key.c revision 1.206 1 /* $NetBSD: key.c,v 1.206 2017/08/03 06:32:51 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.206 2017/08/03 06:32:51 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 /*
139 * Locking notes on SPD:
140 * - Modifications to the sptree must be done with holding key_sp_mtx
141 * which is a adaptive mutex
142 * - Read accesses to the sptree must be in critical sections of pserialize(9)
143 * - SP's lifetime is managed by localcount(9)
144 * - An SP that has been inserted to the sptree is initially referenced by none,
145 * i.e., a reference from the pstree isn't counted
146 * - When an SP is being destroyed, we change its state as DEAD, wait for
147 * references to the SP to be released, and then deallocate the SP
148 * (see key_unlink_sp)
149 * - Getting an SP
150 * - Normally we get an SP from the sptree by incrementing the reference count
151 * of the SP
152 * - We can gain another reference from a held SP only if we check its state
153 * and take its reference in a critical section of pserialize
154 * (see esp_output for example)
155 * - We may get an SP from an SP cache. See below
156 * - Updating member variables of an SP
157 * - Most member variables of an SP are immutable
158 * - Only sp->state and sp->lastused can be changed
159 * - sp->state of an SP is updated only when destroying it under key_sp_mtx
160 * - SP caches
161 * - SPs can be cached in PCBs
162 * - The lifetime of the caches is controlled by the global generation counter
163 * (ipsec_spdgen)
164 * - The global counter value is stored when an SP is cached
165 * - If the stored value is different from the global counter then the cache
166 * is considered invalidated
167 * - The counter is incremented when an SP is being destroyed
168 * - So checking the generation and taking a reference to an SP should be
169 * in a critical section of pserialize
170 * - Note that caching doesn't increment the reference counter of an SP
171 * - SPs in sockets
172 * - Userland programs can set a policy to a socket by
173 * setsockopt(IP_IPSEC_POLICY)
174 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
175 * the key_socksplist list (not the sptree)
176 * - Such a policy is destroyed when a corresponding socket is destroed,
177 * however, a socket can be destroyed in softint so we cannot destroy
178 * it directly instead we just mark it DEAD and delay the destruction
179 * until GC by the timer
180 */
181
182 u_int32_t key_debug_level = 0;
183 static u_int key_spi_trycnt = 1000;
184 static u_int32_t key_spi_minval = 0x100;
185 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
186 static u_int32_t policy_id = 0;
187 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
188 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
189 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
190 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
191 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
192
193 static u_int32_t acq_seq = 0;
194
195 static struct pslist_head sptree[IPSEC_DIR_MAX]; /* SPD */
196 static struct pslist_head sahtree; /* SAD */
197 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
198 /* registed list */
199 #ifndef IPSEC_NONBLOCK_ACQUIRE
200 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
201 #endif
202 #ifdef notyet
203 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
204 #endif
205
206 #define SPLIST_ENTRY_INIT(sp) \
207 PSLIST_ENTRY_INIT((sp), pslist_entry)
208 #define SPLIST_ENTRY_DESTROY(sp) \
209 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
210 #define SPLIST_WRITER_REMOVE(sp) \
211 PSLIST_WRITER_REMOVE((sp), pslist_entry)
212 #define SPLIST_READER_EMPTY(dir) \
213 (PSLIST_READER_FIRST(&sptree[(dir)], struct secpolicy, \
214 pslist_entry) == NULL)
215 #define SPLIST_READER_FOREACH(sp, dir) \
216 PSLIST_READER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
217 pslist_entry)
218 #define SPLIST_WRITER_FOREACH(sp, dir) \
219 PSLIST_WRITER_FOREACH((sp), &sptree[(dir)], struct secpolicy, \
220 pslist_entry)
221 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
222 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
223 #define SPLIST_WRITER_EMPTY(dir) \
224 (PSLIST_WRITER_FIRST(&sptree[(dir)], struct secpolicy, \
225 pslist_entry) == NULL)
226 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
227 PSLIST_WRITER_INSERT_HEAD(&sptree[(dir)], (sp), pslist_entry)
228 #define SPLIST_WRITER_NEXT(sp) \
229 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
230 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
231 do { \
232 if (SPLIST_WRITER_EMPTY((dir))) { \
233 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
234 } else { \
235 struct secpolicy *__sp; \
236 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
237 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
238 SPLIST_WRITER_INSERT_AFTER(__sp,\
239 (new)); \
240 break; \
241 } \
242 } \
243 } \
244 } while (0)
245
246 #define SAHLIST_ENTRY_INIT(sah) \
247 PSLIST_ENTRY_INIT((sah), pslist_entry)
248 #define SAHLIST_ENTRY_DESTROY(sah) \
249 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
250 #define SAHLIST_WRITER_REMOVE(sah) \
251 PSLIST_WRITER_REMOVE((sah), pslist_entry)
252 #define SAHLIST_READER_FOREACH(sah) \
253 PSLIST_READER_FOREACH((sah), &sahtree, struct secashead, \
254 pslist_entry)
255 #define SAHLIST_WRITER_FOREACH(sah) \
256 PSLIST_WRITER_FOREACH((sah), &sahtree, struct secashead, \
257 pslist_entry)
258 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
259 PSLIST_WRITER_INSERT_HEAD(&sahtree, (sah), pslist_entry)
260
261 #define SAVLIST_ENTRY_INIT(sav) \
262 PSLIST_ENTRY_INIT((sav), pslist_entry)
263 #define SAVLIST_ENTRY_DESTROY(sav) \
264 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
265 #define SAVLIST_READER_FIRST(sah, state) \
266 PSLIST_READER_FIRST(&(sah)->savtree[(state)], struct secasvar, \
267 pslist_entry)
268 #define SAVLIST_WRITER_REMOVE(sav) \
269 PSLIST_WRITER_REMOVE((sav), pslist_entry)
270 #define SAVLIST_READER_FOREACH(sav, sah, state) \
271 PSLIST_READER_FOREACH((sav), &(sah)->savtree[(state)], \
272 struct secasvar, pslist_entry)
273 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
274 PSLIST_WRITER_FOREACH((sav), &(sah)->savtree[(state)], \
275 struct secasvar, pslist_entry)
276 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
277 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
278 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
279 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
280 #define SAVLIST_WRITER_EMPTY(sah, state) \
281 (PSLIST_WRITER_FIRST(&(sah)->savtree[(state)], struct secasvar, \
282 pslist_entry) == NULL)
283 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
284 PSLIST_WRITER_INSERT_HEAD(&(sah)->savtree[(state)], (sav), \
285 pslist_entry)
286 #define SAVLIST_WRITER_NEXT(sav) \
287 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
288 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
289 do { \
290 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
291 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
292 } else { \
293 struct secasvar *__sav; \
294 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
295 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
296 SAVLIST_WRITER_INSERT_AFTER(__sav,\
297 (new)); \
298 break; \
299 } \
300 } \
301 } \
302 } while (0)
303 #define SAVLIST_READER_NEXT(sav) \
304 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
305
306 /*
307 * The list has SPs that are set to a socket via setsockopt(IP_IPSEC_POLICY)
308 * from userland. See ipsec_set_policy.
309 */
310 static struct pslist_head key_socksplist;
311
312 #define SOCKSPLIST_WRITER_FOREACH(sp) \
313 PSLIST_WRITER_FOREACH((sp), &key_socksplist, struct secpolicy, \
314 pslist_entry)
315 #define SOCKSPLIST_READER_EMPTY() \
316 (PSLIST_READER_FIRST(&key_socksplist, struct secpolicy, \
317 pslist_entry) == NULL)
318
319 /*
320 * Protect regtree, acqtree and items stored in the lists.
321 */
322 static kmutex_t key_mtx __cacheline_aligned;
323 static pserialize_t key_psz;
324 static kmutex_t key_sp_mtx __cacheline_aligned;
325 static kcondvar_t key_sp_cv __cacheline_aligned;
326 static kmutex_t key_sa_mtx __cacheline_aligned;
327
328 /* search order for SAs */
329 /*
330 * This order is important because we must select the oldest SA
331 * for outbound processing. For inbound, This is not important.
332 */
333 static const u_int saorder_state_valid_prefer_old[] = {
334 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
335 };
336 static const u_int saorder_state_valid_prefer_new[] = {
337 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
338 };
339
340 static const u_int saorder_state_alive[] = {
341 /* except DEAD */
342 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
343 };
344 static const u_int saorder_state_any[] = {
345 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
346 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
347 };
348
349 #define SASTATE_ALIVE_FOREACH(s) \
350 for (int _i = 0; \
351 _i < __arraycount(saorder_state_alive) ? \
352 (s) = saorder_state_alive[_i], true : false; \
353 _i++)
354 #define SASTATE_ANY_FOREACH(s) \
355 for (int _i = 0; \
356 _i < __arraycount(saorder_state_any) ? \
357 (s) = saorder_state_any[_i], true : false; \
358 _i++)
359
360 static const int minsize[] = {
361 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
362 sizeof(struct sadb_sa), /* SADB_EXT_SA */
363 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
364 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
365 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
366 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
367 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
368 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
369 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
370 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
371 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
372 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
373 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
374 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
375 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
376 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
377 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
378 0, /* SADB_X_EXT_KMPRIVATE */
379 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
380 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
381 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
382 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
383 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
384 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
385 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
386 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
387 };
388 static const int maxsize[] = {
389 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
390 sizeof(struct sadb_sa), /* SADB_EXT_SA */
391 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
392 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
393 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
394 0, /* SADB_EXT_ADDRESS_SRC */
395 0, /* SADB_EXT_ADDRESS_DST */
396 0, /* SADB_EXT_ADDRESS_PROXY */
397 0, /* SADB_EXT_KEY_AUTH */
398 0, /* SADB_EXT_KEY_ENCRYPT */
399 0, /* SADB_EXT_IDENTITY_SRC */
400 0, /* SADB_EXT_IDENTITY_DST */
401 0, /* SADB_EXT_SENSITIVITY */
402 0, /* SADB_EXT_PROPOSAL */
403 0, /* SADB_EXT_SUPPORTED_AUTH */
404 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
405 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
406 0, /* SADB_X_EXT_KMPRIVATE */
407 0, /* SADB_X_EXT_POLICY */
408 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
409 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
410 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
411 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
412 0, /* SADB_X_EXT_NAT_T_OAI */
413 0, /* SADB_X_EXT_NAT_T_OAR */
414 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
415 };
416
417 static int ipsec_esp_keymin = 256;
418 static int ipsec_esp_auth = 0;
419 static int ipsec_ah_keymin = 128;
420
421 #ifdef SYSCTL_DECL
422 SYSCTL_DECL(_net_key);
423 #endif
424
425 #ifdef SYSCTL_INT
426 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
427 &key_debug_level, 0, "");
428
429 /* max count of trial for the decision of spi value */
430 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
431 &key_spi_trycnt, 0, "");
432
433 /* minimum spi value to allocate automatically. */
434 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
435 &key_spi_minval, 0, "");
436
437 /* maximun spi value to allocate automatically. */
438 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
439 &key_spi_maxval, 0, "");
440
441 /* interval to initialize randseed */
442 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
443 &key_int_random, 0, "");
444
445 /* lifetime for larval SA */
446 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
447 &key_larval_lifetime, 0, "");
448
449 /* counter for blocking to send SADB_ACQUIRE to IKEd */
450 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
451 &key_blockacq_count, 0, "");
452
453 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
454 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
455 &key_blockacq_lifetime, 0, "");
456
457 /* ESP auth */
458 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
459 &ipsec_esp_auth, 0, "");
460
461 /* minimum ESP key length */
462 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
463 &ipsec_esp_keymin, 0, "");
464
465 /* minimum AH key length */
466 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
467 &ipsec_ah_keymin, 0, "");
468
469 /* perfered old SA rather than new SA */
470 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
471 &key_prefered_oldsa, 0, "");
472 #endif /* SYSCTL_INT */
473
474 #define __LIST_CHAINED(elm) \
475 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
476 #define LIST_INSERT_TAIL(head, elm, type, field) \
477 do {\
478 struct type *curelm = LIST_FIRST(head); \
479 if (curelm == NULL) {\
480 LIST_INSERT_HEAD(head, elm, field); \
481 } else { \
482 while (LIST_NEXT(curelm, field)) \
483 curelm = LIST_NEXT(curelm, field);\
484 LIST_INSERT_AFTER(curelm, elm, field);\
485 }\
486 } while (0)
487
488 #define KEY_CHKSASTATE(head, sav) \
489 /* do */ { \
490 if ((head) != (sav)) { \
491 IPSECLOG(LOG_DEBUG, \
492 "state mismatched (TREE=%d SA=%d)\n", \
493 (head), (sav)); \
494 continue; \
495 } \
496 } /* while (0) */
497
498 #define KEY_CHKSPDIR(head, sp) \
499 do { \
500 if ((head) != (sp)) { \
501 IPSECLOG(LOG_DEBUG, \
502 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
503 (head), (sp)); \
504 } \
505 } while (0)
506
507 /*
508 * set parameters into secasindex buffer.
509 * Must allocate secasindex buffer before calling this function.
510 */
511 static int
512 key_setsecasidx(int, int, int, const struct sockaddr *,
513 const struct sockaddr *, struct secasindex *);
514
515 /* key statistics */
516 struct _keystat {
517 u_long getspi_count; /* the avarage of count to try to get new SPI */
518 } keystat;
519
520 struct sadb_msghdr {
521 struct sadb_msg *msg;
522 struct sadb_ext *ext[SADB_EXT_MAX + 1];
523 int extoff[SADB_EXT_MAX + 1];
524 int extlen[SADB_EXT_MAX + 1];
525 };
526
527 static void
528 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
529
530 static const struct sockaddr *
531 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
532 {
533
534 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
535 }
536
537 static struct mbuf *
538 key_fill_replymsg(struct mbuf *m, int seq)
539 {
540 struct sadb_msg *msg;
541
542 if (m->m_len < sizeof(*msg)) {
543 m = m_pullup(m, sizeof(*msg));
544 if (m == NULL)
545 return NULL;
546 }
547 msg = mtod(m, struct sadb_msg *);
548 msg->sadb_msg_errno = 0;
549 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
550 if (seq != 0)
551 msg->sadb_msg_seq = seq;
552
553 return m;
554 }
555
556 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
557 #if 0
558 static void key_freeso(struct socket *);
559 static void key_freesp_so(struct secpolicy **);
560 #endif
561 static struct secpolicy *key_getsp (const struct secpolicyindex *);
562 static struct secpolicy *key_getspbyid (u_int32_t);
563 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
564 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
565 static void key_destroy_sp(struct secpolicy *);
566 static u_int16_t key_newreqid (void);
567 static struct mbuf *key_gather_mbuf (struct mbuf *,
568 const struct sadb_msghdr *, int, int, ...);
569 static int key_api_spdadd(struct socket *, struct mbuf *,
570 const struct sadb_msghdr *);
571 static u_int32_t key_getnewspid (void);
572 static int key_api_spddelete(struct socket *, struct mbuf *,
573 const struct sadb_msghdr *);
574 static int key_api_spddelete2(struct socket *, struct mbuf *,
575 const struct sadb_msghdr *);
576 static int key_api_spdget(struct socket *, struct mbuf *,
577 const struct sadb_msghdr *);
578 static int key_api_spdflush(struct socket *, struct mbuf *,
579 const struct sadb_msghdr *);
580 static int key_api_spddump(struct socket *, struct mbuf *,
581 const struct sadb_msghdr *);
582 static struct mbuf * key_setspddump (int *errorp, pid_t);
583 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
584 static int key_api_nat_map(struct socket *, struct mbuf *,
585 const struct sadb_msghdr *);
586 static struct mbuf *key_setdumpsp (struct secpolicy *,
587 u_int8_t, u_int32_t, pid_t);
588 static u_int key_getspreqmsglen (const struct secpolicy *);
589 static int key_spdexpire (struct secpolicy *);
590 static struct secashead *key_newsah (const struct secasindex *);
591 static void key_delsah (struct secashead *);
592 static struct secasvar *key_newsav(struct mbuf *,
593 const struct sadb_msghdr *, int *, const char*, int);
594 #define KEY_NEWSAV(m, sadb, e) \
595 key_newsav(m, sadb, e, __func__, __LINE__)
596 static void key_delsav (struct secasvar *);
597 static struct secashead *key_getsah(const struct secasindex *, int);
598 static bool key_checkspidup(const struct secasindex *, u_int32_t);
599 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
600 static int key_setsaval (struct secasvar *, struct mbuf *,
601 const struct sadb_msghdr *);
602 static void key_freesaval(struct secasvar *);
603 static int key_init_xform(struct secasvar *);
604 static void key_clear_xform(struct secasvar *);
605 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
606 u_int8_t, u_int32_t, u_int32_t);
607 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
608 static struct mbuf *key_setsadbxtype (u_int16_t);
609 static struct mbuf *key_setsadbxfrag (u_int16_t);
610 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
611 static int key_checksalen (const union sockaddr_union *);
612 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
613 u_int32_t, pid_t, u_int16_t);
614 static struct mbuf *key_setsadbsa (struct secasvar *);
615 static struct mbuf *key_setsadbaddr (u_int16_t,
616 const struct sockaddr *, u_int8_t, u_int16_t);
617 #if 0
618 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
619 int, u_int64_t);
620 #endif
621 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
622 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
623 u_int32_t);
624 static void *key_newbuf (const void *, u_int);
625 #ifdef INET6
626 static int key_ismyaddr6 (const struct sockaddr_in6 *);
627 #endif
628
629 static void sysctl_net_keyv2_setup(struct sysctllog **);
630 static void sysctl_net_key_compat_setup(struct sysctllog **);
631
632 /* flags for key_saidx_match() */
633 #define CMP_HEAD 1 /* protocol, addresses. */
634 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
635 #define CMP_REQID 3 /* additionally HEAD, reaid. */
636 #define CMP_EXACTLY 4 /* all elements. */
637 static int key_saidx_match(const struct secasindex *,
638 const struct secasindex *, int);
639
640 static int key_sockaddr_match(const struct sockaddr *,
641 const struct sockaddr *, int);
642 static int key_bb_match_withmask(const void *, const void *, u_int);
643 static u_int16_t key_satype2proto (u_int8_t);
644 static u_int8_t key_proto2satype (u_int16_t);
645
646 static int key_spidx_match_exactly(const struct secpolicyindex *,
647 const struct secpolicyindex *);
648 static int key_spidx_match_withmask(const struct secpolicyindex *,
649 const struct secpolicyindex *);
650
651 static int key_api_getspi(struct socket *, struct mbuf *,
652 const struct sadb_msghdr *);
653 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
654 const struct secasindex *);
655 static int key_handle_natt_info (struct secasvar *,
656 const struct sadb_msghdr *);
657 static int key_set_natt_ports (union sockaddr_union *,
658 union sockaddr_union *,
659 const struct sadb_msghdr *);
660 static int key_api_update(struct socket *, struct mbuf *,
661 const struct sadb_msghdr *);
662 #ifdef IPSEC_DOSEQCHECK
663 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
664 #endif
665 static int key_api_add(struct socket *, struct mbuf *,
666 const struct sadb_msghdr *);
667 static int key_setident (struct secashead *, struct mbuf *,
668 const struct sadb_msghdr *);
669 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
670 const struct sadb_msghdr *);
671 static int key_api_delete(struct socket *, struct mbuf *,
672 const struct sadb_msghdr *);
673 static int key_api_get(struct socket *, struct mbuf *,
674 const struct sadb_msghdr *);
675
676 static void key_getcomb_setlifetime (struct sadb_comb *);
677 static struct mbuf *key_getcomb_esp (void);
678 static struct mbuf *key_getcomb_ah (void);
679 static struct mbuf *key_getcomb_ipcomp (void);
680 static struct mbuf *key_getprop (const struct secasindex *);
681
682 static int key_acquire (const struct secasindex *, struct secpolicy *);
683 #ifndef IPSEC_NONBLOCK_ACQUIRE
684 static struct secacq *key_newacq (const struct secasindex *);
685 static struct secacq *key_getacq (const struct secasindex *);
686 static struct secacq *key_getacqbyseq (u_int32_t);
687 #endif
688 #ifdef notyet
689 static struct secspacq *key_newspacq (const struct secpolicyindex *);
690 static struct secspacq *key_getspacq (const struct secpolicyindex *);
691 #endif
692 static int key_api_acquire(struct socket *, struct mbuf *,
693 const struct sadb_msghdr *);
694 static int key_api_register(struct socket *, struct mbuf *,
695 const struct sadb_msghdr *);
696 static int key_expire (struct secasvar *);
697 static int key_api_flush(struct socket *, struct mbuf *,
698 const struct sadb_msghdr *);
699 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
700 int *lenp, pid_t pid);
701 static int key_api_dump(struct socket *, struct mbuf *,
702 const struct sadb_msghdr *);
703 static int key_api_promisc(struct socket *, struct mbuf *,
704 const struct sadb_msghdr *);
705 static int key_senderror (struct socket *, struct mbuf *, int);
706 static int key_validate_ext (const struct sadb_ext *, int);
707 static int key_align (struct mbuf *, struct sadb_msghdr *);
708 #if 0
709 static const char *key_getfqdn (void);
710 static const char *key_getuserfqdn (void);
711 #endif
712 static void key_sa_chgstate (struct secasvar *, u_int8_t);
713
714 static struct mbuf *key_alloc_mbuf (int);
715
716 static void key_timehandler(void *);
717 static void key_timehandler_work(struct work *, void *);
718 static struct callout key_timehandler_ch;
719 static struct workqueue *key_timehandler_wq;
720 static struct work key_timehandler_wk;
721
722 #ifdef IPSEC_REF_DEBUG
723 #define REFLOG(label, p, where, tag) \
724 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
725 (where), (tag), (p)->refcnt, (p))
726 #else
727 #define REFLOG(label, p, where, tag) do {} while (0)
728 #endif
729
730 #define SA_ADDREF(p) do { \
731 atomic_inc_uint(&(p)->refcnt); \
732 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
733 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
734 } while (0)
735 #define SA_ADDREF2(p, where, tag) do { \
736 atomic_inc_uint(&(p)->refcnt); \
737 REFLOG("SA_ADDREF", (p), (where), (tag)); \
738 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
739 } while (0)
740 #define SA_DELREF(p) do { \
741 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
742 atomic_dec_uint(&(p)->refcnt); \
743 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
744 } while (0)
745 #define SA_DELREF2(p, nv, where, tag) do { \
746 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
747 nv = atomic_dec_uint_nv(&(p)->refcnt); \
748 REFLOG("SA_DELREF", (p), (where), (tag)); \
749 } while (0)
750
751 u_int
752 key_sp_refcnt(const struct secpolicy *sp)
753 {
754
755 /* FIXME */
756 return 0;
757 }
758
759 /*
760 * Remove the sp from the sptree and wait for references to the sp
761 * to be released. key_sp_mtx must be held.
762 */
763 static void
764 key_unlink_sp(struct secpolicy *sp)
765 {
766
767 KASSERT(mutex_owned(&key_sp_mtx));
768
769 sp->state = IPSEC_SPSTATE_DEAD;
770 SPLIST_WRITER_REMOVE(sp);
771
772 /* Invalidate all cached SPD pointers in the PCBs. */
773 ipsec_invalpcbcacheall();
774
775 #ifdef NET_MPSAFE
776 KASSERT(mutex_ownable(softnet_lock));
777 pserialize_perform(key_psz);
778 #endif
779
780 localcount_drain(&sp->localcount, &key_sp_cv, &key_sp_mtx);
781 }
782
783 /*
784 * Return 0 when there are known to be no SP's for the specified
785 * direction. Otherwise return 1. This is used by IPsec code
786 * to optimize performance.
787 */
788 int
789 key_havesp(u_int dir)
790 {
791 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
792 !SPLIST_READER_EMPTY(dir) : 1);
793 }
794
795 /* %%% IPsec policy management */
796 /*
797 * allocating a SP for OUTBOUND or INBOUND packet.
798 * Must call key_freesp() later.
799 * OUT: NULL: not found
800 * others: found and return the pointer.
801 */
802 struct secpolicy *
803 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
804 u_int dir, const char* where, int tag)
805 {
806 struct secpolicy *sp;
807 int s;
808
809 KASSERT(spidx != NULL);
810 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
811
812 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
813
814 /* get a SP entry */
815 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
816 printf("*** objects\n");
817 kdebug_secpolicyindex(spidx);
818 }
819
820 s = pserialize_read_enter();
821 SPLIST_READER_FOREACH(sp, dir) {
822 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
823 printf("*** in SPD\n");
824 kdebug_secpolicyindex(&sp->spidx);
825 }
826
827 if (sp->state == IPSEC_SPSTATE_DEAD)
828 continue;
829 if (key_spidx_match_withmask(&sp->spidx, spidx))
830 goto found;
831 }
832 sp = NULL;
833 found:
834 if (sp) {
835 /* sanity check */
836 KEY_CHKSPDIR(sp->spidx.dir, dir);
837
838 /* found a SPD entry */
839 sp->lastused = time_uptime;
840 key_sp_ref(sp, where, tag);
841 }
842 pserialize_read_exit(s);
843
844 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
845 "DP return SP:%p (ID=%u) refcnt %u\n",
846 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
847 return sp;
848 }
849
850 /*
851 * return a policy that matches this particular inbound packet.
852 * XXX slow
853 */
854 struct secpolicy *
855 key_gettunnel(const struct sockaddr *osrc,
856 const struct sockaddr *odst,
857 const struct sockaddr *isrc,
858 const struct sockaddr *idst,
859 const char* where, int tag)
860 {
861 struct secpolicy *sp;
862 const int dir = IPSEC_DIR_INBOUND;
863 int s;
864 struct ipsecrequest *r1, *r2, *p;
865 struct secpolicyindex spidx;
866
867 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
868
869 if (isrc->sa_family != idst->sa_family) {
870 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
871 isrc->sa_family, idst->sa_family);
872 sp = NULL;
873 goto done;
874 }
875
876 s = pserialize_read_enter();
877 SPLIST_READER_FOREACH(sp, dir) {
878 if (sp->state == IPSEC_SPSTATE_DEAD)
879 continue;
880
881 r1 = r2 = NULL;
882 for (p = sp->req; p; p = p->next) {
883 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
884 continue;
885
886 r1 = r2;
887 r2 = p;
888
889 if (!r1) {
890 /* here we look at address matches only */
891 spidx = sp->spidx;
892 if (isrc->sa_len > sizeof(spidx.src) ||
893 idst->sa_len > sizeof(spidx.dst))
894 continue;
895 memcpy(&spidx.src, isrc, isrc->sa_len);
896 memcpy(&spidx.dst, idst, idst->sa_len);
897 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
898 continue;
899 } else {
900 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
901 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
902 continue;
903 }
904
905 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
906 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
907 continue;
908
909 goto found;
910 }
911 }
912 sp = NULL;
913 found:
914 if (sp) {
915 sp->lastused = time_uptime;
916 key_sp_ref(sp, where, tag);
917 }
918 pserialize_read_exit(s);
919 done:
920 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
921 "DP return SP:%p (ID=%u) refcnt %u\n",
922 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
923 return sp;
924 }
925
926 /*
927 * allocating an SA entry for an *OUTBOUND* packet.
928 * checking each request entries in SP, and acquire an SA if need.
929 * OUT: 0: there are valid requests.
930 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
931 */
932 int
933 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
934 {
935 u_int level;
936 int error;
937 const struct secasindex *saidx = &isr->saidx;
938 struct secasvar *sav;
939
940 KASSERT(isr != NULL);
941 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
942 saidx->mode == IPSEC_MODE_TUNNEL,
943 "unexpected policy %u", saidx->mode);
944
945 /* get current level */
946 level = ipsec_get_reqlevel(isr);
947
948 /*
949 * XXX guard against protocol callbacks from the crypto
950 * thread as they reference ipsecrequest.sav which we
951 * temporarily null out below. Need to rethink how we
952 * handle bundled SA's in the callback thread.
953 */
954 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
955
956 sav = key_lookup_sa_bysaidx(saidx);
957 if (sav != NULL) {
958 *ret = sav;
959 return 0;
960 }
961
962 /* there is no SA */
963 error = key_acquire(saidx, isr->sp);
964 if (error != 0) {
965 /* XXX What should I do ? */
966 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
967 error);
968 return error;
969 }
970
971 if (level != IPSEC_LEVEL_REQUIRE) {
972 /* XXX sigh, the interface to this routine is botched */
973 *ret = NULL;
974 return 0;
975 } else {
976 return ENOENT;
977 }
978 }
979
980 /*
981 * looking up a SA for policy entry from SAD.
982 * NOTE: searching SAD of aliving state.
983 * OUT: NULL: not found.
984 * others: found and return the pointer.
985 */
986 static struct secasvar *
987 key_lookup_sa_bysaidx(const struct secasindex *saidx)
988 {
989 struct secashead *sah;
990 struct secasvar *sav = NULL;
991 u_int stateidx, state;
992 const u_int *saorder_state_valid;
993 int arraysize;
994 int s;
995
996 s = pserialize_read_enter();
997 sah = key_getsah(saidx, CMP_MODE_REQID);
998 if (sah == NULL)
999 goto out;
1000
1001 /*
1002 * search a valid state list for outbound packet.
1003 * This search order is important.
1004 */
1005 if (key_prefered_oldsa) {
1006 saorder_state_valid = saorder_state_valid_prefer_old;
1007 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1008 } else {
1009 saorder_state_valid = saorder_state_valid_prefer_new;
1010 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1011 }
1012
1013 /* search valid state */
1014 for (stateidx = 0;
1015 stateidx < arraysize;
1016 stateidx++) {
1017
1018 state = saorder_state_valid[stateidx];
1019
1020 if (key_prefered_oldsa)
1021 sav = SAVLIST_READER_FIRST(sah, state);
1022 else {
1023 /* XXX need O(1) lookup */
1024 struct secasvar *last = NULL;
1025
1026 SAVLIST_READER_FOREACH(sav, sah, state)
1027 last = sav;
1028 sav = last;
1029 }
1030 if (sav != NULL) {
1031 SA_ADDREF(sav);
1032 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1033 "DP cause refcnt++:%d SA:%p\n",
1034 sav->refcnt, sav);
1035 break;
1036 }
1037 }
1038 out:
1039 pserialize_read_exit(s);
1040
1041 return sav;
1042 }
1043
1044 #if 0
1045 static void
1046 key_sendup_message_delete(struct secasvar *sav)
1047 {
1048 struct mbuf *m, *result = 0;
1049 uint8_t satype;
1050
1051 satype = key_proto2satype(sav->sah->saidx.proto);
1052 if (satype == 0)
1053 goto msgfail;
1054
1055 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
1056 if (m == NULL)
1057 goto msgfail;
1058 result = m;
1059
1060 /* set sadb_address for saidx's. */
1061 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1062 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1063 if (m == NULL)
1064 goto msgfail;
1065 m_cat(result, m);
1066
1067 /* set sadb_address for saidx's. */
1068 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1069 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1070 if (m == NULL)
1071 goto msgfail;
1072 m_cat(result, m);
1073
1074 /* create SA extension */
1075 m = key_setsadbsa(sav);
1076 if (m == NULL)
1077 goto msgfail;
1078 m_cat(result, m);
1079
1080 if (result->m_len < sizeof(struct sadb_msg)) {
1081 result = m_pullup(result, sizeof(struct sadb_msg));
1082 if (result == NULL)
1083 goto msgfail;
1084 }
1085
1086 result->m_pkthdr.len = 0;
1087 for (m = result; m; m = m->m_next)
1088 result->m_pkthdr.len += m->m_len;
1089 mtod(result, struct sadb_msg *)->sadb_msg_len =
1090 PFKEY_UNIT64(result->m_pkthdr.len);
1091
1092 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1093 result = NULL;
1094 msgfail:
1095 if (result)
1096 m_freem(result);
1097 }
1098 #endif
1099
1100 /*
1101 * allocating a usable SA entry for a *INBOUND* packet.
1102 * Must call key_freesav() later.
1103 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1104 * NULL: not found, or error occurred.
1105 *
1106 * In the comparison, no source address is used--for RFC2401 conformance.
1107 * To quote, from section 4.1:
1108 * A security association is uniquely identified by a triple consisting
1109 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1110 * security protocol (AH or ESP) identifier.
1111 * Note that, however, we do need to keep source address in IPsec SA.
1112 * IKE specification and PF_KEY specification do assume that we
1113 * keep source address in IPsec SA. We see a tricky situation here.
1114 *
1115 * sport and dport are used for NAT-T. network order is always used.
1116 */
1117 struct secasvar *
1118 key_lookup_sa(
1119 const union sockaddr_union *dst,
1120 u_int proto,
1121 u_int32_t spi,
1122 u_int16_t sport,
1123 u_int16_t dport,
1124 const char* where, int tag)
1125 {
1126 struct secashead *sah;
1127 struct secasvar *sav;
1128 u_int stateidx, state;
1129 const u_int *saorder_state_valid;
1130 int arraysize, chkport;
1131 int s;
1132
1133 int must_check_spi = 1;
1134 int must_check_alg = 0;
1135 u_int16_t cpi = 0;
1136 u_int8_t algo = 0;
1137
1138 if ((sport != 0) && (dport != 0))
1139 chkport = PORT_STRICT;
1140 else
1141 chkport = PORT_NONE;
1142
1143 KASSERT(dst != NULL);
1144
1145 /*
1146 * XXX IPCOMP case
1147 * We use cpi to define spi here. In the case where cpi <=
1148 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1149 * the real spi. In this case, don't check the spi but check the
1150 * algorithm
1151 */
1152
1153 if (proto == IPPROTO_IPCOMP) {
1154 u_int32_t tmp;
1155 tmp = ntohl(spi);
1156 cpi = (u_int16_t) tmp;
1157 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1158 algo = (u_int8_t) cpi;
1159 must_check_spi = 0;
1160 must_check_alg = 1;
1161 }
1162 }
1163 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1164 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1165 where, tag, must_check_spi, must_check_alg);
1166
1167
1168 /*
1169 * searching SAD.
1170 * XXX: to be checked internal IP header somewhere. Also when
1171 * IPsec tunnel packet is received. But ESP tunnel mode is
1172 * encrypted so we can't check internal IP header.
1173 */
1174 if (key_prefered_oldsa) {
1175 saorder_state_valid = saorder_state_valid_prefer_old;
1176 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1177 } else {
1178 saorder_state_valid = saorder_state_valid_prefer_new;
1179 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1180 }
1181 s = pserialize_read_enter();
1182 SAHLIST_READER_FOREACH(sah) {
1183 /* search valid state */
1184 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1185 state = saorder_state_valid[stateidx];
1186 SAVLIST_READER_FOREACH(sav, sah, state) {
1187 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1188 "try match spi %#x, %#x\n",
1189 ntohl(spi), ntohl(sav->spi));
1190 /* sanity check */
1191 KEY_CHKSASTATE(sav->state, state);
1192 /* do not return entries w/ unusable state */
1193 if (!SADB_SASTATE_USABLE_P(sav)) {
1194 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1195 "bad state %d\n", sav->state);
1196 continue;
1197 }
1198 if (proto != sav->sah->saidx.proto) {
1199 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1200 "proto fail %d != %d\n",
1201 proto, sav->sah->saidx.proto);
1202 continue;
1203 }
1204 if (must_check_spi && spi != sav->spi) {
1205 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1206 "spi fail %#x != %#x\n",
1207 ntohl(spi), ntohl(sav->spi));
1208 continue;
1209 }
1210 /* XXX only on the ipcomp case */
1211 if (must_check_alg && algo != sav->alg_comp) {
1212 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1213 "algo fail %d != %d\n",
1214 algo, sav->alg_comp);
1215 continue;
1216 }
1217
1218 #if 0 /* don't check src */
1219 /* Fix port in src->sa */
1220
1221 /* check src address */
1222 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1223 continue;
1224 #endif
1225 /* fix port of dst address XXX*/
1226 key_porttosaddr(__UNCONST(dst), dport);
1227 /* check dst address */
1228 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1229 continue;
1230 SA_ADDREF2(sav, where, tag);
1231 goto done;
1232 }
1233 }
1234 }
1235 sav = NULL;
1236 done:
1237 pserialize_read_exit(s);
1238
1239 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1240 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1241 return sav;
1242 }
1243
1244 static void
1245 key_validate_savlist(const struct secashead *sah, const u_int state)
1246 {
1247 #ifdef DEBUG
1248 struct secasvar *sav, *next;
1249 int s;
1250
1251 /*
1252 * The list should be sorted by lft_c->sadb_lifetime_addtime
1253 * in ascending order.
1254 */
1255 s = pserialize_read_enter();
1256 SAVLIST_READER_FOREACH(sav, sah, state) {
1257 next = SAVLIST_READER_NEXT(sav);
1258 if (next != NULL &&
1259 sav->lft_c != NULL && next->lft_c != NULL) {
1260 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1261 next->lft_c->sadb_lifetime_addtime,
1262 "savlist is not sorted: sah=%p, state=%d, "
1263 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1264 sav->lft_c->sadb_lifetime_addtime,
1265 next->lft_c->sadb_lifetime_addtime);
1266 }
1267 }
1268 pserialize_read_exit(s);
1269 #endif
1270 }
1271
1272 void
1273 key_init_sp(struct secpolicy *sp)
1274 {
1275
1276 ASSERT_SLEEPABLE();
1277
1278 sp->state = IPSEC_SPSTATE_ALIVE;
1279 if (sp->policy == IPSEC_POLICY_IPSEC)
1280 KASSERT(sp->req != NULL);
1281 localcount_init(&sp->localcount);
1282 SPLIST_ENTRY_INIT(sp);
1283 }
1284
1285 void
1286 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1287 {
1288
1289 localcount_acquire(&sp->localcount);
1290
1291 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1292 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1293 sp, sp->id, where, tag, key_sp_refcnt(sp));
1294 }
1295
1296 void
1297 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1298 {
1299
1300 KASSERT(mutex_ownable(&key_sp_mtx));
1301
1302 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1303 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1304 sp, sp->id, where, tag, key_sp_refcnt(sp));
1305
1306 localcount_release(&sp->localcount, &key_sp_cv, &key_sp_mtx);
1307 }
1308
1309 void
1310 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1311 {
1312
1313 SA_ADDREF2(sav, where, tag);
1314
1315 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1316 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1317 sav->refcnt, sav, where, tag);
1318 }
1319
1320 #if 0
1321 /*
1322 * Must be called after calling key_lookup_sp*().
1323 * For the packet with socket.
1324 */
1325 static void
1326 key_freeso(struct socket *so)
1327 {
1328 /* sanity check */
1329 KASSERT(so != NULL);
1330
1331 switch (so->so_proto->pr_domain->dom_family) {
1332 #ifdef INET
1333 case PF_INET:
1334 {
1335 struct inpcb *pcb = sotoinpcb(so);
1336
1337 /* Does it have a PCB ? */
1338 if (pcb == NULL)
1339 return;
1340
1341 struct inpcbpolicy *sp = pcb->inp_sp;
1342 key_freesp_so(&sp->sp_in);
1343 key_freesp_so(&sp->sp_out);
1344 }
1345 break;
1346 #endif
1347 #ifdef INET6
1348 case PF_INET6:
1349 {
1350 #ifdef HAVE_NRL_INPCB
1351 struct inpcb *pcb = sotoinpcb(so);
1352 struct inpcbpolicy *sp = pcb->inp_sp;
1353
1354 /* Does it have a PCB ? */
1355 if (pcb == NULL)
1356 return;
1357 key_freesp_so(&sp->sp_in);
1358 key_freesp_so(&sp->sp_out);
1359 #else
1360 struct in6pcb *pcb = sotoin6pcb(so);
1361
1362 /* Does it have a PCB ? */
1363 if (pcb == NULL)
1364 return;
1365 key_freesp_so(&pcb->in6p_sp->sp_in);
1366 key_freesp_so(&pcb->in6p_sp->sp_out);
1367 #endif
1368 }
1369 break;
1370 #endif /* INET6 */
1371 default:
1372 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1373 so->so_proto->pr_domain->dom_family);
1374 return;
1375 }
1376 }
1377
1378 static void
1379 key_freesp_so(struct secpolicy **sp)
1380 {
1381
1382 KASSERT(sp != NULL);
1383 KASSERT(*sp != NULL);
1384
1385 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1386 (*sp)->policy == IPSEC_POLICY_BYPASS)
1387 return;
1388
1389 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1390 "invalid policy %u", (*sp)->policy);
1391 KEY_SP_UNREF(&sp);
1392 }
1393 #endif
1394
1395 /*
1396 * Must be called after calling key_lookup_sa().
1397 * This function is called by key_freesp() to free some SA allocated
1398 * for a policy.
1399 */
1400 void
1401 key_freesav(struct secasvar **psav, const char* where, int tag)
1402 {
1403 struct secasvar *sav = *psav;
1404 unsigned int nv;
1405
1406 KASSERT(sav != NULL);
1407
1408 SA_DELREF2(sav, nv, where, tag);
1409
1410 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1411 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1412 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1413
1414 if (nv == 0) {
1415 *psav = NULL;
1416
1417 /* remove from SA header */
1418 SAVLIST_WRITER_REMOVE(sav);
1419
1420 key_delsav(sav);
1421 }
1422 }
1423
1424 /* %%% SPD management */
1425 /*
1426 * free security policy entry.
1427 */
1428 static void
1429 key_destroy_sp(struct secpolicy *sp)
1430 {
1431
1432 SPLIST_ENTRY_DESTROY(sp);
1433 localcount_fini(&sp->localcount);
1434
1435 key_free_sp(sp);
1436
1437 key_update_used();
1438 }
1439
1440 void
1441 key_free_sp(struct secpolicy *sp)
1442 {
1443 struct ipsecrequest *isr = sp->req, *nextisr;
1444
1445 while (isr != NULL) {
1446 nextisr = isr->next;
1447 kmem_free(isr, sizeof(*isr));
1448 isr = nextisr;
1449 }
1450
1451 kmem_free(sp, sizeof(*sp));
1452 }
1453
1454 void
1455 key_socksplist_add(struct secpolicy *sp)
1456 {
1457
1458 mutex_enter(&key_sp_mtx);
1459 PSLIST_WRITER_INSERT_HEAD(&key_socksplist, sp, pslist_entry);
1460 mutex_exit(&key_sp_mtx);
1461
1462 key_update_used();
1463 }
1464
1465 /*
1466 * search SPD
1467 * OUT: NULL : not found
1468 * others : found, pointer to a SP.
1469 */
1470 static struct secpolicy *
1471 key_getsp(const struct secpolicyindex *spidx)
1472 {
1473 struct secpolicy *sp;
1474 int s;
1475
1476 KASSERT(spidx != NULL);
1477
1478 s = pserialize_read_enter();
1479 SPLIST_READER_FOREACH(sp, spidx->dir) {
1480 if (sp->state == IPSEC_SPSTATE_DEAD)
1481 continue;
1482 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1483 KEY_SP_REF(sp);
1484 pserialize_read_exit(s);
1485 return sp;
1486 }
1487 }
1488 pserialize_read_exit(s);
1489
1490 return NULL;
1491 }
1492
1493 /*
1494 * search SPD and remove found SP
1495 * OUT: NULL : not found
1496 * others : found, pointer to a SP.
1497 */
1498 static struct secpolicy *
1499 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1500 {
1501 struct secpolicy *sp = NULL;
1502
1503 mutex_enter(&key_sp_mtx);
1504 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1505 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1506
1507 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1508 key_unlink_sp(sp);
1509 goto out;
1510 }
1511 }
1512 sp = NULL;
1513 out:
1514 mutex_exit(&key_sp_mtx);
1515
1516 return sp;
1517 }
1518
1519 /*
1520 * get SP by index.
1521 * OUT: NULL : not found
1522 * others : found, pointer to a SP.
1523 */
1524 static struct secpolicy *
1525 key_getspbyid(u_int32_t id)
1526 {
1527 struct secpolicy *sp;
1528 int s;
1529
1530 s = pserialize_read_enter();
1531 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1532 if (sp->state == IPSEC_SPSTATE_DEAD)
1533 continue;
1534 if (sp->id == id) {
1535 KEY_SP_REF(sp);
1536 goto out;
1537 }
1538 }
1539
1540 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1541 if (sp->state == IPSEC_SPSTATE_DEAD)
1542 continue;
1543 if (sp->id == id) {
1544 KEY_SP_REF(sp);
1545 goto out;
1546 }
1547 }
1548 out:
1549 pserialize_read_exit(s);
1550 return sp;
1551 }
1552
1553 /*
1554 * get SP by index, remove and return it.
1555 * OUT: NULL : not found
1556 * others : found, pointer to a SP.
1557 */
1558 static struct secpolicy *
1559 key_lookupbyid_and_remove_sp(u_int32_t id)
1560 {
1561 struct secpolicy *sp;
1562
1563 mutex_enter(&key_sp_mtx);
1564 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1565 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1566 if (sp->id == id)
1567 goto out;
1568 }
1569
1570 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1571 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1572 if (sp->id == id)
1573 goto out;
1574 }
1575 out:
1576 if (sp != NULL)
1577 key_unlink_sp(sp);
1578 mutex_exit(&key_sp_mtx);
1579 return sp;
1580 }
1581
1582 struct secpolicy *
1583 key_newsp(const char* where, int tag)
1584 {
1585 struct secpolicy *newsp = NULL;
1586
1587 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1588
1589 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1590 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1591 return newsp;
1592 }
1593
1594 /*
1595 * create secpolicy structure from sadb_x_policy structure.
1596 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1597 * so must be set properly later.
1598 */
1599 struct secpolicy *
1600 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1601 {
1602 struct secpolicy *newsp;
1603
1604 KASSERT(!cpu_softintr_p());
1605 KASSERT(xpl0 != NULL);
1606 KASSERT(len >= sizeof(*xpl0));
1607
1608 if (len != PFKEY_EXTLEN(xpl0)) {
1609 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1610 *error = EINVAL;
1611 return NULL;
1612 }
1613
1614 newsp = KEY_NEWSP();
1615 if (newsp == NULL) {
1616 *error = ENOBUFS;
1617 return NULL;
1618 }
1619
1620 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1621 newsp->policy = xpl0->sadb_x_policy_type;
1622
1623 /* check policy */
1624 switch (xpl0->sadb_x_policy_type) {
1625 case IPSEC_POLICY_DISCARD:
1626 case IPSEC_POLICY_NONE:
1627 case IPSEC_POLICY_ENTRUST:
1628 case IPSEC_POLICY_BYPASS:
1629 newsp->req = NULL;
1630 *error = 0;
1631 return newsp;
1632
1633 case IPSEC_POLICY_IPSEC:
1634 /* Continued */
1635 break;
1636 default:
1637 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1638 key_free_sp(newsp);
1639 *error = EINVAL;
1640 return NULL;
1641 }
1642
1643 /* IPSEC_POLICY_IPSEC */
1644 {
1645 int tlen;
1646 const struct sadb_x_ipsecrequest *xisr;
1647 uint16_t xisr_reqid;
1648 struct ipsecrequest **p_isr = &newsp->req;
1649
1650 /* validity check */
1651 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1652 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1653 *error = EINVAL;
1654 goto free_exit;
1655 }
1656
1657 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1658 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1659
1660 while (tlen > 0) {
1661 /* length check */
1662 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1663 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1664 *error = EINVAL;
1665 goto free_exit;
1666 }
1667
1668 /* allocate request buffer */
1669 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1670
1671 /* set values */
1672 (*p_isr)->next = NULL;
1673
1674 switch (xisr->sadb_x_ipsecrequest_proto) {
1675 case IPPROTO_ESP:
1676 case IPPROTO_AH:
1677 case IPPROTO_IPCOMP:
1678 break;
1679 default:
1680 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1681 xisr->sadb_x_ipsecrequest_proto);
1682 *error = EPROTONOSUPPORT;
1683 goto free_exit;
1684 }
1685 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1686
1687 switch (xisr->sadb_x_ipsecrequest_mode) {
1688 case IPSEC_MODE_TRANSPORT:
1689 case IPSEC_MODE_TUNNEL:
1690 break;
1691 case IPSEC_MODE_ANY:
1692 default:
1693 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1694 xisr->sadb_x_ipsecrequest_mode);
1695 *error = EINVAL;
1696 goto free_exit;
1697 }
1698 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1699
1700 switch (xisr->sadb_x_ipsecrequest_level) {
1701 case IPSEC_LEVEL_DEFAULT:
1702 case IPSEC_LEVEL_USE:
1703 case IPSEC_LEVEL_REQUIRE:
1704 break;
1705 case IPSEC_LEVEL_UNIQUE:
1706 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1707 /* validity check */
1708 /*
1709 * If range violation of reqid, kernel will
1710 * update it, don't refuse it.
1711 */
1712 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1713 IPSECLOG(LOG_DEBUG,
1714 "reqid=%d range "
1715 "violation, updated by kernel.\n",
1716 xisr_reqid);
1717 xisr_reqid = 0;
1718 }
1719
1720 /* allocate new reqid id if reqid is zero. */
1721 if (xisr_reqid == 0) {
1722 u_int16_t reqid = key_newreqid();
1723 if (reqid == 0) {
1724 *error = ENOBUFS;
1725 goto free_exit;
1726 }
1727 (*p_isr)->saidx.reqid = reqid;
1728 } else {
1729 /* set it for manual keying. */
1730 (*p_isr)->saidx.reqid = xisr_reqid;
1731 }
1732 break;
1733
1734 default:
1735 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1736 xisr->sadb_x_ipsecrequest_level);
1737 *error = EINVAL;
1738 goto free_exit;
1739 }
1740 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1741
1742 /* set IP addresses if there */
1743 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1744 const struct sockaddr *paddr;
1745
1746 paddr = (const struct sockaddr *)(xisr + 1);
1747
1748 /* validity check */
1749 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1750 IPSECLOG(LOG_DEBUG, "invalid request "
1751 "address length.\n");
1752 *error = EINVAL;
1753 goto free_exit;
1754 }
1755 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1756
1757 paddr = (const struct sockaddr *)((const char *)paddr
1758 + paddr->sa_len);
1759
1760 /* validity check */
1761 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1762 IPSECLOG(LOG_DEBUG, "invalid request "
1763 "address length.\n");
1764 *error = EINVAL;
1765 goto free_exit;
1766 }
1767 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1768 }
1769
1770 (*p_isr)->sp = newsp;
1771
1772 /* initialization for the next. */
1773 p_isr = &(*p_isr)->next;
1774 tlen -= xisr->sadb_x_ipsecrequest_len;
1775
1776 /* validity check */
1777 if (tlen < 0) {
1778 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1779 *error = EINVAL;
1780 goto free_exit;
1781 }
1782
1783 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1784 xisr->sadb_x_ipsecrequest_len);
1785 }
1786 }
1787
1788 *error = 0;
1789 return newsp;
1790
1791 free_exit:
1792 key_free_sp(newsp);
1793 return NULL;
1794 }
1795
1796 static u_int16_t
1797 key_newreqid(void)
1798 {
1799 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1800
1801 auto_reqid = (auto_reqid == 0xffff ?
1802 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1803
1804 /* XXX should be unique check */
1805
1806 return auto_reqid;
1807 }
1808
1809 /*
1810 * copy secpolicy struct to sadb_x_policy structure indicated.
1811 */
1812 struct mbuf *
1813 key_sp2msg(const struct secpolicy *sp)
1814 {
1815 struct sadb_x_policy *xpl;
1816 int tlen;
1817 char *p;
1818 struct mbuf *m;
1819
1820 KASSERT(sp != NULL);
1821
1822 tlen = key_getspreqmsglen(sp);
1823
1824 m = key_alloc_mbuf(tlen);
1825 if (!m || m->m_next) { /*XXX*/
1826 if (m)
1827 m_freem(m);
1828 return NULL;
1829 }
1830
1831 m->m_len = tlen;
1832 m->m_next = NULL;
1833 xpl = mtod(m, struct sadb_x_policy *);
1834 memset(xpl, 0, tlen);
1835
1836 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1837 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1838 xpl->sadb_x_policy_type = sp->policy;
1839 xpl->sadb_x_policy_dir = sp->spidx.dir;
1840 xpl->sadb_x_policy_id = sp->id;
1841 p = (char *)xpl + sizeof(*xpl);
1842
1843 /* if is the policy for ipsec ? */
1844 if (sp->policy == IPSEC_POLICY_IPSEC) {
1845 struct sadb_x_ipsecrequest *xisr;
1846 struct ipsecrequest *isr;
1847
1848 for (isr = sp->req; isr != NULL; isr = isr->next) {
1849
1850 xisr = (struct sadb_x_ipsecrequest *)p;
1851
1852 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1853 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1854 xisr->sadb_x_ipsecrequest_level = isr->level;
1855 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1856
1857 p += sizeof(*xisr);
1858 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1859 p += isr->saidx.src.sa.sa_len;
1860 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1861 p += isr->saidx.src.sa.sa_len;
1862
1863 xisr->sadb_x_ipsecrequest_len =
1864 PFKEY_ALIGN8(sizeof(*xisr)
1865 + isr->saidx.src.sa.sa_len
1866 + isr->saidx.dst.sa.sa_len);
1867 }
1868 }
1869
1870 return m;
1871 }
1872
1873 /* m will not be freed nor modified */
1874 static struct mbuf *
1875 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1876 int ndeep, int nitem, ...)
1877 {
1878 va_list ap;
1879 int idx;
1880 int i;
1881 struct mbuf *result = NULL, *n;
1882 int len;
1883
1884 KASSERT(m != NULL);
1885 KASSERT(mhp != NULL);
1886
1887 va_start(ap, nitem);
1888 for (i = 0; i < nitem; i++) {
1889 idx = va_arg(ap, int);
1890 if (idx < 0 || idx > SADB_EXT_MAX)
1891 goto fail;
1892 /* don't attempt to pull empty extension */
1893 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1894 continue;
1895 if (idx != SADB_EXT_RESERVED &&
1896 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1897 continue;
1898
1899 if (idx == SADB_EXT_RESERVED) {
1900 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1901 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1902 MGETHDR(n, M_DONTWAIT, MT_DATA);
1903 if (!n)
1904 goto fail;
1905 n->m_len = len;
1906 n->m_next = NULL;
1907 m_copydata(m, 0, sizeof(struct sadb_msg),
1908 mtod(n, void *));
1909 } else if (i < ndeep) {
1910 len = mhp->extlen[idx];
1911 n = key_alloc_mbuf(len);
1912 if (!n || n->m_next) { /*XXX*/
1913 if (n)
1914 m_freem(n);
1915 goto fail;
1916 }
1917 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1918 mtod(n, void *));
1919 } else {
1920 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1921 M_DONTWAIT);
1922 }
1923 if (n == NULL)
1924 goto fail;
1925
1926 if (result)
1927 m_cat(result, n);
1928 else
1929 result = n;
1930 }
1931 va_end(ap);
1932
1933 if (result && (result->m_flags & M_PKTHDR) != 0) {
1934 result->m_pkthdr.len = 0;
1935 for (n = result; n; n = n->m_next)
1936 result->m_pkthdr.len += n->m_len;
1937 }
1938
1939 return result;
1940
1941 fail:
1942 va_end(ap);
1943 m_freem(result);
1944 return NULL;
1945 }
1946
1947 /*
1948 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1949 * add an entry to SP database, when received
1950 * <base, address(SD), (lifetime(H),) policy>
1951 * from the user(?).
1952 * Adding to SP database,
1953 * and send
1954 * <base, address(SD), (lifetime(H),) policy>
1955 * to the socket which was send.
1956 *
1957 * SPDADD set a unique policy entry.
1958 * SPDSETIDX like SPDADD without a part of policy requests.
1959 * SPDUPDATE replace a unique policy entry.
1960 *
1961 * m will always be freed.
1962 */
1963 static int
1964 key_api_spdadd(struct socket *so, struct mbuf *m,
1965 const struct sadb_msghdr *mhp)
1966 {
1967 const struct sockaddr *src, *dst;
1968 const struct sadb_x_policy *xpl0;
1969 struct sadb_x_policy *xpl;
1970 const struct sadb_lifetime *lft = NULL;
1971 struct secpolicyindex spidx;
1972 struct secpolicy *newsp;
1973 int error;
1974
1975 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1976 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1977 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1978 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1979 return key_senderror(so, m, EINVAL);
1980 }
1981 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1982 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1983 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1984 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1985 return key_senderror(so, m, EINVAL);
1986 }
1987 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1988 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
1989 sizeof(struct sadb_lifetime)) {
1990 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
1991 return key_senderror(so, m, EINVAL);
1992 }
1993 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1994 }
1995
1996 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1997
1998 /* checking the direciton. */
1999 switch (xpl0->sadb_x_policy_dir) {
2000 case IPSEC_DIR_INBOUND:
2001 case IPSEC_DIR_OUTBOUND:
2002 break;
2003 default:
2004 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2005 return key_senderror(so, m, EINVAL);
2006 }
2007
2008 /* check policy */
2009 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2010 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2011 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2012 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2013 return key_senderror(so, m, EINVAL);
2014 }
2015
2016 /* policy requests are mandatory when action is ipsec. */
2017 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2018 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2019 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2020 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2021 return key_senderror(so, m, EINVAL);
2022 }
2023
2024 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2025 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2026
2027 /* sanity check on addr pair */
2028 if (src->sa_family != dst->sa_family)
2029 return key_senderror(so, m, EINVAL);
2030 if (src->sa_len != dst->sa_len)
2031 return key_senderror(so, m, EINVAL);
2032
2033 key_init_spidx_bymsghdr(&spidx, mhp);
2034
2035 /*
2036 * checking there is SP already or not.
2037 * SPDUPDATE doesn't depend on whether there is a SP or not.
2038 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2039 * then error.
2040 */
2041 {
2042 struct secpolicy *sp;
2043
2044 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2045 sp = key_lookup_and_remove_sp(&spidx);
2046 if (sp != NULL)
2047 key_destroy_sp(sp);
2048 } else {
2049 sp = key_getsp(&spidx);
2050 if (sp != NULL) {
2051 KEY_SP_UNREF(&sp);
2052 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2053 return key_senderror(so, m, EEXIST);
2054 }
2055 }
2056 }
2057
2058 /* allocation new SP entry */
2059 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2060 if (newsp == NULL) {
2061 return key_senderror(so, m, error);
2062 }
2063
2064 newsp->id = key_getnewspid();
2065 if (newsp->id == 0) {
2066 kmem_free(newsp, sizeof(*newsp));
2067 return key_senderror(so, m, ENOBUFS);
2068 }
2069
2070 newsp->spidx = spidx;
2071 newsp->created = time_uptime;
2072 newsp->lastused = newsp->created;
2073 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2074 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2075
2076 key_init_sp(newsp);
2077
2078 mutex_enter(&key_sp_mtx);
2079 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2080 mutex_exit(&key_sp_mtx);
2081
2082 #ifdef notyet
2083 /* delete the entry in spacqtree */
2084 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2085 struct secspacq *spacq = key_getspacq(&spidx);
2086 if (spacq != NULL) {
2087 /* reset counter in order to deletion by timehandler. */
2088 spacq->created = time_uptime;
2089 spacq->count = 0;
2090 }
2091 }
2092 #endif
2093
2094 /* Invalidate all cached SPD pointers in the PCBs. */
2095 ipsec_invalpcbcacheall();
2096
2097 #if defined(GATEWAY)
2098 /* Invalidate the ipflow cache, as well. */
2099 ipflow_invalidate_all(0);
2100 #ifdef INET6
2101 if (in6_present)
2102 ip6flow_invalidate_all(0);
2103 #endif /* INET6 */
2104 #endif /* GATEWAY */
2105
2106 key_update_used();
2107
2108 {
2109 struct mbuf *n, *mpolicy;
2110 int off;
2111
2112 /* create new sadb_msg to reply. */
2113 if (lft) {
2114 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2115 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2116 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2117 } else {
2118 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2119 SADB_X_EXT_POLICY,
2120 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2121 }
2122 if (!n)
2123 return key_senderror(so, m, ENOBUFS);
2124
2125 n = key_fill_replymsg(n, 0);
2126 if (n == NULL)
2127 return key_senderror(so, m, ENOBUFS);
2128
2129 off = 0;
2130 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2131 sizeof(*xpl), &off);
2132 if (mpolicy == NULL) {
2133 /* n is already freed */
2134 return key_senderror(so, m, ENOBUFS);
2135 }
2136 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2137 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2138 m_freem(n);
2139 return key_senderror(so, m, EINVAL);
2140 }
2141 xpl->sadb_x_policy_id = newsp->id;
2142
2143 m_freem(m);
2144 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2145 }
2146 }
2147
2148 /*
2149 * get new policy id.
2150 * OUT:
2151 * 0: failure.
2152 * others: success.
2153 */
2154 static u_int32_t
2155 key_getnewspid(void)
2156 {
2157 u_int32_t newid = 0;
2158 int count = key_spi_trycnt; /* XXX */
2159 struct secpolicy *sp;
2160
2161 /* when requesting to allocate spi ranged */
2162 while (count--) {
2163 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2164
2165 sp = key_getspbyid(newid);
2166 if (sp == NULL)
2167 break;
2168
2169 KEY_SP_UNREF(&sp);
2170 }
2171
2172 if (count == 0 || newid == 0) {
2173 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2174 return 0;
2175 }
2176
2177 return newid;
2178 }
2179
2180 /*
2181 * SADB_SPDDELETE processing
2182 * receive
2183 * <base, address(SD), policy(*)>
2184 * from the user(?), and set SADB_SASTATE_DEAD,
2185 * and send,
2186 * <base, address(SD), policy(*)>
2187 * to the ikmpd.
2188 * policy(*) including direction of policy.
2189 *
2190 * m will always be freed.
2191 */
2192 static int
2193 key_api_spddelete(struct socket *so, struct mbuf *m,
2194 const struct sadb_msghdr *mhp)
2195 {
2196 struct sadb_x_policy *xpl0;
2197 struct secpolicyindex spidx;
2198 struct secpolicy *sp;
2199
2200 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2201 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2202 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2203 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2204 return key_senderror(so, m, EINVAL);
2205 }
2206 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2207 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2208 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2209 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2210 return key_senderror(so, m, EINVAL);
2211 }
2212
2213 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2214
2215 /* checking the direciton. */
2216 switch (xpl0->sadb_x_policy_dir) {
2217 case IPSEC_DIR_INBOUND:
2218 case IPSEC_DIR_OUTBOUND:
2219 break;
2220 default:
2221 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2222 return key_senderror(so, m, EINVAL);
2223 }
2224
2225 /* make secindex */
2226 key_init_spidx_bymsghdr(&spidx, mhp);
2227
2228 /* Is there SP in SPD ? */
2229 sp = key_lookup_and_remove_sp(&spidx);
2230 if (sp == NULL) {
2231 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2232 return key_senderror(so, m, EINVAL);
2233 }
2234
2235 /* save policy id to buffer to be returned. */
2236 xpl0->sadb_x_policy_id = sp->id;
2237
2238 key_destroy_sp(sp);
2239
2240 /* We're deleting policy; no need to invalidate the ipflow cache. */
2241
2242 {
2243 struct mbuf *n;
2244
2245 /* create new sadb_msg to reply. */
2246 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2247 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2248 if (!n)
2249 return key_senderror(so, m, ENOBUFS);
2250
2251 n = key_fill_replymsg(n, 0);
2252 if (n == NULL)
2253 return key_senderror(so, m, ENOBUFS);
2254
2255 m_freem(m);
2256 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2257 }
2258 }
2259
2260 /*
2261 * SADB_SPDDELETE2 processing
2262 * receive
2263 * <base, policy(*)>
2264 * from the user(?), and set SADB_SASTATE_DEAD,
2265 * and send,
2266 * <base, policy(*)>
2267 * to the ikmpd.
2268 * policy(*) including direction of policy.
2269 *
2270 * m will always be freed.
2271 */
2272 static int
2273 key_api_spddelete2(struct socket *so, struct mbuf *m,
2274 const struct sadb_msghdr *mhp)
2275 {
2276 u_int32_t id;
2277 struct secpolicy *sp;
2278
2279 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2280 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2281 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2282 return key_senderror(so, m, EINVAL);
2283 }
2284
2285 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2286
2287 /* Is there SP in SPD ? */
2288 sp = key_lookupbyid_and_remove_sp(id);
2289 if (sp == NULL) {
2290 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2291 return key_senderror(so, m, EINVAL);
2292 }
2293
2294 key_destroy_sp(sp);
2295
2296 /* We're deleting policy; no need to invalidate the ipflow cache. */
2297
2298 {
2299 struct mbuf *n, *nn;
2300 int off, len;
2301
2302 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2303
2304 /* create new sadb_msg to reply. */
2305 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2306
2307 MGETHDR(n, M_DONTWAIT, MT_DATA);
2308 if (n && len > MHLEN) {
2309 MCLGET(n, M_DONTWAIT);
2310 if ((n->m_flags & M_EXT) == 0) {
2311 m_freem(n);
2312 n = NULL;
2313 }
2314 }
2315 if (!n)
2316 return key_senderror(so, m, ENOBUFS);
2317
2318 n->m_len = len;
2319 n->m_next = NULL;
2320 off = 0;
2321
2322 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2323 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2324
2325 KASSERTMSG(off == len, "length inconsistency");
2326
2327 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2328 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2329 if (!n->m_next) {
2330 m_freem(n);
2331 return key_senderror(so, m, ENOBUFS);
2332 }
2333
2334 n->m_pkthdr.len = 0;
2335 for (nn = n; nn; nn = nn->m_next)
2336 n->m_pkthdr.len += nn->m_len;
2337
2338 n = key_fill_replymsg(n, 0);
2339 if (n == NULL)
2340 return key_senderror(so, m, ENOBUFS);
2341
2342 m_freem(m);
2343 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2344 }
2345 }
2346
2347 /*
2348 * SADB_X_GET processing
2349 * receive
2350 * <base, policy(*)>
2351 * from the user(?),
2352 * and send,
2353 * <base, address(SD), policy>
2354 * to the ikmpd.
2355 * policy(*) including direction of policy.
2356 *
2357 * m will always be freed.
2358 */
2359 static int
2360 key_api_spdget(struct socket *so, struct mbuf *m,
2361 const struct sadb_msghdr *mhp)
2362 {
2363 u_int32_t id;
2364 struct secpolicy *sp;
2365 struct mbuf *n;
2366
2367 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2368 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2369 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2370 return key_senderror(so, m, EINVAL);
2371 }
2372
2373 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2374
2375 /* Is there SP in SPD ? */
2376 sp = key_getspbyid(id);
2377 if (sp == NULL) {
2378 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2379 return key_senderror(so, m, ENOENT);
2380 }
2381
2382 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2383 mhp->msg->sadb_msg_pid);
2384 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2385 if (n != NULL) {
2386 m_freem(m);
2387 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2388 } else
2389 return key_senderror(so, m, ENOBUFS);
2390 }
2391
2392 #ifdef notyet
2393 /*
2394 * SADB_X_SPDACQUIRE processing.
2395 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2396 * send
2397 * <base, policy(*)>
2398 * to KMD, and expect to receive
2399 * <base> with SADB_X_SPDACQUIRE if error occurred,
2400 * or
2401 * <base, policy>
2402 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2403 * policy(*) is without policy requests.
2404 *
2405 * 0 : succeed
2406 * others: error number
2407 */
2408 int
2409 key_spdacquire(const struct secpolicy *sp)
2410 {
2411 struct mbuf *result = NULL, *m;
2412 struct secspacq *newspacq;
2413 int error;
2414
2415 KASSERT(sp != NULL);
2416 KASSERTMSG(sp->req == NULL, "called but there is request");
2417 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2418 "policy mismathed. IPsec is expected");
2419
2420 /* Get an entry to check whether sent message or not. */
2421 newspacq = key_getspacq(&sp->spidx);
2422 if (newspacq != NULL) {
2423 if (key_blockacq_count < newspacq->count) {
2424 /* reset counter and do send message. */
2425 newspacq->count = 0;
2426 } else {
2427 /* increment counter and do nothing. */
2428 newspacq->count++;
2429 return 0;
2430 }
2431 } else {
2432 /* make new entry for blocking to send SADB_ACQUIRE. */
2433 newspacq = key_newspacq(&sp->spidx);
2434 if (newspacq == NULL)
2435 return ENOBUFS;
2436
2437 /* add to acqtree */
2438 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2439 }
2440
2441 /* create new sadb_msg to reply. */
2442 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2443 if (!m) {
2444 error = ENOBUFS;
2445 goto fail;
2446 }
2447 result = m;
2448
2449 result->m_pkthdr.len = 0;
2450 for (m = result; m; m = m->m_next)
2451 result->m_pkthdr.len += m->m_len;
2452
2453 mtod(result, struct sadb_msg *)->sadb_msg_len =
2454 PFKEY_UNIT64(result->m_pkthdr.len);
2455
2456 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2457
2458 fail:
2459 if (result)
2460 m_freem(result);
2461 return error;
2462 }
2463 #endif /* notyet */
2464
2465 /*
2466 * SADB_SPDFLUSH processing
2467 * receive
2468 * <base>
2469 * from the user, and free all entries in secpctree.
2470 * and send,
2471 * <base>
2472 * to the user.
2473 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2474 *
2475 * m will always be freed.
2476 */
2477 static int
2478 key_api_spdflush(struct socket *so, struct mbuf *m,
2479 const struct sadb_msghdr *mhp)
2480 {
2481 struct sadb_msg *newmsg;
2482 struct secpolicy *sp;
2483 u_int dir;
2484
2485 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2486 return key_senderror(so, m, EINVAL);
2487
2488 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2489 retry:
2490 mutex_enter(&key_sp_mtx);
2491 SPLIST_WRITER_FOREACH(sp, dir) {
2492 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2493 key_unlink_sp(sp);
2494 mutex_exit(&key_sp_mtx);
2495 key_destroy_sp(sp);
2496 goto retry;
2497 }
2498 mutex_exit(&key_sp_mtx);
2499 }
2500
2501 /* We're deleting policy; no need to invalidate the ipflow cache. */
2502
2503 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2504 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2505 return key_senderror(so, m, ENOBUFS);
2506 }
2507
2508 if (m->m_next)
2509 m_freem(m->m_next);
2510 m->m_next = NULL;
2511 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2512 newmsg = mtod(m, struct sadb_msg *);
2513 newmsg->sadb_msg_errno = 0;
2514 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2515
2516 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2517 }
2518
2519 static struct sockaddr key_src = {
2520 .sa_len = 2,
2521 .sa_family = PF_KEY,
2522 };
2523
2524 static struct mbuf *
2525 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2526 {
2527 struct secpolicy *sp;
2528 int cnt;
2529 u_int dir;
2530 struct mbuf *m, *n, *prev;
2531 int totlen;
2532
2533 KASSERT(mutex_owned(&key_sp_mtx));
2534
2535 *lenp = 0;
2536
2537 /* search SPD entry and get buffer size. */
2538 cnt = 0;
2539 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2540 SPLIST_WRITER_FOREACH(sp, dir) {
2541 cnt++;
2542 }
2543 }
2544
2545 if (cnt == 0) {
2546 *errorp = ENOENT;
2547 return (NULL);
2548 }
2549
2550 m = NULL;
2551 prev = m;
2552 totlen = 0;
2553 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2554 SPLIST_WRITER_FOREACH(sp, dir) {
2555 --cnt;
2556 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2557
2558 if (!n) {
2559 *errorp = ENOBUFS;
2560 if (m)
2561 m_freem(m);
2562 return (NULL);
2563 }
2564
2565 totlen += n->m_pkthdr.len;
2566 if (!m) {
2567 m = n;
2568 } else {
2569 prev->m_nextpkt = n;
2570 }
2571 prev = n;
2572 }
2573 }
2574
2575 *lenp = totlen;
2576 *errorp = 0;
2577 return (m);
2578 }
2579
2580 /*
2581 * SADB_SPDDUMP processing
2582 * receive
2583 * <base>
2584 * from the user, and dump all SP leaves
2585 * and send,
2586 * <base> .....
2587 * to the ikmpd.
2588 *
2589 * m will always be freed.
2590 */
2591 static int
2592 key_api_spddump(struct socket *so, struct mbuf *m0,
2593 const struct sadb_msghdr *mhp)
2594 {
2595 struct mbuf *n;
2596 int error, len;
2597 int ok;
2598 pid_t pid;
2599
2600 pid = mhp->msg->sadb_msg_pid;
2601 /*
2602 * If the requestor has insufficient socket-buffer space
2603 * for the entire chain, nobody gets any response to the DUMP.
2604 * XXX For now, only the requestor ever gets anything.
2605 * Moreover, if the requestor has any space at all, they receive
2606 * the entire chain, otherwise the request is refused with ENOBUFS.
2607 */
2608 if (sbspace(&so->so_rcv) <= 0) {
2609 return key_senderror(so, m0, ENOBUFS);
2610 }
2611
2612 mutex_enter(&key_sp_mtx);
2613 n = key_setspddump_chain(&error, &len, pid);
2614 mutex_exit(&key_sp_mtx);
2615
2616 if (n == NULL) {
2617 return key_senderror(so, m0, ENOENT);
2618 }
2619 {
2620 uint64_t *ps = PFKEY_STAT_GETREF();
2621 ps[PFKEY_STAT_IN_TOTAL]++;
2622 ps[PFKEY_STAT_IN_BYTES] += len;
2623 PFKEY_STAT_PUTREF();
2624 }
2625
2626 /*
2627 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2628 * The requestor receives either the entire chain, or an
2629 * error message with ENOBUFS.
2630 */
2631
2632 /*
2633 * sbappendchainwith record takes the chain of entries, one
2634 * packet-record per SPD entry, prepends the key_src sockaddr
2635 * to each packet-record, links the sockaddr mbufs into a new
2636 * list of records, then appends the entire resulting
2637 * list to the requesting socket.
2638 */
2639 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2640 SB_PRIO_ONESHOT_OVERFLOW);
2641
2642 if (!ok) {
2643 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2644 m_freem(n);
2645 return key_senderror(so, m0, ENOBUFS);
2646 }
2647
2648 m_freem(m0);
2649 return error;
2650 }
2651
2652 /*
2653 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2654 */
2655 static int
2656 key_api_nat_map(struct socket *so, struct mbuf *m,
2657 const struct sadb_msghdr *mhp)
2658 {
2659 struct sadb_x_nat_t_type *type;
2660 struct sadb_x_nat_t_port *sport;
2661 struct sadb_x_nat_t_port *dport;
2662 struct sadb_address *iaddr, *raddr;
2663 struct sadb_x_nat_t_frag *frag;
2664
2665 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2666 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2667 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2668 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2669 return key_senderror(so, m, EINVAL);
2670 }
2671 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2672 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2673 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2674 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2675 return key_senderror(so, m, EINVAL);
2676 }
2677
2678 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2679 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2680 IPSECLOG(LOG_DEBUG, "invalid message\n");
2681 return key_senderror(so, m, EINVAL);
2682 }
2683
2684 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2685 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2686 IPSECLOG(LOG_DEBUG, "invalid message\n");
2687 return key_senderror(so, m, EINVAL);
2688 }
2689
2690 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2691 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2692 IPSECLOG(LOG_DEBUG, "invalid message\n");
2693 return key_senderror(so, m, EINVAL);
2694 }
2695
2696 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2697 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2698 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2699 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2700 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2701 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2702
2703 /*
2704 * XXX handle that, it should also contain a SA, or anything
2705 * that enable to update the SA information.
2706 */
2707
2708 return 0;
2709 }
2710
2711 static struct mbuf *
2712 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2713 {
2714 struct mbuf *result = NULL, *m;
2715
2716 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2717 key_sp_refcnt(sp));
2718 if (!m)
2719 goto fail;
2720 result = m;
2721
2722 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2723 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2724 if (!m)
2725 goto fail;
2726 m_cat(result, m);
2727
2728 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2729 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2730 if (!m)
2731 goto fail;
2732 m_cat(result, m);
2733
2734 m = key_sp2msg(sp);
2735 if (!m)
2736 goto fail;
2737 m_cat(result, m);
2738
2739 if ((result->m_flags & M_PKTHDR) == 0)
2740 goto fail;
2741
2742 if (result->m_len < sizeof(struct sadb_msg)) {
2743 result = m_pullup(result, sizeof(struct sadb_msg));
2744 if (result == NULL)
2745 goto fail;
2746 }
2747
2748 result->m_pkthdr.len = 0;
2749 for (m = result; m; m = m->m_next)
2750 result->m_pkthdr.len += m->m_len;
2751
2752 mtod(result, struct sadb_msg *)->sadb_msg_len =
2753 PFKEY_UNIT64(result->m_pkthdr.len);
2754
2755 return result;
2756
2757 fail:
2758 m_freem(result);
2759 return NULL;
2760 }
2761
2762 /*
2763 * get PFKEY message length for security policy and request.
2764 */
2765 static u_int
2766 key_getspreqmsglen(const struct secpolicy *sp)
2767 {
2768 u_int tlen;
2769
2770 tlen = sizeof(struct sadb_x_policy);
2771
2772 /* if is the policy for ipsec ? */
2773 if (sp->policy != IPSEC_POLICY_IPSEC)
2774 return tlen;
2775
2776 /* get length of ipsec requests */
2777 {
2778 const struct ipsecrequest *isr;
2779 int len;
2780
2781 for (isr = sp->req; isr != NULL; isr = isr->next) {
2782 len = sizeof(struct sadb_x_ipsecrequest)
2783 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2784
2785 tlen += PFKEY_ALIGN8(len);
2786 }
2787 }
2788
2789 return tlen;
2790 }
2791
2792 /*
2793 * SADB_SPDEXPIRE processing
2794 * send
2795 * <base, address(SD), lifetime(CH), policy>
2796 * to KMD by PF_KEY.
2797 *
2798 * OUT: 0 : succeed
2799 * others : error number
2800 */
2801 static int
2802 key_spdexpire(struct secpolicy *sp)
2803 {
2804 int s;
2805 struct mbuf *result = NULL, *m;
2806 int len;
2807 int error = -1;
2808 struct sadb_lifetime *lt;
2809
2810 /* XXX: Why do we lock ? */
2811 s = splsoftnet(); /*called from softclock()*/
2812
2813 KASSERT(sp != NULL);
2814
2815 /* set msg header */
2816 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2817 if (!m) {
2818 error = ENOBUFS;
2819 goto fail;
2820 }
2821 result = m;
2822
2823 /* create lifetime extension (current and hard) */
2824 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2825 m = key_alloc_mbuf(len);
2826 if (!m || m->m_next) { /*XXX*/
2827 if (m)
2828 m_freem(m);
2829 error = ENOBUFS;
2830 goto fail;
2831 }
2832 memset(mtod(m, void *), 0, len);
2833 lt = mtod(m, struct sadb_lifetime *);
2834 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2835 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2836 lt->sadb_lifetime_allocations = 0;
2837 lt->sadb_lifetime_bytes = 0;
2838 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2839 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2840 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2841 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2842 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2843 lt->sadb_lifetime_allocations = 0;
2844 lt->sadb_lifetime_bytes = 0;
2845 lt->sadb_lifetime_addtime = sp->lifetime;
2846 lt->sadb_lifetime_usetime = sp->validtime;
2847 m_cat(result, m);
2848
2849 /* set sadb_address for source */
2850 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2851 sp->spidx.prefs, sp->spidx.ul_proto);
2852 if (!m) {
2853 error = ENOBUFS;
2854 goto fail;
2855 }
2856 m_cat(result, m);
2857
2858 /* set sadb_address for destination */
2859 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2860 sp->spidx.prefd, sp->spidx.ul_proto);
2861 if (!m) {
2862 error = ENOBUFS;
2863 goto fail;
2864 }
2865 m_cat(result, m);
2866
2867 /* set secpolicy */
2868 m = key_sp2msg(sp);
2869 if (!m) {
2870 error = ENOBUFS;
2871 goto fail;
2872 }
2873 m_cat(result, m);
2874
2875 if ((result->m_flags & M_PKTHDR) == 0) {
2876 error = EINVAL;
2877 goto fail;
2878 }
2879
2880 if (result->m_len < sizeof(struct sadb_msg)) {
2881 result = m_pullup(result, sizeof(struct sadb_msg));
2882 if (result == NULL) {
2883 error = ENOBUFS;
2884 goto fail;
2885 }
2886 }
2887
2888 result->m_pkthdr.len = 0;
2889 for (m = result; m; m = m->m_next)
2890 result->m_pkthdr.len += m->m_len;
2891
2892 mtod(result, struct sadb_msg *)->sadb_msg_len =
2893 PFKEY_UNIT64(result->m_pkthdr.len);
2894
2895 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2896
2897 fail:
2898 if (result)
2899 m_freem(result);
2900 splx(s);
2901 return error;
2902 }
2903
2904 /* %%% SAD management */
2905 /*
2906 * allocating a memory for new SA head, and copy from the values of mhp.
2907 * OUT: NULL : failure due to the lack of memory.
2908 * others : pointer to new SA head.
2909 */
2910 static struct secashead *
2911 key_newsah(const struct secasindex *saidx)
2912 {
2913 struct secashead *newsah;
2914 int i;
2915
2916 KASSERT(saidx != NULL);
2917
2918 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2919 for (i = 0; i < __arraycount(newsah->savtree); i++)
2920 PSLIST_INIT(&newsah->savtree[i]);
2921 newsah->saidx = *saidx;
2922
2923 /* add to saidxtree */
2924 newsah->state = SADB_SASTATE_MATURE;
2925 SAHLIST_ENTRY_INIT(newsah);
2926 mutex_enter(&key_sa_mtx);
2927 SAHLIST_WRITER_INSERT_HEAD(newsah);
2928 mutex_exit(&key_sa_mtx);
2929
2930 return newsah;
2931 }
2932
2933 /*
2934 * delete SA index and all SA registerd.
2935 */
2936 static void
2937 key_delsah(struct secashead *sah)
2938 {
2939 struct secasvar *sav;
2940 u_int state;
2941 int s;
2942 int zombie = 0;
2943
2944 KASSERT(!cpu_softintr_p());
2945 KASSERT(sah != NULL);
2946
2947 s = splsoftnet();
2948
2949 /* searching all SA registerd in the secindex. */
2950 SASTATE_ANY_FOREACH(state) {
2951 SAVLIST_READER_FOREACH(sav, sah, state) {
2952 /* give up to delete this sa */
2953 zombie++;
2954 }
2955 }
2956
2957 /* don't delete sah only if there are savs. */
2958 if (zombie) {
2959 splx(s);
2960 return;
2961 }
2962
2963 rtcache_free(&sah->sa_route);
2964
2965 /* remove from tree of SA index */
2966 SAHLIST_WRITER_REMOVE(sah);
2967
2968 if (sah->idents != NULL)
2969 kmem_free(sah->idents, sah->idents_len);
2970 if (sah->identd != NULL)
2971 kmem_free(sah->identd, sah->identd_len);
2972
2973 SAHLIST_ENTRY_DESTROY(sah);
2974 kmem_free(sah, sizeof(*sah));
2975
2976 splx(s);
2977 return;
2978 }
2979
2980 /*
2981 * allocating a new SA with LARVAL state.
2982 * key_api_add() and key_api_getspi() call,
2983 * and copy the values of mhp into new buffer.
2984 * When SAD message type is GETSPI:
2985 * to set sequence number from acq_seq++,
2986 * to set zero to SPI.
2987 * not to call key_setsava().
2988 * OUT: NULL : fail
2989 * others : pointer to new secasvar.
2990 *
2991 * does not modify mbuf. does not free mbuf on error.
2992 */
2993 static struct secasvar *
2994 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2995 int *errp, const char* where, int tag)
2996 {
2997 struct secasvar *newsav;
2998 const struct sadb_sa *xsa;
2999
3000 KASSERT(!cpu_softintr_p());
3001 KASSERT(m != NULL);
3002 KASSERT(mhp != NULL);
3003 KASSERT(mhp->msg != NULL);
3004
3005 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3006
3007 switch (mhp->msg->sadb_msg_type) {
3008 case SADB_GETSPI:
3009 newsav->spi = 0;
3010
3011 #ifdef IPSEC_DOSEQCHECK
3012 /* sync sequence number */
3013 if (mhp->msg->sadb_msg_seq == 0)
3014 newsav->seq =
3015 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3016 else
3017 #endif
3018 newsav->seq = mhp->msg->sadb_msg_seq;
3019 break;
3020
3021 case SADB_ADD:
3022 /* sanity check */
3023 if (mhp->ext[SADB_EXT_SA] == NULL) {
3024 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3025 *errp = EINVAL;
3026 goto error;
3027 }
3028 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3029 newsav->spi = xsa->sadb_sa_spi;
3030 newsav->seq = mhp->msg->sadb_msg_seq;
3031 break;
3032 default:
3033 *errp = EINVAL;
3034 goto error;
3035 }
3036
3037 /* copy sav values */
3038 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3039 *errp = key_setsaval(newsav, m, mhp);
3040 if (*errp)
3041 goto error;
3042 } else {
3043 /* We don't allow lft_c to be NULL */
3044 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3045 KM_SLEEP);
3046 }
3047
3048 /* reset created */
3049 newsav->created = time_uptime;
3050 newsav->pid = mhp->msg->sadb_msg_pid;
3051
3052 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3053 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3054 return newsav;
3055
3056 error:
3057 KASSERT(*errp != 0);
3058 kmem_free(newsav, sizeof(*newsav));
3059 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3060 "DP from %s:%u return SA:NULL\n", where, tag);
3061 return NULL;
3062 }
3063
3064
3065 static void
3066 key_clear_xform(struct secasvar *sav)
3067 {
3068
3069 /*
3070 * Cleanup xform state. Note that zeroize'ing causes the
3071 * keys to be cleared; otherwise we must do it ourself.
3072 */
3073 if (sav->tdb_xform != NULL) {
3074 sav->tdb_xform->xf_zeroize(sav);
3075 sav->tdb_xform = NULL;
3076 } else {
3077 if (sav->key_auth != NULL)
3078 explicit_memset(_KEYBUF(sav->key_auth), 0,
3079 _KEYLEN(sav->key_auth));
3080 if (sav->key_enc != NULL)
3081 explicit_memset(_KEYBUF(sav->key_enc), 0,
3082 _KEYLEN(sav->key_enc));
3083 }
3084 }
3085
3086 /*
3087 * free() SA variable entry.
3088 */
3089 static void
3090 key_delsav(struct secasvar *sav)
3091 {
3092
3093 KASSERT(sav != NULL);
3094 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3095
3096 key_clear_xform(sav);
3097 key_freesaval(sav);
3098 SAVLIST_ENTRY_DESTROY(sav);
3099 kmem_intr_free(sav, sizeof(*sav));
3100
3101 return;
3102 }
3103
3104 /*
3105 * search SAD.
3106 * OUT:
3107 * NULL : not found
3108 * others : found, pointer to a SA.
3109 */
3110 static struct secashead *
3111 key_getsah(const struct secasindex *saidx, int flag)
3112 {
3113 struct secashead *sah;
3114
3115 SAHLIST_READER_FOREACH(sah) {
3116 if (sah->state == SADB_SASTATE_DEAD)
3117 continue;
3118 if (key_saidx_match(&sah->saidx, saidx, flag))
3119 return sah;
3120 }
3121
3122 return NULL;
3123 }
3124
3125 /*
3126 * check not to be duplicated SPI.
3127 * NOTE: this function is too slow due to searching all SAD.
3128 * OUT:
3129 * NULL : not found
3130 * others : found, pointer to a SA.
3131 */
3132 static bool
3133 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3134 {
3135 struct secashead *sah;
3136 struct secasvar *sav;
3137
3138 /* check address family */
3139 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3140 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3141 return false;
3142 }
3143
3144 /* check all SAD */
3145 SAHLIST_READER_FOREACH(sah) {
3146 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3147 continue;
3148 sav = key_getsavbyspi(sah, spi);
3149 if (sav != NULL) {
3150 KEY_SA_UNREF(&sav);
3151 return true;
3152 }
3153 }
3154
3155 return false;
3156 }
3157
3158 /*
3159 * search SAD litmited alive SA, protocol, SPI.
3160 * OUT:
3161 * NULL : not found
3162 * others : found, pointer to a SA.
3163 */
3164 static struct secasvar *
3165 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3166 {
3167 struct secasvar *sav = NULL;
3168 u_int state;
3169 int s;
3170
3171 /* search all status */
3172 s = pserialize_read_enter();
3173 SASTATE_ALIVE_FOREACH(state) {
3174 SAVLIST_READER_FOREACH(sav, sah, state) {
3175 /* sanity check */
3176 if (sav->state != state) {
3177 IPSECLOG(LOG_DEBUG,
3178 "invalid sav->state (queue: %d SA: %d)\n",
3179 state, sav->state);
3180 continue;
3181 }
3182
3183 if (sav->spi == spi) {
3184 SA_ADDREF(sav);
3185 goto out;
3186 }
3187 }
3188 }
3189 out:
3190 pserialize_read_exit(s);
3191
3192 return sav;
3193 }
3194
3195 /*
3196 * Free allocated data to member variables of sav:
3197 * sav->replay, sav->key_* and sav->lft_*.
3198 */
3199 static void
3200 key_freesaval(struct secasvar *sav)
3201 {
3202
3203 KASSERT(sav->refcnt == 0);
3204
3205 if (sav->replay != NULL)
3206 kmem_intr_free(sav->replay, sav->replay_len);
3207 if (sav->key_auth != NULL)
3208 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3209 if (sav->key_enc != NULL)
3210 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3211 if (sav->lft_c != NULL)
3212 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3213 if (sav->lft_h != NULL)
3214 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3215 if (sav->lft_s != NULL)
3216 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3217 }
3218
3219 /*
3220 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3221 * You must update these if need.
3222 * OUT: 0: success.
3223 * !0: failure.
3224 *
3225 * does not modify mbuf. does not free mbuf on error.
3226 */
3227 static int
3228 key_setsaval(struct secasvar *sav, struct mbuf *m,
3229 const struct sadb_msghdr *mhp)
3230 {
3231 int error = 0;
3232
3233 KASSERT(!cpu_softintr_p());
3234 KASSERT(m != NULL);
3235 KASSERT(mhp != NULL);
3236 KASSERT(mhp->msg != NULL);
3237
3238 /* We shouldn't initialize sav variables while someone uses it. */
3239 KASSERT(sav->refcnt == 0);
3240
3241 /* SA */
3242 if (mhp->ext[SADB_EXT_SA] != NULL) {
3243 const struct sadb_sa *sa0;
3244
3245 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3246 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3247 error = EINVAL;
3248 goto fail;
3249 }
3250
3251 sav->alg_auth = sa0->sadb_sa_auth;
3252 sav->alg_enc = sa0->sadb_sa_encrypt;
3253 sav->flags = sa0->sadb_sa_flags;
3254
3255 /* replay window */
3256 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3257 size_t len = sizeof(struct secreplay) +
3258 sa0->sadb_sa_replay;
3259 sav->replay = kmem_zalloc(len, KM_SLEEP);
3260 sav->replay_len = len;
3261 if (sa0->sadb_sa_replay != 0)
3262 sav->replay->bitmap = (char*)(sav->replay+1);
3263 sav->replay->wsize = sa0->sadb_sa_replay;
3264 }
3265 }
3266
3267 /* Authentication keys */
3268 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3269 const struct sadb_key *key0;
3270 int len;
3271
3272 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3273 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3274
3275 error = 0;
3276 if (len < sizeof(*key0)) {
3277 error = EINVAL;
3278 goto fail;
3279 }
3280 switch (mhp->msg->sadb_msg_satype) {
3281 case SADB_SATYPE_AH:
3282 case SADB_SATYPE_ESP:
3283 case SADB_X_SATYPE_TCPSIGNATURE:
3284 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3285 sav->alg_auth != SADB_X_AALG_NULL)
3286 error = EINVAL;
3287 break;
3288 case SADB_X_SATYPE_IPCOMP:
3289 default:
3290 error = EINVAL;
3291 break;
3292 }
3293 if (error) {
3294 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3295 goto fail;
3296 }
3297
3298 sav->key_auth = key_newbuf(key0, len);
3299 sav->key_auth_len = len;
3300 }
3301
3302 /* Encryption key */
3303 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3304 const struct sadb_key *key0;
3305 int len;
3306
3307 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3308 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3309
3310 error = 0;
3311 if (len < sizeof(*key0)) {
3312 error = EINVAL;
3313 goto fail;
3314 }
3315 switch (mhp->msg->sadb_msg_satype) {
3316 case SADB_SATYPE_ESP:
3317 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3318 sav->alg_enc != SADB_EALG_NULL) {
3319 error = EINVAL;
3320 break;
3321 }
3322 sav->key_enc = key_newbuf(key0, len);
3323 sav->key_enc_len = len;
3324 break;
3325 case SADB_X_SATYPE_IPCOMP:
3326 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3327 error = EINVAL;
3328 sav->key_enc = NULL; /*just in case*/
3329 break;
3330 case SADB_SATYPE_AH:
3331 case SADB_X_SATYPE_TCPSIGNATURE:
3332 default:
3333 error = EINVAL;
3334 break;
3335 }
3336 if (error) {
3337 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3338 goto fail;
3339 }
3340 }
3341
3342 /* set iv */
3343 sav->ivlen = 0;
3344
3345 switch (mhp->msg->sadb_msg_satype) {
3346 case SADB_SATYPE_AH:
3347 error = xform_init(sav, XF_AH);
3348 break;
3349 case SADB_SATYPE_ESP:
3350 error = xform_init(sav, XF_ESP);
3351 break;
3352 case SADB_X_SATYPE_IPCOMP:
3353 error = xform_init(sav, XF_IPCOMP);
3354 break;
3355 case SADB_X_SATYPE_TCPSIGNATURE:
3356 error = xform_init(sav, XF_TCPSIGNATURE);
3357 break;
3358 }
3359 if (error) {
3360 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3361 mhp->msg->sadb_msg_satype);
3362 goto fail;
3363 }
3364
3365 /* reset created */
3366 sav->created = time_uptime;
3367
3368 /* make lifetime for CURRENT */
3369 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3370
3371 sav->lft_c->sadb_lifetime_len =
3372 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3373 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3374 sav->lft_c->sadb_lifetime_allocations = 0;
3375 sav->lft_c->sadb_lifetime_bytes = 0;
3376 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3377 sav->lft_c->sadb_lifetime_usetime = 0;
3378
3379 /* lifetimes for HARD and SOFT */
3380 {
3381 const struct sadb_lifetime *lft0;
3382
3383 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3384 if (lft0 != NULL) {
3385 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3386 error = EINVAL;
3387 goto fail;
3388 }
3389 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3390 }
3391
3392 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3393 if (lft0 != NULL) {
3394 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3395 error = EINVAL;
3396 goto fail;
3397 }
3398 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3399 /* to be initialize ? */
3400 }
3401 }
3402
3403 return 0;
3404
3405 fail:
3406 key_clear_xform(sav);
3407 key_freesaval(sav);
3408
3409 return error;
3410 }
3411
3412 /*
3413 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3414 * OUT: 0: valid
3415 * other: errno
3416 */
3417 static int
3418 key_init_xform(struct secasvar *sav)
3419 {
3420 int error;
3421
3422 /* We shouldn't initialize sav variables while someone uses it. */
3423 KASSERT(sav->refcnt == 0);
3424
3425 /* check SPI value */
3426 switch (sav->sah->saidx.proto) {
3427 case IPPROTO_ESP:
3428 case IPPROTO_AH:
3429 if (ntohl(sav->spi) <= 255) {
3430 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3431 (u_int32_t)ntohl(sav->spi));
3432 return EINVAL;
3433 }
3434 break;
3435 }
3436
3437 /* check satype */
3438 switch (sav->sah->saidx.proto) {
3439 case IPPROTO_ESP:
3440 /* check flags */
3441 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3442 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3443 IPSECLOG(LOG_DEBUG,
3444 "invalid flag (derived) given to old-esp.\n");
3445 return EINVAL;
3446 }
3447 error = xform_init(sav, XF_ESP);
3448 break;
3449 case IPPROTO_AH:
3450 /* check flags */
3451 if (sav->flags & SADB_X_EXT_DERIV) {
3452 IPSECLOG(LOG_DEBUG,
3453 "invalid flag (derived) given to AH SA.\n");
3454 return EINVAL;
3455 }
3456 if (sav->alg_enc != SADB_EALG_NONE) {
3457 IPSECLOG(LOG_DEBUG,
3458 "protocol and algorithm mismated.\n");
3459 return(EINVAL);
3460 }
3461 error = xform_init(sav, XF_AH);
3462 break;
3463 case IPPROTO_IPCOMP:
3464 if (sav->alg_auth != SADB_AALG_NONE) {
3465 IPSECLOG(LOG_DEBUG,
3466 "protocol and algorithm mismated.\n");
3467 return(EINVAL);
3468 }
3469 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3470 && ntohl(sav->spi) >= 0x10000) {
3471 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3472 return(EINVAL);
3473 }
3474 error = xform_init(sav, XF_IPCOMP);
3475 break;
3476 case IPPROTO_TCP:
3477 if (sav->alg_enc != SADB_EALG_NONE) {
3478 IPSECLOG(LOG_DEBUG,
3479 "protocol and algorithm mismated.\n");
3480 return(EINVAL);
3481 }
3482 error = xform_init(sav, XF_TCPSIGNATURE);
3483 break;
3484 default:
3485 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3486 error = EPROTONOSUPPORT;
3487 break;
3488 }
3489
3490 return error;
3491 }
3492
3493 /*
3494 * subroutine for SADB_GET and SADB_DUMP.
3495 */
3496 static struct mbuf *
3497 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3498 u_int32_t seq, u_int32_t pid)
3499 {
3500 struct mbuf *result = NULL, *tres = NULL, *m;
3501 int l = 0;
3502 int i;
3503 void *p;
3504 struct sadb_lifetime lt;
3505 int dumporder[] = {
3506 SADB_EXT_SA, SADB_X_EXT_SA2,
3507 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3508 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3509 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3510 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3511 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3512 SADB_X_EXT_NAT_T_TYPE,
3513 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3514 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3515 SADB_X_EXT_NAT_T_FRAG,
3516
3517 };
3518
3519 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3520 if (m == NULL)
3521 goto fail;
3522 result = m;
3523
3524 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3525 m = NULL;
3526 p = NULL;
3527 switch (dumporder[i]) {
3528 case SADB_EXT_SA:
3529 m = key_setsadbsa(sav);
3530 break;
3531
3532 case SADB_X_EXT_SA2:
3533 m = key_setsadbxsa2(sav->sah->saidx.mode,
3534 sav->replay ? sav->replay->count : 0,
3535 sav->sah->saidx.reqid);
3536 break;
3537
3538 case SADB_EXT_ADDRESS_SRC:
3539 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3540 &sav->sah->saidx.src.sa,
3541 FULLMASK, IPSEC_ULPROTO_ANY);
3542 break;
3543
3544 case SADB_EXT_ADDRESS_DST:
3545 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3546 &sav->sah->saidx.dst.sa,
3547 FULLMASK, IPSEC_ULPROTO_ANY);
3548 break;
3549
3550 case SADB_EXT_KEY_AUTH:
3551 if (!sav->key_auth)
3552 continue;
3553 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3554 p = sav->key_auth;
3555 break;
3556
3557 case SADB_EXT_KEY_ENCRYPT:
3558 if (!sav->key_enc)
3559 continue;
3560 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3561 p = sav->key_enc;
3562 break;
3563
3564 case SADB_EXT_LIFETIME_CURRENT:
3565 KASSERT(sav->lft_c != NULL);
3566 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3567 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3568 lt.sadb_lifetime_addtime =
3569 time_mono_to_wall(lt.sadb_lifetime_addtime);
3570 lt.sadb_lifetime_usetime =
3571 time_mono_to_wall(lt.sadb_lifetime_usetime);
3572 p = <
3573 break;
3574
3575 case SADB_EXT_LIFETIME_HARD:
3576 if (!sav->lft_h)
3577 continue;
3578 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3579 p = sav->lft_h;
3580 break;
3581
3582 case SADB_EXT_LIFETIME_SOFT:
3583 if (!sav->lft_s)
3584 continue;
3585 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3586 p = sav->lft_s;
3587 break;
3588
3589 case SADB_X_EXT_NAT_T_TYPE:
3590 m = key_setsadbxtype(sav->natt_type);
3591 break;
3592
3593 case SADB_X_EXT_NAT_T_DPORT:
3594 if (sav->natt_type == 0)
3595 continue;
3596 m = key_setsadbxport(
3597 key_portfromsaddr(&sav->sah->saidx.dst),
3598 SADB_X_EXT_NAT_T_DPORT);
3599 break;
3600
3601 case SADB_X_EXT_NAT_T_SPORT:
3602 if (sav->natt_type == 0)
3603 continue;
3604 m = key_setsadbxport(
3605 key_portfromsaddr(&sav->sah->saidx.src),
3606 SADB_X_EXT_NAT_T_SPORT);
3607 break;
3608
3609 case SADB_X_EXT_NAT_T_FRAG:
3610 /* don't send frag info if not set */
3611 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3612 continue;
3613 m = key_setsadbxfrag(sav->esp_frag);
3614 break;
3615
3616 case SADB_X_EXT_NAT_T_OAI:
3617 case SADB_X_EXT_NAT_T_OAR:
3618 continue;
3619
3620 case SADB_EXT_ADDRESS_PROXY:
3621 case SADB_EXT_IDENTITY_SRC:
3622 case SADB_EXT_IDENTITY_DST:
3623 /* XXX: should we brought from SPD ? */
3624 case SADB_EXT_SENSITIVITY:
3625 default:
3626 continue;
3627 }
3628
3629 KASSERT(!(m && p));
3630 if (!m && !p)
3631 goto fail;
3632 if (p && tres) {
3633 M_PREPEND(tres, l, M_DONTWAIT);
3634 if (!tres)
3635 goto fail;
3636 memcpy(mtod(tres, void *), p, l);
3637 continue;
3638 }
3639 if (p) {
3640 m = key_alloc_mbuf(l);
3641 if (!m)
3642 goto fail;
3643 m_copyback(m, 0, l, p);
3644 }
3645
3646 if (tres)
3647 m_cat(m, tres);
3648 tres = m;
3649 }
3650
3651 m_cat(result, tres);
3652 tres = NULL; /* avoid free on error below */
3653
3654 if (result->m_len < sizeof(struct sadb_msg)) {
3655 result = m_pullup(result, sizeof(struct sadb_msg));
3656 if (result == NULL)
3657 goto fail;
3658 }
3659
3660 result->m_pkthdr.len = 0;
3661 for (m = result; m; m = m->m_next)
3662 result->m_pkthdr.len += m->m_len;
3663
3664 mtod(result, struct sadb_msg *)->sadb_msg_len =
3665 PFKEY_UNIT64(result->m_pkthdr.len);
3666
3667 return result;
3668
3669 fail:
3670 m_freem(result);
3671 m_freem(tres);
3672 return NULL;
3673 }
3674
3675
3676 /*
3677 * set a type in sadb_x_nat_t_type
3678 */
3679 static struct mbuf *
3680 key_setsadbxtype(u_int16_t type)
3681 {
3682 struct mbuf *m;
3683 size_t len;
3684 struct sadb_x_nat_t_type *p;
3685
3686 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3687
3688 m = key_alloc_mbuf(len);
3689 if (!m || m->m_next) { /*XXX*/
3690 if (m)
3691 m_freem(m);
3692 return NULL;
3693 }
3694
3695 p = mtod(m, struct sadb_x_nat_t_type *);
3696
3697 memset(p, 0, len);
3698 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3699 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3700 p->sadb_x_nat_t_type_type = type;
3701
3702 return m;
3703 }
3704 /*
3705 * set a port in sadb_x_nat_t_port. port is in network order
3706 */
3707 static struct mbuf *
3708 key_setsadbxport(u_int16_t port, u_int16_t type)
3709 {
3710 struct mbuf *m;
3711 size_t len;
3712 struct sadb_x_nat_t_port *p;
3713
3714 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3715
3716 m = key_alloc_mbuf(len);
3717 if (!m || m->m_next) { /*XXX*/
3718 if (m)
3719 m_freem(m);
3720 return NULL;
3721 }
3722
3723 p = mtod(m, struct sadb_x_nat_t_port *);
3724
3725 memset(p, 0, len);
3726 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3727 p->sadb_x_nat_t_port_exttype = type;
3728 p->sadb_x_nat_t_port_port = port;
3729
3730 return m;
3731 }
3732
3733 /*
3734 * set fragmentation info in sadb_x_nat_t_frag
3735 */
3736 static struct mbuf *
3737 key_setsadbxfrag(u_int16_t flen)
3738 {
3739 struct mbuf *m;
3740 size_t len;
3741 struct sadb_x_nat_t_frag *p;
3742
3743 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3744
3745 m = key_alloc_mbuf(len);
3746 if (!m || m->m_next) { /*XXX*/
3747 if (m)
3748 m_freem(m);
3749 return NULL;
3750 }
3751
3752 p = mtod(m, struct sadb_x_nat_t_frag *);
3753
3754 memset(p, 0, len);
3755 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3756 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3757 p->sadb_x_nat_t_frag_fraglen = flen;
3758
3759 return m;
3760 }
3761
3762 /*
3763 * Get port from sockaddr, port is in network order
3764 */
3765 u_int16_t
3766 key_portfromsaddr(const union sockaddr_union *saddr)
3767 {
3768 u_int16_t port;
3769
3770 switch (saddr->sa.sa_family) {
3771 case AF_INET: {
3772 port = saddr->sin.sin_port;
3773 break;
3774 }
3775 #ifdef INET6
3776 case AF_INET6: {
3777 port = saddr->sin6.sin6_port;
3778 break;
3779 }
3780 #endif
3781 default:
3782 printf("%s: unexpected address family\n", __func__);
3783 port = 0;
3784 break;
3785 }
3786
3787 return port;
3788 }
3789
3790
3791 /*
3792 * Set port is struct sockaddr. port is in network order
3793 */
3794 static void
3795 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3796 {
3797 switch (saddr->sa.sa_family) {
3798 case AF_INET: {
3799 saddr->sin.sin_port = port;
3800 break;
3801 }
3802 #ifdef INET6
3803 case AF_INET6: {
3804 saddr->sin6.sin6_port = port;
3805 break;
3806 }
3807 #endif
3808 default:
3809 printf("%s: unexpected address family %d\n", __func__,
3810 saddr->sa.sa_family);
3811 break;
3812 }
3813
3814 return;
3815 }
3816
3817 /*
3818 * Safety check sa_len
3819 */
3820 static int
3821 key_checksalen(const union sockaddr_union *saddr)
3822 {
3823 switch (saddr->sa.sa_family) {
3824 case AF_INET:
3825 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3826 return -1;
3827 break;
3828 #ifdef INET6
3829 case AF_INET6:
3830 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3831 return -1;
3832 break;
3833 #endif
3834 default:
3835 printf("%s: unexpected sa_family %d\n", __func__,
3836 saddr->sa.sa_family);
3837 return -1;
3838 break;
3839 }
3840 return 0;
3841 }
3842
3843
3844 /*
3845 * set data into sadb_msg.
3846 */
3847 static struct mbuf *
3848 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3849 u_int32_t seq, pid_t pid, u_int16_t reserved)
3850 {
3851 struct mbuf *m;
3852 struct sadb_msg *p;
3853 int len;
3854
3855 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3856
3857 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3858
3859 MGETHDR(m, M_DONTWAIT, MT_DATA);
3860 if (m && len > MHLEN) {
3861 MCLGET(m, M_DONTWAIT);
3862 if ((m->m_flags & M_EXT) == 0) {
3863 m_freem(m);
3864 m = NULL;
3865 }
3866 }
3867 if (!m)
3868 return NULL;
3869 m->m_pkthdr.len = m->m_len = len;
3870 m->m_next = NULL;
3871
3872 p = mtod(m, struct sadb_msg *);
3873
3874 memset(p, 0, len);
3875 p->sadb_msg_version = PF_KEY_V2;
3876 p->sadb_msg_type = type;
3877 p->sadb_msg_errno = 0;
3878 p->sadb_msg_satype = satype;
3879 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3880 p->sadb_msg_reserved = reserved;
3881 p->sadb_msg_seq = seq;
3882 p->sadb_msg_pid = (u_int32_t)pid;
3883
3884 return m;
3885 }
3886
3887 /*
3888 * copy secasvar data into sadb_address.
3889 */
3890 static struct mbuf *
3891 key_setsadbsa(struct secasvar *sav)
3892 {
3893 struct mbuf *m;
3894 struct sadb_sa *p;
3895 int len;
3896
3897 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3898 m = key_alloc_mbuf(len);
3899 if (!m || m->m_next) { /*XXX*/
3900 if (m)
3901 m_freem(m);
3902 return NULL;
3903 }
3904
3905 p = mtod(m, struct sadb_sa *);
3906
3907 memset(p, 0, len);
3908 p->sadb_sa_len = PFKEY_UNIT64(len);
3909 p->sadb_sa_exttype = SADB_EXT_SA;
3910 p->sadb_sa_spi = sav->spi;
3911 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3912 p->sadb_sa_state = sav->state;
3913 p->sadb_sa_auth = sav->alg_auth;
3914 p->sadb_sa_encrypt = sav->alg_enc;
3915 p->sadb_sa_flags = sav->flags;
3916
3917 return m;
3918 }
3919
3920 /*
3921 * set data into sadb_address.
3922 */
3923 static struct mbuf *
3924 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3925 u_int8_t prefixlen, u_int16_t ul_proto)
3926 {
3927 struct mbuf *m;
3928 struct sadb_address *p;
3929 size_t len;
3930
3931 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3932 PFKEY_ALIGN8(saddr->sa_len);
3933 m = key_alloc_mbuf(len);
3934 if (!m || m->m_next) { /*XXX*/
3935 if (m)
3936 m_freem(m);
3937 return NULL;
3938 }
3939
3940 p = mtod(m, struct sadb_address *);
3941
3942 memset(p, 0, len);
3943 p->sadb_address_len = PFKEY_UNIT64(len);
3944 p->sadb_address_exttype = exttype;
3945 p->sadb_address_proto = ul_proto;
3946 if (prefixlen == FULLMASK) {
3947 switch (saddr->sa_family) {
3948 case AF_INET:
3949 prefixlen = sizeof(struct in_addr) << 3;
3950 break;
3951 case AF_INET6:
3952 prefixlen = sizeof(struct in6_addr) << 3;
3953 break;
3954 default:
3955 ; /*XXX*/
3956 }
3957 }
3958 p->sadb_address_prefixlen = prefixlen;
3959 p->sadb_address_reserved = 0;
3960
3961 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3962 saddr, saddr->sa_len);
3963
3964 return m;
3965 }
3966
3967 #if 0
3968 /*
3969 * set data into sadb_ident.
3970 */
3971 static struct mbuf *
3972 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3973 void *string, int stringlen, u_int64_t id)
3974 {
3975 struct mbuf *m;
3976 struct sadb_ident *p;
3977 size_t len;
3978
3979 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3980 m = key_alloc_mbuf(len);
3981 if (!m || m->m_next) { /*XXX*/
3982 if (m)
3983 m_freem(m);
3984 return NULL;
3985 }
3986
3987 p = mtod(m, struct sadb_ident *);
3988
3989 memset(p, 0, len);
3990 p->sadb_ident_len = PFKEY_UNIT64(len);
3991 p->sadb_ident_exttype = exttype;
3992 p->sadb_ident_type = idtype;
3993 p->sadb_ident_reserved = 0;
3994 p->sadb_ident_id = id;
3995
3996 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3997 string, stringlen);
3998
3999 return m;
4000 }
4001 #endif
4002
4003 /*
4004 * set data into sadb_x_sa2.
4005 */
4006 static struct mbuf *
4007 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4008 {
4009 struct mbuf *m;
4010 struct sadb_x_sa2 *p;
4011 size_t len;
4012
4013 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4014 m = key_alloc_mbuf(len);
4015 if (!m || m->m_next) { /*XXX*/
4016 if (m)
4017 m_freem(m);
4018 return NULL;
4019 }
4020
4021 p = mtod(m, struct sadb_x_sa2 *);
4022
4023 memset(p, 0, len);
4024 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4025 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4026 p->sadb_x_sa2_mode = mode;
4027 p->sadb_x_sa2_reserved1 = 0;
4028 p->sadb_x_sa2_reserved2 = 0;
4029 p->sadb_x_sa2_sequence = seq;
4030 p->sadb_x_sa2_reqid = reqid;
4031
4032 return m;
4033 }
4034
4035 /*
4036 * set data into sadb_x_policy
4037 */
4038 static struct mbuf *
4039 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4040 {
4041 struct mbuf *m;
4042 struct sadb_x_policy *p;
4043 size_t len;
4044
4045 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4046 m = key_alloc_mbuf(len);
4047 if (!m || m->m_next) { /*XXX*/
4048 if (m)
4049 m_freem(m);
4050 return NULL;
4051 }
4052
4053 p = mtod(m, struct sadb_x_policy *);
4054
4055 memset(p, 0, len);
4056 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4057 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4058 p->sadb_x_policy_type = type;
4059 p->sadb_x_policy_dir = dir;
4060 p->sadb_x_policy_id = id;
4061
4062 return m;
4063 }
4064
4065 /* %%% utilities */
4066 /*
4067 * copy a buffer into the new buffer allocated.
4068 */
4069 static void *
4070 key_newbuf(const void *src, u_int len)
4071 {
4072 void *new;
4073
4074 new = kmem_alloc(len, KM_SLEEP);
4075 memcpy(new, src, len);
4076
4077 return new;
4078 }
4079
4080 /* compare my own address
4081 * OUT: 1: true, i.e. my address.
4082 * 0: false
4083 */
4084 int
4085 key_ismyaddr(const struct sockaddr *sa)
4086 {
4087 #ifdef INET
4088 const struct sockaddr_in *sin;
4089 const struct in_ifaddr *ia;
4090 int s;
4091 #endif
4092
4093 KASSERT(sa != NULL);
4094
4095 switch (sa->sa_family) {
4096 #ifdef INET
4097 case AF_INET:
4098 sin = (const struct sockaddr_in *)sa;
4099 s = pserialize_read_enter();
4100 IN_ADDRLIST_READER_FOREACH(ia) {
4101 if (sin->sin_family == ia->ia_addr.sin_family &&
4102 sin->sin_len == ia->ia_addr.sin_len &&
4103 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4104 {
4105 pserialize_read_exit(s);
4106 return 1;
4107 }
4108 }
4109 pserialize_read_exit(s);
4110 break;
4111 #endif
4112 #ifdef INET6
4113 case AF_INET6:
4114 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4115 #endif
4116 }
4117
4118 return 0;
4119 }
4120
4121 #ifdef INET6
4122 /*
4123 * compare my own address for IPv6.
4124 * 1: ours
4125 * 0: other
4126 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4127 */
4128 #include <netinet6/in6_var.h>
4129
4130 static int
4131 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4132 {
4133 struct in6_ifaddr *ia;
4134 int s;
4135 struct psref psref;
4136 int bound;
4137 int ours = 1;
4138
4139 bound = curlwp_bind();
4140 s = pserialize_read_enter();
4141 IN6_ADDRLIST_READER_FOREACH(ia) {
4142 bool ingroup;
4143
4144 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4145 (const struct sockaddr *)&ia->ia_addr, 0)) {
4146 pserialize_read_exit(s);
4147 goto ours;
4148 }
4149 ia6_acquire(ia, &psref);
4150 pserialize_read_exit(s);
4151
4152 /*
4153 * XXX Multicast
4154 * XXX why do we care about multlicast here while we don't care
4155 * about IPv4 multicast??
4156 * XXX scope
4157 */
4158 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4159 if (ingroup) {
4160 ia6_release(ia, &psref);
4161 goto ours;
4162 }
4163
4164 s = pserialize_read_enter();
4165 ia6_release(ia, &psref);
4166 }
4167 pserialize_read_exit(s);
4168
4169 /* loopback, just for safety */
4170 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4171 goto ours;
4172
4173 ours = 0;
4174 ours:
4175 curlwp_bindx(bound);
4176
4177 return ours;
4178 }
4179 #endif /*INET6*/
4180
4181 /*
4182 * compare two secasindex structure.
4183 * flag can specify to compare 2 saidxes.
4184 * compare two secasindex structure without both mode and reqid.
4185 * don't compare port.
4186 * IN:
4187 * saidx0: source, it can be in SAD.
4188 * saidx1: object.
4189 * OUT:
4190 * 1 : equal
4191 * 0 : not equal
4192 */
4193 static int
4194 key_saidx_match(
4195 const struct secasindex *saidx0,
4196 const struct secasindex *saidx1,
4197 int flag)
4198 {
4199 int chkport;
4200 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4201
4202 KASSERT(saidx0 != NULL);
4203 KASSERT(saidx1 != NULL);
4204
4205 /* sanity */
4206 if (saidx0->proto != saidx1->proto)
4207 return 0;
4208
4209 if (flag == CMP_EXACTLY) {
4210 if (saidx0->mode != saidx1->mode)
4211 return 0;
4212 if (saidx0->reqid != saidx1->reqid)
4213 return 0;
4214 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4215 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4216 return 0;
4217 } else {
4218
4219 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4220 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4221 /*
4222 * If reqid of SPD is non-zero, unique SA is required.
4223 * The result must be of same reqid in this case.
4224 */
4225 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4226 return 0;
4227 }
4228
4229 if (flag == CMP_MODE_REQID) {
4230 if (saidx0->mode != IPSEC_MODE_ANY &&
4231 saidx0->mode != saidx1->mode)
4232 return 0;
4233 }
4234
4235
4236 sa0src = &saidx0->src.sa;
4237 sa0dst = &saidx0->dst.sa;
4238 sa1src = &saidx1->src.sa;
4239 sa1dst = &saidx1->dst.sa;
4240 /*
4241 * If NAT-T is enabled, check ports for tunnel mode.
4242 * Don't do it for transport mode, as there is no
4243 * port information available in the SP.
4244 * Also don't check ports if they are set to zero
4245 * in the SPD: This means we have a non-generated
4246 * SPD which can't know UDP ports.
4247 */
4248 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4249 chkport = PORT_LOOSE;
4250 else
4251 chkport = PORT_NONE;
4252
4253 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4254 return 0;
4255 }
4256 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4257 return 0;
4258 }
4259 }
4260
4261 return 1;
4262 }
4263
4264 /*
4265 * compare two secindex structure exactly.
4266 * IN:
4267 * spidx0: source, it is often in SPD.
4268 * spidx1: object, it is often from PFKEY message.
4269 * OUT:
4270 * 1 : equal
4271 * 0 : not equal
4272 */
4273 static int
4274 key_spidx_match_exactly(
4275 const struct secpolicyindex *spidx0,
4276 const struct secpolicyindex *spidx1)
4277 {
4278
4279 KASSERT(spidx0 != NULL);
4280 KASSERT(spidx1 != NULL);
4281
4282 /* sanity */
4283 if (spidx0->prefs != spidx1->prefs ||
4284 spidx0->prefd != spidx1->prefd ||
4285 spidx0->ul_proto != spidx1->ul_proto)
4286 return 0;
4287
4288 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4289 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4290 }
4291
4292 /*
4293 * compare two secindex structure with mask.
4294 * IN:
4295 * spidx0: source, it is often in SPD.
4296 * spidx1: object, it is often from IP header.
4297 * OUT:
4298 * 1 : equal
4299 * 0 : not equal
4300 */
4301 static int
4302 key_spidx_match_withmask(
4303 const struct secpolicyindex *spidx0,
4304 const struct secpolicyindex *spidx1)
4305 {
4306
4307 KASSERT(spidx0 != NULL);
4308 KASSERT(spidx1 != NULL);
4309
4310 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4311 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4312 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4313 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4314 return 0;
4315
4316 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4317 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4318 spidx0->ul_proto != spidx1->ul_proto)
4319 return 0;
4320
4321 switch (spidx0->src.sa.sa_family) {
4322 case AF_INET:
4323 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4324 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4325 return 0;
4326 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4327 &spidx1->src.sin.sin_addr, spidx0->prefs))
4328 return 0;
4329 break;
4330 case AF_INET6:
4331 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4332 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4333 return 0;
4334 /*
4335 * scope_id check. if sin6_scope_id is 0, we regard it
4336 * as a wildcard scope, which matches any scope zone ID.
4337 */
4338 if (spidx0->src.sin6.sin6_scope_id &&
4339 spidx1->src.sin6.sin6_scope_id &&
4340 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4341 return 0;
4342 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4343 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4344 return 0;
4345 break;
4346 default:
4347 /* XXX */
4348 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4349 return 0;
4350 break;
4351 }
4352
4353 switch (spidx0->dst.sa.sa_family) {
4354 case AF_INET:
4355 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4356 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4357 return 0;
4358 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4359 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4360 return 0;
4361 break;
4362 case AF_INET6:
4363 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4364 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4365 return 0;
4366 /*
4367 * scope_id check. if sin6_scope_id is 0, we regard it
4368 * as a wildcard scope, which matches any scope zone ID.
4369 */
4370 if (spidx0->src.sin6.sin6_scope_id &&
4371 spidx1->src.sin6.sin6_scope_id &&
4372 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4373 return 0;
4374 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4375 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4376 return 0;
4377 break;
4378 default:
4379 /* XXX */
4380 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4381 return 0;
4382 break;
4383 }
4384
4385 /* XXX Do we check other field ? e.g. flowinfo */
4386
4387 return 1;
4388 }
4389
4390 /* returns 0 on match */
4391 static int
4392 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4393 {
4394 switch (howport) {
4395 case PORT_NONE:
4396 return 0;
4397 case PORT_LOOSE:
4398 if (port1 == 0 || port2 == 0)
4399 return 0;
4400 /*FALLTHROUGH*/
4401 case PORT_STRICT:
4402 if (port1 != port2) {
4403 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4404 "port fail %d != %d\n", port1, port2);
4405 return 1;
4406 }
4407 return 0;
4408 default:
4409 KASSERT(0);
4410 return 1;
4411 }
4412 }
4413
4414 /* returns 1 on match */
4415 static int
4416 key_sockaddr_match(
4417 const struct sockaddr *sa1,
4418 const struct sockaddr *sa2,
4419 int howport)
4420 {
4421 const struct sockaddr_in *sin1, *sin2;
4422 const struct sockaddr_in6 *sin61, *sin62;
4423
4424 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4425 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4426 "fam/len fail %d != %d || %d != %d\n",
4427 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4428 sa2->sa_len);
4429 return 0;
4430 }
4431
4432 switch (sa1->sa_family) {
4433 case AF_INET:
4434 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4435 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4436 "len fail %d != %zu\n",
4437 sa1->sa_len, sizeof(struct sockaddr_in));
4438 return 0;
4439 }
4440 sin1 = (const struct sockaddr_in *)sa1;
4441 sin2 = (const struct sockaddr_in *)sa2;
4442 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4443 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4444 "addr fail %#x != %#x\n",
4445 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4446 return 0;
4447 }
4448 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4449 return 0;
4450 }
4451 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4452 "addr success %#x[%d] == %#x[%d]\n",
4453 sin1->sin_addr.s_addr, sin1->sin_port,
4454 sin2->sin_addr.s_addr, sin2->sin_port);
4455 break;
4456 case AF_INET6:
4457 sin61 = (const struct sockaddr_in6 *)sa1;
4458 sin62 = (const struct sockaddr_in6 *)sa2;
4459 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4460 return 0; /*EINVAL*/
4461
4462 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4463 return 0;
4464 }
4465 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4466 return 0;
4467 }
4468 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4469 return 0;
4470 }
4471 break;
4472 default:
4473 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4474 return 0;
4475 break;
4476 }
4477
4478 return 1;
4479 }
4480
4481 /*
4482 * compare two buffers with mask.
4483 * IN:
4484 * addr1: source
4485 * addr2: object
4486 * bits: Number of bits to compare
4487 * OUT:
4488 * 1 : equal
4489 * 0 : not equal
4490 */
4491 static int
4492 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4493 {
4494 const unsigned char *p1 = a1;
4495 const unsigned char *p2 = a2;
4496
4497 /* XXX: This could be considerably faster if we compare a word
4498 * at a time, but it is complicated on LSB Endian machines */
4499
4500 /* Handle null pointers */
4501 if (p1 == NULL || p2 == NULL)
4502 return (p1 == p2);
4503
4504 while (bits >= 8) {
4505 if (*p1++ != *p2++)
4506 return 0;
4507 bits -= 8;
4508 }
4509
4510 if (bits > 0) {
4511 u_int8_t mask = ~((1<<(8-bits))-1);
4512 if ((*p1 & mask) != (*p2 & mask))
4513 return 0;
4514 }
4515 return 1; /* Match! */
4516 }
4517
4518 static void
4519 key_timehandler_spd(time_t now)
4520 {
4521 u_int dir;
4522 struct secpolicy *sp;
4523
4524 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4525 retry:
4526 mutex_enter(&key_sp_mtx);
4527 SPLIST_WRITER_FOREACH(sp, dir) {
4528 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4529
4530 if (sp->lifetime == 0 && sp->validtime == 0)
4531 continue;
4532
4533 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4534 (sp->validtime && now - sp->lastused > sp->validtime)) {
4535 key_unlink_sp(sp);
4536 mutex_exit(&key_sp_mtx);
4537 key_spdexpire(sp);
4538 key_destroy_sp(sp);
4539 goto retry;
4540 }
4541 }
4542 mutex_exit(&key_sp_mtx);
4543 }
4544
4545 retry_socksplist:
4546 mutex_enter(&key_sp_mtx);
4547 SOCKSPLIST_WRITER_FOREACH(sp) {
4548 if (sp->state != IPSEC_SPSTATE_DEAD)
4549 continue;
4550
4551 key_unlink_sp(sp);
4552 mutex_exit(&key_sp_mtx);
4553 key_destroy_sp(sp);
4554 goto retry_socksplist;
4555 }
4556 mutex_exit(&key_sp_mtx);
4557 }
4558
4559 static void
4560 key_timehandler_sad(time_t now)
4561 {
4562 struct secashead *sah;
4563 struct secasvar *sav;
4564
4565 restart:
4566 SAHLIST_WRITER_FOREACH(sah) {
4567 /* if sah has been dead, then delete it and process next sah. */
4568 if (sah->state == SADB_SASTATE_DEAD) {
4569 key_delsah(sah);
4570 goto restart;
4571 }
4572
4573 /* if LARVAL entry doesn't become MATURE, delete it. */
4574 restart_sav_LARVAL:
4575 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4576 if (now - sav->created > key_larval_lifetime) {
4577 KEY_FREESAV(&sav);
4578 goto restart_sav_LARVAL;
4579 }
4580 }
4581
4582 /*
4583 * check MATURE entry to start to send expire message
4584 * whether or not.
4585 */
4586 restart_sav_MATURE:
4587 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4588 /* we don't need to check. */
4589 if (sav->lft_s == NULL)
4590 continue;
4591
4592 /* sanity check */
4593 KASSERT(sav->lft_c != NULL);
4594
4595 /* check SOFT lifetime */
4596 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4597 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4598 /*
4599 * check SA to be used whether or not.
4600 * when SA hasn't been used, delete it.
4601 */
4602 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4603 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4604 KEY_FREESAV(&sav);
4605 } else {
4606 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4607 /*
4608 * XXX If we keep to send expire
4609 * message in the status of
4610 * DYING. Do remove below code.
4611 */
4612 key_expire(sav);
4613 }
4614 goto restart_sav_MATURE;
4615 }
4616 /* check SOFT lifetime by bytes */
4617 /*
4618 * XXX I don't know the way to delete this SA
4619 * when new SA is installed. Caution when it's
4620 * installed too big lifetime by time.
4621 */
4622 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4623 sav->lft_s->sadb_lifetime_bytes <
4624 sav->lft_c->sadb_lifetime_bytes) {
4625
4626 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4627 /*
4628 * XXX If we keep to send expire
4629 * message in the status of
4630 * DYING. Do remove below code.
4631 */
4632 key_expire(sav);
4633 goto restart_sav_MATURE;
4634 }
4635 }
4636
4637 /* check DYING entry to change status to DEAD. */
4638 restart_sav_DYING:
4639 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4640 /* we don't need to check. */
4641 if (sav->lft_h == NULL)
4642 continue;
4643
4644 /* sanity check */
4645 KASSERT(sav->lft_c != NULL);
4646
4647 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4648 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4649 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4650 KEY_FREESAV(&sav);
4651 goto restart_sav_DYING;
4652 }
4653 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4654 else if (sav->lft_s != NULL
4655 && sav->lft_s->sadb_lifetime_addtime != 0
4656 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4657 /*
4658 * XXX: should be checked to be
4659 * installed the valid SA.
4660 */
4661
4662 /*
4663 * If there is no SA then sending
4664 * expire message.
4665 */
4666 key_expire(sav);
4667 }
4668 #endif
4669 /* check HARD lifetime by bytes */
4670 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4671 sav->lft_h->sadb_lifetime_bytes <
4672 sav->lft_c->sadb_lifetime_bytes) {
4673 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4674 KEY_FREESAV(&sav);
4675 goto restart_sav_DYING;
4676 }
4677 }
4678
4679 /* delete entry in DEAD */
4680 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4681 /* sanity check */
4682 if (sav->state != SADB_SASTATE_DEAD) {
4683 IPSECLOG(LOG_DEBUG,
4684 "invalid sav->state (queue: %d SA: %d): "
4685 "kill it anyway\n",
4686 SADB_SASTATE_DEAD, sav->state);
4687 }
4688
4689 /*
4690 * do not call key_freesav() here.
4691 * sav should already be freed, and sav->refcnt
4692 * shows other references to sav
4693 * (such as from SPD).
4694 */
4695 }
4696 }
4697 }
4698
4699 static void
4700 key_timehandler_acq(time_t now)
4701 {
4702 #ifndef IPSEC_NONBLOCK_ACQUIRE
4703 struct secacq *acq, *nextacq;
4704
4705 restart:
4706 mutex_enter(&key_mtx);
4707 LIST_FOREACH_SAFE(acq, &acqtree, chain, nextacq) {
4708 if (now - acq->created > key_blockacq_lifetime) {
4709 LIST_REMOVE(acq, chain);
4710 mutex_exit(&key_mtx);
4711 kmem_free(acq, sizeof(*acq));
4712 goto restart;
4713 }
4714 }
4715 mutex_exit(&key_mtx);
4716 #endif
4717 }
4718
4719 static void
4720 key_timehandler_spacq(time_t now)
4721 {
4722 #ifdef notyet
4723 struct secspacq *acq, *nextacq;
4724
4725 LIST_FOREACH_SAFE(acq, &spacqtree, chain, nextacq) {
4726 if (now - acq->created > key_blockacq_lifetime) {
4727 KASSERT(__LIST_CHAINED(acq));
4728 LIST_REMOVE(acq, chain);
4729 kmem_free(acq, sizeof(*acq));
4730 }
4731 }
4732 #endif
4733 }
4734
4735 /*
4736 * time handler.
4737 * scanning SPD and SAD to check status for each entries,
4738 * and do to remove or to expire.
4739 */
4740 static void
4741 key_timehandler_work(struct work *wk, void *arg)
4742 {
4743 time_t now = time_uptime;
4744 IPSEC_DECLARE_LOCK_VARIABLE;
4745
4746 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4747
4748 key_timehandler_spd(now);
4749 key_timehandler_sad(now);
4750 key_timehandler_acq(now);
4751 key_timehandler_spacq(now);
4752
4753 /* do exchange to tick time !! */
4754 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4755
4756 IPSEC_RELEASE_GLOBAL_LOCKS();
4757 return;
4758 }
4759
4760 static void
4761 key_timehandler(void *arg)
4762 {
4763
4764 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4765 }
4766
4767 u_long
4768 key_random(void)
4769 {
4770 u_long value;
4771
4772 key_randomfill(&value, sizeof(value));
4773 return value;
4774 }
4775
4776 void
4777 key_randomfill(void *p, size_t l)
4778 {
4779
4780 cprng_fast(p, l);
4781 }
4782
4783 /*
4784 * map SADB_SATYPE_* to IPPROTO_*.
4785 * if satype == SADB_SATYPE then satype is mapped to ~0.
4786 * OUT:
4787 * 0: invalid satype.
4788 */
4789 static u_int16_t
4790 key_satype2proto(u_int8_t satype)
4791 {
4792 switch (satype) {
4793 case SADB_SATYPE_UNSPEC:
4794 return IPSEC_PROTO_ANY;
4795 case SADB_SATYPE_AH:
4796 return IPPROTO_AH;
4797 case SADB_SATYPE_ESP:
4798 return IPPROTO_ESP;
4799 case SADB_X_SATYPE_IPCOMP:
4800 return IPPROTO_IPCOMP;
4801 case SADB_X_SATYPE_TCPSIGNATURE:
4802 return IPPROTO_TCP;
4803 default:
4804 return 0;
4805 }
4806 /* NOTREACHED */
4807 }
4808
4809 /*
4810 * map IPPROTO_* to SADB_SATYPE_*
4811 * OUT:
4812 * 0: invalid protocol type.
4813 */
4814 static u_int8_t
4815 key_proto2satype(u_int16_t proto)
4816 {
4817 switch (proto) {
4818 case IPPROTO_AH:
4819 return SADB_SATYPE_AH;
4820 case IPPROTO_ESP:
4821 return SADB_SATYPE_ESP;
4822 case IPPROTO_IPCOMP:
4823 return SADB_X_SATYPE_IPCOMP;
4824 case IPPROTO_TCP:
4825 return SADB_X_SATYPE_TCPSIGNATURE;
4826 default:
4827 return 0;
4828 }
4829 /* NOTREACHED */
4830 }
4831
4832 static int
4833 key_setsecasidx(int proto, int mode, int reqid,
4834 const struct sockaddr *src, const struct sockaddr *dst,
4835 struct secasindex * saidx)
4836 {
4837 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4838 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4839
4840 /* sa len safety check */
4841 if (key_checksalen(src_u) != 0)
4842 return -1;
4843 if (key_checksalen(dst_u) != 0)
4844 return -1;
4845
4846 memset(saidx, 0, sizeof(*saidx));
4847 saidx->proto = proto;
4848 saidx->mode = mode;
4849 saidx->reqid = reqid;
4850 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4851 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4852
4853 key_porttosaddr(&((saidx)->src), 0);
4854 key_porttosaddr(&((saidx)->dst), 0);
4855 return 0;
4856 }
4857
4858 static void
4859 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4860 const struct sadb_msghdr *mhp)
4861 {
4862 const struct sadb_address *src0, *dst0;
4863 const struct sockaddr *src, *dst;
4864 const struct sadb_x_policy *xpl0;
4865
4866 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4867 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4868 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4869 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4870 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4871
4872 memset(spidx, 0, sizeof(*spidx));
4873 spidx->dir = xpl0->sadb_x_policy_dir;
4874 spidx->prefs = src0->sadb_address_prefixlen;
4875 spidx->prefd = dst0->sadb_address_prefixlen;
4876 spidx->ul_proto = src0->sadb_address_proto;
4877 /* XXX boundary check against sa_len */
4878 memcpy(&spidx->src, src, src->sa_len);
4879 memcpy(&spidx->dst, dst, dst->sa_len);
4880 }
4881
4882 /* %%% PF_KEY */
4883 /*
4884 * SADB_GETSPI processing is to receive
4885 * <base, (SA2), src address, dst address, (SPI range)>
4886 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4887 * tree with the status of LARVAL, and send
4888 * <base, SA(*), address(SD)>
4889 * to the IKMPd.
4890 *
4891 * IN: mhp: pointer to the pointer to each header.
4892 * OUT: NULL if fail.
4893 * other if success, return pointer to the message to send.
4894 */
4895 static int
4896 key_api_getspi(struct socket *so, struct mbuf *m,
4897 const struct sadb_msghdr *mhp)
4898 {
4899 const struct sockaddr *src, *dst;
4900 struct secasindex saidx;
4901 struct secashead *sah;
4902 struct secasvar *newsav;
4903 u_int8_t proto;
4904 u_int32_t spi;
4905 u_int8_t mode;
4906 u_int16_t reqid;
4907 int error;
4908
4909 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4910 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4911 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4912 return key_senderror(so, m, EINVAL);
4913 }
4914 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4915 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4916 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4917 return key_senderror(so, m, EINVAL);
4918 }
4919 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4920 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4921 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4922 } else {
4923 mode = IPSEC_MODE_ANY;
4924 reqid = 0;
4925 }
4926
4927 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4928 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4929
4930 /* map satype to proto */
4931 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4932 if (proto == 0) {
4933 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4934 return key_senderror(so, m, EINVAL);
4935 }
4936
4937
4938 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4939 if (error != 0)
4940 return key_senderror(so, m, EINVAL);
4941
4942 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4943 if (error != 0)
4944 return key_senderror(so, m, EINVAL);
4945
4946 /* SPI allocation */
4947 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4948 &saidx);
4949 if (spi == 0)
4950 return key_senderror(so, m, EINVAL);
4951
4952 /* get a SA index */
4953 sah = key_getsah(&saidx, CMP_REQID);
4954 if (sah == NULL) {
4955 /* create a new SA index */
4956 sah = key_newsah(&saidx);
4957 if (sah == NULL) {
4958 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4959 return key_senderror(so, m, ENOBUFS);
4960 }
4961 }
4962
4963 /* get a new SA */
4964 /* XXX rewrite */
4965 newsav = KEY_NEWSAV(m, mhp, &error);
4966 if (newsav == NULL) {
4967 /* XXX don't free new SA index allocated in above. */
4968 return key_senderror(so, m, error);
4969 }
4970
4971 /* set spi */
4972 newsav->spi = htonl(spi);
4973
4974 /* add to satree */
4975 newsav->refcnt = 1;
4976 newsav->sah = sah;
4977 newsav->state = SADB_SASTATE_LARVAL;
4978 SAVLIST_ENTRY_INIT(newsav);
4979 mutex_enter(&key_sa_mtx);
4980 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
4981 mutex_exit(&key_sa_mtx);
4982 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
4983
4984 #ifndef IPSEC_NONBLOCK_ACQUIRE
4985 /* delete the entry in acqtree */
4986 if (mhp->msg->sadb_msg_seq != 0) {
4987 struct secacq *acq;
4988 mutex_enter(&key_mtx);
4989 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
4990 if (acq != NULL) {
4991 /* reset counter in order to deletion by timehandler. */
4992 acq->created = time_uptime;
4993 acq->count = 0;
4994 }
4995 mutex_exit(&key_mtx);
4996 }
4997 #endif
4998
4999 {
5000 struct mbuf *n, *nn;
5001 struct sadb_sa *m_sa;
5002 int off, len;
5003
5004 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5005 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5006
5007 /* create new sadb_msg to reply. */
5008 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5009 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5010
5011 MGETHDR(n, M_DONTWAIT, MT_DATA);
5012 if (len > MHLEN) {
5013 MCLGET(n, M_DONTWAIT);
5014 if ((n->m_flags & M_EXT) == 0) {
5015 m_freem(n);
5016 n = NULL;
5017 }
5018 }
5019 if (!n)
5020 return key_senderror(so, m, ENOBUFS);
5021
5022 n->m_len = len;
5023 n->m_next = NULL;
5024 off = 0;
5025
5026 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5027 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5028
5029 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5030 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5031 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5032 m_sa->sadb_sa_spi = htonl(spi);
5033 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5034
5035 KASSERTMSG(off == len, "length inconsistency");
5036
5037 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5038 SADB_EXT_ADDRESS_DST);
5039 if (!n->m_next) {
5040 m_freem(n);
5041 return key_senderror(so, m, ENOBUFS);
5042 }
5043
5044 if (n->m_len < sizeof(struct sadb_msg)) {
5045 n = m_pullup(n, sizeof(struct sadb_msg));
5046 if (n == NULL)
5047 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5048 }
5049
5050 n->m_pkthdr.len = 0;
5051 for (nn = n; nn; nn = nn->m_next)
5052 n->m_pkthdr.len += nn->m_len;
5053
5054 key_fill_replymsg(n, newsav->seq);
5055
5056 m_freem(m);
5057 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5058 }
5059 }
5060
5061 /*
5062 * allocating new SPI
5063 * called by key_api_getspi().
5064 * OUT:
5065 * 0: failure.
5066 * others: success.
5067 */
5068 static u_int32_t
5069 key_do_getnewspi(const struct sadb_spirange *spirange,
5070 const struct secasindex *saidx)
5071 {
5072 u_int32_t newspi;
5073 u_int32_t spmin, spmax;
5074 int count = key_spi_trycnt;
5075
5076 /* set spi range to allocate */
5077 if (spirange != NULL) {
5078 spmin = spirange->sadb_spirange_min;
5079 spmax = spirange->sadb_spirange_max;
5080 } else {
5081 spmin = key_spi_minval;
5082 spmax = key_spi_maxval;
5083 }
5084 /* IPCOMP needs 2-byte SPI */
5085 if (saidx->proto == IPPROTO_IPCOMP) {
5086 u_int32_t t;
5087 if (spmin >= 0x10000)
5088 spmin = 0xffff;
5089 if (spmax >= 0x10000)
5090 spmax = 0xffff;
5091 if (spmin > spmax) {
5092 t = spmin; spmin = spmax; spmax = t;
5093 }
5094 }
5095
5096 if (spmin == spmax) {
5097 if (key_checkspidup(saidx, htonl(spmin))) {
5098 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5099 return 0;
5100 }
5101
5102 count--; /* taking one cost. */
5103 newspi = spmin;
5104
5105 } else {
5106
5107 /* init SPI */
5108 newspi = 0;
5109
5110 /* when requesting to allocate spi ranged */
5111 while (count--) {
5112 /* generate pseudo-random SPI value ranged. */
5113 newspi = spmin + (key_random() % (spmax - spmin + 1));
5114
5115 if (!key_checkspidup(saidx, htonl(newspi)))
5116 break;
5117 }
5118
5119 if (count == 0 || newspi == 0) {
5120 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5121 return 0;
5122 }
5123 }
5124
5125 /* statistics */
5126 keystat.getspi_count =
5127 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5128
5129 return newspi;
5130 }
5131
5132 static int
5133 key_handle_natt_info(struct secasvar *sav,
5134 const struct sadb_msghdr *mhp)
5135 {
5136 const char *msg = "?" ;
5137 struct sadb_x_nat_t_type *type;
5138 struct sadb_x_nat_t_port *sport, *dport;
5139 struct sadb_address *iaddr, *raddr;
5140 struct sadb_x_nat_t_frag *frag;
5141
5142 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5143 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5144 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5145 return 0;
5146
5147 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5148 msg = "TYPE";
5149 goto bad;
5150 }
5151
5152 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5153 msg = "SPORT";
5154 goto bad;
5155 }
5156
5157 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5158 msg = "DPORT";
5159 goto bad;
5160 }
5161
5162 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5163 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5164 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5165 msg = "OAI";
5166 goto bad;
5167 }
5168 }
5169
5170 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5171 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5172 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5173 msg = "OAR";
5174 goto bad;
5175 }
5176 }
5177
5178 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5179 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5180 msg = "FRAG";
5181 goto bad;
5182 }
5183 }
5184
5185 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5186 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5187 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5188 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5189 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5190 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5191
5192 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5193 type->sadb_x_nat_t_type_type,
5194 ntohs(sport->sadb_x_nat_t_port_port),
5195 ntohs(dport->sadb_x_nat_t_port_port));
5196
5197 sav->natt_type = type->sadb_x_nat_t_type_type;
5198 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5199 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5200 if (frag)
5201 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5202 else
5203 sav->esp_frag = IP_MAXPACKET;
5204
5205 return 0;
5206 bad:
5207 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5208 __USE(msg);
5209 return -1;
5210 }
5211
5212 /* Just update the IPSEC_NAT_T ports if present */
5213 static int
5214 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5215 const struct sadb_msghdr *mhp)
5216 {
5217 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5218 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5219 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5220 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5221
5222 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5223 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5224 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5225 struct sadb_x_nat_t_type *type;
5226 struct sadb_x_nat_t_port *sport;
5227 struct sadb_x_nat_t_port *dport;
5228
5229 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5230 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5231 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5232 IPSECLOG(LOG_DEBUG, "invalid message\n");
5233 return -1;
5234 }
5235
5236 type = (struct sadb_x_nat_t_type *)
5237 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5238 sport = (struct sadb_x_nat_t_port *)
5239 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5240 dport = (struct sadb_x_nat_t_port *)
5241 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5242
5243 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5244 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5245
5246 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5247 type->sadb_x_nat_t_type_type,
5248 ntohs(sport->sadb_x_nat_t_port_port),
5249 ntohs(dport->sadb_x_nat_t_port_port));
5250 }
5251
5252 return 0;
5253 }
5254
5255
5256 /*
5257 * SADB_UPDATE processing
5258 * receive
5259 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5260 * key(AE), (identity(SD),) (sensitivity)>
5261 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5262 * and send
5263 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5264 * (identity(SD),) (sensitivity)>
5265 * to the ikmpd.
5266 *
5267 * m will always be freed.
5268 */
5269 static int
5270 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5271 {
5272 struct sadb_sa *sa0;
5273 const struct sockaddr *src, *dst;
5274 struct secasindex saidx;
5275 struct secashead *sah;
5276 struct secasvar *sav, *newsav;
5277 u_int16_t proto;
5278 u_int8_t mode;
5279 u_int16_t reqid;
5280 int error;
5281
5282 /* map satype to proto */
5283 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5284 if (proto == 0) {
5285 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5286 return key_senderror(so, m, EINVAL);
5287 }
5288
5289 if (mhp->ext[SADB_EXT_SA] == NULL ||
5290 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5291 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5292 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5293 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5294 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5295 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5296 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5297 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5298 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5299 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5300 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5301 return key_senderror(so, m, EINVAL);
5302 }
5303 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5304 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5305 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5306 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5307 return key_senderror(so, m, EINVAL);
5308 }
5309 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5310 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5311 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5312 } else {
5313 mode = IPSEC_MODE_ANY;
5314 reqid = 0;
5315 }
5316 /* XXX boundary checking for other extensions */
5317
5318 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5319 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5320 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5321
5322 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5323 if (error != 0)
5324 return key_senderror(so, m, EINVAL);
5325
5326 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5327 if (error != 0)
5328 return key_senderror(so, m, EINVAL);
5329
5330 /* get a SA header */
5331 sah = key_getsah(&saidx, CMP_REQID);
5332 if (sah == NULL) {
5333 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5334 return key_senderror(so, m, ENOENT);
5335 }
5336
5337 /* set spidx if there */
5338 /* XXX rewrite */
5339 error = key_setident(sah, m, mhp);
5340 if (error)
5341 return key_senderror(so, m, error);
5342
5343 /* find a SA with sequence number. */
5344 #ifdef IPSEC_DOSEQCHECK
5345 if (mhp->msg->sadb_msg_seq != 0) {
5346 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5347 if (sav == NULL) {
5348 IPSECLOG(LOG_DEBUG,
5349 "no larval SA with sequence %u exists.\n",
5350 mhp->msg->sadb_msg_seq);
5351 return key_senderror(so, m, ENOENT);
5352 }
5353 }
5354 #else
5355 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5356 if (sav == NULL) {
5357 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5358 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5359 return key_senderror(so, m, EINVAL);
5360 }
5361 #endif
5362
5363 /* validity check */
5364 if (sav->sah->saidx.proto != proto) {
5365 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5366 sav->sah->saidx.proto, proto);
5367 error = EINVAL;
5368 goto error;
5369 }
5370 #ifdef IPSEC_DOSEQCHECK
5371 if (sav->spi != sa0->sadb_sa_spi) {
5372 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5373 (u_int32_t)ntohl(sav->spi),
5374 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5375 error = EINVAL;
5376 goto error;
5377 }
5378 #endif
5379 if (sav->pid != mhp->msg->sadb_msg_pid) {
5380 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5381 sav->pid, mhp->msg->sadb_msg_pid);
5382 error = EINVAL;
5383 goto error;
5384 }
5385
5386 /*
5387 * Allocate a new SA instead of modifying the existing SA directly
5388 * to avoid race conditions.
5389 */
5390 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5391
5392 /* copy sav values */
5393 newsav->spi = sav->spi;
5394 newsav->seq = sav->seq;
5395 newsav->created = sav->created;
5396 newsav->pid = sav->pid;
5397 newsav->sah = sav->sah;
5398
5399 error = key_setsaval(newsav, m, mhp);
5400 if (error) {
5401 key_delsav(newsav);
5402 goto error;
5403 }
5404
5405 error = key_handle_natt_info(newsav, mhp);
5406 if (error != 0) {
5407 key_delsav(newsav);
5408 goto error;
5409 }
5410
5411 error = key_init_xform(newsav);
5412 if (error != 0) {
5413 key_delsav(newsav);
5414 goto error;
5415 }
5416
5417 /* add to satree */
5418 newsav->refcnt = 1;
5419 newsav->state = SADB_SASTATE_MATURE;
5420 SAVLIST_ENTRY_INIT(newsav);
5421 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5422 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5423
5424 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5425 KEY_FREESAV(&sav);
5426 KEY_FREESAV(&sav);
5427
5428 {
5429 struct mbuf *n;
5430
5431 /* set msg buf from mhp */
5432 n = key_getmsgbuf_x1(m, mhp);
5433 if (n == NULL) {
5434 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5435 return key_senderror(so, m, ENOBUFS);
5436 }
5437
5438 m_freem(m);
5439 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5440 }
5441 error:
5442 KEY_SA_UNREF(&sav);
5443 return key_senderror(so, m, error);
5444 }
5445
5446 /*
5447 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5448 * only called by key_api_update().
5449 * OUT:
5450 * NULL : not found
5451 * others : found, pointer to a SA.
5452 */
5453 #ifdef IPSEC_DOSEQCHECK
5454 static struct secasvar *
5455 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5456 {
5457 struct secasvar *sav;
5458 u_int state;
5459 int s;
5460
5461 state = SADB_SASTATE_LARVAL;
5462
5463 /* search SAD with sequence number ? */
5464 s = pserialize_read_enter();
5465 SAVLIST_READER_FOREACH(sav, sah, state) {
5466 KEY_CHKSASTATE(state, sav->state);
5467
5468 if (sav->seq == seq) {
5469 SA_ADDREF(sav);
5470 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5471 "DP cause refcnt++:%d SA:%p\n",
5472 sav->refcnt, sav);
5473 break;
5474 }
5475 }
5476 pserialize_read_exit(s);
5477
5478 return sav;
5479 }
5480 #endif
5481
5482 /*
5483 * SADB_ADD processing
5484 * add an entry to SA database, when received
5485 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5486 * key(AE), (identity(SD),) (sensitivity)>
5487 * from the ikmpd,
5488 * and send
5489 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5490 * (identity(SD),) (sensitivity)>
5491 * to the ikmpd.
5492 *
5493 * IGNORE identity and sensitivity messages.
5494 *
5495 * m will always be freed.
5496 */
5497 static int
5498 key_api_add(struct socket *so, struct mbuf *m,
5499 const struct sadb_msghdr *mhp)
5500 {
5501 struct sadb_sa *sa0;
5502 const struct sockaddr *src, *dst;
5503 struct secasindex saidx;
5504 struct secashead *sah;
5505 struct secasvar *newsav;
5506 u_int16_t proto;
5507 u_int8_t mode;
5508 u_int16_t reqid;
5509 int error;
5510
5511 /* map satype to proto */
5512 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5513 if (proto == 0) {
5514 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5515 return key_senderror(so, m, EINVAL);
5516 }
5517
5518 if (mhp->ext[SADB_EXT_SA] == NULL ||
5519 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5520 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5521 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5522 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5523 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5524 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5525 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5526 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5527 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5528 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5529 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5530 return key_senderror(so, m, EINVAL);
5531 }
5532 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5533 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5534 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5535 /* XXX need more */
5536 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5537 return key_senderror(so, m, EINVAL);
5538 }
5539 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5540 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5541 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5542 } else {
5543 mode = IPSEC_MODE_ANY;
5544 reqid = 0;
5545 }
5546
5547 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5548 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5549 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5550
5551 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5552 if (error != 0)
5553 return key_senderror(so, m, EINVAL);
5554
5555 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5556 if (error != 0)
5557 return key_senderror(so, m, EINVAL);
5558
5559 /* get a SA header */
5560 sah = key_getsah(&saidx, CMP_REQID);
5561 if (sah == NULL) {
5562 /* create a new SA header */
5563 sah = key_newsah(&saidx);
5564 if (sah == NULL) {
5565 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5566 return key_senderror(so, m, ENOBUFS);
5567 }
5568 }
5569
5570 /* set spidx if there */
5571 /* XXX rewrite */
5572 error = key_setident(sah, m, mhp);
5573 if (error) {
5574 return key_senderror(so, m, error);
5575 }
5576
5577 {
5578 struct secasvar *sav;
5579
5580 /* We can create new SA only if SPI is differenct. */
5581 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5582 if (sav != NULL) {
5583 KEY_SA_UNREF(&sav);
5584 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5585 return key_senderror(so, m, EEXIST);
5586 }
5587 }
5588
5589 /* create new SA entry. */
5590 newsav = KEY_NEWSAV(m, mhp, &error);
5591 if (newsav == NULL) {
5592 return key_senderror(so, m, error);
5593 }
5594 newsav->sah = sah;
5595
5596 error = key_handle_natt_info(newsav, mhp);
5597 if (error != 0) {
5598 key_delsav(newsav);
5599 return key_senderror(so, m, EINVAL);
5600 }
5601
5602 error = key_init_xform(newsav);
5603 if (error != 0) {
5604 key_delsav(newsav);
5605 return key_senderror(so, m, error);
5606 }
5607
5608 /* add to satree */
5609 newsav->refcnt = 1;
5610 newsav->state = SADB_SASTATE_MATURE;
5611 SAVLIST_ENTRY_INIT(newsav);
5612 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5613 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5614
5615 /*
5616 * don't call key_freesav() here, as we would like to keep the SA
5617 * in the database on success.
5618 */
5619
5620 {
5621 struct mbuf *n;
5622
5623 /* set msg buf from mhp */
5624 n = key_getmsgbuf_x1(m, mhp);
5625 if (n == NULL) {
5626 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5627 return key_senderror(so, m, ENOBUFS);
5628 }
5629
5630 m_freem(m);
5631 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5632 }
5633 }
5634
5635 /* m is retained */
5636 static int
5637 key_setident(struct secashead *sah, struct mbuf *m,
5638 const struct sadb_msghdr *mhp)
5639 {
5640 const struct sadb_ident *idsrc, *iddst;
5641 int idsrclen, iddstlen;
5642
5643 KASSERT(!cpu_softintr_p());
5644 KASSERT(sah != NULL);
5645 KASSERT(m != NULL);
5646 KASSERT(mhp != NULL);
5647 KASSERT(mhp->msg != NULL);
5648
5649 /*
5650 * Can be called with an existing sah from key_api_update().
5651 */
5652 if (sah->idents != NULL) {
5653 kmem_free(sah->idents, sah->idents_len);
5654 sah->idents = NULL;
5655 sah->idents_len = 0;
5656 }
5657 if (sah->identd != NULL) {
5658 kmem_free(sah->identd, sah->identd_len);
5659 sah->identd = NULL;
5660 sah->identd_len = 0;
5661 }
5662
5663 /* don't make buffer if not there */
5664 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5665 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5666 sah->idents = NULL;
5667 sah->identd = NULL;
5668 return 0;
5669 }
5670
5671 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5672 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5673 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5674 return EINVAL;
5675 }
5676
5677 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5678 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5679 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5680 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5681
5682 /* validity check */
5683 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5684 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5685 return EINVAL;
5686 }
5687
5688 switch (idsrc->sadb_ident_type) {
5689 case SADB_IDENTTYPE_PREFIX:
5690 case SADB_IDENTTYPE_FQDN:
5691 case SADB_IDENTTYPE_USERFQDN:
5692 default:
5693 /* XXX do nothing */
5694 sah->idents = NULL;
5695 sah->identd = NULL;
5696 return 0;
5697 }
5698
5699 /* make structure */
5700 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5701 sah->idents_len = idsrclen;
5702 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5703 sah->identd_len = iddstlen;
5704 memcpy(sah->idents, idsrc, idsrclen);
5705 memcpy(sah->identd, iddst, iddstlen);
5706
5707 return 0;
5708 }
5709
5710 /*
5711 * m will not be freed on return.
5712 * it is caller's responsibility to free the result.
5713 */
5714 static struct mbuf *
5715 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5716 {
5717 struct mbuf *n;
5718
5719 KASSERT(m != NULL);
5720 KASSERT(mhp != NULL);
5721 KASSERT(mhp->msg != NULL);
5722
5723 /* create new sadb_msg to reply. */
5724 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5725 SADB_EXT_SA, SADB_X_EXT_SA2,
5726 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5727 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5728 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5729 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5730 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5731 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5732 if (!n)
5733 return NULL;
5734
5735 if (n->m_len < sizeof(struct sadb_msg)) {
5736 n = m_pullup(n, sizeof(struct sadb_msg));
5737 if (n == NULL)
5738 return NULL;
5739 }
5740 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5741 mtod(n, struct sadb_msg *)->sadb_msg_len =
5742 PFKEY_UNIT64(n->m_pkthdr.len);
5743
5744 return n;
5745 }
5746
5747 static int key_delete_all (struct socket *, struct mbuf *,
5748 const struct sadb_msghdr *, u_int16_t);
5749
5750 /*
5751 * SADB_DELETE processing
5752 * receive
5753 * <base, SA(*), address(SD)>
5754 * from the ikmpd, and set SADB_SASTATE_DEAD,
5755 * and send,
5756 * <base, SA(*), address(SD)>
5757 * to the ikmpd.
5758 *
5759 * m will always be freed.
5760 */
5761 static int
5762 key_api_delete(struct socket *so, struct mbuf *m,
5763 const struct sadb_msghdr *mhp)
5764 {
5765 struct sadb_sa *sa0;
5766 const struct sockaddr *src, *dst;
5767 struct secasindex saidx;
5768 struct secashead *sah;
5769 struct secasvar *sav = NULL;
5770 u_int16_t proto;
5771 int error;
5772
5773 /* map satype to proto */
5774 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5775 if (proto == 0) {
5776 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5777 return key_senderror(so, m, EINVAL);
5778 }
5779
5780 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5781 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5782 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5783 return key_senderror(so, m, EINVAL);
5784 }
5785
5786 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5787 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5788 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5789 return key_senderror(so, m, EINVAL);
5790 }
5791
5792 if (mhp->ext[SADB_EXT_SA] == NULL) {
5793 /*
5794 * Caller wants us to delete all non-LARVAL SAs
5795 * that match the src/dst. This is used during
5796 * IKE INITIAL-CONTACT.
5797 */
5798 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5799 return key_delete_all(so, m, mhp, proto);
5800 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5801 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5802 return key_senderror(so, m, EINVAL);
5803 }
5804
5805 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5806 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5807 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5808
5809 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5810 if (error != 0)
5811 return key_senderror(so, m, EINVAL);
5812
5813 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5814 if (error != 0)
5815 return key_senderror(so, m, EINVAL);
5816
5817 /* get a SA header */
5818 sah = key_getsah(&saidx, CMP_HEAD);
5819 if (sah != NULL) {
5820 /* get a SA with SPI. */
5821 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5822 }
5823
5824 if (sav == NULL) {
5825 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5826 return key_senderror(so, m, ENOENT);
5827 }
5828
5829 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5830 KEY_FREESAV(&sav);
5831 KEY_FREESAV(&sav);
5832
5833 {
5834 struct mbuf *n;
5835
5836 /* create new sadb_msg to reply. */
5837 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5838 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5839 if (!n)
5840 return key_senderror(so, m, ENOBUFS);
5841
5842 n = key_fill_replymsg(n, 0);
5843 if (n == NULL)
5844 return key_senderror(so, m, ENOBUFS);
5845
5846 m_freem(m);
5847 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5848 }
5849 }
5850
5851 /*
5852 * delete all SAs for src/dst. Called from key_api_delete().
5853 */
5854 static int
5855 key_delete_all(struct socket *so, struct mbuf *m,
5856 const struct sadb_msghdr *mhp, u_int16_t proto)
5857 {
5858 const struct sockaddr *src, *dst;
5859 struct secasindex saidx;
5860 struct secashead *sah;
5861 struct secasvar *sav;
5862 u_int state;
5863 int error;
5864
5865 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5866 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5867
5868 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5869 if (error != 0)
5870 return key_senderror(so, m, EINVAL);
5871
5872 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5873 if (error != 0)
5874 return key_senderror(so, m, EINVAL);
5875
5876 sah = key_getsah(&saidx, CMP_HEAD);
5877 if (sah != NULL) {
5878 /* Delete all non-LARVAL SAs. */
5879 SASTATE_ALIVE_FOREACH(state) {
5880 if (state == SADB_SASTATE_LARVAL)
5881 continue;
5882 restart:
5883 SAVLIST_WRITER_FOREACH(sav, sah, state) {
5884 /* sanity check */
5885 if (sav->state != state) {
5886 IPSECLOG(LOG_DEBUG,
5887 "invalid sav->state "
5888 "(queue: %d SA: %d)\n",
5889 state, sav->state);
5890 continue;
5891 }
5892
5893 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5894 KEY_FREESAV(&sav);
5895 goto restart;
5896 }
5897 }
5898 }
5899 {
5900 struct mbuf *n;
5901
5902 /* create new sadb_msg to reply. */
5903 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5904 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5905 if (!n)
5906 return key_senderror(so, m, ENOBUFS);
5907
5908 n = key_fill_replymsg(n, 0);
5909 if (n == NULL)
5910 return key_senderror(so, m, ENOBUFS);
5911
5912 m_freem(m);
5913 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5914 }
5915 }
5916
5917 /*
5918 * SADB_GET processing
5919 * receive
5920 * <base, SA(*), address(SD)>
5921 * from the ikmpd, and get a SP and a SA to respond,
5922 * and send,
5923 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5924 * (identity(SD),) (sensitivity)>
5925 * to the ikmpd.
5926 *
5927 * m will always be freed.
5928 */
5929 static int
5930 key_api_get(struct socket *so, struct mbuf *m,
5931 const struct sadb_msghdr *mhp)
5932 {
5933 struct sadb_sa *sa0;
5934 const struct sockaddr *src, *dst;
5935 struct secasindex saidx;
5936 struct secashead *sah;
5937 struct secasvar *sav = NULL;
5938 u_int16_t proto;
5939 int error;
5940
5941 /* map satype to proto */
5942 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5943 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5944 return key_senderror(so, m, EINVAL);
5945 }
5946
5947 if (mhp->ext[SADB_EXT_SA] == NULL ||
5948 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5949 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5950 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5951 return key_senderror(so, m, EINVAL);
5952 }
5953 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5954 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5955 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5956 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5957 return key_senderror(so, m, EINVAL);
5958 }
5959
5960 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5961 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5962 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5963
5964 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5965 if (error != 0)
5966 return key_senderror(so, m, EINVAL);
5967
5968 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5969 if (error != 0)
5970 return key_senderror(so, m, EINVAL);
5971
5972 /* get a SA header */
5973 sah = key_getsah(&saidx, CMP_HEAD);
5974 if (sah != NULL) {
5975 /* get a SA with SPI. */
5976 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5977 }
5978 if (sav == NULL) {
5979 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5980 return key_senderror(so, m, ENOENT);
5981 }
5982
5983 {
5984 struct mbuf *n;
5985 u_int8_t satype;
5986
5987 /* map proto to satype */
5988 satype = key_proto2satype(sah->saidx.proto);
5989 if (satype == 0) {
5990 KEY_SA_UNREF(&sav);
5991 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
5992 return key_senderror(so, m, EINVAL);
5993 }
5994
5995 /* create new sadb_msg to reply. */
5996 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5997 mhp->msg->sadb_msg_pid);
5998 KEY_SA_UNREF(&sav);
5999 if (!n)
6000 return key_senderror(so, m, ENOBUFS);
6001
6002 m_freem(m);
6003 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6004 }
6005 }
6006
6007 /* XXX make it sysctl-configurable? */
6008 static void
6009 key_getcomb_setlifetime(struct sadb_comb *comb)
6010 {
6011
6012 comb->sadb_comb_soft_allocations = 1;
6013 comb->sadb_comb_hard_allocations = 1;
6014 comb->sadb_comb_soft_bytes = 0;
6015 comb->sadb_comb_hard_bytes = 0;
6016 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6017 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6018 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6019 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6020 }
6021
6022 /*
6023 * XXX reorder combinations by preference
6024 * XXX no idea if the user wants ESP authentication or not
6025 */
6026 static struct mbuf *
6027 key_getcomb_esp(void)
6028 {
6029 struct sadb_comb *comb;
6030 const struct enc_xform *algo;
6031 struct mbuf *result = NULL, *m, *n;
6032 int encmin;
6033 int i, off, o;
6034 int totlen;
6035 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6036
6037 m = NULL;
6038 for (i = 1; i <= SADB_EALG_MAX; i++) {
6039 algo = esp_algorithm_lookup(i);
6040 if (algo == NULL)
6041 continue;
6042
6043 /* discard algorithms with key size smaller than system min */
6044 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6045 continue;
6046 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6047 encmin = ipsec_esp_keymin;
6048 else
6049 encmin = _BITS(algo->minkey);
6050
6051 if (ipsec_esp_auth)
6052 m = key_getcomb_ah();
6053 else {
6054 KASSERTMSG(l <= MLEN,
6055 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6056 MGET(m, M_DONTWAIT, MT_DATA);
6057 if (m) {
6058 M_ALIGN(m, l);
6059 m->m_len = l;
6060 m->m_next = NULL;
6061 memset(mtod(m, void *), 0, m->m_len);
6062 }
6063 }
6064 if (!m)
6065 goto fail;
6066
6067 totlen = 0;
6068 for (n = m; n; n = n->m_next)
6069 totlen += n->m_len;
6070 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6071
6072 for (off = 0; off < totlen; off += l) {
6073 n = m_pulldown(m, off, l, &o);
6074 if (!n) {
6075 /* m is already freed */
6076 goto fail;
6077 }
6078 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6079 memset(comb, 0, sizeof(*comb));
6080 key_getcomb_setlifetime(comb);
6081 comb->sadb_comb_encrypt = i;
6082 comb->sadb_comb_encrypt_minbits = encmin;
6083 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6084 }
6085
6086 if (!result)
6087 result = m;
6088 else
6089 m_cat(result, m);
6090 }
6091
6092 return result;
6093
6094 fail:
6095 if (result)
6096 m_freem(result);
6097 return NULL;
6098 }
6099
6100 static void
6101 key_getsizes_ah(const struct auth_hash *ah, int alg,
6102 u_int16_t* ksmin, u_int16_t* ksmax)
6103 {
6104 *ksmin = *ksmax = ah->keysize;
6105 if (ah->keysize == 0) {
6106 /*
6107 * Transform takes arbitrary key size but algorithm
6108 * key size is restricted. Enforce this here.
6109 */
6110 switch (alg) {
6111 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6112 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6113 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6114 default:
6115 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6116 break;
6117 }
6118 }
6119 }
6120
6121 /*
6122 * XXX reorder combinations by preference
6123 */
6124 static struct mbuf *
6125 key_getcomb_ah(void)
6126 {
6127 struct sadb_comb *comb;
6128 const struct auth_hash *algo;
6129 struct mbuf *m;
6130 u_int16_t minkeysize, maxkeysize;
6131 int i;
6132 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6133
6134 m = NULL;
6135 for (i = 1; i <= SADB_AALG_MAX; i++) {
6136 #if 1
6137 /* we prefer HMAC algorithms, not old algorithms */
6138 if (i != SADB_AALG_SHA1HMAC &&
6139 i != SADB_AALG_MD5HMAC &&
6140 i != SADB_X_AALG_SHA2_256 &&
6141 i != SADB_X_AALG_SHA2_384 &&
6142 i != SADB_X_AALG_SHA2_512)
6143 continue;
6144 #endif
6145 algo = ah_algorithm_lookup(i);
6146 if (!algo)
6147 continue;
6148 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6149 /* discard algorithms with key size smaller than system min */
6150 if (_BITS(minkeysize) < ipsec_ah_keymin)
6151 continue;
6152
6153 if (!m) {
6154 KASSERTMSG(l <= MLEN,
6155 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6156 MGET(m, M_DONTWAIT, MT_DATA);
6157 if (m) {
6158 M_ALIGN(m, l);
6159 m->m_len = l;
6160 m->m_next = NULL;
6161 }
6162 } else
6163 M_PREPEND(m, l, M_DONTWAIT);
6164 if (!m)
6165 return NULL;
6166
6167 if (m->m_len < sizeof(struct sadb_comb)) {
6168 m = m_pullup(m, sizeof(struct sadb_comb));
6169 if (m == NULL)
6170 return NULL;
6171 }
6172
6173 comb = mtod(m, struct sadb_comb *);
6174 memset(comb, 0, sizeof(*comb));
6175 key_getcomb_setlifetime(comb);
6176 comb->sadb_comb_auth = i;
6177 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6178 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6179 }
6180
6181 return m;
6182 }
6183
6184 /*
6185 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6186 * XXX reorder combinations by preference
6187 */
6188 static struct mbuf *
6189 key_getcomb_ipcomp(void)
6190 {
6191 struct sadb_comb *comb;
6192 const struct comp_algo *algo;
6193 struct mbuf *m;
6194 int i;
6195 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6196
6197 m = NULL;
6198 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6199 algo = ipcomp_algorithm_lookup(i);
6200 if (!algo)
6201 continue;
6202
6203 if (!m) {
6204 KASSERTMSG(l <= MLEN,
6205 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6206 MGET(m, M_DONTWAIT, MT_DATA);
6207 if (m) {
6208 M_ALIGN(m, l);
6209 m->m_len = l;
6210 m->m_next = NULL;
6211 }
6212 } else
6213 M_PREPEND(m, l, M_DONTWAIT);
6214 if (!m)
6215 return NULL;
6216
6217 if (m->m_len < sizeof(struct sadb_comb)) {
6218 m = m_pullup(m, sizeof(struct sadb_comb));
6219 if (m == NULL)
6220 return NULL;
6221 }
6222
6223 comb = mtod(m, struct sadb_comb *);
6224 memset(comb, 0, sizeof(*comb));
6225 key_getcomb_setlifetime(comb);
6226 comb->sadb_comb_encrypt = i;
6227 /* what should we set into sadb_comb_*_{min,max}bits? */
6228 }
6229
6230 return m;
6231 }
6232
6233 /*
6234 * XXX no way to pass mode (transport/tunnel) to userland
6235 * XXX replay checking?
6236 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6237 */
6238 static struct mbuf *
6239 key_getprop(const struct secasindex *saidx)
6240 {
6241 struct sadb_prop *prop;
6242 struct mbuf *m, *n;
6243 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6244 int totlen;
6245
6246 switch (saidx->proto) {
6247 case IPPROTO_ESP:
6248 m = key_getcomb_esp();
6249 break;
6250 case IPPROTO_AH:
6251 m = key_getcomb_ah();
6252 break;
6253 case IPPROTO_IPCOMP:
6254 m = key_getcomb_ipcomp();
6255 break;
6256 default:
6257 return NULL;
6258 }
6259
6260 if (!m)
6261 return NULL;
6262 M_PREPEND(m, l, M_DONTWAIT);
6263 if (!m)
6264 return NULL;
6265
6266 totlen = 0;
6267 for (n = m; n; n = n->m_next)
6268 totlen += n->m_len;
6269
6270 prop = mtod(m, struct sadb_prop *);
6271 memset(prop, 0, sizeof(*prop));
6272 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6273 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6274 prop->sadb_prop_replay = 32; /* XXX */
6275
6276 return m;
6277 }
6278
6279 /*
6280 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6281 * send
6282 * <base, SA, address(SD), (address(P)), x_policy,
6283 * (identity(SD),) (sensitivity,) proposal>
6284 * to KMD, and expect to receive
6285 * <base> with SADB_ACQUIRE if error occurred,
6286 * or
6287 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6288 * from KMD by PF_KEY.
6289 *
6290 * XXX x_policy is outside of RFC2367 (KAME extension).
6291 * XXX sensitivity is not supported.
6292 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6293 * see comment for key_getcomb_ipcomp().
6294 *
6295 * OUT:
6296 * 0 : succeed
6297 * others: error number
6298 */
6299 static int
6300 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6301 {
6302 struct mbuf *result = NULL, *m;
6303 #ifndef IPSEC_NONBLOCK_ACQUIRE
6304 struct secacq *newacq;
6305 #endif
6306 u_int8_t satype;
6307 int error = -1;
6308 u_int32_t seq;
6309
6310 /* sanity check */
6311 KASSERT(saidx != NULL);
6312 satype = key_proto2satype(saidx->proto);
6313 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6314
6315 #ifndef IPSEC_NONBLOCK_ACQUIRE
6316 /*
6317 * We never do anything about acquirng SA. There is anather
6318 * solution that kernel blocks to send SADB_ACQUIRE message until
6319 * getting something message from IKEd. In later case, to be
6320 * managed with ACQUIRING list.
6321 */
6322 /* Get an entry to check whether sending message or not. */
6323 mutex_enter(&key_mtx);
6324 newacq = key_getacq(saidx);
6325 if (newacq != NULL) {
6326 if (key_blockacq_count < newacq->count) {
6327 /* reset counter and do send message. */
6328 newacq->count = 0;
6329 } else {
6330 /* increment counter and do nothing. */
6331 newacq->count++;
6332 mutex_exit(&key_mtx);
6333 return 0;
6334 }
6335 } else {
6336 /* make new entry for blocking to send SADB_ACQUIRE. */
6337 newacq = key_newacq(saidx);
6338 if (newacq == NULL)
6339 return ENOBUFS;
6340
6341 /* add to acqtree */
6342 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6343 }
6344
6345 seq = newacq->seq;
6346 mutex_exit(&key_mtx);
6347 #else
6348 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6349 #endif
6350 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6351 if (!m) {
6352 error = ENOBUFS;
6353 goto fail;
6354 }
6355 result = m;
6356
6357 /* set sadb_address for saidx's. */
6358 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6359 IPSEC_ULPROTO_ANY);
6360 if (!m) {
6361 error = ENOBUFS;
6362 goto fail;
6363 }
6364 m_cat(result, m);
6365
6366 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6367 IPSEC_ULPROTO_ANY);
6368 if (!m) {
6369 error = ENOBUFS;
6370 goto fail;
6371 }
6372 m_cat(result, m);
6373
6374 /* XXX proxy address (optional) */
6375
6376 /* set sadb_x_policy */
6377 if (sp) {
6378 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6379 if (!m) {
6380 error = ENOBUFS;
6381 goto fail;
6382 }
6383 m_cat(result, m);
6384 }
6385
6386 /* XXX identity (optional) */
6387 #if 0
6388 if (idexttype && fqdn) {
6389 /* create identity extension (FQDN) */
6390 struct sadb_ident *id;
6391 int fqdnlen;
6392
6393 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6394 id = (struct sadb_ident *)p;
6395 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6396 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6397 id->sadb_ident_exttype = idexttype;
6398 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6399 memcpy(id + 1, fqdn, fqdnlen);
6400 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6401 }
6402
6403 if (idexttype) {
6404 /* create identity extension (USERFQDN) */
6405 struct sadb_ident *id;
6406 int userfqdnlen;
6407
6408 if (userfqdn) {
6409 /* +1 for terminating-NUL */
6410 userfqdnlen = strlen(userfqdn) + 1;
6411 } else
6412 userfqdnlen = 0;
6413 id = (struct sadb_ident *)p;
6414 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6415 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6416 id->sadb_ident_exttype = idexttype;
6417 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6418 /* XXX is it correct? */
6419 if (curlwp)
6420 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6421 if (userfqdn && userfqdnlen)
6422 memcpy(id + 1, userfqdn, userfqdnlen);
6423 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6424 }
6425 #endif
6426
6427 /* XXX sensitivity (optional) */
6428
6429 /* create proposal/combination extension */
6430 m = key_getprop(saidx);
6431 #if 0
6432 /*
6433 * spec conformant: always attach proposal/combination extension,
6434 * the problem is that we have no way to attach it for ipcomp,
6435 * due to the way sadb_comb is declared in RFC2367.
6436 */
6437 if (!m) {
6438 error = ENOBUFS;
6439 goto fail;
6440 }
6441 m_cat(result, m);
6442 #else
6443 /*
6444 * outside of spec; make proposal/combination extension optional.
6445 */
6446 if (m)
6447 m_cat(result, m);
6448 #endif
6449
6450 if ((result->m_flags & M_PKTHDR) == 0) {
6451 error = EINVAL;
6452 goto fail;
6453 }
6454
6455 if (result->m_len < sizeof(struct sadb_msg)) {
6456 result = m_pullup(result, sizeof(struct sadb_msg));
6457 if (result == NULL) {
6458 error = ENOBUFS;
6459 goto fail;
6460 }
6461 }
6462
6463 result->m_pkthdr.len = 0;
6464 for (m = result; m; m = m->m_next)
6465 result->m_pkthdr.len += m->m_len;
6466
6467 mtod(result, struct sadb_msg *)->sadb_msg_len =
6468 PFKEY_UNIT64(result->m_pkthdr.len);
6469
6470 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6471
6472 fail:
6473 if (result)
6474 m_freem(result);
6475 return error;
6476 }
6477
6478 #ifndef IPSEC_NONBLOCK_ACQUIRE
6479 static struct secacq *
6480 key_newacq(const struct secasindex *saidx)
6481 {
6482 struct secacq *newacq;
6483
6484 /* get new entry */
6485 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6486 if (newacq == NULL) {
6487 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6488 return NULL;
6489 }
6490
6491 /* copy secindex */
6492 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6493 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6494 newacq->created = time_uptime;
6495 newacq->count = 0;
6496
6497 return newacq;
6498 }
6499
6500 static struct secacq *
6501 key_getacq(const struct secasindex *saidx)
6502 {
6503 struct secacq *acq;
6504
6505 KASSERT(mutex_owned(&key_mtx));
6506
6507 LIST_FOREACH(acq, &acqtree, chain) {
6508 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6509 return acq;
6510 }
6511
6512 return NULL;
6513 }
6514
6515 static struct secacq *
6516 key_getacqbyseq(u_int32_t seq)
6517 {
6518 struct secacq *acq;
6519
6520 KASSERT(mutex_owned(&key_mtx));
6521
6522 LIST_FOREACH(acq, &acqtree, chain) {
6523 if (acq->seq == seq)
6524 return acq;
6525 }
6526
6527 return NULL;
6528 }
6529 #endif
6530
6531 #ifdef notyet
6532 static struct secspacq *
6533 key_newspacq(const struct secpolicyindex *spidx)
6534 {
6535 struct secspacq *acq;
6536
6537 /* get new entry */
6538 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6539 if (acq == NULL) {
6540 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6541 return NULL;
6542 }
6543
6544 /* copy secindex */
6545 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6546 acq->created = time_uptime;
6547 acq->count = 0;
6548
6549 return acq;
6550 }
6551
6552 static struct secspacq *
6553 key_getspacq(const struct secpolicyindex *spidx)
6554 {
6555 struct secspacq *acq;
6556
6557 LIST_FOREACH(acq, &spacqtree, chain) {
6558 if (key_spidx_match_exactly(spidx, &acq->spidx))
6559 return acq;
6560 }
6561
6562 return NULL;
6563 }
6564 #endif /* notyet */
6565
6566 /*
6567 * SADB_ACQUIRE processing,
6568 * in first situation, is receiving
6569 * <base>
6570 * from the ikmpd, and clear sequence of its secasvar entry.
6571 *
6572 * In second situation, is receiving
6573 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6574 * from a user land process, and return
6575 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6576 * to the socket.
6577 *
6578 * m will always be freed.
6579 */
6580 static int
6581 key_api_acquire(struct socket *so, struct mbuf *m,
6582 const struct sadb_msghdr *mhp)
6583 {
6584 const struct sockaddr *src, *dst;
6585 struct secasindex saidx;
6586 struct secashead *sah;
6587 u_int16_t proto;
6588 int error;
6589
6590 /*
6591 * Error message from KMd.
6592 * We assume that if error was occurred in IKEd, the length of PFKEY
6593 * message is equal to the size of sadb_msg structure.
6594 * We do not raise error even if error occurred in this function.
6595 */
6596 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6597 #ifndef IPSEC_NONBLOCK_ACQUIRE
6598 struct secacq *acq;
6599
6600 /* check sequence number */
6601 if (mhp->msg->sadb_msg_seq == 0) {
6602 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6603 m_freem(m);
6604 return 0;
6605 }
6606
6607 mutex_enter(&key_mtx);
6608 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6609 if (acq == NULL) {
6610 mutex_exit(&key_mtx);
6611 /*
6612 * the specified larval SA is already gone, or we got
6613 * a bogus sequence number. we can silently ignore it.
6614 */
6615 m_freem(m);
6616 return 0;
6617 }
6618
6619 /* reset acq counter in order to deletion by timehander. */
6620 acq->created = time_uptime;
6621 acq->count = 0;
6622 mutex_exit(&key_mtx);
6623 #endif
6624 m_freem(m);
6625 return 0;
6626 }
6627
6628 /*
6629 * This message is from user land.
6630 */
6631
6632 /* map satype to proto */
6633 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6634 if (proto == 0) {
6635 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6636 return key_senderror(so, m, EINVAL);
6637 }
6638
6639 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6640 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6641 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6642 /* error */
6643 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6644 return key_senderror(so, m, EINVAL);
6645 }
6646 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6647 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6648 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6649 /* error */
6650 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6651 return key_senderror(so, m, EINVAL);
6652 }
6653
6654 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6655 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6656
6657 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6658 if (error != 0)
6659 return key_senderror(so, m, EINVAL);
6660
6661 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6662 if (error != 0)
6663 return key_senderror(so, m, EINVAL);
6664
6665 /* get a SA index */
6666 sah = key_getsah(&saidx, CMP_MODE_REQID);
6667 if (sah != NULL) {
6668 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6669 return key_senderror(so, m, EEXIST);
6670 }
6671
6672 error = key_acquire(&saidx, NULL);
6673 if (error != 0) {
6674 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6675 error);
6676 return key_senderror(so, m, error);
6677 }
6678
6679 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6680 }
6681
6682 /*
6683 * SADB_REGISTER processing.
6684 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6685 * receive
6686 * <base>
6687 * from the ikmpd, and register a socket to send PF_KEY messages,
6688 * and send
6689 * <base, supported>
6690 * to KMD by PF_KEY.
6691 * If socket is detached, must free from regnode.
6692 *
6693 * m will always be freed.
6694 */
6695 static int
6696 key_api_register(struct socket *so, struct mbuf *m,
6697 const struct sadb_msghdr *mhp)
6698 {
6699 struct secreg *reg, *newreg = 0;
6700
6701 /* check for invalid register message */
6702 if (mhp->msg->sadb_msg_satype >= __arraycount(regtree))
6703 return key_senderror(so, m, EINVAL);
6704
6705 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6706 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6707 goto setmsg;
6708
6709 /* Allocate regnode in advance, out of mutex */
6710 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6711
6712 /* check whether existing or not */
6713 mutex_enter(&key_mtx);
6714 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6715 if (reg->so == so) {
6716 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6717 mutex_exit(&key_mtx);
6718 kmem_free(newreg, sizeof(*newreg));
6719 return key_senderror(so, m, EEXIST);
6720 }
6721 }
6722
6723 newreg->so = so;
6724 ((struct keycb *)sotorawcb(so))->kp_registered++;
6725
6726 /* add regnode to regtree. */
6727 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6728 mutex_exit(&key_mtx);
6729
6730 setmsg:
6731 {
6732 struct mbuf *n;
6733 struct sadb_supported *sup;
6734 u_int len, alen, elen;
6735 int off;
6736 int i;
6737 struct sadb_alg *alg;
6738
6739 /* create new sadb_msg to reply. */
6740 alen = 0;
6741 for (i = 1; i <= SADB_AALG_MAX; i++) {
6742 if (ah_algorithm_lookup(i))
6743 alen += sizeof(struct sadb_alg);
6744 }
6745 if (alen)
6746 alen += sizeof(struct sadb_supported);
6747 elen = 0;
6748 for (i = 1; i <= SADB_EALG_MAX; i++) {
6749 if (esp_algorithm_lookup(i))
6750 elen += sizeof(struct sadb_alg);
6751 }
6752 if (elen)
6753 elen += sizeof(struct sadb_supported);
6754
6755 len = sizeof(struct sadb_msg) + alen + elen;
6756
6757 if (len > MCLBYTES)
6758 return key_senderror(so, m, ENOBUFS);
6759
6760 MGETHDR(n, M_DONTWAIT, MT_DATA);
6761 if (len > MHLEN) {
6762 MCLGET(n, M_DONTWAIT);
6763 if ((n->m_flags & M_EXT) == 0) {
6764 m_freem(n);
6765 n = NULL;
6766 }
6767 }
6768 if (!n)
6769 return key_senderror(so, m, ENOBUFS);
6770
6771 n->m_pkthdr.len = n->m_len = len;
6772 n->m_next = NULL;
6773 off = 0;
6774
6775 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6776 n = key_fill_replymsg(n, 0);
6777 if (n == NULL)
6778 return key_senderror(so, m, ENOBUFS);
6779
6780 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6781
6782 /* for authentication algorithm */
6783 if (alen) {
6784 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6785 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6786 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6787 off += PFKEY_ALIGN8(sizeof(*sup));
6788
6789 for (i = 1; i <= SADB_AALG_MAX; i++) {
6790 const struct auth_hash *aalgo;
6791 u_int16_t minkeysize, maxkeysize;
6792
6793 aalgo = ah_algorithm_lookup(i);
6794 if (!aalgo)
6795 continue;
6796 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6797 alg->sadb_alg_id = i;
6798 alg->sadb_alg_ivlen = 0;
6799 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6800 alg->sadb_alg_minbits = _BITS(minkeysize);
6801 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6802 off += PFKEY_ALIGN8(sizeof(*alg));
6803 }
6804 }
6805
6806 /* for encryption algorithm */
6807 if (elen) {
6808 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6809 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6810 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6811 off += PFKEY_ALIGN8(sizeof(*sup));
6812
6813 for (i = 1; i <= SADB_EALG_MAX; i++) {
6814 const struct enc_xform *ealgo;
6815
6816 ealgo = esp_algorithm_lookup(i);
6817 if (!ealgo)
6818 continue;
6819 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6820 alg->sadb_alg_id = i;
6821 alg->sadb_alg_ivlen = ealgo->blocksize;
6822 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6823 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6824 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6825 }
6826 }
6827
6828 KASSERTMSG(off == len, "length inconsistency");
6829
6830 m_freem(m);
6831 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6832 }
6833 }
6834
6835 /*
6836 * free secreg entry registered.
6837 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6838 */
6839 void
6840 key_freereg(struct socket *so)
6841 {
6842 struct secreg *reg;
6843 int i;
6844
6845 KASSERT(!cpu_softintr_p());
6846 KASSERT(so != NULL);
6847
6848 /*
6849 * check whether existing or not.
6850 * check all type of SA, because there is a potential that
6851 * one socket is registered to multiple type of SA.
6852 */
6853 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6854 mutex_enter(&key_mtx);
6855 LIST_FOREACH(reg, ®tree[i], chain) {
6856 if (reg->so == so) {
6857 LIST_REMOVE(reg, chain);
6858 break;
6859 }
6860 }
6861 mutex_exit(&key_mtx);
6862 if (reg != NULL)
6863 kmem_free(reg, sizeof(*reg));
6864 }
6865
6866 return;
6867 }
6868
6869 /*
6870 * SADB_EXPIRE processing
6871 * send
6872 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6873 * to KMD by PF_KEY.
6874 * NOTE: We send only soft lifetime extension.
6875 *
6876 * OUT: 0 : succeed
6877 * others : error number
6878 */
6879 static int
6880 key_expire(struct secasvar *sav)
6881 {
6882 int s;
6883 int satype;
6884 struct mbuf *result = NULL, *m;
6885 int len;
6886 int error = -1;
6887 struct sadb_lifetime *lt;
6888
6889 /* XXX: Why do we lock ? */
6890 s = splsoftnet(); /*called from softclock()*/
6891
6892 KASSERT(sav != NULL);
6893
6894 satype = key_proto2satype(sav->sah->saidx.proto);
6895 KASSERTMSG(satype != 0, "invalid proto is passed");
6896
6897 /* set msg header */
6898 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6899 if (!m) {
6900 error = ENOBUFS;
6901 goto fail;
6902 }
6903 result = m;
6904
6905 /* create SA extension */
6906 m = key_setsadbsa(sav);
6907 if (!m) {
6908 error = ENOBUFS;
6909 goto fail;
6910 }
6911 m_cat(result, m);
6912
6913 /* create SA extension */
6914 m = key_setsadbxsa2(sav->sah->saidx.mode,
6915 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6916 if (!m) {
6917 error = ENOBUFS;
6918 goto fail;
6919 }
6920 m_cat(result, m);
6921
6922 /* create lifetime extension (current and soft) */
6923 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6924 m = key_alloc_mbuf(len);
6925 if (!m || m->m_next) { /*XXX*/
6926 if (m)
6927 m_freem(m);
6928 error = ENOBUFS;
6929 goto fail;
6930 }
6931 memset(mtod(m, void *), 0, len);
6932 lt = mtod(m, struct sadb_lifetime *);
6933 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6934 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6935 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6936 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6937 lt->sadb_lifetime_addtime =
6938 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6939 lt->sadb_lifetime_usetime =
6940 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6941 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6942 memcpy(lt, sav->lft_s, sizeof(*lt));
6943 m_cat(result, m);
6944
6945 /* set sadb_address for source */
6946 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6947 FULLMASK, IPSEC_ULPROTO_ANY);
6948 if (!m) {
6949 error = ENOBUFS;
6950 goto fail;
6951 }
6952 m_cat(result, m);
6953
6954 /* set sadb_address for destination */
6955 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6956 FULLMASK, IPSEC_ULPROTO_ANY);
6957 if (!m) {
6958 error = ENOBUFS;
6959 goto fail;
6960 }
6961 m_cat(result, m);
6962
6963 if ((result->m_flags & M_PKTHDR) == 0) {
6964 error = EINVAL;
6965 goto fail;
6966 }
6967
6968 if (result->m_len < sizeof(struct sadb_msg)) {
6969 result = m_pullup(result, sizeof(struct sadb_msg));
6970 if (result == NULL) {
6971 error = ENOBUFS;
6972 goto fail;
6973 }
6974 }
6975
6976 result->m_pkthdr.len = 0;
6977 for (m = result; m; m = m->m_next)
6978 result->m_pkthdr.len += m->m_len;
6979
6980 mtod(result, struct sadb_msg *)->sadb_msg_len =
6981 PFKEY_UNIT64(result->m_pkthdr.len);
6982
6983 splx(s);
6984 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6985
6986 fail:
6987 if (result)
6988 m_freem(result);
6989 splx(s);
6990 return error;
6991 }
6992
6993 /*
6994 * SADB_FLUSH processing
6995 * receive
6996 * <base>
6997 * from the ikmpd, and free all entries in secastree.
6998 * and send,
6999 * <base>
7000 * to the ikmpd.
7001 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7002 *
7003 * m will always be freed.
7004 */
7005 static int
7006 key_api_flush(struct socket *so, struct mbuf *m,
7007 const struct sadb_msghdr *mhp)
7008 {
7009 struct sadb_msg *newmsg;
7010 struct secashead *sah;
7011 struct secasvar *sav;
7012 u_int16_t proto;
7013 u_int8_t state;
7014
7015 /* map satype to proto */
7016 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7017 if (proto == 0) {
7018 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7019 return key_senderror(so, m, EINVAL);
7020 }
7021
7022 /* no SATYPE specified, i.e. flushing all SA. */
7023 SAHLIST_READER_FOREACH(sah) {
7024 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7025 proto != sah->saidx.proto)
7026 continue;
7027
7028 SASTATE_ALIVE_FOREACH(state) {
7029 restart:
7030 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7031 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7032 KEY_FREESAV(&sav);
7033 goto restart;
7034 }
7035 }
7036
7037 sah->state = SADB_SASTATE_DEAD;
7038 }
7039
7040 if (m->m_len < sizeof(struct sadb_msg) ||
7041 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7042 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7043 return key_senderror(so, m, ENOBUFS);
7044 }
7045
7046 if (m->m_next)
7047 m_freem(m->m_next);
7048 m->m_next = NULL;
7049 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7050 newmsg = mtod(m, struct sadb_msg *);
7051 newmsg->sadb_msg_errno = 0;
7052 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7053
7054 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7055 }
7056
7057
7058 static struct mbuf *
7059 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7060 {
7061 struct secashead *sah;
7062 struct secasvar *sav;
7063 u_int16_t proto;
7064 u_int8_t satype;
7065 u_int8_t state;
7066 int cnt;
7067 struct mbuf *m, *n, *prev;
7068
7069 KASSERT(mutex_owned(&key_sa_mtx));
7070
7071 *lenp = 0;
7072
7073 /* map satype to proto */
7074 proto = key_satype2proto(req_satype);
7075 if (proto == 0) {
7076 *errorp = EINVAL;
7077 return (NULL);
7078 }
7079
7080 /* count sav entries to be sent to userland. */
7081 cnt = 0;
7082 SAHLIST_WRITER_FOREACH(sah) {
7083 if (req_satype != SADB_SATYPE_UNSPEC &&
7084 proto != sah->saidx.proto)
7085 continue;
7086
7087 SASTATE_ANY_FOREACH(state) {
7088 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7089 cnt++;
7090 }
7091 }
7092 }
7093
7094 if (cnt == 0) {
7095 *errorp = ENOENT;
7096 return (NULL);
7097 }
7098
7099 /* send this to the userland, one at a time. */
7100 m = NULL;
7101 prev = m;
7102 SAHLIST_WRITER_FOREACH(sah) {
7103 if (req_satype != SADB_SATYPE_UNSPEC &&
7104 proto != sah->saidx.proto)
7105 continue;
7106
7107 /* map proto to satype */
7108 satype = key_proto2satype(sah->saidx.proto);
7109 if (satype == 0) {
7110 m_freem(m);
7111 *errorp = EINVAL;
7112 return (NULL);
7113 }
7114
7115 SASTATE_ANY_FOREACH(state) {
7116 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7117 n = key_setdumpsa(sav, SADB_DUMP, satype,
7118 --cnt, pid);
7119 if (!n) {
7120 m_freem(m);
7121 *errorp = ENOBUFS;
7122 return (NULL);
7123 }
7124
7125 if (!m)
7126 m = n;
7127 else
7128 prev->m_nextpkt = n;
7129 prev = n;
7130 }
7131 }
7132 }
7133
7134 if (!m) {
7135 *errorp = EINVAL;
7136 return (NULL);
7137 }
7138
7139 if ((m->m_flags & M_PKTHDR) != 0) {
7140 m->m_pkthdr.len = 0;
7141 for (n = m; n; n = n->m_next)
7142 m->m_pkthdr.len += n->m_len;
7143 }
7144
7145 *errorp = 0;
7146 return (m);
7147 }
7148
7149 /*
7150 * SADB_DUMP processing
7151 * dump all entries including status of DEAD in SAD.
7152 * receive
7153 * <base>
7154 * from the ikmpd, and dump all secasvar leaves
7155 * and send,
7156 * <base> .....
7157 * to the ikmpd.
7158 *
7159 * m will always be freed.
7160 */
7161 static int
7162 key_api_dump(struct socket *so, struct mbuf *m0,
7163 const struct sadb_msghdr *mhp)
7164 {
7165 u_int16_t proto;
7166 u_int8_t satype;
7167 struct mbuf *n;
7168 int error, len, ok;
7169
7170 /* map satype to proto */
7171 satype = mhp->msg->sadb_msg_satype;
7172 proto = key_satype2proto(satype);
7173 if (proto == 0) {
7174 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7175 return key_senderror(so, m0, EINVAL);
7176 }
7177
7178 /*
7179 * If the requestor has insufficient socket-buffer space
7180 * for the entire chain, nobody gets any response to the DUMP.
7181 * XXX For now, only the requestor ever gets anything.
7182 * Moreover, if the requestor has any space at all, they receive
7183 * the entire chain, otherwise the request is refused with ENOBUFS.
7184 */
7185 if (sbspace(&so->so_rcv) <= 0) {
7186 return key_senderror(so, m0, ENOBUFS);
7187 }
7188
7189 mutex_enter(&key_sa_mtx);
7190 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7191 mutex_exit(&key_sa_mtx);
7192
7193 if (n == NULL) {
7194 return key_senderror(so, m0, ENOENT);
7195 }
7196 {
7197 uint64_t *ps = PFKEY_STAT_GETREF();
7198 ps[PFKEY_STAT_IN_TOTAL]++;
7199 ps[PFKEY_STAT_IN_BYTES] += len;
7200 PFKEY_STAT_PUTREF();
7201 }
7202
7203 /*
7204 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7205 * The requestor receives either the entire chain, or an
7206 * error message with ENOBUFS.
7207 *
7208 * sbappendaddrchain() takes the chain of entries, one
7209 * packet-record per SPD entry, prepends the key_src sockaddr
7210 * to each packet-record, links the sockaddr mbufs into a new
7211 * list of records, then appends the entire resulting
7212 * list to the requesting socket.
7213 */
7214 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7215 SB_PRIO_ONESHOT_OVERFLOW);
7216
7217 if (!ok) {
7218 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7219 m_freem(n);
7220 return key_senderror(so, m0, ENOBUFS);
7221 }
7222
7223 m_freem(m0);
7224 return 0;
7225 }
7226
7227 /*
7228 * SADB_X_PROMISC processing
7229 *
7230 * m will always be freed.
7231 */
7232 static int
7233 key_api_promisc(struct socket *so, struct mbuf *m,
7234 const struct sadb_msghdr *mhp)
7235 {
7236 int olen;
7237
7238 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7239
7240 if (olen < sizeof(struct sadb_msg)) {
7241 #if 1
7242 return key_senderror(so, m, EINVAL);
7243 #else
7244 m_freem(m);
7245 return 0;
7246 #endif
7247 } else if (olen == sizeof(struct sadb_msg)) {
7248 /* enable/disable promisc mode */
7249 struct keycb *kp = (struct keycb *)sotorawcb(so);
7250 if (kp == NULL)
7251 return key_senderror(so, m, EINVAL);
7252 mhp->msg->sadb_msg_errno = 0;
7253 switch (mhp->msg->sadb_msg_satype) {
7254 case 0:
7255 case 1:
7256 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7257 break;
7258 default:
7259 return key_senderror(so, m, EINVAL);
7260 }
7261
7262 /* send the original message back to everyone */
7263 mhp->msg->sadb_msg_errno = 0;
7264 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7265 } else {
7266 /* send packet as is */
7267
7268 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7269
7270 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7271 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7272 }
7273 }
7274
7275 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7276 const struct sadb_msghdr *) = {
7277 NULL, /* SADB_RESERVED */
7278 key_api_getspi, /* SADB_GETSPI */
7279 key_api_update, /* SADB_UPDATE */
7280 key_api_add, /* SADB_ADD */
7281 key_api_delete, /* SADB_DELETE */
7282 key_api_get, /* SADB_GET */
7283 key_api_acquire, /* SADB_ACQUIRE */
7284 key_api_register, /* SADB_REGISTER */
7285 NULL, /* SADB_EXPIRE */
7286 key_api_flush, /* SADB_FLUSH */
7287 key_api_dump, /* SADB_DUMP */
7288 key_api_promisc, /* SADB_X_PROMISC */
7289 NULL, /* SADB_X_PCHANGE */
7290 key_api_spdadd, /* SADB_X_SPDUPDATE */
7291 key_api_spdadd, /* SADB_X_SPDADD */
7292 key_api_spddelete, /* SADB_X_SPDDELETE */
7293 key_api_spdget, /* SADB_X_SPDGET */
7294 NULL, /* SADB_X_SPDACQUIRE */
7295 key_api_spddump, /* SADB_X_SPDDUMP */
7296 key_api_spdflush, /* SADB_X_SPDFLUSH */
7297 key_api_spdadd, /* SADB_X_SPDSETIDX */
7298 NULL, /* SADB_X_SPDEXPIRE */
7299 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7300 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7301 };
7302
7303 /*
7304 * parse sadb_msg buffer to process PFKEYv2,
7305 * and create a data to response if needed.
7306 * I think to be dealed with mbuf directly.
7307 * IN:
7308 * msgp : pointer to pointer to a received buffer pulluped.
7309 * This is rewrited to response.
7310 * so : pointer to socket.
7311 * OUT:
7312 * length for buffer to send to user process.
7313 */
7314 int
7315 key_parse(struct mbuf *m, struct socket *so)
7316 {
7317 struct sadb_msg *msg;
7318 struct sadb_msghdr mh;
7319 u_int orglen;
7320 int error;
7321
7322 KASSERT(m != NULL);
7323 KASSERT(so != NULL);
7324
7325 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7326 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7327 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7328 kdebug_sadb(msg);
7329 }
7330 #endif
7331
7332 if (m->m_len < sizeof(struct sadb_msg)) {
7333 m = m_pullup(m, sizeof(struct sadb_msg));
7334 if (!m)
7335 return ENOBUFS;
7336 }
7337 msg = mtod(m, struct sadb_msg *);
7338 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7339
7340 if ((m->m_flags & M_PKTHDR) == 0 ||
7341 m->m_pkthdr.len != orglen) {
7342 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7343 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7344 error = EINVAL;
7345 goto senderror;
7346 }
7347
7348 if (msg->sadb_msg_version != PF_KEY_V2) {
7349 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7350 msg->sadb_msg_version);
7351 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7352 error = EINVAL;
7353 goto senderror;
7354 }
7355
7356 if (msg->sadb_msg_type > SADB_MAX) {
7357 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7358 msg->sadb_msg_type);
7359 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7360 error = EINVAL;
7361 goto senderror;
7362 }
7363
7364 /* for old-fashioned code - should be nuked */
7365 if (m->m_pkthdr.len > MCLBYTES) {
7366 m_freem(m);
7367 return ENOBUFS;
7368 }
7369 if (m->m_next) {
7370 struct mbuf *n;
7371
7372 MGETHDR(n, M_DONTWAIT, MT_DATA);
7373 if (n && m->m_pkthdr.len > MHLEN) {
7374 MCLGET(n, M_DONTWAIT);
7375 if ((n->m_flags & M_EXT) == 0) {
7376 m_free(n);
7377 n = NULL;
7378 }
7379 }
7380 if (!n) {
7381 m_freem(m);
7382 return ENOBUFS;
7383 }
7384 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7385 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7386 n->m_next = NULL;
7387 m_freem(m);
7388 m = n;
7389 }
7390
7391 /* align the mbuf chain so that extensions are in contiguous region. */
7392 error = key_align(m, &mh);
7393 if (error)
7394 return error;
7395
7396 if (m->m_next) { /*XXX*/
7397 m_freem(m);
7398 return ENOBUFS;
7399 }
7400
7401 msg = mh.msg;
7402
7403 /* check SA type */
7404 switch (msg->sadb_msg_satype) {
7405 case SADB_SATYPE_UNSPEC:
7406 switch (msg->sadb_msg_type) {
7407 case SADB_GETSPI:
7408 case SADB_UPDATE:
7409 case SADB_ADD:
7410 case SADB_DELETE:
7411 case SADB_GET:
7412 case SADB_ACQUIRE:
7413 case SADB_EXPIRE:
7414 IPSECLOG(LOG_DEBUG,
7415 "must specify satype when msg type=%u.\n",
7416 msg->sadb_msg_type);
7417 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7418 error = EINVAL;
7419 goto senderror;
7420 }
7421 break;
7422 case SADB_SATYPE_AH:
7423 case SADB_SATYPE_ESP:
7424 case SADB_X_SATYPE_IPCOMP:
7425 case SADB_X_SATYPE_TCPSIGNATURE:
7426 switch (msg->sadb_msg_type) {
7427 case SADB_X_SPDADD:
7428 case SADB_X_SPDDELETE:
7429 case SADB_X_SPDGET:
7430 case SADB_X_SPDDUMP:
7431 case SADB_X_SPDFLUSH:
7432 case SADB_X_SPDSETIDX:
7433 case SADB_X_SPDUPDATE:
7434 case SADB_X_SPDDELETE2:
7435 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7436 msg->sadb_msg_type);
7437 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7438 error = EINVAL;
7439 goto senderror;
7440 }
7441 break;
7442 case SADB_SATYPE_RSVP:
7443 case SADB_SATYPE_OSPFV2:
7444 case SADB_SATYPE_RIPV2:
7445 case SADB_SATYPE_MIP:
7446 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7447 msg->sadb_msg_satype);
7448 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7449 error = EOPNOTSUPP;
7450 goto senderror;
7451 case 1: /* XXX: What does it do? */
7452 if (msg->sadb_msg_type == SADB_X_PROMISC)
7453 break;
7454 /*FALLTHROUGH*/
7455 default:
7456 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7457 msg->sadb_msg_satype);
7458 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7459 error = EINVAL;
7460 goto senderror;
7461 }
7462
7463 /* check field of upper layer protocol and address family */
7464 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7465 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7466 struct sadb_address *src0, *dst0;
7467 u_int plen;
7468
7469 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7470 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7471
7472 /* check upper layer protocol */
7473 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7474 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7475 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7476 error = EINVAL;
7477 goto senderror;
7478 }
7479
7480 /* check family */
7481 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7482 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7483 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7484 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7485 error = EINVAL;
7486 goto senderror;
7487 }
7488 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7489 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7490 IPSECLOG(LOG_DEBUG,
7491 "address struct size mismatched.\n");
7492 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7493 error = EINVAL;
7494 goto senderror;
7495 }
7496
7497 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7498 case AF_INET:
7499 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7500 sizeof(struct sockaddr_in)) {
7501 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7502 error = EINVAL;
7503 goto senderror;
7504 }
7505 break;
7506 case AF_INET6:
7507 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7508 sizeof(struct sockaddr_in6)) {
7509 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7510 error = EINVAL;
7511 goto senderror;
7512 }
7513 break;
7514 default:
7515 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7516 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7517 error = EAFNOSUPPORT;
7518 goto senderror;
7519 }
7520
7521 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7522 case AF_INET:
7523 plen = sizeof(struct in_addr) << 3;
7524 break;
7525 case AF_INET6:
7526 plen = sizeof(struct in6_addr) << 3;
7527 break;
7528 default:
7529 plen = 0; /*fool gcc*/
7530 break;
7531 }
7532
7533 /* check max prefix length */
7534 if (src0->sadb_address_prefixlen > plen ||
7535 dst0->sadb_address_prefixlen > plen) {
7536 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7537 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7538 error = EINVAL;
7539 goto senderror;
7540 }
7541
7542 /*
7543 * prefixlen == 0 is valid because there can be a case when
7544 * all addresses are matched.
7545 */
7546 }
7547
7548 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7549 key_api_typesw[msg->sadb_msg_type] == NULL) {
7550 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7551 error = EINVAL;
7552 goto senderror;
7553 }
7554
7555 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7556
7557 senderror:
7558 return key_senderror(so, m, error);
7559 }
7560
7561 static int
7562 key_senderror(struct socket *so, struct mbuf *m, int code)
7563 {
7564 struct sadb_msg *msg;
7565
7566 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7567
7568 msg = mtod(m, struct sadb_msg *);
7569 msg->sadb_msg_errno = code;
7570 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7571 }
7572
7573 /*
7574 * set the pointer to each header into message buffer.
7575 * m will be freed on error.
7576 * XXX larger-than-MCLBYTES extension?
7577 */
7578 static int
7579 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7580 {
7581 struct mbuf *n;
7582 struct sadb_ext *ext;
7583 size_t off, end;
7584 int extlen;
7585 int toff;
7586
7587 KASSERT(m != NULL);
7588 KASSERT(mhp != NULL);
7589 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7590
7591 /* initialize */
7592 memset(mhp, 0, sizeof(*mhp));
7593
7594 mhp->msg = mtod(m, struct sadb_msg *);
7595 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7596
7597 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7598 extlen = end; /*just in case extlen is not updated*/
7599 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7600 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7601 if (!n) {
7602 /* m is already freed */
7603 return ENOBUFS;
7604 }
7605 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7606
7607 /* set pointer */
7608 switch (ext->sadb_ext_type) {
7609 case SADB_EXT_SA:
7610 case SADB_EXT_ADDRESS_SRC:
7611 case SADB_EXT_ADDRESS_DST:
7612 case SADB_EXT_ADDRESS_PROXY:
7613 case SADB_EXT_LIFETIME_CURRENT:
7614 case SADB_EXT_LIFETIME_HARD:
7615 case SADB_EXT_LIFETIME_SOFT:
7616 case SADB_EXT_KEY_AUTH:
7617 case SADB_EXT_KEY_ENCRYPT:
7618 case SADB_EXT_IDENTITY_SRC:
7619 case SADB_EXT_IDENTITY_DST:
7620 case SADB_EXT_SENSITIVITY:
7621 case SADB_EXT_PROPOSAL:
7622 case SADB_EXT_SUPPORTED_AUTH:
7623 case SADB_EXT_SUPPORTED_ENCRYPT:
7624 case SADB_EXT_SPIRANGE:
7625 case SADB_X_EXT_POLICY:
7626 case SADB_X_EXT_SA2:
7627 case SADB_X_EXT_NAT_T_TYPE:
7628 case SADB_X_EXT_NAT_T_SPORT:
7629 case SADB_X_EXT_NAT_T_DPORT:
7630 case SADB_X_EXT_NAT_T_OAI:
7631 case SADB_X_EXT_NAT_T_OAR:
7632 case SADB_X_EXT_NAT_T_FRAG:
7633 /* duplicate check */
7634 /*
7635 * XXX Are there duplication payloads of either
7636 * KEY_AUTH or KEY_ENCRYPT ?
7637 */
7638 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7639 IPSECLOG(LOG_DEBUG,
7640 "duplicate ext_type %u is passed.\n",
7641 ext->sadb_ext_type);
7642 m_freem(m);
7643 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7644 return EINVAL;
7645 }
7646 break;
7647 default:
7648 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7649 ext->sadb_ext_type);
7650 m_freem(m);
7651 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7652 return EINVAL;
7653 }
7654
7655 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7656
7657 if (key_validate_ext(ext, extlen)) {
7658 m_freem(m);
7659 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7660 return EINVAL;
7661 }
7662
7663 n = m_pulldown(m, off, extlen, &toff);
7664 if (!n) {
7665 /* m is already freed */
7666 return ENOBUFS;
7667 }
7668 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7669
7670 mhp->ext[ext->sadb_ext_type] = ext;
7671 mhp->extoff[ext->sadb_ext_type] = off;
7672 mhp->extlen[ext->sadb_ext_type] = extlen;
7673 }
7674
7675 if (off != end) {
7676 m_freem(m);
7677 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7678 return EINVAL;
7679 }
7680
7681 return 0;
7682 }
7683
7684 static int
7685 key_validate_ext(const struct sadb_ext *ext, int len)
7686 {
7687 const struct sockaddr *sa;
7688 enum { NONE, ADDR } checktype = NONE;
7689 int baselen = 0;
7690 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7691
7692 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7693 return EINVAL;
7694
7695 /* if it does not match minimum/maximum length, bail */
7696 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7697 ext->sadb_ext_type >= __arraycount(maxsize))
7698 return EINVAL;
7699 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7700 return EINVAL;
7701 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7702 return EINVAL;
7703
7704 /* more checks based on sadb_ext_type XXX need more */
7705 switch (ext->sadb_ext_type) {
7706 case SADB_EXT_ADDRESS_SRC:
7707 case SADB_EXT_ADDRESS_DST:
7708 case SADB_EXT_ADDRESS_PROXY:
7709 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7710 checktype = ADDR;
7711 break;
7712 case SADB_EXT_IDENTITY_SRC:
7713 case SADB_EXT_IDENTITY_DST:
7714 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7715 SADB_X_IDENTTYPE_ADDR) {
7716 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7717 checktype = ADDR;
7718 } else
7719 checktype = NONE;
7720 break;
7721 default:
7722 checktype = NONE;
7723 break;
7724 }
7725
7726 switch (checktype) {
7727 case NONE:
7728 break;
7729 case ADDR:
7730 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7731 if (len < baselen + sal)
7732 return EINVAL;
7733 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7734 return EINVAL;
7735 break;
7736 }
7737
7738 return 0;
7739 }
7740
7741 static int
7742 key_do_init(void)
7743 {
7744 int i, error;
7745
7746 mutex_init(&key_mtx, MUTEX_DEFAULT, IPL_NONE);
7747 key_psz = pserialize_create();
7748 mutex_init(&key_sp_mtx, MUTEX_DEFAULT, IPL_NONE);
7749 cv_init(&key_sp_cv, "key_sp");
7750 mutex_init(&key_sa_mtx, MUTEX_DEFAULT, IPL_NONE);
7751
7752 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7753
7754 callout_init(&key_timehandler_ch, 0);
7755 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7756 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7757 if (error != 0)
7758 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7759
7760 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7761 PSLIST_INIT(&sptree[i]);
7762 }
7763
7764 PSLIST_INIT(&key_socksplist);
7765
7766 PSLIST_INIT(&sahtree);
7767
7768 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7769 LIST_INIT(®tree[i]);
7770 }
7771
7772 #ifndef IPSEC_NONBLOCK_ACQUIRE
7773 LIST_INIT(&acqtree);
7774 #endif
7775 #ifdef notyet
7776 LIST_INIT(&spacqtree);
7777 #endif
7778
7779 /* system default */
7780 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7781 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
7782 localcount_init(&ip4_def_policy.localcount);
7783
7784 #ifdef INET6
7785 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7786 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
7787 localcount_init(&ip6_def_policy.localcount);
7788 #endif
7789
7790 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7791
7792 /* initialize key statistics */
7793 keystat.getspi_count = 1;
7794
7795 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7796
7797 return (0);
7798 }
7799
7800 void
7801 key_init(void)
7802 {
7803 static ONCE_DECL(key_init_once);
7804
7805 sysctl_net_keyv2_setup(NULL);
7806 sysctl_net_key_compat_setup(NULL);
7807
7808 RUN_ONCE(&key_init_once, key_do_init);
7809
7810 key_init_so();
7811 }
7812
7813 /*
7814 * XXX: maybe This function is called after INBOUND IPsec processing.
7815 *
7816 * Special check for tunnel-mode packets.
7817 * We must make some checks for consistency between inner and outer IP header.
7818 *
7819 * xxx more checks to be provided
7820 */
7821 int
7822 key_checktunnelsanity(
7823 struct secasvar *sav,
7824 u_int family,
7825 void *src,
7826 void *dst
7827 )
7828 {
7829
7830 /* XXX: check inner IP header */
7831
7832 return 1;
7833 }
7834
7835 #if 0
7836 #define hostnamelen strlen(hostname)
7837
7838 /*
7839 * Get FQDN for the host.
7840 * If the administrator configured hostname (by hostname(1)) without
7841 * domain name, returns nothing.
7842 */
7843 static const char *
7844 key_getfqdn(void)
7845 {
7846 int i;
7847 int hasdot;
7848 static char fqdn[MAXHOSTNAMELEN + 1];
7849
7850 if (!hostnamelen)
7851 return NULL;
7852
7853 /* check if it comes with domain name. */
7854 hasdot = 0;
7855 for (i = 0; i < hostnamelen; i++) {
7856 if (hostname[i] == '.')
7857 hasdot++;
7858 }
7859 if (!hasdot)
7860 return NULL;
7861
7862 /* NOTE: hostname may not be NUL-terminated. */
7863 memset(fqdn, 0, sizeof(fqdn));
7864 memcpy(fqdn, hostname, hostnamelen);
7865 fqdn[hostnamelen] = '\0';
7866 return fqdn;
7867 }
7868
7869 /*
7870 * get username@FQDN for the host/user.
7871 */
7872 static const char *
7873 key_getuserfqdn(void)
7874 {
7875 const char *host;
7876 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7877 struct proc *p = curproc;
7878 char *q;
7879
7880 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7881 return NULL;
7882 if (!(host = key_getfqdn()))
7883 return NULL;
7884
7885 /* NOTE: s_login may not be-NUL terminated. */
7886 memset(userfqdn, 0, sizeof(userfqdn));
7887 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7888 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7889 q = userfqdn + strlen(userfqdn);
7890 *q++ = '@';
7891 memcpy(q, host, strlen(host));
7892 q += strlen(host);
7893 *q++ = '\0';
7894
7895 return userfqdn;
7896 }
7897 #endif
7898
7899 /* record data transfer on SA, and update timestamps */
7900 void
7901 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7902 {
7903
7904 KASSERT(sav != NULL);
7905 KASSERT(sav->lft_c != NULL);
7906 KASSERT(m != NULL);
7907
7908 /*
7909 * XXX Currently, there is a difference of bytes size
7910 * between inbound and outbound processing.
7911 */
7912 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7913 /* to check bytes lifetime is done in key_timehandler(). */
7914
7915 /*
7916 * We use the number of packets as the unit of
7917 * sadb_lifetime_allocations. We increment the variable
7918 * whenever {esp,ah}_{in,out}put is called.
7919 */
7920 sav->lft_c->sadb_lifetime_allocations++;
7921 /* XXX check for expires? */
7922
7923 /*
7924 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7925 * in seconds. HARD and SOFT lifetime are measured by the time
7926 * difference (again in seconds) from sadb_lifetime_usetime.
7927 *
7928 * usetime
7929 * v expire expire
7930 * -----+-----+--------+---> t
7931 * <--------------> HARD
7932 * <-----> SOFT
7933 */
7934 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7935 /* XXX check for expires? */
7936
7937 return;
7938 }
7939
7940 /* dumb version */
7941 void
7942 key_sa_routechange(struct sockaddr *dst)
7943 {
7944 struct secashead *sah;
7945 struct route *ro;
7946 const struct sockaddr *sa;
7947
7948 SAHLIST_READER_FOREACH(sah) {
7949 ro = &sah->sa_route;
7950 sa = rtcache_getdst(ro);
7951 if (sa != NULL && dst->sa_len == sa->sa_len &&
7952 memcmp(dst, sa, dst->sa_len) == 0)
7953 rtcache_free(ro);
7954 }
7955
7956 return;
7957 }
7958
7959 static void
7960 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7961 {
7962 struct secasvar *_sav;
7963
7964 KASSERT(sav != NULL);
7965
7966 if (sav->state == state)
7967 return;
7968
7969 SAVLIST_WRITER_REMOVE(sav);
7970 SAVLIST_ENTRY_DESTROY(sav);
7971 SAVLIST_ENTRY_INIT(sav);
7972
7973 sav->state = state;
7974 if (!SADB_SASTATE_USABLE_P(sav)) {
7975 /* We don't need to care about the order */
7976 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
7977 return;
7978 }
7979 /*
7980 * Sort the list by lft_c->sadb_lifetime_addtime
7981 * in ascending order.
7982 */
7983 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
7984 if (_sav->lft_c->sadb_lifetime_addtime >
7985 sav->lft_c->sadb_lifetime_addtime) {
7986 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
7987 break;
7988 }
7989 }
7990 if (_sav == NULL) {
7991 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
7992 }
7993 key_validate_savlist(sav->sah, state);
7994 }
7995
7996 /* XXX too much? */
7997 static struct mbuf *
7998 key_alloc_mbuf(int l)
7999 {
8000 struct mbuf *m = NULL, *n;
8001 int len, t;
8002
8003 len = l;
8004 while (len > 0) {
8005 MGET(n, M_DONTWAIT, MT_DATA);
8006 if (n && len > MLEN)
8007 MCLGET(n, M_DONTWAIT);
8008 if (!n) {
8009 m_freem(m);
8010 return NULL;
8011 }
8012
8013 n->m_next = NULL;
8014 n->m_len = 0;
8015 n->m_len = M_TRAILINGSPACE(n);
8016 /* use the bottom of mbuf, hoping we can prepend afterwards */
8017 if (n->m_len > len) {
8018 t = (n->m_len - len) & ~(sizeof(long) - 1);
8019 n->m_data += t;
8020 n->m_len = len;
8021 }
8022
8023 len -= n->m_len;
8024
8025 if (m)
8026 m_cat(m, n);
8027 else
8028 m = n;
8029 }
8030
8031 return m;
8032 }
8033
8034 static struct mbuf *
8035 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8036 {
8037 struct secashead *sah;
8038 struct secasvar *sav;
8039 u_int16_t proto;
8040 u_int8_t satype;
8041 u_int8_t state;
8042 int cnt;
8043 struct mbuf *m, *n;
8044
8045 KASSERT(mutex_owned(&key_sa_mtx));
8046
8047 /* map satype to proto */
8048 proto = key_satype2proto(req_satype);
8049 if (proto == 0) {
8050 *errorp = EINVAL;
8051 return (NULL);
8052 }
8053
8054 /* count sav entries to be sent to the userland. */
8055 cnt = 0;
8056 SAHLIST_WRITER_FOREACH(sah) {
8057 if (req_satype != SADB_SATYPE_UNSPEC &&
8058 proto != sah->saidx.proto)
8059 continue;
8060
8061 SASTATE_ANY_FOREACH(state) {
8062 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8063 cnt++;
8064 }
8065 }
8066 }
8067
8068 if (cnt == 0) {
8069 *errorp = ENOENT;
8070 return (NULL);
8071 }
8072
8073 /* send this to the userland, one at a time. */
8074 m = NULL;
8075 SAHLIST_WRITER_FOREACH(sah) {
8076 if (req_satype != SADB_SATYPE_UNSPEC &&
8077 proto != sah->saidx.proto)
8078 continue;
8079
8080 /* map proto to satype */
8081 satype = key_proto2satype(sah->saidx.proto);
8082 if (satype == 0) {
8083 m_freem(m);
8084 *errorp = EINVAL;
8085 return (NULL);
8086 }
8087
8088 SASTATE_ANY_FOREACH(state) {
8089 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8090 n = key_setdumpsa(sav, SADB_DUMP, satype,
8091 --cnt, pid);
8092 if (!n) {
8093 m_freem(m);
8094 *errorp = ENOBUFS;
8095 return (NULL);
8096 }
8097
8098 if (!m)
8099 m = n;
8100 else
8101 m_cat(m, n);
8102 }
8103 }
8104 }
8105
8106 if (!m) {
8107 *errorp = EINVAL;
8108 return (NULL);
8109 }
8110
8111 if ((m->m_flags & M_PKTHDR) != 0) {
8112 m->m_pkthdr.len = 0;
8113 for (n = m; n; n = n->m_next)
8114 m->m_pkthdr.len += n->m_len;
8115 }
8116
8117 *errorp = 0;
8118 return (m);
8119 }
8120
8121 static struct mbuf *
8122 key_setspddump(int *errorp, pid_t pid)
8123 {
8124 struct secpolicy *sp;
8125 int cnt;
8126 u_int dir;
8127 struct mbuf *m, *n;
8128
8129 KASSERT(mutex_owned(&key_sp_mtx));
8130
8131 /* search SPD entry and get buffer size. */
8132 cnt = 0;
8133 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8134 SPLIST_WRITER_FOREACH(sp, dir) {
8135 cnt++;
8136 }
8137 }
8138
8139 if (cnt == 0) {
8140 *errorp = ENOENT;
8141 return (NULL);
8142 }
8143
8144 m = NULL;
8145 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8146 SPLIST_WRITER_FOREACH(sp, dir) {
8147 --cnt;
8148 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8149
8150 if (!n) {
8151 *errorp = ENOBUFS;
8152 m_freem(m);
8153 return (NULL);
8154 }
8155 if (!m)
8156 m = n;
8157 else {
8158 m->m_pkthdr.len += n->m_pkthdr.len;
8159 m_cat(m, n);
8160 }
8161 }
8162 }
8163
8164 *errorp = 0;
8165 return (m);
8166 }
8167
8168 int
8169 key_get_used(void) {
8170 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8171 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8172 !SOCKSPLIST_READER_EMPTY();
8173 }
8174
8175 void
8176 key_update_used(void)
8177 {
8178 switch (ipsec_enabled) {
8179 default:
8180 case 0:
8181 #ifdef notyet
8182 /* XXX: racy */
8183 ipsec_used = 0;
8184 #endif
8185 break;
8186 case 1:
8187 #ifndef notyet
8188 /* XXX: racy */
8189 if (!ipsec_used)
8190 #endif
8191 ipsec_used = key_get_used();
8192 break;
8193 case 2:
8194 ipsec_used = 1;
8195 break;
8196 }
8197 }
8198
8199 static int
8200 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8201 {
8202 struct mbuf *m, *n;
8203 int err2 = 0;
8204 char *p, *ep;
8205 size_t len;
8206 int error;
8207
8208 if (newp)
8209 return (EPERM);
8210 if (namelen != 1)
8211 return (EINVAL);
8212
8213 mutex_enter(&key_sa_mtx);
8214 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8215 mutex_exit(&key_sa_mtx);
8216 if (!m)
8217 return (error);
8218 if (!oldp)
8219 *oldlenp = m->m_pkthdr.len;
8220 else {
8221 p = oldp;
8222 if (*oldlenp < m->m_pkthdr.len) {
8223 err2 = ENOMEM;
8224 ep = p + *oldlenp;
8225 } else {
8226 *oldlenp = m->m_pkthdr.len;
8227 ep = p + m->m_pkthdr.len;
8228 }
8229 for (n = m; n; n = n->m_next) {
8230 len = (ep - p < n->m_len) ?
8231 ep - p : n->m_len;
8232 error = copyout(mtod(n, const void *), p, len);
8233 p += len;
8234 if (error)
8235 break;
8236 }
8237 if (error == 0)
8238 error = err2;
8239 }
8240 m_freem(m);
8241
8242 return (error);
8243 }
8244
8245 static int
8246 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8247 {
8248 struct mbuf *m, *n;
8249 int err2 = 0;
8250 char *p, *ep;
8251 size_t len;
8252 int error;
8253
8254 if (newp)
8255 return (EPERM);
8256 if (namelen != 0)
8257 return (EINVAL);
8258
8259 mutex_enter(&key_sp_mtx);
8260 m = key_setspddump(&error, l->l_proc->p_pid);
8261 mutex_exit(&key_sp_mtx);
8262 if (!m)
8263 return (error);
8264 if (!oldp)
8265 *oldlenp = m->m_pkthdr.len;
8266 else {
8267 p = oldp;
8268 if (*oldlenp < m->m_pkthdr.len) {
8269 err2 = ENOMEM;
8270 ep = p + *oldlenp;
8271 } else {
8272 *oldlenp = m->m_pkthdr.len;
8273 ep = p + m->m_pkthdr.len;
8274 }
8275 for (n = m; n; n = n->m_next) {
8276 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8277 error = copyout(mtod(n, const void *), p, len);
8278 p += len;
8279 if (error)
8280 break;
8281 }
8282 if (error == 0)
8283 error = err2;
8284 }
8285 m_freem(m);
8286
8287 return (error);
8288 }
8289
8290 /*
8291 * Create sysctl tree for native IPSEC key knobs, originally
8292 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8293 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8294 * and in any case the part of our sysctl namespace used for dumping the
8295 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8296 * namespace, for API reasons.
8297 *
8298 * Pending a consensus on the right way to fix this, add a level of
8299 * indirection in how we number the `native' IPSEC key nodes;
8300 * and (as requested by Andrew Brown) move registration of the
8301 * KAME-compatible names to a separate function.
8302 */
8303 #if 0
8304 # define IPSEC_PFKEY PF_KEY_V2
8305 # define IPSEC_PFKEY_NAME "keyv2"
8306 #else
8307 # define IPSEC_PFKEY PF_KEY
8308 # define IPSEC_PFKEY_NAME "key"
8309 #endif
8310
8311 static int
8312 sysctl_net_key_stats(SYSCTLFN_ARGS)
8313 {
8314
8315 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8316 }
8317
8318 static void
8319 sysctl_net_keyv2_setup(struct sysctllog **clog)
8320 {
8321
8322 sysctl_createv(clog, 0, NULL, NULL,
8323 CTLFLAG_PERMANENT,
8324 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8325 NULL, 0, NULL, 0,
8326 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8327
8328 sysctl_createv(clog, 0, NULL, NULL,
8329 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8330 CTLTYPE_INT, "debug", NULL,
8331 NULL, 0, &key_debug_level, 0,
8332 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8333 sysctl_createv(clog, 0, NULL, NULL,
8334 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8335 CTLTYPE_INT, "spi_try", NULL,
8336 NULL, 0, &key_spi_trycnt, 0,
8337 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8338 sysctl_createv(clog, 0, NULL, NULL,
8339 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8340 CTLTYPE_INT, "spi_min_value", NULL,
8341 NULL, 0, &key_spi_minval, 0,
8342 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8343 sysctl_createv(clog, 0, NULL, NULL,
8344 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8345 CTLTYPE_INT, "spi_max_value", NULL,
8346 NULL, 0, &key_spi_maxval, 0,
8347 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8348 sysctl_createv(clog, 0, NULL, NULL,
8349 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8350 CTLTYPE_INT, "random_int", NULL,
8351 NULL, 0, &key_int_random, 0,
8352 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8353 sysctl_createv(clog, 0, NULL, NULL,
8354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8355 CTLTYPE_INT, "larval_lifetime", NULL,
8356 NULL, 0, &key_larval_lifetime, 0,
8357 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8358 sysctl_createv(clog, 0, NULL, NULL,
8359 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8360 CTLTYPE_INT, "blockacq_count", NULL,
8361 NULL, 0, &key_blockacq_count, 0,
8362 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8363 sysctl_createv(clog, 0, NULL, NULL,
8364 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8365 CTLTYPE_INT, "blockacq_lifetime", NULL,
8366 NULL, 0, &key_blockacq_lifetime, 0,
8367 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8368 sysctl_createv(clog, 0, NULL, NULL,
8369 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8370 CTLTYPE_INT, "esp_keymin", NULL,
8371 NULL, 0, &ipsec_esp_keymin, 0,
8372 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8373 sysctl_createv(clog, 0, NULL, NULL,
8374 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8375 CTLTYPE_INT, "prefered_oldsa", NULL,
8376 NULL, 0, &key_prefered_oldsa, 0,
8377 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8378 sysctl_createv(clog, 0, NULL, NULL,
8379 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8380 CTLTYPE_INT, "esp_auth", NULL,
8381 NULL, 0, &ipsec_esp_auth, 0,
8382 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8383 sysctl_createv(clog, 0, NULL, NULL,
8384 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8385 CTLTYPE_INT, "ah_keymin", NULL,
8386 NULL, 0, &ipsec_ah_keymin, 0,
8387 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8388 sysctl_createv(clog, 0, NULL, NULL,
8389 CTLFLAG_PERMANENT,
8390 CTLTYPE_STRUCT, "stats",
8391 SYSCTL_DESCR("PF_KEY statistics"),
8392 sysctl_net_key_stats, 0, NULL, 0,
8393 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8394 }
8395
8396 /*
8397 * Register sysctl names used by setkey(8). For historical reasons,
8398 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8399 * for both IPSEC and KAME IPSEC.
8400 */
8401 static void
8402 sysctl_net_key_compat_setup(struct sysctllog **clog)
8403 {
8404
8405 sysctl_createv(clog, 0, NULL, NULL,
8406 CTLFLAG_PERMANENT,
8407 CTLTYPE_NODE, "key", NULL,
8408 NULL, 0, NULL, 0,
8409 CTL_NET, PF_KEY, CTL_EOL);
8410
8411 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8412 sysctl_createv(clog, 0, NULL, NULL,
8413 CTLFLAG_PERMANENT,
8414 CTLTYPE_STRUCT, "dumpsa", NULL,
8415 sysctl_net_key_dumpsa, 0, NULL, 0,
8416 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8417 sysctl_createv(clog, 0, NULL, NULL,
8418 CTLFLAG_PERMANENT,
8419 CTLTYPE_STRUCT, "dumpsp", NULL,
8420 sysctl_net_key_dumpsp, 0, NULL, 0,
8421 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8422 }
8423