key.c revision 1.212 1 /* $NetBSD: key.c,v 1.212 2017/08/07 07:45:45 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.212 2017/08/07 07:45:45 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in critical sections of
160 * pserialize(9)
161 * - SP's lifetime is managed by localcount(9)
162 * - An SP that has been inserted to the key_spd.splist is initially referenced
163 * by none, i.e., a reference from the key_spd.splist isn't counted
164 * - When an SP is being destroyed, we change its state as DEAD, wait for
165 * references to the SP to be released, and then deallocate the SP
166 * (see key_unlink_sp)
167 * - Getting an SP
168 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
169 * - Must iterate the list and increment the reference count of a found SP
170 * (by key_sp_ref) in a pserialize critical section
171 * - We can gain another reference from a held SP only if we check its state
172 * and take its reference in a critical section of pserialize
173 * (see esp_output for example)
174 * - We may get an SP from an SP cache. See below
175 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
176 * - Updating member variables of an SP
177 * - Most member variables of an SP are immutable
178 * - Only sp->state and sp->lastused can be changed
179 * - sp->state of an SP is updated only when destroying it under key_spd.lock
180 * - SP caches
181 * - SPs can be cached in PCBs
182 * - The lifetime of the caches is controlled by the global generation counter
183 * (ipsec_spdgen)
184 * - The global counter value is stored when an SP is cached
185 * - If the stored value is different from the global counter then the cache
186 * is considered invalidated
187 * - The counter is incremented when an SP is being destroyed
188 * - So checking the generation and taking a reference to an SP should be
189 * in a critical section of pserialize
190 * - Note that caching doesn't increment the reference counter of an SP
191 * - SPs in sockets
192 * - Userland programs can set a policy to a socket by
193 * setsockopt(IP_IPSEC_POLICY)
194 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
195 * the key_spd.socksplist list (not the key_spd.splist)
196 * - Such a policy is destroyed when a corresponding socket is destroed,
197 * however, a socket can be destroyed in softint so we cannot destroy
198 * it directly instead we just mark it DEAD and delay the destruction
199 * until GC by the timer
200 */
201 /*
202 * Locking notes on misc data:
203 * - All lists of key_misc are protected by key_misc.lock
204 * - key_misc.lock must be held even for read accesses
205 */
206
207 static pserialize_t key_psz;
208
209 /* SPD */
210 static struct {
211 kmutex_t lock;
212 kcondvar_t cv;
213 struct pslist_head splist[IPSEC_DIR_MAX];
214 /*
215 * The list has SPs that are set to a socket via
216 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
217 */
218 struct pslist_head socksplist;
219 } key_spd __cacheline_aligned;
220
221 /* SAD */
222 static struct {
223 kmutex_t lock;
224 struct pslist_head sahlist;
225 } key_sad __cacheline_aligned;
226
227 /* Misc data */
228 static struct {
229 kmutex_t lock;
230 /* registed list */
231 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
232 #ifndef IPSEC_NONBLOCK_ACQUIRE
233 /* acquiring list */
234 LIST_HEAD(_acqlist, secacq) acqlist;
235 #endif
236 #ifdef notyet
237 /* SP acquiring list */
238 LIST_HEAD(_spacqlist, secspacq) spacqlist;
239 #endif
240 } key_misc __cacheline_aligned;
241
242 /* Macros for key_spd.splist */
243 #define SPLIST_ENTRY_INIT(sp) \
244 PSLIST_ENTRY_INIT((sp), pslist_entry)
245 #define SPLIST_ENTRY_DESTROY(sp) \
246 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
247 #define SPLIST_WRITER_REMOVE(sp) \
248 PSLIST_WRITER_REMOVE((sp), pslist_entry)
249 #define SPLIST_READER_EMPTY(dir) \
250 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
251 pslist_entry) == NULL)
252 #define SPLIST_READER_FOREACH(sp, dir) \
253 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
254 struct secpolicy, pslist_entry)
255 #define SPLIST_WRITER_FOREACH(sp, dir) \
256 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
257 struct secpolicy, pslist_entry)
258 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
259 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
260 #define SPLIST_WRITER_EMPTY(dir) \
261 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
262 pslist_entry) == NULL)
263 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
264 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
265 pslist_entry)
266 #define SPLIST_WRITER_NEXT(sp) \
267 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
268 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
269 do { \
270 if (SPLIST_WRITER_EMPTY((dir))) { \
271 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
272 } else { \
273 struct secpolicy *__sp; \
274 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
275 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
276 SPLIST_WRITER_INSERT_AFTER(__sp,\
277 (new)); \
278 break; \
279 } \
280 } \
281 } \
282 } while (0)
283
284 /* Macros for key_spd.socksplist */
285 #define SOCKSPLIST_WRITER_FOREACH(sp) \
286 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
287 struct secpolicy, pslist_entry)
288 #define SOCKSPLIST_READER_EMPTY() \
289 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
290 pslist_entry) == NULL)
291
292 /* Macros for key_sad.sahlist */
293 #define SAHLIST_ENTRY_INIT(sah) \
294 PSLIST_ENTRY_INIT((sah), pslist_entry)
295 #define SAHLIST_ENTRY_DESTROY(sah) \
296 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
297 #define SAHLIST_WRITER_REMOVE(sah) \
298 PSLIST_WRITER_REMOVE((sah), pslist_entry)
299 #define SAHLIST_READER_FOREACH(sah) \
300 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
301 pslist_entry)
302 #define SAHLIST_WRITER_FOREACH(sah) \
303 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
304 pslist_entry)
305 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
306 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
307
308 /* Macros for key_sad.sahlist#savlist */
309 #define SAVLIST_ENTRY_INIT(sav) \
310 PSLIST_ENTRY_INIT((sav), pslist_entry)
311 #define SAVLIST_ENTRY_DESTROY(sav) \
312 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
313 #define SAVLIST_READER_FIRST(sah, state) \
314 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
315 pslist_entry)
316 #define SAVLIST_WRITER_REMOVE(sav) \
317 PSLIST_WRITER_REMOVE((sav), pslist_entry)
318 #define SAVLIST_READER_FOREACH(sav, sah, state) \
319 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
320 struct secasvar, pslist_entry)
321 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
322 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
323 struct secasvar, pslist_entry)
324 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
325 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
326 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
327 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
328 #define SAVLIST_WRITER_EMPTY(sah, state) \
329 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
330 pslist_entry) == NULL)
331 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
332 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
333 pslist_entry)
334 #define SAVLIST_WRITER_NEXT(sav) \
335 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
336 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
337 do { \
338 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
339 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
340 } else { \
341 struct secasvar *__sav; \
342 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
343 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
344 SAVLIST_WRITER_INSERT_AFTER(__sav,\
345 (new)); \
346 break; \
347 } \
348 } \
349 } \
350 } while (0)
351 #define SAVLIST_READER_NEXT(sav) \
352 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
353
354
355 /* search order for SAs */
356 /*
357 * This order is important because we must select the oldest SA
358 * for outbound processing. For inbound, This is not important.
359 */
360 static const u_int saorder_state_valid_prefer_old[] = {
361 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
362 };
363 static const u_int saorder_state_valid_prefer_new[] = {
364 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
365 };
366
367 static const u_int saorder_state_alive[] = {
368 /* except DEAD */
369 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
370 };
371 static const u_int saorder_state_any[] = {
372 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
373 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
374 };
375
376 #define SASTATE_ALIVE_FOREACH(s) \
377 for (int _i = 0; \
378 _i < __arraycount(saorder_state_alive) ? \
379 (s) = saorder_state_alive[_i], true : false; \
380 _i++)
381 #define SASTATE_ANY_FOREACH(s) \
382 for (int _i = 0; \
383 _i < __arraycount(saorder_state_any) ? \
384 (s) = saorder_state_any[_i], true : false; \
385 _i++)
386
387 static const int minsize[] = {
388 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
389 sizeof(struct sadb_sa), /* SADB_EXT_SA */
390 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
391 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
392 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
393 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
394 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
395 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
396 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
397 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
398 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
399 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
400 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
401 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
402 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
403 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
404 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
405 0, /* SADB_X_EXT_KMPRIVATE */
406 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
407 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
408 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
409 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
410 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
411 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
412 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
413 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
414 };
415 static const int maxsize[] = {
416 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
417 sizeof(struct sadb_sa), /* SADB_EXT_SA */
418 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
419 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
420 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
421 0, /* SADB_EXT_ADDRESS_SRC */
422 0, /* SADB_EXT_ADDRESS_DST */
423 0, /* SADB_EXT_ADDRESS_PROXY */
424 0, /* SADB_EXT_KEY_AUTH */
425 0, /* SADB_EXT_KEY_ENCRYPT */
426 0, /* SADB_EXT_IDENTITY_SRC */
427 0, /* SADB_EXT_IDENTITY_DST */
428 0, /* SADB_EXT_SENSITIVITY */
429 0, /* SADB_EXT_PROPOSAL */
430 0, /* SADB_EXT_SUPPORTED_AUTH */
431 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
432 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
433 0, /* SADB_X_EXT_KMPRIVATE */
434 0, /* SADB_X_EXT_POLICY */
435 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
436 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
437 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
438 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
439 0, /* SADB_X_EXT_NAT_T_OAI */
440 0, /* SADB_X_EXT_NAT_T_OAR */
441 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
442 };
443
444 static int ipsec_esp_keymin = 256;
445 static int ipsec_esp_auth = 0;
446 static int ipsec_ah_keymin = 128;
447
448 #ifdef SYSCTL_DECL
449 SYSCTL_DECL(_net_key);
450 #endif
451
452 #ifdef SYSCTL_INT
453 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
454 &key_debug_level, 0, "");
455
456 /* max count of trial for the decision of spi value */
457 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
458 &key_spi_trycnt, 0, "");
459
460 /* minimum spi value to allocate automatically. */
461 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
462 &key_spi_minval, 0, "");
463
464 /* maximun spi value to allocate automatically. */
465 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
466 &key_spi_maxval, 0, "");
467
468 /* interval to initialize randseed */
469 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
470 &key_int_random, 0, "");
471
472 /* lifetime for larval SA */
473 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
474 &key_larval_lifetime, 0, "");
475
476 /* counter for blocking to send SADB_ACQUIRE to IKEd */
477 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
478 &key_blockacq_count, 0, "");
479
480 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
481 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
482 &key_blockacq_lifetime, 0, "");
483
484 /* ESP auth */
485 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
486 &ipsec_esp_auth, 0, "");
487
488 /* minimum ESP key length */
489 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
490 &ipsec_esp_keymin, 0, "");
491
492 /* minimum AH key length */
493 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
494 &ipsec_ah_keymin, 0, "");
495
496 /* perfered old SA rather than new SA */
497 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
498 &key_prefered_oldsa, 0, "");
499 #endif /* SYSCTL_INT */
500
501 #define __LIST_CHAINED(elm) \
502 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
503 #define LIST_INSERT_TAIL(head, elm, type, field) \
504 do {\
505 struct type *curelm = LIST_FIRST(head); \
506 if (curelm == NULL) {\
507 LIST_INSERT_HEAD(head, elm, field); \
508 } else { \
509 while (LIST_NEXT(curelm, field)) \
510 curelm = LIST_NEXT(curelm, field);\
511 LIST_INSERT_AFTER(curelm, elm, field);\
512 }\
513 } while (0)
514
515 #define KEY_CHKSASTATE(head, sav) \
516 /* do */ { \
517 if ((head) != (sav)) { \
518 IPSECLOG(LOG_DEBUG, \
519 "state mismatched (TREE=%d SA=%d)\n", \
520 (head), (sav)); \
521 continue; \
522 } \
523 } /* while (0) */
524
525 #define KEY_CHKSPDIR(head, sp) \
526 do { \
527 if ((head) != (sp)) { \
528 IPSECLOG(LOG_DEBUG, \
529 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
530 (head), (sp)); \
531 } \
532 } while (0)
533
534 /*
535 * set parameters into secasindex buffer.
536 * Must allocate secasindex buffer before calling this function.
537 */
538 static int
539 key_setsecasidx(int, int, int, const struct sockaddr *,
540 const struct sockaddr *, struct secasindex *);
541
542 /* key statistics */
543 struct _keystat {
544 u_long getspi_count; /* the avarage of count to try to get new SPI */
545 } keystat;
546
547 struct sadb_msghdr {
548 struct sadb_msg *msg;
549 struct sadb_ext *ext[SADB_EXT_MAX + 1];
550 int extoff[SADB_EXT_MAX + 1];
551 int extlen[SADB_EXT_MAX + 1];
552 };
553
554 static void
555 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
556
557 static const struct sockaddr *
558 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
559 {
560
561 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
562 }
563
564 static struct mbuf *
565 key_fill_replymsg(struct mbuf *m, int seq)
566 {
567 struct sadb_msg *msg;
568
569 if (m->m_len < sizeof(*msg)) {
570 m = m_pullup(m, sizeof(*msg));
571 if (m == NULL)
572 return NULL;
573 }
574 msg = mtod(m, struct sadb_msg *);
575 msg->sadb_msg_errno = 0;
576 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
577 if (seq != 0)
578 msg->sadb_msg_seq = seq;
579
580 return m;
581 }
582
583 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
584 #if 0
585 static void key_freeso(struct socket *);
586 static void key_freesp_so(struct secpolicy **);
587 #endif
588 static struct secpolicy *key_getsp (const struct secpolicyindex *);
589 static struct secpolicy *key_getspbyid (u_int32_t);
590 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
591 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
592 static void key_destroy_sp(struct secpolicy *);
593 static u_int16_t key_newreqid (void);
594 static struct mbuf *key_gather_mbuf (struct mbuf *,
595 const struct sadb_msghdr *, int, int, ...);
596 static int key_api_spdadd(struct socket *, struct mbuf *,
597 const struct sadb_msghdr *);
598 static u_int32_t key_getnewspid (void);
599 static int key_api_spddelete(struct socket *, struct mbuf *,
600 const struct sadb_msghdr *);
601 static int key_api_spddelete2(struct socket *, struct mbuf *,
602 const struct sadb_msghdr *);
603 static int key_api_spdget(struct socket *, struct mbuf *,
604 const struct sadb_msghdr *);
605 static int key_api_spdflush(struct socket *, struct mbuf *,
606 const struct sadb_msghdr *);
607 static int key_api_spddump(struct socket *, struct mbuf *,
608 const struct sadb_msghdr *);
609 static struct mbuf * key_setspddump (int *errorp, pid_t);
610 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
611 static int key_api_nat_map(struct socket *, struct mbuf *,
612 const struct sadb_msghdr *);
613 static struct mbuf *key_setdumpsp (struct secpolicy *,
614 u_int8_t, u_int32_t, pid_t);
615 static u_int key_getspreqmsglen (const struct secpolicy *);
616 static int key_spdexpire (struct secpolicy *);
617 static struct secashead *key_newsah (const struct secasindex *);
618 static void key_delsah (struct secashead *);
619 static struct secasvar *key_newsav(struct mbuf *,
620 const struct sadb_msghdr *, int *, const char*, int);
621 #define KEY_NEWSAV(m, sadb, e) \
622 key_newsav(m, sadb, e, __func__, __LINE__)
623 static void key_delsav (struct secasvar *);
624 static struct secashead *key_getsah(const struct secasindex *, int);
625 static bool key_checkspidup(const struct secasindex *, u_int32_t);
626 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
627 static int key_setsaval (struct secasvar *, struct mbuf *,
628 const struct sadb_msghdr *);
629 static void key_freesaval(struct secasvar *);
630 static int key_init_xform(struct secasvar *);
631 static void key_clear_xform(struct secasvar *);
632 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
633 u_int8_t, u_int32_t, u_int32_t);
634 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
635 static struct mbuf *key_setsadbxtype (u_int16_t);
636 static struct mbuf *key_setsadbxfrag (u_int16_t);
637 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
638 static int key_checksalen (const union sockaddr_union *);
639 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
640 u_int32_t, pid_t, u_int16_t);
641 static struct mbuf *key_setsadbsa (struct secasvar *);
642 static struct mbuf *key_setsadbaddr (u_int16_t,
643 const struct sockaddr *, u_int8_t, u_int16_t);
644 #if 0
645 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
646 int, u_int64_t);
647 #endif
648 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
649 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
650 u_int32_t);
651 static void *key_newbuf (const void *, u_int);
652 #ifdef INET6
653 static int key_ismyaddr6 (const struct sockaddr_in6 *);
654 #endif
655
656 static void sysctl_net_keyv2_setup(struct sysctllog **);
657 static void sysctl_net_key_compat_setup(struct sysctllog **);
658
659 /* flags for key_saidx_match() */
660 #define CMP_HEAD 1 /* protocol, addresses. */
661 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
662 #define CMP_REQID 3 /* additionally HEAD, reaid. */
663 #define CMP_EXACTLY 4 /* all elements. */
664 static int key_saidx_match(const struct secasindex *,
665 const struct secasindex *, int);
666
667 static int key_sockaddr_match(const struct sockaddr *,
668 const struct sockaddr *, int);
669 static int key_bb_match_withmask(const void *, const void *, u_int);
670 static u_int16_t key_satype2proto (u_int8_t);
671 static u_int8_t key_proto2satype (u_int16_t);
672
673 static int key_spidx_match_exactly(const struct secpolicyindex *,
674 const struct secpolicyindex *);
675 static int key_spidx_match_withmask(const struct secpolicyindex *,
676 const struct secpolicyindex *);
677
678 static int key_api_getspi(struct socket *, struct mbuf *,
679 const struct sadb_msghdr *);
680 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
681 const struct secasindex *);
682 static int key_handle_natt_info (struct secasvar *,
683 const struct sadb_msghdr *);
684 static int key_set_natt_ports (union sockaddr_union *,
685 union sockaddr_union *,
686 const struct sadb_msghdr *);
687 static int key_api_update(struct socket *, struct mbuf *,
688 const struct sadb_msghdr *);
689 #ifdef IPSEC_DOSEQCHECK
690 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
691 #endif
692 static int key_api_add(struct socket *, struct mbuf *,
693 const struct sadb_msghdr *);
694 static int key_setident (struct secashead *, struct mbuf *,
695 const struct sadb_msghdr *);
696 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
697 const struct sadb_msghdr *);
698 static int key_api_delete(struct socket *, struct mbuf *,
699 const struct sadb_msghdr *);
700 static int key_api_get(struct socket *, struct mbuf *,
701 const struct sadb_msghdr *);
702
703 static void key_getcomb_setlifetime (struct sadb_comb *);
704 static struct mbuf *key_getcomb_esp (void);
705 static struct mbuf *key_getcomb_ah (void);
706 static struct mbuf *key_getcomb_ipcomp (void);
707 static struct mbuf *key_getprop (const struct secasindex *);
708
709 static int key_acquire (const struct secasindex *, struct secpolicy *);
710 #ifndef IPSEC_NONBLOCK_ACQUIRE
711 static struct secacq *key_newacq (const struct secasindex *);
712 static struct secacq *key_getacq (const struct secasindex *);
713 static struct secacq *key_getacqbyseq (u_int32_t);
714 #endif
715 #ifdef notyet
716 static struct secspacq *key_newspacq (const struct secpolicyindex *);
717 static struct secspacq *key_getspacq (const struct secpolicyindex *);
718 #endif
719 static int key_api_acquire(struct socket *, struct mbuf *,
720 const struct sadb_msghdr *);
721 static int key_api_register(struct socket *, struct mbuf *,
722 const struct sadb_msghdr *);
723 static int key_expire (struct secasvar *);
724 static int key_api_flush(struct socket *, struct mbuf *,
725 const struct sadb_msghdr *);
726 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
727 int *lenp, pid_t pid);
728 static int key_api_dump(struct socket *, struct mbuf *,
729 const struct sadb_msghdr *);
730 static int key_api_promisc(struct socket *, struct mbuf *,
731 const struct sadb_msghdr *);
732 static int key_senderror (struct socket *, struct mbuf *, int);
733 static int key_validate_ext (const struct sadb_ext *, int);
734 static int key_align (struct mbuf *, struct sadb_msghdr *);
735 #if 0
736 static const char *key_getfqdn (void);
737 static const char *key_getuserfqdn (void);
738 #endif
739 static void key_sa_chgstate (struct secasvar *, u_int8_t);
740
741 static struct mbuf *key_alloc_mbuf (int);
742
743 static void key_timehandler(void *);
744 static void key_timehandler_work(struct work *, void *);
745 static struct callout key_timehandler_ch;
746 static struct workqueue *key_timehandler_wq;
747 static struct work key_timehandler_wk;
748
749 #ifdef IPSEC_REF_DEBUG
750 #define REFLOG(label, p, where, tag) \
751 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
752 (where), (tag), (p)->refcnt, (p))
753 #else
754 #define REFLOG(label, p, where, tag) do {} while (0)
755 #endif
756
757 #define SA_ADDREF(p) do { \
758 atomic_inc_uint(&(p)->refcnt); \
759 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
760 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
761 } while (0)
762 #define SA_ADDREF2(p, where, tag) do { \
763 atomic_inc_uint(&(p)->refcnt); \
764 REFLOG("SA_ADDREF", (p), (where), (tag)); \
765 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
766 } while (0)
767 #define SA_DELREF(p) do { \
768 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
769 atomic_dec_uint(&(p)->refcnt); \
770 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
771 } while (0)
772 #define SA_DELREF2(p, nv, where, tag) do { \
773 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
774 nv = atomic_dec_uint_nv(&(p)->refcnt); \
775 REFLOG("SA_DELREF", (p), (where), (tag)); \
776 } while (0)
777
778 u_int
779 key_sp_refcnt(const struct secpolicy *sp)
780 {
781
782 /* FIXME */
783 return 0;
784 }
785
786 /*
787 * Remove the sp from the key_spd.splist and wait for references to the sp
788 * to be released. key_spd.lock must be held.
789 */
790 static void
791 key_unlink_sp(struct secpolicy *sp)
792 {
793
794 KASSERT(mutex_owned(&key_spd.lock));
795
796 sp->state = IPSEC_SPSTATE_DEAD;
797 SPLIST_WRITER_REMOVE(sp);
798
799 /* Invalidate all cached SPD pointers in the PCBs. */
800 ipsec_invalpcbcacheall();
801
802 #ifdef NET_MPSAFE
803 KASSERT(mutex_ownable(softnet_lock));
804 pserialize_perform(key_psz);
805 #endif
806
807 localcount_drain(&sp->localcount, &key_spd.cv, &key_spd.lock);
808 }
809
810 /*
811 * Return 0 when there are known to be no SP's for the specified
812 * direction. Otherwise return 1. This is used by IPsec code
813 * to optimize performance.
814 */
815 int
816 key_havesp(u_int dir)
817 {
818 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
819 !SPLIST_READER_EMPTY(dir) : 1);
820 }
821
822 /* %%% IPsec policy management */
823 /*
824 * allocating a SP for OUTBOUND or INBOUND packet.
825 * Must call key_freesp() later.
826 * OUT: NULL: not found
827 * others: found and return the pointer.
828 */
829 struct secpolicy *
830 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
831 u_int dir, const char* where, int tag)
832 {
833 struct secpolicy *sp;
834 int s;
835
836 KASSERT(spidx != NULL);
837 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
838
839 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
840
841 /* get a SP entry */
842 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
843 printf("*** objects\n");
844 kdebug_secpolicyindex(spidx);
845 }
846
847 s = pserialize_read_enter();
848 SPLIST_READER_FOREACH(sp, dir) {
849 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
850 printf("*** in SPD\n");
851 kdebug_secpolicyindex(&sp->spidx);
852 }
853
854 if (sp->state == IPSEC_SPSTATE_DEAD)
855 continue;
856 if (key_spidx_match_withmask(&sp->spidx, spidx))
857 goto found;
858 }
859 sp = NULL;
860 found:
861 if (sp) {
862 /* sanity check */
863 KEY_CHKSPDIR(sp->spidx.dir, dir);
864
865 /* found a SPD entry */
866 sp->lastused = time_uptime;
867 key_sp_ref(sp, where, tag);
868 }
869 pserialize_read_exit(s);
870
871 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
872 "DP return SP:%p (ID=%u) refcnt %u\n",
873 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
874 return sp;
875 }
876
877 /*
878 * return a policy that matches this particular inbound packet.
879 * XXX slow
880 */
881 struct secpolicy *
882 key_gettunnel(const struct sockaddr *osrc,
883 const struct sockaddr *odst,
884 const struct sockaddr *isrc,
885 const struct sockaddr *idst,
886 const char* where, int tag)
887 {
888 struct secpolicy *sp;
889 const int dir = IPSEC_DIR_INBOUND;
890 int s;
891 struct ipsecrequest *r1, *r2, *p;
892 struct secpolicyindex spidx;
893
894 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
895
896 if (isrc->sa_family != idst->sa_family) {
897 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
898 isrc->sa_family, idst->sa_family);
899 sp = NULL;
900 goto done;
901 }
902
903 s = pserialize_read_enter();
904 SPLIST_READER_FOREACH(sp, dir) {
905 if (sp->state == IPSEC_SPSTATE_DEAD)
906 continue;
907
908 r1 = r2 = NULL;
909 for (p = sp->req; p; p = p->next) {
910 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
911 continue;
912
913 r1 = r2;
914 r2 = p;
915
916 if (!r1) {
917 /* here we look at address matches only */
918 spidx = sp->spidx;
919 if (isrc->sa_len > sizeof(spidx.src) ||
920 idst->sa_len > sizeof(spidx.dst))
921 continue;
922 memcpy(&spidx.src, isrc, isrc->sa_len);
923 memcpy(&spidx.dst, idst, idst->sa_len);
924 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
925 continue;
926 } else {
927 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
928 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
929 continue;
930 }
931
932 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
933 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
934 continue;
935
936 goto found;
937 }
938 }
939 sp = NULL;
940 found:
941 if (sp) {
942 sp->lastused = time_uptime;
943 key_sp_ref(sp, where, tag);
944 }
945 pserialize_read_exit(s);
946 done:
947 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
948 "DP return SP:%p (ID=%u) refcnt %u\n",
949 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
950 return sp;
951 }
952
953 /*
954 * allocating an SA entry for an *OUTBOUND* packet.
955 * checking each request entries in SP, and acquire an SA if need.
956 * OUT: 0: there are valid requests.
957 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
958 */
959 int
960 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
961 {
962 u_int level;
963 int error;
964 const struct secasindex *saidx = &isr->saidx;
965 struct secasvar *sav;
966
967 KASSERT(isr != NULL);
968 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
969 saidx->mode == IPSEC_MODE_TUNNEL,
970 "unexpected policy %u", saidx->mode);
971
972 /* get current level */
973 level = ipsec_get_reqlevel(isr);
974
975 /*
976 * XXX guard against protocol callbacks from the crypto
977 * thread as they reference ipsecrequest.sav which we
978 * temporarily null out below. Need to rethink how we
979 * handle bundled SA's in the callback thread.
980 */
981 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
982
983 sav = key_lookup_sa_bysaidx(saidx);
984 if (sav != NULL) {
985 *ret = sav;
986 return 0;
987 }
988
989 /* there is no SA */
990 error = key_acquire(saidx, isr->sp);
991 if (error != 0) {
992 /* XXX What should I do ? */
993 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
994 error);
995 return error;
996 }
997
998 if (level != IPSEC_LEVEL_REQUIRE) {
999 /* XXX sigh, the interface to this routine is botched */
1000 *ret = NULL;
1001 return 0;
1002 } else {
1003 return ENOENT;
1004 }
1005 }
1006
1007 /*
1008 * looking up a SA for policy entry from SAD.
1009 * NOTE: searching SAD of aliving state.
1010 * OUT: NULL: not found.
1011 * others: found and return the pointer.
1012 */
1013 static struct secasvar *
1014 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1015 {
1016 struct secashead *sah;
1017 struct secasvar *sav = NULL;
1018 u_int stateidx, state;
1019 const u_int *saorder_state_valid;
1020 int arraysize;
1021 int s;
1022
1023 s = pserialize_read_enter();
1024 sah = key_getsah(saidx, CMP_MODE_REQID);
1025 if (sah == NULL)
1026 goto out;
1027
1028 /*
1029 * search a valid state list for outbound packet.
1030 * This search order is important.
1031 */
1032 if (key_prefered_oldsa) {
1033 saorder_state_valid = saorder_state_valid_prefer_old;
1034 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1035 } else {
1036 saorder_state_valid = saorder_state_valid_prefer_new;
1037 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1038 }
1039
1040 /* search valid state */
1041 for (stateidx = 0;
1042 stateidx < arraysize;
1043 stateidx++) {
1044
1045 state = saorder_state_valid[stateidx];
1046
1047 if (key_prefered_oldsa)
1048 sav = SAVLIST_READER_FIRST(sah, state);
1049 else {
1050 /* XXX need O(1) lookup */
1051 struct secasvar *last = NULL;
1052
1053 SAVLIST_READER_FOREACH(sav, sah, state)
1054 last = sav;
1055 sav = last;
1056 }
1057 if (sav != NULL) {
1058 SA_ADDREF(sav);
1059 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1060 "DP cause refcnt++:%d SA:%p\n",
1061 sav->refcnt, sav);
1062 break;
1063 }
1064 }
1065 out:
1066 pserialize_read_exit(s);
1067
1068 return sav;
1069 }
1070
1071 #if 0
1072 static void
1073 key_sendup_message_delete(struct secasvar *sav)
1074 {
1075 struct mbuf *m, *result = 0;
1076 uint8_t satype;
1077
1078 satype = key_proto2satype(sav->sah->saidx.proto);
1079 if (satype == 0)
1080 goto msgfail;
1081
1082 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, sav->refcnt - 1);
1083 if (m == NULL)
1084 goto msgfail;
1085 result = m;
1086
1087 /* set sadb_address for saidx's. */
1088 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1089 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1090 if (m == NULL)
1091 goto msgfail;
1092 m_cat(result, m);
1093
1094 /* set sadb_address for saidx's. */
1095 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1096 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1097 if (m == NULL)
1098 goto msgfail;
1099 m_cat(result, m);
1100
1101 /* create SA extension */
1102 m = key_setsadbsa(sav);
1103 if (m == NULL)
1104 goto msgfail;
1105 m_cat(result, m);
1106
1107 if (result->m_len < sizeof(struct sadb_msg)) {
1108 result = m_pullup(result, sizeof(struct sadb_msg));
1109 if (result == NULL)
1110 goto msgfail;
1111 }
1112
1113 result->m_pkthdr.len = 0;
1114 for (m = result; m; m = m->m_next)
1115 result->m_pkthdr.len += m->m_len;
1116 mtod(result, struct sadb_msg *)->sadb_msg_len =
1117 PFKEY_UNIT64(result->m_pkthdr.len);
1118
1119 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1120 result = NULL;
1121 msgfail:
1122 if (result)
1123 m_freem(result);
1124 }
1125 #endif
1126
1127 /*
1128 * allocating a usable SA entry for a *INBOUND* packet.
1129 * Must call key_freesav() later.
1130 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1131 * NULL: not found, or error occurred.
1132 *
1133 * In the comparison, no source address is used--for RFC2401 conformance.
1134 * To quote, from section 4.1:
1135 * A security association is uniquely identified by a triple consisting
1136 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1137 * security protocol (AH or ESP) identifier.
1138 * Note that, however, we do need to keep source address in IPsec SA.
1139 * IKE specification and PF_KEY specification do assume that we
1140 * keep source address in IPsec SA. We see a tricky situation here.
1141 *
1142 * sport and dport are used for NAT-T. network order is always used.
1143 */
1144 struct secasvar *
1145 key_lookup_sa(
1146 const union sockaddr_union *dst,
1147 u_int proto,
1148 u_int32_t spi,
1149 u_int16_t sport,
1150 u_int16_t dport,
1151 const char* where, int tag)
1152 {
1153 struct secashead *sah;
1154 struct secasvar *sav;
1155 u_int stateidx, state;
1156 const u_int *saorder_state_valid;
1157 int arraysize, chkport;
1158 int s;
1159
1160 int must_check_spi = 1;
1161 int must_check_alg = 0;
1162 u_int16_t cpi = 0;
1163 u_int8_t algo = 0;
1164
1165 if ((sport != 0) && (dport != 0))
1166 chkport = PORT_STRICT;
1167 else
1168 chkport = PORT_NONE;
1169
1170 KASSERT(dst != NULL);
1171
1172 /*
1173 * XXX IPCOMP case
1174 * We use cpi to define spi here. In the case where cpi <=
1175 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1176 * the real spi. In this case, don't check the spi but check the
1177 * algorithm
1178 */
1179
1180 if (proto == IPPROTO_IPCOMP) {
1181 u_int32_t tmp;
1182 tmp = ntohl(spi);
1183 cpi = (u_int16_t) tmp;
1184 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1185 algo = (u_int8_t) cpi;
1186 must_check_spi = 0;
1187 must_check_alg = 1;
1188 }
1189 }
1190 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1191 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1192 where, tag, must_check_spi, must_check_alg);
1193
1194
1195 /*
1196 * searching SAD.
1197 * XXX: to be checked internal IP header somewhere. Also when
1198 * IPsec tunnel packet is received. But ESP tunnel mode is
1199 * encrypted so we can't check internal IP header.
1200 */
1201 if (key_prefered_oldsa) {
1202 saorder_state_valid = saorder_state_valid_prefer_old;
1203 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1204 } else {
1205 saorder_state_valid = saorder_state_valid_prefer_new;
1206 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1207 }
1208 s = pserialize_read_enter();
1209 SAHLIST_READER_FOREACH(sah) {
1210 /* search valid state */
1211 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1212 state = saorder_state_valid[stateidx];
1213 SAVLIST_READER_FOREACH(sav, sah, state) {
1214 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1215 "try match spi %#x, %#x\n",
1216 ntohl(spi), ntohl(sav->spi));
1217 /* sanity check */
1218 KEY_CHKSASTATE(sav->state, state);
1219 /* do not return entries w/ unusable state */
1220 if (!SADB_SASTATE_USABLE_P(sav)) {
1221 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1222 "bad state %d\n", sav->state);
1223 continue;
1224 }
1225 if (proto != sav->sah->saidx.proto) {
1226 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1227 "proto fail %d != %d\n",
1228 proto, sav->sah->saidx.proto);
1229 continue;
1230 }
1231 if (must_check_spi && spi != sav->spi) {
1232 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1233 "spi fail %#x != %#x\n",
1234 ntohl(spi), ntohl(sav->spi));
1235 continue;
1236 }
1237 /* XXX only on the ipcomp case */
1238 if (must_check_alg && algo != sav->alg_comp) {
1239 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1240 "algo fail %d != %d\n",
1241 algo, sav->alg_comp);
1242 continue;
1243 }
1244
1245 #if 0 /* don't check src */
1246 /* Fix port in src->sa */
1247
1248 /* check src address */
1249 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1250 continue;
1251 #endif
1252 /* fix port of dst address XXX*/
1253 key_porttosaddr(__UNCONST(dst), dport);
1254 /* check dst address */
1255 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1256 continue;
1257 SA_ADDREF2(sav, where, tag);
1258 goto done;
1259 }
1260 }
1261 }
1262 sav = NULL;
1263 done:
1264 pserialize_read_exit(s);
1265
1266 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1267 "DP return SA:%p; refcnt %u\n", sav, sav ? sav->refcnt : 0);
1268 return sav;
1269 }
1270
1271 static void
1272 key_validate_savlist(const struct secashead *sah, const u_int state)
1273 {
1274 #ifdef DEBUG
1275 struct secasvar *sav, *next;
1276 int s;
1277
1278 /*
1279 * The list should be sorted by lft_c->sadb_lifetime_addtime
1280 * in ascending order.
1281 */
1282 s = pserialize_read_enter();
1283 SAVLIST_READER_FOREACH(sav, sah, state) {
1284 next = SAVLIST_READER_NEXT(sav);
1285 if (next != NULL &&
1286 sav->lft_c != NULL && next->lft_c != NULL) {
1287 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1288 next->lft_c->sadb_lifetime_addtime,
1289 "savlist is not sorted: sah=%p, state=%d, "
1290 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1291 sav->lft_c->sadb_lifetime_addtime,
1292 next->lft_c->sadb_lifetime_addtime);
1293 }
1294 }
1295 pserialize_read_exit(s);
1296 #endif
1297 }
1298
1299 void
1300 key_init_sp(struct secpolicy *sp)
1301 {
1302
1303 ASSERT_SLEEPABLE();
1304
1305 sp->state = IPSEC_SPSTATE_ALIVE;
1306 if (sp->policy == IPSEC_POLICY_IPSEC)
1307 KASSERT(sp->req != NULL);
1308 localcount_init(&sp->localcount);
1309 SPLIST_ENTRY_INIT(sp);
1310 }
1311
1312 /*
1313 * Must be called in a pserialize critical section. A held SP
1314 * must be released by key_sp_unref after use.
1315 */
1316 void
1317 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1318 {
1319
1320 localcount_acquire(&sp->localcount);
1321
1322 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1323 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1324 sp, sp->id, where, tag, key_sp_refcnt(sp));
1325 }
1326
1327 /*
1328 * Must be called without holding key_spd.lock because the lock
1329 * would be held in localcount_release.
1330 */
1331 void
1332 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1333 {
1334
1335 KDASSERT(mutex_ownable(&key_spd.lock));
1336
1337 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1338 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1339 sp, sp->id, where, tag, key_sp_refcnt(sp));
1340
1341 localcount_release(&sp->localcount, &key_spd.cv, &key_spd.lock);
1342 }
1343
1344 void
1345 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1346 {
1347
1348 SA_ADDREF2(sav, where, tag);
1349
1350 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1351 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1352 sav->refcnt, sav, where, tag);
1353 }
1354
1355 #if 0
1356 /*
1357 * Must be called after calling key_lookup_sp*().
1358 * For the packet with socket.
1359 */
1360 static void
1361 key_freeso(struct socket *so)
1362 {
1363 /* sanity check */
1364 KASSERT(so != NULL);
1365
1366 switch (so->so_proto->pr_domain->dom_family) {
1367 #ifdef INET
1368 case PF_INET:
1369 {
1370 struct inpcb *pcb = sotoinpcb(so);
1371
1372 /* Does it have a PCB ? */
1373 if (pcb == NULL)
1374 return;
1375
1376 struct inpcbpolicy *sp = pcb->inp_sp;
1377 key_freesp_so(&sp->sp_in);
1378 key_freesp_so(&sp->sp_out);
1379 }
1380 break;
1381 #endif
1382 #ifdef INET6
1383 case PF_INET6:
1384 {
1385 #ifdef HAVE_NRL_INPCB
1386 struct inpcb *pcb = sotoinpcb(so);
1387 struct inpcbpolicy *sp = pcb->inp_sp;
1388
1389 /* Does it have a PCB ? */
1390 if (pcb == NULL)
1391 return;
1392 key_freesp_so(&sp->sp_in);
1393 key_freesp_so(&sp->sp_out);
1394 #else
1395 struct in6pcb *pcb = sotoin6pcb(so);
1396
1397 /* Does it have a PCB ? */
1398 if (pcb == NULL)
1399 return;
1400 key_freesp_so(&pcb->in6p_sp->sp_in);
1401 key_freesp_so(&pcb->in6p_sp->sp_out);
1402 #endif
1403 }
1404 break;
1405 #endif /* INET6 */
1406 default:
1407 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1408 so->so_proto->pr_domain->dom_family);
1409 return;
1410 }
1411 }
1412
1413 static void
1414 key_freesp_so(struct secpolicy **sp)
1415 {
1416
1417 KASSERT(sp != NULL);
1418 KASSERT(*sp != NULL);
1419
1420 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1421 (*sp)->policy == IPSEC_POLICY_BYPASS)
1422 return;
1423
1424 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1425 "invalid policy %u", (*sp)->policy);
1426 KEY_SP_UNREF(&sp);
1427 }
1428 #endif
1429
1430 /*
1431 * Must be called after calling key_lookup_sa().
1432 * This function is called by key_freesp() to free some SA allocated
1433 * for a policy.
1434 */
1435 void
1436 key_freesav(struct secasvar **psav, const char* where, int tag)
1437 {
1438 struct secasvar *sav = *psav;
1439 unsigned int nv;
1440
1441 KASSERT(sav != NULL);
1442
1443 SA_DELREF2(sav, nv, where, tag);
1444
1445 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1446 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1447 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1448
1449 if (nv == 0) {
1450 *psav = NULL;
1451
1452 /* remove from SA header */
1453 SAVLIST_WRITER_REMOVE(sav);
1454
1455 key_delsav(sav);
1456 }
1457 }
1458
1459 /* %%% SPD management */
1460 /*
1461 * free security policy entry.
1462 */
1463 static void
1464 key_destroy_sp(struct secpolicy *sp)
1465 {
1466
1467 SPLIST_ENTRY_DESTROY(sp);
1468 localcount_fini(&sp->localcount);
1469
1470 key_free_sp(sp);
1471
1472 key_update_used();
1473 }
1474
1475 void
1476 key_free_sp(struct secpolicy *sp)
1477 {
1478 struct ipsecrequest *isr = sp->req, *nextisr;
1479
1480 while (isr != NULL) {
1481 nextisr = isr->next;
1482 kmem_free(isr, sizeof(*isr));
1483 isr = nextisr;
1484 }
1485
1486 kmem_free(sp, sizeof(*sp));
1487 }
1488
1489 void
1490 key_socksplist_add(struct secpolicy *sp)
1491 {
1492
1493 mutex_enter(&key_spd.lock);
1494 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1495 mutex_exit(&key_spd.lock);
1496
1497 key_update_used();
1498 }
1499
1500 /*
1501 * search SPD
1502 * OUT: NULL : not found
1503 * others : found, pointer to a SP.
1504 */
1505 static struct secpolicy *
1506 key_getsp(const struct secpolicyindex *spidx)
1507 {
1508 struct secpolicy *sp;
1509 int s;
1510
1511 KASSERT(spidx != NULL);
1512
1513 s = pserialize_read_enter();
1514 SPLIST_READER_FOREACH(sp, spidx->dir) {
1515 if (sp->state == IPSEC_SPSTATE_DEAD)
1516 continue;
1517 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1518 KEY_SP_REF(sp);
1519 pserialize_read_exit(s);
1520 return sp;
1521 }
1522 }
1523 pserialize_read_exit(s);
1524
1525 return NULL;
1526 }
1527
1528 /*
1529 * search SPD and remove found SP
1530 * OUT: NULL : not found
1531 * others : found, pointer to a SP.
1532 */
1533 static struct secpolicy *
1534 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1535 {
1536 struct secpolicy *sp = NULL;
1537
1538 mutex_enter(&key_spd.lock);
1539 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1540 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1541
1542 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1543 key_unlink_sp(sp);
1544 goto out;
1545 }
1546 }
1547 sp = NULL;
1548 out:
1549 mutex_exit(&key_spd.lock);
1550
1551 return sp;
1552 }
1553
1554 /*
1555 * get SP by index.
1556 * OUT: NULL : not found
1557 * others : found, pointer to a SP.
1558 */
1559 static struct secpolicy *
1560 key_getspbyid(u_int32_t id)
1561 {
1562 struct secpolicy *sp;
1563 int s;
1564
1565 s = pserialize_read_enter();
1566 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1567 if (sp->state == IPSEC_SPSTATE_DEAD)
1568 continue;
1569 if (sp->id == id) {
1570 KEY_SP_REF(sp);
1571 goto out;
1572 }
1573 }
1574
1575 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1576 if (sp->state == IPSEC_SPSTATE_DEAD)
1577 continue;
1578 if (sp->id == id) {
1579 KEY_SP_REF(sp);
1580 goto out;
1581 }
1582 }
1583 out:
1584 pserialize_read_exit(s);
1585 return sp;
1586 }
1587
1588 /*
1589 * get SP by index, remove and return it.
1590 * OUT: NULL : not found
1591 * others : found, pointer to a SP.
1592 */
1593 static struct secpolicy *
1594 key_lookupbyid_and_remove_sp(u_int32_t id)
1595 {
1596 struct secpolicy *sp;
1597
1598 mutex_enter(&key_spd.lock);
1599 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1600 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1601 if (sp->id == id)
1602 goto out;
1603 }
1604
1605 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1606 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1607 if (sp->id == id)
1608 goto out;
1609 }
1610 out:
1611 if (sp != NULL)
1612 key_unlink_sp(sp);
1613 mutex_exit(&key_spd.lock);
1614 return sp;
1615 }
1616
1617 struct secpolicy *
1618 key_newsp(const char* where, int tag)
1619 {
1620 struct secpolicy *newsp = NULL;
1621
1622 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1623
1624 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1625 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1626 return newsp;
1627 }
1628
1629 /*
1630 * create secpolicy structure from sadb_x_policy structure.
1631 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1632 * so must be set properly later.
1633 */
1634 struct secpolicy *
1635 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1636 {
1637 struct secpolicy *newsp;
1638
1639 KASSERT(!cpu_softintr_p());
1640 KASSERT(xpl0 != NULL);
1641 KASSERT(len >= sizeof(*xpl0));
1642
1643 if (len != PFKEY_EXTLEN(xpl0)) {
1644 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1645 *error = EINVAL;
1646 return NULL;
1647 }
1648
1649 newsp = KEY_NEWSP();
1650 if (newsp == NULL) {
1651 *error = ENOBUFS;
1652 return NULL;
1653 }
1654
1655 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1656 newsp->policy = xpl0->sadb_x_policy_type;
1657
1658 /* check policy */
1659 switch (xpl0->sadb_x_policy_type) {
1660 case IPSEC_POLICY_DISCARD:
1661 case IPSEC_POLICY_NONE:
1662 case IPSEC_POLICY_ENTRUST:
1663 case IPSEC_POLICY_BYPASS:
1664 newsp->req = NULL;
1665 *error = 0;
1666 return newsp;
1667
1668 case IPSEC_POLICY_IPSEC:
1669 /* Continued */
1670 break;
1671 default:
1672 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1673 key_free_sp(newsp);
1674 *error = EINVAL;
1675 return NULL;
1676 }
1677
1678 /* IPSEC_POLICY_IPSEC */
1679 {
1680 int tlen;
1681 const struct sadb_x_ipsecrequest *xisr;
1682 uint16_t xisr_reqid;
1683 struct ipsecrequest **p_isr = &newsp->req;
1684
1685 /* validity check */
1686 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1687 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1688 *error = EINVAL;
1689 goto free_exit;
1690 }
1691
1692 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1693 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1694
1695 while (tlen > 0) {
1696 /* length check */
1697 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1698 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1699 *error = EINVAL;
1700 goto free_exit;
1701 }
1702
1703 /* allocate request buffer */
1704 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1705
1706 /* set values */
1707 (*p_isr)->next = NULL;
1708
1709 switch (xisr->sadb_x_ipsecrequest_proto) {
1710 case IPPROTO_ESP:
1711 case IPPROTO_AH:
1712 case IPPROTO_IPCOMP:
1713 break;
1714 default:
1715 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1716 xisr->sadb_x_ipsecrequest_proto);
1717 *error = EPROTONOSUPPORT;
1718 goto free_exit;
1719 }
1720 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1721
1722 switch (xisr->sadb_x_ipsecrequest_mode) {
1723 case IPSEC_MODE_TRANSPORT:
1724 case IPSEC_MODE_TUNNEL:
1725 break;
1726 case IPSEC_MODE_ANY:
1727 default:
1728 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1729 xisr->sadb_x_ipsecrequest_mode);
1730 *error = EINVAL;
1731 goto free_exit;
1732 }
1733 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1734
1735 switch (xisr->sadb_x_ipsecrequest_level) {
1736 case IPSEC_LEVEL_DEFAULT:
1737 case IPSEC_LEVEL_USE:
1738 case IPSEC_LEVEL_REQUIRE:
1739 break;
1740 case IPSEC_LEVEL_UNIQUE:
1741 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1742 /* validity check */
1743 /*
1744 * If range violation of reqid, kernel will
1745 * update it, don't refuse it.
1746 */
1747 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1748 IPSECLOG(LOG_DEBUG,
1749 "reqid=%d range "
1750 "violation, updated by kernel.\n",
1751 xisr_reqid);
1752 xisr_reqid = 0;
1753 }
1754
1755 /* allocate new reqid id if reqid is zero. */
1756 if (xisr_reqid == 0) {
1757 u_int16_t reqid = key_newreqid();
1758 if (reqid == 0) {
1759 *error = ENOBUFS;
1760 goto free_exit;
1761 }
1762 (*p_isr)->saidx.reqid = reqid;
1763 } else {
1764 /* set it for manual keying. */
1765 (*p_isr)->saidx.reqid = xisr_reqid;
1766 }
1767 break;
1768
1769 default:
1770 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1771 xisr->sadb_x_ipsecrequest_level);
1772 *error = EINVAL;
1773 goto free_exit;
1774 }
1775 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1776
1777 /* set IP addresses if there */
1778 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1779 const struct sockaddr *paddr;
1780
1781 paddr = (const struct sockaddr *)(xisr + 1);
1782
1783 /* validity check */
1784 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1785 IPSECLOG(LOG_DEBUG, "invalid request "
1786 "address length.\n");
1787 *error = EINVAL;
1788 goto free_exit;
1789 }
1790 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1791
1792 paddr = (const struct sockaddr *)((const char *)paddr
1793 + paddr->sa_len);
1794
1795 /* validity check */
1796 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1797 IPSECLOG(LOG_DEBUG, "invalid request "
1798 "address length.\n");
1799 *error = EINVAL;
1800 goto free_exit;
1801 }
1802 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1803 }
1804
1805 (*p_isr)->sp = newsp;
1806
1807 /* initialization for the next. */
1808 p_isr = &(*p_isr)->next;
1809 tlen -= xisr->sadb_x_ipsecrequest_len;
1810
1811 /* validity check */
1812 if (tlen < 0) {
1813 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1814 *error = EINVAL;
1815 goto free_exit;
1816 }
1817
1818 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1819 xisr->sadb_x_ipsecrequest_len);
1820 }
1821 }
1822
1823 *error = 0;
1824 return newsp;
1825
1826 free_exit:
1827 key_free_sp(newsp);
1828 return NULL;
1829 }
1830
1831 static u_int16_t
1832 key_newreqid(void)
1833 {
1834 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1835
1836 auto_reqid = (auto_reqid == 0xffff ?
1837 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1838
1839 /* XXX should be unique check */
1840
1841 return auto_reqid;
1842 }
1843
1844 /*
1845 * copy secpolicy struct to sadb_x_policy structure indicated.
1846 */
1847 struct mbuf *
1848 key_sp2msg(const struct secpolicy *sp)
1849 {
1850 struct sadb_x_policy *xpl;
1851 int tlen;
1852 char *p;
1853 struct mbuf *m;
1854
1855 KASSERT(sp != NULL);
1856
1857 tlen = key_getspreqmsglen(sp);
1858
1859 m = key_alloc_mbuf(tlen);
1860 if (!m || m->m_next) { /*XXX*/
1861 if (m)
1862 m_freem(m);
1863 return NULL;
1864 }
1865
1866 m->m_len = tlen;
1867 m->m_next = NULL;
1868 xpl = mtod(m, struct sadb_x_policy *);
1869 memset(xpl, 0, tlen);
1870
1871 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1872 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1873 xpl->sadb_x_policy_type = sp->policy;
1874 xpl->sadb_x_policy_dir = sp->spidx.dir;
1875 xpl->sadb_x_policy_id = sp->id;
1876 p = (char *)xpl + sizeof(*xpl);
1877
1878 /* if is the policy for ipsec ? */
1879 if (sp->policy == IPSEC_POLICY_IPSEC) {
1880 struct sadb_x_ipsecrequest *xisr;
1881 struct ipsecrequest *isr;
1882
1883 for (isr = sp->req; isr != NULL; isr = isr->next) {
1884
1885 xisr = (struct sadb_x_ipsecrequest *)p;
1886
1887 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1888 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1889 xisr->sadb_x_ipsecrequest_level = isr->level;
1890 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1891
1892 p += sizeof(*xisr);
1893 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1894 p += isr->saidx.src.sa.sa_len;
1895 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1896 p += isr->saidx.src.sa.sa_len;
1897
1898 xisr->sadb_x_ipsecrequest_len =
1899 PFKEY_ALIGN8(sizeof(*xisr)
1900 + isr->saidx.src.sa.sa_len
1901 + isr->saidx.dst.sa.sa_len);
1902 }
1903 }
1904
1905 return m;
1906 }
1907
1908 /* m will not be freed nor modified */
1909 static struct mbuf *
1910 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1911 int ndeep, int nitem, ...)
1912 {
1913 va_list ap;
1914 int idx;
1915 int i;
1916 struct mbuf *result = NULL, *n;
1917 int len;
1918
1919 KASSERT(m != NULL);
1920 KASSERT(mhp != NULL);
1921
1922 va_start(ap, nitem);
1923 for (i = 0; i < nitem; i++) {
1924 idx = va_arg(ap, int);
1925 if (idx < 0 || idx > SADB_EXT_MAX)
1926 goto fail;
1927 /* don't attempt to pull empty extension */
1928 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1929 continue;
1930 if (idx != SADB_EXT_RESERVED &&
1931 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1932 continue;
1933
1934 if (idx == SADB_EXT_RESERVED) {
1935 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1936 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1937 MGETHDR(n, M_DONTWAIT, MT_DATA);
1938 if (!n)
1939 goto fail;
1940 n->m_len = len;
1941 n->m_next = NULL;
1942 m_copydata(m, 0, sizeof(struct sadb_msg),
1943 mtod(n, void *));
1944 } else if (i < ndeep) {
1945 len = mhp->extlen[idx];
1946 n = key_alloc_mbuf(len);
1947 if (!n || n->m_next) { /*XXX*/
1948 if (n)
1949 m_freem(n);
1950 goto fail;
1951 }
1952 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1953 mtod(n, void *));
1954 } else {
1955 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1956 M_DONTWAIT);
1957 }
1958 if (n == NULL)
1959 goto fail;
1960
1961 if (result)
1962 m_cat(result, n);
1963 else
1964 result = n;
1965 }
1966 va_end(ap);
1967
1968 if (result && (result->m_flags & M_PKTHDR) != 0) {
1969 result->m_pkthdr.len = 0;
1970 for (n = result; n; n = n->m_next)
1971 result->m_pkthdr.len += n->m_len;
1972 }
1973
1974 return result;
1975
1976 fail:
1977 va_end(ap);
1978 m_freem(result);
1979 return NULL;
1980 }
1981
1982 /*
1983 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1984 * add an entry to SP database, when received
1985 * <base, address(SD), (lifetime(H),) policy>
1986 * from the user(?).
1987 * Adding to SP database,
1988 * and send
1989 * <base, address(SD), (lifetime(H),) policy>
1990 * to the socket which was send.
1991 *
1992 * SPDADD set a unique policy entry.
1993 * SPDSETIDX like SPDADD without a part of policy requests.
1994 * SPDUPDATE replace a unique policy entry.
1995 *
1996 * m will always be freed.
1997 */
1998 static int
1999 key_api_spdadd(struct socket *so, struct mbuf *m,
2000 const struct sadb_msghdr *mhp)
2001 {
2002 const struct sockaddr *src, *dst;
2003 const struct sadb_x_policy *xpl0;
2004 struct sadb_x_policy *xpl;
2005 const struct sadb_lifetime *lft = NULL;
2006 struct secpolicyindex spidx;
2007 struct secpolicy *newsp;
2008 int error;
2009
2010 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2011 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2012 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2013 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2014 return key_senderror(so, m, EINVAL);
2015 }
2016 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2017 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2018 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2019 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2020 return key_senderror(so, m, EINVAL);
2021 }
2022 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2023 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2024 sizeof(struct sadb_lifetime)) {
2025 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2026 return key_senderror(so, m, EINVAL);
2027 }
2028 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
2029 }
2030
2031 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2032
2033 /* checking the direciton. */
2034 switch (xpl0->sadb_x_policy_dir) {
2035 case IPSEC_DIR_INBOUND:
2036 case IPSEC_DIR_OUTBOUND:
2037 break;
2038 default:
2039 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2040 return key_senderror(so, m, EINVAL);
2041 }
2042
2043 /* check policy */
2044 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2045 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2046 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2047 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2048 return key_senderror(so, m, EINVAL);
2049 }
2050
2051 /* policy requests are mandatory when action is ipsec. */
2052 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2053 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2054 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2055 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2056 return key_senderror(so, m, EINVAL);
2057 }
2058
2059 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2060 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2061
2062 /* sanity check on addr pair */
2063 if (src->sa_family != dst->sa_family)
2064 return key_senderror(so, m, EINVAL);
2065 if (src->sa_len != dst->sa_len)
2066 return key_senderror(so, m, EINVAL);
2067
2068 key_init_spidx_bymsghdr(&spidx, mhp);
2069
2070 /*
2071 * checking there is SP already or not.
2072 * SPDUPDATE doesn't depend on whether there is a SP or not.
2073 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2074 * then error.
2075 */
2076 {
2077 struct secpolicy *sp;
2078
2079 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2080 sp = key_lookup_and_remove_sp(&spidx);
2081 if (sp != NULL)
2082 key_destroy_sp(sp);
2083 } else {
2084 sp = key_getsp(&spidx);
2085 if (sp != NULL) {
2086 KEY_SP_UNREF(&sp);
2087 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2088 return key_senderror(so, m, EEXIST);
2089 }
2090 }
2091 }
2092
2093 /* allocation new SP entry */
2094 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2095 if (newsp == NULL) {
2096 return key_senderror(so, m, error);
2097 }
2098
2099 newsp->id = key_getnewspid();
2100 if (newsp->id == 0) {
2101 kmem_free(newsp, sizeof(*newsp));
2102 return key_senderror(so, m, ENOBUFS);
2103 }
2104
2105 newsp->spidx = spidx;
2106 newsp->created = time_uptime;
2107 newsp->lastused = newsp->created;
2108 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2109 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2110
2111 key_init_sp(newsp);
2112
2113 mutex_enter(&key_spd.lock);
2114 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2115 mutex_exit(&key_spd.lock);
2116
2117 #ifdef notyet
2118 /* delete the entry in key_misc.spacqlist */
2119 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2120 struct secspacq *spacq = key_getspacq(&spidx);
2121 if (spacq != NULL) {
2122 /* reset counter in order to deletion by timehandler. */
2123 spacq->created = time_uptime;
2124 spacq->count = 0;
2125 }
2126 }
2127 #endif
2128
2129 /* Invalidate all cached SPD pointers in the PCBs. */
2130 ipsec_invalpcbcacheall();
2131
2132 #if defined(GATEWAY)
2133 /* Invalidate the ipflow cache, as well. */
2134 ipflow_invalidate_all(0);
2135 #ifdef INET6
2136 if (in6_present)
2137 ip6flow_invalidate_all(0);
2138 #endif /* INET6 */
2139 #endif /* GATEWAY */
2140
2141 key_update_used();
2142
2143 {
2144 struct mbuf *n, *mpolicy;
2145 int off;
2146
2147 /* create new sadb_msg to reply. */
2148 if (lft) {
2149 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2150 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2151 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2152 } else {
2153 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2154 SADB_X_EXT_POLICY,
2155 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2156 }
2157 if (!n)
2158 return key_senderror(so, m, ENOBUFS);
2159
2160 n = key_fill_replymsg(n, 0);
2161 if (n == NULL)
2162 return key_senderror(so, m, ENOBUFS);
2163
2164 off = 0;
2165 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2166 sizeof(*xpl), &off);
2167 if (mpolicy == NULL) {
2168 /* n is already freed */
2169 return key_senderror(so, m, ENOBUFS);
2170 }
2171 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2172 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2173 m_freem(n);
2174 return key_senderror(so, m, EINVAL);
2175 }
2176 xpl->sadb_x_policy_id = newsp->id;
2177
2178 m_freem(m);
2179 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2180 }
2181 }
2182
2183 /*
2184 * get new policy id.
2185 * OUT:
2186 * 0: failure.
2187 * others: success.
2188 */
2189 static u_int32_t
2190 key_getnewspid(void)
2191 {
2192 u_int32_t newid = 0;
2193 int count = key_spi_trycnt; /* XXX */
2194 struct secpolicy *sp;
2195
2196 /* when requesting to allocate spi ranged */
2197 while (count--) {
2198 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2199
2200 sp = key_getspbyid(newid);
2201 if (sp == NULL)
2202 break;
2203
2204 KEY_SP_UNREF(&sp);
2205 }
2206
2207 if (count == 0 || newid == 0) {
2208 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2209 return 0;
2210 }
2211
2212 return newid;
2213 }
2214
2215 /*
2216 * SADB_SPDDELETE processing
2217 * receive
2218 * <base, address(SD), policy(*)>
2219 * from the user(?), and set SADB_SASTATE_DEAD,
2220 * and send,
2221 * <base, address(SD), policy(*)>
2222 * to the ikmpd.
2223 * policy(*) including direction of policy.
2224 *
2225 * m will always be freed.
2226 */
2227 static int
2228 key_api_spddelete(struct socket *so, struct mbuf *m,
2229 const struct sadb_msghdr *mhp)
2230 {
2231 struct sadb_x_policy *xpl0;
2232 struct secpolicyindex spidx;
2233 struct secpolicy *sp;
2234
2235 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2236 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2237 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2238 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2239 return key_senderror(so, m, EINVAL);
2240 }
2241 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2242 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2243 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2244 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2245 return key_senderror(so, m, EINVAL);
2246 }
2247
2248 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2249
2250 /* checking the direciton. */
2251 switch (xpl0->sadb_x_policy_dir) {
2252 case IPSEC_DIR_INBOUND:
2253 case IPSEC_DIR_OUTBOUND:
2254 break;
2255 default:
2256 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2257 return key_senderror(so, m, EINVAL);
2258 }
2259
2260 /* make secindex */
2261 key_init_spidx_bymsghdr(&spidx, mhp);
2262
2263 /* Is there SP in SPD ? */
2264 sp = key_lookup_and_remove_sp(&spidx);
2265 if (sp == NULL) {
2266 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2267 return key_senderror(so, m, EINVAL);
2268 }
2269
2270 /* save policy id to buffer to be returned. */
2271 xpl0->sadb_x_policy_id = sp->id;
2272
2273 key_destroy_sp(sp);
2274
2275 /* We're deleting policy; no need to invalidate the ipflow cache. */
2276
2277 {
2278 struct mbuf *n;
2279
2280 /* create new sadb_msg to reply. */
2281 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2282 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2283 if (!n)
2284 return key_senderror(so, m, ENOBUFS);
2285
2286 n = key_fill_replymsg(n, 0);
2287 if (n == NULL)
2288 return key_senderror(so, m, ENOBUFS);
2289
2290 m_freem(m);
2291 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2292 }
2293 }
2294
2295 /*
2296 * SADB_SPDDELETE2 processing
2297 * receive
2298 * <base, policy(*)>
2299 * from the user(?), and set SADB_SASTATE_DEAD,
2300 * and send,
2301 * <base, policy(*)>
2302 * to the ikmpd.
2303 * policy(*) including direction of policy.
2304 *
2305 * m will always be freed.
2306 */
2307 static int
2308 key_api_spddelete2(struct socket *so, struct mbuf *m,
2309 const struct sadb_msghdr *mhp)
2310 {
2311 u_int32_t id;
2312 struct secpolicy *sp;
2313
2314 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2315 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2316 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2317 return key_senderror(so, m, EINVAL);
2318 }
2319
2320 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2321
2322 /* Is there SP in SPD ? */
2323 sp = key_lookupbyid_and_remove_sp(id);
2324 if (sp == NULL) {
2325 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2326 return key_senderror(so, m, EINVAL);
2327 }
2328
2329 key_destroy_sp(sp);
2330
2331 /* We're deleting policy; no need to invalidate the ipflow cache. */
2332
2333 {
2334 struct mbuf *n, *nn;
2335 int off, len;
2336
2337 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2338
2339 /* create new sadb_msg to reply. */
2340 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2341
2342 MGETHDR(n, M_DONTWAIT, MT_DATA);
2343 if (n && len > MHLEN) {
2344 MCLGET(n, M_DONTWAIT);
2345 if ((n->m_flags & M_EXT) == 0) {
2346 m_freem(n);
2347 n = NULL;
2348 }
2349 }
2350 if (!n)
2351 return key_senderror(so, m, ENOBUFS);
2352
2353 n->m_len = len;
2354 n->m_next = NULL;
2355 off = 0;
2356
2357 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2358 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2359
2360 KASSERTMSG(off == len, "length inconsistency");
2361
2362 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2363 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2364 if (!n->m_next) {
2365 m_freem(n);
2366 return key_senderror(so, m, ENOBUFS);
2367 }
2368
2369 n->m_pkthdr.len = 0;
2370 for (nn = n; nn; nn = nn->m_next)
2371 n->m_pkthdr.len += nn->m_len;
2372
2373 n = key_fill_replymsg(n, 0);
2374 if (n == NULL)
2375 return key_senderror(so, m, ENOBUFS);
2376
2377 m_freem(m);
2378 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2379 }
2380 }
2381
2382 /*
2383 * SADB_X_GET processing
2384 * receive
2385 * <base, policy(*)>
2386 * from the user(?),
2387 * and send,
2388 * <base, address(SD), policy>
2389 * to the ikmpd.
2390 * policy(*) including direction of policy.
2391 *
2392 * m will always be freed.
2393 */
2394 static int
2395 key_api_spdget(struct socket *so, struct mbuf *m,
2396 const struct sadb_msghdr *mhp)
2397 {
2398 u_int32_t id;
2399 struct secpolicy *sp;
2400 struct mbuf *n;
2401
2402 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2403 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2404 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2405 return key_senderror(so, m, EINVAL);
2406 }
2407
2408 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2409
2410 /* Is there SP in SPD ? */
2411 sp = key_getspbyid(id);
2412 if (sp == NULL) {
2413 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2414 return key_senderror(so, m, ENOENT);
2415 }
2416
2417 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2418 mhp->msg->sadb_msg_pid);
2419 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2420 if (n != NULL) {
2421 m_freem(m);
2422 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2423 } else
2424 return key_senderror(so, m, ENOBUFS);
2425 }
2426
2427 #ifdef notyet
2428 /*
2429 * SADB_X_SPDACQUIRE processing.
2430 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2431 * send
2432 * <base, policy(*)>
2433 * to KMD, and expect to receive
2434 * <base> with SADB_X_SPDACQUIRE if error occurred,
2435 * or
2436 * <base, policy>
2437 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2438 * policy(*) is without policy requests.
2439 *
2440 * 0 : succeed
2441 * others: error number
2442 */
2443 int
2444 key_spdacquire(const struct secpolicy *sp)
2445 {
2446 struct mbuf *result = NULL, *m;
2447 struct secspacq *newspacq;
2448 int error;
2449
2450 KASSERT(sp != NULL);
2451 KASSERTMSG(sp->req == NULL, "called but there is request");
2452 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2453 "policy mismathed. IPsec is expected");
2454
2455 /* Get an entry to check whether sent message or not. */
2456 newspacq = key_getspacq(&sp->spidx);
2457 if (newspacq != NULL) {
2458 if (key_blockacq_count < newspacq->count) {
2459 /* reset counter and do send message. */
2460 newspacq->count = 0;
2461 } else {
2462 /* increment counter and do nothing. */
2463 newspacq->count++;
2464 return 0;
2465 }
2466 } else {
2467 /* make new entry for blocking to send SADB_ACQUIRE. */
2468 newspacq = key_newspacq(&sp->spidx);
2469 if (newspacq == NULL)
2470 return ENOBUFS;
2471
2472 /* add to key_misc.acqlist */
2473 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2474 }
2475
2476 /* create new sadb_msg to reply. */
2477 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2478 if (!m) {
2479 error = ENOBUFS;
2480 goto fail;
2481 }
2482 result = m;
2483
2484 result->m_pkthdr.len = 0;
2485 for (m = result; m; m = m->m_next)
2486 result->m_pkthdr.len += m->m_len;
2487
2488 mtod(result, struct sadb_msg *)->sadb_msg_len =
2489 PFKEY_UNIT64(result->m_pkthdr.len);
2490
2491 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2492
2493 fail:
2494 if (result)
2495 m_freem(result);
2496 return error;
2497 }
2498 #endif /* notyet */
2499
2500 /*
2501 * SADB_SPDFLUSH processing
2502 * receive
2503 * <base>
2504 * from the user, and free all entries in secpctree.
2505 * and send,
2506 * <base>
2507 * to the user.
2508 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2509 *
2510 * m will always be freed.
2511 */
2512 static int
2513 key_api_spdflush(struct socket *so, struct mbuf *m,
2514 const struct sadb_msghdr *mhp)
2515 {
2516 struct sadb_msg *newmsg;
2517 struct secpolicy *sp;
2518 u_int dir;
2519
2520 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2521 return key_senderror(so, m, EINVAL);
2522
2523 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2524 retry:
2525 mutex_enter(&key_spd.lock);
2526 SPLIST_WRITER_FOREACH(sp, dir) {
2527 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2528 key_unlink_sp(sp);
2529 mutex_exit(&key_spd.lock);
2530 key_destroy_sp(sp);
2531 goto retry;
2532 }
2533 mutex_exit(&key_spd.lock);
2534 }
2535
2536 /* We're deleting policy; no need to invalidate the ipflow cache. */
2537
2538 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2539 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2540 return key_senderror(so, m, ENOBUFS);
2541 }
2542
2543 if (m->m_next)
2544 m_freem(m->m_next);
2545 m->m_next = NULL;
2546 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2547 newmsg = mtod(m, struct sadb_msg *);
2548 newmsg->sadb_msg_errno = 0;
2549 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2550
2551 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2552 }
2553
2554 static struct sockaddr key_src = {
2555 .sa_len = 2,
2556 .sa_family = PF_KEY,
2557 };
2558
2559 static struct mbuf *
2560 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2561 {
2562 struct secpolicy *sp;
2563 int cnt;
2564 u_int dir;
2565 struct mbuf *m, *n, *prev;
2566 int totlen;
2567
2568 KASSERT(mutex_owned(&key_spd.lock));
2569
2570 *lenp = 0;
2571
2572 /* search SPD entry and get buffer size. */
2573 cnt = 0;
2574 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2575 SPLIST_WRITER_FOREACH(sp, dir) {
2576 cnt++;
2577 }
2578 }
2579
2580 if (cnt == 0) {
2581 *errorp = ENOENT;
2582 return (NULL);
2583 }
2584
2585 m = NULL;
2586 prev = m;
2587 totlen = 0;
2588 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2589 SPLIST_WRITER_FOREACH(sp, dir) {
2590 --cnt;
2591 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2592
2593 if (!n) {
2594 *errorp = ENOBUFS;
2595 if (m)
2596 m_freem(m);
2597 return (NULL);
2598 }
2599
2600 totlen += n->m_pkthdr.len;
2601 if (!m) {
2602 m = n;
2603 } else {
2604 prev->m_nextpkt = n;
2605 }
2606 prev = n;
2607 }
2608 }
2609
2610 *lenp = totlen;
2611 *errorp = 0;
2612 return (m);
2613 }
2614
2615 /*
2616 * SADB_SPDDUMP processing
2617 * receive
2618 * <base>
2619 * from the user, and dump all SP leaves
2620 * and send,
2621 * <base> .....
2622 * to the ikmpd.
2623 *
2624 * m will always be freed.
2625 */
2626 static int
2627 key_api_spddump(struct socket *so, struct mbuf *m0,
2628 const struct sadb_msghdr *mhp)
2629 {
2630 struct mbuf *n;
2631 int error, len;
2632 int ok;
2633 pid_t pid;
2634
2635 pid = mhp->msg->sadb_msg_pid;
2636 /*
2637 * If the requestor has insufficient socket-buffer space
2638 * for the entire chain, nobody gets any response to the DUMP.
2639 * XXX For now, only the requestor ever gets anything.
2640 * Moreover, if the requestor has any space at all, they receive
2641 * the entire chain, otherwise the request is refused with ENOBUFS.
2642 */
2643 if (sbspace(&so->so_rcv) <= 0) {
2644 return key_senderror(so, m0, ENOBUFS);
2645 }
2646
2647 mutex_enter(&key_spd.lock);
2648 n = key_setspddump_chain(&error, &len, pid);
2649 mutex_exit(&key_spd.lock);
2650
2651 if (n == NULL) {
2652 return key_senderror(so, m0, ENOENT);
2653 }
2654 {
2655 uint64_t *ps = PFKEY_STAT_GETREF();
2656 ps[PFKEY_STAT_IN_TOTAL]++;
2657 ps[PFKEY_STAT_IN_BYTES] += len;
2658 PFKEY_STAT_PUTREF();
2659 }
2660
2661 /*
2662 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2663 * The requestor receives either the entire chain, or an
2664 * error message with ENOBUFS.
2665 */
2666
2667 /*
2668 * sbappendchainwith record takes the chain of entries, one
2669 * packet-record per SPD entry, prepends the key_src sockaddr
2670 * to each packet-record, links the sockaddr mbufs into a new
2671 * list of records, then appends the entire resulting
2672 * list to the requesting socket.
2673 */
2674 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2675 SB_PRIO_ONESHOT_OVERFLOW);
2676
2677 if (!ok) {
2678 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2679 m_freem(n);
2680 return key_senderror(so, m0, ENOBUFS);
2681 }
2682
2683 m_freem(m0);
2684 return error;
2685 }
2686
2687 /*
2688 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2689 */
2690 static int
2691 key_api_nat_map(struct socket *so, struct mbuf *m,
2692 const struct sadb_msghdr *mhp)
2693 {
2694 struct sadb_x_nat_t_type *type;
2695 struct sadb_x_nat_t_port *sport;
2696 struct sadb_x_nat_t_port *dport;
2697 struct sadb_address *iaddr, *raddr;
2698 struct sadb_x_nat_t_frag *frag;
2699
2700 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2701 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2702 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2703 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2704 return key_senderror(so, m, EINVAL);
2705 }
2706 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2707 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2708 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2709 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2710 return key_senderror(so, m, EINVAL);
2711 }
2712
2713 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2714 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2715 IPSECLOG(LOG_DEBUG, "invalid message\n");
2716 return key_senderror(so, m, EINVAL);
2717 }
2718
2719 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2720 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2721 IPSECLOG(LOG_DEBUG, "invalid message\n");
2722 return key_senderror(so, m, EINVAL);
2723 }
2724
2725 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2726 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2727 IPSECLOG(LOG_DEBUG, "invalid message\n");
2728 return key_senderror(so, m, EINVAL);
2729 }
2730
2731 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2732 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2733 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2734 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2735 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2736 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2737
2738 /*
2739 * XXX handle that, it should also contain a SA, or anything
2740 * that enable to update the SA information.
2741 */
2742
2743 return 0;
2744 }
2745
2746 static struct mbuf *
2747 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2748 {
2749 struct mbuf *result = NULL, *m;
2750
2751 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2752 key_sp_refcnt(sp));
2753 if (!m)
2754 goto fail;
2755 result = m;
2756
2757 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2758 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2759 if (!m)
2760 goto fail;
2761 m_cat(result, m);
2762
2763 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2764 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2765 if (!m)
2766 goto fail;
2767 m_cat(result, m);
2768
2769 m = key_sp2msg(sp);
2770 if (!m)
2771 goto fail;
2772 m_cat(result, m);
2773
2774 if ((result->m_flags & M_PKTHDR) == 0)
2775 goto fail;
2776
2777 if (result->m_len < sizeof(struct sadb_msg)) {
2778 result = m_pullup(result, sizeof(struct sadb_msg));
2779 if (result == NULL)
2780 goto fail;
2781 }
2782
2783 result->m_pkthdr.len = 0;
2784 for (m = result; m; m = m->m_next)
2785 result->m_pkthdr.len += m->m_len;
2786
2787 mtod(result, struct sadb_msg *)->sadb_msg_len =
2788 PFKEY_UNIT64(result->m_pkthdr.len);
2789
2790 return result;
2791
2792 fail:
2793 m_freem(result);
2794 return NULL;
2795 }
2796
2797 /*
2798 * get PFKEY message length for security policy and request.
2799 */
2800 static u_int
2801 key_getspreqmsglen(const struct secpolicy *sp)
2802 {
2803 u_int tlen;
2804
2805 tlen = sizeof(struct sadb_x_policy);
2806
2807 /* if is the policy for ipsec ? */
2808 if (sp->policy != IPSEC_POLICY_IPSEC)
2809 return tlen;
2810
2811 /* get length of ipsec requests */
2812 {
2813 const struct ipsecrequest *isr;
2814 int len;
2815
2816 for (isr = sp->req; isr != NULL; isr = isr->next) {
2817 len = sizeof(struct sadb_x_ipsecrequest)
2818 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2819
2820 tlen += PFKEY_ALIGN8(len);
2821 }
2822 }
2823
2824 return tlen;
2825 }
2826
2827 /*
2828 * SADB_SPDEXPIRE processing
2829 * send
2830 * <base, address(SD), lifetime(CH), policy>
2831 * to KMD by PF_KEY.
2832 *
2833 * OUT: 0 : succeed
2834 * others : error number
2835 */
2836 static int
2837 key_spdexpire(struct secpolicy *sp)
2838 {
2839 int s;
2840 struct mbuf *result = NULL, *m;
2841 int len;
2842 int error = -1;
2843 struct sadb_lifetime *lt;
2844
2845 /* XXX: Why do we lock ? */
2846 s = splsoftnet(); /*called from softclock()*/
2847
2848 KASSERT(sp != NULL);
2849
2850 /* set msg header */
2851 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2852 if (!m) {
2853 error = ENOBUFS;
2854 goto fail;
2855 }
2856 result = m;
2857
2858 /* create lifetime extension (current and hard) */
2859 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2860 m = key_alloc_mbuf(len);
2861 if (!m || m->m_next) { /*XXX*/
2862 if (m)
2863 m_freem(m);
2864 error = ENOBUFS;
2865 goto fail;
2866 }
2867 memset(mtod(m, void *), 0, len);
2868 lt = mtod(m, struct sadb_lifetime *);
2869 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2870 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2871 lt->sadb_lifetime_allocations = 0;
2872 lt->sadb_lifetime_bytes = 0;
2873 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2874 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2875 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2876 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2877 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2878 lt->sadb_lifetime_allocations = 0;
2879 lt->sadb_lifetime_bytes = 0;
2880 lt->sadb_lifetime_addtime = sp->lifetime;
2881 lt->sadb_lifetime_usetime = sp->validtime;
2882 m_cat(result, m);
2883
2884 /* set sadb_address for source */
2885 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2886 sp->spidx.prefs, sp->spidx.ul_proto);
2887 if (!m) {
2888 error = ENOBUFS;
2889 goto fail;
2890 }
2891 m_cat(result, m);
2892
2893 /* set sadb_address for destination */
2894 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2895 sp->spidx.prefd, sp->spidx.ul_proto);
2896 if (!m) {
2897 error = ENOBUFS;
2898 goto fail;
2899 }
2900 m_cat(result, m);
2901
2902 /* set secpolicy */
2903 m = key_sp2msg(sp);
2904 if (!m) {
2905 error = ENOBUFS;
2906 goto fail;
2907 }
2908 m_cat(result, m);
2909
2910 if ((result->m_flags & M_PKTHDR) == 0) {
2911 error = EINVAL;
2912 goto fail;
2913 }
2914
2915 if (result->m_len < sizeof(struct sadb_msg)) {
2916 result = m_pullup(result, sizeof(struct sadb_msg));
2917 if (result == NULL) {
2918 error = ENOBUFS;
2919 goto fail;
2920 }
2921 }
2922
2923 result->m_pkthdr.len = 0;
2924 for (m = result; m; m = m->m_next)
2925 result->m_pkthdr.len += m->m_len;
2926
2927 mtod(result, struct sadb_msg *)->sadb_msg_len =
2928 PFKEY_UNIT64(result->m_pkthdr.len);
2929
2930 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2931
2932 fail:
2933 if (result)
2934 m_freem(result);
2935 splx(s);
2936 return error;
2937 }
2938
2939 /* %%% SAD management */
2940 /*
2941 * allocating a memory for new SA head, and copy from the values of mhp.
2942 * OUT: NULL : failure due to the lack of memory.
2943 * others : pointer to new SA head.
2944 */
2945 static struct secashead *
2946 key_newsah(const struct secasindex *saidx)
2947 {
2948 struct secashead *newsah;
2949 int i;
2950
2951 KASSERT(saidx != NULL);
2952
2953 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2954 for (i = 0; i < __arraycount(newsah->savlist); i++)
2955 PSLIST_INIT(&newsah->savlist[i]);
2956 newsah->saidx = *saidx;
2957
2958 /* add to saidxtree */
2959 newsah->state = SADB_SASTATE_MATURE;
2960 SAHLIST_ENTRY_INIT(newsah);
2961 mutex_enter(&key_sad.lock);
2962 SAHLIST_WRITER_INSERT_HEAD(newsah);
2963 mutex_exit(&key_sad.lock);
2964
2965 return newsah;
2966 }
2967
2968 /*
2969 * delete SA index and all SA registerd.
2970 */
2971 static void
2972 key_delsah(struct secashead *sah)
2973 {
2974 struct secasvar *sav;
2975 u_int state;
2976 int s;
2977 int zombie = 0;
2978
2979 KASSERT(!cpu_softintr_p());
2980 KASSERT(sah != NULL);
2981
2982 s = splsoftnet();
2983
2984 /* searching all SA registerd in the secindex. */
2985 SASTATE_ANY_FOREACH(state) {
2986 SAVLIST_READER_FOREACH(sav, sah, state) {
2987 /* give up to delete this sa */
2988 zombie++;
2989 }
2990 }
2991
2992 /* don't delete sah only if there are savs. */
2993 if (zombie) {
2994 splx(s);
2995 return;
2996 }
2997
2998 rtcache_free(&sah->sa_route);
2999
3000 /* remove from tree of SA index */
3001 SAHLIST_WRITER_REMOVE(sah);
3002
3003 if (sah->idents != NULL)
3004 kmem_free(sah->idents, sah->idents_len);
3005 if (sah->identd != NULL)
3006 kmem_free(sah->identd, sah->identd_len);
3007
3008 SAHLIST_ENTRY_DESTROY(sah);
3009 kmem_free(sah, sizeof(*sah));
3010
3011 splx(s);
3012 return;
3013 }
3014
3015 /*
3016 * allocating a new SA with LARVAL state.
3017 * key_api_add() and key_api_getspi() call,
3018 * and copy the values of mhp into new buffer.
3019 * When SAD message type is GETSPI:
3020 * to set sequence number from acq_seq++,
3021 * to set zero to SPI.
3022 * not to call key_setsava().
3023 * OUT: NULL : fail
3024 * others : pointer to new secasvar.
3025 *
3026 * does not modify mbuf. does not free mbuf on error.
3027 */
3028 static struct secasvar *
3029 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3030 int *errp, const char* where, int tag)
3031 {
3032 struct secasvar *newsav;
3033 const struct sadb_sa *xsa;
3034
3035 KASSERT(!cpu_softintr_p());
3036 KASSERT(m != NULL);
3037 KASSERT(mhp != NULL);
3038 KASSERT(mhp->msg != NULL);
3039
3040 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3041
3042 switch (mhp->msg->sadb_msg_type) {
3043 case SADB_GETSPI:
3044 newsav->spi = 0;
3045
3046 #ifdef IPSEC_DOSEQCHECK
3047 /* sync sequence number */
3048 if (mhp->msg->sadb_msg_seq == 0)
3049 newsav->seq =
3050 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3051 else
3052 #endif
3053 newsav->seq = mhp->msg->sadb_msg_seq;
3054 break;
3055
3056 case SADB_ADD:
3057 /* sanity check */
3058 if (mhp->ext[SADB_EXT_SA] == NULL) {
3059 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3060 *errp = EINVAL;
3061 goto error;
3062 }
3063 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3064 newsav->spi = xsa->sadb_sa_spi;
3065 newsav->seq = mhp->msg->sadb_msg_seq;
3066 break;
3067 default:
3068 *errp = EINVAL;
3069 goto error;
3070 }
3071
3072 /* copy sav values */
3073 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3074 *errp = key_setsaval(newsav, m, mhp);
3075 if (*errp)
3076 goto error;
3077 } else {
3078 /* We don't allow lft_c to be NULL */
3079 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3080 KM_SLEEP);
3081 }
3082
3083 /* reset created */
3084 newsav->created = time_uptime;
3085 newsav->pid = mhp->msg->sadb_msg_pid;
3086
3087 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3088 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3089 return newsav;
3090
3091 error:
3092 KASSERT(*errp != 0);
3093 kmem_free(newsav, sizeof(*newsav));
3094 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3095 "DP from %s:%u return SA:NULL\n", where, tag);
3096 return NULL;
3097 }
3098
3099
3100 static void
3101 key_clear_xform(struct secasvar *sav)
3102 {
3103
3104 /*
3105 * Cleanup xform state. Note that zeroize'ing causes the
3106 * keys to be cleared; otherwise we must do it ourself.
3107 */
3108 if (sav->tdb_xform != NULL) {
3109 sav->tdb_xform->xf_zeroize(sav);
3110 sav->tdb_xform = NULL;
3111 } else {
3112 if (sav->key_auth != NULL)
3113 explicit_memset(_KEYBUF(sav->key_auth), 0,
3114 _KEYLEN(sav->key_auth));
3115 if (sav->key_enc != NULL)
3116 explicit_memset(_KEYBUF(sav->key_enc), 0,
3117 _KEYLEN(sav->key_enc));
3118 }
3119 }
3120
3121 /*
3122 * free() SA variable entry.
3123 */
3124 static void
3125 key_delsav(struct secasvar *sav)
3126 {
3127
3128 KASSERT(sav != NULL);
3129 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3130
3131 key_clear_xform(sav);
3132 key_freesaval(sav);
3133 SAVLIST_ENTRY_DESTROY(sav);
3134 kmem_intr_free(sav, sizeof(*sav));
3135
3136 return;
3137 }
3138
3139 /*
3140 * search SAD.
3141 * OUT:
3142 * NULL : not found
3143 * others : found, pointer to a SA.
3144 */
3145 static struct secashead *
3146 key_getsah(const struct secasindex *saidx, int flag)
3147 {
3148 struct secashead *sah;
3149
3150 SAHLIST_READER_FOREACH(sah) {
3151 if (sah->state == SADB_SASTATE_DEAD)
3152 continue;
3153 if (key_saidx_match(&sah->saidx, saidx, flag))
3154 return sah;
3155 }
3156
3157 return NULL;
3158 }
3159
3160 /*
3161 * check not to be duplicated SPI.
3162 * NOTE: this function is too slow due to searching all SAD.
3163 * OUT:
3164 * NULL : not found
3165 * others : found, pointer to a SA.
3166 */
3167 static bool
3168 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3169 {
3170 struct secashead *sah;
3171 struct secasvar *sav;
3172
3173 /* check address family */
3174 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3175 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3176 return false;
3177 }
3178
3179 /* check all SAD */
3180 SAHLIST_READER_FOREACH(sah) {
3181 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3182 continue;
3183 sav = key_getsavbyspi(sah, spi);
3184 if (sav != NULL) {
3185 KEY_SA_UNREF(&sav);
3186 return true;
3187 }
3188 }
3189
3190 return false;
3191 }
3192
3193 /*
3194 * search SAD litmited alive SA, protocol, SPI.
3195 * OUT:
3196 * NULL : not found
3197 * others : found, pointer to a SA.
3198 */
3199 static struct secasvar *
3200 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3201 {
3202 struct secasvar *sav = NULL;
3203 u_int state;
3204 int s;
3205
3206 /* search all status */
3207 s = pserialize_read_enter();
3208 SASTATE_ALIVE_FOREACH(state) {
3209 SAVLIST_READER_FOREACH(sav, sah, state) {
3210 /* sanity check */
3211 if (sav->state != state) {
3212 IPSECLOG(LOG_DEBUG,
3213 "invalid sav->state (queue: %d SA: %d)\n",
3214 state, sav->state);
3215 continue;
3216 }
3217
3218 if (sav->spi == spi) {
3219 SA_ADDREF(sav);
3220 goto out;
3221 }
3222 }
3223 }
3224 out:
3225 pserialize_read_exit(s);
3226
3227 return sav;
3228 }
3229
3230 /*
3231 * Free allocated data to member variables of sav:
3232 * sav->replay, sav->key_* and sav->lft_*.
3233 */
3234 static void
3235 key_freesaval(struct secasvar *sav)
3236 {
3237
3238 KASSERT(sav->refcnt == 0);
3239
3240 if (sav->replay != NULL)
3241 kmem_intr_free(sav->replay, sav->replay_len);
3242 if (sav->key_auth != NULL)
3243 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3244 if (sav->key_enc != NULL)
3245 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3246 if (sav->lft_c != NULL)
3247 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3248 if (sav->lft_h != NULL)
3249 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3250 if (sav->lft_s != NULL)
3251 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3252 }
3253
3254 /*
3255 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3256 * You must update these if need.
3257 * OUT: 0: success.
3258 * !0: failure.
3259 *
3260 * does not modify mbuf. does not free mbuf on error.
3261 */
3262 static int
3263 key_setsaval(struct secasvar *sav, struct mbuf *m,
3264 const struct sadb_msghdr *mhp)
3265 {
3266 int error = 0;
3267
3268 KASSERT(!cpu_softintr_p());
3269 KASSERT(m != NULL);
3270 KASSERT(mhp != NULL);
3271 KASSERT(mhp->msg != NULL);
3272
3273 /* We shouldn't initialize sav variables while someone uses it. */
3274 KASSERT(sav->refcnt == 0);
3275
3276 /* SA */
3277 if (mhp->ext[SADB_EXT_SA] != NULL) {
3278 const struct sadb_sa *sa0;
3279
3280 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3281 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3282 error = EINVAL;
3283 goto fail;
3284 }
3285
3286 sav->alg_auth = sa0->sadb_sa_auth;
3287 sav->alg_enc = sa0->sadb_sa_encrypt;
3288 sav->flags = sa0->sadb_sa_flags;
3289
3290 /* replay window */
3291 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3292 size_t len = sizeof(struct secreplay) +
3293 sa0->sadb_sa_replay;
3294 sav->replay = kmem_zalloc(len, KM_SLEEP);
3295 sav->replay_len = len;
3296 if (sa0->sadb_sa_replay != 0)
3297 sav->replay->bitmap = (char*)(sav->replay+1);
3298 sav->replay->wsize = sa0->sadb_sa_replay;
3299 }
3300 }
3301
3302 /* Authentication keys */
3303 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3304 const struct sadb_key *key0;
3305 int len;
3306
3307 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3308 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3309
3310 error = 0;
3311 if (len < sizeof(*key0)) {
3312 error = EINVAL;
3313 goto fail;
3314 }
3315 switch (mhp->msg->sadb_msg_satype) {
3316 case SADB_SATYPE_AH:
3317 case SADB_SATYPE_ESP:
3318 case SADB_X_SATYPE_TCPSIGNATURE:
3319 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3320 sav->alg_auth != SADB_X_AALG_NULL)
3321 error = EINVAL;
3322 break;
3323 case SADB_X_SATYPE_IPCOMP:
3324 default:
3325 error = EINVAL;
3326 break;
3327 }
3328 if (error) {
3329 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3330 goto fail;
3331 }
3332
3333 sav->key_auth = key_newbuf(key0, len);
3334 sav->key_auth_len = len;
3335 }
3336
3337 /* Encryption key */
3338 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3339 const struct sadb_key *key0;
3340 int len;
3341
3342 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3343 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3344
3345 error = 0;
3346 if (len < sizeof(*key0)) {
3347 error = EINVAL;
3348 goto fail;
3349 }
3350 switch (mhp->msg->sadb_msg_satype) {
3351 case SADB_SATYPE_ESP:
3352 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3353 sav->alg_enc != SADB_EALG_NULL) {
3354 error = EINVAL;
3355 break;
3356 }
3357 sav->key_enc = key_newbuf(key0, len);
3358 sav->key_enc_len = len;
3359 break;
3360 case SADB_X_SATYPE_IPCOMP:
3361 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3362 error = EINVAL;
3363 sav->key_enc = NULL; /*just in case*/
3364 break;
3365 case SADB_SATYPE_AH:
3366 case SADB_X_SATYPE_TCPSIGNATURE:
3367 default:
3368 error = EINVAL;
3369 break;
3370 }
3371 if (error) {
3372 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3373 goto fail;
3374 }
3375 }
3376
3377 /* set iv */
3378 sav->ivlen = 0;
3379
3380 switch (mhp->msg->sadb_msg_satype) {
3381 case SADB_SATYPE_AH:
3382 error = xform_init(sav, XF_AH);
3383 break;
3384 case SADB_SATYPE_ESP:
3385 error = xform_init(sav, XF_ESP);
3386 break;
3387 case SADB_X_SATYPE_IPCOMP:
3388 error = xform_init(sav, XF_IPCOMP);
3389 break;
3390 case SADB_X_SATYPE_TCPSIGNATURE:
3391 error = xform_init(sav, XF_TCPSIGNATURE);
3392 break;
3393 }
3394 if (error) {
3395 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3396 mhp->msg->sadb_msg_satype);
3397 goto fail;
3398 }
3399
3400 /* reset created */
3401 sav->created = time_uptime;
3402
3403 /* make lifetime for CURRENT */
3404 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3405
3406 sav->lft_c->sadb_lifetime_len =
3407 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3408 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3409 sav->lft_c->sadb_lifetime_allocations = 0;
3410 sav->lft_c->sadb_lifetime_bytes = 0;
3411 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3412 sav->lft_c->sadb_lifetime_usetime = 0;
3413
3414 /* lifetimes for HARD and SOFT */
3415 {
3416 const struct sadb_lifetime *lft0;
3417
3418 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3419 if (lft0 != NULL) {
3420 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3421 error = EINVAL;
3422 goto fail;
3423 }
3424 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3425 }
3426
3427 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3428 if (lft0 != NULL) {
3429 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3430 error = EINVAL;
3431 goto fail;
3432 }
3433 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3434 /* to be initialize ? */
3435 }
3436 }
3437
3438 return 0;
3439
3440 fail:
3441 key_clear_xform(sav);
3442 key_freesaval(sav);
3443
3444 return error;
3445 }
3446
3447 /*
3448 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3449 * OUT: 0: valid
3450 * other: errno
3451 */
3452 static int
3453 key_init_xform(struct secasvar *sav)
3454 {
3455 int error;
3456
3457 /* We shouldn't initialize sav variables while someone uses it. */
3458 KASSERT(sav->refcnt == 0);
3459
3460 /* check SPI value */
3461 switch (sav->sah->saidx.proto) {
3462 case IPPROTO_ESP:
3463 case IPPROTO_AH:
3464 if (ntohl(sav->spi) <= 255) {
3465 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3466 (u_int32_t)ntohl(sav->spi));
3467 return EINVAL;
3468 }
3469 break;
3470 }
3471
3472 /* check satype */
3473 switch (sav->sah->saidx.proto) {
3474 case IPPROTO_ESP:
3475 /* check flags */
3476 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3477 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3478 IPSECLOG(LOG_DEBUG,
3479 "invalid flag (derived) given to old-esp.\n");
3480 return EINVAL;
3481 }
3482 error = xform_init(sav, XF_ESP);
3483 break;
3484 case IPPROTO_AH:
3485 /* check flags */
3486 if (sav->flags & SADB_X_EXT_DERIV) {
3487 IPSECLOG(LOG_DEBUG,
3488 "invalid flag (derived) given to AH SA.\n");
3489 return EINVAL;
3490 }
3491 if (sav->alg_enc != SADB_EALG_NONE) {
3492 IPSECLOG(LOG_DEBUG,
3493 "protocol and algorithm mismated.\n");
3494 return(EINVAL);
3495 }
3496 error = xform_init(sav, XF_AH);
3497 break;
3498 case IPPROTO_IPCOMP:
3499 if (sav->alg_auth != SADB_AALG_NONE) {
3500 IPSECLOG(LOG_DEBUG,
3501 "protocol and algorithm mismated.\n");
3502 return(EINVAL);
3503 }
3504 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3505 && ntohl(sav->spi) >= 0x10000) {
3506 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3507 return(EINVAL);
3508 }
3509 error = xform_init(sav, XF_IPCOMP);
3510 break;
3511 case IPPROTO_TCP:
3512 if (sav->alg_enc != SADB_EALG_NONE) {
3513 IPSECLOG(LOG_DEBUG,
3514 "protocol and algorithm mismated.\n");
3515 return(EINVAL);
3516 }
3517 error = xform_init(sav, XF_TCPSIGNATURE);
3518 break;
3519 default:
3520 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3521 error = EPROTONOSUPPORT;
3522 break;
3523 }
3524
3525 return error;
3526 }
3527
3528 /*
3529 * subroutine for SADB_GET and SADB_DUMP.
3530 */
3531 static struct mbuf *
3532 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3533 u_int32_t seq, u_int32_t pid)
3534 {
3535 struct mbuf *result = NULL, *tres = NULL, *m;
3536 int l = 0;
3537 int i;
3538 void *p;
3539 struct sadb_lifetime lt;
3540 int dumporder[] = {
3541 SADB_EXT_SA, SADB_X_EXT_SA2,
3542 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3543 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3544 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3545 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3546 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3547 SADB_X_EXT_NAT_T_TYPE,
3548 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3549 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3550 SADB_X_EXT_NAT_T_FRAG,
3551
3552 };
3553
3554 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3555 if (m == NULL)
3556 goto fail;
3557 result = m;
3558
3559 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3560 m = NULL;
3561 p = NULL;
3562 switch (dumporder[i]) {
3563 case SADB_EXT_SA:
3564 m = key_setsadbsa(sav);
3565 break;
3566
3567 case SADB_X_EXT_SA2:
3568 m = key_setsadbxsa2(sav->sah->saidx.mode,
3569 sav->replay ? sav->replay->count : 0,
3570 sav->sah->saidx.reqid);
3571 break;
3572
3573 case SADB_EXT_ADDRESS_SRC:
3574 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3575 &sav->sah->saidx.src.sa,
3576 FULLMASK, IPSEC_ULPROTO_ANY);
3577 break;
3578
3579 case SADB_EXT_ADDRESS_DST:
3580 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3581 &sav->sah->saidx.dst.sa,
3582 FULLMASK, IPSEC_ULPROTO_ANY);
3583 break;
3584
3585 case SADB_EXT_KEY_AUTH:
3586 if (!sav->key_auth)
3587 continue;
3588 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3589 p = sav->key_auth;
3590 break;
3591
3592 case SADB_EXT_KEY_ENCRYPT:
3593 if (!sav->key_enc)
3594 continue;
3595 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3596 p = sav->key_enc;
3597 break;
3598
3599 case SADB_EXT_LIFETIME_CURRENT:
3600 KASSERT(sav->lft_c != NULL);
3601 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3602 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3603 lt.sadb_lifetime_addtime =
3604 time_mono_to_wall(lt.sadb_lifetime_addtime);
3605 lt.sadb_lifetime_usetime =
3606 time_mono_to_wall(lt.sadb_lifetime_usetime);
3607 p = <
3608 break;
3609
3610 case SADB_EXT_LIFETIME_HARD:
3611 if (!sav->lft_h)
3612 continue;
3613 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3614 p = sav->lft_h;
3615 break;
3616
3617 case SADB_EXT_LIFETIME_SOFT:
3618 if (!sav->lft_s)
3619 continue;
3620 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3621 p = sav->lft_s;
3622 break;
3623
3624 case SADB_X_EXT_NAT_T_TYPE:
3625 m = key_setsadbxtype(sav->natt_type);
3626 break;
3627
3628 case SADB_X_EXT_NAT_T_DPORT:
3629 if (sav->natt_type == 0)
3630 continue;
3631 m = key_setsadbxport(
3632 key_portfromsaddr(&sav->sah->saidx.dst),
3633 SADB_X_EXT_NAT_T_DPORT);
3634 break;
3635
3636 case SADB_X_EXT_NAT_T_SPORT:
3637 if (sav->natt_type == 0)
3638 continue;
3639 m = key_setsadbxport(
3640 key_portfromsaddr(&sav->sah->saidx.src),
3641 SADB_X_EXT_NAT_T_SPORT);
3642 break;
3643
3644 case SADB_X_EXT_NAT_T_FRAG:
3645 /* don't send frag info if not set */
3646 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3647 continue;
3648 m = key_setsadbxfrag(sav->esp_frag);
3649 break;
3650
3651 case SADB_X_EXT_NAT_T_OAI:
3652 case SADB_X_EXT_NAT_T_OAR:
3653 continue;
3654
3655 case SADB_EXT_ADDRESS_PROXY:
3656 case SADB_EXT_IDENTITY_SRC:
3657 case SADB_EXT_IDENTITY_DST:
3658 /* XXX: should we brought from SPD ? */
3659 case SADB_EXT_SENSITIVITY:
3660 default:
3661 continue;
3662 }
3663
3664 KASSERT(!(m && p));
3665 if (!m && !p)
3666 goto fail;
3667 if (p && tres) {
3668 M_PREPEND(tres, l, M_DONTWAIT);
3669 if (!tres)
3670 goto fail;
3671 memcpy(mtod(tres, void *), p, l);
3672 continue;
3673 }
3674 if (p) {
3675 m = key_alloc_mbuf(l);
3676 if (!m)
3677 goto fail;
3678 m_copyback(m, 0, l, p);
3679 }
3680
3681 if (tres)
3682 m_cat(m, tres);
3683 tres = m;
3684 }
3685
3686 m_cat(result, tres);
3687 tres = NULL; /* avoid free on error below */
3688
3689 if (result->m_len < sizeof(struct sadb_msg)) {
3690 result = m_pullup(result, sizeof(struct sadb_msg));
3691 if (result == NULL)
3692 goto fail;
3693 }
3694
3695 result->m_pkthdr.len = 0;
3696 for (m = result; m; m = m->m_next)
3697 result->m_pkthdr.len += m->m_len;
3698
3699 mtod(result, struct sadb_msg *)->sadb_msg_len =
3700 PFKEY_UNIT64(result->m_pkthdr.len);
3701
3702 return result;
3703
3704 fail:
3705 m_freem(result);
3706 m_freem(tres);
3707 return NULL;
3708 }
3709
3710
3711 /*
3712 * set a type in sadb_x_nat_t_type
3713 */
3714 static struct mbuf *
3715 key_setsadbxtype(u_int16_t type)
3716 {
3717 struct mbuf *m;
3718 size_t len;
3719 struct sadb_x_nat_t_type *p;
3720
3721 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3722
3723 m = key_alloc_mbuf(len);
3724 if (!m || m->m_next) { /*XXX*/
3725 if (m)
3726 m_freem(m);
3727 return NULL;
3728 }
3729
3730 p = mtod(m, struct sadb_x_nat_t_type *);
3731
3732 memset(p, 0, len);
3733 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3734 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3735 p->sadb_x_nat_t_type_type = type;
3736
3737 return m;
3738 }
3739 /*
3740 * set a port in sadb_x_nat_t_port. port is in network order
3741 */
3742 static struct mbuf *
3743 key_setsadbxport(u_int16_t port, u_int16_t type)
3744 {
3745 struct mbuf *m;
3746 size_t len;
3747 struct sadb_x_nat_t_port *p;
3748
3749 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3750
3751 m = key_alloc_mbuf(len);
3752 if (!m || m->m_next) { /*XXX*/
3753 if (m)
3754 m_freem(m);
3755 return NULL;
3756 }
3757
3758 p = mtod(m, struct sadb_x_nat_t_port *);
3759
3760 memset(p, 0, len);
3761 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3762 p->sadb_x_nat_t_port_exttype = type;
3763 p->sadb_x_nat_t_port_port = port;
3764
3765 return m;
3766 }
3767
3768 /*
3769 * set fragmentation info in sadb_x_nat_t_frag
3770 */
3771 static struct mbuf *
3772 key_setsadbxfrag(u_int16_t flen)
3773 {
3774 struct mbuf *m;
3775 size_t len;
3776 struct sadb_x_nat_t_frag *p;
3777
3778 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3779
3780 m = key_alloc_mbuf(len);
3781 if (!m || m->m_next) { /*XXX*/
3782 if (m)
3783 m_freem(m);
3784 return NULL;
3785 }
3786
3787 p = mtod(m, struct sadb_x_nat_t_frag *);
3788
3789 memset(p, 0, len);
3790 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3791 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3792 p->sadb_x_nat_t_frag_fraglen = flen;
3793
3794 return m;
3795 }
3796
3797 /*
3798 * Get port from sockaddr, port is in network order
3799 */
3800 u_int16_t
3801 key_portfromsaddr(const union sockaddr_union *saddr)
3802 {
3803 u_int16_t port;
3804
3805 switch (saddr->sa.sa_family) {
3806 case AF_INET: {
3807 port = saddr->sin.sin_port;
3808 break;
3809 }
3810 #ifdef INET6
3811 case AF_INET6: {
3812 port = saddr->sin6.sin6_port;
3813 break;
3814 }
3815 #endif
3816 default:
3817 printf("%s: unexpected address family\n", __func__);
3818 port = 0;
3819 break;
3820 }
3821
3822 return port;
3823 }
3824
3825
3826 /*
3827 * Set port is struct sockaddr. port is in network order
3828 */
3829 static void
3830 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3831 {
3832 switch (saddr->sa.sa_family) {
3833 case AF_INET: {
3834 saddr->sin.sin_port = port;
3835 break;
3836 }
3837 #ifdef INET6
3838 case AF_INET6: {
3839 saddr->sin6.sin6_port = port;
3840 break;
3841 }
3842 #endif
3843 default:
3844 printf("%s: unexpected address family %d\n", __func__,
3845 saddr->sa.sa_family);
3846 break;
3847 }
3848
3849 return;
3850 }
3851
3852 /*
3853 * Safety check sa_len
3854 */
3855 static int
3856 key_checksalen(const union sockaddr_union *saddr)
3857 {
3858 switch (saddr->sa.sa_family) {
3859 case AF_INET:
3860 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3861 return -1;
3862 break;
3863 #ifdef INET6
3864 case AF_INET6:
3865 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3866 return -1;
3867 break;
3868 #endif
3869 default:
3870 printf("%s: unexpected sa_family %d\n", __func__,
3871 saddr->sa.sa_family);
3872 return -1;
3873 break;
3874 }
3875 return 0;
3876 }
3877
3878
3879 /*
3880 * set data into sadb_msg.
3881 */
3882 static struct mbuf *
3883 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3884 u_int32_t seq, pid_t pid, u_int16_t reserved)
3885 {
3886 struct mbuf *m;
3887 struct sadb_msg *p;
3888 int len;
3889
3890 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3891
3892 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3893
3894 MGETHDR(m, M_DONTWAIT, MT_DATA);
3895 if (m && len > MHLEN) {
3896 MCLGET(m, M_DONTWAIT);
3897 if ((m->m_flags & M_EXT) == 0) {
3898 m_freem(m);
3899 m = NULL;
3900 }
3901 }
3902 if (!m)
3903 return NULL;
3904 m->m_pkthdr.len = m->m_len = len;
3905 m->m_next = NULL;
3906
3907 p = mtod(m, struct sadb_msg *);
3908
3909 memset(p, 0, len);
3910 p->sadb_msg_version = PF_KEY_V2;
3911 p->sadb_msg_type = type;
3912 p->sadb_msg_errno = 0;
3913 p->sadb_msg_satype = satype;
3914 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3915 p->sadb_msg_reserved = reserved;
3916 p->sadb_msg_seq = seq;
3917 p->sadb_msg_pid = (u_int32_t)pid;
3918
3919 return m;
3920 }
3921
3922 /*
3923 * copy secasvar data into sadb_address.
3924 */
3925 static struct mbuf *
3926 key_setsadbsa(struct secasvar *sav)
3927 {
3928 struct mbuf *m;
3929 struct sadb_sa *p;
3930 int len;
3931
3932 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3933 m = key_alloc_mbuf(len);
3934 if (!m || m->m_next) { /*XXX*/
3935 if (m)
3936 m_freem(m);
3937 return NULL;
3938 }
3939
3940 p = mtod(m, struct sadb_sa *);
3941
3942 memset(p, 0, len);
3943 p->sadb_sa_len = PFKEY_UNIT64(len);
3944 p->sadb_sa_exttype = SADB_EXT_SA;
3945 p->sadb_sa_spi = sav->spi;
3946 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3947 p->sadb_sa_state = sav->state;
3948 p->sadb_sa_auth = sav->alg_auth;
3949 p->sadb_sa_encrypt = sav->alg_enc;
3950 p->sadb_sa_flags = sav->flags;
3951
3952 return m;
3953 }
3954
3955 /*
3956 * set data into sadb_address.
3957 */
3958 static struct mbuf *
3959 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3960 u_int8_t prefixlen, u_int16_t ul_proto)
3961 {
3962 struct mbuf *m;
3963 struct sadb_address *p;
3964 size_t len;
3965
3966 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3967 PFKEY_ALIGN8(saddr->sa_len);
3968 m = key_alloc_mbuf(len);
3969 if (!m || m->m_next) { /*XXX*/
3970 if (m)
3971 m_freem(m);
3972 return NULL;
3973 }
3974
3975 p = mtod(m, struct sadb_address *);
3976
3977 memset(p, 0, len);
3978 p->sadb_address_len = PFKEY_UNIT64(len);
3979 p->sadb_address_exttype = exttype;
3980 p->sadb_address_proto = ul_proto;
3981 if (prefixlen == FULLMASK) {
3982 switch (saddr->sa_family) {
3983 case AF_INET:
3984 prefixlen = sizeof(struct in_addr) << 3;
3985 break;
3986 case AF_INET6:
3987 prefixlen = sizeof(struct in6_addr) << 3;
3988 break;
3989 default:
3990 ; /*XXX*/
3991 }
3992 }
3993 p->sadb_address_prefixlen = prefixlen;
3994 p->sadb_address_reserved = 0;
3995
3996 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3997 saddr, saddr->sa_len);
3998
3999 return m;
4000 }
4001
4002 #if 0
4003 /*
4004 * set data into sadb_ident.
4005 */
4006 static struct mbuf *
4007 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4008 void *string, int stringlen, u_int64_t id)
4009 {
4010 struct mbuf *m;
4011 struct sadb_ident *p;
4012 size_t len;
4013
4014 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4015 m = key_alloc_mbuf(len);
4016 if (!m || m->m_next) { /*XXX*/
4017 if (m)
4018 m_freem(m);
4019 return NULL;
4020 }
4021
4022 p = mtod(m, struct sadb_ident *);
4023
4024 memset(p, 0, len);
4025 p->sadb_ident_len = PFKEY_UNIT64(len);
4026 p->sadb_ident_exttype = exttype;
4027 p->sadb_ident_type = idtype;
4028 p->sadb_ident_reserved = 0;
4029 p->sadb_ident_id = id;
4030
4031 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4032 string, stringlen);
4033
4034 return m;
4035 }
4036 #endif
4037
4038 /*
4039 * set data into sadb_x_sa2.
4040 */
4041 static struct mbuf *
4042 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4043 {
4044 struct mbuf *m;
4045 struct sadb_x_sa2 *p;
4046 size_t len;
4047
4048 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4049 m = key_alloc_mbuf(len);
4050 if (!m || m->m_next) { /*XXX*/
4051 if (m)
4052 m_freem(m);
4053 return NULL;
4054 }
4055
4056 p = mtod(m, struct sadb_x_sa2 *);
4057
4058 memset(p, 0, len);
4059 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4060 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4061 p->sadb_x_sa2_mode = mode;
4062 p->sadb_x_sa2_reserved1 = 0;
4063 p->sadb_x_sa2_reserved2 = 0;
4064 p->sadb_x_sa2_sequence = seq;
4065 p->sadb_x_sa2_reqid = reqid;
4066
4067 return m;
4068 }
4069
4070 /*
4071 * set data into sadb_x_policy
4072 */
4073 static struct mbuf *
4074 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4075 {
4076 struct mbuf *m;
4077 struct sadb_x_policy *p;
4078 size_t len;
4079
4080 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4081 m = key_alloc_mbuf(len);
4082 if (!m || m->m_next) { /*XXX*/
4083 if (m)
4084 m_freem(m);
4085 return NULL;
4086 }
4087
4088 p = mtod(m, struct sadb_x_policy *);
4089
4090 memset(p, 0, len);
4091 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4092 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4093 p->sadb_x_policy_type = type;
4094 p->sadb_x_policy_dir = dir;
4095 p->sadb_x_policy_id = id;
4096
4097 return m;
4098 }
4099
4100 /* %%% utilities */
4101 /*
4102 * copy a buffer into the new buffer allocated.
4103 */
4104 static void *
4105 key_newbuf(const void *src, u_int len)
4106 {
4107 void *new;
4108
4109 new = kmem_alloc(len, KM_SLEEP);
4110 memcpy(new, src, len);
4111
4112 return new;
4113 }
4114
4115 /* compare my own address
4116 * OUT: 1: true, i.e. my address.
4117 * 0: false
4118 */
4119 int
4120 key_ismyaddr(const struct sockaddr *sa)
4121 {
4122 #ifdef INET
4123 const struct sockaddr_in *sin;
4124 const struct in_ifaddr *ia;
4125 int s;
4126 #endif
4127
4128 KASSERT(sa != NULL);
4129
4130 switch (sa->sa_family) {
4131 #ifdef INET
4132 case AF_INET:
4133 sin = (const struct sockaddr_in *)sa;
4134 s = pserialize_read_enter();
4135 IN_ADDRLIST_READER_FOREACH(ia) {
4136 if (sin->sin_family == ia->ia_addr.sin_family &&
4137 sin->sin_len == ia->ia_addr.sin_len &&
4138 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4139 {
4140 pserialize_read_exit(s);
4141 return 1;
4142 }
4143 }
4144 pserialize_read_exit(s);
4145 break;
4146 #endif
4147 #ifdef INET6
4148 case AF_INET6:
4149 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4150 #endif
4151 }
4152
4153 return 0;
4154 }
4155
4156 #ifdef INET6
4157 /*
4158 * compare my own address for IPv6.
4159 * 1: ours
4160 * 0: other
4161 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4162 */
4163 #include <netinet6/in6_var.h>
4164
4165 static int
4166 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4167 {
4168 struct in6_ifaddr *ia;
4169 int s;
4170 struct psref psref;
4171 int bound;
4172 int ours = 1;
4173
4174 bound = curlwp_bind();
4175 s = pserialize_read_enter();
4176 IN6_ADDRLIST_READER_FOREACH(ia) {
4177 bool ingroup;
4178
4179 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4180 (const struct sockaddr *)&ia->ia_addr, 0)) {
4181 pserialize_read_exit(s);
4182 goto ours;
4183 }
4184 ia6_acquire(ia, &psref);
4185 pserialize_read_exit(s);
4186
4187 /*
4188 * XXX Multicast
4189 * XXX why do we care about multlicast here while we don't care
4190 * about IPv4 multicast??
4191 * XXX scope
4192 */
4193 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4194 if (ingroup) {
4195 ia6_release(ia, &psref);
4196 goto ours;
4197 }
4198
4199 s = pserialize_read_enter();
4200 ia6_release(ia, &psref);
4201 }
4202 pserialize_read_exit(s);
4203
4204 /* loopback, just for safety */
4205 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4206 goto ours;
4207
4208 ours = 0;
4209 ours:
4210 curlwp_bindx(bound);
4211
4212 return ours;
4213 }
4214 #endif /*INET6*/
4215
4216 /*
4217 * compare two secasindex structure.
4218 * flag can specify to compare 2 saidxes.
4219 * compare two secasindex structure without both mode and reqid.
4220 * don't compare port.
4221 * IN:
4222 * saidx0: source, it can be in SAD.
4223 * saidx1: object.
4224 * OUT:
4225 * 1 : equal
4226 * 0 : not equal
4227 */
4228 static int
4229 key_saidx_match(
4230 const struct secasindex *saidx0,
4231 const struct secasindex *saidx1,
4232 int flag)
4233 {
4234 int chkport;
4235 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4236
4237 KASSERT(saidx0 != NULL);
4238 KASSERT(saidx1 != NULL);
4239
4240 /* sanity */
4241 if (saidx0->proto != saidx1->proto)
4242 return 0;
4243
4244 if (flag == CMP_EXACTLY) {
4245 if (saidx0->mode != saidx1->mode)
4246 return 0;
4247 if (saidx0->reqid != saidx1->reqid)
4248 return 0;
4249 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4250 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4251 return 0;
4252 } else {
4253
4254 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4255 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4256 /*
4257 * If reqid of SPD is non-zero, unique SA is required.
4258 * The result must be of same reqid in this case.
4259 */
4260 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4261 return 0;
4262 }
4263
4264 if (flag == CMP_MODE_REQID) {
4265 if (saidx0->mode != IPSEC_MODE_ANY &&
4266 saidx0->mode != saidx1->mode)
4267 return 0;
4268 }
4269
4270
4271 sa0src = &saidx0->src.sa;
4272 sa0dst = &saidx0->dst.sa;
4273 sa1src = &saidx1->src.sa;
4274 sa1dst = &saidx1->dst.sa;
4275 /*
4276 * If NAT-T is enabled, check ports for tunnel mode.
4277 * Don't do it for transport mode, as there is no
4278 * port information available in the SP.
4279 * Also don't check ports if they are set to zero
4280 * in the SPD: This means we have a non-generated
4281 * SPD which can't know UDP ports.
4282 */
4283 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4284 chkport = PORT_LOOSE;
4285 else
4286 chkport = PORT_NONE;
4287
4288 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4289 return 0;
4290 }
4291 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4292 return 0;
4293 }
4294 }
4295
4296 return 1;
4297 }
4298
4299 /*
4300 * compare two secindex structure exactly.
4301 * IN:
4302 * spidx0: source, it is often in SPD.
4303 * spidx1: object, it is often from PFKEY message.
4304 * OUT:
4305 * 1 : equal
4306 * 0 : not equal
4307 */
4308 static int
4309 key_spidx_match_exactly(
4310 const struct secpolicyindex *spidx0,
4311 const struct secpolicyindex *spidx1)
4312 {
4313
4314 KASSERT(spidx0 != NULL);
4315 KASSERT(spidx1 != NULL);
4316
4317 /* sanity */
4318 if (spidx0->prefs != spidx1->prefs ||
4319 spidx0->prefd != spidx1->prefd ||
4320 spidx0->ul_proto != spidx1->ul_proto)
4321 return 0;
4322
4323 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4324 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4325 }
4326
4327 /*
4328 * compare two secindex structure with mask.
4329 * IN:
4330 * spidx0: source, it is often in SPD.
4331 * spidx1: object, it is often from IP header.
4332 * OUT:
4333 * 1 : equal
4334 * 0 : not equal
4335 */
4336 static int
4337 key_spidx_match_withmask(
4338 const struct secpolicyindex *spidx0,
4339 const struct secpolicyindex *spidx1)
4340 {
4341
4342 KASSERT(spidx0 != NULL);
4343 KASSERT(spidx1 != NULL);
4344
4345 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4346 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4347 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4348 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4349 return 0;
4350
4351 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4352 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4353 spidx0->ul_proto != spidx1->ul_proto)
4354 return 0;
4355
4356 switch (spidx0->src.sa.sa_family) {
4357 case AF_INET:
4358 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4359 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4360 return 0;
4361 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4362 &spidx1->src.sin.sin_addr, spidx0->prefs))
4363 return 0;
4364 break;
4365 case AF_INET6:
4366 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4367 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4368 return 0;
4369 /*
4370 * scope_id check. if sin6_scope_id is 0, we regard it
4371 * as a wildcard scope, which matches any scope zone ID.
4372 */
4373 if (spidx0->src.sin6.sin6_scope_id &&
4374 spidx1->src.sin6.sin6_scope_id &&
4375 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4376 return 0;
4377 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4378 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4379 return 0;
4380 break;
4381 default:
4382 /* XXX */
4383 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4384 return 0;
4385 break;
4386 }
4387
4388 switch (spidx0->dst.sa.sa_family) {
4389 case AF_INET:
4390 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4391 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4392 return 0;
4393 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4394 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4395 return 0;
4396 break;
4397 case AF_INET6:
4398 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4399 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4400 return 0;
4401 /*
4402 * scope_id check. if sin6_scope_id is 0, we regard it
4403 * as a wildcard scope, which matches any scope zone ID.
4404 */
4405 if (spidx0->src.sin6.sin6_scope_id &&
4406 spidx1->src.sin6.sin6_scope_id &&
4407 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4408 return 0;
4409 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4410 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4411 return 0;
4412 break;
4413 default:
4414 /* XXX */
4415 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4416 return 0;
4417 break;
4418 }
4419
4420 /* XXX Do we check other field ? e.g. flowinfo */
4421
4422 return 1;
4423 }
4424
4425 /* returns 0 on match */
4426 static int
4427 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4428 {
4429 switch (howport) {
4430 case PORT_NONE:
4431 return 0;
4432 case PORT_LOOSE:
4433 if (port1 == 0 || port2 == 0)
4434 return 0;
4435 /*FALLTHROUGH*/
4436 case PORT_STRICT:
4437 if (port1 != port2) {
4438 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4439 "port fail %d != %d\n", port1, port2);
4440 return 1;
4441 }
4442 return 0;
4443 default:
4444 KASSERT(0);
4445 return 1;
4446 }
4447 }
4448
4449 /* returns 1 on match */
4450 static int
4451 key_sockaddr_match(
4452 const struct sockaddr *sa1,
4453 const struct sockaddr *sa2,
4454 int howport)
4455 {
4456 const struct sockaddr_in *sin1, *sin2;
4457 const struct sockaddr_in6 *sin61, *sin62;
4458
4459 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4460 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4461 "fam/len fail %d != %d || %d != %d\n",
4462 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4463 sa2->sa_len);
4464 return 0;
4465 }
4466
4467 switch (sa1->sa_family) {
4468 case AF_INET:
4469 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4470 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4471 "len fail %d != %zu\n",
4472 sa1->sa_len, sizeof(struct sockaddr_in));
4473 return 0;
4474 }
4475 sin1 = (const struct sockaddr_in *)sa1;
4476 sin2 = (const struct sockaddr_in *)sa2;
4477 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4478 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4479 "addr fail %#x != %#x\n",
4480 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4481 return 0;
4482 }
4483 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4484 return 0;
4485 }
4486 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4487 "addr success %#x[%d] == %#x[%d]\n",
4488 sin1->sin_addr.s_addr, sin1->sin_port,
4489 sin2->sin_addr.s_addr, sin2->sin_port);
4490 break;
4491 case AF_INET6:
4492 sin61 = (const struct sockaddr_in6 *)sa1;
4493 sin62 = (const struct sockaddr_in6 *)sa2;
4494 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4495 return 0; /*EINVAL*/
4496
4497 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4498 return 0;
4499 }
4500 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4501 return 0;
4502 }
4503 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4504 return 0;
4505 }
4506 break;
4507 default:
4508 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4509 return 0;
4510 break;
4511 }
4512
4513 return 1;
4514 }
4515
4516 /*
4517 * compare two buffers with mask.
4518 * IN:
4519 * addr1: source
4520 * addr2: object
4521 * bits: Number of bits to compare
4522 * OUT:
4523 * 1 : equal
4524 * 0 : not equal
4525 */
4526 static int
4527 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4528 {
4529 const unsigned char *p1 = a1;
4530 const unsigned char *p2 = a2;
4531
4532 /* XXX: This could be considerably faster if we compare a word
4533 * at a time, but it is complicated on LSB Endian machines */
4534
4535 /* Handle null pointers */
4536 if (p1 == NULL || p2 == NULL)
4537 return (p1 == p2);
4538
4539 while (bits >= 8) {
4540 if (*p1++ != *p2++)
4541 return 0;
4542 bits -= 8;
4543 }
4544
4545 if (bits > 0) {
4546 u_int8_t mask = ~((1<<(8-bits))-1);
4547 if ((*p1 & mask) != (*p2 & mask))
4548 return 0;
4549 }
4550 return 1; /* Match! */
4551 }
4552
4553 static void
4554 key_timehandler_spd(time_t now)
4555 {
4556 u_int dir;
4557 struct secpolicy *sp;
4558
4559 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4560 retry:
4561 mutex_enter(&key_spd.lock);
4562 SPLIST_WRITER_FOREACH(sp, dir) {
4563 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4564
4565 if (sp->lifetime == 0 && sp->validtime == 0)
4566 continue;
4567
4568 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4569 (sp->validtime && now - sp->lastused > sp->validtime)) {
4570 key_unlink_sp(sp);
4571 mutex_exit(&key_spd.lock);
4572 key_spdexpire(sp);
4573 key_destroy_sp(sp);
4574 goto retry;
4575 }
4576 }
4577 mutex_exit(&key_spd.lock);
4578 }
4579
4580 retry_socksplist:
4581 mutex_enter(&key_spd.lock);
4582 SOCKSPLIST_WRITER_FOREACH(sp) {
4583 if (sp->state != IPSEC_SPSTATE_DEAD)
4584 continue;
4585
4586 key_unlink_sp(sp);
4587 mutex_exit(&key_spd.lock);
4588 key_destroy_sp(sp);
4589 goto retry_socksplist;
4590 }
4591 mutex_exit(&key_spd.lock);
4592 }
4593
4594 static void
4595 key_timehandler_sad(time_t now)
4596 {
4597 struct secashead *sah;
4598 struct secasvar *sav;
4599
4600 restart:
4601 SAHLIST_WRITER_FOREACH(sah) {
4602 /* if sah has been dead, then delete it and process next sah. */
4603 if (sah->state == SADB_SASTATE_DEAD) {
4604 key_delsah(sah);
4605 goto restart;
4606 }
4607
4608 /* if LARVAL entry doesn't become MATURE, delete it. */
4609 restart_sav_LARVAL:
4610 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4611 if (now - sav->created > key_larval_lifetime) {
4612 KEY_FREESAV(&sav);
4613 goto restart_sav_LARVAL;
4614 }
4615 }
4616
4617 /*
4618 * check MATURE entry to start to send expire message
4619 * whether or not.
4620 */
4621 restart_sav_MATURE:
4622 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4623 /* we don't need to check. */
4624 if (sav->lft_s == NULL)
4625 continue;
4626
4627 /* sanity check */
4628 KASSERT(sav->lft_c != NULL);
4629
4630 /* check SOFT lifetime */
4631 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4632 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4633 /*
4634 * check SA to be used whether or not.
4635 * when SA hasn't been used, delete it.
4636 */
4637 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4638 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4639 KEY_FREESAV(&sav);
4640 } else {
4641 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4642 /*
4643 * XXX If we keep to send expire
4644 * message in the status of
4645 * DYING. Do remove below code.
4646 */
4647 key_expire(sav);
4648 }
4649 goto restart_sav_MATURE;
4650 }
4651 /* check SOFT lifetime by bytes */
4652 /*
4653 * XXX I don't know the way to delete this SA
4654 * when new SA is installed. Caution when it's
4655 * installed too big lifetime by time.
4656 */
4657 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4658 sav->lft_s->sadb_lifetime_bytes <
4659 sav->lft_c->sadb_lifetime_bytes) {
4660
4661 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4662 /*
4663 * XXX If we keep to send expire
4664 * message in the status of
4665 * DYING. Do remove below code.
4666 */
4667 key_expire(sav);
4668 goto restart_sav_MATURE;
4669 }
4670 }
4671
4672 /* check DYING entry to change status to DEAD. */
4673 restart_sav_DYING:
4674 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4675 /* we don't need to check. */
4676 if (sav->lft_h == NULL)
4677 continue;
4678
4679 /* sanity check */
4680 KASSERT(sav->lft_c != NULL);
4681
4682 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4683 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4684 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4685 KEY_FREESAV(&sav);
4686 goto restart_sav_DYING;
4687 }
4688 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4689 else if (sav->lft_s != NULL
4690 && sav->lft_s->sadb_lifetime_addtime != 0
4691 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4692 /*
4693 * XXX: should be checked to be
4694 * installed the valid SA.
4695 */
4696
4697 /*
4698 * If there is no SA then sending
4699 * expire message.
4700 */
4701 key_expire(sav);
4702 }
4703 #endif
4704 /* check HARD lifetime by bytes */
4705 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4706 sav->lft_h->sadb_lifetime_bytes <
4707 sav->lft_c->sadb_lifetime_bytes) {
4708 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4709 KEY_FREESAV(&sav);
4710 goto restart_sav_DYING;
4711 }
4712 }
4713
4714 /* delete entry in DEAD */
4715 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4716 /* sanity check */
4717 if (sav->state != SADB_SASTATE_DEAD) {
4718 IPSECLOG(LOG_DEBUG,
4719 "invalid sav->state (queue: %d SA: %d): "
4720 "kill it anyway\n",
4721 SADB_SASTATE_DEAD, sav->state);
4722 }
4723
4724 /*
4725 * do not call key_freesav() here.
4726 * sav should already be freed, and sav->refcnt
4727 * shows other references to sav
4728 * (such as from SPD).
4729 */
4730 }
4731 }
4732 }
4733
4734 static void
4735 key_timehandler_acq(time_t now)
4736 {
4737 #ifndef IPSEC_NONBLOCK_ACQUIRE
4738 struct secacq *acq, *nextacq;
4739
4740 restart:
4741 mutex_enter(&key_misc.lock);
4742 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4743 if (now - acq->created > key_blockacq_lifetime) {
4744 LIST_REMOVE(acq, chain);
4745 mutex_exit(&key_misc.lock);
4746 kmem_free(acq, sizeof(*acq));
4747 goto restart;
4748 }
4749 }
4750 mutex_exit(&key_misc.lock);
4751 #endif
4752 }
4753
4754 static void
4755 key_timehandler_spacq(time_t now)
4756 {
4757 #ifdef notyet
4758 struct secspacq *acq, *nextacq;
4759
4760 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4761 if (now - acq->created > key_blockacq_lifetime) {
4762 KASSERT(__LIST_CHAINED(acq));
4763 LIST_REMOVE(acq, chain);
4764 kmem_free(acq, sizeof(*acq));
4765 }
4766 }
4767 #endif
4768 }
4769
4770 /*
4771 * time handler.
4772 * scanning SPD and SAD to check status for each entries,
4773 * and do to remove or to expire.
4774 */
4775 static void
4776 key_timehandler_work(struct work *wk, void *arg)
4777 {
4778 time_t now = time_uptime;
4779 IPSEC_DECLARE_LOCK_VARIABLE;
4780
4781 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4782
4783 key_timehandler_spd(now);
4784 key_timehandler_sad(now);
4785 key_timehandler_acq(now);
4786 key_timehandler_spacq(now);
4787
4788 /* do exchange to tick time !! */
4789 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4790
4791 IPSEC_RELEASE_GLOBAL_LOCKS();
4792 return;
4793 }
4794
4795 static void
4796 key_timehandler(void *arg)
4797 {
4798
4799 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4800 }
4801
4802 u_long
4803 key_random(void)
4804 {
4805 u_long value;
4806
4807 key_randomfill(&value, sizeof(value));
4808 return value;
4809 }
4810
4811 void
4812 key_randomfill(void *p, size_t l)
4813 {
4814
4815 cprng_fast(p, l);
4816 }
4817
4818 /*
4819 * map SADB_SATYPE_* to IPPROTO_*.
4820 * if satype == SADB_SATYPE then satype is mapped to ~0.
4821 * OUT:
4822 * 0: invalid satype.
4823 */
4824 static u_int16_t
4825 key_satype2proto(u_int8_t satype)
4826 {
4827 switch (satype) {
4828 case SADB_SATYPE_UNSPEC:
4829 return IPSEC_PROTO_ANY;
4830 case SADB_SATYPE_AH:
4831 return IPPROTO_AH;
4832 case SADB_SATYPE_ESP:
4833 return IPPROTO_ESP;
4834 case SADB_X_SATYPE_IPCOMP:
4835 return IPPROTO_IPCOMP;
4836 case SADB_X_SATYPE_TCPSIGNATURE:
4837 return IPPROTO_TCP;
4838 default:
4839 return 0;
4840 }
4841 /* NOTREACHED */
4842 }
4843
4844 /*
4845 * map IPPROTO_* to SADB_SATYPE_*
4846 * OUT:
4847 * 0: invalid protocol type.
4848 */
4849 static u_int8_t
4850 key_proto2satype(u_int16_t proto)
4851 {
4852 switch (proto) {
4853 case IPPROTO_AH:
4854 return SADB_SATYPE_AH;
4855 case IPPROTO_ESP:
4856 return SADB_SATYPE_ESP;
4857 case IPPROTO_IPCOMP:
4858 return SADB_X_SATYPE_IPCOMP;
4859 case IPPROTO_TCP:
4860 return SADB_X_SATYPE_TCPSIGNATURE;
4861 default:
4862 return 0;
4863 }
4864 /* NOTREACHED */
4865 }
4866
4867 static int
4868 key_setsecasidx(int proto, int mode, int reqid,
4869 const struct sockaddr *src, const struct sockaddr *dst,
4870 struct secasindex * saidx)
4871 {
4872 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4873 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4874
4875 /* sa len safety check */
4876 if (key_checksalen(src_u) != 0)
4877 return -1;
4878 if (key_checksalen(dst_u) != 0)
4879 return -1;
4880
4881 memset(saidx, 0, sizeof(*saidx));
4882 saidx->proto = proto;
4883 saidx->mode = mode;
4884 saidx->reqid = reqid;
4885 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4886 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4887
4888 key_porttosaddr(&((saidx)->src), 0);
4889 key_porttosaddr(&((saidx)->dst), 0);
4890 return 0;
4891 }
4892
4893 static void
4894 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4895 const struct sadb_msghdr *mhp)
4896 {
4897 const struct sadb_address *src0, *dst0;
4898 const struct sockaddr *src, *dst;
4899 const struct sadb_x_policy *xpl0;
4900
4901 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4902 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4903 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4904 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4905 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
4906
4907 memset(spidx, 0, sizeof(*spidx));
4908 spidx->dir = xpl0->sadb_x_policy_dir;
4909 spidx->prefs = src0->sadb_address_prefixlen;
4910 spidx->prefd = dst0->sadb_address_prefixlen;
4911 spidx->ul_proto = src0->sadb_address_proto;
4912 /* XXX boundary check against sa_len */
4913 memcpy(&spidx->src, src, src->sa_len);
4914 memcpy(&spidx->dst, dst, dst->sa_len);
4915 }
4916
4917 /* %%% PF_KEY */
4918 /*
4919 * SADB_GETSPI processing is to receive
4920 * <base, (SA2), src address, dst address, (SPI range)>
4921 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4922 * tree with the status of LARVAL, and send
4923 * <base, SA(*), address(SD)>
4924 * to the IKMPd.
4925 *
4926 * IN: mhp: pointer to the pointer to each header.
4927 * OUT: NULL if fail.
4928 * other if success, return pointer to the message to send.
4929 */
4930 static int
4931 key_api_getspi(struct socket *so, struct mbuf *m,
4932 const struct sadb_msghdr *mhp)
4933 {
4934 const struct sockaddr *src, *dst;
4935 struct secasindex saidx;
4936 struct secashead *sah;
4937 struct secasvar *newsav;
4938 u_int8_t proto;
4939 u_int32_t spi;
4940 u_int8_t mode;
4941 u_int16_t reqid;
4942 int error;
4943
4944 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4945 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4946 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4947 return key_senderror(so, m, EINVAL);
4948 }
4949 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4950 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4951 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
4952 return key_senderror(so, m, EINVAL);
4953 }
4954 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4955 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4956 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4957 } else {
4958 mode = IPSEC_MODE_ANY;
4959 reqid = 0;
4960 }
4961
4962 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4963 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
4964
4965 /* map satype to proto */
4966 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
4967 if (proto == 0) {
4968 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
4969 return key_senderror(so, m, EINVAL);
4970 }
4971
4972
4973 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
4974 if (error != 0)
4975 return key_senderror(so, m, EINVAL);
4976
4977 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
4978 if (error != 0)
4979 return key_senderror(so, m, EINVAL);
4980
4981 /* SPI allocation */
4982 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4983 &saidx);
4984 if (spi == 0)
4985 return key_senderror(so, m, EINVAL);
4986
4987 /* get a SA index */
4988 sah = key_getsah(&saidx, CMP_REQID);
4989 if (sah == NULL) {
4990 /* create a new SA index */
4991 sah = key_newsah(&saidx);
4992 if (sah == NULL) {
4993 IPSECLOG(LOG_DEBUG, "No more memory.\n");
4994 return key_senderror(so, m, ENOBUFS);
4995 }
4996 }
4997
4998 /* get a new SA */
4999 /* XXX rewrite */
5000 newsav = KEY_NEWSAV(m, mhp, &error);
5001 if (newsav == NULL) {
5002 /* XXX don't free new SA index allocated in above. */
5003 return key_senderror(so, m, error);
5004 }
5005
5006 /* set spi */
5007 newsav->spi = htonl(spi);
5008
5009 /* add to satree */
5010 newsav->refcnt = 1;
5011 newsav->sah = sah;
5012 newsav->state = SADB_SASTATE_LARVAL;
5013 SAVLIST_ENTRY_INIT(newsav);
5014 mutex_enter(&key_sad.lock);
5015 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5016 mutex_exit(&key_sad.lock);
5017 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5018
5019 #ifndef IPSEC_NONBLOCK_ACQUIRE
5020 /* delete the entry in key_misc.acqlist */
5021 if (mhp->msg->sadb_msg_seq != 0) {
5022 struct secacq *acq;
5023 mutex_enter(&key_misc.lock);
5024 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5025 if (acq != NULL) {
5026 /* reset counter in order to deletion by timehandler. */
5027 acq->created = time_uptime;
5028 acq->count = 0;
5029 }
5030 mutex_exit(&key_misc.lock);
5031 }
5032 #endif
5033
5034 {
5035 struct mbuf *n, *nn;
5036 struct sadb_sa *m_sa;
5037 int off, len;
5038
5039 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5040 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5041
5042 /* create new sadb_msg to reply. */
5043 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5044 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5045
5046 MGETHDR(n, M_DONTWAIT, MT_DATA);
5047 if (len > MHLEN) {
5048 MCLGET(n, M_DONTWAIT);
5049 if ((n->m_flags & M_EXT) == 0) {
5050 m_freem(n);
5051 n = NULL;
5052 }
5053 }
5054 if (!n)
5055 return key_senderror(so, m, ENOBUFS);
5056
5057 n->m_len = len;
5058 n->m_next = NULL;
5059 off = 0;
5060
5061 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5062 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5063
5064 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5065 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5066 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5067 m_sa->sadb_sa_spi = htonl(spi);
5068 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5069
5070 KASSERTMSG(off == len, "length inconsistency");
5071
5072 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5073 SADB_EXT_ADDRESS_DST);
5074 if (!n->m_next) {
5075 m_freem(n);
5076 return key_senderror(so, m, ENOBUFS);
5077 }
5078
5079 if (n->m_len < sizeof(struct sadb_msg)) {
5080 n = m_pullup(n, sizeof(struct sadb_msg));
5081 if (n == NULL)
5082 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5083 }
5084
5085 n->m_pkthdr.len = 0;
5086 for (nn = n; nn; nn = nn->m_next)
5087 n->m_pkthdr.len += nn->m_len;
5088
5089 key_fill_replymsg(n, newsav->seq);
5090
5091 m_freem(m);
5092 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5093 }
5094 }
5095
5096 /*
5097 * allocating new SPI
5098 * called by key_api_getspi().
5099 * OUT:
5100 * 0: failure.
5101 * others: success.
5102 */
5103 static u_int32_t
5104 key_do_getnewspi(const struct sadb_spirange *spirange,
5105 const struct secasindex *saidx)
5106 {
5107 u_int32_t newspi;
5108 u_int32_t spmin, spmax;
5109 int count = key_spi_trycnt;
5110
5111 /* set spi range to allocate */
5112 if (spirange != NULL) {
5113 spmin = spirange->sadb_spirange_min;
5114 spmax = spirange->sadb_spirange_max;
5115 } else {
5116 spmin = key_spi_minval;
5117 spmax = key_spi_maxval;
5118 }
5119 /* IPCOMP needs 2-byte SPI */
5120 if (saidx->proto == IPPROTO_IPCOMP) {
5121 u_int32_t t;
5122 if (spmin >= 0x10000)
5123 spmin = 0xffff;
5124 if (spmax >= 0x10000)
5125 spmax = 0xffff;
5126 if (spmin > spmax) {
5127 t = spmin; spmin = spmax; spmax = t;
5128 }
5129 }
5130
5131 if (spmin == spmax) {
5132 if (key_checkspidup(saidx, htonl(spmin))) {
5133 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5134 return 0;
5135 }
5136
5137 count--; /* taking one cost. */
5138 newspi = spmin;
5139
5140 } else {
5141
5142 /* init SPI */
5143 newspi = 0;
5144
5145 /* when requesting to allocate spi ranged */
5146 while (count--) {
5147 /* generate pseudo-random SPI value ranged. */
5148 newspi = spmin + (key_random() % (spmax - spmin + 1));
5149
5150 if (!key_checkspidup(saidx, htonl(newspi)))
5151 break;
5152 }
5153
5154 if (count == 0 || newspi == 0) {
5155 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5156 return 0;
5157 }
5158 }
5159
5160 /* statistics */
5161 keystat.getspi_count =
5162 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5163
5164 return newspi;
5165 }
5166
5167 static int
5168 key_handle_natt_info(struct secasvar *sav,
5169 const struct sadb_msghdr *mhp)
5170 {
5171 const char *msg = "?" ;
5172 struct sadb_x_nat_t_type *type;
5173 struct sadb_x_nat_t_port *sport, *dport;
5174 struct sadb_address *iaddr, *raddr;
5175 struct sadb_x_nat_t_frag *frag;
5176
5177 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5178 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5179 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5180 return 0;
5181
5182 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5183 msg = "TYPE";
5184 goto bad;
5185 }
5186
5187 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5188 msg = "SPORT";
5189 goto bad;
5190 }
5191
5192 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5193 msg = "DPORT";
5194 goto bad;
5195 }
5196
5197 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5198 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5199 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5200 msg = "OAI";
5201 goto bad;
5202 }
5203 }
5204
5205 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5206 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5207 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5208 msg = "OAR";
5209 goto bad;
5210 }
5211 }
5212
5213 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5214 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5215 msg = "FRAG";
5216 goto bad;
5217 }
5218 }
5219
5220 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5221 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5222 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5223 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5224 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5225 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5226
5227 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5228 type->sadb_x_nat_t_type_type,
5229 ntohs(sport->sadb_x_nat_t_port_port),
5230 ntohs(dport->sadb_x_nat_t_port_port));
5231
5232 sav->natt_type = type->sadb_x_nat_t_type_type;
5233 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5234 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5235 if (frag)
5236 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5237 else
5238 sav->esp_frag = IP_MAXPACKET;
5239
5240 return 0;
5241 bad:
5242 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5243 __USE(msg);
5244 return -1;
5245 }
5246
5247 /* Just update the IPSEC_NAT_T ports if present */
5248 static int
5249 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5250 const struct sadb_msghdr *mhp)
5251 {
5252 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5253 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5254 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5255 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5256
5257 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5258 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5259 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5260 struct sadb_x_nat_t_type *type;
5261 struct sadb_x_nat_t_port *sport;
5262 struct sadb_x_nat_t_port *dport;
5263
5264 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5265 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5266 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5267 IPSECLOG(LOG_DEBUG, "invalid message\n");
5268 return -1;
5269 }
5270
5271 type = (struct sadb_x_nat_t_type *)
5272 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5273 sport = (struct sadb_x_nat_t_port *)
5274 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5275 dport = (struct sadb_x_nat_t_port *)
5276 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5277
5278 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5279 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5280
5281 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5282 type->sadb_x_nat_t_type_type,
5283 ntohs(sport->sadb_x_nat_t_port_port),
5284 ntohs(dport->sadb_x_nat_t_port_port));
5285 }
5286
5287 return 0;
5288 }
5289
5290
5291 /*
5292 * SADB_UPDATE processing
5293 * receive
5294 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5295 * key(AE), (identity(SD),) (sensitivity)>
5296 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5297 * and send
5298 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5299 * (identity(SD),) (sensitivity)>
5300 * to the ikmpd.
5301 *
5302 * m will always be freed.
5303 */
5304 static int
5305 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5306 {
5307 struct sadb_sa *sa0;
5308 const struct sockaddr *src, *dst;
5309 struct secasindex saidx;
5310 struct secashead *sah;
5311 struct secasvar *sav, *newsav;
5312 u_int16_t proto;
5313 u_int8_t mode;
5314 u_int16_t reqid;
5315 int error;
5316
5317 /* map satype to proto */
5318 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5319 if (proto == 0) {
5320 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5321 return key_senderror(so, m, EINVAL);
5322 }
5323
5324 if (mhp->ext[SADB_EXT_SA] == NULL ||
5325 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5326 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5327 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5328 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5329 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5330 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5331 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5332 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5333 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5334 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5335 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5336 return key_senderror(so, m, EINVAL);
5337 }
5338 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5339 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5340 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5341 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5342 return key_senderror(so, m, EINVAL);
5343 }
5344 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5345 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5346 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5347 } else {
5348 mode = IPSEC_MODE_ANY;
5349 reqid = 0;
5350 }
5351 /* XXX boundary checking for other extensions */
5352
5353 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5354 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5355 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5356
5357 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5358 if (error != 0)
5359 return key_senderror(so, m, EINVAL);
5360
5361 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5362 if (error != 0)
5363 return key_senderror(so, m, EINVAL);
5364
5365 /* get a SA header */
5366 sah = key_getsah(&saidx, CMP_REQID);
5367 if (sah == NULL) {
5368 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5369 return key_senderror(so, m, ENOENT);
5370 }
5371
5372 /* set spidx if there */
5373 /* XXX rewrite */
5374 error = key_setident(sah, m, mhp);
5375 if (error)
5376 return key_senderror(so, m, error);
5377
5378 /* find a SA with sequence number. */
5379 #ifdef IPSEC_DOSEQCHECK
5380 if (mhp->msg->sadb_msg_seq != 0) {
5381 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5382 if (sav == NULL) {
5383 IPSECLOG(LOG_DEBUG,
5384 "no larval SA with sequence %u exists.\n",
5385 mhp->msg->sadb_msg_seq);
5386 return key_senderror(so, m, ENOENT);
5387 }
5388 }
5389 #else
5390 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5391 if (sav == NULL) {
5392 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5393 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5394 return key_senderror(so, m, EINVAL);
5395 }
5396 #endif
5397
5398 /* validity check */
5399 if (sav->sah->saidx.proto != proto) {
5400 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5401 sav->sah->saidx.proto, proto);
5402 error = EINVAL;
5403 goto error;
5404 }
5405 #ifdef IPSEC_DOSEQCHECK
5406 if (sav->spi != sa0->sadb_sa_spi) {
5407 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5408 (u_int32_t)ntohl(sav->spi),
5409 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5410 error = EINVAL;
5411 goto error;
5412 }
5413 #endif
5414 if (sav->pid != mhp->msg->sadb_msg_pid) {
5415 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5416 sav->pid, mhp->msg->sadb_msg_pid);
5417 error = EINVAL;
5418 goto error;
5419 }
5420
5421 /*
5422 * Allocate a new SA instead of modifying the existing SA directly
5423 * to avoid race conditions.
5424 */
5425 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5426
5427 /* copy sav values */
5428 newsav->spi = sav->spi;
5429 newsav->seq = sav->seq;
5430 newsav->created = sav->created;
5431 newsav->pid = sav->pid;
5432 newsav->sah = sav->sah;
5433
5434 error = key_setsaval(newsav, m, mhp);
5435 if (error) {
5436 key_delsav(newsav);
5437 goto error;
5438 }
5439
5440 error = key_handle_natt_info(newsav, mhp);
5441 if (error != 0) {
5442 key_delsav(newsav);
5443 goto error;
5444 }
5445
5446 error = key_init_xform(newsav);
5447 if (error != 0) {
5448 key_delsav(newsav);
5449 goto error;
5450 }
5451
5452 /* add to satree */
5453 newsav->refcnt = 1;
5454 newsav->state = SADB_SASTATE_MATURE;
5455 SAVLIST_ENTRY_INIT(newsav);
5456 mutex_enter(&key_sad.lock);
5457 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5458 mutex_exit(&key_sad.lock);
5459 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5460
5461 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5462 KEY_FREESAV(&sav);
5463 KEY_FREESAV(&sav);
5464
5465 {
5466 struct mbuf *n;
5467
5468 /* set msg buf from mhp */
5469 n = key_getmsgbuf_x1(m, mhp);
5470 if (n == NULL) {
5471 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5472 return key_senderror(so, m, ENOBUFS);
5473 }
5474
5475 m_freem(m);
5476 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5477 }
5478 error:
5479 KEY_SA_UNREF(&sav);
5480 return key_senderror(so, m, error);
5481 }
5482
5483 /*
5484 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5485 * only called by key_api_update().
5486 * OUT:
5487 * NULL : not found
5488 * others : found, pointer to a SA.
5489 */
5490 #ifdef IPSEC_DOSEQCHECK
5491 static struct secasvar *
5492 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5493 {
5494 struct secasvar *sav;
5495 u_int state;
5496 int s;
5497
5498 state = SADB_SASTATE_LARVAL;
5499
5500 /* search SAD with sequence number ? */
5501 s = pserialize_read_enter();
5502 SAVLIST_READER_FOREACH(sav, sah, state) {
5503 KEY_CHKSASTATE(state, sav->state);
5504
5505 if (sav->seq == seq) {
5506 SA_ADDREF(sav);
5507 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5508 "DP cause refcnt++:%d SA:%p\n",
5509 sav->refcnt, sav);
5510 break;
5511 }
5512 }
5513 pserialize_read_exit(s);
5514
5515 return sav;
5516 }
5517 #endif
5518
5519 /*
5520 * SADB_ADD processing
5521 * add an entry to SA database, when received
5522 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5523 * key(AE), (identity(SD),) (sensitivity)>
5524 * from the ikmpd,
5525 * and send
5526 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5527 * (identity(SD),) (sensitivity)>
5528 * to the ikmpd.
5529 *
5530 * IGNORE identity and sensitivity messages.
5531 *
5532 * m will always be freed.
5533 */
5534 static int
5535 key_api_add(struct socket *so, struct mbuf *m,
5536 const struct sadb_msghdr *mhp)
5537 {
5538 struct sadb_sa *sa0;
5539 const struct sockaddr *src, *dst;
5540 struct secasindex saidx;
5541 struct secashead *sah;
5542 struct secasvar *newsav;
5543 u_int16_t proto;
5544 u_int8_t mode;
5545 u_int16_t reqid;
5546 int error;
5547
5548 /* map satype to proto */
5549 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5550 if (proto == 0) {
5551 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5552 return key_senderror(so, m, EINVAL);
5553 }
5554
5555 if (mhp->ext[SADB_EXT_SA] == NULL ||
5556 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5557 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5558 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5559 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5560 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5561 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5562 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5563 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5564 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5565 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5566 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5567 return key_senderror(so, m, EINVAL);
5568 }
5569 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5570 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5571 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5572 /* XXX need more */
5573 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5574 return key_senderror(so, m, EINVAL);
5575 }
5576 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5577 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5578 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5579 } else {
5580 mode = IPSEC_MODE_ANY;
5581 reqid = 0;
5582 }
5583
5584 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5585 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5586 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5587
5588 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5589 if (error != 0)
5590 return key_senderror(so, m, EINVAL);
5591
5592 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5593 if (error != 0)
5594 return key_senderror(so, m, EINVAL);
5595
5596 /* get a SA header */
5597 sah = key_getsah(&saidx, CMP_REQID);
5598 if (sah == NULL) {
5599 /* create a new SA header */
5600 sah = key_newsah(&saidx);
5601 if (sah == NULL) {
5602 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5603 return key_senderror(so, m, ENOBUFS);
5604 }
5605 }
5606
5607 /* set spidx if there */
5608 /* XXX rewrite */
5609 error = key_setident(sah, m, mhp);
5610 if (error) {
5611 return key_senderror(so, m, error);
5612 }
5613
5614 {
5615 struct secasvar *sav;
5616
5617 /* We can create new SA only if SPI is differenct. */
5618 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5619 if (sav != NULL) {
5620 KEY_SA_UNREF(&sav);
5621 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5622 return key_senderror(so, m, EEXIST);
5623 }
5624 }
5625
5626 /* create new SA entry. */
5627 newsav = KEY_NEWSAV(m, mhp, &error);
5628 if (newsav == NULL) {
5629 return key_senderror(so, m, error);
5630 }
5631 newsav->sah = sah;
5632
5633 error = key_handle_natt_info(newsav, mhp);
5634 if (error != 0) {
5635 key_delsav(newsav);
5636 return key_senderror(so, m, EINVAL);
5637 }
5638
5639 error = key_init_xform(newsav);
5640 if (error != 0) {
5641 key_delsav(newsav);
5642 return key_senderror(so, m, error);
5643 }
5644
5645 /* add to satree */
5646 newsav->refcnt = 1;
5647 newsav->state = SADB_SASTATE_MATURE;
5648 SAVLIST_ENTRY_INIT(newsav);
5649 mutex_enter(&key_sad.lock);
5650 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5651 mutex_exit(&key_sad.lock);
5652 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5653
5654 /*
5655 * don't call key_freesav() here, as we would like to keep the SA
5656 * in the database on success.
5657 */
5658
5659 {
5660 struct mbuf *n;
5661
5662 /* set msg buf from mhp */
5663 n = key_getmsgbuf_x1(m, mhp);
5664 if (n == NULL) {
5665 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5666 return key_senderror(so, m, ENOBUFS);
5667 }
5668
5669 m_freem(m);
5670 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5671 }
5672 }
5673
5674 /* m is retained */
5675 static int
5676 key_setident(struct secashead *sah, struct mbuf *m,
5677 const struct sadb_msghdr *mhp)
5678 {
5679 const struct sadb_ident *idsrc, *iddst;
5680 int idsrclen, iddstlen;
5681
5682 KASSERT(!cpu_softintr_p());
5683 KASSERT(sah != NULL);
5684 KASSERT(m != NULL);
5685 KASSERT(mhp != NULL);
5686 KASSERT(mhp->msg != NULL);
5687
5688 /*
5689 * Can be called with an existing sah from key_api_update().
5690 */
5691 if (sah->idents != NULL) {
5692 kmem_free(sah->idents, sah->idents_len);
5693 sah->idents = NULL;
5694 sah->idents_len = 0;
5695 }
5696 if (sah->identd != NULL) {
5697 kmem_free(sah->identd, sah->identd_len);
5698 sah->identd = NULL;
5699 sah->identd_len = 0;
5700 }
5701
5702 /* don't make buffer if not there */
5703 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5704 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5705 sah->idents = NULL;
5706 sah->identd = NULL;
5707 return 0;
5708 }
5709
5710 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5711 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5712 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5713 return EINVAL;
5714 }
5715
5716 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5717 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5718 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5719 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5720
5721 /* validity check */
5722 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5723 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5724 return EINVAL;
5725 }
5726
5727 switch (idsrc->sadb_ident_type) {
5728 case SADB_IDENTTYPE_PREFIX:
5729 case SADB_IDENTTYPE_FQDN:
5730 case SADB_IDENTTYPE_USERFQDN:
5731 default:
5732 /* XXX do nothing */
5733 sah->idents = NULL;
5734 sah->identd = NULL;
5735 return 0;
5736 }
5737
5738 /* make structure */
5739 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5740 sah->idents_len = idsrclen;
5741 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5742 sah->identd_len = iddstlen;
5743 memcpy(sah->idents, idsrc, idsrclen);
5744 memcpy(sah->identd, iddst, iddstlen);
5745
5746 return 0;
5747 }
5748
5749 /*
5750 * m will not be freed on return.
5751 * it is caller's responsibility to free the result.
5752 */
5753 static struct mbuf *
5754 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5755 {
5756 struct mbuf *n;
5757
5758 KASSERT(m != NULL);
5759 KASSERT(mhp != NULL);
5760 KASSERT(mhp->msg != NULL);
5761
5762 /* create new sadb_msg to reply. */
5763 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5764 SADB_EXT_SA, SADB_X_EXT_SA2,
5765 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5766 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5767 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5768 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5769 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5770 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5771 if (!n)
5772 return NULL;
5773
5774 if (n->m_len < sizeof(struct sadb_msg)) {
5775 n = m_pullup(n, sizeof(struct sadb_msg));
5776 if (n == NULL)
5777 return NULL;
5778 }
5779 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5780 mtod(n, struct sadb_msg *)->sadb_msg_len =
5781 PFKEY_UNIT64(n->m_pkthdr.len);
5782
5783 return n;
5784 }
5785
5786 static int key_delete_all (struct socket *, struct mbuf *,
5787 const struct sadb_msghdr *, u_int16_t);
5788
5789 /*
5790 * SADB_DELETE processing
5791 * receive
5792 * <base, SA(*), address(SD)>
5793 * from the ikmpd, and set SADB_SASTATE_DEAD,
5794 * and send,
5795 * <base, SA(*), address(SD)>
5796 * to the ikmpd.
5797 *
5798 * m will always be freed.
5799 */
5800 static int
5801 key_api_delete(struct socket *so, struct mbuf *m,
5802 const struct sadb_msghdr *mhp)
5803 {
5804 struct sadb_sa *sa0;
5805 const struct sockaddr *src, *dst;
5806 struct secasindex saidx;
5807 struct secashead *sah;
5808 struct secasvar *sav = NULL;
5809 u_int16_t proto;
5810 int error;
5811
5812 /* map satype to proto */
5813 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5814 if (proto == 0) {
5815 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5816 return key_senderror(so, m, EINVAL);
5817 }
5818
5819 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5820 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5821 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5822 return key_senderror(so, m, EINVAL);
5823 }
5824
5825 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5826 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5827 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5828 return key_senderror(so, m, EINVAL);
5829 }
5830
5831 if (mhp->ext[SADB_EXT_SA] == NULL) {
5832 /*
5833 * Caller wants us to delete all non-LARVAL SAs
5834 * that match the src/dst. This is used during
5835 * IKE INITIAL-CONTACT.
5836 */
5837 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5838 return key_delete_all(so, m, mhp, proto);
5839 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5840 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5841 return key_senderror(so, m, EINVAL);
5842 }
5843
5844 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5845 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5846 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5847
5848 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5849 if (error != 0)
5850 return key_senderror(so, m, EINVAL);
5851
5852 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5853 if (error != 0)
5854 return key_senderror(so, m, EINVAL);
5855
5856 /* get a SA header */
5857 sah = key_getsah(&saidx, CMP_HEAD);
5858 if (sah != NULL) {
5859 /* get a SA with SPI. */
5860 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5861 }
5862
5863 if (sav == NULL) {
5864 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5865 return key_senderror(so, m, ENOENT);
5866 }
5867
5868 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5869 KEY_FREESAV(&sav);
5870 KEY_FREESAV(&sav);
5871
5872 {
5873 struct mbuf *n;
5874
5875 /* create new sadb_msg to reply. */
5876 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5877 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5878 if (!n)
5879 return key_senderror(so, m, ENOBUFS);
5880
5881 n = key_fill_replymsg(n, 0);
5882 if (n == NULL)
5883 return key_senderror(so, m, ENOBUFS);
5884
5885 m_freem(m);
5886 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5887 }
5888 }
5889
5890 /*
5891 * delete all SAs for src/dst. Called from key_api_delete().
5892 */
5893 static int
5894 key_delete_all(struct socket *so, struct mbuf *m,
5895 const struct sadb_msghdr *mhp, u_int16_t proto)
5896 {
5897 const struct sockaddr *src, *dst;
5898 struct secasindex saidx;
5899 struct secashead *sah;
5900 struct secasvar *sav;
5901 u_int state;
5902 int error;
5903
5904 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5905 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5906
5907 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5908 if (error != 0)
5909 return key_senderror(so, m, EINVAL);
5910
5911 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5912 if (error != 0)
5913 return key_senderror(so, m, EINVAL);
5914
5915 sah = key_getsah(&saidx, CMP_HEAD);
5916 if (sah != NULL) {
5917 /* Delete all non-LARVAL SAs. */
5918 SASTATE_ALIVE_FOREACH(state) {
5919 if (state == SADB_SASTATE_LARVAL)
5920 continue;
5921 restart:
5922 SAVLIST_WRITER_FOREACH(sav, sah, state) {
5923 /* sanity check */
5924 if (sav->state != state) {
5925 IPSECLOG(LOG_DEBUG,
5926 "invalid sav->state "
5927 "(queue: %d SA: %d)\n",
5928 state, sav->state);
5929 continue;
5930 }
5931
5932 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5933 KEY_FREESAV(&sav);
5934 goto restart;
5935 }
5936 }
5937 }
5938 {
5939 struct mbuf *n;
5940
5941 /* create new sadb_msg to reply. */
5942 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5943 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5944 if (!n)
5945 return key_senderror(so, m, ENOBUFS);
5946
5947 n = key_fill_replymsg(n, 0);
5948 if (n == NULL)
5949 return key_senderror(so, m, ENOBUFS);
5950
5951 m_freem(m);
5952 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5953 }
5954 }
5955
5956 /*
5957 * SADB_GET processing
5958 * receive
5959 * <base, SA(*), address(SD)>
5960 * from the ikmpd, and get a SP and a SA to respond,
5961 * and send,
5962 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5963 * (identity(SD),) (sensitivity)>
5964 * to the ikmpd.
5965 *
5966 * m will always be freed.
5967 */
5968 static int
5969 key_api_get(struct socket *so, struct mbuf *m,
5970 const struct sadb_msghdr *mhp)
5971 {
5972 struct sadb_sa *sa0;
5973 const struct sockaddr *src, *dst;
5974 struct secasindex saidx;
5975 struct secashead *sah;
5976 struct secasvar *sav = NULL;
5977 u_int16_t proto;
5978 int error;
5979
5980 /* map satype to proto */
5981 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5982 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5983 return key_senderror(so, m, EINVAL);
5984 }
5985
5986 if (mhp->ext[SADB_EXT_SA] == NULL ||
5987 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5988 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5989 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5990 return key_senderror(so, m, EINVAL);
5991 }
5992 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5993 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5994 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5995 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5996 return key_senderror(so, m, EINVAL);
5997 }
5998
5999 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6000 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6001 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6002
6003 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6004 if (error != 0)
6005 return key_senderror(so, m, EINVAL);
6006
6007 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6008 if (error != 0)
6009 return key_senderror(so, m, EINVAL);
6010
6011 /* get a SA header */
6012 sah = key_getsah(&saidx, CMP_HEAD);
6013 if (sah != NULL) {
6014 /* get a SA with SPI. */
6015 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6016 }
6017 if (sav == NULL) {
6018 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6019 return key_senderror(so, m, ENOENT);
6020 }
6021
6022 {
6023 struct mbuf *n;
6024 u_int8_t satype;
6025
6026 /* map proto to satype */
6027 satype = key_proto2satype(sah->saidx.proto);
6028 if (satype == 0) {
6029 KEY_SA_UNREF(&sav);
6030 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6031 return key_senderror(so, m, EINVAL);
6032 }
6033
6034 /* create new sadb_msg to reply. */
6035 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6036 mhp->msg->sadb_msg_pid);
6037 KEY_SA_UNREF(&sav);
6038 if (!n)
6039 return key_senderror(so, m, ENOBUFS);
6040
6041 m_freem(m);
6042 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6043 }
6044 }
6045
6046 /* XXX make it sysctl-configurable? */
6047 static void
6048 key_getcomb_setlifetime(struct sadb_comb *comb)
6049 {
6050
6051 comb->sadb_comb_soft_allocations = 1;
6052 comb->sadb_comb_hard_allocations = 1;
6053 comb->sadb_comb_soft_bytes = 0;
6054 comb->sadb_comb_hard_bytes = 0;
6055 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6056 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6057 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6058 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6059 }
6060
6061 /*
6062 * XXX reorder combinations by preference
6063 * XXX no idea if the user wants ESP authentication or not
6064 */
6065 static struct mbuf *
6066 key_getcomb_esp(void)
6067 {
6068 struct sadb_comb *comb;
6069 const struct enc_xform *algo;
6070 struct mbuf *result = NULL, *m, *n;
6071 int encmin;
6072 int i, off, o;
6073 int totlen;
6074 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6075
6076 m = NULL;
6077 for (i = 1; i <= SADB_EALG_MAX; i++) {
6078 algo = esp_algorithm_lookup(i);
6079 if (algo == NULL)
6080 continue;
6081
6082 /* discard algorithms with key size smaller than system min */
6083 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6084 continue;
6085 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6086 encmin = ipsec_esp_keymin;
6087 else
6088 encmin = _BITS(algo->minkey);
6089
6090 if (ipsec_esp_auth)
6091 m = key_getcomb_ah();
6092 else {
6093 KASSERTMSG(l <= MLEN,
6094 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6095 MGET(m, M_DONTWAIT, MT_DATA);
6096 if (m) {
6097 M_ALIGN(m, l);
6098 m->m_len = l;
6099 m->m_next = NULL;
6100 memset(mtod(m, void *), 0, m->m_len);
6101 }
6102 }
6103 if (!m)
6104 goto fail;
6105
6106 totlen = 0;
6107 for (n = m; n; n = n->m_next)
6108 totlen += n->m_len;
6109 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6110
6111 for (off = 0; off < totlen; off += l) {
6112 n = m_pulldown(m, off, l, &o);
6113 if (!n) {
6114 /* m is already freed */
6115 goto fail;
6116 }
6117 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6118 memset(comb, 0, sizeof(*comb));
6119 key_getcomb_setlifetime(comb);
6120 comb->sadb_comb_encrypt = i;
6121 comb->sadb_comb_encrypt_minbits = encmin;
6122 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6123 }
6124
6125 if (!result)
6126 result = m;
6127 else
6128 m_cat(result, m);
6129 }
6130
6131 return result;
6132
6133 fail:
6134 if (result)
6135 m_freem(result);
6136 return NULL;
6137 }
6138
6139 static void
6140 key_getsizes_ah(const struct auth_hash *ah, int alg,
6141 u_int16_t* ksmin, u_int16_t* ksmax)
6142 {
6143 *ksmin = *ksmax = ah->keysize;
6144 if (ah->keysize == 0) {
6145 /*
6146 * Transform takes arbitrary key size but algorithm
6147 * key size is restricted. Enforce this here.
6148 */
6149 switch (alg) {
6150 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6151 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6152 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6153 default:
6154 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6155 break;
6156 }
6157 }
6158 }
6159
6160 /*
6161 * XXX reorder combinations by preference
6162 */
6163 static struct mbuf *
6164 key_getcomb_ah(void)
6165 {
6166 struct sadb_comb *comb;
6167 const struct auth_hash *algo;
6168 struct mbuf *m;
6169 u_int16_t minkeysize, maxkeysize;
6170 int i;
6171 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6172
6173 m = NULL;
6174 for (i = 1; i <= SADB_AALG_MAX; i++) {
6175 #if 1
6176 /* we prefer HMAC algorithms, not old algorithms */
6177 if (i != SADB_AALG_SHA1HMAC &&
6178 i != SADB_AALG_MD5HMAC &&
6179 i != SADB_X_AALG_SHA2_256 &&
6180 i != SADB_X_AALG_SHA2_384 &&
6181 i != SADB_X_AALG_SHA2_512)
6182 continue;
6183 #endif
6184 algo = ah_algorithm_lookup(i);
6185 if (!algo)
6186 continue;
6187 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6188 /* discard algorithms with key size smaller than system min */
6189 if (_BITS(minkeysize) < ipsec_ah_keymin)
6190 continue;
6191
6192 if (!m) {
6193 KASSERTMSG(l <= MLEN,
6194 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6195 MGET(m, M_DONTWAIT, MT_DATA);
6196 if (m) {
6197 M_ALIGN(m, l);
6198 m->m_len = l;
6199 m->m_next = NULL;
6200 }
6201 } else
6202 M_PREPEND(m, l, M_DONTWAIT);
6203 if (!m)
6204 return NULL;
6205
6206 if (m->m_len < sizeof(struct sadb_comb)) {
6207 m = m_pullup(m, sizeof(struct sadb_comb));
6208 if (m == NULL)
6209 return NULL;
6210 }
6211
6212 comb = mtod(m, struct sadb_comb *);
6213 memset(comb, 0, sizeof(*comb));
6214 key_getcomb_setlifetime(comb);
6215 comb->sadb_comb_auth = i;
6216 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6217 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6218 }
6219
6220 return m;
6221 }
6222
6223 /*
6224 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6225 * XXX reorder combinations by preference
6226 */
6227 static struct mbuf *
6228 key_getcomb_ipcomp(void)
6229 {
6230 struct sadb_comb *comb;
6231 const struct comp_algo *algo;
6232 struct mbuf *m;
6233 int i;
6234 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6235
6236 m = NULL;
6237 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6238 algo = ipcomp_algorithm_lookup(i);
6239 if (!algo)
6240 continue;
6241
6242 if (!m) {
6243 KASSERTMSG(l <= MLEN,
6244 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6245 MGET(m, M_DONTWAIT, MT_DATA);
6246 if (m) {
6247 M_ALIGN(m, l);
6248 m->m_len = l;
6249 m->m_next = NULL;
6250 }
6251 } else
6252 M_PREPEND(m, l, M_DONTWAIT);
6253 if (!m)
6254 return NULL;
6255
6256 if (m->m_len < sizeof(struct sadb_comb)) {
6257 m = m_pullup(m, sizeof(struct sadb_comb));
6258 if (m == NULL)
6259 return NULL;
6260 }
6261
6262 comb = mtod(m, struct sadb_comb *);
6263 memset(comb, 0, sizeof(*comb));
6264 key_getcomb_setlifetime(comb);
6265 comb->sadb_comb_encrypt = i;
6266 /* what should we set into sadb_comb_*_{min,max}bits? */
6267 }
6268
6269 return m;
6270 }
6271
6272 /*
6273 * XXX no way to pass mode (transport/tunnel) to userland
6274 * XXX replay checking?
6275 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6276 */
6277 static struct mbuf *
6278 key_getprop(const struct secasindex *saidx)
6279 {
6280 struct sadb_prop *prop;
6281 struct mbuf *m, *n;
6282 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6283 int totlen;
6284
6285 switch (saidx->proto) {
6286 case IPPROTO_ESP:
6287 m = key_getcomb_esp();
6288 break;
6289 case IPPROTO_AH:
6290 m = key_getcomb_ah();
6291 break;
6292 case IPPROTO_IPCOMP:
6293 m = key_getcomb_ipcomp();
6294 break;
6295 default:
6296 return NULL;
6297 }
6298
6299 if (!m)
6300 return NULL;
6301 M_PREPEND(m, l, M_DONTWAIT);
6302 if (!m)
6303 return NULL;
6304
6305 totlen = 0;
6306 for (n = m; n; n = n->m_next)
6307 totlen += n->m_len;
6308
6309 prop = mtod(m, struct sadb_prop *);
6310 memset(prop, 0, sizeof(*prop));
6311 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6312 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6313 prop->sadb_prop_replay = 32; /* XXX */
6314
6315 return m;
6316 }
6317
6318 /*
6319 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6320 * send
6321 * <base, SA, address(SD), (address(P)), x_policy,
6322 * (identity(SD),) (sensitivity,) proposal>
6323 * to KMD, and expect to receive
6324 * <base> with SADB_ACQUIRE if error occurred,
6325 * or
6326 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6327 * from KMD by PF_KEY.
6328 *
6329 * XXX x_policy is outside of RFC2367 (KAME extension).
6330 * XXX sensitivity is not supported.
6331 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6332 * see comment for key_getcomb_ipcomp().
6333 *
6334 * OUT:
6335 * 0 : succeed
6336 * others: error number
6337 */
6338 static int
6339 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6340 {
6341 struct mbuf *result = NULL, *m;
6342 #ifndef IPSEC_NONBLOCK_ACQUIRE
6343 struct secacq *newacq;
6344 #endif
6345 u_int8_t satype;
6346 int error = -1;
6347 u_int32_t seq;
6348
6349 /* sanity check */
6350 KASSERT(saidx != NULL);
6351 satype = key_proto2satype(saidx->proto);
6352 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6353
6354 #ifndef IPSEC_NONBLOCK_ACQUIRE
6355 /*
6356 * We never do anything about acquirng SA. There is anather
6357 * solution that kernel blocks to send SADB_ACQUIRE message until
6358 * getting something message from IKEd. In later case, to be
6359 * managed with ACQUIRING list.
6360 */
6361 /* Get an entry to check whether sending message or not. */
6362 mutex_enter(&key_misc.lock);
6363 newacq = key_getacq(saidx);
6364 if (newacq != NULL) {
6365 if (key_blockacq_count < newacq->count) {
6366 /* reset counter and do send message. */
6367 newacq->count = 0;
6368 } else {
6369 /* increment counter and do nothing. */
6370 newacq->count++;
6371 mutex_exit(&key_misc.lock);
6372 return 0;
6373 }
6374 } else {
6375 /* make new entry for blocking to send SADB_ACQUIRE. */
6376 newacq = key_newacq(saidx);
6377 if (newacq == NULL)
6378 return ENOBUFS;
6379
6380 /* add to key_misc.acqlist */
6381 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6382 }
6383
6384 seq = newacq->seq;
6385 mutex_exit(&key_misc.lock);
6386 #else
6387 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6388 #endif
6389 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6390 if (!m) {
6391 error = ENOBUFS;
6392 goto fail;
6393 }
6394 result = m;
6395
6396 /* set sadb_address for saidx's. */
6397 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6398 IPSEC_ULPROTO_ANY);
6399 if (!m) {
6400 error = ENOBUFS;
6401 goto fail;
6402 }
6403 m_cat(result, m);
6404
6405 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6406 IPSEC_ULPROTO_ANY);
6407 if (!m) {
6408 error = ENOBUFS;
6409 goto fail;
6410 }
6411 m_cat(result, m);
6412
6413 /* XXX proxy address (optional) */
6414
6415 /* set sadb_x_policy */
6416 if (sp) {
6417 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6418 if (!m) {
6419 error = ENOBUFS;
6420 goto fail;
6421 }
6422 m_cat(result, m);
6423 }
6424
6425 /* XXX identity (optional) */
6426 #if 0
6427 if (idexttype && fqdn) {
6428 /* create identity extension (FQDN) */
6429 struct sadb_ident *id;
6430 int fqdnlen;
6431
6432 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6433 id = (struct sadb_ident *)p;
6434 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6435 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6436 id->sadb_ident_exttype = idexttype;
6437 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6438 memcpy(id + 1, fqdn, fqdnlen);
6439 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6440 }
6441
6442 if (idexttype) {
6443 /* create identity extension (USERFQDN) */
6444 struct sadb_ident *id;
6445 int userfqdnlen;
6446
6447 if (userfqdn) {
6448 /* +1 for terminating-NUL */
6449 userfqdnlen = strlen(userfqdn) + 1;
6450 } else
6451 userfqdnlen = 0;
6452 id = (struct sadb_ident *)p;
6453 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6454 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6455 id->sadb_ident_exttype = idexttype;
6456 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6457 /* XXX is it correct? */
6458 if (curlwp)
6459 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6460 if (userfqdn && userfqdnlen)
6461 memcpy(id + 1, userfqdn, userfqdnlen);
6462 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6463 }
6464 #endif
6465
6466 /* XXX sensitivity (optional) */
6467
6468 /* create proposal/combination extension */
6469 m = key_getprop(saidx);
6470 #if 0
6471 /*
6472 * spec conformant: always attach proposal/combination extension,
6473 * the problem is that we have no way to attach it for ipcomp,
6474 * due to the way sadb_comb is declared in RFC2367.
6475 */
6476 if (!m) {
6477 error = ENOBUFS;
6478 goto fail;
6479 }
6480 m_cat(result, m);
6481 #else
6482 /*
6483 * outside of spec; make proposal/combination extension optional.
6484 */
6485 if (m)
6486 m_cat(result, m);
6487 #endif
6488
6489 if ((result->m_flags & M_PKTHDR) == 0) {
6490 error = EINVAL;
6491 goto fail;
6492 }
6493
6494 if (result->m_len < sizeof(struct sadb_msg)) {
6495 result = m_pullup(result, sizeof(struct sadb_msg));
6496 if (result == NULL) {
6497 error = ENOBUFS;
6498 goto fail;
6499 }
6500 }
6501
6502 result->m_pkthdr.len = 0;
6503 for (m = result; m; m = m->m_next)
6504 result->m_pkthdr.len += m->m_len;
6505
6506 mtod(result, struct sadb_msg *)->sadb_msg_len =
6507 PFKEY_UNIT64(result->m_pkthdr.len);
6508
6509 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6510
6511 fail:
6512 if (result)
6513 m_freem(result);
6514 return error;
6515 }
6516
6517 #ifndef IPSEC_NONBLOCK_ACQUIRE
6518 static struct secacq *
6519 key_newacq(const struct secasindex *saidx)
6520 {
6521 struct secacq *newacq;
6522
6523 /* get new entry */
6524 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6525 if (newacq == NULL) {
6526 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6527 return NULL;
6528 }
6529
6530 /* copy secindex */
6531 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6532 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6533 newacq->created = time_uptime;
6534 newacq->count = 0;
6535
6536 return newacq;
6537 }
6538
6539 static struct secacq *
6540 key_getacq(const struct secasindex *saidx)
6541 {
6542 struct secacq *acq;
6543
6544 KASSERT(mutex_owned(&key_misc.lock));
6545
6546 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6547 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6548 return acq;
6549 }
6550
6551 return NULL;
6552 }
6553
6554 static struct secacq *
6555 key_getacqbyseq(u_int32_t seq)
6556 {
6557 struct secacq *acq;
6558
6559 KASSERT(mutex_owned(&key_misc.lock));
6560
6561 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6562 if (acq->seq == seq)
6563 return acq;
6564 }
6565
6566 return NULL;
6567 }
6568 #endif
6569
6570 #ifdef notyet
6571 static struct secspacq *
6572 key_newspacq(const struct secpolicyindex *spidx)
6573 {
6574 struct secspacq *acq;
6575
6576 /* get new entry */
6577 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6578 if (acq == NULL) {
6579 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6580 return NULL;
6581 }
6582
6583 /* copy secindex */
6584 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6585 acq->created = time_uptime;
6586 acq->count = 0;
6587
6588 return acq;
6589 }
6590
6591 static struct secspacq *
6592 key_getspacq(const struct secpolicyindex *spidx)
6593 {
6594 struct secspacq *acq;
6595
6596 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6597 if (key_spidx_match_exactly(spidx, &acq->spidx))
6598 return acq;
6599 }
6600
6601 return NULL;
6602 }
6603 #endif /* notyet */
6604
6605 /*
6606 * SADB_ACQUIRE processing,
6607 * in first situation, is receiving
6608 * <base>
6609 * from the ikmpd, and clear sequence of its secasvar entry.
6610 *
6611 * In second situation, is receiving
6612 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6613 * from a user land process, and return
6614 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6615 * to the socket.
6616 *
6617 * m will always be freed.
6618 */
6619 static int
6620 key_api_acquire(struct socket *so, struct mbuf *m,
6621 const struct sadb_msghdr *mhp)
6622 {
6623 const struct sockaddr *src, *dst;
6624 struct secasindex saidx;
6625 struct secashead *sah;
6626 u_int16_t proto;
6627 int error;
6628
6629 /*
6630 * Error message from KMd.
6631 * We assume that if error was occurred in IKEd, the length of PFKEY
6632 * message is equal to the size of sadb_msg structure.
6633 * We do not raise error even if error occurred in this function.
6634 */
6635 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6636 #ifndef IPSEC_NONBLOCK_ACQUIRE
6637 struct secacq *acq;
6638
6639 /* check sequence number */
6640 if (mhp->msg->sadb_msg_seq == 0) {
6641 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6642 m_freem(m);
6643 return 0;
6644 }
6645
6646 mutex_enter(&key_misc.lock);
6647 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6648 if (acq == NULL) {
6649 mutex_exit(&key_misc.lock);
6650 /*
6651 * the specified larval SA is already gone, or we got
6652 * a bogus sequence number. we can silently ignore it.
6653 */
6654 m_freem(m);
6655 return 0;
6656 }
6657
6658 /* reset acq counter in order to deletion by timehander. */
6659 acq->created = time_uptime;
6660 acq->count = 0;
6661 mutex_exit(&key_misc.lock);
6662 #endif
6663 m_freem(m);
6664 return 0;
6665 }
6666
6667 /*
6668 * This message is from user land.
6669 */
6670
6671 /* map satype to proto */
6672 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6673 if (proto == 0) {
6674 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6675 return key_senderror(so, m, EINVAL);
6676 }
6677
6678 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6679 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6680 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6681 /* error */
6682 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6683 return key_senderror(so, m, EINVAL);
6684 }
6685 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6686 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6687 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6688 /* error */
6689 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6690 return key_senderror(so, m, EINVAL);
6691 }
6692
6693 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6694 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6695
6696 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6697 if (error != 0)
6698 return key_senderror(so, m, EINVAL);
6699
6700 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6701 if (error != 0)
6702 return key_senderror(so, m, EINVAL);
6703
6704 /* get a SA index */
6705 sah = key_getsah(&saidx, CMP_MODE_REQID);
6706 if (sah != NULL) {
6707 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6708 return key_senderror(so, m, EEXIST);
6709 }
6710
6711 error = key_acquire(&saidx, NULL);
6712 if (error != 0) {
6713 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6714 error);
6715 return key_senderror(so, m, error);
6716 }
6717
6718 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6719 }
6720
6721 /*
6722 * SADB_REGISTER processing.
6723 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6724 * receive
6725 * <base>
6726 * from the ikmpd, and register a socket to send PF_KEY messages,
6727 * and send
6728 * <base, supported>
6729 * to KMD by PF_KEY.
6730 * If socket is detached, must free from regnode.
6731 *
6732 * m will always be freed.
6733 */
6734 static int
6735 key_api_register(struct socket *so, struct mbuf *m,
6736 const struct sadb_msghdr *mhp)
6737 {
6738 struct secreg *reg, *newreg = 0;
6739
6740 /* check for invalid register message */
6741 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
6742 return key_senderror(so, m, EINVAL);
6743
6744 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6745 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6746 goto setmsg;
6747
6748 /* Allocate regnode in advance, out of mutex */
6749 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6750
6751 /* check whether existing or not */
6752 mutex_enter(&key_misc.lock);
6753 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
6754 if (reg->so == so) {
6755 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6756 mutex_exit(&key_misc.lock);
6757 kmem_free(newreg, sizeof(*newreg));
6758 return key_senderror(so, m, EEXIST);
6759 }
6760 }
6761
6762 newreg->so = so;
6763 ((struct keycb *)sotorawcb(so))->kp_registered++;
6764
6765 /* add regnode to key_misc.reglist. */
6766 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
6767 mutex_exit(&key_misc.lock);
6768
6769 setmsg:
6770 {
6771 struct mbuf *n;
6772 struct sadb_supported *sup;
6773 u_int len, alen, elen;
6774 int off;
6775 int i;
6776 struct sadb_alg *alg;
6777
6778 /* create new sadb_msg to reply. */
6779 alen = 0;
6780 for (i = 1; i <= SADB_AALG_MAX; i++) {
6781 if (ah_algorithm_lookup(i))
6782 alen += sizeof(struct sadb_alg);
6783 }
6784 if (alen)
6785 alen += sizeof(struct sadb_supported);
6786 elen = 0;
6787 for (i = 1; i <= SADB_EALG_MAX; i++) {
6788 if (esp_algorithm_lookup(i))
6789 elen += sizeof(struct sadb_alg);
6790 }
6791 if (elen)
6792 elen += sizeof(struct sadb_supported);
6793
6794 len = sizeof(struct sadb_msg) + alen + elen;
6795
6796 if (len > MCLBYTES)
6797 return key_senderror(so, m, ENOBUFS);
6798
6799 MGETHDR(n, M_DONTWAIT, MT_DATA);
6800 if (len > MHLEN) {
6801 MCLGET(n, M_DONTWAIT);
6802 if ((n->m_flags & M_EXT) == 0) {
6803 m_freem(n);
6804 n = NULL;
6805 }
6806 }
6807 if (!n)
6808 return key_senderror(so, m, ENOBUFS);
6809
6810 n->m_pkthdr.len = n->m_len = len;
6811 n->m_next = NULL;
6812 off = 0;
6813
6814 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6815 n = key_fill_replymsg(n, 0);
6816 if (n == NULL)
6817 return key_senderror(so, m, ENOBUFS);
6818
6819 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6820
6821 /* for authentication algorithm */
6822 if (alen) {
6823 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6824 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6825 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6826 off += PFKEY_ALIGN8(sizeof(*sup));
6827
6828 for (i = 1; i <= SADB_AALG_MAX; i++) {
6829 const struct auth_hash *aalgo;
6830 u_int16_t minkeysize, maxkeysize;
6831
6832 aalgo = ah_algorithm_lookup(i);
6833 if (!aalgo)
6834 continue;
6835 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6836 alg->sadb_alg_id = i;
6837 alg->sadb_alg_ivlen = 0;
6838 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6839 alg->sadb_alg_minbits = _BITS(minkeysize);
6840 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6841 off += PFKEY_ALIGN8(sizeof(*alg));
6842 }
6843 }
6844
6845 /* for encryption algorithm */
6846 if (elen) {
6847 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6848 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6849 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6850 off += PFKEY_ALIGN8(sizeof(*sup));
6851
6852 for (i = 1; i <= SADB_EALG_MAX; i++) {
6853 const struct enc_xform *ealgo;
6854
6855 ealgo = esp_algorithm_lookup(i);
6856 if (!ealgo)
6857 continue;
6858 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6859 alg->sadb_alg_id = i;
6860 alg->sadb_alg_ivlen = ealgo->blocksize;
6861 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6862 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6863 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6864 }
6865 }
6866
6867 KASSERTMSG(off == len, "length inconsistency");
6868
6869 m_freem(m);
6870 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6871 }
6872 }
6873
6874 /*
6875 * free secreg entry registered.
6876 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6877 */
6878 void
6879 key_freereg(struct socket *so)
6880 {
6881 struct secreg *reg;
6882 int i;
6883
6884 KASSERT(!cpu_softintr_p());
6885 KASSERT(so != NULL);
6886
6887 /*
6888 * check whether existing or not.
6889 * check all type of SA, because there is a potential that
6890 * one socket is registered to multiple type of SA.
6891 */
6892 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6893 mutex_enter(&key_misc.lock);
6894 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
6895 if (reg->so == so) {
6896 LIST_REMOVE(reg, chain);
6897 break;
6898 }
6899 }
6900 mutex_exit(&key_misc.lock);
6901 if (reg != NULL)
6902 kmem_free(reg, sizeof(*reg));
6903 }
6904
6905 return;
6906 }
6907
6908 /*
6909 * SADB_EXPIRE processing
6910 * send
6911 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6912 * to KMD by PF_KEY.
6913 * NOTE: We send only soft lifetime extension.
6914 *
6915 * OUT: 0 : succeed
6916 * others : error number
6917 */
6918 static int
6919 key_expire(struct secasvar *sav)
6920 {
6921 int s;
6922 int satype;
6923 struct mbuf *result = NULL, *m;
6924 int len;
6925 int error = -1;
6926 struct sadb_lifetime *lt;
6927
6928 /* XXX: Why do we lock ? */
6929 s = splsoftnet(); /*called from softclock()*/
6930
6931 KASSERT(sav != NULL);
6932
6933 satype = key_proto2satype(sav->sah->saidx.proto);
6934 KASSERTMSG(satype != 0, "invalid proto is passed");
6935
6936 /* set msg header */
6937 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6938 if (!m) {
6939 error = ENOBUFS;
6940 goto fail;
6941 }
6942 result = m;
6943
6944 /* create SA extension */
6945 m = key_setsadbsa(sav);
6946 if (!m) {
6947 error = ENOBUFS;
6948 goto fail;
6949 }
6950 m_cat(result, m);
6951
6952 /* create SA extension */
6953 m = key_setsadbxsa2(sav->sah->saidx.mode,
6954 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
6955 if (!m) {
6956 error = ENOBUFS;
6957 goto fail;
6958 }
6959 m_cat(result, m);
6960
6961 /* create lifetime extension (current and soft) */
6962 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6963 m = key_alloc_mbuf(len);
6964 if (!m || m->m_next) { /*XXX*/
6965 if (m)
6966 m_freem(m);
6967 error = ENOBUFS;
6968 goto fail;
6969 }
6970 memset(mtod(m, void *), 0, len);
6971 lt = mtod(m, struct sadb_lifetime *);
6972 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6973 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6974 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6975 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6976 lt->sadb_lifetime_addtime =
6977 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
6978 lt->sadb_lifetime_usetime =
6979 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
6980 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6981 memcpy(lt, sav->lft_s, sizeof(*lt));
6982 m_cat(result, m);
6983
6984 /* set sadb_address for source */
6985 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
6986 FULLMASK, IPSEC_ULPROTO_ANY);
6987 if (!m) {
6988 error = ENOBUFS;
6989 goto fail;
6990 }
6991 m_cat(result, m);
6992
6993 /* set sadb_address for destination */
6994 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
6995 FULLMASK, IPSEC_ULPROTO_ANY);
6996 if (!m) {
6997 error = ENOBUFS;
6998 goto fail;
6999 }
7000 m_cat(result, m);
7001
7002 if ((result->m_flags & M_PKTHDR) == 0) {
7003 error = EINVAL;
7004 goto fail;
7005 }
7006
7007 if (result->m_len < sizeof(struct sadb_msg)) {
7008 result = m_pullup(result, sizeof(struct sadb_msg));
7009 if (result == NULL) {
7010 error = ENOBUFS;
7011 goto fail;
7012 }
7013 }
7014
7015 result->m_pkthdr.len = 0;
7016 for (m = result; m; m = m->m_next)
7017 result->m_pkthdr.len += m->m_len;
7018
7019 mtod(result, struct sadb_msg *)->sadb_msg_len =
7020 PFKEY_UNIT64(result->m_pkthdr.len);
7021
7022 splx(s);
7023 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7024
7025 fail:
7026 if (result)
7027 m_freem(result);
7028 splx(s);
7029 return error;
7030 }
7031
7032 /*
7033 * SADB_FLUSH processing
7034 * receive
7035 * <base>
7036 * from the ikmpd, and free all entries in secastree.
7037 * and send,
7038 * <base>
7039 * to the ikmpd.
7040 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7041 *
7042 * m will always be freed.
7043 */
7044 static int
7045 key_api_flush(struct socket *so, struct mbuf *m,
7046 const struct sadb_msghdr *mhp)
7047 {
7048 struct sadb_msg *newmsg;
7049 struct secashead *sah;
7050 struct secasvar *sav;
7051 u_int16_t proto;
7052 u_int8_t state;
7053
7054 /* map satype to proto */
7055 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7056 if (proto == 0) {
7057 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7058 return key_senderror(so, m, EINVAL);
7059 }
7060
7061 /* no SATYPE specified, i.e. flushing all SA. */
7062 SAHLIST_READER_FOREACH(sah) {
7063 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7064 proto != sah->saidx.proto)
7065 continue;
7066
7067 SASTATE_ALIVE_FOREACH(state) {
7068 restart:
7069 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7070 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7071 KEY_FREESAV(&sav);
7072 goto restart;
7073 }
7074 }
7075
7076 sah->state = SADB_SASTATE_DEAD;
7077 }
7078
7079 if (m->m_len < sizeof(struct sadb_msg) ||
7080 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7081 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7082 return key_senderror(so, m, ENOBUFS);
7083 }
7084
7085 if (m->m_next)
7086 m_freem(m->m_next);
7087 m->m_next = NULL;
7088 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7089 newmsg = mtod(m, struct sadb_msg *);
7090 newmsg->sadb_msg_errno = 0;
7091 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7092
7093 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7094 }
7095
7096
7097 static struct mbuf *
7098 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7099 {
7100 struct secashead *sah;
7101 struct secasvar *sav;
7102 u_int16_t proto;
7103 u_int8_t satype;
7104 u_int8_t state;
7105 int cnt;
7106 struct mbuf *m, *n, *prev;
7107
7108 KASSERT(mutex_owned(&key_sad.lock));
7109
7110 *lenp = 0;
7111
7112 /* map satype to proto */
7113 proto = key_satype2proto(req_satype);
7114 if (proto == 0) {
7115 *errorp = EINVAL;
7116 return (NULL);
7117 }
7118
7119 /* count sav entries to be sent to userland. */
7120 cnt = 0;
7121 SAHLIST_WRITER_FOREACH(sah) {
7122 if (req_satype != SADB_SATYPE_UNSPEC &&
7123 proto != sah->saidx.proto)
7124 continue;
7125
7126 SASTATE_ANY_FOREACH(state) {
7127 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7128 cnt++;
7129 }
7130 }
7131 }
7132
7133 if (cnt == 0) {
7134 *errorp = ENOENT;
7135 return (NULL);
7136 }
7137
7138 /* send this to the userland, one at a time. */
7139 m = NULL;
7140 prev = m;
7141 SAHLIST_WRITER_FOREACH(sah) {
7142 if (req_satype != SADB_SATYPE_UNSPEC &&
7143 proto != sah->saidx.proto)
7144 continue;
7145
7146 /* map proto to satype */
7147 satype = key_proto2satype(sah->saidx.proto);
7148 if (satype == 0) {
7149 m_freem(m);
7150 *errorp = EINVAL;
7151 return (NULL);
7152 }
7153
7154 SASTATE_ANY_FOREACH(state) {
7155 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7156 n = key_setdumpsa(sav, SADB_DUMP, satype,
7157 --cnt, pid);
7158 if (!n) {
7159 m_freem(m);
7160 *errorp = ENOBUFS;
7161 return (NULL);
7162 }
7163
7164 if (!m)
7165 m = n;
7166 else
7167 prev->m_nextpkt = n;
7168 prev = n;
7169 }
7170 }
7171 }
7172
7173 if (!m) {
7174 *errorp = EINVAL;
7175 return (NULL);
7176 }
7177
7178 if ((m->m_flags & M_PKTHDR) != 0) {
7179 m->m_pkthdr.len = 0;
7180 for (n = m; n; n = n->m_next)
7181 m->m_pkthdr.len += n->m_len;
7182 }
7183
7184 *errorp = 0;
7185 return (m);
7186 }
7187
7188 /*
7189 * SADB_DUMP processing
7190 * dump all entries including status of DEAD in SAD.
7191 * receive
7192 * <base>
7193 * from the ikmpd, and dump all secasvar leaves
7194 * and send,
7195 * <base> .....
7196 * to the ikmpd.
7197 *
7198 * m will always be freed.
7199 */
7200 static int
7201 key_api_dump(struct socket *so, struct mbuf *m0,
7202 const struct sadb_msghdr *mhp)
7203 {
7204 u_int16_t proto;
7205 u_int8_t satype;
7206 struct mbuf *n;
7207 int error, len, ok;
7208
7209 /* map satype to proto */
7210 satype = mhp->msg->sadb_msg_satype;
7211 proto = key_satype2proto(satype);
7212 if (proto == 0) {
7213 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7214 return key_senderror(so, m0, EINVAL);
7215 }
7216
7217 /*
7218 * If the requestor has insufficient socket-buffer space
7219 * for the entire chain, nobody gets any response to the DUMP.
7220 * XXX For now, only the requestor ever gets anything.
7221 * Moreover, if the requestor has any space at all, they receive
7222 * the entire chain, otherwise the request is refused with ENOBUFS.
7223 */
7224 if (sbspace(&so->so_rcv) <= 0) {
7225 return key_senderror(so, m0, ENOBUFS);
7226 }
7227
7228 mutex_enter(&key_sad.lock);
7229 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7230 mutex_exit(&key_sad.lock);
7231
7232 if (n == NULL) {
7233 return key_senderror(so, m0, ENOENT);
7234 }
7235 {
7236 uint64_t *ps = PFKEY_STAT_GETREF();
7237 ps[PFKEY_STAT_IN_TOTAL]++;
7238 ps[PFKEY_STAT_IN_BYTES] += len;
7239 PFKEY_STAT_PUTREF();
7240 }
7241
7242 /*
7243 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7244 * The requestor receives either the entire chain, or an
7245 * error message with ENOBUFS.
7246 *
7247 * sbappendaddrchain() takes the chain of entries, one
7248 * packet-record per SPD entry, prepends the key_src sockaddr
7249 * to each packet-record, links the sockaddr mbufs into a new
7250 * list of records, then appends the entire resulting
7251 * list to the requesting socket.
7252 */
7253 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7254 SB_PRIO_ONESHOT_OVERFLOW);
7255
7256 if (!ok) {
7257 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7258 m_freem(n);
7259 return key_senderror(so, m0, ENOBUFS);
7260 }
7261
7262 m_freem(m0);
7263 return 0;
7264 }
7265
7266 /*
7267 * SADB_X_PROMISC processing
7268 *
7269 * m will always be freed.
7270 */
7271 static int
7272 key_api_promisc(struct socket *so, struct mbuf *m,
7273 const struct sadb_msghdr *mhp)
7274 {
7275 int olen;
7276
7277 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7278
7279 if (olen < sizeof(struct sadb_msg)) {
7280 #if 1
7281 return key_senderror(so, m, EINVAL);
7282 #else
7283 m_freem(m);
7284 return 0;
7285 #endif
7286 } else if (olen == sizeof(struct sadb_msg)) {
7287 /* enable/disable promisc mode */
7288 struct keycb *kp = (struct keycb *)sotorawcb(so);
7289 if (kp == NULL)
7290 return key_senderror(so, m, EINVAL);
7291 mhp->msg->sadb_msg_errno = 0;
7292 switch (mhp->msg->sadb_msg_satype) {
7293 case 0:
7294 case 1:
7295 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7296 break;
7297 default:
7298 return key_senderror(so, m, EINVAL);
7299 }
7300
7301 /* send the original message back to everyone */
7302 mhp->msg->sadb_msg_errno = 0;
7303 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7304 } else {
7305 /* send packet as is */
7306
7307 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7308
7309 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7310 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7311 }
7312 }
7313
7314 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7315 const struct sadb_msghdr *) = {
7316 NULL, /* SADB_RESERVED */
7317 key_api_getspi, /* SADB_GETSPI */
7318 key_api_update, /* SADB_UPDATE */
7319 key_api_add, /* SADB_ADD */
7320 key_api_delete, /* SADB_DELETE */
7321 key_api_get, /* SADB_GET */
7322 key_api_acquire, /* SADB_ACQUIRE */
7323 key_api_register, /* SADB_REGISTER */
7324 NULL, /* SADB_EXPIRE */
7325 key_api_flush, /* SADB_FLUSH */
7326 key_api_dump, /* SADB_DUMP */
7327 key_api_promisc, /* SADB_X_PROMISC */
7328 NULL, /* SADB_X_PCHANGE */
7329 key_api_spdadd, /* SADB_X_SPDUPDATE */
7330 key_api_spdadd, /* SADB_X_SPDADD */
7331 key_api_spddelete, /* SADB_X_SPDDELETE */
7332 key_api_spdget, /* SADB_X_SPDGET */
7333 NULL, /* SADB_X_SPDACQUIRE */
7334 key_api_spddump, /* SADB_X_SPDDUMP */
7335 key_api_spdflush, /* SADB_X_SPDFLUSH */
7336 key_api_spdadd, /* SADB_X_SPDSETIDX */
7337 NULL, /* SADB_X_SPDEXPIRE */
7338 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7339 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7340 };
7341
7342 /*
7343 * parse sadb_msg buffer to process PFKEYv2,
7344 * and create a data to response if needed.
7345 * I think to be dealed with mbuf directly.
7346 * IN:
7347 * msgp : pointer to pointer to a received buffer pulluped.
7348 * This is rewrited to response.
7349 * so : pointer to socket.
7350 * OUT:
7351 * length for buffer to send to user process.
7352 */
7353 int
7354 key_parse(struct mbuf *m, struct socket *so)
7355 {
7356 struct sadb_msg *msg;
7357 struct sadb_msghdr mh;
7358 u_int orglen;
7359 int error;
7360
7361 KASSERT(m != NULL);
7362 KASSERT(so != NULL);
7363
7364 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7365 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7366 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7367 kdebug_sadb(msg);
7368 }
7369 #endif
7370
7371 if (m->m_len < sizeof(struct sadb_msg)) {
7372 m = m_pullup(m, sizeof(struct sadb_msg));
7373 if (!m)
7374 return ENOBUFS;
7375 }
7376 msg = mtod(m, struct sadb_msg *);
7377 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7378
7379 if ((m->m_flags & M_PKTHDR) == 0 ||
7380 m->m_pkthdr.len != orglen) {
7381 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7382 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7383 error = EINVAL;
7384 goto senderror;
7385 }
7386
7387 if (msg->sadb_msg_version != PF_KEY_V2) {
7388 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7389 msg->sadb_msg_version);
7390 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7391 error = EINVAL;
7392 goto senderror;
7393 }
7394
7395 if (msg->sadb_msg_type > SADB_MAX) {
7396 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7397 msg->sadb_msg_type);
7398 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7399 error = EINVAL;
7400 goto senderror;
7401 }
7402
7403 /* for old-fashioned code - should be nuked */
7404 if (m->m_pkthdr.len > MCLBYTES) {
7405 m_freem(m);
7406 return ENOBUFS;
7407 }
7408 if (m->m_next) {
7409 struct mbuf *n;
7410
7411 MGETHDR(n, M_DONTWAIT, MT_DATA);
7412 if (n && m->m_pkthdr.len > MHLEN) {
7413 MCLGET(n, M_DONTWAIT);
7414 if ((n->m_flags & M_EXT) == 0) {
7415 m_free(n);
7416 n = NULL;
7417 }
7418 }
7419 if (!n) {
7420 m_freem(m);
7421 return ENOBUFS;
7422 }
7423 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7424 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7425 n->m_next = NULL;
7426 m_freem(m);
7427 m = n;
7428 }
7429
7430 /* align the mbuf chain so that extensions are in contiguous region. */
7431 error = key_align(m, &mh);
7432 if (error)
7433 return error;
7434
7435 if (m->m_next) { /*XXX*/
7436 m_freem(m);
7437 return ENOBUFS;
7438 }
7439
7440 msg = mh.msg;
7441
7442 /* check SA type */
7443 switch (msg->sadb_msg_satype) {
7444 case SADB_SATYPE_UNSPEC:
7445 switch (msg->sadb_msg_type) {
7446 case SADB_GETSPI:
7447 case SADB_UPDATE:
7448 case SADB_ADD:
7449 case SADB_DELETE:
7450 case SADB_GET:
7451 case SADB_ACQUIRE:
7452 case SADB_EXPIRE:
7453 IPSECLOG(LOG_DEBUG,
7454 "must specify satype when msg type=%u.\n",
7455 msg->sadb_msg_type);
7456 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7457 error = EINVAL;
7458 goto senderror;
7459 }
7460 break;
7461 case SADB_SATYPE_AH:
7462 case SADB_SATYPE_ESP:
7463 case SADB_X_SATYPE_IPCOMP:
7464 case SADB_X_SATYPE_TCPSIGNATURE:
7465 switch (msg->sadb_msg_type) {
7466 case SADB_X_SPDADD:
7467 case SADB_X_SPDDELETE:
7468 case SADB_X_SPDGET:
7469 case SADB_X_SPDDUMP:
7470 case SADB_X_SPDFLUSH:
7471 case SADB_X_SPDSETIDX:
7472 case SADB_X_SPDUPDATE:
7473 case SADB_X_SPDDELETE2:
7474 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7475 msg->sadb_msg_type);
7476 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7477 error = EINVAL;
7478 goto senderror;
7479 }
7480 break;
7481 case SADB_SATYPE_RSVP:
7482 case SADB_SATYPE_OSPFV2:
7483 case SADB_SATYPE_RIPV2:
7484 case SADB_SATYPE_MIP:
7485 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7486 msg->sadb_msg_satype);
7487 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7488 error = EOPNOTSUPP;
7489 goto senderror;
7490 case 1: /* XXX: What does it do? */
7491 if (msg->sadb_msg_type == SADB_X_PROMISC)
7492 break;
7493 /*FALLTHROUGH*/
7494 default:
7495 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7496 msg->sadb_msg_satype);
7497 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7498 error = EINVAL;
7499 goto senderror;
7500 }
7501
7502 /* check field of upper layer protocol and address family */
7503 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7504 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7505 struct sadb_address *src0, *dst0;
7506 u_int plen;
7507
7508 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7509 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7510
7511 /* check upper layer protocol */
7512 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7513 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7514 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7515 error = EINVAL;
7516 goto senderror;
7517 }
7518
7519 /* check family */
7520 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7521 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7522 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7523 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7524 error = EINVAL;
7525 goto senderror;
7526 }
7527 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7528 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7529 IPSECLOG(LOG_DEBUG,
7530 "address struct size mismatched.\n");
7531 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7532 error = EINVAL;
7533 goto senderror;
7534 }
7535
7536 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7537 case AF_INET:
7538 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7539 sizeof(struct sockaddr_in)) {
7540 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7541 error = EINVAL;
7542 goto senderror;
7543 }
7544 break;
7545 case AF_INET6:
7546 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7547 sizeof(struct sockaddr_in6)) {
7548 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7549 error = EINVAL;
7550 goto senderror;
7551 }
7552 break;
7553 default:
7554 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7555 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7556 error = EAFNOSUPPORT;
7557 goto senderror;
7558 }
7559
7560 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7561 case AF_INET:
7562 plen = sizeof(struct in_addr) << 3;
7563 break;
7564 case AF_INET6:
7565 plen = sizeof(struct in6_addr) << 3;
7566 break;
7567 default:
7568 plen = 0; /*fool gcc*/
7569 break;
7570 }
7571
7572 /* check max prefix length */
7573 if (src0->sadb_address_prefixlen > plen ||
7574 dst0->sadb_address_prefixlen > plen) {
7575 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7576 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7577 error = EINVAL;
7578 goto senderror;
7579 }
7580
7581 /*
7582 * prefixlen == 0 is valid because there can be a case when
7583 * all addresses are matched.
7584 */
7585 }
7586
7587 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7588 key_api_typesw[msg->sadb_msg_type] == NULL) {
7589 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7590 error = EINVAL;
7591 goto senderror;
7592 }
7593
7594 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7595
7596 senderror:
7597 return key_senderror(so, m, error);
7598 }
7599
7600 static int
7601 key_senderror(struct socket *so, struct mbuf *m, int code)
7602 {
7603 struct sadb_msg *msg;
7604
7605 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7606
7607 msg = mtod(m, struct sadb_msg *);
7608 msg->sadb_msg_errno = code;
7609 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7610 }
7611
7612 /*
7613 * set the pointer to each header into message buffer.
7614 * m will be freed on error.
7615 * XXX larger-than-MCLBYTES extension?
7616 */
7617 static int
7618 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7619 {
7620 struct mbuf *n;
7621 struct sadb_ext *ext;
7622 size_t off, end;
7623 int extlen;
7624 int toff;
7625
7626 KASSERT(m != NULL);
7627 KASSERT(mhp != NULL);
7628 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7629
7630 /* initialize */
7631 memset(mhp, 0, sizeof(*mhp));
7632
7633 mhp->msg = mtod(m, struct sadb_msg *);
7634 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7635
7636 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7637 extlen = end; /*just in case extlen is not updated*/
7638 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7639 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7640 if (!n) {
7641 /* m is already freed */
7642 return ENOBUFS;
7643 }
7644 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7645
7646 /* set pointer */
7647 switch (ext->sadb_ext_type) {
7648 case SADB_EXT_SA:
7649 case SADB_EXT_ADDRESS_SRC:
7650 case SADB_EXT_ADDRESS_DST:
7651 case SADB_EXT_ADDRESS_PROXY:
7652 case SADB_EXT_LIFETIME_CURRENT:
7653 case SADB_EXT_LIFETIME_HARD:
7654 case SADB_EXT_LIFETIME_SOFT:
7655 case SADB_EXT_KEY_AUTH:
7656 case SADB_EXT_KEY_ENCRYPT:
7657 case SADB_EXT_IDENTITY_SRC:
7658 case SADB_EXT_IDENTITY_DST:
7659 case SADB_EXT_SENSITIVITY:
7660 case SADB_EXT_PROPOSAL:
7661 case SADB_EXT_SUPPORTED_AUTH:
7662 case SADB_EXT_SUPPORTED_ENCRYPT:
7663 case SADB_EXT_SPIRANGE:
7664 case SADB_X_EXT_POLICY:
7665 case SADB_X_EXT_SA2:
7666 case SADB_X_EXT_NAT_T_TYPE:
7667 case SADB_X_EXT_NAT_T_SPORT:
7668 case SADB_X_EXT_NAT_T_DPORT:
7669 case SADB_X_EXT_NAT_T_OAI:
7670 case SADB_X_EXT_NAT_T_OAR:
7671 case SADB_X_EXT_NAT_T_FRAG:
7672 /* duplicate check */
7673 /*
7674 * XXX Are there duplication payloads of either
7675 * KEY_AUTH or KEY_ENCRYPT ?
7676 */
7677 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7678 IPSECLOG(LOG_DEBUG,
7679 "duplicate ext_type %u is passed.\n",
7680 ext->sadb_ext_type);
7681 m_freem(m);
7682 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7683 return EINVAL;
7684 }
7685 break;
7686 default:
7687 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7688 ext->sadb_ext_type);
7689 m_freem(m);
7690 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7691 return EINVAL;
7692 }
7693
7694 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7695
7696 if (key_validate_ext(ext, extlen)) {
7697 m_freem(m);
7698 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7699 return EINVAL;
7700 }
7701
7702 n = m_pulldown(m, off, extlen, &toff);
7703 if (!n) {
7704 /* m is already freed */
7705 return ENOBUFS;
7706 }
7707 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7708
7709 mhp->ext[ext->sadb_ext_type] = ext;
7710 mhp->extoff[ext->sadb_ext_type] = off;
7711 mhp->extlen[ext->sadb_ext_type] = extlen;
7712 }
7713
7714 if (off != end) {
7715 m_freem(m);
7716 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7717 return EINVAL;
7718 }
7719
7720 return 0;
7721 }
7722
7723 static int
7724 key_validate_ext(const struct sadb_ext *ext, int len)
7725 {
7726 const struct sockaddr *sa;
7727 enum { NONE, ADDR } checktype = NONE;
7728 int baselen = 0;
7729 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7730
7731 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7732 return EINVAL;
7733
7734 /* if it does not match minimum/maximum length, bail */
7735 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7736 ext->sadb_ext_type >= __arraycount(maxsize))
7737 return EINVAL;
7738 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7739 return EINVAL;
7740 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7741 return EINVAL;
7742
7743 /* more checks based on sadb_ext_type XXX need more */
7744 switch (ext->sadb_ext_type) {
7745 case SADB_EXT_ADDRESS_SRC:
7746 case SADB_EXT_ADDRESS_DST:
7747 case SADB_EXT_ADDRESS_PROXY:
7748 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7749 checktype = ADDR;
7750 break;
7751 case SADB_EXT_IDENTITY_SRC:
7752 case SADB_EXT_IDENTITY_DST:
7753 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7754 SADB_X_IDENTTYPE_ADDR) {
7755 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7756 checktype = ADDR;
7757 } else
7758 checktype = NONE;
7759 break;
7760 default:
7761 checktype = NONE;
7762 break;
7763 }
7764
7765 switch (checktype) {
7766 case NONE:
7767 break;
7768 case ADDR:
7769 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7770 if (len < baselen + sal)
7771 return EINVAL;
7772 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7773 return EINVAL;
7774 break;
7775 }
7776
7777 return 0;
7778 }
7779
7780 static int
7781 key_do_init(void)
7782 {
7783 int i, error;
7784
7785 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
7786 key_psz = pserialize_create();
7787 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
7788 cv_init(&key_spd.cv, "key_sp");
7789 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
7790
7791 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7792
7793 callout_init(&key_timehandler_ch, 0);
7794 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7795 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7796 if (error != 0)
7797 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7798
7799 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7800 PSLIST_INIT(&key_spd.splist[i]);
7801 }
7802
7803 PSLIST_INIT(&key_spd.socksplist);
7804
7805 PSLIST_INIT(&key_sad.sahlist);
7806
7807 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7808 LIST_INIT(&key_misc.reglist[i]);
7809 }
7810
7811 #ifndef IPSEC_NONBLOCK_ACQUIRE
7812 LIST_INIT(&key_misc.acqlist);
7813 #endif
7814 #ifdef notyet
7815 LIST_INIT(&key_misc.spacqlist);
7816 #endif
7817
7818 /* system default */
7819 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7820 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
7821 localcount_init(&ip4_def_policy.localcount);
7822
7823 #ifdef INET6
7824 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7825 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
7826 localcount_init(&ip6_def_policy.localcount);
7827 #endif
7828
7829 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7830
7831 /* initialize key statistics */
7832 keystat.getspi_count = 1;
7833
7834 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7835
7836 return (0);
7837 }
7838
7839 void
7840 key_init(void)
7841 {
7842 static ONCE_DECL(key_init_once);
7843
7844 sysctl_net_keyv2_setup(NULL);
7845 sysctl_net_key_compat_setup(NULL);
7846
7847 RUN_ONCE(&key_init_once, key_do_init);
7848
7849 key_init_so();
7850 }
7851
7852 /*
7853 * XXX: maybe This function is called after INBOUND IPsec processing.
7854 *
7855 * Special check for tunnel-mode packets.
7856 * We must make some checks for consistency between inner and outer IP header.
7857 *
7858 * xxx more checks to be provided
7859 */
7860 int
7861 key_checktunnelsanity(
7862 struct secasvar *sav,
7863 u_int family,
7864 void *src,
7865 void *dst
7866 )
7867 {
7868
7869 /* XXX: check inner IP header */
7870
7871 return 1;
7872 }
7873
7874 #if 0
7875 #define hostnamelen strlen(hostname)
7876
7877 /*
7878 * Get FQDN for the host.
7879 * If the administrator configured hostname (by hostname(1)) without
7880 * domain name, returns nothing.
7881 */
7882 static const char *
7883 key_getfqdn(void)
7884 {
7885 int i;
7886 int hasdot;
7887 static char fqdn[MAXHOSTNAMELEN + 1];
7888
7889 if (!hostnamelen)
7890 return NULL;
7891
7892 /* check if it comes with domain name. */
7893 hasdot = 0;
7894 for (i = 0; i < hostnamelen; i++) {
7895 if (hostname[i] == '.')
7896 hasdot++;
7897 }
7898 if (!hasdot)
7899 return NULL;
7900
7901 /* NOTE: hostname may not be NUL-terminated. */
7902 memset(fqdn, 0, sizeof(fqdn));
7903 memcpy(fqdn, hostname, hostnamelen);
7904 fqdn[hostnamelen] = '\0';
7905 return fqdn;
7906 }
7907
7908 /*
7909 * get username@FQDN for the host/user.
7910 */
7911 static const char *
7912 key_getuserfqdn(void)
7913 {
7914 const char *host;
7915 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7916 struct proc *p = curproc;
7917 char *q;
7918
7919 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7920 return NULL;
7921 if (!(host = key_getfqdn()))
7922 return NULL;
7923
7924 /* NOTE: s_login may not be-NUL terminated. */
7925 memset(userfqdn, 0, sizeof(userfqdn));
7926 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7927 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7928 q = userfqdn + strlen(userfqdn);
7929 *q++ = '@';
7930 memcpy(q, host, strlen(host));
7931 q += strlen(host);
7932 *q++ = '\0';
7933
7934 return userfqdn;
7935 }
7936 #endif
7937
7938 /* record data transfer on SA, and update timestamps */
7939 void
7940 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7941 {
7942
7943 KASSERT(sav != NULL);
7944 KASSERT(sav->lft_c != NULL);
7945 KASSERT(m != NULL);
7946
7947 /*
7948 * XXX Currently, there is a difference of bytes size
7949 * between inbound and outbound processing.
7950 */
7951 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7952 /* to check bytes lifetime is done in key_timehandler(). */
7953
7954 /*
7955 * We use the number of packets as the unit of
7956 * sadb_lifetime_allocations. We increment the variable
7957 * whenever {esp,ah}_{in,out}put is called.
7958 */
7959 sav->lft_c->sadb_lifetime_allocations++;
7960 /* XXX check for expires? */
7961
7962 /*
7963 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7964 * in seconds. HARD and SOFT lifetime are measured by the time
7965 * difference (again in seconds) from sadb_lifetime_usetime.
7966 *
7967 * usetime
7968 * v expire expire
7969 * -----+-----+--------+---> t
7970 * <--------------> HARD
7971 * <-----> SOFT
7972 */
7973 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7974 /* XXX check for expires? */
7975
7976 return;
7977 }
7978
7979 /* dumb version */
7980 void
7981 key_sa_routechange(struct sockaddr *dst)
7982 {
7983 struct secashead *sah;
7984 struct route *ro;
7985 const struct sockaddr *sa;
7986
7987 SAHLIST_READER_FOREACH(sah) {
7988 ro = &sah->sa_route;
7989 sa = rtcache_getdst(ro);
7990 if (sa != NULL && dst->sa_len == sa->sa_len &&
7991 memcmp(dst, sa, dst->sa_len) == 0)
7992 rtcache_free(ro);
7993 }
7994
7995 return;
7996 }
7997
7998 static void
7999 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8000 {
8001 struct secasvar *_sav;
8002
8003 KASSERT(sav != NULL);
8004
8005 if (sav->state == state)
8006 return;
8007
8008 SAVLIST_WRITER_REMOVE(sav);
8009 SAVLIST_ENTRY_DESTROY(sav);
8010 SAVLIST_ENTRY_INIT(sav);
8011
8012 sav->state = state;
8013 if (!SADB_SASTATE_USABLE_P(sav)) {
8014 /* We don't need to care about the order */
8015 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8016 return;
8017 }
8018 /*
8019 * Sort the list by lft_c->sadb_lifetime_addtime
8020 * in ascending order.
8021 */
8022 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8023 if (_sav->lft_c->sadb_lifetime_addtime >
8024 sav->lft_c->sadb_lifetime_addtime) {
8025 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8026 break;
8027 }
8028 }
8029 if (_sav == NULL) {
8030 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8031 }
8032 key_validate_savlist(sav->sah, state);
8033 }
8034
8035 /* XXX too much? */
8036 static struct mbuf *
8037 key_alloc_mbuf(int l)
8038 {
8039 struct mbuf *m = NULL, *n;
8040 int len, t;
8041
8042 len = l;
8043 while (len > 0) {
8044 MGET(n, M_DONTWAIT, MT_DATA);
8045 if (n && len > MLEN)
8046 MCLGET(n, M_DONTWAIT);
8047 if (!n) {
8048 m_freem(m);
8049 return NULL;
8050 }
8051
8052 n->m_next = NULL;
8053 n->m_len = 0;
8054 n->m_len = M_TRAILINGSPACE(n);
8055 /* use the bottom of mbuf, hoping we can prepend afterwards */
8056 if (n->m_len > len) {
8057 t = (n->m_len - len) & ~(sizeof(long) - 1);
8058 n->m_data += t;
8059 n->m_len = len;
8060 }
8061
8062 len -= n->m_len;
8063
8064 if (m)
8065 m_cat(m, n);
8066 else
8067 m = n;
8068 }
8069
8070 return m;
8071 }
8072
8073 static struct mbuf *
8074 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8075 {
8076 struct secashead *sah;
8077 struct secasvar *sav;
8078 u_int16_t proto;
8079 u_int8_t satype;
8080 u_int8_t state;
8081 int cnt;
8082 struct mbuf *m, *n;
8083
8084 KASSERT(mutex_owned(&key_sad.lock));
8085
8086 /* map satype to proto */
8087 proto = key_satype2proto(req_satype);
8088 if (proto == 0) {
8089 *errorp = EINVAL;
8090 return (NULL);
8091 }
8092
8093 /* count sav entries to be sent to the userland. */
8094 cnt = 0;
8095 SAHLIST_WRITER_FOREACH(sah) {
8096 if (req_satype != SADB_SATYPE_UNSPEC &&
8097 proto != sah->saidx.proto)
8098 continue;
8099
8100 SASTATE_ANY_FOREACH(state) {
8101 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8102 cnt++;
8103 }
8104 }
8105 }
8106
8107 if (cnt == 0) {
8108 *errorp = ENOENT;
8109 return (NULL);
8110 }
8111
8112 /* send this to the userland, one at a time. */
8113 m = NULL;
8114 SAHLIST_WRITER_FOREACH(sah) {
8115 if (req_satype != SADB_SATYPE_UNSPEC &&
8116 proto != sah->saidx.proto)
8117 continue;
8118
8119 /* map proto to satype */
8120 satype = key_proto2satype(sah->saidx.proto);
8121 if (satype == 0) {
8122 m_freem(m);
8123 *errorp = EINVAL;
8124 return (NULL);
8125 }
8126
8127 SASTATE_ANY_FOREACH(state) {
8128 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8129 n = key_setdumpsa(sav, SADB_DUMP, satype,
8130 --cnt, pid);
8131 if (!n) {
8132 m_freem(m);
8133 *errorp = ENOBUFS;
8134 return (NULL);
8135 }
8136
8137 if (!m)
8138 m = n;
8139 else
8140 m_cat(m, n);
8141 }
8142 }
8143 }
8144
8145 if (!m) {
8146 *errorp = EINVAL;
8147 return (NULL);
8148 }
8149
8150 if ((m->m_flags & M_PKTHDR) != 0) {
8151 m->m_pkthdr.len = 0;
8152 for (n = m; n; n = n->m_next)
8153 m->m_pkthdr.len += n->m_len;
8154 }
8155
8156 *errorp = 0;
8157 return (m);
8158 }
8159
8160 static struct mbuf *
8161 key_setspddump(int *errorp, pid_t pid)
8162 {
8163 struct secpolicy *sp;
8164 int cnt;
8165 u_int dir;
8166 struct mbuf *m, *n;
8167
8168 KASSERT(mutex_owned(&key_spd.lock));
8169
8170 /* search SPD entry and get buffer size. */
8171 cnt = 0;
8172 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8173 SPLIST_WRITER_FOREACH(sp, dir) {
8174 cnt++;
8175 }
8176 }
8177
8178 if (cnt == 0) {
8179 *errorp = ENOENT;
8180 return (NULL);
8181 }
8182
8183 m = NULL;
8184 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8185 SPLIST_WRITER_FOREACH(sp, dir) {
8186 --cnt;
8187 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8188
8189 if (!n) {
8190 *errorp = ENOBUFS;
8191 m_freem(m);
8192 return (NULL);
8193 }
8194 if (!m)
8195 m = n;
8196 else {
8197 m->m_pkthdr.len += n->m_pkthdr.len;
8198 m_cat(m, n);
8199 }
8200 }
8201 }
8202
8203 *errorp = 0;
8204 return (m);
8205 }
8206
8207 int
8208 key_get_used(void) {
8209 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8210 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8211 !SOCKSPLIST_READER_EMPTY();
8212 }
8213
8214 void
8215 key_update_used(void)
8216 {
8217 switch (ipsec_enabled) {
8218 default:
8219 case 0:
8220 #ifdef notyet
8221 /* XXX: racy */
8222 ipsec_used = 0;
8223 #endif
8224 break;
8225 case 1:
8226 #ifndef notyet
8227 /* XXX: racy */
8228 if (!ipsec_used)
8229 #endif
8230 ipsec_used = key_get_used();
8231 break;
8232 case 2:
8233 ipsec_used = 1;
8234 break;
8235 }
8236 }
8237
8238 static int
8239 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8240 {
8241 struct mbuf *m, *n;
8242 int err2 = 0;
8243 char *p, *ep;
8244 size_t len;
8245 int error;
8246
8247 if (newp)
8248 return (EPERM);
8249 if (namelen != 1)
8250 return (EINVAL);
8251
8252 mutex_enter(&key_sad.lock);
8253 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8254 mutex_exit(&key_sad.lock);
8255 if (!m)
8256 return (error);
8257 if (!oldp)
8258 *oldlenp = m->m_pkthdr.len;
8259 else {
8260 p = oldp;
8261 if (*oldlenp < m->m_pkthdr.len) {
8262 err2 = ENOMEM;
8263 ep = p + *oldlenp;
8264 } else {
8265 *oldlenp = m->m_pkthdr.len;
8266 ep = p + m->m_pkthdr.len;
8267 }
8268 for (n = m; n; n = n->m_next) {
8269 len = (ep - p < n->m_len) ?
8270 ep - p : n->m_len;
8271 error = copyout(mtod(n, const void *), p, len);
8272 p += len;
8273 if (error)
8274 break;
8275 }
8276 if (error == 0)
8277 error = err2;
8278 }
8279 m_freem(m);
8280
8281 return (error);
8282 }
8283
8284 static int
8285 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8286 {
8287 struct mbuf *m, *n;
8288 int err2 = 0;
8289 char *p, *ep;
8290 size_t len;
8291 int error;
8292
8293 if (newp)
8294 return (EPERM);
8295 if (namelen != 0)
8296 return (EINVAL);
8297
8298 mutex_enter(&key_spd.lock);
8299 m = key_setspddump(&error, l->l_proc->p_pid);
8300 mutex_exit(&key_spd.lock);
8301 if (!m)
8302 return (error);
8303 if (!oldp)
8304 *oldlenp = m->m_pkthdr.len;
8305 else {
8306 p = oldp;
8307 if (*oldlenp < m->m_pkthdr.len) {
8308 err2 = ENOMEM;
8309 ep = p + *oldlenp;
8310 } else {
8311 *oldlenp = m->m_pkthdr.len;
8312 ep = p + m->m_pkthdr.len;
8313 }
8314 for (n = m; n; n = n->m_next) {
8315 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8316 error = copyout(mtod(n, const void *), p, len);
8317 p += len;
8318 if (error)
8319 break;
8320 }
8321 if (error == 0)
8322 error = err2;
8323 }
8324 m_freem(m);
8325
8326 return (error);
8327 }
8328
8329 /*
8330 * Create sysctl tree for native IPSEC key knobs, originally
8331 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8332 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8333 * and in any case the part of our sysctl namespace used for dumping the
8334 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8335 * namespace, for API reasons.
8336 *
8337 * Pending a consensus on the right way to fix this, add a level of
8338 * indirection in how we number the `native' IPSEC key nodes;
8339 * and (as requested by Andrew Brown) move registration of the
8340 * KAME-compatible names to a separate function.
8341 */
8342 #if 0
8343 # define IPSEC_PFKEY PF_KEY_V2
8344 # define IPSEC_PFKEY_NAME "keyv2"
8345 #else
8346 # define IPSEC_PFKEY PF_KEY
8347 # define IPSEC_PFKEY_NAME "key"
8348 #endif
8349
8350 static int
8351 sysctl_net_key_stats(SYSCTLFN_ARGS)
8352 {
8353
8354 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8355 }
8356
8357 static void
8358 sysctl_net_keyv2_setup(struct sysctllog **clog)
8359 {
8360
8361 sysctl_createv(clog, 0, NULL, NULL,
8362 CTLFLAG_PERMANENT,
8363 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8364 NULL, 0, NULL, 0,
8365 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8366
8367 sysctl_createv(clog, 0, NULL, NULL,
8368 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8369 CTLTYPE_INT, "debug", NULL,
8370 NULL, 0, &key_debug_level, 0,
8371 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8372 sysctl_createv(clog, 0, NULL, NULL,
8373 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8374 CTLTYPE_INT, "spi_try", NULL,
8375 NULL, 0, &key_spi_trycnt, 0,
8376 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8377 sysctl_createv(clog, 0, NULL, NULL,
8378 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8379 CTLTYPE_INT, "spi_min_value", NULL,
8380 NULL, 0, &key_spi_minval, 0,
8381 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8382 sysctl_createv(clog, 0, NULL, NULL,
8383 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8384 CTLTYPE_INT, "spi_max_value", NULL,
8385 NULL, 0, &key_spi_maxval, 0,
8386 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8387 sysctl_createv(clog, 0, NULL, NULL,
8388 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8389 CTLTYPE_INT, "random_int", NULL,
8390 NULL, 0, &key_int_random, 0,
8391 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8392 sysctl_createv(clog, 0, NULL, NULL,
8393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8394 CTLTYPE_INT, "larval_lifetime", NULL,
8395 NULL, 0, &key_larval_lifetime, 0,
8396 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8397 sysctl_createv(clog, 0, NULL, NULL,
8398 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8399 CTLTYPE_INT, "blockacq_count", NULL,
8400 NULL, 0, &key_blockacq_count, 0,
8401 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8402 sysctl_createv(clog, 0, NULL, NULL,
8403 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8404 CTLTYPE_INT, "blockacq_lifetime", NULL,
8405 NULL, 0, &key_blockacq_lifetime, 0,
8406 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8407 sysctl_createv(clog, 0, NULL, NULL,
8408 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8409 CTLTYPE_INT, "esp_keymin", NULL,
8410 NULL, 0, &ipsec_esp_keymin, 0,
8411 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8412 sysctl_createv(clog, 0, NULL, NULL,
8413 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8414 CTLTYPE_INT, "prefered_oldsa", NULL,
8415 NULL, 0, &key_prefered_oldsa, 0,
8416 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8417 sysctl_createv(clog, 0, NULL, NULL,
8418 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8419 CTLTYPE_INT, "esp_auth", NULL,
8420 NULL, 0, &ipsec_esp_auth, 0,
8421 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8422 sysctl_createv(clog, 0, NULL, NULL,
8423 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8424 CTLTYPE_INT, "ah_keymin", NULL,
8425 NULL, 0, &ipsec_ah_keymin, 0,
8426 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8427 sysctl_createv(clog, 0, NULL, NULL,
8428 CTLFLAG_PERMANENT,
8429 CTLTYPE_STRUCT, "stats",
8430 SYSCTL_DESCR("PF_KEY statistics"),
8431 sysctl_net_key_stats, 0, NULL, 0,
8432 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8433 }
8434
8435 /*
8436 * Register sysctl names used by setkey(8). For historical reasons,
8437 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8438 * for both IPSEC and KAME IPSEC.
8439 */
8440 static void
8441 sysctl_net_key_compat_setup(struct sysctllog **clog)
8442 {
8443
8444 sysctl_createv(clog, 0, NULL, NULL,
8445 CTLFLAG_PERMANENT,
8446 CTLTYPE_NODE, "key", NULL,
8447 NULL, 0, NULL, 0,
8448 CTL_NET, PF_KEY, CTL_EOL);
8449
8450 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8451 sysctl_createv(clog, 0, NULL, NULL,
8452 CTLFLAG_PERMANENT,
8453 CTLTYPE_STRUCT, "dumpsa", NULL,
8454 sysctl_net_key_dumpsa, 0, NULL, 0,
8455 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8456 sysctl_createv(clog, 0, NULL, NULL,
8457 CTLFLAG_PERMANENT,
8458 CTLTYPE_STRUCT, "dumpsp", NULL,
8459 sysctl_net_key_dumpsp, 0, NULL, 0,
8460 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8461 }
8462