key.c revision 1.229 1 /* $NetBSD: key.c,v 1.229 2017/09/29 14:59:43 christos Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.229 2017/09/29 14:59:43 christos Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160 * - SP's lifetime is managed by localcount(9)
161 * - An SP that has been inserted to the key_spd.splist is initially referenced
162 * by none, i.e., a reference from the key_spd.splist isn't counted
163 * - When an SP is being destroyed, we change its state as DEAD, wait for
164 * references to the SP to be released, and then deallocate the SP
165 * (see key_unlink_sp)
166 * - Getting an SP
167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168 * - Must iterate the list and increment the reference count of a found SP
169 * (by key_sp_ref) in a pserialize read section
170 * - We can gain another reference from a held SP only if we check its state
171 * and take its reference in a pserialize read section
172 * (see esp_output for example)
173 * - We may get an SP from an SP cache. See below
174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175 * - Updating member variables of an SP
176 * - Most member variables of an SP are immutable
177 * - Only sp->state and sp->lastused can be changed
178 * - sp->state of an SP is updated only when destroying it under key_spd.lock
179 * - SP caches
180 * - SPs can be cached in PCBs
181 * - The lifetime of the caches is controlled by the global generation counter
182 * (ipsec_spdgen)
183 * - The global counter value is stored when an SP is cached
184 * - If the stored value is different from the global counter then the cache
185 * is considered invalidated
186 * - The counter is incremented when an SP is being destroyed
187 * - So checking the generation and taking a reference to an SP should be
188 * in a pserialize read section
189 * - Note that caching doesn't increment the reference counter of an SP
190 * - SPs in sockets
191 * - Userland programs can set a policy to a socket by
192 * setsockopt(IP_IPSEC_POLICY)
193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
194 * the key_spd.socksplist list (not the key_spd.splist)
195 * - Such a policy is destroyed when a corresponding socket is destroed,
196 * however, a socket can be destroyed in softint so we cannot destroy
197 * it directly instead we just mark it DEAD and delay the destruction
198 * until GC by the timer
199 */
200 /*
201 * Locking notes on SAD:
202 * - Data structures
203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204 * entries
205 * - An sav is supposed to be an SA from a viewpoint of users
206 * - A sah has sav lists for each SA state
207 * - Multiple sahs with the same saidx can exist
208 * - Only one entry has MATURE state and others should be DEAD
209 * - DEAD entries are just ignored from searching
210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with
211 * holding key_sad.lock which is a adaptive mutex
212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in
213 * pserialize(9) read sections
214 * - sah's lifetime is managed by localcount(9)
215 * - Getting an sah entry
216 * - We get an sah from the key_sad.sahlist
217 * - Must iterate the list and increment the reference count of a found sah
218 * (by key_sah_ref) in a pserialize read section
219 * - A gotten sah must be released after use by key_sah_unref
220 * - An sah is destroyed when its state become DEAD and no sav is
221 * listed to the sah
222 * - The destruction is done only in the timer (see key_timehandler_sad)
223 * - sav's lifetime is managed by localcount(9)
224 * - Getting an sav entry
225 * - First get an sah by saidx and get an sav from either of sah's savlists
226 * - Must iterate the list and increment the reference count of a found sav
227 * (by key_sa_ref) in a pserialize read section
228 * - We can gain another reference from a held SA only if we check its state
229 * and take its reference in a pserialize read section
230 * (see esp_output for example)
231 * - A gotten sav must be released after use by key_sa_unref
232 * - An sav is destroyed when its state become DEAD
233 */
234 /*
235 * Locking notes on misc data:
236 * - All lists of key_misc are protected by key_misc.lock
237 * - key_misc.lock must be held even for read accesses
238 */
239
240 /* SPD */
241 static struct {
242 kmutex_t lock;
243 kcondvar_t cv_lc;
244 struct pslist_head splist[IPSEC_DIR_MAX];
245 /*
246 * The list has SPs that are set to a socket via
247 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
248 */
249 struct pslist_head socksplist;
250
251 pserialize_t psz;
252 kcondvar_t cv_psz;
253 bool psz_performing;
254 } key_spd __cacheline_aligned;
255
256 /* SAD */
257 static struct {
258 kmutex_t lock;
259 kcondvar_t cv_lc;
260 struct pslist_head sahlist;
261
262 pserialize_t psz;
263 kcondvar_t cv_psz;
264 bool psz_performing;
265 } key_sad __cacheline_aligned;
266
267 /* Misc data */
268 static struct {
269 kmutex_t lock;
270 /* registed list */
271 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
272 #ifndef IPSEC_NONBLOCK_ACQUIRE
273 /* acquiring list */
274 LIST_HEAD(_acqlist, secacq) acqlist;
275 #endif
276 #ifdef notyet
277 /* SP acquiring list */
278 LIST_HEAD(_spacqlist, secspacq) spacqlist;
279 #endif
280 } key_misc __cacheline_aligned;
281
282 /* Macros for key_spd.splist */
283 #define SPLIST_ENTRY_INIT(sp) \
284 PSLIST_ENTRY_INIT((sp), pslist_entry)
285 #define SPLIST_ENTRY_DESTROY(sp) \
286 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
287 #define SPLIST_WRITER_REMOVE(sp) \
288 PSLIST_WRITER_REMOVE((sp), pslist_entry)
289 #define SPLIST_READER_EMPTY(dir) \
290 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
291 pslist_entry) == NULL)
292 #define SPLIST_READER_FOREACH(sp, dir) \
293 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
294 struct secpolicy, pslist_entry)
295 #define SPLIST_WRITER_FOREACH(sp, dir) \
296 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
297 struct secpolicy, pslist_entry)
298 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
299 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
300 #define SPLIST_WRITER_EMPTY(dir) \
301 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
302 pslist_entry) == NULL)
303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
304 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
305 pslist_entry)
306 #define SPLIST_WRITER_NEXT(sp) \
307 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
308 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
309 do { \
310 if (SPLIST_WRITER_EMPTY((dir))) { \
311 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
312 } else { \
313 struct secpolicy *__sp; \
314 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
315 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
316 SPLIST_WRITER_INSERT_AFTER(__sp,\
317 (new)); \
318 break; \
319 } \
320 } \
321 } \
322 } while (0)
323
324 /* Macros for key_spd.socksplist */
325 #define SOCKSPLIST_WRITER_FOREACH(sp) \
326 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
327 struct secpolicy, pslist_entry)
328 #define SOCKSPLIST_READER_EMPTY() \
329 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
330 pslist_entry) == NULL)
331
332 /* Macros for key_sad.sahlist */
333 #define SAHLIST_ENTRY_INIT(sah) \
334 PSLIST_ENTRY_INIT((sah), pslist_entry)
335 #define SAHLIST_ENTRY_DESTROY(sah) \
336 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
337 #define SAHLIST_WRITER_REMOVE(sah) \
338 PSLIST_WRITER_REMOVE((sah), pslist_entry)
339 #define SAHLIST_READER_FOREACH(sah) \
340 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
341 pslist_entry)
342 #define SAHLIST_WRITER_FOREACH(sah) \
343 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
344 pslist_entry)
345 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
346 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
347
348 /* Macros for key_sad.sahlist#savlist */
349 #define SAVLIST_ENTRY_INIT(sav) \
350 PSLIST_ENTRY_INIT((sav), pslist_entry)
351 #define SAVLIST_ENTRY_DESTROY(sav) \
352 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
353 #define SAVLIST_READER_FIRST(sah, state) \
354 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
355 pslist_entry)
356 #define SAVLIST_WRITER_REMOVE(sav) \
357 PSLIST_WRITER_REMOVE((sav), pslist_entry)
358 #define SAVLIST_READER_FOREACH(sav, sah, state) \
359 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
360 struct secasvar, pslist_entry)
361 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
362 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
363 struct secasvar, pslist_entry)
364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
365 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
367 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
368 #define SAVLIST_WRITER_EMPTY(sah, state) \
369 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
370 pslist_entry) == NULL)
371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
372 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
373 pslist_entry)
374 #define SAVLIST_WRITER_NEXT(sav) \
375 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
377 do { \
378 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
379 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
380 } else { \
381 struct secasvar *__sav; \
382 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
383 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
384 SAVLIST_WRITER_INSERT_AFTER(__sav,\
385 (new)); \
386 break; \
387 } \
388 } \
389 } \
390 } while (0)
391 #define SAVLIST_READER_NEXT(sav) \
392 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
393
394
395 /* search order for SAs */
396 /*
397 * This order is important because we must select the oldest SA
398 * for outbound processing. For inbound, This is not important.
399 */
400 static const u_int saorder_state_valid_prefer_old[] = {
401 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
402 };
403 static const u_int saorder_state_valid_prefer_new[] = {
404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
405 };
406
407 static const u_int saorder_state_alive[] = {
408 /* except DEAD */
409 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
410 };
411 static const u_int saorder_state_any[] = {
412 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
413 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
414 };
415
416 #define SASTATE_ALIVE_FOREACH(s) \
417 for (int _i = 0; \
418 _i < __arraycount(saorder_state_alive) ? \
419 (s) = saorder_state_alive[_i], true : false; \
420 _i++)
421 #define SASTATE_ANY_FOREACH(s) \
422 for (int _i = 0; \
423 _i < __arraycount(saorder_state_any) ? \
424 (s) = saorder_state_any[_i], true : false; \
425 _i++)
426
427 static const int minsize[] = {
428 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
429 sizeof(struct sadb_sa), /* SADB_EXT_SA */
430 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
433 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
436 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
437 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
438 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
440 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
441 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
442 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
444 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
445 0, /* SADB_X_EXT_KMPRIVATE */
446 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
447 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
448 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
449 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
451 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
453 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
454 };
455 static const int maxsize[] = {
456 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
457 sizeof(struct sadb_sa), /* SADB_EXT_SA */
458 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
461 0, /* SADB_EXT_ADDRESS_SRC */
462 0, /* SADB_EXT_ADDRESS_DST */
463 0, /* SADB_EXT_ADDRESS_PROXY */
464 0, /* SADB_EXT_KEY_AUTH */
465 0, /* SADB_EXT_KEY_ENCRYPT */
466 0, /* SADB_EXT_IDENTITY_SRC */
467 0, /* SADB_EXT_IDENTITY_DST */
468 0, /* SADB_EXT_SENSITIVITY */
469 0, /* SADB_EXT_PROPOSAL */
470 0, /* SADB_EXT_SUPPORTED_AUTH */
471 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
472 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
473 0, /* SADB_X_EXT_KMPRIVATE */
474 0, /* SADB_X_EXT_POLICY */
475 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
476 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
477 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
479 0, /* SADB_X_EXT_NAT_T_OAI */
480 0, /* SADB_X_EXT_NAT_T_OAR */
481 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
482 };
483
484 static int ipsec_esp_keymin = 256;
485 static int ipsec_esp_auth = 0;
486 static int ipsec_ah_keymin = 128;
487
488 #ifdef SYSCTL_DECL
489 SYSCTL_DECL(_net_key);
490 #endif
491
492 #ifdef SYSCTL_INT
493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
494 &key_debug_level, 0, "");
495
496 /* max count of trial for the decision of spi value */
497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
498 &key_spi_trycnt, 0, "");
499
500 /* minimum spi value to allocate automatically. */
501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
502 &key_spi_minval, 0, "");
503
504 /* maximun spi value to allocate automatically. */
505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
506 &key_spi_maxval, 0, "");
507
508 /* interval to initialize randseed */
509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
510 &key_int_random, 0, "");
511
512 /* lifetime for larval SA */
513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
514 &key_larval_lifetime, 0, "");
515
516 /* counter for blocking to send SADB_ACQUIRE to IKEd */
517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
518 &key_blockacq_count, 0, "");
519
520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
522 &key_blockacq_lifetime, 0, "");
523
524 /* ESP auth */
525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
526 &ipsec_esp_auth, 0, "");
527
528 /* minimum ESP key length */
529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
530 &ipsec_esp_keymin, 0, "");
531
532 /* minimum AH key length */
533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
534 &ipsec_ah_keymin, 0, "");
535
536 /* perfered old SA rather than new SA */
537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
538 &key_prefered_oldsa, 0, "");
539 #endif /* SYSCTL_INT */
540
541 #define __LIST_CHAINED(elm) \
542 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
543 #define LIST_INSERT_TAIL(head, elm, type, field) \
544 do {\
545 struct type *curelm = LIST_FIRST(head); \
546 if (curelm == NULL) {\
547 LIST_INSERT_HEAD(head, elm, field); \
548 } else { \
549 while (LIST_NEXT(curelm, field)) \
550 curelm = LIST_NEXT(curelm, field);\
551 LIST_INSERT_AFTER(curelm, elm, field);\
552 }\
553 } while (0)
554
555 #define KEY_CHKSASTATE(head, sav) \
556 /* do */ { \
557 if ((head) != (sav)) { \
558 IPSECLOG(LOG_DEBUG, \
559 "state mismatched (TREE=%d SA=%d)\n", \
560 (head), (sav)); \
561 continue; \
562 } \
563 } /* while (0) */
564
565 #define KEY_CHKSPDIR(head, sp) \
566 do { \
567 if ((head) != (sp)) { \
568 IPSECLOG(LOG_DEBUG, \
569 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
570 (head), (sp)); \
571 } \
572 } while (0)
573
574 /*
575 * set parameters into secasindex buffer.
576 * Must allocate secasindex buffer before calling this function.
577 */
578 static int
579 key_setsecasidx(int, int, int, const struct sockaddr *,
580 const struct sockaddr *, struct secasindex *);
581
582 /* key statistics */
583 struct _keystat {
584 u_long getspi_count; /* the avarage of count to try to get new SPI */
585 } keystat;
586
587 struct sadb_msghdr {
588 struct sadb_msg *msg;
589 struct sadb_ext *ext[SADB_EXT_MAX + 1];
590 int extoff[SADB_EXT_MAX + 1];
591 int extlen[SADB_EXT_MAX + 1];
592 };
593
594 static void
595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
596
597 static const struct sockaddr *
598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
599 {
600
601 return PFKEY_ADDR_SADDR((struct sadb_address *)mhp->ext[idx]);
602 }
603
604 static struct mbuf *
605 key_fill_replymsg(struct mbuf *m, int seq)
606 {
607 struct sadb_msg *msg;
608
609 if (m->m_len < sizeof(*msg)) {
610 m = m_pullup(m, sizeof(*msg));
611 if (m == NULL)
612 return NULL;
613 }
614 msg = mtod(m, struct sadb_msg *);
615 msg->sadb_msg_errno = 0;
616 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
617 if (seq != 0)
618 msg->sadb_msg_seq = seq;
619
620 return m;
621 }
622
623 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
624 #if 0
625 static void key_freeso(struct socket *);
626 static void key_freesp_so(struct secpolicy **);
627 #endif
628 static struct secpolicy *key_getsp (const struct secpolicyindex *);
629 static struct secpolicy *key_getspbyid (u_int32_t);
630 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
631 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
632 static void key_destroy_sp(struct secpolicy *);
633 static u_int16_t key_newreqid (void);
634 static struct mbuf *key_gather_mbuf (struct mbuf *,
635 const struct sadb_msghdr *, int, int, ...);
636 static int key_api_spdadd(struct socket *, struct mbuf *,
637 const struct sadb_msghdr *);
638 static u_int32_t key_getnewspid (void);
639 static int key_api_spddelete(struct socket *, struct mbuf *,
640 const struct sadb_msghdr *);
641 static int key_api_spddelete2(struct socket *, struct mbuf *,
642 const struct sadb_msghdr *);
643 static int key_api_spdget(struct socket *, struct mbuf *,
644 const struct sadb_msghdr *);
645 static int key_api_spdflush(struct socket *, struct mbuf *,
646 const struct sadb_msghdr *);
647 static int key_api_spddump(struct socket *, struct mbuf *,
648 const struct sadb_msghdr *);
649 static struct mbuf * key_setspddump (int *errorp, pid_t);
650 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
651 static int key_api_nat_map(struct socket *, struct mbuf *,
652 const struct sadb_msghdr *);
653 static struct mbuf *key_setdumpsp (struct secpolicy *,
654 u_int8_t, u_int32_t, pid_t);
655 static u_int key_getspreqmsglen (const struct secpolicy *);
656 static int key_spdexpire (struct secpolicy *);
657 static struct secashead *key_newsah (const struct secasindex *);
658 static void key_unlink_sah(struct secashead *);
659 static void key_destroy_sah(struct secashead *);
660 static bool key_sah_has_sav(struct secashead *);
661 static void key_sah_ref(struct secashead *);
662 static void key_sah_unref(struct secashead *);
663 static void key_init_sav(struct secasvar *);
664 static void key_destroy_sav(struct secasvar *);
665 static void key_destroy_sav_with_ref(struct secasvar *);
666 static struct secasvar *key_newsav(struct mbuf *,
667 const struct sadb_msghdr *, int *, const char*, int);
668 #define KEY_NEWSAV(m, sadb, e) \
669 key_newsav(m, sadb, e, __func__, __LINE__)
670 static void key_delsav (struct secasvar *);
671 static struct secashead *key_getsah(const struct secasindex *, int);
672 static struct secashead *key_getsah_ref(const struct secasindex *, int);
673 static bool key_checkspidup(const struct secasindex *, u_int32_t);
674 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
675 static int key_setsaval (struct secasvar *, struct mbuf *,
676 const struct sadb_msghdr *);
677 static void key_freesaval(struct secasvar *);
678 static int key_init_xform(struct secasvar *);
679 static void key_clear_xform(struct secasvar *);
680 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
681 u_int8_t, u_int32_t, u_int32_t);
682 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
683 static struct mbuf *key_setsadbxtype (u_int16_t);
684 static struct mbuf *key_setsadbxfrag (u_int16_t);
685 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
686 static int key_checksalen (const union sockaddr_union *);
687 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
688 u_int32_t, pid_t, u_int16_t);
689 static struct mbuf *key_setsadbsa (struct secasvar *);
690 static struct mbuf *key_setsadbaddr (u_int16_t,
691 const struct sockaddr *, u_int8_t, u_int16_t);
692 #if 0
693 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
694 int, u_int64_t);
695 #endif
696 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
697 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
698 u_int32_t);
699 static void *key_newbuf (const void *, u_int);
700 #ifdef INET6
701 static int key_ismyaddr6 (const struct sockaddr_in6 *);
702 #endif
703
704 static void sysctl_net_keyv2_setup(struct sysctllog **);
705 static void sysctl_net_key_compat_setup(struct sysctllog **);
706
707 /* flags for key_saidx_match() */
708 #define CMP_HEAD 1 /* protocol, addresses. */
709 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
710 #define CMP_REQID 3 /* additionally HEAD, reaid. */
711 #define CMP_EXACTLY 4 /* all elements. */
712 static int key_saidx_match(const struct secasindex *,
713 const struct secasindex *, int);
714
715 static int key_sockaddr_match(const struct sockaddr *,
716 const struct sockaddr *, int);
717 static int key_bb_match_withmask(const void *, const void *, u_int);
718 static u_int16_t key_satype2proto (u_int8_t);
719 static u_int8_t key_proto2satype (u_int16_t);
720
721 static int key_spidx_match_exactly(const struct secpolicyindex *,
722 const struct secpolicyindex *);
723 static int key_spidx_match_withmask(const struct secpolicyindex *,
724 const struct secpolicyindex *);
725
726 static int key_api_getspi(struct socket *, struct mbuf *,
727 const struct sadb_msghdr *);
728 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
729 const struct secasindex *);
730 static int key_handle_natt_info (struct secasvar *,
731 const struct sadb_msghdr *);
732 static int key_set_natt_ports (union sockaddr_union *,
733 union sockaddr_union *,
734 const struct sadb_msghdr *);
735 static int key_api_update(struct socket *, struct mbuf *,
736 const struct sadb_msghdr *);
737 #ifdef IPSEC_DOSEQCHECK
738 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
739 #endif
740 static int key_api_add(struct socket *, struct mbuf *,
741 const struct sadb_msghdr *);
742 static int key_setident (struct secashead *, struct mbuf *,
743 const struct sadb_msghdr *);
744 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
745 const struct sadb_msghdr *);
746 static int key_api_delete(struct socket *, struct mbuf *,
747 const struct sadb_msghdr *);
748 static int key_api_get(struct socket *, struct mbuf *,
749 const struct sadb_msghdr *);
750
751 static void key_getcomb_setlifetime (struct sadb_comb *);
752 static struct mbuf *key_getcomb_esp (void);
753 static struct mbuf *key_getcomb_ah (void);
754 static struct mbuf *key_getcomb_ipcomp (void);
755 static struct mbuf *key_getprop (const struct secasindex *);
756
757 static int key_acquire (const struct secasindex *, struct secpolicy *);
758 static int key_acquire_sendup_mbuf_later(struct mbuf *);
759 static void key_acquire_sendup_pending_mbuf(void);
760 #ifndef IPSEC_NONBLOCK_ACQUIRE
761 static struct secacq *key_newacq (const struct secasindex *);
762 static struct secacq *key_getacq (const struct secasindex *);
763 static struct secacq *key_getacqbyseq (u_int32_t);
764 #endif
765 #ifdef notyet
766 static struct secspacq *key_newspacq (const struct secpolicyindex *);
767 static struct secspacq *key_getspacq (const struct secpolicyindex *);
768 #endif
769 static int key_api_acquire(struct socket *, struct mbuf *,
770 const struct sadb_msghdr *);
771 static int key_api_register(struct socket *, struct mbuf *,
772 const struct sadb_msghdr *);
773 static int key_expire (struct secasvar *);
774 static int key_api_flush(struct socket *, struct mbuf *,
775 const struct sadb_msghdr *);
776 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
777 int *lenp, pid_t pid);
778 static int key_api_dump(struct socket *, struct mbuf *,
779 const struct sadb_msghdr *);
780 static int key_api_promisc(struct socket *, struct mbuf *,
781 const struct sadb_msghdr *);
782 static int key_senderror (struct socket *, struct mbuf *, int);
783 static int key_validate_ext (const struct sadb_ext *, int);
784 static int key_align (struct mbuf *, struct sadb_msghdr *);
785 #if 0
786 static const char *key_getfqdn (void);
787 static const char *key_getuserfqdn (void);
788 #endif
789 static void key_sa_chgstate (struct secasvar *, u_int8_t);
790
791 static struct mbuf *key_alloc_mbuf (int);
792
793 static void key_timehandler(void *);
794 static void key_timehandler_work(struct work *, void *);
795 static struct callout key_timehandler_ch;
796 static struct workqueue *key_timehandler_wq;
797 static struct work key_timehandler_wk;
798
799 u_int
800 key_sp_refcnt(const struct secpolicy *sp)
801 {
802
803 /* FIXME */
804 return 0;
805 }
806
807 #ifdef NET_MPSAFE
808 static void
809 key_spd_pserialize_perform(void)
810 {
811
812 KASSERT(mutex_owned(&key_spd.lock));
813
814 while (key_spd.psz_performing)
815 cv_wait(&key_spd.cv_psz, &key_spd.lock);
816 key_spd.psz_performing = true;
817 mutex_exit(&key_spd.lock);
818
819 pserialize_perform(key_spd.psz);
820
821 mutex_enter(&key_spd.lock);
822 key_spd.psz_performing = false;
823 cv_broadcast(&key_spd.cv_psz);
824 }
825 #endif
826
827 /*
828 * Remove the sp from the key_spd.splist and wait for references to the sp
829 * to be released. key_spd.lock must be held.
830 */
831 static void
832 key_unlink_sp(struct secpolicy *sp)
833 {
834
835 KASSERT(mutex_owned(&key_spd.lock));
836
837 sp->state = IPSEC_SPSTATE_DEAD;
838 SPLIST_WRITER_REMOVE(sp);
839
840 /* Invalidate all cached SPD pointers in the PCBs. */
841 ipsec_invalpcbcacheall();
842
843 #ifdef NET_MPSAFE
844 KASSERT(mutex_ownable(softnet_lock));
845 key_spd_pserialize_perform();
846 #endif
847
848 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
849 }
850
851 /*
852 * Return 0 when there are known to be no SP's for the specified
853 * direction. Otherwise return 1. This is used by IPsec code
854 * to optimize performance.
855 */
856 int
857 key_havesp(u_int dir)
858 {
859 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
860 !SPLIST_READER_EMPTY(dir) : 1);
861 }
862
863 /* %%% IPsec policy management */
864 /*
865 * allocating a SP for OUTBOUND or INBOUND packet.
866 * Must call key_freesp() later.
867 * OUT: NULL: not found
868 * others: found and return the pointer.
869 */
870 struct secpolicy *
871 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
872 u_int dir, const char* where, int tag)
873 {
874 struct secpolicy *sp;
875 int s;
876
877 KASSERT(spidx != NULL);
878 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
879
880 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
881
882 /* get a SP entry */
883 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
884 kdebug_secpolicyindex("objects", spidx);
885 }
886
887 s = pserialize_read_enter();
888 SPLIST_READER_FOREACH(sp, dir) {
889 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
890 kdebug_secpolicyindex("in SPD", &sp->spidx);
891 }
892
893 if (sp->state == IPSEC_SPSTATE_DEAD)
894 continue;
895 if (key_spidx_match_withmask(&sp->spidx, spidx))
896 goto found;
897 }
898 sp = NULL;
899 found:
900 if (sp) {
901 /* sanity check */
902 KEY_CHKSPDIR(sp->spidx.dir, dir);
903
904 /* found a SPD entry */
905 sp->lastused = time_uptime;
906 key_sp_ref(sp, where, tag);
907 }
908 pserialize_read_exit(s);
909
910 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
911 "DP return SP:%p (ID=%u) refcnt %u\n",
912 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
913 return sp;
914 }
915
916 /*
917 * return a policy that matches this particular inbound packet.
918 * XXX slow
919 */
920 struct secpolicy *
921 key_gettunnel(const struct sockaddr *osrc,
922 const struct sockaddr *odst,
923 const struct sockaddr *isrc,
924 const struct sockaddr *idst,
925 const char* where, int tag)
926 {
927 struct secpolicy *sp;
928 const int dir = IPSEC_DIR_INBOUND;
929 int s;
930 struct ipsecrequest *r1, *r2, *p;
931 struct secpolicyindex spidx;
932
933 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
934
935 if (isrc->sa_family != idst->sa_family) {
936 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
937 isrc->sa_family, idst->sa_family);
938 sp = NULL;
939 goto done;
940 }
941
942 s = pserialize_read_enter();
943 SPLIST_READER_FOREACH(sp, dir) {
944 if (sp->state == IPSEC_SPSTATE_DEAD)
945 continue;
946
947 r1 = r2 = NULL;
948 for (p = sp->req; p; p = p->next) {
949 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
950 continue;
951
952 r1 = r2;
953 r2 = p;
954
955 if (!r1) {
956 /* here we look at address matches only */
957 spidx = sp->spidx;
958 if (isrc->sa_len > sizeof(spidx.src) ||
959 idst->sa_len > sizeof(spidx.dst))
960 continue;
961 memcpy(&spidx.src, isrc, isrc->sa_len);
962 memcpy(&spidx.dst, idst, idst->sa_len);
963 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
964 continue;
965 } else {
966 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
967 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
968 continue;
969 }
970
971 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
972 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
973 continue;
974
975 goto found;
976 }
977 }
978 sp = NULL;
979 found:
980 if (sp) {
981 sp->lastused = time_uptime;
982 key_sp_ref(sp, where, tag);
983 }
984 pserialize_read_exit(s);
985 done:
986 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
987 "DP return SP:%p (ID=%u) refcnt %u\n",
988 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
989 return sp;
990 }
991
992 /*
993 * allocating an SA entry for an *OUTBOUND* packet.
994 * checking each request entries in SP, and acquire an SA if need.
995 * OUT: 0: there are valid requests.
996 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
997 */
998 int
999 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
1000 {
1001 u_int level;
1002 int error;
1003 const struct secasindex *saidx = &isr->saidx;
1004 struct secasvar *sav;
1005
1006 KASSERT(isr != NULL);
1007 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
1008 saidx->mode == IPSEC_MODE_TUNNEL,
1009 "unexpected policy %u", saidx->mode);
1010
1011 /* get current level */
1012 level = ipsec_get_reqlevel(isr);
1013
1014 /*
1015 * XXX guard against protocol callbacks from the crypto
1016 * thread as they reference ipsecrequest.sav which we
1017 * temporarily null out below. Need to rethink how we
1018 * handle bundled SA's in the callback thread.
1019 */
1020 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
1021
1022 sav = key_lookup_sa_bysaidx(saidx);
1023 if (sav != NULL) {
1024 *ret = sav;
1025 return 0;
1026 }
1027
1028 /* there is no SA */
1029 error = key_acquire(saidx, isr->sp);
1030 if (error != 0) {
1031 /* XXX What should I do ? */
1032 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1033 error);
1034 return error;
1035 }
1036
1037 if (level != IPSEC_LEVEL_REQUIRE) {
1038 /* XXX sigh, the interface to this routine is botched */
1039 *ret = NULL;
1040 return 0;
1041 } else {
1042 return ENOENT;
1043 }
1044 }
1045
1046 /*
1047 * looking up a SA for policy entry from SAD.
1048 * NOTE: searching SAD of aliving state.
1049 * OUT: NULL: not found.
1050 * others: found and return the pointer.
1051 */
1052 static struct secasvar *
1053 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1054 {
1055 struct secashead *sah;
1056 struct secasvar *sav = NULL;
1057 u_int stateidx, state;
1058 const u_int *saorder_state_valid;
1059 int arraysize;
1060 int s;
1061
1062 s = pserialize_read_enter();
1063 sah = key_getsah(saidx, CMP_MODE_REQID);
1064 if (sah == NULL)
1065 goto out;
1066
1067 /*
1068 * search a valid state list for outbound packet.
1069 * This search order is important.
1070 */
1071 if (key_prefered_oldsa) {
1072 saorder_state_valid = saorder_state_valid_prefer_old;
1073 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1074 } else {
1075 saorder_state_valid = saorder_state_valid_prefer_new;
1076 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1077 }
1078
1079 /* search valid state */
1080 for (stateidx = 0;
1081 stateidx < arraysize;
1082 stateidx++) {
1083
1084 state = saorder_state_valid[stateidx];
1085
1086 if (key_prefered_oldsa)
1087 sav = SAVLIST_READER_FIRST(sah, state);
1088 else {
1089 /* XXX need O(1) lookup */
1090 struct secasvar *last = NULL;
1091
1092 SAVLIST_READER_FOREACH(sav, sah, state)
1093 last = sav;
1094 sav = last;
1095 }
1096 if (sav != NULL) {
1097 KEY_SA_REF(sav);
1098 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1099 "DP cause refcnt++:%d SA:%p\n",
1100 key_sa_refcnt(sav), sav);
1101 break;
1102 }
1103 }
1104 out:
1105 pserialize_read_exit(s);
1106
1107 return sav;
1108 }
1109
1110 #if 0
1111 static void
1112 key_sendup_message_delete(struct secasvar *sav)
1113 {
1114 struct mbuf *m, *result = 0;
1115 uint8_t satype;
1116
1117 satype = key_proto2satype(sav->sah->saidx.proto);
1118 if (satype == 0)
1119 goto msgfail;
1120
1121 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1122 if (m == NULL)
1123 goto msgfail;
1124 result = m;
1125
1126 /* set sadb_address for saidx's. */
1127 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1128 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1129 if (m == NULL)
1130 goto msgfail;
1131 m_cat(result, m);
1132
1133 /* set sadb_address for saidx's. */
1134 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1135 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1136 if (m == NULL)
1137 goto msgfail;
1138 m_cat(result, m);
1139
1140 /* create SA extension */
1141 m = key_setsadbsa(sav);
1142 if (m == NULL)
1143 goto msgfail;
1144 m_cat(result, m);
1145
1146 if (result->m_len < sizeof(struct sadb_msg)) {
1147 result = m_pullup(result, sizeof(struct sadb_msg));
1148 if (result == NULL)
1149 goto msgfail;
1150 }
1151
1152 result->m_pkthdr.len = 0;
1153 for (m = result; m; m = m->m_next)
1154 result->m_pkthdr.len += m->m_len;
1155 mtod(result, struct sadb_msg *)->sadb_msg_len =
1156 PFKEY_UNIT64(result->m_pkthdr.len);
1157
1158 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1159 result = NULL;
1160 msgfail:
1161 if (result)
1162 m_freem(result);
1163 }
1164 #endif
1165
1166 /*
1167 * allocating a usable SA entry for a *INBOUND* packet.
1168 * Must call key_freesav() later.
1169 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1170 * NULL: not found, or error occurred.
1171 *
1172 * In the comparison, no source address is used--for RFC2401 conformance.
1173 * To quote, from section 4.1:
1174 * A security association is uniquely identified by a triple consisting
1175 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1176 * security protocol (AH or ESP) identifier.
1177 * Note that, however, we do need to keep source address in IPsec SA.
1178 * IKE specification and PF_KEY specification do assume that we
1179 * keep source address in IPsec SA. We see a tricky situation here.
1180 *
1181 * sport and dport are used for NAT-T. network order is always used.
1182 */
1183 struct secasvar *
1184 key_lookup_sa(
1185 const union sockaddr_union *dst,
1186 u_int proto,
1187 u_int32_t spi,
1188 u_int16_t sport,
1189 u_int16_t dport,
1190 const char* where, int tag)
1191 {
1192 struct secashead *sah;
1193 struct secasvar *sav;
1194 u_int stateidx, state;
1195 const u_int *saorder_state_valid;
1196 int arraysize, chkport;
1197 int s;
1198
1199 int must_check_spi = 1;
1200 int must_check_alg = 0;
1201 u_int16_t cpi = 0;
1202 u_int8_t algo = 0;
1203
1204 if ((sport != 0) && (dport != 0))
1205 chkport = PORT_STRICT;
1206 else
1207 chkport = PORT_NONE;
1208
1209 KASSERT(dst != NULL);
1210
1211 /*
1212 * XXX IPCOMP case
1213 * We use cpi to define spi here. In the case where cpi <=
1214 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1215 * the real spi. In this case, don't check the spi but check the
1216 * algorithm
1217 */
1218
1219 if (proto == IPPROTO_IPCOMP) {
1220 u_int32_t tmp;
1221 tmp = ntohl(spi);
1222 cpi = (u_int16_t) tmp;
1223 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1224 algo = (u_int8_t) cpi;
1225 must_check_spi = 0;
1226 must_check_alg = 1;
1227 }
1228 }
1229 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1230 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1231 where, tag, must_check_spi, must_check_alg);
1232
1233
1234 /*
1235 * searching SAD.
1236 * XXX: to be checked internal IP header somewhere. Also when
1237 * IPsec tunnel packet is received. But ESP tunnel mode is
1238 * encrypted so we can't check internal IP header.
1239 */
1240 if (key_prefered_oldsa) {
1241 saorder_state_valid = saorder_state_valid_prefer_old;
1242 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1243 } else {
1244 saorder_state_valid = saorder_state_valid_prefer_new;
1245 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1246 }
1247 s = pserialize_read_enter();
1248 SAHLIST_READER_FOREACH(sah) {
1249 /* search valid state */
1250 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1251 state = saorder_state_valid[stateidx];
1252 SAVLIST_READER_FOREACH(sav, sah, state) {
1253 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1254 "try match spi %#x, %#x\n",
1255 ntohl(spi), ntohl(sav->spi));
1256 /* sanity check */
1257 KEY_CHKSASTATE(sav->state, state);
1258 /* do not return entries w/ unusable state */
1259 if (!SADB_SASTATE_USABLE_P(sav)) {
1260 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1261 "bad state %d\n", sav->state);
1262 continue;
1263 }
1264 if (proto != sav->sah->saidx.proto) {
1265 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1266 "proto fail %d != %d\n",
1267 proto, sav->sah->saidx.proto);
1268 continue;
1269 }
1270 if (must_check_spi && spi != sav->spi) {
1271 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1272 "spi fail %#x != %#x\n",
1273 ntohl(spi), ntohl(sav->spi));
1274 continue;
1275 }
1276 /* XXX only on the ipcomp case */
1277 if (must_check_alg && algo != sav->alg_comp) {
1278 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1279 "algo fail %d != %d\n",
1280 algo, sav->alg_comp);
1281 continue;
1282 }
1283
1284 #if 0 /* don't check src */
1285 /* Fix port in src->sa */
1286
1287 /* check src address */
1288 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1289 continue;
1290 #endif
1291 /* fix port of dst address XXX*/
1292 key_porttosaddr(__UNCONST(dst), dport);
1293 /* check dst address */
1294 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1295 continue;
1296 key_sa_ref(sav, where, tag);
1297 goto done;
1298 }
1299 }
1300 }
1301 sav = NULL;
1302 done:
1303 pserialize_read_exit(s);
1304
1305 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1306 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1307 return sav;
1308 }
1309
1310 static void
1311 key_validate_savlist(const struct secashead *sah, const u_int state)
1312 {
1313 #ifdef DEBUG
1314 struct secasvar *sav, *next;
1315 int s;
1316
1317 /*
1318 * The list should be sorted by lft_c->sadb_lifetime_addtime
1319 * in ascending order.
1320 */
1321 s = pserialize_read_enter();
1322 SAVLIST_READER_FOREACH(sav, sah, state) {
1323 next = SAVLIST_READER_NEXT(sav);
1324 if (next != NULL &&
1325 sav->lft_c != NULL && next->lft_c != NULL) {
1326 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1327 next->lft_c->sadb_lifetime_addtime,
1328 "savlist is not sorted: sah=%p, state=%d, "
1329 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1330 sav->lft_c->sadb_lifetime_addtime,
1331 next->lft_c->sadb_lifetime_addtime);
1332 }
1333 }
1334 pserialize_read_exit(s);
1335 #endif
1336 }
1337
1338 void
1339 key_init_sp(struct secpolicy *sp)
1340 {
1341
1342 ASSERT_SLEEPABLE();
1343
1344 sp->state = IPSEC_SPSTATE_ALIVE;
1345 if (sp->policy == IPSEC_POLICY_IPSEC)
1346 KASSERT(sp->req != NULL);
1347 localcount_init(&sp->localcount);
1348 SPLIST_ENTRY_INIT(sp);
1349 }
1350
1351 /*
1352 * Must be called in a pserialize read section. A held SP
1353 * must be released by key_sp_unref after use.
1354 */
1355 void
1356 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1357 {
1358
1359 localcount_acquire(&sp->localcount);
1360
1361 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1362 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1363 sp, sp->id, where, tag, key_sp_refcnt(sp));
1364 }
1365
1366 /*
1367 * Must be called without holding key_spd.lock because the lock
1368 * would be held in localcount_release.
1369 */
1370 void
1371 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1372 {
1373
1374 KDASSERT(mutex_ownable(&key_spd.lock));
1375
1376 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1377 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1378 sp, sp->id, where, tag, key_sp_refcnt(sp));
1379
1380 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
1381 }
1382
1383 static void
1384 key_init_sav(struct secasvar *sav)
1385 {
1386
1387 ASSERT_SLEEPABLE();
1388
1389 localcount_init(&sav->localcount);
1390 SAVLIST_ENTRY_INIT(sav);
1391 }
1392
1393 u_int
1394 key_sa_refcnt(const struct secasvar *sav)
1395 {
1396
1397 /* FIXME */
1398 return 0;
1399 }
1400
1401 void
1402 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1403 {
1404
1405 localcount_acquire(&sav->localcount);
1406
1407 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1408 "DP cause refcnt++: SA:%p from %s:%u\n",
1409 sav, where, tag);
1410 }
1411
1412 void
1413 key_sa_unref(struct secasvar *sav, const char* where, int tag)
1414 {
1415
1416 KDASSERT(mutex_ownable(&key_sad.lock));
1417
1418 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1419 "DP cause refcnt--: SA:%p from %s:%u\n",
1420 sav, where, tag);
1421
1422 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1423 }
1424
1425 #if 0
1426 /*
1427 * Must be called after calling key_lookup_sp*().
1428 * For the packet with socket.
1429 */
1430 static void
1431 key_freeso(struct socket *so)
1432 {
1433 /* sanity check */
1434 KASSERT(so != NULL);
1435
1436 switch (so->so_proto->pr_domain->dom_family) {
1437 #ifdef INET
1438 case PF_INET:
1439 {
1440 struct inpcb *pcb = sotoinpcb(so);
1441
1442 /* Does it have a PCB ? */
1443 if (pcb == NULL)
1444 return;
1445
1446 struct inpcbpolicy *sp = pcb->inp_sp;
1447 key_freesp_so(&sp->sp_in);
1448 key_freesp_so(&sp->sp_out);
1449 }
1450 break;
1451 #endif
1452 #ifdef INET6
1453 case PF_INET6:
1454 {
1455 #ifdef HAVE_NRL_INPCB
1456 struct inpcb *pcb = sotoinpcb(so);
1457 struct inpcbpolicy *sp = pcb->inp_sp;
1458
1459 /* Does it have a PCB ? */
1460 if (pcb == NULL)
1461 return;
1462 key_freesp_so(&sp->sp_in);
1463 key_freesp_so(&sp->sp_out);
1464 #else
1465 struct in6pcb *pcb = sotoin6pcb(so);
1466
1467 /* Does it have a PCB ? */
1468 if (pcb == NULL)
1469 return;
1470 key_freesp_so(&pcb->in6p_sp->sp_in);
1471 key_freesp_so(&pcb->in6p_sp->sp_out);
1472 #endif
1473 }
1474 break;
1475 #endif /* INET6 */
1476 default:
1477 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1478 so->so_proto->pr_domain->dom_family);
1479 return;
1480 }
1481 }
1482
1483 static void
1484 key_freesp_so(struct secpolicy **sp)
1485 {
1486
1487 KASSERT(sp != NULL);
1488 KASSERT(*sp != NULL);
1489
1490 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1491 (*sp)->policy == IPSEC_POLICY_BYPASS)
1492 return;
1493
1494 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1495 "invalid policy %u", (*sp)->policy);
1496 KEY_SP_UNREF(&sp);
1497 }
1498 #endif
1499
1500 #ifdef NET_MPSAFE
1501 static void
1502 key_sad_pserialize_perform(void)
1503 {
1504
1505 KASSERT(mutex_owned(&key_sad.lock));
1506
1507 while (key_sad.psz_performing)
1508 cv_wait(&key_sad.cv_psz, &key_sad.lock);
1509 key_sad.psz_performing = true;
1510 mutex_exit(&key_sad.lock);
1511
1512 pserialize_perform(key_sad.psz);
1513
1514 mutex_enter(&key_sad.lock);
1515 key_sad.psz_performing = false;
1516 cv_broadcast(&key_sad.cv_psz);
1517 }
1518 #endif
1519
1520 /*
1521 * Remove the sav from the savlist of its sah and wait for references to the sav
1522 * to be released. key_sad.lock must be held.
1523 */
1524 static void
1525 key_unlink_sav(struct secasvar *sav)
1526 {
1527
1528 KASSERT(mutex_owned(&key_sad.lock));
1529
1530 SAVLIST_WRITER_REMOVE(sav);
1531
1532 #ifdef NET_MPSAFE
1533 KASSERT(mutex_ownable(softnet_lock));
1534 key_sad_pserialize_perform();
1535 #endif
1536
1537 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1538 }
1539
1540 /*
1541 * Destroy an sav where the sav must be unlinked from an sah
1542 * by say key_unlink_sav.
1543 */
1544 static void
1545 key_destroy_sav(struct secasvar *sav)
1546 {
1547
1548 ASSERT_SLEEPABLE();
1549
1550 localcount_fini(&sav->localcount);
1551 SAVLIST_ENTRY_DESTROY(sav);
1552
1553 key_delsav(sav);
1554 }
1555
1556 /*
1557 * Destroy sav with holding its reference.
1558 */
1559 static void
1560 key_destroy_sav_with_ref(struct secasvar *sav)
1561 {
1562
1563 ASSERT_SLEEPABLE();
1564
1565 mutex_enter(&key_sad.lock);
1566 sav->state = SADB_SASTATE_DEAD;
1567 SAVLIST_WRITER_REMOVE(sav);
1568 mutex_exit(&key_sad.lock);
1569
1570 /* We cannot unref with holding key_sad.lock */
1571 KEY_SA_UNREF(&sav);
1572
1573 mutex_enter(&key_sad.lock);
1574 #ifdef NET_MPSAFE
1575 KASSERT(mutex_ownable(softnet_lock));
1576 key_sad_pserialize_perform();
1577 #endif
1578 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1579 mutex_exit(&key_sad.lock);
1580
1581 key_destroy_sav(sav);
1582 }
1583
1584 /* %%% SPD management */
1585 /*
1586 * free security policy entry.
1587 */
1588 static void
1589 key_destroy_sp(struct secpolicy *sp)
1590 {
1591
1592 SPLIST_ENTRY_DESTROY(sp);
1593 localcount_fini(&sp->localcount);
1594
1595 key_free_sp(sp);
1596
1597 key_update_used();
1598 }
1599
1600 void
1601 key_free_sp(struct secpolicy *sp)
1602 {
1603 struct ipsecrequest *isr = sp->req, *nextisr;
1604
1605 while (isr != NULL) {
1606 nextisr = isr->next;
1607 kmem_free(isr, sizeof(*isr));
1608 isr = nextisr;
1609 }
1610
1611 kmem_free(sp, sizeof(*sp));
1612 }
1613
1614 void
1615 key_socksplist_add(struct secpolicy *sp)
1616 {
1617
1618 mutex_enter(&key_spd.lock);
1619 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1620 mutex_exit(&key_spd.lock);
1621
1622 key_update_used();
1623 }
1624
1625 /*
1626 * search SPD
1627 * OUT: NULL : not found
1628 * others : found, pointer to a SP.
1629 */
1630 static struct secpolicy *
1631 key_getsp(const struct secpolicyindex *spidx)
1632 {
1633 struct secpolicy *sp;
1634 int s;
1635
1636 KASSERT(spidx != NULL);
1637
1638 s = pserialize_read_enter();
1639 SPLIST_READER_FOREACH(sp, spidx->dir) {
1640 if (sp->state == IPSEC_SPSTATE_DEAD)
1641 continue;
1642 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1643 KEY_SP_REF(sp);
1644 pserialize_read_exit(s);
1645 return sp;
1646 }
1647 }
1648 pserialize_read_exit(s);
1649
1650 return NULL;
1651 }
1652
1653 /*
1654 * search SPD and remove found SP
1655 * OUT: NULL : not found
1656 * others : found, pointer to a SP.
1657 */
1658 static struct secpolicy *
1659 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1660 {
1661 struct secpolicy *sp = NULL;
1662
1663 mutex_enter(&key_spd.lock);
1664 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1665 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1666
1667 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1668 key_unlink_sp(sp);
1669 goto out;
1670 }
1671 }
1672 sp = NULL;
1673 out:
1674 mutex_exit(&key_spd.lock);
1675
1676 return sp;
1677 }
1678
1679 /*
1680 * get SP by index.
1681 * OUT: NULL : not found
1682 * others : found, pointer to a SP.
1683 */
1684 static struct secpolicy *
1685 key_getspbyid(u_int32_t id)
1686 {
1687 struct secpolicy *sp;
1688 int s;
1689
1690 s = pserialize_read_enter();
1691 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1692 if (sp->state == IPSEC_SPSTATE_DEAD)
1693 continue;
1694 if (sp->id == id) {
1695 KEY_SP_REF(sp);
1696 goto out;
1697 }
1698 }
1699
1700 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1701 if (sp->state == IPSEC_SPSTATE_DEAD)
1702 continue;
1703 if (sp->id == id) {
1704 KEY_SP_REF(sp);
1705 goto out;
1706 }
1707 }
1708 out:
1709 pserialize_read_exit(s);
1710 return sp;
1711 }
1712
1713 /*
1714 * get SP by index, remove and return it.
1715 * OUT: NULL : not found
1716 * others : found, pointer to a SP.
1717 */
1718 static struct secpolicy *
1719 key_lookupbyid_and_remove_sp(u_int32_t id)
1720 {
1721 struct secpolicy *sp;
1722
1723 mutex_enter(&key_spd.lock);
1724 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1725 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1726 if (sp->id == id)
1727 goto out;
1728 }
1729
1730 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1731 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1732 if (sp->id == id)
1733 goto out;
1734 }
1735 out:
1736 if (sp != NULL)
1737 key_unlink_sp(sp);
1738 mutex_exit(&key_spd.lock);
1739 return sp;
1740 }
1741
1742 struct secpolicy *
1743 key_newsp(const char* where, int tag)
1744 {
1745 struct secpolicy *newsp = NULL;
1746
1747 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1748
1749 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1750 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1751 return newsp;
1752 }
1753
1754 /*
1755 * create secpolicy structure from sadb_x_policy structure.
1756 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1757 * so must be set properly later.
1758 */
1759 struct secpolicy *
1760 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1761 {
1762 struct secpolicy *newsp;
1763
1764 KASSERT(!cpu_softintr_p());
1765 KASSERT(xpl0 != NULL);
1766 KASSERT(len >= sizeof(*xpl0));
1767
1768 if (len != PFKEY_EXTLEN(xpl0)) {
1769 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1770 *error = EINVAL;
1771 return NULL;
1772 }
1773
1774 newsp = KEY_NEWSP();
1775 if (newsp == NULL) {
1776 *error = ENOBUFS;
1777 return NULL;
1778 }
1779
1780 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1781 newsp->policy = xpl0->sadb_x_policy_type;
1782
1783 /* check policy */
1784 switch (xpl0->sadb_x_policy_type) {
1785 case IPSEC_POLICY_DISCARD:
1786 case IPSEC_POLICY_NONE:
1787 case IPSEC_POLICY_ENTRUST:
1788 case IPSEC_POLICY_BYPASS:
1789 newsp->req = NULL;
1790 *error = 0;
1791 return newsp;
1792
1793 case IPSEC_POLICY_IPSEC:
1794 /* Continued */
1795 break;
1796 default:
1797 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1798 key_free_sp(newsp);
1799 *error = EINVAL;
1800 return NULL;
1801 }
1802
1803 /* IPSEC_POLICY_IPSEC */
1804 {
1805 int tlen;
1806 const struct sadb_x_ipsecrequest *xisr;
1807 uint16_t xisr_reqid;
1808 struct ipsecrequest **p_isr = &newsp->req;
1809
1810 /* validity check */
1811 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1812 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1813 *error = EINVAL;
1814 goto free_exit;
1815 }
1816
1817 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1818 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1819
1820 while (tlen > 0) {
1821 /* length check */
1822 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1823 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1824 *error = EINVAL;
1825 goto free_exit;
1826 }
1827
1828 /* allocate request buffer */
1829 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1830
1831 /* set values */
1832 (*p_isr)->next = NULL;
1833
1834 switch (xisr->sadb_x_ipsecrequest_proto) {
1835 case IPPROTO_ESP:
1836 case IPPROTO_AH:
1837 case IPPROTO_IPCOMP:
1838 break;
1839 default:
1840 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1841 xisr->sadb_x_ipsecrequest_proto);
1842 *error = EPROTONOSUPPORT;
1843 goto free_exit;
1844 }
1845 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1846
1847 switch (xisr->sadb_x_ipsecrequest_mode) {
1848 case IPSEC_MODE_TRANSPORT:
1849 case IPSEC_MODE_TUNNEL:
1850 break;
1851 case IPSEC_MODE_ANY:
1852 default:
1853 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1854 xisr->sadb_x_ipsecrequest_mode);
1855 *error = EINVAL;
1856 goto free_exit;
1857 }
1858 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1859
1860 switch (xisr->sadb_x_ipsecrequest_level) {
1861 case IPSEC_LEVEL_DEFAULT:
1862 case IPSEC_LEVEL_USE:
1863 case IPSEC_LEVEL_REQUIRE:
1864 break;
1865 case IPSEC_LEVEL_UNIQUE:
1866 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1867 /* validity check */
1868 /*
1869 * If range violation of reqid, kernel will
1870 * update it, don't refuse it.
1871 */
1872 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1873 IPSECLOG(LOG_DEBUG,
1874 "reqid=%d range "
1875 "violation, updated by kernel.\n",
1876 xisr_reqid);
1877 xisr_reqid = 0;
1878 }
1879
1880 /* allocate new reqid id if reqid is zero. */
1881 if (xisr_reqid == 0) {
1882 u_int16_t reqid = key_newreqid();
1883 if (reqid == 0) {
1884 *error = ENOBUFS;
1885 goto free_exit;
1886 }
1887 (*p_isr)->saidx.reqid = reqid;
1888 } else {
1889 /* set it for manual keying. */
1890 (*p_isr)->saidx.reqid = xisr_reqid;
1891 }
1892 break;
1893
1894 default:
1895 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1896 xisr->sadb_x_ipsecrequest_level);
1897 *error = EINVAL;
1898 goto free_exit;
1899 }
1900 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1901
1902 /* set IP addresses if there */
1903 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1904 const struct sockaddr *paddr;
1905
1906 paddr = (const struct sockaddr *)(xisr + 1);
1907
1908 /* validity check */
1909 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1910 IPSECLOG(LOG_DEBUG, "invalid request "
1911 "address length.\n");
1912 *error = EINVAL;
1913 goto free_exit;
1914 }
1915 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1916
1917 paddr = (const struct sockaddr *)((const char *)paddr
1918 + paddr->sa_len);
1919
1920 /* validity check */
1921 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1922 IPSECLOG(LOG_DEBUG, "invalid request "
1923 "address length.\n");
1924 *error = EINVAL;
1925 goto free_exit;
1926 }
1927 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1928 }
1929
1930 (*p_isr)->sp = newsp;
1931
1932 /* initialization for the next. */
1933 p_isr = &(*p_isr)->next;
1934 tlen -= xisr->sadb_x_ipsecrequest_len;
1935
1936 /* validity check */
1937 if (tlen < 0) {
1938 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1939 *error = EINVAL;
1940 goto free_exit;
1941 }
1942
1943 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1944 xisr->sadb_x_ipsecrequest_len);
1945 }
1946 }
1947
1948 *error = 0;
1949 return newsp;
1950
1951 free_exit:
1952 key_free_sp(newsp);
1953 return NULL;
1954 }
1955
1956 static u_int16_t
1957 key_newreqid(void)
1958 {
1959 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1960
1961 auto_reqid = (auto_reqid == 0xffff ?
1962 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1963
1964 /* XXX should be unique check */
1965
1966 return auto_reqid;
1967 }
1968
1969 /*
1970 * copy secpolicy struct to sadb_x_policy structure indicated.
1971 */
1972 struct mbuf *
1973 key_sp2msg(const struct secpolicy *sp)
1974 {
1975 struct sadb_x_policy *xpl;
1976 int tlen;
1977 char *p;
1978 struct mbuf *m;
1979
1980 KASSERT(sp != NULL);
1981
1982 tlen = key_getspreqmsglen(sp);
1983
1984 m = key_alloc_mbuf(tlen);
1985 if (!m || m->m_next) { /*XXX*/
1986 if (m)
1987 m_freem(m);
1988 return NULL;
1989 }
1990
1991 m->m_len = tlen;
1992 m->m_next = NULL;
1993 xpl = mtod(m, struct sadb_x_policy *);
1994 memset(xpl, 0, tlen);
1995
1996 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1997 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1998 xpl->sadb_x_policy_type = sp->policy;
1999 xpl->sadb_x_policy_dir = sp->spidx.dir;
2000 xpl->sadb_x_policy_id = sp->id;
2001 p = (char *)xpl + sizeof(*xpl);
2002
2003 /* if is the policy for ipsec ? */
2004 if (sp->policy == IPSEC_POLICY_IPSEC) {
2005 struct sadb_x_ipsecrequest *xisr;
2006 struct ipsecrequest *isr;
2007
2008 for (isr = sp->req; isr != NULL; isr = isr->next) {
2009
2010 xisr = (struct sadb_x_ipsecrequest *)p;
2011
2012 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
2013 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
2014 xisr->sadb_x_ipsecrequest_level = isr->level;
2015 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
2016
2017 p += sizeof(*xisr);
2018 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
2019 p += isr->saidx.src.sa.sa_len;
2020 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
2021 p += isr->saidx.src.sa.sa_len;
2022
2023 xisr->sadb_x_ipsecrequest_len =
2024 PFKEY_ALIGN8(sizeof(*xisr)
2025 + isr->saidx.src.sa.sa_len
2026 + isr->saidx.dst.sa.sa_len);
2027 }
2028 }
2029
2030 return m;
2031 }
2032
2033 /* m will not be freed nor modified */
2034 static struct mbuf *
2035 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
2036 int ndeep, int nitem, ...)
2037 {
2038 va_list ap;
2039 int idx;
2040 int i;
2041 struct mbuf *result = NULL, *n;
2042 int len;
2043
2044 KASSERT(m != NULL);
2045 KASSERT(mhp != NULL);
2046
2047 va_start(ap, nitem);
2048 for (i = 0; i < nitem; i++) {
2049 idx = va_arg(ap, int);
2050 if (idx < 0 || idx > SADB_EXT_MAX)
2051 goto fail;
2052 /* don't attempt to pull empty extension */
2053 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
2054 continue;
2055 if (idx != SADB_EXT_RESERVED &&
2056 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
2057 continue;
2058
2059 if (idx == SADB_EXT_RESERVED) {
2060 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
2061 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2062 MGETHDR(n, M_DONTWAIT, MT_DATA);
2063 if (!n)
2064 goto fail;
2065 n->m_len = len;
2066 n->m_next = NULL;
2067 m_copydata(m, 0, sizeof(struct sadb_msg),
2068 mtod(n, void *));
2069 } else if (i < ndeep) {
2070 len = mhp->extlen[idx];
2071 n = key_alloc_mbuf(len);
2072 if (!n || n->m_next) { /*XXX*/
2073 if (n)
2074 m_freem(n);
2075 goto fail;
2076 }
2077 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
2078 mtod(n, void *));
2079 } else {
2080 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
2081 M_DONTWAIT);
2082 }
2083 if (n == NULL)
2084 goto fail;
2085
2086 if (result)
2087 m_cat(result, n);
2088 else
2089 result = n;
2090 }
2091 va_end(ap);
2092
2093 if (result && (result->m_flags & M_PKTHDR) != 0) {
2094 result->m_pkthdr.len = 0;
2095 for (n = result; n; n = n->m_next)
2096 result->m_pkthdr.len += n->m_len;
2097 }
2098
2099 return result;
2100
2101 fail:
2102 va_end(ap);
2103 m_freem(result);
2104 return NULL;
2105 }
2106
2107 /*
2108 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2109 * add an entry to SP database, when received
2110 * <base, address(SD), (lifetime(H),) policy>
2111 * from the user(?).
2112 * Adding to SP database,
2113 * and send
2114 * <base, address(SD), (lifetime(H),) policy>
2115 * to the socket which was send.
2116 *
2117 * SPDADD set a unique policy entry.
2118 * SPDSETIDX like SPDADD without a part of policy requests.
2119 * SPDUPDATE replace a unique policy entry.
2120 *
2121 * m will always be freed.
2122 */
2123 static int
2124 key_api_spdadd(struct socket *so, struct mbuf *m,
2125 const struct sadb_msghdr *mhp)
2126 {
2127 const struct sockaddr *src, *dst;
2128 const struct sadb_x_policy *xpl0;
2129 struct sadb_x_policy *xpl;
2130 const struct sadb_lifetime *lft = NULL;
2131 struct secpolicyindex spidx;
2132 struct secpolicy *newsp;
2133 int error;
2134
2135 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2136 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2137 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2138 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2139 return key_senderror(so, m, EINVAL);
2140 }
2141 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2142 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2143 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2144 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2145 return key_senderror(so, m, EINVAL);
2146 }
2147 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2148 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2149 sizeof(struct sadb_lifetime)) {
2150 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2151 return key_senderror(so, m, EINVAL);
2152 }
2153 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
2154 }
2155
2156 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2157
2158 /* checking the direciton. */
2159 switch (xpl0->sadb_x_policy_dir) {
2160 case IPSEC_DIR_INBOUND:
2161 case IPSEC_DIR_OUTBOUND:
2162 break;
2163 default:
2164 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2165 return key_senderror(so, m, EINVAL);
2166 }
2167
2168 /* check policy */
2169 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2170 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2171 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2172 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2173 return key_senderror(so, m, EINVAL);
2174 }
2175
2176 /* policy requests are mandatory when action is ipsec. */
2177 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2178 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2179 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2180 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2181 return key_senderror(so, m, EINVAL);
2182 }
2183
2184 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2185 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2186
2187 /* sanity check on addr pair */
2188 if (src->sa_family != dst->sa_family)
2189 return key_senderror(so, m, EINVAL);
2190 if (src->sa_len != dst->sa_len)
2191 return key_senderror(so, m, EINVAL);
2192
2193 key_init_spidx_bymsghdr(&spidx, mhp);
2194
2195 /*
2196 * checking there is SP already or not.
2197 * SPDUPDATE doesn't depend on whether there is a SP or not.
2198 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2199 * then error.
2200 */
2201 {
2202 struct secpolicy *sp;
2203
2204 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2205 sp = key_lookup_and_remove_sp(&spidx);
2206 if (sp != NULL)
2207 key_destroy_sp(sp);
2208 } else {
2209 sp = key_getsp(&spidx);
2210 if (sp != NULL) {
2211 KEY_SP_UNREF(&sp);
2212 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2213 return key_senderror(so, m, EEXIST);
2214 }
2215 }
2216 }
2217
2218 /* allocation new SP entry */
2219 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2220 if (newsp == NULL) {
2221 return key_senderror(so, m, error);
2222 }
2223
2224 newsp->id = key_getnewspid();
2225 if (newsp->id == 0) {
2226 kmem_free(newsp, sizeof(*newsp));
2227 return key_senderror(so, m, ENOBUFS);
2228 }
2229
2230 newsp->spidx = spidx;
2231 newsp->created = time_uptime;
2232 newsp->lastused = newsp->created;
2233 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2234 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2235
2236 key_init_sp(newsp);
2237
2238 mutex_enter(&key_spd.lock);
2239 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2240 mutex_exit(&key_spd.lock);
2241
2242 #ifdef notyet
2243 /* delete the entry in key_misc.spacqlist */
2244 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2245 struct secspacq *spacq = key_getspacq(&spidx);
2246 if (spacq != NULL) {
2247 /* reset counter in order to deletion by timehandler. */
2248 spacq->created = time_uptime;
2249 spacq->count = 0;
2250 }
2251 }
2252 #endif
2253
2254 /* Invalidate all cached SPD pointers in the PCBs. */
2255 ipsec_invalpcbcacheall();
2256
2257 #if defined(GATEWAY)
2258 /* Invalidate the ipflow cache, as well. */
2259 ipflow_invalidate_all(0);
2260 #ifdef INET6
2261 if (in6_present)
2262 ip6flow_invalidate_all(0);
2263 #endif /* INET6 */
2264 #endif /* GATEWAY */
2265
2266 key_update_used();
2267
2268 {
2269 struct mbuf *n, *mpolicy;
2270 int off;
2271
2272 /* create new sadb_msg to reply. */
2273 if (lft) {
2274 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2275 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2276 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2277 } else {
2278 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2279 SADB_X_EXT_POLICY,
2280 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2281 }
2282 if (!n)
2283 return key_senderror(so, m, ENOBUFS);
2284
2285 n = key_fill_replymsg(n, 0);
2286 if (n == NULL)
2287 return key_senderror(so, m, ENOBUFS);
2288
2289 off = 0;
2290 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2291 sizeof(*xpl), &off);
2292 if (mpolicy == NULL) {
2293 /* n is already freed */
2294 return key_senderror(so, m, ENOBUFS);
2295 }
2296 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2297 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2298 m_freem(n);
2299 return key_senderror(so, m, EINVAL);
2300 }
2301 xpl->sadb_x_policy_id = newsp->id;
2302
2303 m_freem(m);
2304 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2305 }
2306 }
2307
2308 /*
2309 * get new policy id.
2310 * OUT:
2311 * 0: failure.
2312 * others: success.
2313 */
2314 static u_int32_t
2315 key_getnewspid(void)
2316 {
2317 u_int32_t newid = 0;
2318 int count = key_spi_trycnt; /* XXX */
2319 struct secpolicy *sp;
2320
2321 /* when requesting to allocate spi ranged */
2322 while (count--) {
2323 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2324
2325 sp = key_getspbyid(newid);
2326 if (sp == NULL)
2327 break;
2328
2329 KEY_SP_UNREF(&sp);
2330 }
2331
2332 if (count == 0 || newid == 0) {
2333 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2334 return 0;
2335 }
2336
2337 return newid;
2338 }
2339
2340 /*
2341 * SADB_SPDDELETE processing
2342 * receive
2343 * <base, address(SD), policy(*)>
2344 * from the user(?), and set SADB_SASTATE_DEAD,
2345 * and send,
2346 * <base, address(SD), policy(*)>
2347 * to the ikmpd.
2348 * policy(*) including direction of policy.
2349 *
2350 * m will always be freed.
2351 */
2352 static int
2353 key_api_spddelete(struct socket *so, struct mbuf *m,
2354 const struct sadb_msghdr *mhp)
2355 {
2356 struct sadb_x_policy *xpl0;
2357 struct secpolicyindex spidx;
2358 struct secpolicy *sp;
2359
2360 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2361 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2362 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2363 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2364 return key_senderror(so, m, EINVAL);
2365 }
2366 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2367 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2368 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2369 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2370 return key_senderror(so, m, EINVAL);
2371 }
2372
2373 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2374
2375 /* checking the direciton. */
2376 switch (xpl0->sadb_x_policy_dir) {
2377 case IPSEC_DIR_INBOUND:
2378 case IPSEC_DIR_OUTBOUND:
2379 break;
2380 default:
2381 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2382 return key_senderror(so, m, EINVAL);
2383 }
2384
2385 /* make secindex */
2386 key_init_spidx_bymsghdr(&spidx, mhp);
2387
2388 /* Is there SP in SPD ? */
2389 sp = key_lookup_and_remove_sp(&spidx);
2390 if (sp == NULL) {
2391 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2392 return key_senderror(so, m, EINVAL);
2393 }
2394
2395 /* save policy id to buffer to be returned. */
2396 xpl0->sadb_x_policy_id = sp->id;
2397
2398 key_destroy_sp(sp);
2399
2400 /* We're deleting policy; no need to invalidate the ipflow cache. */
2401
2402 {
2403 struct mbuf *n;
2404
2405 /* create new sadb_msg to reply. */
2406 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2407 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2408 if (!n)
2409 return key_senderror(so, m, ENOBUFS);
2410
2411 n = key_fill_replymsg(n, 0);
2412 if (n == NULL)
2413 return key_senderror(so, m, ENOBUFS);
2414
2415 m_freem(m);
2416 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2417 }
2418 }
2419
2420 /*
2421 * SADB_SPDDELETE2 processing
2422 * receive
2423 * <base, policy(*)>
2424 * from the user(?), and set SADB_SASTATE_DEAD,
2425 * and send,
2426 * <base, policy(*)>
2427 * to the ikmpd.
2428 * policy(*) including direction of policy.
2429 *
2430 * m will always be freed.
2431 */
2432 static int
2433 key_api_spddelete2(struct socket *so, struct mbuf *m,
2434 const struct sadb_msghdr *mhp)
2435 {
2436 u_int32_t id;
2437 struct secpolicy *sp;
2438
2439 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2440 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2441 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2442 return key_senderror(so, m, EINVAL);
2443 }
2444
2445 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2446
2447 /* Is there SP in SPD ? */
2448 sp = key_lookupbyid_and_remove_sp(id);
2449 if (sp == NULL) {
2450 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2451 return key_senderror(so, m, EINVAL);
2452 }
2453
2454 key_destroy_sp(sp);
2455
2456 /* We're deleting policy; no need to invalidate the ipflow cache. */
2457
2458 {
2459 struct mbuf *n, *nn;
2460 int off, len;
2461
2462 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2463
2464 /* create new sadb_msg to reply. */
2465 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2466
2467 MGETHDR(n, M_DONTWAIT, MT_DATA);
2468 if (n && len > MHLEN) {
2469 MCLGET(n, M_DONTWAIT);
2470 if ((n->m_flags & M_EXT) == 0) {
2471 m_freem(n);
2472 n = NULL;
2473 }
2474 }
2475 if (!n)
2476 return key_senderror(so, m, ENOBUFS);
2477
2478 n->m_len = len;
2479 n->m_next = NULL;
2480 off = 0;
2481
2482 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2483 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2484
2485 KASSERTMSG(off == len, "length inconsistency");
2486
2487 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2488 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2489 if (!n->m_next) {
2490 m_freem(n);
2491 return key_senderror(so, m, ENOBUFS);
2492 }
2493
2494 n->m_pkthdr.len = 0;
2495 for (nn = n; nn; nn = nn->m_next)
2496 n->m_pkthdr.len += nn->m_len;
2497
2498 n = key_fill_replymsg(n, 0);
2499 if (n == NULL)
2500 return key_senderror(so, m, ENOBUFS);
2501
2502 m_freem(m);
2503 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2504 }
2505 }
2506
2507 /*
2508 * SADB_X_GET processing
2509 * receive
2510 * <base, policy(*)>
2511 * from the user(?),
2512 * and send,
2513 * <base, address(SD), policy>
2514 * to the ikmpd.
2515 * policy(*) including direction of policy.
2516 *
2517 * m will always be freed.
2518 */
2519 static int
2520 key_api_spdget(struct socket *so, struct mbuf *m,
2521 const struct sadb_msghdr *mhp)
2522 {
2523 u_int32_t id;
2524 struct secpolicy *sp;
2525 struct mbuf *n;
2526
2527 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2528 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2529 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2530 return key_senderror(so, m, EINVAL);
2531 }
2532
2533 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2534
2535 /* Is there SP in SPD ? */
2536 sp = key_getspbyid(id);
2537 if (sp == NULL) {
2538 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2539 return key_senderror(so, m, ENOENT);
2540 }
2541
2542 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2543 mhp->msg->sadb_msg_pid);
2544 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2545 if (n != NULL) {
2546 m_freem(m);
2547 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2548 } else
2549 return key_senderror(so, m, ENOBUFS);
2550 }
2551
2552 #ifdef notyet
2553 /*
2554 * SADB_X_SPDACQUIRE processing.
2555 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2556 * send
2557 * <base, policy(*)>
2558 * to KMD, and expect to receive
2559 * <base> with SADB_X_SPDACQUIRE if error occurred,
2560 * or
2561 * <base, policy>
2562 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2563 * policy(*) is without policy requests.
2564 *
2565 * 0 : succeed
2566 * others: error number
2567 */
2568 int
2569 key_spdacquire(const struct secpolicy *sp)
2570 {
2571 struct mbuf *result = NULL, *m;
2572 struct secspacq *newspacq;
2573 int error;
2574
2575 KASSERT(sp != NULL);
2576 KASSERTMSG(sp->req == NULL, "called but there is request");
2577 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2578 "policy mismathed. IPsec is expected");
2579
2580 /* Get an entry to check whether sent message or not. */
2581 newspacq = key_getspacq(&sp->spidx);
2582 if (newspacq != NULL) {
2583 if (key_blockacq_count < newspacq->count) {
2584 /* reset counter and do send message. */
2585 newspacq->count = 0;
2586 } else {
2587 /* increment counter and do nothing. */
2588 newspacq->count++;
2589 return 0;
2590 }
2591 } else {
2592 /* make new entry for blocking to send SADB_ACQUIRE. */
2593 newspacq = key_newspacq(&sp->spidx);
2594 if (newspacq == NULL)
2595 return ENOBUFS;
2596
2597 /* add to key_misc.acqlist */
2598 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2599 }
2600
2601 /* create new sadb_msg to reply. */
2602 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2603 if (!m) {
2604 error = ENOBUFS;
2605 goto fail;
2606 }
2607 result = m;
2608
2609 result->m_pkthdr.len = 0;
2610 for (m = result; m; m = m->m_next)
2611 result->m_pkthdr.len += m->m_len;
2612
2613 mtod(result, struct sadb_msg *)->sadb_msg_len =
2614 PFKEY_UNIT64(result->m_pkthdr.len);
2615
2616 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2617
2618 fail:
2619 if (result)
2620 m_freem(result);
2621 return error;
2622 }
2623 #endif /* notyet */
2624
2625 /*
2626 * SADB_SPDFLUSH processing
2627 * receive
2628 * <base>
2629 * from the user, and free all entries in secpctree.
2630 * and send,
2631 * <base>
2632 * to the user.
2633 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2634 *
2635 * m will always be freed.
2636 */
2637 static int
2638 key_api_spdflush(struct socket *so, struct mbuf *m,
2639 const struct sadb_msghdr *mhp)
2640 {
2641 struct sadb_msg *newmsg;
2642 struct secpolicy *sp;
2643 u_int dir;
2644
2645 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2646 return key_senderror(so, m, EINVAL);
2647
2648 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2649 retry:
2650 mutex_enter(&key_spd.lock);
2651 SPLIST_WRITER_FOREACH(sp, dir) {
2652 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2653 key_unlink_sp(sp);
2654 mutex_exit(&key_spd.lock);
2655 key_destroy_sp(sp);
2656 goto retry;
2657 }
2658 mutex_exit(&key_spd.lock);
2659 }
2660
2661 /* We're deleting policy; no need to invalidate the ipflow cache. */
2662
2663 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2664 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2665 return key_senderror(so, m, ENOBUFS);
2666 }
2667
2668 if (m->m_next)
2669 m_freem(m->m_next);
2670 m->m_next = NULL;
2671 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2672 newmsg = mtod(m, struct sadb_msg *);
2673 newmsg->sadb_msg_errno = 0;
2674 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2675
2676 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2677 }
2678
2679 static struct sockaddr key_src = {
2680 .sa_len = 2,
2681 .sa_family = PF_KEY,
2682 };
2683
2684 static struct mbuf *
2685 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2686 {
2687 struct secpolicy *sp;
2688 int cnt;
2689 u_int dir;
2690 struct mbuf *m, *n, *prev;
2691 int totlen;
2692
2693 KASSERT(mutex_owned(&key_spd.lock));
2694
2695 *lenp = 0;
2696
2697 /* search SPD entry and get buffer size. */
2698 cnt = 0;
2699 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2700 SPLIST_WRITER_FOREACH(sp, dir) {
2701 cnt++;
2702 }
2703 }
2704
2705 if (cnt == 0) {
2706 *errorp = ENOENT;
2707 return (NULL);
2708 }
2709
2710 m = NULL;
2711 prev = m;
2712 totlen = 0;
2713 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2714 SPLIST_WRITER_FOREACH(sp, dir) {
2715 --cnt;
2716 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2717
2718 if (!n) {
2719 *errorp = ENOBUFS;
2720 if (m)
2721 m_freem(m);
2722 return (NULL);
2723 }
2724
2725 totlen += n->m_pkthdr.len;
2726 if (!m) {
2727 m = n;
2728 } else {
2729 prev->m_nextpkt = n;
2730 }
2731 prev = n;
2732 }
2733 }
2734
2735 *lenp = totlen;
2736 *errorp = 0;
2737 return (m);
2738 }
2739
2740 /*
2741 * SADB_SPDDUMP processing
2742 * receive
2743 * <base>
2744 * from the user, and dump all SP leaves
2745 * and send,
2746 * <base> .....
2747 * to the ikmpd.
2748 *
2749 * m will always be freed.
2750 */
2751 static int
2752 key_api_spddump(struct socket *so, struct mbuf *m0,
2753 const struct sadb_msghdr *mhp)
2754 {
2755 struct mbuf *n;
2756 int error, len;
2757 int ok;
2758 pid_t pid;
2759
2760 pid = mhp->msg->sadb_msg_pid;
2761 /*
2762 * If the requestor has insufficient socket-buffer space
2763 * for the entire chain, nobody gets any response to the DUMP.
2764 * XXX For now, only the requestor ever gets anything.
2765 * Moreover, if the requestor has any space at all, they receive
2766 * the entire chain, otherwise the request is refused with ENOBUFS.
2767 */
2768 if (sbspace(&so->so_rcv) <= 0) {
2769 return key_senderror(so, m0, ENOBUFS);
2770 }
2771
2772 mutex_enter(&key_spd.lock);
2773 n = key_setspddump_chain(&error, &len, pid);
2774 mutex_exit(&key_spd.lock);
2775
2776 if (n == NULL) {
2777 return key_senderror(so, m0, ENOENT);
2778 }
2779 {
2780 uint64_t *ps = PFKEY_STAT_GETREF();
2781 ps[PFKEY_STAT_IN_TOTAL]++;
2782 ps[PFKEY_STAT_IN_BYTES] += len;
2783 PFKEY_STAT_PUTREF();
2784 }
2785
2786 /*
2787 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2788 * The requestor receives either the entire chain, or an
2789 * error message with ENOBUFS.
2790 */
2791
2792 /*
2793 * sbappendchainwith record takes the chain of entries, one
2794 * packet-record per SPD entry, prepends the key_src sockaddr
2795 * to each packet-record, links the sockaddr mbufs into a new
2796 * list of records, then appends the entire resulting
2797 * list to the requesting socket.
2798 */
2799 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2800 SB_PRIO_ONESHOT_OVERFLOW);
2801
2802 if (!ok) {
2803 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2804 m_freem(n);
2805 return key_senderror(so, m0, ENOBUFS);
2806 }
2807
2808 m_freem(m0);
2809 return error;
2810 }
2811
2812 /*
2813 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2814 */
2815 static int
2816 key_api_nat_map(struct socket *so, struct mbuf *m,
2817 const struct sadb_msghdr *mhp)
2818 {
2819 struct sadb_x_nat_t_type *type;
2820 struct sadb_x_nat_t_port *sport;
2821 struct sadb_x_nat_t_port *dport;
2822 struct sadb_address *iaddr, *raddr;
2823 struct sadb_x_nat_t_frag *frag;
2824
2825 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2826 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2827 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2828 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2829 return key_senderror(so, m, EINVAL);
2830 }
2831 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2832 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2833 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2834 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2835 return key_senderror(so, m, EINVAL);
2836 }
2837
2838 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2839 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2840 IPSECLOG(LOG_DEBUG, "invalid message\n");
2841 return key_senderror(so, m, EINVAL);
2842 }
2843
2844 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2845 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2846 IPSECLOG(LOG_DEBUG, "invalid message\n");
2847 return key_senderror(so, m, EINVAL);
2848 }
2849
2850 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2851 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2852 IPSECLOG(LOG_DEBUG, "invalid message\n");
2853 return key_senderror(so, m, EINVAL);
2854 }
2855
2856 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2857 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2858 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2859 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2860 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2861 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2862
2863 /*
2864 * XXX handle that, it should also contain a SA, or anything
2865 * that enable to update the SA information.
2866 */
2867
2868 return 0;
2869 }
2870
2871 static struct mbuf *
2872 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2873 {
2874 struct mbuf *result = NULL, *m;
2875
2876 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2877 key_sp_refcnt(sp));
2878 if (!m)
2879 goto fail;
2880 result = m;
2881
2882 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2883 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2884 if (!m)
2885 goto fail;
2886 m_cat(result, m);
2887
2888 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2889 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2890 if (!m)
2891 goto fail;
2892 m_cat(result, m);
2893
2894 m = key_sp2msg(sp);
2895 if (!m)
2896 goto fail;
2897 m_cat(result, m);
2898
2899 if ((result->m_flags & M_PKTHDR) == 0)
2900 goto fail;
2901
2902 if (result->m_len < sizeof(struct sadb_msg)) {
2903 result = m_pullup(result, sizeof(struct sadb_msg));
2904 if (result == NULL)
2905 goto fail;
2906 }
2907
2908 result->m_pkthdr.len = 0;
2909 for (m = result; m; m = m->m_next)
2910 result->m_pkthdr.len += m->m_len;
2911
2912 mtod(result, struct sadb_msg *)->sadb_msg_len =
2913 PFKEY_UNIT64(result->m_pkthdr.len);
2914
2915 return result;
2916
2917 fail:
2918 m_freem(result);
2919 return NULL;
2920 }
2921
2922 /*
2923 * get PFKEY message length for security policy and request.
2924 */
2925 static u_int
2926 key_getspreqmsglen(const struct secpolicy *sp)
2927 {
2928 u_int tlen;
2929
2930 tlen = sizeof(struct sadb_x_policy);
2931
2932 /* if is the policy for ipsec ? */
2933 if (sp->policy != IPSEC_POLICY_IPSEC)
2934 return tlen;
2935
2936 /* get length of ipsec requests */
2937 {
2938 const struct ipsecrequest *isr;
2939 int len;
2940
2941 for (isr = sp->req; isr != NULL; isr = isr->next) {
2942 len = sizeof(struct sadb_x_ipsecrequest)
2943 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2944
2945 tlen += PFKEY_ALIGN8(len);
2946 }
2947 }
2948
2949 return tlen;
2950 }
2951
2952 /*
2953 * SADB_SPDEXPIRE processing
2954 * send
2955 * <base, address(SD), lifetime(CH), policy>
2956 * to KMD by PF_KEY.
2957 *
2958 * OUT: 0 : succeed
2959 * others : error number
2960 */
2961 static int
2962 key_spdexpire(struct secpolicy *sp)
2963 {
2964 int s;
2965 struct mbuf *result = NULL, *m;
2966 int len;
2967 int error = -1;
2968 struct sadb_lifetime *lt;
2969
2970 /* XXX: Why do we lock ? */
2971 s = splsoftnet(); /*called from softclock()*/
2972
2973 KASSERT(sp != NULL);
2974
2975 /* set msg header */
2976 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2977 if (!m) {
2978 error = ENOBUFS;
2979 goto fail;
2980 }
2981 result = m;
2982
2983 /* create lifetime extension (current and hard) */
2984 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2985 m = key_alloc_mbuf(len);
2986 if (!m || m->m_next) { /*XXX*/
2987 if (m)
2988 m_freem(m);
2989 error = ENOBUFS;
2990 goto fail;
2991 }
2992 memset(mtod(m, void *), 0, len);
2993 lt = mtod(m, struct sadb_lifetime *);
2994 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2995 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2996 lt->sadb_lifetime_allocations = 0;
2997 lt->sadb_lifetime_bytes = 0;
2998 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2999 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
3000 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
3001 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3002 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
3003 lt->sadb_lifetime_allocations = 0;
3004 lt->sadb_lifetime_bytes = 0;
3005 lt->sadb_lifetime_addtime = sp->lifetime;
3006 lt->sadb_lifetime_usetime = sp->validtime;
3007 m_cat(result, m);
3008
3009 /* set sadb_address for source */
3010 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
3011 sp->spidx.prefs, sp->spidx.ul_proto);
3012 if (!m) {
3013 error = ENOBUFS;
3014 goto fail;
3015 }
3016 m_cat(result, m);
3017
3018 /* set sadb_address for destination */
3019 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
3020 sp->spidx.prefd, sp->spidx.ul_proto);
3021 if (!m) {
3022 error = ENOBUFS;
3023 goto fail;
3024 }
3025 m_cat(result, m);
3026
3027 /* set secpolicy */
3028 m = key_sp2msg(sp);
3029 if (!m) {
3030 error = ENOBUFS;
3031 goto fail;
3032 }
3033 m_cat(result, m);
3034
3035 if ((result->m_flags & M_PKTHDR) == 0) {
3036 error = EINVAL;
3037 goto fail;
3038 }
3039
3040 if (result->m_len < sizeof(struct sadb_msg)) {
3041 result = m_pullup(result, sizeof(struct sadb_msg));
3042 if (result == NULL) {
3043 error = ENOBUFS;
3044 goto fail;
3045 }
3046 }
3047
3048 result->m_pkthdr.len = 0;
3049 for (m = result; m; m = m->m_next)
3050 result->m_pkthdr.len += m->m_len;
3051
3052 mtod(result, struct sadb_msg *)->sadb_msg_len =
3053 PFKEY_UNIT64(result->m_pkthdr.len);
3054
3055 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
3056
3057 fail:
3058 if (result)
3059 m_freem(result);
3060 splx(s);
3061 return error;
3062 }
3063
3064 /* %%% SAD management */
3065 /*
3066 * allocating a memory for new SA head, and copy from the values of mhp.
3067 * OUT: NULL : failure due to the lack of memory.
3068 * others : pointer to new SA head.
3069 */
3070 static struct secashead *
3071 key_newsah(const struct secasindex *saidx)
3072 {
3073 struct secashead *newsah;
3074 int i;
3075
3076 KASSERT(saidx != NULL);
3077
3078 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
3079 for (i = 0; i < __arraycount(newsah->savlist); i++)
3080 PSLIST_INIT(&newsah->savlist[i]);
3081 newsah->saidx = *saidx;
3082
3083 localcount_init(&newsah->localcount);
3084 /* Take a reference for the caller */
3085 localcount_acquire(&newsah->localcount);
3086
3087 /* Add to the sah list */
3088 SAHLIST_ENTRY_INIT(newsah);
3089 newsah->state = SADB_SASTATE_MATURE;
3090 mutex_enter(&key_sad.lock);
3091 SAHLIST_WRITER_INSERT_HEAD(newsah);
3092 mutex_exit(&key_sad.lock);
3093
3094 return newsah;
3095 }
3096
3097 static bool
3098 key_sah_has_sav(struct secashead *sah)
3099 {
3100 u_int state;
3101
3102 KASSERT(mutex_owned(&key_sad.lock));
3103
3104 SASTATE_ANY_FOREACH(state) {
3105 if (!SAVLIST_WRITER_EMPTY(sah, state))
3106 return true;
3107 }
3108
3109 return false;
3110 }
3111
3112 static void
3113 key_unlink_sah(struct secashead *sah)
3114 {
3115
3116 KASSERT(!cpu_softintr_p());
3117 KASSERT(mutex_owned(&key_sad.lock));
3118 KASSERT(sah->state == SADB_SASTATE_DEAD);
3119
3120 /* Remove from the sah list */
3121 SAHLIST_WRITER_REMOVE(sah);
3122
3123 #ifdef NET_MPSAFE
3124 KASSERT(mutex_ownable(softnet_lock));
3125 key_sad_pserialize_perform();
3126 #endif
3127
3128 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3129 }
3130
3131 static void
3132 key_destroy_sah(struct secashead *sah)
3133 {
3134
3135 rtcache_free(&sah->sa_route);
3136
3137 SAHLIST_ENTRY_DESTROY(sah);
3138 localcount_fini(&sah->localcount);
3139
3140 if (sah->idents != NULL)
3141 kmem_free(sah->idents, sah->idents_len);
3142 if (sah->identd != NULL)
3143 kmem_free(sah->identd, sah->identd_len);
3144
3145 kmem_free(sah, sizeof(*sah));
3146 }
3147
3148 /*
3149 * allocating a new SA with LARVAL state.
3150 * key_api_add() and key_api_getspi() call,
3151 * and copy the values of mhp into new buffer.
3152 * When SAD message type is GETSPI:
3153 * to set sequence number from acq_seq++,
3154 * to set zero to SPI.
3155 * not to call key_setsava().
3156 * OUT: NULL : fail
3157 * others : pointer to new secasvar.
3158 *
3159 * does not modify mbuf. does not free mbuf on error.
3160 */
3161 static struct secasvar *
3162 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3163 int *errp, const char* where, int tag)
3164 {
3165 struct secasvar *newsav;
3166 const struct sadb_sa *xsa;
3167
3168 KASSERT(!cpu_softintr_p());
3169 KASSERT(m != NULL);
3170 KASSERT(mhp != NULL);
3171 KASSERT(mhp->msg != NULL);
3172
3173 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3174
3175 switch (mhp->msg->sadb_msg_type) {
3176 case SADB_GETSPI:
3177 newsav->spi = 0;
3178
3179 #ifdef IPSEC_DOSEQCHECK
3180 /* sync sequence number */
3181 if (mhp->msg->sadb_msg_seq == 0)
3182 newsav->seq =
3183 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3184 else
3185 #endif
3186 newsav->seq = mhp->msg->sadb_msg_seq;
3187 break;
3188
3189 case SADB_ADD:
3190 /* sanity check */
3191 if (mhp->ext[SADB_EXT_SA] == NULL) {
3192 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3193 *errp = EINVAL;
3194 goto error;
3195 }
3196 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3197 newsav->spi = xsa->sadb_sa_spi;
3198 newsav->seq = mhp->msg->sadb_msg_seq;
3199 break;
3200 default:
3201 *errp = EINVAL;
3202 goto error;
3203 }
3204
3205 /* copy sav values */
3206 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3207 *errp = key_setsaval(newsav, m, mhp);
3208 if (*errp)
3209 goto error;
3210 } else {
3211 /* We don't allow lft_c to be NULL */
3212 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3213 KM_SLEEP);
3214 }
3215
3216 /* reset created */
3217 newsav->created = time_uptime;
3218 newsav->pid = mhp->msg->sadb_msg_pid;
3219
3220 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3221 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3222 return newsav;
3223
3224 error:
3225 KASSERT(*errp != 0);
3226 kmem_free(newsav, sizeof(*newsav));
3227 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3228 "DP from %s:%u return SA:NULL\n", where, tag);
3229 return NULL;
3230 }
3231
3232
3233 static void
3234 key_clear_xform(struct secasvar *sav)
3235 {
3236
3237 /*
3238 * Cleanup xform state. Note that zeroize'ing causes the
3239 * keys to be cleared; otherwise we must do it ourself.
3240 */
3241 if (sav->tdb_xform != NULL) {
3242 sav->tdb_xform->xf_zeroize(sav);
3243 sav->tdb_xform = NULL;
3244 } else {
3245 if (sav->key_auth != NULL)
3246 explicit_memset(_KEYBUF(sav->key_auth), 0,
3247 _KEYLEN(sav->key_auth));
3248 if (sav->key_enc != NULL)
3249 explicit_memset(_KEYBUF(sav->key_enc), 0,
3250 _KEYLEN(sav->key_enc));
3251 }
3252 }
3253
3254 /*
3255 * free() SA variable entry.
3256 */
3257 static void
3258 key_delsav(struct secasvar *sav)
3259 {
3260
3261 key_clear_xform(sav);
3262 key_freesaval(sav);
3263 kmem_free(sav, sizeof(*sav));
3264 }
3265
3266 /*
3267 * Must be called in a pserialize read section. A held sah
3268 * must be released by key_sah_unref after use.
3269 */
3270 static void
3271 key_sah_ref(struct secashead *sah)
3272 {
3273
3274 localcount_acquire(&sah->localcount);
3275 }
3276
3277 /*
3278 * Must be called without holding key_sad.lock because the lock
3279 * would be held in localcount_release.
3280 */
3281 static void
3282 key_sah_unref(struct secashead *sah)
3283 {
3284
3285 KDASSERT(mutex_ownable(&key_sad.lock));
3286
3287 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3288 }
3289
3290 /*
3291 * Search SAD and return sah. Must be called in a pserialize
3292 * read section.
3293 * OUT:
3294 * NULL : not found
3295 * others : found, pointer to a SA.
3296 */
3297 static struct secashead *
3298 key_getsah(const struct secasindex *saidx, int flag)
3299 {
3300 struct secashead *sah;
3301
3302 SAHLIST_READER_FOREACH(sah) {
3303 if (sah->state == SADB_SASTATE_DEAD)
3304 continue;
3305 if (key_saidx_match(&sah->saidx, saidx, flag))
3306 return sah;
3307 }
3308
3309 return NULL;
3310 }
3311
3312 /*
3313 * Search SAD and return sah. If sah is returned, the caller must call
3314 * key_sah_unref to releaset a reference.
3315 * OUT:
3316 * NULL : not found
3317 * others : found, pointer to a SA.
3318 */
3319 static struct secashead *
3320 key_getsah_ref(const struct secasindex *saidx, int flag)
3321 {
3322 struct secashead *sah;
3323 int s;
3324
3325 s = pserialize_read_enter();
3326 sah = key_getsah(saidx, flag);
3327 if (sah != NULL)
3328 key_sah_ref(sah);
3329 pserialize_read_exit(s);
3330
3331 return sah;
3332 }
3333
3334 /*
3335 * check not to be duplicated SPI.
3336 * NOTE: this function is too slow due to searching all SAD.
3337 * OUT:
3338 * NULL : not found
3339 * others : found, pointer to a SA.
3340 */
3341 static bool
3342 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3343 {
3344 struct secashead *sah;
3345 struct secasvar *sav;
3346 int s;
3347
3348 /* check address family */
3349 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3350 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3351 return false;
3352 }
3353
3354 /* check all SAD */
3355 s = pserialize_read_enter();
3356 SAHLIST_READER_FOREACH(sah) {
3357 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3358 continue;
3359 sav = key_getsavbyspi(sah, spi);
3360 if (sav != NULL) {
3361 pserialize_read_exit(s);
3362 KEY_SA_UNREF(&sav);
3363 return true;
3364 }
3365 }
3366 pserialize_read_exit(s);
3367
3368 return false;
3369 }
3370
3371 /*
3372 * search SAD litmited alive SA, protocol, SPI.
3373 * OUT:
3374 * NULL : not found
3375 * others : found, pointer to a SA.
3376 */
3377 static struct secasvar *
3378 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3379 {
3380 struct secasvar *sav = NULL;
3381 u_int state;
3382 int s;
3383
3384 /* search all status */
3385 s = pserialize_read_enter();
3386 SASTATE_ALIVE_FOREACH(state) {
3387 SAVLIST_READER_FOREACH(sav, sah, state) {
3388 /* sanity check */
3389 if (sav->state != state) {
3390 IPSECLOG(LOG_DEBUG,
3391 "invalid sav->state (queue: %d SA: %d)\n",
3392 state, sav->state);
3393 continue;
3394 }
3395
3396 if (sav->spi == spi) {
3397 KEY_SA_REF(sav);
3398 goto out;
3399 }
3400 }
3401 }
3402 out:
3403 pserialize_read_exit(s);
3404
3405 return sav;
3406 }
3407
3408 /*
3409 * Free allocated data to member variables of sav:
3410 * sav->replay, sav->key_* and sav->lft_*.
3411 */
3412 static void
3413 key_freesaval(struct secasvar *sav)
3414 {
3415
3416 KASSERT(key_sa_refcnt(sav) == 0);
3417
3418 if (sav->replay != NULL)
3419 kmem_intr_free(sav->replay, sav->replay_len);
3420 if (sav->key_auth != NULL)
3421 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3422 if (sav->key_enc != NULL)
3423 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3424 if (sav->lft_c != NULL)
3425 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3426 if (sav->lft_h != NULL)
3427 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3428 if (sav->lft_s != NULL)
3429 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3430 }
3431
3432 /*
3433 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3434 * You must update these if need.
3435 * OUT: 0: success.
3436 * !0: failure.
3437 *
3438 * does not modify mbuf. does not free mbuf on error.
3439 */
3440 static int
3441 key_setsaval(struct secasvar *sav, struct mbuf *m,
3442 const struct sadb_msghdr *mhp)
3443 {
3444 int error = 0;
3445
3446 KASSERT(!cpu_softintr_p());
3447 KASSERT(m != NULL);
3448 KASSERT(mhp != NULL);
3449 KASSERT(mhp->msg != NULL);
3450
3451 /* We shouldn't initialize sav variables while someone uses it. */
3452 KASSERT(key_sa_refcnt(sav) == 0);
3453
3454 /* SA */
3455 if (mhp->ext[SADB_EXT_SA] != NULL) {
3456 const struct sadb_sa *sa0;
3457
3458 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3459 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3460 error = EINVAL;
3461 goto fail;
3462 }
3463
3464 sav->alg_auth = sa0->sadb_sa_auth;
3465 sav->alg_enc = sa0->sadb_sa_encrypt;
3466 sav->flags = sa0->sadb_sa_flags;
3467
3468 /* replay window */
3469 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3470 size_t len = sizeof(struct secreplay) +
3471 sa0->sadb_sa_replay;
3472 sav->replay = kmem_zalloc(len, KM_SLEEP);
3473 sav->replay_len = len;
3474 if (sa0->sadb_sa_replay != 0)
3475 sav->replay->bitmap = (char*)(sav->replay+1);
3476 sav->replay->wsize = sa0->sadb_sa_replay;
3477 }
3478 }
3479
3480 /* Authentication keys */
3481 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3482 const struct sadb_key *key0;
3483 int len;
3484
3485 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3486 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3487
3488 error = 0;
3489 if (len < sizeof(*key0)) {
3490 error = EINVAL;
3491 goto fail;
3492 }
3493 switch (mhp->msg->sadb_msg_satype) {
3494 case SADB_SATYPE_AH:
3495 case SADB_SATYPE_ESP:
3496 case SADB_X_SATYPE_TCPSIGNATURE:
3497 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3498 sav->alg_auth != SADB_X_AALG_NULL)
3499 error = EINVAL;
3500 break;
3501 case SADB_X_SATYPE_IPCOMP:
3502 default:
3503 error = EINVAL;
3504 break;
3505 }
3506 if (error) {
3507 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3508 goto fail;
3509 }
3510
3511 sav->key_auth = key_newbuf(key0, len);
3512 sav->key_auth_len = len;
3513 }
3514
3515 /* Encryption key */
3516 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3517 const struct sadb_key *key0;
3518 int len;
3519
3520 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3521 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3522
3523 error = 0;
3524 if (len < sizeof(*key0)) {
3525 error = EINVAL;
3526 goto fail;
3527 }
3528 switch (mhp->msg->sadb_msg_satype) {
3529 case SADB_SATYPE_ESP:
3530 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3531 sav->alg_enc != SADB_EALG_NULL) {
3532 error = EINVAL;
3533 break;
3534 }
3535 sav->key_enc = key_newbuf(key0, len);
3536 sav->key_enc_len = len;
3537 break;
3538 case SADB_X_SATYPE_IPCOMP:
3539 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3540 error = EINVAL;
3541 sav->key_enc = NULL; /*just in case*/
3542 break;
3543 case SADB_SATYPE_AH:
3544 case SADB_X_SATYPE_TCPSIGNATURE:
3545 default:
3546 error = EINVAL;
3547 break;
3548 }
3549 if (error) {
3550 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3551 goto fail;
3552 }
3553 }
3554
3555 /* set iv */
3556 sav->ivlen = 0;
3557
3558 switch (mhp->msg->sadb_msg_satype) {
3559 case SADB_SATYPE_AH:
3560 error = xform_init(sav, XF_AH);
3561 break;
3562 case SADB_SATYPE_ESP:
3563 error = xform_init(sav, XF_ESP);
3564 break;
3565 case SADB_X_SATYPE_IPCOMP:
3566 error = xform_init(sav, XF_IPCOMP);
3567 break;
3568 case SADB_X_SATYPE_TCPSIGNATURE:
3569 error = xform_init(sav, XF_TCPSIGNATURE);
3570 break;
3571 }
3572 if (error) {
3573 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3574 mhp->msg->sadb_msg_satype);
3575 goto fail;
3576 }
3577
3578 /* reset created */
3579 sav->created = time_uptime;
3580
3581 /* make lifetime for CURRENT */
3582 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3583
3584 sav->lft_c->sadb_lifetime_len =
3585 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3586 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3587 sav->lft_c->sadb_lifetime_allocations = 0;
3588 sav->lft_c->sadb_lifetime_bytes = 0;
3589 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3590 sav->lft_c->sadb_lifetime_usetime = 0;
3591
3592 /* lifetimes for HARD and SOFT */
3593 {
3594 const struct sadb_lifetime *lft0;
3595
3596 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3597 if (lft0 != NULL) {
3598 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3599 error = EINVAL;
3600 goto fail;
3601 }
3602 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3603 }
3604
3605 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3606 if (lft0 != NULL) {
3607 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3608 error = EINVAL;
3609 goto fail;
3610 }
3611 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3612 /* to be initialize ? */
3613 }
3614 }
3615
3616 return 0;
3617
3618 fail:
3619 key_clear_xform(sav);
3620 key_freesaval(sav);
3621
3622 return error;
3623 }
3624
3625 /*
3626 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3627 * OUT: 0: valid
3628 * other: errno
3629 */
3630 static int
3631 key_init_xform(struct secasvar *sav)
3632 {
3633 int error;
3634
3635 /* We shouldn't initialize sav variables while someone uses it. */
3636 KASSERT(key_sa_refcnt(sav) == 0);
3637
3638 /* check SPI value */
3639 switch (sav->sah->saidx.proto) {
3640 case IPPROTO_ESP:
3641 case IPPROTO_AH:
3642 if (ntohl(sav->spi) <= 255) {
3643 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3644 (u_int32_t)ntohl(sav->spi));
3645 return EINVAL;
3646 }
3647 break;
3648 }
3649
3650 /* check satype */
3651 switch (sav->sah->saidx.proto) {
3652 case IPPROTO_ESP:
3653 /* check flags */
3654 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3655 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3656 IPSECLOG(LOG_DEBUG,
3657 "invalid flag (derived) given to old-esp.\n");
3658 return EINVAL;
3659 }
3660 error = xform_init(sav, XF_ESP);
3661 break;
3662 case IPPROTO_AH:
3663 /* check flags */
3664 if (sav->flags & SADB_X_EXT_DERIV) {
3665 IPSECLOG(LOG_DEBUG,
3666 "invalid flag (derived) given to AH SA.\n");
3667 return EINVAL;
3668 }
3669 if (sav->alg_enc != SADB_EALG_NONE) {
3670 IPSECLOG(LOG_DEBUG,
3671 "protocol and algorithm mismated.\n");
3672 return(EINVAL);
3673 }
3674 error = xform_init(sav, XF_AH);
3675 break;
3676 case IPPROTO_IPCOMP:
3677 if (sav->alg_auth != SADB_AALG_NONE) {
3678 IPSECLOG(LOG_DEBUG,
3679 "protocol and algorithm mismated.\n");
3680 return(EINVAL);
3681 }
3682 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3683 && ntohl(sav->spi) >= 0x10000) {
3684 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3685 return(EINVAL);
3686 }
3687 error = xform_init(sav, XF_IPCOMP);
3688 break;
3689 case IPPROTO_TCP:
3690 if (sav->alg_enc != SADB_EALG_NONE) {
3691 IPSECLOG(LOG_DEBUG,
3692 "protocol and algorithm mismated.\n");
3693 return(EINVAL);
3694 }
3695 error = xform_init(sav, XF_TCPSIGNATURE);
3696 break;
3697 default:
3698 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3699 error = EPROTONOSUPPORT;
3700 break;
3701 }
3702
3703 return error;
3704 }
3705
3706 /*
3707 * subroutine for SADB_GET and SADB_DUMP.
3708 */
3709 static struct mbuf *
3710 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3711 u_int32_t seq, u_int32_t pid)
3712 {
3713 struct mbuf *result = NULL, *tres = NULL, *m;
3714 int l = 0;
3715 int i;
3716 void *p;
3717 struct sadb_lifetime lt;
3718 int dumporder[] = {
3719 SADB_EXT_SA, SADB_X_EXT_SA2,
3720 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3721 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3722 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3723 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3724 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3725 SADB_X_EXT_NAT_T_TYPE,
3726 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3727 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3728 SADB_X_EXT_NAT_T_FRAG,
3729
3730 };
3731
3732 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav));
3733 if (m == NULL)
3734 goto fail;
3735 result = m;
3736
3737 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3738 m = NULL;
3739 p = NULL;
3740 switch (dumporder[i]) {
3741 case SADB_EXT_SA:
3742 m = key_setsadbsa(sav);
3743 break;
3744
3745 case SADB_X_EXT_SA2:
3746 m = key_setsadbxsa2(sav->sah->saidx.mode,
3747 sav->replay ? sav->replay->count : 0,
3748 sav->sah->saidx.reqid);
3749 break;
3750
3751 case SADB_EXT_ADDRESS_SRC:
3752 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3753 &sav->sah->saidx.src.sa,
3754 FULLMASK, IPSEC_ULPROTO_ANY);
3755 break;
3756
3757 case SADB_EXT_ADDRESS_DST:
3758 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3759 &sav->sah->saidx.dst.sa,
3760 FULLMASK, IPSEC_ULPROTO_ANY);
3761 break;
3762
3763 case SADB_EXT_KEY_AUTH:
3764 if (!sav->key_auth)
3765 continue;
3766 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3767 p = sav->key_auth;
3768 break;
3769
3770 case SADB_EXT_KEY_ENCRYPT:
3771 if (!sav->key_enc)
3772 continue;
3773 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3774 p = sav->key_enc;
3775 break;
3776
3777 case SADB_EXT_LIFETIME_CURRENT:
3778 KASSERT(sav->lft_c != NULL);
3779 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3780 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3781 lt.sadb_lifetime_addtime =
3782 time_mono_to_wall(lt.sadb_lifetime_addtime);
3783 lt.sadb_lifetime_usetime =
3784 time_mono_to_wall(lt.sadb_lifetime_usetime);
3785 p = <
3786 break;
3787
3788 case SADB_EXT_LIFETIME_HARD:
3789 if (!sav->lft_h)
3790 continue;
3791 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3792 p = sav->lft_h;
3793 break;
3794
3795 case SADB_EXT_LIFETIME_SOFT:
3796 if (!sav->lft_s)
3797 continue;
3798 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3799 p = sav->lft_s;
3800 break;
3801
3802 case SADB_X_EXT_NAT_T_TYPE:
3803 m = key_setsadbxtype(sav->natt_type);
3804 break;
3805
3806 case SADB_X_EXT_NAT_T_DPORT:
3807 if (sav->natt_type == 0)
3808 continue;
3809 m = key_setsadbxport(
3810 key_portfromsaddr(&sav->sah->saidx.dst),
3811 SADB_X_EXT_NAT_T_DPORT);
3812 break;
3813
3814 case SADB_X_EXT_NAT_T_SPORT:
3815 if (sav->natt_type == 0)
3816 continue;
3817 m = key_setsadbxport(
3818 key_portfromsaddr(&sav->sah->saidx.src),
3819 SADB_X_EXT_NAT_T_SPORT);
3820 break;
3821
3822 case SADB_X_EXT_NAT_T_FRAG:
3823 /* don't send frag info if not set */
3824 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3825 continue;
3826 m = key_setsadbxfrag(sav->esp_frag);
3827 break;
3828
3829 case SADB_X_EXT_NAT_T_OAI:
3830 case SADB_X_EXT_NAT_T_OAR:
3831 continue;
3832
3833 case SADB_EXT_ADDRESS_PROXY:
3834 case SADB_EXT_IDENTITY_SRC:
3835 case SADB_EXT_IDENTITY_DST:
3836 /* XXX: should we brought from SPD ? */
3837 case SADB_EXT_SENSITIVITY:
3838 default:
3839 continue;
3840 }
3841
3842 KASSERT(!(m && p));
3843 if (!m && !p)
3844 goto fail;
3845 if (p && tres) {
3846 M_PREPEND(tres, l, M_DONTWAIT);
3847 if (!tres)
3848 goto fail;
3849 memcpy(mtod(tres, void *), p, l);
3850 continue;
3851 }
3852 if (p) {
3853 m = key_alloc_mbuf(l);
3854 if (!m)
3855 goto fail;
3856 m_copyback(m, 0, l, p);
3857 }
3858
3859 if (tres)
3860 m_cat(m, tres);
3861 tres = m;
3862 }
3863
3864 m_cat(result, tres);
3865 tres = NULL; /* avoid free on error below */
3866
3867 if (result->m_len < sizeof(struct sadb_msg)) {
3868 result = m_pullup(result, sizeof(struct sadb_msg));
3869 if (result == NULL)
3870 goto fail;
3871 }
3872
3873 result->m_pkthdr.len = 0;
3874 for (m = result; m; m = m->m_next)
3875 result->m_pkthdr.len += m->m_len;
3876
3877 mtod(result, struct sadb_msg *)->sadb_msg_len =
3878 PFKEY_UNIT64(result->m_pkthdr.len);
3879
3880 return result;
3881
3882 fail:
3883 m_freem(result);
3884 m_freem(tres);
3885 return NULL;
3886 }
3887
3888
3889 /*
3890 * set a type in sadb_x_nat_t_type
3891 */
3892 static struct mbuf *
3893 key_setsadbxtype(u_int16_t type)
3894 {
3895 struct mbuf *m;
3896 size_t len;
3897 struct sadb_x_nat_t_type *p;
3898
3899 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3900
3901 m = key_alloc_mbuf(len);
3902 if (!m || m->m_next) { /*XXX*/
3903 if (m)
3904 m_freem(m);
3905 return NULL;
3906 }
3907
3908 p = mtod(m, struct sadb_x_nat_t_type *);
3909
3910 memset(p, 0, len);
3911 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3912 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3913 p->sadb_x_nat_t_type_type = type;
3914
3915 return m;
3916 }
3917 /*
3918 * set a port in sadb_x_nat_t_port. port is in network order
3919 */
3920 static struct mbuf *
3921 key_setsadbxport(u_int16_t port, u_int16_t type)
3922 {
3923 struct mbuf *m;
3924 size_t len;
3925 struct sadb_x_nat_t_port *p;
3926
3927 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3928
3929 m = key_alloc_mbuf(len);
3930 if (!m || m->m_next) { /*XXX*/
3931 if (m)
3932 m_freem(m);
3933 return NULL;
3934 }
3935
3936 p = mtod(m, struct sadb_x_nat_t_port *);
3937
3938 memset(p, 0, len);
3939 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3940 p->sadb_x_nat_t_port_exttype = type;
3941 p->sadb_x_nat_t_port_port = port;
3942
3943 return m;
3944 }
3945
3946 /*
3947 * set fragmentation info in sadb_x_nat_t_frag
3948 */
3949 static struct mbuf *
3950 key_setsadbxfrag(u_int16_t flen)
3951 {
3952 struct mbuf *m;
3953 size_t len;
3954 struct sadb_x_nat_t_frag *p;
3955
3956 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3957
3958 m = key_alloc_mbuf(len);
3959 if (!m || m->m_next) { /*XXX*/
3960 if (m)
3961 m_freem(m);
3962 return NULL;
3963 }
3964
3965 p = mtod(m, struct sadb_x_nat_t_frag *);
3966
3967 memset(p, 0, len);
3968 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3969 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3970 p->sadb_x_nat_t_frag_fraglen = flen;
3971
3972 return m;
3973 }
3974
3975 /*
3976 * Get port from sockaddr, port is in network order
3977 */
3978 u_int16_t
3979 key_portfromsaddr(const union sockaddr_union *saddr)
3980 {
3981 u_int16_t port;
3982
3983 switch (saddr->sa.sa_family) {
3984 case AF_INET: {
3985 port = saddr->sin.sin_port;
3986 break;
3987 }
3988 #ifdef INET6
3989 case AF_INET6: {
3990 port = saddr->sin6.sin6_port;
3991 break;
3992 }
3993 #endif
3994 default:
3995 printf("%s: unexpected address family\n", __func__);
3996 port = 0;
3997 break;
3998 }
3999
4000 return port;
4001 }
4002
4003
4004 /*
4005 * Set port is struct sockaddr. port is in network order
4006 */
4007 static void
4008 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
4009 {
4010 switch (saddr->sa.sa_family) {
4011 case AF_INET: {
4012 saddr->sin.sin_port = port;
4013 break;
4014 }
4015 #ifdef INET6
4016 case AF_INET6: {
4017 saddr->sin6.sin6_port = port;
4018 break;
4019 }
4020 #endif
4021 default:
4022 printf("%s: unexpected address family %d\n", __func__,
4023 saddr->sa.sa_family);
4024 break;
4025 }
4026
4027 return;
4028 }
4029
4030 /*
4031 * Safety check sa_len
4032 */
4033 static int
4034 key_checksalen(const union sockaddr_union *saddr)
4035 {
4036 switch (saddr->sa.sa_family) {
4037 case AF_INET:
4038 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
4039 return -1;
4040 break;
4041 #ifdef INET6
4042 case AF_INET6:
4043 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
4044 return -1;
4045 break;
4046 #endif
4047 default:
4048 printf("%s: unexpected sa_family %d\n", __func__,
4049 saddr->sa.sa_family);
4050 return -1;
4051 break;
4052 }
4053 return 0;
4054 }
4055
4056
4057 /*
4058 * set data into sadb_msg.
4059 */
4060 static struct mbuf *
4061 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
4062 u_int32_t seq, pid_t pid, u_int16_t reserved)
4063 {
4064 struct mbuf *m;
4065 struct sadb_msg *p;
4066 int len;
4067
4068 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
4069
4070 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
4071
4072 MGETHDR(m, M_DONTWAIT, MT_DATA);
4073 if (m && len > MHLEN) {
4074 MCLGET(m, M_DONTWAIT);
4075 if ((m->m_flags & M_EXT) == 0) {
4076 m_freem(m);
4077 m = NULL;
4078 }
4079 }
4080 if (!m)
4081 return NULL;
4082 m->m_pkthdr.len = m->m_len = len;
4083 m->m_next = NULL;
4084
4085 p = mtod(m, struct sadb_msg *);
4086
4087 memset(p, 0, len);
4088 p->sadb_msg_version = PF_KEY_V2;
4089 p->sadb_msg_type = type;
4090 p->sadb_msg_errno = 0;
4091 p->sadb_msg_satype = satype;
4092 p->sadb_msg_len = PFKEY_UNIT64(tlen);
4093 p->sadb_msg_reserved = reserved;
4094 p->sadb_msg_seq = seq;
4095 p->sadb_msg_pid = (u_int32_t)pid;
4096
4097 return m;
4098 }
4099
4100 /*
4101 * copy secasvar data into sadb_address.
4102 */
4103 static struct mbuf *
4104 key_setsadbsa(struct secasvar *sav)
4105 {
4106 struct mbuf *m;
4107 struct sadb_sa *p;
4108 int len;
4109
4110 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4111 m = key_alloc_mbuf(len);
4112 if (!m || m->m_next) { /*XXX*/
4113 if (m)
4114 m_freem(m);
4115 return NULL;
4116 }
4117
4118 p = mtod(m, struct sadb_sa *);
4119
4120 memset(p, 0, len);
4121 p->sadb_sa_len = PFKEY_UNIT64(len);
4122 p->sadb_sa_exttype = SADB_EXT_SA;
4123 p->sadb_sa_spi = sav->spi;
4124 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4125 p->sadb_sa_state = sav->state;
4126 p->sadb_sa_auth = sav->alg_auth;
4127 p->sadb_sa_encrypt = sav->alg_enc;
4128 p->sadb_sa_flags = sav->flags;
4129
4130 return m;
4131 }
4132
4133 /*
4134 * set data into sadb_address.
4135 */
4136 static struct mbuf *
4137 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4138 u_int8_t prefixlen, u_int16_t ul_proto)
4139 {
4140 struct mbuf *m;
4141 struct sadb_address *p;
4142 size_t len;
4143
4144 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4145 PFKEY_ALIGN8(saddr->sa_len);
4146 m = key_alloc_mbuf(len);
4147 if (!m || m->m_next) { /*XXX*/
4148 if (m)
4149 m_freem(m);
4150 return NULL;
4151 }
4152
4153 p = mtod(m, struct sadb_address *);
4154
4155 memset(p, 0, len);
4156 p->sadb_address_len = PFKEY_UNIT64(len);
4157 p->sadb_address_exttype = exttype;
4158 p->sadb_address_proto = ul_proto;
4159 if (prefixlen == FULLMASK) {
4160 switch (saddr->sa_family) {
4161 case AF_INET:
4162 prefixlen = sizeof(struct in_addr) << 3;
4163 break;
4164 case AF_INET6:
4165 prefixlen = sizeof(struct in6_addr) << 3;
4166 break;
4167 default:
4168 ; /*XXX*/
4169 }
4170 }
4171 p->sadb_address_prefixlen = prefixlen;
4172 p->sadb_address_reserved = 0;
4173
4174 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4175 saddr, saddr->sa_len);
4176
4177 return m;
4178 }
4179
4180 #if 0
4181 /*
4182 * set data into sadb_ident.
4183 */
4184 static struct mbuf *
4185 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4186 void *string, int stringlen, u_int64_t id)
4187 {
4188 struct mbuf *m;
4189 struct sadb_ident *p;
4190 size_t len;
4191
4192 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4193 m = key_alloc_mbuf(len);
4194 if (!m || m->m_next) { /*XXX*/
4195 if (m)
4196 m_freem(m);
4197 return NULL;
4198 }
4199
4200 p = mtod(m, struct sadb_ident *);
4201
4202 memset(p, 0, len);
4203 p->sadb_ident_len = PFKEY_UNIT64(len);
4204 p->sadb_ident_exttype = exttype;
4205 p->sadb_ident_type = idtype;
4206 p->sadb_ident_reserved = 0;
4207 p->sadb_ident_id = id;
4208
4209 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4210 string, stringlen);
4211
4212 return m;
4213 }
4214 #endif
4215
4216 /*
4217 * set data into sadb_x_sa2.
4218 */
4219 static struct mbuf *
4220 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4221 {
4222 struct mbuf *m;
4223 struct sadb_x_sa2 *p;
4224 size_t len;
4225
4226 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4227 m = key_alloc_mbuf(len);
4228 if (!m || m->m_next) { /*XXX*/
4229 if (m)
4230 m_freem(m);
4231 return NULL;
4232 }
4233
4234 p = mtod(m, struct sadb_x_sa2 *);
4235
4236 memset(p, 0, len);
4237 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4238 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4239 p->sadb_x_sa2_mode = mode;
4240 p->sadb_x_sa2_reserved1 = 0;
4241 p->sadb_x_sa2_reserved2 = 0;
4242 p->sadb_x_sa2_sequence = seq;
4243 p->sadb_x_sa2_reqid = reqid;
4244
4245 return m;
4246 }
4247
4248 /*
4249 * set data into sadb_x_policy
4250 */
4251 static struct mbuf *
4252 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4253 {
4254 struct mbuf *m;
4255 struct sadb_x_policy *p;
4256 size_t len;
4257
4258 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4259 m = key_alloc_mbuf(len);
4260 if (!m || m->m_next) { /*XXX*/
4261 if (m)
4262 m_freem(m);
4263 return NULL;
4264 }
4265
4266 p = mtod(m, struct sadb_x_policy *);
4267
4268 memset(p, 0, len);
4269 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4270 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4271 p->sadb_x_policy_type = type;
4272 p->sadb_x_policy_dir = dir;
4273 p->sadb_x_policy_id = id;
4274
4275 return m;
4276 }
4277
4278 /* %%% utilities */
4279 /*
4280 * copy a buffer into the new buffer allocated.
4281 */
4282 static void *
4283 key_newbuf(const void *src, u_int len)
4284 {
4285 void *new;
4286
4287 new = kmem_alloc(len, KM_SLEEP);
4288 memcpy(new, src, len);
4289
4290 return new;
4291 }
4292
4293 /* compare my own address
4294 * OUT: 1: true, i.e. my address.
4295 * 0: false
4296 */
4297 int
4298 key_ismyaddr(const struct sockaddr *sa)
4299 {
4300 #ifdef INET
4301 const struct sockaddr_in *sin;
4302 const struct in_ifaddr *ia;
4303 int s;
4304 #endif
4305
4306 KASSERT(sa != NULL);
4307
4308 switch (sa->sa_family) {
4309 #ifdef INET
4310 case AF_INET:
4311 sin = (const struct sockaddr_in *)sa;
4312 s = pserialize_read_enter();
4313 IN_ADDRLIST_READER_FOREACH(ia) {
4314 if (sin->sin_family == ia->ia_addr.sin_family &&
4315 sin->sin_len == ia->ia_addr.sin_len &&
4316 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4317 {
4318 pserialize_read_exit(s);
4319 return 1;
4320 }
4321 }
4322 pserialize_read_exit(s);
4323 break;
4324 #endif
4325 #ifdef INET6
4326 case AF_INET6:
4327 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4328 #endif
4329 }
4330
4331 return 0;
4332 }
4333
4334 #ifdef INET6
4335 /*
4336 * compare my own address for IPv6.
4337 * 1: ours
4338 * 0: other
4339 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4340 */
4341 #include <netinet6/in6_var.h>
4342
4343 static int
4344 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4345 {
4346 struct in6_ifaddr *ia;
4347 int s;
4348 struct psref psref;
4349 int bound;
4350 int ours = 1;
4351
4352 bound = curlwp_bind();
4353 s = pserialize_read_enter();
4354 IN6_ADDRLIST_READER_FOREACH(ia) {
4355 bool ingroup;
4356
4357 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4358 (const struct sockaddr *)&ia->ia_addr, 0)) {
4359 pserialize_read_exit(s);
4360 goto ours;
4361 }
4362 ia6_acquire(ia, &psref);
4363 pserialize_read_exit(s);
4364
4365 /*
4366 * XXX Multicast
4367 * XXX why do we care about multlicast here while we don't care
4368 * about IPv4 multicast??
4369 * XXX scope
4370 */
4371 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4372 if (ingroup) {
4373 ia6_release(ia, &psref);
4374 goto ours;
4375 }
4376
4377 s = pserialize_read_enter();
4378 ia6_release(ia, &psref);
4379 }
4380 pserialize_read_exit(s);
4381
4382 /* loopback, just for safety */
4383 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4384 goto ours;
4385
4386 ours = 0;
4387 ours:
4388 curlwp_bindx(bound);
4389
4390 return ours;
4391 }
4392 #endif /*INET6*/
4393
4394 /*
4395 * compare two secasindex structure.
4396 * flag can specify to compare 2 saidxes.
4397 * compare two secasindex structure without both mode and reqid.
4398 * don't compare port.
4399 * IN:
4400 * saidx0: source, it can be in SAD.
4401 * saidx1: object.
4402 * OUT:
4403 * 1 : equal
4404 * 0 : not equal
4405 */
4406 static int
4407 key_saidx_match(
4408 const struct secasindex *saidx0,
4409 const struct secasindex *saidx1,
4410 int flag)
4411 {
4412 int chkport;
4413 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4414
4415 KASSERT(saidx0 != NULL);
4416 KASSERT(saidx1 != NULL);
4417
4418 /* sanity */
4419 if (saidx0->proto != saidx1->proto)
4420 return 0;
4421
4422 if (flag == CMP_EXACTLY) {
4423 if (saidx0->mode != saidx1->mode)
4424 return 0;
4425 if (saidx0->reqid != saidx1->reqid)
4426 return 0;
4427 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4428 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4429 return 0;
4430 } else {
4431
4432 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4433 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4434 /*
4435 * If reqid of SPD is non-zero, unique SA is required.
4436 * The result must be of same reqid in this case.
4437 */
4438 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4439 return 0;
4440 }
4441
4442 if (flag == CMP_MODE_REQID) {
4443 if (saidx0->mode != IPSEC_MODE_ANY &&
4444 saidx0->mode != saidx1->mode)
4445 return 0;
4446 }
4447
4448
4449 sa0src = &saidx0->src.sa;
4450 sa0dst = &saidx0->dst.sa;
4451 sa1src = &saidx1->src.sa;
4452 sa1dst = &saidx1->dst.sa;
4453 /*
4454 * If NAT-T is enabled, check ports for tunnel mode.
4455 * Don't do it for transport mode, as there is no
4456 * port information available in the SP.
4457 * Also don't check ports if they are set to zero
4458 * in the SPD: This means we have a non-generated
4459 * SPD which can't know UDP ports.
4460 */
4461 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4462 chkport = PORT_LOOSE;
4463 else
4464 chkport = PORT_NONE;
4465
4466 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4467 return 0;
4468 }
4469 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4470 return 0;
4471 }
4472 }
4473
4474 return 1;
4475 }
4476
4477 /*
4478 * compare two secindex structure exactly.
4479 * IN:
4480 * spidx0: source, it is often in SPD.
4481 * spidx1: object, it is often from PFKEY message.
4482 * OUT:
4483 * 1 : equal
4484 * 0 : not equal
4485 */
4486 static int
4487 key_spidx_match_exactly(
4488 const struct secpolicyindex *spidx0,
4489 const struct secpolicyindex *spidx1)
4490 {
4491
4492 KASSERT(spidx0 != NULL);
4493 KASSERT(spidx1 != NULL);
4494
4495 /* sanity */
4496 if (spidx0->prefs != spidx1->prefs ||
4497 spidx0->prefd != spidx1->prefd ||
4498 spidx0->ul_proto != spidx1->ul_proto)
4499 return 0;
4500
4501 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4502 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4503 }
4504
4505 /*
4506 * compare two secindex structure with mask.
4507 * IN:
4508 * spidx0: source, it is often in SPD.
4509 * spidx1: object, it is often from IP header.
4510 * OUT:
4511 * 1 : equal
4512 * 0 : not equal
4513 */
4514 static int
4515 key_spidx_match_withmask(
4516 const struct secpolicyindex *spidx0,
4517 const struct secpolicyindex *spidx1)
4518 {
4519
4520 KASSERT(spidx0 != NULL);
4521 KASSERT(spidx1 != NULL);
4522
4523 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4524 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4525 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4526 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4527 return 0;
4528
4529 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4530 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4531 spidx0->ul_proto != spidx1->ul_proto)
4532 return 0;
4533
4534 switch (spidx0->src.sa.sa_family) {
4535 case AF_INET:
4536 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4537 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4538 return 0;
4539 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4540 &spidx1->src.sin.sin_addr, spidx0->prefs))
4541 return 0;
4542 break;
4543 case AF_INET6:
4544 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4545 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4546 return 0;
4547 /*
4548 * scope_id check. if sin6_scope_id is 0, we regard it
4549 * as a wildcard scope, which matches any scope zone ID.
4550 */
4551 if (spidx0->src.sin6.sin6_scope_id &&
4552 spidx1->src.sin6.sin6_scope_id &&
4553 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4554 return 0;
4555 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4556 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4557 return 0;
4558 break;
4559 default:
4560 /* XXX */
4561 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4562 return 0;
4563 break;
4564 }
4565
4566 switch (spidx0->dst.sa.sa_family) {
4567 case AF_INET:
4568 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4569 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4570 return 0;
4571 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4572 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4573 return 0;
4574 break;
4575 case AF_INET6:
4576 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4577 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4578 return 0;
4579 /*
4580 * scope_id check. if sin6_scope_id is 0, we regard it
4581 * as a wildcard scope, which matches any scope zone ID.
4582 */
4583 if (spidx0->src.sin6.sin6_scope_id &&
4584 spidx1->src.sin6.sin6_scope_id &&
4585 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4586 return 0;
4587 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4588 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4589 return 0;
4590 break;
4591 default:
4592 /* XXX */
4593 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4594 return 0;
4595 break;
4596 }
4597
4598 /* XXX Do we check other field ? e.g. flowinfo */
4599
4600 return 1;
4601 }
4602
4603 /* returns 0 on match */
4604 static int
4605 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4606 {
4607 switch (howport) {
4608 case PORT_NONE:
4609 return 0;
4610 case PORT_LOOSE:
4611 if (port1 == 0 || port2 == 0)
4612 return 0;
4613 /*FALLTHROUGH*/
4614 case PORT_STRICT:
4615 if (port1 != port2) {
4616 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4617 "port fail %d != %d\n", port1, port2);
4618 return 1;
4619 }
4620 return 0;
4621 default:
4622 KASSERT(0);
4623 return 1;
4624 }
4625 }
4626
4627 /* returns 1 on match */
4628 static int
4629 key_sockaddr_match(
4630 const struct sockaddr *sa1,
4631 const struct sockaddr *sa2,
4632 int howport)
4633 {
4634 const struct sockaddr_in *sin1, *sin2;
4635 const struct sockaddr_in6 *sin61, *sin62;
4636 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
4637
4638 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4639 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4640 "fam/len fail %d != %d || %d != %d\n",
4641 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4642 sa2->sa_len);
4643 return 0;
4644 }
4645
4646 switch (sa1->sa_family) {
4647 case AF_INET:
4648 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4649 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4650 "len fail %d != %zu\n",
4651 sa1->sa_len, sizeof(struct sockaddr_in));
4652 return 0;
4653 }
4654 sin1 = (const struct sockaddr_in *)sa1;
4655 sin2 = (const struct sockaddr_in *)sa2;
4656 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4657 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4658 "addr fail %s != %s\n",
4659 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4660 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
4661 return 0;
4662 }
4663 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4664 return 0;
4665 }
4666 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4667 "addr success %s[%d] == %s[%d]\n",
4668 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4669 sin1->sin_port,
4670 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
4671 sin2->sin_port);
4672 break;
4673 case AF_INET6:
4674 sin61 = (const struct sockaddr_in6 *)sa1;
4675 sin62 = (const struct sockaddr_in6 *)sa2;
4676 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4677 return 0; /*EINVAL*/
4678
4679 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4680 return 0;
4681 }
4682 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4683 return 0;
4684 }
4685 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4686 return 0;
4687 }
4688 break;
4689 default:
4690 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4691 return 0;
4692 break;
4693 }
4694
4695 return 1;
4696 }
4697
4698 /*
4699 * compare two buffers with mask.
4700 * IN:
4701 * addr1: source
4702 * addr2: object
4703 * bits: Number of bits to compare
4704 * OUT:
4705 * 1 : equal
4706 * 0 : not equal
4707 */
4708 static int
4709 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4710 {
4711 const unsigned char *p1 = a1;
4712 const unsigned char *p2 = a2;
4713
4714 /* XXX: This could be considerably faster if we compare a word
4715 * at a time, but it is complicated on LSB Endian machines */
4716
4717 /* Handle null pointers */
4718 if (p1 == NULL || p2 == NULL)
4719 return (p1 == p2);
4720
4721 while (bits >= 8) {
4722 if (*p1++ != *p2++)
4723 return 0;
4724 bits -= 8;
4725 }
4726
4727 if (bits > 0) {
4728 u_int8_t mask = ~((1<<(8-bits))-1);
4729 if ((*p1 & mask) != (*p2 & mask))
4730 return 0;
4731 }
4732 return 1; /* Match! */
4733 }
4734
4735 static void
4736 key_timehandler_spd(time_t now)
4737 {
4738 u_int dir;
4739 struct secpolicy *sp;
4740
4741 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4742 retry:
4743 mutex_enter(&key_spd.lock);
4744 SPLIST_WRITER_FOREACH(sp, dir) {
4745 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4746
4747 if (sp->lifetime == 0 && sp->validtime == 0)
4748 continue;
4749
4750 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4751 (sp->validtime && now - sp->lastused > sp->validtime)) {
4752 key_unlink_sp(sp);
4753 mutex_exit(&key_spd.lock);
4754 key_spdexpire(sp);
4755 key_destroy_sp(sp);
4756 goto retry;
4757 }
4758 }
4759 mutex_exit(&key_spd.lock);
4760 }
4761
4762 retry_socksplist:
4763 mutex_enter(&key_spd.lock);
4764 SOCKSPLIST_WRITER_FOREACH(sp) {
4765 if (sp->state != IPSEC_SPSTATE_DEAD)
4766 continue;
4767
4768 key_unlink_sp(sp);
4769 mutex_exit(&key_spd.lock);
4770 key_destroy_sp(sp);
4771 goto retry_socksplist;
4772 }
4773 mutex_exit(&key_spd.lock);
4774 }
4775
4776 static void
4777 key_timehandler_sad(time_t now)
4778 {
4779 struct secashead *sah;
4780 int s;
4781
4782 restart:
4783 mutex_enter(&key_sad.lock);
4784 SAHLIST_WRITER_FOREACH(sah) {
4785 /* If sah has been dead and has no sav, then delete it */
4786 if (sah->state == SADB_SASTATE_DEAD &&
4787 !key_sah_has_sav(sah)) {
4788 key_unlink_sah(sah);
4789 mutex_exit(&key_sad.lock);
4790 key_destroy_sah(sah);
4791 goto restart;
4792 }
4793 }
4794 mutex_exit(&key_sad.lock);
4795
4796 s = pserialize_read_enter();
4797 SAHLIST_READER_FOREACH(sah) {
4798 struct secasvar *sav;
4799
4800 key_sah_ref(sah);
4801 pserialize_read_exit(s);
4802
4803 /* if LARVAL entry doesn't become MATURE, delete it. */
4804 mutex_enter(&key_sad.lock);
4805 restart_sav_LARVAL:
4806 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4807 if (now - sav->created > key_larval_lifetime) {
4808 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4809 goto restart_sav_LARVAL;
4810 }
4811 }
4812 mutex_exit(&key_sad.lock);
4813
4814 /*
4815 * check MATURE entry to start to send expire message
4816 * whether or not.
4817 */
4818 restart_sav_MATURE:
4819 mutex_enter(&key_sad.lock);
4820 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4821 /* we don't need to check. */
4822 if (sav->lft_s == NULL)
4823 continue;
4824
4825 /* sanity check */
4826 KASSERT(sav->lft_c != NULL);
4827
4828 /* check SOFT lifetime */
4829 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4830 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4831 /*
4832 * check SA to be used whether or not.
4833 * when SA hasn't been used, delete it.
4834 */
4835 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4836 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4837 mutex_exit(&key_sad.lock);
4838 } else {
4839 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4840 mutex_exit(&key_sad.lock);
4841 /*
4842 * XXX If we keep to send expire
4843 * message in the status of
4844 * DYING. Do remove below code.
4845 */
4846 key_expire(sav);
4847 }
4848 goto restart_sav_MATURE;
4849 }
4850 /* check SOFT lifetime by bytes */
4851 /*
4852 * XXX I don't know the way to delete this SA
4853 * when new SA is installed. Caution when it's
4854 * installed too big lifetime by time.
4855 */
4856 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4857 sav->lft_s->sadb_lifetime_bytes <
4858 sav->lft_c->sadb_lifetime_bytes) {
4859
4860 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4861 mutex_exit(&key_sad.lock);
4862 /*
4863 * XXX If we keep to send expire
4864 * message in the status of
4865 * DYING. Do remove below code.
4866 */
4867 key_expire(sav);
4868 goto restart_sav_MATURE;
4869 }
4870 }
4871 mutex_exit(&key_sad.lock);
4872
4873 /* check DYING entry to change status to DEAD. */
4874 mutex_enter(&key_sad.lock);
4875 restart_sav_DYING:
4876 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4877 /* we don't need to check. */
4878 if (sav->lft_h == NULL)
4879 continue;
4880
4881 /* sanity check */
4882 KASSERT(sav->lft_c != NULL);
4883
4884 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4885 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4886 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4887 goto restart_sav_DYING;
4888 }
4889 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4890 else if (sav->lft_s != NULL
4891 && sav->lft_s->sadb_lifetime_addtime != 0
4892 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4893 /*
4894 * XXX: should be checked to be
4895 * installed the valid SA.
4896 */
4897
4898 /*
4899 * If there is no SA then sending
4900 * expire message.
4901 */
4902 key_expire(sav);
4903 }
4904 #endif
4905 /* check HARD lifetime by bytes */
4906 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4907 sav->lft_h->sadb_lifetime_bytes <
4908 sav->lft_c->sadb_lifetime_bytes) {
4909 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4910 goto restart_sav_DYING;
4911 }
4912 }
4913 mutex_exit(&key_sad.lock);
4914
4915 /* delete entry in DEAD */
4916 restart_sav_DEAD:
4917 mutex_enter(&key_sad.lock);
4918 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4919 key_unlink_sav(sav);
4920 mutex_exit(&key_sad.lock);
4921 key_destroy_sav(sav);
4922 goto restart_sav_DEAD;
4923 }
4924 mutex_exit(&key_sad.lock);
4925
4926 s = pserialize_read_enter();
4927 key_sah_unref(sah);
4928 }
4929 pserialize_read_exit(s);
4930 }
4931
4932 static void
4933 key_timehandler_acq(time_t now)
4934 {
4935 #ifndef IPSEC_NONBLOCK_ACQUIRE
4936 struct secacq *acq, *nextacq;
4937
4938 restart:
4939 mutex_enter(&key_misc.lock);
4940 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4941 if (now - acq->created > key_blockacq_lifetime) {
4942 LIST_REMOVE(acq, chain);
4943 mutex_exit(&key_misc.lock);
4944 kmem_free(acq, sizeof(*acq));
4945 goto restart;
4946 }
4947 }
4948 mutex_exit(&key_misc.lock);
4949 #endif
4950 }
4951
4952 static void
4953 key_timehandler_spacq(time_t now)
4954 {
4955 #ifdef notyet
4956 struct secspacq *acq, *nextacq;
4957
4958 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4959 if (now - acq->created > key_blockacq_lifetime) {
4960 KASSERT(__LIST_CHAINED(acq));
4961 LIST_REMOVE(acq, chain);
4962 kmem_free(acq, sizeof(*acq));
4963 }
4964 }
4965 #endif
4966 }
4967
4968 static unsigned int key_timehandler_work_enqueued = 0;
4969
4970 /*
4971 * time handler.
4972 * scanning SPD and SAD to check status for each entries,
4973 * and do to remove or to expire.
4974 */
4975 static void
4976 key_timehandler_work(struct work *wk, void *arg)
4977 {
4978 time_t now = time_uptime;
4979 IPSEC_DECLARE_LOCK_VARIABLE;
4980
4981 /* We can allow enqueuing another work at this point */
4982 atomic_swap_uint(&key_timehandler_work_enqueued, 0);
4983
4984 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4985
4986 key_timehandler_spd(now);
4987 key_timehandler_sad(now);
4988 key_timehandler_acq(now);
4989 key_timehandler_spacq(now);
4990
4991 key_acquire_sendup_pending_mbuf();
4992
4993 /* do exchange to tick time !! */
4994 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4995
4996 IPSEC_RELEASE_GLOBAL_LOCKS();
4997 return;
4998 }
4999
5000 static void
5001 key_timehandler(void *arg)
5002 {
5003
5004 /* Avoid enqueuing another work when one is already enqueued */
5005 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
5006 return;
5007
5008 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
5009 }
5010
5011 u_long
5012 key_random(void)
5013 {
5014 u_long value;
5015
5016 key_randomfill(&value, sizeof(value));
5017 return value;
5018 }
5019
5020 void
5021 key_randomfill(void *p, size_t l)
5022 {
5023
5024 cprng_fast(p, l);
5025 }
5026
5027 /*
5028 * map SADB_SATYPE_* to IPPROTO_*.
5029 * if satype == SADB_SATYPE then satype is mapped to ~0.
5030 * OUT:
5031 * 0: invalid satype.
5032 */
5033 static u_int16_t
5034 key_satype2proto(u_int8_t satype)
5035 {
5036 switch (satype) {
5037 case SADB_SATYPE_UNSPEC:
5038 return IPSEC_PROTO_ANY;
5039 case SADB_SATYPE_AH:
5040 return IPPROTO_AH;
5041 case SADB_SATYPE_ESP:
5042 return IPPROTO_ESP;
5043 case SADB_X_SATYPE_IPCOMP:
5044 return IPPROTO_IPCOMP;
5045 case SADB_X_SATYPE_TCPSIGNATURE:
5046 return IPPROTO_TCP;
5047 default:
5048 return 0;
5049 }
5050 /* NOTREACHED */
5051 }
5052
5053 /*
5054 * map IPPROTO_* to SADB_SATYPE_*
5055 * OUT:
5056 * 0: invalid protocol type.
5057 */
5058 static u_int8_t
5059 key_proto2satype(u_int16_t proto)
5060 {
5061 switch (proto) {
5062 case IPPROTO_AH:
5063 return SADB_SATYPE_AH;
5064 case IPPROTO_ESP:
5065 return SADB_SATYPE_ESP;
5066 case IPPROTO_IPCOMP:
5067 return SADB_X_SATYPE_IPCOMP;
5068 case IPPROTO_TCP:
5069 return SADB_X_SATYPE_TCPSIGNATURE;
5070 default:
5071 return 0;
5072 }
5073 /* NOTREACHED */
5074 }
5075
5076 static int
5077 key_setsecasidx(int proto, int mode, int reqid,
5078 const struct sockaddr *src, const struct sockaddr *dst,
5079 struct secasindex * saidx)
5080 {
5081 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
5082 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
5083
5084 /* sa len safety check */
5085 if (key_checksalen(src_u) != 0)
5086 return -1;
5087 if (key_checksalen(dst_u) != 0)
5088 return -1;
5089
5090 memset(saidx, 0, sizeof(*saidx));
5091 saidx->proto = proto;
5092 saidx->mode = mode;
5093 saidx->reqid = reqid;
5094 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
5095 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
5096
5097 key_porttosaddr(&((saidx)->src), 0);
5098 key_porttosaddr(&((saidx)->dst), 0);
5099 return 0;
5100 }
5101
5102 static void
5103 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
5104 const struct sadb_msghdr *mhp)
5105 {
5106 const struct sadb_address *src0, *dst0;
5107 const struct sockaddr *src, *dst;
5108 const struct sadb_x_policy *xpl0;
5109
5110 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5111 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5112 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5113 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5114 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
5115
5116 memset(spidx, 0, sizeof(*spidx));
5117 spidx->dir = xpl0->sadb_x_policy_dir;
5118 spidx->prefs = src0->sadb_address_prefixlen;
5119 spidx->prefd = dst0->sadb_address_prefixlen;
5120 spidx->ul_proto = src0->sadb_address_proto;
5121 /* XXX boundary check against sa_len */
5122 memcpy(&spidx->src, src, src->sa_len);
5123 memcpy(&spidx->dst, dst, dst->sa_len);
5124 }
5125
5126 /* %%% PF_KEY */
5127 /*
5128 * SADB_GETSPI processing is to receive
5129 * <base, (SA2), src address, dst address, (SPI range)>
5130 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5131 * tree with the status of LARVAL, and send
5132 * <base, SA(*), address(SD)>
5133 * to the IKMPd.
5134 *
5135 * IN: mhp: pointer to the pointer to each header.
5136 * OUT: NULL if fail.
5137 * other if success, return pointer to the message to send.
5138 */
5139 static int
5140 key_api_getspi(struct socket *so, struct mbuf *m,
5141 const struct sadb_msghdr *mhp)
5142 {
5143 const struct sockaddr *src, *dst;
5144 struct secasindex saidx;
5145 struct secashead *sah;
5146 struct secasvar *newsav;
5147 u_int8_t proto;
5148 u_int32_t spi;
5149 u_int8_t mode;
5150 u_int16_t reqid;
5151 int error;
5152
5153 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5154 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5155 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5156 return key_senderror(so, m, EINVAL);
5157 }
5158 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5159 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5160 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5161 return key_senderror(so, m, EINVAL);
5162 }
5163 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5164 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5165 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5166 } else {
5167 mode = IPSEC_MODE_ANY;
5168 reqid = 0;
5169 }
5170
5171 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5172 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5173
5174 /* map satype to proto */
5175 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5176 if (proto == 0) {
5177 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5178 return key_senderror(so, m, EINVAL);
5179 }
5180
5181
5182 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5183 if (error != 0)
5184 return key_senderror(so, m, EINVAL);
5185
5186 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5187 if (error != 0)
5188 return key_senderror(so, m, EINVAL);
5189
5190 /* SPI allocation */
5191 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
5192 &saidx);
5193 if (spi == 0)
5194 return key_senderror(so, m, EINVAL);
5195
5196 /* get a SA index */
5197 sah = key_getsah_ref(&saidx, CMP_REQID);
5198 if (sah == NULL) {
5199 /* create a new SA index */
5200 sah = key_newsah(&saidx);
5201 if (sah == NULL) {
5202 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5203 return key_senderror(so, m, ENOBUFS);
5204 }
5205 }
5206
5207 /* get a new SA */
5208 /* XXX rewrite */
5209 newsav = KEY_NEWSAV(m, mhp, &error);
5210 if (newsav == NULL) {
5211 key_sah_unref(sah);
5212 /* XXX don't free new SA index allocated in above. */
5213 return key_senderror(so, m, error);
5214 }
5215
5216 /* set spi */
5217 newsav->spi = htonl(spi);
5218
5219 /* Add to sah#savlist */
5220 key_init_sav(newsav);
5221 newsav->sah = sah;
5222 newsav->state = SADB_SASTATE_LARVAL;
5223 mutex_enter(&key_sad.lock);
5224 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5225 mutex_exit(&key_sad.lock);
5226 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5227
5228 key_sah_unref(sah);
5229
5230 #ifndef IPSEC_NONBLOCK_ACQUIRE
5231 /* delete the entry in key_misc.acqlist */
5232 if (mhp->msg->sadb_msg_seq != 0) {
5233 struct secacq *acq;
5234 mutex_enter(&key_misc.lock);
5235 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5236 if (acq != NULL) {
5237 /* reset counter in order to deletion by timehandler. */
5238 acq->created = time_uptime;
5239 acq->count = 0;
5240 }
5241 mutex_exit(&key_misc.lock);
5242 }
5243 #endif
5244
5245 {
5246 struct mbuf *n, *nn;
5247 struct sadb_sa *m_sa;
5248 int off, len;
5249
5250 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5251 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5252
5253 /* create new sadb_msg to reply. */
5254 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5255 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5256
5257 MGETHDR(n, M_DONTWAIT, MT_DATA);
5258 if (len > MHLEN) {
5259 MCLGET(n, M_DONTWAIT);
5260 if ((n->m_flags & M_EXT) == 0) {
5261 m_freem(n);
5262 n = NULL;
5263 }
5264 }
5265 if (!n)
5266 return key_senderror(so, m, ENOBUFS);
5267
5268 n->m_len = len;
5269 n->m_next = NULL;
5270 off = 0;
5271
5272 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5273 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5274
5275 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5276 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5277 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5278 m_sa->sadb_sa_spi = htonl(spi);
5279 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5280
5281 KASSERTMSG(off == len, "length inconsistency");
5282
5283 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5284 SADB_EXT_ADDRESS_DST);
5285 if (!n->m_next) {
5286 m_freem(n);
5287 return key_senderror(so, m, ENOBUFS);
5288 }
5289
5290 if (n->m_len < sizeof(struct sadb_msg)) {
5291 n = m_pullup(n, sizeof(struct sadb_msg));
5292 if (n == NULL)
5293 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5294 }
5295
5296 n->m_pkthdr.len = 0;
5297 for (nn = n; nn; nn = nn->m_next)
5298 n->m_pkthdr.len += nn->m_len;
5299
5300 key_fill_replymsg(n, newsav->seq);
5301
5302 m_freem(m);
5303 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5304 }
5305 }
5306
5307 /*
5308 * allocating new SPI
5309 * called by key_api_getspi().
5310 * OUT:
5311 * 0: failure.
5312 * others: success.
5313 */
5314 static u_int32_t
5315 key_do_getnewspi(const struct sadb_spirange *spirange,
5316 const struct secasindex *saidx)
5317 {
5318 u_int32_t newspi;
5319 u_int32_t spmin, spmax;
5320 int count = key_spi_trycnt;
5321
5322 /* set spi range to allocate */
5323 if (spirange != NULL) {
5324 spmin = spirange->sadb_spirange_min;
5325 spmax = spirange->sadb_spirange_max;
5326 } else {
5327 spmin = key_spi_minval;
5328 spmax = key_spi_maxval;
5329 }
5330 /* IPCOMP needs 2-byte SPI */
5331 if (saidx->proto == IPPROTO_IPCOMP) {
5332 u_int32_t t;
5333 if (spmin >= 0x10000)
5334 spmin = 0xffff;
5335 if (spmax >= 0x10000)
5336 spmax = 0xffff;
5337 if (spmin > spmax) {
5338 t = spmin; spmin = spmax; spmax = t;
5339 }
5340 }
5341
5342 if (spmin == spmax) {
5343 if (key_checkspidup(saidx, htonl(spmin))) {
5344 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5345 return 0;
5346 }
5347
5348 count--; /* taking one cost. */
5349 newspi = spmin;
5350
5351 } else {
5352
5353 /* init SPI */
5354 newspi = 0;
5355
5356 /* when requesting to allocate spi ranged */
5357 while (count--) {
5358 /* generate pseudo-random SPI value ranged. */
5359 newspi = spmin + (key_random() % (spmax - spmin + 1));
5360
5361 if (!key_checkspidup(saidx, htonl(newspi)))
5362 break;
5363 }
5364
5365 if (count == 0 || newspi == 0) {
5366 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5367 return 0;
5368 }
5369 }
5370
5371 /* statistics */
5372 keystat.getspi_count =
5373 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5374
5375 return newspi;
5376 }
5377
5378 static int
5379 key_handle_natt_info(struct secasvar *sav,
5380 const struct sadb_msghdr *mhp)
5381 {
5382 const char *msg = "?" ;
5383 struct sadb_x_nat_t_type *type;
5384 struct sadb_x_nat_t_port *sport, *dport;
5385 struct sadb_address *iaddr, *raddr;
5386 struct sadb_x_nat_t_frag *frag;
5387
5388 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5389 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5390 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5391 return 0;
5392
5393 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5394 msg = "TYPE";
5395 goto bad;
5396 }
5397
5398 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5399 msg = "SPORT";
5400 goto bad;
5401 }
5402
5403 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5404 msg = "DPORT";
5405 goto bad;
5406 }
5407
5408 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5409 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5410 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5411 msg = "OAI";
5412 goto bad;
5413 }
5414 }
5415
5416 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5417 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5418 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5419 msg = "OAR";
5420 goto bad;
5421 }
5422 }
5423
5424 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5425 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5426 msg = "FRAG";
5427 goto bad;
5428 }
5429 }
5430
5431 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5432 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5433 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5434 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5435 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5436 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5437
5438 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5439 type->sadb_x_nat_t_type_type,
5440 ntohs(sport->sadb_x_nat_t_port_port),
5441 ntohs(dport->sadb_x_nat_t_port_port));
5442
5443 sav->natt_type = type->sadb_x_nat_t_type_type;
5444 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5445 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5446 if (frag)
5447 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5448 else
5449 sav->esp_frag = IP_MAXPACKET;
5450
5451 return 0;
5452 bad:
5453 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5454 __USE(msg);
5455 return -1;
5456 }
5457
5458 /* Just update the IPSEC_NAT_T ports if present */
5459 static int
5460 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5461 const struct sadb_msghdr *mhp)
5462 {
5463 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5464 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5465 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5466 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5467
5468 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5469 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5470 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5471 struct sadb_x_nat_t_type *type;
5472 struct sadb_x_nat_t_port *sport;
5473 struct sadb_x_nat_t_port *dport;
5474
5475 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5476 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5477 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5478 IPSECLOG(LOG_DEBUG, "invalid message\n");
5479 return -1;
5480 }
5481
5482 type = (struct sadb_x_nat_t_type *)
5483 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5484 sport = (struct sadb_x_nat_t_port *)
5485 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5486 dport = (struct sadb_x_nat_t_port *)
5487 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5488
5489 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5490 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5491
5492 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5493 type->sadb_x_nat_t_type_type,
5494 ntohs(sport->sadb_x_nat_t_port_port),
5495 ntohs(dport->sadb_x_nat_t_port_port));
5496 }
5497
5498 return 0;
5499 }
5500
5501
5502 /*
5503 * SADB_UPDATE processing
5504 * receive
5505 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5506 * key(AE), (identity(SD),) (sensitivity)>
5507 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5508 * and send
5509 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5510 * (identity(SD),) (sensitivity)>
5511 * to the ikmpd.
5512 *
5513 * m will always be freed.
5514 */
5515 static int
5516 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5517 {
5518 struct sadb_sa *sa0;
5519 const struct sockaddr *src, *dst;
5520 struct secasindex saidx;
5521 struct secashead *sah;
5522 struct secasvar *sav, *newsav;
5523 u_int16_t proto;
5524 u_int8_t mode;
5525 u_int16_t reqid;
5526 int error;
5527
5528 /* map satype to proto */
5529 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5530 if (proto == 0) {
5531 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5532 return key_senderror(so, m, EINVAL);
5533 }
5534
5535 if (mhp->ext[SADB_EXT_SA] == NULL ||
5536 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5537 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5538 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5539 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5540 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5541 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5542 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5543 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5544 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5545 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5546 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5547 return key_senderror(so, m, EINVAL);
5548 }
5549 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5550 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5551 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5552 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5553 return key_senderror(so, m, EINVAL);
5554 }
5555 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5556 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5557 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5558 } else {
5559 mode = IPSEC_MODE_ANY;
5560 reqid = 0;
5561 }
5562 /* XXX boundary checking for other extensions */
5563
5564 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5565 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5566 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5567
5568 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5569 if (error != 0)
5570 return key_senderror(so, m, EINVAL);
5571
5572 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5573 if (error != 0)
5574 return key_senderror(so, m, EINVAL);
5575
5576 /* get a SA header */
5577 sah = key_getsah_ref(&saidx, CMP_REQID);
5578 if (sah == NULL) {
5579 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5580 return key_senderror(so, m, ENOENT);
5581 }
5582
5583 /* set spidx if there */
5584 /* XXX rewrite */
5585 error = key_setident(sah, m, mhp);
5586 if (error)
5587 goto error_sah;
5588
5589 /* find a SA with sequence number. */
5590 #ifdef IPSEC_DOSEQCHECK
5591 if (mhp->msg->sadb_msg_seq != 0) {
5592 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5593 if (sav == NULL) {
5594 IPSECLOG(LOG_DEBUG,
5595 "no larval SA with sequence %u exists.\n",
5596 mhp->msg->sadb_msg_seq);
5597 error = ENOENT;
5598 goto error_sah;
5599 }
5600 }
5601 #else
5602 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5603 if (sav == NULL) {
5604 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5605 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5606 error = EINVAL;
5607 goto error_sah;
5608 }
5609 #endif
5610
5611 /* validity check */
5612 if (sav->sah->saidx.proto != proto) {
5613 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5614 sav->sah->saidx.proto, proto);
5615 error = EINVAL;
5616 goto error;
5617 }
5618 #ifdef IPSEC_DOSEQCHECK
5619 if (sav->spi != sa0->sadb_sa_spi) {
5620 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5621 (u_int32_t)ntohl(sav->spi),
5622 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5623 error = EINVAL;
5624 goto error;
5625 }
5626 #endif
5627 if (sav->pid != mhp->msg->sadb_msg_pid) {
5628 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5629 sav->pid, mhp->msg->sadb_msg_pid);
5630 error = EINVAL;
5631 goto error;
5632 }
5633
5634 /*
5635 * Allocate a new SA instead of modifying the existing SA directly
5636 * to avoid race conditions.
5637 */
5638 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5639
5640 /* copy sav values */
5641 newsav->spi = sav->spi;
5642 newsav->seq = sav->seq;
5643 newsav->created = sav->created;
5644 newsav->pid = sav->pid;
5645 newsav->sah = sav->sah;
5646
5647 error = key_setsaval(newsav, m, mhp);
5648 if (error) {
5649 key_delsav(newsav);
5650 goto error;
5651 }
5652
5653 error = key_handle_natt_info(newsav, mhp);
5654 if (error != 0) {
5655 key_delsav(newsav);
5656 goto error;
5657 }
5658
5659 error = key_init_xform(newsav);
5660 if (error != 0) {
5661 key_delsav(newsav);
5662 goto error;
5663 }
5664
5665 /* Add to sah#savlist */
5666 key_init_sav(newsav);
5667 newsav->state = SADB_SASTATE_MATURE;
5668 mutex_enter(&key_sad.lock);
5669 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5670 mutex_exit(&key_sad.lock);
5671 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5672
5673 key_sah_unref(sah);
5674 sah = NULL;
5675
5676 key_destroy_sav_with_ref(sav);
5677 sav = NULL;
5678
5679 {
5680 struct mbuf *n;
5681
5682 /* set msg buf from mhp */
5683 n = key_getmsgbuf_x1(m, mhp);
5684 if (n == NULL) {
5685 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5686 return key_senderror(so, m, ENOBUFS);
5687 }
5688
5689 m_freem(m);
5690 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5691 }
5692 error:
5693 KEY_SA_UNREF(&sav);
5694 error_sah:
5695 key_sah_unref(sah);
5696 return key_senderror(so, m, error);
5697 }
5698
5699 /*
5700 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5701 * only called by key_api_update().
5702 * OUT:
5703 * NULL : not found
5704 * others : found, pointer to a SA.
5705 */
5706 #ifdef IPSEC_DOSEQCHECK
5707 static struct secasvar *
5708 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5709 {
5710 struct secasvar *sav;
5711 u_int state;
5712 int s;
5713
5714 state = SADB_SASTATE_LARVAL;
5715
5716 /* search SAD with sequence number ? */
5717 s = pserialize_read_enter();
5718 SAVLIST_READER_FOREACH(sav, sah, state) {
5719 KEY_CHKSASTATE(state, sav->state);
5720
5721 if (sav->seq == seq) {
5722 SA_ADDREF(sav);
5723 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5724 "DP cause refcnt++:%d SA:%p\n",
5725 key_sa_refcnt(sav), sav);
5726 break;
5727 }
5728 }
5729 pserialize_read_exit(s);
5730
5731 return sav;
5732 }
5733 #endif
5734
5735 /*
5736 * SADB_ADD processing
5737 * add an entry to SA database, when received
5738 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5739 * key(AE), (identity(SD),) (sensitivity)>
5740 * from the ikmpd,
5741 * and send
5742 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5743 * (identity(SD),) (sensitivity)>
5744 * to the ikmpd.
5745 *
5746 * IGNORE identity and sensitivity messages.
5747 *
5748 * m will always be freed.
5749 */
5750 static int
5751 key_api_add(struct socket *so, struct mbuf *m,
5752 const struct sadb_msghdr *mhp)
5753 {
5754 struct sadb_sa *sa0;
5755 const struct sockaddr *src, *dst;
5756 struct secasindex saidx;
5757 struct secashead *sah;
5758 struct secasvar *newsav;
5759 u_int16_t proto;
5760 u_int8_t mode;
5761 u_int16_t reqid;
5762 int error;
5763
5764 /* map satype to proto */
5765 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5766 if (proto == 0) {
5767 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5768 return key_senderror(so, m, EINVAL);
5769 }
5770
5771 if (mhp->ext[SADB_EXT_SA] == NULL ||
5772 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5773 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5774 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5775 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5776 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5777 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5778 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5779 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5780 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5781 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5782 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5783 return key_senderror(so, m, EINVAL);
5784 }
5785 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5786 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5787 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5788 /* XXX need more */
5789 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5790 return key_senderror(so, m, EINVAL);
5791 }
5792 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5793 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5794 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5795 } else {
5796 mode = IPSEC_MODE_ANY;
5797 reqid = 0;
5798 }
5799
5800 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5801 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5802 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5803
5804 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5805 if (error != 0)
5806 return key_senderror(so, m, EINVAL);
5807
5808 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5809 if (error != 0)
5810 return key_senderror(so, m, EINVAL);
5811
5812 /* get a SA header */
5813 sah = key_getsah_ref(&saidx, CMP_REQID);
5814 if (sah == NULL) {
5815 /* create a new SA header */
5816 sah = key_newsah(&saidx);
5817 if (sah == NULL) {
5818 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5819 return key_senderror(so, m, ENOBUFS);
5820 }
5821 }
5822
5823 /* set spidx if there */
5824 /* XXX rewrite */
5825 error = key_setident(sah, m, mhp);
5826 if (error)
5827 goto error;
5828
5829 {
5830 struct secasvar *sav;
5831
5832 /* We can create new SA only if SPI is differenct. */
5833 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5834 if (sav != NULL) {
5835 KEY_SA_UNREF(&sav);
5836 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5837 error = EEXIST;
5838 goto error;
5839 }
5840 }
5841
5842 /* create new SA entry. */
5843 newsav = KEY_NEWSAV(m, mhp, &error);
5844 if (newsav == NULL)
5845 goto error;
5846 newsav->sah = sah;
5847
5848 error = key_handle_natt_info(newsav, mhp);
5849 if (error != 0) {
5850 key_delsav(newsav);
5851 error = EINVAL;
5852 goto error;
5853 }
5854
5855 error = key_init_xform(newsav);
5856 if (error != 0) {
5857 key_delsav(newsav);
5858 goto error;
5859 }
5860
5861 /* Add to sah#savlist */
5862 key_init_sav(newsav);
5863 newsav->state = SADB_SASTATE_MATURE;
5864 mutex_enter(&key_sad.lock);
5865 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5866 mutex_exit(&key_sad.lock);
5867 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5868
5869 key_sah_unref(sah);
5870 sah = NULL;
5871
5872 /*
5873 * don't call key_freesav() here, as we would like to keep the SA
5874 * in the database on success.
5875 */
5876
5877 {
5878 struct mbuf *n;
5879
5880 /* set msg buf from mhp */
5881 n = key_getmsgbuf_x1(m, mhp);
5882 if (n == NULL) {
5883 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5884 return key_senderror(so, m, ENOBUFS);
5885 }
5886
5887 m_freem(m);
5888 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5889 }
5890 error:
5891 key_sah_unref(sah);
5892 return key_senderror(so, m, error);
5893 }
5894
5895 /* m is retained */
5896 static int
5897 key_setident(struct secashead *sah, struct mbuf *m,
5898 const struct sadb_msghdr *mhp)
5899 {
5900 const struct sadb_ident *idsrc, *iddst;
5901 int idsrclen, iddstlen;
5902
5903 KASSERT(!cpu_softintr_p());
5904 KASSERT(sah != NULL);
5905 KASSERT(m != NULL);
5906 KASSERT(mhp != NULL);
5907 KASSERT(mhp->msg != NULL);
5908
5909 /*
5910 * Can be called with an existing sah from key_api_update().
5911 */
5912 if (sah->idents != NULL) {
5913 kmem_free(sah->idents, sah->idents_len);
5914 sah->idents = NULL;
5915 sah->idents_len = 0;
5916 }
5917 if (sah->identd != NULL) {
5918 kmem_free(sah->identd, sah->identd_len);
5919 sah->identd = NULL;
5920 sah->identd_len = 0;
5921 }
5922
5923 /* don't make buffer if not there */
5924 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5925 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5926 sah->idents = NULL;
5927 sah->identd = NULL;
5928 return 0;
5929 }
5930
5931 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5932 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5933 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5934 return EINVAL;
5935 }
5936
5937 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5938 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5939 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5940 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5941
5942 /* validity check */
5943 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5944 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5945 return EINVAL;
5946 }
5947
5948 switch (idsrc->sadb_ident_type) {
5949 case SADB_IDENTTYPE_PREFIX:
5950 case SADB_IDENTTYPE_FQDN:
5951 case SADB_IDENTTYPE_USERFQDN:
5952 default:
5953 /* XXX do nothing */
5954 sah->idents = NULL;
5955 sah->identd = NULL;
5956 return 0;
5957 }
5958
5959 /* make structure */
5960 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5961 sah->idents_len = idsrclen;
5962 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5963 sah->identd_len = iddstlen;
5964 memcpy(sah->idents, idsrc, idsrclen);
5965 memcpy(sah->identd, iddst, iddstlen);
5966
5967 return 0;
5968 }
5969
5970 /*
5971 * m will not be freed on return.
5972 * it is caller's responsibility to free the result.
5973 */
5974 static struct mbuf *
5975 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5976 {
5977 struct mbuf *n;
5978
5979 KASSERT(m != NULL);
5980 KASSERT(mhp != NULL);
5981 KASSERT(mhp->msg != NULL);
5982
5983 /* create new sadb_msg to reply. */
5984 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5985 SADB_EXT_SA, SADB_X_EXT_SA2,
5986 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5987 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5988 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5989 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5990 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5991 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5992 if (!n)
5993 return NULL;
5994
5995 if (n->m_len < sizeof(struct sadb_msg)) {
5996 n = m_pullup(n, sizeof(struct sadb_msg));
5997 if (n == NULL)
5998 return NULL;
5999 }
6000 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
6001 mtod(n, struct sadb_msg *)->sadb_msg_len =
6002 PFKEY_UNIT64(n->m_pkthdr.len);
6003
6004 return n;
6005 }
6006
6007 static int key_delete_all (struct socket *, struct mbuf *,
6008 const struct sadb_msghdr *, u_int16_t);
6009
6010 /*
6011 * SADB_DELETE processing
6012 * receive
6013 * <base, SA(*), address(SD)>
6014 * from the ikmpd, and set SADB_SASTATE_DEAD,
6015 * and send,
6016 * <base, SA(*), address(SD)>
6017 * to the ikmpd.
6018 *
6019 * m will always be freed.
6020 */
6021 static int
6022 key_api_delete(struct socket *so, struct mbuf *m,
6023 const struct sadb_msghdr *mhp)
6024 {
6025 struct sadb_sa *sa0;
6026 const struct sockaddr *src, *dst;
6027 struct secasindex saidx;
6028 struct secashead *sah;
6029 struct secasvar *sav = NULL;
6030 u_int16_t proto;
6031 int error;
6032
6033 /* map satype to proto */
6034 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6035 if (proto == 0) {
6036 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6037 return key_senderror(so, m, EINVAL);
6038 }
6039
6040 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6041 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6042 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6043 return key_senderror(so, m, EINVAL);
6044 }
6045
6046 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6047 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6048 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6049 return key_senderror(so, m, EINVAL);
6050 }
6051
6052 if (mhp->ext[SADB_EXT_SA] == NULL) {
6053 /*
6054 * Caller wants us to delete all non-LARVAL SAs
6055 * that match the src/dst. This is used during
6056 * IKE INITIAL-CONTACT.
6057 */
6058 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
6059 return key_delete_all(so, m, mhp, proto);
6060 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
6061 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6062 return key_senderror(so, m, EINVAL);
6063 }
6064
6065 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6066 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6067 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6068
6069 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6070 if (error != 0)
6071 return key_senderror(so, m, EINVAL);
6072
6073 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6074 if (error != 0)
6075 return key_senderror(so, m, EINVAL);
6076
6077 /* get a SA header */
6078 sah = key_getsah_ref(&saidx, CMP_HEAD);
6079 if (sah != NULL) {
6080 /* get a SA with SPI. */
6081 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6082 key_sah_unref(sah);
6083 }
6084
6085 if (sav == NULL) {
6086 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6087 return key_senderror(so, m, ENOENT);
6088 }
6089
6090 key_destroy_sav_with_ref(sav);
6091 sav = NULL;
6092
6093 {
6094 struct mbuf *n;
6095
6096 /* create new sadb_msg to reply. */
6097 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6098 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6099 if (!n)
6100 return key_senderror(so, m, ENOBUFS);
6101
6102 n = key_fill_replymsg(n, 0);
6103 if (n == NULL)
6104 return key_senderror(so, m, ENOBUFS);
6105
6106 m_freem(m);
6107 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6108 }
6109 }
6110
6111 /*
6112 * delete all SAs for src/dst. Called from key_api_delete().
6113 */
6114 static int
6115 key_delete_all(struct socket *so, struct mbuf *m,
6116 const struct sadb_msghdr *mhp, u_int16_t proto)
6117 {
6118 const struct sockaddr *src, *dst;
6119 struct secasindex saidx;
6120 struct secashead *sah;
6121 struct secasvar *sav;
6122 u_int state;
6123 int error;
6124
6125 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6126 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6127
6128 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6129 if (error != 0)
6130 return key_senderror(so, m, EINVAL);
6131
6132 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6133 if (error != 0)
6134 return key_senderror(so, m, EINVAL);
6135
6136 sah = key_getsah_ref(&saidx, CMP_HEAD);
6137 if (sah != NULL) {
6138 /* Delete all non-LARVAL SAs. */
6139 SASTATE_ALIVE_FOREACH(state) {
6140 if (state == SADB_SASTATE_LARVAL)
6141 continue;
6142 restart:
6143 mutex_enter(&key_sad.lock);
6144 SAVLIST_WRITER_FOREACH(sav, sah, state) {
6145 sav->state = SADB_SASTATE_DEAD;
6146 key_unlink_sav(sav);
6147 mutex_exit(&key_sad.lock);
6148 key_destroy_sav(sav);
6149 goto restart;
6150 }
6151 mutex_exit(&key_sad.lock);
6152 }
6153 key_sah_unref(sah);
6154 }
6155 {
6156 struct mbuf *n;
6157
6158 /* create new sadb_msg to reply. */
6159 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6160 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6161 if (!n)
6162 return key_senderror(so, m, ENOBUFS);
6163
6164 n = key_fill_replymsg(n, 0);
6165 if (n == NULL)
6166 return key_senderror(so, m, ENOBUFS);
6167
6168 m_freem(m);
6169 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6170 }
6171 }
6172
6173 /*
6174 * SADB_GET processing
6175 * receive
6176 * <base, SA(*), address(SD)>
6177 * from the ikmpd, and get a SP and a SA to respond,
6178 * and send,
6179 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6180 * (identity(SD),) (sensitivity)>
6181 * to the ikmpd.
6182 *
6183 * m will always be freed.
6184 */
6185 static int
6186 key_api_get(struct socket *so, struct mbuf *m,
6187 const struct sadb_msghdr *mhp)
6188 {
6189 struct sadb_sa *sa0;
6190 const struct sockaddr *src, *dst;
6191 struct secasindex saidx;
6192 struct secasvar *sav = NULL;
6193 u_int16_t proto;
6194 int error;
6195
6196 /* map satype to proto */
6197 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6198 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6199 return key_senderror(so, m, EINVAL);
6200 }
6201
6202 if (mhp->ext[SADB_EXT_SA] == NULL ||
6203 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6204 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6205 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6206 return key_senderror(so, m, EINVAL);
6207 }
6208 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6209 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6210 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6211 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6212 return key_senderror(so, m, EINVAL);
6213 }
6214
6215 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6216 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6217 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6218
6219 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6220 if (error != 0)
6221 return key_senderror(so, m, EINVAL);
6222
6223 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6224 if (error != 0)
6225 return key_senderror(so, m, EINVAL);
6226
6227 /* get a SA header */
6228 {
6229 struct secashead *sah;
6230 int s = pserialize_read_enter();
6231
6232 sah = key_getsah(&saidx, CMP_HEAD);
6233 if (sah != NULL) {
6234 /* get a SA with SPI. */
6235 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6236 }
6237 pserialize_read_exit(s);
6238 }
6239 if (sav == NULL) {
6240 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6241 return key_senderror(so, m, ENOENT);
6242 }
6243
6244 {
6245 struct mbuf *n;
6246 u_int8_t satype;
6247
6248 /* map proto to satype */
6249 satype = key_proto2satype(sav->sah->saidx.proto);
6250 if (satype == 0) {
6251 KEY_SA_UNREF(&sav);
6252 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6253 return key_senderror(so, m, EINVAL);
6254 }
6255
6256 /* create new sadb_msg to reply. */
6257 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6258 mhp->msg->sadb_msg_pid);
6259 KEY_SA_UNREF(&sav);
6260 if (!n)
6261 return key_senderror(so, m, ENOBUFS);
6262
6263 m_freem(m);
6264 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6265 }
6266 }
6267
6268 /* XXX make it sysctl-configurable? */
6269 static void
6270 key_getcomb_setlifetime(struct sadb_comb *comb)
6271 {
6272
6273 comb->sadb_comb_soft_allocations = 1;
6274 comb->sadb_comb_hard_allocations = 1;
6275 comb->sadb_comb_soft_bytes = 0;
6276 comb->sadb_comb_hard_bytes = 0;
6277 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6278 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6279 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6280 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6281 }
6282
6283 /*
6284 * XXX reorder combinations by preference
6285 * XXX no idea if the user wants ESP authentication or not
6286 */
6287 static struct mbuf *
6288 key_getcomb_esp(void)
6289 {
6290 struct sadb_comb *comb;
6291 const struct enc_xform *algo;
6292 struct mbuf *result = NULL, *m, *n;
6293 int encmin;
6294 int i, off, o;
6295 int totlen;
6296 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6297
6298 m = NULL;
6299 for (i = 1; i <= SADB_EALG_MAX; i++) {
6300 algo = esp_algorithm_lookup(i);
6301 if (algo == NULL)
6302 continue;
6303
6304 /* discard algorithms with key size smaller than system min */
6305 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6306 continue;
6307 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6308 encmin = ipsec_esp_keymin;
6309 else
6310 encmin = _BITS(algo->minkey);
6311
6312 if (ipsec_esp_auth)
6313 m = key_getcomb_ah();
6314 else {
6315 KASSERTMSG(l <= MLEN,
6316 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6317 MGET(m, M_DONTWAIT, MT_DATA);
6318 if (m) {
6319 M_ALIGN(m, l);
6320 m->m_len = l;
6321 m->m_next = NULL;
6322 memset(mtod(m, void *), 0, m->m_len);
6323 }
6324 }
6325 if (!m)
6326 goto fail;
6327
6328 totlen = 0;
6329 for (n = m; n; n = n->m_next)
6330 totlen += n->m_len;
6331 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6332
6333 for (off = 0; off < totlen; off += l) {
6334 n = m_pulldown(m, off, l, &o);
6335 if (!n) {
6336 /* m is already freed */
6337 goto fail;
6338 }
6339 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6340 memset(comb, 0, sizeof(*comb));
6341 key_getcomb_setlifetime(comb);
6342 comb->sadb_comb_encrypt = i;
6343 comb->sadb_comb_encrypt_minbits = encmin;
6344 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6345 }
6346
6347 if (!result)
6348 result = m;
6349 else
6350 m_cat(result, m);
6351 }
6352
6353 return result;
6354
6355 fail:
6356 if (result)
6357 m_freem(result);
6358 return NULL;
6359 }
6360
6361 static void
6362 key_getsizes_ah(const struct auth_hash *ah, int alg,
6363 u_int16_t* ksmin, u_int16_t* ksmax)
6364 {
6365 *ksmin = *ksmax = ah->keysize;
6366 if (ah->keysize == 0) {
6367 /*
6368 * Transform takes arbitrary key size but algorithm
6369 * key size is restricted. Enforce this here.
6370 */
6371 switch (alg) {
6372 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6373 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6374 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6375 default:
6376 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6377 break;
6378 }
6379 }
6380 }
6381
6382 /*
6383 * XXX reorder combinations by preference
6384 */
6385 static struct mbuf *
6386 key_getcomb_ah(void)
6387 {
6388 struct sadb_comb *comb;
6389 const struct auth_hash *algo;
6390 struct mbuf *m;
6391 u_int16_t minkeysize, maxkeysize;
6392 int i;
6393 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6394
6395 m = NULL;
6396 for (i = 1; i <= SADB_AALG_MAX; i++) {
6397 #if 1
6398 /* we prefer HMAC algorithms, not old algorithms */
6399 if (i != SADB_AALG_SHA1HMAC &&
6400 i != SADB_AALG_MD5HMAC &&
6401 i != SADB_X_AALG_SHA2_256 &&
6402 i != SADB_X_AALG_SHA2_384 &&
6403 i != SADB_X_AALG_SHA2_512)
6404 continue;
6405 #endif
6406 algo = ah_algorithm_lookup(i);
6407 if (!algo)
6408 continue;
6409 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6410 /* discard algorithms with key size smaller than system min */
6411 if (_BITS(minkeysize) < ipsec_ah_keymin)
6412 continue;
6413
6414 if (!m) {
6415 KASSERTMSG(l <= MLEN,
6416 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6417 MGET(m, M_DONTWAIT, MT_DATA);
6418 if (m) {
6419 M_ALIGN(m, l);
6420 m->m_len = l;
6421 m->m_next = NULL;
6422 }
6423 } else
6424 M_PREPEND(m, l, M_DONTWAIT);
6425 if (!m)
6426 return NULL;
6427
6428 if (m->m_len < sizeof(struct sadb_comb)) {
6429 m = m_pullup(m, sizeof(struct sadb_comb));
6430 if (m == NULL)
6431 return NULL;
6432 }
6433
6434 comb = mtod(m, struct sadb_comb *);
6435 memset(comb, 0, sizeof(*comb));
6436 key_getcomb_setlifetime(comb);
6437 comb->sadb_comb_auth = i;
6438 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6439 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6440 }
6441
6442 return m;
6443 }
6444
6445 /*
6446 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6447 * XXX reorder combinations by preference
6448 */
6449 static struct mbuf *
6450 key_getcomb_ipcomp(void)
6451 {
6452 struct sadb_comb *comb;
6453 const struct comp_algo *algo;
6454 struct mbuf *m;
6455 int i;
6456 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6457
6458 m = NULL;
6459 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6460 algo = ipcomp_algorithm_lookup(i);
6461 if (!algo)
6462 continue;
6463
6464 if (!m) {
6465 KASSERTMSG(l <= MLEN,
6466 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6467 MGET(m, M_DONTWAIT, MT_DATA);
6468 if (m) {
6469 M_ALIGN(m, l);
6470 m->m_len = l;
6471 m->m_next = NULL;
6472 }
6473 } else
6474 M_PREPEND(m, l, M_DONTWAIT);
6475 if (!m)
6476 return NULL;
6477
6478 if (m->m_len < sizeof(struct sadb_comb)) {
6479 m = m_pullup(m, sizeof(struct sadb_comb));
6480 if (m == NULL)
6481 return NULL;
6482 }
6483
6484 comb = mtod(m, struct sadb_comb *);
6485 memset(comb, 0, sizeof(*comb));
6486 key_getcomb_setlifetime(comb);
6487 comb->sadb_comb_encrypt = i;
6488 /* what should we set into sadb_comb_*_{min,max}bits? */
6489 }
6490
6491 return m;
6492 }
6493
6494 /*
6495 * XXX no way to pass mode (transport/tunnel) to userland
6496 * XXX replay checking?
6497 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6498 */
6499 static struct mbuf *
6500 key_getprop(const struct secasindex *saidx)
6501 {
6502 struct sadb_prop *prop;
6503 struct mbuf *m, *n;
6504 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6505 int totlen;
6506
6507 switch (saidx->proto) {
6508 case IPPROTO_ESP:
6509 m = key_getcomb_esp();
6510 break;
6511 case IPPROTO_AH:
6512 m = key_getcomb_ah();
6513 break;
6514 case IPPROTO_IPCOMP:
6515 m = key_getcomb_ipcomp();
6516 break;
6517 default:
6518 return NULL;
6519 }
6520
6521 if (!m)
6522 return NULL;
6523 M_PREPEND(m, l, M_DONTWAIT);
6524 if (!m)
6525 return NULL;
6526
6527 totlen = 0;
6528 for (n = m; n; n = n->m_next)
6529 totlen += n->m_len;
6530
6531 prop = mtod(m, struct sadb_prop *);
6532 memset(prop, 0, sizeof(*prop));
6533 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6534 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6535 prop->sadb_prop_replay = 32; /* XXX */
6536
6537 return m;
6538 }
6539
6540 /*
6541 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6542 * send
6543 * <base, SA, address(SD), (address(P)), x_policy,
6544 * (identity(SD),) (sensitivity,) proposal>
6545 * to KMD, and expect to receive
6546 * <base> with SADB_ACQUIRE if error occurred,
6547 * or
6548 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6549 * from KMD by PF_KEY.
6550 *
6551 * XXX x_policy is outside of RFC2367 (KAME extension).
6552 * XXX sensitivity is not supported.
6553 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6554 * see comment for key_getcomb_ipcomp().
6555 *
6556 * OUT:
6557 * 0 : succeed
6558 * others: error number
6559 */
6560 static int
6561 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6562 {
6563 struct mbuf *result = NULL, *m;
6564 #ifndef IPSEC_NONBLOCK_ACQUIRE
6565 struct secacq *newacq;
6566 #endif
6567 u_int8_t satype;
6568 int error = -1;
6569 u_int32_t seq;
6570
6571 /* sanity check */
6572 KASSERT(saidx != NULL);
6573 satype = key_proto2satype(saidx->proto);
6574 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6575
6576 #ifndef IPSEC_NONBLOCK_ACQUIRE
6577 /*
6578 * We never do anything about acquirng SA. There is anather
6579 * solution that kernel blocks to send SADB_ACQUIRE message until
6580 * getting something message from IKEd. In later case, to be
6581 * managed with ACQUIRING list.
6582 */
6583 /* Get an entry to check whether sending message or not. */
6584 mutex_enter(&key_misc.lock);
6585 newacq = key_getacq(saidx);
6586 if (newacq != NULL) {
6587 if (key_blockacq_count < newacq->count) {
6588 /* reset counter and do send message. */
6589 newacq->count = 0;
6590 } else {
6591 /* increment counter and do nothing. */
6592 newacq->count++;
6593 mutex_exit(&key_misc.lock);
6594 return 0;
6595 }
6596 } else {
6597 /* make new entry for blocking to send SADB_ACQUIRE. */
6598 newacq = key_newacq(saidx);
6599 if (newacq == NULL) {
6600 mutex_exit(&key_misc.lock);
6601 return ENOBUFS;
6602 }
6603
6604 /* add to key_misc.acqlist */
6605 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6606 }
6607
6608 seq = newacq->seq;
6609 mutex_exit(&key_misc.lock);
6610 #else
6611 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6612 #endif
6613 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6614 if (!m) {
6615 error = ENOBUFS;
6616 goto fail;
6617 }
6618 result = m;
6619
6620 /* set sadb_address for saidx's. */
6621 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6622 IPSEC_ULPROTO_ANY);
6623 if (!m) {
6624 error = ENOBUFS;
6625 goto fail;
6626 }
6627 m_cat(result, m);
6628
6629 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6630 IPSEC_ULPROTO_ANY);
6631 if (!m) {
6632 error = ENOBUFS;
6633 goto fail;
6634 }
6635 m_cat(result, m);
6636
6637 /* XXX proxy address (optional) */
6638
6639 /* set sadb_x_policy */
6640 if (sp) {
6641 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6642 if (!m) {
6643 error = ENOBUFS;
6644 goto fail;
6645 }
6646 m_cat(result, m);
6647 }
6648
6649 /* XXX identity (optional) */
6650 #if 0
6651 if (idexttype && fqdn) {
6652 /* create identity extension (FQDN) */
6653 struct sadb_ident *id;
6654 int fqdnlen;
6655
6656 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6657 id = (struct sadb_ident *)p;
6658 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6659 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6660 id->sadb_ident_exttype = idexttype;
6661 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6662 memcpy(id + 1, fqdn, fqdnlen);
6663 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6664 }
6665
6666 if (idexttype) {
6667 /* create identity extension (USERFQDN) */
6668 struct sadb_ident *id;
6669 int userfqdnlen;
6670
6671 if (userfqdn) {
6672 /* +1 for terminating-NUL */
6673 userfqdnlen = strlen(userfqdn) + 1;
6674 } else
6675 userfqdnlen = 0;
6676 id = (struct sadb_ident *)p;
6677 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6678 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6679 id->sadb_ident_exttype = idexttype;
6680 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6681 /* XXX is it correct? */
6682 if (curlwp)
6683 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6684 if (userfqdn && userfqdnlen)
6685 memcpy(id + 1, userfqdn, userfqdnlen);
6686 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6687 }
6688 #endif
6689
6690 /* XXX sensitivity (optional) */
6691
6692 /* create proposal/combination extension */
6693 m = key_getprop(saidx);
6694 #if 0
6695 /*
6696 * spec conformant: always attach proposal/combination extension,
6697 * the problem is that we have no way to attach it for ipcomp,
6698 * due to the way sadb_comb is declared in RFC2367.
6699 */
6700 if (!m) {
6701 error = ENOBUFS;
6702 goto fail;
6703 }
6704 m_cat(result, m);
6705 #else
6706 /*
6707 * outside of spec; make proposal/combination extension optional.
6708 */
6709 if (m)
6710 m_cat(result, m);
6711 #endif
6712
6713 if ((result->m_flags & M_PKTHDR) == 0) {
6714 error = EINVAL;
6715 goto fail;
6716 }
6717
6718 if (result->m_len < sizeof(struct sadb_msg)) {
6719 result = m_pullup(result, sizeof(struct sadb_msg));
6720 if (result == NULL) {
6721 error = ENOBUFS;
6722 goto fail;
6723 }
6724 }
6725
6726 result->m_pkthdr.len = 0;
6727 for (m = result; m; m = m->m_next)
6728 result->m_pkthdr.len += m->m_len;
6729
6730 mtod(result, struct sadb_msg *)->sadb_msg_len =
6731 PFKEY_UNIT64(result->m_pkthdr.len);
6732
6733 /*
6734 * XXX we cannot call key_sendup_mbuf directly here because
6735 * it can cause a deadlock:
6736 * - We have a reference to an SP (and an SA) here
6737 * - key_sendup_mbuf will try to take key_so_mtx
6738 * - Some other thread may try to localcount_drain to the SP with
6739 * holding key_so_mtx in say key_api_spdflush
6740 * - In this case localcount_drain never return because key_sendup_mbuf
6741 * that has stuck on key_so_mtx never release a reference to the SP
6742 *
6743 * So defer key_sendup_mbuf to the timer.
6744 */
6745 return key_acquire_sendup_mbuf_later(result);
6746
6747 fail:
6748 if (result)
6749 m_freem(result);
6750 return error;
6751 }
6752
6753 static struct mbuf *key_acquire_mbuf_head = NULL;
6754 static unsigned key_acquire_mbuf_count = 0;
6755 #define KEY_ACQUIRE_MBUF_MAX 10
6756
6757 static void
6758 key_acquire_sendup_pending_mbuf(void)
6759 {
6760 struct mbuf *m, *prev;
6761 int error;
6762
6763 again:
6764 prev = NULL;
6765 mutex_enter(&key_misc.lock);
6766 m = key_acquire_mbuf_head;
6767 /* Get an earliest mbuf (one at the tail of the list) */
6768 while (m != NULL) {
6769 if (m->m_nextpkt == NULL) {
6770 if (prev != NULL)
6771 prev->m_nextpkt = NULL;
6772 if (m == key_acquire_mbuf_head)
6773 key_acquire_mbuf_head = NULL;
6774 key_acquire_mbuf_count--;
6775 break;
6776 }
6777 prev = m;
6778 m = m->m_nextpkt;
6779 }
6780 mutex_exit(&key_misc.lock);
6781
6782 if (m == NULL)
6783 return;
6784
6785 m->m_nextpkt = NULL;
6786 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
6787 if (error != 0)
6788 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
6789 error);
6790
6791 if (prev != NULL)
6792 goto again;
6793 }
6794
6795 static int
6796 key_acquire_sendup_mbuf_later(struct mbuf *m)
6797 {
6798
6799 mutex_enter(&key_misc.lock);
6800 /* Avoid queuing too much mbufs */
6801 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
6802 mutex_exit(&key_misc.lock);
6803 m_freem(m);
6804 return ENOBUFS; /* XXX */
6805 }
6806 /* Enqueue mbuf at the head of the list */
6807 m->m_nextpkt = key_acquire_mbuf_head;
6808 key_acquire_mbuf_head = m;
6809 key_acquire_mbuf_count++;
6810 mutex_exit(&key_misc.lock);
6811
6812 /* Kick the timer */
6813 key_timehandler(NULL);
6814
6815 return 0;
6816 }
6817
6818 #ifndef IPSEC_NONBLOCK_ACQUIRE
6819 static struct secacq *
6820 key_newacq(const struct secasindex *saidx)
6821 {
6822 struct secacq *newacq;
6823
6824 /* get new entry */
6825 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6826 if (newacq == NULL) {
6827 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6828 return NULL;
6829 }
6830
6831 /* copy secindex */
6832 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6833 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6834 newacq->created = time_uptime;
6835 newacq->count = 0;
6836
6837 return newacq;
6838 }
6839
6840 static struct secacq *
6841 key_getacq(const struct secasindex *saidx)
6842 {
6843 struct secacq *acq;
6844
6845 KASSERT(mutex_owned(&key_misc.lock));
6846
6847 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6848 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6849 return acq;
6850 }
6851
6852 return NULL;
6853 }
6854
6855 static struct secacq *
6856 key_getacqbyseq(u_int32_t seq)
6857 {
6858 struct secacq *acq;
6859
6860 KASSERT(mutex_owned(&key_misc.lock));
6861
6862 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6863 if (acq->seq == seq)
6864 return acq;
6865 }
6866
6867 return NULL;
6868 }
6869 #endif
6870
6871 #ifdef notyet
6872 static struct secspacq *
6873 key_newspacq(const struct secpolicyindex *spidx)
6874 {
6875 struct secspacq *acq;
6876
6877 /* get new entry */
6878 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6879 if (acq == NULL) {
6880 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6881 return NULL;
6882 }
6883
6884 /* copy secindex */
6885 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6886 acq->created = time_uptime;
6887 acq->count = 0;
6888
6889 return acq;
6890 }
6891
6892 static struct secspacq *
6893 key_getspacq(const struct secpolicyindex *spidx)
6894 {
6895 struct secspacq *acq;
6896
6897 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6898 if (key_spidx_match_exactly(spidx, &acq->spidx))
6899 return acq;
6900 }
6901
6902 return NULL;
6903 }
6904 #endif /* notyet */
6905
6906 /*
6907 * SADB_ACQUIRE processing,
6908 * in first situation, is receiving
6909 * <base>
6910 * from the ikmpd, and clear sequence of its secasvar entry.
6911 *
6912 * In second situation, is receiving
6913 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6914 * from a user land process, and return
6915 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6916 * to the socket.
6917 *
6918 * m will always be freed.
6919 */
6920 static int
6921 key_api_acquire(struct socket *so, struct mbuf *m,
6922 const struct sadb_msghdr *mhp)
6923 {
6924 const struct sockaddr *src, *dst;
6925 struct secasindex saidx;
6926 u_int16_t proto;
6927 int error;
6928
6929 /*
6930 * Error message from KMd.
6931 * We assume that if error was occurred in IKEd, the length of PFKEY
6932 * message is equal to the size of sadb_msg structure.
6933 * We do not raise error even if error occurred in this function.
6934 */
6935 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6936 #ifndef IPSEC_NONBLOCK_ACQUIRE
6937 struct secacq *acq;
6938
6939 /* check sequence number */
6940 if (mhp->msg->sadb_msg_seq == 0) {
6941 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6942 m_freem(m);
6943 return 0;
6944 }
6945
6946 mutex_enter(&key_misc.lock);
6947 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6948 if (acq == NULL) {
6949 mutex_exit(&key_misc.lock);
6950 /*
6951 * the specified larval SA is already gone, or we got
6952 * a bogus sequence number. we can silently ignore it.
6953 */
6954 m_freem(m);
6955 return 0;
6956 }
6957
6958 /* reset acq counter in order to deletion by timehander. */
6959 acq->created = time_uptime;
6960 acq->count = 0;
6961 mutex_exit(&key_misc.lock);
6962 #endif
6963 m_freem(m);
6964 return 0;
6965 }
6966
6967 /*
6968 * This message is from user land.
6969 */
6970
6971 /* map satype to proto */
6972 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6973 if (proto == 0) {
6974 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6975 return key_senderror(so, m, EINVAL);
6976 }
6977
6978 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6979 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6980 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6981 /* error */
6982 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6983 return key_senderror(so, m, EINVAL);
6984 }
6985 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6986 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6987 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6988 /* error */
6989 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6990 return key_senderror(so, m, EINVAL);
6991 }
6992
6993 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6994 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6995
6996 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6997 if (error != 0)
6998 return key_senderror(so, m, EINVAL);
6999
7000 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
7001 if (error != 0)
7002 return key_senderror(so, m, EINVAL);
7003
7004 /* get a SA index */
7005 {
7006 struct secashead *sah;
7007 int s = pserialize_read_enter();
7008
7009 sah = key_getsah(&saidx, CMP_MODE_REQID);
7010 if (sah != NULL) {
7011 pserialize_read_exit(s);
7012 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
7013 return key_senderror(so, m, EEXIST);
7014 }
7015 pserialize_read_exit(s);
7016 }
7017
7018 error = key_acquire(&saidx, NULL);
7019 if (error != 0) {
7020 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
7021 error);
7022 return key_senderror(so, m, error);
7023 }
7024
7025 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
7026 }
7027
7028 /*
7029 * SADB_REGISTER processing.
7030 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7031 * receive
7032 * <base>
7033 * from the ikmpd, and register a socket to send PF_KEY messages,
7034 * and send
7035 * <base, supported>
7036 * to KMD by PF_KEY.
7037 * If socket is detached, must free from regnode.
7038 *
7039 * m will always be freed.
7040 */
7041 static int
7042 key_api_register(struct socket *so, struct mbuf *m,
7043 const struct sadb_msghdr *mhp)
7044 {
7045 struct secreg *reg, *newreg = 0;
7046
7047 /* check for invalid register message */
7048 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
7049 return key_senderror(so, m, EINVAL);
7050
7051 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7052 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7053 goto setmsg;
7054
7055 /* Allocate regnode in advance, out of mutex */
7056 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
7057
7058 /* check whether existing or not */
7059 mutex_enter(&key_misc.lock);
7060 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
7061 if (reg->so == so) {
7062 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
7063 mutex_exit(&key_misc.lock);
7064 kmem_free(newreg, sizeof(*newreg));
7065 return key_senderror(so, m, EEXIST);
7066 }
7067 }
7068
7069 newreg->so = so;
7070 ((struct keycb *)sotorawcb(so))->kp_registered++;
7071
7072 /* add regnode to key_misc.reglist. */
7073 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
7074 mutex_exit(&key_misc.lock);
7075
7076 setmsg:
7077 {
7078 struct mbuf *n;
7079 struct sadb_supported *sup;
7080 u_int len, alen, elen;
7081 int off;
7082 int i;
7083 struct sadb_alg *alg;
7084
7085 /* create new sadb_msg to reply. */
7086 alen = 0;
7087 for (i = 1; i <= SADB_AALG_MAX; i++) {
7088 if (ah_algorithm_lookup(i))
7089 alen += sizeof(struct sadb_alg);
7090 }
7091 if (alen)
7092 alen += sizeof(struct sadb_supported);
7093 elen = 0;
7094 for (i = 1; i <= SADB_EALG_MAX; i++) {
7095 if (esp_algorithm_lookup(i))
7096 elen += sizeof(struct sadb_alg);
7097 }
7098 if (elen)
7099 elen += sizeof(struct sadb_supported);
7100
7101 len = sizeof(struct sadb_msg) + alen + elen;
7102
7103 if (len > MCLBYTES)
7104 return key_senderror(so, m, ENOBUFS);
7105
7106 MGETHDR(n, M_DONTWAIT, MT_DATA);
7107 if (len > MHLEN) {
7108 MCLGET(n, M_DONTWAIT);
7109 if ((n->m_flags & M_EXT) == 0) {
7110 m_freem(n);
7111 n = NULL;
7112 }
7113 }
7114 if (!n)
7115 return key_senderror(so, m, ENOBUFS);
7116
7117 n->m_pkthdr.len = n->m_len = len;
7118 n->m_next = NULL;
7119 off = 0;
7120
7121 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
7122 n = key_fill_replymsg(n, 0);
7123 if (n == NULL)
7124 return key_senderror(so, m, ENOBUFS);
7125
7126 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7127
7128 /* for authentication algorithm */
7129 if (alen) {
7130 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7131 sup->sadb_supported_len = PFKEY_UNIT64(alen);
7132 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7133 off += PFKEY_ALIGN8(sizeof(*sup));
7134
7135 for (i = 1; i <= SADB_AALG_MAX; i++) {
7136 const struct auth_hash *aalgo;
7137 u_int16_t minkeysize, maxkeysize;
7138
7139 aalgo = ah_algorithm_lookup(i);
7140 if (!aalgo)
7141 continue;
7142 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7143 alg->sadb_alg_id = i;
7144 alg->sadb_alg_ivlen = 0;
7145 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7146 alg->sadb_alg_minbits = _BITS(minkeysize);
7147 alg->sadb_alg_maxbits = _BITS(maxkeysize);
7148 off += PFKEY_ALIGN8(sizeof(*alg));
7149 }
7150 }
7151
7152 /* for encryption algorithm */
7153 if (elen) {
7154 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7155 sup->sadb_supported_len = PFKEY_UNIT64(elen);
7156 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7157 off += PFKEY_ALIGN8(sizeof(*sup));
7158
7159 for (i = 1; i <= SADB_EALG_MAX; i++) {
7160 const struct enc_xform *ealgo;
7161
7162 ealgo = esp_algorithm_lookup(i);
7163 if (!ealgo)
7164 continue;
7165 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7166 alg->sadb_alg_id = i;
7167 alg->sadb_alg_ivlen = ealgo->blocksize;
7168 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7169 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7170 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7171 }
7172 }
7173
7174 KASSERTMSG(off == len, "length inconsistency");
7175
7176 m_freem(m);
7177 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7178 }
7179 }
7180
7181 /*
7182 * free secreg entry registered.
7183 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7184 */
7185 void
7186 key_freereg(struct socket *so)
7187 {
7188 struct secreg *reg;
7189 int i;
7190
7191 KASSERT(!cpu_softintr_p());
7192 KASSERT(so != NULL);
7193
7194 /*
7195 * check whether existing or not.
7196 * check all type of SA, because there is a potential that
7197 * one socket is registered to multiple type of SA.
7198 */
7199 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7200 mutex_enter(&key_misc.lock);
7201 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7202 if (reg->so == so) {
7203 LIST_REMOVE(reg, chain);
7204 break;
7205 }
7206 }
7207 mutex_exit(&key_misc.lock);
7208 if (reg != NULL)
7209 kmem_free(reg, sizeof(*reg));
7210 }
7211
7212 return;
7213 }
7214
7215 /*
7216 * SADB_EXPIRE processing
7217 * send
7218 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7219 * to KMD by PF_KEY.
7220 * NOTE: We send only soft lifetime extension.
7221 *
7222 * OUT: 0 : succeed
7223 * others : error number
7224 */
7225 static int
7226 key_expire(struct secasvar *sav)
7227 {
7228 int s;
7229 int satype;
7230 struct mbuf *result = NULL, *m;
7231 int len;
7232 int error = -1;
7233 struct sadb_lifetime *lt;
7234
7235 /* XXX: Why do we lock ? */
7236 s = splsoftnet(); /*called from softclock()*/
7237
7238 KASSERT(sav != NULL);
7239
7240 satype = key_proto2satype(sav->sah->saidx.proto);
7241 KASSERTMSG(satype != 0, "invalid proto is passed");
7242
7243 /* set msg header */
7244 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav));
7245 if (!m) {
7246 error = ENOBUFS;
7247 goto fail;
7248 }
7249 result = m;
7250
7251 /* create SA extension */
7252 m = key_setsadbsa(sav);
7253 if (!m) {
7254 error = ENOBUFS;
7255 goto fail;
7256 }
7257 m_cat(result, m);
7258
7259 /* create SA extension */
7260 m = key_setsadbxsa2(sav->sah->saidx.mode,
7261 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7262 if (!m) {
7263 error = ENOBUFS;
7264 goto fail;
7265 }
7266 m_cat(result, m);
7267
7268 /* create lifetime extension (current and soft) */
7269 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7270 m = key_alloc_mbuf(len);
7271 if (!m || m->m_next) { /*XXX*/
7272 if (m)
7273 m_freem(m);
7274 error = ENOBUFS;
7275 goto fail;
7276 }
7277 memset(mtod(m, void *), 0, len);
7278 lt = mtod(m, struct sadb_lifetime *);
7279 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7280 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7281 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7282 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7283 lt->sadb_lifetime_addtime =
7284 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7285 lt->sadb_lifetime_usetime =
7286 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7287 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7288 memcpy(lt, sav->lft_s, sizeof(*lt));
7289 m_cat(result, m);
7290
7291 /* set sadb_address for source */
7292 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7293 FULLMASK, IPSEC_ULPROTO_ANY);
7294 if (!m) {
7295 error = ENOBUFS;
7296 goto fail;
7297 }
7298 m_cat(result, m);
7299
7300 /* set sadb_address for destination */
7301 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7302 FULLMASK, IPSEC_ULPROTO_ANY);
7303 if (!m) {
7304 error = ENOBUFS;
7305 goto fail;
7306 }
7307 m_cat(result, m);
7308
7309 if ((result->m_flags & M_PKTHDR) == 0) {
7310 error = EINVAL;
7311 goto fail;
7312 }
7313
7314 if (result->m_len < sizeof(struct sadb_msg)) {
7315 result = m_pullup(result, sizeof(struct sadb_msg));
7316 if (result == NULL) {
7317 error = ENOBUFS;
7318 goto fail;
7319 }
7320 }
7321
7322 result->m_pkthdr.len = 0;
7323 for (m = result; m; m = m->m_next)
7324 result->m_pkthdr.len += m->m_len;
7325
7326 mtod(result, struct sadb_msg *)->sadb_msg_len =
7327 PFKEY_UNIT64(result->m_pkthdr.len);
7328
7329 splx(s);
7330 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7331
7332 fail:
7333 if (result)
7334 m_freem(result);
7335 splx(s);
7336 return error;
7337 }
7338
7339 /*
7340 * SADB_FLUSH processing
7341 * receive
7342 * <base>
7343 * from the ikmpd, and free all entries in secastree.
7344 * and send,
7345 * <base>
7346 * to the ikmpd.
7347 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7348 *
7349 * m will always be freed.
7350 */
7351 static int
7352 key_api_flush(struct socket *so, struct mbuf *m,
7353 const struct sadb_msghdr *mhp)
7354 {
7355 struct sadb_msg *newmsg;
7356 struct secashead *sah;
7357 struct secasvar *sav;
7358 u_int16_t proto;
7359 u_int8_t state;
7360 int s;
7361
7362 /* map satype to proto */
7363 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7364 if (proto == 0) {
7365 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7366 return key_senderror(so, m, EINVAL);
7367 }
7368
7369 /* no SATYPE specified, i.e. flushing all SA. */
7370 s = pserialize_read_enter();
7371 SAHLIST_READER_FOREACH(sah) {
7372 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7373 proto != sah->saidx.proto)
7374 continue;
7375
7376 key_sah_ref(sah);
7377 pserialize_read_exit(s);
7378
7379 SASTATE_ALIVE_FOREACH(state) {
7380 restart:
7381 mutex_enter(&key_sad.lock);
7382 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7383 sav->state = SADB_SASTATE_DEAD;
7384 key_unlink_sav(sav);
7385 mutex_exit(&key_sad.lock);
7386 key_destroy_sav(sav);
7387 goto restart;
7388 }
7389 mutex_exit(&key_sad.lock);
7390 }
7391
7392 s = pserialize_read_enter();
7393 sah->state = SADB_SASTATE_DEAD;
7394 key_sah_unref(sah);
7395 }
7396 pserialize_read_exit(s);
7397
7398 if (m->m_len < sizeof(struct sadb_msg) ||
7399 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7400 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7401 return key_senderror(so, m, ENOBUFS);
7402 }
7403
7404 if (m->m_next)
7405 m_freem(m->m_next);
7406 m->m_next = NULL;
7407 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7408 newmsg = mtod(m, struct sadb_msg *);
7409 newmsg->sadb_msg_errno = 0;
7410 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7411
7412 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7413 }
7414
7415
7416 static struct mbuf *
7417 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7418 {
7419 struct secashead *sah;
7420 struct secasvar *sav;
7421 u_int16_t proto;
7422 u_int8_t satype;
7423 u_int8_t state;
7424 int cnt;
7425 struct mbuf *m, *n, *prev;
7426
7427 KASSERT(mutex_owned(&key_sad.lock));
7428
7429 *lenp = 0;
7430
7431 /* map satype to proto */
7432 proto = key_satype2proto(req_satype);
7433 if (proto == 0) {
7434 *errorp = EINVAL;
7435 return (NULL);
7436 }
7437
7438 /* count sav entries to be sent to userland. */
7439 cnt = 0;
7440 SAHLIST_WRITER_FOREACH(sah) {
7441 if (req_satype != SADB_SATYPE_UNSPEC &&
7442 proto != sah->saidx.proto)
7443 continue;
7444
7445 SASTATE_ANY_FOREACH(state) {
7446 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7447 cnt++;
7448 }
7449 }
7450 }
7451
7452 if (cnt == 0) {
7453 *errorp = ENOENT;
7454 return (NULL);
7455 }
7456
7457 /* send this to the userland, one at a time. */
7458 m = NULL;
7459 prev = m;
7460 SAHLIST_WRITER_FOREACH(sah) {
7461 if (req_satype != SADB_SATYPE_UNSPEC &&
7462 proto != sah->saidx.proto)
7463 continue;
7464
7465 /* map proto to satype */
7466 satype = key_proto2satype(sah->saidx.proto);
7467 if (satype == 0) {
7468 m_freem(m);
7469 *errorp = EINVAL;
7470 return (NULL);
7471 }
7472
7473 SASTATE_ANY_FOREACH(state) {
7474 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7475 n = key_setdumpsa(sav, SADB_DUMP, satype,
7476 --cnt, pid);
7477 if (!n) {
7478 m_freem(m);
7479 *errorp = ENOBUFS;
7480 return (NULL);
7481 }
7482
7483 if (!m)
7484 m = n;
7485 else
7486 prev->m_nextpkt = n;
7487 prev = n;
7488 }
7489 }
7490 }
7491
7492 if (!m) {
7493 *errorp = EINVAL;
7494 return (NULL);
7495 }
7496
7497 if ((m->m_flags & M_PKTHDR) != 0) {
7498 m->m_pkthdr.len = 0;
7499 for (n = m; n; n = n->m_next)
7500 m->m_pkthdr.len += n->m_len;
7501 }
7502
7503 *errorp = 0;
7504 return (m);
7505 }
7506
7507 /*
7508 * SADB_DUMP processing
7509 * dump all entries including status of DEAD in SAD.
7510 * receive
7511 * <base>
7512 * from the ikmpd, and dump all secasvar leaves
7513 * and send,
7514 * <base> .....
7515 * to the ikmpd.
7516 *
7517 * m will always be freed.
7518 */
7519 static int
7520 key_api_dump(struct socket *so, struct mbuf *m0,
7521 const struct sadb_msghdr *mhp)
7522 {
7523 u_int16_t proto;
7524 u_int8_t satype;
7525 struct mbuf *n;
7526 int error, len, ok;
7527
7528 /* map satype to proto */
7529 satype = mhp->msg->sadb_msg_satype;
7530 proto = key_satype2proto(satype);
7531 if (proto == 0) {
7532 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7533 return key_senderror(so, m0, EINVAL);
7534 }
7535
7536 /*
7537 * If the requestor has insufficient socket-buffer space
7538 * for the entire chain, nobody gets any response to the DUMP.
7539 * XXX For now, only the requestor ever gets anything.
7540 * Moreover, if the requestor has any space at all, they receive
7541 * the entire chain, otherwise the request is refused with ENOBUFS.
7542 */
7543 if (sbspace(&so->so_rcv) <= 0) {
7544 return key_senderror(so, m0, ENOBUFS);
7545 }
7546
7547 mutex_enter(&key_sad.lock);
7548 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7549 mutex_exit(&key_sad.lock);
7550
7551 if (n == NULL) {
7552 return key_senderror(so, m0, ENOENT);
7553 }
7554 {
7555 uint64_t *ps = PFKEY_STAT_GETREF();
7556 ps[PFKEY_STAT_IN_TOTAL]++;
7557 ps[PFKEY_STAT_IN_BYTES] += len;
7558 PFKEY_STAT_PUTREF();
7559 }
7560
7561 /*
7562 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7563 * The requestor receives either the entire chain, or an
7564 * error message with ENOBUFS.
7565 *
7566 * sbappendaddrchain() takes the chain of entries, one
7567 * packet-record per SPD entry, prepends the key_src sockaddr
7568 * to each packet-record, links the sockaddr mbufs into a new
7569 * list of records, then appends the entire resulting
7570 * list to the requesting socket.
7571 */
7572 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7573 SB_PRIO_ONESHOT_OVERFLOW);
7574
7575 if (!ok) {
7576 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7577 m_freem(n);
7578 return key_senderror(so, m0, ENOBUFS);
7579 }
7580
7581 m_freem(m0);
7582 return 0;
7583 }
7584
7585 /*
7586 * SADB_X_PROMISC processing
7587 *
7588 * m will always be freed.
7589 */
7590 static int
7591 key_api_promisc(struct socket *so, struct mbuf *m,
7592 const struct sadb_msghdr *mhp)
7593 {
7594 int olen;
7595
7596 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7597
7598 if (olen < sizeof(struct sadb_msg)) {
7599 #if 1
7600 return key_senderror(so, m, EINVAL);
7601 #else
7602 m_freem(m);
7603 return 0;
7604 #endif
7605 } else if (olen == sizeof(struct sadb_msg)) {
7606 /* enable/disable promisc mode */
7607 struct keycb *kp = (struct keycb *)sotorawcb(so);
7608 if (kp == NULL)
7609 return key_senderror(so, m, EINVAL);
7610 mhp->msg->sadb_msg_errno = 0;
7611 switch (mhp->msg->sadb_msg_satype) {
7612 case 0:
7613 case 1:
7614 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7615 break;
7616 default:
7617 return key_senderror(so, m, EINVAL);
7618 }
7619
7620 /* send the original message back to everyone */
7621 mhp->msg->sadb_msg_errno = 0;
7622 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7623 } else {
7624 /* send packet as is */
7625
7626 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7627
7628 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7629 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7630 }
7631 }
7632
7633 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7634 const struct sadb_msghdr *) = {
7635 NULL, /* SADB_RESERVED */
7636 key_api_getspi, /* SADB_GETSPI */
7637 key_api_update, /* SADB_UPDATE */
7638 key_api_add, /* SADB_ADD */
7639 key_api_delete, /* SADB_DELETE */
7640 key_api_get, /* SADB_GET */
7641 key_api_acquire, /* SADB_ACQUIRE */
7642 key_api_register, /* SADB_REGISTER */
7643 NULL, /* SADB_EXPIRE */
7644 key_api_flush, /* SADB_FLUSH */
7645 key_api_dump, /* SADB_DUMP */
7646 key_api_promisc, /* SADB_X_PROMISC */
7647 NULL, /* SADB_X_PCHANGE */
7648 key_api_spdadd, /* SADB_X_SPDUPDATE */
7649 key_api_spdadd, /* SADB_X_SPDADD */
7650 key_api_spddelete, /* SADB_X_SPDDELETE */
7651 key_api_spdget, /* SADB_X_SPDGET */
7652 NULL, /* SADB_X_SPDACQUIRE */
7653 key_api_spddump, /* SADB_X_SPDDUMP */
7654 key_api_spdflush, /* SADB_X_SPDFLUSH */
7655 key_api_spdadd, /* SADB_X_SPDSETIDX */
7656 NULL, /* SADB_X_SPDEXPIRE */
7657 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7658 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7659 };
7660
7661 /*
7662 * parse sadb_msg buffer to process PFKEYv2,
7663 * and create a data to response if needed.
7664 * I think to be dealed with mbuf directly.
7665 * IN:
7666 * msgp : pointer to pointer to a received buffer pulluped.
7667 * This is rewrited to response.
7668 * so : pointer to socket.
7669 * OUT:
7670 * length for buffer to send to user process.
7671 */
7672 int
7673 key_parse(struct mbuf *m, struct socket *so)
7674 {
7675 struct sadb_msg *msg;
7676 struct sadb_msghdr mh;
7677 u_int orglen;
7678 int error;
7679
7680 KASSERT(m != NULL);
7681 KASSERT(so != NULL);
7682
7683 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7684 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7685 kdebug_sadb("passed sadb_msg", msg);
7686 }
7687 #endif
7688
7689 if (m->m_len < sizeof(struct sadb_msg)) {
7690 m = m_pullup(m, sizeof(struct sadb_msg));
7691 if (!m)
7692 return ENOBUFS;
7693 }
7694 msg = mtod(m, struct sadb_msg *);
7695 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7696
7697 if ((m->m_flags & M_PKTHDR) == 0 ||
7698 m->m_pkthdr.len != orglen) {
7699 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7700 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7701 error = EINVAL;
7702 goto senderror;
7703 }
7704
7705 if (msg->sadb_msg_version != PF_KEY_V2) {
7706 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7707 msg->sadb_msg_version);
7708 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7709 error = EINVAL;
7710 goto senderror;
7711 }
7712
7713 if (msg->sadb_msg_type > SADB_MAX) {
7714 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7715 msg->sadb_msg_type);
7716 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7717 error = EINVAL;
7718 goto senderror;
7719 }
7720
7721 /* for old-fashioned code - should be nuked */
7722 if (m->m_pkthdr.len > MCLBYTES) {
7723 m_freem(m);
7724 return ENOBUFS;
7725 }
7726 if (m->m_next) {
7727 struct mbuf *n;
7728
7729 MGETHDR(n, M_DONTWAIT, MT_DATA);
7730 if (n && m->m_pkthdr.len > MHLEN) {
7731 MCLGET(n, M_DONTWAIT);
7732 if ((n->m_flags & M_EXT) == 0) {
7733 m_free(n);
7734 n = NULL;
7735 }
7736 }
7737 if (!n) {
7738 m_freem(m);
7739 return ENOBUFS;
7740 }
7741 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7742 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7743 n->m_next = NULL;
7744 m_freem(m);
7745 m = n;
7746 }
7747
7748 /* align the mbuf chain so that extensions are in contiguous region. */
7749 error = key_align(m, &mh);
7750 if (error)
7751 return error;
7752
7753 if (m->m_next) { /*XXX*/
7754 m_freem(m);
7755 return ENOBUFS;
7756 }
7757
7758 msg = mh.msg;
7759
7760 /* check SA type */
7761 switch (msg->sadb_msg_satype) {
7762 case SADB_SATYPE_UNSPEC:
7763 switch (msg->sadb_msg_type) {
7764 case SADB_GETSPI:
7765 case SADB_UPDATE:
7766 case SADB_ADD:
7767 case SADB_DELETE:
7768 case SADB_GET:
7769 case SADB_ACQUIRE:
7770 case SADB_EXPIRE:
7771 IPSECLOG(LOG_DEBUG,
7772 "must specify satype when msg type=%u.\n",
7773 msg->sadb_msg_type);
7774 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7775 error = EINVAL;
7776 goto senderror;
7777 }
7778 break;
7779 case SADB_SATYPE_AH:
7780 case SADB_SATYPE_ESP:
7781 case SADB_X_SATYPE_IPCOMP:
7782 case SADB_X_SATYPE_TCPSIGNATURE:
7783 switch (msg->sadb_msg_type) {
7784 case SADB_X_SPDADD:
7785 case SADB_X_SPDDELETE:
7786 case SADB_X_SPDGET:
7787 case SADB_X_SPDDUMP:
7788 case SADB_X_SPDFLUSH:
7789 case SADB_X_SPDSETIDX:
7790 case SADB_X_SPDUPDATE:
7791 case SADB_X_SPDDELETE2:
7792 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7793 msg->sadb_msg_type);
7794 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7795 error = EINVAL;
7796 goto senderror;
7797 }
7798 break;
7799 case SADB_SATYPE_RSVP:
7800 case SADB_SATYPE_OSPFV2:
7801 case SADB_SATYPE_RIPV2:
7802 case SADB_SATYPE_MIP:
7803 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7804 msg->sadb_msg_satype);
7805 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7806 error = EOPNOTSUPP;
7807 goto senderror;
7808 case 1: /* XXX: What does it do? */
7809 if (msg->sadb_msg_type == SADB_X_PROMISC)
7810 break;
7811 /*FALLTHROUGH*/
7812 default:
7813 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7814 msg->sadb_msg_satype);
7815 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7816 error = EINVAL;
7817 goto senderror;
7818 }
7819
7820 /* check field of upper layer protocol and address family */
7821 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7822 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7823 struct sadb_address *src0, *dst0;
7824 u_int plen;
7825
7826 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7827 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7828
7829 /* check upper layer protocol */
7830 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7831 IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched.\n");
7832 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7833 error = EINVAL;
7834 goto senderror;
7835 }
7836
7837 /* check family */
7838 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7839 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7840 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7841 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7842 error = EINVAL;
7843 goto senderror;
7844 }
7845 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7846 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7847 IPSECLOG(LOG_DEBUG,
7848 "address struct size mismatched.\n");
7849 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7850 error = EINVAL;
7851 goto senderror;
7852 }
7853
7854 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7855 case AF_INET:
7856 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7857 sizeof(struct sockaddr_in)) {
7858 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7859 error = EINVAL;
7860 goto senderror;
7861 }
7862 break;
7863 case AF_INET6:
7864 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7865 sizeof(struct sockaddr_in6)) {
7866 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7867 error = EINVAL;
7868 goto senderror;
7869 }
7870 break;
7871 default:
7872 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7873 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7874 error = EAFNOSUPPORT;
7875 goto senderror;
7876 }
7877
7878 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7879 case AF_INET:
7880 plen = sizeof(struct in_addr) << 3;
7881 break;
7882 case AF_INET6:
7883 plen = sizeof(struct in6_addr) << 3;
7884 break;
7885 default:
7886 plen = 0; /*fool gcc*/
7887 break;
7888 }
7889
7890 /* check max prefix length */
7891 if (src0->sadb_address_prefixlen > plen ||
7892 dst0->sadb_address_prefixlen > plen) {
7893 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7894 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7895 error = EINVAL;
7896 goto senderror;
7897 }
7898
7899 /*
7900 * prefixlen == 0 is valid because there can be a case when
7901 * all addresses are matched.
7902 */
7903 }
7904
7905 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7906 key_api_typesw[msg->sadb_msg_type] == NULL) {
7907 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7908 error = EINVAL;
7909 goto senderror;
7910 }
7911
7912 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7913
7914 senderror:
7915 return key_senderror(so, m, error);
7916 }
7917
7918 static int
7919 key_senderror(struct socket *so, struct mbuf *m, int code)
7920 {
7921 struct sadb_msg *msg;
7922
7923 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7924
7925 msg = mtod(m, struct sadb_msg *);
7926 msg->sadb_msg_errno = code;
7927 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7928 }
7929
7930 /*
7931 * set the pointer to each header into message buffer.
7932 * m will be freed on error.
7933 * XXX larger-than-MCLBYTES extension?
7934 */
7935 static int
7936 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7937 {
7938 struct mbuf *n;
7939 struct sadb_ext *ext;
7940 size_t off, end;
7941 int extlen;
7942 int toff;
7943
7944 KASSERT(m != NULL);
7945 KASSERT(mhp != NULL);
7946 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7947
7948 /* initialize */
7949 memset(mhp, 0, sizeof(*mhp));
7950
7951 mhp->msg = mtod(m, struct sadb_msg *);
7952 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7953
7954 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7955 extlen = end; /*just in case extlen is not updated*/
7956 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7957 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7958 if (!n) {
7959 /* m is already freed */
7960 return ENOBUFS;
7961 }
7962 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7963
7964 /* set pointer */
7965 switch (ext->sadb_ext_type) {
7966 case SADB_EXT_SA:
7967 case SADB_EXT_ADDRESS_SRC:
7968 case SADB_EXT_ADDRESS_DST:
7969 case SADB_EXT_ADDRESS_PROXY:
7970 case SADB_EXT_LIFETIME_CURRENT:
7971 case SADB_EXT_LIFETIME_HARD:
7972 case SADB_EXT_LIFETIME_SOFT:
7973 case SADB_EXT_KEY_AUTH:
7974 case SADB_EXT_KEY_ENCRYPT:
7975 case SADB_EXT_IDENTITY_SRC:
7976 case SADB_EXT_IDENTITY_DST:
7977 case SADB_EXT_SENSITIVITY:
7978 case SADB_EXT_PROPOSAL:
7979 case SADB_EXT_SUPPORTED_AUTH:
7980 case SADB_EXT_SUPPORTED_ENCRYPT:
7981 case SADB_EXT_SPIRANGE:
7982 case SADB_X_EXT_POLICY:
7983 case SADB_X_EXT_SA2:
7984 case SADB_X_EXT_NAT_T_TYPE:
7985 case SADB_X_EXT_NAT_T_SPORT:
7986 case SADB_X_EXT_NAT_T_DPORT:
7987 case SADB_X_EXT_NAT_T_OAI:
7988 case SADB_X_EXT_NAT_T_OAR:
7989 case SADB_X_EXT_NAT_T_FRAG:
7990 /* duplicate check */
7991 /*
7992 * XXX Are there duplication payloads of either
7993 * KEY_AUTH or KEY_ENCRYPT ?
7994 */
7995 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7996 IPSECLOG(LOG_DEBUG,
7997 "duplicate ext_type %u is passed.\n",
7998 ext->sadb_ext_type);
7999 m_freem(m);
8000 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
8001 return EINVAL;
8002 }
8003 break;
8004 default:
8005 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
8006 ext->sadb_ext_type);
8007 m_freem(m);
8008 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
8009 return EINVAL;
8010 }
8011
8012 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8013
8014 if (key_validate_ext(ext, extlen)) {
8015 m_freem(m);
8016 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8017 return EINVAL;
8018 }
8019
8020 n = m_pulldown(m, off, extlen, &toff);
8021 if (!n) {
8022 /* m is already freed */
8023 return ENOBUFS;
8024 }
8025 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
8026
8027 mhp->ext[ext->sadb_ext_type] = ext;
8028 mhp->extoff[ext->sadb_ext_type] = off;
8029 mhp->extlen[ext->sadb_ext_type] = extlen;
8030 }
8031
8032 if (off != end) {
8033 m_freem(m);
8034 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8035 return EINVAL;
8036 }
8037
8038 return 0;
8039 }
8040
8041 static int
8042 key_validate_ext(const struct sadb_ext *ext, int len)
8043 {
8044 const struct sockaddr *sa;
8045 enum { NONE, ADDR } checktype = NONE;
8046 int baselen = 0;
8047 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8048
8049 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8050 return EINVAL;
8051
8052 /* if it does not match minimum/maximum length, bail */
8053 if (ext->sadb_ext_type >= __arraycount(minsize) ||
8054 ext->sadb_ext_type >= __arraycount(maxsize))
8055 return EINVAL;
8056 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8057 return EINVAL;
8058 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8059 return EINVAL;
8060
8061 /* more checks based on sadb_ext_type XXX need more */
8062 switch (ext->sadb_ext_type) {
8063 case SADB_EXT_ADDRESS_SRC:
8064 case SADB_EXT_ADDRESS_DST:
8065 case SADB_EXT_ADDRESS_PROXY:
8066 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8067 checktype = ADDR;
8068 break;
8069 case SADB_EXT_IDENTITY_SRC:
8070 case SADB_EXT_IDENTITY_DST:
8071 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8072 SADB_X_IDENTTYPE_ADDR) {
8073 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8074 checktype = ADDR;
8075 } else
8076 checktype = NONE;
8077 break;
8078 default:
8079 checktype = NONE;
8080 break;
8081 }
8082
8083 switch (checktype) {
8084 case NONE:
8085 break;
8086 case ADDR:
8087 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8088 if (len < baselen + sal)
8089 return EINVAL;
8090 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8091 return EINVAL;
8092 break;
8093 }
8094
8095 return 0;
8096 }
8097
8098 static int
8099 key_do_init(void)
8100 {
8101 int i, error;
8102
8103 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
8104
8105 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
8106 cv_init(&key_spd.cv_lc, "key_sp_lc");
8107 key_spd.psz = pserialize_create();
8108 cv_init(&key_spd.cv_psz, "key_sp_psz");
8109 key_spd.psz_performing = false;
8110
8111 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
8112 cv_init(&key_sad.cv_lc, "key_sa_lc");
8113 key_sad.psz = pserialize_create();
8114 cv_init(&key_sad.cv_psz, "key_sa_psz");
8115 key_sad.psz_performing = false;
8116
8117 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
8118
8119 callout_init(&key_timehandler_ch, 0);
8120 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
8121 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
8122 if (error != 0)
8123 panic("%s: workqueue_create failed (%d)\n", __func__, error);
8124
8125 for (i = 0; i < IPSEC_DIR_MAX; i++) {
8126 PSLIST_INIT(&key_spd.splist[i]);
8127 }
8128
8129 PSLIST_INIT(&key_spd.socksplist);
8130
8131 PSLIST_INIT(&key_sad.sahlist);
8132
8133 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8134 LIST_INIT(&key_misc.reglist[i]);
8135 }
8136
8137 #ifndef IPSEC_NONBLOCK_ACQUIRE
8138 LIST_INIT(&key_misc.acqlist);
8139 #endif
8140 #ifdef notyet
8141 LIST_INIT(&key_misc.spacqlist);
8142 #endif
8143
8144 /* system default */
8145 ip4_def_policy.policy = IPSEC_POLICY_NONE;
8146 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
8147 localcount_init(&ip4_def_policy.localcount);
8148
8149 #ifdef INET6
8150 ip6_def_policy.policy = IPSEC_POLICY_NONE;
8151 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
8152 localcount_init(&ip6_def_policy.localcount);
8153 #endif
8154
8155 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
8156
8157 /* initialize key statistics */
8158 keystat.getspi_count = 1;
8159
8160 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
8161
8162 return (0);
8163 }
8164
8165 void
8166 key_init(void)
8167 {
8168 static ONCE_DECL(key_init_once);
8169
8170 sysctl_net_keyv2_setup(NULL);
8171 sysctl_net_key_compat_setup(NULL);
8172
8173 RUN_ONCE(&key_init_once, key_do_init);
8174
8175 key_init_so();
8176 }
8177
8178 /*
8179 * XXX: maybe This function is called after INBOUND IPsec processing.
8180 *
8181 * Special check for tunnel-mode packets.
8182 * We must make some checks for consistency between inner and outer IP header.
8183 *
8184 * xxx more checks to be provided
8185 */
8186 int
8187 key_checktunnelsanity(
8188 struct secasvar *sav,
8189 u_int family,
8190 void *src,
8191 void *dst
8192 )
8193 {
8194
8195 /* XXX: check inner IP header */
8196
8197 return 1;
8198 }
8199
8200 #if 0
8201 #define hostnamelen strlen(hostname)
8202
8203 /*
8204 * Get FQDN for the host.
8205 * If the administrator configured hostname (by hostname(1)) without
8206 * domain name, returns nothing.
8207 */
8208 static const char *
8209 key_getfqdn(void)
8210 {
8211 int i;
8212 int hasdot;
8213 static char fqdn[MAXHOSTNAMELEN + 1];
8214
8215 if (!hostnamelen)
8216 return NULL;
8217
8218 /* check if it comes with domain name. */
8219 hasdot = 0;
8220 for (i = 0; i < hostnamelen; i++) {
8221 if (hostname[i] == '.')
8222 hasdot++;
8223 }
8224 if (!hasdot)
8225 return NULL;
8226
8227 /* NOTE: hostname may not be NUL-terminated. */
8228 memset(fqdn, 0, sizeof(fqdn));
8229 memcpy(fqdn, hostname, hostnamelen);
8230 fqdn[hostnamelen] = '\0';
8231 return fqdn;
8232 }
8233
8234 /*
8235 * get username@FQDN for the host/user.
8236 */
8237 static const char *
8238 key_getuserfqdn(void)
8239 {
8240 const char *host;
8241 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8242 struct proc *p = curproc;
8243 char *q;
8244
8245 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8246 return NULL;
8247 if (!(host = key_getfqdn()))
8248 return NULL;
8249
8250 /* NOTE: s_login may not be-NUL terminated. */
8251 memset(userfqdn, 0, sizeof(userfqdn));
8252 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8253 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
8254 q = userfqdn + strlen(userfqdn);
8255 *q++ = '@';
8256 memcpy(q, host, strlen(host));
8257 q += strlen(host);
8258 *q++ = '\0';
8259
8260 return userfqdn;
8261 }
8262 #endif
8263
8264 /* record data transfer on SA, and update timestamps */
8265 void
8266 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8267 {
8268
8269 KASSERT(sav != NULL);
8270 KASSERT(sav->lft_c != NULL);
8271 KASSERT(m != NULL);
8272
8273 /*
8274 * XXX Currently, there is a difference of bytes size
8275 * between inbound and outbound processing.
8276 */
8277 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8278 /* to check bytes lifetime is done in key_timehandler(). */
8279
8280 /*
8281 * We use the number of packets as the unit of
8282 * sadb_lifetime_allocations. We increment the variable
8283 * whenever {esp,ah}_{in,out}put is called.
8284 */
8285 sav->lft_c->sadb_lifetime_allocations++;
8286 /* XXX check for expires? */
8287
8288 /*
8289 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8290 * in seconds. HARD and SOFT lifetime are measured by the time
8291 * difference (again in seconds) from sadb_lifetime_usetime.
8292 *
8293 * usetime
8294 * v expire expire
8295 * -----+-----+--------+---> t
8296 * <--------------> HARD
8297 * <-----> SOFT
8298 */
8299 sav->lft_c->sadb_lifetime_usetime = time_uptime;
8300 /* XXX check for expires? */
8301
8302 return;
8303 }
8304
8305 /* dumb version */
8306 void
8307 key_sa_routechange(struct sockaddr *dst)
8308 {
8309 struct secashead *sah;
8310 int s;
8311
8312 s = pserialize_read_enter();
8313 SAHLIST_READER_FOREACH(sah) {
8314 struct route *ro;
8315 const struct sockaddr *sa;
8316
8317 key_sah_ref(sah);
8318 pserialize_read_exit(s);
8319
8320 ro = &sah->sa_route;
8321 sa = rtcache_getdst(ro);
8322 if (sa != NULL && dst->sa_len == sa->sa_len &&
8323 memcmp(dst, sa, dst->sa_len) == 0)
8324 rtcache_free(ro);
8325
8326 s = pserialize_read_enter();
8327 key_sah_unref(sah);
8328 }
8329 pserialize_read_exit(s);
8330
8331 return;
8332 }
8333
8334 static void
8335 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8336 {
8337 struct secasvar *_sav;
8338
8339 ASSERT_SLEEPABLE();
8340 KASSERT(mutex_owned(&key_sad.lock));
8341
8342 if (sav->state == state)
8343 return;
8344
8345 key_unlink_sav(sav);
8346 localcount_fini(&sav->localcount);
8347 SAVLIST_ENTRY_DESTROY(sav);
8348 key_init_sav(sav);
8349
8350 sav->state = state;
8351 if (!SADB_SASTATE_USABLE_P(sav)) {
8352 /* We don't need to care about the order */
8353 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8354 return;
8355 }
8356 /*
8357 * Sort the list by lft_c->sadb_lifetime_addtime
8358 * in ascending order.
8359 */
8360 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8361 if (_sav->lft_c->sadb_lifetime_addtime >
8362 sav->lft_c->sadb_lifetime_addtime) {
8363 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8364 break;
8365 }
8366 }
8367 if (_sav == NULL) {
8368 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8369 }
8370 key_validate_savlist(sav->sah, state);
8371 }
8372
8373 /* XXX too much? */
8374 static struct mbuf *
8375 key_alloc_mbuf(int l)
8376 {
8377 struct mbuf *m = NULL, *n;
8378 int len, t;
8379
8380 len = l;
8381 while (len > 0) {
8382 MGET(n, M_DONTWAIT, MT_DATA);
8383 if (n && len > MLEN)
8384 MCLGET(n, M_DONTWAIT);
8385 if (!n) {
8386 m_freem(m);
8387 return NULL;
8388 }
8389
8390 n->m_next = NULL;
8391 n->m_len = 0;
8392 n->m_len = M_TRAILINGSPACE(n);
8393 /* use the bottom of mbuf, hoping we can prepend afterwards */
8394 if (n->m_len > len) {
8395 t = (n->m_len - len) & ~(sizeof(long) - 1);
8396 n->m_data += t;
8397 n->m_len = len;
8398 }
8399
8400 len -= n->m_len;
8401
8402 if (m)
8403 m_cat(m, n);
8404 else
8405 m = n;
8406 }
8407
8408 return m;
8409 }
8410
8411 static struct mbuf *
8412 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8413 {
8414 struct secashead *sah;
8415 struct secasvar *sav;
8416 u_int16_t proto;
8417 u_int8_t satype;
8418 u_int8_t state;
8419 int cnt;
8420 struct mbuf *m, *n;
8421
8422 KASSERT(mutex_owned(&key_sad.lock));
8423
8424 /* map satype to proto */
8425 proto = key_satype2proto(req_satype);
8426 if (proto == 0) {
8427 *errorp = EINVAL;
8428 return (NULL);
8429 }
8430
8431 /* count sav entries to be sent to the userland. */
8432 cnt = 0;
8433 SAHLIST_WRITER_FOREACH(sah) {
8434 if (req_satype != SADB_SATYPE_UNSPEC &&
8435 proto != sah->saidx.proto)
8436 continue;
8437
8438 SASTATE_ANY_FOREACH(state) {
8439 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8440 cnt++;
8441 }
8442 }
8443 }
8444
8445 if (cnt == 0) {
8446 *errorp = ENOENT;
8447 return (NULL);
8448 }
8449
8450 /* send this to the userland, one at a time. */
8451 m = NULL;
8452 SAHLIST_WRITER_FOREACH(sah) {
8453 if (req_satype != SADB_SATYPE_UNSPEC &&
8454 proto != sah->saidx.proto)
8455 continue;
8456
8457 /* map proto to satype */
8458 satype = key_proto2satype(sah->saidx.proto);
8459 if (satype == 0) {
8460 m_freem(m);
8461 *errorp = EINVAL;
8462 return (NULL);
8463 }
8464
8465 SASTATE_ANY_FOREACH(state) {
8466 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8467 n = key_setdumpsa(sav, SADB_DUMP, satype,
8468 --cnt, pid);
8469 if (!n) {
8470 m_freem(m);
8471 *errorp = ENOBUFS;
8472 return (NULL);
8473 }
8474
8475 if (!m)
8476 m = n;
8477 else
8478 m_cat(m, n);
8479 }
8480 }
8481 }
8482
8483 if (!m) {
8484 *errorp = EINVAL;
8485 return (NULL);
8486 }
8487
8488 if ((m->m_flags & M_PKTHDR) != 0) {
8489 m->m_pkthdr.len = 0;
8490 for (n = m; n; n = n->m_next)
8491 m->m_pkthdr.len += n->m_len;
8492 }
8493
8494 *errorp = 0;
8495 return (m);
8496 }
8497
8498 static struct mbuf *
8499 key_setspddump(int *errorp, pid_t pid)
8500 {
8501 struct secpolicy *sp;
8502 int cnt;
8503 u_int dir;
8504 struct mbuf *m, *n;
8505
8506 KASSERT(mutex_owned(&key_spd.lock));
8507
8508 /* search SPD entry and get buffer size. */
8509 cnt = 0;
8510 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8511 SPLIST_WRITER_FOREACH(sp, dir) {
8512 cnt++;
8513 }
8514 }
8515
8516 if (cnt == 0) {
8517 *errorp = ENOENT;
8518 return (NULL);
8519 }
8520
8521 m = NULL;
8522 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8523 SPLIST_WRITER_FOREACH(sp, dir) {
8524 --cnt;
8525 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8526
8527 if (!n) {
8528 *errorp = ENOBUFS;
8529 m_freem(m);
8530 return (NULL);
8531 }
8532 if (!m)
8533 m = n;
8534 else {
8535 m->m_pkthdr.len += n->m_pkthdr.len;
8536 m_cat(m, n);
8537 }
8538 }
8539 }
8540
8541 *errorp = 0;
8542 return (m);
8543 }
8544
8545 int
8546 key_get_used(void) {
8547 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8548 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8549 !SOCKSPLIST_READER_EMPTY();
8550 }
8551
8552 void
8553 key_update_used(void)
8554 {
8555 switch (ipsec_enabled) {
8556 default:
8557 case 0:
8558 #ifdef notyet
8559 /* XXX: racy */
8560 ipsec_used = 0;
8561 #endif
8562 break;
8563 case 1:
8564 #ifndef notyet
8565 /* XXX: racy */
8566 if (!ipsec_used)
8567 #endif
8568 ipsec_used = key_get_used();
8569 break;
8570 case 2:
8571 ipsec_used = 1;
8572 break;
8573 }
8574 }
8575
8576 static int
8577 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8578 {
8579 struct mbuf *m, *n;
8580 int err2 = 0;
8581 char *p, *ep;
8582 size_t len;
8583 int error;
8584
8585 if (newp)
8586 return (EPERM);
8587 if (namelen != 1)
8588 return (EINVAL);
8589
8590 mutex_enter(&key_sad.lock);
8591 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8592 mutex_exit(&key_sad.lock);
8593 if (!m)
8594 return (error);
8595 if (!oldp)
8596 *oldlenp = m->m_pkthdr.len;
8597 else {
8598 p = oldp;
8599 if (*oldlenp < m->m_pkthdr.len) {
8600 err2 = ENOMEM;
8601 ep = p + *oldlenp;
8602 } else {
8603 *oldlenp = m->m_pkthdr.len;
8604 ep = p + m->m_pkthdr.len;
8605 }
8606 for (n = m; n; n = n->m_next) {
8607 len = (ep - p < n->m_len) ?
8608 ep - p : n->m_len;
8609 error = copyout(mtod(n, const void *), p, len);
8610 p += len;
8611 if (error)
8612 break;
8613 }
8614 if (error == 0)
8615 error = err2;
8616 }
8617 m_freem(m);
8618
8619 return (error);
8620 }
8621
8622 static int
8623 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8624 {
8625 struct mbuf *m, *n;
8626 int err2 = 0;
8627 char *p, *ep;
8628 size_t len;
8629 int error;
8630
8631 if (newp)
8632 return (EPERM);
8633 if (namelen != 0)
8634 return (EINVAL);
8635
8636 mutex_enter(&key_spd.lock);
8637 m = key_setspddump(&error, l->l_proc->p_pid);
8638 mutex_exit(&key_spd.lock);
8639 if (!m)
8640 return (error);
8641 if (!oldp)
8642 *oldlenp = m->m_pkthdr.len;
8643 else {
8644 p = oldp;
8645 if (*oldlenp < m->m_pkthdr.len) {
8646 err2 = ENOMEM;
8647 ep = p + *oldlenp;
8648 } else {
8649 *oldlenp = m->m_pkthdr.len;
8650 ep = p + m->m_pkthdr.len;
8651 }
8652 for (n = m; n; n = n->m_next) {
8653 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8654 error = copyout(mtod(n, const void *), p, len);
8655 p += len;
8656 if (error)
8657 break;
8658 }
8659 if (error == 0)
8660 error = err2;
8661 }
8662 m_freem(m);
8663
8664 return (error);
8665 }
8666
8667 /*
8668 * Create sysctl tree for native IPSEC key knobs, originally
8669 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8670 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8671 * and in any case the part of our sysctl namespace used for dumping the
8672 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8673 * namespace, for API reasons.
8674 *
8675 * Pending a consensus on the right way to fix this, add a level of
8676 * indirection in how we number the `native' IPSEC key nodes;
8677 * and (as requested by Andrew Brown) move registration of the
8678 * KAME-compatible names to a separate function.
8679 */
8680 #if 0
8681 # define IPSEC_PFKEY PF_KEY_V2
8682 # define IPSEC_PFKEY_NAME "keyv2"
8683 #else
8684 # define IPSEC_PFKEY PF_KEY
8685 # define IPSEC_PFKEY_NAME "key"
8686 #endif
8687
8688 static int
8689 sysctl_net_key_stats(SYSCTLFN_ARGS)
8690 {
8691
8692 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8693 }
8694
8695 static void
8696 sysctl_net_keyv2_setup(struct sysctllog **clog)
8697 {
8698
8699 sysctl_createv(clog, 0, NULL, NULL,
8700 CTLFLAG_PERMANENT,
8701 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8702 NULL, 0, NULL, 0,
8703 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8704
8705 sysctl_createv(clog, 0, NULL, NULL,
8706 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8707 CTLTYPE_INT, "debug", NULL,
8708 NULL, 0, &key_debug_level, 0,
8709 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8710 sysctl_createv(clog, 0, NULL, NULL,
8711 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8712 CTLTYPE_INT, "spi_try", NULL,
8713 NULL, 0, &key_spi_trycnt, 0,
8714 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8715 sysctl_createv(clog, 0, NULL, NULL,
8716 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8717 CTLTYPE_INT, "spi_min_value", NULL,
8718 NULL, 0, &key_spi_minval, 0,
8719 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8720 sysctl_createv(clog, 0, NULL, NULL,
8721 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8722 CTLTYPE_INT, "spi_max_value", NULL,
8723 NULL, 0, &key_spi_maxval, 0,
8724 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8725 sysctl_createv(clog, 0, NULL, NULL,
8726 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8727 CTLTYPE_INT, "random_int", NULL,
8728 NULL, 0, &key_int_random, 0,
8729 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8730 sysctl_createv(clog, 0, NULL, NULL,
8731 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8732 CTLTYPE_INT, "larval_lifetime", NULL,
8733 NULL, 0, &key_larval_lifetime, 0,
8734 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8735 sysctl_createv(clog, 0, NULL, NULL,
8736 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8737 CTLTYPE_INT, "blockacq_count", NULL,
8738 NULL, 0, &key_blockacq_count, 0,
8739 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8740 sysctl_createv(clog, 0, NULL, NULL,
8741 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8742 CTLTYPE_INT, "blockacq_lifetime", NULL,
8743 NULL, 0, &key_blockacq_lifetime, 0,
8744 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8745 sysctl_createv(clog, 0, NULL, NULL,
8746 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8747 CTLTYPE_INT, "esp_keymin", NULL,
8748 NULL, 0, &ipsec_esp_keymin, 0,
8749 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8750 sysctl_createv(clog, 0, NULL, NULL,
8751 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8752 CTLTYPE_INT, "prefered_oldsa", NULL,
8753 NULL, 0, &key_prefered_oldsa, 0,
8754 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8755 sysctl_createv(clog, 0, NULL, NULL,
8756 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8757 CTLTYPE_INT, "esp_auth", NULL,
8758 NULL, 0, &ipsec_esp_auth, 0,
8759 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8760 sysctl_createv(clog, 0, NULL, NULL,
8761 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8762 CTLTYPE_INT, "ah_keymin", NULL,
8763 NULL, 0, &ipsec_ah_keymin, 0,
8764 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8765 sysctl_createv(clog, 0, NULL, NULL,
8766 CTLFLAG_PERMANENT,
8767 CTLTYPE_STRUCT, "stats",
8768 SYSCTL_DESCR("PF_KEY statistics"),
8769 sysctl_net_key_stats, 0, NULL, 0,
8770 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8771 }
8772
8773 /*
8774 * Register sysctl names used by setkey(8). For historical reasons,
8775 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8776 * for both IPSEC and KAME IPSEC.
8777 */
8778 static void
8779 sysctl_net_key_compat_setup(struct sysctllog **clog)
8780 {
8781
8782 sysctl_createv(clog, 0, NULL, NULL,
8783 CTLFLAG_PERMANENT,
8784 CTLTYPE_NODE, "key", NULL,
8785 NULL, 0, NULL, 0,
8786 CTL_NET, PF_KEY, CTL_EOL);
8787
8788 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8789 sysctl_createv(clog, 0, NULL, NULL,
8790 CTLFLAG_PERMANENT,
8791 CTLTYPE_STRUCT, "dumpsa", NULL,
8792 sysctl_net_key_dumpsa, 0, NULL, 0,
8793 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8794 sysctl_createv(clog, 0, NULL, NULL,
8795 CTLFLAG_PERMANENT,
8796 CTLTYPE_STRUCT, "dumpsp", NULL,
8797 sysctl_net_key_dumpsp, 0, NULL, 0,
8798 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8799 }
8800