key.c revision 1.223 1 /* $NetBSD: key.c,v 1.223 2017/08/09 09:48:11 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.223 2017/08/09 09:48:11 ozaki-r Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160 * - SP's lifetime is managed by localcount(9)
161 * - An SP that has been inserted to the key_spd.splist is initially referenced
162 * by none, i.e., a reference from the key_spd.splist isn't counted
163 * - When an SP is being destroyed, we change its state as DEAD, wait for
164 * references to the SP to be released, and then deallocate the SP
165 * (see key_unlink_sp)
166 * - Getting an SP
167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168 * - Must iterate the list and increment the reference count of a found SP
169 * (by key_sp_ref) in a pserialize read section
170 * - We can gain another reference from a held SP only if we check its state
171 * and take its reference in a pserialize read section
172 * (see esp_output for example)
173 * - We may get an SP from an SP cache. See below
174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175 * - Updating member variables of an SP
176 * - Most member variables of an SP are immutable
177 * - Only sp->state and sp->lastused can be changed
178 * - sp->state of an SP is updated only when destroying it under key_spd.lock
179 * - SP caches
180 * - SPs can be cached in PCBs
181 * - The lifetime of the caches is controlled by the global generation counter
182 * (ipsec_spdgen)
183 * - The global counter value is stored when an SP is cached
184 * - If the stored value is different from the global counter then the cache
185 * is considered invalidated
186 * - The counter is incremented when an SP is being destroyed
187 * - So checking the generation and taking a reference to an SP should be
188 * in a pserialize read section
189 * - Note that caching doesn't increment the reference counter of an SP
190 * - SPs in sockets
191 * - Userland programs can set a policy to a socket by
192 * setsockopt(IP_IPSEC_POLICY)
193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
194 * the key_spd.socksplist list (not the key_spd.splist)
195 * - Such a policy is destroyed when a corresponding socket is destroed,
196 * however, a socket can be destroyed in softint so we cannot destroy
197 * it directly instead we just mark it DEAD and delay the destruction
198 * until GC by the timer
199 */
200 /*
201 * Locking notes on SAD:
202 * - Data structures
203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204 * entries
205 * - An sav is supposed to be an SA from a viewpoint of users
206 * - A sah has sav lists for each SA state
207 * - Multiple sahs with the same saidx can exist
208 * - Only one entry has MATURE state and others should be DEAD
209 * - DEAD entries are just ignored from searching
210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with
211 * holding key_sad.lock which is a adaptive mutex
212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in
213 * pserialize(9) read sections
214 * - sah's lifetime is managed by localcount(9)
215 * - Getting an sah entry
216 * - We get an sah from the key_sad.sahlist
217 * - Must iterate the list and increment the reference count of a found sah
218 * (by key_sah_ref) in a pserialize read section
219 * - A gotten sah must be released after use by key_sah_unref
220 * - An sah is destroyed when its state become DEAD and no sav is
221 * listed to the sah
222 * - The destruction is done only in the timer (see key_timehandler_sad)
223 * - sav's lifetime is managed by localcount(9)
224 * - Getting an sav entry
225 * - First get an sah by saidx and get an sav from either of sah's savlists
226 * - Must iterate the list and increment the reference count of a found sav
227 * (by key_sa_ref) in a pserialize read section
228 * - We can gain another reference from a held SA only if we check its state
229 * and take its reference in a pserialize read section
230 * (see esp_output for example)
231 * - A gotten sav must be released after use by key_sa_unref
232 * - An sav is destroyed when its state become DEAD
233 */
234 /*
235 * Locking notes on misc data:
236 * - All lists of key_misc are protected by key_misc.lock
237 * - key_misc.lock must be held even for read accesses
238 */
239
240 static pserialize_t key_spd_psz __read_mostly;
241 static pserialize_t key_sad_psz __read_mostly;
242
243 /* SPD */
244 static struct {
245 kmutex_t lock;
246 kcondvar_t cv;
247 struct pslist_head splist[IPSEC_DIR_MAX];
248 /*
249 * The list has SPs that are set to a socket via
250 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
251 */
252 struct pslist_head socksplist;
253 } key_spd __cacheline_aligned;
254
255 /* SAD */
256 static struct {
257 kmutex_t lock;
258 kcondvar_t cv;
259 struct pslist_head sahlist;
260 } key_sad __cacheline_aligned;
261
262 /* Misc data */
263 static struct {
264 kmutex_t lock;
265 /* registed list */
266 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
267 #ifndef IPSEC_NONBLOCK_ACQUIRE
268 /* acquiring list */
269 LIST_HEAD(_acqlist, secacq) acqlist;
270 #endif
271 #ifdef notyet
272 /* SP acquiring list */
273 LIST_HEAD(_spacqlist, secspacq) spacqlist;
274 #endif
275 } key_misc __cacheline_aligned;
276
277 /* Macros for key_spd.splist */
278 #define SPLIST_ENTRY_INIT(sp) \
279 PSLIST_ENTRY_INIT((sp), pslist_entry)
280 #define SPLIST_ENTRY_DESTROY(sp) \
281 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
282 #define SPLIST_WRITER_REMOVE(sp) \
283 PSLIST_WRITER_REMOVE((sp), pslist_entry)
284 #define SPLIST_READER_EMPTY(dir) \
285 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
286 pslist_entry) == NULL)
287 #define SPLIST_READER_FOREACH(sp, dir) \
288 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
289 struct secpolicy, pslist_entry)
290 #define SPLIST_WRITER_FOREACH(sp, dir) \
291 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
292 struct secpolicy, pslist_entry)
293 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
294 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
295 #define SPLIST_WRITER_EMPTY(dir) \
296 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
297 pslist_entry) == NULL)
298 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
299 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
300 pslist_entry)
301 #define SPLIST_WRITER_NEXT(sp) \
302 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
303 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
304 do { \
305 if (SPLIST_WRITER_EMPTY((dir))) { \
306 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
307 } else { \
308 struct secpolicy *__sp; \
309 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
310 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
311 SPLIST_WRITER_INSERT_AFTER(__sp,\
312 (new)); \
313 break; \
314 } \
315 } \
316 } \
317 } while (0)
318
319 /* Macros for key_spd.socksplist */
320 #define SOCKSPLIST_WRITER_FOREACH(sp) \
321 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
322 struct secpolicy, pslist_entry)
323 #define SOCKSPLIST_READER_EMPTY() \
324 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
325 pslist_entry) == NULL)
326
327 /* Macros for key_sad.sahlist */
328 #define SAHLIST_ENTRY_INIT(sah) \
329 PSLIST_ENTRY_INIT((sah), pslist_entry)
330 #define SAHLIST_ENTRY_DESTROY(sah) \
331 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
332 #define SAHLIST_WRITER_REMOVE(sah) \
333 PSLIST_WRITER_REMOVE((sah), pslist_entry)
334 #define SAHLIST_READER_FOREACH(sah) \
335 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
336 pslist_entry)
337 #define SAHLIST_WRITER_FOREACH(sah) \
338 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
339 pslist_entry)
340 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
341 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
342
343 /* Macros for key_sad.sahlist#savlist */
344 #define SAVLIST_ENTRY_INIT(sav) \
345 PSLIST_ENTRY_INIT((sav), pslist_entry)
346 #define SAVLIST_ENTRY_DESTROY(sav) \
347 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
348 #define SAVLIST_READER_FIRST(sah, state) \
349 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
350 pslist_entry)
351 #define SAVLIST_WRITER_REMOVE(sav) \
352 PSLIST_WRITER_REMOVE((sav), pslist_entry)
353 #define SAVLIST_READER_FOREACH(sav, sah, state) \
354 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
355 struct secasvar, pslist_entry)
356 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
357 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
358 struct secasvar, pslist_entry)
359 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
360 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
361 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
362 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
363 #define SAVLIST_WRITER_EMPTY(sah, state) \
364 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
365 pslist_entry) == NULL)
366 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
367 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
368 pslist_entry)
369 #define SAVLIST_WRITER_NEXT(sav) \
370 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
371 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
372 do { \
373 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
374 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
375 } else { \
376 struct secasvar *__sav; \
377 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
378 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
379 SAVLIST_WRITER_INSERT_AFTER(__sav,\
380 (new)); \
381 break; \
382 } \
383 } \
384 } \
385 } while (0)
386 #define SAVLIST_READER_NEXT(sav) \
387 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
388
389
390 /* search order for SAs */
391 /*
392 * This order is important because we must select the oldest SA
393 * for outbound processing. For inbound, This is not important.
394 */
395 static const u_int saorder_state_valid_prefer_old[] = {
396 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
397 };
398 static const u_int saorder_state_valid_prefer_new[] = {
399 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
400 };
401
402 static const u_int saorder_state_alive[] = {
403 /* except DEAD */
404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
405 };
406 static const u_int saorder_state_any[] = {
407 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
408 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
409 };
410
411 #define SASTATE_ALIVE_FOREACH(s) \
412 for (int _i = 0; \
413 _i < __arraycount(saorder_state_alive) ? \
414 (s) = saorder_state_alive[_i], true : false; \
415 _i++)
416 #define SASTATE_ANY_FOREACH(s) \
417 for (int _i = 0; \
418 _i < __arraycount(saorder_state_any) ? \
419 (s) = saorder_state_any[_i], true : false; \
420 _i++)
421
422 static const int minsize[] = {
423 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
424 sizeof(struct sadb_sa), /* SADB_EXT_SA */
425 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
426 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
427 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
428 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
429 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
430 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
431 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
432 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
433 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
434 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
435 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
436 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
437 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
438 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
439 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
440 0, /* SADB_X_EXT_KMPRIVATE */
441 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
442 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
443 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
444 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
445 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
446 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
447 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
448 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
449 };
450 static const int maxsize[] = {
451 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
452 sizeof(struct sadb_sa), /* SADB_EXT_SA */
453 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
454 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
455 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
456 0, /* SADB_EXT_ADDRESS_SRC */
457 0, /* SADB_EXT_ADDRESS_DST */
458 0, /* SADB_EXT_ADDRESS_PROXY */
459 0, /* SADB_EXT_KEY_AUTH */
460 0, /* SADB_EXT_KEY_ENCRYPT */
461 0, /* SADB_EXT_IDENTITY_SRC */
462 0, /* SADB_EXT_IDENTITY_DST */
463 0, /* SADB_EXT_SENSITIVITY */
464 0, /* SADB_EXT_PROPOSAL */
465 0, /* SADB_EXT_SUPPORTED_AUTH */
466 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
467 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
468 0, /* SADB_X_EXT_KMPRIVATE */
469 0, /* SADB_X_EXT_POLICY */
470 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
471 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
472 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
473 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
474 0, /* SADB_X_EXT_NAT_T_OAI */
475 0, /* SADB_X_EXT_NAT_T_OAR */
476 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
477 };
478
479 static int ipsec_esp_keymin = 256;
480 static int ipsec_esp_auth = 0;
481 static int ipsec_ah_keymin = 128;
482
483 #ifdef SYSCTL_DECL
484 SYSCTL_DECL(_net_key);
485 #endif
486
487 #ifdef SYSCTL_INT
488 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
489 &key_debug_level, 0, "");
490
491 /* max count of trial for the decision of spi value */
492 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
493 &key_spi_trycnt, 0, "");
494
495 /* minimum spi value to allocate automatically. */
496 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
497 &key_spi_minval, 0, "");
498
499 /* maximun spi value to allocate automatically. */
500 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
501 &key_spi_maxval, 0, "");
502
503 /* interval to initialize randseed */
504 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
505 &key_int_random, 0, "");
506
507 /* lifetime for larval SA */
508 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
509 &key_larval_lifetime, 0, "");
510
511 /* counter for blocking to send SADB_ACQUIRE to IKEd */
512 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
513 &key_blockacq_count, 0, "");
514
515 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
516 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
517 &key_blockacq_lifetime, 0, "");
518
519 /* ESP auth */
520 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
521 &ipsec_esp_auth, 0, "");
522
523 /* minimum ESP key length */
524 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
525 &ipsec_esp_keymin, 0, "");
526
527 /* minimum AH key length */
528 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
529 &ipsec_ah_keymin, 0, "");
530
531 /* perfered old SA rather than new SA */
532 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
533 &key_prefered_oldsa, 0, "");
534 #endif /* SYSCTL_INT */
535
536 #define __LIST_CHAINED(elm) \
537 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
538 #define LIST_INSERT_TAIL(head, elm, type, field) \
539 do {\
540 struct type *curelm = LIST_FIRST(head); \
541 if (curelm == NULL) {\
542 LIST_INSERT_HEAD(head, elm, field); \
543 } else { \
544 while (LIST_NEXT(curelm, field)) \
545 curelm = LIST_NEXT(curelm, field);\
546 LIST_INSERT_AFTER(curelm, elm, field);\
547 }\
548 } while (0)
549
550 #define KEY_CHKSASTATE(head, sav) \
551 /* do */ { \
552 if ((head) != (sav)) { \
553 IPSECLOG(LOG_DEBUG, \
554 "state mismatched (TREE=%d SA=%d)\n", \
555 (head), (sav)); \
556 continue; \
557 } \
558 } /* while (0) */
559
560 #define KEY_CHKSPDIR(head, sp) \
561 do { \
562 if ((head) != (sp)) { \
563 IPSECLOG(LOG_DEBUG, \
564 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
565 (head), (sp)); \
566 } \
567 } while (0)
568
569 /*
570 * set parameters into secasindex buffer.
571 * Must allocate secasindex buffer before calling this function.
572 */
573 static int
574 key_setsecasidx(int, int, int, const struct sockaddr *,
575 const struct sockaddr *, struct secasindex *);
576
577 /* key statistics */
578 struct _keystat {
579 u_long getspi_count; /* the avarage of count to try to get new SPI */
580 } keystat;
581
582 struct sadb_msghdr {
583 struct sadb_msg *msg;
584 struct sadb_ext *ext[SADB_EXT_MAX + 1];
585 int extoff[SADB_EXT_MAX + 1];
586 int extlen[SADB_EXT_MAX + 1];
587 };
588
589 static void
590 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
591
592 static const struct sockaddr *
593 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
594 {
595
596 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
597 }
598
599 static struct mbuf *
600 key_fill_replymsg(struct mbuf *m, int seq)
601 {
602 struct sadb_msg *msg;
603
604 if (m->m_len < sizeof(*msg)) {
605 m = m_pullup(m, sizeof(*msg));
606 if (m == NULL)
607 return NULL;
608 }
609 msg = mtod(m, struct sadb_msg *);
610 msg->sadb_msg_errno = 0;
611 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
612 if (seq != 0)
613 msg->sadb_msg_seq = seq;
614
615 return m;
616 }
617
618 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
619 #if 0
620 static void key_freeso(struct socket *);
621 static void key_freesp_so(struct secpolicy **);
622 #endif
623 static struct secpolicy *key_getsp (const struct secpolicyindex *);
624 static struct secpolicy *key_getspbyid (u_int32_t);
625 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
626 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
627 static void key_destroy_sp(struct secpolicy *);
628 static u_int16_t key_newreqid (void);
629 static struct mbuf *key_gather_mbuf (struct mbuf *,
630 const struct sadb_msghdr *, int, int, ...);
631 static int key_api_spdadd(struct socket *, struct mbuf *,
632 const struct sadb_msghdr *);
633 static u_int32_t key_getnewspid (void);
634 static int key_api_spddelete(struct socket *, struct mbuf *,
635 const struct sadb_msghdr *);
636 static int key_api_spddelete2(struct socket *, struct mbuf *,
637 const struct sadb_msghdr *);
638 static int key_api_spdget(struct socket *, struct mbuf *,
639 const struct sadb_msghdr *);
640 static int key_api_spdflush(struct socket *, struct mbuf *,
641 const struct sadb_msghdr *);
642 static int key_api_spddump(struct socket *, struct mbuf *,
643 const struct sadb_msghdr *);
644 static struct mbuf * key_setspddump (int *errorp, pid_t);
645 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
646 static int key_api_nat_map(struct socket *, struct mbuf *,
647 const struct sadb_msghdr *);
648 static struct mbuf *key_setdumpsp (struct secpolicy *,
649 u_int8_t, u_int32_t, pid_t);
650 static u_int key_getspreqmsglen (const struct secpolicy *);
651 static int key_spdexpire (struct secpolicy *);
652 static struct secashead *key_newsah (const struct secasindex *);
653 static void key_unlink_sah(struct secashead *);
654 static void key_destroy_sah(struct secashead *);
655 static bool key_sah_has_sav(struct secashead *);
656 static void key_sah_ref(struct secashead *);
657 static void key_sah_unref(struct secashead *);
658 static void key_init_sav(struct secasvar *);
659 static void key_destroy_sav(struct secasvar *);
660 static void key_destroy_sav_with_ref(struct secasvar *);
661 static struct secasvar *key_newsav(struct mbuf *,
662 const struct sadb_msghdr *, int *, const char*, int);
663 #define KEY_NEWSAV(m, sadb, e) \
664 key_newsav(m, sadb, e, __func__, __LINE__)
665 static void key_delsav (struct secasvar *);
666 static struct secashead *key_getsah(const struct secasindex *, int);
667 static struct secashead *key_getsah_ref(const struct secasindex *, int);
668 static bool key_checkspidup(const struct secasindex *, u_int32_t);
669 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
670 static int key_setsaval (struct secasvar *, struct mbuf *,
671 const struct sadb_msghdr *);
672 static void key_freesaval(struct secasvar *);
673 static int key_init_xform(struct secasvar *);
674 static void key_clear_xform(struct secasvar *);
675 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
676 u_int8_t, u_int32_t, u_int32_t);
677 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
678 static struct mbuf *key_setsadbxtype (u_int16_t);
679 static struct mbuf *key_setsadbxfrag (u_int16_t);
680 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
681 static int key_checksalen (const union sockaddr_union *);
682 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
683 u_int32_t, pid_t, u_int16_t);
684 static struct mbuf *key_setsadbsa (struct secasvar *);
685 static struct mbuf *key_setsadbaddr (u_int16_t,
686 const struct sockaddr *, u_int8_t, u_int16_t);
687 #if 0
688 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
689 int, u_int64_t);
690 #endif
691 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
692 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
693 u_int32_t);
694 static void *key_newbuf (const void *, u_int);
695 #ifdef INET6
696 static int key_ismyaddr6 (const struct sockaddr_in6 *);
697 #endif
698
699 static void sysctl_net_keyv2_setup(struct sysctllog **);
700 static void sysctl_net_key_compat_setup(struct sysctllog **);
701
702 /* flags for key_saidx_match() */
703 #define CMP_HEAD 1 /* protocol, addresses. */
704 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
705 #define CMP_REQID 3 /* additionally HEAD, reaid. */
706 #define CMP_EXACTLY 4 /* all elements. */
707 static int key_saidx_match(const struct secasindex *,
708 const struct secasindex *, int);
709
710 static int key_sockaddr_match(const struct sockaddr *,
711 const struct sockaddr *, int);
712 static int key_bb_match_withmask(const void *, const void *, u_int);
713 static u_int16_t key_satype2proto (u_int8_t);
714 static u_int8_t key_proto2satype (u_int16_t);
715
716 static int key_spidx_match_exactly(const struct secpolicyindex *,
717 const struct secpolicyindex *);
718 static int key_spidx_match_withmask(const struct secpolicyindex *,
719 const struct secpolicyindex *);
720
721 static int key_api_getspi(struct socket *, struct mbuf *,
722 const struct sadb_msghdr *);
723 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
724 const struct secasindex *);
725 static int key_handle_natt_info (struct secasvar *,
726 const struct sadb_msghdr *);
727 static int key_set_natt_ports (union sockaddr_union *,
728 union sockaddr_union *,
729 const struct sadb_msghdr *);
730 static int key_api_update(struct socket *, struct mbuf *,
731 const struct sadb_msghdr *);
732 #ifdef IPSEC_DOSEQCHECK
733 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
734 #endif
735 static int key_api_add(struct socket *, struct mbuf *,
736 const struct sadb_msghdr *);
737 static int key_setident (struct secashead *, struct mbuf *,
738 const struct sadb_msghdr *);
739 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
740 const struct sadb_msghdr *);
741 static int key_api_delete(struct socket *, struct mbuf *,
742 const struct sadb_msghdr *);
743 static int key_api_get(struct socket *, struct mbuf *,
744 const struct sadb_msghdr *);
745
746 static void key_getcomb_setlifetime (struct sadb_comb *);
747 static struct mbuf *key_getcomb_esp (void);
748 static struct mbuf *key_getcomb_ah (void);
749 static struct mbuf *key_getcomb_ipcomp (void);
750 static struct mbuf *key_getprop (const struct secasindex *);
751
752 static int key_acquire (const struct secasindex *, struct secpolicy *);
753 static int key_acquire_sendup_mbuf_later(struct mbuf *);
754 static void key_acquire_sendup_pending_mbuf(void);
755 #ifndef IPSEC_NONBLOCK_ACQUIRE
756 static struct secacq *key_newacq (const struct secasindex *);
757 static struct secacq *key_getacq (const struct secasindex *);
758 static struct secacq *key_getacqbyseq (u_int32_t);
759 #endif
760 #ifdef notyet
761 static struct secspacq *key_newspacq (const struct secpolicyindex *);
762 static struct secspacq *key_getspacq (const struct secpolicyindex *);
763 #endif
764 static int key_api_acquire(struct socket *, struct mbuf *,
765 const struct sadb_msghdr *);
766 static int key_api_register(struct socket *, struct mbuf *,
767 const struct sadb_msghdr *);
768 static int key_expire (struct secasvar *);
769 static int key_api_flush(struct socket *, struct mbuf *,
770 const struct sadb_msghdr *);
771 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
772 int *lenp, pid_t pid);
773 static int key_api_dump(struct socket *, struct mbuf *,
774 const struct sadb_msghdr *);
775 static int key_api_promisc(struct socket *, struct mbuf *,
776 const struct sadb_msghdr *);
777 static int key_senderror (struct socket *, struct mbuf *, int);
778 static int key_validate_ext (const struct sadb_ext *, int);
779 static int key_align (struct mbuf *, struct sadb_msghdr *);
780 #if 0
781 static const char *key_getfqdn (void);
782 static const char *key_getuserfqdn (void);
783 #endif
784 static void key_sa_chgstate (struct secasvar *, u_int8_t);
785
786 static struct mbuf *key_alloc_mbuf (int);
787
788 static void key_timehandler(void *);
789 static void key_timehandler_work(struct work *, void *);
790 static struct callout key_timehandler_ch;
791 static struct workqueue *key_timehandler_wq;
792 static struct work key_timehandler_wk;
793
794 u_int
795 key_sp_refcnt(const struct secpolicy *sp)
796 {
797
798 /* FIXME */
799 return 0;
800 }
801
802 /*
803 * Remove the sp from the key_spd.splist and wait for references to the sp
804 * to be released. key_spd.lock must be held.
805 */
806 static void
807 key_unlink_sp(struct secpolicy *sp)
808 {
809
810 KASSERT(mutex_owned(&key_spd.lock));
811
812 sp->state = IPSEC_SPSTATE_DEAD;
813 SPLIST_WRITER_REMOVE(sp);
814
815 /* Invalidate all cached SPD pointers in the PCBs. */
816 ipsec_invalpcbcacheall();
817
818 #ifdef NET_MPSAFE
819 KASSERT(mutex_ownable(softnet_lock));
820 pserialize_perform(key_spd_psz);
821 #endif
822
823 localcount_drain(&sp->localcount, &key_spd.cv, &key_spd.lock);
824 }
825
826 /*
827 * Return 0 when there are known to be no SP's for the specified
828 * direction. Otherwise return 1. This is used by IPsec code
829 * to optimize performance.
830 */
831 int
832 key_havesp(u_int dir)
833 {
834 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
835 !SPLIST_READER_EMPTY(dir) : 1);
836 }
837
838 /* %%% IPsec policy management */
839 /*
840 * allocating a SP for OUTBOUND or INBOUND packet.
841 * Must call key_freesp() later.
842 * OUT: NULL: not found
843 * others: found and return the pointer.
844 */
845 struct secpolicy *
846 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
847 u_int dir, const char* where, int tag)
848 {
849 struct secpolicy *sp;
850 int s;
851
852 KASSERT(spidx != NULL);
853 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
854
855 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
856
857 /* get a SP entry */
858 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
859 printf("*** objects\n");
860 kdebug_secpolicyindex(spidx);
861 }
862
863 s = pserialize_read_enter();
864 SPLIST_READER_FOREACH(sp, dir) {
865 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
866 printf("*** in SPD\n");
867 kdebug_secpolicyindex(&sp->spidx);
868 }
869
870 if (sp->state == IPSEC_SPSTATE_DEAD)
871 continue;
872 if (key_spidx_match_withmask(&sp->spidx, spidx))
873 goto found;
874 }
875 sp = NULL;
876 found:
877 if (sp) {
878 /* sanity check */
879 KEY_CHKSPDIR(sp->spidx.dir, dir);
880
881 /* found a SPD entry */
882 sp->lastused = time_uptime;
883 key_sp_ref(sp, where, tag);
884 }
885 pserialize_read_exit(s);
886
887 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
888 "DP return SP:%p (ID=%u) refcnt %u\n",
889 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
890 return sp;
891 }
892
893 /*
894 * return a policy that matches this particular inbound packet.
895 * XXX slow
896 */
897 struct secpolicy *
898 key_gettunnel(const struct sockaddr *osrc,
899 const struct sockaddr *odst,
900 const struct sockaddr *isrc,
901 const struct sockaddr *idst,
902 const char* where, int tag)
903 {
904 struct secpolicy *sp;
905 const int dir = IPSEC_DIR_INBOUND;
906 int s;
907 struct ipsecrequest *r1, *r2, *p;
908 struct secpolicyindex spidx;
909
910 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
911
912 if (isrc->sa_family != idst->sa_family) {
913 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
914 isrc->sa_family, idst->sa_family);
915 sp = NULL;
916 goto done;
917 }
918
919 s = pserialize_read_enter();
920 SPLIST_READER_FOREACH(sp, dir) {
921 if (sp->state == IPSEC_SPSTATE_DEAD)
922 continue;
923
924 r1 = r2 = NULL;
925 for (p = sp->req; p; p = p->next) {
926 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
927 continue;
928
929 r1 = r2;
930 r2 = p;
931
932 if (!r1) {
933 /* here we look at address matches only */
934 spidx = sp->spidx;
935 if (isrc->sa_len > sizeof(spidx.src) ||
936 idst->sa_len > sizeof(spidx.dst))
937 continue;
938 memcpy(&spidx.src, isrc, isrc->sa_len);
939 memcpy(&spidx.dst, idst, idst->sa_len);
940 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
941 continue;
942 } else {
943 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
944 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
945 continue;
946 }
947
948 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
949 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
950 continue;
951
952 goto found;
953 }
954 }
955 sp = NULL;
956 found:
957 if (sp) {
958 sp->lastused = time_uptime;
959 key_sp_ref(sp, where, tag);
960 }
961 pserialize_read_exit(s);
962 done:
963 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
964 "DP return SP:%p (ID=%u) refcnt %u\n",
965 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
966 return sp;
967 }
968
969 /*
970 * allocating an SA entry for an *OUTBOUND* packet.
971 * checking each request entries in SP, and acquire an SA if need.
972 * OUT: 0: there are valid requests.
973 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
974 */
975 int
976 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
977 {
978 u_int level;
979 int error;
980 const struct secasindex *saidx = &isr->saidx;
981 struct secasvar *sav;
982
983 KASSERT(isr != NULL);
984 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
985 saidx->mode == IPSEC_MODE_TUNNEL,
986 "unexpected policy %u", saidx->mode);
987
988 /* get current level */
989 level = ipsec_get_reqlevel(isr);
990
991 /*
992 * XXX guard against protocol callbacks from the crypto
993 * thread as they reference ipsecrequest.sav which we
994 * temporarily null out below. Need to rethink how we
995 * handle bundled SA's in the callback thread.
996 */
997 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
998
999 sav = key_lookup_sa_bysaidx(saidx);
1000 if (sav != NULL) {
1001 *ret = sav;
1002 return 0;
1003 }
1004
1005 /* there is no SA */
1006 error = key_acquire(saidx, isr->sp);
1007 if (error != 0) {
1008 /* XXX What should I do ? */
1009 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1010 error);
1011 return error;
1012 }
1013
1014 if (level != IPSEC_LEVEL_REQUIRE) {
1015 /* XXX sigh, the interface to this routine is botched */
1016 *ret = NULL;
1017 return 0;
1018 } else {
1019 return ENOENT;
1020 }
1021 }
1022
1023 /*
1024 * looking up a SA for policy entry from SAD.
1025 * NOTE: searching SAD of aliving state.
1026 * OUT: NULL: not found.
1027 * others: found and return the pointer.
1028 */
1029 static struct secasvar *
1030 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1031 {
1032 struct secashead *sah;
1033 struct secasvar *sav = NULL;
1034 u_int stateidx, state;
1035 const u_int *saorder_state_valid;
1036 int arraysize;
1037 int s;
1038
1039 s = pserialize_read_enter();
1040 sah = key_getsah(saidx, CMP_MODE_REQID);
1041 if (sah == NULL)
1042 goto out;
1043
1044 /*
1045 * search a valid state list for outbound packet.
1046 * This search order is important.
1047 */
1048 if (key_prefered_oldsa) {
1049 saorder_state_valid = saorder_state_valid_prefer_old;
1050 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1051 } else {
1052 saorder_state_valid = saorder_state_valid_prefer_new;
1053 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1054 }
1055
1056 /* search valid state */
1057 for (stateidx = 0;
1058 stateidx < arraysize;
1059 stateidx++) {
1060
1061 state = saorder_state_valid[stateidx];
1062
1063 if (key_prefered_oldsa)
1064 sav = SAVLIST_READER_FIRST(sah, state);
1065 else {
1066 /* XXX need O(1) lookup */
1067 struct secasvar *last = NULL;
1068
1069 SAVLIST_READER_FOREACH(sav, sah, state)
1070 last = sav;
1071 sav = last;
1072 }
1073 if (sav != NULL) {
1074 KEY_SA_REF(sav);
1075 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1076 "DP cause refcnt++:%d SA:%p\n",
1077 key_sa_refcnt(sav), sav);
1078 break;
1079 }
1080 }
1081 out:
1082 pserialize_read_exit(s);
1083
1084 return sav;
1085 }
1086
1087 #if 0
1088 static void
1089 key_sendup_message_delete(struct secasvar *sav)
1090 {
1091 struct mbuf *m, *result = 0;
1092 uint8_t satype;
1093
1094 satype = key_proto2satype(sav->sah->saidx.proto);
1095 if (satype == 0)
1096 goto msgfail;
1097
1098 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1099 if (m == NULL)
1100 goto msgfail;
1101 result = m;
1102
1103 /* set sadb_address for saidx's. */
1104 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1105 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1106 if (m == NULL)
1107 goto msgfail;
1108 m_cat(result, m);
1109
1110 /* set sadb_address for saidx's. */
1111 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1112 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1113 if (m == NULL)
1114 goto msgfail;
1115 m_cat(result, m);
1116
1117 /* create SA extension */
1118 m = key_setsadbsa(sav);
1119 if (m == NULL)
1120 goto msgfail;
1121 m_cat(result, m);
1122
1123 if (result->m_len < sizeof(struct sadb_msg)) {
1124 result = m_pullup(result, sizeof(struct sadb_msg));
1125 if (result == NULL)
1126 goto msgfail;
1127 }
1128
1129 result->m_pkthdr.len = 0;
1130 for (m = result; m; m = m->m_next)
1131 result->m_pkthdr.len += m->m_len;
1132 mtod(result, struct sadb_msg *)->sadb_msg_len =
1133 PFKEY_UNIT64(result->m_pkthdr.len);
1134
1135 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1136 result = NULL;
1137 msgfail:
1138 if (result)
1139 m_freem(result);
1140 }
1141 #endif
1142
1143 /*
1144 * allocating a usable SA entry for a *INBOUND* packet.
1145 * Must call key_freesav() later.
1146 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1147 * NULL: not found, or error occurred.
1148 *
1149 * In the comparison, no source address is used--for RFC2401 conformance.
1150 * To quote, from section 4.1:
1151 * A security association is uniquely identified by a triple consisting
1152 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1153 * security protocol (AH or ESP) identifier.
1154 * Note that, however, we do need to keep source address in IPsec SA.
1155 * IKE specification and PF_KEY specification do assume that we
1156 * keep source address in IPsec SA. We see a tricky situation here.
1157 *
1158 * sport and dport are used for NAT-T. network order is always used.
1159 */
1160 struct secasvar *
1161 key_lookup_sa(
1162 const union sockaddr_union *dst,
1163 u_int proto,
1164 u_int32_t spi,
1165 u_int16_t sport,
1166 u_int16_t dport,
1167 const char* where, int tag)
1168 {
1169 struct secashead *sah;
1170 struct secasvar *sav;
1171 u_int stateidx, state;
1172 const u_int *saorder_state_valid;
1173 int arraysize, chkport;
1174 int s;
1175
1176 int must_check_spi = 1;
1177 int must_check_alg = 0;
1178 u_int16_t cpi = 0;
1179 u_int8_t algo = 0;
1180
1181 if ((sport != 0) && (dport != 0))
1182 chkport = PORT_STRICT;
1183 else
1184 chkport = PORT_NONE;
1185
1186 KASSERT(dst != NULL);
1187
1188 /*
1189 * XXX IPCOMP case
1190 * We use cpi to define spi here. In the case where cpi <=
1191 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1192 * the real spi. In this case, don't check the spi but check the
1193 * algorithm
1194 */
1195
1196 if (proto == IPPROTO_IPCOMP) {
1197 u_int32_t tmp;
1198 tmp = ntohl(spi);
1199 cpi = (u_int16_t) tmp;
1200 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1201 algo = (u_int8_t) cpi;
1202 must_check_spi = 0;
1203 must_check_alg = 1;
1204 }
1205 }
1206 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1207 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1208 where, tag, must_check_spi, must_check_alg);
1209
1210
1211 /*
1212 * searching SAD.
1213 * XXX: to be checked internal IP header somewhere. Also when
1214 * IPsec tunnel packet is received. But ESP tunnel mode is
1215 * encrypted so we can't check internal IP header.
1216 */
1217 if (key_prefered_oldsa) {
1218 saorder_state_valid = saorder_state_valid_prefer_old;
1219 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1220 } else {
1221 saorder_state_valid = saorder_state_valid_prefer_new;
1222 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1223 }
1224 s = pserialize_read_enter();
1225 SAHLIST_READER_FOREACH(sah) {
1226 /* search valid state */
1227 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1228 state = saorder_state_valid[stateidx];
1229 SAVLIST_READER_FOREACH(sav, sah, state) {
1230 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1231 "try match spi %#x, %#x\n",
1232 ntohl(spi), ntohl(sav->spi));
1233 /* sanity check */
1234 KEY_CHKSASTATE(sav->state, state);
1235 /* do not return entries w/ unusable state */
1236 if (!SADB_SASTATE_USABLE_P(sav)) {
1237 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1238 "bad state %d\n", sav->state);
1239 continue;
1240 }
1241 if (proto != sav->sah->saidx.proto) {
1242 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1243 "proto fail %d != %d\n",
1244 proto, sav->sah->saidx.proto);
1245 continue;
1246 }
1247 if (must_check_spi && spi != sav->spi) {
1248 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1249 "spi fail %#x != %#x\n",
1250 ntohl(spi), ntohl(sav->spi));
1251 continue;
1252 }
1253 /* XXX only on the ipcomp case */
1254 if (must_check_alg && algo != sav->alg_comp) {
1255 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1256 "algo fail %d != %d\n",
1257 algo, sav->alg_comp);
1258 continue;
1259 }
1260
1261 #if 0 /* don't check src */
1262 /* Fix port in src->sa */
1263
1264 /* check src address */
1265 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1266 continue;
1267 #endif
1268 /* fix port of dst address XXX*/
1269 key_porttosaddr(__UNCONST(dst), dport);
1270 /* check dst address */
1271 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1272 continue;
1273 key_sa_ref(sav, where, tag);
1274 goto done;
1275 }
1276 }
1277 }
1278 sav = NULL;
1279 done:
1280 pserialize_read_exit(s);
1281
1282 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1283 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1284 return sav;
1285 }
1286
1287 static void
1288 key_validate_savlist(const struct secashead *sah, const u_int state)
1289 {
1290 #ifdef DEBUG
1291 struct secasvar *sav, *next;
1292 int s;
1293
1294 /*
1295 * The list should be sorted by lft_c->sadb_lifetime_addtime
1296 * in ascending order.
1297 */
1298 s = pserialize_read_enter();
1299 SAVLIST_READER_FOREACH(sav, sah, state) {
1300 next = SAVLIST_READER_NEXT(sav);
1301 if (next != NULL &&
1302 sav->lft_c != NULL && next->lft_c != NULL) {
1303 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1304 next->lft_c->sadb_lifetime_addtime,
1305 "savlist is not sorted: sah=%p, state=%d, "
1306 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1307 sav->lft_c->sadb_lifetime_addtime,
1308 next->lft_c->sadb_lifetime_addtime);
1309 }
1310 }
1311 pserialize_read_exit(s);
1312 #endif
1313 }
1314
1315 void
1316 key_init_sp(struct secpolicy *sp)
1317 {
1318
1319 ASSERT_SLEEPABLE();
1320
1321 sp->state = IPSEC_SPSTATE_ALIVE;
1322 if (sp->policy == IPSEC_POLICY_IPSEC)
1323 KASSERT(sp->req != NULL);
1324 localcount_init(&sp->localcount);
1325 SPLIST_ENTRY_INIT(sp);
1326 }
1327
1328 /*
1329 * Must be called in a pserialize read section. A held SP
1330 * must be released by key_sp_unref after use.
1331 */
1332 void
1333 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1334 {
1335
1336 localcount_acquire(&sp->localcount);
1337
1338 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1339 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1340 sp, sp->id, where, tag, key_sp_refcnt(sp));
1341 }
1342
1343 /*
1344 * Must be called without holding key_spd.lock because the lock
1345 * would be held in localcount_release.
1346 */
1347 void
1348 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1349 {
1350
1351 KDASSERT(mutex_ownable(&key_spd.lock));
1352
1353 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1354 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1355 sp, sp->id, where, tag, key_sp_refcnt(sp));
1356
1357 localcount_release(&sp->localcount, &key_spd.cv, &key_spd.lock);
1358 }
1359
1360 static void
1361 key_init_sav(struct secasvar *sav)
1362 {
1363
1364 ASSERT_SLEEPABLE();
1365
1366 localcount_init(&sav->localcount);
1367 SAVLIST_ENTRY_INIT(sav);
1368 }
1369
1370 u_int
1371 key_sa_refcnt(const struct secasvar *sav)
1372 {
1373
1374 /* FIXME */
1375 return 0;
1376 }
1377
1378 void
1379 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1380 {
1381
1382 localcount_acquire(&sav->localcount);
1383
1384 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1385 "DP cause refcnt++: SA:%p from %s:%u\n",
1386 sav, where, tag);
1387 }
1388
1389 void
1390 key_sa_unref(struct secasvar *sav, const char* where, int tag)
1391 {
1392
1393 KDASSERT(mutex_ownable(&key_sad.lock));
1394
1395 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1396 "DP cause refcnt--: SA:%p from %s:%u\n",
1397 sav, where, tag);
1398
1399 localcount_release(&sav->localcount, &key_sad.cv, &key_sad.lock);
1400 }
1401
1402 #if 0
1403 /*
1404 * Must be called after calling key_lookup_sp*().
1405 * For the packet with socket.
1406 */
1407 static void
1408 key_freeso(struct socket *so)
1409 {
1410 /* sanity check */
1411 KASSERT(so != NULL);
1412
1413 switch (so->so_proto->pr_domain->dom_family) {
1414 #ifdef INET
1415 case PF_INET:
1416 {
1417 struct inpcb *pcb = sotoinpcb(so);
1418
1419 /* Does it have a PCB ? */
1420 if (pcb == NULL)
1421 return;
1422
1423 struct inpcbpolicy *sp = pcb->inp_sp;
1424 key_freesp_so(&sp->sp_in);
1425 key_freesp_so(&sp->sp_out);
1426 }
1427 break;
1428 #endif
1429 #ifdef INET6
1430 case PF_INET6:
1431 {
1432 #ifdef HAVE_NRL_INPCB
1433 struct inpcb *pcb = sotoinpcb(so);
1434 struct inpcbpolicy *sp = pcb->inp_sp;
1435
1436 /* Does it have a PCB ? */
1437 if (pcb == NULL)
1438 return;
1439 key_freesp_so(&sp->sp_in);
1440 key_freesp_so(&sp->sp_out);
1441 #else
1442 struct in6pcb *pcb = sotoin6pcb(so);
1443
1444 /* Does it have a PCB ? */
1445 if (pcb == NULL)
1446 return;
1447 key_freesp_so(&pcb->in6p_sp->sp_in);
1448 key_freesp_so(&pcb->in6p_sp->sp_out);
1449 #endif
1450 }
1451 break;
1452 #endif /* INET6 */
1453 default:
1454 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1455 so->so_proto->pr_domain->dom_family);
1456 return;
1457 }
1458 }
1459
1460 static void
1461 key_freesp_so(struct secpolicy **sp)
1462 {
1463
1464 KASSERT(sp != NULL);
1465 KASSERT(*sp != NULL);
1466
1467 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1468 (*sp)->policy == IPSEC_POLICY_BYPASS)
1469 return;
1470
1471 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1472 "invalid policy %u", (*sp)->policy);
1473 KEY_SP_UNREF(&sp);
1474 }
1475 #endif
1476
1477 /*
1478 * Remove the sav from the savlist of its sah and wait for references to the sav
1479 * to be released. key_sad.lock must be held.
1480 */
1481 static void
1482 key_unlink_sav(struct secasvar *sav)
1483 {
1484
1485 KASSERT(mutex_owned(&key_sad.lock));
1486
1487 SAVLIST_WRITER_REMOVE(sav);
1488
1489 #ifdef NET_MPSAFE
1490 KASSERT(mutex_ownable(softnet_lock));
1491 pserialize_perform(key_sad_psz);
1492 #endif
1493
1494 localcount_drain(&sav->localcount, &key_sad.cv, &key_sad.lock);
1495 }
1496
1497 /*
1498 * Destroy an sav where the sav must be unlinked from an sah
1499 * by say key_unlink_sav.
1500 */
1501 static void
1502 key_destroy_sav(struct secasvar *sav)
1503 {
1504
1505 ASSERT_SLEEPABLE();
1506
1507 localcount_fini(&sav->localcount);
1508 SAVLIST_ENTRY_DESTROY(sav);
1509
1510 key_delsav(sav);
1511 }
1512
1513 /*
1514 * Destroy sav with holding its reference.
1515 */
1516 static void
1517 key_destroy_sav_with_ref(struct secasvar *sav)
1518 {
1519
1520 ASSERT_SLEEPABLE();
1521
1522 mutex_enter(&key_sad.lock);
1523 sav->state = SADB_SASTATE_DEAD;
1524 SAVLIST_WRITER_REMOVE(sav);
1525 mutex_exit(&key_sad.lock);
1526
1527 /* We cannot unref with holding key_sad.lock */
1528 KEY_SA_UNREF(&sav);
1529
1530 mutex_enter(&key_sad.lock);
1531 #ifdef NET_MPSAFE
1532 KASSERT(mutex_ownable(softnet_lock));
1533 pserialize_perform(key_sad_psz);
1534 #endif
1535 localcount_drain(&sav->localcount, &key_sad.cv, &key_sad.lock);
1536 mutex_exit(&key_sad.lock);
1537
1538 key_destroy_sav(sav);
1539 }
1540
1541 /* %%% SPD management */
1542 /*
1543 * free security policy entry.
1544 */
1545 static void
1546 key_destroy_sp(struct secpolicy *sp)
1547 {
1548
1549 SPLIST_ENTRY_DESTROY(sp);
1550 localcount_fini(&sp->localcount);
1551
1552 key_free_sp(sp);
1553
1554 key_update_used();
1555 }
1556
1557 void
1558 key_free_sp(struct secpolicy *sp)
1559 {
1560 struct ipsecrequest *isr = sp->req, *nextisr;
1561
1562 while (isr != NULL) {
1563 nextisr = isr->next;
1564 kmem_free(isr, sizeof(*isr));
1565 isr = nextisr;
1566 }
1567
1568 kmem_free(sp, sizeof(*sp));
1569 }
1570
1571 void
1572 key_socksplist_add(struct secpolicy *sp)
1573 {
1574
1575 mutex_enter(&key_spd.lock);
1576 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1577 mutex_exit(&key_spd.lock);
1578
1579 key_update_used();
1580 }
1581
1582 /*
1583 * search SPD
1584 * OUT: NULL : not found
1585 * others : found, pointer to a SP.
1586 */
1587 static struct secpolicy *
1588 key_getsp(const struct secpolicyindex *spidx)
1589 {
1590 struct secpolicy *sp;
1591 int s;
1592
1593 KASSERT(spidx != NULL);
1594
1595 s = pserialize_read_enter();
1596 SPLIST_READER_FOREACH(sp, spidx->dir) {
1597 if (sp->state == IPSEC_SPSTATE_DEAD)
1598 continue;
1599 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1600 KEY_SP_REF(sp);
1601 pserialize_read_exit(s);
1602 return sp;
1603 }
1604 }
1605 pserialize_read_exit(s);
1606
1607 return NULL;
1608 }
1609
1610 /*
1611 * search SPD and remove found SP
1612 * OUT: NULL : not found
1613 * others : found, pointer to a SP.
1614 */
1615 static struct secpolicy *
1616 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1617 {
1618 struct secpolicy *sp = NULL;
1619
1620 mutex_enter(&key_spd.lock);
1621 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1622 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1623
1624 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1625 key_unlink_sp(sp);
1626 goto out;
1627 }
1628 }
1629 sp = NULL;
1630 out:
1631 mutex_exit(&key_spd.lock);
1632
1633 return sp;
1634 }
1635
1636 /*
1637 * get SP by index.
1638 * OUT: NULL : not found
1639 * others : found, pointer to a SP.
1640 */
1641 static struct secpolicy *
1642 key_getspbyid(u_int32_t id)
1643 {
1644 struct secpolicy *sp;
1645 int s;
1646
1647 s = pserialize_read_enter();
1648 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1649 if (sp->state == IPSEC_SPSTATE_DEAD)
1650 continue;
1651 if (sp->id == id) {
1652 KEY_SP_REF(sp);
1653 goto out;
1654 }
1655 }
1656
1657 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1658 if (sp->state == IPSEC_SPSTATE_DEAD)
1659 continue;
1660 if (sp->id == id) {
1661 KEY_SP_REF(sp);
1662 goto out;
1663 }
1664 }
1665 out:
1666 pserialize_read_exit(s);
1667 return sp;
1668 }
1669
1670 /*
1671 * get SP by index, remove and return it.
1672 * OUT: NULL : not found
1673 * others : found, pointer to a SP.
1674 */
1675 static struct secpolicy *
1676 key_lookupbyid_and_remove_sp(u_int32_t id)
1677 {
1678 struct secpolicy *sp;
1679
1680 mutex_enter(&key_spd.lock);
1681 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1682 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1683 if (sp->id == id)
1684 goto out;
1685 }
1686
1687 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1688 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1689 if (sp->id == id)
1690 goto out;
1691 }
1692 out:
1693 if (sp != NULL)
1694 key_unlink_sp(sp);
1695 mutex_exit(&key_spd.lock);
1696 return sp;
1697 }
1698
1699 struct secpolicy *
1700 key_newsp(const char* where, int tag)
1701 {
1702 struct secpolicy *newsp = NULL;
1703
1704 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1705
1706 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1707 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1708 return newsp;
1709 }
1710
1711 /*
1712 * create secpolicy structure from sadb_x_policy structure.
1713 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1714 * so must be set properly later.
1715 */
1716 struct secpolicy *
1717 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1718 {
1719 struct secpolicy *newsp;
1720
1721 KASSERT(!cpu_softintr_p());
1722 KASSERT(xpl0 != NULL);
1723 KASSERT(len >= sizeof(*xpl0));
1724
1725 if (len != PFKEY_EXTLEN(xpl0)) {
1726 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1727 *error = EINVAL;
1728 return NULL;
1729 }
1730
1731 newsp = KEY_NEWSP();
1732 if (newsp == NULL) {
1733 *error = ENOBUFS;
1734 return NULL;
1735 }
1736
1737 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1738 newsp->policy = xpl0->sadb_x_policy_type;
1739
1740 /* check policy */
1741 switch (xpl0->sadb_x_policy_type) {
1742 case IPSEC_POLICY_DISCARD:
1743 case IPSEC_POLICY_NONE:
1744 case IPSEC_POLICY_ENTRUST:
1745 case IPSEC_POLICY_BYPASS:
1746 newsp->req = NULL;
1747 *error = 0;
1748 return newsp;
1749
1750 case IPSEC_POLICY_IPSEC:
1751 /* Continued */
1752 break;
1753 default:
1754 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1755 key_free_sp(newsp);
1756 *error = EINVAL;
1757 return NULL;
1758 }
1759
1760 /* IPSEC_POLICY_IPSEC */
1761 {
1762 int tlen;
1763 const struct sadb_x_ipsecrequest *xisr;
1764 uint16_t xisr_reqid;
1765 struct ipsecrequest **p_isr = &newsp->req;
1766
1767 /* validity check */
1768 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1769 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1770 *error = EINVAL;
1771 goto free_exit;
1772 }
1773
1774 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1775 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1776
1777 while (tlen > 0) {
1778 /* length check */
1779 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1780 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1781 *error = EINVAL;
1782 goto free_exit;
1783 }
1784
1785 /* allocate request buffer */
1786 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1787
1788 /* set values */
1789 (*p_isr)->next = NULL;
1790
1791 switch (xisr->sadb_x_ipsecrequest_proto) {
1792 case IPPROTO_ESP:
1793 case IPPROTO_AH:
1794 case IPPROTO_IPCOMP:
1795 break;
1796 default:
1797 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1798 xisr->sadb_x_ipsecrequest_proto);
1799 *error = EPROTONOSUPPORT;
1800 goto free_exit;
1801 }
1802 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1803
1804 switch (xisr->sadb_x_ipsecrequest_mode) {
1805 case IPSEC_MODE_TRANSPORT:
1806 case IPSEC_MODE_TUNNEL:
1807 break;
1808 case IPSEC_MODE_ANY:
1809 default:
1810 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1811 xisr->sadb_x_ipsecrequest_mode);
1812 *error = EINVAL;
1813 goto free_exit;
1814 }
1815 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1816
1817 switch (xisr->sadb_x_ipsecrequest_level) {
1818 case IPSEC_LEVEL_DEFAULT:
1819 case IPSEC_LEVEL_USE:
1820 case IPSEC_LEVEL_REQUIRE:
1821 break;
1822 case IPSEC_LEVEL_UNIQUE:
1823 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1824 /* validity check */
1825 /*
1826 * If range violation of reqid, kernel will
1827 * update it, don't refuse it.
1828 */
1829 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1830 IPSECLOG(LOG_DEBUG,
1831 "reqid=%d range "
1832 "violation, updated by kernel.\n",
1833 xisr_reqid);
1834 xisr_reqid = 0;
1835 }
1836
1837 /* allocate new reqid id if reqid is zero. */
1838 if (xisr_reqid == 0) {
1839 u_int16_t reqid = key_newreqid();
1840 if (reqid == 0) {
1841 *error = ENOBUFS;
1842 goto free_exit;
1843 }
1844 (*p_isr)->saidx.reqid = reqid;
1845 } else {
1846 /* set it for manual keying. */
1847 (*p_isr)->saidx.reqid = xisr_reqid;
1848 }
1849 break;
1850
1851 default:
1852 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1853 xisr->sadb_x_ipsecrequest_level);
1854 *error = EINVAL;
1855 goto free_exit;
1856 }
1857 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1858
1859 /* set IP addresses if there */
1860 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1861 const struct sockaddr *paddr;
1862
1863 paddr = (const struct sockaddr *)(xisr + 1);
1864
1865 /* validity check */
1866 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1867 IPSECLOG(LOG_DEBUG, "invalid request "
1868 "address length.\n");
1869 *error = EINVAL;
1870 goto free_exit;
1871 }
1872 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1873
1874 paddr = (const struct sockaddr *)((const char *)paddr
1875 + paddr->sa_len);
1876
1877 /* validity check */
1878 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1879 IPSECLOG(LOG_DEBUG, "invalid request "
1880 "address length.\n");
1881 *error = EINVAL;
1882 goto free_exit;
1883 }
1884 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1885 }
1886
1887 (*p_isr)->sp = newsp;
1888
1889 /* initialization for the next. */
1890 p_isr = &(*p_isr)->next;
1891 tlen -= xisr->sadb_x_ipsecrequest_len;
1892
1893 /* validity check */
1894 if (tlen < 0) {
1895 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1896 *error = EINVAL;
1897 goto free_exit;
1898 }
1899
1900 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1901 xisr->sadb_x_ipsecrequest_len);
1902 }
1903 }
1904
1905 *error = 0;
1906 return newsp;
1907
1908 free_exit:
1909 key_free_sp(newsp);
1910 return NULL;
1911 }
1912
1913 static u_int16_t
1914 key_newreqid(void)
1915 {
1916 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1917
1918 auto_reqid = (auto_reqid == 0xffff ?
1919 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1920
1921 /* XXX should be unique check */
1922
1923 return auto_reqid;
1924 }
1925
1926 /*
1927 * copy secpolicy struct to sadb_x_policy structure indicated.
1928 */
1929 struct mbuf *
1930 key_sp2msg(const struct secpolicy *sp)
1931 {
1932 struct sadb_x_policy *xpl;
1933 int tlen;
1934 char *p;
1935 struct mbuf *m;
1936
1937 KASSERT(sp != NULL);
1938
1939 tlen = key_getspreqmsglen(sp);
1940
1941 m = key_alloc_mbuf(tlen);
1942 if (!m || m->m_next) { /*XXX*/
1943 if (m)
1944 m_freem(m);
1945 return NULL;
1946 }
1947
1948 m->m_len = tlen;
1949 m->m_next = NULL;
1950 xpl = mtod(m, struct sadb_x_policy *);
1951 memset(xpl, 0, tlen);
1952
1953 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1954 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1955 xpl->sadb_x_policy_type = sp->policy;
1956 xpl->sadb_x_policy_dir = sp->spidx.dir;
1957 xpl->sadb_x_policy_id = sp->id;
1958 p = (char *)xpl + sizeof(*xpl);
1959
1960 /* if is the policy for ipsec ? */
1961 if (sp->policy == IPSEC_POLICY_IPSEC) {
1962 struct sadb_x_ipsecrequest *xisr;
1963 struct ipsecrequest *isr;
1964
1965 for (isr = sp->req; isr != NULL; isr = isr->next) {
1966
1967 xisr = (struct sadb_x_ipsecrequest *)p;
1968
1969 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1970 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1971 xisr->sadb_x_ipsecrequest_level = isr->level;
1972 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1973
1974 p += sizeof(*xisr);
1975 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1976 p += isr->saidx.src.sa.sa_len;
1977 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1978 p += isr->saidx.src.sa.sa_len;
1979
1980 xisr->sadb_x_ipsecrequest_len =
1981 PFKEY_ALIGN8(sizeof(*xisr)
1982 + isr->saidx.src.sa.sa_len
1983 + isr->saidx.dst.sa.sa_len);
1984 }
1985 }
1986
1987 return m;
1988 }
1989
1990 /* m will not be freed nor modified */
1991 static struct mbuf *
1992 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1993 int ndeep, int nitem, ...)
1994 {
1995 va_list ap;
1996 int idx;
1997 int i;
1998 struct mbuf *result = NULL, *n;
1999 int len;
2000
2001 KASSERT(m != NULL);
2002 KASSERT(mhp != NULL);
2003
2004 va_start(ap, nitem);
2005 for (i = 0; i < nitem; i++) {
2006 idx = va_arg(ap, int);
2007 if (idx < 0 || idx > SADB_EXT_MAX)
2008 goto fail;
2009 /* don't attempt to pull empty extension */
2010 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
2011 continue;
2012 if (idx != SADB_EXT_RESERVED &&
2013 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
2014 continue;
2015
2016 if (idx == SADB_EXT_RESERVED) {
2017 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
2018 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2019 MGETHDR(n, M_DONTWAIT, MT_DATA);
2020 if (!n)
2021 goto fail;
2022 n->m_len = len;
2023 n->m_next = NULL;
2024 m_copydata(m, 0, sizeof(struct sadb_msg),
2025 mtod(n, void *));
2026 } else if (i < ndeep) {
2027 len = mhp->extlen[idx];
2028 n = key_alloc_mbuf(len);
2029 if (!n || n->m_next) { /*XXX*/
2030 if (n)
2031 m_freem(n);
2032 goto fail;
2033 }
2034 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
2035 mtod(n, void *));
2036 } else {
2037 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
2038 M_DONTWAIT);
2039 }
2040 if (n == NULL)
2041 goto fail;
2042
2043 if (result)
2044 m_cat(result, n);
2045 else
2046 result = n;
2047 }
2048 va_end(ap);
2049
2050 if (result && (result->m_flags & M_PKTHDR) != 0) {
2051 result->m_pkthdr.len = 0;
2052 for (n = result; n; n = n->m_next)
2053 result->m_pkthdr.len += n->m_len;
2054 }
2055
2056 return result;
2057
2058 fail:
2059 va_end(ap);
2060 m_freem(result);
2061 return NULL;
2062 }
2063
2064 /*
2065 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2066 * add an entry to SP database, when received
2067 * <base, address(SD), (lifetime(H),) policy>
2068 * from the user(?).
2069 * Adding to SP database,
2070 * and send
2071 * <base, address(SD), (lifetime(H),) policy>
2072 * to the socket which was send.
2073 *
2074 * SPDADD set a unique policy entry.
2075 * SPDSETIDX like SPDADD without a part of policy requests.
2076 * SPDUPDATE replace a unique policy entry.
2077 *
2078 * m will always be freed.
2079 */
2080 static int
2081 key_api_spdadd(struct socket *so, struct mbuf *m,
2082 const struct sadb_msghdr *mhp)
2083 {
2084 const struct sockaddr *src, *dst;
2085 const struct sadb_x_policy *xpl0;
2086 struct sadb_x_policy *xpl;
2087 const struct sadb_lifetime *lft = NULL;
2088 struct secpolicyindex spidx;
2089 struct secpolicy *newsp;
2090 int error;
2091
2092 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2093 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2094 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2095 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2096 return key_senderror(so, m, EINVAL);
2097 }
2098 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2099 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2100 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2101 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2102 return key_senderror(so, m, EINVAL);
2103 }
2104 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2105 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2106 sizeof(struct sadb_lifetime)) {
2107 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2108 return key_senderror(so, m, EINVAL);
2109 }
2110 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
2111 }
2112
2113 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2114
2115 /* checking the direciton. */
2116 switch (xpl0->sadb_x_policy_dir) {
2117 case IPSEC_DIR_INBOUND:
2118 case IPSEC_DIR_OUTBOUND:
2119 break;
2120 default:
2121 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2122 return key_senderror(so, m, EINVAL);
2123 }
2124
2125 /* check policy */
2126 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2127 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2128 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2129 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2130 return key_senderror(so, m, EINVAL);
2131 }
2132
2133 /* policy requests are mandatory when action is ipsec. */
2134 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2135 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2136 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2137 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2138 return key_senderror(so, m, EINVAL);
2139 }
2140
2141 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2142 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2143
2144 /* sanity check on addr pair */
2145 if (src->sa_family != dst->sa_family)
2146 return key_senderror(so, m, EINVAL);
2147 if (src->sa_len != dst->sa_len)
2148 return key_senderror(so, m, EINVAL);
2149
2150 key_init_spidx_bymsghdr(&spidx, mhp);
2151
2152 /*
2153 * checking there is SP already or not.
2154 * SPDUPDATE doesn't depend on whether there is a SP or not.
2155 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2156 * then error.
2157 */
2158 {
2159 struct secpolicy *sp;
2160
2161 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2162 sp = key_lookup_and_remove_sp(&spidx);
2163 if (sp != NULL)
2164 key_destroy_sp(sp);
2165 } else {
2166 sp = key_getsp(&spidx);
2167 if (sp != NULL) {
2168 KEY_SP_UNREF(&sp);
2169 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2170 return key_senderror(so, m, EEXIST);
2171 }
2172 }
2173 }
2174
2175 /* allocation new SP entry */
2176 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2177 if (newsp == NULL) {
2178 return key_senderror(so, m, error);
2179 }
2180
2181 newsp->id = key_getnewspid();
2182 if (newsp->id == 0) {
2183 kmem_free(newsp, sizeof(*newsp));
2184 return key_senderror(so, m, ENOBUFS);
2185 }
2186
2187 newsp->spidx = spidx;
2188 newsp->created = time_uptime;
2189 newsp->lastused = newsp->created;
2190 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2191 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2192
2193 key_init_sp(newsp);
2194
2195 mutex_enter(&key_spd.lock);
2196 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2197 mutex_exit(&key_spd.lock);
2198
2199 #ifdef notyet
2200 /* delete the entry in key_misc.spacqlist */
2201 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2202 struct secspacq *spacq = key_getspacq(&spidx);
2203 if (spacq != NULL) {
2204 /* reset counter in order to deletion by timehandler. */
2205 spacq->created = time_uptime;
2206 spacq->count = 0;
2207 }
2208 }
2209 #endif
2210
2211 /* Invalidate all cached SPD pointers in the PCBs. */
2212 ipsec_invalpcbcacheall();
2213
2214 #if defined(GATEWAY)
2215 /* Invalidate the ipflow cache, as well. */
2216 ipflow_invalidate_all(0);
2217 #ifdef INET6
2218 if (in6_present)
2219 ip6flow_invalidate_all(0);
2220 #endif /* INET6 */
2221 #endif /* GATEWAY */
2222
2223 key_update_used();
2224
2225 {
2226 struct mbuf *n, *mpolicy;
2227 int off;
2228
2229 /* create new sadb_msg to reply. */
2230 if (lft) {
2231 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2232 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2233 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2234 } else {
2235 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2236 SADB_X_EXT_POLICY,
2237 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2238 }
2239 if (!n)
2240 return key_senderror(so, m, ENOBUFS);
2241
2242 n = key_fill_replymsg(n, 0);
2243 if (n == NULL)
2244 return key_senderror(so, m, ENOBUFS);
2245
2246 off = 0;
2247 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2248 sizeof(*xpl), &off);
2249 if (mpolicy == NULL) {
2250 /* n is already freed */
2251 return key_senderror(so, m, ENOBUFS);
2252 }
2253 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2254 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2255 m_freem(n);
2256 return key_senderror(so, m, EINVAL);
2257 }
2258 xpl->sadb_x_policy_id = newsp->id;
2259
2260 m_freem(m);
2261 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2262 }
2263 }
2264
2265 /*
2266 * get new policy id.
2267 * OUT:
2268 * 0: failure.
2269 * others: success.
2270 */
2271 static u_int32_t
2272 key_getnewspid(void)
2273 {
2274 u_int32_t newid = 0;
2275 int count = key_spi_trycnt; /* XXX */
2276 struct secpolicy *sp;
2277
2278 /* when requesting to allocate spi ranged */
2279 while (count--) {
2280 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2281
2282 sp = key_getspbyid(newid);
2283 if (sp == NULL)
2284 break;
2285
2286 KEY_SP_UNREF(&sp);
2287 }
2288
2289 if (count == 0 || newid == 0) {
2290 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2291 return 0;
2292 }
2293
2294 return newid;
2295 }
2296
2297 /*
2298 * SADB_SPDDELETE processing
2299 * receive
2300 * <base, address(SD), policy(*)>
2301 * from the user(?), and set SADB_SASTATE_DEAD,
2302 * and send,
2303 * <base, address(SD), policy(*)>
2304 * to the ikmpd.
2305 * policy(*) including direction of policy.
2306 *
2307 * m will always be freed.
2308 */
2309 static int
2310 key_api_spddelete(struct socket *so, struct mbuf *m,
2311 const struct sadb_msghdr *mhp)
2312 {
2313 struct sadb_x_policy *xpl0;
2314 struct secpolicyindex spidx;
2315 struct secpolicy *sp;
2316
2317 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2318 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2319 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2320 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2321 return key_senderror(so, m, EINVAL);
2322 }
2323 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2324 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2325 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2326 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2327 return key_senderror(so, m, EINVAL);
2328 }
2329
2330 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2331
2332 /* checking the direciton. */
2333 switch (xpl0->sadb_x_policy_dir) {
2334 case IPSEC_DIR_INBOUND:
2335 case IPSEC_DIR_OUTBOUND:
2336 break;
2337 default:
2338 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2339 return key_senderror(so, m, EINVAL);
2340 }
2341
2342 /* make secindex */
2343 key_init_spidx_bymsghdr(&spidx, mhp);
2344
2345 /* Is there SP in SPD ? */
2346 sp = key_lookup_and_remove_sp(&spidx);
2347 if (sp == NULL) {
2348 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2349 return key_senderror(so, m, EINVAL);
2350 }
2351
2352 /* save policy id to buffer to be returned. */
2353 xpl0->sadb_x_policy_id = sp->id;
2354
2355 key_destroy_sp(sp);
2356
2357 /* We're deleting policy; no need to invalidate the ipflow cache. */
2358
2359 {
2360 struct mbuf *n;
2361
2362 /* create new sadb_msg to reply. */
2363 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2364 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2365 if (!n)
2366 return key_senderror(so, m, ENOBUFS);
2367
2368 n = key_fill_replymsg(n, 0);
2369 if (n == NULL)
2370 return key_senderror(so, m, ENOBUFS);
2371
2372 m_freem(m);
2373 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2374 }
2375 }
2376
2377 /*
2378 * SADB_SPDDELETE2 processing
2379 * receive
2380 * <base, policy(*)>
2381 * from the user(?), and set SADB_SASTATE_DEAD,
2382 * and send,
2383 * <base, policy(*)>
2384 * to the ikmpd.
2385 * policy(*) including direction of policy.
2386 *
2387 * m will always be freed.
2388 */
2389 static int
2390 key_api_spddelete2(struct socket *so, struct mbuf *m,
2391 const struct sadb_msghdr *mhp)
2392 {
2393 u_int32_t id;
2394 struct secpolicy *sp;
2395
2396 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2397 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2398 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2399 return key_senderror(so, m, EINVAL);
2400 }
2401
2402 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2403
2404 /* Is there SP in SPD ? */
2405 sp = key_lookupbyid_and_remove_sp(id);
2406 if (sp == NULL) {
2407 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2408 return key_senderror(so, m, EINVAL);
2409 }
2410
2411 key_destroy_sp(sp);
2412
2413 /* We're deleting policy; no need to invalidate the ipflow cache. */
2414
2415 {
2416 struct mbuf *n, *nn;
2417 int off, len;
2418
2419 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2420
2421 /* create new sadb_msg to reply. */
2422 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2423
2424 MGETHDR(n, M_DONTWAIT, MT_DATA);
2425 if (n && len > MHLEN) {
2426 MCLGET(n, M_DONTWAIT);
2427 if ((n->m_flags & M_EXT) == 0) {
2428 m_freem(n);
2429 n = NULL;
2430 }
2431 }
2432 if (!n)
2433 return key_senderror(so, m, ENOBUFS);
2434
2435 n->m_len = len;
2436 n->m_next = NULL;
2437 off = 0;
2438
2439 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2440 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2441
2442 KASSERTMSG(off == len, "length inconsistency");
2443
2444 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2445 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2446 if (!n->m_next) {
2447 m_freem(n);
2448 return key_senderror(so, m, ENOBUFS);
2449 }
2450
2451 n->m_pkthdr.len = 0;
2452 for (nn = n; nn; nn = nn->m_next)
2453 n->m_pkthdr.len += nn->m_len;
2454
2455 n = key_fill_replymsg(n, 0);
2456 if (n == NULL)
2457 return key_senderror(so, m, ENOBUFS);
2458
2459 m_freem(m);
2460 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2461 }
2462 }
2463
2464 /*
2465 * SADB_X_GET processing
2466 * receive
2467 * <base, policy(*)>
2468 * from the user(?),
2469 * and send,
2470 * <base, address(SD), policy>
2471 * to the ikmpd.
2472 * policy(*) including direction of policy.
2473 *
2474 * m will always be freed.
2475 */
2476 static int
2477 key_api_spdget(struct socket *so, struct mbuf *m,
2478 const struct sadb_msghdr *mhp)
2479 {
2480 u_int32_t id;
2481 struct secpolicy *sp;
2482 struct mbuf *n;
2483
2484 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2485 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2486 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2487 return key_senderror(so, m, EINVAL);
2488 }
2489
2490 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2491
2492 /* Is there SP in SPD ? */
2493 sp = key_getspbyid(id);
2494 if (sp == NULL) {
2495 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2496 return key_senderror(so, m, ENOENT);
2497 }
2498
2499 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2500 mhp->msg->sadb_msg_pid);
2501 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2502 if (n != NULL) {
2503 m_freem(m);
2504 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2505 } else
2506 return key_senderror(so, m, ENOBUFS);
2507 }
2508
2509 #ifdef notyet
2510 /*
2511 * SADB_X_SPDACQUIRE processing.
2512 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2513 * send
2514 * <base, policy(*)>
2515 * to KMD, and expect to receive
2516 * <base> with SADB_X_SPDACQUIRE if error occurred,
2517 * or
2518 * <base, policy>
2519 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2520 * policy(*) is without policy requests.
2521 *
2522 * 0 : succeed
2523 * others: error number
2524 */
2525 int
2526 key_spdacquire(const struct secpolicy *sp)
2527 {
2528 struct mbuf *result = NULL, *m;
2529 struct secspacq *newspacq;
2530 int error;
2531
2532 KASSERT(sp != NULL);
2533 KASSERTMSG(sp->req == NULL, "called but there is request");
2534 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2535 "policy mismathed. IPsec is expected");
2536
2537 /* Get an entry to check whether sent message or not. */
2538 newspacq = key_getspacq(&sp->spidx);
2539 if (newspacq != NULL) {
2540 if (key_blockacq_count < newspacq->count) {
2541 /* reset counter and do send message. */
2542 newspacq->count = 0;
2543 } else {
2544 /* increment counter and do nothing. */
2545 newspacq->count++;
2546 return 0;
2547 }
2548 } else {
2549 /* make new entry for blocking to send SADB_ACQUIRE. */
2550 newspacq = key_newspacq(&sp->spidx);
2551 if (newspacq == NULL)
2552 return ENOBUFS;
2553
2554 /* add to key_misc.acqlist */
2555 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2556 }
2557
2558 /* create new sadb_msg to reply. */
2559 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2560 if (!m) {
2561 error = ENOBUFS;
2562 goto fail;
2563 }
2564 result = m;
2565
2566 result->m_pkthdr.len = 0;
2567 for (m = result; m; m = m->m_next)
2568 result->m_pkthdr.len += m->m_len;
2569
2570 mtod(result, struct sadb_msg *)->sadb_msg_len =
2571 PFKEY_UNIT64(result->m_pkthdr.len);
2572
2573 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2574
2575 fail:
2576 if (result)
2577 m_freem(result);
2578 return error;
2579 }
2580 #endif /* notyet */
2581
2582 /*
2583 * SADB_SPDFLUSH processing
2584 * receive
2585 * <base>
2586 * from the user, and free all entries in secpctree.
2587 * and send,
2588 * <base>
2589 * to the user.
2590 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2591 *
2592 * m will always be freed.
2593 */
2594 static int
2595 key_api_spdflush(struct socket *so, struct mbuf *m,
2596 const struct sadb_msghdr *mhp)
2597 {
2598 struct sadb_msg *newmsg;
2599 struct secpolicy *sp;
2600 u_int dir;
2601
2602 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2603 return key_senderror(so, m, EINVAL);
2604
2605 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2606 retry:
2607 mutex_enter(&key_spd.lock);
2608 SPLIST_WRITER_FOREACH(sp, dir) {
2609 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2610 key_unlink_sp(sp);
2611 mutex_exit(&key_spd.lock);
2612 key_destroy_sp(sp);
2613 goto retry;
2614 }
2615 mutex_exit(&key_spd.lock);
2616 }
2617
2618 /* We're deleting policy; no need to invalidate the ipflow cache. */
2619
2620 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2621 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2622 return key_senderror(so, m, ENOBUFS);
2623 }
2624
2625 if (m->m_next)
2626 m_freem(m->m_next);
2627 m->m_next = NULL;
2628 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2629 newmsg = mtod(m, struct sadb_msg *);
2630 newmsg->sadb_msg_errno = 0;
2631 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2632
2633 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2634 }
2635
2636 static struct sockaddr key_src = {
2637 .sa_len = 2,
2638 .sa_family = PF_KEY,
2639 };
2640
2641 static struct mbuf *
2642 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2643 {
2644 struct secpolicy *sp;
2645 int cnt;
2646 u_int dir;
2647 struct mbuf *m, *n, *prev;
2648 int totlen;
2649
2650 KASSERT(mutex_owned(&key_spd.lock));
2651
2652 *lenp = 0;
2653
2654 /* search SPD entry and get buffer size. */
2655 cnt = 0;
2656 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2657 SPLIST_WRITER_FOREACH(sp, dir) {
2658 cnt++;
2659 }
2660 }
2661
2662 if (cnt == 0) {
2663 *errorp = ENOENT;
2664 return (NULL);
2665 }
2666
2667 m = NULL;
2668 prev = m;
2669 totlen = 0;
2670 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2671 SPLIST_WRITER_FOREACH(sp, dir) {
2672 --cnt;
2673 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2674
2675 if (!n) {
2676 *errorp = ENOBUFS;
2677 if (m)
2678 m_freem(m);
2679 return (NULL);
2680 }
2681
2682 totlen += n->m_pkthdr.len;
2683 if (!m) {
2684 m = n;
2685 } else {
2686 prev->m_nextpkt = n;
2687 }
2688 prev = n;
2689 }
2690 }
2691
2692 *lenp = totlen;
2693 *errorp = 0;
2694 return (m);
2695 }
2696
2697 /*
2698 * SADB_SPDDUMP processing
2699 * receive
2700 * <base>
2701 * from the user, and dump all SP leaves
2702 * and send,
2703 * <base> .....
2704 * to the ikmpd.
2705 *
2706 * m will always be freed.
2707 */
2708 static int
2709 key_api_spddump(struct socket *so, struct mbuf *m0,
2710 const struct sadb_msghdr *mhp)
2711 {
2712 struct mbuf *n;
2713 int error, len;
2714 int ok;
2715 pid_t pid;
2716
2717 pid = mhp->msg->sadb_msg_pid;
2718 /*
2719 * If the requestor has insufficient socket-buffer space
2720 * for the entire chain, nobody gets any response to the DUMP.
2721 * XXX For now, only the requestor ever gets anything.
2722 * Moreover, if the requestor has any space at all, they receive
2723 * the entire chain, otherwise the request is refused with ENOBUFS.
2724 */
2725 if (sbspace(&so->so_rcv) <= 0) {
2726 return key_senderror(so, m0, ENOBUFS);
2727 }
2728
2729 mutex_enter(&key_spd.lock);
2730 n = key_setspddump_chain(&error, &len, pid);
2731 mutex_exit(&key_spd.lock);
2732
2733 if (n == NULL) {
2734 return key_senderror(so, m0, ENOENT);
2735 }
2736 {
2737 uint64_t *ps = PFKEY_STAT_GETREF();
2738 ps[PFKEY_STAT_IN_TOTAL]++;
2739 ps[PFKEY_STAT_IN_BYTES] += len;
2740 PFKEY_STAT_PUTREF();
2741 }
2742
2743 /*
2744 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2745 * The requestor receives either the entire chain, or an
2746 * error message with ENOBUFS.
2747 */
2748
2749 /*
2750 * sbappendchainwith record takes the chain of entries, one
2751 * packet-record per SPD entry, prepends the key_src sockaddr
2752 * to each packet-record, links the sockaddr mbufs into a new
2753 * list of records, then appends the entire resulting
2754 * list to the requesting socket.
2755 */
2756 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2757 SB_PRIO_ONESHOT_OVERFLOW);
2758
2759 if (!ok) {
2760 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2761 m_freem(n);
2762 return key_senderror(so, m0, ENOBUFS);
2763 }
2764
2765 m_freem(m0);
2766 return error;
2767 }
2768
2769 /*
2770 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2771 */
2772 static int
2773 key_api_nat_map(struct socket *so, struct mbuf *m,
2774 const struct sadb_msghdr *mhp)
2775 {
2776 struct sadb_x_nat_t_type *type;
2777 struct sadb_x_nat_t_port *sport;
2778 struct sadb_x_nat_t_port *dport;
2779 struct sadb_address *iaddr, *raddr;
2780 struct sadb_x_nat_t_frag *frag;
2781
2782 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2783 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2784 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2785 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2786 return key_senderror(so, m, EINVAL);
2787 }
2788 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2789 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2790 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2791 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2792 return key_senderror(so, m, EINVAL);
2793 }
2794
2795 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2796 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2797 IPSECLOG(LOG_DEBUG, "invalid message\n");
2798 return key_senderror(so, m, EINVAL);
2799 }
2800
2801 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2802 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2803 IPSECLOG(LOG_DEBUG, "invalid message\n");
2804 return key_senderror(so, m, EINVAL);
2805 }
2806
2807 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2808 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2809 IPSECLOG(LOG_DEBUG, "invalid message\n");
2810 return key_senderror(so, m, EINVAL);
2811 }
2812
2813 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2814 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2815 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2816 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2817 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2818 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2819
2820 /*
2821 * XXX handle that, it should also contain a SA, or anything
2822 * that enable to update the SA information.
2823 */
2824
2825 return 0;
2826 }
2827
2828 static struct mbuf *
2829 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2830 {
2831 struct mbuf *result = NULL, *m;
2832
2833 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2834 key_sp_refcnt(sp));
2835 if (!m)
2836 goto fail;
2837 result = m;
2838
2839 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2840 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2841 if (!m)
2842 goto fail;
2843 m_cat(result, m);
2844
2845 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2846 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2847 if (!m)
2848 goto fail;
2849 m_cat(result, m);
2850
2851 m = key_sp2msg(sp);
2852 if (!m)
2853 goto fail;
2854 m_cat(result, m);
2855
2856 if ((result->m_flags & M_PKTHDR) == 0)
2857 goto fail;
2858
2859 if (result->m_len < sizeof(struct sadb_msg)) {
2860 result = m_pullup(result, sizeof(struct sadb_msg));
2861 if (result == NULL)
2862 goto fail;
2863 }
2864
2865 result->m_pkthdr.len = 0;
2866 for (m = result; m; m = m->m_next)
2867 result->m_pkthdr.len += m->m_len;
2868
2869 mtod(result, struct sadb_msg *)->sadb_msg_len =
2870 PFKEY_UNIT64(result->m_pkthdr.len);
2871
2872 return result;
2873
2874 fail:
2875 m_freem(result);
2876 return NULL;
2877 }
2878
2879 /*
2880 * get PFKEY message length for security policy and request.
2881 */
2882 static u_int
2883 key_getspreqmsglen(const struct secpolicy *sp)
2884 {
2885 u_int tlen;
2886
2887 tlen = sizeof(struct sadb_x_policy);
2888
2889 /* if is the policy for ipsec ? */
2890 if (sp->policy != IPSEC_POLICY_IPSEC)
2891 return tlen;
2892
2893 /* get length of ipsec requests */
2894 {
2895 const struct ipsecrequest *isr;
2896 int len;
2897
2898 for (isr = sp->req; isr != NULL; isr = isr->next) {
2899 len = sizeof(struct sadb_x_ipsecrequest)
2900 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2901
2902 tlen += PFKEY_ALIGN8(len);
2903 }
2904 }
2905
2906 return tlen;
2907 }
2908
2909 /*
2910 * SADB_SPDEXPIRE processing
2911 * send
2912 * <base, address(SD), lifetime(CH), policy>
2913 * to KMD by PF_KEY.
2914 *
2915 * OUT: 0 : succeed
2916 * others : error number
2917 */
2918 static int
2919 key_spdexpire(struct secpolicy *sp)
2920 {
2921 int s;
2922 struct mbuf *result = NULL, *m;
2923 int len;
2924 int error = -1;
2925 struct sadb_lifetime *lt;
2926
2927 /* XXX: Why do we lock ? */
2928 s = splsoftnet(); /*called from softclock()*/
2929
2930 KASSERT(sp != NULL);
2931
2932 /* set msg header */
2933 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2934 if (!m) {
2935 error = ENOBUFS;
2936 goto fail;
2937 }
2938 result = m;
2939
2940 /* create lifetime extension (current and hard) */
2941 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2942 m = key_alloc_mbuf(len);
2943 if (!m || m->m_next) { /*XXX*/
2944 if (m)
2945 m_freem(m);
2946 error = ENOBUFS;
2947 goto fail;
2948 }
2949 memset(mtod(m, void *), 0, len);
2950 lt = mtod(m, struct sadb_lifetime *);
2951 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2952 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2953 lt->sadb_lifetime_allocations = 0;
2954 lt->sadb_lifetime_bytes = 0;
2955 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2956 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2957 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2958 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2959 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2960 lt->sadb_lifetime_allocations = 0;
2961 lt->sadb_lifetime_bytes = 0;
2962 lt->sadb_lifetime_addtime = sp->lifetime;
2963 lt->sadb_lifetime_usetime = sp->validtime;
2964 m_cat(result, m);
2965
2966 /* set sadb_address for source */
2967 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2968 sp->spidx.prefs, sp->spidx.ul_proto);
2969 if (!m) {
2970 error = ENOBUFS;
2971 goto fail;
2972 }
2973 m_cat(result, m);
2974
2975 /* set sadb_address for destination */
2976 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2977 sp->spidx.prefd, sp->spidx.ul_proto);
2978 if (!m) {
2979 error = ENOBUFS;
2980 goto fail;
2981 }
2982 m_cat(result, m);
2983
2984 /* set secpolicy */
2985 m = key_sp2msg(sp);
2986 if (!m) {
2987 error = ENOBUFS;
2988 goto fail;
2989 }
2990 m_cat(result, m);
2991
2992 if ((result->m_flags & M_PKTHDR) == 0) {
2993 error = EINVAL;
2994 goto fail;
2995 }
2996
2997 if (result->m_len < sizeof(struct sadb_msg)) {
2998 result = m_pullup(result, sizeof(struct sadb_msg));
2999 if (result == NULL) {
3000 error = ENOBUFS;
3001 goto fail;
3002 }
3003 }
3004
3005 result->m_pkthdr.len = 0;
3006 for (m = result; m; m = m->m_next)
3007 result->m_pkthdr.len += m->m_len;
3008
3009 mtod(result, struct sadb_msg *)->sadb_msg_len =
3010 PFKEY_UNIT64(result->m_pkthdr.len);
3011
3012 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
3013
3014 fail:
3015 if (result)
3016 m_freem(result);
3017 splx(s);
3018 return error;
3019 }
3020
3021 /* %%% SAD management */
3022 /*
3023 * allocating a memory for new SA head, and copy from the values of mhp.
3024 * OUT: NULL : failure due to the lack of memory.
3025 * others : pointer to new SA head.
3026 */
3027 static struct secashead *
3028 key_newsah(const struct secasindex *saidx)
3029 {
3030 struct secashead *newsah;
3031 int i;
3032
3033 KASSERT(saidx != NULL);
3034
3035 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
3036 for (i = 0; i < __arraycount(newsah->savlist); i++)
3037 PSLIST_INIT(&newsah->savlist[i]);
3038 newsah->saidx = *saidx;
3039
3040 localcount_init(&newsah->localcount);
3041 /* Take a reference for the caller */
3042 localcount_acquire(&newsah->localcount);
3043
3044 /* Add to the sah list */
3045 SAHLIST_ENTRY_INIT(newsah);
3046 newsah->state = SADB_SASTATE_MATURE;
3047 mutex_enter(&key_sad.lock);
3048 SAHLIST_WRITER_INSERT_HEAD(newsah);
3049 mutex_exit(&key_sad.lock);
3050
3051 return newsah;
3052 }
3053
3054 static bool
3055 key_sah_has_sav(struct secashead *sah)
3056 {
3057 u_int state;
3058
3059 KASSERT(mutex_owned(&key_sad.lock));
3060
3061 SASTATE_ANY_FOREACH(state) {
3062 if (!SAVLIST_WRITER_EMPTY(sah, state))
3063 return true;
3064 }
3065
3066 return false;
3067 }
3068
3069 static void
3070 key_unlink_sah(struct secashead *sah)
3071 {
3072
3073 KASSERT(!cpu_softintr_p());
3074 KASSERT(mutex_owned(&key_sad.lock));
3075 KASSERT(sah->state == SADB_SASTATE_DEAD);
3076
3077 /* Remove from the sah list */
3078 SAHLIST_WRITER_REMOVE(sah);
3079
3080 #ifdef NET_MPSAFE
3081 KASSERT(mutex_ownable(softnet_lock));
3082 pserialize_perform(key_sad_psz);
3083 #endif
3084
3085 localcount_drain(&sah->localcount, &key_sad.cv, &key_sad.lock);
3086 }
3087
3088 static void
3089 key_destroy_sah(struct secashead *sah)
3090 {
3091
3092 rtcache_free(&sah->sa_route);
3093
3094 SAHLIST_ENTRY_DESTROY(sah);
3095 localcount_fini(&sah->localcount);
3096
3097 if (sah->idents != NULL)
3098 kmem_free(sah->idents, sah->idents_len);
3099 if (sah->identd != NULL)
3100 kmem_free(sah->identd, sah->identd_len);
3101
3102 kmem_free(sah, sizeof(*sah));
3103 }
3104
3105 /*
3106 * allocating a new SA with LARVAL state.
3107 * key_api_add() and key_api_getspi() call,
3108 * and copy the values of mhp into new buffer.
3109 * When SAD message type is GETSPI:
3110 * to set sequence number from acq_seq++,
3111 * to set zero to SPI.
3112 * not to call key_setsava().
3113 * OUT: NULL : fail
3114 * others : pointer to new secasvar.
3115 *
3116 * does not modify mbuf. does not free mbuf on error.
3117 */
3118 static struct secasvar *
3119 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3120 int *errp, const char* where, int tag)
3121 {
3122 struct secasvar *newsav;
3123 const struct sadb_sa *xsa;
3124
3125 KASSERT(!cpu_softintr_p());
3126 KASSERT(m != NULL);
3127 KASSERT(mhp != NULL);
3128 KASSERT(mhp->msg != NULL);
3129
3130 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3131
3132 switch (mhp->msg->sadb_msg_type) {
3133 case SADB_GETSPI:
3134 newsav->spi = 0;
3135
3136 #ifdef IPSEC_DOSEQCHECK
3137 /* sync sequence number */
3138 if (mhp->msg->sadb_msg_seq == 0)
3139 newsav->seq =
3140 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3141 else
3142 #endif
3143 newsav->seq = mhp->msg->sadb_msg_seq;
3144 break;
3145
3146 case SADB_ADD:
3147 /* sanity check */
3148 if (mhp->ext[SADB_EXT_SA] == NULL) {
3149 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3150 *errp = EINVAL;
3151 goto error;
3152 }
3153 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3154 newsav->spi = xsa->sadb_sa_spi;
3155 newsav->seq = mhp->msg->sadb_msg_seq;
3156 break;
3157 default:
3158 *errp = EINVAL;
3159 goto error;
3160 }
3161
3162 /* copy sav values */
3163 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3164 *errp = key_setsaval(newsav, m, mhp);
3165 if (*errp)
3166 goto error;
3167 } else {
3168 /* We don't allow lft_c to be NULL */
3169 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3170 KM_SLEEP);
3171 }
3172
3173 /* reset created */
3174 newsav->created = time_uptime;
3175 newsav->pid = mhp->msg->sadb_msg_pid;
3176
3177 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3178 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3179 return newsav;
3180
3181 error:
3182 KASSERT(*errp != 0);
3183 kmem_free(newsav, sizeof(*newsav));
3184 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3185 "DP from %s:%u return SA:NULL\n", where, tag);
3186 return NULL;
3187 }
3188
3189
3190 static void
3191 key_clear_xform(struct secasvar *sav)
3192 {
3193
3194 /*
3195 * Cleanup xform state. Note that zeroize'ing causes the
3196 * keys to be cleared; otherwise we must do it ourself.
3197 */
3198 if (sav->tdb_xform != NULL) {
3199 sav->tdb_xform->xf_zeroize(sav);
3200 sav->tdb_xform = NULL;
3201 } else {
3202 if (sav->key_auth != NULL)
3203 explicit_memset(_KEYBUF(sav->key_auth), 0,
3204 _KEYLEN(sav->key_auth));
3205 if (sav->key_enc != NULL)
3206 explicit_memset(_KEYBUF(sav->key_enc), 0,
3207 _KEYLEN(sav->key_enc));
3208 }
3209 }
3210
3211 /*
3212 * free() SA variable entry.
3213 */
3214 static void
3215 key_delsav(struct secasvar *sav)
3216 {
3217
3218 key_clear_xform(sav);
3219 key_freesaval(sav);
3220 kmem_free(sav, sizeof(*sav));
3221 }
3222
3223 /*
3224 * Must be called in a pserialize read section. A held sah
3225 * must be released by key_sah_unref after use.
3226 */
3227 static void
3228 key_sah_ref(struct secashead *sah)
3229 {
3230
3231 localcount_acquire(&sah->localcount);
3232 }
3233
3234 /*
3235 * Must be called without holding key_sad.lock because the lock
3236 * would be held in localcount_release.
3237 */
3238 static void
3239 key_sah_unref(struct secashead *sah)
3240 {
3241
3242 KDASSERT(mutex_ownable(&key_sad.lock));
3243
3244 localcount_release(&sah->localcount, &key_sad.cv, &key_sad.lock);
3245 }
3246
3247 /*
3248 * Search SAD and return sah. Must be called in a pserialize
3249 * read section.
3250 * OUT:
3251 * NULL : not found
3252 * others : found, pointer to a SA.
3253 */
3254 static struct secashead *
3255 key_getsah(const struct secasindex *saidx, int flag)
3256 {
3257 struct secashead *sah;
3258
3259 SAHLIST_READER_FOREACH(sah) {
3260 if (sah->state == SADB_SASTATE_DEAD)
3261 continue;
3262 if (key_saidx_match(&sah->saidx, saidx, flag))
3263 return sah;
3264 }
3265
3266 return NULL;
3267 }
3268
3269 /*
3270 * Search SAD and return sah. If sah is returned, the caller must call
3271 * key_sah_unref to releaset a reference.
3272 * OUT:
3273 * NULL : not found
3274 * others : found, pointer to a SA.
3275 */
3276 static struct secashead *
3277 key_getsah_ref(const struct secasindex *saidx, int flag)
3278 {
3279 struct secashead *sah;
3280 int s;
3281
3282 s = pserialize_read_enter();
3283 sah = key_getsah(saidx, flag);
3284 if (sah != NULL)
3285 key_sah_ref(sah);
3286 pserialize_read_exit(s);
3287
3288 return sah;
3289 }
3290
3291 /*
3292 * check not to be duplicated SPI.
3293 * NOTE: this function is too slow due to searching all SAD.
3294 * OUT:
3295 * NULL : not found
3296 * others : found, pointer to a SA.
3297 */
3298 static bool
3299 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3300 {
3301 struct secashead *sah;
3302 struct secasvar *sav;
3303 int s;
3304
3305 /* check address family */
3306 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3307 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3308 return false;
3309 }
3310
3311 /* check all SAD */
3312 s = pserialize_read_enter();
3313 SAHLIST_READER_FOREACH(sah) {
3314 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3315 continue;
3316 sav = key_getsavbyspi(sah, spi);
3317 if (sav != NULL) {
3318 pserialize_read_exit(s);
3319 KEY_SA_UNREF(&sav);
3320 return true;
3321 }
3322 }
3323 pserialize_read_exit(s);
3324
3325 return false;
3326 }
3327
3328 /*
3329 * search SAD litmited alive SA, protocol, SPI.
3330 * OUT:
3331 * NULL : not found
3332 * others : found, pointer to a SA.
3333 */
3334 static struct secasvar *
3335 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3336 {
3337 struct secasvar *sav = NULL;
3338 u_int state;
3339 int s;
3340
3341 /* search all status */
3342 s = pserialize_read_enter();
3343 SASTATE_ALIVE_FOREACH(state) {
3344 SAVLIST_READER_FOREACH(sav, sah, state) {
3345 /* sanity check */
3346 if (sav->state != state) {
3347 IPSECLOG(LOG_DEBUG,
3348 "invalid sav->state (queue: %d SA: %d)\n",
3349 state, sav->state);
3350 continue;
3351 }
3352
3353 if (sav->spi == spi) {
3354 KEY_SA_REF(sav);
3355 goto out;
3356 }
3357 }
3358 }
3359 out:
3360 pserialize_read_exit(s);
3361
3362 return sav;
3363 }
3364
3365 /*
3366 * Free allocated data to member variables of sav:
3367 * sav->replay, sav->key_* and sav->lft_*.
3368 */
3369 static void
3370 key_freesaval(struct secasvar *sav)
3371 {
3372
3373 KASSERT(key_sa_refcnt(sav) == 0);
3374
3375 if (sav->replay != NULL)
3376 kmem_intr_free(sav->replay, sav->replay_len);
3377 if (sav->key_auth != NULL)
3378 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3379 if (sav->key_enc != NULL)
3380 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3381 if (sav->lft_c != NULL)
3382 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3383 if (sav->lft_h != NULL)
3384 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3385 if (sav->lft_s != NULL)
3386 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3387 }
3388
3389 /*
3390 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3391 * You must update these if need.
3392 * OUT: 0: success.
3393 * !0: failure.
3394 *
3395 * does not modify mbuf. does not free mbuf on error.
3396 */
3397 static int
3398 key_setsaval(struct secasvar *sav, struct mbuf *m,
3399 const struct sadb_msghdr *mhp)
3400 {
3401 int error = 0;
3402
3403 KASSERT(!cpu_softintr_p());
3404 KASSERT(m != NULL);
3405 KASSERT(mhp != NULL);
3406 KASSERT(mhp->msg != NULL);
3407
3408 /* We shouldn't initialize sav variables while someone uses it. */
3409 KASSERT(key_sa_refcnt(sav) == 0);
3410
3411 /* SA */
3412 if (mhp->ext[SADB_EXT_SA] != NULL) {
3413 const struct sadb_sa *sa0;
3414
3415 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3416 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3417 error = EINVAL;
3418 goto fail;
3419 }
3420
3421 sav->alg_auth = sa0->sadb_sa_auth;
3422 sav->alg_enc = sa0->sadb_sa_encrypt;
3423 sav->flags = sa0->sadb_sa_flags;
3424
3425 /* replay window */
3426 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3427 size_t len = sizeof(struct secreplay) +
3428 sa0->sadb_sa_replay;
3429 sav->replay = kmem_zalloc(len, KM_SLEEP);
3430 sav->replay_len = len;
3431 if (sa0->sadb_sa_replay != 0)
3432 sav->replay->bitmap = (char*)(sav->replay+1);
3433 sav->replay->wsize = sa0->sadb_sa_replay;
3434 }
3435 }
3436
3437 /* Authentication keys */
3438 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3439 const struct sadb_key *key0;
3440 int len;
3441
3442 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3443 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3444
3445 error = 0;
3446 if (len < sizeof(*key0)) {
3447 error = EINVAL;
3448 goto fail;
3449 }
3450 switch (mhp->msg->sadb_msg_satype) {
3451 case SADB_SATYPE_AH:
3452 case SADB_SATYPE_ESP:
3453 case SADB_X_SATYPE_TCPSIGNATURE:
3454 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3455 sav->alg_auth != SADB_X_AALG_NULL)
3456 error = EINVAL;
3457 break;
3458 case SADB_X_SATYPE_IPCOMP:
3459 default:
3460 error = EINVAL;
3461 break;
3462 }
3463 if (error) {
3464 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3465 goto fail;
3466 }
3467
3468 sav->key_auth = key_newbuf(key0, len);
3469 sav->key_auth_len = len;
3470 }
3471
3472 /* Encryption key */
3473 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3474 const struct sadb_key *key0;
3475 int len;
3476
3477 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3478 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3479
3480 error = 0;
3481 if (len < sizeof(*key0)) {
3482 error = EINVAL;
3483 goto fail;
3484 }
3485 switch (mhp->msg->sadb_msg_satype) {
3486 case SADB_SATYPE_ESP:
3487 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3488 sav->alg_enc != SADB_EALG_NULL) {
3489 error = EINVAL;
3490 break;
3491 }
3492 sav->key_enc = key_newbuf(key0, len);
3493 sav->key_enc_len = len;
3494 break;
3495 case SADB_X_SATYPE_IPCOMP:
3496 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3497 error = EINVAL;
3498 sav->key_enc = NULL; /*just in case*/
3499 break;
3500 case SADB_SATYPE_AH:
3501 case SADB_X_SATYPE_TCPSIGNATURE:
3502 default:
3503 error = EINVAL;
3504 break;
3505 }
3506 if (error) {
3507 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3508 goto fail;
3509 }
3510 }
3511
3512 /* set iv */
3513 sav->ivlen = 0;
3514
3515 switch (mhp->msg->sadb_msg_satype) {
3516 case SADB_SATYPE_AH:
3517 error = xform_init(sav, XF_AH);
3518 break;
3519 case SADB_SATYPE_ESP:
3520 error = xform_init(sav, XF_ESP);
3521 break;
3522 case SADB_X_SATYPE_IPCOMP:
3523 error = xform_init(sav, XF_IPCOMP);
3524 break;
3525 case SADB_X_SATYPE_TCPSIGNATURE:
3526 error = xform_init(sav, XF_TCPSIGNATURE);
3527 break;
3528 }
3529 if (error) {
3530 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3531 mhp->msg->sadb_msg_satype);
3532 goto fail;
3533 }
3534
3535 /* reset created */
3536 sav->created = time_uptime;
3537
3538 /* make lifetime for CURRENT */
3539 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3540
3541 sav->lft_c->sadb_lifetime_len =
3542 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3543 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3544 sav->lft_c->sadb_lifetime_allocations = 0;
3545 sav->lft_c->sadb_lifetime_bytes = 0;
3546 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3547 sav->lft_c->sadb_lifetime_usetime = 0;
3548
3549 /* lifetimes for HARD and SOFT */
3550 {
3551 const struct sadb_lifetime *lft0;
3552
3553 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3554 if (lft0 != NULL) {
3555 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3556 error = EINVAL;
3557 goto fail;
3558 }
3559 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3560 }
3561
3562 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3563 if (lft0 != NULL) {
3564 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3565 error = EINVAL;
3566 goto fail;
3567 }
3568 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3569 /* to be initialize ? */
3570 }
3571 }
3572
3573 return 0;
3574
3575 fail:
3576 key_clear_xform(sav);
3577 key_freesaval(sav);
3578
3579 return error;
3580 }
3581
3582 /*
3583 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3584 * OUT: 0: valid
3585 * other: errno
3586 */
3587 static int
3588 key_init_xform(struct secasvar *sav)
3589 {
3590 int error;
3591
3592 /* We shouldn't initialize sav variables while someone uses it. */
3593 KASSERT(key_sa_refcnt(sav) == 0);
3594
3595 /* check SPI value */
3596 switch (sav->sah->saidx.proto) {
3597 case IPPROTO_ESP:
3598 case IPPROTO_AH:
3599 if (ntohl(sav->spi) <= 255) {
3600 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3601 (u_int32_t)ntohl(sav->spi));
3602 return EINVAL;
3603 }
3604 break;
3605 }
3606
3607 /* check satype */
3608 switch (sav->sah->saidx.proto) {
3609 case IPPROTO_ESP:
3610 /* check flags */
3611 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3612 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3613 IPSECLOG(LOG_DEBUG,
3614 "invalid flag (derived) given to old-esp.\n");
3615 return EINVAL;
3616 }
3617 error = xform_init(sav, XF_ESP);
3618 break;
3619 case IPPROTO_AH:
3620 /* check flags */
3621 if (sav->flags & SADB_X_EXT_DERIV) {
3622 IPSECLOG(LOG_DEBUG,
3623 "invalid flag (derived) given to AH SA.\n");
3624 return EINVAL;
3625 }
3626 if (sav->alg_enc != SADB_EALG_NONE) {
3627 IPSECLOG(LOG_DEBUG,
3628 "protocol and algorithm mismated.\n");
3629 return(EINVAL);
3630 }
3631 error = xform_init(sav, XF_AH);
3632 break;
3633 case IPPROTO_IPCOMP:
3634 if (sav->alg_auth != SADB_AALG_NONE) {
3635 IPSECLOG(LOG_DEBUG,
3636 "protocol and algorithm mismated.\n");
3637 return(EINVAL);
3638 }
3639 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3640 && ntohl(sav->spi) >= 0x10000) {
3641 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3642 return(EINVAL);
3643 }
3644 error = xform_init(sav, XF_IPCOMP);
3645 break;
3646 case IPPROTO_TCP:
3647 if (sav->alg_enc != SADB_EALG_NONE) {
3648 IPSECLOG(LOG_DEBUG,
3649 "protocol and algorithm mismated.\n");
3650 return(EINVAL);
3651 }
3652 error = xform_init(sav, XF_TCPSIGNATURE);
3653 break;
3654 default:
3655 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3656 error = EPROTONOSUPPORT;
3657 break;
3658 }
3659
3660 return error;
3661 }
3662
3663 /*
3664 * subroutine for SADB_GET and SADB_DUMP.
3665 */
3666 static struct mbuf *
3667 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3668 u_int32_t seq, u_int32_t pid)
3669 {
3670 struct mbuf *result = NULL, *tres = NULL, *m;
3671 int l = 0;
3672 int i;
3673 void *p;
3674 struct sadb_lifetime lt;
3675 int dumporder[] = {
3676 SADB_EXT_SA, SADB_X_EXT_SA2,
3677 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3678 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3679 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3680 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3681 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3682 SADB_X_EXT_NAT_T_TYPE,
3683 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3684 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3685 SADB_X_EXT_NAT_T_FRAG,
3686
3687 };
3688
3689 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav));
3690 if (m == NULL)
3691 goto fail;
3692 result = m;
3693
3694 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3695 m = NULL;
3696 p = NULL;
3697 switch (dumporder[i]) {
3698 case SADB_EXT_SA:
3699 m = key_setsadbsa(sav);
3700 break;
3701
3702 case SADB_X_EXT_SA2:
3703 m = key_setsadbxsa2(sav->sah->saidx.mode,
3704 sav->replay ? sav->replay->count : 0,
3705 sav->sah->saidx.reqid);
3706 break;
3707
3708 case SADB_EXT_ADDRESS_SRC:
3709 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3710 &sav->sah->saidx.src.sa,
3711 FULLMASK, IPSEC_ULPROTO_ANY);
3712 break;
3713
3714 case SADB_EXT_ADDRESS_DST:
3715 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3716 &sav->sah->saidx.dst.sa,
3717 FULLMASK, IPSEC_ULPROTO_ANY);
3718 break;
3719
3720 case SADB_EXT_KEY_AUTH:
3721 if (!sav->key_auth)
3722 continue;
3723 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3724 p = sav->key_auth;
3725 break;
3726
3727 case SADB_EXT_KEY_ENCRYPT:
3728 if (!sav->key_enc)
3729 continue;
3730 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3731 p = sav->key_enc;
3732 break;
3733
3734 case SADB_EXT_LIFETIME_CURRENT:
3735 KASSERT(sav->lft_c != NULL);
3736 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3737 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3738 lt.sadb_lifetime_addtime =
3739 time_mono_to_wall(lt.sadb_lifetime_addtime);
3740 lt.sadb_lifetime_usetime =
3741 time_mono_to_wall(lt.sadb_lifetime_usetime);
3742 p = <
3743 break;
3744
3745 case SADB_EXT_LIFETIME_HARD:
3746 if (!sav->lft_h)
3747 continue;
3748 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3749 p = sav->lft_h;
3750 break;
3751
3752 case SADB_EXT_LIFETIME_SOFT:
3753 if (!sav->lft_s)
3754 continue;
3755 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3756 p = sav->lft_s;
3757 break;
3758
3759 case SADB_X_EXT_NAT_T_TYPE:
3760 m = key_setsadbxtype(sav->natt_type);
3761 break;
3762
3763 case SADB_X_EXT_NAT_T_DPORT:
3764 if (sav->natt_type == 0)
3765 continue;
3766 m = key_setsadbxport(
3767 key_portfromsaddr(&sav->sah->saidx.dst),
3768 SADB_X_EXT_NAT_T_DPORT);
3769 break;
3770
3771 case SADB_X_EXT_NAT_T_SPORT:
3772 if (sav->natt_type == 0)
3773 continue;
3774 m = key_setsadbxport(
3775 key_portfromsaddr(&sav->sah->saidx.src),
3776 SADB_X_EXT_NAT_T_SPORT);
3777 break;
3778
3779 case SADB_X_EXT_NAT_T_FRAG:
3780 /* don't send frag info if not set */
3781 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3782 continue;
3783 m = key_setsadbxfrag(sav->esp_frag);
3784 break;
3785
3786 case SADB_X_EXT_NAT_T_OAI:
3787 case SADB_X_EXT_NAT_T_OAR:
3788 continue;
3789
3790 case SADB_EXT_ADDRESS_PROXY:
3791 case SADB_EXT_IDENTITY_SRC:
3792 case SADB_EXT_IDENTITY_DST:
3793 /* XXX: should we brought from SPD ? */
3794 case SADB_EXT_SENSITIVITY:
3795 default:
3796 continue;
3797 }
3798
3799 KASSERT(!(m && p));
3800 if (!m && !p)
3801 goto fail;
3802 if (p && tres) {
3803 M_PREPEND(tres, l, M_DONTWAIT);
3804 if (!tres)
3805 goto fail;
3806 memcpy(mtod(tres, void *), p, l);
3807 continue;
3808 }
3809 if (p) {
3810 m = key_alloc_mbuf(l);
3811 if (!m)
3812 goto fail;
3813 m_copyback(m, 0, l, p);
3814 }
3815
3816 if (tres)
3817 m_cat(m, tres);
3818 tres = m;
3819 }
3820
3821 m_cat(result, tres);
3822 tres = NULL; /* avoid free on error below */
3823
3824 if (result->m_len < sizeof(struct sadb_msg)) {
3825 result = m_pullup(result, sizeof(struct sadb_msg));
3826 if (result == NULL)
3827 goto fail;
3828 }
3829
3830 result->m_pkthdr.len = 0;
3831 for (m = result; m; m = m->m_next)
3832 result->m_pkthdr.len += m->m_len;
3833
3834 mtod(result, struct sadb_msg *)->sadb_msg_len =
3835 PFKEY_UNIT64(result->m_pkthdr.len);
3836
3837 return result;
3838
3839 fail:
3840 m_freem(result);
3841 m_freem(tres);
3842 return NULL;
3843 }
3844
3845
3846 /*
3847 * set a type in sadb_x_nat_t_type
3848 */
3849 static struct mbuf *
3850 key_setsadbxtype(u_int16_t type)
3851 {
3852 struct mbuf *m;
3853 size_t len;
3854 struct sadb_x_nat_t_type *p;
3855
3856 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3857
3858 m = key_alloc_mbuf(len);
3859 if (!m || m->m_next) { /*XXX*/
3860 if (m)
3861 m_freem(m);
3862 return NULL;
3863 }
3864
3865 p = mtod(m, struct sadb_x_nat_t_type *);
3866
3867 memset(p, 0, len);
3868 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3869 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3870 p->sadb_x_nat_t_type_type = type;
3871
3872 return m;
3873 }
3874 /*
3875 * set a port in sadb_x_nat_t_port. port is in network order
3876 */
3877 static struct mbuf *
3878 key_setsadbxport(u_int16_t port, u_int16_t type)
3879 {
3880 struct mbuf *m;
3881 size_t len;
3882 struct sadb_x_nat_t_port *p;
3883
3884 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3885
3886 m = key_alloc_mbuf(len);
3887 if (!m || m->m_next) { /*XXX*/
3888 if (m)
3889 m_freem(m);
3890 return NULL;
3891 }
3892
3893 p = mtod(m, struct sadb_x_nat_t_port *);
3894
3895 memset(p, 0, len);
3896 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3897 p->sadb_x_nat_t_port_exttype = type;
3898 p->sadb_x_nat_t_port_port = port;
3899
3900 return m;
3901 }
3902
3903 /*
3904 * set fragmentation info in sadb_x_nat_t_frag
3905 */
3906 static struct mbuf *
3907 key_setsadbxfrag(u_int16_t flen)
3908 {
3909 struct mbuf *m;
3910 size_t len;
3911 struct sadb_x_nat_t_frag *p;
3912
3913 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3914
3915 m = key_alloc_mbuf(len);
3916 if (!m || m->m_next) { /*XXX*/
3917 if (m)
3918 m_freem(m);
3919 return NULL;
3920 }
3921
3922 p = mtod(m, struct sadb_x_nat_t_frag *);
3923
3924 memset(p, 0, len);
3925 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3926 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3927 p->sadb_x_nat_t_frag_fraglen = flen;
3928
3929 return m;
3930 }
3931
3932 /*
3933 * Get port from sockaddr, port is in network order
3934 */
3935 u_int16_t
3936 key_portfromsaddr(const union sockaddr_union *saddr)
3937 {
3938 u_int16_t port;
3939
3940 switch (saddr->sa.sa_family) {
3941 case AF_INET: {
3942 port = saddr->sin.sin_port;
3943 break;
3944 }
3945 #ifdef INET6
3946 case AF_INET6: {
3947 port = saddr->sin6.sin6_port;
3948 break;
3949 }
3950 #endif
3951 default:
3952 printf("%s: unexpected address family\n", __func__);
3953 port = 0;
3954 break;
3955 }
3956
3957 return port;
3958 }
3959
3960
3961 /*
3962 * Set port is struct sockaddr. port is in network order
3963 */
3964 static void
3965 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3966 {
3967 switch (saddr->sa.sa_family) {
3968 case AF_INET: {
3969 saddr->sin.sin_port = port;
3970 break;
3971 }
3972 #ifdef INET6
3973 case AF_INET6: {
3974 saddr->sin6.sin6_port = port;
3975 break;
3976 }
3977 #endif
3978 default:
3979 printf("%s: unexpected address family %d\n", __func__,
3980 saddr->sa.sa_family);
3981 break;
3982 }
3983
3984 return;
3985 }
3986
3987 /*
3988 * Safety check sa_len
3989 */
3990 static int
3991 key_checksalen(const union sockaddr_union *saddr)
3992 {
3993 switch (saddr->sa.sa_family) {
3994 case AF_INET:
3995 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3996 return -1;
3997 break;
3998 #ifdef INET6
3999 case AF_INET6:
4000 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
4001 return -1;
4002 break;
4003 #endif
4004 default:
4005 printf("%s: unexpected sa_family %d\n", __func__,
4006 saddr->sa.sa_family);
4007 return -1;
4008 break;
4009 }
4010 return 0;
4011 }
4012
4013
4014 /*
4015 * set data into sadb_msg.
4016 */
4017 static struct mbuf *
4018 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
4019 u_int32_t seq, pid_t pid, u_int16_t reserved)
4020 {
4021 struct mbuf *m;
4022 struct sadb_msg *p;
4023 int len;
4024
4025 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
4026
4027 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
4028
4029 MGETHDR(m, M_DONTWAIT, MT_DATA);
4030 if (m && len > MHLEN) {
4031 MCLGET(m, M_DONTWAIT);
4032 if ((m->m_flags & M_EXT) == 0) {
4033 m_freem(m);
4034 m = NULL;
4035 }
4036 }
4037 if (!m)
4038 return NULL;
4039 m->m_pkthdr.len = m->m_len = len;
4040 m->m_next = NULL;
4041
4042 p = mtod(m, struct sadb_msg *);
4043
4044 memset(p, 0, len);
4045 p->sadb_msg_version = PF_KEY_V2;
4046 p->sadb_msg_type = type;
4047 p->sadb_msg_errno = 0;
4048 p->sadb_msg_satype = satype;
4049 p->sadb_msg_len = PFKEY_UNIT64(tlen);
4050 p->sadb_msg_reserved = reserved;
4051 p->sadb_msg_seq = seq;
4052 p->sadb_msg_pid = (u_int32_t)pid;
4053
4054 return m;
4055 }
4056
4057 /*
4058 * copy secasvar data into sadb_address.
4059 */
4060 static struct mbuf *
4061 key_setsadbsa(struct secasvar *sav)
4062 {
4063 struct mbuf *m;
4064 struct sadb_sa *p;
4065 int len;
4066
4067 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4068 m = key_alloc_mbuf(len);
4069 if (!m || m->m_next) { /*XXX*/
4070 if (m)
4071 m_freem(m);
4072 return NULL;
4073 }
4074
4075 p = mtod(m, struct sadb_sa *);
4076
4077 memset(p, 0, len);
4078 p->sadb_sa_len = PFKEY_UNIT64(len);
4079 p->sadb_sa_exttype = SADB_EXT_SA;
4080 p->sadb_sa_spi = sav->spi;
4081 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4082 p->sadb_sa_state = sav->state;
4083 p->sadb_sa_auth = sav->alg_auth;
4084 p->sadb_sa_encrypt = sav->alg_enc;
4085 p->sadb_sa_flags = sav->flags;
4086
4087 return m;
4088 }
4089
4090 /*
4091 * set data into sadb_address.
4092 */
4093 static struct mbuf *
4094 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4095 u_int8_t prefixlen, u_int16_t ul_proto)
4096 {
4097 struct mbuf *m;
4098 struct sadb_address *p;
4099 size_t len;
4100
4101 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4102 PFKEY_ALIGN8(saddr->sa_len);
4103 m = key_alloc_mbuf(len);
4104 if (!m || m->m_next) { /*XXX*/
4105 if (m)
4106 m_freem(m);
4107 return NULL;
4108 }
4109
4110 p = mtod(m, struct sadb_address *);
4111
4112 memset(p, 0, len);
4113 p->sadb_address_len = PFKEY_UNIT64(len);
4114 p->sadb_address_exttype = exttype;
4115 p->sadb_address_proto = ul_proto;
4116 if (prefixlen == FULLMASK) {
4117 switch (saddr->sa_family) {
4118 case AF_INET:
4119 prefixlen = sizeof(struct in_addr) << 3;
4120 break;
4121 case AF_INET6:
4122 prefixlen = sizeof(struct in6_addr) << 3;
4123 break;
4124 default:
4125 ; /*XXX*/
4126 }
4127 }
4128 p->sadb_address_prefixlen = prefixlen;
4129 p->sadb_address_reserved = 0;
4130
4131 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4132 saddr, saddr->sa_len);
4133
4134 return m;
4135 }
4136
4137 #if 0
4138 /*
4139 * set data into sadb_ident.
4140 */
4141 static struct mbuf *
4142 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4143 void *string, int stringlen, u_int64_t id)
4144 {
4145 struct mbuf *m;
4146 struct sadb_ident *p;
4147 size_t len;
4148
4149 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4150 m = key_alloc_mbuf(len);
4151 if (!m || m->m_next) { /*XXX*/
4152 if (m)
4153 m_freem(m);
4154 return NULL;
4155 }
4156
4157 p = mtod(m, struct sadb_ident *);
4158
4159 memset(p, 0, len);
4160 p->sadb_ident_len = PFKEY_UNIT64(len);
4161 p->sadb_ident_exttype = exttype;
4162 p->sadb_ident_type = idtype;
4163 p->sadb_ident_reserved = 0;
4164 p->sadb_ident_id = id;
4165
4166 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4167 string, stringlen);
4168
4169 return m;
4170 }
4171 #endif
4172
4173 /*
4174 * set data into sadb_x_sa2.
4175 */
4176 static struct mbuf *
4177 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4178 {
4179 struct mbuf *m;
4180 struct sadb_x_sa2 *p;
4181 size_t len;
4182
4183 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4184 m = key_alloc_mbuf(len);
4185 if (!m || m->m_next) { /*XXX*/
4186 if (m)
4187 m_freem(m);
4188 return NULL;
4189 }
4190
4191 p = mtod(m, struct sadb_x_sa2 *);
4192
4193 memset(p, 0, len);
4194 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4195 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4196 p->sadb_x_sa2_mode = mode;
4197 p->sadb_x_sa2_reserved1 = 0;
4198 p->sadb_x_sa2_reserved2 = 0;
4199 p->sadb_x_sa2_sequence = seq;
4200 p->sadb_x_sa2_reqid = reqid;
4201
4202 return m;
4203 }
4204
4205 /*
4206 * set data into sadb_x_policy
4207 */
4208 static struct mbuf *
4209 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4210 {
4211 struct mbuf *m;
4212 struct sadb_x_policy *p;
4213 size_t len;
4214
4215 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4216 m = key_alloc_mbuf(len);
4217 if (!m || m->m_next) { /*XXX*/
4218 if (m)
4219 m_freem(m);
4220 return NULL;
4221 }
4222
4223 p = mtod(m, struct sadb_x_policy *);
4224
4225 memset(p, 0, len);
4226 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4227 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4228 p->sadb_x_policy_type = type;
4229 p->sadb_x_policy_dir = dir;
4230 p->sadb_x_policy_id = id;
4231
4232 return m;
4233 }
4234
4235 /* %%% utilities */
4236 /*
4237 * copy a buffer into the new buffer allocated.
4238 */
4239 static void *
4240 key_newbuf(const void *src, u_int len)
4241 {
4242 void *new;
4243
4244 new = kmem_alloc(len, KM_SLEEP);
4245 memcpy(new, src, len);
4246
4247 return new;
4248 }
4249
4250 /* compare my own address
4251 * OUT: 1: true, i.e. my address.
4252 * 0: false
4253 */
4254 int
4255 key_ismyaddr(const struct sockaddr *sa)
4256 {
4257 #ifdef INET
4258 const struct sockaddr_in *sin;
4259 const struct in_ifaddr *ia;
4260 int s;
4261 #endif
4262
4263 KASSERT(sa != NULL);
4264
4265 switch (sa->sa_family) {
4266 #ifdef INET
4267 case AF_INET:
4268 sin = (const struct sockaddr_in *)sa;
4269 s = pserialize_read_enter();
4270 IN_ADDRLIST_READER_FOREACH(ia) {
4271 if (sin->sin_family == ia->ia_addr.sin_family &&
4272 sin->sin_len == ia->ia_addr.sin_len &&
4273 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4274 {
4275 pserialize_read_exit(s);
4276 return 1;
4277 }
4278 }
4279 pserialize_read_exit(s);
4280 break;
4281 #endif
4282 #ifdef INET6
4283 case AF_INET6:
4284 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4285 #endif
4286 }
4287
4288 return 0;
4289 }
4290
4291 #ifdef INET6
4292 /*
4293 * compare my own address for IPv6.
4294 * 1: ours
4295 * 0: other
4296 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4297 */
4298 #include <netinet6/in6_var.h>
4299
4300 static int
4301 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4302 {
4303 struct in6_ifaddr *ia;
4304 int s;
4305 struct psref psref;
4306 int bound;
4307 int ours = 1;
4308
4309 bound = curlwp_bind();
4310 s = pserialize_read_enter();
4311 IN6_ADDRLIST_READER_FOREACH(ia) {
4312 bool ingroup;
4313
4314 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4315 (const struct sockaddr *)&ia->ia_addr, 0)) {
4316 pserialize_read_exit(s);
4317 goto ours;
4318 }
4319 ia6_acquire(ia, &psref);
4320 pserialize_read_exit(s);
4321
4322 /*
4323 * XXX Multicast
4324 * XXX why do we care about multlicast here while we don't care
4325 * about IPv4 multicast??
4326 * XXX scope
4327 */
4328 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4329 if (ingroup) {
4330 ia6_release(ia, &psref);
4331 goto ours;
4332 }
4333
4334 s = pserialize_read_enter();
4335 ia6_release(ia, &psref);
4336 }
4337 pserialize_read_exit(s);
4338
4339 /* loopback, just for safety */
4340 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4341 goto ours;
4342
4343 ours = 0;
4344 ours:
4345 curlwp_bindx(bound);
4346
4347 return ours;
4348 }
4349 #endif /*INET6*/
4350
4351 /*
4352 * compare two secasindex structure.
4353 * flag can specify to compare 2 saidxes.
4354 * compare two secasindex structure without both mode and reqid.
4355 * don't compare port.
4356 * IN:
4357 * saidx0: source, it can be in SAD.
4358 * saidx1: object.
4359 * OUT:
4360 * 1 : equal
4361 * 0 : not equal
4362 */
4363 static int
4364 key_saidx_match(
4365 const struct secasindex *saidx0,
4366 const struct secasindex *saidx1,
4367 int flag)
4368 {
4369 int chkport;
4370 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4371
4372 KASSERT(saidx0 != NULL);
4373 KASSERT(saidx1 != NULL);
4374
4375 /* sanity */
4376 if (saidx0->proto != saidx1->proto)
4377 return 0;
4378
4379 if (flag == CMP_EXACTLY) {
4380 if (saidx0->mode != saidx1->mode)
4381 return 0;
4382 if (saidx0->reqid != saidx1->reqid)
4383 return 0;
4384 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4385 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4386 return 0;
4387 } else {
4388
4389 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4390 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4391 /*
4392 * If reqid of SPD is non-zero, unique SA is required.
4393 * The result must be of same reqid in this case.
4394 */
4395 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4396 return 0;
4397 }
4398
4399 if (flag == CMP_MODE_REQID) {
4400 if (saidx0->mode != IPSEC_MODE_ANY &&
4401 saidx0->mode != saidx1->mode)
4402 return 0;
4403 }
4404
4405
4406 sa0src = &saidx0->src.sa;
4407 sa0dst = &saidx0->dst.sa;
4408 sa1src = &saidx1->src.sa;
4409 sa1dst = &saidx1->dst.sa;
4410 /*
4411 * If NAT-T is enabled, check ports for tunnel mode.
4412 * Don't do it for transport mode, as there is no
4413 * port information available in the SP.
4414 * Also don't check ports if they are set to zero
4415 * in the SPD: This means we have a non-generated
4416 * SPD which can't know UDP ports.
4417 */
4418 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4419 chkport = PORT_LOOSE;
4420 else
4421 chkport = PORT_NONE;
4422
4423 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4424 return 0;
4425 }
4426 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4427 return 0;
4428 }
4429 }
4430
4431 return 1;
4432 }
4433
4434 /*
4435 * compare two secindex structure exactly.
4436 * IN:
4437 * spidx0: source, it is often in SPD.
4438 * spidx1: object, it is often from PFKEY message.
4439 * OUT:
4440 * 1 : equal
4441 * 0 : not equal
4442 */
4443 static int
4444 key_spidx_match_exactly(
4445 const struct secpolicyindex *spidx0,
4446 const struct secpolicyindex *spidx1)
4447 {
4448
4449 KASSERT(spidx0 != NULL);
4450 KASSERT(spidx1 != NULL);
4451
4452 /* sanity */
4453 if (spidx0->prefs != spidx1->prefs ||
4454 spidx0->prefd != spidx1->prefd ||
4455 spidx0->ul_proto != spidx1->ul_proto)
4456 return 0;
4457
4458 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4459 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4460 }
4461
4462 /*
4463 * compare two secindex structure with mask.
4464 * IN:
4465 * spidx0: source, it is often in SPD.
4466 * spidx1: object, it is often from IP header.
4467 * OUT:
4468 * 1 : equal
4469 * 0 : not equal
4470 */
4471 static int
4472 key_spidx_match_withmask(
4473 const struct secpolicyindex *spidx0,
4474 const struct secpolicyindex *spidx1)
4475 {
4476
4477 KASSERT(spidx0 != NULL);
4478 KASSERT(spidx1 != NULL);
4479
4480 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4481 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4482 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4483 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4484 return 0;
4485
4486 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4487 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4488 spidx0->ul_proto != spidx1->ul_proto)
4489 return 0;
4490
4491 switch (spidx0->src.sa.sa_family) {
4492 case AF_INET:
4493 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4494 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4495 return 0;
4496 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4497 &spidx1->src.sin.sin_addr, spidx0->prefs))
4498 return 0;
4499 break;
4500 case AF_INET6:
4501 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4502 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4503 return 0;
4504 /*
4505 * scope_id check. if sin6_scope_id is 0, we regard it
4506 * as a wildcard scope, which matches any scope zone ID.
4507 */
4508 if (spidx0->src.sin6.sin6_scope_id &&
4509 spidx1->src.sin6.sin6_scope_id &&
4510 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4511 return 0;
4512 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4513 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4514 return 0;
4515 break;
4516 default:
4517 /* XXX */
4518 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4519 return 0;
4520 break;
4521 }
4522
4523 switch (spidx0->dst.sa.sa_family) {
4524 case AF_INET:
4525 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4526 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4527 return 0;
4528 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4529 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4530 return 0;
4531 break;
4532 case AF_INET6:
4533 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4534 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4535 return 0;
4536 /*
4537 * scope_id check. if sin6_scope_id is 0, we regard it
4538 * as a wildcard scope, which matches any scope zone ID.
4539 */
4540 if (spidx0->src.sin6.sin6_scope_id &&
4541 spidx1->src.sin6.sin6_scope_id &&
4542 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4543 return 0;
4544 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4545 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4546 return 0;
4547 break;
4548 default:
4549 /* XXX */
4550 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4551 return 0;
4552 break;
4553 }
4554
4555 /* XXX Do we check other field ? e.g. flowinfo */
4556
4557 return 1;
4558 }
4559
4560 /* returns 0 on match */
4561 static int
4562 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4563 {
4564 switch (howport) {
4565 case PORT_NONE:
4566 return 0;
4567 case PORT_LOOSE:
4568 if (port1 == 0 || port2 == 0)
4569 return 0;
4570 /*FALLTHROUGH*/
4571 case PORT_STRICT:
4572 if (port1 != port2) {
4573 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4574 "port fail %d != %d\n", port1, port2);
4575 return 1;
4576 }
4577 return 0;
4578 default:
4579 KASSERT(0);
4580 return 1;
4581 }
4582 }
4583
4584 /* returns 1 on match */
4585 static int
4586 key_sockaddr_match(
4587 const struct sockaddr *sa1,
4588 const struct sockaddr *sa2,
4589 int howport)
4590 {
4591 const struct sockaddr_in *sin1, *sin2;
4592 const struct sockaddr_in6 *sin61, *sin62;
4593
4594 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4595 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4596 "fam/len fail %d != %d || %d != %d\n",
4597 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4598 sa2->sa_len);
4599 return 0;
4600 }
4601
4602 switch (sa1->sa_family) {
4603 case AF_INET:
4604 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4605 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4606 "len fail %d != %zu\n",
4607 sa1->sa_len, sizeof(struct sockaddr_in));
4608 return 0;
4609 }
4610 sin1 = (const struct sockaddr_in *)sa1;
4611 sin2 = (const struct sockaddr_in *)sa2;
4612 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4613 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4614 "addr fail %#x != %#x\n",
4615 sin1->sin_addr.s_addr, sin2->sin_addr.s_addr);
4616 return 0;
4617 }
4618 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4619 return 0;
4620 }
4621 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4622 "addr success %#x[%d] == %#x[%d]\n",
4623 sin1->sin_addr.s_addr, sin1->sin_port,
4624 sin2->sin_addr.s_addr, sin2->sin_port);
4625 break;
4626 case AF_INET6:
4627 sin61 = (const struct sockaddr_in6 *)sa1;
4628 sin62 = (const struct sockaddr_in6 *)sa2;
4629 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4630 return 0; /*EINVAL*/
4631
4632 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4633 return 0;
4634 }
4635 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4636 return 0;
4637 }
4638 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4639 return 0;
4640 }
4641 break;
4642 default:
4643 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4644 return 0;
4645 break;
4646 }
4647
4648 return 1;
4649 }
4650
4651 /*
4652 * compare two buffers with mask.
4653 * IN:
4654 * addr1: source
4655 * addr2: object
4656 * bits: Number of bits to compare
4657 * OUT:
4658 * 1 : equal
4659 * 0 : not equal
4660 */
4661 static int
4662 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4663 {
4664 const unsigned char *p1 = a1;
4665 const unsigned char *p2 = a2;
4666
4667 /* XXX: This could be considerably faster if we compare a word
4668 * at a time, but it is complicated on LSB Endian machines */
4669
4670 /* Handle null pointers */
4671 if (p1 == NULL || p2 == NULL)
4672 return (p1 == p2);
4673
4674 while (bits >= 8) {
4675 if (*p1++ != *p2++)
4676 return 0;
4677 bits -= 8;
4678 }
4679
4680 if (bits > 0) {
4681 u_int8_t mask = ~((1<<(8-bits))-1);
4682 if ((*p1 & mask) != (*p2 & mask))
4683 return 0;
4684 }
4685 return 1; /* Match! */
4686 }
4687
4688 static void
4689 key_timehandler_spd(time_t now)
4690 {
4691 u_int dir;
4692 struct secpolicy *sp;
4693
4694 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4695 retry:
4696 mutex_enter(&key_spd.lock);
4697 SPLIST_WRITER_FOREACH(sp, dir) {
4698 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4699
4700 if (sp->lifetime == 0 && sp->validtime == 0)
4701 continue;
4702
4703 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4704 (sp->validtime && now - sp->lastused > sp->validtime)) {
4705 key_unlink_sp(sp);
4706 mutex_exit(&key_spd.lock);
4707 key_spdexpire(sp);
4708 key_destroy_sp(sp);
4709 goto retry;
4710 }
4711 }
4712 mutex_exit(&key_spd.lock);
4713 }
4714
4715 retry_socksplist:
4716 mutex_enter(&key_spd.lock);
4717 SOCKSPLIST_WRITER_FOREACH(sp) {
4718 if (sp->state != IPSEC_SPSTATE_DEAD)
4719 continue;
4720
4721 key_unlink_sp(sp);
4722 mutex_exit(&key_spd.lock);
4723 key_destroy_sp(sp);
4724 goto retry_socksplist;
4725 }
4726 mutex_exit(&key_spd.lock);
4727 }
4728
4729 static void
4730 key_timehandler_sad(time_t now)
4731 {
4732 struct secashead *sah;
4733 int s;
4734
4735 restart:
4736 mutex_enter(&key_sad.lock);
4737 SAHLIST_WRITER_FOREACH(sah) {
4738 /* If sah has been dead and has no sav, then delete it */
4739 if (sah->state == SADB_SASTATE_DEAD &&
4740 !key_sah_has_sav(sah)) {
4741 key_unlink_sah(sah);
4742 mutex_exit(&key_sad.lock);
4743 key_destroy_sah(sah);
4744 goto restart;
4745 }
4746 }
4747 mutex_exit(&key_sad.lock);
4748
4749 s = pserialize_read_enter();
4750 SAHLIST_READER_FOREACH(sah) {
4751 struct secasvar *sav;
4752
4753 key_sah_ref(sah);
4754 pserialize_read_exit(s);
4755
4756 /* if LARVAL entry doesn't become MATURE, delete it. */
4757 mutex_enter(&key_sad.lock);
4758 restart_sav_LARVAL:
4759 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4760 if (now - sav->created > key_larval_lifetime) {
4761 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4762 goto restart_sav_LARVAL;
4763 }
4764 }
4765 mutex_exit(&key_sad.lock);
4766
4767 /*
4768 * check MATURE entry to start to send expire message
4769 * whether or not.
4770 */
4771 restart_sav_MATURE:
4772 mutex_enter(&key_sad.lock);
4773 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4774 /* we don't need to check. */
4775 if (sav->lft_s == NULL)
4776 continue;
4777
4778 /* sanity check */
4779 KASSERT(sav->lft_c != NULL);
4780
4781 /* check SOFT lifetime */
4782 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4783 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4784 /*
4785 * check SA to be used whether or not.
4786 * when SA hasn't been used, delete it.
4787 */
4788 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4789 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4790 mutex_exit(&key_sad.lock);
4791 } else {
4792 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4793 mutex_exit(&key_sad.lock);
4794 /*
4795 * XXX If we keep to send expire
4796 * message in the status of
4797 * DYING. Do remove below code.
4798 */
4799 key_expire(sav);
4800 }
4801 goto restart_sav_MATURE;
4802 }
4803 /* check SOFT lifetime by bytes */
4804 /*
4805 * XXX I don't know the way to delete this SA
4806 * when new SA is installed. Caution when it's
4807 * installed too big lifetime by time.
4808 */
4809 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4810 sav->lft_s->sadb_lifetime_bytes <
4811 sav->lft_c->sadb_lifetime_bytes) {
4812
4813 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4814 mutex_exit(&key_sad.lock);
4815 /*
4816 * XXX If we keep to send expire
4817 * message in the status of
4818 * DYING. Do remove below code.
4819 */
4820 key_expire(sav);
4821 goto restart_sav_MATURE;
4822 }
4823 }
4824 mutex_exit(&key_sad.lock);
4825
4826 /* check DYING entry to change status to DEAD. */
4827 mutex_enter(&key_sad.lock);
4828 restart_sav_DYING:
4829 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4830 /* we don't need to check. */
4831 if (sav->lft_h == NULL)
4832 continue;
4833
4834 /* sanity check */
4835 KASSERT(sav->lft_c != NULL);
4836
4837 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4838 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4839 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4840 goto restart_sav_DYING;
4841 }
4842 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4843 else if (sav->lft_s != NULL
4844 && sav->lft_s->sadb_lifetime_addtime != 0
4845 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4846 /*
4847 * XXX: should be checked to be
4848 * installed the valid SA.
4849 */
4850
4851 /*
4852 * If there is no SA then sending
4853 * expire message.
4854 */
4855 key_expire(sav);
4856 }
4857 #endif
4858 /* check HARD lifetime by bytes */
4859 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4860 sav->lft_h->sadb_lifetime_bytes <
4861 sav->lft_c->sadb_lifetime_bytes) {
4862 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4863 goto restart_sav_DYING;
4864 }
4865 }
4866 mutex_exit(&key_sad.lock);
4867
4868 /* delete entry in DEAD */
4869 restart_sav_DEAD:
4870 mutex_enter(&key_sad.lock);
4871 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4872 key_unlink_sav(sav);
4873 mutex_exit(&key_sad.lock);
4874 key_destroy_sav(sav);
4875 goto restart_sav_DEAD;
4876 }
4877 mutex_exit(&key_sad.lock);
4878
4879 s = pserialize_read_enter();
4880 key_sah_unref(sah);
4881 }
4882 pserialize_read_exit(s);
4883 }
4884
4885 static void
4886 key_timehandler_acq(time_t now)
4887 {
4888 #ifndef IPSEC_NONBLOCK_ACQUIRE
4889 struct secacq *acq, *nextacq;
4890
4891 restart:
4892 mutex_enter(&key_misc.lock);
4893 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4894 if (now - acq->created > key_blockacq_lifetime) {
4895 LIST_REMOVE(acq, chain);
4896 mutex_exit(&key_misc.lock);
4897 kmem_free(acq, sizeof(*acq));
4898 goto restart;
4899 }
4900 }
4901 mutex_exit(&key_misc.lock);
4902 #endif
4903 }
4904
4905 static void
4906 key_timehandler_spacq(time_t now)
4907 {
4908 #ifdef notyet
4909 struct secspacq *acq, *nextacq;
4910
4911 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4912 if (now - acq->created > key_blockacq_lifetime) {
4913 KASSERT(__LIST_CHAINED(acq));
4914 LIST_REMOVE(acq, chain);
4915 kmem_free(acq, sizeof(*acq));
4916 }
4917 }
4918 #endif
4919 }
4920
4921 static unsigned int key_timehandler_work_enqueued = 0;
4922
4923 /*
4924 * time handler.
4925 * scanning SPD and SAD to check status for each entries,
4926 * and do to remove or to expire.
4927 */
4928 static void
4929 key_timehandler_work(struct work *wk, void *arg)
4930 {
4931 time_t now = time_uptime;
4932 IPSEC_DECLARE_LOCK_VARIABLE;
4933
4934 /* We can allow enqueuing another work at this point */
4935 atomic_swap_uint(&key_timehandler_work_enqueued, 0);
4936
4937 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4938
4939 key_timehandler_spd(now);
4940 key_timehandler_sad(now);
4941 key_timehandler_acq(now);
4942 key_timehandler_spacq(now);
4943
4944 key_acquire_sendup_pending_mbuf();
4945
4946 /* do exchange to tick time !! */
4947 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4948
4949 IPSEC_RELEASE_GLOBAL_LOCKS();
4950 return;
4951 }
4952
4953 static void
4954 key_timehandler(void *arg)
4955 {
4956
4957 /* Avoid enqueuing another work when one is already enqueued */
4958 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
4959 return;
4960
4961 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4962 }
4963
4964 u_long
4965 key_random(void)
4966 {
4967 u_long value;
4968
4969 key_randomfill(&value, sizeof(value));
4970 return value;
4971 }
4972
4973 void
4974 key_randomfill(void *p, size_t l)
4975 {
4976
4977 cprng_fast(p, l);
4978 }
4979
4980 /*
4981 * map SADB_SATYPE_* to IPPROTO_*.
4982 * if satype == SADB_SATYPE then satype is mapped to ~0.
4983 * OUT:
4984 * 0: invalid satype.
4985 */
4986 static u_int16_t
4987 key_satype2proto(u_int8_t satype)
4988 {
4989 switch (satype) {
4990 case SADB_SATYPE_UNSPEC:
4991 return IPSEC_PROTO_ANY;
4992 case SADB_SATYPE_AH:
4993 return IPPROTO_AH;
4994 case SADB_SATYPE_ESP:
4995 return IPPROTO_ESP;
4996 case SADB_X_SATYPE_IPCOMP:
4997 return IPPROTO_IPCOMP;
4998 case SADB_X_SATYPE_TCPSIGNATURE:
4999 return IPPROTO_TCP;
5000 default:
5001 return 0;
5002 }
5003 /* NOTREACHED */
5004 }
5005
5006 /*
5007 * map IPPROTO_* to SADB_SATYPE_*
5008 * OUT:
5009 * 0: invalid protocol type.
5010 */
5011 static u_int8_t
5012 key_proto2satype(u_int16_t proto)
5013 {
5014 switch (proto) {
5015 case IPPROTO_AH:
5016 return SADB_SATYPE_AH;
5017 case IPPROTO_ESP:
5018 return SADB_SATYPE_ESP;
5019 case IPPROTO_IPCOMP:
5020 return SADB_X_SATYPE_IPCOMP;
5021 case IPPROTO_TCP:
5022 return SADB_X_SATYPE_TCPSIGNATURE;
5023 default:
5024 return 0;
5025 }
5026 /* NOTREACHED */
5027 }
5028
5029 static int
5030 key_setsecasidx(int proto, int mode, int reqid,
5031 const struct sockaddr *src, const struct sockaddr *dst,
5032 struct secasindex * saidx)
5033 {
5034 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
5035 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
5036
5037 /* sa len safety check */
5038 if (key_checksalen(src_u) != 0)
5039 return -1;
5040 if (key_checksalen(dst_u) != 0)
5041 return -1;
5042
5043 memset(saidx, 0, sizeof(*saidx));
5044 saidx->proto = proto;
5045 saidx->mode = mode;
5046 saidx->reqid = reqid;
5047 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
5048 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
5049
5050 key_porttosaddr(&((saidx)->src), 0);
5051 key_porttosaddr(&((saidx)->dst), 0);
5052 return 0;
5053 }
5054
5055 static void
5056 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
5057 const struct sadb_msghdr *mhp)
5058 {
5059 const struct sadb_address *src0, *dst0;
5060 const struct sockaddr *src, *dst;
5061 const struct sadb_x_policy *xpl0;
5062
5063 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5064 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5065 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5066 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5067 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
5068
5069 memset(spidx, 0, sizeof(*spidx));
5070 spidx->dir = xpl0->sadb_x_policy_dir;
5071 spidx->prefs = src0->sadb_address_prefixlen;
5072 spidx->prefd = dst0->sadb_address_prefixlen;
5073 spidx->ul_proto = src0->sadb_address_proto;
5074 /* XXX boundary check against sa_len */
5075 memcpy(&spidx->src, src, src->sa_len);
5076 memcpy(&spidx->dst, dst, dst->sa_len);
5077 }
5078
5079 /* %%% PF_KEY */
5080 /*
5081 * SADB_GETSPI processing is to receive
5082 * <base, (SA2), src address, dst address, (SPI range)>
5083 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5084 * tree with the status of LARVAL, and send
5085 * <base, SA(*), address(SD)>
5086 * to the IKMPd.
5087 *
5088 * IN: mhp: pointer to the pointer to each header.
5089 * OUT: NULL if fail.
5090 * other if success, return pointer to the message to send.
5091 */
5092 static int
5093 key_api_getspi(struct socket *so, struct mbuf *m,
5094 const struct sadb_msghdr *mhp)
5095 {
5096 const struct sockaddr *src, *dst;
5097 struct secasindex saidx;
5098 struct secashead *sah;
5099 struct secasvar *newsav;
5100 u_int8_t proto;
5101 u_int32_t spi;
5102 u_int8_t mode;
5103 u_int16_t reqid;
5104 int error;
5105
5106 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5107 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5108 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5109 return key_senderror(so, m, EINVAL);
5110 }
5111 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5112 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5113 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5114 return key_senderror(so, m, EINVAL);
5115 }
5116 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5117 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5118 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5119 } else {
5120 mode = IPSEC_MODE_ANY;
5121 reqid = 0;
5122 }
5123
5124 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5125 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5126
5127 /* map satype to proto */
5128 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5129 if (proto == 0) {
5130 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5131 return key_senderror(so, m, EINVAL);
5132 }
5133
5134
5135 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5136 if (error != 0)
5137 return key_senderror(so, m, EINVAL);
5138
5139 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5140 if (error != 0)
5141 return key_senderror(so, m, EINVAL);
5142
5143 /* SPI allocation */
5144 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
5145 &saidx);
5146 if (spi == 0)
5147 return key_senderror(so, m, EINVAL);
5148
5149 /* get a SA index */
5150 sah = key_getsah_ref(&saidx, CMP_REQID);
5151 if (sah == NULL) {
5152 /* create a new SA index */
5153 sah = key_newsah(&saidx);
5154 if (sah == NULL) {
5155 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5156 return key_senderror(so, m, ENOBUFS);
5157 }
5158 }
5159
5160 /* get a new SA */
5161 /* XXX rewrite */
5162 newsav = KEY_NEWSAV(m, mhp, &error);
5163 if (newsav == NULL) {
5164 key_sah_unref(sah);
5165 /* XXX don't free new SA index allocated in above. */
5166 return key_senderror(so, m, error);
5167 }
5168
5169 /* set spi */
5170 newsav->spi = htonl(spi);
5171
5172 /* Add to sah#savlist */
5173 key_init_sav(newsav);
5174 newsav->sah = sah;
5175 newsav->state = SADB_SASTATE_LARVAL;
5176 mutex_enter(&key_sad.lock);
5177 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5178 mutex_exit(&key_sad.lock);
5179 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5180
5181 key_sah_unref(sah);
5182
5183 #ifndef IPSEC_NONBLOCK_ACQUIRE
5184 /* delete the entry in key_misc.acqlist */
5185 if (mhp->msg->sadb_msg_seq != 0) {
5186 struct secacq *acq;
5187 mutex_enter(&key_misc.lock);
5188 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5189 if (acq != NULL) {
5190 /* reset counter in order to deletion by timehandler. */
5191 acq->created = time_uptime;
5192 acq->count = 0;
5193 }
5194 mutex_exit(&key_misc.lock);
5195 }
5196 #endif
5197
5198 {
5199 struct mbuf *n, *nn;
5200 struct sadb_sa *m_sa;
5201 int off, len;
5202
5203 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5204 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5205
5206 /* create new sadb_msg to reply. */
5207 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5208 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5209
5210 MGETHDR(n, M_DONTWAIT, MT_DATA);
5211 if (len > MHLEN) {
5212 MCLGET(n, M_DONTWAIT);
5213 if ((n->m_flags & M_EXT) == 0) {
5214 m_freem(n);
5215 n = NULL;
5216 }
5217 }
5218 if (!n)
5219 return key_senderror(so, m, ENOBUFS);
5220
5221 n->m_len = len;
5222 n->m_next = NULL;
5223 off = 0;
5224
5225 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5226 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5227
5228 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5229 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5230 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5231 m_sa->sadb_sa_spi = htonl(spi);
5232 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5233
5234 KASSERTMSG(off == len, "length inconsistency");
5235
5236 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5237 SADB_EXT_ADDRESS_DST);
5238 if (!n->m_next) {
5239 m_freem(n);
5240 return key_senderror(so, m, ENOBUFS);
5241 }
5242
5243 if (n->m_len < sizeof(struct sadb_msg)) {
5244 n = m_pullup(n, sizeof(struct sadb_msg));
5245 if (n == NULL)
5246 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5247 }
5248
5249 n->m_pkthdr.len = 0;
5250 for (nn = n; nn; nn = nn->m_next)
5251 n->m_pkthdr.len += nn->m_len;
5252
5253 key_fill_replymsg(n, newsav->seq);
5254
5255 m_freem(m);
5256 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5257 }
5258 }
5259
5260 /*
5261 * allocating new SPI
5262 * called by key_api_getspi().
5263 * OUT:
5264 * 0: failure.
5265 * others: success.
5266 */
5267 static u_int32_t
5268 key_do_getnewspi(const struct sadb_spirange *spirange,
5269 const struct secasindex *saidx)
5270 {
5271 u_int32_t newspi;
5272 u_int32_t spmin, spmax;
5273 int count = key_spi_trycnt;
5274
5275 /* set spi range to allocate */
5276 if (spirange != NULL) {
5277 spmin = spirange->sadb_spirange_min;
5278 spmax = spirange->sadb_spirange_max;
5279 } else {
5280 spmin = key_spi_minval;
5281 spmax = key_spi_maxval;
5282 }
5283 /* IPCOMP needs 2-byte SPI */
5284 if (saidx->proto == IPPROTO_IPCOMP) {
5285 u_int32_t t;
5286 if (spmin >= 0x10000)
5287 spmin = 0xffff;
5288 if (spmax >= 0x10000)
5289 spmax = 0xffff;
5290 if (spmin > spmax) {
5291 t = spmin; spmin = spmax; spmax = t;
5292 }
5293 }
5294
5295 if (spmin == spmax) {
5296 if (key_checkspidup(saidx, htonl(spmin))) {
5297 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5298 return 0;
5299 }
5300
5301 count--; /* taking one cost. */
5302 newspi = spmin;
5303
5304 } else {
5305
5306 /* init SPI */
5307 newspi = 0;
5308
5309 /* when requesting to allocate spi ranged */
5310 while (count--) {
5311 /* generate pseudo-random SPI value ranged. */
5312 newspi = spmin + (key_random() % (spmax - spmin + 1));
5313
5314 if (!key_checkspidup(saidx, htonl(newspi)))
5315 break;
5316 }
5317
5318 if (count == 0 || newspi == 0) {
5319 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5320 return 0;
5321 }
5322 }
5323
5324 /* statistics */
5325 keystat.getspi_count =
5326 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5327
5328 return newspi;
5329 }
5330
5331 static int
5332 key_handle_natt_info(struct secasvar *sav,
5333 const struct sadb_msghdr *mhp)
5334 {
5335 const char *msg = "?" ;
5336 struct sadb_x_nat_t_type *type;
5337 struct sadb_x_nat_t_port *sport, *dport;
5338 struct sadb_address *iaddr, *raddr;
5339 struct sadb_x_nat_t_frag *frag;
5340
5341 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5342 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5343 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5344 return 0;
5345
5346 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5347 msg = "TYPE";
5348 goto bad;
5349 }
5350
5351 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5352 msg = "SPORT";
5353 goto bad;
5354 }
5355
5356 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5357 msg = "DPORT";
5358 goto bad;
5359 }
5360
5361 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5362 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5363 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5364 msg = "OAI";
5365 goto bad;
5366 }
5367 }
5368
5369 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5370 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5371 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5372 msg = "OAR";
5373 goto bad;
5374 }
5375 }
5376
5377 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5378 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5379 msg = "FRAG";
5380 goto bad;
5381 }
5382 }
5383
5384 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5385 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5386 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5387 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5388 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5389 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5390
5391 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5392 type->sadb_x_nat_t_type_type,
5393 ntohs(sport->sadb_x_nat_t_port_port),
5394 ntohs(dport->sadb_x_nat_t_port_port));
5395
5396 sav->natt_type = type->sadb_x_nat_t_type_type;
5397 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5398 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5399 if (frag)
5400 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5401 else
5402 sav->esp_frag = IP_MAXPACKET;
5403
5404 return 0;
5405 bad:
5406 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5407 __USE(msg);
5408 return -1;
5409 }
5410
5411 /* Just update the IPSEC_NAT_T ports if present */
5412 static int
5413 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5414 const struct sadb_msghdr *mhp)
5415 {
5416 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5417 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5418 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5419 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5420
5421 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5422 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5423 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5424 struct sadb_x_nat_t_type *type;
5425 struct sadb_x_nat_t_port *sport;
5426 struct sadb_x_nat_t_port *dport;
5427
5428 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5429 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5430 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5431 IPSECLOG(LOG_DEBUG, "invalid message\n");
5432 return -1;
5433 }
5434
5435 type = (struct sadb_x_nat_t_type *)
5436 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5437 sport = (struct sadb_x_nat_t_port *)
5438 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5439 dport = (struct sadb_x_nat_t_port *)
5440 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5441
5442 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5443 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5444
5445 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5446 type->sadb_x_nat_t_type_type,
5447 ntohs(sport->sadb_x_nat_t_port_port),
5448 ntohs(dport->sadb_x_nat_t_port_port));
5449 }
5450
5451 return 0;
5452 }
5453
5454
5455 /*
5456 * SADB_UPDATE processing
5457 * receive
5458 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5459 * key(AE), (identity(SD),) (sensitivity)>
5460 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5461 * and send
5462 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5463 * (identity(SD),) (sensitivity)>
5464 * to the ikmpd.
5465 *
5466 * m will always be freed.
5467 */
5468 static int
5469 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5470 {
5471 struct sadb_sa *sa0;
5472 const struct sockaddr *src, *dst;
5473 struct secasindex saidx;
5474 struct secashead *sah;
5475 struct secasvar *sav, *newsav;
5476 u_int16_t proto;
5477 u_int8_t mode;
5478 u_int16_t reqid;
5479 int error;
5480
5481 /* map satype to proto */
5482 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5483 if (proto == 0) {
5484 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5485 return key_senderror(so, m, EINVAL);
5486 }
5487
5488 if (mhp->ext[SADB_EXT_SA] == NULL ||
5489 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5490 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5491 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5492 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5493 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5494 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5495 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5496 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5497 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5498 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5499 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5500 return key_senderror(so, m, EINVAL);
5501 }
5502 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5503 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5504 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5505 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5506 return key_senderror(so, m, EINVAL);
5507 }
5508 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5509 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5510 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5511 } else {
5512 mode = IPSEC_MODE_ANY;
5513 reqid = 0;
5514 }
5515 /* XXX boundary checking for other extensions */
5516
5517 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5518 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5519 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5520
5521 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5522 if (error != 0)
5523 return key_senderror(so, m, EINVAL);
5524
5525 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5526 if (error != 0)
5527 return key_senderror(so, m, EINVAL);
5528
5529 /* get a SA header */
5530 sah = key_getsah_ref(&saidx, CMP_REQID);
5531 if (sah == NULL) {
5532 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5533 return key_senderror(so, m, ENOENT);
5534 }
5535
5536 /* set spidx if there */
5537 /* XXX rewrite */
5538 error = key_setident(sah, m, mhp);
5539 if (error)
5540 goto error_sah;
5541
5542 /* find a SA with sequence number. */
5543 #ifdef IPSEC_DOSEQCHECK
5544 if (mhp->msg->sadb_msg_seq != 0) {
5545 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5546 if (sav == NULL) {
5547 IPSECLOG(LOG_DEBUG,
5548 "no larval SA with sequence %u exists.\n",
5549 mhp->msg->sadb_msg_seq);
5550 error = ENOENT;
5551 goto error_sah;
5552 }
5553 }
5554 #else
5555 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5556 if (sav == NULL) {
5557 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5558 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5559 error = EINVAL;
5560 goto error_sah;
5561 }
5562 #endif
5563
5564 /* validity check */
5565 if (sav->sah->saidx.proto != proto) {
5566 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5567 sav->sah->saidx.proto, proto);
5568 error = EINVAL;
5569 goto error;
5570 }
5571 #ifdef IPSEC_DOSEQCHECK
5572 if (sav->spi != sa0->sadb_sa_spi) {
5573 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5574 (u_int32_t)ntohl(sav->spi),
5575 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5576 error = EINVAL;
5577 goto error;
5578 }
5579 #endif
5580 if (sav->pid != mhp->msg->sadb_msg_pid) {
5581 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5582 sav->pid, mhp->msg->sadb_msg_pid);
5583 error = EINVAL;
5584 goto error;
5585 }
5586
5587 /*
5588 * Allocate a new SA instead of modifying the existing SA directly
5589 * to avoid race conditions.
5590 */
5591 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5592
5593 /* copy sav values */
5594 newsav->spi = sav->spi;
5595 newsav->seq = sav->seq;
5596 newsav->created = sav->created;
5597 newsav->pid = sav->pid;
5598 newsav->sah = sav->sah;
5599
5600 error = key_setsaval(newsav, m, mhp);
5601 if (error) {
5602 key_delsav(newsav);
5603 goto error;
5604 }
5605
5606 error = key_handle_natt_info(newsav, mhp);
5607 if (error != 0) {
5608 key_delsav(newsav);
5609 goto error;
5610 }
5611
5612 error = key_init_xform(newsav);
5613 if (error != 0) {
5614 key_delsav(newsav);
5615 goto error;
5616 }
5617
5618 /* Add to sah#savlist */
5619 key_init_sav(newsav);
5620 newsav->state = SADB_SASTATE_MATURE;
5621 mutex_enter(&key_sad.lock);
5622 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5623 mutex_exit(&key_sad.lock);
5624 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5625
5626 key_sah_unref(sah);
5627 sah = NULL;
5628
5629 key_destroy_sav_with_ref(sav);
5630 sav = NULL;
5631
5632 {
5633 struct mbuf *n;
5634
5635 /* set msg buf from mhp */
5636 n = key_getmsgbuf_x1(m, mhp);
5637 if (n == NULL) {
5638 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5639 return key_senderror(so, m, ENOBUFS);
5640 }
5641
5642 m_freem(m);
5643 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5644 }
5645 error:
5646 KEY_SA_UNREF(&sav);
5647 error_sah:
5648 key_sah_unref(sah);
5649 return key_senderror(so, m, error);
5650 }
5651
5652 /*
5653 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5654 * only called by key_api_update().
5655 * OUT:
5656 * NULL : not found
5657 * others : found, pointer to a SA.
5658 */
5659 #ifdef IPSEC_DOSEQCHECK
5660 static struct secasvar *
5661 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5662 {
5663 struct secasvar *sav;
5664 u_int state;
5665 int s;
5666
5667 state = SADB_SASTATE_LARVAL;
5668
5669 /* search SAD with sequence number ? */
5670 s = pserialize_read_enter();
5671 SAVLIST_READER_FOREACH(sav, sah, state) {
5672 KEY_CHKSASTATE(state, sav->state);
5673
5674 if (sav->seq == seq) {
5675 SA_ADDREF(sav);
5676 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5677 "DP cause refcnt++:%d SA:%p\n",
5678 key_sa_refcnt(sav), sav);
5679 break;
5680 }
5681 }
5682 pserialize_read_exit(s);
5683
5684 return sav;
5685 }
5686 #endif
5687
5688 /*
5689 * SADB_ADD processing
5690 * add an entry to SA database, when received
5691 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5692 * key(AE), (identity(SD),) (sensitivity)>
5693 * from the ikmpd,
5694 * and send
5695 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5696 * (identity(SD),) (sensitivity)>
5697 * to the ikmpd.
5698 *
5699 * IGNORE identity and sensitivity messages.
5700 *
5701 * m will always be freed.
5702 */
5703 static int
5704 key_api_add(struct socket *so, struct mbuf *m,
5705 const struct sadb_msghdr *mhp)
5706 {
5707 struct sadb_sa *sa0;
5708 const struct sockaddr *src, *dst;
5709 struct secasindex saidx;
5710 struct secashead *sah;
5711 struct secasvar *newsav;
5712 u_int16_t proto;
5713 u_int8_t mode;
5714 u_int16_t reqid;
5715 int error;
5716
5717 /* map satype to proto */
5718 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5719 if (proto == 0) {
5720 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5721 return key_senderror(so, m, EINVAL);
5722 }
5723
5724 if (mhp->ext[SADB_EXT_SA] == NULL ||
5725 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5726 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5727 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5728 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5729 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5730 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5731 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5732 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5733 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5734 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5735 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5736 return key_senderror(so, m, EINVAL);
5737 }
5738 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5739 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5740 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5741 /* XXX need more */
5742 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5743 return key_senderror(so, m, EINVAL);
5744 }
5745 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5746 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5747 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5748 } else {
5749 mode = IPSEC_MODE_ANY;
5750 reqid = 0;
5751 }
5752
5753 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5754 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5755 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5756
5757 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5758 if (error != 0)
5759 return key_senderror(so, m, EINVAL);
5760
5761 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5762 if (error != 0)
5763 return key_senderror(so, m, EINVAL);
5764
5765 /* get a SA header */
5766 sah = key_getsah_ref(&saidx, CMP_REQID);
5767 if (sah == NULL) {
5768 /* create a new SA header */
5769 sah = key_newsah(&saidx);
5770 if (sah == NULL) {
5771 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5772 return key_senderror(so, m, ENOBUFS);
5773 }
5774 }
5775
5776 /* set spidx if there */
5777 /* XXX rewrite */
5778 error = key_setident(sah, m, mhp);
5779 if (error)
5780 goto error;
5781
5782 {
5783 struct secasvar *sav;
5784
5785 /* We can create new SA only if SPI is differenct. */
5786 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5787 if (sav != NULL) {
5788 KEY_SA_UNREF(&sav);
5789 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5790 error = EEXIST;
5791 goto error;
5792 }
5793 }
5794
5795 /* create new SA entry. */
5796 newsav = KEY_NEWSAV(m, mhp, &error);
5797 if (newsav == NULL)
5798 goto error;
5799 newsav->sah = sah;
5800
5801 error = key_handle_natt_info(newsav, mhp);
5802 if (error != 0) {
5803 key_delsav(newsav);
5804 error = EINVAL;
5805 goto error;
5806 }
5807
5808 error = key_init_xform(newsav);
5809 if (error != 0) {
5810 key_delsav(newsav);
5811 goto error;
5812 }
5813
5814 /* Add to sah#savlist */
5815 key_init_sav(newsav);
5816 newsav->state = SADB_SASTATE_MATURE;
5817 mutex_enter(&key_sad.lock);
5818 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5819 mutex_exit(&key_sad.lock);
5820 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5821
5822 key_sah_unref(sah);
5823 sah = NULL;
5824
5825 /*
5826 * don't call key_freesav() here, as we would like to keep the SA
5827 * in the database on success.
5828 */
5829
5830 {
5831 struct mbuf *n;
5832
5833 /* set msg buf from mhp */
5834 n = key_getmsgbuf_x1(m, mhp);
5835 if (n == NULL) {
5836 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5837 return key_senderror(so, m, ENOBUFS);
5838 }
5839
5840 m_freem(m);
5841 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5842 }
5843 error:
5844 key_sah_unref(sah);
5845 return key_senderror(so, m, error);
5846 }
5847
5848 /* m is retained */
5849 static int
5850 key_setident(struct secashead *sah, struct mbuf *m,
5851 const struct sadb_msghdr *mhp)
5852 {
5853 const struct sadb_ident *idsrc, *iddst;
5854 int idsrclen, iddstlen;
5855
5856 KASSERT(!cpu_softintr_p());
5857 KASSERT(sah != NULL);
5858 KASSERT(m != NULL);
5859 KASSERT(mhp != NULL);
5860 KASSERT(mhp->msg != NULL);
5861
5862 /*
5863 * Can be called with an existing sah from key_api_update().
5864 */
5865 if (sah->idents != NULL) {
5866 kmem_free(sah->idents, sah->idents_len);
5867 sah->idents = NULL;
5868 sah->idents_len = 0;
5869 }
5870 if (sah->identd != NULL) {
5871 kmem_free(sah->identd, sah->identd_len);
5872 sah->identd = NULL;
5873 sah->identd_len = 0;
5874 }
5875
5876 /* don't make buffer if not there */
5877 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5878 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5879 sah->idents = NULL;
5880 sah->identd = NULL;
5881 return 0;
5882 }
5883
5884 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5885 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5886 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5887 return EINVAL;
5888 }
5889
5890 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5891 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5892 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5893 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5894
5895 /* validity check */
5896 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5897 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5898 return EINVAL;
5899 }
5900
5901 switch (idsrc->sadb_ident_type) {
5902 case SADB_IDENTTYPE_PREFIX:
5903 case SADB_IDENTTYPE_FQDN:
5904 case SADB_IDENTTYPE_USERFQDN:
5905 default:
5906 /* XXX do nothing */
5907 sah->idents = NULL;
5908 sah->identd = NULL;
5909 return 0;
5910 }
5911
5912 /* make structure */
5913 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5914 sah->idents_len = idsrclen;
5915 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5916 sah->identd_len = iddstlen;
5917 memcpy(sah->idents, idsrc, idsrclen);
5918 memcpy(sah->identd, iddst, iddstlen);
5919
5920 return 0;
5921 }
5922
5923 /*
5924 * m will not be freed on return.
5925 * it is caller's responsibility to free the result.
5926 */
5927 static struct mbuf *
5928 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5929 {
5930 struct mbuf *n;
5931
5932 KASSERT(m != NULL);
5933 KASSERT(mhp != NULL);
5934 KASSERT(mhp->msg != NULL);
5935
5936 /* create new sadb_msg to reply. */
5937 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5938 SADB_EXT_SA, SADB_X_EXT_SA2,
5939 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5940 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5941 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5942 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5943 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5944 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5945 if (!n)
5946 return NULL;
5947
5948 if (n->m_len < sizeof(struct sadb_msg)) {
5949 n = m_pullup(n, sizeof(struct sadb_msg));
5950 if (n == NULL)
5951 return NULL;
5952 }
5953 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5954 mtod(n, struct sadb_msg *)->sadb_msg_len =
5955 PFKEY_UNIT64(n->m_pkthdr.len);
5956
5957 return n;
5958 }
5959
5960 static int key_delete_all (struct socket *, struct mbuf *,
5961 const struct sadb_msghdr *, u_int16_t);
5962
5963 /*
5964 * SADB_DELETE processing
5965 * receive
5966 * <base, SA(*), address(SD)>
5967 * from the ikmpd, and set SADB_SASTATE_DEAD,
5968 * and send,
5969 * <base, SA(*), address(SD)>
5970 * to the ikmpd.
5971 *
5972 * m will always be freed.
5973 */
5974 static int
5975 key_api_delete(struct socket *so, struct mbuf *m,
5976 const struct sadb_msghdr *mhp)
5977 {
5978 struct sadb_sa *sa0;
5979 const struct sockaddr *src, *dst;
5980 struct secasindex saidx;
5981 struct secashead *sah;
5982 struct secasvar *sav = NULL;
5983 u_int16_t proto;
5984 int error;
5985
5986 /* map satype to proto */
5987 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5988 if (proto == 0) {
5989 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5990 return key_senderror(so, m, EINVAL);
5991 }
5992
5993 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5994 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5995 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5996 return key_senderror(so, m, EINVAL);
5997 }
5998
5999 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6000 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6001 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6002 return key_senderror(so, m, EINVAL);
6003 }
6004
6005 if (mhp->ext[SADB_EXT_SA] == NULL) {
6006 /*
6007 * Caller wants us to delete all non-LARVAL SAs
6008 * that match the src/dst. This is used during
6009 * IKE INITIAL-CONTACT.
6010 */
6011 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
6012 return key_delete_all(so, m, mhp, proto);
6013 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
6014 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6015 return key_senderror(so, m, EINVAL);
6016 }
6017
6018 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6019 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6020 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6021
6022 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6023 if (error != 0)
6024 return key_senderror(so, m, EINVAL);
6025
6026 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6027 if (error != 0)
6028 return key_senderror(so, m, EINVAL);
6029
6030 /* get a SA header */
6031 sah = key_getsah_ref(&saidx, CMP_HEAD);
6032 if (sah != NULL) {
6033 /* get a SA with SPI. */
6034 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6035 key_sah_unref(sah);
6036 }
6037
6038 if (sav == NULL) {
6039 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6040 return key_senderror(so, m, ENOENT);
6041 }
6042
6043 key_destroy_sav_with_ref(sav);
6044 sav = NULL;
6045
6046 {
6047 struct mbuf *n;
6048
6049 /* create new sadb_msg to reply. */
6050 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6051 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6052 if (!n)
6053 return key_senderror(so, m, ENOBUFS);
6054
6055 n = key_fill_replymsg(n, 0);
6056 if (n == NULL)
6057 return key_senderror(so, m, ENOBUFS);
6058
6059 m_freem(m);
6060 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6061 }
6062 }
6063
6064 /*
6065 * delete all SAs for src/dst. Called from key_api_delete().
6066 */
6067 static int
6068 key_delete_all(struct socket *so, struct mbuf *m,
6069 const struct sadb_msghdr *mhp, u_int16_t proto)
6070 {
6071 const struct sockaddr *src, *dst;
6072 struct secasindex saidx;
6073 struct secashead *sah;
6074 struct secasvar *sav;
6075 u_int state;
6076 int error;
6077
6078 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6079 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6080
6081 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6082 if (error != 0)
6083 return key_senderror(so, m, EINVAL);
6084
6085 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6086 if (error != 0)
6087 return key_senderror(so, m, EINVAL);
6088
6089 sah = key_getsah_ref(&saidx, CMP_HEAD);
6090 if (sah != NULL) {
6091 /* Delete all non-LARVAL SAs. */
6092 SASTATE_ALIVE_FOREACH(state) {
6093 if (state == SADB_SASTATE_LARVAL)
6094 continue;
6095 restart:
6096 mutex_enter(&key_sad.lock);
6097 SAVLIST_WRITER_FOREACH(sav, sah, state) {
6098 sav->state = SADB_SASTATE_DEAD;
6099 key_unlink_sav(sav);
6100 mutex_exit(&key_sad.lock);
6101 key_destroy_sav(sav);
6102 goto restart;
6103 }
6104 mutex_exit(&key_sad.lock);
6105 }
6106 key_sah_unref(sah);
6107 }
6108 {
6109 struct mbuf *n;
6110
6111 /* create new sadb_msg to reply. */
6112 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6113 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6114 if (!n)
6115 return key_senderror(so, m, ENOBUFS);
6116
6117 n = key_fill_replymsg(n, 0);
6118 if (n == NULL)
6119 return key_senderror(so, m, ENOBUFS);
6120
6121 m_freem(m);
6122 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6123 }
6124 }
6125
6126 /*
6127 * SADB_GET processing
6128 * receive
6129 * <base, SA(*), address(SD)>
6130 * from the ikmpd, and get a SP and a SA to respond,
6131 * and send,
6132 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6133 * (identity(SD),) (sensitivity)>
6134 * to the ikmpd.
6135 *
6136 * m will always be freed.
6137 */
6138 static int
6139 key_api_get(struct socket *so, struct mbuf *m,
6140 const struct sadb_msghdr *mhp)
6141 {
6142 struct sadb_sa *sa0;
6143 const struct sockaddr *src, *dst;
6144 struct secasindex saidx;
6145 struct secasvar *sav = NULL;
6146 u_int16_t proto;
6147 int error;
6148
6149 /* map satype to proto */
6150 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6151 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6152 return key_senderror(so, m, EINVAL);
6153 }
6154
6155 if (mhp->ext[SADB_EXT_SA] == NULL ||
6156 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6157 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6158 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6159 return key_senderror(so, m, EINVAL);
6160 }
6161 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6162 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6163 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6164 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6165 return key_senderror(so, m, EINVAL);
6166 }
6167
6168 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6169 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6170 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6171
6172 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6173 if (error != 0)
6174 return key_senderror(so, m, EINVAL);
6175
6176 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6177 if (error != 0)
6178 return key_senderror(so, m, EINVAL);
6179
6180 /* get a SA header */
6181 {
6182 struct secashead *sah;
6183 int s = pserialize_read_enter();
6184
6185 sah = key_getsah(&saidx, CMP_HEAD);
6186 if (sah != NULL) {
6187 /* get a SA with SPI. */
6188 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6189 }
6190 pserialize_read_exit(s);
6191 }
6192 if (sav == NULL) {
6193 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6194 return key_senderror(so, m, ENOENT);
6195 }
6196
6197 {
6198 struct mbuf *n;
6199 u_int8_t satype;
6200
6201 /* map proto to satype */
6202 satype = key_proto2satype(sav->sah->saidx.proto);
6203 if (satype == 0) {
6204 KEY_SA_UNREF(&sav);
6205 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6206 return key_senderror(so, m, EINVAL);
6207 }
6208
6209 /* create new sadb_msg to reply. */
6210 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6211 mhp->msg->sadb_msg_pid);
6212 KEY_SA_UNREF(&sav);
6213 if (!n)
6214 return key_senderror(so, m, ENOBUFS);
6215
6216 m_freem(m);
6217 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6218 }
6219 }
6220
6221 /* XXX make it sysctl-configurable? */
6222 static void
6223 key_getcomb_setlifetime(struct sadb_comb *comb)
6224 {
6225
6226 comb->sadb_comb_soft_allocations = 1;
6227 comb->sadb_comb_hard_allocations = 1;
6228 comb->sadb_comb_soft_bytes = 0;
6229 comb->sadb_comb_hard_bytes = 0;
6230 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6231 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6232 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6233 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6234 }
6235
6236 /*
6237 * XXX reorder combinations by preference
6238 * XXX no idea if the user wants ESP authentication or not
6239 */
6240 static struct mbuf *
6241 key_getcomb_esp(void)
6242 {
6243 struct sadb_comb *comb;
6244 const struct enc_xform *algo;
6245 struct mbuf *result = NULL, *m, *n;
6246 int encmin;
6247 int i, off, o;
6248 int totlen;
6249 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6250
6251 m = NULL;
6252 for (i = 1; i <= SADB_EALG_MAX; i++) {
6253 algo = esp_algorithm_lookup(i);
6254 if (algo == NULL)
6255 continue;
6256
6257 /* discard algorithms with key size smaller than system min */
6258 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6259 continue;
6260 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6261 encmin = ipsec_esp_keymin;
6262 else
6263 encmin = _BITS(algo->minkey);
6264
6265 if (ipsec_esp_auth)
6266 m = key_getcomb_ah();
6267 else {
6268 KASSERTMSG(l <= MLEN,
6269 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6270 MGET(m, M_DONTWAIT, MT_DATA);
6271 if (m) {
6272 M_ALIGN(m, l);
6273 m->m_len = l;
6274 m->m_next = NULL;
6275 memset(mtod(m, void *), 0, m->m_len);
6276 }
6277 }
6278 if (!m)
6279 goto fail;
6280
6281 totlen = 0;
6282 for (n = m; n; n = n->m_next)
6283 totlen += n->m_len;
6284 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6285
6286 for (off = 0; off < totlen; off += l) {
6287 n = m_pulldown(m, off, l, &o);
6288 if (!n) {
6289 /* m is already freed */
6290 goto fail;
6291 }
6292 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6293 memset(comb, 0, sizeof(*comb));
6294 key_getcomb_setlifetime(comb);
6295 comb->sadb_comb_encrypt = i;
6296 comb->sadb_comb_encrypt_minbits = encmin;
6297 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6298 }
6299
6300 if (!result)
6301 result = m;
6302 else
6303 m_cat(result, m);
6304 }
6305
6306 return result;
6307
6308 fail:
6309 if (result)
6310 m_freem(result);
6311 return NULL;
6312 }
6313
6314 static void
6315 key_getsizes_ah(const struct auth_hash *ah, int alg,
6316 u_int16_t* ksmin, u_int16_t* ksmax)
6317 {
6318 *ksmin = *ksmax = ah->keysize;
6319 if (ah->keysize == 0) {
6320 /*
6321 * Transform takes arbitrary key size but algorithm
6322 * key size is restricted. Enforce this here.
6323 */
6324 switch (alg) {
6325 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6326 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6327 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6328 default:
6329 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6330 break;
6331 }
6332 }
6333 }
6334
6335 /*
6336 * XXX reorder combinations by preference
6337 */
6338 static struct mbuf *
6339 key_getcomb_ah(void)
6340 {
6341 struct sadb_comb *comb;
6342 const struct auth_hash *algo;
6343 struct mbuf *m;
6344 u_int16_t minkeysize, maxkeysize;
6345 int i;
6346 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6347
6348 m = NULL;
6349 for (i = 1; i <= SADB_AALG_MAX; i++) {
6350 #if 1
6351 /* we prefer HMAC algorithms, not old algorithms */
6352 if (i != SADB_AALG_SHA1HMAC &&
6353 i != SADB_AALG_MD5HMAC &&
6354 i != SADB_X_AALG_SHA2_256 &&
6355 i != SADB_X_AALG_SHA2_384 &&
6356 i != SADB_X_AALG_SHA2_512)
6357 continue;
6358 #endif
6359 algo = ah_algorithm_lookup(i);
6360 if (!algo)
6361 continue;
6362 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6363 /* discard algorithms with key size smaller than system min */
6364 if (_BITS(minkeysize) < ipsec_ah_keymin)
6365 continue;
6366
6367 if (!m) {
6368 KASSERTMSG(l <= MLEN,
6369 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6370 MGET(m, M_DONTWAIT, MT_DATA);
6371 if (m) {
6372 M_ALIGN(m, l);
6373 m->m_len = l;
6374 m->m_next = NULL;
6375 }
6376 } else
6377 M_PREPEND(m, l, M_DONTWAIT);
6378 if (!m)
6379 return NULL;
6380
6381 if (m->m_len < sizeof(struct sadb_comb)) {
6382 m = m_pullup(m, sizeof(struct sadb_comb));
6383 if (m == NULL)
6384 return NULL;
6385 }
6386
6387 comb = mtod(m, struct sadb_comb *);
6388 memset(comb, 0, sizeof(*comb));
6389 key_getcomb_setlifetime(comb);
6390 comb->sadb_comb_auth = i;
6391 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6392 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6393 }
6394
6395 return m;
6396 }
6397
6398 /*
6399 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6400 * XXX reorder combinations by preference
6401 */
6402 static struct mbuf *
6403 key_getcomb_ipcomp(void)
6404 {
6405 struct sadb_comb *comb;
6406 const struct comp_algo *algo;
6407 struct mbuf *m;
6408 int i;
6409 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6410
6411 m = NULL;
6412 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6413 algo = ipcomp_algorithm_lookup(i);
6414 if (!algo)
6415 continue;
6416
6417 if (!m) {
6418 KASSERTMSG(l <= MLEN,
6419 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6420 MGET(m, M_DONTWAIT, MT_DATA);
6421 if (m) {
6422 M_ALIGN(m, l);
6423 m->m_len = l;
6424 m->m_next = NULL;
6425 }
6426 } else
6427 M_PREPEND(m, l, M_DONTWAIT);
6428 if (!m)
6429 return NULL;
6430
6431 if (m->m_len < sizeof(struct sadb_comb)) {
6432 m = m_pullup(m, sizeof(struct sadb_comb));
6433 if (m == NULL)
6434 return NULL;
6435 }
6436
6437 comb = mtod(m, struct sadb_comb *);
6438 memset(comb, 0, sizeof(*comb));
6439 key_getcomb_setlifetime(comb);
6440 comb->sadb_comb_encrypt = i;
6441 /* what should we set into sadb_comb_*_{min,max}bits? */
6442 }
6443
6444 return m;
6445 }
6446
6447 /*
6448 * XXX no way to pass mode (transport/tunnel) to userland
6449 * XXX replay checking?
6450 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6451 */
6452 static struct mbuf *
6453 key_getprop(const struct secasindex *saidx)
6454 {
6455 struct sadb_prop *prop;
6456 struct mbuf *m, *n;
6457 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6458 int totlen;
6459
6460 switch (saidx->proto) {
6461 case IPPROTO_ESP:
6462 m = key_getcomb_esp();
6463 break;
6464 case IPPROTO_AH:
6465 m = key_getcomb_ah();
6466 break;
6467 case IPPROTO_IPCOMP:
6468 m = key_getcomb_ipcomp();
6469 break;
6470 default:
6471 return NULL;
6472 }
6473
6474 if (!m)
6475 return NULL;
6476 M_PREPEND(m, l, M_DONTWAIT);
6477 if (!m)
6478 return NULL;
6479
6480 totlen = 0;
6481 for (n = m; n; n = n->m_next)
6482 totlen += n->m_len;
6483
6484 prop = mtod(m, struct sadb_prop *);
6485 memset(prop, 0, sizeof(*prop));
6486 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6487 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6488 prop->sadb_prop_replay = 32; /* XXX */
6489
6490 return m;
6491 }
6492
6493 /*
6494 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6495 * send
6496 * <base, SA, address(SD), (address(P)), x_policy,
6497 * (identity(SD),) (sensitivity,) proposal>
6498 * to KMD, and expect to receive
6499 * <base> with SADB_ACQUIRE if error occurred,
6500 * or
6501 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6502 * from KMD by PF_KEY.
6503 *
6504 * XXX x_policy is outside of RFC2367 (KAME extension).
6505 * XXX sensitivity is not supported.
6506 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6507 * see comment for key_getcomb_ipcomp().
6508 *
6509 * OUT:
6510 * 0 : succeed
6511 * others: error number
6512 */
6513 static int
6514 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6515 {
6516 struct mbuf *result = NULL, *m;
6517 #ifndef IPSEC_NONBLOCK_ACQUIRE
6518 struct secacq *newacq;
6519 #endif
6520 u_int8_t satype;
6521 int error = -1;
6522 u_int32_t seq;
6523
6524 /* sanity check */
6525 KASSERT(saidx != NULL);
6526 satype = key_proto2satype(saidx->proto);
6527 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6528
6529 #ifndef IPSEC_NONBLOCK_ACQUIRE
6530 /*
6531 * We never do anything about acquirng SA. There is anather
6532 * solution that kernel blocks to send SADB_ACQUIRE message until
6533 * getting something message from IKEd. In later case, to be
6534 * managed with ACQUIRING list.
6535 */
6536 /* Get an entry to check whether sending message or not. */
6537 mutex_enter(&key_misc.lock);
6538 newacq = key_getacq(saidx);
6539 if (newacq != NULL) {
6540 if (key_blockacq_count < newacq->count) {
6541 /* reset counter and do send message. */
6542 newacq->count = 0;
6543 } else {
6544 /* increment counter and do nothing. */
6545 newacq->count++;
6546 mutex_exit(&key_misc.lock);
6547 return 0;
6548 }
6549 } else {
6550 /* make new entry for blocking to send SADB_ACQUIRE. */
6551 newacq = key_newacq(saidx);
6552 if (newacq == NULL) {
6553 mutex_exit(&key_misc.lock);
6554 return ENOBUFS;
6555 }
6556
6557 /* add to key_misc.acqlist */
6558 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6559 }
6560
6561 seq = newacq->seq;
6562 mutex_exit(&key_misc.lock);
6563 #else
6564 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6565 #endif
6566 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6567 if (!m) {
6568 error = ENOBUFS;
6569 goto fail;
6570 }
6571 result = m;
6572
6573 /* set sadb_address for saidx's. */
6574 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6575 IPSEC_ULPROTO_ANY);
6576 if (!m) {
6577 error = ENOBUFS;
6578 goto fail;
6579 }
6580 m_cat(result, m);
6581
6582 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6583 IPSEC_ULPROTO_ANY);
6584 if (!m) {
6585 error = ENOBUFS;
6586 goto fail;
6587 }
6588 m_cat(result, m);
6589
6590 /* XXX proxy address (optional) */
6591
6592 /* set sadb_x_policy */
6593 if (sp) {
6594 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6595 if (!m) {
6596 error = ENOBUFS;
6597 goto fail;
6598 }
6599 m_cat(result, m);
6600 }
6601
6602 /* XXX identity (optional) */
6603 #if 0
6604 if (idexttype && fqdn) {
6605 /* create identity extension (FQDN) */
6606 struct sadb_ident *id;
6607 int fqdnlen;
6608
6609 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6610 id = (struct sadb_ident *)p;
6611 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6612 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6613 id->sadb_ident_exttype = idexttype;
6614 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6615 memcpy(id + 1, fqdn, fqdnlen);
6616 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6617 }
6618
6619 if (idexttype) {
6620 /* create identity extension (USERFQDN) */
6621 struct sadb_ident *id;
6622 int userfqdnlen;
6623
6624 if (userfqdn) {
6625 /* +1 for terminating-NUL */
6626 userfqdnlen = strlen(userfqdn) + 1;
6627 } else
6628 userfqdnlen = 0;
6629 id = (struct sadb_ident *)p;
6630 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6631 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6632 id->sadb_ident_exttype = idexttype;
6633 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6634 /* XXX is it correct? */
6635 if (curlwp)
6636 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6637 if (userfqdn && userfqdnlen)
6638 memcpy(id + 1, userfqdn, userfqdnlen);
6639 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6640 }
6641 #endif
6642
6643 /* XXX sensitivity (optional) */
6644
6645 /* create proposal/combination extension */
6646 m = key_getprop(saidx);
6647 #if 0
6648 /*
6649 * spec conformant: always attach proposal/combination extension,
6650 * the problem is that we have no way to attach it for ipcomp,
6651 * due to the way sadb_comb is declared in RFC2367.
6652 */
6653 if (!m) {
6654 error = ENOBUFS;
6655 goto fail;
6656 }
6657 m_cat(result, m);
6658 #else
6659 /*
6660 * outside of spec; make proposal/combination extension optional.
6661 */
6662 if (m)
6663 m_cat(result, m);
6664 #endif
6665
6666 if ((result->m_flags & M_PKTHDR) == 0) {
6667 error = EINVAL;
6668 goto fail;
6669 }
6670
6671 if (result->m_len < sizeof(struct sadb_msg)) {
6672 result = m_pullup(result, sizeof(struct sadb_msg));
6673 if (result == NULL) {
6674 error = ENOBUFS;
6675 goto fail;
6676 }
6677 }
6678
6679 result->m_pkthdr.len = 0;
6680 for (m = result; m; m = m->m_next)
6681 result->m_pkthdr.len += m->m_len;
6682
6683 mtod(result, struct sadb_msg *)->sadb_msg_len =
6684 PFKEY_UNIT64(result->m_pkthdr.len);
6685
6686 /*
6687 * XXX we cannot call key_sendup_mbuf directly here because
6688 * it can cause a deadlock:
6689 * - We have a reference to an SP (and an SA) here
6690 * - key_sendup_mbuf will try to take key_so_mtx
6691 * - Some other thread may try to localcount_drain to the SP with
6692 * holding key_so_mtx in say key_api_spdflush
6693 * - In this case localcount_drain never return because key_sendup_mbuf
6694 * that has stuck on key_so_mtx never release a reference to the SP
6695 *
6696 * So defer key_sendup_mbuf to the timer.
6697 */
6698 return key_acquire_sendup_mbuf_later(result);
6699
6700 fail:
6701 if (result)
6702 m_freem(result);
6703 return error;
6704 }
6705
6706 static struct mbuf *key_acquire_mbuf_head = NULL;
6707 static unsigned key_acquire_mbuf_count = 0;
6708 #define KEY_ACQUIRE_MBUF_MAX 10
6709
6710 static void
6711 key_acquire_sendup_pending_mbuf(void)
6712 {
6713 struct mbuf *m, *prev;
6714 int error;
6715
6716 again:
6717 prev = NULL;
6718 mutex_enter(&key_misc.lock);
6719 m = key_acquire_mbuf_head;
6720 /* Get an earliest mbuf (one at the tail of the list) */
6721 while (m != NULL) {
6722 if (m->m_nextpkt == NULL) {
6723 if (prev != NULL)
6724 prev->m_nextpkt = NULL;
6725 if (m == key_acquire_mbuf_head)
6726 key_acquire_mbuf_head = NULL;
6727 key_acquire_mbuf_count--;
6728 break;
6729 }
6730 prev = m;
6731 m = m->m_nextpkt;
6732 }
6733 mutex_exit(&key_misc.lock);
6734
6735 if (m == NULL)
6736 return;
6737
6738 m->m_nextpkt = NULL;
6739 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
6740 if (error != 0)
6741 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
6742 error);
6743
6744 if (prev != NULL)
6745 goto again;
6746 }
6747
6748 static int
6749 key_acquire_sendup_mbuf_later(struct mbuf *m)
6750 {
6751
6752 mutex_enter(&key_misc.lock);
6753 /* Avoid queuing too much mbufs */
6754 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
6755 mutex_exit(&key_misc.lock);
6756 m_freem(m);
6757 return ENOBUFS; /* XXX */
6758 }
6759 /* Enqueue mbuf at the head of the list */
6760 m->m_nextpkt = key_acquire_mbuf_head;
6761 key_acquire_mbuf_head = m;
6762 key_acquire_mbuf_count++;
6763 mutex_exit(&key_misc.lock);
6764
6765 /* Kick the timer */
6766 key_timehandler(NULL);
6767
6768 return 0;
6769 }
6770
6771 #ifndef IPSEC_NONBLOCK_ACQUIRE
6772 static struct secacq *
6773 key_newacq(const struct secasindex *saidx)
6774 {
6775 struct secacq *newacq;
6776
6777 /* get new entry */
6778 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6779 if (newacq == NULL) {
6780 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6781 return NULL;
6782 }
6783
6784 /* copy secindex */
6785 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6786 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6787 newacq->created = time_uptime;
6788 newacq->count = 0;
6789
6790 return newacq;
6791 }
6792
6793 static struct secacq *
6794 key_getacq(const struct secasindex *saidx)
6795 {
6796 struct secacq *acq;
6797
6798 KASSERT(mutex_owned(&key_misc.lock));
6799
6800 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6801 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6802 return acq;
6803 }
6804
6805 return NULL;
6806 }
6807
6808 static struct secacq *
6809 key_getacqbyseq(u_int32_t seq)
6810 {
6811 struct secacq *acq;
6812
6813 KASSERT(mutex_owned(&key_misc.lock));
6814
6815 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6816 if (acq->seq == seq)
6817 return acq;
6818 }
6819
6820 return NULL;
6821 }
6822 #endif
6823
6824 #ifdef notyet
6825 static struct secspacq *
6826 key_newspacq(const struct secpolicyindex *spidx)
6827 {
6828 struct secspacq *acq;
6829
6830 /* get new entry */
6831 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6832 if (acq == NULL) {
6833 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6834 return NULL;
6835 }
6836
6837 /* copy secindex */
6838 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6839 acq->created = time_uptime;
6840 acq->count = 0;
6841
6842 return acq;
6843 }
6844
6845 static struct secspacq *
6846 key_getspacq(const struct secpolicyindex *spidx)
6847 {
6848 struct secspacq *acq;
6849
6850 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6851 if (key_spidx_match_exactly(spidx, &acq->spidx))
6852 return acq;
6853 }
6854
6855 return NULL;
6856 }
6857 #endif /* notyet */
6858
6859 /*
6860 * SADB_ACQUIRE processing,
6861 * in first situation, is receiving
6862 * <base>
6863 * from the ikmpd, and clear sequence of its secasvar entry.
6864 *
6865 * In second situation, is receiving
6866 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6867 * from a user land process, and return
6868 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6869 * to the socket.
6870 *
6871 * m will always be freed.
6872 */
6873 static int
6874 key_api_acquire(struct socket *so, struct mbuf *m,
6875 const struct sadb_msghdr *mhp)
6876 {
6877 const struct sockaddr *src, *dst;
6878 struct secasindex saidx;
6879 u_int16_t proto;
6880 int error;
6881
6882 /*
6883 * Error message from KMd.
6884 * We assume that if error was occurred in IKEd, the length of PFKEY
6885 * message is equal to the size of sadb_msg structure.
6886 * We do not raise error even if error occurred in this function.
6887 */
6888 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6889 #ifndef IPSEC_NONBLOCK_ACQUIRE
6890 struct secacq *acq;
6891
6892 /* check sequence number */
6893 if (mhp->msg->sadb_msg_seq == 0) {
6894 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6895 m_freem(m);
6896 return 0;
6897 }
6898
6899 mutex_enter(&key_misc.lock);
6900 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6901 if (acq == NULL) {
6902 mutex_exit(&key_misc.lock);
6903 /*
6904 * the specified larval SA is already gone, or we got
6905 * a bogus sequence number. we can silently ignore it.
6906 */
6907 m_freem(m);
6908 return 0;
6909 }
6910
6911 /* reset acq counter in order to deletion by timehander. */
6912 acq->created = time_uptime;
6913 acq->count = 0;
6914 mutex_exit(&key_misc.lock);
6915 #endif
6916 m_freem(m);
6917 return 0;
6918 }
6919
6920 /*
6921 * This message is from user land.
6922 */
6923
6924 /* map satype to proto */
6925 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6926 if (proto == 0) {
6927 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6928 return key_senderror(so, m, EINVAL);
6929 }
6930
6931 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6932 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6933 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6934 /* error */
6935 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6936 return key_senderror(so, m, EINVAL);
6937 }
6938 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6939 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6940 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6941 /* error */
6942 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6943 return key_senderror(so, m, EINVAL);
6944 }
6945
6946 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6947 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6948
6949 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6950 if (error != 0)
6951 return key_senderror(so, m, EINVAL);
6952
6953 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6954 if (error != 0)
6955 return key_senderror(so, m, EINVAL);
6956
6957 /* get a SA index */
6958 {
6959 struct secashead *sah;
6960 int s = pserialize_read_enter();
6961
6962 sah = key_getsah(&saidx, CMP_MODE_REQID);
6963 if (sah != NULL) {
6964 pserialize_read_exit(s);
6965 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6966 return key_senderror(so, m, EEXIST);
6967 }
6968 pserialize_read_exit(s);
6969 }
6970
6971 error = key_acquire(&saidx, NULL);
6972 if (error != 0) {
6973 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6974 error);
6975 return key_senderror(so, m, error);
6976 }
6977
6978 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6979 }
6980
6981 /*
6982 * SADB_REGISTER processing.
6983 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6984 * receive
6985 * <base>
6986 * from the ikmpd, and register a socket to send PF_KEY messages,
6987 * and send
6988 * <base, supported>
6989 * to KMD by PF_KEY.
6990 * If socket is detached, must free from regnode.
6991 *
6992 * m will always be freed.
6993 */
6994 static int
6995 key_api_register(struct socket *so, struct mbuf *m,
6996 const struct sadb_msghdr *mhp)
6997 {
6998 struct secreg *reg, *newreg = 0;
6999
7000 /* check for invalid register message */
7001 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
7002 return key_senderror(so, m, EINVAL);
7003
7004 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7005 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7006 goto setmsg;
7007
7008 /* Allocate regnode in advance, out of mutex */
7009 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
7010
7011 /* check whether existing or not */
7012 mutex_enter(&key_misc.lock);
7013 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
7014 if (reg->so == so) {
7015 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
7016 mutex_exit(&key_misc.lock);
7017 kmem_free(newreg, sizeof(*newreg));
7018 return key_senderror(so, m, EEXIST);
7019 }
7020 }
7021
7022 newreg->so = so;
7023 ((struct keycb *)sotorawcb(so))->kp_registered++;
7024
7025 /* add regnode to key_misc.reglist. */
7026 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
7027 mutex_exit(&key_misc.lock);
7028
7029 setmsg:
7030 {
7031 struct mbuf *n;
7032 struct sadb_supported *sup;
7033 u_int len, alen, elen;
7034 int off;
7035 int i;
7036 struct sadb_alg *alg;
7037
7038 /* create new sadb_msg to reply. */
7039 alen = 0;
7040 for (i = 1; i <= SADB_AALG_MAX; i++) {
7041 if (ah_algorithm_lookup(i))
7042 alen += sizeof(struct sadb_alg);
7043 }
7044 if (alen)
7045 alen += sizeof(struct sadb_supported);
7046 elen = 0;
7047 for (i = 1; i <= SADB_EALG_MAX; i++) {
7048 if (esp_algorithm_lookup(i))
7049 elen += sizeof(struct sadb_alg);
7050 }
7051 if (elen)
7052 elen += sizeof(struct sadb_supported);
7053
7054 len = sizeof(struct sadb_msg) + alen + elen;
7055
7056 if (len > MCLBYTES)
7057 return key_senderror(so, m, ENOBUFS);
7058
7059 MGETHDR(n, M_DONTWAIT, MT_DATA);
7060 if (len > MHLEN) {
7061 MCLGET(n, M_DONTWAIT);
7062 if ((n->m_flags & M_EXT) == 0) {
7063 m_freem(n);
7064 n = NULL;
7065 }
7066 }
7067 if (!n)
7068 return key_senderror(so, m, ENOBUFS);
7069
7070 n->m_pkthdr.len = n->m_len = len;
7071 n->m_next = NULL;
7072 off = 0;
7073
7074 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
7075 n = key_fill_replymsg(n, 0);
7076 if (n == NULL)
7077 return key_senderror(so, m, ENOBUFS);
7078
7079 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7080
7081 /* for authentication algorithm */
7082 if (alen) {
7083 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7084 sup->sadb_supported_len = PFKEY_UNIT64(alen);
7085 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7086 off += PFKEY_ALIGN8(sizeof(*sup));
7087
7088 for (i = 1; i <= SADB_AALG_MAX; i++) {
7089 const struct auth_hash *aalgo;
7090 u_int16_t minkeysize, maxkeysize;
7091
7092 aalgo = ah_algorithm_lookup(i);
7093 if (!aalgo)
7094 continue;
7095 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7096 alg->sadb_alg_id = i;
7097 alg->sadb_alg_ivlen = 0;
7098 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7099 alg->sadb_alg_minbits = _BITS(minkeysize);
7100 alg->sadb_alg_maxbits = _BITS(maxkeysize);
7101 off += PFKEY_ALIGN8(sizeof(*alg));
7102 }
7103 }
7104
7105 /* for encryption algorithm */
7106 if (elen) {
7107 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7108 sup->sadb_supported_len = PFKEY_UNIT64(elen);
7109 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7110 off += PFKEY_ALIGN8(sizeof(*sup));
7111
7112 for (i = 1; i <= SADB_EALG_MAX; i++) {
7113 const struct enc_xform *ealgo;
7114
7115 ealgo = esp_algorithm_lookup(i);
7116 if (!ealgo)
7117 continue;
7118 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7119 alg->sadb_alg_id = i;
7120 alg->sadb_alg_ivlen = ealgo->blocksize;
7121 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7122 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7123 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7124 }
7125 }
7126
7127 KASSERTMSG(off == len, "length inconsistency");
7128
7129 m_freem(m);
7130 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7131 }
7132 }
7133
7134 /*
7135 * free secreg entry registered.
7136 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7137 */
7138 void
7139 key_freereg(struct socket *so)
7140 {
7141 struct secreg *reg;
7142 int i;
7143
7144 KASSERT(!cpu_softintr_p());
7145 KASSERT(so != NULL);
7146
7147 /*
7148 * check whether existing or not.
7149 * check all type of SA, because there is a potential that
7150 * one socket is registered to multiple type of SA.
7151 */
7152 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7153 mutex_enter(&key_misc.lock);
7154 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7155 if (reg->so == so) {
7156 LIST_REMOVE(reg, chain);
7157 break;
7158 }
7159 }
7160 mutex_exit(&key_misc.lock);
7161 if (reg != NULL)
7162 kmem_free(reg, sizeof(*reg));
7163 }
7164
7165 return;
7166 }
7167
7168 /*
7169 * SADB_EXPIRE processing
7170 * send
7171 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7172 * to KMD by PF_KEY.
7173 * NOTE: We send only soft lifetime extension.
7174 *
7175 * OUT: 0 : succeed
7176 * others : error number
7177 */
7178 static int
7179 key_expire(struct secasvar *sav)
7180 {
7181 int s;
7182 int satype;
7183 struct mbuf *result = NULL, *m;
7184 int len;
7185 int error = -1;
7186 struct sadb_lifetime *lt;
7187
7188 /* XXX: Why do we lock ? */
7189 s = splsoftnet(); /*called from softclock()*/
7190
7191 KASSERT(sav != NULL);
7192
7193 satype = key_proto2satype(sav->sah->saidx.proto);
7194 KASSERTMSG(satype != 0, "invalid proto is passed");
7195
7196 /* set msg header */
7197 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav));
7198 if (!m) {
7199 error = ENOBUFS;
7200 goto fail;
7201 }
7202 result = m;
7203
7204 /* create SA extension */
7205 m = key_setsadbsa(sav);
7206 if (!m) {
7207 error = ENOBUFS;
7208 goto fail;
7209 }
7210 m_cat(result, m);
7211
7212 /* create SA extension */
7213 m = key_setsadbxsa2(sav->sah->saidx.mode,
7214 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7215 if (!m) {
7216 error = ENOBUFS;
7217 goto fail;
7218 }
7219 m_cat(result, m);
7220
7221 /* create lifetime extension (current and soft) */
7222 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7223 m = key_alloc_mbuf(len);
7224 if (!m || m->m_next) { /*XXX*/
7225 if (m)
7226 m_freem(m);
7227 error = ENOBUFS;
7228 goto fail;
7229 }
7230 memset(mtod(m, void *), 0, len);
7231 lt = mtod(m, struct sadb_lifetime *);
7232 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7233 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7234 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7235 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7236 lt->sadb_lifetime_addtime =
7237 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7238 lt->sadb_lifetime_usetime =
7239 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7240 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7241 memcpy(lt, sav->lft_s, sizeof(*lt));
7242 m_cat(result, m);
7243
7244 /* set sadb_address for source */
7245 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7246 FULLMASK, IPSEC_ULPROTO_ANY);
7247 if (!m) {
7248 error = ENOBUFS;
7249 goto fail;
7250 }
7251 m_cat(result, m);
7252
7253 /* set sadb_address for destination */
7254 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7255 FULLMASK, IPSEC_ULPROTO_ANY);
7256 if (!m) {
7257 error = ENOBUFS;
7258 goto fail;
7259 }
7260 m_cat(result, m);
7261
7262 if ((result->m_flags & M_PKTHDR) == 0) {
7263 error = EINVAL;
7264 goto fail;
7265 }
7266
7267 if (result->m_len < sizeof(struct sadb_msg)) {
7268 result = m_pullup(result, sizeof(struct sadb_msg));
7269 if (result == NULL) {
7270 error = ENOBUFS;
7271 goto fail;
7272 }
7273 }
7274
7275 result->m_pkthdr.len = 0;
7276 for (m = result; m; m = m->m_next)
7277 result->m_pkthdr.len += m->m_len;
7278
7279 mtod(result, struct sadb_msg *)->sadb_msg_len =
7280 PFKEY_UNIT64(result->m_pkthdr.len);
7281
7282 splx(s);
7283 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7284
7285 fail:
7286 if (result)
7287 m_freem(result);
7288 splx(s);
7289 return error;
7290 }
7291
7292 /*
7293 * SADB_FLUSH processing
7294 * receive
7295 * <base>
7296 * from the ikmpd, and free all entries in secastree.
7297 * and send,
7298 * <base>
7299 * to the ikmpd.
7300 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7301 *
7302 * m will always be freed.
7303 */
7304 static int
7305 key_api_flush(struct socket *so, struct mbuf *m,
7306 const struct sadb_msghdr *mhp)
7307 {
7308 struct sadb_msg *newmsg;
7309 struct secashead *sah;
7310 struct secasvar *sav;
7311 u_int16_t proto;
7312 u_int8_t state;
7313 int s;
7314
7315 /* map satype to proto */
7316 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7317 if (proto == 0) {
7318 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7319 return key_senderror(so, m, EINVAL);
7320 }
7321
7322 /* no SATYPE specified, i.e. flushing all SA. */
7323 s = pserialize_read_enter();
7324 SAHLIST_READER_FOREACH(sah) {
7325 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7326 proto != sah->saidx.proto)
7327 continue;
7328
7329 key_sah_ref(sah);
7330 pserialize_read_exit(s);
7331
7332 SASTATE_ALIVE_FOREACH(state) {
7333 restart:
7334 mutex_enter(&key_sad.lock);
7335 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7336 sav->state = SADB_SASTATE_DEAD;
7337 key_unlink_sav(sav);
7338 mutex_exit(&key_sad.lock);
7339 key_destroy_sav(sav);
7340 goto restart;
7341 }
7342 mutex_exit(&key_sad.lock);
7343 }
7344
7345 s = pserialize_read_enter();
7346 sah->state = SADB_SASTATE_DEAD;
7347 key_sah_unref(sah);
7348 }
7349 pserialize_read_exit(s);
7350
7351 if (m->m_len < sizeof(struct sadb_msg) ||
7352 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7353 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7354 return key_senderror(so, m, ENOBUFS);
7355 }
7356
7357 if (m->m_next)
7358 m_freem(m->m_next);
7359 m->m_next = NULL;
7360 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7361 newmsg = mtod(m, struct sadb_msg *);
7362 newmsg->sadb_msg_errno = 0;
7363 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7364
7365 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7366 }
7367
7368
7369 static struct mbuf *
7370 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7371 {
7372 struct secashead *sah;
7373 struct secasvar *sav;
7374 u_int16_t proto;
7375 u_int8_t satype;
7376 u_int8_t state;
7377 int cnt;
7378 struct mbuf *m, *n, *prev;
7379
7380 KASSERT(mutex_owned(&key_sad.lock));
7381
7382 *lenp = 0;
7383
7384 /* map satype to proto */
7385 proto = key_satype2proto(req_satype);
7386 if (proto == 0) {
7387 *errorp = EINVAL;
7388 return (NULL);
7389 }
7390
7391 /* count sav entries to be sent to userland. */
7392 cnt = 0;
7393 SAHLIST_WRITER_FOREACH(sah) {
7394 if (req_satype != SADB_SATYPE_UNSPEC &&
7395 proto != sah->saidx.proto)
7396 continue;
7397
7398 SASTATE_ANY_FOREACH(state) {
7399 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7400 cnt++;
7401 }
7402 }
7403 }
7404
7405 if (cnt == 0) {
7406 *errorp = ENOENT;
7407 return (NULL);
7408 }
7409
7410 /* send this to the userland, one at a time. */
7411 m = NULL;
7412 prev = m;
7413 SAHLIST_WRITER_FOREACH(sah) {
7414 if (req_satype != SADB_SATYPE_UNSPEC &&
7415 proto != sah->saidx.proto)
7416 continue;
7417
7418 /* map proto to satype */
7419 satype = key_proto2satype(sah->saidx.proto);
7420 if (satype == 0) {
7421 m_freem(m);
7422 *errorp = EINVAL;
7423 return (NULL);
7424 }
7425
7426 SASTATE_ANY_FOREACH(state) {
7427 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7428 n = key_setdumpsa(sav, SADB_DUMP, satype,
7429 --cnt, pid);
7430 if (!n) {
7431 m_freem(m);
7432 *errorp = ENOBUFS;
7433 return (NULL);
7434 }
7435
7436 if (!m)
7437 m = n;
7438 else
7439 prev->m_nextpkt = n;
7440 prev = n;
7441 }
7442 }
7443 }
7444
7445 if (!m) {
7446 *errorp = EINVAL;
7447 return (NULL);
7448 }
7449
7450 if ((m->m_flags & M_PKTHDR) != 0) {
7451 m->m_pkthdr.len = 0;
7452 for (n = m; n; n = n->m_next)
7453 m->m_pkthdr.len += n->m_len;
7454 }
7455
7456 *errorp = 0;
7457 return (m);
7458 }
7459
7460 /*
7461 * SADB_DUMP processing
7462 * dump all entries including status of DEAD in SAD.
7463 * receive
7464 * <base>
7465 * from the ikmpd, and dump all secasvar leaves
7466 * and send,
7467 * <base> .....
7468 * to the ikmpd.
7469 *
7470 * m will always be freed.
7471 */
7472 static int
7473 key_api_dump(struct socket *so, struct mbuf *m0,
7474 const struct sadb_msghdr *mhp)
7475 {
7476 u_int16_t proto;
7477 u_int8_t satype;
7478 struct mbuf *n;
7479 int error, len, ok;
7480
7481 /* map satype to proto */
7482 satype = mhp->msg->sadb_msg_satype;
7483 proto = key_satype2proto(satype);
7484 if (proto == 0) {
7485 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7486 return key_senderror(so, m0, EINVAL);
7487 }
7488
7489 /*
7490 * If the requestor has insufficient socket-buffer space
7491 * for the entire chain, nobody gets any response to the DUMP.
7492 * XXX For now, only the requestor ever gets anything.
7493 * Moreover, if the requestor has any space at all, they receive
7494 * the entire chain, otherwise the request is refused with ENOBUFS.
7495 */
7496 if (sbspace(&so->so_rcv) <= 0) {
7497 return key_senderror(so, m0, ENOBUFS);
7498 }
7499
7500 mutex_enter(&key_sad.lock);
7501 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7502 mutex_exit(&key_sad.lock);
7503
7504 if (n == NULL) {
7505 return key_senderror(so, m0, ENOENT);
7506 }
7507 {
7508 uint64_t *ps = PFKEY_STAT_GETREF();
7509 ps[PFKEY_STAT_IN_TOTAL]++;
7510 ps[PFKEY_STAT_IN_BYTES] += len;
7511 PFKEY_STAT_PUTREF();
7512 }
7513
7514 /*
7515 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7516 * The requestor receives either the entire chain, or an
7517 * error message with ENOBUFS.
7518 *
7519 * sbappendaddrchain() takes the chain of entries, one
7520 * packet-record per SPD entry, prepends the key_src sockaddr
7521 * to each packet-record, links the sockaddr mbufs into a new
7522 * list of records, then appends the entire resulting
7523 * list to the requesting socket.
7524 */
7525 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7526 SB_PRIO_ONESHOT_OVERFLOW);
7527
7528 if (!ok) {
7529 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7530 m_freem(n);
7531 return key_senderror(so, m0, ENOBUFS);
7532 }
7533
7534 m_freem(m0);
7535 return 0;
7536 }
7537
7538 /*
7539 * SADB_X_PROMISC processing
7540 *
7541 * m will always be freed.
7542 */
7543 static int
7544 key_api_promisc(struct socket *so, struct mbuf *m,
7545 const struct sadb_msghdr *mhp)
7546 {
7547 int olen;
7548
7549 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7550
7551 if (olen < sizeof(struct sadb_msg)) {
7552 #if 1
7553 return key_senderror(so, m, EINVAL);
7554 #else
7555 m_freem(m);
7556 return 0;
7557 #endif
7558 } else if (olen == sizeof(struct sadb_msg)) {
7559 /* enable/disable promisc mode */
7560 struct keycb *kp = (struct keycb *)sotorawcb(so);
7561 if (kp == NULL)
7562 return key_senderror(so, m, EINVAL);
7563 mhp->msg->sadb_msg_errno = 0;
7564 switch (mhp->msg->sadb_msg_satype) {
7565 case 0:
7566 case 1:
7567 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7568 break;
7569 default:
7570 return key_senderror(so, m, EINVAL);
7571 }
7572
7573 /* send the original message back to everyone */
7574 mhp->msg->sadb_msg_errno = 0;
7575 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7576 } else {
7577 /* send packet as is */
7578
7579 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7580
7581 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7582 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7583 }
7584 }
7585
7586 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7587 const struct sadb_msghdr *) = {
7588 NULL, /* SADB_RESERVED */
7589 key_api_getspi, /* SADB_GETSPI */
7590 key_api_update, /* SADB_UPDATE */
7591 key_api_add, /* SADB_ADD */
7592 key_api_delete, /* SADB_DELETE */
7593 key_api_get, /* SADB_GET */
7594 key_api_acquire, /* SADB_ACQUIRE */
7595 key_api_register, /* SADB_REGISTER */
7596 NULL, /* SADB_EXPIRE */
7597 key_api_flush, /* SADB_FLUSH */
7598 key_api_dump, /* SADB_DUMP */
7599 key_api_promisc, /* SADB_X_PROMISC */
7600 NULL, /* SADB_X_PCHANGE */
7601 key_api_spdadd, /* SADB_X_SPDUPDATE */
7602 key_api_spdadd, /* SADB_X_SPDADD */
7603 key_api_spddelete, /* SADB_X_SPDDELETE */
7604 key_api_spdget, /* SADB_X_SPDGET */
7605 NULL, /* SADB_X_SPDACQUIRE */
7606 key_api_spddump, /* SADB_X_SPDDUMP */
7607 key_api_spdflush, /* SADB_X_SPDFLUSH */
7608 key_api_spdadd, /* SADB_X_SPDSETIDX */
7609 NULL, /* SADB_X_SPDEXPIRE */
7610 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7611 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7612 };
7613
7614 /*
7615 * parse sadb_msg buffer to process PFKEYv2,
7616 * and create a data to response if needed.
7617 * I think to be dealed with mbuf directly.
7618 * IN:
7619 * msgp : pointer to pointer to a received buffer pulluped.
7620 * This is rewrited to response.
7621 * so : pointer to socket.
7622 * OUT:
7623 * length for buffer to send to user process.
7624 */
7625 int
7626 key_parse(struct mbuf *m, struct socket *so)
7627 {
7628 struct sadb_msg *msg;
7629 struct sadb_msghdr mh;
7630 u_int orglen;
7631 int error;
7632
7633 KASSERT(m != NULL);
7634 KASSERT(so != NULL);
7635
7636 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7637 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7638 IPSECLOG(LOG_DEBUG, "passed sadb_msg\n");
7639 kdebug_sadb(msg);
7640 }
7641 #endif
7642
7643 if (m->m_len < sizeof(struct sadb_msg)) {
7644 m = m_pullup(m, sizeof(struct sadb_msg));
7645 if (!m)
7646 return ENOBUFS;
7647 }
7648 msg = mtod(m, struct sadb_msg *);
7649 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7650
7651 if ((m->m_flags & M_PKTHDR) == 0 ||
7652 m->m_pkthdr.len != orglen) {
7653 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7654 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7655 error = EINVAL;
7656 goto senderror;
7657 }
7658
7659 if (msg->sadb_msg_version != PF_KEY_V2) {
7660 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7661 msg->sadb_msg_version);
7662 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7663 error = EINVAL;
7664 goto senderror;
7665 }
7666
7667 if (msg->sadb_msg_type > SADB_MAX) {
7668 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7669 msg->sadb_msg_type);
7670 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7671 error = EINVAL;
7672 goto senderror;
7673 }
7674
7675 /* for old-fashioned code - should be nuked */
7676 if (m->m_pkthdr.len > MCLBYTES) {
7677 m_freem(m);
7678 return ENOBUFS;
7679 }
7680 if (m->m_next) {
7681 struct mbuf *n;
7682
7683 MGETHDR(n, M_DONTWAIT, MT_DATA);
7684 if (n && m->m_pkthdr.len > MHLEN) {
7685 MCLGET(n, M_DONTWAIT);
7686 if ((n->m_flags & M_EXT) == 0) {
7687 m_free(n);
7688 n = NULL;
7689 }
7690 }
7691 if (!n) {
7692 m_freem(m);
7693 return ENOBUFS;
7694 }
7695 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7696 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7697 n->m_next = NULL;
7698 m_freem(m);
7699 m = n;
7700 }
7701
7702 /* align the mbuf chain so that extensions are in contiguous region. */
7703 error = key_align(m, &mh);
7704 if (error)
7705 return error;
7706
7707 if (m->m_next) { /*XXX*/
7708 m_freem(m);
7709 return ENOBUFS;
7710 }
7711
7712 msg = mh.msg;
7713
7714 /* check SA type */
7715 switch (msg->sadb_msg_satype) {
7716 case SADB_SATYPE_UNSPEC:
7717 switch (msg->sadb_msg_type) {
7718 case SADB_GETSPI:
7719 case SADB_UPDATE:
7720 case SADB_ADD:
7721 case SADB_DELETE:
7722 case SADB_GET:
7723 case SADB_ACQUIRE:
7724 case SADB_EXPIRE:
7725 IPSECLOG(LOG_DEBUG,
7726 "must specify satype when msg type=%u.\n",
7727 msg->sadb_msg_type);
7728 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7729 error = EINVAL;
7730 goto senderror;
7731 }
7732 break;
7733 case SADB_SATYPE_AH:
7734 case SADB_SATYPE_ESP:
7735 case SADB_X_SATYPE_IPCOMP:
7736 case SADB_X_SATYPE_TCPSIGNATURE:
7737 switch (msg->sadb_msg_type) {
7738 case SADB_X_SPDADD:
7739 case SADB_X_SPDDELETE:
7740 case SADB_X_SPDGET:
7741 case SADB_X_SPDDUMP:
7742 case SADB_X_SPDFLUSH:
7743 case SADB_X_SPDSETIDX:
7744 case SADB_X_SPDUPDATE:
7745 case SADB_X_SPDDELETE2:
7746 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7747 msg->sadb_msg_type);
7748 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7749 error = EINVAL;
7750 goto senderror;
7751 }
7752 break;
7753 case SADB_SATYPE_RSVP:
7754 case SADB_SATYPE_OSPFV2:
7755 case SADB_SATYPE_RIPV2:
7756 case SADB_SATYPE_MIP:
7757 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7758 msg->sadb_msg_satype);
7759 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7760 error = EOPNOTSUPP;
7761 goto senderror;
7762 case 1: /* XXX: What does it do? */
7763 if (msg->sadb_msg_type == SADB_X_PROMISC)
7764 break;
7765 /*FALLTHROUGH*/
7766 default:
7767 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7768 msg->sadb_msg_satype);
7769 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7770 error = EINVAL;
7771 goto senderror;
7772 }
7773
7774 /* check field of upper layer protocol and address family */
7775 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7776 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7777 struct sadb_address *src0, *dst0;
7778 u_int plen;
7779
7780 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7781 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7782
7783 /* check upper layer protocol */
7784 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7785 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7786 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7787 error = EINVAL;
7788 goto senderror;
7789 }
7790
7791 /* check family */
7792 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7793 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7794 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7795 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7796 error = EINVAL;
7797 goto senderror;
7798 }
7799 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7800 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7801 IPSECLOG(LOG_DEBUG,
7802 "address struct size mismatched.\n");
7803 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7804 error = EINVAL;
7805 goto senderror;
7806 }
7807
7808 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7809 case AF_INET:
7810 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7811 sizeof(struct sockaddr_in)) {
7812 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7813 error = EINVAL;
7814 goto senderror;
7815 }
7816 break;
7817 case AF_INET6:
7818 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7819 sizeof(struct sockaddr_in6)) {
7820 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7821 error = EINVAL;
7822 goto senderror;
7823 }
7824 break;
7825 default:
7826 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7827 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7828 error = EAFNOSUPPORT;
7829 goto senderror;
7830 }
7831
7832 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7833 case AF_INET:
7834 plen = sizeof(struct in_addr) << 3;
7835 break;
7836 case AF_INET6:
7837 plen = sizeof(struct in6_addr) << 3;
7838 break;
7839 default:
7840 plen = 0; /*fool gcc*/
7841 break;
7842 }
7843
7844 /* check max prefix length */
7845 if (src0->sadb_address_prefixlen > plen ||
7846 dst0->sadb_address_prefixlen > plen) {
7847 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7848 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7849 error = EINVAL;
7850 goto senderror;
7851 }
7852
7853 /*
7854 * prefixlen == 0 is valid because there can be a case when
7855 * all addresses are matched.
7856 */
7857 }
7858
7859 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7860 key_api_typesw[msg->sadb_msg_type] == NULL) {
7861 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7862 error = EINVAL;
7863 goto senderror;
7864 }
7865
7866 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7867
7868 senderror:
7869 return key_senderror(so, m, error);
7870 }
7871
7872 static int
7873 key_senderror(struct socket *so, struct mbuf *m, int code)
7874 {
7875 struct sadb_msg *msg;
7876
7877 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7878
7879 msg = mtod(m, struct sadb_msg *);
7880 msg->sadb_msg_errno = code;
7881 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7882 }
7883
7884 /*
7885 * set the pointer to each header into message buffer.
7886 * m will be freed on error.
7887 * XXX larger-than-MCLBYTES extension?
7888 */
7889 static int
7890 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7891 {
7892 struct mbuf *n;
7893 struct sadb_ext *ext;
7894 size_t off, end;
7895 int extlen;
7896 int toff;
7897
7898 KASSERT(m != NULL);
7899 KASSERT(mhp != NULL);
7900 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7901
7902 /* initialize */
7903 memset(mhp, 0, sizeof(*mhp));
7904
7905 mhp->msg = mtod(m, struct sadb_msg *);
7906 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7907
7908 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7909 extlen = end; /*just in case extlen is not updated*/
7910 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7911 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7912 if (!n) {
7913 /* m is already freed */
7914 return ENOBUFS;
7915 }
7916 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7917
7918 /* set pointer */
7919 switch (ext->sadb_ext_type) {
7920 case SADB_EXT_SA:
7921 case SADB_EXT_ADDRESS_SRC:
7922 case SADB_EXT_ADDRESS_DST:
7923 case SADB_EXT_ADDRESS_PROXY:
7924 case SADB_EXT_LIFETIME_CURRENT:
7925 case SADB_EXT_LIFETIME_HARD:
7926 case SADB_EXT_LIFETIME_SOFT:
7927 case SADB_EXT_KEY_AUTH:
7928 case SADB_EXT_KEY_ENCRYPT:
7929 case SADB_EXT_IDENTITY_SRC:
7930 case SADB_EXT_IDENTITY_DST:
7931 case SADB_EXT_SENSITIVITY:
7932 case SADB_EXT_PROPOSAL:
7933 case SADB_EXT_SUPPORTED_AUTH:
7934 case SADB_EXT_SUPPORTED_ENCRYPT:
7935 case SADB_EXT_SPIRANGE:
7936 case SADB_X_EXT_POLICY:
7937 case SADB_X_EXT_SA2:
7938 case SADB_X_EXT_NAT_T_TYPE:
7939 case SADB_X_EXT_NAT_T_SPORT:
7940 case SADB_X_EXT_NAT_T_DPORT:
7941 case SADB_X_EXT_NAT_T_OAI:
7942 case SADB_X_EXT_NAT_T_OAR:
7943 case SADB_X_EXT_NAT_T_FRAG:
7944 /* duplicate check */
7945 /*
7946 * XXX Are there duplication payloads of either
7947 * KEY_AUTH or KEY_ENCRYPT ?
7948 */
7949 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7950 IPSECLOG(LOG_DEBUG,
7951 "duplicate ext_type %u is passed.\n",
7952 ext->sadb_ext_type);
7953 m_freem(m);
7954 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7955 return EINVAL;
7956 }
7957 break;
7958 default:
7959 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7960 ext->sadb_ext_type);
7961 m_freem(m);
7962 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7963 return EINVAL;
7964 }
7965
7966 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7967
7968 if (key_validate_ext(ext, extlen)) {
7969 m_freem(m);
7970 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7971 return EINVAL;
7972 }
7973
7974 n = m_pulldown(m, off, extlen, &toff);
7975 if (!n) {
7976 /* m is already freed */
7977 return ENOBUFS;
7978 }
7979 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7980
7981 mhp->ext[ext->sadb_ext_type] = ext;
7982 mhp->extoff[ext->sadb_ext_type] = off;
7983 mhp->extlen[ext->sadb_ext_type] = extlen;
7984 }
7985
7986 if (off != end) {
7987 m_freem(m);
7988 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7989 return EINVAL;
7990 }
7991
7992 return 0;
7993 }
7994
7995 static int
7996 key_validate_ext(const struct sadb_ext *ext, int len)
7997 {
7998 const struct sockaddr *sa;
7999 enum { NONE, ADDR } checktype = NONE;
8000 int baselen = 0;
8001 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8002
8003 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8004 return EINVAL;
8005
8006 /* if it does not match minimum/maximum length, bail */
8007 if (ext->sadb_ext_type >= __arraycount(minsize) ||
8008 ext->sadb_ext_type >= __arraycount(maxsize))
8009 return EINVAL;
8010 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8011 return EINVAL;
8012 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8013 return EINVAL;
8014
8015 /* more checks based on sadb_ext_type XXX need more */
8016 switch (ext->sadb_ext_type) {
8017 case SADB_EXT_ADDRESS_SRC:
8018 case SADB_EXT_ADDRESS_DST:
8019 case SADB_EXT_ADDRESS_PROXY:
8020 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8021 checktype = ADDR;
8022 break;
8023 case SADB_EXT_IDENTITY_SRC:
8024 case SADB_EXT_IDENTITY_DST:
8025 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8026 SADB_X_IDENTTYPE_ADDR) {
8027 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8028 checktype = ADDR;
8029 } else
8030 checktype = NONE;
8031 break;
8032 default:
8033 checktype = NONE;
8034 break;
8035 }
8036
8037 switch (checktype) {
8038 case NONE:
8039 break;
8040 case ADDR:
8041 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8042 if (len < baselen + sal)
8043 return EINVAL;
8044 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8045 return EINVAL;
8046 break;
8047 }
8048
8049 return 0;
8050 }
8051
8052 static int
8053 key_do_init(void)
8054 {
8055 int i, error;
8056
8057 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
8058 key_spd_psz = pserialize_create();
8059 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
8060 cv_init(&key_spd.cv, "key_sp");
8061 key_sad_psz = pserialize_create();
8062 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
8063 cv_init(&key_sad.cv, "key_sa");
8064
8065 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
8066
8067 callout_init(&key_timehandler_ch, 0);
8068 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
8069 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
8070 if (error != 0)
8071 panic("%s: workqueue_create failed (%d)\n", __func__, error);
8072
8073 for (i = 0; i < IPSEC_DIR_MAX; i++) {
8074 PSLIST_INIT(&key_spd.splist[i]);
8075 }
8076
8077 PSLIST_INIT(&key_spd.socksplist);
8078
8079 PSLIST_INIT(&key_sad.sahlist);
8080
8081 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8082 LIST_INIT(&key_misc.reglist[i]);
8083 }
8084
8085 #ifndef IPSEC_NONBLOCK_ACQUIRE
8086 LIST_INIT(&key_misc.acqlist);
8087 #endif
8088 #ifdef notyet
8089 LIST_INIT(&key_misc.spacqlist);
8090 #endif
8091
8092 /* system default */
8093 ip4_def_policy.policy = IPSEC_POLICY_NONE;
8094 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
8095 localcount_init(&ip4_def_policy.localcount);
8096
8097 #ifdef INET6
8098 ip6_def_policy.policy = IPSEC_POLICY_NONE;
8099 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
8100 localcount_init(&ip6_def_policy.localcount);
8101 #endif
8102
8103 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
8104
8105 /* initialize key statistics */
8106 keystat.getspi_count = 1;
8107
8108 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
8109
8110 return (0);
8111 }
8112
8113 void
8114 key_init(void)
8115 {
8116 static ONCE_DECL(key_init_once);
8117
8118 sysctl_net_keyv2_setup(NULL);
8119 sysctl_net_key_compat_setup(NULL);
8120
8121 RUN_ONCE(&key_init_once, key_do_init);
8122
8123 key_init_so();
8124 }
8125
8126 /*
8127 * XXX: maybe This function is called after INBOUND IPsec processing.
8128 *
8129 * Special check for tunnel-mode packets.
8130 * We must make some checks for consistency between inner and outer IP header.
8131 *
8132 * xxx more checks to be provided
8133 */
8134 int
8135 key_checktunnelsanity(
8136 struct secasvar *sav,
8137 u_int family,
8138 void *src,
8139 void *dst
8140 )
8141 {
8142
8143 /* XXX: check inner IP header */
8144
8145 return 1;
8146 }
8147
8148 #if 0
8149 #define hostnamelen strlen(hostname)
8150
8151 /*
8152 * Get FQDN for the host.
8153 * If the administrator configured hostname (by hostname(1)) without
8154 * domain name, returns nothing.
8155 */
8156 static const char *
8157 key_getfqdn(void)
8158 {
8159 int i;
8160 int hasdot;
8161 static char fqdn[MAXHOSTNAMELEN + 1];
8162
8163 if (!hostnamelen)
8164 return NULL;
8165
8166 /* check if it comes with domain name. */
8167 hasdot = 0;
8168 for (i = 0; i < hostnamelen; i++) {
8169 if (hostname[i] == '.')
8170 hasdot++;
8171 }
8172 if (!hasdot)
8173 return NULL;
8174
8175 /* NOTE: hostname may not be NUL-terminated. */
8176 memset(fqdn, 0, sizeof(fqdn));
8177 memcpy(fqdn, hostname, hostnamelen);
8178 fqdn[hostnamelen] = '\0';
8179 return fqdn;
8180 }
8181
8182 /*
8183 * get username@FQDN for the host/user.
8184 */
8185 static const char *
8186 key_getuserfqdn(void)
8187 {
8188 const char *host;
8189 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8190 struct proc *p = curproc;
8191 char *q;
8192
8193 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8194 return NULL;
8195 if (!(host = key_getfqdn()))
8196 return NULL;
8197
8198 /* NOTE: s_login may not be-NUL terminated. */
8199 memset(userfqdn, 0, sizeof(userfqdn));
8200 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8201 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
8202 q = userfqdn + strlen(userfqdn);
8203 *q++ = '@';
8204 memcpy(q, host, strlen(host));
8205 q += strlen(host);
8206 *q++ = '\0';
8207
8208 return userfqdn;
8209 }
8210 #endif
8211
8212 /* record data transfer on SA, and update timestamps */
8213 void
8214 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8215 {
8216
8217 KASSERT(sav != NULL);
8218 KASSERT(sav->lft_c != NULL);
8219 KASSERT(m != NULL);
8220
8221 /*
8222 * XXX Currently, there is a difference of bytes size
8223 * between inbound and outbound processing.
8224 */
8225 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8226 /* to check bytes lifetime is done in key_timehandler(). */
8227
8228 /*
8229 * We use the number of packets as the unit of
8230 * sadb_lifetime_allocations. We increment the variable
8231 * whenever {esp,ah}_{in,out}put is called.
8232 */
8233 sav->lft_c->sadb_lifetime_allocations++;
8234 /* XXX check for expires? */
8235
8236 /*
8237 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8238 * in seconds. HARD and SOFT lifetime are measured by the time
8239 * difference (again in seconds) from sadb_lifetime_usetime.
8240 *
8241 * usetime
8242 * v expire expire
8243 * -----+-----+--------+---> t
8244 * <--------------> HARD
8245 * <-----> SOFT
8246 */
8247 sav->lft_c->sadb_lifetime_usetime = time_uptime;
8248 /* XXX check for expires? */
8249
8250 return;
8251 }
8252
8253 /* dumb version */
8254 void
8255 key_sa_routechange(struct sockaddr *dst)
8256 {
8257 struct secashead *sah;
8258 int s;
8259
8260 s = pserialize_read_enter();
8261 SAHLIST_READER_FOREACH(sah) {
8262 struct route *ro;
8263 const struct sockaddr *sa;
8264
8265 key_sah_ref(sah);
8266 pserialize_read_exit(s);
8267
8268 ro = &sah->sa_route;
8269 sa = rtcache_getdst(ro);
8270 if (sa != NULL && dst->sa_len == sa->sa_len &&
8271 memcmp(dst, sa, dst->sa_len) == 0)
8272 rtcache_free(ro);
8273
8274 s = pserialize_read_enter();
8275 key_sah_unref(sah);
8276 }
8277 pserialize_read_exit(s);
8278
8279 return;
8280 }
8281
8282 static void
8283 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8284 {
8285 struct secasvar *_sav;
8286
8287 ASSERT_SLEEPABLE();
8288 KASSERT(mutex_owned(&key_sad.lock));
8289
8290 if (sav->state == state)
8291 return;
8292
8293 key_unlink_sav(sav);
8294 SAVLIST_ENTRY_DESTROY(sav);
8295 key_init_sav(sav);
8296
8297 sav->state = state;
8298 if (!SADB_SASTATE_USABLE_P(sav)) {
8299 /* We don't need to care about the order */
8300 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8301 return;
8302 }
8303 /*
8304 * Sort the list by lft_c->sadb_lifetime_addtime
8305 * in ascending order.
8306 */
8307 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8308 if (_sav->lft_c->sadb_lifetime_addtime >
8309 sav->lft_c->sadb_lifetime_addtime) {
8310 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8311 break;
8312 }
8313 }
8314 if (_sav == NULL) {
8315 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8316 }
8317 key_validate_savlist(sav->sah, state);
8318 }
8319
8320 /* XXX too much? */
8321 static struct mbuf *
8322 key_alloc_mbuf(int l)
8323 {
8324 struct mbuf *m = NULL, *n;
8325 int len, t;
8326
8327 len = l;
8328 while (len > 0) {
8329 MGET(n, M_DONTWAIT, MT_DATA);
8330 if (n && len > MLEN)
8331 MCLGET(n, M_DONTWAIT);
8332 if (!n) {
8333 m_freem(m);
8334 return NULL;
8335 }
8336
8337 n->m_next = NULL;
8338 n->m_len = 0;
8339 n->m_len = M_TRAILINGSPACE(n);
8340 /* use the bottom of mbuf, hoping we can prepend afterwards */
8341 if (n->m_len > len) {
8342 t = (n->m_len - len) & ~(sizeof(long) - 1);
8343 n->m_data += t;
8344 n->m_len = len;
8345 }
8346
8347 len -= n->m_len;
8348
8349 if (m)
8350 m_cat(m, n);
8351 else
8352 m = n;
8353 }
8354
8355 return m;
8356 }
8357
8358 static struct mbuf *
8359 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8360 {
8361 struct secashead *sah;
8362 struct secasvar *sav;
8363 u_int16_t proto;
8364 u_int8_t satype;
8365 u_int8_t state;
8366 int cnt;
8367 struct mbuf *m, *n;
8368
8369 KASSERT(mutex_owned(&key_sad.lock));
8370
8371 /* map satype to proto */
8372 proto = key_satype2proto(req_satype);
8373 if (proto == 0) {
8374 *errorp = EINVAL;
8375 return (NULL);
8376 }
8377
8378 /* count sav entries to be sent to the userland. */
8379 cnt = 0;
8380 SAHLIST_WRITER_FOREACH(sah) {
8381 if (req_satype != SADB_SATYPE_UNSPEC &&
8382 proto != sah->saidx.proto)
8383 continue;
8384
8385 SASTATE_ANY_FOREACH(state) {
8386 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8387 cnt++;
8388 }
8389 }
8390 }
8391
8392 if (cnt == 0) {
8393 *errorp = ENOENT;
8394 return (NULL);
8395 }
8396
8397 /* send this to the userland, one at a time. */
8398 m = NULL;
8399 SAHLIST_WRITER_FOREACH(sah) {
8400 if (req_satype != SADB_SATYPE_UNSPEC &&
8401 proto != sah->saidx.proto)
8402 continue;
8403
8404 /* map proto to satype */
8405 satype = key_proto2satype(sah->saidx.proto);
8406 if (satype == 0) {
8407 m_freem(m);
8408 *errorp = EINVAL;
8409 return (NULL);
8410 }
8411
8412 SASTATE_ANY_FOREACH(state) {
8413 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8414 n = key_setdumpsa(sav, SADB_DUMP, satype,
8415 --cnt, pid);
8416 if (!n) {
8417 m_freem(m);
8418 *errorp = ENOBUFS;
8419 return (NULL);
8420 }
8421
8422 if (!m)
8423 m = n;
8424 else
8425 m_cat(m, n);
8426 }
8427 }
8428 }
8429
8430 if (!m) {
8431 *errorp = EINVAL;
8432 return (NULL);
8433 }
8434
8435 if ((m->m_flags & M_PKTHDR) != 0) {
8436 m->m_pkthdr.len = 0;
8437 for (n = m; n; n = n->m_next)
8438 m->m_pkthdr.len += n->m_len;
8439 }
8440
8441 *errorp = 0;
8442 return (m);
8443 }
8444
8445 static struct mbuf *
8446 key_setspddump(int *errorp, pid_t pid)
8447 {
8448 struct secpolicy *sp;
8449 int cnt;
8450 u_int dir;
8451 struct mbuf *m, *n;
8452
8453 KASSERT(mutex_owned(&key_spd.lock));
8454
8455 /* search SPD entry and get buffer size. */
8456 cnt = 0;
8457 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8458 SPLIST_WRITER_FOREACH(sp, dir) {
8459 cnt++;
8460 }
8461 }
8462
8463 if (cnt == 0) {
8464 *errorp = ENOENT;
8465 return (NULL);
8466 }
8467
8468 m = NULL;
8469 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8470 SPLIST_WRITER_FOREACH(sp, dir) {
8471 --cnt;
8472 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8473
8474 if (!n) {
8475 *errorp = ENOBUFS;
8476 m_freem(m);
8477 return (NULL);
8478 }
8479 if (!m)
8480 m = n;
8481 else {
8482 m->m_pkthdr.len += n->m_pkthdr.len;
8483 m_cat(m, n);
8484 }
8485 }
8486 }
8487
8488 *errorp = 0;
8489 return (m);
8490 }
8491
8492 int
8493 key_get_used(void) {
8494 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8495 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8496 !SOCKSPLIST_READER_EMPTY();
8497 }
8498
8499 void
8500 key_update_used(void)
8501 {
8502 switch (ipsec_enabled) {
8503 default:
8504 case 0:
8505 #ifdef notyet
8506 /* XXX: racy */
8507 ipsec_used = 0;
8508 #endif
8509 break;
8510 case 1:
8511 #ifndef notyet
8512 /* XXX: racy */
8513 if (!ipsec_used)
8514 #endif
8515 ipsec_used = key_get_used();
8516 break;
8517 case 2:
8518 ipsec_used = 1;
8519 break;
8520 }
8521 }
8522
8523 static int
8524 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8525 {
8526 struct mbuf *m, *n;
8527 int err2 = 0;
8528 char *p, *ep;
8529 size_t len;
8530 int error;
8531
8532 if (newp)
8533 return (EPERM);
8534 if (namelen != 1)
8535 return (EINVAL);
8536
8537 mutex_enter(&key_sad.lock);
8538 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8539 mutex_exit(&key_sad.lock);
8540 if (!m)
8541 return (error);
8542 if (!oldp)
8543 *oldlenp = m->m_pkthdr.len;
8544 else {
8545 p = oldp;
8546 if (*oldlenp < m->m_pkthdr.len) {
8547 err2 = ENOMEM;
8548 ep = p + *oldlenp;
8549 } else {
8550 *oldlenp = m->m_pkthdr.len;
8551 ep = p + m->m_pkthdr.len;
8552 }
8553 for (n = m; n; n = n->m_next) {
8554 len = (ep - p < n->m_len) ?
8555 ep - p : n->m_len;
8556 error = copyout(mtod(n, const void *), p, len);
8557 p += len;
8558 if (error)
8559 break;
8560 }
8561 if (error == 0)
8562 error = err2;
8563 }
8564 m_freem(m);
8565
8566 return (error);
8567 }
8568
8569 static int
8570 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8571 {
8572 struct mbuf *m, *n;
8573 int err2 = 0;
8574 char *p, *ep;
8575 size_t len;
8576 int error;
8577
8578 if (newp)
8579 return (EPERM);
8580 if (namelen != 0)
8581 return (EINVAL);
8582
8583 mutex_enter(&key_spd.lock);
8584 m = key_setspddump(&error, l->l_proc->p_pid);
8585 mutex_exit(&key_spd.lock);
8586 if (!m)
8587 return (error);
8588 if (!oldp)
8589 *oldlenp = m->m_pkthdr.len;
8590 else {
8591 p = oldp;
8592 if (*oldlenp < m->m_pkthdr.len) {
8593 err2 = ENOMEM;
8594 ep = p + *oldlenp;
8595 } else {
8596 *oldlenp = m->m_pkthdr.len;
8597 ep = p + m->m_pkthdr.len;
8598 }
8599 for (n = m; n; n = n->m_next) {
8600 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8601 error = copyout(mtod(n, const void *), p, len);
8602 p += len;
8603 if (error)
8604 break;
8605 }
8606 if (error == 0)
8607 error = err2;
8608 }
8609 m_freem(m);
8610
8611 return (error);
8612 }
8613
8614 /*
8615 * Create sysctl tree for native IPSEC key knobs, originally
8616 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8617 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8618 * and in any case the part of our sysctl namespace used for dumping the
8619 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8620 * namespace, for API reasons.
8621 *
8622 * Pending a consensus on the right way to fix this, add a level of
8623 * indirection in how we number the `native' IPSEC key nodes;
8624 * and (as requested by Andrew Brown) move registration of the
8625 * KAME-compatible names to a separate function.
8626 */
8627 #if 0
8628 # define IPSEC_PFKEY PF_KEY_V2
8629 # define IPSEC_PFKEY_NAME "keyv2"
8630 #else
8631 # define IPSEC_PFKEY PF_KEY
8632 # define IPSEC_PFKEY_NAME "key"
8633 #endif
8634
8635 static int
8636 sysctl_net_key_stats(SYSCTLFN_ARGS)
8637 {
8638
8639 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8640 }
8641
8642 static void
8643 sysctl_net_keyv2_setup(struct sysctllog **clog)
8644 {
8645
8646 sysctl_createv(clog, 0, NULL, NULL,
8647 CTLFLAG_PERMANENT,
8648 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8649 NULL, 0, NULL, 0,
8650 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8651
8652 sysctl_createv(clog, 0, NULL, NULL,
8653 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8654 CTLTYPE_INT, "debug", NULL,
8655 NULL, 0, &key_debug_level, 0,
8656 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8657 sysctl_createv(clog, 0, NULL, NULL,
8658 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8659 CTLTYPE_INT, "spi_try", NULL,
8660 NULL, 0, &key_spi_trycnt, 0,
8661 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8662 sysctl_createv(clog, 0, NULL, NULL,
8663 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8664 CTLTYPE_INT, "spi_min_value", NULL,
8665 NULL, 0, &key_spi_minval, 0,
8666 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8667 sysctl_createv(clog, 0, NULL, NULL,
8668 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8669 CTLTYPE_INT, "spi_max_value", NULL,
8670 NULL, 0, &key_spi_maxval, 0,
8671 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8672 sysctl_createv(clog, 0, NULL, NULL,
8673 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8674 CTLTYPE_INT, "random_int", NULL,
8675 NULL, 0, &key_int_random, 0,
8676 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8677 sysctl_createv(clog, 0, NULL, NULL,
8678 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8679 CTLTYPE_INT, "larval_lifetime", NULL,
8680 NULL, 0, &key_larval_lifetime, 0,
8681 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8682 sysctl_createv(clog, 0, NULL, NULL,
8683 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8684 CTLTYPE_INT, "blockacq_count", NULL,
8685 NULL, 0, &key_blockacq_count, 0,
8686 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8687 sysctl_createv(clog, 0, NULL, NULL,
8688 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8689 CTLTYPE_INT, "blockacq_lifetime", NULL,
8690 NULL, 0, &key_blockacq_lifetime, 0,
8691 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8692 sysctl_createv(clog, 0, NULL, NULL,
8693 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8694 CTLTYPE_INT, "esp_keymin", NULL,
8695 NULL, 0, &ipsec_esp_keymin, 0,
8696 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8697 sysctl_createv(clog, 0, NULL, NULL,
8698 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8699 CTLTYPE_INT, "prefered_oldsa", NULL,
8700 NULL, 0, &key_prefered_oldsa, 0,
8701 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8702 sysctl_createv(clog, 0, NULL, NULL,
8703 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8704 CTLTYPE_INT, "esp_auth", NULL,
8705 NULL, 0, &ipsec_esp_auth, 0,
8706 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8707 sysctl_createv(clog, 0, NULL, NULL,
8708 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8709 CTLTYPE_INT, "ah_keymin", NULL,
8710 NULL, 0, &ipsec_ah_keymin, 0,
8711 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8712 sysctl_createv(clog, 0, NULL, NULL,
8713 CTLFLAG_PERMANENT,
8714 CTLTYPE_STRUCT, "stats",
8715 SYSCTL_DESCR("PF_KEY statistics"),
8716 sysctl_net_key_stats, 0, NULL, 0,
8717 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8718 }
8719
8720 /*
8721 * Register sysctl names used by setkey(8). For historical reasons,
8722 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8723 * for both IPSEC and KAME IPSEC.
8724 */
8725 static void
8726 sysctl_net_key_compat_setup(struct sysctllog **clog)
8727 {
8728
8729 sysctl_createv(clog, 0, NULL, NULL,
8730 CTLFLAG_PERMANENT,
8731 CTLTYPE_NODE, "key", NULL,
8732 NULL, 0, NULL, 0,
8733 CTL_NET, PF_KEY, CTL_EOL);
8734
8735 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8736 sysctl_createv(clog, 0, NULL, NULL,
8737 CTLFLAG_PERMANENT,
8738 CTLTYPE_STRUCT, "dumpsa", NULL,
8739 sysctl_net_key_dumpsa, 0, NULL, 0,
8740 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8741 sysctl_createv(clog, 0, NULL, NULL,
8742 CTLFLAG_PERMANENT,
8743 CTLTYPE_STRUCT, "dumpsp", NULL,
8744 sysctl_net_key_dumpsp, 0, NULL, 0,
8745 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8746 }
8747