist_head sptree[IPSEC_DIR_MAX]; /* SPD */
196 static struct pslist_head sahtree; /* SAD */
197 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
198 /* registed list */
199 #ifndef IPSEC_NONBLOCK_ACQUIRE
200 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
201 #endif
202 #ifdef notyet
203 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
204 #endif
205
206 #define SPLIST_ENTRY_INIT(sp) \
207 PSLIST_ENTRY_INIT((sp), pslist_entry)
208 #define SPLIST_ENTRY_DESTROY(sp) \
209 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
210 #define SPLIST_WRITER_REMOVE(sp) \
211 PSLIST_WRITER_REMOVE((sp), pslist_entry)
212 #define SPLIST_READER_EMPTY(dir) \
213 (PSLIST_READER_FIRST(&sptree[(dir)], struct secpolicy, \
214 pslist_entry) == NULL)
215 #define SPLIST_READER_FOREACH(sp, dir) \
216 PSLIST_READER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
217 pslist_entry)
218 #define SPLIST_WRITER_FOREACH(sp, dir) \
219 PSLIST_WRITER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
220 pslist_entry)
221 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
222 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
223 #define SPLIST_WRITER_EMPTY(dir) \
224 (PSLIST_WRITER_FIRST(&sptree[(dir)], struct secpolicy, \
225 pslist_entry) == NULL)
226 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
227 PSLIST_WRITER_INSERT_HEAD(&sptree[(dir)], (sp), pslist_entry)
228 #define SPLIST_WRITER_NEXT(sp) \
229 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
230 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
231 do { \
232 if (SPLIST_WRITER_EMPTY((dir))) { \
233 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
234 } else { \
235 struct secpolicy *__sp; \
236 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
237 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
238 SPLIST_WRITER_INSERT_AFTER(__sp,\
239 (new)); \
240 break; \
241 } \
242 } \
243 } \
244 } while (0)
245
246 #define SAHLIST_ENTRY_INIT(sah) \
247 PSLIST_ENTRY_INIT((sah), pslist_entry)
248 #define SAHLIST_ENTRY_DESTROY(sah) \
249 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
250 #define SAHLIST_WRITER_REMOVE(sah) \
251 PSLIST_WRITER_REMOVE((sah), pslist_entry)
252 #define SAHLIST_READER_FOREACH(sah) \
253 PSLIST_READER_FOREACH((sah), &sahtree, struct secashead, \
254 pslist_entry)
255 #define SAHLIST_WRITER_FOREACH(sah) \
256 PSLIST_WRITER_FOREACH((sah), &sahtree, struct secashead, \
257 pslist_entry)
258 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
259 PSLIST_WRITER_INSERT_HEAD(&sahtree, (sah), pslist_entry)
260
261 #define SAVLIST_ENTRY_INIT(sav) \
262 PSLIST_ENTRY_INIT((sav), pslist_entry)
263 #define SAVLIST_ENTRY_DESTROY(sav) \
264 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
265 #define SAVLIST_READER_FIRST(sah, state) \
266 PSLIST_READER_FIRST(&(sah)->savtree[(state)], struct secasvar, \
267 pslist_entry)
268 #define SAVLIST_WRITER_REMOVE(sav) \
269 PSLIST_WRITER_REMOVE((sav), pslist_entry)
270 #define SAVLIST_READER_FOREACH(sav, sah, state) \
271 PSLIST_READER_FOREACH((sav), &(sah)->savtree[(state)], \
272 struct secasvar, pslist_entry)
273 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
274 PSLIST_WRITER_FOREACH((sav), &(sah)->savtree[(state)], \
275 struct secasvar, pslist_entry)
276 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
277 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
278 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
279 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
280 #define SAVLIST_WRITER_EMPTY(sah, state) \
281 (PSLIST_WRITER_FIRST(&(sah)->savtree[(state)], struct secasvar, \
282 pslist_entry) == NULL)
283 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
284 PSLIST_WRITER_INSERT_HEAD(&(sah)->savtree[(state)], (sav), \
285 pslist_entry)
286 #define SAVLIST_WRITER_NEXT(sav) \
287 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
288 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
289 do { \
290 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
291 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
292 } else { \
293 struct secasvar *__sav; \
294 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
295 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
296 SAVLIST_WRITER_INSERT_AFTER(__sav,\
297 (new)); \
298 break; \
299 } \
300 } \
301 } \
302 } while (0)
303 #define SAVLIST_READER_NEXT(sav) \
304 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
305
306 /*
307 * The list has SPs that are set to a socket via setsockopt(IP_IPSEC_POLICY)
308 * from userland. See ipsec_set_policy.
309 */
310 static struct pslist_head key_socksplist;
311
312 #define SOCKSPLIST_WRITER_FOREACH(sp) \
313 PSLIST_WRITER_FOREACH((sp), &key_socksplist, struct secpolicy, \
314 pslist_entry)
315 #define SOCKSPLIST_READER_EMPTY() \
316 (PSLIST_READER_FIRST(&key_socksplist, struct secpolicy, \
317 pslist_entry) == NULL)
318
319 /*
320 * Protect regtree, acqtree and items stored in the lists.
321 */
322 static kmutex_t key_mtx __cacheline_aligned;
323 static pserialize_t key_psz;
324 static kmutex_t key_sp_mtx __cacheline_aligned;
325 static kcondvar_t key_sp_cv __cacheline_aligned;
326
327 /* search order for SAs */
328 /*
329 * This order is important because we must select the oldest SA
330 * for outbound processing. For inbound, This is not important.
331 */
332 static const u_int saorder_state_valid_prefer_old[] = {
333 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
334 };
335 static const u_int saorder_state_valid_prefer_new[] = {
336 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
337 };
338
339 static const u_int saorder_state_alive[] = {
340 /* except DEAD */
341 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
342 };
343 static const u_int saorder_state_any[] = {
344 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
345 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
346 };
347
348 #define SASTATE_ALIVE_FOREACH(s) \
349 for (int _i = 0; \
350 _i < __arraycount(saorder_state_alive) ? \
351 (s) = saorder_state_alive[_i], true : false; \
352 _i++)
353 #define SASTATE_ANY_FOREACH(s) \
354 for (int _i = 0; \
355 _i < __arraycount(saorder_state_any) ? \
356 (s) = saorder_state_any[_i], true : false; \
357 _i++)
358
359 static const int minsize[] = {
360 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
361 sizeof(struct sadb_sa), /* SADB_EXT_SA */
362 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
363 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
364 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
365 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
366 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
367 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
368 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
369 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
370 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
371 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
372 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
373 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
374 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
375 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
376 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
377 0, /* SADB_X_EXT_KMPRIVATE */
378 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
379 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
380 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
381 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
382 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
383 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
384 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
385 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
386 };
387 static const int maxsize[] = {
388 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
389 sizeof(struct sadb_sa), /* SADB_EXT_SA */
390 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
391 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
392 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
393 0, /* SADB_EXT_ADDRESS_SRC */
394 0, /* SADB_EXT_ADDRESS_DST */
395 0, /* SADB_EXT_ADDRESS_PROXY */
396 0, /* SADB_EXT_KEY_AUTH */
397 0, /* SADB_EXT_KEY_ENCRYPT */
398 0, /* SADB_EXT_IDENTITY_SRC */
399 0, /* SADB_EXT_IDENTITY_DST */
400 0, /* SADB_EXT_SENSITIVITY */
401 0, /* SADB_EXT_PROPOSAL */
402 0, /* SADB_EXT_SUPPORTED_AUTH */
403 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
404 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
405 0, /* SADB_X_EXT_KMPRIVATE */
406 0, /* SADB_X_EXT_POLICY */
407 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
408 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
409 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
410 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
411 0, /* SADB_X_EXT_NAT_T_OAI */
412 0, /* SADB_X_EXT_NAT_T_OAR */
413 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
414 };
415
416 static int ipsec_esp_keymin = 256;
417 static int ipsec_esp_auth = 0;
418 static int ipsec_ah_keymin = 128;
419
420 #ifdef SYSCTL_DECL
421 SYSCTL_DECL(_net_key);
422 #endif
423
424 #ifdef SYSCTL_INT
425 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
426 &key_debug_level, 0, "");
427
428 /* max count of trial for the decision of spi value */
429 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
430 &key_spi_trycnt, 0, "");
431
432 /* minimum spi value to allocate automatically. */
433 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
434 &key_spi_minval, 0, "");
435
436 /* maximun spi value to allocate automatically. */
437 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
438 &key_spi_maxval, 0, "");
439
440 /* interval to initialize randseed */
441 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
442 &key_int_random, 0, "");
443
444 /* lifetime for larval SA */
445 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
446 &key_larval_lifetime, 0, "");
447
448 /* counter for blocking to send SADB_ACQUIRE to IKEd */
449 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
450 &key_blockacq_count, 0, "");
451
452 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
453 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
454 &key_blockacq_lifetime, 0, "");
455
456 /* ESP auth */
457 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
458 &ipsec_esp_auth, 0, "");
459
460 /* minimum ESP key length */
461 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
462 &ipsec_esp_keymin, 0, "");
463
464 /* minimum AH key length */
465 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
466 &ipsec_ah_keymin, 0, "");
467
468 /* perfered old SA rather than new SA */
469 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
470 &key_prefered_oldsa, 0, "");
471 #endif /* SYSCTL_INT */
472
473 #define __LIST_CHAINED(elm) \
474 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
475 #define LIST_INSERT_TAIL(head, elm, type, field) \
476 do {\
477 struct type *curelm = LIST_FIRST(head); \
478 if (curelm == NULL) {\
479 LIST_INSERT_HEAD(head, elm, field); \
480 } else { \
481 while (LIST_NEXT(curelm, field)) \
482 curelm = LIST_NEXT(curelm, field);\
483 LIST_INSERT_AFTER(curelm, elm, field);\
484 }\
485 } while (0)
486
487 #define KEY_CHKSASTATE(head, sav) \
488 /* do */ { \
489 if ((head) != (sav)) { \
490 IPSECLOG(LOG_DEBUG, \
491 "state mismatched (TREE=%d SA=%d)\n", \
492 (head), (sav)); \
493 continue; \
494 } \
495 } /* while (0) */
496
497 #define KEY_CHKSPDIR(head, sp) \
498 do { \
499 if ((head) != (sp)) { \
500 IPSECLOG(LOG_DEBUG, \
501 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
502 (head), (sp)); \
503 } \
504 } while (0)
505
506 /*
507 * set parameters into secasindex buffer.
508 * Must allocate secasindex buffer before calling this function.
509 */
510 static int
511 key_setsecasidx(int, int, int, const struct sockaddr *,
512 const struct sockaddr *, struct secasindex *);
513
514 /* key statistics */
515 struct _keystat {
516 u_long getspi_count; /* the avarage of count to try to get new SPI */
517 } keystat;
518
519 struct sadb_msghdr {
520 struct sadb_msg *msg;
521 struct sadb_ext *ext[SADB_EXT_MAX + 1];
522 int extoff[SADB_EXT_MAX + 1];
523 int extlen[SADB_EXT_MAX + 1];
524 };
525
526 static void
527 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
528
529 static const struct sockaddr *
530 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
531 {
532
533 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
534 }
535
536 static struct mbuf *
537 key_fill_replymsg(struct mbuf *m, int seq)
538 {
539 struct sadb_msg *msg;
540
541 if (m->m_len < sizeof(*msg)) {
542 m = m_pullup(m, sizeof(*msg));
543 if (m == NULL)
544 return NULL;
545 }
546 msg = mtod(m, struct sadb_msg *);
547 msg->sadb_msg_errno = 0;
548 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
549 if (seq != 0)
550 msg->sadb_msg_seq = seq;
551
552 return m;
553 }
554
555 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
556 #if 0
557 static void key_freeso(struct socket *);
558 static void key_freesp_so(struct secpolicy **);
559 #endif
560 static struct secpolicy *key_getsp (const struct secpolicyindex *);
561 static struct secpolicy *key_getspbyid (u_int32_t);
562 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
563 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
564 static void key_destroy_sp(struct secpolicy *);
565 static u_int16_t key_newreqid (void);
566 static struct mbuf *key_gather_mbuf (struct mbuf *,
567 const struct sadb_msghdr *, int, int, ...);
568 static int key_api_spdadd(struct socket *, struct mbuf *,
569 const struct sadb_msghdr *);
570 static u_int32_t key_getnewspid (void);
571 static int key_api_spddelete(struct socket *, struct mbuf *,
572 const struct sadb_msghdr *);
573 static int key_api_spddelete2(struct socket *, struct mbuf *,
574 const struct sadb_msghdr *);
575 static int key_api_spdget(struct socket *, struct mbuf *,
576 const struct sadb_msghdr *);
577 static int key_api_spdflush(struct socket *, struct mbuf *,
578 const struct sadb_msghdr *);
579 static int key_api_spddump(struct socket *, struct mbuf *,
580 const struct sadb_msghdr *);
581 static struct mbuf * key_setspddump (int *errorp, pid_t);
582 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
583 static int key_api_nat_map(struct socket *, struct mbuf *,
584 const struct sadb_msghdr *);
585 static struct mbuf *key_setdumpsp (struct secpolicy *,
586 u_int8_t, u_int32_t, pid_t);
587 static u_int key_getspreqmsglen (const struct secpolicy *);
588 static int key_spdexpire (struct secpolicy *);
589 static struct secashead *key_newsah (const struct secasindex *);
590 static void key_delsah (struct secashead *);
591 static struct secasvar *key_newsav(struct mbuf *,
592 const struct sadb_msghdr *, int *, const char*, int);
593 #define KEY_NEWSAV(m, sadb, e) \
594 key_newsav(m, sadb, e, __func__, __LINE__)
595 static void key_delsav (struct secasvar *);
596 static struct secashead *key_getsah(const struct secasindex *, int);
597 static bool key_checkspidup(const struct secasindex *, u_int32_t);
598 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
599 static int key_setsaval (struct secasvar *, struct mbuf *,
600 const struct sadb_msghdr *);
601 static void key_freesaval(struct secasvar *);
602 static int key_init_xform(struct secasvar *);
603 static void key_clear_xform(struct secasvar *);
604 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
605 u_int8_t, u_int32_t, u_int32_t);
606 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
607 static struct mbuf *key_setsadbxtype (u_int16_t);
608 static struct mbuf *key_setsadbxfrag (u_int16_t);
609 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
610 static int key_checksalen (const union sockaddr_union *);
611 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
612 u_int32_t, pid_t, u_int16_t);
613 static struct mbuf *key_setsadbsa (struct secasvar *);
614 static struct mbuf *key_setsadbaddr (u_int16_t,
615 const struct sockaddr *, u_int8_t, u_int16_t);
616 #if 0
617 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
618 int, u_int64_t);
619 #endif
620 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
621 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
622 u_int32_t);
623 static void *key_newbuf (const void *, u_int);
624 #ifdef INET6
625 static int key_ismyaddr6 (const struct sockaddr_in6 *);
626 #endif
627
628 static void sysctl_net_keyv2_setup(struct sysctllog **);
629 static void sysctl_net_key_compat_setup(struct sysctllog **);
630
631 /* flags for key_saidx_match() */
632 #define CMP_HEAD 1 /* protocol, addresses. */
633 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
634 #define CMP_REQID 3 /* additionally HEAD, reaid. */
635 #define CMP_EXACTLY 4 /* all elements. */
636 static int key_saidx_match(const struct secasindex *,
637 const struct secasindex *, int);
638
639 static int key_sockaddr_match(const struct sockaddr *,
640 const struct sockaddr *, int);
641 static int key_bb_match_withmask(const void *, const void *, u_int);
642 static u_int16_t key_satype2proto (u_int8_t);
643 static u_int8_t key_proto2satype (u_int16_t);
644
645 static int key_spidx_match_exactly(const struct secpolicyindex *,
646 const struct secpolicyindex *);
647 static int key_spidx_match_withmask(const struct secpolicyindex *,
648 const struct secpolicyindex *);
649
650 static int key_api_getspi(struct socket *, struct mbuf *,
651 const struct sadb_msghdr *);
652 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
653 const struct secasindex *);
654 static int key_handle_natt_info (struct secasvar *,
655 const struct sadb_msghdr *);
656 static int key_set_natt_ports (union sockaddr_union *,
657 union sockaddr_union *,
658 const struct sadb_msghdr *);
659 static int key_api_update(struct socket *, struct mbuf *,
660 const struct sadb_msghdr *);
661 #ifdef IPSEC_DOSEQCHECK
662 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
663 #endif
664 static int key_api_add(struct socket *, struct mbuf *,
665 const struct sadb_msghdr *);
666 static int key_setident (struct secashead *, struct mbuf *,
667 const struct sadb_msghdr *);
668 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
669 const struct sadb_msghdr *);
670 static int key_api_delete(struct socket *, struct mbuf *,
671 const struct sadb_msghdr *);
672 static int key_api_get(struct socket *, struct mbuf *,
673 const struct sadb_msghdr *);
674
675 static void key_getcomb_setlifetime (struct sadb_comb *);
676 static struct mbuf *key_getcomb_esp (void);
677 static struct mbuf *key_getcomb_ah (void);
678 static struct mbuf *key_getcomb_ipcomp (void);
679 static struct mbuf *key_getprop (const struct secasindex *);
680
681 static int key_acquire (const struct secasindex *, struct secpolicy *);
682 #ifndef IPSEC_NONBLOCK_ACQUIRE
683 static struct secacq *key_newacq (const struct secasindex *);
684 static struct secacq *key_getacq (const struct secasindex *);
685 static struct secacq *key_getacqbyseq (u_int32_t);
686 #endif
687 #ifdef notyet
688 static struct secspacq *key_newspacq (const struct secpolicyindex *);
689 static struct secspacq *key_getspacq (const struct secpolicyindex *);
690 #endif
691 static int key_api_acquire(struct socket *, struct mbuf *,
692 const struct sadb_msghdr *);
693 static int key_api_register(struct socket *, struct mbuf *,
694 const struct sadb_msghdr *);
695 static int key_expire (struct secasvar *);
696 static int key_api_flush(struct socket *, struct mbuf *,
697 const struct sadb_msghdr *);
698 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
699 int *lenp, pid_t pid);
700 static int key_api_dump(struct socket *, struct mbuf *,
701 const struct sadb_msghdr *);
702 static int key_api_promisc(struct socket *, struct mbuf *,
703 const struct sadb_msghdr *);
704 static int key_senderror (struct socket *, struct mbuf *, int);
705 static int key_validate_ext (const struct sadb_ext *, int);
706 static int key_align (struct mbuf *, struct sadb_msghdr *);
707 #if 0
708 static const char *key_getfqdn (void);
709 static const char *key_getuserfqdn (void);
710 #endif
711 static void key_sa_chgstate (struct secasvar *, u_int8_t);
712
713 static struct mbuf *key_alloc_mbuf (int);
714
715 static void key_timehandler(void *);
716 static void key_timehandler_work(struct work *, void *);
717 static struct callout key_timehandler_ch;
718 static struct workqueue *key_timehandler_wq;
719 static struct work key_timehandler_wk;
720
721 #ifdef IPSEC_REF_DEBUG
722 #define REFLOG(label, p, where, tag) \
723 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
724 (where), (tag), (p)->refcnt, (p))
725 #else
726 #define REFLOG(label, p, where, tag) do {} while (0)
727 #endif
728
729 #define SA_ADDREF(p) do { \
730 atomic_inc_uint(&(p)->refcnt); \
731 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
732 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
733 } while (0)
734 #define SA_ADDREF2(p, where, tag) do { \
735 atomic_inc_uint(&(p)->refcnt); \
736 REFLOG("SA_ADDREF", (p), (where), (tag)); \
737 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
738 } while (0)
739 #define SA_DELREF(p) do { \
740 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
741 atomic_dec_uint(&(p)->refcnt); \
742 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
743 } while (0)
744 #define SA_DELREF2(p, nv, where, tag) do { \
745 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
746 nv = atomic_dec_uint_nv(&(p)->refcnt); \
747 REFLOG("SA_DELREF", (p), (where), (tag)); \
748 } while (0)
749
750 u_int
751 key_sp_refcnt(const struct secpolicy *sp)
752 {
753
754 /* FIXME */
755 return 0;
756 }
757
758 /*
759 * Remove the sp from the sptree and wait for references to the sp
760 * to be released. key_sp_mtx must be held.
761 */
762 static void
763 key_unlink_sp(struct secpolicy *sp)
764 {
765
766 KASSERT(mutex_owned(&key_sp_mtx));
767
768 sp->state = IPSEC_SPSTATE_DEAD;
769 SPLIST_WRITER_REMOVE(sp);
770
771 /* Invalidate all cached SPD pointers in the PCBs. */
772 ipsec_invalpcbcacheall();
773
774 #ifdef NET_MPSAFE
775 KASSERT(mutex_ownable(softnet_lock));
776 pserialize_perform(key_psz);
777 #endif
778
779 localcount_drain(&sp->localcount, &key_sp_cv, &key_sp_mtx);
780 }
781
782 /*
783 * Return 0 when there are known to be no SP's for the specified
784 * direction. Otherwise return 1. This is used by IPsec code
785 * to optimize performance.
786 */
787 int
788 key_havesp(u_int dir)
789 {
790 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
791 !SPLIST_READER_EMPTY(dir) : 1);
792 }
793
794 /* %%% IPsec policy management */
795 /*
796 * allocating a SP for OUTBOUND or INBOUND packet.
797 * Must call key_freesp() later.
798 * OUT: NULL: not found
799 * others: found and return the pointer.
800 */
801 struct secpolicy *
802 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
803 u_int dir, const char* where, int tag)
804 {
805 struct secpolicy *sp;
806 int s;
807
808 KASSERT(spidx != NULL);
809 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
810
811 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
812
813 /* get a SP entry */
814 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
815 printf("*** objects\n");
816 kdebug_secpolicyindex(spidx);
817 }
818
819 s = pserialize_read_enter();
820 SPLIST_READER_FOREACH(sp, dir) {
821 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
822 printf("*** in SPD\n");
823 kdebug_secpolicyindex(&sp->spidx);
824 }
825
826 if (sp->state == IPSEC_SPSTATE_DEAD)
827 continue;
828 if (key_spidx_match_withmask(&sp->spidx, spidx))
829 goto found;
830 }
831 sp = NULL;
832 found:
833 if (sp) {
834 /* sanity check */
835 KEY_CHKSPDIR(sp->spidx.dir, dir);
836
837 /* found a SPD entry */
838 sp->lastused = time_uptime;
839 key_sp_ref(sp, where, tag);
840 }
841 pserialize_read_exit(s);
842
843 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
844 "DP return SP:%p (ID=%u) refcnt %u\n",
845 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
846 return sp;
847 }
848
849 /*
850 * return a policy that matches this particular inbound packet.
851 * XXX slow
852 */
853 struct secpolicy *
854 key_gettunnel(const struct sockaddr *osrc,
855 const struct sockaddr *odst,
856 const struct sockaddr *isrc,
857 const struct sockaddr *idst,
858 const char* where, int tag)
859 {
860 struct secpolicy *sp;
861 const int dir = IPSEC_DIR_INBOUND;
862 int s;
863 struct ipsecrequest *r1, *r2, *p;
864 struct secpolicyindex spidx;
865
866 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
867
868 if (isrc->sa_family != idst->sa_family) {
869 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
870 isrc->sa_family, idst->sa_family);
871 sp = NULL;
872 goto done;
873 }
874
875 s = pserialize_read_enter();
876 SPLIST_READER_FOREACH(sp, dir) {
877 if (sp->state == IPSEC_SPSTATE_DEAD)
878 continue;
879
880 r1 = r2 = NULL;
881 for (p = sp->req; p; p = p->next) {
882 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
883 continue;
884
885 r1 = r2;
886 r2 = p;
887
888 if (!r1) {
889 /* here we look at address matches only */
890 spidx = sp->spidx;
891 if (isrc->sa_len > sizeof(spidx.src) ||
892 idst->sa_len > sizeof(spidx.dst))
893 continue;
894 memcpy(&spidx.src, isrc, isrc->sa_len);
895 memcpy(&spidx.dst, idst, idst->sa_len);
896 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
897 continue;
898 } else {
899 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
900 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
901 continue;
902 }
903
904 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
905 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
906 continue;
907
908 goto found;
909 }
910 }
911 sp = NULL;
912 found:
913 if (sp) {
914 sp->lastused = time_uptime;
915 key_sp_ref(sp, where, tag);
916 }
917 pserialize_read_exit(s);
918 done:
919 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
920 "DP return SP:%p (ID=%u) refcnt %u\n",
921 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
922 return sp;
923 }
924
925 /*
926 * allocating an SA entry for an *OUTBOUND* packet.
927 * checking each request entries in SP, and acquire an SA if need.
928 * OUT: 0: there are valid requests.
929 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
930 */
931 int
932 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
933 {
934 u_int level;
935 int error;
936 const struct secasindex *saidx = &isr->saidx;
937 struct secasvar *sav;
938
939 KASSERT(isr != NULL);
940 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
941 saidx->mode == IPSEC_MODE_TUNNEL,
942 "unexpected policy %u", saidx->mode);
943
944 /* get current level */
945 level = ipsec_get_reqlevel(isr);
946
947 /*
948 * XXX guard against protocol callbacks from the crypto
949 * thread as they reference ipsecrequest.sav which we
950 * temporarily null out below. Need to rethink how we
951 * handle bundled SA's in the callback thread.
952 */
953 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
954
955 sav = key_lookup_sa_bysaidx(saidx);
956 if (sav != NULL) {
957 *ret = sav;
958 return 0;
959 }
960
961 /* there is no SA */
962 error = key_acquire(saidx, isr->sp);
963 if (error != 0) {
964 /* XXX What should I do ? */
965 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
966 error);
967 return error;
968 }
969
970 if (level != IPSEC_LEVEL_REQUIRE) {
971 /* XXX sigh, the interface to this routine is botched */
972 *ret = NULL;
973 return 0;
974 } else {
975 return ENOENT;
976 }
977 }
978
979 /*
980 * looking up a SA for policy entry from SAD.
981 * NOTE: searching SAD of aliving state.
982 * OUT: NULL: not found.
983 * others: found and return the pointer.
984 */
985 static struct secasvar *
986 key_lookup_sa_bysaidx(const struct secasindex *saidx)
987 {
988 struct secashead *sah;
989 struct secasvar *sav;
990 u_int stateidx, state;
991 const u_int *saorder_state_valid;
992 int arraysize;
993
994 sah = key_getsah(saidx, CMP_MODE_REQID);
995 if (sah == NULL)
996 return NULL;
997
998 /*
999 * search a valid state list for outbound packet.
1000 * This search order is important.
1001 */
1002 if (key_prefered_oldsa) {
1003 saorder_state_valid = saorder_state_valid_prefer_old;
1004 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1005 } else {
1006 saorder_state_valid = saorder_state_valid_prefer_new;
1007 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1008 }
1009
1010 /* search valid state */
1011 for (stateidx = 0;
1012 stateidx < arraysize;
1013 stateidx++) {
1014
1015 state = saorder_state_valid[stateidx];
1016
1017 if (key_prefered_oldsa)
1018 sav = SAVLIST_READER_FIRST(sah, state);
1019 else {
1020 /* XXX need O(1) lookup */
1021 struct secasvar *last = NULL;
1022
1023 SAVLIST_READER_FOREACH(sav, sah, state)
1024 last = sav;
1025 sav = last;
1026 }
1027 if (sav != NULL) {
1028 SA_ADDREF(sav);
1029 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1030 "DP cause refcnt++:%d SA:%p\n",
1031 sav->refcnt, sav);
1032 return sav;
1033 }
1034 }
1035
1036 return NULL;
1037 }
1038
1039 #if 0
1040 static void
1041 key_sendup_message_delete(struct secasvar *sav)
1042 {
1043 struct mbuf *m, *result = 0;
1044 uint8_t satype;
1045
1046 satype = key_proto2satype(sav->sah->saidx.proto);
1047 if (satype == 0)
1048 goto msgfail;
1049
1050 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
1051 if (m == NULL)
1052 goto msgfail;
1053 result = m;
1054
1055 /* set sadb_address for saidx's. */
1056 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1057 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1058 if (m == NULL)
1059 goto msgfail;
1060 m_cat(result, m);
1061
1062 /* set sadb_address for saidx's. */
1063 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1064 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1065 if (m == NULL)
1066 goto msgfail;
1067 m_cat(result, m);
1068
1069 /* create SA extension */
1070 m = key_setsadbsa(sav);
1071 if (m == NULL)
1072 goto msgfail;
1073 m_cat(result, m);
1074
1075 if (result->m_len < sizeof(struct sadb_msg)) {
1076 result = m_pullup(result, sizeof(struct sadb_msg));
1077 if (result == NULL)
1078 goto msgfail;
1079 }
1080
1081 result->m_pkthdr.len = 0;
1082 for (m = result; m; m = m->m_next)
1083 result->m_pkthdr.len += m->m_len;
1084 mtod(result, struct sadb_msg *)->sadb_msg_len =
1085 PFKEY_UNIT64(result->m_pkthdr.len);
1086
1087 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1088 result = NULL;
1089 msgfail:
1090 if (result)
1091 m_freem(result);
1092 }
1093 #endif
1094
1095 /*
1096 * allocating a usable SA entry for a *INBOUND* packet.
1097 * Must call key_freesav() later.
1098 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1099 * NULL: not found, or error occurred.
1100 *
1101 * In the comparison, no source address is used--for RFC2401 conformance.
1102 * To quote, from section 4.1:
1103 * A security association is uniquely identified by a triple consisting
1104 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1105 * security protocol (AH or ESP) identifier.
1106 * Note that, however, we do need to keep source address in IPsec SA.
1107 * IKE specification and PF_KEY specification do assume that we
1108 * keep source address in IPsec SA. We see a tricky situation here.
1109 *
1110 * sport and dport are used for NAT-T. network order is always used.
1111 */
1112 struct secasvar *
1113 key_lookup_sa(
1114 const union sockaddr_union *dst,
1115 u_int proto,
1116 u_int32_t spi,
1117 u_int16_t sport,
1118 u_int16_t dport,
1119 const char* where, int tag)
1120 {
1121 struct secashead *sah;
1122 struct secasvar *sav;
1123 u_int stateidx, state;
1124 const u_int *saorder_state_valid;
1125 int arraysize, chkport;
1126 int s;
1127
1128 int must_check_spi = 1;
1129 int must_check_alg = 0;
1130 u_int16_t cpi = 0;
1131 u_int8_t algo = 0;
1132
1133 if ((sport != 0) && (dport != 0))
1134 chkport = PORT_STRICT;
1135 else
1136 chkport = PORT_NONE;
1137
1138 KASSERT(dst != NULL);
1139
1140 /*
1141 * XXX IPCOMP case
1142 * We use cpi to define spi here. In the case where cpi <=
1143 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1144 * the real spi. In this case, don't check the spi but check the
1145 * algorithm
1146 */
1147
1148 if (proto == IPPROTO_IPCOMP) {
1149 u_int32_t tmp;
1150 tmp = ntohl(spi);
1151 cpi = (u_int16_t) tmp;
1152 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1153 algo = (u_int8_t) cpi;
1154 must_check_spi = 0;
1155 must_check_alg = 1;
1156 }
1157 }
1158 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1159 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1160 where, tag, must_check_spi, must_check_alg);
1161
1162
1163 /*
1164 * searching SAD.
1165 * XXX: to be checked internal IP header somewhere. Also when
1166 * IPsec tunnel packet is received. But ESP tunnel mode is
1167 * encrypted so we can't check internal IP header.
1168 */
1169 s = splsoftnet(); /*called from softclock()*/
1170 if (key_prefered_oldsa) {
1171 saorder_state_valid = saorder_state_valid_prefer_old;
1172 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1173 } else {
1174 saorder_state_valid = saorder_state_valid_prefer_new;
1175 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1176 }
1177 SAHLIST_READER_FOREACH(sah) {
1178 /* search valid state */
1179 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1180 state = saorder_state_valid[stateidx];
1181 SAVLIST_READER_FOREACH(sav, sah, state) {
1182 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1183 "try match spi %#x, %#x\n",
1184 ntohl(spi), ntohl(sav->spi));
1185 /* sanity check */
1186 KEY_CHKSASTATE(sav->state, state);
1187 /* do not return entries w/ unusable state */
1188 if (!SADB_SASTATE_USABLE_P(sav)) {
1189 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1190 "bad state %d\n", sav->state);
1191 continue;
1192 }
1193 if (proto != sav->sah->saidx.proto) {
1194 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1195 "proto fail %d != %d\n",
1196 proto, sav->sah->saidx.proto);
1197 continue;
1198 }
1199 if (must_check_spi && spi != sav->spi) {
1200 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1201 "spi fail %#x != %#x\n",
1202 ntohl(spi), ntohl(sav->spi));
1203 continue;
1204 }
1205 /* XXX only on the ipcomp case */
1206 if (must_check_alg && algo != sav->alg_comp) {
1207 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1208 "algo fail %d != %d\n",
1209 algo, sav->alg_comp);
1210 continue;
1211 }
1212
1213 #if 0 /* don't check src */
1214 /* Fix port in src->sa */
1215
1216 /* check src address */
1217 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1218 continue;
1219 #endif
1220 /* fix port of dst address XXX*/
1221 key_porttosaddr(__UNCONST(dst), dport);
1222 /* check dst address */
1223 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1224 continue;
1225 SA_ADDREF2(sav, where, tag);
1226 goto done;
1227 }
1228 }
1229 }
1230 sav = NULL;
1231 done:
1232 splx(s);
1233
1234 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1235 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1236 return sav;
1237 }
1238
1239 static void
1240 key_validate_savlist(const struct secashead *sah, const u_int state)
1241 {
1242 #ifdef DEBUG
1243 struct secasvar *sav, *next;
1244
1245 /*
1246 * The list should be sorted by lft_c->sadb_lifetime_addtime
1247 * in ascending order.
1248 */
1249 SAVLIST_READER_FOREACH(sav, sah, state) {
1250 next = SAVLIST_READER_NEXT(sav);
1251 if (next != NULL &&
1252 sav->lft_c != NULL && next->lft_c != NULL) {
1253 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1254 next->lft_c->sadb_lifetime_addtime,
1255 "savlist is not sorted: sah=%p, state=%d, "
1256 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1257 sav->lft_c->sadb_lifetime_addtime,
1258 next->lft_c->sadb_lifetime_addtime);
1259 }
1260 }
1261 #endif
1262 }
1263
1264 void
1265 key_init_sp(struct secpolicy *sp)
1266 {
1267
1268 ASSERT_SLEEPABLE();
1269
1270 sp->state = IPSEC_SPSTATE_ALIVE;
1271 if (sp->policy == IPSEC_POLICY_IPSEC)
1272 KASSERT(sp->req != NULL);
1273 localcount_init(&sp->localcount);
1274 SPLIST_ENTRY_INIT(sp);
1275 }
1276
1277 void
1278 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1279 {
1280
1281 localcount_acquire(&sp->localcount);
1282
1283 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1284 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1285 sp, sp->id, where, tag, key_sp_refcnt(sp));
1286 }
1287
1288 void
1289 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1290 {
1291
1292 KASSERT(mutex_ownable(&key_sp_mtx));
1293
1294 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1295 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1296 sp, sp->id, where, tag, key_sp_refcnt(sp));
1297
1298 localcount_release(&sp->localcount, &key_sp_cv, &key_sp_mtx);
1299 }
1300
1301 void
1302 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1303 {
1304
1305 SA_ADDREF2(sav, where, tag);
1306
1307 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1308 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1309 sav->refcnt, sav, where, tag);
1310 }
1311
1312 #if 0
1313 /*
1314 * Must be called after calling key_lookup_sp*().
1315 * For the packet with socket.
1316 */
1317 static void
1318 key_freeso(struct socket *so)
1319 {
1320 /* sanity check */
1321 KASSERT(so != NULL);
1322
1323 switch (so->so_proto->pr_domain->dom_family) {
1324 #ifdef INET
1325 case PF_INET:
1326 {
1327 struct inpcb *pcb = sotoinpcb(so);
1328
1329 /* Does it have a PCB ? */
1330 if (pcb == NULL)
1331 return;
1332
1333 struct inpcbpolicy *sp = pcb->inp_sp;
1334 key_freesp_so(&sp->sp_in);
1335 key_freesp_so(&sp->sp_out);
1336 }
1337 break;
1338 #endif
1339 #ifdef INET6
1340 case PF_INET6:
1341 {
1342 #ifdef HAVE_NRL_INPCB
1343 struct inpcb *pcb = sotoinpcb(so);
1344 struct inpcbpolicy *sp = pcb->inp_sp;
1345
1346 /* Does it have a PCB ? */
1347 if (pcb == NULL)
1348 return;
1349 key_freesp_so(&sp->sp_in);
1350 key_freesp_so(&sp->sp_out);
1351 #else
1352 struct in6pcb *pcb = sotoin6pcb(so);
1353
1354 /* Does it have a PCB ? */
1355 if (pcb == NULL)
1356 return;
1357 key_freesp_so(&pcb->in6p_sp->sp_in);
1358 key_freesp_so(&pcb->in6p_sp->sp_out);
1359 #endif
1360 }
1361 break;
1362 #endif /* INET6 */
1363 default:
1364 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1365 so->so_proto->pr_domain->dom_family);
1366 return;
1367 }
1368 }
1369
1370 static void
1371 key_freesp_so(struct secpolicy **sp)
1372 {
1373
1374 KASSERT(sp != NULL);
1375 KASSERT(*sp != NULL);
1376
1377 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1378 (*sp)->policy == IPSEC_POLICY_BYPASS)
1379 return;
1380
1381 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1382 "invalid policy %u", (*sp)->policy);
1383 KEY_SP_UNREF(&sp);
1384 }
1385 #endif
1386
1387 /*
1388 * Must be called after calling key_lookup_sa().
1389 * This function is called by key_freesp() to free some SA allocated
1390 * for a policy.
1391 */
1392 void
1393 key_freesav(struct secasvar **psav, const char* where, int tag)
1394 {
1395 struct secasvar *sav = *psav;
1396 unsigned int nv;
1397
1398 KASSERT(sav != NULL);
1399
1400 SA_DELREF2(sav, nv, where, tag);
1401
1402 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1403 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1404 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1405
1406 if (nv == 0) {
1407 *psav = NULL;
1408
1409 /* remove from SA header */
1410 SAVLIST_WRITER_REMOVE(sav);
1411
1412 key_delsav(sav);
1413 }
1414 }
1415
1416 /* %%% SPD management */
1417 /*
1418 * free security policy entry.
1419 */
1420 static void
1421 key_destroy_sp(struct secpolicy *sp)
1422 {
1423
1424 SPLIST_ENTRY_DESTROY(sp);
1425 localcount_fini(&sp->localcount);
1426
1427 key_free_sp(sp);
1428
1429 key_update_used();
1430 }
1431
1432 void
1433 key_free_sp(struct secpolicy *sp)
1434 {
1435 struct ipsecrequest *isr = sp->req, *nextisr;
1436
1437 while (isr != NULL) {
1438 nextisr = isr->next;
1439 kmem_free(isr, sizeof(*isr));
1440 isr = nextisr;
1441 }
1442
1443 kmem_free(sp, sizeof(*sp));
1444 }
1445
1446 void
1447 key_socksplist_add(struct secpolicy *sp)
1448 {
1449
1450 mutex_enter(&key_sp_mtx);
1451 PSLIST_WRITER_INSERT_HEAD(&key_socksplist, sp, pslist_entry);
1452 mutex_exit(&key_sp_mtx);
1453
1454 key_update_used();
1455 }
1456
1457 /*
1458 * search SPD
1459 * OUT: NULL : not found
1460 * others : found, pointer to a SP.
1461 */
1462 static struct secpolicy *
1463 key_getsp(const struct secpolicyindex *spidx)
1464 {
1465 struct secpolicy *sp;
1466 int s;
1467
1468 KASSERT(spidx != NULL);
1469
1470 s = pserialize_read_enter();
1471 SPLIST_READER_FOREACH(sp, spidx->dir) {
1472 if (sp->state == IPSEC_SPSTATE_DEAD)
1473 continue;
1474 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1475 KEY_SP_REF(sp);
1476 pserialize_read_exit(s);
1477 return sp;
1478 }
1479 }
1480 pserialize_read_exit(s);
1481
1482 return NULL;
1483 }
1484
1485 /*
1486 * search SPD and remove found SP
1487 * OUT: NULL : not found
1488 * others : found, pointer to a SP.
1489 */
1490 static struct secpolicy *
1491 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1492 {
1493 struct secpolicy *sp = NULL;
1494
1495 mutex_enter(&key_sp_mtx);
1496 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1497 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1498
1499 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1500 key_unlink_sp(sp);
1501 goto out;
1502 }
1503 }
1504 sp = NULL;
1505 out:
1506 mutex_exit(&key_sp_mtx);
1507
1508 return sp;
1509 }
1510
1511 /*
1512 * get SP by index.
1513 * OUT: NULL : not found
1514 * others : found, pointer to a SP.
1515 */
1516 static struct secpolicy *
1517 key_getspbyid(u_int32_t id)
1518 {
1519 struct secpolicy *sp;
1520 int s;
1521
1522 s = pserialize_read_enter();
1523 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1524 if (sp->state == IPSEC_SPSTATE_DEAD)
1525 continue;
1526 if (sp->id == id) {
1527 KEY_SP_REF(sp);
1528 goto out;
1529 }
1530 }
1531
1532 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1533 if (sp->state == IPSEC_SPSTATE_DEAD)
1534 continue;
1535 if (sp->id == id) {
1536 KEY_SP_REF(sp);
1537 goto out;
1538 }
1539 }
1540 out:
1541 pserialize_read_exit(s);
1542 return sp;
1543 }
1544
1545 /*
1546 * get SP by index, remove and return it.
1547 * OUT: NULL : not found
1548 * others : found, pointer to a SP.
1549 */
1550 static struct secpolicy *
1551 key_lookupbyid_and_remove_sp(u_int32_t id)
1552 {
1553 struct secpolicy *sp;
1554
1555 mutex_enter(&key_sp_mtx);
1556 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1557 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1558 if (sp->id == id)
1559 goto out;
1560 }
1561
1562 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1563 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1564 if (sp->id == id)
1565 goto out;
1566 }
1567 out:
1568 if (sp != NULL)
1569 key_unlink_sp(sp);
1570 mutex_exit(&key_sp_mtx);
1571 return sp;
1572 }
1573
1574 struct secpolicy *
1575 key_newsp(const char* where, int tag)
1576 {
1577 struct secpolicy *newsp = NULL;
1578
1579 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1580
1581 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1582 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1583 return newsp;
1584 }
1585
1586 /*
1587 * create secpolicy structure from sadb_x_policy structure.
1588 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1589 * so must be set properly later.
1590 */
1591 struct secpolicy *
1592 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1593 {
1594 struct secpolicy *newsp;
1595
1596 KASSERT(!cpu_softintr_p());
1597 KASSERT(xpl0 != NULL);
1598 KASSERT(len >= sizeof(*xpl0));
1599
1600 if (len != PFKEY_EXTLEN(xpl0)) {
1601 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1602 *error = EINVAL;
1603 return NULL;
1604 }
1605
1606 newsp = KEY_NEWSP();
1607 if (newsp == NULL) {
1608 *error = ENOBUFS;
1609 return NULL;
1610 }
1611
1612 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1613 newsp->policy = xpl0->sadb_x_policy_type;
1614
1615 /* check policy */
1616 switch (xpl0->sadb_x_policy_type) {
1617 case IPSEC_POLICY_DISCARD:
1618 case IPSEC_POLICY_NONE:
1619 case IPSEC_POLICY_ENTRUST:
1620 case IPSEC_POLICY_BYPASS:
1621 newsp->req = NULL;
1622 *error = 0;
1623 return newsp;
1624
1625 case IPSEC_POLICY_IPSEC:
1626 /* Continued */
1627 break;
1628 default:
1629 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1630 key_free_sp(newsp);
1631 *error = EINVAL;
1632 return NULL;
1633 }
1634
1635 /* IPSEC_POLICY_IPSEC */
1636 {
1637 int tlen;
1638 const struct sadb_x_ipsecrequest *xisr;
1639 uint16_t xisr_reqid;
1640 struct ipsecrequest **p_isr = &newsp->req;
1641
1642 /* validity check */
1643 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1644 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1645 *error = EINVAL;
1646 goto free_exit;
1647 }
1648
1649 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1650 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1651
1652 while (tlen > 0) {
1653 /* length check */
1654 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1655 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1656 *error = EINVAL;
1657 goto free_exit;
1658 }
1659
1660 /* allocate request buffer */
1661 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1662
1663 /* set values */
1664 (*p_isr)->next = NULL;
1665
1666 switch (xisr->sadb_x_ipsecrequest_proto) {
1667 case IPPROTO_ESP:
1668 case IPPROTO_AH:
1669 case IPPROTO_IPCOMP:
1670 break;
1671 default:
1672 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1673 xisr->sadb_x_ipsecrequest_proto);
1674 *error = EPROTONOSUPPORT;
1675 goto free_exit;
1676 }
1677 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1678
1679 switch (xisr->sadb_x_ipsecrequest_mode) {
1680 case IPSEC_MODE_TRANSPORT:
1681 case IPSEC_MODE_TUNNEL:
1682 break;
1683 case IPSEC_MODE_ANY:
1684 default:
1685 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1686 xisr->sadb_x_ipsecrequest_mode);
1687 *error = EINVAL;
1688 goto free_exit;
1689 }
1690 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1691
1692 switch (xisr->sadb_x_ipsecrequest_level) {
1693 case IPSEC_LEVEL_DEFAULT:
1694 case IPSEC_LEVEL_USE:
1695 case IPSEC_LEVEL_REQUIRE:
1696 break;
1697 case IPSEC_LEVEL_UNIQUE:
1698 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1699 /* validity check */
1700 /*
1701 * If range violation of reqid, kernel will
1702 * update it, don't refuse it.
1703 */
1704 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1705 IPSECLOG(LOG_DEBUG,
1706 "reqid=%d range "
1707 "violation, updated by kernel.\n",
1708 xisr_reqid);
1709 xisr_reqid = 0;
1710 }
1711
1712 /* allocate new reqid id if reqid is zero. */
1713 if (xisr_reqid == 0) {
1714 u_int16_t reqid = key_newreqid();
1715 if (reqid == 0) {
1716 *error = ENOBUFS;
1717 goto free_exit;
1718 }
1719 (*p_isr)->saidx.reqid = reqid;
1720 } else {
1721 /* set it for manual keying. */
1722 (*p_isr)->saidx.reqid = xisr_reqid;
1723 }
1724 break;
1725
1726 default:
1727 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1728 xisr->sadb_x_ipsecrequest_level);
1729 *error = EINVAL;
1730 goto free_exit;
1731 }
1732 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1733
1734 /* set IP addresses if there */
1735 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1736 const struct sockaddr *paddr;
1737
1738 paddr = (const struct sockaddr *)(xisr + 1);
1739
1740 /* validity check */
1741 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1742 IPSECLOG(LOG_DEBUG, "invalid request "
1743 "address length.\n");
1744 *error = EINVAL;
1745 goto free_exit;
1746 }
1747 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1748
1749 paddr = (const struct sockaddr *)((const char *)paddr
1750 + paddr->sa_len);
1751
1752 /* validity check */
1753 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1754 IPSECLOG(LOG_DEBUG, "invalid request "
1755 "address length.\n");
1756 *error = EINVAL;
1757 goto free_exit;
1758 }
1759 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1760 }
1761
1762 (*p_isr)->sp = newsp;
1763
1764 /* initialization for the next. */
1765 p_isr = &(*p_isr)->next;
1766 tlen -= xisr->sadb_x_ipsecrequest_len;
1767
1768 /* validity check */
1769 if (tlen < 0) {
1770 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1771 *error = EINVAL;
1772 goto free_exit;
1773 }
1774
1775 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1776 xisr->sadb_x_ipsecrequest_len);
1777 }
1778 }
1779
1780 *error = 0;
1781 return newsp;
1782
1783 free_exit:
1784 key_free_sp(newsp);
1785 return NULL;
1786 }
1787
1788 static u_int16_t
1789 key_newreqid(void)
1790 {
1791 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1792
1793 auto_reqid = (auto_reqid == 0xffff ?
1794 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1795
1796 /* XXX should be unique check */
1797
1798 return auto_reqid;
1799 }
1800
1801 /*
1802 * copy secpolicy struct to sadb_x_policy structure indicated.
1803 */
1804 struct mbuf *
1805 key_sp2msg(const struct secpolicy *sp)
1806 {
1807 struct sadb_x_policy *xpl;
1808 int tlen;
1809 char *p;
1810 struct mbuf *m;
1811
1812 KASSERT(sp != NULL);
1813
1814 tlen = key_getspreqmsglen(sp);
1815
1816 m = key_alloc_mbuf(tlen);
1817 if (!m || m->m_next) { /*XXX*/
1818 if (m)
1819 m_freem(m);
1820 return NULL;
1821 }
1822
1823 m->m_len = tlen;
1824 m->m_next = NULL;
1825 xpl = mtod(m, struct sadb_x_policy *);
1826 memset(xpl, 0, tlen);
1827
1828 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1829 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1830 xpl->sadb_x_policy_type = sp->policy;
1831 xpl->sadb_x_policy_dir = sp->spidx.dir;
1832 xpl->sadb_x_policy_id = sp->id;
1833 p = (char *)xpl + sizeof(*xpl);
1834
1835 /* if is the policy for ipsec ? */
1836 if (sp->policy == IPSEC_POLICY_IPSEC) {
1837 struct sadb_x_ipsecrequest *xisr;
1838 struct ipsecrequest *isr;
1839
1840 for (isr = sp->req; isr != NULL; isr = isr->next) {
1841
1842 xisr = (struct sadb_x_ipsecrequest *)p;
1843
1844 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1845 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1846 xisr->sadb_x_ipsecrequest_level = isr->level;
1847 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1848
1849 p += sizeof(*xisr);
1850 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1851 p += isr->saidx.src.sa.sa_len;
1852 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1853 p += isr->saidx.src.sa.sa_len;
1854
1855 xisr->sadb_x_ipsecrequest_len =
1856 PFKEY_ALIGN8(sizeof(*xisr)
1857 + isr->saidx.src.sa.sa_len
1858 + isr->saidx.dst.sa.sa_len);
1859 }
1860 }
1861
1862 return m;
1863 }
1864
1865 /* m will not be freed nor modified */
1866 static struct mbuf *
1867 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1868 int ndeep, int nitem, ...)
1869 {
1870 va_list ap;
1871 int idx;
1872 int i;
1873 struct mbuf *result = NULL, *n;
1874 int len;
1875
1876 KASSERT(m != NULL);
1877 KASSERT(mhp != NULL);
1878
1879 va_start(ap, nitem);
1880 for (i = 0; i < nitem; i++) {
1881 idx = va_arg(ap, int);
1882 if (idx < 0 || idx > SADB_EXT_MAX)
1883 goto fail;
1884 /* don't attempt to pull empty extension */
1885 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1886 continue;
1887 if (idx != SADB_EXT_RESERVED &&
1888 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1889 continue;
1890
1891 if (idx == SADB_EXT_RESERVED) {
1892 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1893 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1894 MGETHDR(n, M_DONTWAIT, MT_DATA);
1895 if (!n)
1896 goto fail;
1897 n->m_len = len;
1898 n->m_next = NULL;
1899 m_copydata(m, 0, sizeof(struct sadb_msg),
1900 mtod(n, void *));
1901 } else if (i < ndeep) {
1902 len = mhp->extlen[idx];
1903 n = key_alloc_mbuf(len);
1904 if (!n || n->m_next) { /*XXX*/
1905 if (n)
1906 m_freem(n);
1907 goto fail;
1908 }
1909 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1910 mtod(n, void *));
1911 } else {
1912 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1913 M_DONTWAIT);
1914 }
1915 if (n == NULL)
1916 goto fail;
1917
1918 if (result)
1919 m_cat(result, n);
1920 else
1921 result = n;
1922 }
1923 va_end(ap);
1924
1925 if (result && (result->m_flags & M_PKTHDR) != 0) {
1926 result->m_pkthdr.len = 0;
1927 for (n = result; n; n = n->m_next)
1928 result->m_pkthdr.len += n->m_len;
1929 }
1930
1931 return result;
1932
1933 fail:
1934 va_end(ap);
1935 m_freem(result);
1936 return NULL;
1937 }
1938
1939 /*
1940 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1941 * add an entry to SP database, when received
1942 * <base, address(SD), (lifetime(H),) policy>
1943 * from the user(?).
1944 * Adding to SP database,
1945 * and send
1946 * <base, address(SD), (lifetime(H),) policy>
1947 * to the socket which was send.
1948 *
1949 * SPDADD set a unique policy entry.
1950 * SPDSETIDX like SPDADD without a part of policy requests.
1951 * SPDUPDATE replace a unique policy entry.
1952 *
1953 * m will always be freed.
1954 */
1955 static int
1956 key_api_spdadd(struct socket *so, struct mbuf *m,
1957 const struct sadb_msghdr *mhp)
1958 {
1959 const struct sockaddr *src, *dst;
1960 const struct sadb_x_policy *xpl0;
1961 struct sadb_x_policy *xpl;
1962 const struct sadb_lifetime *lft = NULL;
1963 struct secpolicyindex spidx;
1964 struct secpolicy *newsp;
1965 int error;
1966
1967 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1968 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1969 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1970 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1971 return key_senderror(so, m, EINVAL);
1972 }
1973 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1974 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1975 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1976 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1977 return key_senderror(so, m, EINVAL);
1978 }
1979 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1980 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1981 sizeof(struct sadb_lifetime)) {
1982 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1983 return key_senderror(so, m, EINVAL);
1984 }
1985 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1986 }
1987
1988 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1989
1990 /* checking the direciton. */
1991 switch (xpl0->sadb_x_policy_dir) {
1992 case IPSEC_DIR_INBOUND:
1993 case IPSEC_DIR_OUTBOUND:
1994 break;
1995 default:
1996 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
1997 return key_senderror(so, m, EINVAL);
1998 }
1999
2000 /* check policy */
2001 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2002 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2003 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2004 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2005 return key_senderror(so, m, EINVAL);
2006 }
2007
2008 /* policy requests are mandatory when action is ipsec. */
2009 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2010 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2011 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2012 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2013 return key_senderror(so, m, EINVAL);
2014 }
2015
2016 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2017 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2018
2019 /* sanity check on addr pair */
2020 if (src->sa_family != dst->sa_family)
2021 return key_senderror(so, m, EINVAL);
2022 if (src->sa_len != dst->sa_len)
2023 return key_senderror(so, m, EINVAL);
2024
2025 key_init_spidx_bymsghdr(&spidx, mhp);
2026
2027 /*
2028 * checking there is SP already or not.
2029 * SPDUPDATE doesn't depend on whether there is a SP or not.
2030 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2031 * then error.
2032 */
2033 {
2034 struct secpolicy *sp;
2035
2036 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2037 sp = key_lookup_and_remove_sp(&spidx);
2038 if (sp != NULL)
2039 key_destroy_sp(sp);
2040 } else {
2041 sp = key_getsp(&spidx);
2042 if (sp != NULL) {
2043 KEY_SP_UNREF(&sp);
2044 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2045 return key_senderror(so, m, EEXIST);
2046 }
2047 }
2048 }
2049
2050 /* allocation new SP entry */
2051 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2052 if (newsp == NULL) {
2053 return key_senderror(so, m, error);
2054 }
2055
2056 newsp->id = key_getnewspid();
2057 if (newsp->id == 0) {
2058 kmem_free(newsp, sizeof(*newsp));
2059 return key_senderror(so, m, ENOBUFS);
2060 }
2061
2062 newsp->spidx = spidx;
2063 newsp->created = time_uptime;
2064 newsp->lastused = newsp->created;
2065 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2066 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2067
2068 key_init_sp(newsp);
2069
2070 mutex_enter(&key_sp_mtx);
2071 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2072 mutex_exit(&key_sp_mtx);
2073
2074 #ifdef notyet
2075 /* delete the entry in spacqtree */
2076 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2077 struct secspacq *spacq = key_getspacq(&spidx);
2078 if (spacq != NULL) {
2079 /* reset counter in order to deletion by timehandler. */
2080 spacq->created = time_uptime;
2081 spacq->count = 0;
2082 }
2083 }
2084 #endif
2085
2086 /* Invalidate all cached SPD pointers in the PCBs. */
2087 ipsec_invalpcbcacheall();
2088
2089 #if defined(GATEWAY)
2090 /* Invalidate the ipflow cache, as well. */
2091 ipflow_invalidate_all(0);
2092 #ifdef INET6
2093 if (in6_present)
2094 ip6flow_invalidate_all(0);
2095 #endif /* INET6 */
2096 #endif /* GATEWAY */
2097
2098 key_update_used();
2099
2100 {
2101 struct mbuf *n, *mpolicy;
2102 int off;
2103
2104 /* create new sadb_msg to reply. */
2105 if (lft) {
2106 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2107 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2108 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2109 } else {
2110 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2111 SADB_X_EXT_POLICY,
2112 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2113 }
2114 if (!n)
2115 return key_senderror(so, m, ENOBUFS);
2116
2117 n = key_fill_replymsg(n, 0);
2118 if (n == NULL)
2119 return key_senderror(so, m, ENOBUFS);
2120
2121 off = 0;
2122 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2123 sizeof(*xpl), &off);
2124 if (mpolicy == NULL) {
2125 /* n is already freed */
2126 return key_senderror(so, m, ENOBUFS);
2127 }
2128 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2129 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2130 m_freem(n);
2131 return key_senderror(so, m, EINVAL);
2132 }
2133 xpl->sadb_x_policy_id = newsp->id;
2134
2135 m_freem(m);
2136 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2137 }
2138 }
2139
2140 /*
2141 * get new policy id.
2142 * OUT:
2143 * 0: failure.
2144 * others: success.
2145 */
2146 static u_int32_t
2147 key_getnewspid(void)
2148 {
2149 u_int32_t newid = 0;
2150 int count = key_spi_trycnt; /* XXX */
2151 struct secpolicy *sp;
2152
2153 /* when requesting to allocate spi ranged */
2154 while (count--) {
2155 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2156
2157 sp = key_getspbyid(newid);
2158 if (sp == NULL)
2159 break;
2160
2161 KEY_SP_UNREF(&sp);
2162 }
2163
2164 if (count == 0 || newid == 0) {
2165 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2166 return 0;
2167 }
2168
2169 return newid;
2170 }
2171
2172 /*
2173 * SADB_SPDDELETE processing
2174 * receive
2175 * <base, address(SD), policy(*)>
2176 * from the user(?), and set SADB_SASTATE_DEAD,
2177 * and send,
2178 * <base, address(SD), policy(*)>
2179 * to the ikmpd.
2180 * policy(*) including direction of policy.
2181 *
2182 * m will always be freed.
2183 */
2184 static int
2185 key_api_spddelete(struct socket *so, struct mbuf *m,
2186 const struct sadb_msghdr *mhp)
2187 {
2188 struct sadb_x_policy *xpl0;
2189 struct secpolicyindex spidx;
2190 struct secpolicy *sp;
2191
2192 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2193 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2194 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2195 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2196 return key_senderror(so, m, EINVAL);
2197 }
2198 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2199 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2200 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2201 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2202 return key_senderror(so, m, EINVAL);
2203 }
2204
2205 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2206
2207 /* checking the direciton. */
2208 switch (xpl0->sadb_x_policy_dir) {
2209 case IPSEC_DIR_INBOUND:
2210 case IPSEC_DIR_OUTBOUND:
2211 break;
2212 default:
2213 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2214 return key_senderror(so, m, EINVAL);
2215 }
2216
2217 /* make secindex */
2218 key_init_spidx_bymsghdr(&spidx, mhp);
2219
2220 /* Is there SP in SPD ? */
2221 sp = key_lookup_and_remove_sp(&spidx);
2222 if (sp == NULL) {
2223 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2224 return key_senderror(so, m, EINVAL);
2225 }
2226
2227 /* save policy id to buffer to be returned. */
2228 xpl0->sadb_x_policy_id = sp->id;
2229
2230 key_destroy_sp(sp);
2231
2232 /* We're deleting policy; no need to invalidate the ipflow cache. */
2233
2234 {
2235 struct mbuf *n;
2236
2237 /* create new sadb_msg to reply. */
2238 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2239 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2240 if (!n)
2241 return key_senderror(so, m, ENOBUFS);
2242
2243 n = key_fill_replymsg(n, 0);
2244 if (n == NULL)
2245 return key_senderror(so, m, ENOBUFS);
2246
2247 m_freem(m);
2248 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2249 }
2250 }
2251
2252 /*
2253 * SADB_SPDDELETE2 processing
2254 * receive
2255 * <base, policy(*)>
2256 * from the user(?), and set SADB_SASTATE_DEAD,
2257 * and send,
2258 * <base, policy(*)>
2259 * to the ikmpd.
2260 * policy(*) including direction of policy.
2261 *
2262 * m will always be freed.
2263 */
2264 static int
2265 key_api_spddelete2(struct socket *so, struct mbuf *m,
2266 const struct sadb_msghdr *mhp)
2267 {
2268 u_int32_t id;
2269 struct secpolicy *sp;
2270
2271 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2272 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2273 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2274 return key_senderror(so, m, EINVAL);
2275 }
2276
2277 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2278
2279 /* Is there SP in SPD ? */
2280 sp = key_lookupbyid_and_remove_sp(id);
2281 if (sp == NULL) {
2282 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2283 return key_senderror(so, m, EINVAL);
2284 }
2285
2286 key_destroy_sp(sp);
2287
2288 /* We're deleting policy; no need to invalidate the ipflow cache. */
2289
2290 {
2291 struct mbuf *n, *nn;
2292 int off, len;
2293
2294 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2295
2296 /* create new sadb_msg to reply. */
2297 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2298
2299 MGETHDR(n, M_DONTWAIT, MT_DATA);
2300 if (n && len > MHLEN) {
2301 MCLGET(n, M_DONTWAIT);
2302 if ((n->m_flags & M_EXT) == 0) {
2303 m_freem(n);
2304 n = NULL;
2305 }
2306 }
2307 if (!n)
2308 return key_senderror(so, m, ENOBUFS);
2309
2310 n->m_len = len;
2311 n->m_next = NULL;
2312 off = 0;
2313
2314 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2315 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2316
2317 KASSERTMSG(off == len, "length inconsistency");
2318
2319 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2320 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2321 if (!n->m_next) {
2322 m_freem(n);
2323 return key_senderror(so, m, ENOBUFS);
2324 }
2325
2326 n->m_pkthdr.len = 0;
2327 for (nn = n; nn; nn = nn->m_next)
2328 n->m_pkthdr.len += nn->m_len;
2329
2330 n = key_fill_replymsg(n, 0);
2331 if (n == NULL)
2332 return key_senderror(so, m, ENOBUFS);
2333
2334 m_freem(m);
2335 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2336 }
2337 }
2338
2339 /*
2340 * SADB_X_GET processing
2341 * receive
2342 * <base, policy(*)>
2343 * from the user(?),
2344 * and send,
2345 * <base, address(SD), policy>
2346 * to the ikmpd.
2347 * policy(*) including direction of policy.
2348 *
2349 * m will always be freed.
2350 */
2351 static int
2352 key_api_spdget(struct socket *so, struct mbuf *m,
2353 const struct sadb_msghdr *mhp)
2354 {
2355 u_int32_t id;
2356 struct secpolicy *sp;
2357 struct mbuf *n;
2358
2359 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2360 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2361 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2362 return key_senderror(so, m, EINVAL);
2363 }
2364
2365 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2366
2367 /* Is there SP in SPD ? */
2368 sp = key_getspbyid(id);
2369 if (sp == NULL) {
2370 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2371 return key_senderror(so, m, ENOENT);
2372 }
2373
2374 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2375 mhp->msg->sadb_msg_pid);
2376 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2377 if (n != NULL) {
2378 m_freem(m);
2379 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2380 } else
2381 return key_senderror(so, m, ENOBUFS);
2382 }
2383
2384 #ifdef notyet
2385 /*
2386 * SADB_X_SPDACQUIRE processing.
2387 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2388 * send
2389 * <base, policy(*)>
2390 * to KMD, and expect to receive
2391 * <base> with SADB_X_SPDACQUIRE if error occurred,
2392 * or
2393 * <base, policy>
2394 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2395 * policy(*) is without policy requests.
2396 *
2397 * 0 : succeed
2398 * others: error number
2399 */
2400 int
2401 key_spdacquire(const struct secpolicy *sp)
2402 {
2403 struct mbuf *result = NULL, *m;
2404 struct secspacq *newspacq;
2405 int error;
2406
2407 KASSERT(sp != NULL);
2408 KASSERTMSG(sp->req == NULL, "called but there is request");
2409 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2410 "policy mismathed. IPsec is expected");
2411
2412 /* Get an entry to check whether sent message or not. */
2413 newspacq = key_getspacq(&sp->spidx);
2414 if (newspacq != NULL) {
2415 if (key_blockacq_count < newspacq->count) {
2416 /* reset counter and do send message. */
2417 newspacq->count = 0;
2418 } else {
2419 /* increment counter and do nothing. */
2420 newspacq->count++;
2421 return 0;
2422 }
2423 } else {
2424 /* make new entry for blocking to send SADB_ACQUIRE. */
2425 newspacq = key_newspacq(&sp->spidx);
2426 if (newspacq == NULL)
2427 return ENOBUFS;
2428
2429 /* add to acqtree */
2430 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2431 }
2432
2433 /* create new sadb_msg to reply. */
2434 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2435 if (!m) {
2436 error = ENOBUFS;
2437 goto fail;
2438 }
2439 result = m;
2440
2441 result->m_pkthdr.len = 0;
2442 for (m = result; m; m = m->m_next)
2443 result->m_pkthdr.len += m->m_len;
2444
2445 mtod(result, struct sadb_msg *)->sadb_msg_len =
2446 PFKEY_UNIT64(result->m_pkthdr.len);
2447
2448 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2449
2450 fail:
2451 if (result)
2452 m_freem(result);
2453 return error;
2454 }
2455 #endif /* notyet */
2456
2457 /*
2458 * SADB_SPDFLUSH processing
2459 * receive
2460 * <base>
2461 * from the user, and free all entries in secpctree.
2462 * and send,
2463 * <base>
2464 * to the user.
2465 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2466 *
2467 * m will always be freed.
2468 */
2469 static int
2470 key_api_spdflush(struct socket *so, struct mbuf *m,
2471 const struct sadb_msghdr *mhp)
2472 {
2473 struct sadb_msg *newmsg;
2474 struct secpolicy *sp;
2475 u_int dir;
2476
2477 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2478 return key_senderror(so, m, EINVAL);
2479
2480 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2481 retry:
2482 mutex_enter(&key_sp_mtx);
2483 SPLIST_WRITER_FOREACH(sp, dir) {
2484 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2485 key_unlink_sp(sp);
2486 mutex_exit(&key_sp_mtx);
2487 key_destroy_sp(sp);
2488 goto retry;
2489 }
2490 mutex_exit(&key_sp_mtx);
2491 }
2492
2493 /* We're deleting policy; no need to invalidate the ipflow cache. */
2494
2495 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2496 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2497 return key_senderror(so, m, ENOBUFS);
2498 }
2499
2500 if (m->m_next)
2501 m_freem(m->m_next);
2502 m->m_next = NULL;
2503 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2504 newmsg = mtod(m, struct sadb_msg *);
2505 newmsg->sadb_msg_errno = 0;
2506 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2507
2508 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2509 }
2510
2511 static struct sockaddr key_src = {
2512 .sa_len = 2,
2513 .sa_family = PF_KEY,
2514 };
2515
2516 static struct mbuf *
2517 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2518 {
2519 struct secpolicy *sp;
2520 int cnt;
2521 u_int dir;
2522 struct mbuf *m, *n, *prev;
2523 int totlen;
2524
2525 KASSERT(mutex_owned(&key_sp_mtx));
2526
2527 *lenp = 0;
2528
2529 /* search SPD entry and get buffer size. */
2530 cnt = 0;
2531 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2532 SPLIST_WRITER_FOREACH(sp, dir) {
2533 cnt++;
2534 }
2535 }
2536
2537 if (cnt == 0) {
2538 *errorp = ENOENT;
2539 return (NULL);
2540 }
2541
2542 m = NULL;
2543 prev = m;
2544 totlen = 0;
2545 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2546 SPLIST_WRITER_FOREACH(sp, dir) {
2547 --cnt;
2548 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2549
2550 if (!n) {
2551 *errorp = ENOBUFS;
2552 if (m)
2553 m_freem(m);
2554 return (NULL);
2555 }
2556
2557 totlen += n->m_pkthdr.len;
2558 if (!m) {
2559 m = n;
2560 } else {
2561 prev->m_nextpkt = n;
2562 }
2563 prev = n;
2564 }
2565 }
2566
2567 *lenp = totlen;
2568 *errorp = 0;
2569 return (m);
2570 }
2571
2572 /*
2573 * SADB_SPDDUMP processing
2574 * receive
2575 * <base>
2576 * from the user, and dump all SP leaves
2577 * and send,
2578 * <base> .....
2579 * to the ikmpd.
2580 *
2581 * m will always be freed.
2582 */
2583 static int
2584 key_api_spddump(struct socket *so, struct mbuf *m0,
2585 const struct sadb_msghdr *mhp)
2586 {
2587 struct mbuf *n;
2588 int error, len;
2589 int ok;
2590 pid_t pid;
2591
2592 pid = mhp->msg->sadb_msg_pid;
2593 /*
2594 * If the requestor has insufficient socket-buffer space
2595 * for the entire chain, nobody gets any response to the DUMP.
2596 * XXX For now, only the requestor ever gets anything.
2597 * Moreover, if the requestor has any space at all, they receive
2598 * the entire chain, otherwise the request is refused with ENOBUFS.
2599 */
2600 if (sbspace(&so->so_rcv) <= 0) {
2601 return key_senderror(so, m0, ENOBUFS);
2602 }
2603
2604 mutex_enter(&key_sp_mtx);
2605 n = key_setspddump_chain(&error, &len, pid);
2606 mutex_exit(&key_sp_mtx);
2607
2608 if (n == NULL) {
2609 return key_senderror(so, m0, ENOENT);
2610 }
2611 {
2612 uint64_t *ps = PFKEY_STAT_GETREF();
2613 ps[PFKEY_STAT_IN_TOTAL]++;
2614 ps[PFKEY_STAT_IN_BYTES] += len;
2615 PFKEY_STAT_PUTREF();
2616 }
2617
2618 /*
2619 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2620 * The requestor receives either the entire chain, or an
2621 * error message with ENOBUFS.
2622 */
2623
2624 /*
2625 * sbappendchainwith record takes the chain of entries, one
2626 * packet-record per SPD entry, prepends the key_src sockaddr
2627 * to each packet-record, links the sockaddr mbufs into a new
2628 * list of records, then appends the entire resulting
2629 * list to the requesting socket.
2630 */
2631 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2632 SB_PRIO_ONESHOT_OVERFLOW);
2633
2634 if (!ok) {
2635 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2636 m_freem(n);
2637 return key_senderror(so, m0, ENOBUFS);
2638 }
2639
2640 m_freem(m0);
2641 return error;
2642 }
2643
2644 /*
2645 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2646 */
2647 static int
2648 key_api_nat_map(struct socket *so, struct mbuf *m,
2649 const struct sadb_msghdr *mhp)
2650 {
2651 struct sadb_x_nat_t_type *type;
2652 struct sadb_x_nat_t_port *sport;
2653 struct sadb_x_nat_t_port *dport;
2654 struct sadb_address *iaddr, *raddr;
2655 struct sadb_x_nat_t_frag *frag;
2656
2657 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2658 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2659 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2660 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2661 return key_senderror(so, m, EINVAL);
2662 }
2663 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2664 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2665 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2666 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2667 return key_senderror(so, m, EINVAL);
2668 }
2669
2670 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2671 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2672 IPSECLOG(LOG_DEBUG, "invalid message\n");
2673 return key_senderror(so, m, EINVAL);
2674 }
2675
2676 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2677 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2678 IPSECLOG(LOG_DEBUG, "invalid message\n");
2679 return key_senderror(so, m, EINVAL);
2680 }
2681
2682 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2683 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2684 IPSECLOG(LOG_DEBUG, "invalid message\n");
2685 return key_senderror(so, m, EINVAL);
2686 }
2687
2688 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2689 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2690 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2691 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2692 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2693 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2694
2695 /*
2696 * XXX handle that, it should also contain a SA, or anything
2697 * that enable to update the SA information.
2698 */
2699
2700 return 0;
2701 }
2702
2703 static struct mbuf *
2704 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2705 {
2706 struct mbuf *result = NULL, *m;
2707
2708 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2709 key_sp_refcnt(sp));
2710 if (!m)
2711 goto fail;
2712 result = m;
2713
2714 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2715 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2716 if (!m)
2717 goto fail;
2718 m_cat(result, m);
2719
2720 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2721 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2722 if (!m)
2723 goto fail;
2724 m_cat(result, m);
2725
2726 m = key_sp2msg(sp);
2727 if (!m)
2728 goto fail;
2729 m_cat(result, m);
2730
2731 if ((result->m_flags & M_PKTHDR) == 0)
2732 goto fail;
2733
2734 if (result->m_len < sizeof(struct sadb_msg)) {
2735 result = m_pullup(result, sizeof(struct sadb_msg));
2736 if (result == NULL)
2737 goto fail;
2738 }
2739
2740 result->m_pkthdr.len = 0;
2741 for (m = result; m; m = m->m_next)
2742 result->m_pkthdr.len += m->m_len;
2743
2744 mtod(result, struct sadb_msg *)->sadb_msg_len =
2745 PFKEY_UNIT64(result->m_pkthdr.len);
2746
2747 return result;
2748
2749 fail:
2750 m_freem(result);
2751 return NULL;
2752 }
2753
2754 /*
2755 * get PFKEY message length for security policy and request.
2756 */
2757 static u_int
2758 key_getspreqmsglen(const struct secpolicy *sp)
2759 {
2760 u_int tlen;
2761
2762 tlen = sizeof(struct sadb_x_policy);
2763
2764 /* if is the policy for ipsec ? */
2765 if (sp->policy != IPSEC_POLICY_IPSEC)
2766 return tlen;
2767
2768 /* get length of ipsec requests */
2769 {
2770 const struct ipsecrequest *isr;
2771 int len;
2772
2773 for (isr = sp->req; isr != NULL; isr = isr->next) {
2774 len = sizeof(struct sadb_x_ipsecrequest)
2775 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2776
2777 tlen += PFKEY_ALIGN8(len);
2778 }
2779 }
2780
2781 return tlen;
2782 }
2783
2784 /*
2785 * SADB_SPDEXPIRE processing
2786 * send
2787 * <base, address(SD), lifetime(CH), policy>
2788 * to KMD by PF_KEY.
2789 *
2790 * OUT: 0 : succeed
2791 * others : error number
2792 */
2793 static int
2794 key_spdexpire(struct secpolicy *sp)
2795 {
2796 int s;
2797 struct mbuf *result = NULL, *m;
2798 int len;
2799 int error = -1;
2800 struct sadb_lifetime *lt;
2801
2802 /* XXX: Why do we lock ? */
2803 s = splsoftnet(); /*called from softclock()*/
2804
2805 KASSERT(sp != NULL);
2806
2807 /* set msg header */
2808 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2809 if (!m) {
2810 error = ENOBUFS;
2811 goto fail;
2812 }
2813 result = m;
2814
2815 /* create lifetime extension (current and hard) */
2816 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2817 m = key_alloc_mbuf(len);
2818 if (!m || m->m_next) { /*XXX*/
2819 if (m)
2820 m_freem(m);
2821 error = ENOBUFS;
2822 goto fail;
2823 }
2824 memset(mtod(m, void *), 0, len);
2825 lt = mtod(m, struct sadb_lifetime *);
2826 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2827 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2828 lt->sadb_lifetime_allocations = 0;
2829 lt->sadb_lifetime_bytes = 0;
2830 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2831 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2832 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2833 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2834 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2835 lt->sadb_lifetime_allocations = 0;
2836 lt->sadb_lifetime_bytes = 0;
2837 lt->sadb_lifetime_addtime = sp->lifetime;
2838 lt->sadb_lifetime_usetime = sp->validtime;
2839 m_cat(result, m);
2840
2841 /* set sadb_address for source */
2842 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2843 sp->spidx.prefs, sp->spidx.ul_proto);
2844 if (!m) {
2845 error = ENOBUFS;
2846 goto fail;
2847 }
2848 m_cat(result, m);
2849
2850 /* set sadb_address for destination */
2851 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2852 sp->spidx.prefd, sp->spidx.ul_proto);
2853 if (!m) {
2854 error = ENOBUFS;
2855 goto fail;
2856 }
2857 m_cat(result, m);
2858
2859 /* set secpolicy */
2860 m = key_sp2msg(sp);
2861 if (!m) {
2862 error = ENOBUFS;
2863 goto fail;
2864 }
2865 m_cat(result, m);
2866
2867 if ((result->m_flags & M_PKTHDR) == 0) {
2868 error = EINVAL;
2869 goto fail;
2870 }
2871
2872 if (result->m_len < sizeof(struct sadb_msg)) {
2873 result = m_pullup(result, sizeof(struct sadb_msg));
2874 if (result == NULL) {
2875 error = ENOBUFS;
2876 goto fail;
2877 }
2878 }
2879
2880 result->m_pkthdr.len = 0;
2881 for (m = result; m; m = m->m_next)
2882 result->m_pkthdr.len += m->m_len;
2883
2884 mtod(result, struct sadb_msg *)->sadb_msg_len =
2885 PFKEY_UNIT64(result->m_pkthdr.len);
2886
2887 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2888
2889 fail:
2890 if (result)
2891 m_freem(result);
2892 splx(s);
2893 return error;
2894 }
2895
2896 /* %%% SAD management */
2897 /*
2898 * allocating a memory for new SA head, and copy from the values of mhp.
2899 * OUT: NULL : failure due to the lack of memory.
2900 * others : pointer to new SA head.
2901 */
2902 static struct secashead *
2903 key_newsah(const struct secasindex *saidx)
2904 {
2905 struct secashead *newsah;
2906 int i;
2907
2908 KASSERT(saidx != NULL);
2909
2910 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2911 for (i = 0; i < __arraycount(newsah->savtree); i++)
2912 PSLIST_INIT(&newsah->savtree[i]);
2913 newsah->saidx = *saidx;
2914
2915 /* add to saidxtree */
2916 newsah->state = SADB_SASTATE_MATURE;
2917 SAHLIST_ENTRY_INIT(newsah);
2918 SAHLIST_WRITER_INSERT_HEAD(newsah);
2919
2920 return newsah;
2921 }
2922
2923 /*
2924 * delete SA index and all SA registerd.
2925 */
2926 static void
2927 key_delsah(struct secashead *sah)
2928 {
2929 struct secasvar *sav;
2930 u_int state;
2931 int s;
2932 int zombie = 0;
2933
2934 KASSERT(!cpu_softintr_p());
2935 KASSERT(sah != NULL);
2936
2937 s = splsoftnet();
2938
2939 /* searching all SA registerd in the secindex. */
2940 SASTATE_ANY_FOREACH(state) {
2941 SAVLIST_READER_FOREACH(sav, sah, state) {
2942 /* give up to delete this sa */
2943 zombie++;
2944 }
2945 }
2946
2947 /* don't delete sah only if there are savs. */
2948 if (zombie) {
2949 splx(s);
2950 return;
2951 }
2952
2953 rtcache_free(&sah->sa_route);
2954
2955 /* remove from tree of SA index */
2956 SAHLIST_WRITER_REMOVE(sah);
2957
2958 if (sah->idents != NULL)
2959 kmem_free(sah->idents, sah->idents_len);
2960 if (sah->identd != NULL)
2961 kmem_free(sah->identd, sah->identd_len);
2962
2963 SAHLIST_ENTRY_DESTROY(sah);
2964 kmem_free(sah, sizeof(*sah));
2965
2966 splx(s);
2967 return;
2968 }
2969
2970 /*
2971 * allocating a new SA with LARVAL state.
2972 * key_api_add() and key_api_getspi() call,
2973 * and copy the values of mhp into new buffer.
2974 * When SAD message type is GETSPI:
2975 * to set sequence number from acq_seq++,
2976 * to set zero to SPI.
2977 * not to call key_setsava().
2978 * OUT: NULL : fail
2979 * others : pointer to new secasvar.
2980 *
2981 * does not modify mbuf. does not free mbuf on error.
2982 */
2983 static struct secasvar *
2984 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2985 int *errp, const char* where, int tag)
2986 {
2987 struct secasvar *newsav;
2988 const struct sadb_sa *xsa;
2989
2990 KASSERT(!cpu_softintr_p());
2991 KASSERT(m != NULL);
2992 KASSERT(mhp != NULL);
2993 KASSERT(mhp->msg != NULL);
2994
2995 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
2996
2997 switch (mhp->msg->sadb_msg_type) {
2998 case SADB_GETSPI:
2999 newsav->spi = 0;
3000
3001 #ifdef IPSEC_DOSEQCHECK
3002 /* sync sequence number */
3003 if (mhp->msg->sadb_msg_seq == 0)
3004 newsav->seq =
3005 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3006 else
3007 #endif
3008 newsav->seq = mhp->msg->sadb_msg_seq;
3009 break;
3010
3011 case SADB_ADD:
3012 /* sanity check */
3013 if (mhp->ext[SADB_EXT_SA] == NULL) {
3014 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3015 *errp = EINVAL;
3016 goto error;
3017 }
3018 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3019 newsav->spi = xsa->sadb_sa_spi;
3020 newsav->seq = mhp->msg->sadb_msg_seq;
3021 break;
3022 default:
3023 *errp = EINVAL;
3024 goto error;
3025 }
3026
3027 /* copy sav values */
3028 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3029 *errp = key_setsaval(newsav, m, mhp);
3030 if (*errp)
3031 goto error;
3032 } else {
3033 /* We don't allow lft_c to be NULL */
3034 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3035 KM_SLEEP);
3036 }
3037
3038 /* reset created */
3039 newsav->created = time_uptime;
3040 newsav->pid = mhp->msg->sadb_msg_pid;
3041
3042 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3043 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3044 return newsav;
3045
3046 error:
3047 KASSERT(*errp != 0);
3048 kmem_free(newsav, sizeof(*newsav));
3049 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3050 "DP from %s:%u return SA:NULL\n", where, tag);
3051 return NULL;
3052 }
3053
3054
3055 static void
3056 key_clear_xform(struct secasvar *sav)
3057 {
3058
3059 /*
3060 * Cleanup xform state. Note that zeroize'ing causes the
3061 * keys to be cleared; otherwise we must do it ourself.
3062 */
3063 if (sav->tdb_xform != NULL) {
3064 sav->tdb_xform->xf_zeroize(sav);
3065 sav->tdb_xform = NULL;
3066 } else {
3067 if (sav->key_auth != NULL)
3068 explicit_memset(_KEYBUF(sav->key_auth), 0,
3069 _KEYLEN(sav->key_auth));
3070 if (sav->key_enc != NULL)
3071 explicit_memset(_KEYBUF(sav->key_enc), 0,
3072 _KEYLEN(sav->key_enc));
3073 }
3074 }
3075
3076 /*
3077 * free() SA variable entry.
3078 */
3079 static void
3080 key_delsav(struct secasvar *sav)
3081 {
3082
3083 KASSERT(sav != NULL);
3084 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3085
3086 key_clear_xform(sav);
3087 key_freesaval(sav);
3088 SAVLIST_ENTRY_DESTROY(sav);
3089 kmem_intr_free(sav, sizeof(*sav));
3090
3091 return;
3092 }
3093
3094 /*
3095 * search SAD.
3096 * OUT:
3097 * NULL : not found
3098 * others : found, pointer to a SA.
3099 */
3100 static struct secashead *
3101 key_getsah(const struct secasindex *saidx, int flag)
3102 {
3103 struct secashead *sah;
3104
3105 SAHLIST_READER_FOREACH(sah) {
3106 if (sah->state == SADB_SASTATE_DEAD)
3107 continue;
3108 if (key_saidx_match(&sah->saidx, saidx, flag))
3109 return sah;
3110 }
3111
3112 return NULL;
3113 }
3114
3115 /*
3116 * check not to be duplicated SPI.
3117 * NOTE: this function is too slow due to searching all SAD.
3118 * OUT:
3119 * NULL : not found
3120 * others : found, pointer to a SA.
3121 */
3122 static bool
3123 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3124 {
3125 struct secashead *sah;
3126 struct secasvar *sav;
3127
3128 /* check address family */
3129 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3130 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3131 return false;
3132 }
3133
3134 /* check all SAD */
3135 SAHLIST_READER_FOREACH(sah) {
3136 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3137 continue;
3138 sav = key_getsavbyspi(sah, spi);
3139 if (sav != NULL) {
3140 KEY_FREESAV(&sav);
3141 return true;
3142 }
3143 }
3144
3145 return false;
3146 }
3147
3148 /*
3149 * search SAD litmited alive SA, protocol, SPI.
3150 * OUT:
3151 * NULL : not found
3152 * others : found, pointer to a SA.
3153 */
3154 static struct secasvar *
3155 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3156 {
3157 struct secasvar *sav;
3158 u_int state;
3159
3160 /* search all status */
3161 SASTATE_ALIVE_FOREACH(state) {
3162 SAVLIST_READER_FOREACH(sav, sah, state) {
3163 /* sanity check */
3164 if (sav->state != state) {
3165 IPSECLOG(LOG_DEBUG,
3166 "invalid sav->state (queue: %d SA: %d)\n",
3167 state, sav->state);
3168 continue;
3169 }
3170
3171 if (sav->spi == spi) {
3172 SA_ADDREF(sav);
3173 return sav;
3174 }
3175 }
3176 }
3177
3178 return NULL;
3179 }
3180
3181 /*
3182 * Free allocated data to member variables of sav:
3183 * sav->replay, sav->key_* and sav->lft_*.
3184 */
3185 static void
3186 key_freesaval(struct secasvar *sav)
3187 {
3188
3189 KASSERT(sav->refcnt == 0);
3190
3191 if (sav->replay != NULL)
3192 kmem_intr_free(sav->replay, sav->replay_len);
3193 if (sav->key_auth != NULL)
3194 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3195 if (sav->key_enc != NULL)
3196 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3197 if (sav->lft_c != NULL)
3198 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3199 if (sav->lft_h != NULL)
3200 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3201 if (sav->lft_s != NULL)
3202 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3203 }
3204
3205 /*
3206 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3207 * You must update these if need.
3208 * OUT: 0: success.
3209 * !0: failure.
3210 *
3211 * does not modify mbuf. does not free mbuf on error.
3212 */
3213 static int
3214 key_setsaval(struct secasvar *sav, struct mbuf *m,
3215 const struct sadb_msghdr *mhp)
3216 {
3217 int error = 0;
3218
3219 KASSERT(!cpu_softintr_p());
3220 KASSERT(m != NULL);
3221 KASSERT(mhp != NULL);
3222 KASSERT(mhp->msg != NULL);
3223
3224 /* We shouldn't initialize sav variables while someone uses it. */
3225 KASSERT(sav->refcnt == 0);
3226
3227 /* SA */
3228 if (mhp->ext[SADB_EXT_SA] != NULL) {
3229 const struct sadb_sa *sa0;
3230
3231 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3232 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3233 error = EINVAL;
3234 goto fail;
3235 }
3236
3237 sav->alg_auth = sa0->sadb_sa_auth;
3238 sav->alg_enc = sa0->sadb_sa_encrypt;
3239 sav->flags = sa0->sadb_sa_flags;
3240
3241 /* replay window */
3242 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3243 size_t len = sizeof(struct secreplay) +
3244 sa0->sadb_sa_replay;
3245 sav->replay = kmem_zalloc(len, KM_SLEEP);
3246 sav->replay_len = len;
3247 if (sa0->sadb_sa_replay != 0)
3248 sav->replay->bitmap = (char*)(sav->replay+1);
3249 sav->replay->wsize = sa0->sadb_sa_replay;
3250 }
3251 }
3252
3253 /* Authentication keys */
3254 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3255 const struct sadb_key *key0;
3256 int len;
3257
3258 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3259 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3260
3261 error = 0;
3262 if (len < sizeof(*key0)) {
3263 error = EINVAL;
3264 goto fail;
3265 }
3266 switch (mhp->msg->sadb_msg_satype) {
3267 case SADB_SATYPE_AH:
3268 case SADB_SATYPE_ESP:
3269 case SADB_X_SATYPE_TCPSIGNATURE:
3270 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3271 sav->alg_auth != SADB_X_AALG_NULL)
3272 error = EINVAL;
3273 break;
3274 case SADB_X_SATYPE_IPCOMP:
3275 default:
3276 error = EINVAL;
3277 break;
3278 }
3279 if (error) {
3280 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3281 goto fail;
3282 }
3283
3284 sav->key_auth = key_newbuf(key0, len);
3285 sav->key_auth_len = len;
3286 }
3287
3288 /* Encryption key */
3289 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3290 const struct sadb_key *key0;
3291 int len;
3292
3293 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3294 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3295
3296 error = 0;
3297 if (len < sizeof(*key0)) {
3298 error = EINVAL;
3299 goto fail;
3300 }
3301 switch (mhp->msg->sadb_msg_satype) {
3302 case SADB_SATYPE_ESP:
3303 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3304 sav->alg_enc != SADB_EALG_NULL) {
3305 error = EINVAL;
3306 break;
3307 }
3308 sav->key_enc = key_newbuf(key0, len);
3309 sav->key_enc_len = len;
3310 break;
3311 case SADB_X_SATYPE_IPCOMP:
3312 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3313 error = EINVAL;
3314 sav->key_enc = NULL; /*just in case*/
3315 break;
3316 case SADB_SATYPE_AH:
3317 case SADB_X_SATYPE_TCPSIGNATURE:
3318 default:
3319 error = EINVAL;
3320 break;
3321 }
3322 if (error) {
3323 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3324 goto fail;
3325 }
3326 }
3327
3328 /* set iv */
3329 sav->ivlen = 0;
3330
3331 switch (mhp->msg->sadb_msg_satype) {
3332 case SADB_SATYPE_AH:
3333 error = xform_init(sav, XF_AH);
3334 break;
3335 case SADB_SATYPE_ESP:
3336 error = xform_init(sav, XF_ESP);
3337 break;
3338 case SADB_X_SATYPE_IPCOMP:
3339 error = xform_init(sav, XF_IPCOMP);
3340 break;
3341 case SADB_X_SATYPE_TCPSIGNATURE:
3342 error = xform_init(sav, XF_TCPSIGNATURE);
3343 break;
3344 }
3345 if (error) {
3346 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3347 mhp->msg->sadb_msg_satype);
3348 goto fail;
3349 }
3350
3351 /* reset created */
3352 sav->created = time_uptime;
3353
3354 /* make lifetime for CURRENT */
3355 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3356
3357 sav->lft_c->sadb_lifetime_len =
3358 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3359 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3360 sav->lft_c->sadb_lifetime_allocations = 0;
3361 sav->lft_c->sadb_lifetime_bytes = 0;
3362 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3363 sav->lft_c->sadb_lifetime_usetime = 0;
3364
3365 /* lifetimes for HARD and SOFT */
3366 {
3367 const struct sadb_lifetime *lft0;
3368
3369 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3370 if (lft0 != NULL) {
3371 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3372 error = EINVAL;
3373 goto fail;
3374 }
3375 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3376 }
3377
3378 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3379 if (lft0 != NULL) {
3380 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3381 error = EINVAL;
3382 goto fail;
3383 }
3384 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3385 /* to be initialize ? */
3386 }
3387 }
3388
3389 return 0;
3390
3391 fail:
3392 key_clear_xform(sav);
3393 key_freesaval(sav);
3394
3395 return error;
3396 }
3397
3398 /*
3399 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3400 * OUT: 0: valid
3401 * other: errno
3402 */
3403 static int
3404 key_init_xform(struct secasvar *sav)
3405 {
3406 int error;
3407
3408 /* We shouldn't initialize sav variables while someone uses it. */
3409 KASSERT(sav->refcnt == 0);
3410
3411 /* check SPI value */
3412 switch (sav->sah->saidx.proto) {
3413 case IPPROTO_ESP:
3414 case IPPROTO_AH:
3415 if (ntohl(sav->spi) <= 255) {
3416 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3417 (u_int32_t)ntohl(sav->spi));
3418 return EINVAL;
3419 }
3420 break;
3421 }
3422
3423 /* check satype */
3424 switch (sav->sah->saidx.proto) {
3425 case IPPROTO_ESP:
3426 /* check flags */
3427 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3428 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3429 IPSECLOG(LOG_DEBUG,
3430 "invalid flag (derived) given to old-esp.\n");
3431 return EINVAL;
3432 }
3433 error = xform_init(sav, XF_ESP);
3434 break;
3435 case IPPROTO_AH:
3436 /* check flags */
3437 if (sav->flags & SADB_X_EXT_DERIV) {
3438 IPSECLOG(LOG_DEBUG,
3439 "invalid flag (derived) given to AH SA.\n");
3440 return EINVAL;
3441 }
3442 if (sav->alg_enc != SADB_EALG_NONE) {
3443 IPSECLOG(LOG_DEBUG,
3444 "protocol and algorithm mismated.\n");
3445 return(EINVAL);
3446 }
3447 error = xform_init(sav, XF_AH);
3448 break;
3449 case IPPROTO_IPCOMP:
3450 if (sav->alg_auth != SADB_AALG_NONE) {
3451 IPSECLOG(LOG_DEBUG,
3452 "protocol and algorithm mismated.\n");
3453 return(EINVAL);
3454 }
3455 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3456 && ntohl(sav->spi) >= 0x10000) {
3457 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3458 return(EINVAL);
3459 }
3460 error = xform_init(sav, XF_IPCOMP);
3461 break;
3462 case IPPROTO_TCP:
3463 if (sav->alg_enc != SADB_EALG_NONE) {
3464 IPSECLOG(LOG_DEBUG,
3465 "protocol and algorithm mismated.\n");
3466 return(EINVAL);
3467 }
3468 error = xform_init(sav, XF_TCPSIGNATURE);
3469 break;
3470 default:
3471 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3472 error = EPROTONOSUPPORT;
3473 break;
3474 }
3475
3476 return error;
3477 }
3478
3479 /*
3480 * subroutine for SADB_GET and SADB_DUMP.
3481 */
3482 static struct mbuf *
3483 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3484 u_int32_t seq, u_int32_t pid)
3485 {
3486 struct mbuf *result = NULL, *tres = NULL, *m;
3487 int l = 0;
3488 int i;
3489 void *p;
3490 struct sadb_lifetime lt;
3491 int dumporder[] = {
3492 SADB_EXT_SA, SADB_X_EXT_SA2,
3493 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3494 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3495 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3496 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3497 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3498 SADB_X_EXT_NAT_T_TYPE,
3499 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3500 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3501 SADB_X_EXT_NAT_T_FRAG,
3502
3503 };
3504
3505 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3506 if (m == NULL)
3507 goto fail;
3508 result = m;
3509
3510 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3511 m = NULL;
3512 p = NULL;
3513 switch (dumporder[i]) {
3514 case SADB_EXT_SA:
3515 m = key_setsadbsa(sav);
3516 break;
3517
3518 case SADB_X_EXT_SA2:
3519 m = key_setsadbxsa2(sav->sah->saidx.mode,
3520 sav->replay ? sav->replay->count : 0,
3521 sav->sah->saidx.reqid);
3522 break;
3523
3524 case SADB_EXT_ADDRESS_SRC:
3525 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3526 &sav->sah->saidx.src.sa,
3527 FULLMASK, IPSEC_ULPROTO_ANY);
3528 break;
3529
3530 case SADB_EXT_ADDRESS_DST:
3531 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3532 &sav->sah->saidx.dst.sa,
3533 FULLMASK, IPSEC_ULPROTO_ANY);
3534 break;
3535
3536 case SADB_EXT_KEY_AUTH:
3537 if (!sav->key_auth)
3538 continue;
3539 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3540 p = sav->key_auth;
3541 break;
3542
3543 case SADB_EXT_KEY_ENCRYPT:
3544 if (!sav->key_enc)
3545 continue;
3546 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3547 p = sav->key_enc;
3548 break;
3549
3550 case SADB_EXT_LIFETIME_CURRENT:
3551 KASSERT(sav->lft_c != NULL);
3552 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3553 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3554 lt.sadb_lifetime_addtime =
3555 time_mono_to_wall(lt.sadb_lifetime_addtime);
3556 lt.sadb_lifetime_usetime =
3557 time_mono_to_wall(lt.sadb_lifetime_usetime);
3558 p = <
3559 break;
3560
3561 case SADB_EXT_LIFETIME_HARD:
3562 if (!sav->lft_h)
3563 continue;
3564 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3565 p = sav->lft_h;
3566 break;
3567
3568 case SADB_EXT_LIFETIME_SOFT:
3569 if (!sav->lft_s)
3570 continue;
3571 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3572 p = sav->lft_s;
3573 break;
3574
3575 case SADB_X_EXT_NAT_T_TYPE:
3576 m = key_setsadbxtype(sav->natt_type);
3577 break;
3578
3579 case SADB_X_EXT_NAT_T_DPORT:
3580 if (sav->natt_type == 0)
3581 continue;
3582 m = key_setsadbxport(
3583 key_portfromsaddr(&sav->sah->saidx.dst),
3584 SADB_X_EXT_NAT_T_DPORT);
3585 break;
3586
3587 case SADB_X_EXT_NAT_T_SPORT:
3588 if (sav->natt_type == 0)
3589 continue;
3590 m = key_setsadbxport(
3591 key_portfromsaddr(&sav->sah->saidx.src),
3592 SADB_X_EXT_NAT_T_SPORT);
3593 break;
3594
3595 case SADB_X_EXT_NAT_T_FRAG:
3596 /* don't send frag info if not set */
3597 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3598 continue;
3599 m = key_setsadbxfrag(sav->esp_frag);
3600 break;
3601
3602 case SADB_X_EXT_NAT_T_OAI:
3603 case SADB_X_EXT_NAT_T_OAR:
3604 continue;
3605
3606 case SADB_EXT_ADDRESS_PROXY:
3607 case SADB_EXT_IDENTITY_SRC:
3608 case SADB_EXT_IDENTITY_DST:
3609 /* XXX: should we brought from SPD ? */
3610 case SADB_EXT_SENSITIVITY:
3611 default:
3612 continue;
3613 }
3614
3615 KASSERT(!(m && p));
3616 if (!m && !p)
3617 goto fail;
3618 if (p && tres) {
3619 M_PREPEND(tres, l, M_DONTWAIT);
3620 if (!tres)
3621 goto fail;
3622 memcpy(mtod(tres, void *), p, l);
3623 continue;
3624 }
3625 if (p) {
3626 m = key_alloc_mbuf(l);
3627 if (!m)
3628 goto fail;
3629 m_copyback(m, 0, l, p);
3630 }
3631
3632 if (tres)
3633 m_cat(m, tres);
3634 tres = m;
3635 }
3636
3637 m_cat(result, tres);
3638 tres = NULL; /* avoid free on error below */
3639
3640 if (result->m_len < sizeof(struct sadb_msg)) {
3641 result = m_pullup(result, sizeof(struct sadb_msg));
3642 if (result == NULL)
3643 goto fail;
3644 }
3645
3646 result->m_pkthdr.len = 0;
3647 for (m = result; m; m = m->m_next)
3648 result->m_pkthdr.len += m->m_len;
3649
3650 mtod(result, struct sadb_msg *)->sadb_msg_len =
3651 PFKEY_UNIT64(result->m_pkthdr.len);
3652
3653 return result;
3654
3655 fail:
3656 m_freem(result);
3657 m_freem(tres);
3658 return NULL;
3659 }
3660
3661
3662 /*
3663 * set a type in sadb_x_nat_t_type
3664 */
3665 static struct mbuf *
3666 key_setsadbxtype(u_int16_t type)
3667 {
3668 struct mbuf *m;
3669 size_t len;
3670 struct sadb_x_nat_t_type *p;
3671
3672 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3673
3674 m = key_alloc_mbuf(len);
3675 if (!m || m->m_next) { /*XXX*/
3676 if (m)
3677 m_freem(m);
3678 return NULL;
3679 }
3680
3681 p = mtod(m, struct sadb_x_nat_t_type *);
3682
3683 memset(p, 0, len);
3684 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3685 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3686 p->sadb_x_nat_t_type_type = type;
3687
3688 return m;
3689 }
3690 /*
3691 * set a port in sadb_x_nat_t_port. port is in network order
3692 */
3693 static struct mbuf *
3694 key_setsadbxport(u_int16_t port, u_int16_t type)
3695 {
3696 struct mbuf *m;
3697 size_t len;
3698 struct sadb_x_nat_t_port *p;
3699
3700 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3701
3702 m = key_alloc_mbuf(len);
3703 if (!m || m->m_next) { /*XXX*/
3704 if (m)
3705 m_freem(m);
3706 return NULL;
3707 }
3708
3709 p = mtod(m, struct sadb_x_nat_t_port *);
3710
3711 memset(p, 0, len);
3712 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3713 p->sadb_x_nat_t_port_exttype = type;
3714 p->sadb_x_nat_t_port_port = port;
3715
3716 return m;
3717 }
3718
3719 /*
3720 * set fragmentation info in sadb_x_nat_t_frag
3721 */
3722 static struct mbuf *
3723 key_setsadbxfrag(u_int16_t flen)
3724 {
3725 struct mbuf *m;
3726 size_t len;
3727 struct sadb_x_nat_t_frag *p;
3728
3729 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3730
3731 m = key_alloc_mbuf(len);
3732 if (!m || m->m_next) { /*XXX*/
3733 if (m)
3734 m_freem(m);
3735 return NULL;
3736 }
3737
3738 p = mtod(m, struct sadb_x_nat_t_frag *);
3739
3740 memset(p, 0, len);
3741 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3742 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3743 p->sadb_x_nat_t_frag_fraglen = flen;
3744
3745 return m;
3746 }
3747
3748 /*
3749 * Get port from sockaddr, port is in network order
3750 */
3751 u_int16_t
3752 key_portfromsaddr(const union sockaddr_union *saddr)
3753 {
3754 u_int16_t port;
3755
3756 switch (saddr->sa.sa_family) {
3757 case AF_INET: {
3758 port = saddr->sin.sin_port;
3759 break;
3760 }
3761 #ifdef INET6
3762 case AF_INET6: {
3763 port = saddr->sin6.sin6_port;
3764 break;
3765 }
3766 #endif
3767 default:
3768 printf("%s: unexpected address family\n", __func__);
3769 port = 0;
3770 break;
3771 }
3772
3773 return port;
3774 }
3775
3776
3777 /*
3778 * Set port is struct sockaddr. port is in network order
3779 */
3780 static void
3781 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3782 {
3783 switch (saddr->sa.sa_family) {
3784 case AF_INET: {
3785 saddr->sin.sin_port = port;
3786 break;
3787 }
3788 #ifdef INET6
3789 case AF_INET6: {
3790 saddr->sin6.sin6_port = port;
3791 break;
3792 }
3793 #endif
3794 default:
3795 printf("%s: unexpected address family %d\n", __func__,
3796 saddr->sa.sa_family);
3797 break;
3798 }
3799
3800 return;
3801 }
3802
3803 /*
3804 * Safety check sa_len
3805 */
3806 static int
3807 key_checksalen(const union sockaddr_union *saddr)
3808 {
3809 switch (saddr->sa.sa_family) {
3810 case AF_INET:
3811 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3812 return -1;
3813 break;
3814 #ifdef INET6
3815 case AF_INET6:
3816 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3817 return -1;
3818 break;
3819 #endif
3820 default:
3821 printf("%s: unexpected sa_family %d\n", __func__,
3822 saddr->sa.sa_family);
3823 return -1;
3824 break;
3825 }
3826 return 0;
3827 }
3828
3829
3830 /*
3831 * set data into sadb_msg.
3832 */
3833 static struct mbuf *
3834 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3835 u_int32_t seq, pid_t pid, u_int16_t reserved)
3836 {
3837 struct mbuf *m;
3838 struct sadb_msg *p;
3839 int len;
3840
3841 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3842
3843 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3844
3845 MGETHDR(m, M_DONTWAIT, MT_DATA);
3846 if (m && len > MHLEN) {
3847 MCLGET(m, M_DONTWAIT);
3848 if ((m->m_flags & M_EXT) == 0) {
3849 m_freem(m);
3850 m = NULL;
3851 }
3852 }
3853 if (!m)
3854 return NULL;
3855 m->m_pkthdr.len = m->m_len = len;
3856 m->m_next = NULL;
3857
3858 p = mtod(m, struct sadb_msg *);
3859
3860 memset(p, 0, len);
3861 p->sadb_msg_version = PF_KEY_V2;
3862 p->sadb_msg_type = type;
3863 p->sadb_msg_errno = 0;
3864 p->sadb_msg_satype = satype;
3865 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3866 p->sadb_msg_reserved = reserved;
3867 p->sadb_msg_seq = seq;
3868 p->sadb_msg_pid = (u_int32_t)pid;
3869
3870 return m;
3871 }
3872
3873 /*
3874 * copy secasvar data into sadb_address.
3875 */
3876 static struct mbuf *
3877 key_setsadbsa(struct secasvar *sav)
3878 {
3879 struct mbuf *m;
3880 struct sadb_sa *p;
3881 int len;
3882
3883 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3884 m = key_alloc_mbuf(len);
3885 if (!m || m->m_next) { /*XXX*/
3886 if (m)
3887 m_freem(m);
3888 return NULL;
3889 }
3890
3891 p = mtod(m, struct sadb_sa *);
3892
3893 memset(p, 0, len);
3894 p->sadb_sa_len = PFKEY_UNIT64(len);
3895 p->sadb_sa_exttype = SADB_EXT_SA;
3896 p->sadb_sa_spi = sav->spi;
3897 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3898 p->sadb_sa_state = sav->state;
3899 p->sadb_sa_auth = sav->alg_auth;
3900 p->sadb_sa_encrypt = sav->alg_enc;
3901 p->sadb_sa_flags = sav->flags;
3902
3903 return m;
3904 }
3905
3906 /*
3907 * set data into sadb_address.
3908 */
3909 static struct mbuf *
3910 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3911 u_int8_t prefixlen, u_int16_t ul_proto)
3912 {
3913 struct mbuf *m;
3914 struct sadb_address *p;
3915 size_t len;
3916
3917 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3918 PFKEY_ALIGN8(saddr->sa_len);
3919 m = key_alloc_mbuf(len);
3920 if (!m || m->m_next) { /*XXX*/
3921 if (m)
3922 m_freem(m);
3923 return NULL;
3924 }
3925
3926 p = mtod(m, struct sadb_address *);
3927
3928 memset(p, 0, len);
3929 p->sadb_address_len = PFKEY_UNIT64(len);
3930 p->sadb_address_exttype = exttype;
3931 p->sadb_address_proto = ul_proto;
3932 if (prefixlen == FULLMASK) {
3933 switch (saddr->sa_family) {
3934 case AF_INET:
3935 prefixlen = sizeof(struct in_addr) << 3;
3936 break;
3937 case AF_INET6:
3938 prefixlen = sizeof(struct in6_addr) << 3;
3939 break;
3940 default:
3941 ; /*XXX*/
3942 }
3943 }
3944 p->sadb_address_prefixlen = prefixlen;
3945 p->sadb_address_reserved = 0;
3946
3947 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3948 saddr, saddr->sa_len);
3949
3950 return m;
3951 }
3952
3953 #if 0
3954 /*
3955 * set data into sadb_ident.
3956 */
3957 static struct mbuf *
3958 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3959 void *string, int stringlen, u_int64_t id)
3960 {
3961 struct mbuf *m;
3962 struct sadb_ident *p;
3963 size_t len;
3964
3965 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3966 m = key_alloc_mbuf(len);
3967 if (!m || m->m_next) { /*XXX*/
3968 if (m)
3969 m_freem(m);
3970 return NULL;
3971 }
3972
3973 p = mtod(m, struct sadb_ident *);
3974
3975 memset(p, 0, len);
3976 p->sadb_ident_len = PFKEY_UNIT64(len);
3977 p->sadb_ident_exttype = exttype;
3978 p->sadb_ident_type = idtype;
3979 p->sadb_ident_reserved = 0;
3980 p->sadb_ident_id = id;
3981
3982 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3983 string, stringlen);
3984
3985 return m;
3986 }
3987 #endif
3988
3989 /*
3990 * set data into sadb_x_sa2.
3991 */
3992 static struct mbuf *
3993 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
3994 {
3995 struct mbuf *m;
3996 struct sadb_x_sa2 *p;
3997 size_t len;
3998
3999 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4000 m = key_alloc_mbuf(len);
4001 if (!m || m->m_next) { /*XXX*/
4002 if (m)
4003 m_freem(m);
4004 return NULL;
4005 }
4006
4007 p = mtod(m, struct sadb_x_sa2 *);
4008
4009 memset(p, 0, len);
4010 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4011 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4012 p->sadb_x_sa2_mode = mode;
4013 p->sadb_x_sa2_reserved1 = 0;
4014 p->sadb_x_sa2_reserved2 = 0;
4015 p->sadb_x_sa2_sequence = seq;
4016 p->sadb_x_sa2_reqid = reqid;
4017
4018 return m;
4019 }
4020
4021 /*
4022 * set data into sadb_x_policy
4023 */
4024 static struct mbuf *
4025 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4026 {
4027 struct mbuf *m;
4028 struct sadb_x_policy *p;
4029 size_t len;
4030
4031 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4032 m = key_alloc_mbuf(len);
4033 if (!m || m->m_next) { /*XXX*/
4034 if (m)
4035 m_freem(m);
4036 return NULL;
4037 }
4038
4039 p = mtod(m, struct sadb_x_policy *);
4040
4041 memset(p, 0, len);
4042 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4043 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4044 p->sadb_x_policy_type = type;
4045 p->sadb_x_policy_dir = dir;
4046 p->sadb_x_policy_id = id;
4047
4048 return m;
4049 }
4050
4051 /* %%% utilities */
4052 /*
4053 * copy a buffer into the new buffer allocated.
4054 */
4055 static void *
4056 key_newbuf(const void *src, u_int len)
4057 {
4058 void *new;
4059
4060 new = kmem_alloc(len, KM_SLEEP);
4061 memcpy(new, src, len);
4062
4063 return new;
4064 }
4065
4066 /* compare my own address
4067 * OUT: 1: true, i.e. my address.
4068 * 0: false
4069 */
4070 int
4071 key_ismyaddr(const struct sockaddr *sa)
4072 {
4073 #ifdef INET
4074 const struct sockaddr_in *sin;
4075 const struct in_ifaddr *ia;
4076 int s;
4077 #endif
4078
4079 KASSERT(sa != NULL);
4080
4081 switch (sa->sa_family) {
4082 #ifdef INET
4083 case AF_INET:
4084 sin = (const struct sockaddr_in *)sa;
4085 s = pserialize_read_enter();
4086 IN_ADDRLIST_READER_FOREACH(ia) {
4087 if (sin->sin_family == ia->ia_addr.sin_family &&
4088 sin->sin_len == ia->ia_addr.sin_len &&
4089 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4090 {
4091 pserialize_read_exit(s);
4092 return 1;
4093 }
4094 }
4095 pserialize_read_exit(s);
4096 break;
4097 #endif
4098 #ifdef INET6
4099 case AF_INET6:
4100 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4101 #endif
4102 }
4103
4104 return 0;
4105 }
4106
4107 #ifdef INET6
4108 /*
4109 * compare my own address for IPv6.
4110 * 1: ours
4111 * 0: other
4112 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4113 */
4114 #include <netinet6/in6_var.h>
4115
4116 static int
4117 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4118 {
4119 struct in6_ifaddr *ia;
4120 int s;
4121 struct psref psref;
4122 int bound;
4123 int ours = 1;
4124
4125 bound = curlwp_bind();
4126 s = pserialize_read_enter();
4127 IN6_ADDRLIST_READER_FOREACH(ia) {
4128 bool ingroup;
4129
4130 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4131 (const struct sockaddr *)&ia->ia_addr, 0)) {
4132 pserialize_read_exit(s);
4133 goto ours;
4134 }
4135 ia6_acquire(ia, &psref);
4136 pserialize_read_exit(s);
4137
4138 /*
4139 * XXX Multicast
4140 * XXX why do we care about multlicast here while we don't care
4141 * about IPv4 multicast??
4142 * XXX scope
4143 */
4144 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4145 if (ingroup) {
4146 ia6_release(ia, &psref);
4147 goto ours;
4148 }
4149
4150 s = pserialize_read_enter();
4151 ia6_release(ia, &psref);
4152 }
4153 pserialize_read_exit(s);
4154
4155 /* loopback, just for safety */
4156 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4157 goto ours;
4158
4159 ours = 0;
4160 ours:
4161 curlwp_bindx(bound);
4162
4163 return ours;
4164 }
4165 #endif /*INET6*/
4166
4167 /*
4168 * compare two secasindex structure.
4169 * flag can specify to compare 2 saidxes.
4170 * compare two secasindex structure without both mode and reqid.
4171 * don't compare port.
4172 * IN:
4173 * saidx0: source, it can be in SAD.
4174 * saidx1: object.
4175 * OUT:
4176 * 1 : equal
4177 * 0 : not equal
4178 */
4179 static int
4180 key_saidx_match(
4181 const struct secasindex *saidx0,
4182 const struct secasindex *saidx1,
4183 int flag)
4184 {
4185 int chkport;
4186 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4187
4188 KASSERT(saidx0 != NULL);
4189 KASSERT(saidx1 != NULL);
4190
4191 /* sanity */
4192 if (saidx0->proto != saidx1->proto)
4193 return 0;
4194
4195 if (flag == CMP_EXACTLY) {
4196 if (saidx0->mode != saidx1->mode)
4197 return 0;
4198 if (saidx0->reqid != saidx1->reqid)
4199 return 0;
4200 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4201 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4202 return 0;
4203 } else {
4204
4205 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4206 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4207 /*
4208 * If reqid of SPD is non-zero, unique SA is required.
4209 * The result must be of same reqid in this case.
4210 */
4211 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4212 return 0;
4213 }
4214
4215 if (flag == CMP_MODE_REQID) {
4216 if (saidx0->mode != IPSEC_MODE_ANY &&
4217 saidx0->mode != saidx1->mode)
4218 return 0;
4219 }
4220
4221
4222 sa0src = &saidx0->src.sa;
4223 sa0dst = &saidx0->dst.sa;
4224 sa1src = &saidx1->src.sa;
4225 sa1dst = &saidx1->dst.sa;
4226 /*
4227 * If NAT-T is enabled, check ports for tunnel mode.
4228 * Don't do it for transport mode, as there is no
4229 * port information available in the SP.
4230 * Also don't check ports if they are set to zero
4231 * in the SPD: This means we have a non-generated
4232 * SPD which can't know UDP ports.
4233 */
4234 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4235 chkport = PORT_LOOSE;
4236 else
4237 chkport = PORT_NONE;
4238
4239 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4240 return 0;
4241 }
4242 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4243 return 0;
4244 }
4245 }
4246
4247 return 1;
4248 }
4249
4250 /*
4251 * compare two secindex structure exactly.
4252 * IN:
4253 * spidx0: source, it is often in SPD.
4254 * spidx1: object, it is often from PFKEY message.
4255 * OUT:
4256 * 1 : equal
4257 * 0 : not equal
4258 */
4259 static int
4260 key_spidx_match_exactly(
4261 const struct secpolicyindex *spidx0,
4262 const struct secpolicyindex *spidx1)
4263 {
4264
4265 KASSERT(spidx0 != NULL);
4266 KASSERT(spidx1 != NULL);
4267
4268 /* sanity */
4269 if (spidx0->prefs != spidx1->prefs ||
4270 spidx0->prefd != spidx1->prefd ||
4271 spidx0->ul_proto != spidx1->ul_proto)
4272 return 0;
4273
4274 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4275 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4276 }
4277
4278 /*
4279 * compare two secindex structure with mask.
4280 * IN:
4281 * spidx0: source, it is often in SPD.
4282 * spidx1: object, it is often from IP header.
4283 * OUT:
4284 * 1 : equal
4285 * 0 : not equal
4286 */
4287 static int
4288 key_spidx_match_withmask(
4289 const struct secpolicyindex *spidx0,
4290 const struct secpolicyindex *spidx1)
4291 {
4292
4293 KASSERT(spidx0 != NULL);
4294 KASSERT(spidx1 != NULL);
4295
4296 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4297 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4298 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4299 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4300 return 0;
4301
4302 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4303 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4304 spidx0->ul_proto != spidx1->ul_proto)
4305 return 0;
4306
4307 switch (spidx0->src.sa.sa_family) {
4308 case AF_INET:
4309 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4310 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4311 return 0;
4312 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4313 &spidx1->src.sin.sin_addr, spidx0->prefs))
4314 return 0;
4315 break;
4316 case AF_INET6:
4317 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4318 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4319 return 0;
4320 /*
4321 * scope_id check. if sin6_scope_id is 0, we regard it
4322 * as a wildcard scope, which matches any scope zone ID.
4323 */
4324 if (spidx0->src.sin6.sin6_scope_id &&
4325 spidx1->src.sin6.sin6_scope_id &&
4326 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4327 return 0;
4328 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4329 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4330 return 0;
4331 break;
4332 default:
4333 /* XXX */
4334 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4335 return 0;
4336 break;
4337 }
4338
4339 switch (spidx0->dst.sa.sa_family) {
4340 case AF_INET:
4341 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4342 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4343 return 0;
4344 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4345 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4346 return 0;
4347 break;
4348 case AF_INET6:
4349 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4350 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4351 return 0;
4352 /*
4353 * scope_id check. if sin6_scope_id is 0, we regard it
4354 * as a wildcard scope, which matches any scope zone ID.
4355 */
4356 if (spidx0->src.sin6.sin6_scope_id &&
4357 spidx1->src.sin6.sin6_scope_id &&
4358 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4359 return 0;
4360 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4361 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4362 return 0;
4363 break;
4364 default:
4365 /* XXX */
4366 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4367 return 0;
4368 break;
4369 }
4370
4371 /* XXX Do we check other field ? e.g. flowinfo */
4372
4373 return 1;
4374 }
4375
4376 /* returns 0 on match */
4377 static int
4378 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4379 {
4380 switch (howport) {
4381 case PORT_NONE:
4382 return 0;
4383 case PORT_LOOSE:
4384 if (port1 == 0 || port2 == 0)
4385 return 0;
4386 /*FALLTHROUGH*/
4387 case PORT_STRICT:
4388 if (port1 != port2) {
4389 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4390 "port fail %d != %d\n", port1, port2);
4391 return 1;
4392 }
4393 return 0;
4394 default:
4395 KASSERT(0);
4396 return 1;
4397 }
4398 }
4399
4400 /* returns 1 on match */
4401 static int
4402 key_sockaddr_match(
4403 const struct sockaddr *sa1,
4404 const struct sockaddr *sa2,
4405 int howport)
4406 {
4407 const struct sockaddr_in *sin1, *sin2;
4408 const struct sockaddr_in6 *sin61, *sin62;
4409
4410 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4411 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4412 "fam/len fail %d != %d || %d != %d\n",
4413 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4414 sa2->sa_len);
4415 return 0;
4416 }
4417
4418 switch (sa1->sa_family) {
4419 case AF_INET:
4420 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4421 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4422 "len fail %d != %zu\n",
4423 sa1->sa_len, sizeof(struct sockaddr_in));
4424 return 0;
4425 }
4426 sin1 = (const struct sockaddr_in *)sa1;
4427 sin2 = (const struct sockaddr_in *)sa2;
4428 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4429 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4430 "addr fail %#x != %#x\n",
4431 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4432 return 0;
4433 }
4434 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4435 return 0;
4436 }
4437 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4438 "addr success %#x[%d] == %#x[%d]\n",
4439 sin1->sin_addr.s_addr, sin1->sin_port,
4440 sin2->sin_addr.s_addr, sin2->sin_port);
4441 break;
4442 case AF_INET6:
4443 sin61 = (const struct sockaddr_in6 *)sa1;
4444 sin62 = (const struct sockaddr_in6 *)sa2;
4445 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4446 return 0; /*EINVAL*/
4447
4448 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4449 return 0;
4450 }
4451 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4452 return 0;
4453 }
4454 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4455 return 0;
4456 }
4457 break;
4458 default:
4459 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4460 return 0;
4461 break;
4462 }
4463
4464 return 1;
4465 }
4466
4467 /*
4468 * compare two buffers with mask.
4469 * IN:
4470 * addr1: source
4471 * addr2: object
4472 * bits: Number of bits to compare
4473 * OUT:
4474 * 1 : equal
4475 * 0 : not equal
4476 */
4477 static int
4478 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4479 {
4480 const unsigned char *p1 = a1;
4481 const unsigned char *p2 = a2;
4482
4483 /* XXX: This could be considerably faster if we compare a word
4484 * at a time, but it is complicated on LSB Endian machines */
4485
4486 /* Handle null pointers */
4487 if (p1 == NULL || p2 == NULL)
4488 return (p1 == p2);
4489
4490 while (bits >= 8) {
4491 if (*p1++ != *p2++)
4492 return 0;
4493 bits -= 8;
4494 }
4495
4496 if (bits > 0) {
4497 u_int8_t mask = ~((1<<(8-bits))-1);
4498 if ((*p1 & mask) != (*p2 & mask))
4499 return 0;
4500 }
4501 return 1; /* Match! */
4502 }
4503
4504 static void
4505 key_timehandler_spd(time_t now)
4506 {
4507 u_int dir;
4508 struct secpolicy *sp;
4509
4510 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4511 retry:
4512 mutex_enter(&key_sp_mtx);
4513 SPLIST_WRITER_FOREACH(sp, dir) {
4514 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4515
4516 if (sp->lifetime == 0 && sp->validtime == 0)
4517 continue;
4518
4519 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4520 (sp->validtime && now - sp->lastused > sp->validtime)) {
4521 key_unlink_sp(sp);
4522 mutex_exit(&key_sp_mtx);
4523 key_spdexpire(sp);
4524 key_destroy_sp(sp);
4525 goto retry;
4526 }
4527 }
4528 mutex_exit(&key_sp_mtx);
4529 }
4530
4531 retry_socksplist:
4532 mutex_enter(&key_sp_mtx);
4533 SOCKSPLIST_WRITER_FOREACH(sp) {
4534 if (sp->state != IPSEC_SPSTATE_DEAD)
4535 continue;
4536
4537 key_unlink_sp(sp);
4538 mutex_exit(&key_sp_mtx);
4539 key_destroy_sp(sp);
4540 goto retry_socksplist;
4541 }
4542 mutex_exit(&key_sp_mtx);
4543 }
4544
4545 static void
4546 key_timehandler_sad(time_t now)
4547 {
4548 struct secashead *sah;
4549 struct secasvar *sav;
4550
4551 restart:
4552 SAHLIST_WRITER_FOREACH(sah) {
4553 /* if sah has been dead, then delete it and process next sah. */
4554 if (sah->state == SADB_SASTATE_DEAD) {
4555 key_delsah(sah);
4556 goto restart;
4557 }
4558
4559 /* if LARVAL entry doesn't become MATURE, delete it. */
4560 restart_sav_LARVAL:
4561 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4562 if (now - sav->created > key_larval_lifetime) {
4563 KEY_FREESAV(&sav);
4564 goto restart_sav_LARVAL;
4565 }
4566 }
4567
4568 /*
4569 * check MATURE entry to start to send expire message
4570 * whether or not.
4571 */
4572 restart_sav_MATURE:
4573 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4574 /* we don't need to check. */
4575 if (sav->lft_s == NULL)
4576 continue;
4577
4578 /* sanity check */
4579 KASSERT(sav->lft_c != NULL);
4580
4581 /* check SOFT lifetime */
4582 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4583 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4584 /*
4585 * check SA to be used whether or not.
4586 * when SA hasn't been used, delete it.
4587 */
4588 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4589 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4590 KEY_FREESAV(&sav);
4591 } else {
4592 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4593 /*
4594 * XXX If we keep to send expire
4595 * message in the status of
4596 * DYING. Do remove below code.
4597 */
4598 key_expire(sav);
4599 }
4600 goto restart_sav_MATURE;
4601 }
4602 /* check SOFT lifetime by bytes */
4603 /*
4604 * XXX I don't know the way to delete this SA
4605 * when new SA is installed. Caution when it's
4606 * installed too big lifetime by time.
4607 */
4608 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4609 sav->lft_s->sadb_lifetime_bytes <
4610 sav->lft_c->sadb_lifetime_bytes) {
4611
4612 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4613 /*
4614 * XXX If we keep to send expire
4615 * message in the status of
4616 * DYING. Do remove below code.
4617 */
4618 key_expire(sav);
4619 goto restart_sav_MATURE;
4620 }
4621 }
4622
4623 /* check DYING entry to change status to DEAD. */
4624 restart_sav_DYING:
4625 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4626 /* we don't need to check. */
4627 if (sav->lft_h == NULL)
4628 continue;
4629
4630 /* sanity check */
4631 KASSERT(sav->lft_c != NULL);
4632
4633 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4634 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4635 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4636 KEY_FREESAV(&sav);
4637 goto restart_sav_DYING;
4638 }
4639 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4640 else if (sav->lft_s != NULL
4641 && sav->lft_s->sadb_lifetime_addtime != 0
4642 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4643 /*
4644 * XXX: should be checked to be
4645 * installed the valid SA.
4646 */
4647
4648 /*
4649 * If there is no SA then sending
4650 * expire message.
4651 */
4652 key_expire(sav);
4653 }
4654 #endif
4655 /* check HARD lifetime by bytes */
4656 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4657 sav->lft_h->sadb_lifetime_bytes <
4658 sav->lft_c->sadb_lifetime_bytes) {
4659 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4660 KEY_FREESAV(&sav);
4661 goto restart_sav_DYING;
4662 }
4663 }
4664
4665 /* delete entry in DEAD */
4666 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4667 /* sanity check */
4668 if (sav->state != SADB_SASTATE_DEAD) {
4669 IPSECLOG(LOG_DEBUG,
4670 "invalid sav->state (queue: %d SA: %d): "
4671 "kill it anyway\n",
4672 SADB_SASTATE_DEAD, sav->state);
4673 }
4674
4675 /*
4676 * do not call key_freesav() here.
4677 * sav should already be freed, and sav->refcnt
4678 * shows other references to sav
4679 * (such as from SPD).
4680 */
4681 }
4682 }
4683 }
4684
4685 static void
4686 key_timehandler_acq(time_t now)
4687 {
4688 #ifndef IPSEC_NONBLOCK_ACQUIRE
4689 struct secacq *acq, *nextacq;
4690
4691 restart:
4692 mutex_enter(&key_mtx);
4693 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4694 if (now - acq->created > key_blockacq_lifetime) {
4695 LIST_REMOVE(acq, chain);
4696 mutex_exit(&key_mtx);
4697 kmem_free(acq, sizeof(*acq));
4698 goto restart;
4699 }
4700 }
4701 mutex_exit(&key_mtx);
4702 #endif
4703 }
4704
4705 static void
4706 key_timehandler_spacq(time_t now)
4707 {
4708 #ifdef notyet
4709 struct secspacq *acq, *nextacq;
4710
4711 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4712 if (now - acq->created > key_blockacq_lifetime) {
4713 KASSERT(__LIST_CHAINED(acq));
4714 LIST_REMOVE(acq, chain);
4715 kmem_free(acq, sizeof(*acq));
4716 }
4717 }
4718 #endif
4719 }
4720
4721 /*
4722 * time handler.
4723 * scanning SPD and SAD to check status for each entries,
4724 * and do to remove or to expire.
4725 */
4726 static void
4727 key_timehandler_work(struct work *wk, void *arg)
4728 {
4729 time_t now = time_uptime;
4730 IPSEC_DECLARE_LOCK_VARIABLE;
4731
4732 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4733
4734 key_timehandler_spd(now);
4735 key_timehandler_sad(now);
4736 key_timehandler_acq(now);
4737 key_timehandler_spacq(now);
4738
4739 /* do exchange to tick time !! */
4740 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4741
4742 IPSEC_RELEASE_GLOBAL_LOCKS();
4743 return;
4744 }
4745
4746 static void
4747 key_timehandler(void *arg)
4748 {
4749
4750 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4751 }
4752
4753 u_long
4754 key_random(void)
4755 {
4756 u_long value;
4757
4758 key_randomfill(&value, sizeof(value));
4759 return value;
4760 }
4761
4762 void
4763 key_randomfill(void *p, size_t l)
4764 {
4765
4766 cprng_fast(p, l);
4767 }
4768
4769 /*
4770 * map SADB_SATYPE_* to IPPROTO_*.
4771 * if satype == SADB_SATYPE then satype is mapped to ~0.
4772 * OUT:
4773 * 0: invalid satype.
4774 */
4775 static u_int16_t
4776 key_satype2proto(u_int8_t satype)
4777 {
4778 switch (satype) {
4779 case SADB_SATYPE_UNSPEC:
4780 return IPSEC_PROTO_ANY;
4781 case SADB_SATYPE_AH:
4782 return IPPROTO_AH;
4783 case SADB_SATYPE_ESP:
4784 return IPPROTO_ESP;
4785 case SADB_X_SATYPE_IPCOMP:
4786 return IPPROTO_IPCOMP;
4787 case SADB_X_SATYPE_TCPSIGNATURE:
4788 return IPPROTO_TCP;
4789 default:
4790 return 0;
4791 }
4792 /* NOTREACHED */
4793 }
4794
4795 /*
4796 * map IPPROTO_* to SADB_SATYPE_*
4797 * OUT:
4798 * 0: invalid protocol type.
4799 */
4800 static u_int8_t
4801 key_proto2satype(u_int16_t proto)
4802 {
4803 switch (proto) {
4804 case IPPROTO_AH:
4805 return SADB_SATYPE_AH;
4806 case IPPROTO_ESP:
4807 return SADB_SATYPE_ESP;
4808 case IPPROTO_IPCOMP:
4809 return SADB_X_SATYPE_IPCOMP;
4810 case IPPROTO_TCP:
4811 return SADB_X_SATYPE_TCPSIGNATURE;
4812 default:
4813 return 0;
4814 }
4815 /* NOTREACHED */
4816 }
4817
4818 static int
4819 key_setsecasidx(int proto, int mode, int reqid,
4820 const struct sockaddr *src, const struct sockaddr *dst,
4821 struct secasindex * saidx)
4822 {
4823 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4824 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4825
4826 /* sa len safety check */
4827 if (key_checksalen(src_u) != 0)
4828 return -1;
4829 if (key_checksalen(dst_u) != 0)
4830 return -1;
4831
4832 memset(saidx, 0, sizeof(*saidx));
4833 saidx->proto = proto;
4834 saidx->mode = mode;
4835 saidx->reqid = reqid;
4836 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4837 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4838
4839 key_porttosaddr(&((saidx)->src), 0);
4840 key_porttosaddr(&((saidx)->dst), 0);
4841 return 0;
4842 }
4843
4844 static void
4845 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4846 const struct sadb_msghdr *mhp)
4847 {
4848 const struct sadb_address *src0, *dst0;
4849 const struct sockaddr *src, *dst;
4850 const struct sadb_x_policy *xpl0;
4851
4852 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4853 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4854 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4855 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4856 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4857
4858 memset(spidx, 0, sizeof(*spidx));
4859 spidx->dir = xpl0->sadb_x_policy_dir;
4860 spidx->prefs = src0->sadb_address_prefixlen;
4861 spidx->prefd = dst0->sadb_address_prefixlen;
4862 spidx->ul_proto = src0->sadb_address_proto;
4863 /* XXX boundary check against sa_len */
4864 memcpy(&spidx->src, src, src->sa_len);
4865 memcpy(&spidx->dst, dst, dst->sa_len);
4866 }
4867
4868 /* %%% PF_KEY */
4869 /*
4870 * SADB_GETSPI processing is to receive
4871 * <base, (SA2), src address, dst address, (SPI range)>
4872 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4873 * tree with the status of LARVAL, and send
4874 * <base, SA(*), address(SD)>
4875 * to the IKMPd.
4876 *
4877 * IN: mhp: pointer to the pointer to each header.
4878 * OUT: NULL if fail.
4879 * other if success, return pointer to the message to send.
4880 */
4881 static int
4882 key_api_getspi(struct socket *so, struct mbuf *m,
4883 const struct sadb_msghdr *mhp)
4884 {
4885 const struct sockaddr *src, *dst;
4886 struct secasindex saidx;
4887 struct secashead *sah;
4888 struct secasvar *newsav;
4889 u_int8_t proto;
4890 u_int32_t spi;
4891 u_int8_t mode;
4892 u_int16_t reqid;
4893 int error;
4894
4895 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4896 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4897 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4898 return key_senderror(so, m, EINVAL);
4899 }
4900 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4901 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4902 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4903 return key_senderror(so, m, EINVAL);
4904 }
4905 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4906 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4907 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4908 } else {
4909 mode = IPSEC_MODE_ANY;
4910 reqid = 0;
4911 }
4912
4913 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4914 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4915
4916 /* map satype to proto */
4917 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4918 if (proto == 0) {
4919 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4920 return key_senderror(so, m, EINVAL);
4921 }
4922
4923
4924 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4925 if (error != 0)
4926 return key_senderror(so, m, EINVAL);
4927
4928 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4929 if (error != 0)
4930 return key_senderror(so, m, EINVAL);
4931
4932 /* SPI allocation */
4933 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4934 &saidx);
4935 if (spi == 0)
4936 return key_senderror(so, m, EINVAL);
4937
4938 /* get a SA index */
4939 sah = key_getsah(&saidx, CMP_REQID);
4940 if (sah == NULL) {
4941 /* create a new SA index */
4942 sah = key_newsah(&saidx);
4943 if (sah == NULL) {
4944 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4945 return key_senderror(so, m, ENOBUFS);
4946 }
4947 }
4948
4949 /* get a new SA */
4950 /* XXX rewrite */
4951 newsav = KEY_NEWSAV(m, mhp, &error);
4952 if (newsav == NULL) {
4953 /* XXX don't free new SA index allocated in above. */
4954 return key_senderror(so, m, error);
4955 }
4956
4957 /* set spi */
4958 newsav->spi = htonl(spi);
4959
4960 /* add to satree */
4961 newsav->refcnt = 1;
4962 newsav->sah = sah;
4963 newsav->state = SADB_SASTATE_LARVAL;
4964 SAVLIST_ENTRY_INIT(newsav);
4965 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
4966 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
4967
4968 #ifndef IPSEC_NONBLOCK_ACQUIRE
4969 /* delete the entry in acqtree */
4970 if (mhp->msg->sadb_msg_seq != 0) {
4971 struct secacq *acq;
4972 mutex_enter(&key_mtx);
4973 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4974 if (acq != NULL) {
4975 /* reset counter in order to deletion by timehandler. */
4976 acq->created = time_uptime;
4977 acq->count = 0;
4978 }
4979 mutex_exit(&key_mtx);
4980 }
4981 #endif
4982
4983 {
4984 struct mbuf *n, *nn;
4985 struct sadb_sa *m_sa;
4986 int off, len;
4987
4988 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4989 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
4990
4991 /* create new sadb_msg to reply. */
4992 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4993 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4994
4995 MGETHDR(n, M_DONTWAIT, MT_DATA);
4996 if (len > MHLEN) {
4997 MCLGET(n, M_DONTWAIT);
4998 if ((n->m_flags & M_EXT) == 0) {
4999 m_freem(n);
5000 n = NULL;
5001 }
5002 }
5003 if (!n)
5004 return key_senderror(so, m, ENOBUFS);
5005
5006 n->m_len = len;
5007 n->m_next = NULL;
5008 off = 0;
5009
5010 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5011 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5012
5013 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5014 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5015 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5016 m_sa->sadb_sa_spi = htonl(spi);
5017 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5018
5019 KASSERTMSG(off == len, "length inconsistency");
5020
5021 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5022 SADB_EXT_ADDRESS_DST);
5023 if (!n->m_next) {
5024 m_freem(n);
5025 return key_senderror(so, m, ENOBUFS);
5026 }
5027
5028 if (n->m_len < sizeof(struct sadb_msg)) {
5029 n = m_pullup(n, sizeof(struct sadb_msg));
5030 if (n == NULL)
5031 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5032 }
5033
5034 n->m_pkthdr.len = 0;
5035 for (nn = n; nn; nn = nn->m_next)
5036 n->m_pkthdr.len += nn->m_len;
5037
5038 key_fill_replymsg(n, newsav->seq);
5039
5040 m_freem(m);
5041 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5042 }
5043 }
5044
5045 /*
5046 * allocating new SPI
5047 * called by key_api_getspi().
5048 * OUT:
5049 * 0: failure.
5050 * others: success.
5051 */
5052 static u_int32_t
5053 key_do_getnewspi(const struct sadb_spirange *spirange,
5054 const struct secasindex *saidx)
5055 {
5056 u_int32_t newspi;
5057 u_int32_t spmin, spmax;
5058 int count = key_spi_trycnt;
5059
5060 /* set spi range to allocate */
5061 if (spirange != NULL) {
5062 spmin = spirange->sadb_spirange_min;
5063 spmax = spirange->sadb_spirange_max;
5064 } else {
5065 spmin = key_spi_minval;
5066 spmax = key_spi_maxval;
5067 }
5068 /* IPCOMP needs 2-byte SPI */
5069 if (saidx->proto == IPPROTO_IPCOMP) {
5070 u_int32_t t;
5071 if (spmin >= 0x10000)
5072 spmin = 0xffff;
5073 if (spmax >= 0x10000)
5074 spmax = 0xffff;
5075 if (spmin > spmax) {
5076 t = spmin; spmin = spmax; spmax = t;
5077 }
5078 }
5079
5080 if (spmin == spmax) {
5081 if (key_checkspidup(saidx, htonl(spmin))) {
5082 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5083 return 0;
5084 }
5085
5086 count--; /* taking one cost. */
5087 newspi = spmin;
5088
5089 } else {
5090
5091 /* init SPI */
5092 newspi = 0;
5093
5094 /* when requesting to allocate spi ranged */
5095 while (count--) {
5096 /* generate pseudo-random SPI value ranged. */
5097 newspi = spmin + (key_random() % (spmax - spmin + 1));
5098
5099 if (!key_checkspidup(saidx, htonl(newspi)))
5100 break;
5101 }
5102
5103 if (count == 0 || newspi == 0) {
5104 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5105 return 0;
5106 }
5107 }
5108
5109 /* statistics */
5110 keystat.getspi_count =
5111 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5112
5113 return newspi;
5114 }
5115
5116 static int
5117 key_handle_natt_info(struct secasvar *sav,
5118 const struct sadb_msghdr *mhp)
5119 {
5120 const char *msg = "?" ;
5121 struct sadb_x_nat_t_type *type;
5122 struct sadb_x_nat_t_port *sport, *dport;
5123 struct sadb_address *iaddr, *raddr;
5124 struct sadb_x_nat_t_frag *frag;
5125
5126 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5127 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5128 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5129 return 0;
5130
5131 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5132 msg = "TYPE";
5133 goto bad;
5134 }
5135
5136 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5137 msg = "SPORT";
5138 goto bad;
5139 }
5140
5141 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5142 msg = "DPORT";
5143 goto bad;
5144 }
5145
5146 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5147 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5148 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5149 msg = "OAI";
5150 goto bad;
5151 }
5152 }
5153
5154 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5155 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5156 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5157 msg = "OAR";
5158 goto bad;
5159 }
5160 }
5161
5162 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5163 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5164 msg = "FRAG";
5165 goto bad;
5166 }
5167 }
5168
5169 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5170 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5171 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5172 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5173 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5174 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5175
5176 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5177 type->sadb_x_nat_t_type_type,
5178 ntohs(sport->sadb_x_nat_t_port_port),
5179 ntohs(dport->sadb_x_nat_t_port_port));
5180
5181 sav->natt_type = type->sadb_x_nat_t_type_type;
5182 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5183 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5184 if (frag)
5185 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5186 else
5187 sav->esp_frag = IP_MAXPACKET;
5188
5189 return 0;
5190 bad:
5191 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5192 __USE(msg);
5193 return -1;
5194 }
5195
5196 /* Just update the IPSEC_NAT_T ports if present */
5197 static int
5198 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5199 const struct sadb_msghdr *mhp)
5200 {
5201 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5202 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5203 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5204 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5205
5206 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5207 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5208 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5209 struct sadb_x_nat_t_type *type;
5210 struct sadb_x_nat_t_port *sport;
5211 struct sadb_x_nat_t_port *dport;
5212
5213 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5214 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5215 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5216 IPSECLOG(LOG_DEBUG, "invalid message\n");
5217 return -1;
5218 }
5219
5220 type = (struct sadb_x_nat_t_type *)
5221 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5222 sport = (struct sadb_x_nat_t_port *)
5223 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5224 dport = (struct sadb_x_nat_t_port *)
5225 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5226
5227 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5228 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5229
5230 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5231 type->sadb_x_nat_t_type_type,
5232 ntohs(sport->sadb_x_nat_t_port_port),
5233 ntohs(dport->sadb_x_nat_t_port_port));
5234 }
5235
5236 return 0;
5237 }
5238
5239
5240 /*
5241 * SADB_UPDATE processing
5242 * receive
5243 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5244 * key(AE), (identity(SD),) (sensitivity)>
5245 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5246 * and send
5247 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5248 * (identity(SD),) (sensitivity)>
5249 * to the ikmpd.
5250 *
5251 * m will always be freed.
5252 */
5253 static int
5254 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5255 {
5256 struct sadb_sa *sa0;
5257 const struct sockaddr *src, *dst;
5258 struct secasindex saidx;
5259 struct secashead *sah;
5260 struct secasvar *sav, *newsav;
5261 u_int16_t proto;
5262 u_int8_t mode;
5263 u_int16_t reqid;
5264 int error;
5265
5266 /* map satype to proto */
5267 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5268 if (proto == 0) {
5269 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5270 return key_senderror(so, m, EINVAL);
5271 }
5272
5273 if (mhp->ext[SADB_EXT_SA] == NULL ||
5274 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5275 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5276 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5277 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5278 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5279 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5280 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5281 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5282 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5283 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5284 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5285 return key_senderror(so, m, EINVAL);
5286 }
5287 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5288 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5289 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5290 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5291 return key_senderror(so, m, EINVAL);
5292 }
5293 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5294 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5295 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5296 } else {
5297 mode = IPSEC_MODE_ANY;
5298 reqid = 0;
5299 }
5300 /* XXX boundary checking for other extensions */
5301
5302 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5303 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5304 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5305
5306 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5307 if (error != 0)
5308 return key_senderror(so, m, EINVAL);
5309
5310 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5311 if (error != 0)
5312 return key_senderror(so, m, EINVAL);
5313
5314 /* get a SA header */
5315 sah = key_getsah(&saidx, CMP_REQID);
5316 if (sah == NULL) {
5317 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5318 return key_senderror(so, m, ENOENT);
5319 }
5320
5321 /* set spidx if there */
5322 /* XXX rewrite */
5323 error = key_setident(sah, m, mhp);
5324 if (error)
5325 return key_senderror(so, m, error);
5326
5327 /* find a SA with sequence number. */
5328 #ifdef IPSEC_DOSEQCHECK
5329 if (mhp->msg->sadb_msg_seq != 0) {
5330 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5331 if (sav == NULL) {
5332 IPSECLOG(LOG_DEBUG,
5333 "no larval SA with sequence %u exists.\n",
5334 mhp->msg->sadb_msg_seq);
5335 return key_senderror(so, m, ENOENT);
5336 }
5337 }
5338 #else
5339 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5340 if (sav == NULL) {
5341 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5342 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5343 return key_senderror(so, m, EINVAL);
5344 }
5345 #endif
5346
5347 /* validity check */
5348 if (sav->sah->saidx.proto != proto) {
5349 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5350 sav->sah->saidx.proto, proto);
5351 error = EINVAL;
5352 goto error;
5353 }
5354 #ifdef IPSEC_DOSEQCHECK
5355 if (sav->spi != sa0->sadb_sa_spi) {
5356 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5357 (u_int32_t)ntohl(sav->spi),
5358 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5359 error = EINVAL;
5360 goto error;
5361 }
5362 #endif
5363 if (sav->pid != mhp->msg->sadb_msg_pid) {
5364 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5365 sav->pid, mhp->msg->sadb_msg_pid);
5366 error = EINVAL;
5367 goto error;
5368 }
5369
5370 /*
5371 * Allocate a new SA instead of modifying the existing SA directly
5372 * to avoid race conditions.
5373 */
5374 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5375
5376 /* copy sav values */
5377 newsav->spi = sav->spi;
5378 newsav->seq = sav->seq;
5379 newsav->created = sav->created;
5380 newsav->pid = sav->pid;
5381 newsav->sah = sav->sah;
5382
5383 error = key_setsaval(newsav, m, mhp);
5384 if (error) {
5385 key_delsav(newsav);
5386 goto error;
5387 }
5388
5389 error = key_handle_natt_info(newsav, mhp);
5390 if (error != 0) {
5391 key_delsav(newsav);
5392 goto error;
5393 }
5394
5395 error = key_init_xform(newsav);
5396 if (error != 0) {
5397 key_delsav(newsav);
5398 goto error;
5399 }
5400
5401 /* add to satree */
5402 newsav->refcnt = 1;
5403 newsav->state = SADB_SASTATE_MATURE;
5404 SAVLIST_ENTRY_INIT(newsav);
5405 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5406 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5407
5408 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5409 KEY_FREESAV(&sav);
5410 KEY_FREESAV(&sav);
5411
5412 {
5413 struct mbuf *n;
5414
5415 /* set msg buf from mhp */
5416 n = key_getmsgbuf_x1(m, mhp);
5417 if (n == NULL) {
5418 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5419 return key_senderror(so, m, ENOBUFS);
5420 }
5421
5422 m_freem(m);
5423 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5424 }
5425 error:
5426 KEY_FREESAV(&sav);
5427 return key_senderror(so, m, error);
5428 }
5429
5430 /*
5431 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5432 * only called by key_api_update().
5433 * OUT:
5434 * NULL : not found
5435 * others : found, pointer to a SA.
5436 */
5437 #ifdef IPSEC_DOSEQCHECK
5438 static struct secasvar *
5439 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5440 {
5441 struct secasvar *sav;
5442 u_int state;
5443
5444 state = SADB_SASTATE_LARVAL;
5445
5446 /* search SAD with sequence number ? */
5447 SAVLIST_READER_FOREACH(sav, sah, state) {
5448 KEY_CHKSASTATE(state, sav->state);
5449
5450 if (sav->seq == seq) {
5451 SA_ADDREF(sav);
5452 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5453 "DP cause refcnt++:%d SA:%p\n",
5454 sav->refcnt, sav);
5455 return sav;
5456 }
5457 }
5458
5459 return NULL;
5460 }
5461 #endif
5462
5463 /*
5464 * SADB_ADD processing
5465 * add an entry to SA database, when received
5466 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5467 * key(AE), (identity(SD),) (sensitivity)>
5468 * from the ikmpd,
5469 * and send
5470 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5471 * (identity(SD),) (sensitivity)>
5472 * to the ikmpd.
5473 *
5474 * IGNORE identity and sensitivity messages.
5475 *
5476 * m will always be freed.
5477 */
5478 static int
5479 key_api_add(struct socket *so, struct mbuf *m,
5480 const struct sadb_msghdr *mhp)
5481 {
5482 struct sadb_sa *sa0;
5483 const struct sockaddr *src, *dst;
5484 struct secasindex saidx;
5485 struct secashead *sah;
5486 struct secasvar *newsav;
5487 u_int16_t proto;
5488 u_int8_t mode;
5489 u_int16_t reqid;
5490 int error;
5491
5492 /* map satype to proto */
5493 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5494 if (proto == 0) {
5495 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5496 return key_senderror(so, m, EINVAL);
5497 }
5498
5499 if (mhp->ext[SADB_EXT_SA] == NULL ||
5500 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5501 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5502 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5503 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5504 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5505 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5506 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5507 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5508 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5509 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5510 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5511 return key_senderror(so, m, EINVAL);
5512 }
5513 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5514 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5515 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5516 /* XXX need more */
5517 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5518 return key_senderror(so, m, EINVAL);
5519 }
5520 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5521 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5522 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5523 } else {
5524 mode = IPSEC_MODE_ANY;
5525 reqid = 0;
5526 }
5527
5528 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5529 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5530 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5531
5532 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5533 if (error != 0)
5534 return key_senderror(so, m, EINVAL);
5535
5536 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5537 if (error != 0)
5538 return key_senderror(so, m, EINVAL);
5539
5540 /* get a SA header */
5541 sah = key_getsah(&saidx, CMP_REQID);
5542 if (sah == NULL) {
5543 /* create a new SA header */
5544 sah = key_newsah(&saidx);
5545 if (sah == NULL) {
5546 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5547 return key_senderror(so, m, ENOBUFS);
5548 }
5549 }
5550
5551 /* set spidx if there */
5552 /* XXX rewrite */
5553 error = key_setident(sah, m, mhp);
5554 if (error) {
5555 return key_senderror(so, m, error);
5556 }
5557
5558 {
5559 struct secasvar *sav;
5560
5561 /* We can create new SA only if SPI is differenct. */
5562 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5563 if (sav != NULL) {
5564 KEY_FREESAV(&sav);
5565 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5566 return key_senderror(so, m, EEXIST);
5567 }
5568 }
5569
5570 /* create new SA entry. */
5571 newsav = KEY_NEWSAV(m, mhp, &error);
5572 if (newsav == NULL) {
5573 return key_senderror(so, m, error);
5574 }
5575 newsav->sah = sah;
5576
5577 error = key_handle_natt_info(newsav, mhp);
5578 if (error != 0) {
5579 key_delsav(newsav);
5580 return key_senderror(so, m, EINVAL);
5581 }
5582
5583 error = key_init_xform(newsav);
5584 if (error != 0) {
5585 key_delsav(newsav);
5586 return key_senderror(so, m, error);
5587 }
5588
5589 /* add to satree */
5590 newsav->refcnt = 1;
5591 newsav->state = SADB_SASTATE_MATURE;
5592 SAVLIST_ENTRY_INIT(newsav);
5593 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5594 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5595
5596 /*
5597 * don't call key_freesav() here, as we would like to keep the SA
5598 * in the database on success.
5599 */
5600
5601 {
5602 struct mbuf *n;
5603
5604 /* set msg buf from mhp */
5605 n = key_getmsgbuf_x1(m, mhp);
5606 if (n == NULL) {
5607 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5608 return key_senderror(so, m, ENOBUFS);
5609 }
5610
5611 m_freem(m);
5612 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5613 }
5614 }
5615
5616 /* m is retained */
5617 static int
5618 key_setident(struct secashead *sah, struct mbuf *m,
5619 const struct sadb_msghdr *mhp)
5620 {
5621 const struct sadb_ident *idsrc, *iddst;
5622 int idsrclen, iddstlen;
5623
5624 KASSERT(!cpu_softintr_p());
5625 KASSERT(sah != NULL);
5626 KASSERT(m != NULL);
5627 KASSERT(mhp != NULL);
5628 KASSERT(mhp->msg != NULL);
5629
5630 /*
5631 * Can be called with an existing sah from key_api_update().
5632 */
5633 if (sah->idents != NULL) {
5634 kmem_free(sah->idents, sah->idents_len);
5635 sah->idents = NULL;
5636 sah->idents_len = 0;
5637 }
5638 if (sah->identd != NULL) {
5639 kmem_free(sah->identd, sah->identd_len);
5640 sah->identd = NULL;
5641 sah->identd_len = 0;
5642 }
5643
5644 /* don't make buffer if not there */
5645 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5646 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5647 sah->idents = NULL;
5648 sah->identd = NULL;
5649 return 0;
5650 }
5651
5652 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5653 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5654 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5655 return EINVAL;
5656 }
5657
5658 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5659 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5660 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5661 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5662
5663 /* validity check */
5664 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5665 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5666 return EINVAL;
5667 }
5668
5669 switch (idsrc->sadb_ident_type) {
5670 case SADB_IDENTTYPE_PREFIX:
5671 case SADB_IDENTTYPE_FQDN:
5672 case SADB_IDENTTYPE_USERFQDN:
5673 default:
5674 /* XXX do nothing */
5675 sah->idents = NULL;
5676 sah->identd = NULL;
5677 return 0;
5678 }
5679
5680 /* make structure */
5681 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5682 sah->idents_len = idsrclen;
5683 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5684 sah->identd_len = iddstlen;
5685 memcpy(sah->idents, idsrc, idsrclen);
5686 memcpy(sah->identd, iddst, iddstlen);
5687
5688 return 0;
5689 }
5690
5691 /*
5692 * m will not be freed on return.
5693 * it is caller's responsibility to free the result.
5694 */
5695 static struct mbuf *
5696 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5697 {
5698 struct mbuf *n;
5699
5700 KASSERT(m != NULL);
5701 KASSERT(mhp != NULL);
5702 KASSERT(mhp->msg != NULL);
5703
5704 /* create new sadb_msg to reply. */
5705 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5706 SADB_EXT_SA, SADB_X_EXT_SA2,
5707 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5708 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5709 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5710 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5711 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5712 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5713 if (!n)
5714 return NULL;
5715
5716 if (n->m_len < sizeof(struct sadb_msg)) {
5717 n = m_pullup(n, sizeof(struct sadb_msg));
5718 if (n == NULL)
5719 return NULL;
5720 }
5721 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5722 mtod(n, struct sadb_msg *)->sadb_msg_len =
5723 PFKEY_UNIT64(n->m_pkthdr.len);
5724
5725 return n;
5726 }
5727
5728 static int key_delete_all (struct socket *, struct mbuf *,
5729 const struct sadb_msghdr *, u_int16_t);
5730
5731 /*
5732 * SADB_DELETE processing
5733 * receive
5734 * <base, SA(*), address(SD)>
5735 * from the ikmpd, and set SADB_SASTATE_DEAD,
5736 * and send,
5737 * <base, SA(*), address(SD)>
5738 * to the ikmpd.
5739 *
5740 * m will always be freed.
5741 */
5742 static int
5743 key_api_delete(struct socket *so, struct mbuf *m,
5744 const struct sadb_msghdr *mhp)
5745 {
5746 struct sadb_sa *sa0;
5747 const struct sockaddr *src, *dst;
5748 struct secasindex saidx;
5749 struct secashead *sah;
5750 struct secasvar *sav = NULL;
5751 u_int16_t proto;
5752 int error;
5753
5754 /* map satype to proto */
5755 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5756 if (proto == 0) {
5757 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5758 return key_senderror(so, m, EINVAL);
5759 }
5760
5761 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5762 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5763 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5764 return key_senderror(so, m, EINVAL);
5765 }
5766
5767 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5768 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5769 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5770 return key_senderror(so, m, EINVAL);
5771 }
5772
5773 if (mhp->ext[SADB_EXT_SA] == NULL) {
5774 /*
5775 * Caller wants us to delete all non-LARVAL SAs
5776 * that match the src/dst. This is used during
5777 * IKE INITIAL-CONTACT.
5778 */
5779 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5780 return key_delete_all(so, m, mhp, proto);
5781 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5782 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5783 return key_senderror(so, m, EINVAL);
5784 }
5785
5786 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5787 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5788 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5789
5790 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5791 if (error != 0)
5792 return key_senderror(so, m, EINVAL);
5793
5794 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5795 if (error != 0)
5796 return key_senderror(so, m, EINVAL);
5797
5798 /* get a SA header */
5799 sah = key_getsah(&saidx, CMP_HEAD);
5800 if (sah != NULL) {
5801 /* get a SA with SPI. */
5802 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5803 }
5804
5805 if (sav == NULL) {
5806 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5807 return key_senderror(so, m, ENOENT);
5808 }
5809
5810 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5811 KEY_FREESAV(&sav);
5812 KEY_FREESAV(&sav);
5813
5814 {
5815 struct mbuf *n;
5816
5817 /* create new sadb_msg to reply. */
5818 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5819 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5820 if (!n)
5821 return key_senderror(so, m, ENOBUFS);
5822
5823 n = key_fill_replymsg(n, 0);
5824 if (n == NULL)
5825 return key_senderror(so, m, ENOBUFS);
5826
5827 m_freem(m);
5828 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5829 }
5830 }
5831
5832 /*
5833 * delete all SAs for src/dst. Called from key_api_delete().
5834 */
5835 static int
5836 key_delete_all(struct socket *so, struct mbuf *m,
5837 const struct sadb_msghdr *mhp, u_int16_t proto)
5838 {
5839 const struct sockaddr *src, *dst;
5840 struct secasindex saidx;
5841 struct secashead *sah;
5842 struct secasvar *sav;
5843 u_int state;
5844 int error;
5845
5846 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5847 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5848
5849 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5850 if (error != 0)
5851 return key_senderror(so, m, EINVAL);
5852
5853 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5854 if (error != 0)
5855 return key_senderror(so, m, EINVAL);
5856
5857 sah = key_getsah(&saidx, CMP_HEAD);
5858 if (sah != NULL) {
5859 /* Delete all non-LARVAL SAs. */
5860 SASTATE_ALIVE_FOREACH(state) {
5861 if (state == SADB_SASTATE_LARVAL)
5862 continue;
5863 restart:
5864 SAVLIST_WRITER_FOREACH(sav, sah, state) {
5865 /* sanity check */
5866 if (sav->state != state) {
5867 IPSECLOG(LOG_DEBUG,
5868 "invalid sav->state "
5869 "(queue: %d SA: %d)\n",
5870 state, sav->state);
5871 continue;
5872 }
5873
5874 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5875 KEY_FREESAV(&sav);
5876 goto restart;
5877 }
5878 }
5879 }
5880 {
5881 struct mbuf *n;
5882
5883 /* create new sadb_msg to reply. */
5884 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5885 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5886 if (!n)
5887 return key_senderror(so, m, ENOBUFS);
5888
5889 n = key_fill_replymsg(n, 0);
5890 if (n == NULL)
5891 return key_senderror(so, m, ENOBUFS);
5892
5893 m_freem(m);
5894 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5895 }
5896 }
5897
5898 /*
5899 * SADB_GET processing
5900 * receive
5901 * <base, SA(*), address(SD)>
5902 * from the ikmpd, and get a SP and a SA to respond,
5903 * and send,
5904 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5905 * (identity(SD),) (sensitivity)>
5906 * to the ikmpd.
5907 *
5908 * m will always be freed.
5909 */
5910 static int
5911 key_api_get(struct socket *so, struct mbuf *m,
5912 const struct sadb_msghdr *mhp)
5913 {
5914 struct sadb_sa *sa0;
5915 const struct sockaddr *src, *dst;
5916 struct secasindex saidx;
5917 struct secashead *sah;
5918 struct secasvar *sav = NULL;
5919 u_int16_t proto;
5920 int error;
5921
5922 /* map satype to proto */
5923 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5924 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5925 return key_senderror(so, m, EINVAL);
5926 }
5927
5928 if (mhp->ext[SADB_EXT_SA] == NULL ||
5929 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5930 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5931 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5932 return key_senderror(so, m, EINVAL);
5933 }
5934 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5935 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5936 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5937 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5938 return key_senderror(so, m, EINVAL);
5939 }
5940
5941 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5942 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5943 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5944
5945 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5946 if (error != 0)
5947 return key_senderror(so, m, EINVAL);
5948
5949 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5950 if (error != 0)
5951 return key_senderror(so, m, EINVAL);
5952
5953 /* get a SA header */
5954 sah = key_getsah(&saidx, CMP_HEAD);
5955 if (sah != NULL) {
5956 /* get a SA with SPI. */
5957 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5958 }
5959 if (sav == NULL) {
5960 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5961 return key_senderror(so, m, ENOENT);
5962 }
5963
5964 {
5965 struct mbuf *n;
5966 u_int8_t satype;
5967
5968 /* map proto to satype */
5969 satype = key_proto2satype(sah->saidx.proto);
5970 if (satype == 0) {
5971 KEY_FREESAV(&sav);
5972 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5973 return key_senderror(so, m, EINVAL);
5974 }
5975
5976 /* create new sadb_msg to reply. */
5977 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5978 mhp->msg->sadb_msg_pid);
5979 KEY_FREESAV(&sav);
5980 if (!n)
5981 return key_senderror(so, m, ENOBUFS);
5982
5983 m_freem(m);
5984 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5985 }
5986 }
5987
5988 /* XXX make it sysctl-configurable? */
5989 static void
5990 key_getcomb_setlifetime(struct sadb_comb *comb)
5991 {
5992
5993 comb->sadb_comb_soft_allocations = 1;
5994 comb->sadb_comb_hard_allocations = 1;
5995 comb->sadb_comb_soft_bytes = 0;
5996 comb->sadb_comb_hard_bytes = 0;
5997 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5998 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
5999 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6000 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6001 }
6002
6003 /*
6004 * XXX reorder combinations by preference
6005 * XXX no idea if the user wants ESP authentication or not
6006 */
6007 static struct mbuf *
6008 key_getcomb_esp(void)
6009 {
6010 struct sadb_comb *comb;
6011 const struct enc_xform *algo;
6012 struct mbuf *result = NULL, *m, *n;
6013 int encmin;
6014 int i, off, o;
6015 int totlen;
6016 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6017
6018 m = NULL;
6019 for (i = 1; i <= SADB_EALG_MAX; i++) {
6020 algo = esp_algorithm_lookup(i);
6021 if (algo == NULL)
6022 continue;
6023
6024 /* discard algorithms with key size smaller than system min */
6025 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6026 continue;
6027 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6028 encmin = ipsec_esp_keymin;
6029 else
6030 encmin = _BITS(algo->minkey);
6031
6032 if (ipsec_esp_auth)
6033 m = key_getcomb_ah();
6034 else {
6035 KASSERTMSG(l <= MLEN,
6036 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6037 MGET(m, M_DONTWAIT, MT_DATA);
6038 if (m) {
6039 M_ALIGN(m, l);
6040 m->m_len = l;
6041 m->m_next = NULL;
6042 memset(mtod(m, void *), 0, m->m_len);
6043 }
6044 }
6045 if (!m)
6046 goto fail;
6047
6048 totlen = 0;
6049 for (n = m; n; n = n->m_next)
6050 totlen += n->m_len;
6051 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6052
6053 for (off = 0; off < totlen; off += l) {
6054 n = m_pulldown(m, off, l, &o);
6055 if (!n) {
6056 /* m is already freed */
6057 goto fail;
6058 }
6059 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6060 memset(comb, 0, sizeof(*comb));
6061 key_getcomb_setlifetime(comb);
6062 comb->sadb_comb_encrypt = i;
6063 comb->sadb_comb_encrypt_minbits = encmin;
6064 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6065 }
6066
6067 if (!result)
6068 result = m;
6069 else
6070 m_cat(result, m);
6071 }
6072
6073 return result;
6074
6075 fail:
6076 if (result)
6077 m_freem(result);
6078 return NULL;
6079 }
6080
6081 static void
6082 key_getsizes_ah(const struct auth_hash *ah, int alg,
6083 u_int16_t* ksmin, u_int16_t* ksmax)
6084 {
6085 *ksmin = *ksmax = ah->keysize;
6086 if (ah->keysize == 0) {
6087 /*
6088 * Transform takes arbitrary key size but algorithm
6089 * key size is restricted. Enforce this here.
6090 */
6091 switch (alg) {
6092 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6093 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6094 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6095 default:
6096 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6097 break;
6098 }
6099 }
6100 }
6101
6102 /*
6103 * XXX reorder combinations by preference
6104 */
6105 static struct mbuf *
6106 key_getcomb_ah(void)
6107 {
6108 struct sadb_comb *comb;
6109 const struct auth_hash *algo;
6110 struct mbuf *m;
6111 u_int16_t minkeysize, maxkeysize;
6112 int i;
6113 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6114
6115 m = NULL;
6116 for (i = 1; i <= SADB_AALG_MAX; i++) {
6117 #if 1
6118 /* we prefer HMAC algorithms, not old algorithms */
6119 if (i != SADB_AALG_SHA1HMAC &&
6120 i != SADB_AALG_MD5HMAC &&
6121 i != SADB_X_AALG_SHA2_256 &&
6122 i != SADB_X_AALG_SHA2_384 &&
6123 i != SADB_X_AALG_SHA2_512)
6124 continue;
6125 #endif
6126 algo = ah_algorithm_lookup(i);
6127 if (!algo)
6128 continue;
6129 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6130 /* discard algorithms with key size smaller than system min */
6131 if (_BITS(minkeysize) < ipsec_ah_keymin)
6132 continue;
6133
6134 if (!m) {
6135 KASSERTMSG(l <= MLEN,
6136 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6137 MGET(m, M_DONTWAIT, MT_DATA);
6138 if (m) {
6139 M_ALIGN(m, l);
6140 m->m_len = l;
6141 m->m_next = NULL;
6142 }
6143 } else
6144 M_PREPEND(m, l, M_DONTWAIT);
6145 if (!m)
6146 return NULL;
6147
6148 if (m->m_len < sizeof(struct sadb_comb)) {
6149 m = m_pullup(m, sizeof(struct sadb_comb));
6150 if (m == NULL)
6151 return NULL;
6152 }
6153
6154 comb = mtod(m, struct sadb_comb *);
6155 memset(comb, 0, sizeof(*comb));
6156 key_getcomb_setlifetime(comb);
6157 comb->sadb_comb_auth = i;
6158 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6159 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6160 }
6161
6162 return m;
6163 }
6164
6165 /*
6166 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6167 * XXX reorder combinations by preference
6168 */
6169 static struct mbuf *
6170 key_getcomb_ipcomp(void)
6171 {
6172 struct sadb_comb *comb;
6173 const struct comp_algo *algo;
6174 struct mbuf *m;
6175 int i;
6176 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6177
6178 m = NULL;
6179 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6180 algo = ipcomp_algorithm_lookup(i);
6181 if (!algo)
6182 continue;
6183
6184 if (!m) {
6185 KASSERTMSG(l <= MLEN,
6186 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6187 MGET(m, M_DONTWAIT, MT_DATA);
6188 if (m) {
6189 M_ALIGN(m, l);
6190 m->m_len = l;
6191 m->m_next = NULL;
6192 }
6193 } else
6194 M_PREPEND(m, l, M_DONTWAIT);
6195 if (!m)
6196 return NULL;
6197
6198 if (m->m_len < sizeof(struct sadb_comb)) {
6199 m = m_pullup(m, sizeof(struct sadb_comb));
6200 if (m == NULL)
6201 return NULL;
6202 }
6203
6204 comb = mtod(m, struct sadb_comb *);
6205 memset(comb, 0, sizeof(*comb));
6206 key_getcomb_setlifetime(comb);
6207 comb->sadb_comb_encrypt = i;
6208 /* what should we set into sadb_comb_*_{min,max}bits? */
6209 }
6210
6211 return m;
6212 }
6213
6214 /*
6215 * XXX no way to pass mode (transport/tunnel) to userland
6216 * XXX replay checking?
6217 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6218 */
6219 static struct mbuf *
6220 key_getprop(const struct secasindex *saidx)
6221 {
6222 struct sadb_prop *prop;
6223 struct mbuf *m, *n;
6224 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6225 int totlen;
6226
6227 switch (saidx->proto) {
6228 case IPPROTO_ESP:
6229 m = key_getcomb_esp();
6230 break;
6231 case IPPROTO_AH:
6232 m = key_getcomb_ah();
6233 break;
6234 case IPPROTO_IPCOMP:
6235 m = key_getcomb_ipcomp();
6236 break;
6237 default:
6238 return NULL;
6239 }
6240
6241 if (!m)
6242 return NULL;
6243 M_PREPEND(m, l, M_DONTWAIT);
6244 if (!m)
6245 return NULL;
6246
6247 totlen = 0;
6248 for (n = m; n; n = n->m_next)
6249 totlen += n->m_len;
6250
6251 prop = mtod(m, struct sadb_prop *);
6252 memset(prop, 0, sizeof(*prop));
6253 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6254 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6255 prop->sadb_prop_replay = 32; /* XXX */
6256
6257 return m;
6258 }
6259
6260 /*
6261 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6262 * send
6263 * <base, SA, address(SD), (address(P)), x_policy,
6264 * (identity(SD),) (sensitivity,) proposal>
6265 * to KMD, and expect to receive
6266 * <base> with SADB_ACQUIRE if error occurred,
6267 * or
6268 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6269 * from KMD by PF_KEY.
6270 *
6271 * XXX x_policy is outside of RFC2367 (KAME extension).
6272 * XXX sensitivity is not supported.
6273 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6274 * see comment for key_getcomb_ipcomp().
6275 *
6276 * OUT:
6277 * 0 : succeed
6278 * others: error number
6279 */
6280 static int
6281 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6282 {
6283 struct mbuf *result = NULL, *m;
6284 #ifndef IPSEC_NONBLOCK_ACQUIRE
6285 struct secacq *newacq;
6286 #endif
6287 u_int8_t satype;
6288 int error = -1;
6289 u_int32_t seq;
6290
6291 /* sanity check */
6292 KASSERT(saidx != NULL);
6293 satype = key_proto2satype(saidx->proto);
6294 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6295
6296 #ifndef IPSEC_NONBLOCK_ACQUIRE
6297 /*
6298 * We never do anything about acquirng SA. There is anather
6299 * solution that kernel blocks to send SADB_ACQUIRE message until
6300 * getting something message from IKEd. In later case, to be
6301 * managed with ACQUIRING list.
6302 */
6303 /* Get an entry to check whether sending message or not. */
6304 mutex_enter(&key_mtx);
6305 newacq = key_getacq(saidx);
6306 if (newacq != NULL) {
6307 if (key_blockacq_count < newacq->count) {
6308 /* reset counter and do send message. */
6309 newacq->count = 0;
6310 } else {
6311 /* increment counter and do nothing. */
6312 newacq->count++;
6313 mutex_exit(&key_mtx);
6314 return 0;
6315 }
6316 } else {
6317 /* make new entry for blocking to send SADB_ACQUIRE. */
6318 newacq = key_newacq(saidx);
6319 if (newacq == NULL)
6320 return ENOBUFS;
6321
6322 /* add to acqtree */
6323 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6324 }
6325
6326 seq = newacq->seq;
6327 mutex_exit(&key_mtx);
6328 #else
6329 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6330 #endif
6331 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6332 if (!m) {
6333 error = ENOBUFS;
6334 goto fail;
6335 }
6336 result = m;
6337
6338 /* set sadb_address for saidx's. */
6339 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6340 IPSEC_ULPROTO_ANY);
6341 if (!m) {
6342 error = ENOBUFS;
6343 goto fail;
6344 }
6345 m_cat(result, m);
6346
6347 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6348 IPSEC_ULPROTO_ANY);
6349 if (!m) {
6350 error = ENOBUFS;
6351 goto fail;
6352 }
6353 m_cat(result, m);
6354
6355 /* XXX proxy address (optional) */
6356
6357 /* set sadb_x_policy */
6358 if (sp) {
6359 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6360 if (!m) {
6361 error = ENOBUFS;
6362 goto fail;
6363 }
6364 m_cat(result, m);
6365 }
6366
6367 /* XXX identity (optional) */
6368 #if 0
6369 if (idexttype && fqdn) {
6370 /* create identity extension (FQDN) */
6371 struct sadb_ident *id;
6372 int fqdnlen;
6373
6374 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6375 id = (struct sadb_ident *)p;
6376 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6377 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6378 id->sadb_ident_exttype = idexttype;
6379 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6380 memcpy(id + 1, fqdn, fqdnlen);
6381 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6382 }
6383
6384 if (idexttype) {
6385 /* create identity extension (USERFQDN) */
6386 struct sadb_ident *id;
6387 int userfqdnlen;
6388
6389 if (userfqdn) {
6390 /* +1 for terminating-NUL */
6391 userfqdnlen = strlen(userfqdn) + 1;
6392 } else
6393 userfqdnlen = 0;
6394 id = (struct sadb_ident *)p;
6395 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6396 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6397 id->sadb_ident_exttype = idexttype;
6398 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6399 /* XXX is it correct? */
6400 if (curlwp)
6401 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6402 if (userfqdn && userfqdnlen)
6403 memcpy(id + 1, userfqdn, userfqdnlen);
6404 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6405 }
6406 #endif
6407
6408 /* XXX sensitivity (optional) */
6409
6410 /* create proposal/combination extension */
6411 m = key_getprop(saidx);
6412 #if 0
6413 /*
6414 * spec conformant: always attach proposal/combination extension,
6415 * the problem is that we have no way to attach it for ipcomp,
6416 * due to the way sadb_comb is declared in RFC2367.
6417 */
6418 if (!m) {
6419 error = ENOBUFS;
6420 goto fail;
6421 }
6422 m_cat(result, m);
6423 #else
6424 /*
6425 * outside of spec; make proposal/combination extension optional.
6426 */
6427 if (m)
6428 m_cat(result, m);
6429 #endif
6430
6431 if ((result->m_flags & M_PKTHDR) == 0) {
6432 error = EINVAL;
6433 goto fail;
6434 }
6435
6436 if (result->m_len < sizeof(struct sadb_msg)) {
6437 result = m_pullup(result, sizeof(struct sadb_msg));
6438 if (result == NULL) {
6439 error = ENOBUFS;
6440 goto fail;
6441 }
6442 }
6443
6444 result->m_pkthdr.len = 0;
6445 for (m = result; m; m = m->m_next)
6446 result->m_pkthdr.len += m->m_len;
6447
6448 mtod(result, struct sadb_msg *)->sadb_msg_len =
6449 PFKEY_UNIT64(result->m_pkthdr.len);
6450
6451 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6452
6453 fail:
6454 if (result)
6455 m_freem(result);
6456 return error;
6457 }
6458
6459 #ifndef IPSEC_NONBLOCK_ACQUIRE
6460 static struct secacq *
6461 key_newacq(const struct secasindex *saidx)
6462 {
6463 struct secacq *newacq;
6464
6465 /* get new entry */
6466 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6467 if (newacq == NULL) {
6468 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6469 return NULL;
6470 }
6471
6472 /* copy secindex */
6473 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6474 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6475 newacq->created = time_uptime;
6476 newacq->count = 0;
6477
6478 return newacq;
6479 }
6480
6481 static struct secacq *
6482 key_getacq(const struct secasindex *saidx)
6483 {
6484 struct secacq *acq;
6485
6486 KASSERT(mutex_owned(&key_mtx));
6487
6488 LIST_FOREACH(acq, &acqtree, chain) {
6489 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6490 return acq;
6491 }
6492
6493 return NULL;
6494 }
6495
6496 static struct secacq *
6497 key_getacqbyseq(u_int32_t seq)
6498 {
6499 struct secacq *acq;
6500
6501 KASSERT(mutex_owned(&key_mtx));
6502
6503 LIST_FOREACH(acq, &acqtree, chain) {
6504 if (acq->seq == seq)
6505 return acq;
6506 }
6507
6508 return NULL;
6509 }
6510 #endif
6511
6512 #ifdef notyet
6513 static struct secspacq *
6514 key_newspacq(const struct secpolicyindex *spidx)
6515 {
6516 struct secspacq *acq;
6517
6518 /* get new entry */
6519 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6520 if (acq == NULL) {
6521 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6522 return NULL;
6523 }
6524
6525 /* copy secindex */
6526 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6527 acq->created = time_uptime;
6528 acq->count = 0;
6529
6530 return acq;
6531 }
6532
6533 static struct secspacq *
6534 key_getspacq(const struct secpolicyindex *spidx)
6535 {
6536 struct secspacq *acq;
6537
6538 LIST_FOREACH(acq, &spacqtree, chain) {
6539 if (key_spidx_match_exactly(spidx, &acq->spidx))
6540 return acq;
6541 }
6542
6543 return NULL;
6544 }
6545 #endif /* notyet */
6546
6547 /*
6548 * SADB_ACQUIRE processing,
6549 * in first situation, is receiving
6550 * <base>
6551 * from the ikmpd, and clear sequence of its secasvar entry.
6552 *
6553 * In second situation, is receiving
6554 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6555 * from a user land process, and return
6556 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6557 * to the socket.
6558 *
6559 * m will always be freed.
6560 */
6561 static int
6562 key_api_acquire(struct socket *so, struct mbuf *m,
6563 const struct sadb_msghdr *mhp)
6564 {
6565 const struct sockaddr *src, *dst;
6566 struct secasindex saidx;
6567 struct secashead *sah;
6568 u_int16_t proto;
6569 int error;
6570
6571 /*
6572 * Error message from KMd.
6573 * We assume that if error was occurred in IKEd, the length of PFKEY
6574 * message is equal to the size of sadb_msg structure.
6575 * We do not raise error even if error occurred in this function.
6576 */
6577 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6578 #ifndef IPSEC_NONBLOCK_ACQUIRE
6579 struct secacq *acq;
6580
6581 /* check sequence number */
6582 if (mhp->msg->sadb_msg_seq == 0) {
6583 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6584 m_freem(m);
6585 return 0;
6586 }
6587
6588 mutex_enter(&key_mtx);
6589 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6590 if (acq == NULL) {
6591 mutex_exit(&key_mtx);
6592 /*
6593 * the specified larval SA is already gone, or we got
6594 * a bogus sequence number. we can silently ignore it.
6595 */
6596 m_freem(m);
6597 return 0;
6598 }
6599
6600 /* reset acq counter in order to deletion by timehander. */
6601 acq->created = time_uptime;
6602 acq->count = 0;
6603 mutex_exit(&key_mtx);
6604 #endif
6605 m_freem(m);
6606 return 0;
6607 }
6608
6609 /*
6610 * This message is from user land.
6611 */
6612
6613 /* map satype to proto */
6614 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6615 if (proto == 0) {
6616 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6617 return key_senderror(so, m, EINVAL);
6618 }
6619
6620 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6621 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6622 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6623 /* error */
6624 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6625 return key_senderror(so, m, EINVAL);
6626 }
6627 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6628 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6629 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6630 /* error */
6631 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6632 return key_senderror(so, m, EINVAL);
6633 }
6634
6635 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6636 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6637
6638 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6639 if (error != 0)
6640 return key_senderror(so, m, EINVAL);
6641
6642 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6643 if (error != 0)
6644 return key_senderror(so, m, EINVAL);
6645
6646 /* get a SA index */
6647 sah = key_getsah(&saidx, CMP_MODE_REQID);
6648 if (sah != NULL) {
6649 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6650 return key_senderror(so, m, EEXIST);
6651 }
6652
6653 error = key_acquire(&saidx, NULL);
6654 if (error != 0) {
6655 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6656 error);
6657 return key_senderror(so, m, error);
6658 }
6659
6660 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6661 }
6662
6663 /*
6664 * SADB_REGISTER processing.
6665 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6666 * receive
6667 * <base>
6668 * from the ikmpd, and register a socket to send PF_KEY messages,
6669 * and send
6670 * <base, supported>
6671 * to KMD by PF_KEY.
6672 * If socket is detached, must free from regnode.
6673 *
6674 * m will always be freed.
6675 */
6676 static int
6677 key_api_register(struct socket *so, struct mbuf *m,
6678 const struct sadb_msghdr *mhp)
6679 {
6680 struct secreg *reg, *newreg = 0;
6681
6682 /* check for invalid register message */
6683 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6684 return key_senderror(so, m, EINVAL);
6685
6686 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6687 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6688 goto setmsg;
6689
6690 /* Allocate regnode in advance, out of mutex */
6691 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6692
6693 /* check whether existing or not */
6694 mutex_enter(&key_mtx);
6695 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6696 if (reg->so == so) {
6697 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6698 mutex_exit(&key_mtx);
6699 kmem_free(newreg, sizeof(*newreg));
6700 return key_senderror(so, m, EEXIST);
6701 }
6702 }
6703
6704 newreg->so = so;
6705 ((struct keycb *)sotorawcb(so))->kp_registered++;
6706
6707 /* add regnode to regtree. */
6708 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6709 mutex_exit(&key_mtx);
6710
6711 setmsg:
6712 {
6713 struct mbuf *n;
6714 struct sadb_supported *sup;
6715 u_int len, alen, elen;
6716 int off;
6717 int i;
6718 struct sadb_alg *alg;
6719
6720 /* create new sadb_msg to reply. */
6721 alen = 0;
6722 for (i = 1; i <= SADB_AALG_MAX; i++) {
6723 if (ah_algorithm_lookup(i))
6724 alen += sizeof(struct sadb_alg);
6725 }
6726 if (alen)
6727 alen += sizeof(struct sadb_supported);
6728 elen = 0;
6729 for (i = 1; i <= SADB_EALG_MAX; i++) {
6730 if (esp_algorithm_lookup(i))
6731 elen += sizeof(struct sadb_alg);
6732 }
6733 if (elen)
6734 elen += sizeof(struct sadb_supported);
6735
6736 len = sizeof(struct sadb_msg) + alen + elen;
6737
6738 if (len > MCLBYTES)
6739 return key_senderror(so, m, ENOBUFS);
6740
6741 MGETHDR(n, M_DONTWAIT, MT_DATA);
6742 if (len > MHLEN) {
6743 MCLGET(n, M_DONTWAIT);
6744 if ((n->m_flags & M_EXT) == 0) {
6745 m_freem(n);
6746 n = NULL;
6747 }
6748 }
6749 if (!n)
6750 return key_senderror(so, m, ENOBUFS);
6751
6752 n->m_pkthdr.len = n->m_len = len;
6753 n->m_next = NULL;
6754 off = 0;
6755
6756 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6757 n = key_fill_replymsg(n, 0);
6758 if (n == NULL)
6759 return key_senderror(so, m, ENOBUFS);
6760
6761 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6762
6763 /* for authentication algorithm */
6764 if (alen) {
6765 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6766 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6767 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6768 off += PFKEY_ALIGN8(sizeof(*sup));
6769
6770 for (i = 1; i <= SADB_AALG_MAX; i++) {
6771 const struct auth_hash *aalgo;
6772 u_int16_t minkeysize, maxkeysize;
6773
6774 aalgo = ah_algorithm_lookup(i);
6775 if (!aalgo)
6776 continue;
6777 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6778 alg->sadb_alg_id = i;
6779 alg->sadb_alg_ivlen = 0;
6780 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6781 alg->sadb_alg_minbits = _BITS(minkeysize);
6782 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6783 off += PFKEY_ALIGN8(sizeof(*alg));
6784 }
6785 }
6786
6787 /* for encryption algorithm */
6788 if (elen) {
6789 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6790 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6791 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6792 off += PFKEY_ALIGN8(sizeof(*sup));
6793
6794 for (i = 1; i <= SADB_EALG_MAX; i++) {
6795 const struct enc_xform *ealgo;
6796
6797 ealgo = esp_algorithm_lookup(i);
6798 if (!ealgo)
6799 continue;
6800 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6801 alg->sadb_alg_id = i;
6802 alg->sadb_alg_ivlen = ealgo->blocksize;
6803 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6804 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6805 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6806 }
6807 }
6808
6809 KASSERTMSG(off == len, "length inconsistency");
6810
6811 m_freem(m);
6812 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6813 }
6814 }
6815
6816 /*
6817 * free secreg entry registered.
6818 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6819 */
6820 void
6821 key_freereg(struct socket *so)
6822 {
6823 struct secreg *reg;
6824 int i;
6825
6826 KASSERT(!cpu_softintr_p());
6827 KASSERT(so != NULL);
6828
6829 /*
6830 * check whether existing or not.
6831 * check all type of SA, because there is a potential that
6832 * one socket is registered to multiple type of SA.
6833 */
6834 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6835 mutex_enter(&key_mtx);
6836 LIST_FOREACH(reg, ®tree[i], chain) {
6837 if (reg->so == so) {
6838 LIST_REMOVE(reg, chain);
6839 break;
6840 }
6841 }
6842 mutex_exit(&key_mtx);
6843 if (reg != NULL)
6844 kmem_free(reg, sizeof(*reg));
6845 }
6846
6847 return;
6848 }
6849
6850 /*
6851 * SADB_EXPIRE processing
6852 * send
6853 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6854 * to KMD by PF_KEY.
6855 * NOTE: We send only soft lifetime extension.
6856 *
6857 * OUT: 0 : succeed
6858 * others : error number
6859 */
6860 static int
6861 key_expire(struct secasvar *sav)
6862 {
6863 int s;
6864 int satype;
6865 struct mbuf *result = NULL, *m;
6866 int len;
6867 int error = -1;
6868 struct sadb_lifetime *lt;
6869
6870 /* XXX: Why do we lock ? */
6871 s = splsoftnet(); /*called from softclock()*/
6872
6873 KASSERT(sav != NULL);
6874
6875 satype = key_proto2satype(sav->sah->saidx.proto);
6876 KASSERTMSG(satype != 0, "invalid proto is passed");
6877
6878 /* set msg header */
6879 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6880 if (!m) {
6881 error = ENOBUFS;
6882 goto fail;
6883 }
6884 result = m;
6885
6886 /* create SA extension */
6887 m = key_setsadbsa(sav);
6888 if (!m) {
6889 error = ENOBUFS;
6890 goto fail;
6891 }
6892 m_cat(result, m);
6893
6894 /* create SA extension */
6895 m = key_setsadbxsa2(sav->sah->saidx.mode,
6896 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6897 if (!m) {
6898 error = ENOBUFS;
6899 goto fail;
6900 }
6901 m_cat(result, m);
6902
6903 /* create lifetime extension (current and soft) */
6904 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6905 m = key_alloc_mbuf(len);
6906 if (!m || m->m_next) { /*XXX*/
6907 if (m)
6908 m_freem(m);
6909 error = ENOBUFS;
6910 goto fail;
6911 }
6912 memset(mtod(m, void *), 0, len);
6913 lt = mtod(m, struct sadb_lifetime *);
6914 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6915 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6916 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6917 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6918 lt->sadb_lifetime_addtime =
6919 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6920 lt->sadb_lifetime_usetime =
6921 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6922 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6923 memcpy(lt, sav->lft_s, sizeof(*lt));
6924 m_cat(result, m);
6925
6926 /* set sadb_address for source */
6927 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6928 FULLMASK, IPSEC_ULPROTO_ANY);
6929 if (!m) {
6930 error = ENOBUFS;
6931 goto fail;
6932 }
6933 m_cat(result, m);
6934
6935 /* set sadb_address for destination */
6936 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6937 FULLMASK, IPSEC_ULPROTO_ANY);
6938 if (!m) {
6939 error = ENOBUFS;
6940 goto fail;
6941 }
6942 m_cat(result, m);
6943
6944 if ((result->m_flags & M_PKTHDR) == 0) {
6945 error = EINVAL;
6946 goto fail;
6947 }
6948
6949 if (result->m_len < sizeof(struct sadb_msg)) {
6950 result = m_pullup(result, sizeof(struct sadb_msg));
6951 if (result == NULL) {
6952 error = ENOBUFS;
6953 goto fail;
6954 }
6955 }
6956
6957 result->m_pkthdr.len = 0;
6958 for (m = result; m; m = m->m_next)
6959 result->m_pkthdr.len += m->m_len;
6960
6961 mtod(result, struct sadb_msg *)->sadb_msg_len =
6962 PFKEY_UNIT64(result->m_pkthdr.len);
6963
6964 splx(s);
6965 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6966
6967 fail:
6968 if (result)
6969 m_freem(result);
6970 splx(s);
6971 return error;
6972 }
6973
6974 /*
6975 * SADB_FLUSH processing
6976 * receive
6977 * <base>
6978 * from the ikmpd, and free all entries in secastree.
6979 * and send,
6980 * <base>
6981 * to the ikmpd.
6982 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6983 *
6984 * m will always be freed.
6985 */
6986 static int
6987 key_api_flush(struct socket *so, struct mbuf *m,
6988 const struct sadb_msghdr *mhp)
6989 {
6990 struct sadb_msg *newmsg;
6991 struct secashead *sah;
6992 struct secasvar *sav;
6993 u_int16_t proto;
6994 u_int8_t state;
6995
6996 /* map satype to proto */
6997 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6998 if (proto == 0) {
6999 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7000 return key_senderror(so, m, EINVAL);
7001 }
7002
7003 /* no SATYPE specified, i.e. flushing all SA. */
7004 SAHLIST_READER_FOREACH(sah) {
7005 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7006 proto != sah->saidx.proto)
7007 continue;
7008
7009 SASTATE_ALIVE_FOREACH(state) {
7010 restart:
7011 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7012 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7013 KEY_FREESAV(&sav);
7014 goto restart;
7015 }
7016 }
7017
7018 sah->state = SADB_SASTATE_DEAD;
7019 }
7020
7021 if (m->m_len < sizeof(struct sadb_msg) ||
7022 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7023 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7024 return key_senderror(so, m, ENOBUFS);
7025 }
7026
7027 if (m->m_next)
7028 m_freem(m->m_next);
7029 m->m_next = NULL;
7030 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7031 newmsg = mtod(m, struct sadb_msg *);
7032 newmsg->sadb_msg_errno = 0;
7033 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7034
7035 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7036 }
7037
7038
7039 static struct mbuf *
7040 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7041 {
7042 struct secashead *sah;
7043 struct secasvar *sav;
7044 u_int16_t proto;
7045 u_int8_t satype;
7046 u_int8_t state;
7047 int cnt;
7048 struct mbuf *m, *n, *prev;
7049
7050 *lenp = 0;
7051
7052 /* map satype to proto */
7053 proto = key_satype2proto(req_satype);
7054 if (proto == 0) {
7055 *errorp = EINVAL;
7056 return (NULL);
7057 }
7058
7059 /* count sav entries to be sent to userland. */
7060 cnt = 0;
7061 SAHLIST_READER_FOREACH(sah) {
7062 if (req_satype != SADB_SATYPE_UNSPEC &&
7063 proto != sah->saidx.proto)
7064 continue;
7065
7066 SASTATE_ANY_FOREACH(state) {
7067 SAVLIST_READER_FOREACH(sav, sah, state) {
7068 cnt++;
7069 }
7070 }
7071 }
7072
7073 if (cnt == 0) {
7074 *errorp = ENOENT;
7075 return (NULL);
7076 }
7077
7078 /* send this to the userland, one at a time. */
7079 m = NULL;
7080 prev = m;
7081 SAHLIST_READER_FOREACH(sah) {
7082 if (req_satype != SADB_SATYPE_UNSPEC &&
7083 proto != sah->saidx.proto)
7084 continue;
7085
7086 /* map proto to satype */
7087 satype = key_proto2satype(sah->saidx.proto);
7088 if (satype == 0) {
7089 m_freem(m);
7090 *errorp = EINVAL;
7091 return (NULL);
7092 }
7093
7094 SASTATE_ANY_FOREACH(state) {
7095 SAVLIST_READER_FOREACH(sav, sah, state) {
7096 n = key_setdumpsa(sav, SADB_DUMP, satype,
7097 --cnt, pid);
7098 if (!n) {
7099 m_freem(m);
7100 *errorp = ENOBUFS;
7101 return (NULL);
7102 }
7103
7104 if (!m)
7105 m = n;
7106 else
7107 prev->m_nextpkt = n;
7108 prev = n;
7109 }
7110 }
7111 }
7112
7113 if (!m) {
7114 *errorp = EINVAL;
7115 return (NULL);
7116 }
7117
7118 if ((m->m_flags & M_PKTHDR) != 0) {
7119 m->m_pkthdr.len = 0;
7120 for (n = m; n; n = n->m_next)
7121 m->m_pkthdr.len += n->m_len;
7122 }
7123
7124 *errorp = 0;
7125 return (m);
7126 }
7127
7128 /*
7129 * SADB_DUMP processing
7130 * dump all entries including status of DEAD in SAD.
7131 * receive
7132 * <base>
7133 * from the ikmpd, and dump all secasvar leaves
7134 * and send,
7135 * <base> .....
7136 * to the ikmpd.
7137 *
7138 * m will always be freed.
7139 */
7140 static int
7141 key_api_dump(struct socket *so, struct mbuf *m0,
7142 const struct sadb_msghdr *mhp)
7143 {
7144 u_int16_t proto;
7145 u_int8_t satype;
7146 struct mbuf *n;
7147 int s;
7148 int error, len, ok;
7149
7150 /* map satype to proto */
7151 satype = mhp->msg->sadb_msg_satype;
7152 proto = key_satype2proto(satype);
7153 if (proto == 0) {
7154 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7155 return key_senderror(so, m0, EINVAL);
7156 }
7157
7158 /*
7159 * If the requestor has insufficient socket-buffer space
7160 * for the entire chain, nobody gets any response to the DUMP.
7161 * XXX For now, only the requestor ever gets anything.
7162 * Moreover, if the requestor has any space at all, they receive
7163 * the entire chain, otherwise the request is refused with ENOBUFS.
7164 */
7165 if (sbspace(&so->so_rcv) <= 0) {
7166 return key_senderror(so, m0, ENOBUFS);
7167 }
7168
7169 s = splsoftnet();
7170 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7171 splx(s);
7172
7173 if (n == NULL) {
7174 return key_senderror(so, m0, ENOENT);
7175 }
7176 {
7177 uint64_t *ps = PFKEY_STAT_GETREF();
7178 ps[PFKEY_STAT_IN_TOTAL]++;
7179 ps[PFKEY_STAT_IN_BYTES] += len;
7180 PFKEY_STAT_PUTREF();
7181 }
7182
7183 /*
7184 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7185 * The requestor receives either the entire chain, or an
7186 * error message with ENOBUFS.
7187 *
7188 * sbappendaddrchain() takes the chain of entries, one
7189 * packet-record per SPD entry, prepends the key_src sockaddr
7190 * to each packet-record, links the sockaddr mbufs into a new
7191 * list of records, then appends the entire resulting
7192 * list to the requesting socket.
7193 */
7194 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7195 SB_PRIO_ONESHOT_OVERFLOW);
7196
7197 if (!ok) {
7198 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7199 m_freem(n);
7200 return key_senderror(so, m0, ENOBUFS);
7201 }
7202
7203 m_freem(m0);
7204 return 0;
7205 }
7206
7207 /*
7208 * SADB_X_PROMISC processing
7209 *
7210 * m will always be freed.
7211 */
7212 static int
7213 key_api_promisc(struct socket *so, struct mbuf *m,
7214 const struct sadb_msghdr *mhp)
7215 {
7216 int olen;
7217
7218 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7219
7220 if (olen < sizeof(struct sadb_msg)) {
7221 #if 1
7222 return key_senderror(so, m, EINVAL);
7223 #else
7224 m_freem(m);
7225 return 0;
7226 #endif
7227 } else if (olen == sizeof(struct sadb_msg)) {
7228 /* enable/disable promisc mode */
7229 struct keycb *kp = (struct keycb *)sotorawcb(so);
7230 if (kp == NULL)
7231 return key_senderror(so, m, EINVAL);
7232 mhp->msg->sadb_msg_errno = 0;
7233 switch (mhp->msg->sadb_msg_satype) {
7234 case 0:
7235 case 1:
7236 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7237 break;
7238 default:
7239 return key_senderror(so, m, EINVAL);
7240 }
7241
7242 /* send the original message back to everyone */
7243 mhp->msg->sadb_msg_errno = 0;
7244 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7245 } else {
7246 /* send packet as is */
7247
7248 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7249
7250 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7251 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7252 }
7253 }
7254
7255 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7256 const struct sadb_msghdr *) = {
7257 NULL, /* SADB_RESERVED */
7258 key_api_getspi, /* SADB_GETSPI */
7259 key_api_update, /* SADB_UPDATE */
7260 key_api_add, /* SADB_ADD */
7261 key_api_delete, /* SADB_DELETE */
7262 key_api_get, /* SADB_GET */
7263 key_api_acquire, /* SADB_ACQUIRE */
7264 key_api_register, /* SADB_REGISTER */
7265 NULL, /* SADB_EXPIRE */
7266 key_api_flush, /* SADB_FLUSH */
7267 key_api_dump, /* SADB_DUMP */
7268 key_api_promisc, /* SADB_X_PROMISC */
7269 NULL, /* SADB_X_PCHANGE */
7270 key_api_spdadd, /* SADB_X_SPDUPDATE */
7271 key_api_spdadd, /* SADB_X_SPDADD */
7272 key_api_spddelete, /* SADB_X_SPDDELETE */
7273 key_api_spdget, /* SADB_X_SPDGET */
7274 NULL, /* SADB_X_SPDACQUIRE */
7275 key_api_spddump, /* SADB_X_SPDDUMP */
7276 key_api_spdflush, /* SADB_X_SPDFLUSH */
7277 key_api_spdadd, /* SADB_X_SPDSETIDX */
7278 NULL, /* SADB_X_SPDEXPIRE */
7279 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7280 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7281 };
7282
7283 /*
7284 * parse sadb_msg buffer to process PFKEYv2,
7285 * and create a data to response if needed.
7286 * I think to be dealed with mbuf directly.
7287 * IN:
7288 * msgp : pointer to pointer to a received buffer pulluped.
7289 * This is rewrited to response.
7290 * so : pointer to socket.
7291 * OUT:
7292 * length for buffer to send to user process.
7293 */
7294 int
7295 key_parse(struct mbuf *m, struct socket *so)
7296 {
7297 struct sadb_msg *msg;
7298 struct sadb_msghdr mh;
7299 u_int orglen;
7300 int error;
7301
7302 KASSERT(m != NULL);
7303 KASSERT(so != NULL);
7304
7305 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7306 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7307 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7308 kdebug_sadb(msg);
7309 }
7310 #endif
7311
7312 if (m->m_len < sizeof(struct sadb_msg)) {
7313 m = m_pullup(m, sizeof(struct sadb_msg));
7314 if (!m)
7315 return ENOBUFS;
7316 }
7317 msg = mtod(m, struct sadb_msg *);
7318 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7319
7320 if ((m->m_flags & M_PKTHDR) == 0 ||
7321 m->m_pkthdr.len != orglen) {
7322 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7323 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7324 error = EINVAL;
7325 goto senderror;
7326 }
7327
7328 if (msg->sadb_msg_version != PF_KEY_V2) {
7329 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7330 msg->sadb_msg_version);
7331 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7332 error = EINVAL;
7333 goto senderror;
7334 }
7335
7336 if (msg->sadb_msg_type > SADB_MAX) {
7337 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7338 msg->sadb_msg_type);
7339 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7340 error = EINVAL;
7341 goto senderror;
7342 }
7343
7344 /* for old-fashioned code - should be nuked */
7345 if (m->m_pkthdr.len > MCLBYTES) {
7346 m_freem(m);
7347 return ENOBUFS;
7348 }
7349 if (m->m_next) {
7350 struct mbuf *n;
7351
7352 MGETHDR(n, M_DONTWAIT, MT_DATA);
7353 if (n && m->m_pkthdr.len > MHLEN) {
7354 MCLGET(n, M_DONTWAIT);
7355 if ((n->m_flags & M_EXT) == 0) {
7356 m_free(n);
7357 n = NULL;
7358 }
7359 }
7360 if (!n) {
7361 m_freem(m);
7362 return ENOBUFS;
7363 }
7364 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7365 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7366 n->m_next = NULL;
7367 m_freem(m);
7368 m = n;
7369 }
7370
7371 /* align the mbuf chain so that extensions are in contiguous region. */
7372 error = key_align(m, &mh);
7373 if (error)
7374 return error;
7375
7376 if (m->m_next) { /*XXX*/
7377 m_freem(m);
7378 return ENOBUFS;
7379 }
7380
7381 msg = mh.msg;
7382
7383 /* check SA type */
7384 switch (msg->sadb_msg_satype) {
7385 case SADB_SATYPE_UNSPEC:
7386 switch (msg->sadb_msg_type) {
7387 case SADB_GETSPI:
7388 case SADB_UPDATE:
7389 case SADB_ADD:
7390 case SADB_DELETE:
7391 case SADB_GET:
7392 case SADB_ACQUIRE:
7393 case SADB_EXPIRE:
7394 IPSECLOG(LOG_DEBUG,
7395 "must specify satype when msg type=%u.\n",
7396 msg->sadb_msg_type);
7397 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7398 error = EINVAL;
7399 goto senderror;
7400 }
7401 break;
7402 case SADB_SATYPE_AH:
7403 case SADB_SATYPE_ESP:
7404 case SADB_X_SATYPE_IPCOMP:
7405 case SADB_X_SATYPE_TCPSIGNATURE:
7406 switch (msg->sadb_msg_type) {
7407 case SADB_X_SPDADD:
7408 case SADB_X_SPDDELETE:
7409 case SADB_X_SPDGET:
7410 case SADB_X_SPDDUMP:
7411 case SADB_X_SPDFLUSH:
7412 case SADB_X_SPDSETIDX:
7413 case SADB_X_SPDUPDATE:
7414 case SADB_X_SPDDELETE2:
7415 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7416 msg->sadb_msg_type);
7417 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7418 error = EINVAL;
7419 goto senderror;
7420 }
7421 break;
7422 case SADB_SATYPE_RSVP:
7423 case SADB_SATYPE_OSPFV2:
7424 case SADB_SATYPE_RIPV2:
7425 case SADB_SATYPE_MIP:
7426 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7427 msg->sadb_msg_satype);
7428 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7429 error = EOPNOTSUPP;
7430 goto senderror;
7431 case 1: /* XXX: What does it do? */
7432 if (msg->sadb_msg_type == SADB_X_PROMISC)
7433 break;
7434 /*FALLTHROUGH*/
7435 default:
7436 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7437 msg->sadb_msg_satype);
7438 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7439 error = EINVAL;
7440 goto senderror;
7441 }
7442
7443 /* check field of upper layer protocol and address family */
7444 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7445 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7446 struct sadb_address *src0, *dst0;
7447 u_int plen;
7448
7449 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7450 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7451
7452 /* check upper layer protocol */
7453 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7454 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7455 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7456 error = EINVAL;
7457 goto senderror;
7458 }
7459
7460 /* check family */
7461 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7462 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7463 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7464 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7465 error = EINVAL;
7466 goto senderror;
7467 }
7468 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7469 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7470 IPSECLOG(LOG_DEBUG,
7471 "address struct size mismatched.\n");
7472 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7473 error = EINVAL;
7474 goto senderror;
7475 }
7476
7477 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7478 case AF_INET:
7479 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7480 sizeof(struct sockaddr_in)) {
7481 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7482 error = EINVAL;
7483 goto senderror;
7484 }
7485 break;
7486 case AF_INET6:
7487 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7488 sizeof(struct sockaddr_in6)) {
7489 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7490 error = EINVAL;
7491 goto senderror;
7492 }
7493 break;
7494 default:
7495 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7496 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7497 error = EAFNOSUPPORT;
7498 goto senderror;
7499 }
7500
7501 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7502 case AF_INET:
7503 plen = sizeof(struct in_addr) << 3;
7504 break;
7505 case AF_INET6:
7506 plen = sizeof(struct in6_addr) << 3;
7507 break;
7508 default:
7509 plen = 0; /*fool gcc*/
7510 break;
7511 }
7512
7513 /* check max prefix length */
7514 if (src0->sadb_address_prefixlen > plen ||
7515 dst0->sadb_address_prefixlen > plen) {
7516 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7517 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7518 error = EINVAL;
7519 goto senderror;
7520 }
7521
7522 /*
7523 * prefixlen == 0 is valid because there can be a case when
7524 * all addresses are matched.
7525 */
7526 }
7527
7528 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7529 key_api_typesw[msg->sadb_msg_type] == NULL) {
7530 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7531 error = EINVAL;
7532 goto senderror;
7533 }
7534
7535 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7536
7537 senderror:
7538 return key_senderror(so, m, error);
7539 }
7540
7541 static int
7542 key_senderror(struct socket *so, struct mbuf *m, int code)
7543 {
7544 struct sadb_msg *msg;
7545
7546 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7547
7548 msg = mtod(m, struct sadb_msg *);
7549 msg->sadb_msg_errno = code;
7550 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7551 }
7552
7553 /*
7554 * set the pointer to each header into message buffer.
7555 * m will be freed on error.
7556 * XXX larger-than-MCLBYTES extension?
7557 */
7558 static int
7559 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7560 {
7561 struct mbuf *n;
7562 struct sadb_ext *ext;
7563 size_t off, end;
7564 int extlen;
7565 int toff;
7566
7567 KASSERT(m != NULL);
7568 KASSERT(mhp != NULL);
7569 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7570
7571 /* initialize */
7572 memset(mhp, 0, sizeof(*mhp));
7573
7574 mhp->msg = mtod(m, struct sadb_msg *);
7575 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7576
7577 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7578 extlen = end; /*just in case extlen is not updated*/
7579 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7580 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7581 if (!n) {
7582 /* m is already freed */
7583 return ENOBUFS;
7584 }
7585 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7586
7587 /* set pointer */
7588 switch (ext->sadb_ext_type) {
7589 case SADB_EXT_SA:
7590 case SADB_EXT_ADDRESS_SRC:
7591 case SADB_EXT_ADDRESS_DST:
7592 case SADB_EXT_ADDRESS_PROXY:
7593 case SADB_EXT_LIFETIME_CURRENT:
7594 case SADB_EXT_LIFETIME_HARD:
7595 case SADB_EXT_LIFETIME_SOFT:
7596 case SADB_EXT_KEY_AUTH:
7597 case SADB_EXT_KEY_ENCRYPT:
7598 case SADB_EXT_IDENTITY_SRC:
7599 case SADB_EXT_IDENTITY_DST:
7600 case SADB_EXT_SENSITIVITY:
7601 case SADB_EXT_PROPOSAL:
7602 case SADB_EXT_SUPPORTED_AUTH:
7603 case SADB_EXT_SUPPORTED_ENCRYPT:
7604 case SADB_EXT_SPIRANGE:
7605 case SADB_X_EXT_POLICY:
7606 case SADB_X_EXT_SA2:
7607 case SADB_X_EXT_NAT_T_TYPE:
7608 case SADB_X_EXT_NAT_T_SPORT:
7609 case SADB_X_EXT_NAT_T_DPORT:
7610 case SADB_X_EXT_NAT_T_OAI:
7611 case SADB_X_EXT_NAT_T_OAR:
7612 case SADB_X_EXT_NAT_T_FRAG:
7613 /* duplicate check */
7614 /*
7615 * XXX Are there duplication payloads of either
7616 * KEY_AUTH or KEY_ENCRYPT ?
7617 */
7618 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7619 IPSECLOG(LOG_DEBUG,
7620 "duplicate ext_type %u is passed.\n",
7621 ext->sadb_ext_type);
7622 m_freem(m);
7623 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7624 return EINVAL;
7625 }
7626 break;
7627 default:
7628 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7629 ext->sadb_ext_type);
7630 m_freem(m);
7631 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7632 return EINVAL;
7633 }
7634
7635 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7636
7637 if (key_validate_ext(ext, extlen)) {
7638 m_freem(m);
7639 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7640 return EINVAL;
7641 }
7642
7643 n = m_pulldown(m, off, extlen, &toff);
7644 if (!n) {
7645 /* m is already freed */
7646 return ENOBUFS;
7647 }
7648 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7649
7650 mhp->ext[ext->sadb_ext_type] = ext;
7651 mhp->extoff[ext->sadb_ext_type] = off;
7652 mhp->extlen[ext->sadb_ext_type] = extlen;
7653 }
7654
7655 if (off != end) {
7656 m_freem(m);
7657 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7658 return EINVAL;
7659 }
7660
7661 return 0;
7662 }
7663
7664 static int
7665 key_validate_ext(const struct sadb_ext *ext, int len)
7666 {
7667 const struct sockaddr *sa;
7668 enum { NONE, ADDR } checktype = NONE;
7669 int baselen = 0;
7670 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7671
7672 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7673 return EINVAL;
7674
7675 /* if it does not match minimum/maximum length, bail */
7676 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7677 ext->sadb_ext_type >= __arraycount(maxsize))
7678 return EINVAL;
7679 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7680 return EINVAL;
7681 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7682 return EINVAL;
7683
7684 /* more checks based on sadb_ext_type XXX need more */
7685 switch (ext->sadb_ext_type) {
7686 case SADB_EXT_ADDRESS_SRC:
7687 case SADB_EXT_ADDRESS_DST:
7688 case SADB_EXT_ADDRESS_PROXY:
7689 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7690 checktype = ADDR;
7691 break;
7692 case SADB_EXT_IDENTITY_SRC:
7693 case SADB_EXT_IDENTITY_DST:
7694 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7695 SADB_X_IDENTTYPE_ADDR) {
7696 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7697 checktype = ADDR;
7698 } else
7699 checktype = NONE;
7700 break;
7701 default:
7702 checktype = NONE;
7703 break;
7704 }
7705
7706 switch (checktype) {
7707 case NONE:
7708 break;
7709 case ADDR:
7710 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7711 if (len < baselen + sal)
7712 return EINVAL;
7713 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7714 return EINVAL;
7715 break;
7716 }
7717
7718 return 0;
7719 }
7720
7721 static int
7722 key_do_init(void)
7723 {
7724 int i, error;
7725
7726 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7727 key_psz = pserialize_create();
7728 mutex_init(&key_sp_mtx, MUTEX_DEFAULT, IPL_NONE);
7729 cv_init(&key_sp_cv, "key_sp");
7730
7731 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7732
7733 callout_init(&key_timehandler_ch, 0);
7734 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7735 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7736 if (error != 0)
7737 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7738
7739 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7740 PSLIST_INIT(&sptree[i]);
7741 }
7742
7743 PSLIST_INIT(&key_socksplist);
7744
7745 PSLIST_INIT(&sahtree);
7746
7747 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7748 LIST_INIT(®tree[i]);
7749 }
7750
7751 #ifndef IPSEC_NONBLOCK_ACQUIRE
7752 LIST_INIT(&acqtree);
7753 #endif
7754 #ifdef notyet
7755 LIST_INIT(&spacqtree);
7756 #endif
7757
7758 /* system default */
7759 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7760 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
7761 localcount_init(&ip4_def_policy.localcount);
7762
7763 #ifdef INET6
7764 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7765 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
7766 localcount_init(&ip6_def_policy.localcount);
7767 #endif
7768
7769 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7770
7771 /* initialize key statistics */
7772 keystat.getspi_count = 1;
7773
7774 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7775
7776 return (0);
7777 }
7778
7779 void
7780 key_init(void)
7781 {
7782 static ONCE_DECL(key_init_once);
7783
7784 sysctl_net_keyv2_setup(NULL);
7785 sysctl_net_key_compat_setup(NULL);
7786
7787 RUN_ONCE(&key_init_once, key_do_init);
7788
7789 key_init_so();
7790 }
7791
7792 /*
7793 * XXX: maybe This function is called after INBOUND IPsec processing.
7794 *
7795 * Special check for tunnel-mode packets.
7796 * We must make some checks for consistency between inner and outer IP header.
7797 *
7798 * xxx more checks to be provided
7799 */
7800 int
7801 key_checktunnelsanity(
7802 struct secasvar *sav,
7803 u_int family,
7804 void *src,
7805 void *dst
7806 )
7807 {
7808
7809 /* XXX: check inner IP header */
7810
7811 return 1;
7812 }
7813
7814 #if 0
7815 #define hostnamelen strlen(hostname)
7816
7817 /*
7818 * Get FQDN for the host.
7819 * If the administrator configured hostname (by hostname(1)) without
7820 * domain name, returns nothing.
7821 */
7822 static const char *
7823 key_getfqdn(void)
7824 {
7825 int i;
7826 int hasdot;
7827 static char fqdn[MAXHOSTNAMELEN + 1];
7828
7829 if (!hostnamelen)
7830 return NULL;
7831
7832 /* check if it comes with domain name. */
7833 hasdot = 0;
7834 for (i = 0; i < hostnamelen; i++) {
7835 if (hostname[i] == '.')
7836 hasdot++;
7837 }
7838 if (!hasdot)
7839 return NULL;
7840
7841 /* NOTE: hostname may not be NUL-terminated. */
7842 memset(fqdn, 0, sizeof(fqdn));
7843 memcpy(fqdn, hostname, hostnamelen);
7844 fqdn[hostnamelen] = '\0';
7845 return fqdn;
7846 }
7847
7848 /*
7849 * get username@FQDN for the host/user.
7850 */
7851 static const char *
7852 key_getuserfqdn(void)
7853 {
7854 const char *host;
7855 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7856 struct proc *p = curproc;
7857 char *q;
7858
7859 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7860 return NULL;
7861 if (!(host = key_getfqdn()))
7862 return NULL;
7863
7864 /* NOTE: s_login may not be-NUL terminated. */
7865 memset(userfqdn, 0, sizeof(userfqdn));
7866 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7867 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7868 q = userfqdn + strlen(userfqdn);
7869 *q++ = '@';
7870 memcpy(q, host, strlen(host));
7871 q += strlen(host);
7872 *q++ = '\0';
7873
7874 return userfqdn;
7875 }
7876 #endif
7877
7878 /* record data transfer on SA, and update timestamps */
7879 void
7880 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7881 {
7882
7883 KASSERT(sav != NULL);
7884 KASSERT(sav->lft_c != NULL);
7885 KASSERT(m != NULL);
7886
7887 /*
7888 * XXX Currently, there is a difference of bytes size
7889 * between inbound and outbound processing.
7890 */
7891 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7892 /* to check bytes lifetime is done in key_timehandler(). */
7893
7894 /*
7895 * We use the number of packets as the unit of
7896 * sadb_lifetime_allocations. We increment the variable
7897 * whenever {esp,ah}_{in,out}put is called.
7898 */
7899 sav->lft_c->sadb_lifetime_allocations++;
7900 /* XXX check for expires? */
7901
7902 /*
7903 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7904 * in seconds. HARD and SOFT lifetime are measured by the time
7905 * difference (again in seconds) from sadb_lifetime_usetime.
7906 *
7907 * usetime
7908 * v expire expire
7909 * -----+-----+--------+---> t
7910 * <--------------> HARD
7911 * <-----> SOFT
7912 */
7913 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7914 /* XXX check for expires? */
7915
7916 return;
7917 }
7918
7919 /* dumb version */
7920 void
7921 key_sa_routechange(struct sockaddr *dst)
7922 {
7923 struct secashead *sah;
7924 struct route *ro;
7925 const struct sockaddr *sa;
7926
7927 SAHLIST_READER_FOREACH(sah) {
7928 ro = &sah->sa_route;
7929 sa = rtcache_getdst(ro);
7930 if (sa != NULL && dst->sa_len == sa->sa_len &&
7931 memcmp(dst, sa, dst->sa_len) == 0)
7932 rtcache_free(ro);
7933 }
7934
7935 return;
7936 }
7937
7938 static void
7939 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7940 {
7941 struct secasvar *_sav;
7942
7943 KASSERT(sav != NULL);
7944
7945 if (sav->state == state)
7946 return;
7947
7948 SAVLIST_WRITER_REMOVE(sav);
7949 SAVLIST_ENTRY_DESTROY(sav);
7950 SAVLIST_ENTRY_INIT(sav);
7951
7952 sav->state = state;
7953 if (!SADB_SASTATE_USABLE_P(sav)) {
7954 /* We don't need to care about the order */
7955 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
7956 return;
7957 }
7958 /*
7959 * Sort the list by lft_c->sadb_lifetime_addtime
7960 * in ascending order.
7961 */
7962 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
7963 if (_sav->lft_c->sadb_lifetime_addtime >
7964 sav->lft_c->sadb_lifetime_addtime) {
7965 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
7966 break;
7967 }
7968 }
7969 if (_sav == NULL) {
7970 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
7971 }
7972 key_validate_savlist(sav->sah, state);
7973 }
7974
7975 /* XXX too much? */
7976 static struct mbuf *
7977 key_alloc_mbuf(int l)
7978 {
7979 struct mbuf *m = NULL, *n;
7980 int len, t;
7981
7982 len = l;
7983 while (len > 0) {
7984 MGET(n, M_DONTWAIT, MT_DATA);
7985 if (n && len > MLEN)
7986 MCLGET(n, M_DONTWAIT);
7987 if (!n) {
7988 m_freem(m);
7989 return NULL;
7990 }
7991
7992 n->m_next = NULL;
7993 n->m_len = 0;
7994 n->m_len = M_TRAILINGSPACE(n);
7995 /* use the bottom of mbuf, hoping we can prepend afterwards */
7996 if (n->m_len > len) {
7997 t = (n->m_len - len) & ~(sizeof(long) - 1);
7998 n->m_data += t;
7999 n->m_len = len;
8000 }
8001
8002 len -= n->m_len;
8003
8004 if (m)
8005 m_cat(m, n);
8006 else
8007 m = n;
8008 }
8009
8010 return m;
8011 }
8012
8013 static struct mbuf *
8014 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8015 {
8016 struct secashead *sah;
8017 struct secasvar *sav;
8018 u_int16_t proto;
8019 u_int8_t satype;
8020 u_int8_t state;
8021 int cnt;
8022 struct mbuf *m, *n;
8023
8024 /* map satype to proto */
8025 proto = key_satype2proto(req_satype);
8026 if (proto == 0) {
8027 *errorp = EINVAL;
8028 return (NULL);
8029 }
8030
8031 /* count sav entries to be sent to the userland. */
8032 cnt = 0;
8033 SAHLIST_READER_FOREACH(sah) {
8034 if (req_satype != SADB_SATYPE_UNSPEC &&
8035 proto != sah->saidx.proto)
8036 continue;
8037
8038 SASTATE_ANY_FOREACH(state) {
8039 SAVLIST_READER_FOREACH(sav, sah, state) {
8040 cnt++;
8041 }
8042 }
8043 }
8044
8045 if (cnt == 0) {
8046 *errorp = ENOENT;
8047 return (NULL);
8048 }
8049
8050 /* send this to the userland, one at a time. */
8051 m = NULL;
8052 SAHLIST_READER_FOREACH(sah) {
8053 if (req_satype != SADB_SATYPE_UNSPEC &&
8054 proto != sah->saidx.proto)
8055 continue;
8056
8057 /* map proto to satype */
8058 satype = key_proto2satype(sah->saidx.proto);
8059 if (satype == 0) {
8060 m_freem(m);
8061 *errorp = EINVAL;
8062 return (NULL);
8063 }
8064
8065 SASTATE_ANY_FOREACH(state) {
8066 SAVLIST_READER_FOREACH(sav, sah, state) {
8067 n = key_setdumpsa(sav, SADB_DUMP, satype,
8068 --cnt, pid);
8069 if (!n) {
8070 m_freem(m);
8071 *errorp = ENOBUFS;
8072 return (NULL);
8073 }
8074
8075 if (!m)
8076 m = n;
8077 else
8078 m_cat(m, n);
8079 }
8080 }
8081 }
8082
8083 if (!m) {
8084 *errorp = EINVAL;
8085 return (NULL);
8086 }
8087
8088 if ((m->m_flags & M_PKTHDR) != 0) {
8089 m->m_pkthdr.len = 0;
8090 for (n = m; n; n = n->m_next)
8091 m->m_pkthdr.len += n->m_len;
8092 }
8093
8094 *errorp = 0;
8095 return (m);
8096 }
8097
8098 static struct mbuf *
8099 key_setspddump(int *errorp, pid_t pid)
8100 {
8101 struct secpolicy *sp;
8102 int cnt;
8103 u_int dir;
8104 struct mbuf *m, *n;
8105
8106 KASSERT(mutex_owned(&key_sp_mtx));
8107
8108 /* search SPD entry and get buffer size. */
8109 cnt = 0;
8110 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8111 SPLIST_WRITER_FOREACH(sp, dir) {
8112 cnt++;
8113 }
8114 }
8115
8116 if (cnt == 0) {
8117 *errorp = ENOENT;
8118 return (NULL);
8119 }
8120
8121 m = NULL;
8122 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8123 SPLIST_WRITER_FOREACH(sp, dir) {
8124 --cnt;
8125 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8126
8127 if (!n) {
8128 *errorp = ENOBUFS;
8129 m_freem(m);
8130 return (NULL);
8131 }
8132 if (!m)
8133 m = n;
8134 else {
8135 m->m_pkthdr.len += n->m_pkthdr.len;
8136 m_cat(m, n);
8137 }
8138 }
8139 }
8140
8141 *errorp = 0;
8142 return (m);
8143 }
8144
8145 int
8146 key_get_used(void) {
8147 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8148 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8149 !SOCKSPLIST_READER_EMPTY();
8150 }
8151
8152 void
8153 key_update_used(void)
8154 {
8155 switch (ipsec_enabled) {
8156 default:
8157 case 0:
8158 #ifdef notyet
8159 /* XXX: racy */
8160 ipsec_used = 0;
8161 #endif
8162 break;
8163 case 1:
8164 #ifndef notyet
8165 /* XXX: racy */
8166 if (!ipsec_used)
8167 #endif
8168 ipsec_used = key_get_used();
8169 break;
8170 case 2:
8171 ipsec_used = 1;
8172 break;
8173 }
8174 }
8175
8176 static int
8177 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8178 {
8179 struct mbuf *m, *n;
8180 int err2 = 0;
8181 char *p, *ep;
8182 size_t len;
8183 int s, error;
8184
8185 if (newp)
8186 return (EPERM);
8187 if (namelen != 1)
8188 return (EINVAL);
8189
8190 s = splsoftnet();
8191 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8192 splx(s);
8193 if (!m)
8194 return (error);
8195 if (!oldp)
8196 *oldlenp = m->m_pkthdr.len;
8197 else {
8198 p = oldp;
8199 if (*oldlenp < m->m_pkthdr.len) {
8200 err2 = ENOMEM;
8201 ep = p + *oldlenp;
8202 } else {
8203 *oldlenp = m->m_pkthdr.len;
8204 ep = p + m->m_pkthdr.len;
8205 }
8206 for (n = m; n; n = n->m_next) {
8207 len = (ep - p < n->m_len) ?
8208 ep - p : n->m_len;
8209 error = copyout(mtod(n, const void *), p, len);
8210 p += len;
8211 if (error)
8212 break;
8213 }
8214 if (error == 0)
8215 error = err2;
8216 }
8217 m_freem(m);
8218
8219 return (error);
8220 }
8221
8222 static int
8223 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8224 {
8225 struct mbuf *m, *n;
8226 int err2 = 0;
8227 char *p, *ep;
8228 size_t len;
8229 int error;
8230
8231 if (newp)
8232 return (EPERM);
8233 if (namelen != 0)
8234 return (EINVAL);
8235
8236 mutex_enter(&key_sp_mtx);
8237 m = key_setspddump(&error, l->l_proc->p_pid);
8238 mutex_exit(&key_sp_mtx);
8239 if (!m)
8240 return (error);
8241 if (!oldp)
8242 *oldlenp = m->m_pkthdr.len;
8243 else {
8244 p = oldp;
8245 if (*oldlenp < m->m_pkthdr.len) {
8246 err2 = ENOMEM;
8247 ep = p + *oldlenp;
8248 } else {
8249 *oldlenp = m->m_pkthdr.len;
8250 ep = p + m->m_pkthdr.len;
8251 }
8252 for (n = m; n; n = n->m_next) {
8253 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8254 error = copyout(mtod(n, const void *), p, len);
8255 p += len;
8256 if (error)
8257 break;
8258 }
8259 if (error == 0)
8260 error = err2;
8261 }
8262 m_freem(m);
8263
8264 return (error);
8265 }
8266
8267 /*
8268 * Create sysctl tree for native IPSEC key knobs, originally
8269 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8270 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8271 * and in any case the part of our sysctl namespace used for dumping the
8272 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8273 * namespace, for API reasons.
8274 *
8275 * Pending a consensus on the right way to fix this, add a level of
8276 * indirection in how we number the `native' IPSEC key nodes;
8277 * and (as requested by Andrew Brown) move registration of the
8278 * KAME-compatible names to a separate function.
8279 */
8280 #if 0
8281 # define IPSEC_PFKEY PF_KEY_V2
8282 # define IPSEC_PFKEY_NAME "keyv2"
8283 #else
8284 # define IPSEC_PFKEY PF_KEY
8285 # define IPSEC_PFKEY_NAME "key"
8286 #endif
8287
8288 static int
8289 sysctl_net_key_stats(SYSCTLFN_ARGS)
8290 {
8291
8292 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8293 }
8294
8295 static void
8296 sysctl_net_keyv2_setup(struct sysctllog **clog)
8297 {
8298
8299 sysctl_createv(clog, 0, NULL, NULL,
8300 CTLFLAG_PERMANENT,
8301 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8302 NULL, 0, NULL, 0,
8303 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8304
8305 sysctl_createv(clog, 0, NULL, NULL,
8306 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8307 CTLTYPE_INT, "debug", NULL,
8308 NULL, 0, &key_debug_level, 0,
8309 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8310 sysctl_createv(clog, 0, NULL, NULL,
8311 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8312 CTLTYPE_INT, "spi_try", NULL,
8313 NULL, 0, &key_spi_trycnt, 0,
8314 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8315 sysctl_createv(clog, 0, NULL, NULL,
8316 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8317 CTLTYPE_INT, "spi_min_value", NULL,
8318 NULL, 0, &key_spi_minval, 0,
8319 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8320 sysctl_createv(clog, 0, NULL, NULL,
8321 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8322 CTLTYPE_INT, "spi_max_value", NULL,
8323 NULL, 0, &key_spi_maxval, 0,
8324 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8325 sysctl_createv(clog, 0, NULL, NULL,
8326 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8327 CTLTYPE_INT, "random_int", NULL,
8328 NULL, 0, &key_int_random, 0,
8329 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8330 sysctl_createv(clog, 0, NULL, NULL,
8331 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8332 CTLTYPE_INT, "larval_lifetime", NULL,
8333 NULL, 0, &key_larval_lifetime, 0,
8334 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8335 sysctl_createv(clog, 0, NULL, NULL,
8336 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8337 CTLTYPE_INT, "blockacq_count", NULL,
8338 NULL, 0, &key_blockacq_count, 0,
8339 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8340 sysctl_createv(clog, 0, NULL, NULL,
8341 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8342 CTLTYPE_INT, "blockacq_lifetime", NULL,
8343 NULL, 0, &key_blockacq_lifetime, 0,
8344 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8345 sysctl_createv(clog, 0, NULL, NULL,
8346 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8347 CTLTYPE_INT, "esp_keymin", NULL,
8348 NULL, 0, &ipsec_esp_keymin, 0,
8349 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8350 sysctl_createv(clog, 0, NULL, NULL,
8351 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8352 CTLTYPE_INT, "prefered_oldsa", NULL,
8353 NULL, 0, &key_prefered_oldsa, 0,
8354 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8355 sysctl_createv(clog, 0, NULL, NULL,
8356 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8357 CTLTYPE_INT, "esp_auth", NULL,
8358 NULL, 0, &ipsec_esp_auth, 0,
8359 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8360 sysctl_createv(clog, 0, NULL, NULL,
8361 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8362 CTLTYPE_INT, "ah_keymin", NULL,
8363 NULL, 0, &ipsec_ah_keymin, 0,
8364 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8365 sysctl_createv(clog, 0, NULL, NULL,
8366 CTLFLAG_PERMANENT,
8367 CTLTYPE_STRUCT, "stats",
8368 SYSCTL_DESCR("PF_KEY statistics"),
8369 sysctl_net_key_stats, 0, NULL, 0,
8370 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8371 }
8372
8373 /*
8374 * Register sysctl names used by setkey(8). For historical reasons,
8375 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8376 * for both IPSEC and KAME IPSEC.
8377 */
8378 static void
8379 sysctl_net_key_compat_setup(struct sysctllog **clog)
8380 {
8381
8382 sysctl_createv(clog, 0, NULL, NULL,
8383 CTLFLAG_PERMANENT,
8384 CTLTYPE_NODE, "key", NULL,
8385 NULL, 0, NULL, 0,
8386 CTL_NET, PF_KEY, CTL_EOL);
8387
8388 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8389 sysctl_createv(clog, 0, NULL, NULL,
8390 CTLFLAG_PERMANENT,
8391 CTLTYPE_STRUCT, "dumpsa", NULL,
8392 sysctl_net_key_dumpsa, 0, NULL, 0,
8393 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8394 sysctl_createv(clog, 0, NULL, NULL,
8395 CTLFLAG_PERMANENT,
8396 CTLTYPE_STRUCT, "dumpsp", NULL,
8397 sysctl_net_key_dumpsp, 0, NULL, 0,
8398 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8399 }
8400