key.c revision 1.219 1 /* $NetBSD: key.c,v 1.219 2017/08/09 03:41:11 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.219 2017/08/09 03:41:11 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160 * - SP's lifetime is managed by localcount(9)
161 * - An SP that has been inserted to the key_spd.splist is initially referenced
162 * by none, i.e., a reference from the key_spd.splist isn't counted
163 * - When an SP is being destroyed, we change its state as DEAD, wait for
164 * references to the SP to be released, and then deallocate the SP
165 * (see key_unlink_sp)
166 * - Getting an SP
167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168 * - Must iterate the list and increment the reference count of a found SP
169 * (by key_sp_ref) in a pserialize read section
170 * - We can gain another reference from a held SP only if we check its state
171 * and take its reference in a pserialize read section
172 * (see esp_output for example)
173 * - We may get an SP from an SP cache. See below
174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175 * - Updating member variables of an SP
176 * - Most member variables of an SP are immutable
177 * - Only sp->state and sp->lastused can be changed
178 * - sp->state of an SP is updated only when destroying it under key_spd.lock
179 * - SP caches
180 * - SPs can be cached in PCBs
181 * - The lifetime of the caches is controlled by the global generation counter
182 * (ipsec_spdgen)
183 * - The global counter value is stored when an SP is cached
184 * - If the stored value is different from the global counter then the cache
185 * is considered invalidated
186 * - The counter is incremented when an SP is being destroyed
187 * - So checking the generation and taking a reference to an SP should be
188 * in a pserialize read section
189 * - Note that caching doesn't increment the reference counter of an SP
190 * - SPs in sockets
191 * - Userland programs can set a policy to a socket by
192 * setsockopt(IP_IPSEC_POLICY)
193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
194 * the key_spd.socksplist list (not the key_spd.splist)
195 * - Such a policy is destroyed when a corresponding socket is destroed,
196 * however, a socket can be destroyed in softint so we cannot destroy
197 * it directly instead we just mark it DEAD and delay the destruction
198 * until GC by the timer
199 */
200 /*
201 * Locking notes on SAD:
202 * - Data structures
203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204 * entries
205 * - A sah has sav lists for each SA state
206 * - Multiple sahs with the same saidx can exist
207 * - Only one entry has MATURE state and others should be DEAD
208 * - DEAD entries are just ignored from searching
209 * - Modifications to the key_sad.sahlist must be done with holding key_sad.lock
210 * which is a adaptive mutex
211 * - Read accesses to the key_sad.sahlist must be in pserialize(9) read sections
212 * - sah's lifetime is managed by localcount(9)
213 * - Getting an sah entry
214 * - We get an sah from the key_sad.sahlist
215 * - Must iterate the list and increment the reference count of a found sah
216 * (by key_sah_ref) in a pserialize read section
217 * - A gotten sah must be released after use by key_sah_unref
218 * - An sah is destroyed when its state become DEAD and no sav is
219 * listed to the sah
220 * - The destruction is done only in the timer (see key_timehandler_sad)
221 */
222 /*
223 * Locking notes on misc data:
224 * - All lists of key_misc are protected by key_misc.lock
225 * - key_misc.lock must be held even for read accesses
226 */
227
228 static pserialize_t key_spd_psz __read_mostly;
229 static pserialize_t key_sad_psz __read_mostly;
230
231 /* SPD */
232 static struct {
233 kmutex_t lock;
234 kcondvar_t cv;
235 struct pslist_head splist[IPSEC_DIR_MAX];
236 /*
237 * The list has SPs that are set to a socket via
238 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
239 */
240 struct pslist_head socksplist;
241 } key_spd __cacheline_aligned;
242
243 /* SAD */
244 static struct {
245 kmutex_t lock;
246 kcondvar_t cv;
247 struct pslist_head sahlist;
248 } key_sad __cacheline_aligned;
249
250 /* Misc data */
251 static struct {
252 kmutex_t lock;
253 /* registed list */
254 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
255 #ifndef IPSEC_NONBLOCK_ACQUIRE
256 /* acquiring list */
257 LIST_HEAD(_acqlist, secacq) acqlist;
258 #endif
259 #ifdef notyet
260 /* SP acquiring list */
261 LIST_HEAD(_spacqlist, secspacq) spacqlist;
262 #endif
263 } key_misc __cacheline_aligned;
264
265 /* Macros for key_spd.splist */
266 #define SPLIST_ENTRY_INIT(sp) \
267 PSLIST_ENTRY_INIT((sp), pslist_entry)
268 #define SPLIST_ENTRY_DESTROY(sp) \
269 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
270 #define SPLIST_WRITER_REMOVE(sp) \
271 PSLIST_WRITER_REMOVE((sp), pslist_entry)
272 #define SPLIST_READER_EMPTY(dir) \
273 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
274 pslist_entry) == NULL)
275 #define SPLIST_READER_FOREACH(sp, dir) \
276 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
277 struct secpolicy, pslist_entry)
278 #define SPLIST_WRITER_FOREACH(sp, dir) \
279 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
280 struct secpolicy, pslist_entry)
281 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
282 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
283 #define SPLIST_WRITER_EMPTY(dir) \
284 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
285 pslist_entry) == NULL)
286 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
287 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
288 pslist_entry)
289 #define SPLIST_WRITER_NEXT(sp) \
290 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
291 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
292 do { \
293 if (SPLIST_WRITER_EMPTY((dir))) { \
294 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
295 } else { \
296 struct secpolicy *__sp; \
297 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
298 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
299 SPLIST_WRITER_INSERT_AFTER(__sp,\
300 (new)); \
301 break; \
302 } \
303 } \
304 } \
305 } while (0)
306
307 /* Macros for key_spd.socksplist */
308 #define SOCKSPLIST_WRITER_FOREACH(sp) \
309 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
310 struct secpolicy, pslist_entry)
311 #define SOCKSPLIST_READER_EMPTY() \
312 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
313 pslist_entry) == NULL)
314
315 /* Macros for key_sad.sahlist */
316 #define SAHLIST_ENTRY_INIT(sah) \
317 PSLIST_ENTRY_INIT((sah), pslist_entry)
318 #define SAHLIST_ENTRY_DESTROY(sah) \
319 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
320 #define SAHLIST_WRITER_REMOVE(sah) \
321 PSLIST_WRITER_REMOVE((sah), pslist_entry)
322 #define SAHLIST_READER_FOREACH(sah) \
323 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
324 pslist_entry)
325 #define SAHLIST_WRITER_FOREACH(sah) \
326 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
327 pslist_entry)
328 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
329 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
330
331 /* Macros for key_sad.sahlist#savlist */
332 #define SAVLIST_ENTRY_INIT(sav) \
333 PSLIST_ENTRY_INIT((sav), pslist_entry)
334 #define SAVLIST_ENTRY_DESTROY(sav) \
335 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
336 #define SAVLIST_READER_FIRST(sah, state) \
337 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
338 pslist_entry)
339 #define SAVLIST_WRITER_REMOVE(sav) \
340 PSLIST_WRITER_REMOVE((sav), pslist_entry)
341 #define SAVLIST_READER_FOREACH(sav, sah, state) \
342 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
343 struct secasvar, pslist_entry)
344 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
345 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
346 struct secasvar, pslist_entry)
347 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
348 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
349 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
350 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
351 #define SAVLIST_WRITER_EMPTY(sah, state) \
352 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
353 pslist_entry) == NULL)
354 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
355 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
356 pslist_entry)
357 #define SAVLIST_WRITER_NEXT(sav) \
358 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
359 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
360 do { \
361 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
362 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
363 } else { \
364 struct secasvar *__sav; \
365 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
366 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
367 SAVLIST_WRITER_INSERT_AFTER(__sav,\
368 (new)); \
369 break; \
370 } \
371 } \
372 } \
373 } while (0)
374 #define SAVLIST_READER_NEXT(sav) \
375 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
376
377
378 /* search order for SAs */
379 /*
380 * This order is important because we must select the oldest SA
381 * for outbound processing. For inbound, This is not important.
382 */
383 static const u_int saorder_state_valid_prefer_old[] = {
384 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
385 };
386 static const u_int saorder_state_valid_prefer_new[] = {
387 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
388 };
389
390 static const u_int saorder_state_alive[] = {
391 /* except DEAD */
392 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
393 };
394 static const u_int saorder_state_any[] = {
395 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
396 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
397 };
398
399 #define SASTATE_ALIVE_FOREACH(s) \
400 for (int _i = 0; \
401 _i < __arraycount(saorder_state_alive) ? \
402 (s) = saorder_state_alive[_i], true : false; \
403 _i++)
404 #define SASTATE_ANY_FOREACH(s) \
405 for (int _i = 0; \
406 _i < __arraycount(saorder_state_any) ? \
407 (s) = saorder_state_any[_i], true : false; \
408 _i++)
409
410 static const int minsize[] = {
411 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
412 sizeof(struct sadb_sa), /* SADB_EXT_SA */
413 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
414 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
415 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
416 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
417 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
418 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
419 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
420 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
421 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
422 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
423 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
424 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
425 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
426 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
427 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
428 0, /* SADB_X_EXT_KMPRIVATE */
429 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
430 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
431 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
432 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
433 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
434 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
435 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
436 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
437 };
438 static const int maxsize[] = {
439 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
440 sizeof(struct sadb_sa), /* SADB_EXT_SA */
441 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
442 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
443 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
444 0, /* SADB_EXT_ADDRESS_SRC */
445 0, /* SADB_EXT_ADDRESS_DST */
446 0, /* SADB_EXT_ADDRESS_PROXY */
447 0, /* SADB_EXT_KEY_AUTH */
448 0, /* SADB_EXT_KEY_ENCRYPT */
449 0, /* SADB_EXT_IDENTITY_SRC */
450 0, /* SADB_EXT_IDENTITY_DST */
451 0, /* SADB_EXT_SENSITIVITY */
452 0, /* SADB_EXT_PROPOSAL */
453 0, /* SADB_EXT_SUPPORTED_AUTH */
454 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
455 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
456 0, /* SADB_X_EXT_KMPRIVATE */
457 0, /* SADB_X_EXT_POLICY */
458 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
459 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
460 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
461 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
462 0, /* SADB_X_EXT_NAT_T_OAI */
463 0, /* SADB_X_EXT_NAT_T_OAR */
464 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
465 };
466
467 static int ipsec_esp_keymin = 256;
468 static int ipsec_esp_auth = 0;
469 static int ipsec_ah_keymin = 128;
470
471 #ifdef SYSCTL_DECL
472 SYSCTL_DECL(_net_key);
473 #endif
474
475 #ifdef SYSCTL_INT
476 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
477 &key_debug_level, 0, "");
478
479 /* max count of trial for the decision of spi value */
480 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
481 &key_spi_trycnt, 0, "");
482
483 /* minimum spi value to allocate automatically. */
484 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
485 &key_spi_minval, 0, "");
486
487 /* maximun spi value to allocate automatically. */
488 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
489 &key_spi_maxval, 0, "");
490
491 /* interval to initialize randseed */
492 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
493 &key_int_random, 0, "");
494
495 /* lifetime for larval SA */
496 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
497 &key_larval_lifetime, 0, "");
498
499 /* counter for blocking to send SADB_ACQUIRE to IKEd */
500 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
501 &key_blockacq_count, 0, "");
502
503 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
504 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
505 &key_blockacq_lifetime, 0, "");
506
507 /* ESP auth */
508 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
509 &ipsec_esp_auth, 0, "");
510
511 /* minimum ESP key length */
512 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
513 &ipsec_esp_keymin, 0, "");
514
515 /* minimum AH key length */
516 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
517 &ipsec_ah_keymin, 0, "");
518
519 /* perfered old SA rather than new SA */
520 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
521 &key_prefered_oldsa, 0, "");
522 #endif /* SYSCTL_INT */
523
524 #define __LIST_CHAINED(elm) \
525 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
526 #define LIST_INSERT_TAIL(head, elm, type, field) \
527 do {\
528 struct type *curelm = LIST_FIRST(head); \
529 if (curelm == NULL) {\
530 LIST_INSERT_HEAD(head, elm, field); \
531 } else { \
532 while (LIST_NEXT(curelm, field)) \
533 curelm = LIST_NEXT(curelm, field);\
534 LIST_INSERT_AFTER(curelm, elm, field);\
535 }\
536 } while (0)
537
538 #define KEY_CHKSASTATE(head, sav) \
539 /* do */ { \
540 if ((head) != (sav)) { \
541 IPSECLOG(LOG_DEBUG, \
542 "state mismatched (TREE=%d SA=%d)\n", \
543 (head), (sav)); \
544 continue; \
545 } \
546 } /* while (0) */
547
548 #define KEY_CHKSPDIR(head, sp) \
549 do { \
550 if ((head) != (sp)) { \
551 IPSECLOG(LOG_DEBUG, \
552 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
553 (head), (sp)); \
554 } \
555 } while (0)
556
557 /*
558 * set parameters into secasindex buffer.
559 * Must allocate secasindex buffer before calling this function.
560 */
561 static int
562 key_setsecasidx(int, int, int, const struct sockaddr *,
563 const struct sockaddr *, struct secasindex *);
564
565 /* key statistics */
566 struct _keystat {
567 u_long getspi_count; /* the avarage of count to try to get new SPI */
568 } keystat;
569
570 struct sadb_msghdr {
571 struct sadb_msg *msg;
572 struct sadb_ext *ext[SADB_EXT_MAX + 1];
573 int extoff[SADB_EXT_MAX + 1];
574 int extlen[SADB_EXT_MAX + 1];
575 };
576
577 static void
578 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
579
580 static const struct sockaddr *
581 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
582 {
583
584 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
585 }
586
587 static struct mbuf *
588 key_fill_replymsg(struct mbuf *m, int seq)
589 {
590 struct sadb_msg *msg;
591
592 if (m->m_len < sizeof(*msg)) {
593 m = m_pullup(m, sizeof(*msg));
594 if (m == NULL)
595 return NULL;
596 }
597 msg = mtod(m, struct sadb_msg *);
598 msg->sadb_msg_errno = 0;
599 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
600 if (seq != 0)
601 msg->sadb_msg_seq = seq;
602
603 return m;
604 }
605
606 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
607 #if 0
608 static void key_freeso(struct socket *);
609 static void key_freesp_so(struct secpolicy **);
610 #endif
611 static struct secpolicy *key_getsp (const struct secpolicyindex *);
612 static struct secpolicy *key_getspbyid (u_int32_t);
613 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
614 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
615 static void key_destroy_sp(struct secpolicy *);
616 static u_int16_t key_newreqid (void);
617 static struct mbuf *key_gather_mbuf (struct mbuf *,
618 const struct sadb_msghdr *, int, int, ...);
619 static int key_api_spdadd(struct socket *, struct mbuf *,
620 const struct sadb_msghdr *);
621 static u_int32_t key_getnewspid (void);
622 static int key_api_spddelete(struct socket *, struct mbuf *,
623 const struct sadb_msghdr *);
624 static int key_api_spddelete2(struct socket *, struct mbuf *,
625 const struct sadb_msghdr *);
626 static int key_api_spdget(struct socket *, struct mbuf *,
627 const struct sadb_msghdr *);
628 static int key_api_spdflush(struct socket *, struct mbuf *,
629 const struct sadb_msghdr *);
630 static int key_api_spddump(struct socket *, struct mbuf *,
631 const struct sadb_msghdr *);
632 static struct mbuf * key_setspddump (int *errorp, pid_t);
633 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
634 static int key_api_nat_map(struct socket *, struct mbuf *,
635 const struct sadb_msghdr *);
636 static struct mbuf *key_setdumpsp (struct secpolicy *,
637 u_int8_t, u_int32_t, pid_t);
638 static u_int key_getspreqmsglen (const struct secpolicy *);
639 static int key_spdexpire (struct secpolicy *);
640 static struct secashead *key_newsah (const struct secasindex *);
641 static void key_unlink_sah(struct secashead *);
642 static void key_destroy_sah(struct secashead *);
643 static bool key_sah_has_sav(struct secashead *);
644 static void key_sah_ref(struct secashead *);
645 static void key_sah_unref(struct secashead *);
646 static struct secasvar *key_newsav(struct mbuf *,
647 const struct sadb_msghdr *, int *, const char*, int);
648 #define KEY_NEWSAV(m, sadb, e) \
649 key_newsav(m, sadb, e, __func__, __LINE__)
650 static void key_delsav (struct secasvar *);
651 static struct secashead *key_getsah(const struct secasindex *, int);
652 static struct secashead *key_getsah_ref(const struct secasindex *, int);
653 static bool key_checkspidup(const struct secasindex *, u_int32_t);
654 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
655 static int key_setsaval (struct secasvar *, struct mbuf *,
656 const struct sadb_msghdr *);
657 static void key_freesaval(struct secasvar *);
658 static int key_init_xform(struct secasvar *);
659 static void key_clear_xform(struct secasvar *);
660 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
661 u_int8_t, u_int32_t, u_int32_t);
662 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
663 static struct mbuf *key_setsadbxtype (u_int16_t);
664 static struct mbuf *key_setsadbxfrag (u_int16_t);
665 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
666 static int key_checksalen (const union sockaddr_union *);
667 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
668 u_int32_t, pid_t, u_int16_t);
669 static struct mbuf *key_setsadbsa (struct secasvar *);
670 static struct mbuf *key_setsadbaddr (u_int16_t,
671 const struct sockaddr *, u_int8_t, u_int16_t);
672 #if 0
673 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
674 int, u_int64_t);
675 #endif
676 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
677 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
678 u_int32_t);
679 static void *key_newbuf (const void *, u_int);
680 #ifdef INET6
681 static int key_ismyaddr6 (const struct sockaddr_in6 *);
682 #endif
683
684 static void sysctl_net_keyv2_setup(struct sysctllog **);
685 static void sysctl_net_key_compat_setup(struct sysctllog **);
686
687 /* flags for key_saidx_match() */
688 #define CMP_HEAD 1 /* protocol, addresses. */
689 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
690 #define CMP_REQID 3 /* additionally HEAD, reaid. */
691 #define CMP_EXACTLY 4 /* all elements. */
692 static int key_saidx_match(const struct secasindex *,
693 const struct secasindex *, int);
694
695 static int key_sockaddr_match(const struct sockaddr *,
696 const struct sockaddr *, int);
697 static int key_bb_match_withmask(const void *, const void *, u_int);
698 static u_int16_t key_satype2proto (u_int8_t);
699 static u_int8_t key_proto2satype (u_int16_t);
700
701 static int key_spidx_match_exactly(const struct secpolicyindex *,
702 const struct secpolicyindex *);
703 static int key_spidx_match_withmask(const struct secpolicyindex *,
704 const struct secpolicyindex *);
705
706 static int key_api_getspi(struct socket *, struct mbuf *,
707 const struct sadb_msghdr *);
708 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
709 const struct secasindex *);
710 static int key_handle_natt_info (struct secasvar *,
711 const struct sadb_msghdr *);
712 static int key_set_natt_ports (union sockaddr_union *,
713 union sockaddr_union *,
714 const struct sadb_msghdr *);
715 static int key_api_update(struct socket *, struct mbuf *,
716 const struct sadb_msghdr *);
717 #ifdef IPSEC_DOSEQCHECK
718 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
719 #endif
720 static int key_api_add(struct socket *, struct mbuf *,
721 const struct sadb_msghdr *);
722 static int key_setident (struct secashead *, struct mbuf *,
723 const struct sadb_msghdr *);
724 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
725 const struct sadb_msghdr *);
726 static int key_api_delete(struct socket *, struct mbuf *,
727 const struct sadb_msghdr *);
728 static int key_api_get(struct socket *, struct mbuf *,
729 const struct sadb_msghdr *);
730
731 static void key_getcomb_setlifetime (struct sadb_comb *);
732 static struct mbuf *key_getcomb_esp (void);
733 static struct mbuf *key_getcomb_ah (void);
734 static struct mbuf *key_getcomb_ipcomp (void);
735 static struct mbuf *key_getprop (const struct secasindex *);
736
737 static int key_acquire (const struct secasindex *, struct secpolicy *);
738 #ifndef IPSEC_NONBLOCK_ACQUIRE
739 static struct secacq *key_newacq (const struct secasindex *);
740 static struct secacq *key_getacq (const struct secasindex *);
741 static struct secacq *key_getacqbyseq (u_int32_t);
742 #endif
743 #ifdef notyet
744 static struct secspacq *key_newspacq (const struct secpolicyindex *);
745 static struct secspacq *key_getspacq (const struct secpolicyindex *);
746 #endif
747 static int key_api_acquire(struct socket *, struct mbuf *,
748 const struct sadb_msghdr *);
749 static int key_api_register(struct socket *, struct mbuf *,
750 const struct sadb_msghdr *);
751 static int key_expire (struct secasvar *);
752 static int key_api_flush(struct socket *, struct mbuf *,
753 const struct sadb_msghdr *);
754 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
755 int *lenp, pid_t pid);
756 static int key_api_dump(struct socket *, struct mbuf *,
757 const struct sadb_msghdr *);
758 static int key_api_promisc(struct socket *, struct mbuf *,
759 const struct sadb_msghdr *);
760 static int key_senderror (struct socket *, struct mbuf *, int);
761 static int key_validate_ext (const struct sadb_ext *, int);
762 static int key_align (struct mbuf *, struct sadb_msghdr *);
763 #if 0
764 static const char *key_getfqdn (void);
765 static const char *key_getuserfqdn (void);
766 #endif
767 static void key_sa_chgstate (struct secasvar *, u_int8_t);
768
769 static struct mbuf *key_alloc_mbuf (int);
770
771 static void key_timehandler(void *);
772 static void key_timehandler_work(struct work *, void *);
773 static struct callout key_timehandler_ch;
774 static struct workqueue *key_timehandler_wq;
775 static struct work key_timehandler_wk;
776
777 #ifdef IPSEC_REF_DEBUG
778 #define REFLOG(label, p, where, tag) \
779 log(LOG_DEBUG, "%s:%d: " label " : refcnt=%d (%p)\n.", \
780 (where), (tag), (p)->refcnt, (p))
781 #else
782 #define REFLOG(label, p, where, tag) do {} while (0)
783 #endif
784
785 #define SA_ADDREF(p) do { \
786 atomic_inc_uint(&(p)->refcnt); \
787 REFLOG("SA_ADDREF", (p), __func__, __LINE__); \
788 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
789 } while (0)
790 #define SA_ADDREF2(p, where, tag) do { \
791 atomic_inc_uint(&(p)->refcnt); \
792 REFLOG("SA_ADDREF", (p), (where), (tag)); \
793 KASSERTMSG((p)->refcnt != 0, "SA refcnt overflow"); \
794 } while (0)
795 #define SA_DELREF(p) do { \
796 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
797 atomic_dec_uint(&(p)->refcnt); \
798 REFLOG("SA_DELREF", (p), __func__, __LINE__); \
799 } while (0)
800 #define SA_DELREF2(p, nv, where, tag) do { \
801 KASSERTMSG((p)->refcnt > 0, "SA refcnt underflow"); \
802 nv = atomic_dec_uint_nv(&(p)->refcnt); \
803 REFLOG("SA_DELREF", (p), (where), (tag)); \
804 } while (0)
805
806 u_int
807 key_sp_refcnt(const struct secpolicy *sp)
808 {
809
810 /* FIXME */
811 return 0;
812 }
813
814 /*
815 * Remove the sp from the key_spd.splist and wait for references to the sp
816 * to be released. key_spd.lock must be held.
817 */
818 static void
819 key_unlink_sp(struct secpolicy *sp)
820 {
821
822 KASSERT(mutex_owned(&key_spd.lock));
823
824 sp->state = IPSEC_SPSTATE_DEAD;
825 SPLIST_WRITER_REMOVE(sp);
826
827 /* Invalidate all cached SPD pointers in the PCBs. */
828 ipsec_invalpcbcacheall();
829
830 #ifdef NET_MPSAFE
831 KASSERT(mutex_ownable(softnet_lock));
832 pserialize_perform(key_spd_psz);
833 #endif
834
835 localcount_drain(&sp->localcount, &key_spd.cv, &key_spd.lock);
836 }
837
838 /*
839 * Return 0 when there are known to be no SP's for the specified
840 * direction. Otherwise return 1. This is used by IPsec code
841 * to optimize performance.
842 */
843 int
844 key_havesp(u_int dir)
845 {
846 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
847 !SPLIST_READER_EMPTY(dir) : 1);
848 }
849
850 /* %%% IPsec policy management */
851 /*
852 * allocating a SP for OUTBOUND or INBOUND packet.
853 * Must call key_freesp() later.
854 * OUT: NULL: not found
855 * others: found and return the pointer.
856 */
857 struct secpolicy *
858 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
859 u_int dir, const char* where, int tag)
860 {
861 struct secpolicy *sp;
862 int s;
863
864 KASSERT(spidx != NULL);
865 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
866
867 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
868
869 /* get a SP entry */
870 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
871 printf("*** objects\n");
872 kdebug_secpolicyindex(spidx);
873 }
874
875 s = pserialize_read_enter();
876 SPLIST_READER_FOREACH(sp, dir) {
877 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
878 printf("*** in SPD\n");
879 kdebug_secpolicyindex(&sp->spidx);
880 }
881
882 if (sp->state == IPSEC_SPSTATE_DEAD)
883 continue;
884 if (key_spidx_match_withmask(&sp->spidx, spidx))
885 goto found;
886 }
887 sp = NULL;
888 found:
889 if (sp) {
890 /* sanity check */
891 KEY_CHKSPDIR(sp->spidx.dir, dir);
892
893 /* found a SPD entry */
894 sp->lastused = time_uptime;
895 key_sp_ref(sp, where, tag);
896 }
897 pserialize_read_exit(s);
898
899 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
900 "DP return SP:%p (ID=%u) refcnt %u\n",
901 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
902 return sp;
903 }
904
905 /*
906 * return a policy that matches this particular inbound packet.
907 * XXX slow
908 */
909 struct secpolicy *
910 key_gettunnel(const struct sockaddr *osrc,
911 const struct sockaddr *odst,
912 const struct sockaddr *isrc,
913 const struct sockaddr *idst,
914 const char* where, int tag)
915 {
916 struct secpolicy *sp;
917 const int dir = IPSEC_DIR_INBOUND;
918 int s;
919 struct ipsecrequest *r1, *r2, *p;
920 struct secpolicyindex spidx;
921
922 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
923
924 if (isrc->sa_family != idst->sa_family) {
925 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
926 isrc->sa_family, idst->sa_family);
927 sp = NULL;
928 goto done;
929 }
930
931 s = pserialize_read_enter();
932 SPLIST_READER_FOREACH(sp, dir) {
933 if (sp->state == IPSEC_SPSTATE_DEAD)
934 continue;
935
936 r1 = r2 = NULL;
937 for (p = sp->req; p; p = p->next) {
938 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
939 continue;
940
941 r1 = r2;
942 r2 = p;
943
944 if (!r1) {
945 /* here we look at address matches only */
946 spidx = sp->spidx;
947 if (isrc->sa_len > sizeof(spidx.src) ||
948 idst->sa_len > sizeof(spidx.dst))
949 continue;
950 memcpy(&spidx.src, isrc, isrc->sa_len);
951 memcpy(&spidx.dst, idst, idst->sa_len);
952 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
953 continue;
954 } else {
955 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
956 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
957 continue;
958 }
959
960 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
961 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
962 continue;
963
964 goto found;
965 }
966 }
967 sp = NULL;
968 found:
969 if (sp) {
970 sp->lastused = time_uptime;
971 key_sp_ref(sp, where, tag);
972 }
973 pserialize_read_exit(s);
974 done:
975 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
976 "DP return SP:%p (ID=%u) refcnt %u\n",
977 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
978 return sp;
979 }
980
981 /*
982 * allocating an SA entry for an *OUTBOUND* packet.
983 * checking each request entries in SP, and acquire an SA if need.
984 * OUT: 0: there are valid requests.
985 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
986 */
987 int
988 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
989 {
990 u_int level;
991 int error;
992 const struct secasindex *saidx = &isr->saidx;
993 struct secasvar *sav;
994
995 KASSERT(isr != NULL);
996 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
997 saidx->mode == IPSEC_MODE_TUNNEL,
998 "unexpected policy %u", saidx->mode);
999
1000 /* get current level */
1001 level = ipsec_get_reqlevel(isr);
1002
1003 /*
1004 * XXX guard against protocol callbacks from the crypto
1005 * thread as they reference ipsecrequest.sav which we
1006 * temporarily null out below. Need to rethink how we
1007 * handle bundled SA's in the callback thread.
1008 */
1009 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
1010
1011 sav = key_lookup_sa_bysaidx(saidx);
1012 if (sav != NULL) {
1013 *ret = sav;
1014 return 0;
1015 }
1016
1017 /* there is no SA */
1018 error = key_acquire(saidx, isr->sp);
1019 if (error != 0) {
1020 /* XXX What should I do ? */
1021 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1022 error);
1023 return error;
1024 }
1025
1026 if (level != IPSEC_LEVEL_REQUIRE) {
1027 /* XXX sigh, the interface to this routine is botched */
1028 *ret = NULL;
1029 return 0;
1030 } else {
1031 return ENOENT;
1032 }
1033 }
1034
1035 /*
1036 * looking up a SA for policy entry from SAD.
1037 * NOTE: searching SAD of aliving state.
1038 * OUT: NULL: not found.
1039 * others: found and return the pointer.
1040 */
1041 static struct secasvar *
1042 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1043 {
1044 struct secashead *sah;
1045 struct secasvar *sav = NULL;
1046 u_int stateidx, state;
1047 const u_int *saorder_state_valid;
1048 int arraysize;
1049 int s;
1050
1051 s = pserialize_read_enter();
1052 sah = key_getsah(saidx, CMP_MODE_REQID);
1053 if (sah == NULL)
1054 goto out;
1055
1056 /*
1057 * search a valid state list for outbound packet.
1058 * This search order is important.
1059 */
1060 if (key_prefered_oldsa) {
1061 saorder_state_valid = saorder_state_valid_prefer_old;
1062 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1063 } else {
1064 saorder_state_valid = saorder_state_valid_prefer_new;
1065 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1066 }
1067
1068 /* search valid state */
1069 for (stateidx = 0;
1070 stateidx < arraysize;
1071 stateidx++) {
1072
1073 state = saorder_state_valid[stateidx];
1074
1075 if (key_prefered_oldsa)
1076 sav = SAVLIST_READER_FIRST(sah, state);
1077 else {
1078 /* XXX need O(1) lookup */
1079 struct secasvar *last = NULL;
1080
1081 SAVLIST_READER_FOREACH(sav, sah, state)
1082 last = sav;
1083 sav = last;
1084 }
1085 if (sav != NULL) {
1086 SA_ADDREF(sav);
1087 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1088 "DP cause refcnt++:%d SA:%p\n",
1089 key_sa_refcnt(sav), sav);
1090 break;
1091 }
1092 }
1093 out:
1094 pserialize_read_exit(s);
1095
1096 return sav;
1097 }
1098
1099 #if 0
1100 static void
1101 key_sendup_message_delete(struct secasvar *sav)
1102 {
1103 struct mbuf *m, *result = 0;
1104 uint8_t satype;
1105
1106 satype = key_proto2satype(sav->sah->saidx.proto);
1107 if (satype == 0)
1108 goto msgfail;
1109
1110 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1111 if (m == NULL)
1112 goto msgfail;
1113 result = m;
1114
1115 /* set sadb_address for saidx's. */
1116 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1117 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1118 if (m == NULL)
1119 goto msgfail;
1120 m_cat(result, m);
1121
1122 /* set sadb_address for saidx's. */
1123 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1124 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1125 if (m == NULL)
1126 goto msgfail;
1127 m_cat(result, m);
1128
1129 /* create SA extension */
1130 m = key_setsadbsa(sav);
1131 if (m == NULL)
1132 goto msgfail;
1133 m_cat(result, m);
1134
1135 if (result->m_len < sizeof(struct sadb_msg)) {
1136 result = m_pullup(result, sizeof(struct sadb_msg));
1137 if (result == NULL)
1138 goto msgfail;
1139 }
1140
1141 result->m_pkthdr.len = 0;
1142 for (m = result; m; m = m->m_next)
1143 result->m_pkthdr.len += m->m_len;
1144 mtod(result, struct sadb_msg *)->sadb_msg_len =
1145 PFKEY_UNIT64(result->m_pkthdr.len);
1146
1147 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1148 result = NULL;
1149 msgfail:
1150 if (result)
1151 m_freem(result);
1152 }
1153 #endif
1154
1155 /*
1156 * allocating a usable SA entry for a *INBOUND* packet.
1157 * Must call key_freesav() later.
1158 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1159 * NULL: not found, or error occurred.
1160 *
1161 * In the comparison, no source address is used--for RFC2401 conformance.
1162 * To quote, from section 4.1:
1163 * A security association is uniquely identified by a triple consisting
1164 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1165 * security protocol (AH or ESP) identifier.
1166 * Note that, however, we do need to keep source address in IPsec SA.
1167 * IKE specification and PF_KEY specification do assume that we
1168 * keep source address in IPsec SA. We see a tricky situation here.
1169 *
1170 * sport and dport are used for NAT-T. network order is always used.
1171 */
1172 struct secasvar *
1173 key_lookup_sa(
1174 const union sockaddr_union *dst,
1175 u_int proto,
1176 u_int32_t spi,
1177 u_int16_t sport,
1178 u_int16_t dport,
1179 const char* where, int tag)
1180 {
1181 struct secashead *sah;
1182 struct secasvar *sav;
1183 u_int stateidx, state;
1184 const u_int *saorder_state_valid;
1185 int arraysize, chkport;
1186 int s;
1187
1188 int must_check_spi = 1;
1189 int must_check_alg = 0;
1190 u_int16_t cpi = 0;
1191 u_int8_t algo = 0;
1192
1193 if ((sport != 0) && (dport != 0))
1194 chkport = PORT_STRICT;
1195 else
1196 chkport = PORT_NONE;
1197
1198 KASSERT(dst != NULL);
1199
1200 /*
1201 * XXX IPCOMP case
1202 * We use cpi to define spi here. In the case where cpi <=
1203 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1204 * the real spi. In this case, don't check the spi but check the
1205 * algorithm
1206 */
1207
1208 if (proto == IPPROTO_IPCOMP) {
1209 u_int32_t tmp;
1210 tmp = ntohl(spi);
1211 cpi = (u_int16_t) tmp;
1212 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1213 algo = (u_int8_t) cpi;
1214 must_check_spi = 0;
1215 must_check_alg = 1;
1216 }
1217 }
1218 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1219 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1220 where, tag, must_check_spi, must_check_alg);
1221
1222
1223 /*
1224 * searching SAD.
1225 * XXX: to be checked internal IP header somewhere. Also when
1226 * IPsec tunnel packet is received. But ESP tunnel mode is
1227 * encrypted so we can't check internal IP header.
1228 */
1229 if (key_prefered_oldsa) {
1230 saorder_state_valid = saorder_state_valid_prefer_old;
1231 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1232 } else {
1233 saorder_state_valid = saorder_state_valid_prefer_new;
1234 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1235 }
1236 s = pserialize_read_enter();
1237 SAHLIST_READER_FOREACH(sah) {
1238 /* search valid state */
1239 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1240 state = saorder_state_valid[stateidx];
1241 SAVLIST_READER_FOREACH(sav, sah, state) {
1242 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1243 "try match spi %#x, %#x\n",
1244 ntohl(spi), ntohl(sav->spi));
1245 /* sanity check */
1246 KEY_CHKSASTATE(sav->state, state);
1247 /* do not return entries w/ unusable state */
1248 if (!SADB_SASTATE_USABLE_P(sav)) {
1249 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1250 "bad state %d\n", sav->state);
1251 continue;
1252 }
1253 if (proto != sav->sah->saidx.proto) {
1254 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1255 "proto fail %d != %d\n",
1256 proto, sav->sah->saidx.proto);
1257 continue;
1258 }
1259 if (must_check_spi && spi != sav->spi) {
1260 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1261 "spi fail %#x != %#x\n",
1262 ntohl(spi), ntohl(sav->spi));
1263 continue;
1264 }
1265 /* XXX only on the ipcomp case */
1266 if (must_check_alg && algo != sav->alg_comp) {
1267 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1268 "algo fail %d != %d\n",
1269 algo, sav->alg_comp);
1270 continue;
1271 }
1272
1273 #if 0 /* don't check src */
1274 /* Fix port in src->sa */
1275
1276 /* check src address */
1277 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1278 continue;
1279 #endif
1280 /* fix port of dst address XXX*/
1281 key_porttosaddr(__UNCONST(dst), dport);
1282 /* check dst address */
1283 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1284 continue;
1285 SA_ADDREF2(sav, where, tag);
1286 goto done;
1287 }
1288 }
1289 }
1290 sav = NULL;
1291 done:
1292 pserialize_read_exit(s);
1293
1294 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1295 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1296 return sav;
1297 }
1298
1299 static void
1300 key_validate_savlist(const struct secashead *sah, const u_int state)
1301 {
1302 #ifdef DEBUG
1303 struct secasvar *sav, *next;
1304 int s;
1305
1306 /*
1307 * The list should be sorted by lft_c->sadb_lifetime_addtime
1308 * in ascending order.
1309 */
1310 s = pserialize_read_enter();
1311 SAVLIST_READER_FOREACH(sav, sah, state) {
1312 next = SAVLIST_READER_NEXT(sav);
1313 if (next != NULL &&
1314 sav->lft_c != NULL && next->lft_c != NULL) {
1315 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1316 next->lft_c->sadb_lifetime_addtime,
1317 "savlist is not sorted: sah=%p, state=%d, "
1318 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1319 sav->lft_c->sadb_lifetime_addtime,
1320 next->lft_c->sadb_lifetime_addtime);
1321 }
1322 }
1323 pserialize_read_exit(s);
1324 #endif
1325 }
1326
1327 void
1328 key_init_sp(struct secpolicy *sp)
1329 {
1330
1331 ASSERT_SLEEPABLE();
1332
1333 sp->state = IPSEC_SPSTATE_ALIVE;
1334 if (sp->policy == IPSEC_POLICY_IPSEC)
1335 KASSERT(sp->req != NULL);
1336 localcount_init(&sp->localcount);
1337 SPLIST_ENTRY_INIT(sp);
1338 }
1339
1340 /*
1341 * Must be called in a pserialize read section. A held SP
1342 * must be released by key_sp_unref after use.
1343 */
1344 void
1345 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1346 {
1347
1348 localcount_acquire(&sp->localcount);
1349
1350 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1351 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1352 sp, sp->id, where, tag, key_sp_refcnt(sp));
1353 }
1354
1355 /*
1356 * Must be called without holding key_spd.lock because the lock
1357 * would be held in localcount_release.
1358 */
1359 void
1360 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1361 {
1362
1363 KDASSERT(mutex_ownable(&key_spd.lock));
1364
1365 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1366 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1367 sp, sp->id, where, tag, key_sp_refcnt(sp));
1368
1369 localcount_release(&sp->localcount, &key_spd.cv, &key_spd.lock);
1370 }
1371
1372 u_int
1373 key_sa_refcnt(const struct secasvar *sav)
1374 {
1375
1376 if (sav == NULL)
1377 return 0;
1378
1379 return sav->refcnt;
1380 }
1381
1382 void
1383 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1384 {
1385
1386 SA_ADDREF2(sav, where, tag);
1387
1388 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1389 "DP cause refcnt++:%d SA:%p from %s:%u\n",
1390 sav->refcnt, sav, where, tag);
1391 }
1392
1393 #if 0
1394 /*
1395 * Must be called after calling key_lookup_sp*().
1396 * For the packet with socket.
1397 */
1398 static void
1399 key_freeso(struct socket *so)
1400 {
1401 /* sanity check */
1402 KASSERT(so != NULL);
1403
1404 switch (so->so_proto->pr_domain->dom_family) {
1405 #ifdef INET
1406 case PF_INET:
1407 {
1408 struct inpcb *pcb = sotoinpcb(so);
1409
1410 /* Does it have a PCB ? */
1411 if (pcb == NULL)
1412 return;
1413
1414 struct inpcbpolicy *sp = pcb->inp_sp;
1415 key_freesp_so(&sp->sp_in);
1416 key_freesp_so(&sp->sp_out);
1417 }
1418 break;
1419 #endif
1420 #ifdef INET6
1421 case PF_INET6:
1422 {
1423 #ifdef HAVE_NRL_INPCB
1424 struct inpcb *pcb = sotoinpcb(so);
1425 struct inpcbpolicy *sp = pcb->inp_sp;
1426
1427 /* Does it have a PCB ? */
1428 if (pcb == NULL)
1429 return;
1430 key_freesp_so(&sp->sp_in);
1431 key_freesp_so(&sp->sp_out);
1432 #else
1433 struct in6pcb *pcb = sotoin6pcb(so);
1434
1435 /* Does it have a PCB ? */
1436 if (pcb == NULL)
1437 return;
1438 key_freesp_so(&pcb->in6p_sp->sp_in);
1439 key_freesp_so(&pcb->in6p_sp->sp_out);
1440 #endif
1441 }
1442 break;
1443 #endif /* INET6 */
1444 default:
1445 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1446 so->so_proto->pr_domain->dom_family);
1447 return;
1448 }
1449 }
1450
1451 static void
1452 key_freesp_so(struct secpolicy **sp)
1453 {
1454
1455 KASSERT(sp != NULL);
1456 KASSERT(*sp != NULL);
1457
1458 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1459 (*sp)->policy == IPSEC_POLICY_BYPASS)
1460 return;
1461
1462 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1463 "invalid policy %u", (*sp)->policy);
1464 KEY_SP_UNREF(&sp);
1465 }
1466 #endif
1467
1468 /*
1469 * Must be called after calling key_lookup_sa().
1470 * This function is called by key_freesp() to free some SA allocated
1471 * for a policy.
1472 */
1473 void
1474 key_freesav(struct secasvar **psav, const char* where, int tag)
1475 {
1476 struct secasvar *sav = *psav;
1477 unsigned int nv;
1478
1479 KASSERT(sav != NULL);
1480
1481 SA_DELREF2(sav, nv, where, tag);
1482
1483 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1484 "DP SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1485 sav, (u_long)ntohl(sav->spi), where, tag, nv);
1486
1487 if (nv == 0) {
1488 *psav = NULL;
1489
1490 /* remove from SA header */
1491 SAVLIST_WRITER_REMOVE(sav);
1492
1493 key_delsav(sav);
1494 }
1495 }
1496
1497 /* %%% SPD management */
1498 /*
1499 * free security policy entry.
1500 */
1501 static void
1502 key_destroy_sp(struct secpolicy *sp)
1503 {
1504
1505 SPLIST_ENTRY_DESTROY(sp);
1506 localcount_fini(&sp->localcount);
1507
1508 key_free_sp(sp);
1509
1510 key_update_used();
1511 }
1512
1513 void
1514 key_free_sp(struct secpolicy *sp)
1515 {
1516 struct ipsecrequest *isr = sp->req, *nextisr;
1517
1518 while (isr != NULL) {
1519 nextisr = isr->next;
1520 kmem_free(isr, sizeof(*isr));
1521 isr = nextisr;
1522 }
1523
1524 kmem_free(sp, sizeof(*sp));
1525 }
1526
1527 void
1528 key_socksplist_add(struct secpolicy *sp)
1529 {
1530
1531 mutex_enter(&key_spd.lock);
1532 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1533 mutex_exit(&key_spd.lock);
1534
1535 key_update_used();
1536 }
1537
1538 /*
1539 * search SPD
1540 * OUT: NULL : not found
1541 * others : found, pointer to a SP.
1542 */
1543 static struct secpolicy *
1544 key_getsp(const struct secpolicyindex *spidx)
1545 {
1546 struct secpolicy *sp;
1547 int s;
1548
1549 KASSERT(spidx != NULL);
1550
1551 s = pserialize_read_enter();
1552 SPLIST_READER_FOREACH(sp, spidx->dir) {
1553 if (sp->state == IPSEC_SPSTATE_DEAD)
1554 continue;
1555 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1556 KEY_SP_REF(sp);
1557 pserialize_read_exit(s);
1558 return sp;
1559 }
1560 }
1561 pserialize_read_exit(s);
1562
1563 return NULL;
1564 }
1565
1566 /*
1567 * search SPD and remove found SP
1568 * OUT: NULL : not found
1569 * others : found, pointer to a SP.
1570 */
1571 static struct secpolicy *
1572 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1573 {
1574 struct secpolicy *sp = NULL;
1575
1576 mutex_enter(&key_spd.lock);
1577 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1578 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1579
1580 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1581 key_unlink_sp(sp);
1582 goto out;
1583 }
1584 }
1585 sp = NULL;
1586 out:
1587 mutex_exit(&key_spd.lock);
1588
1589 return sp;
1590 }
1591
1592 /*
1593 * get SP by index.
1594 * OUT: NULL : not found
1595 * others : found, pointer to a SP.
1596 */
1597 static struct secpolicy *
1598 key_getspbyid(u_int32_t id)
1599 {
1600 struct secpolicy *sp;
1601 int s;
1602
1603 s = pserialize_read_enter();
1604 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1605 if (sp->state == IPSEC_SPSTATE_DEAD)
1606 continue;
1607 if (sp->id == id) {
1608 KEY_SP_REF(sp);
1609 goto out;
1610 }
1611 }
1612
1613 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1614 if (sp->state == IPSEC_SPSTATE_DEAD)
1615 continue;
1616 if (sp->id == id) {
1617 KEY_SP_REF(sp);
1618 goto out;
1619 }
1620 }
1621 out:
1622 pserialize_read_exit(s);
1623 return sp;
1624 }
1625
1626 /*
1627 * get SP by index, remove and return it.
1628 * OUT: NULL : not found
1629 * others : found, pointer to a SP.
1630 */
1631 static struct secpolicy *
1632 key_lookupbyid_and_remove_sp(u_int32_t id)
1633 {
1634 struct secpolicy *sp;
1635
1636 mutex_enter(&key_spd.lock);
1637 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1638 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1639 if (sp->id == id)
1640 goto out;
1641 }
1642
1643 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1644 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1645 if (sp->id == id)
1646 goto out;
1647 }
1648 out:
1649 if (sp != NULL)
1650 key_unlink_sp(sp);
1651 mutex_exit(&key_spd.lock);
1652 return sp;
1653 }
1654
1655 struct secpolicy *
1656 key_newsp(const char* where, int tag)
1657 {
1658 struct secpolicy *newsp = NULL;
1659
1660 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1661
1662 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1663 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1664 return newsp;
1665 }
1666
1667 /*
1668 * create secpolicy structure from sadb_x_policy structure.
1669 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1670 * so must be set properly later.
1671 */
1672 struct secpolicy *
1673 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1674 {
1675 struct secpolicy *newsp;
1676
1677 KASSERT(!cpu_softintr_p());
1678 KASSERT(xpl0 != NULL);
1679 KASSERT(len >= sizeof(*xpl0));
1680
1681 if (len != PFKEY_EXTLEN(xpl0)) {
1682 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1683 *error = EINVAL;
1684 return NULL;
1685 }
1686
1687 newsp = KEY_NEWSP();
1688 if (newsp == NULL) {
1689 *error = ENOBUFS;
1690 return NULL;
1691 }
1692
1693 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1694 newsp->policy = xpl0->sadb_x_policy_type;
1695
1696 /* check policy */
1697 switch (xpl0->sadb_x_policy_type) {
1698 case IPSEC_POLICY_DISCARD:
1699 case IPSEC_POLICY_NONE:
1700 case IPSEC_POLICY_ENTRUST:
1701 case IPSEC_POLICY_BYPASS:
1702 newsp->req = NULL;
1703 *error = 0;
1704 return newsp;
1705
1706 case IPSEC_POLICY_IPSEC:
1707 /* Continued */
1708 break;
1709 default:
1710 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1711 key_free_sp(newsp);
1712 *error = EINVAL;
1713 return NULL;
1714 }
1715
1716 /* IPSEC_POLICY_IPSEC */
1717 {
1718 int tlen;
1719 const struct sadb_x_ipsecrequest *xisr;
1720 uint16_t xisr_reqid;
1721 struct ipsecrequest **p_isr = &newsp->req;
1722
1723 /* validity check */
1724 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1725 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1726 *error = EINVAL;
1727 goto free_exit;
1728 }
1729
1730 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1731 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1732
1733 while (tlen > 0) {
1734 /* length check */
1735 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1736 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1737 *error = EINVAL;
1738 goto free_exit;
1739 }
1740
1741 /* allocate request buffer */
1742 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1743
1744 /* set values */
1745 (*p_isr)->next = NULL;
1746
1747 switch (xisr->sadb_x_ipsecrequest_proto) {
1748 case IPPROTO_ESP:
1749 case IPPROTO_AH:
1750 case IPPROTO_IPCOMP:
1751 break;
1752 default:
1753 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1754 xisr->sadb_x_ipsecrequest_proto);
1755 *error = EPROTONOSUPPORT;
1756 goto free_exit;
1757 }
1758 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1759
1760 switch (xisr->sadb_x_ipsecrequest_mode) {
1761 case IPSEC_MODE_TRANSPORT:
1762 case IPSEC_MODE_TUNNEL:
1763 break;
1764 case IPSEC_MODE_ANY:
1765 default:
1766 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1767 xisr->sadb_x_ipsecrequest_mode);
1768 *error = EINVAL;
1769 goto free_exit;
1770 }
1771 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1772
1773 switch (xisr->sadb_x_ipsecrequest_level) {
1774 case IPSEC_LEVEL_DEFAULT:
1775 case IPSEC_LEVEL_USE:
1776 case IPSEC_LEVEL_REQUIRE:
1777 break;
1778 case IPSEC_LEVEL_UNIQUE:
1779 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1780 /* validity check */
1781 /*
1782 * If range violation of reqid, kernel will
1783 * update it, don't refuse it.
1784 */
1785 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1786 IPSECLOG(LOG_DEBUG,
1787 "reqid=%d range "
1788 "violation, updated by kernel.\n",
1789 xisr_reqid);
1790 xisr_reqid = 0;
1791 }
1792
1793 /* allocate new reqid id if reqid is zero. */
1794 if (xisr_reqid == 0) {
1795 u_int16_t reqid = key_newreqid();
1796 if (reqid == 0) {
1797 *error = ENOBUFS;
1798 goto free_exit;
1799 }
1800 (*p_isr)->saidx.reqid = reqid;
1801 } else {
1802 /* set it for manual keying. */
1803 (*p_isr)->saidx.reqid = xisr_reqid;
1804 }
1805 break;
1806
1807 default:
1808 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1809 xisr->sadb_x_ipsecrequest_level);
1810 *error = EINVAL;
1811 goto free_exit;
1812 }
1813 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1814
1815 /* set IP addresses if there */
1816 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1817 const struct sockaddr *paddr;
1818
1819 paddr = (const struct sockaddr *)(xisr + 1);
1820
1821 /* validity check */
1822 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1823 IPSECLOG(LOG_DEBUG, "invalid request "
1824 "address length.\n");
1825 *error = EINVAL;
1826 goto free_exit;
1827 }
1828 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1829
1830 paddr = (const struct sockaddr *)((const char *)paddr
1831 + paddr->sa_len);
1832
1833 /* validity check */
1834 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1835 IPSECLOG(LOG_DEBUG, "invalid request "
1836 "address length.\n");
1837 *error = EINVAL;
1838 goto free_exit;
1839 }
1840 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1841 }
1842
1843 (*p_isr)->sp = newsp;
1844
1845 /* initialization for the next. */
1846 p_isr = &(*p_isr)->next;
1847 tlen -= xisr->sadb_x_ipsecrequest_len;
1848
1849 /* validity check */
1850 if (tlen < 0) {
1851 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1852 *error = EINVAL;
1853 goto free_exit;
1854 }
1855
1856 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1857 xisr->sadb_x_ipsecrequest_len);
1858 }
1859 }
1860
1861 *error = 0;
1862 return newsp;
1863
1864 free_exit:
1865 key_free_sp(newsp);
1866 return NULL;
1867 }
1868
1869 static u_int16_t
1870 key_newreqid(void)
1871 {
1872 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1873
1874 auto_reqid = (auto_reqid == 0xffff ?
1875 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1876
1877 /* XXX should be unique check */
1878
1879 return auto_reqid;
1880 }
1881
1882 /*
1883 * copy secpolicy struct to sadb_x_policy structure indicated.
1884 */
1885 struct mbuf *
1886 key_sp2msg(const struct secpolicy *sp)
1887 {
1888 struct sadb_x_policy *xpl;
1889 int tlen;
1890 char *p;
1891 struct mbuf *m;
1892
1893 KASSERT(sp != NULL);
1894
1895 tlen = key_getspreqmsglen(sp);
1896
1897 m = key_alloc_mbuf(tlen);
1898 if (!m || m->m_next) { /*XXX*/
1899 if (m)
1900 m_freem(m);
1901 return NULL;
1902 }
1903
1904 m->m_len = tlen;
1905 m->m_next = NULL;
1906 xpl = mtod(m, struct sadb_x_policy *);
1907 memset(xpl, 0, tlen);
1908
1909 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1910 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1911 xpl->sadb_x_policy_type = sp->policy;
1912 xpl->sadb_x_policy_dir = sp->spidx.dir;
1913 xpl->sadb_x_policy_id = sp->id;
1914 p = (char *)xpl + sizeof(*xpl);
1915
1916 /* if is the policy for ipsec ? */
1917 if (sp->policy == IPSEC_POLICY_IPSEC) {
1918 struct sadb_x_ipsecrequest *xisr;
1919 struct ipsecrequest *isr;
1920
1921 for (isr = sp->req; isr != NULL; isr = isr->next) {
1922
1923 xisr = (struct sadb_x_ipsecrequest *)p;
1924
1925 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1926 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1927 xisr->sadb_x_ipsecrequest_level = isr->level;
1928 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1929
1930 p += sizeof(*xisr);
1931 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1932 p += isr->saidx.src.sa.sa_len;
1933 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1934 p += isr->saidx.src.sa.sa_len;
1935
1936 xisr->sadb_x_ipsecrequest_len =
1937 PFKEY_ALIGN8(sizeof(*xisr)
1938 + isr->saidx.src.sa.sa_len
1939 + isr->saidx.dst.sa.sa_len);
1940 }
1941 }
1942
1943 return m;
1944 }
1945
1946 /* m will not be freed nor modified */
1947 static struct mbuf *
1948 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1949 int ndeep, int nitem, ...)
1950 {
1951 va_list ap;
1952 int idx;
1953 int i;
1954 struct mbuf *result = NULL, *n;
1955 int len;
1956
1957 KASSERT(m != NULL);
1958 KASSERT(mhp != NULL);
1959
1960 va_start(ap, nitem);
1961 for (i = 0; i < nitem; i++) {
1962 idx = va_arg(ap, int);
1963 if (idx < 0 || idx > SADB_EXT_MAX)
1964 goto fail;
1965 /* don't attempt to pull empty extension */
1966 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1967 continue;
1968 if (idx != SADB_EXT_RESERVED &&
1969 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1970 continue;
1971
1972 if (idx == SADB_EXT_RESERVED) {
1973 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
1974 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1975 MGETHDR(n, M_DONTWAIT, MT_DATA);
1976 if (!n)
1977 goto fail;
1978 n->m_len = len;
1979 n->m_next = NULL;
1980 m_copydata(m, 0, sizeof(struct sadb_msg),
1981 mtod(n, void *));
1982 } else if (i < ndeep) {
1983 len = mhp->extlen[idx];
1984 n = key_alloc_mbuf(len);
1985 if (!n || n->m_next) { /*XXX*/
1986 if (n)
1987 m_freem(n);
1988 goto fail;
1989 }
1990 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1991 mtod(n, void *));
1992 } else {
1993 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1994 M_DONTWAIT);
1995 }
1996 if (n == NULL)
1997 goto fail;
1998
1999 if (result)
2000 m_cat(result, n);
2001 else
2002 result = n;
2003 }
2004 va_end(ap);
2005
2006 if (result && (result->m_flags & M_PKTHDR) != 0) {
2007 result->m_pkthdr.len = 0;
2008 for (n = result; n; n = n->m_next)
2009 result->m_pkthdr.len += n->m_len;
2010 }
2011
2012 return result;
2013
2014 fail:
2015 va_end(ap);
2016 m_freem(result);
2017 return NULL;
2018 }
2019
2020 /*
2021 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2022 * add an entry to SP database, when received
2023 * <base, address(SD), (lifetime(H),) policy>
2024 * from the user(?).
2025 * Adding to SP database,
2026 * and send
2027 * <base, address(SD), (lifetime(H),) policy>
2028 * to the socket which was send.
2029 *
2030 * SPDADD set a unique policy entry.
2031 * SPDSETIDX like SPDADD without a part of policy requests.
2032 * SPDUPDATE replace a unique policy entry.
2033 *
2034 * m will always be freed.
2035 */
2036 static int
2037 key_api_spdadd(struct socket *so, struct mbuf *m,
2038 const struct sadb_msghdr *mhp)
2039 {
2040 const struct sockaddr *src, *dst;
2041 const struct sadb_x_policy *xpl0;
2042 struct sadb_x_policy *xpl;
2043 const struct sadb_lifetime *lft = NULL;
2044 struct secpolicyindex spidx;
2045 struct secpolicy *newsp;
2046 int error;
2047
2048 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2049 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2050 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2051 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2052 return key_senderror(so, m, EINVAL);
2053 }
2054 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2055 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2056 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2057 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2058 return key_senderror(so, m, EINVAL);
2059 }
2060 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2061 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2062 sizeof(struct sadb_lifetime)) {
2063 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2064 return key_senderror(so, m, EINVAL);
2065 }
2066 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
2067 }
2068
2069 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2070
2071 /* checking the direciton. */
2072 switch (xpl0->sadb_x_policy_dir) {
2073 case IPSEC_DIR_INBOUND:
2074 case IPSEC_DIR_OUTBOUND:
2075 break;
2076 default:
2077 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2078 return key_senderror(so, m, EINVAL);
2079 }
2080
2081 /* check policy */
2082 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2083 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2084 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2085 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2086 return key_senderror(so, m, EINVAL);
2087 }
2088
2089 /* policy requests are mandatory when action is ipsec. */
2090 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2091 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2092 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2093 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2094 return key_senderror(so, m, EINVAL);
2095 }
2096
2097 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2098 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2099
2100 /* sanity check on addr pair */
2101 if (src->sa_family != dst->sa_family)
2102 return key_senderror(so, m, EINVAL);
2103 if (src->sa_len != dst->sa_len)
2104 return key_senderror(so, m, EINVAL);
2105
2106 key_init_spidx_bymsghdr(&spidx, mhp);
2107
2108 /*
2109 * checking there is SP already or not.
2110 * SPDUPDATE doesn't depend on whether there is a SP or not.
2111 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2112 * then error.
2113 */
2114 {
2115 struct secpolicy *sp;
2116
2117 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2118 sp = key_lookup_and_remove_sp(&spidx);
2119 if (sp != NULL)
2120 key_destroy_sp(sp);
2121 } else {
2122 sp = key_getsp(&spidx);
2123 if (sp != NULL) {
2124 KEY_SP_UNREF(&sp);
2125 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2126 return key_senderror(so, m, EEXIST);
2127 }
2128 }
2129 }
2130
2131 /* allocation new SP entry */
2132 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2133 if (newsp == NULL) {
2134 return key_senderror(so, m, error);
2135 }
2136
2137 newsp->id = key_getnewspid();
2138 if (newsp->id == 0) {
2139 kmem_free(newsp, sizeof(*newsp));
2140 return key_senderror(so, m, ENOBUFS);
2141 }
2142
2143 newsp->spidx = spidx;
2144 newsp->created = time_uptime;
2145 newsp->lastused = newsp->created;
2146 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2147 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2148
2149 key_init_sp(newsp);
2150
2151 mutex_enter(&key_spd.lock);
2152 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2153 mutex_exit(&key_spd.lock);
2154
2155 #ifdef notyet
2156 /* delete the entry in key_misc.spacqlist */
2157 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2158 struct secspacq *spacq = key_getspacq(&spidx);
2159 if (spacq != NULL) {
2160 /* reset counter in order to deletion by timehandler. */
2161 spacq->created = time_uptime;
2162 spacq->count = 0;
2163 }
2164 }
2165 #endif
2166
2167 /* Invalidate all cached SPD pointers in the PCBs. */
2168 ipsec_invalpcbcacheall();
2169
2170 #if defined(GATEWAY)
2171 /* Invalidate the ipflow cache, as well. */
2172 ipflow_invalidate_all(0);
2173 #ifdef INET6
2174 if (in6_present)
2175 ip6flow_invalidate_all(0);
2176 #endif /* INET6 */
2177 #endif /* GATEWAY */
2178
2179 key_update_used();
2180
2181 {
2182 struct mbuf *n, *mpolicy;
2183 int off;
2184
2185 /* create new sadb_msg to reply. */
2186 if (lft) {
2187 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2188 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2189 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2190 } else {
2191 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2192 SADB_X_EXT_POLICY,
2193 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2194 }
2195 if (!n)
2196 return key_senderror(so, m, ENOBUFS);
2197
2198 n = key_fill_replymsg(n, 0);
2199 if (n == NULL)
2200 return key_senderror(so, m, ENOBUFS);
2201
2202 off = 0;
2203 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2204 sizeof(*xpl), &off);
2205 if (mpolicy == NULL) {
2206 /* n is already freed */
2207 return key_senderror(so, m, ENOBUFS);
2208 }
2209 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2210 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2211 m_freem(n);
2212 return key_senderror(so, m, EINVAL);
2213 }
2214 xpl->sadb_x_policy_id = newsp->id;
2215
2216 m_freem(m);
2217 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2218 }
2219 }
2220
2221 /*
2222 * get new policy id.
2223 * OUT:
2224 * 0: failure.
2225 * others: success.
2226 */
2227 static u_int32_t
2228 key_getnewspid(void)
2229 {
2230 u_int32_t newid = 0;
2231 int count = key_spi_trycnt; /* XXX */
2232 struct secpolicy *sp;
2233
2234 /* when requesting to allocate spi ranged */
2235 while (count--) {
2236 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2237
2238 sp = key_getspbyid(newid);
2239 if (sp == NULL)
2240 break;
2241
2242 KEY_SP_UNREF(&sp);
2243 }
2244
2245 if (count == 0 || newid == 0) {
2246 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2247 return 0;
2248 }
2249
2250 return newid;
2251 }
2252
2253 /*
2254 * SADB_SPDDELETE processing
2255 * receive
2256 * <base, address(SD), policy(*)>
2257 * from the user(?), and set SADB_SASTATE_DEAD,
2258 * and send,
2259 * <base, address(SD), policy(*)>
2260 * to the ikmpd.
2261 * policy(*) including direction of policy.
2262 *
2263 * m will always be freed.
2264 */
2265 static int
2266 key_api_spddelete(struct socket *so, struct mbuf *m,
2267 const struct sadb_msghdr *mhp)
2268 {
2269 struct sadb_x_policy *xpl0;
2270 struct secpolicyindex spidx;
2271 struct secpolicy *sp;
2272
2273 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2274 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2275 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2276 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2277 return key_senderror(so, m, EINVAL);
2278 }
2279 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2280 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2281 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2282 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2283 return key_senderror(so, m, EINVAL);
2284 }
2285
2286 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2287
2288 /* checking the direciton. */
2289 switch (xpl0->sadb_x_policy_dir) {
2290 case IPSEC_DIR_INBOUND:
2291 case IPSEC_DIR_OUTBOUND:
2292 break;
2293 default:
2294 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2295 return key_senderror(so, m, EINVAL);
2296 }
2297
2298 /* make secindex */
2299 key_init_spidx_bymsghdr(&spidx, mhp);
2300
2301 /* Is there SP in SPD ? */
2302 sp = key_lookup_and_remove_sp(&spidx);
2303 if (sp == NULL) {
2304 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2305 return key_senderror(so, m, EINVAL);
2306 }
2307
2308 /* save policy id to buffer to be returned. */
2309 xpl0->sadb_x_policy_id = sp->id;
2310
2311 key_destroy_sp(sp);
2312
2313 /* We're deleting policy; no need to invalidate the ipflow cache. */
2314
2315 {
2316 struct mbuf *n;
2317
2318 /* create new sadb_msg to reply. */
2319 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2320 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2321 if (!n)
2322 return key_senderror(so, m, ENOBUFS);
2323
2324 n = key_fill_replymsg(n, 0);
2325 if (n == NULL)
2326 return key_senderror(so, m, ENOBUFS);
2327
2328 m_freem(m);
2329 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2330 }
2331 }
2332
2333 /*
2334 * SADB_SPDDELETE2 processing
2335 * receive
2336 * <base, policy(*)>
2337 * from the user(?), and set SADB_SASTATE_DEAD,
2338 * and send,
2339 * <base, policy(*)>
2340 * to the ikmpd.
2341 * policy(*) including direction of policy.
2342 *
2343 * m will always be freed.
2344 */
2345 static int
2346 key_api_spddelete2(struct socket *so, struct mbuf *m,
2347 const struct sadb_msghdr *mhp)
2348 {
2349 u_int32_t id;
2350 struct secpolicy *sp;
2351
2352 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2353 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2354 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2355 return key_senderror(so, m, EINVAL);
2356 }
2357
2358 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2359
2360 /* Is there SP in SPD ? */
2361 sp = key_lookupbyid_and_remove_sp(id);
2362 if (sp == NULL) {
2363 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2364 return key_senderror(so, m, EINVAL);
2365 }
2366
2367 key_destroy_sp(sp);
2368
2369 /* We're deleting policy; no need to invalidate the ipflow cache. */
2370
2371 {
2372 struct mbuf *n, *nn;
2373 int off, len;
2374
2375 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2376
2377 /* create new sadb_msg to reply. */
2378 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2379
2380 MGETHDR(n, M_DONTWAIT, MT_DATA);
2381 if (n && len > MHLEN) {
2382 MCLGET(n, M_DONTWAIT);
2383 if ((n->m_flags & M_EXT) == 0) {
2384 m_freem(n);
2385 n = NULL;
2386 }
2387 }
2388 if (!n)
2389 return key_senderror(so, m, ENOBUFS);
2390
2391 n->m_len = len;
2392 n->m_next = NULL;
2393 off = 0;
2394
2395 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2396 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2397
2398 KASSERTMSG(off == len, "length inconsistency");
2399
2400 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2401 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2402 if (!n->m_next) {
2403 m_freem(n);
2404 return key_senderror(so, m, ENOBUFS);
2405 }
2406
2407 n->m_pkthdr.len = 0;
2408 for (nn = n; nn; nn = nn->m_next)
2409 n->m_pkthdr.len += nn->m_len;
2410
2411 n = key_fill_replymsg(n, 0);
2412 if (n == NULL)
2413 return key_senderror(so, m, ENOBUFS);
2414
2415 m_freem(m);
2416 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2417 }
2418 }
2419
2420 /*
2421 * SADB_X_GET processing
2422 * receive
2423 * <base, policy(*)>
2424 * from the user(?),
2425 * and send,
2426 * <base, address(SD), policy>
2427 * to the ikmpd.
2428 * policy(*) including direction of policy.
2429 *
2430 * m will always be freed.
2431 */
2432 static int
2433 key_api_spdget(struct socket *so, struct mbuf *m,
2434 const struct sadb_msghdr *mhp)
2435 {
2436 u_int32_t id;
2437 struct secpolicy *sp;
2438 struct mbuf *n;
2439
2440 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2441 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2442 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2443 return key_senderror(so, m, EINVAL);
2444 }
2445
2446 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2447
2448 /* Is there SP in SPD ? */
2449 sp = key_getspbyid(id);
2450 if (sp == NULL) {
2451 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2452 return key_senderror(so, m, ENOENT);
2453 }
2454
2455 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2456 mhp->msg->sadb_msg_pid);
2457 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2458 if (n != NULL) {
2459 m_freem(m);
2460 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2461 } else
2462 return key_senderror(so, m, ENOBUFS);
2463 }
2464
2465 #ifdef notyet
2466 /*
2467 * SADB_X_SPDACQUIRE processing.
2468 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2469 * send
2470 * <base, policy(*)>
2471 * to KMD, and expect to receive
2472 * <base> with SADB_X_SPDACQUIRE if error occurred,
2473 * or
2474 * <base, policy>
2475 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2476 * policy(*) is without policy requests.
2477 *
2478 * 0 : succeed
2479 * others: error number
2480 */
2481 int
2482 key_spdacquire(const struct secpolicy *sp)
2483 {
2484 struct mbuf *result = NULL, *m;
2485 struct secspacq *newspacq;
2486 int error;
2487
2488 KASSERT(sp != NULL);
2489 KASSERTMSG(sp->req == NULL, "called but there is request");
2490 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2491 "policy mismathed. IPsec is expected");
2492
2493 /* Get an entry to check whether sent message or not. */
2494 newspacq = key_getspacq(&sp->spidx);
2495 if (newspacq != NULL) {
2496 if (key_blockacq_count < newspacq->count) {
2497 /* reset counter and do send message. */
2498 newspacq->count = 0;
2499 } else {
2500 /* increment counter and do nothing. */
2501 newspacq->count++;
2502 return 0;
2503 }
2504 } else {
2505 /* make new entry for blocking to send SADB_ACQUIRE. */
2506 newspacq = key_newspacq(&sp->spidx);
2507 if (newspacq == NULL)
2508 return ENOBUFS;
2509
2510 /* add to key_misc.acqlist */
2511 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2512 }
2513
2514 /* create new sadb_msg to reply. */
2515 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2516 if (!m) {
2517 error = ENOBUFS;
2518 goto fail;
2519 }
2520 result = m;
2521
2522 result->m_pkthdr.len = 0;
2523 for (m = result; m; m = m->m_next)
2524 result->m_pkthdr.len += m->m_len;
2525
2526 mtod(result, struct sadb_msg *)->sadb_msg_len =
2527 PFKEY_UNIT64(result->m_pkthdr.len);
2528
2529 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2530
2531 fail:
2532 if (result)
2533 m_freem(result);
2534 return error;
2535 }
2536 #endif /* notyet */
2537
2538 /*
2539 * SADB_SPDFLUSH processing
2540 * receive
2541 * <base>
2542 * from the user, and free all entries in secpctree.
2543 * and send,
2544 * <base>
2545 * to the user.
2546 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2547 *
2548 * m will always be freed.
2549 */
2550 static int
2551 key_api_spdflush(struct socket *so, struct mbuf *m,
2552 const struct sadb_msghdr *mhp)
2553 {
2554 struct sadb_msg *newmsg;
2555 struct secpolicy *sp;
2556 u_int dir;
2557
2558 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2559 return key_senderror(so, m, EINVAL);
2560
2561 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2562 retry:
2563 mutex_enter(&key_spd.lock);
2564 SPLIST_WRITER_FOREACH(sp, dir) {
2565 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2566 key_unlink_sp(sp);
2567 mutex_exit(&key_spd.lock);
2568 key_destroy_sp(sp);
2569 goto retry;
2570 }
2571 mutex_exit(&key_spd.lock);
2572 }
2573
2574 /* We're deleting policy; no need to invalidate the ipflow cache. */
2575
2576 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2577 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2578 return key_senderror(so, m, ENOBUFS);
2579 }
2580
2581 if (m->m_next)
2582 m_freem(m->m_next);
2583 m->m_next = NULL;
2584 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2585 newmsg = mtod(m, struct sadb_msg *);
2586 newmsg->sadb_msg_errno = 0;
2587 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2588
2589 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2590 }
2591
2592 static struct sockaddr key_src = {
2593 .sa_len = 2,
2594 .sa_family = PF_KEY,
2595 };
2596
2597 static struct mbuf *
2598 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2599 {
2600 struct secpolicy *sp;
2601 int cnt;
2602 u_int dir;
2603 struct mbuf *m, *n, *prev;
2604 int totlen;
2605
2606 KASSERT(mutex_owned(&key_spd.lock));
2607
2608 *lenp = 0;
2609
2610 /* search SPD entry and get buffer size. */
2611 cnt = 0;
2612 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2613 SPLIST_WRITER_FOREACH(sp, dir) {
2614 cnt++;
2615 }
2616 }
2617
2618 if (cnt == 0) {
2619 *errorp = ENOENT;
2620 return (NULL);
2621 }
2622
2623 m = NULL;
2624 prev = m;
2625 totlen = 0;
2626 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2627 SPLIST_WRITER_FOREACH(sp, dir) {
2628 --cnt;
2629 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2630
2631 if (!n) {
2632 *errorp = ENOBUFS;
2633 if (m)
2634 m_freem(m);
2635 return (NULL);
2636 }
2637
2638 totlen += n->m_pkthdr.len;
2639 if (!m) {
2640 m = n;
2641 } else {
2642 prev->m_nextpkt = n;
2643 }
2644 prev = n;
2645 }
2646 }
2647
2648 *lenp = totlen;
2649 *errorp = 0;
2650 return (m);
2651 }
2652
2653 /*
2654 * SADB_SPDDUMP processing
2655 * receive
2656 * <base>
2657 * from the user, and dump all SP leaves
2658 * and send,
2659 * <base> .....
2660 * to the ikmpd.
2661 *
2662 * m will always be freed.
2663 */
2664 static int
2665 key_api_spddump(struct socket *so, struct mbuf *m0,
2666 const struct sadb_msghdr *mhp)
2667 {
2668 struct mbuf *n;
2669 int error, len;
2670 int ok;
2671 pid_t pid;
2672
2673 pid = mhp->msg->sadb_msg_pid;
2674 /*
2675 * If the requestor has insufficient socket-buffer space
2676 * for the entire chain, nobody gets any response to the DUMP.
2677 * XXX For now, only the requestor ever gets anything.
2678 * Moreover, if the requestor has any space at all, they receive
2679 * the entire chain, otherwise the request is refused with ENOBUFS.
2680 */
2681 if (sbspace(&so->so_rcv) <= 0) {
2682 return key_senderror(so, m0, ENOBUFS);
2683 }
2684
2685 mutex_enter(&key_spd.lock);
2686 n = key_setspddump_chain(&error, &len, pid);
2687 mutex_exit(&key_spd.lock);
2688
2689 if (n == NULL) {
2690 return key_senderror(so, m0, ENOENT);
2691 }
2692 {
2693 uint64_t *ps = PFKEY_STAT_GETREF();
2694 ps[PFKEY_STAT_IN_TOTAL]++;
2695 ps[PFKEY_STAT_IN_BYTES] += len;
2696 PFKEY_STAT_PUTREF();
2697 }
2698
2699 /*
2700 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2701 * The requestor receives either the entire chain, or an
2702 * error message with ENOBUFS.
2703 */
2704
2705 /*
2706 * sbappendchainwith record takes the chain of entries, one
2707 * packet-record per SPD entry, prepends the key_src sockaddr
2708 * to each packet-record, links the sockaddr mbufs into a new
2709 * list of records, then appends the entire resulting
2710 * list to the requesting socket.
2711 */
2712 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2713 SB_PRIO_ONESHOT_OVERFLOW);
2714
2715 if (!ok) {
2716 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2717 m_freem(n);
2718 return key_senderror(so, m0, ENOBUFS);
2719 }
2720
2721 m_freem(m0);
2722 return error;
2723 }
2724
2725 /*
2726 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2727 */
2728 static int
2729 key_api_nat_map(struct socket *so, struct mbuf *m,
2730 const struct sadb_msghdr *mhp)
2731 {
2732 struct sadb_x_nat_t_type *type;
2733 struct sadb_x_nat_t_port *sport;
2734 struct sadb_x_nat_t_port *dport;
2735 struct sadb_address *iaddr, *raddr;
2736 struct sadb_x_nat_t_frag *frag;
2737
2738 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2739 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2740 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2741 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2742 return key_senderror(so, m, EINVAL);
2743 }
2744 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2745 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2746 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2747 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2748 return key_senderror(so, m, EINVAL);
2749 }
2750
2751 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2752 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2753 IPSECLOG(LOG_DEBUG, "invalid message\n");
2754 return key_senderror(so, m, EINVAL);
2755 }
2756
2757 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2758 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2759 IPSECLOG(LOG_DEBUG, "invalid message\n");
2760 return key_senderror(so, m, EINVAL);
2761 }
2762
2763 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2764 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2765 IPSECLOG(LOG_DEBUG, "invalid message\n");
2766 return key_senderror(so, m, EINVAL);
2767 }
2768
2769 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2770 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2771 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2772 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2773 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2774 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2775
2776 /*
2777 * XXX handle that, it should also contain a SA, or anything
2778 * that enable to update the SA information.
2779 */
2780
2781 return 0;
2782 }
2783
2784 static struct mbuf *
2785 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2786 {
2787 struct mbuf *result = NULL, *m;
2788
2789 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2790 key_sp_refcnt(sp));
2791 if (!m)
2792 goto fail;
2793 result = m;
2794
2795 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2796 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2797 if (!m)
2798 goto fail;
2799 m_cat(result, m);
2800
2801 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2802 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2803 if (!m)
2804 goto fail;
2805 m_cat(result, m);
2806
2807 m = key_sp2msg(sp);
2808 if (!m)
2809 goto fail;
2810 m_cat(result, m);
2811
2812 if ((result->m_flags & M_PKTHDR) == 0)
2813 goto fail;
2814
2815 if (result->m_len < sizeof(struct sadb_msg)) {
2816 result = m_pullup(result, sizeof(struct sadb_msg));
2817 if (result == NULL)
2818 goto fail;
2819 }
2820
2821 result->m_pkthdr.len = 0;
2822 for (m = result; m; m = m->m_next)
2823 result->m_pkthdr.len += m->m_len;
2824
2825 mtod(result, struct sadb_msg *)->sadb_msg_len =
2826 PFKEY_UNIT64(result->m_pkthdr.len);
2827
2828 return result;
2829
2830 fail:
2831 m_freem(result);
2832 return NULL;
2833 }
2834
2835 /*
2836 * get PFKEY message length for security policy and request.
2837 */
2838 static u_int
2839 key_getspreqmsglen(const struct secpolicy *sp)
2840 {
2841 u_int tlen;
2842
2843 tlen = sizeof(struct sadb_x_policy);
2844
2845 /* if is the policy for ipsec ? */
2846 if (sp->policy != IPSEC_POLICY_IPSEC)
2847 return tlen;
2848
2849 /* get length of ipsec requests */
2850 {
2851 const struct ipsecrequest *isr;
2852 int len;
2853
2854 for (isr = sp->req; isr != NULL; isr = isr->next) {
2855 len = sizeof(struct sadb_x_ipsecrequest)
2856 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2857
2858 tlen += PFKEY_ALIGN8(len);
2859 }
2860 }
2861
2862 return tlen;
2863 }
2864
2865 /*
2866 * SADB_SPDEXPIRE processing
2867 * send
2868 * <base, address(SD), lifetime(CH), policy>
2869 * to KMD by PF_KEY.
2870 *
2871 * OUT: 0 : succeed
2872 * others : error number
2873 */
2874 static int
2875 key_spdexpire(struct secpolicy *sp)
2876 {
2877 int s;
2878 struct mbuf *result = NULL, *m;
2879 int len;
2880 int error = -1;
2881 struct sadb_lifetime *lt;
2882
2883 /* XXX: Why do we lock ? */
2884 s = splsoftnet(); /*called from softclock()*/
2885
2886 KASSERT(sp != NULL);
2887
2888 /* set msg header */
2889 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2890 if (!m) {
2891 error = ENOBUFS;
2892 goto fail;
2893 }
2894 result = m;
2895
2896 /* create lifetime extension (current and hard) */
2897 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2898 m = key_alloc_mbuf(len);
2899 if (!m || m->m_next) { /*XXX*/
2900 if (m)
2901 m_freem(m);
2902 error = ENOBUFS;
2903 goto fail;
2904 }
2905 memset(mtod(m, void *), 0, len);
2906 lt = mtod(m, struct sadb_lifetime *);
2907 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2908 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2909 lt->sadb_lifetime_allocations = 0;
2910 lt->sadb_lifetime_bytes = 0;
2911 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2912 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2913 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2914 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2915 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2916 lt->sadb_lifetime_allocations = 0;
2917 lt->sadb_lifetime_bytes = 0;
2918 lt->sadb_lifetime_addtime = sp->lifetime;
2919 lt->sadb_lifetime_usetime = sp->validtime;
2920 m_cat(result, m);
2921
2922 /* set sadb_address for source */
2923 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2924 sp->spidx.prefs, sp->spidx.ul_proto);
2925 if (!m) {
2926 error = ENOBUFS;
2927 goto fail;
2928 }
2929 m_cat(result, m);
2930
2931 /* set sadb_address for destination */
2932 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2933 sp->spidx.prefd, sp->spidx.ul_proto);
2934 if (!m) {
2935 error = ENOBUFS;
2936 goto fail;
2937 }
2938 m_cat(result, m);
2939
2940 /* set secpolicy */
2941 m = key_sp2msg(sp);
2942 if (!m) {
2943 error = ENOBUFS;
2944 goto fail;
2945 }
2946 m_cat(result, m);
2947
2948 if ((result->m_flags & M_PKTHDR) == 0) {
2949 error = EINVAL;
2950 goto fail;
2951 }
2952
2953 if (result->m_len < sizeof(struct sadb_msg)) {
2954 result = m_pullup(result, sizeof(struct sadb_msg));
2955 if (result == NULL) {
2956 error = ENOBUFS;
2957 goto fail;
2958 }
2959 }
2960
2961 result->m_pkthdr.len = 0;
2962 for (m = result; m; m = m->m_next)
2963 result->m_pkthdr.len += m->m_len;
2964
2965 mtod(result, struct sadb_msg *)->sadb_msg_len =
2966 PFKEY_UNIT64(result->m_pkthdr.len);
2967
2968 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2969
2970 fail:
2971 if (result)
2972 m_freem(result);
2973 splx(s);
2974 return error;
2975 }
2976
2977 /* %%% SAD management */
2978 /*
2979 * allocating a memory for new SA head, and copy from the values of mhp.
2980 * OUT: NULL : failure due to the lack of memory.
2981 * others : pointer to new SA head.
2982 */
2983 static struct secashead *
2984 key_newsah(const struct secasindex *saidx)
2985 {
2986 struct secashead *newsah;
2987 int i;
2988
2989 KASSERT(saidx != NULL);
2990
2991 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
2992 for (i = 0; i < __arraycount(newsah->savlist); i++)
2993 PSLIST_INIT(&newsah->savlist[i]);
2994 newsah->saidx = *saidx;
2995
2996 localcount_init(&newsah->localcount);
2997 /* Take a reference for the caller */
2998 localcount_acquire(&newsah->localcount);
2999
3000 /* Add to the sah list */
3001 SAHLIST_ENTRY_INIT(newsah);
3002 newsah->state = SADB_SASTATE_MATURE;
3003 mutex_enter(&key_sad.lock);
3004 SAHLIST_WRITER_INSERT_HEAD(newsah);
3005 mutex_exit(&key_sad.lock);
3006
3007 return newsah;
3008 }
3009
3010 static bool
3011 key_sah_has_sav(struct secashead *sah)
3012 {
3013 u_int state;
3014
3015 KASSERT(mutex_owned(&key_sad.lock));
3016
3017 SASTATE_ANY_FOREACH(state) {
3018 if (!SAVLIST_WRITER_EMPTY(sah, state))
3019 return true;
3020 }
3021
3022 return false;
3023 }
3024
3025 static void
3026 key_unlink_sah(struct secashead *sah)
3027 {
3028
3029 KASSERT(!cpu_softintr_p());
3030 KASSERT(mutex_owned(&key_sad.lock));
3031 KASSERT(sah->state == SADB_SASTATE_DEAD);
3032
3033 /* Remove from the sah list */
3034 SAHLIST_WRITER_REMOVE(sah);
3035
3036 #ifdef NET_MPSAFE
3037 KASSERT(mutex_ownable(softnet_lock));
3038 pserialize_perform(key_sad_psz);
3039 #endif
3040
3041 localcount_drain(&sah->localcount, &key_sad.cv, &key_sad.lock);
3042 }
3043
3044 static void
3045 key_destroy_sah(struct secashead *sah)
3046 {
3047
3048 rtcache_free(&sah->sa_route);
3049
3050 SAHLIST_ENTRY_DESTROY(sah);
3051 localcount_fini(&sah->localcount);
3052
3053 if (sah->idents != NULL)
3054 kmem_free(sah->idents, sah->idents_len);
3055 if (sah->identd != NULL)
3056 kmem_free(sah->identd, sah->identd_len);
3057
3058 kmem_free(sah, sizeof(*sah));
3059 }
3060
3061 /*
3062 * allocating a new SA with LARVAL state.
3063 * key_api_add() and key_api_getspi() call,
3064 * and copy the values of mhp into new buffer.
3065 * When SAD message type is GETSPI:
3066 * to set sequence number from acq_seq++,
3067 * to set zero to SPI.
3068 * not to call key_setsava().
3069 * OUT: NULL : fail
3070 * others : pointer to new secasvar.
3071 *
3072 * does not modify mbuf. does not free mbuf on error.
3073 */
3074 static struct secasvar *
3075 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3076 int *errp, const char* where, int tag)
3077 {
3078 struct secasvar *newsav;
3079 const struct sadb_sa *xsa;
3080
3081 KASSERT(!cpu_softintr_p());
3082 KASSERT(m != NULL);
3083 KASSERT(mhp != NULL);
3084 KASSERT(mhp->msg != NULL);
3085
3086 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3087
3088 switch (mhp->msg->sadb_msg_type) {
3089 case SADB_GETSPI:
3090 newsav->spi = 0;
3091
3092 #ifdef IPSEC_DOSEQCHECK
3093 /* sync sequence number */
3094 if (mhp->msg->sadb_msg_seq == 0)
3095 newsav->seq =
3096 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3097 else
3098 #endif
3099 newsav->seq = mhp->msg->sadb_msg_seq;
3100 break;
3101
3102 case SADB_ADD:
3103 /* sanity check */
3104 if (mhp->ext[SADB_EXT_SA] == NULL) {
3105 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3106 *errp = EINVAL;
3107 goto error;
3108 }
3109 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3110 newsav->spi = xsa->sadb_sa_spi;
3111 newsav->seq = mhp->msg->sadb_msg_seq;
3112 break;
3113 default:
3114 *errp = EINVAL;
3115 goto error;
3116 }
3117
3118 /* copy sav values */
3119 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3120 *errp = key_setsaval(newsav, m, mhp);
3121 if (*errp)
3122 goto error;
3123 } else {
3124 /* We don't allow lft_c to be NULL */
3125 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3126 KM_SLEEP);
3127 }
3128
3129 /* reset created */
3130 newsav->created = time_uptime;
3131 newsav->pid = mhp->msg->sadb_msg_pid;
3132
3133 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3134 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3135 return newsav;
3136
3137 error:
3138 KASSERT(*errp != 0);
3139 kmem_free(newsav, sizeof(*newsav));
3140 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3141 "DP from %s:%u return SA:NULL\n", where, tag);
3142 return NULL;
3143 }
3144
3145
3146 static void
3147 key_clear_xform(struct secasvar *sav)
3148 {
3149
3150 /*
3151 * Cleanup xform state. Note that zeroize'ing causes the
3152 * keys to be cleared; otherwise we must do it ourself.
3153 */
3154 if (sav->tdb_xform != NULL) {
3155 sav->tdb_xform->xf_zeroize(sav);
3156 sav->tdb_xform = NULL;
3157 } else {
3158 if (sav->key_auth != NULL)
3159 explicit_memset(_KEYBUF(sav->key_auth), 0,
3160 _KEYLEN(sav->key_auth));
3161 if (sav->key_enc != NULL)
3162 explicit_memset(_KEYBUF(sav->key_enc), 0,
3163 _KEYLEN(sav->key_enc));
3164 }
3165 }
3166
3167 /*
3168 * free() SA variable entry.
3169 */
3170 static void
3171 key_delsav(struct secasvar *sav)
3172 {
3173
3174 KASSERT(sav != NULL);
3175 KASSERTMSG(sav->refcnt == 0, "reference count %u > 0", sav->refcnt);
3176
3177 key_clear_xform(sav);
3178 key_freesaval(sav);
3179 SAVLIST_ENTRY_DESTROY(sav);
3180 kmem_intr_free(sav, sizeof(*sav));
3181
3182 return;
3183 }
3184
3185 /*
3186 * Must be called in a pserialize read section. A held sah
3187 * must be released by key_sah_unref after use.
3188 */
3189 static void
3190 key_sah_ref(struct secashead *sah)
3191 {
3192
3193 localcount_acquire(&sah->localcount);
3194 }
3195
3196 /*
3197 * Must be called without holding key_sad.lock because the lock
3198 * would be held in localcount_release.
3199 */
3200 static void
3201 key_sah_unref(struct secashead *sah)
3202 {
3203
3204 KDASSERT(mutex_ownable(&key_sad.lock));
3205
3206 localcount_release(&sah->localcount, &key_sad.cv, &key_sad.lock);
3207 }
3208
3209 /*
3210 * Search SAD and return sah. Must be called in a pserialize
3211 * read section.
3212 * OUT:
3213 * NULL : not found
3214 * others : found, pointer to a SA.
3215 */
3216 static struct secashead *
3217 key_getsah(const struct secasindex *saidx, int flag)
3218 {
3219 struct secashead *sah;
3220
3221 SAHLIST_READER_FOREACH(sah) {
3222 if (sah->state == SADB_SASTATE_DEAD)
3223 continue;
3224 if (key_saidx_match(&sah->saidx, saidx, flag))
3225 return sah;
3226 }
3227
3228 return NULL;
3229 }
3230
3231 /*
3232 * Search SAD and return sah. If sah is returned, the caller must call
3233 * key_sah_unref to releaset a reference.
3234 * OUT:
3235 * NULL : not found
3236 * others : found, pointer to a SA.
3237 */
3238 static struct secashead *
3239 key_getsah_ref(const struct secasindex *saidx, int flag)
3240 {
3241 struct secashead *sah;
3242 int s;
3243
3244 s = pserialize_read_enter();
3245 sah = key_getsah(saidx, flag);
3246 if (sah != NULL)
3247 key_sah_ref(sah);
3248 pserialize_read_exit(s);
3249
3250 return sah;
3251 }
3252
3253 /*
3254 * check not to be duplicated SPI.
3255 * NOTE: this function is too slow due to searching all SAD.
3256 * OUT:
3257 * NULL : not found
3258 * others : found, pointer to a SA.
3259 */
3260 static bool
3261 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3262 {
3263 struct secashead *sah;
3264 struct secasvar *sav;
3265 int s;
3266
3267 /* check address family */
3268 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3269 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3270 return false;
3271 }
3272
3273 /* check all SAD */
3274 s = pserialize_read_enter();
3275 SAHLIST_READER_FOREACH(sah) {
3276 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3277 continue;
3278 sav = key_getsavbyspi(sah, spi);
3279 if (sav != NULL) {
3280 pserialize_read_exit(s);
3281 KEY_SA_UNREF(&sav);
3282 return true;
3283 }
3284 }
3285 pserialize_read_exit(s);
3286
3287 return false;
3288 }
3289
3290 /*
3291 * search SAD litmited alive SA, protocol, SPI.
3292 * OUT:
3293 * NULL : not found
3294 * others : found, pointer to a SA.
3295 */
3296 static struct secasvar *
3297 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3298 {
3299 struct secasvar *sav = NULL;
3300 u_int state;
3301 int s;
3302
3303 /* search all status */
3304 s = pserialize_read_enter();
3305 SASTATE_ALIVE_FOREACH(state) {
3306 SAVLIST_READER_FOREACH(sav, sah, state) {
3307 /* sanity check */
3308 if (sav->state != state) {
3309 IPSECLOG(LOG_DEBUG,
3310 "invalid sav->state (queue: %d SA: %d)\n",
3311 state, sav->state);
3312 continue;
3313 }
3314
3315 if (sav->spi == spi) {
3316 SA_ADDREF(sav);
3317 goto out;
3318 }
3319 }
3320 }
3321 out:
3322 pserialize_read_exit(s);
3323
3324 return sav;
3325 }
3326
3327 /*
3328 * Free allocated data to member variables of sav:
3329 * sav->replay, sav->key_* and sav->lft_*.
3330 */
3331 static void
3332 key_freesaval(struct secasvar *sav)
3333 {
3334
3335 KASSERT(key_sa_refcnt(sav) == 0);
3336
3337 if (sav->replay != NULL)
3338 kmem_intr_free(sav->replay, sav->replay_len);
3339 if (sav->key_auth != NULL)
3340 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3341 if (sav->key_enc != NULL)
3342 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3343 if (sav->lft_c != NULL)
3344 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3345 if (sav->lft_h != NULL)
3346 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3347 if (sav->lft_s != NULL)
3348 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3349 }
3350
3351 /*
3352 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3353 * You must update these if need.
3354 * OUT: 0: success.
3355 * !0: failure.
3356 *
3357 * does not modify mbuf. does not free mbuf on error.
3358 */
3359 static int
3360 key_setsaval(struct secasvar *sav, struct mbuf *m,
3361 const struct sadb_msghdr *mhp)
3362 {
3363 int error = 0;
3364
3365 KASSERT(!cpu_softintr_p());
3366 KASSERT(m != NULL);
3367 KASSERT(mhp != NULL);
3368 KASSERT(mhp->msg != NULL);
3369
3370 /* We shouldn't initialize sav variables while someone uses it. */
3371 KASSERT(key_sa_refcnt(sav) == 0);
3372
3373 /* SA */
3374 if (mhp->ext[SADB_EXT_SA] != NULL) {
3375 const struct sadb_sa *sa0;
3376
3377 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3378 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3379 error = EINVAL;
3380 goto fail;
3381 }
3382
3383 sav->alg_auth = sa0->sadb_sa_auth;
3384 sav->alg_enc = sa0->sadb_sa_encrypt;
3385 sav->flags = sa0->sadb_sa_flags;
3386
3387 /* replay window */
3388 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3389 size_t len = sizeof(struct secreplay) +
3390 sa0->sadb_sa_replay;
3391 sav->replay = kmem_zalloc(len, KM_SLEEP);
3392 sav->replay_len = len;
3393 if (sa0->sadb_sa_replay != 0)
3394 sav->replay->bitmap = (char*)(sav->replay+1);
3395 sav->replay->wsize = sa0->sadb_sa_replay;
3396 }
3397 }
3398
3399 /* Authentication keys */
3400 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3401 const struct sadb_key *key0;
3402 int len;
3403
3404 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3405 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3406
3407 error = 0;
3408 if (len < sizeof(*key0)) {
3409 error = EINVAL;
3410 goto fail;
3411 }
3412 switch (mhp->msg->sadb_msg_satype) {
3413 case SADB_SATYPE_AH:
3414 case SADB_SATYPE_ESP:
3415 case SADB_X_SATYPE_TCPSIGNATURE:
3416 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3417 sav->alg_auth != SADB_X_AALG_NULL)
3418 error = EINVAL;
3419 break;
3420 case SADB_X_SATYPE_IPCOMP:
3421 default:
3422 error = EINVAL;
3423 break;
3424 }
3425 if (error) {
3426 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3427 goto fail;
3428 }
3429
3430 sav->key_auth = key_newbuf(key0, len);
3431 sav->key_auth_len = len;
3432 }
3433
3434 /* Encryption key */
3435 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3436 const struct sadb_key *key0;
3437 int len;
3438
3439 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3440 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3441
3442 error = 0;
3443 if (len < sizeof(*key0)) {
3444 error = EINVAL;
3445 goto fail;
3446 }
3447 switch (mhp->msg->sadb_msg_satype) {
3448 case SADB_SATYPE_ESP:
3449 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3450 sav->alg_enc != SADB_EALG_NULL) {
3451 error = EINVAL;
3452 break;
3453 }
3454 sav->key_enc = key_newbuf(key0, len);
3455 sav->key_enc_len = len;
3456 break;
3457 case SADB_X_SATYPE_IPCOMP:
3458 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3459 error = EINVAL;
3460 sav->key_enc = NULL; /*just in case*/
3461 break;
3462 case SADB_SATYPE_AH:
3463 case SADB_X_SATYPE_TCPSIGNATURE:
3464 default:
3465 error = EINVAL;
3466 break;
3467 }
3468 if (error) {
3469 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3470 goto fail;
3471 }
3472 }
3473
3474 /* set iv */
3475 sav->ivlen = 0;
3476
3477 switch (mhp->msg->sadb_msg_satype) {
3478 case SADB_SATYPE_AH:
3479 error = xform_init(sav, XF_AH);
3480 break;
3481 case SADB_SATYPE_ESP:
3482 error = xform_init(sav, XF_ESP);
3483 break;
3484 case SADB_X_SATYPE_IPCOMP:
3485 error = xform_init(sav, XF_IPCOMP);
3486 break;
3487 case SADB_X_SATYPE_TCPSIGNATURE:
3488 error = xform_init(sav, XF_TCPSIGNATURE);
3489 break;
3490 }
3491 if (error) {
3492 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3493 mhp->msg->sadb_msg_satype);
3494 goto fail;
3495 }
3496
3497 /* reset created */
3498 sav->created = time_uptime;
3499
3500 /* make lifetime for CURRENT */
3501 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3502
3503 sav->lft_c->sadb_lifetime_len =
3504 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3505 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3506 sav->lft_c->sadb_lifetime_allocations = 0;
3507 sav->lft_c->sadb_lifetime_bytes = 0;
3508 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3509 sav->lft_c->sadb_lifetime_usetime = 0;
3510
3511 /* lifetimes for HARD and SOFT */
3512 {
3513 const struct sadb_lifetime *lft0;
3514
3515 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3516 if (lft0 != NULL) {
3517 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3518 error = EINVAL;
3519 goto fail;
3520 }
3521 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3522 }
3523
3524 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3525 if (lft0 != NULL) {
3526 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3527 error = EINVAL;
3528 goto fail;
3529 }
3530 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3531 /* to be initialize ? */
3532 }
3533 }
3534
3535 return 0;
3536
3537 fail:
3538 key_clear_xform(sav);
3539 key_freesaval(sav);
3540
3541 return error;
3542 }
3543
3544 /*
3545 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3546 * OUT: 0: valid
3547 * other: errno
3548 */
3549 static int
3550 key_init_xform(struct secasvar *sav)
3551 {
3552 int error;
3553
3554 /* We shouldn't initialize sav variables while someone uses it. */
3555 KASSERT(key_sa_refcnt(sav) == 0);
3556
3557 /* check SPI value */
3558 switch (sav->sah->saidx.proto) {
3559 case IPPROTO_ESP:
3560 case IPPROTO_AH:
3561 if (ntohl(sav->spi) <= 255) {
3562 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3563 (u_int32_t)ntohl(sav->spi));
3564 return EINVAL;
3565 }
3566 break;
3567 }
3568
3569 /* check satype */
3570 switch (sav->sah->saidx.proto) {
3571 case IPPROTO_ESP:
3572 /* check flags */
3573 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3574 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3575 IPSECLOG(LOG_DEBUG,
3576 "invalid flag (derived) given to old-esp.\n");
3577 return EINVAL;
3578 }
3579 error = xform_init(sav, XF_ESP);
3580 break;
3581 case IPPROTO_AH:
3582 /* check flags */
3583 if (sav->flags & SADB_X_EXT_DERIV) {
3584 IPSECLOG(LOG_DEBUG,
3585 "invalid flag (derived) given to AH SA.\n");
3586 return EINVAL;
3587 }
3588 if (sav->alg_enc != SADB_EALG_NONE) {
3589 IPSECLOG(LOG_DEBUG,
3590 "protocol and algorithm mismated.\n");
3591 return(EINVAL);
3592 }
3593 error = xform_init(sav, XF_AH);
3594 break;
3595 case IPPROTO_IPCOMP:
3596 if (sav->alg_auth != SADB_AALG_NONE) {
3597 IPSECLOG(LOG_DEBUG,
3598 "protocol and algorithm mismated.\n");
3599 return(EINVAL);
3600 }
3601 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3602 && ntohl(sav->spi) >= 0x10000) {
3603 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3604 return(EINVAL);
3605 }
3606 error = xform_init(sav, XF_IPCOMP);
3607 break;
3608 case IPPROTO_TCP:
3609 if (sav->alg_enc != SADB_EALG_NONE) {
3610 IPSECLOG(LOG_DEBUG,
3611 "protocol and algorithm mismated.\n");
3612 return(EINVAL);
3613 }
3614 error = xform_init(sav, XF_TCPSIGNATURE);
3615 break;
3616 default:
3617 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3618 error = EPROTONOSUPPORT;
3619 break;
3620 }
3621
3622 return error;
3623 }
3624
3625 /*
3626 * subroutine for SADB_GET and SADB_DUMP.
3627 */
3628 static struct mbuf *
3629 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3630 u_int32_t seq, u_int32_t pid)
3631 {
3632 struct mbuf *result = NULL, *tres = NULL, *m;
3633 int l = 0;
3634 int i;
3635 void *p;
3636 struct sadb_lifetime lt;
3637 int dumporder[] = {
3638 SADB_EXT_SA, SADB_X_EXT_SA2,
3639 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3640 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3641 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3642 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3643 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3644 SADB_X_EXT_NAT_T_TYPE,
3645 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3646 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3647 SADB_X_EXT_NAT_T_FRAG,
3648
3649 };
3650
3651 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav));
3652 if (m == NULL)
3653 goto fail;
3654 result = m;
3655
3656 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3657 m = NULL;
3658 p = NULL;
3659 switch (dumporder[i]) {
3660 case SADB_EXT_SA:
3661 m = key_setsadbsa(sav);
3662 break;
3663
3664 case SADB_X_EXT_SA2:
3665 m = key_setsadbxsa2(sav->sah->saidx.mode,
3666 sav->replay ? sav->replay->count : 0,
3667 sav->sah->saidx.reqid);
3668 break;
3669
3670 case SADB_EXT_ADDRESS_SRC:
3671 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3672 &sav->sah->saidx.src.sa,
3673 FULLMASK, IPSEC_ULPROTO_ANY);
3674 break;
3675
3676 case SADB_EXT_ADDRESS_DST:
3677 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3678 &sav->sah->saidx.dst.sa,
3679 FULLMASK, IPSEC_ULPROTO_ANY);
3680 break;
3681
3682 case SADB_EXT_KEY_AUTH:
3683 if (!sav->key_auth)
3684 continue;
3685 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3686 p = sav->key_auth;
3687 break;
3688
3689 case SADB_EXT_KEY_ENCRYPT:
3690 if (!sav->key_enc)
3691 continue;
3692 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3693 p = sav->key_enc;
3694 break;
3695
3696 case SADB_EXT_LIFETIME_CURRENT:
3697 KASSERT(sav->lft_c != NULL);
3698 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3699 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3700 lt.sadb_lifetime_addtime =
3701 time_mono_to_wall(lt.sadb_lifetime_addtime);
3702 lt.sadb_lifetime_usetime =
3703 time_mono_to_wall(lt.sadb_lifetime_usetime);
3704 p = <
3705 break;
3706
3707 case SADB_EXT_LIFETIME_HARD:
3708 if (!sav->lft_h)
3709 continue;
3710 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3711 p = sav->lft_h;
3712 break;
3713
3714 case SADB_EXT_LIFETIME_SOFT:
3715 if (!sav->lft_s)
3716 continue;
3717 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3718 p = sav->lft_s;
3719 break;
3720
3721 case SADB_X_EXT_NAT_T_TYPE:
3722 m = key_setsadbxtype(sav->natt_type);
3723 break;
3724
3725 case SADB_X_EXT_NAT_T_DPORT:
3726 if (sav->natt_type == 0)
3727 continue;
3728 m = key_setsadbxport(
3729 key_portfromsaddr(&sav->sah->saidx.dst),
3730 SADB_X_EXT_NAT_T_DPORT);
3731 break;
3732
3733 case SADB_X_EXT_NAT_T_SPORT:
3734 if (sav->natt_type == 0)
3735 continue;
3736 m = key_setsadbxport(
3737 key_portfromsaddr(&sav->sah->saidx.src),
3738 SADB_X_EXT_NAT_T_SPORT);
3739 break;
3740
3741 case SADB_X_EXT_NAT_T_FRAG:
3742 /* don't send frag info if not set */
3743 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3744 continue;
3745 m = key_setsadbxfrag(sav->esp_frag);
3746 break;
3747
3748 case SADB_X_EXT_NAT_T_OAI:
3749 case SADB_X_EXT_NAT_T_OAR:
3750 continue;
3751
3752 case SADB_EXT_ADDRESS_PROXY:
3753 case SADB_EXT_IDENTITY_SRC:
3754 case SADB_EXT_IDENTITY_DST:
3755 /* XXX: should we brought from SPD ? */
3756 case SADB_EXT_SENSITIVITY:
3757 default:
3758 continue;
3759 }
3760
3761 KASSERT(!(m && p));
3762 if (!m && !p)
3763 goto fail;
3764 if (p && tres) {
3765 M_PREPEND(tres, l, M_DONTWAIT);
3766 if (!tres)
3767 goto fail;
3768 memcpy(mtod(tres, void *), p, l);
3769 continue;
3770 }
3771 if (p) {
3772 m = key_alloc_mbuf(l);
3773 if (!m)
3774 goto fail;
3775 m_copyback(m, 0, l, p);
3776 }
3777
3778 if (tres)
3779 m_cat(m, tres);
3780 tres = m;
3781 }
3782
3783 m_cat(result, tres);
3784 tres = NULL; /* avoid free on error below */
3785
3786 if (result->m_len < sizeof(struct sadb_msg)) {
3787 result = m_pullup(result, sizeof(struct sadb_msg));
3788 if (result == NULL)
3789 goto fail;
3790 }
3791
3792 result->m_pkthdr.len = 0;
3793 for (m = result; m; m = m->m_next)
3794 result->m_pkthdr.len += m->m_len;
3795
3796 mtod(result, struct sadb_msg *)->sadb_msg_len =
3797 PFKEY_UNIT64(result->m_pkthdr.len);
3798
3799 return result;
3800
3801 fail:
3802 m_freem(result);
3803 m_freem(tres);
3804 return NULL;
3805 }
3806
3807
3808 /*
3809 * set a type in sadb_x_nat_t_type
3810 */
3811 static struct mbuf *
3812 key_setsadbxtype(u_int16_t type)
3813 {
3814 struct mbuf *m;
3815 size_t len;
3816 struct sadb_x_nat_t_type *p;
3817
3818 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3819
3820 m = key_alloc_mbuf(len);
3821 if (!m || m->m_next) { /*XXX*/
3822 if (m)
3823 m_freem(m);
3824 return NULL;
3825 }
3826
3827 p = mtod(m, struct sadb_x_nat_t_type *);
3828
3829 memset(p, 0, len);
3830 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3831 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3832 p->sadb_x_nat_t_type_type = type;
3833
3834 return m;
3835 }
3836 /*
3837 * set a port in sadb_x_nat_t_port. port is in network order
3838 */
3839 static struct mbuf *
3840 key_setsadbxport(u_int16_t port, u_int16_t type)
3841 {
3842 struct mbuf *m;
3843 size_t len;
3844 struct sadb_x_nat_t_port *p;
3845
3846 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3847
3848 m = key_alloc_mbuf(len);
3849 if (!m || m->m_next) { /*XXX*/
3850 if (m)
3851 m_freem(m);
3852 return NULL;
3853 }
3854
3855 p = mtod(m, struct sadb_x_nat_t_port *);
3856
3857 memset(p, 0, len);
3858 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3859 p->sadb_x_nat_t_port_exttype = type;
3860 p->sadb_x_nat_t_port_port = port;
3861
3862 return m;
3863 }
3864
3865 /*
3866 * set fragmentation info in sadb_x_nat_t_frag
3867 */
3868 static struct mbuf *
3869 key_setsadbxfrag(u_int16_t flen)
3870 {
3871 struct mbuf *m;
3872 size_t len;
3873 struct sadb_x_nat_t_frag *p;
3874
3875 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3876
3877 m = key_alloc_mbuf(len);
3878 if (!m || m->m_next) { /*XXX*/
3879 if (m)
3880 m_freem(m);
3881 return NULL;
3882 }
3883
3884 p = mtod(m, struct sadb_x_nat_t_frag *);
3885
3886 memset(p, 0, len);
3887 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3888 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3889 p->sadb_x_nat_t_frag_fraglen = flen;
3890
3891 return m;
3892 }
3893
3894 /*
3895 * Get port from sockaddr, port is in network order
3896 */
3897 u_int16_t
3898 key_portfromsaddr(const union sockaddr_union *saddr)
3899 {
3900 u_int16_t port;
3901
3902 switch (saddr->sa.sa_family) {
3903 case AF_INET: {
3904 port = saddr->sin.sin_port;
3905 break;
3906 }
3907 #ifdef INET6
3908 case AF_INET6: {
3909 port = saddr->sin6.sin6_port;
3910 break;
3911 }
3912 #endif
3913 default:
3914 printf("%s: unexpected address family\n", __func__);
3915 port = 0;
3916 break;
3917 }
3918
3919 return port;
3920 }
3921
3922
3923 /*
3924 * Set port is struct sockaddr. port is in network order
3925 */
3926 static void
3927 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3928 {
3929 switch (saddr->sa.sa_family) {
3930 case AF_INET: {
3931 saddr->sin.sin_port = port;
3932 break;
3933 }
3934 #ifdef INET6
3935 case AF_INET6: {
3936 saddr->sin6.sin6_port = port;
3937 break;
3938 }
3939 #endif
3940 default:
3941 printf("%s: unexpected address family %d\n", __func__,
3942 saddr->sa.sa_family);
3943 break;
3944 }
3945
3946 return;
3947 }
3948
3949 /*
3950 * Safety check sa_len
3951 */
3952 static int
3953 key_checksalen(const union sockaddr_union *saddr)
3954 {
3955 switch (saddr->sa.sa_family) {
3956 case AF_INET:
3957 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3958 return -1;
3959 break;
3960 #ifdef INET6
3961 case AF_INET6:
3962 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3963 return -1;
3964 break;
3965 #endif
3966 default:
3967 printf("%s: unexpected sa_family %d\n", __func__,
3968 saddr->sa.sa_family);
3969 return -1;
3970 break;
3971 }
3972 return 0;
3973 }
3974
3975
3976 /*
3977 * set data into sadb_msg.
3978 */
3979 static struct mbuf *
3980 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3981 u_int32_t seq, pid_t pid, u_int16_t reserved)
3982 {
3983 struct mbuf *m;
3984 struct sadb_msg *p;
3985 int len;
3986
3987 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3988
3989 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3990
3991 MGETHDR(m, M_DONTWAIT, MT_DATA);
3992 if (m && len > MHLEN) {
3993 MCLGET(m, M_DONTWAIT);
3994 if ((m->m_flags & M_EXT) == 0) {
3995 m_freem(m);
3996 m = NULL;
3997 }
3998 }
3999 if (!m)
4000 return NULL;
4001 m->m_pkthdr.len = m->m_len = len;
4002 m->m_next = NULL;
4003
4004 p = mtod(m, struct sadb_msg *);
4005
4006 memset(p, 0, len);
4007 p->sadb_msg_version = PF_KEY_V2;
4008 p->sadb_msg_type = type;
4009 p->sadb_msg_errno = 0;
4010 p->sadb_msg_satype = satype;
4011 p->sadb_msg_len = PFKEY_UNIT64(tlen);
4012 p->sadb_msg_reserved = reserved;
4013 p->sadb_msg_seq = seq;
4014 p->sadb_msg_pid = (u_int32_t)pid;
4015
4016 return m;
4017 }
4018
4019 /*
4020 * copy secasvar data into sadb_address.
4021 */
4022 static struct mbuf *
4023 key_setsadbsa(struct secasvar *sav)
4024 {
4025 struct mbuf *m;
4026 struct sadb_sa *p;
4027 int len;
4028
4029 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4030 m = key_alloc_mbuf(len);
4031 if (!m || m->m_next) { /*XXX*/
4032 if (m)
4033 m_freem(m);
4034 return NULL;
4035 }
4036
4037 p = mtod(m, struct sadb_sa *);
4038
4039 memset(p, 0, len);
4040 p->sadb_sa_len = PFKEY_UNIT64(len);
4041 p->sadb_sa_exttype = SADB_EXT_SA;
4042 p->sadb_sa_spi = sav->spi;
4043 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4044 p->sadb_sa_state = sav->state;
4045 p->sadb_sa_auth = sav->alg_auth;
4046 p->sadb_sa_encrypt = sav->alg_enc;
4047 p->sadb_sa_flags = sav->flags;
4048
4049 return m;
4050 }
4051
4052 /*
4053 * set data into sadb_address.
4054 */
4055 static struct mbuf *
4056 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4057 u_int8_t prefixlen, u_int16_t ul_proto)
4058 {
4059 struct mbuf *m;
4060 struct sadb_address *p;
4061 size_t len;
4062
4063 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4064 PFKEY_ALIGN8(saddr->sa_len);
4065 m = key_alloc_mbuf(len);
4066 if (!m || m->m_next) { /*XXX*/
4067 if (m)
4068 m_freem(m);
4069 return NULL;
4070 }
4071
4072 p = mtod(m, struct sadb_address *);
4073
4074 memset(p, 0, len);
4075 p->sadb_address_len = PFKEY_UNIT64(len);
4076 p->sadb_address_exttype = exttype;
4077 p->sadb_address_proto = ul_proto;
4078 if (prefixlen == FULLMASK) {
4079 switch (saddr->sa_family) {
4080 case AF_INET:
4081 prefixlen = sizeof(struct in_addr) << 3;
4082 break;
4083 case AF_INET6:
4084 prefixlen = sizeof(struct in6_addr) << 3;
4085 break;
4086 default:
4087 ; /*XXX*/
4088 }
4089 }
4090 p->sadb_address_prefixlen = prefixlen;
4091 p->sadb_address_reserved = 0;
4092
4093 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4094 saddr, saddr->sa_len);
4095
4096 return m;
4097 }
4098
4099 #if 0
4100 /*
4101 * set data into sadb_ident.
4102 */
4103 static struct mbuf *
4104 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4105 void *string, int stringlen, u_int64_t id)
4106 {
4107 struct mbuf *m;
4108 struct sadb_ident *p;
4109 size_t len;
4110
4111 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4112 m = key_alloc_mbuf(len);
4113 if (!m || m->m_next) { /*XXX*/
4114 if (m)
4115 m_freem(m);
4116 return NULL;
4117 }
4118
4119 p = mtod(m, struct sadb_ident *);
4120
4121 memset(p, 0, len);
4122 p->sadb_ident_len = PFKEY_UNIT64(len);
4123 p->sadb_ident_exttype = exttype;
4124 p->sadb_ident_type = idtype;
4125 p->sadb_ident_reserved = 0;
4126 p->sadb_ident_id = id;
4127
4128 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4129 string, stringlen);
4130
4131 return m;
4132 }
4133 #endif
4134
4135 /*
4136 * set data into sadb_x_sa2.
4137 */
4138 static struct mbuf *
4139 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4140 {
4141 struct mbuf *m;
4142 struct sadb_x_sa2 *p;
4143 size_t len;
4144
4145 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4146 m = key_alloc_mbuf(len);
4147 if (!m || m->m_next) { /*XXX*/
4148 if (m)
4149 m_freem(m);
4150 return NULL;
4151 }
4152
4153 p = mtod(m, struct sadb_x_sa2 *);
4154
4155 memset(p, 0, len);
4156 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4157 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4158 p->sadb_x_sa2_mode = mode;
4159 p->sadb_x_sa2_reserved1 = 0;
4160 p->sadb_x_sa2_reserved2 = 0;
4161 p->sadb_x_sa2_sequence = seq;
4162 p->sadb_x_sa2_reqid = reqid;
4163
4164 return m;
4165 }
4166
4167 /*
4168 * set data into sadb_x_policy
4169 */
4170 static struct mbuf *
4171 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4172 {
4173 struct mbuf *m;
4174 struct sadb_x_policy *p;
4175 size_t len;
4176
4177 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4178 m = key_alloc_mbuf(len);
4179 if (!m || m->m_next) { /*XXX*/
4180 if (m)
4181 m_freem(m);
4182 return NULL;
4183 }
4184
4185 p = mtod(m, struct sadb_x_policy *);
4186
4187 memset(p, 0, len);
4188 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4189 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4190 p->sadb_x_policy_type = type;
4191 p->sadb_x_policy_dir = dir;
4192 p->sadb_x_policy_id = id;
4193
4194 return m;
4195 }
4196
4197 /* %%% utilities */
4198 /*
4199 * copy a buffer into the new buffer allocated.
4200 */
4201 static void *
4202 key_newbuf(const void *src, u_int len)
4203 {
4204 void *new;
4205
4206 new = kmem_alloc(len, KM_SLEEP);
4207 memcpy(new, src, len);
4208
4209 return new;
4210 }
4211
4212 /* compare my own address
4213 * OUT: 1: true, i.e. my address.
4214 * 0: false
4215 */
4216 int
4217 key_ismyaddr(const struct sockaddr *sa)
4218 {
4219 #ifdef INET
4220 const struct sockaddr_in *sin;
4221 const struct in_ifaddr *ia;
4222 int s;
4223 #endif
4224
4225 KASSERT(sa != NULL);
4226
4227 switch (sa->sa_family) {
4228 #ifdef INET
4229 case AF_INET:
4230 sin = (const struct sockaddr_in *)sa;
4231 s = pserialize_read_enter();
4232 IN_ADDRLIST_READER_FOREACH(ia) {
4233 if (sin->sin_family == ia->ia_addr.sin_family &&
4234 sin->sin_len == ia->ia_addr.sin_len &&
4235 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4236 {
4237 pserialize_read_exit(s);
4238 return 1;
4239 }
4240 }
4241 pserialize_read_exit(s);
4242 break;
4243 #endif
4244 #ifdef INET6
4245 case AF_INET6:
4246 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4247 #endif
4248 }
4249
4250 return 0;
4251 }
4252
4253 #ifdef INET6
4254 /*
4255 * compare my own address for IPv6.
4256 * 1: ours
4257 * 0: other
4258 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4259 */
4260 #include <netinet6/in6_var.h>
4261
4262 static int
4263 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4264 {
4265 struct in6_ifaddr *ia;
4266 int s;
4267 struct psref psref;
4268 int bound;
4269 int ours = 1;
4270
4271 bound = curlwp_bind();
4272 s = pserialize_read_enter();
4273 IN6_ADDRLIST_READER_FOREACH(ia) {
4274 bool ingroup;
4275
4276 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4277 (const struct sockaddr *)&ia->ia_addr, 0)) {
4278 pserialize_read_exit(s);
4279 goto ours;
4280 }
4281 ia6_acquire(ia, &psref);
4282 pserialize_read_exit(s);
4283
4284 /*
4285 * XXX Multicast
4286 * XXX why do we care about multlicast here while we don't care
4287 * about IPv4 multicast??
4288 * XXX scope
4289 */
4290 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4291 if (ingroup) {
4292 ia6_release(ia, &psref);
4293 goto ours;
4294 }
4295
4296 s = pserialize_read_enter();
4297 ia6_release(ia, &psref);
4298 }
4299 pserialize_read_exit(s);
4300
4301 /* loopback, just for safety */
4302 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4303 goto ours;
4304
4305 ours = 0;
4306 ours:
4307 curlwp_bindx(bound);
4308
4309 return ours;
4310 }
4311 #endif /*INET6*/
4312
4313 /*
4314 * compare two secasindex structure.
4315 * flag can specify to compare 2 saidxes.
4316 * compare two secasindex structure without both mode and reqid.
4317 * don't compare port.
4318 * IN:
4319 * saidx0: source, it can be in SAD.
4320 * saidx1: object.
4321 * OUT:
4322 * 1 : equal
4323 * 0 : not equal
4324 */
4325 static int
4326 key_saidx_match(
4327 const struct secasindex *saidx0,
4328 const struct secasindex *saidx1,
4329 int flag)
4330 {
4331 int chkport;
4332 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4333
4334 KASSERT(saidx0 != NULL);
4335 KASSERT(saidx1 != NULL);
4336
4337 /* sanity */
4338 if (saidx0->proto != saidx1->proto)
4339 return 0;
4340
4341 if (flag == CMP_EXACTLY) {
4342 if (saidx0->mode != saidx1->mode)
4343 return 0;
4344 if (saidx0->reqid != saidx1->reqid)
4345 return 0;
4346 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4347 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4348 return 0;
4349 } else {
4350
4351 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4352 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4353 /*
4354 * If reqid of SPD is non-zero, unique SA is required.
4355 * The result must be of same reqid in this case.
4356 */
4357 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4358 return 0;
4359 }
4360
4361 if (flag == CMP_MODE_REQID) {
4362 if (saidx0->mode != IPSEC_MODE_ANY &&
4363 saidx0->mode != saidx1->mode)
4364 return 0;
4365 }
4366
4367
4368 sa0src = &saidx0->src.sa;
4369 sa0dst = &saidx0->dst.sa;
4370 sa1src = &saidx1->src.sa;
4371 sa1dst = &saidx1->dst.sa;
4372 /*
4373 * If NAT-T is enabled, check ports for tunnel mode.
4374 * Don't do it for transport mode, as there is no
4375 * port information available in the SP.
4376 * Also don't check ports if they are set to zero
4377 * in the SPD: This means we have a non-generated
4378 * SPD which can't know UDP ports.
4379 */
4380 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4381 chkport = PORT_LOOSE;
4382 else
4383 chkport = PORT_NONE;
4384
4385 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4386 return 0;
4387 }
4388 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4389 return 0;
4390 }
4391 }
4392
4393 return 1;
4394 }
4395
4396 /*
4397 * compare two secindex structure exactly.
4398 * IN:
4399 * spidx0: source, it is often in SPD.
4400 * spidx1: object, it is often from PFKEY message.
4401 * OUT:
4402 * 1 : equal
4403 * 0 : not equal
4404 */
4405 static int
4406 key_spidx_match_exactly(
4407 const struct secpolicyindex *spidx0,
4408 const struct secpolicyindex *spidx1)
4409 {
4410
4411 KASSERT(spidx0 != NULL);
4412 KASSERT(spidx1 != NULL);
4413
4414 /* sanity */
4415 if (spidx0->prefs != spidx1->prefs ||
4416 spidx0->prefd != spidx1->prefd ||
4417 spidx0->ul_proto != spidx1->ul_proto)
4418 return 0;
4419
4420 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4421 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4422 }
4423
4424 /*
4425 * compare two secindex structure with mask.
4426 * IN:
4427 * spidx0: source, it is often in SPD.
4428 * spidx1: object, it is often from IP header.
4429 * OUT:
4430 * 1 : equal
4431 * 0 : not equal
4432 */
4433 static int
4434 key_spidx_match_withmask(
4435 const struct secpolicyindex *spidx0,
4436 const struct secpolicyindex *spidx1)
4437 {
4438
4439 KASSERT(spidx0 != NULL);
4440 KASSERT(spidx1 != NULL);
4441
4442 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4443 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4444 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4445 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4446 return 0;
4447
4448 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4449 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4450 spidx0->ul_proto != spidx1->ul_proto)
4451 return 0;
4452
4453 switch (spidx0->src.sa.sa_family) {
4454 case AF_INET:
4455 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4456 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4457 return 0;
4458 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4459 &spidx1->src.sin.sin_addr, spidx0->prefs))
4460 return 0;
4461 break;
4462 case AF_INET6:
4463 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4464 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4465 return 0;
4466 /*
4467 * scope_id check. if sin6_scope_id is 0, we regard it
4468 * as a wildcard scope, which matches any scope zone ID.
4469 */
4470 if (spidx0->src.sin6.sin6_scope_id &&
4471 spidx1->src.sin6.sin6_scope_id &&
4472 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4473 return 0;
4474 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4475 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4476 return 0;
4477 break;
4478 default:
4479 /* XXX */
4480 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4481 return 0;
4482 break;
4483 }
4484
4485 switch (spidx0->dst.sa.sa_family) {
4486 case AF_INET:
4487 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4488 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4489 return 0;
4490 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4491 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4492 return 0;
4493 break;
4494 case AF_INET6:
4495 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4496 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4497 return 0;
4498 /*
4499 * scope_id check. if sin6_scope_id is 0, we regard it
4500 * as a wildcard scope, which matches any scope zone ID.
4501 */
4502 if (spidx0->src.sin6.sin6_scope_id &&
4503 spidx1->src.sin6.sin6_scope_id &&
4504 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4505 return 0;
4506 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4507 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4508 return 0;
4509 break;
4510 default:
4511 /* XXX */
4512 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4513 return 0;
4514 break;
4515 }
4516
4517 /* XXX Do we check other field ? e.g. flowinfo */
4518
4519 return 1;
4520 }
4521
4522 /* returns 0 on match */
4523 static int
4524 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4525 {
4526 switch (howport) {
4527 case PORT_NONE:
4528 return 0;
4529 case PORT_LOOSE:
4530 if (port1 == 0 || port2 == 0)
4531 return 0;
4532 /*FALLTHROUGH*/
4533 case PORT_STRICT:
4534 if (port1 != port2) {
4535 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4536 "port fail %d != %d\n", port1, port2);
4537 return 1;
4538 }
4539 return 0;
4540 default:
4541 KASSERT(0);
4542 return 1;
4543 }
4544 }
4545
4546 /* returns 1 on match */
4547 static int
4548 key_sockaddr_match(
4549 const struct sockaddr *sa1,
4550 const struct sockaddr *sa2,
4551 int howport)
4552 {
4553 const struct sockaddr_in *sin1, *sin2;
4554 const struct sockaddr_in6 *sin61, *sin62;
4555
4556 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4557 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4558 "fam/len fail %d != %d || %d != %d\n",
4559 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4560 sa2->sa_len);
4561 return 0;
4562 }
4563
4564 switch (sa1->sa_family) {
4565 case AF_INET:
4566 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4567 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4568 "len fail %d != %zu\n",
4569 sa1->sa_len, sizeof(struct sockaddr_in));
4570 return 0;
4571 }
4572 sin1 = (const struct sockaddr_in *)sa1;
4573 sin2 = (const struct sockaddr_in *)sa2;
4574 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4575 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4576 "addr fail %#x != %#x\n",
4577 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4578 return 0;
4579 }
4580 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4581 return 0;
4582 }
4583 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4584 "addr success %#x[%d] == %#x[%d]\n",
4585 sin1->sin_addr.s_addr, sin1->sin_port,
4586 sin2->sin_addr.s_addr, sin2->sin_port);
4587 break;
4588 case AF_INET6:
4589 sin61 = (const struct sockaddr_in6 *)sa1;
4590 sin62 = (const struct sockaddr_in6 *)sa2;
4591 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4592 return 0; /*EINVAL*/
4593
4594 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4595 return 0;
4596 }
4597 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4598 return 0;
4599 }
4600 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4601 return 0;
4602 }
4603 break;
4604 default:
4605 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4606 return 0;
4607 break;
4608 }
4609
4610 return 1;
4611 }
4612
4613 /*
4614 * compare two buffers with mask.
4615 * IN:
4616 * addr1: source
4617 * addr2: object
4618 * bits: Number of bits to compare
4619 * OUT:
4620 * 1 : equal
4621 * 0 : not equal
4622 */
4623 static int
4624 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4625 {
4626 const unsigned char *p1 = a1;
4627 const unsigned char *p2 = a2;
4628
4629 /* XXX: This could be considerably faster if we compare a word
4630 * at a time, but it is complicated on LSB Endian machines */
4631
4632 /* Handle null pointers */
4633 if (p1 == NULL || p2 == NULL)
4634 return (p1 == p2);
4635
4636 while (bits >= 8) {
4637 if (*p1++ != *p2++)
4638 return 0;
4639 bits -= 8;
4640 }
4641
4642 if (bits > 0) {
4643 u_int8_t mask = ~((1<<(8-bits))-1);
4644 if ((*p1 & mask) != (*p2 & mask))
4645 return 0;
4646 }
4647 return 1; /* Match! */
4648 }
4649
4650 static void
4651 key_timehandler_spd(time_t now)
4652 {
4653 u_int dir;
4654 struct secpolicy *sp;
4655
4656 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4657 retry:
4658 mutex_enter(&key_spd.lock);
4659 SPLIST_WRITER_FOREACH(sp, dir) {
4660 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4661
4662 if (sp->lifetime == 0 && sp->validtime == 0)
4663 continue;
4664
4665 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4666 (sp->validtime && now - sp->lastused > sp->validtime)) {
4667 key_unlink_sp(sp);
4668 mutex_exit(&key_spd.lock);
4669 key_spdexpire(sp);
4670 key_destroy_sp(sp);
4671 goto retry;
4672 }
4673 }
4674 mutex_exit(&key_spd.lock);
4675 }
4676
4677 retry_socksplist:
4678 mutex_enter(&key_spd.lock);
4679 SOCKSPLIST_WRITER_FOREACH(sp) {
4680 if (sp->state != IPSEC_SPSTATE_DEAD)
4681 continue;
4682
4683 key_unlink_sp(sp);
4684 mutex_exit(&key_spd.lock);
4685 key_destroy_sp(sp);
4686 goto retry_socksplist;
4687 }
4688 mutex_exit(&key_spd.lock);
4689 }
4690
4691 static void
4692 key_timehandler_sad(time_t now)
4693 {
4694 struct secashead *sah;
4695 int s;
4696
4697 restart:
4698 mutex_enter(&key_sad.lock);
4699 SAHLIST_WRITER_FOREACH(sah) {
4700 /* If sah has been dead and has no sav, then delete it */
4701 if (sah->state == SADB_SASTATE_DEAD &&
4702 !key_sah_has_sav(sah)) {
4703 key_unlink_sah(sah);
4704 mutex_exit(&key_sad.lock);
4705 key_destroy_sah(sah);
4706 goto restart;
4707 }
4708 }
4709 mutex_exit(&key_sad.lock);
4710
4711 s = pserialize_read_enter();
4712 SAHLIST_READER_FOREACH(sah) {
4713 struct secasvar *sav;
4714
4715 key_sah_ref(sah);
4716 pserialize_read_exit(s);
4717
4718 /* if LARVAL entry doesn't become MATURE, delete it. */
4719 restart_sav_LARVAL:
4720 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4721 if (now - sav->created > key_larval_lifetime) {
4722 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4723 goto restart_sav_LARVAL;
4724 }
4725 }
4726
4727 /*
4728 * check MATURE entry to start to send expire message
4729 * whether or not.
4730 */
4731 restart_sav_MATURE:
4732 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4733 /* we don't need to check. */
4734 if (sav->lft_s == NULL)
4735 continue;
4736
4737 /* sanity check */
4738 KASSERT(sav->lft_c != NULL);
4739
4740 /* check SOFT lifetime */
4741 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4742 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4743 /*
4744 * check SA to be used whether or not.
4745 * when SA hasn't been used, delete it.
4746 */
4747 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4748 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4749 } else {
4750 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4751 /*
4752 * XXX If we keep to send expire
4753 * message in the status of
4754 * DYING. Do remove below code.
4755 */
4756 key_expire(sav);
4757 }
4758 goto restart_sav_MATURE;
4759 }
4760 /* check SOFT lifetime by bytes */
4761 /*
4762 * XXX I don't know the way to delete this SA
4763 * when new SA is installed. Caution when it's
4764 * installed too big lifetime by time.
4765 */
4766 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4767 sav->lft_s->sadb_lifetime_bytes <
4768 sav->lft_c->sadb_lifetime_bytes) {
4769
4770 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4771 /*
4772 * XXX If we keep to send expire
4773 * message in the status of
4774 * DYING. Do remove below code.
4775 */
4776 key_expire(sav);
4777 goto restart_sav_MATURE;
4778 }
4779 }
4780
4781 /* check DYING entry to change status to DEAD. */
4782 restart_sav_DYING:
4783 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4784 /* we don't need to check. */
4785 if (sav->lft_h == NULL)
4786 continue;
4787
4788 /* sanity check */
4789 KASSERT(sav->lft_c != NULL);
4790
4791 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4792 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4793 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4794 goto restart_sav_DYING;
4795 }
4796 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4797 else if (sav->lft_s != NULL
4798 && sav->lft_s->sadb_lifetime_addtime != 0
4799 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4800 /*
4801 * XXX: should be checked to be
4802 * installed the valid SA.
4803 */
4804
4805 /*
4806 * If there is no SA then sending
4807 * expire message.
4808 */
4809 key_expire(sav);
4810 }
4811 #endif
4812 /* check HARD lifetime by bytes */
4813 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4814 sav->lft_h->sadb_lifetime_bytes <
4815 sav->lft_c->sadb_lifetime_bytes) {
4816 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4817 goto restart_sav_DYING;
4818 }
4819 }
4820
4821 /* delete entry in DEAD */
4822 restart_sav_DEAD:
4823 SAVLIST_READER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4824 KEY_FREESAV(&sav);
4825 goto restart_sav_DEAD;
4826 }
4827
4828 s = pserialize_read_enter();
4829 key_sah_unref(sah);
4830 }
4831 pserialize_read_exit(s);
4832 }
4833
4834 static void
4835 key_timehandler_acq(time_t now)
4836 {
4837 #ifndef IPSEC_NONBLOCK_ACQUIRE
4838 struct secacq *acq, *nextacq;
4839
4840 restart:
4841 mutex_enter(&key_misc.lock);
4842 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4843 if (now - acq->created > key_blockacq_lifetime) {
4844 LIST_REMOVE(acq, chain);
4845 mutex_exit(&key_misc.lock);
4846 kmem_free(acq, sizeof(*acq));
4847 goto restart;
4848 }
4849 }
4850 mutex_exit(&key_misc.lock);
4851 #endif
4852 }
4853
4854 static void
4855 key_timehandler_spacq(time_t now)
4856 {
4857 #ifdef notyet
4858 struct secspacq *acq, *nextacq;
4859
4860 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4861 if (now - acq->created > key_blockacq_lifetime) {
4862 KASSERT(__LIST_CHAINED(acq));
4863 LIST_REMOVE(acq, chain);
4864 kmem_free(acq, sizeof(*acq));
4865 }
4866 }
4867 #endif
4868 }
4869
4870 /*
4871 * time handler.
4872 * scanning SPD and SAD to check status for each entries,
4873 * and do to remove or to expire.
4874 */
4875 static void
4876 key_timehandler_work(struct work *wk, void *arg)
4877 {
4878 time_t now = time_uptime;
4879 IPSEC_DECLARE_LOCK_VARIABLE;
4880
4881 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4882
4883 key_timehandler_spd(now);
4884 key_timehandler_sad(now);
4885 key_timehandler_acq(now);
4886 key_timehandler_spacq(now);
4887
4888 /* do exchange to tick time !! */
4889 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4890
4891 IPSEC_RELEASE_GLOBAL_LOCKS();
4892 return;
4893 }
4894
4895 static void
4896 key_timehandler(void *arg)
4897 {
4898
4899 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4900 }
4901
4902 u_long
4903 key_random(void)
4904 {
4905 u_long value;
4906
4907 key_randomfill(&value, sizeof(value));
4908 return value;
4909 }
4910
4911 void
4912 key_randomfill(void *p, size_t l)
4913 {
4914
4915 cprng_fast(p, l);
4916 }
4917
4918 /*
4919 * map SADB_SATYPE_* to IPPROTO_*.
4920 * if satype == SADB_SATYPE then satype is mapped to ~0.
4921 * OUT:
4922 * 0: invalid satype.
4923 */
4924 static u_int16_t
4925 key_satype2proto(u_int8_t satype)
4926 {
4927 switch (satype) {
4928 case SADB_SATYPE_UNSPEC:
4929 return IPSEC_PROTO_ANY;
4930 case SADB_SATYPE_AH:
4931 return IPPROTO_AH;
4932 case SADB_SATYPE_ESP:
4933 return IPPROTO_ESP;
4934 case SADB_X_SATYPE_IPCOMP:
4935 return IPPROTO_IPCOMP;
4936 case SADB_X_SATYPE_TCPSIGNATURE:
4937 return IPPROTO_TCP;
4938 default:
4939 return 0;
4940 }
4941 /* NOTREACHED */
4942 }
4943
4944 /*
4945 * map IPPROTO_* to SADB_SATYPE_*
4946 * OUT:
4947 * 0: invalid protocol type.
4948 */
4949 static u_int8_t
4950 key_proto2satype(u_int16_t proto)
4951 {
4952 switch (proto) {
4953 case IPPROTO_AH:
4954 return SADB_SATYPE_AH;
4955 case IPPROTO_ESP:
4956 return SADB_SATYPE_ESP;
4957 case IPPROTO_IPCOMP:
4958 return SADB_X_SATYPE_IPCOMP;
4959 case IPPROTO_TCP:
4960 return SADB_X_SATYPE_TCPSIGNATURE;
4961 default:
4962 return 0;
4963 }
4964 /* NOTREACHED */
4965 }
4966
4967 static int
4968 key_setsecasidx(int proto, int mode, int reqid,
4969 const struct sockaddr *src, const struct sockaddr *dst,
4970 struct secasindex * saidx)
4971 {
4972 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4973 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4974
4975 /* sa len safety check */
4976 if (key_checksalen(src_u) != 0)
4977 return -1;
4978 if (key_checksalen(dst_u) != 0)
4979 return -1;
4980
4981 memset(saidx, 0, sizeof(*saidx));
4982 saidx->proto = proto;
4983 saidx->mode = mode;
4984 saidx->reqid = reqid;
4985 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4986 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4987
4988 key_porttosaddr(&((saidx)->src), 0);
4989 key_porttosaddr(&((saidx)->dst), 0);
4990 return 0;
4991 }
4992
4993 static void
4994 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4995 const struct sadb_msghdr *mhp)
4996 {
4997 const struct sadb_address *src0, *dst0;
4998 const struct sockaddr *src, *dst;
4999 const struct sadb_x_policy *xpl0;
5000
5001 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5002 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5003 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5004 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5005 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
5006
5007 memset(spidx, 0, sizeof(*spidx));
5008 spidx->dir = xpl0->sadb_x_policy_dir;
5009 spidx->prefs = src0->sadb_address_prefixlen;
5010 spidx->prefd = dst0->sadb_address_prefixlen;
5011 spidx->ul_proto = src0->sadb_address_proto;
5012 /* XXX boundary check against sa_len */
5013 memcpy(&spidx->src, src, src->sa_len);
5014 memcpy(&spidx->dst, dst, dst->sa_len);
5015 }
5016
5017 /* %%% PF_KEY */
5018 /*
5019 * SADB_GETSPI processing is to receive
5020 * <base, (SA2), src address, dst address, (SPI range)>
5021 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5022 * tree with the status of LARVAL, and send
5023 * <base, SA(*), address(SD)>
5024 * to the IKMPd.
5025 *
5026 * IN: mhp: pointer to the pointer to each header.
5027 * OUT: NULL if fail.
5028 * other if success, return pointer to the message to send.
5029 */
5030 static int
5031 key_api_getspi(struct socket *so, struct mbuf *m,
5032 const struct sadb_msghdr *mhp)
5033 {
5034 const struct sockaddr *src, *dst;
5035 struct secasindex saidx;
5036 struct secashead *sah;
5037 struct secasvar *newsav;
5038 u_int8_t proto;
5039 u_int32_t spi;
5040 u_int8_t mode;
5041 u_int16_t reqid;
5042 int error;
5043
5044 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5045 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5046 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5047 return key_senderror(so, m, EINVAL);
5048 }
5049 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5050 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5051 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5052 return key_senderror(so, m, EINVAL);
5053 }
5054 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5055 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5056 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5057 } else {
5058 mode = IPSEC_MODE_ANY;
5059 reqid = 0;
5060 }
5061
5062 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5063 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5064
5065 /* map satype to proto */
5066 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5067 if (proto == 0) {
5068 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5069 return key_senderror(so, m, EINVAL);
5070 }
5071
5072
5073 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5074 if (error != 0)
5075 return key_senderror(so, m, EINVAL);
5076
5077 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5078 if (error != 0)
5079 return key_senderror(so, m, EINVAL);
5080
5081 /* SPI allocation */
5082 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
5083 &saidx);
5084 if (spi == 0)
5085 return key_senderror(so, m, EINVAL);
5086
5087 /* get a SA index */
5088 sah = key_getsah_ref(&saidx, CMP_REQID);
5089 if (sah == NULL) {
5090 /* create a new SA index */
5091 sah = key_newsah(&saidx);
5092 if (sah == NULL) {
5093 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5094 return key_senderror(so, m, ENOBUFS);
5095 }
5096 }
5097
5098 /* get a new SA */
5099 /* XXX rewrite */
5100 newsav = KEY_NEWSAV(m, mhp, &error);
5101 if (newsav == NULL) {
5102 key_sah_unref(sah);
5103 /* XXX don't free new SA index allocated in above. */
5104 return key_senderror(so, m, error);
5105 }
5106
5107 /* set spi */
5108 newsav->spi = htonl(spi);
5109
5110 /* add to satree */
5111 newsav->refcnt = 1;
5112 newsav->sah = sah;
5113 newsav->state = SADB_SASTATE_LARVAL;
5114 SAVLIST_ENTRY_INIT(newsav);
5115 mutex_enter(&key_sad.lock);
5116 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5117 mutex_exit(&key_sad.lock);
5118 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5119
5120 key_sah_unref(sah);
5121
5122 #ifndef IPSEC_NONBLOCK_ACQUIRE
5123 /* delete the entry in key_misc.acqlist */
5124 if (mhp->msg->sadb_msg_seq != 0) {
5125 struct secacq *acq;
5126 mutex_enter(&key_misc.lock);
5127 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5128 if (acq != NULL) {
5129 /* reset counter in order to deletion by timehandler. */
5130 acq->created = time_uptime;
5131 acq->count = 0;
5132 }
5133 mutex_exit(&key_misc.lock);
5134 }
5135 #endif
5136
5137 {
5138 struct mbuf *n, *nn;
5139 struct sadb_sa *m_sa;
5140 int off, len;
5141
5142 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5143 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5144
5145 /* create new sadb_msg to reply. */
5146 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5147 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5148
5149 MGETHDR(n, M_DONTWAIT, MT_DATA);
5150 if (len > MHLEN) {
5151 MCLGET(n, M_DONTWAIT);
5152 if ((n->m_flags & M_EXT) == 0) {
5153 m_freem(n);
5154 n = NULL;
5155 }
5156 }
5157 if (!n)
5158 return key_senderror(so, m, ENOBUFS);
5159
5160 n->m_len = len;
5161 n->m_next = NULL;
5162 off = 0;
5163
5164 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5165 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5166
5167 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5168 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5169 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5170 m_sa->sadb_sa_spi = htonl(spi);
5171 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5172
5173 KASSERTMSG(off == len, "length inconsistency");
5174
5175 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5176 SADB_EXT_ADDRESS_DST);
5177 if (!n->m_next) {
5178 m_freem(n);
5179 return key_senderror(so, m, ENOBUFS);
5180 }
5181
5182 if (n->m_len < sizeof(struct sadb_msg)) {
5183 n = m_pullup(n, sizeof(struct sadb_msg));
5184 if (n == NULL)
5185 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5186 }
5187
5188 n->m_pkthdr.len = 0;
5189 for (nn = n; nn; nn = nn->m_next)
5190 n->m_pkthdr.len += nn->m_len;
5191
5192 key_fill_replymsg(n, newsav->seq);
5193
5194 m_freem(m);
5195 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5196 }
5197 }
5198
5199 /*
5200 * allocating new SPI
5201 * called by key_api_getspi().
5202 * OUT:
5203 * 0: failure.
5204 * others: success.
5205 */
5206 static u_int32_t
5207 key_do_getnewspi(const struct sadb_spirange *spirange,
5208 const struct secasindex *saidx)
5209 {
5210 u_int32_t newspi;
5211 u_int32_t spmin, spmax;
5212 int count = key_spi_trycnt;
5213
5214 /* set spi range to allocate */
5215 if (spirange != NULL) {
5216 spmin = spirange->sadb_spirange_min;
5217 spmax = spirange->sadb_spirange_max;
5218 } else {
5219 spmin = key_spi_minval;
5220 spmax = key_spi_maxval;
5221 }
5222 /* IPCOMP needs 2-byte SPI */
5223 if (saidx->proto == IPPROTO_IPCOMP) {
5224 u_int32_t t;
5225 if (spmin >= 0x10000)
5226 spmin = 0xffff;
5227 if (spmax >= 0x10000)
5228 spmax = 0xffff;
5229 if (spmin > spmax) {
5230 t = spmin; spmin = spmax; spmax = t;
5231 }
5232 }
5233
5234 if (spmin == spmax) {
5235 if (key_checkspidup(saidx, htonl(spmin))) {
5236 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5237 return 0;
5238 }
5239
5240 count--; /* taking one cost. */
5241 newspi = spmin;
5242
5243 } else {
5244
5245 /* init SPI */
5246 newspi = 0;
5247
5248 /* when requesting to allocate spi ranged */
5249 while (count--) {
5250 /* generate pseudo-random SPI value ranged. */
5251 newspi = spmin + (key_random() % (spmax - spmin + 1));
5252
5253 if (!key_checkspidup(saidx, htonl(newspi)))
5254 break;
5255 }
5256
5257 if (count == 0 || newspi == 0) {
5258 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5259 return 0;
5260 }
5261 }
5262
5263 /* statistics */
5264 keystat.getspi_count =
5265 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5266
5267 return newspi;
5268 }
5269
5270 static int
5271 key_handle_natt_info(struct secasvar *sav,
5272 const struct sadb_msghdr *mhp)
5273 {
5274 const char *msg = "?" ;
5275 struct sadb_x_nat_t_type *type;
5276 struct sadb_x_nat_t_port *sport, *dport;
5277 struct sadb_address *iaddr, *raddr;
5278 struct sadb_x_nat_t_frag *frag;
5279
5280 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5281 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5282 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5283 return 0;
5284
5285 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5286 msg = "TYPE";
5287 goto bad;
5288 }
5289
5290 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5291 msg = "SPORT";
5292 goto bad;
5293 }
5294
5295 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5296 msg = "DPORT";
5297 goto bad;
5298 }
5299
5300 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5301 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5302 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5303 msg = "OAI";
5304 goto bad;
5305 }
5306 }
5307
5308 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5309 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5310 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5311 msg = "OAR";
5312 goto bad;
5313 }
5314 }
5315
5316 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5317 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5318 msg = "FRAG";
5319 goto bad;
5320 }
5321 }
5322
5323 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5324 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5325 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5326 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5327 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5328 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5329
5330 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5331 type->sadb_x_nat_t_type_type,
5332 ntohs(sport->sadb_x_nat_t_port_port),
5333 ntohs(dport->sadb_x_nat_t_port_port));
5334
5335 sav->natt_type = type->sadb_x_nat_t_type_type;
5336 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5337 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5338 if (frag)
5339 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5340 else
5341 sav->esp_frag = IP_MAXPACKET;
5342
5343 return 0;
5344 bad:
5345 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5346 __USE(msg);
5347 return -1;
5348 }
5349
5350 /* Just update the IPSEC_NAT_T ports if present */
5351 static int
5352 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5353 const struct sadb_msghdr *mhp)
5354 {
5355 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5356 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5357 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5358 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5359
5360 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5361 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5362 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5363 struct sadb_x_nat_t_type *type;
5364 struct sadb_x_nat_t_port *sport;
5365 struct sadb_x_nat_t_port *dport;
5366
5367 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5368 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5369 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5370 IPSECLOG(LOG_DEBUG, "invalid message\n");
5371 return -1;
5372 }
5373
5374 type = (struct sadb_x_nat_t_type *)
5375 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5376 sport = (struct sadb_x_nat_t_port *)
5377 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5378 dport = (struct sadb_x_nat_t_port *)
5379 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5380
5381 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5382 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5383
5384 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5385 type->sadb_x_nat_t_type_type,
5386 ntohs(sport->sadb_x_nat_t_port_port),
5387 ntohs(dport->sadb_x_nat_t_port_port));
5388 }
5389
5390 return 0;
5391 }
5392
5393
5394 /*
5395 * SADB_UPDATE processing
5396 * receive
5397 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5398 * key(AE), (identity(SD),) (sensitivity)>
5399 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5400 * and send
5401 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5402 * (identity(SD),) (sensitivity)>
5403 * to the ikmpd.
5404 *
5405 * m will always be freed.
5406 */
5407 static int
5408 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5409 {
5410 struct sadb_sa *sa0;
5411 const struct sockaddr *src, *dst;
5412 struct secasindex saidx;
5413 struct secashead *sah;
5414 struct secasvar *sav, *newsav;
5415 u_int16_t proto;
5416 u_int8_t mode;
5417 u_int16_t reqid;
5418 int error;
5419
5420 /* map satype to proto */
5421 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5422 if (proto == 0) {
5423 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5424 return key_senderror(so, m, EINVAL);
5425 }
5426
5427 if (mhp->ext[SADB_EXT_SA] == NULL ||
5428 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5429 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5430 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5431 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5432 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5433 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5434 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5435 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5436 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5437 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5438 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5439 return key_senderror(so, m, EINVAL);
5440 }
5441 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5442 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5443 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5444 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5445 return key_senderror(so, m, EINVAL);
5446 }
5447 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5448 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5449 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5450 } else {
5451 mode = IPSEC_MODE_ANY;
5452 reqid = 0;
5453 }
5454 /* XXX boundary checking for other extensions */
5455
5456 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5457 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5458 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5459
5460 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5461 if (error != 0)
5462 return key_senderror(so, m, EINVAL);
5463
5464 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5465 if (error != 0)
5466 return key_senderror(so, m, EINVAL);
5467
5468 /* get a SA header */
5469 sah = key_getsah_ref(&saidx, CMP_REQID);
5470 if (sah == NULL) {
5471 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5472 return key_senderror(so, m, ENOENT);
5473 }
5474
5475 /* set spidx if there */
5476 /* XXX rewrite */
5477 error = key_setident(sah, m, mhp);
5478 if (error)
5479 goto error_sah;
5480
5481 /* find a SA with sequence number. */
5482 #ifdef IPSEC_DOSEQCHECK
5483 if (mhp->msg->sadb_msg_seq != 0) {
5484 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5485 if (sav == NULL) {
5486 IPSECLOG(LOG_DEBUG,
5487 "no larval SA with sequence %u exists.\n",
5488 mhp->msg->sadb_msg_seq);
5489 error = ENOENT;
5490 goto error_sah;
5491 }
5492 }
5493 #else
5494 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5495 if (sav == NULL) {
5496 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5497 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5498 error = EINVAL;
5499 goto error_sah;
5500 }
5501 #endif
5502
5503 /* validity check */
5504 if (sav->sah->saidx.proto != proto) {
5505 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5506 sav->sah->saidx.proto, proto);
5507 error = EINVAL;
5508 goto error;
5509 }
5510 #ifdef IPSEC_DOSEQCHECK
5511 if (sav->spi != sa0->sadb_sa_spi) {
5512 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5513 (u_int32_t)ntohl(sav->spi),
5514 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5515 error = EINVAL;
5516 goto error;
5517 }
5518 #endif
5519 if (sav->pid != mhp->msg->sadb_msg_pid) {
5520 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5521 sav->pid, mhp->msg->sadb_msg_pid);
5522 error = EINVAL;
5523 goto error;
5524 }
5525
5526 /*
5527 * Allocate a new SA instead of modifying the existing SA directly
5528 * to avoid race conditions.
5529 */
5530 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5531
5532 /* copy sav values */
5533 newsav->spi = sav->spi;
5534 newsav->seq = sav->seq;
5535 newsav->created = sav->created;
5536 newsav->pid = sav->pid;
5537 newsav->sah = sav->sah;
5538
5539 error = key_setsaval(newsav, m, mhp);
5540 if (error) {
5541 key_delsav(newsav);
5542 goto error;
5543 }
5544
5545 error = key_handle_natt_info(newsav, mhp);
5546 if (error != 0) {
5547 key_delsav(newsav);
5548 goto error;
5549 }
5550
5551 error = key_init_xform(newsav);
5552 if (error != 0) {
5553 key_delsav(newsav);
5554 goto error;
5555 }
5556
5557 /* add to satree */
5558 newsav->refcnt = 1;
5559 newsav->state = SADB_SASTATE_MATURE;
5560 SAVLIST_ENTRY_INIT(newsav);
5561 mutex_enter(&key_sad.lock);
5562 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5563 mutex_exit(&key_sad.lock);
5564 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5565
5566 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5567 KEY_FREESAV(&sav);
5568 KEY_FREESAV(&sav);
5569
5570 key_sah_unref(sah);
5571 sah = NULL;
5572
5573 {
5574 struct mbuf *n;
5575
5576 /* set msg buf from mhp */
5577 n = key_getmsgbuf_x1(m, mhp);
5578 if (n == NULL) {
5579 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5580 return key_senderror(so, m, ENOBUFS);
5581 }
5582
5583 m_freem(m);
5584 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5585 }
5586 error:
5587 KEY_SA_UNREF(&sav);
5588 error_sah:
5589 key_sah_unref(sah);
5590 return key_senderror(so, m, error);
5591 }
5592
5593 /*
5594 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5595 * only called by key_api_update().
5596 * OUT:
5597 * NULL : not found
5598 * others : found, pointer to a SA.
5599 */
5600 #ifdef IPSEC_DOSEQCHECK
5601 static struct secasvar *
5602 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5603 {
5604 struct secasvar *sav;
5605 u_int state;
5606 int s;
5607
5608 state = SADB_SASTATE_LARVAL;
5609
5610 /* search SAD with sequence number ? */
5611 s = pserialize_read_enter();
5612 SAVLIST_READER_FOREACH(sav, sah, state) {
5613 KEY_CHKSASTATE(state, sav->state);
5614
5615 if (sav->seq == seq) {
5616 SA_ADDREF(sav);
5617 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5618 "DP cause refcnt++:%d SA:%p\n",
5619 key_sa_refcnt(sav), sav);
5620 break;
5621 }
5622 }
5623 pserialize_read_exit(s);
5624
5625 return sav;
5626 }
5627 #endif
5628
5629 /*
5630 * SADB_ADD processing
5631 * add an entry to SA database, when received
5632 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5633 * key(AE), (identity(SD),) (sensitivity)>
5634 * from the ikmpd,
5635 * and send
5636 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5637 * (identity(SD),) (sensitivity)>
5638 * to the ikmpd.
5639 *
5640 * IGNORE identity and sensitivity messages.
5641 *
5642 * m will always be freed.
5643 */
5644 static int
5645 key_api_add(struct socket *so, struct mbuf *m,
5646 const struct sadb_msghdr *mhp)
5647 {
5648 struct sadb_sa *sa0;
5649 const struct sockaddr *src, *dst;
5650 struct secasindex saidx;
5651 struct secashead *sah;
5652 struct secasvar *newsav;
5653 u_int16_t proto;
5654 u_int8_t mode;
5655 u_int16_t reqid;
5656 int error;
5657
5658 /* map satype to proto */
5659 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5660 if (proto == 0) {
5661 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5662 return key_senderror(so, m, EINVAL);
5663 }
5664
5665 if (mhp->ext[SADB_EXT_SA] == NULL ||
5666 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5667 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5668 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5669 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5670 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5671 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5672 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5673 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5674 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5675 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5676 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5677 return key_senderror(so, m, EINVAL);
5678 }
5679 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5680 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5681 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5682 /* XXX need more */
5683 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5684 return key_senderror(so, m, EINVAL);
5685 }
5686 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5687 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5688 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5689 } else {
5690 mode = IPSEC_MODE_ANY;
5691 reqid = 0;
5692 }
5693
5694 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5695 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5696 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5697
5698 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5699 if (error != 0)
5700 return key_senderror(so, m, EINVAL);
5701
5702 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5703 if (error != 0)
5704 return key_senderror(so, m, EINVAL);
5705
5706 /* get a SA header */
5707 sah = key_getsah_ref(&saidx, CMP_REQID);
5708 if (sah == NULL) {
5709 /* create a new SA header */
5710 sah = key_newsah(&saidx);
5711 if (sah == NULL) {
5712 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5713 return key_senderror(so, m, ENOBUFS);
5714 }
5715 }
5716
5717 /* set spidx if there */
5718 /* XXX rewrite */
5719 error = key_setident(sah, m, mhp);
5720 if (error)
5721 goto error;
5722
5723 {
5724 struct secasvar *sav;
5725
5726 /* We can create new SA only if SPI is differenct. */
5727 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5728 if (sav != NULL) {
5729 KEY_SA_UNREF(&sav);
5730 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5731 error = EEXIST;
5732 goto error;
5733 }
5734 }
5735
5736 /* create new SA entry. */
5737 newsav = KEY_NEWSAV(m, mhp, &error);
5738 if (newsav == NULL)
5739 goto error;
5740 newsav->sah = sah;
5741
5742 error = key_handle_natt_info(newsav, mhp);
5743 if (error != 0) {
5744 key_delsav(newsav);
5745 error = EINVAL;
5746 goto error;
5747 }
5748
5749 error = key_init_xform(newsav);
5750 if (error != 0) {
5751 key_delsav(newsav);
5752 goto error;
5753 }
5754
5755 /* add to satree */
5756 newsav->refcnt = 1;
5757 newsav->state = SADB_SASTATE_MATURE;
5758 SAVLIST_ENTRY_INIT(newsav);
5759 mutex_enter(&key_sad.lock);
5760 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5761 mutex_exit(&key_sad.lock);
5762 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5763
5764 key_sah_unref(sah);
5765 sah = NULL;
5766
5767 /*
5768 * don't call key_freesav() here, as we would like to keep the SA
5769 * in the database on success.
5770 */
5771
5772 {
5773 struct mbuf *n;
5774
5775 /* set msg buf from mhp */
5776 n = key_getmsgbuf_x1(m, mhp);
5777 if (n == NULL) {
5778 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5779 return key_senderror(so, m, ENOBUFS);
5780 }
5781
5782 m_freem(m);
5783 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5784 }
5785 error:
5786 key_sah_unref(sah);
5787 return key_senderror(so, m, error);
5788 }
5789
5790 /* m is retained */
5791 static int
5792 key_setident(struct secashead *sah, struct mbuf *m,
5793 const struct sadb_msghdr *mhp)
5794 {
5795 const struct sadb_ident *idsrc, *iddst;
5796 int idsrclen, iddstlen;
5797
5798 KASSERT(!cpu_softintr_p());
5799 KASSERT(sah != NULL);
5800 KASSERT(m != NULL);
5801 KASSERT(mhp != NULL);
5802 KASSERT(mhp->msg != NULL);
5803
5804 /*
5805 * Can be called with an existing sah from key_api_update().
5806 */
5807 if (sah->idents != NULL) {
5808 kmem_free(sah->idents, sah->idents_len);
5809 sah->idents = NULL;
5810 sah->idents_len = 0;
5811 }
5812 if (sah->identd != NULL) {
5813 kmem_free(sah->identd, sah->identd_len);
5814 sah->identd = NULL;
5815 sah->identd_len = 0;
5816 }
5817
5818 /* don't make buffer if not there */
5819 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5820 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5821 sah->idents = NULL;
5822 sah->identd = NULL;
5823 return 0;
5824 }
5825
5826 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5827 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5828 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5829 return EINVAL;
5830 }
5831
5832 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5833 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5834 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5835 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5836
5837 /* validity check */
5838 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5839 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5840 return EINVAL;
5841 }
5842
5843 switch (idsrc->sadb_ident_type) {
5844 case SADB_IDENTTYPE_PREFIX:
5845 case SADB_IDENTTYPE_FQDN:
5846 case SADB_IDENTTYPE_USERFQDN:
5847 default:
5848 /* XXX do nothing */
5849 sah->idents = NULL;
5850 sah->identd = NULL;
5851 return 0;
5852 }
5853
5854 /* make structure */
5855 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5856 sah->idents_len = idsrclen;
5857 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5858 sah->identd_len = iddstlen;
5859 memcpy(sah->idents, idsrc, idsrclen);
5860 memcpy(sah->identd, iddst, iddstlen);
5861
5862 return 0;
5863 }
5864
5865 /*
5866 * m will not be freed on return.
5867 * it is caller's responsibility to free the result.
5868 */
5869 static struct mbuf *
5870 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5871 {
5872 struct mbuf *n;
5873
5874 KASSERT(m != NULL);
5875 KASSERT(mhp != NULL);
5876 KASSERT(mhp->msg != NULL);
5877
5878 /* create new sadb_msg to reply. */
5879 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5880 SADB_EXT_SA, SADB_X_EXT_SA2,
5881 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5882 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5883 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5884 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5885 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5886 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5887 if (!n)
5888 return NULL;
5889
5890 if (n->m_len < sizeof(struct sadb_msg)) {
5891 n = m_pullup(n, sizeof(struct sadb_msg));
5892 if (n == NULL)
5893 return NULL;
5894 }
5895 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5896 mtod(n, struct sadb_msg *)->sadb_msg_len =
5897 PFKEY_UNIT64(n->m_pkthdr.len);
5898
5899 return n;
5900 }
5901
5902 static int key_delete_all (struct socket *, struct mbuf *,
5903 const struct sadb_msghdr *, u_int16_t);
5904
5905 /*
5906 * SADB_DELETE processing
5907 * receive
5908 * <base, SA(*), address(SD)>
5909 * from the ikmpd, and set SADB_SASTATE_DEAD,
5910 * and send,
5911 * <base, SA(*), address(SD)>
5912 * to the ikmpd.
5913 *
5914 * m will always be freed.
5915 */
5916 static int
5917 key_api_delete(struct socket *so, struct mbuf *m,
5918 const struct sadb_msghdr *mhp)
5919 {
5920 struct sadb_sa *sa0;
5921 const struct sockaddr *src, *dst;
5922 struct secasindex saidx;
5923 struct secashead *sah;
5924 struct secasvar *sav = NULL;
5925 u_int16_t proto;
5926 int error;
5927
5928 /* map satype to proto */
5929 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5930 if (proto == 0) {
5931 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5932 return key_senderror(so, m, EINVAL);
5933 }
5934
5935 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5936 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5937 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5938 return key_senderror(so, m, EINVAL);
5939 }
5940
5941 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5942 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5943 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5944 return key_senderror(so, m, EINVAL);
5945 }
5946
5947 if (mhp->ext[SADB_EXT_SA] == NULL) {
5948 /*
5949 * Caller wants us to delete all non-LARVAL SAs
5950 * that match the src/dst. This is used during
5951 * IKE INITIAL-CONTACT.
5952 */
5953 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5954 return key_delete_all(so, m, mhp, proto);
5955 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5956 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5957 return key_senderror(so, m, EINVAL);
5958 }
5959
5960 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5961 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5962 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5963
5964 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5965 if (error != 0)
5966 return key_senderror(so, m, EINVAL);
5967
5968 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5969 if (error != 0)
5970 return key_senderror(so, m, EINVAL);
5971
5972 /* get a SA header */
5973 sah = key_getsah_ref(&saidx, CMP_HEAD);
5974 if (sah != NULL) {
5975 /* get a SA with SPI. */
5976 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5977 key_sah_unref(sah);
5978 }
5979
5980 if (sav == NULL) {
5981 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5982 return key_senderror(so, m, ENOENT);
5983 }
5984
5985 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5986 KEY_FREESAV(&sav);
5987 KEY_FREESAV(&sav);
5988
5989 {
5990 struct mbuf *n;
5991
5992 /* create new sadb_msg to reply. */
5993 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5994 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5995 if (!n)
5996 return key_senderror(so, m, ENOBUFS);
5997
5998 n = key_fill_replymsg(n, 0);
5999 if (n == NULL)
6000 return key_senderror(so, m, ENOBUFS);
6001
6002 m_freem(m);
6003 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6004 }
6005 }
6006
6007 /*
6008 * delete all SAs for src/dst. Called from key_api_delete().
6009 */
6010 static int
6011 key_delete_all(struct socket *so, struct mbuf *m,
6012 const struct sadb_msghdr *mhp, u_int16_t proto)
6013 {
6014 const struct sockaddr *src, *dst;
6015 struct secasindex saidx;
6016 struct secashead *sah;
6017 struct secasvar *sav;
6018 u_int state;
6019 int error;
6020
6021 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6022 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6023
6024 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6025 if (error != 0)
6026 return key_senderror(so, m, EINVAL);
6027
6028 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6029 if (error != 0)
6030 return key_senderror(so, m, EINVAL);
6031
6032 sah = key_getsah_ref(&saidx, CMP_HEAD);
6033 if (sah != NULL) {
6034 /* Delete all non-LARVAL SAs. */
6035 SASTATE_ALIVE_FOREACH(state) {
6036 if (state == SADB_SASTATE_LARVAL)
6037 continue;
6038 restart:
6039 SAVLIST_WRITER_FOREACH(sav, sah, state) {
6040 /* sanity check */
6041 if (sav->state != state) {
6042 IPSECLOG(LOG_DEBUG,
6043 "invalid sav->state "
6044 "(queue: %d SA: %d)\n",
6045 state, sav->state);
6046 continue;
6047 }
6048
6049 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6050 KEY_FREESAV(&sav);
6051 goto restart;
6052 }
6053 }
6054 key_sah_unref(sah);
6055 }
6056 {
6057 struct mbuf *n;
6058
6059 /* create new sadb_msg to reply. */
6060 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6061 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6062 if (!n)
6063 return key_senderror(so, m, ENOBUFS);
6064
6065 n = key_fill_replymsg(n, 0);
6066 if (n == NULL)
6067 return key_senderror(so, m, ENOBUFS);
6068
6069 m_freem(m);
6070 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6071 }
6072 }
6073
6074 /*
6075 * SADB_GET processing
6076 * receive
6077 * <base, SA(*), address(SD)>
6078 * from the ikmpd, and get a SP and a SA to respond,
6079 * and send,
6080 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6081 * (identity(SD),) (sensitivity)>
6082 * to the ikmpd.
6083 *
6084 * m will always be freed.
6085 */
6086 static int
6087 key_api_get(struct socket *so, struct mbuf *m,
6088 const struct sadb_msghdr *mhp)
6089 {
6090 struct sadb_sa *sa0;
6091 const struct sockaddr *src, *dst;
6092 struct secasindex saidx;
6093 struct secasvar *sav = NULL;
6094 u_int16_t proto;
6095 int error;
6096
6097 /* map satype to proto */
6098 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6099 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6100 return key_senderror(so, m, EINVAL);
6101 }
6102
6103 if (mhp->ext[SADB_EXT_SA] == NULL ||
6104 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6105 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6106 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6107 return key_senderror(so, m, EINVAL);
6108 }
6109 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6110 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6111 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6112 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6113 return key_senderror(so, m, EINVAL);
6114 }
6115
6116 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6117 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6118 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6119
6120 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6121 if (error != 0)
6122 return key_senderror(so, m, EINVAL);
6123
6124 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6125 if (error != 0)
6126 return key_senderror(so, m, EINVAL);
6127
6128 /* get a SA header */
6129 {
6130 struct secashead *sah;
6131 int s = pserialize_read_enter();
6132
6133 sah = key_getsah(&saidx, CMP_HEAD);
6134 if (sah != NULL) {
6135 /* get a SA with SPI. */
6136 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6137 }
6138 pserialize_read_exit(s);
6139 }
6140 if (sav == NULL) {
6141 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6142 return key_senderror(so, m, ENOENT);
6143 }
6144
6145 {
6146 struct mbuf *n;
6147 u_int8_t satype;
6148
6149 /* map proto to satype */
6150 satype = key_proto2satype(sav->sah->saidx.proto);
6151 if (satype == 0) {
6152 KEY_SA_UNREF(&sav);
6153 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6154 return key_senderror(so, m, EINVAL);
6155 }
6156
6157 /* create new sadb_msg to reply. */
6158 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6159 mhp->msg->sadb_msg_pid);
6160 KEY_SA_UNREF(&sav);
6161 if (!n)
6162 return key_senderror(so, m, ENOBUFS);
6163
6164 m_freem(m);
6165 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6166 }
6167 }
6168
6169 /* XXX make it sysctl-configurable? */
6170 static void
6171 key_getcomb_setlifetime(struct sadb_comb *comb)
6172 {
6173
6174 comb->sadb_comb_soft_allocations = 1;
6175 comb->sadb_comb_hard_allocations = 1;
6176 comb->sadb_comb_soft_bytes = 0;
6177 comb->sadb_comb_hard_bytes = 0;
6178 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6179 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6180 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6181 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6182 }
6183
6184 /*
6185 * XXX reorder combinations by preference
6186 * XXX no idea if the user wants ESP authentication or not
6187 */
6188 static struct mbuf *
6189 key_getcomb_esp(void)
6190 {
6191 struct sadb_comb *comb;
6192 const struct enc_xform *algo;
6193 struct mbuf *result = NULL, *m, *n;
6194 int encmin;
6195 int i, off, o;
6196 int totlen;
6197 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6198
6199 m = NULL;
6200 for (i = 1; i <= SADB_EALG_MAX; i++) {
6201 algo = esp_algorithm_lookup(i);
6202 if (algo == NULL)
6203 continue;
6204
6205 /* discard algorithms with key size smaller than system min */
6206 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6207 continue;
6208 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6209 encmin = ipsec_esp_keymin;
6210 else
6211 encmin = _BITS(algo->minkey);
6212
6213 if (ipsec_esp_auth)
6214 m = key_getcomb_ah();
6215 else {
6216 KASSERTMSG(l <= MLEN,
6217 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6218 MGET(m, M_DONTWAIT, MT_DATA);
6219 if (m) {
6220 M_ALIGN(m, l);
6221 m->m_len = l;
6222 m->m_next = NULL;
6223 memset(mtod(m, void *), 0, m->m_len);
6224 }
6225 }
6226 if (!m)
6227 goto fail;
6228
6229 totlen = 0;
6230 for (n = m; n; n = n->m_next)
6231 totlen += n->m_len;
6232 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6233
6234 for (off = 0; off < totlen; off += l) {
6235 n = m_pulldown(m, off, l, &o);
6236 if (!n) {
6237 /* m is already freed */
6238 goto fail;
6239 }
6240 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6241 memset(comb, 0, sizeof(*comb));
6242 key_getcomb_setlifetime(comb);
6243 comb->sadb_comb_encrypt = i;
6244 comb->sadb_comb_encrypt_minbits = encmin;
6245 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6246 }
6247
6248 if (!result)
6249 result = m;
6250 else
6251 m_cat(result, m);
6252 }
6253
6254 return result;
6255
6256 fail:
6257 if (result)
6258 m_freem(result);
6259 return NULL;
6260 }
6261
6262 static void
6263 key_getsizes_ah(const struct auth_hash *ah, int alg,
6264 u_int16_t* ksmin, u_int16_t* ksmax)
6265 {
6266 *ksmin = *ksmax = ah->keysize;
6267 if (ah->keysize == 0) {
6268 /*
6269 * Transform takes arbitrary key size but algorithm
6270 * key size is restricted. Enforce this here.
6271 */
6272 switch (alg) {
6273 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6274 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6275 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6276 default:
6277 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6278 break;
6279 }
6280 }
6281 }
6282
6283 /*
6284 * XXX reorder combinations by preference
6285 */
6286 static struct mbuf *
6287 key_getcomb_ah(void)
6288 {
6289 struct sadb_comb *comb;
6290 const struct auth_hash *algo;
6291 struct mbuf *m;
6292 u_int16_t minkeysize, maxkeysize;
6293 int i;
6294 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6295
6296 m = NULL;
6297 for (i = 1; i <= SADB_AALG_MAX; i++) {
6298 #if 1
6299 /* we prefer HMAC algorithms, not old algorithms */
6300 if (i != SADB_AALG_SHA1HMAC &&
6301 i != SADB_AALG_MD5HMAC &&
6302 i != SADB_X_AALG_SHA2_256 &&
6303 i != SADB_X_AALG_SHA2_384 &&
6304 i != SADB_X_AALG_SHA2_512)
6305 continue;
6306 #endif
6307 algo = ah_algorithm_lookup(i);
6308 if (!algo)
6309 continue;
6310 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6311 /* discard algorithms with key size smaller than system min */
6312 if (_BITS(minkeysize) < ipsec_ah_keymin)
6313 continue;
6314
6315 if (!m) {
6316 KASSERTMSG(l <= MLEN,
6317 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6318 MGET(m, M_DONTWAIT, MT_DATA);
6319 if (m) {
6320 M_ALIGN(m, l);
6321 m->m_len = l;
6322 m->m_next = NULL;
6323 }
6324 } else
6325 M_PREPEND(m, l, M_DONTWAIT);
6326 if (!m)
6327 return NULL;
6328
6329 if (m->m_len < sizeof(struct sadb_comb)) {
6330 m = m_pullup(m, sizeof(struct sadb_comb));
6331 if (m == NULL)
6332 return NULL;
6333 }
6334
6335 comb = mtod(m, struct sadb_comb *);
6336 memset(comb, 0, sizeof(*comb));
6337 key_getcomb_setlifetime(comb);
6338 comb->sadb_comb_auth = i;
6339 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6340 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6341 }
6342
6343 return m;
6344 }
6345
6346 /*
6347 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6348 * XXX reorder combinations by preference
6349 */
6350 static struct mbuf *
6351 key_getcomb_ipcomp(void)
6352 {
6353 struct sadb_comb *comb;
6354 const struct comp_algo *algo;
6355 struct mbuf *m;
6356 int i;
6357 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6358
6359 m = NULL;
6360 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6361 algo = ipcomp_algorithm_lookup(i);
6362 if (!algo)
6363 continue;
6364
6365 if (!m) {
6366 KASSERTMSG(l <= MLEN,
6367 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6368 MGET(m, M_DONTWAIT, MT_DATA);
6369 if (m) {
6370 M_ALIGN(m, l);
6371 m->m_len = l;
6372 m->m_next = NULL;
6373 }
6374 } else
6375 M_PREPEND(m, l, M_DONTWAIT);
6376 if (!m)
6377 return NULL;
6378
6379 if (m->m_len < sizeof(struct sadb_comb)) {
6380 m = m_pullup(m, sizeof(struct sadb_comb));
6381 if (m == NULL)
6382 return NULL;
6383 }
6384
6385 comb = mtod(m, struct sadb_comb *);
6386 memset(comb, 0, sizeof(*comb));
6387 key_getcomb_setlifetime(comb);
6388 comb->sadb_comb_encrypt = i;
6389 /* what should we set into sadb_comb_*_{min,max}bits? */
6390 }
6391
6392 return m;
6393 }
6394
6395 /*
6396 * XXX no way to pass mode (transport/tunnel) to userland
6397 * XXX replay checking?
6398 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6399 */
6400 static struct mbuf *
6401 key_getprop(const struct secasindex *saidx)
6402 {
6403 struct sadb_prop *prop;
6404 struct mbuf *m, *n;
6405 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6406 int totlen;
6407
6408 switch (saidx->proto) {
6409 case IPPROTO_ESP:
6410 m = key_getcomb_esp();
6411 break;
6412 case IPPROTO_AH:
6413 m = key_getcomb_ah();
6414 break;
6415 case IPPROTO_IPCOMP:
6416 m = key_getcomb_ipcomp();
6417 break;
6418 default:
6419 return NULL;
6420 }
6421
6422 if (!m)
6423 return NULL;
6424 M_PREPEND(m, l, M_DONTWAIT);
6425 if (!m)
6426 return NULL;
6427
6428 totlen = 0;
6429 for (n = m; n; n = n->m_next)
6430 totlen += n->m_len;
6431
6432 prop = mtod(m, struct sadb_prop *);
6433 memset(prop, 0, sizeof(*prop));
6434 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6435 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6436 prop->sadb_prop_replay = 32; /* XXX */
6437
6438 return m;
6439 }
6440
6441 /*
6442 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6443 * send
6444 * <base, SA, address(SD), (address(P)), x_policy,
6445 * (identity(SD),) (sensitivity,) proposal>
6446 * to KMD, and expect to receive
6447 * <base> with SADB_ACQUIRE if error occurred,
6448 * or
6449 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6450 * from KMD by PF_KEY.
6451 *
6452 * XXX x_policy is outside of RFC2367 (KAME extension).
6453 * XXX sensitivity is not supported.
6454 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6455 * see comment for key_getcomb_ipcomp().
6456 *
6457 * OUT:
6458 * 0 : succeed
6459 * others: error number
6460 */
6461 static int
6462 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6463 {
6464 struct mbuf *result = NULL, *m;
6465 #ifndef IPSEC_NONBLOCK_ACQUIRE
6466 struct secacq *newacq;
6467 #endif
6468 u_int8_t satype;
6469 int error = -1;
6470 u_int32_t seq;
6471
6472 /* sanity check */
6473 KASSERT(saidx != NULL);
6474 satype = key_proto2satype(saidx->proto);
6475 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6476
6477 #ifndef IPSEC_NONBLOCK_ACQUIRE
6478 /*
6479 * We never do anything about acquirng SA. There is anather
6480 * solution that kernel blocks to send SADB_ACQUIRE message until
6481 * getting something message from IKEd. In later case, to be
6482 * managed with ACQUIRING list.
6483 */
6484 /* Get an entry to check whether sending message or not. */
6485 mutex_enter(&key_misc.lock);
6486 newacq = key_getacq(saidx);
6487 if (newacq != NULL) {
6488 if (key_blockacq_count < newacq->count) {
6489 /* reset counter and do send message. */
6490 newacq->count = 0;
6491 } else {
6492 /* increment counter and do nothing. */
6493 newacq->count++;
6494 mutex_exit(&key_misc.lock);
6495 return 0;
6496 }
6497 } else {
6498 /* make new entry for blocking to send SADB_ACQUIRE. */
6499 newacq = key_newacq(saidx);
6500 if (newacq == NULL) {
6501 mutex_exit(&key_misc.lock);
6502 return ENOBUFS;
6503 }
6504
6505 /* add to key_misc.acqlist */
6506 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6507 }
6508
6509 seq = newacq->seq;
6510 mutex_exit(&key_misc.lock);
6511 #else
6512 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6513 #endif
6514 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6515 if (!m) {
6516 error = ENOBUFS;
6517 goto fail;
6518 }
6519 result = m;
6520
6521 /* set sadb_address for saidx's. */
6522 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6523 IPSEC_ULPROTO_ANY);
6524 if (!m) {
6525 error = ENOBUFS;
6526 goto fail;
6527 }
6528 m_cat(result, m);
6529
6530 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6531 IPSEC_ULPROTO_ANY);
6532 if (!m) {
6533 error = ENOBUFS;
6534 goto fail;
6535 }
6536 m_cat(result, m);
6537
6538 /* XXX proxy address (optional) */
6539
6540 /* set sadb_x_policy */
6541 if (sp) {
6542 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6543 if (!m) {
6544 error = ENOBUFS;
6545 goto fail;
6546 }
6547 m_cat(result, m);
6548 }
6549
6550 /* XXX identity (optional) */
6551 #if 0
6552 if (idexttype && fqdn) {
6553 /* create identity extension (FQDN) */
6554 struct sadb_ident *id;
6555 int fqdnlen;
6556
6557 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6558 id = (struct sadb_ident *)p;
6559 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6560 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6561 id->sadb_ident_exttype = idexttype;
6562 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6563 memcpy(id + 1, fqdn, fqdnlen);
6564 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6565 }
6566
6567 if (idexttype) {
6568 /* create identity extension (USERFQDN) */
6569 struct sadb_ident *id;
6570 int userfqdnlen;
6571
6572 if (userfqdn) {
6573 /* +1 for terminating-NUL */
6574 userfqdnlen = strlen(userfqdn) + 1;
6575 } else
6576 userfqdnlen = 0;
6577 id = (struct sadb_ident *)p;
6578 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6579 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6580 id->sadb_ident_exttype = idexttype;
6581 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6582 /* XXX is it correct? */
6583 if (curlwp)
6584 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6585 if (userfqdn && userfqdnlen)
6586 memcpy(id + 1, userfqdn, userfqdnlen);
6587 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6588 }
6589 #endif
6590
6591 /* XXX sensitivity (optional) */
6592
6593 /* create proposal/combination extension */
6594 m = key_getprop(saidx);
6595 #if 0
6596 /*
6597 * spec conformant: always attach proposal/combination extension,
6598 * the problem is that we have no way to attach it for ipcomp,
6599 * due to the way sadb_comb is declared in RFC2367.
6600 */
6601 if (!m) {
6602 error = ENOBUFS;
6603 goto fail;
6604 }
6605 m_cat(result, m);
6606 #else
6607 /*
6608 * outside of spec; make proposal/combination extension optional.
6609 */
6610 if (m)
6611 m_cat(result, m);
6612 #endif
6613
6614 if ((result->m_flags & M_PKTHDR) == 0) {
6615 error = EINVAL;
6616 goto fail;
6617 }
6618
6619 if (result->m_len < sizeof(struct sadb_msg)) {
6620 result = m_pullup(result, sizeof(struct sadb_msg));
6621 if (result == NULL) {
6622 error = ENOBUFS;
6623 goto fail;
6624 }
6625 }
6626
6627 result->m_pkthdr.len = 0;
6628 for (m = result; m; m = m->m_next)
6629 result->m_pkthdr.len += m->m_len;
6630
6631 mtod(result, struct sadb_msg *)->sadb_msg_len =
6632 PFKEY_UNIT64(result->m_pkthdr.len);
6633
6634 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6635
6636 fail:
6637 if (result)
6638 m_freem(result);
6639 return error;
6640 }
6641
6642 #ifndef IPSEC_NONBLOCK_ACQUIRE
6643 static struct secacq *
6644 key_newacq(const struct secasindex *saidx)
6645 {
6646 struct secacq *newacq;
6647
6648 /* get new entry */
6649 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6650 if (newacq == NULL) {
6651 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6652 return NULL;
6653 }
6654
6655 /* copy secindex */
6656 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6657 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6658 newacq->created = time_uptime;
6659 newacq->count = 0;
6660
6661 return newacq;
6662 }
6663
6664 static struct secacq *
6665 key_getacq(const struct secasindex *saidx)
6666 {
6667 struct secacq *acq;
6668
6669 KASSERT(mutex_owned(&key_misc.lock));
6670
6671 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6672 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6673 return acq;
6674 }
6675
6676 return NULL;
6677 }
6678
6679 static struct secacq *
6680 key_getacqbyseq(u_int32_t seq)
6681 {
6682 struct secacq *acq;
6683
6684 KASSERT(mutex_owned(&key_misc.lock));
6685
6686 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6687 if (acq->seq == seq)
6688 return acq;
6689 }
6690
6691 return NULL;
6692 }
6693 #endif
6694
6695 #ifdef notyet
6696 static struct secspacq *
6697 key_newspacq(const struct secpolicyindex *spidx)
6698 {
6699 struct secspacq *acq;
6700
6701 /* get new entry */
6702 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6703 if (acq == NULL) {
6704 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6705 return NULL;
6706 }
6707
6708 /* copy secindex */
6709 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6710 acq->created = time_uptime;
6711 acq->count = 0;
6712
6713 return acq;
6714 }
6715
6716 static struct secspacq *
6717 key_getspacq(const struct secpolicyindex *spidx)
6718 {
6719 struct secspacq *acq;
6720
6721 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6722 if (key_spidx_match_exactly(spidx, &acq->spidx))
6723 return acq;
6724 }
6725
6726 return NULL;
6727 }
6728 #endif /* notyet */
6729
6730 /*
6731 * SADB_ACQUIRE processing,
6732 * in first situation, is receiving
6733 * <base>
6734 * from the ikmpd, and clear sequence of its secasvar entry.
6735 *
6736 * In second situation, is receiving
6737 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6738 * from a user land process, and return
6739 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6740 * to the socket.
6741 *
6742 * m will always be freed.
6743 */
6744 static int
6745 key_api_acquire(struct socket *so, struct mbuf *m,
6746 const struct sadb_msghdr *mhp)
6747 {
6748 const struct sockaddr *src, *dst;
6749 struct secasindex saidx;
6750 u_int16_t proto;
6751 int error;
6752
6753 /*
6754 * Error message from KMd.
6755 * We assume that if error was occurred in IKEd, the length of PFKEY
6756 * message is equal to the size of sadb_msg structure.
6757 * We do not raise error even if error occurred in this function.
6758 */
6759 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6760 #ifndef IPSEC_NONBLOCK_ACQUIRE
6761 struct secacq *acq;
6762
6763 /* check sequence number */
6764 if (mhp->msg->sadb_msg_seq == 0) {
6765 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6766 m_freem(m);
6767 return 0;
6768 }
6769
6770 mutex_enter(&key_misc.lock);
6771 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6772 if (acq == NULL) {
6773 mutex_exit(&key_misc.lock);
6774 /*
6775 * the specified larval SA is already gone, or we got
6776 * a bogus sequence number. we can silently ignore it.
6777 */
6778 m_freem(m);
6779 return 0;
6780 }
6781
6782 /* reset acq counter in order to deletion by timehander. */
6783 acq->created = time_uptime;
6784 acq->count = 0;
6785 mutex_exit(&key_misc.lock);
6786 #endif
6787 m_freem(m);
6788 return 0;
6789 }
6790
6791 /*
6792 * This message is from user land.
6793 */
6794
6795 /* map satype to proto */
6796 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6797 if (proto == 0) {
6798 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6799 return key_senderror(so, m, EINVAL);
6800 }
6801
6802 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6803 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6804 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6805 /* error */
6806 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6807 return key_senderror(so, m, EINVAL);
6808 }
6809 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6810 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6811 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6812 /* error */
6813 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6814 return key_senderror(so, m, EINVAL);
6815 }
6816
6817 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6818 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6819
6820 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6821 if (error != 0)
6822 return key_senderror(so, m, EINVAL);
6823
6824 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6825 if (error != 0)
6826 return key_senderror(so, m, EINVAL);
6827
6828 /* get a SA index */
6829 {
6830 struct secashead *sah;
6831 int s = pserialize_read_enter();
6832
6833 sah = key_getsah(&saidx, CMP_MODE_REQID);
6834 if (sah != NULL) {
6835 pserialize_read_exit(s);
6836 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6837 return key_senderror(so, m, EEXIST);
6838 }
6839 pserialize_read_exit(s);
6840 }
6841
6842 error = key_acquire(&saidx, NULL);
6843 if (error != 0) {
6844 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6845 error);
6846 return key_senderror(so, m, error);
6847 }
6848
6849 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6850 }
6851
6852 /*
6853 * SADB_REGISTER processing.
6854 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6855 * receive
6856 * <base>
6857 * from the ikmpd, and register a socket to send PF_KEY messages,
6858 * and send
6859 * <base, supported>
6860 * to KMD by PF_KEY.
6861 * If socket is detached, must free from regnode.
6862 *
6863 * m will always be freed.
6864 */
6865 static int
6866 key_api_register(struct socket *so, struct mbuf *m,
6867 const struct sadb_msghdr *mhp)
6868 {
6869 struct secreg *reg, *newreg = 0;
6870
6871 /* check for invalid register message */
6872 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
6873 return key_senderror(so, m, EINVAL);
6874
6875 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6876 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6877 goto setmsg;
6878
6879 /* Allocate regnode in advance, out of mutex */
6880 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6881
6882 /* check whether existing or not */
6883 mutex_enter(&key_misc.lock);
6884 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
6885 if (reg->so == so) {
6886 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6887 mutex_exit(&key_misc.lock);
6888 kmem_free(newreg, sizeof(*newreg));
6889 return key_senderror(so, m, EEXIST);
6890 }
6891 }
6892
6893 newreg->so = so;
6894 ((struct keycb *)sotorawcb(so))->kp_registered++;
6895
6896 /* add regnode to key_misc.reglist. */
6897 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
6898 mutex_exit(&key_misc.lock);
6899
6900 setmsg:
6901 {
6902 struct mbuf *n;
6903 struct sadb_supported *sup;
6904 u_int len, alen, elen;
6905 int off;
6906 int i;
6907 struct sadb_alg *alg;
6908
6909 /* create new sadb_msg to reply. */
6910 alen = 0;
6911 for (i = 1; i <= SADB_AALG_MAX; i++) {
6912 if (ah_algorithm_lookup(i))
6913 alen += sizeof(struct sadb_alg);
6914 }
6915 if (alen)
6916 alen += sizeof(struct sadb_supported);
6917 elen = 0;
6918 for (i = 1; i <= SADB_EALG_MAX; i++) {
6919 if (esp_algorithm_lookup(i))
6920 elen += sizeof(struct sadb_alg);
6921 }
6922 if (elen)
6923 elen += sizeof(struct sadb_supported);
6924
6925 len = sizeof(struct sadb_msg) + alen + elen;
6926
6927 if (len > MCLBYTES)
6928 return key_senderror(so, m, ENOBUFS);
6929
6930 MGETHDR(n, M_DONTWAIT, MT_DATA);
6931 if (len > MHLEN) {
6932 MCLGET(n, M_DONTWAIT);
6933 if ((n->m_flags & M_EXT) == 0) {
6934 m_freem(n);
6935 n = NULL;
6936 }
6937 }
6938 if (!n)
6939 return key_senderror(so, m, ENOBUFS);
6940
6941 n->m_pkthdr.len = n->m_len = len;
6942 n->m_next = NULL;
6943 off = 0;
6944
6945 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6946 n = key_fill_replymsg(n, 0);
6947 if (n == NULL)
6948 return key_senderror(so, m, ENOBUFS);
6949
6950 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6951
6952 /* for authentication algorithm */
6953 if (alen) {
6954 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6955 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6956 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6957 off += PFKEY_ALIGN8(sizeof(*sup));
6958
6959 for (i = 1; i <= SADB_AALG_MAX; i++) {
6960 const struct auth_hash *aalgo;
6961 u_int16_t minkeysize, maxkeysize;
6962
6963 aalgo = ah_algorithm_lookup(i);
6964 if (!aalgo)
6965 continue;
6966 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6967 alg->sadb_alg_id = i;
6968 alg->sadb_alg_ivlen = 0;
6969 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6970 alg->sadb_alg_minbits = _BITS(minkeysize);
6971 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6972 off += PFKEY_ALIGN8(sizeof(*alg));
6973 }
6974 }
6975
6976 /* for encryption algorithm */
6977 if (elen) {
6978 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6979 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6980 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6981 off += PFKEY_ALIGN8(sizeof(*sup));
6982
6983 for (i = 1; i <= SADB_EALG_MAX; i++) {
6984 const struct enc_xform *ealgo;
6985
6986 ealgo = esp_algorithm_lookup(i);
6987 if (!ealgo)
6988 continue;
6989 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6990 alg->sadb_alg_id = i;
6991 alg->sadb_alg_ivlen = ealgo->blocksize;
6992 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6993 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6994 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6995 }
6996 }
6997
6998 KASSERTMSG(off == len, "length inconsistency");
6999
7000 m_freem(m);
7001 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7002 }
7003 }
7004
7005 /*
7006 * free secreg entry registered.
7007 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7008 */
7009 void
7010 key_freereg(struct socket *so)
7011 {
7012 struct secreg *reg;
7013 int i;
7014
7015 KASSERT(!cpu_softintr_p());
7016 KASSERT(so != NULL);
7017
7018 /*
7019 * check whether existing or not.
7020 * check all type of SA, because there is a potential that
7021 * one socket is registered to multiple type of SA.
7022 */
7023 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7024 mutex_enter(&key_misc.lock);
7025 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7026 if (reg->so == so) {
7027 LIST_REMOVE(reg, chain);
7028 break;
7029 }
7030 }
7031 mutex_exit(&key_misc.lock);
7032 if (reg != NULL)
7033 kmem_free(reg, sizeof(*reg));
7034 }
7035
7036 return;
7037 }
7038
7039 /*
7040 * SADB_EXPIRE processing
7041 * send
7042 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7043 * to KMD by PF_KEY.
7044 * NOTE: We send only soft lifetime extension.
7045 *
7046 * OUT: 0 : succeed
7047 * others : error number
7048 */
7049 static int
7050 key_expire(struct secasvar *sav)
7051 {
7052 int s;
7053 int satype;
7054 struct mbuf *result = NULL, *m;
7055 int len;
7056 int error = -1;
7057 struct sadb_lifetime *lt;
7058
7059 /* XXX: Why do we lock ? */
7060 s = splsoftnet(); /*called from softclock()*/
7061
7062 KASSERT(sav != NULL);
7063
7064 satype = key_proto2satype(sav->sah->saidx.proto);
7065 KASSERTMSG(satype != 0, "invalid proto is passed");
7066
7067 /* set msg header */
7068 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav));
7069 if (!m) {
7070 error = ENOBUFS;
7071 goto fail;
7072 }
7073 result = m;
7074
7075 /* create SA extension */
7076 m = key_setsadbsa(sav);
7077 if (!m) {
7078 error = ENOBUFS;
7079 goto fail;
7080 }
7081 m_cat(result, m);
7082
7083 /* create SA extension */
7084 m = key_setsadbxsa2(sav->sah->saidx.mode,
7085 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7086 if (!m) {
7087 error = ENOBUFS;
7088 goto fail;
7089 }
7090 m_cat(result, m);
7091
7092 /* create lifetime extension (current and soft) */
7093 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7094 m = key_alloc_mbuf(len);
7095 if (!m || m->m_next) { /*XXX*/
7096 if (m)
7097 m_freem(m);
7098 error = ENOBUFS;
7099 goto fail;
7100 }
7101 memset(mtod(m, void *), 0, len);
7102 lt = mtod(m, struct sadb_lifetime *);
7103 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7104 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7105 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7106 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7107 lt->sadb_lifetime_addtime =
7108 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7109 lt->sadb_lifetime_usetime =
7110 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7111 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7112 memcpy(lt, sav->lft_s, sizeof(*lt));
7113 m_cat(result, m);
7114
7115 /* set sadb_address for source */
7116 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7117 FULLMASK, IPSEC_ULPROTO_ANY);
7118 if (!m) {
7119 error = ENOBUFS;
7120 goto fail;
7121 }
7122 m_cat(result, m);
7123
7124 /* set sadb_address for destination */
7125 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7126 FULLMASK, IPSEC_ULPROTO_ANY);
7127 if (!m) {
7128 error = ENOBUFS;
7129 goto fail;
7130 }
7131 m_cat(result, m);
7132
7133 if ((result->m_flags & M_PKTHDR) == 0) {
7134 error = EINVAL;
7135 goto fail;
7136 }
7137
7138 if (result->m_len < sizeof(struct sadb_msg)) {
7139 result = m_pullup(result, sizeof(struct sadb_msg));
7140 if (result == NULL) {
7141 error = ENOBUFS;
7142 goto fail;
7143 }
7144 }
7145
7146 result->m_pkthdr.len = 0;
7147 for (m = result; m; m = m->m_next)
7148 result->m_pkthdr.len += m->m_len;
7149
7150 mtod(result, struct sadb_msg *)->sadb_msg_len =
7151 PFKEY_UNIT64(result->m_pkthdr.len);
7152
7153 splx(s);
7154 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7155
7156 fail:
7157 if (result)
7158 m_freem(result);
7159 splx(s);
7160 return error;
7161 }
7162
7163 /*
7164 * SADB_FLUSH processing
7165 * receive
7166 * <base>
7167 * from the ikmpd, and free all entries in secastree.
7168 * and send,
7169 * <base>
7170 * to the ikmpd.
7171 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7172 *
7173 * m will always be freed.
7174 */
7175 static int
7176 key_api_flush(struct socket *so, struct mbuf *m,
7177 const struct sadb_msghdr *mhp)
7178 {
7179 struct sadb_msg *newmsg;
7180 struct secashead *sah;
7181 struct secasvar *sav;
7182 u_int16_t proto;
7183 u_int8_t state;
7184 int s;
7185
7186 /* map satype to proto */
7187 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7188 if (proto == 0) {
7189 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7190 return key_senderror(so, m, EINVAL);
7191 }
7192
7193 /* no SATYPE specified, i.e. flushing all SA. */
7194 s = pserialize_read_enter();
7195 SAHLIST_READER_FOREACH(sah) {
7196 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7197 proto != sah->saidx.proto)
7198 continue;
7199
7200 key_sah_ref(sah);
7201 pserialize_read_exit(s);
7202
7203 SASTATE_ALIVE_FOREACH(state) {
7204 restart:
7205 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7206 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7207 KEY_FREESAV(&sav);
7208 goto restart;
7209 }
7210 }
7211
7212 s = pserialize_read_enter();
7213 sah->state = SADB_SASTATE_DEAD;
7214 key_sah_unref(sah);
7215 }
7216 pserialize_read_exit(s);
7217
7218 if (m->m_len < sizeof(struct sadb_msg) ||
7219 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7220 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7221 return key_senderror(so, m, ENOBUFS);
7222 }
7223
7224 if (m->m_next)
7225 m_freem(m->m_next);
7226 m->m_next = NULL;
7227 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7228 newmsg = mtod(m, struct sadb_msg *);
7229 newmsg->sadb_msg_errno = 0;
7230 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7231
7232 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7233 }
7234
7235
7236 static struct mbuf *
7237 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7238 {
7239 struct secashead *sah;
7240 struct secasvar *sav;
7241 u_int16_t proto;
7242 u_int8_t satype;
7243 u_int8_t state;
7244 int cnt;
7245 struct mbuf *m, *n, *prev;
7246
7247 KASSERT(mutex_owned(&key_sad.lock));
7248
7249 *lenp = 0;
7250
7251 /* map satype to proto */
7252 proto = key_satype2proto(req_satype);
7253 if (proto == 0) {
7254 *errorp = EINVAL;
7255 return (NULL);
7256 }
7257
7258 /* count sav entries to be sent to userland. */
7259 cnt = 0;
7260 SAHLIST_WRITER_FOREACH(sah) {
7261 if (req_satype != SADB_SATYPE_UNSPEC &&
7262 proto != sah->saidx.proto)
7263 continue;
7264
7265 SASTATE_ANY_FOREACH(state) {
7266 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7267 cnt++;
7268 }
7269 }
7270 }
7271
7272 if (cnt == 0) {
7273 *errorp = ENOENT;
7274 return (NULL);
7275 }
7276
7277 /* send this to the userland, one at a time. */
7278 m = NULL;
7279 prev = m;
7280 SAHLIST_WRITER_FOREACH(sah) {
7281 if (req_satype != SADB_SATYPE_UNSPEC &&
7282 proto != sah->saidx.proto)
7283 continue;
7284
7285 /* map proto to satype */
7286 satype = key_proto2satype(sah->saidx.proto);
7287 if (satype == 0) {
7288 m_freem(m);
7289 *errorp = EINVAL;
7290 return (NULL);
7291 }
7292
7293 SASTATE_ANY_FOREACH(state) {
7294 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7295 n = key_setdumpsa(sav, SADB_DUMP, satype,
7296 --cnt, pid);
7297 if (!n) {
7298 m_freem(m);
7299 *errorp = ENOBUFS;
7300 return (NULL);
7301 }
7302
7303 if (!m)
7304 m = n;
7305 else
7306 prev->m_nextpkt = n;
7307 prev = n;
7308 }
7309 }
7310 }
7311
7312 if (!m) {
7313 *errorp = EINVAL;
7314 return (NULL);
7315 }
7316
7317 if ((m->m_flags & M_PKTHDR) != 0) {
7318 m->m_pkthdr.len = 0;
7319 for (n = m; n; n = n->m_next)
7320 m->m_pkthdr.len += n->m_len;
7321 }
7322
7323 *errorp = 0;
7324 return (m);
7325 }
7326
7327 /*
7328 * SADB_DUMP processing
7329 * dump all entries including status of DEAD in SAD.
7330 * receive
7331 * <base>
7332 * from the ikmpd, and dump all secasvar leaves
7333 * and send,
7334 * <base> .....
7335 * to the ikmpd.
7336 *
7337 * m will always be freed.
7338 */
7339 static int
7340 key_api_dump(struct socket *so, struct mbuf *m0,
7341 const struct sadb_msghdr *mhp)
7342 {
7343 u_int16_t proto;
7344 u_int8_t satype;
7345 struct mbuf *n;
7346 int error, len, ok;
7347
7348 /* map satype to proto */
7349 satype = mhp->msg->sadb_msg_satype;
7350 proto = key_satype2proto(satype);
7351 if (proto == 0) {
7352 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7353 return key_senderror(so, m0, EINVAL);
7354 }
7355
7356 /*
7357 * If the requestor has insufficient socket-buffer space
7358 * for the entire chain, nobody gets any response to the DUMP.
7359 * XXX For now, only the requestor ever gets anything.
7360 * Moreover, if the requestor has any space at all, they receive
7361 * the entire chain, otherwise the request is refused with ENOBUFS.
7362 */
7363 if (sbspace(&so->so_rcv) <= 0) {
7364 return key_senderror(so, m0, ENOBUFS);
7365 }
7366
7367 mutex_enter(&key_sad.lock);
7368 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7369 mutex_exit(&key_sad.lock);
7370
7371 if (n == NULL) {
7372 return key_senderror(so, m0, ENOENT);
7373 }
7374 {
7375 uint64_t *ps = PFKEY_STAT_GETREF();
7376 ps[PFKEY_STAT_IN_TOTAL]++;
7377 ps[PFKEY_STAT_IN_BYTES] += len;
7378 PFKEY_STAT_PUTREF();
7379 }
7380
7381 /*
7382 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7383 * The requestor receives either the entire chain, or an
7384 * error message with ENOBUFS.
7385 *
7386 * sbappendaddrchain() takes the chain of entries, one
7387 * packet-record per SPD entry, prepends the key_src sockaddr
7388 * to each packet-record, links the sockaddr mbufs into a new
7389 * list of records, then appends the entire resulting
7390 * list to the requesting socket.
7391 */
7392 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7393 SB_PRIO_ONESHOT_OVERFLOW);
7394
7395 if (!ok) {
7396 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7397 m_freem(n);
7398 return key_senderror(so, m0, ENOBUFS);
7399 }
7400
7401 m_freem(m0);
7402 return 0;
7403 }
7404
7405 /*
7406 * SADB_X_PROMISC processing
7407 *
7408 * m will always be freed.
7409 */
7410 static int
7411 key_api_promisc(struct socket *so, struct mbuf *m,
7412 const struct sadb_msghdr *mhp)
7413 {
7414 int olen;
7415
7416 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7417
7418 if (olen < sizeof(struct sadb_msg)) {
7419 #if 1
7420 return key_senderror(so, m, EINVAL);
7421 #else
7422 m_freem(m);
7423 return 0;
7424 #endif
7425 } else if (olen == sizeof(struct sadb_msg)) {
7426 /* enable/disable promisc mode */
7427 struct keycb *kp = (struct keycb *)sotorawcb(so);
7428 if (kp == NULL)
7429 return key_senderror(so, m, EINVAL);
7430 mhp->msg->sadb_msg_errno = 0;
7431 switch (mhp->msg->sadb_msg_satype) {
7432 case 0:
7433 case 1:
7434 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7435 break;
7436 default:
7437 return key_senderror(so, m, EINVAL);
7438 }
7439
7440 /* send the original message back to everyone */
7441 mhp->msg->sadb_msg_errno = 0;
7442 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7443 } else {
7444 /* send packet as is */
7445
7446 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7447
7448 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7449 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7450 }
7451 }
7452
7453 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7454 const struct sadb_msghdr *) = {
7455 NULL, /* SADB_RESERVED */
7456 key_api_getspi, /* SADB_GETSPI */
7457 key_api_update, /* SADB_UPDATE */
7458 key_api_add, /* SADB_ADD */
7459 key_api_delete, /* SADB_DELETE */
7460 key_api_get, /* SADB_GET */
7461 key_api_acquire, /* SADB_ACQUIRE */
7462 key_api_register, /* SADB_REGISTER */
7463 NULL, /* SADB_EXPIRE */
7464 key_api_flush, /* SADB_FLUSH */
7465 key_api_dump, /* SADB_DUMP */
7466 key_api_promisc, /* SADB_X_PROMISC */
7467 NULL, /* SADB_X_PCHANGE */
7468 key_api_spdadd, /* SADB_X_SPDUPDATE */
7469 key_api_spdadd, /* SADB_X_SPDADD */
7470 key_api_spddelete, /* SADB_X_SPDDELETE */
7471 key_api_spdget, /* SADB_X_SPDGET */
7472 NULL, /* SADB_X_SPDACQUIRE */
7473 key_api_spddump, /* SADB_X_SPDDUMP */
7474 key_api_spdflush, /* SADB_X_SPDFLUSH */
7475 key_api_spdadd, /* SADB_X_SPDSETIDX */
7476 NULL, /* SADB_X_SPDEXPIRE */
7477 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7478 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7479 };
7480
7481 /*
7482 * parse sadb_msg buffer to process PFKEYv2,
7483 * and create a data to response if needed.
7484 * I think to be dealed with mbuf directly.
7485 * IN:
7486 * msgp : pointer to pointer to a received buffer pulluped.
7487 * This is rewrited to response.
7488 * so : pointer to socket.
7489 * OUT:
7490 * length for buffer to send to user process.
7491 */
7492 int
7493 key_parse(struct mbuf *m, struct socket *so)
7494 {
7495 struct sadb_msg *msg;
7496 struct sadb_msghdr mh;
7497 u_int orglen;
7498 int error;
7499
7500 KASSERT(m != NULL);
7501 KASSERT(so != NULL);
7502
7503 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7504 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7505 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7506 kdebug_sadb(msg);
7507 }
7508 #endif
7509
7510 if (m->m_len < sizeof(struct sadb_msg)) {
7511 m = m_pullup(m, sizeof(struct sadb_msg));
7512 if (!m)
7513 return ENOBUFS;
7514 }
7515 msg = mtod(m, struct sadb_msg *);
7516 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7517
7518 if ((m->m_flags & M_PKTHDR) == 0 ||
7519 m->m_pkthdr.len != orglen) {
7520 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7521 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7522 error = EINVAL;
7523 goto senderror;
7524 }
7525
7526 if (msg->sadb_msg_version != PF_KEY_V2) {
7527 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7528 msg->sadb_msg_version);
7529 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7530 error = EINVAL;
7531 goto senderror;
7532 }
7533
7534 if (msg->sadb_msg_type > SADB_MAX) {
7535 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7536 msg->sadb_msg_type);
7537 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7538 error = EINVAL;
7539 goto senderror;
7540 }
7541
7542 /* for old-fashioned code - should be nuked */
7543 if (m->m_pkthdr.len > MCLBYTES) {
7544 m_freem(m);
7545 return ENOBUFS;
7546 }
7547 if (m->m_next) {
7548 struct mbuf *n;
7549
7550 MGETHDR(n, M_DONTWAIT, MT_DATA);
7551 if (n && m->m_pkthdr.len > MHLEN) {
7552 MCLGET(n, M_DONTWAIT);
7553 if ((n->m_flags & M_EXT) == 0) {
7554 m_free(n);
7555 n = NULL;
7556 }
7557 }
7558 if (!n) {
7559 m_freem(m);
7560 return ENOBUFS;
7561 }
7562 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7563 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7564 n->m_next = NULL;
7565 m_freem(m);
7566 m = n;
7567 }
7568
7569 /* align the mbuf chain so that extensions are in contiguous region. */
7570 error = key_align(m, &mh);
7571 if (error)
7572 return error;
7573
7574 if (m->m_next) { /*XXX*/
7575 m_freem(m);
7576 return ENOBUFS;
7577 }
7578
7579 msg = mh.msg;
7580
7581 /* check SA type */
7582 switch (msg->sadb_msg_satype) {
7583 case SADB_SATYPE_UNSPEC:
7584 switch (msg->sadb_msg_type) {
7585 case SADB_GETSPI:
7586 case SADB_UPDATE:
7587 case SADB_ADD:
7588 case SADB_DELETE:
7589 case SADB_GET:
7590 case SADB_ACQUIRE:
7591 case SADB_EXPIRE:
7592 IPSECLOG(LOG_DEBUG,
7593 "must specify satype when msg type=%u.\n",
7594 msg->sadb_msg_type);
7595 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7596 error = EINVAL;
7597 goto senderror;
7598 }
7599 break;
7600 case SADB_SATYPE_AH:
7601 case SADB_SATYPE_ESP:
7602 case SADB_X_SATYPE_IPCOMP:
7603 case SADB_X_SATYPE_TCPSIGNATURE:
7604 switch (msg->sadb_msg_type) {
7605 case SADB_X_SPDADD:
7606 case SADB_X_SPDDELETE:
7607 case SADB_X_SPDGET:
7608 case SADB_X_SPDDUMP:
7609 case SADB_X_SPDFLUSH:
7610 case SADB_X_SPDSETIDX:
7611 case SADB_X_SPDUPDATE:
7612 case SADB_X_SPDDELETE2:
7613 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7614 msg->sadb_msg_type);
7615 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7616 error = EINVAL;
7617 goto senderror;
7618 }
7619 break;
7620 case SADB_SATYPE_RSVP:
7621 case SADB_SATYPE_OSPFV2:
7622 case SADB_SATYPE_RIPV2:
7623 case SADB_SATYPE_MIP:
7624 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7625 msg->sadb_msg_satype);
7626 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7627 error = EOPNOTSUPP;
7628 goto senderror;
7629 case 1: /* XXX: What does it do? */
7630 if (msg->sadb_msg_type == SADB_X_PROMISC)
7631 break;
7632 /*FALLTHROUGH*/
7633 default:
7634 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7635 msg->sadb_msg_satype);
7636 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7637 error = EINVAL;
7638 goto senderror;
7639 }
7640
7641 /* check field of upper layer protocol and address family */
7642 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7643 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7644 struct sadb_address *src0, *dst0;
7645 u_int plen;
7646
7647 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7648 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7649
7650 /* check upper layer protocol */
7651 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7652 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7653 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7654 error = EINVAL;
7655 goto senderror;
7656 }
7657
7658 /* check family */
7659 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7660 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7661 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7662 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7663 error = EINVAL;
7664 goto senderror;
7665 }
7666 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7667 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7668 IPSECLOG(LOG_DEBUG,
7669 "address struct size mismatched.\n");
7670 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7671 error = EINVAL;
7672 goto senderror;
7673 }
7674
7675 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7676 case AF_INET:
7677 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7678 sizeof(struct sockaddr_in)) {
7679 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7680 error = EINVAL;
7681 goto senderror;
7682 }
7683 break;
7684 case AF_INET6:
7685 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7686 sizeof(struct sockaddr_in6)) {
7687 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7688 error = EINVAL;
7689 goto senderror;
7690 }
7691 break;
7692 default:
7693 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7694 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7695 error = EAFNOSUPPORT;
7696 goto senderror;
7697 }
7698
7699 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7700 case AF_INET:
7701 plen = sizeof(struct in_addr) << 3;
7702 break;
7703 case AF_INET6:
7704 plen = sizeof(struct in6_addr) << 3;
7705 break;
7706 default:
7707 plen = 0; /*fool gcc*/
7708 break;
7709 }
7710
7711 /* check max prefix length */
7712 if (src0->sadb_address_prefixlen > plen ||
7713 dst0->sadb_address_prefixlen > plen) {
7714 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7715 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7716 error = EINVAL;
7717 goto senderror;
7718 }
7719
7720 /*
7721 * prefixlen == 0 is valid because there can be a case when
7722 * all addresses are matched.
7723 */
7724 }
7725
7726 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7727 key_api_typesw[msg->sadb_msg_type] == NULL) {
7728 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7729 error = EINVAL;
7730 goto senderror;
7731 }
7732
7733 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7734
7735 senderror:
7736 return key_senderror(so, m, error);
7737 }
7738
7739 static int
7740 key_senderror(struct socket *so, struct mbuf *m, int code)
7741 {
7742 struct sadb_msg *msg;
7743
7744 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7745
7746 msg = mtod(m, struct sadb_msg *);
7747 msg->sadb_msg_errno = code;
7748 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7749 }
7750
7751 /*
7752 * set the pointer to each header into message buffer.
7753 * m will be freed on error.
7754 * XXX larger-than-MCLBYTES extension?
7755 */
7756 static int
7757 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7758 {
7759 struct mbuf *n;
7760 struct sadb_ext *ext;
7761 size_t off, end;
7762 int extlen;
7763 int toff;
7764
7765 KASSERT(m != NULL);
7766 KASSERT(mhp != NULL);
7767 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7768
7769 /* initialize */
7770 memset(mhp, 0, sizeof(*mhp));
7771
7772 mhp->msg = mtod(m, struct sadb_msg *);
7773 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7774
7775 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7776 extlen = end; /*just in case extlen is not updated*/
7777 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7778 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7779 if (!n) {
7780 /* m is already freed */
7781 return ENOBUFS;
7782 }
7783 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7784
7785 /* set pointer */
7786 switch (ext->sadb_ext_type) {
7787 case SADB_EXT_SA:
7788 case SADB_EXT_ADDRESS_SRC:
7789 case SADB_EXT_ADDRESS_DST:
7790 case SADB_EXT_ADDRESS_PROXY:
7791 case SADB_EXT_LIFETIME_CURRENT:
7792 case SADB_EXT_LIFETIME_HARD:
7793 case SADB_EXT_LIFETIME_SOFT:
7794 case SADB_EXT_KEY_AUTH:
7795 case SADB_EXT_KEY_ENCRYPT:
7796 case SADB_EXT_IDENTITY_SRC:
7797 case SADB_EXT_IDENTITY_DST:
7798 case SADB_EXT_SENSITIVITY:
7799 case SADB_EXT_PROPOSAL:
7800 case SADB_EXT_SUPPORTED_AUTH:
7801 case SADB_EXT_SUPPORTED_ENCRYPT:
7802 case SADB_EXT_SPIRANGE:
7803 case SADB_X_EXT_POLICY:
7804 case SADB_X_EXT_SA2:
7805 case SADB_X_EXT_NAT_T_TYPE:
7806 case SADB_X_EXT_NAT_T_SPORT:
7807 case SADB_X_EXT_NAT_T_DPORT:
7808 case SADB_X_EXT_NAT_T_OAI:
7809 case SADB_X_EXT_NAT_T_OAR:
7810 case SADB_X_EXT_NAT_T_FRAG:
7811 /* duplicate check */
7812 /*
7813 * XXX Are there duplication payloads of either
7814 * KEY_AUTH or KEY_ENCRYPT ?
7815 */
7816 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7817 IPSECLOG(LOG_DEBUG,
7818 "duplicate ext_type %u is passed.\n",
7819 ext->sadb_ext_type);
7820 m_freem(m);
7821 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7822 return EINVAL;
7823 }
7824 break;
7825 default:
7826 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7827 ext->sadb_ext_type);
7828 m_freem(m);
7829 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7830 return EINVAL;
7831 }
7832
7833 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7834
7835 if (key_validate_ext(ext, extlen)) {
7836 m_freem(m);
7837 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7838 return EINVAL;
7839 }
7840
7841 n = m_pulldown(m, off, extlen, &toff);
7842 if (!n) {
7843 /* m is already freed */
7844 return ENOBUFS;
7845 }
7846 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7847
7848 mhp->ext[ext->sadb_ext_type] = ext;
7849 mhp->extoff[ext->sadb_ext_type] = off;
7850 mhp->extlen[ext->sadb_ext_type] = extlen;
7851 }
7852
7853 if (off != end) {
7854 m_freem(m);
7855 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7856 return EINVAL;
7857 }
7858
7859 return 0;
7860 }
7861
7862 static int
7863 key_validate_ext(const struct sadb_ext *ext, int len)
7864 {
7865 const struct sockaddr *sa;
7866 enum { NONE, ADDR } checktype = NONE;
7867 int baselen = 0;
7868 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7869
7870 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7871 return EINVAL;
7872
7873 /* if it does not match minimum/maximum length, bail */
7874 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7875 ext->sadb_ext_type >= __arraycount(maxsize))
7876 return EINVAL;
7877 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7878 return EINVAL;
7879 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7880 return EINVAL;
7881
7882 /* more checks based on sadb_ext_type XXX need more */
7883 switch (ext->sadb_ext_type) {
7884 case SADB_EXT_ADDRESS_SRC:
7885 case SADB_EXT_ADDRESS_DST:
7886 case SADB_EXT_ADDRESS_PROXY:
7887 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7888 checktype = ADDR;
7889 break;
7890 case SADB_EXT_IDENTITY_SRC:
7891 case SADB_EXT_IDENTITY_DST:
7892 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7893 SADB_X_IDENTTYPE_ADDR) {
7894 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7895 checktype = ADDR;
7896 } else
7897 checktype = NONE;
7898 break;
7899 default:
7900 checktype = NONE;
7901 break;
7902 }
7903
7904 switch (checktype) {
7905 case NONE:
7906 break;
7907 case ADDR:
7908 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7909 if (len < baselen + sal)
7910 return EINVAL;
7911 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7912 return EINVAL;
7913 break;
7914 }
7915
7916 return 0;
7917 }
7918
7919 static int
7920 key_do_init(void)
7921 {
7922 int i, error;
7923
7924 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
7925 key_spd_psz = pserialize_create();
7926 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
7927 cv_init(&key_spd.cv, "key_sp");
7928 key_sad_psz = pserialize_create();
7929 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
7930 cv_init(&key_sad.cv, "key_sa");
7931
7932 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7933
7934 callout_init(&key_timehandler_ch, 0);
7935 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7936 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7937 if (error != 0)
7938 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7939
7940 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7941 PSLIST_INIT(&key_spd.splist[i]);
7942 }
7943
7944 PSLIST_INIT(&key_spd.socksplist);
7945
7946 PSLIST_INIT(&key_sad.sahlist);
7947
7948 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7949 LIST_INIT(&key_misc.reglist[i]);
7950 }
7951
7952 #ifndef IPSEC_NONBLOCK_ACQUIRE
7953 LIST_INIT(&key_misc.acqlist);
7954 #endif
7955 #ifdef notyet
7956 LIST_INIT(&key_misc.spacqlist);
7957 #endif
7958
7959 /* system default */
7960 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7961 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
7962 localcount_init(&ip4_def_policy.localcount);
7963
7964 #ifdef INET6
7965 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7966 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
7967 localcount_init(&ip6_def_policy.localcount);
7968 #endif
7969
7970 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7971
7972 /* initialize key statistics */
7973 keystat.getspi_count = 1;
7974
7975 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7976
7977 return (0);
7978 }
7979
7980 void
7981 key_init(void)
7982 {
7983 static ONCE_DECL(key_init_once);
7984
7985 sysctl_net_keyv2_setup(NULL);
7986 sysctl_net_key_compat_setup(NULL);
7987
7988 RUN_ONCE(&key_init_once, key_do_init);
7989
7990 key_init_so();
7991 }
7992
7993 /*
7994 * XXX: maybe This function is called after INBOUND IPsec processing.
7995 *
7996 * Special check for tunnel-mode packets.
7997 * We must make some checks for consistency between inner and outer IP header.
7998 *
7999 * xxx more checks to be provided
8000 */
8001 int
8002 key_checktunnelsanity(
8003 struct secasvar *sav,
8004 u_int family,
8005 void *src,
8006 void *dst
8007 )
8008 {
8009
8010 /* XXX: check inner IP header */
8011
8012 return 1;
8013 }
8014
8015 #if 0
8016 #define hostnamelen strlen(hostname)
8017
8018 /*
8019 * Get FQDN for the host.
8020 * If the administrator configured hostname (by hostname(1)) without
8021 * domain name, returns nothing.
8022 */
8023 static const char *
8024 key_getfqdn(void)
8025 {
8026 int i;
8027 int hasdot;
8028 static char fqdn[MAXHOSTNAMELEN + 1];
8029
8030 if (!hostnamelen)
8031 return NULL;
8032
8033 /* check if it comes with domain name. */
8034 hasdot = 0;
8035 for (i = 0; i < hostnamelen; i++) {
8036 if (hostname[i] == '.')
8037 hasdot++;
8038 }
8039 if (!hasdot)
8040 return NULL;
8041
8042 /* NOTE: hostname may not be NUL-terminated. */
8043 memset(fqdn, 0, sizeof(fqdn));
8044 memcpy(fqdn, hostname, hostnamelen);
8045 fqdn[hostnamelen] = '\0';
8046 return fqdn;
8047 }
8048
8049 /*
8050 * get username@FQDN for the host/user.
8051 */
8052 static const char *
8053 key_getuserfqdn(void)
8054 {
8055 const char *host;
8056 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8057 struct proc *p = curproc;
8058 char *q;
8059
8060 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8061 return NULL;
8062 if (!(host = key_getfqdn()))
8063 return NULL;
8064
8065 /* NOTE: s_login may not be-NUL terminated. */
8066 memset(userfqdn, 0, sizeof(userfqdn));
8067 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8068 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
8069 q = userfqdn + strlen(userfqdn);
8070 *q++ = '@';
8071 memcpy(q, host, strlen(host));
8072 q += strlen(host);
8073 *q++ = '\0';
8074
8075 return userfqdn;
8076 }
8077 #endif
8078
8079 /* record data transfer on SA, and update timestamps */
8080 void
8081 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8082 {
8083
8084 KASSERT(sav != NULL);
8085 KASSERT(sav->lft_c != NULL);
8086 KASSERT(m != NULL);
8087
8088 /*
8089 * XXX Currently, there is a difference of bytes size
8090 * between inbound and outbound processing.
8091 */
8092 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8093 /* to check bytes lifetime is done in key_timehandler(). */
8094
8095 /*
8096 * We use the number of packets as the unit of
8097 * sadb_lifetime_allocations. We increment the variable
8098 * whenever {esp,ah}_{in,out}put is called.
8099 */
8100 sav->lft_c->sadb_lifetime_allocations++;
8101 /* XXX check for expires? */
8102
8103 /*
8104 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8105 * in seconds. HARD and SOFT lifetime are measured by the time
8106 * difference (again in seconds) from sadb_lifetime_usetime.
8107 *
8108 * usetime
8109 * v expire expire
8110 * -----+-----+--------+---> t
8111 * <--------------> HARD
8112 * <-----> SOFT
8113 */
8114 sav->lft_c->sadb_lifetime_usetime = time_uptime;
8115 /* XXX check for expires? */
8116
8117 return;
8118 }
8119
8120 /* dumb version */
8121 void
8122 key_sa_routechange(struct sockaddr *dst)
8123 {
8124 struct secashead *sah;
8125 int s;
8126
8127 s = pserialize_read_enter();
8128 SAHLIST_READER_FOREACH(sah) {
8129 struct route *ro;
8130 const struct sockaddr *sa;
8131
8132 key_sah_ref(sah);
8133 pserialize_read_exit(s);
8134
8135 ro = &sah->sa_route;
8136 sa = rtcache_getdst(ro);
8137 if (sa != NULL && dst->sa_len == sa->sa_len &&
8138 memcmp(dst, sa, dst->sa_len) == 0)
8139 rtcache_free(ro);
8140
8141 s = pserialize_read_enter();
8142 key_sah_unref(sah);
8143 }
8144 pserialize_read_exit(s);
8145
8146 return;
8147 }
8148
8149 static void
8150 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8151 {
8152 struct secasvar *_sav;
8153
8154 KASSERT(sav != NULL);
8155
8156 if (sav->state == state)
8157 return;
8158
8159 SAVLIST_WRITER_REMOVE(sav);
8160 SAVLIST_ENTRY_DESTROY(sav);
8161 SAVLIST_ENTRY_INIT(sav);
8162
8163 sav->state = state;
8164 if (!SADB_SASTATE_USABLE_P(sav)) {
8165 /* We don't need to care about the order */
8166 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8167 return;
8168 }
8169 /*
8170 * Sort the list by lft_c->sadb_lifetime_addtime
8171 * in ascending order.
8172 */
8173 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8174 if (_sav->lft_c->sadb_lifetime_addtime >
8175 sav->lft_c->sadb_lifetime_addtime) {
8176 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8177 break;
8178 }
8179 }
8180 if (_sav == NULL) {
8181 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8182 }
8183 key_validate_savlist(sav->sah, state);
8184 }
8185
8186 /* XXX too much? */
8187 static struct mbuf *
8188 key_alloc_mbuf(int l)
8189 {
8190 struct mbuf *m = NULL, *n;
8191 int len, t;
8192
8193 len = l;
8194 while (len > 0) {
8195 MGET(n, M_DONTWAIT, MT_DATA);
8196 if (n && len > MLEN)
8197 MCLGET(n, M_DONTWAIT);
8198 if (!n) {
8199 m_freem(m);
8200 return NULL;
8201 }
8202
8203 n->m_next = NULL;
8204 n->m_len = 0;
8205 n->m_len = M_TRAILINGSPACE(n);
8206 /* use the bottom of mbuf, hoping we can prepend afterwards */
8207 if (n->m_len > len) {
8208 t = (n->m_len - len) & ~(sizeof(long) - 1);
8209 n->m_data += t;
8210 n->m_len = len;
8211 }
8212
8213 len -= n->m_len;
8214
8215 if (m)
8216 m_cat(m, n);
8217 else
8218 m = n;
8219 }
8220
8221 return m;
8222 }
8223
8224 static struct mbuf *
8225 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8226 {
8227 struct secashead *sah;
8228 struct secasvar *sav;
8229 u_int16_t proto;
8230 u_int8_t satype;
8231 u_int8_t state;
8232 int cnt;
8233 struct mbuf *m, *n;
8234
8235 KASSERT(mutex_owned(&key_sad.lock));
8236
8237 /* map satype to proto */
8238 proto = key_satype2proto(req_satype);
8239 if (proto == 0) {
8240 *errorp = EINVAL;
8241 return (NULL);
8242 }
8243
8244 /* count sav entries to be sent to the userland. */
8245 cnt = 0;
8246 SAHLIST_WRITER_FOREACH(sah) {
8247 if (req_satype != SADB_SATYPE_UNSPEC &&
8248 proto != sah->saidx.proto)
8249 continue;
8250
8251 SASTATE_ANY_FOREACH(state) {
8252 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8253 cnt++;
8254 }
8255 }
8256 }
8257
8258 if (cnt == 0) {
8259 *errorp = ENOENT;
8260 return (NULL);
8261 }
8262
8263 /* send this to the userland, one at a time. */
8264 m = NULL;
8265 SAHLIST_WRITER_FOREACH(sah) {
8266 if (req_satype != SADB_SATYPE_UNSPEC &&
8267 proto != sah->saidx.proto)
8268 continue;
8269
8270 /* map proto to satype */
8271 satype = key_proto2satype(sah->saidx.proto);
8272 if (satype == 0) {
8273 m_freem(m);
8274 *errorp = EINVAL;
8275 return (NULL);
8276 }
8277
8278 SASTATE_ANY_FOREACH(state) {
8279 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8280 n = key_setdumpsa(sav, SADB_DUMP, satype,
8281 --cnt, pid);
8282 if (!n) {
8283 m_freem(m);
8284 *errorp = ENOBUFS;
8285 return (NULL);
8286 }
8287
8288 if (!m)
8289 m = n;
8290 else
8291 m_cat(m, n);
8292 }
8293 }
8294 }
8295
8296 if (!m) {
8297 *errorp = EINVAL;
8298 return (NULL);
8299 }
8300
8301 if ((m->m_flags & M_PKTHDR) != 0) {
8302 m->m_pkthdr.len = 0;
8303 for (n = m; n; n = n->m_next)
8304 m->m_pkthdr.len += n->m_len;
8305 }
8306
8307 *errorp = 0;
8308 return (m);
8309 }
8310
8311 static struct mbuf *
8312 key_setspddump(int *errorp, pid_t pid)
8313 {
8314 struct secpolicy *sp;
8315 int cnt;
8316 u_int dir;
8317 struct mbuf *m, *n;
8318
8319 KASSERT(mutex_owned(&key_spd.lock));
8320
8321 /* search SPD entry and get buffer size. */
8322 cnt = 0;
8323 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8324 SPLIST_WRITER_FOREACH(sp, dir) {
8325 cnt++;
8326 }
8327 }
8328
8329 if (cnt == 0) {
8330 *errorp = ENOENT;
8331 return (NULL);
8332 }
8333
8334 m = NULL;
8335 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8336 SPLIST_WRITER_FOREACH(sp, dir) {
8337 --cnt;
8338 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8339
8340 if (!n) {
8341 *errorp = ENOBUFS;
8342 m_freem(m);
8343 return (NULL);
8344 }
8345 if (!m)
8346 m = n;
8347 else {
8348 m->m_pkthdr.len += n->m_pkthdr.len;
8349 m_cat(m, n);
8350 }
8351 }
8352 }
8353
8354 *errorp = 0;
8355 return (m);
8356 }
8357
8358 int
8359 key_get_used(void) {
8360 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8361 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8362 !SOCKSPLIST_READER_EMPTY();
8363 }
8364
8365 void
8366 key_update_used(void)
8367 {
8368 switch (ipsec_enabled) {
8369 default:
8370 case 0:
8371 #ifdef notyet
8372 /* XXX: racy */
8373 ipsec_used = 0;
8374 #endif
8375 break;
8376 case 1:
8377 #ifndef notyet
8378 /* XXX: racy */
8379 if (!ipsec_used)
8380 #endif
8381 ipsec_used = key_get_used();
8382 break;
8383 case 2:
8384 ipsec_used = 1;
8385 break;
8386 }
8387 }
8388
8389 static int
8390 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8391 {
8392 struct mbuf *m, *n;
8393 int err2 = 0;
8394 char *p, *ep;
8395 size_t len;
8396 int error;
8397
8398 if (newp)
8399 return (EPERM);
8400 if (namelen != 1)
8401 return (EINVAL);
8402
8403 mutex_enter(&key_sad.lock);
8404 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8405 mutex_exit(&key_sad.lock);
8406 if (!m)
8407 return (error);
8408 if (!oldp)
8409 *oldlenp = m->m_pkthdr.len;
8410 else {
8411 p = oldp;
8412 if (*oldlenp < m->m_pkthdr.len) {
8413 err2 = ENOMEM;
8414 ep = p + *oldlenp;
8415 } else {
8416 *oldlenp = m->m_pkthdr.len;
8417 ep = p + m->m_pkthdr.len;
8418 }
8419 for (n = m; n; n = n->m_next) {
8420 len = (ep - p < n->m_len) ?
8421 ep - p : n->m_len;
8422 error = copyout(mtod(n, const void *), p, len);
8423 p += len;
8424 if (error)
8425 break;
8426 }
8427 if (error == 0)
8428 error = err2;
8429 }
8430 m_freem(m);
8431
8432 return (error);
8433 }
8434
8435 static int
8436 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8437 {
8438 struct mbuf *m, *n;
8439 int err2 = 0;
8440 char *p, *ep;
8441 size_t len;
8442 int error;
8443
8444 if (newp)
8445 return (EPERM);
8446 if (namelen != 0)
8447 return (EINVAL);
8448
8449 mutex_enter(&key_spd.lock);
8450 m = key_setspddump(&error, l->l_proc->p_pid);
8451 mutex_exit(&key_spd.lock);
8452 if (!m)
8453 return (error);
8454 if (!oldp)
8455 *oldlenp = m->m_pkthdr.len;
8456 else {
8457 p = oldp;
8458 if (*oldlenp < m->m_pkthdr.len) {
8459 err2 = ENOMEM;
8460 ep = p + *oldlenp;
8461 } else {
8462 *oldlenp = m->m_pkthdr.len;
8463 ep = p + m->m_pkthdr.len;
8464 }
8465 for (n = m; n; n = n->m_next) {
8466 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8467 error = copyout(mtod(n, const void *), p, len);
8468 p += len;
8469 if (error)
8470 break;
8471 }
8472 if (error == 0)
8473 error = err2;
8474 }
8475 m_freem(m);
8476
8477 return (error);
8478 }
8479
8480 /*
8481 * Create sysctl tree for native IPSEC key knobs, originally
8482 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8483 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8484 * and in any case the part of our sysctl namespace used for dumping the
8485 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8486 * namespace, for API reasons.
8487 *
8488 * Pending a consensus on the right way to fix this, add a level of
8489 * indirection in how we number the `native' IPSEC key nodes;
8490 * and (as requested by Andrew Brown) move registration of the
8491 * KAME-compatible names to a separate function.
8492 */
8493 #if 0
8494 # define IPSEC_PFKEY PF_KEY_V2
8495 # define IPSEC_PFKEY_NAME "keyv2"
8496 #else
8497 # define IPSEC_PFKEY PF_KEY
8498 # define IPSEC_PFKEY_NAME "key"
8499 #endif
8500
8501 static int
8502 sysctl_net_key_stats(SYSCTLFN_ARGS)
8503 {
8504
8505 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8506 }
8507
8508 static void
8509 sysctl_net_keyv2_setup(struct sysctllog **clog)
8510 {
8511
8512 sysctl_createv(clog, 0, NULL, NULL,
8513 CTLFLAG_PERMANENT,
8514 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8515 NULL, 0, NULL, 0,
8516 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8517
8518 sysctl_createv(clog, 0, NULL, NULL,
8519 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8520 CTLTYPE_INT, "debug", NULL,
8521 NULL, 0, &key_debug_level, 0,
8522 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8523 sysctl_createv(clog, 0, NULL, NULL,
8524 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8525 CTLTYPE_INT, "spi_try", NULL,
8526 NULL, 0, &key_spi_trycnt, 0,
8527 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8528 sysctl_createv(clog, 0, NULL, NULL,
8529 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8530 CTLTYPE_INT, "spi_min_value", NULL,
8531 NULL, 0, &key_spi_minval, 0,
8532 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8533 sysctl_createv(clog, 0, NULL, NULL,
8534 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8535 CTLTYPE_INT, "spi_max_value", NULL,
8536 NULL, 0, &key_spi_maxval, 0,
8537 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8538 sysctl_createv(clog, 0, NULL, NULL,
8539 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8540 CTLTYPE_INT, "random_int", NULL,
8541 NULL, 0, &key_int_random, 0,
8542 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8543 sysctl_createv(clog, 0, NULL, NULL,
8544 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8545 CTLTYPE_INT, "larval_lifetime", NULL,
8546 NULL, 0, &key_larval_lifetime, 0,
8547 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8548 sysctl_createv(clog, 0, NULL, NULL,
8549 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8550 CTLTYPE_INT, "blockacq_count", NULL,
8551 NULL, 0, &key_blockacq_count, 0,
8552 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8553 sysctl_createv(clog, 0, NULL, NULL,
8554 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8555 CTLTYPE_INT, "blockacq_lifetime", NULL,
8556 NULL, 0, &key_blockacq_lifetime, 0,
8557 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8558 sysctl_createv(clog, 0, NULL, NULL,
8559 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8560 CTLTYPE_INT, "esp_keymin", NULL,
8561 NULL, 0, &ipsec_esp_keymin, 0,
8562 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8563 sysctl_createv(clog, 0, NULL, NULL,
8564 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8565 CTLTYPE_INT, "prefered_oldsa", NULL,
8566 NULL, 0, &key_prefered_oldsa, 0,
8567 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8568 sysctl_createv(clog, 0, NULL, NULL,
8569 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8570 CTLTYPE_INT, "esp_auth", NULL,
8571 NULL, 0, &ipsec_esp_auth, 0,
8572 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8573 sysctl_createv(clog, 0, NULL, NULL,
8574 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8575 CTLTYPE_INT, "ah_keymin", NULL,
8576 NULL, 0, &ipsec_ah_keymin, 0,
8577 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8578 sysctl_createv(clog, 0, NULL, NULL,
8579 CTLFLAG_PERMANENT,
8580 CTLTYPE_STRUCT, "stats",
8581 SYSCTL_DESCR("PF_KEY statistics"),
8582 sysctl_net_key_stats, 0, NULL, 0,
8583 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8584 }
8585
8586 /*
8587 * Register sysctl names used by setkey(8). For historical reasons,
8588 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8589 * for both IPSEC and KAME IPSEC.
8590 */
8591 static void
8592 sysctl_net_key_compat_setup(struct sysctllog **clog)
8593 {
8594
8595 sysctl_createv(clog, 0, NULL, NULL,
8596 CTLFLAG_PERMANENT,
8597 CTLTYPE_NODE, "key", NULL,
8598 NULL, 0, NULL, 0,
8599 CTL_NET, PF_KEY, CTL_EOL);
8600
8601 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8602 sysctl_createv(clog, 0, NULL, NULL,
8603 CTLFLAG_PERMANENT,
8604 CTLTYPE_STRUCT, "dumpsa", NULL,
8605 sysctl_net_key_dumpsa, 0, NULL, 0,
8606 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8607 sysctl_createv(clog, 0, NULL, NULL,
8608 CTLFLAG_PERMANENT,
8609 CTLTYPE_STRUCT, "dumpsp", NULL,
8610 sysctl_net_key_dumpsp, 0, NULL, 0,
8611 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8612 }
8613