key.c revision 1.231 1 /* $NetBSD: key.c,v 1.231 2017/10/01 09:45:16 ryoon Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.231 2017/10/01 09:45:16 ryoon Exp $");
36
37 /*
38 * This code is referred to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160 * - SP's lifetime is managed by localcount(9)
161 * - An SP that has been inserted to the key_spd.splist is initially referenced
162 * by none, i.e., a reference from the key_spd.splist isn't counted
163 * - When an SP is being destroyed, we change its state as DEAD, wait for
164 * references to the SP to be released, and then deallocate the SP
165 * (see key_unlink_sp)
166 * - Getting an SP
167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168 * - Must iterate the list and increment the reference count of a found SP
169 * (by key_sp_ref) in a pserialize read section
170 * - We can gain another reference from a held SP only if we check its state
171 * and take its reference in a pserialize read section
172 * (see esp_output for example)
173 * - We may get an SP from an SP cache. See below
174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175 * - Updating member variables of an SP
176 * - Most member variables of an SP are immutable
177 * - Only sp->state and sp->lastused can be changed
178 * - sp->state of an SP is updated only when destroying it under key_spd.lock
179 * - SP caches
180 * - SPs can be cached in PCBs
181 * - The lifetime of the caches is controlled by the global generation counter
182 * (ipsec_spdgen)
183 * - The global counter value is stored when an SP is cached
184 * - If the stored value is different from the global counter then the cache
185 * is considered invalidated
186 * - The counter is incremented when an SP is being destroyed
187 * - So checking the generation and taking a reference to an SP should be
188 * in a pserialize read section
189 * - Note that caching doesn't increment the reference counter of an SP
190 * - SPs in sockets
191 * - Userland programs can set a policy to a socket by
192 * setsockopt(IP_IPSEC_POLICY)
193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
194 * the key_spd.socksplist list (not the key_spd.splist)
195 * - Such a policy is destroyed when a corresponding socket is destroed,
196 * however, a socket can be destroyed in softint so we cannot destroy
197 * it directly instead we just mark it DEAD and delay the destruction
198 * until GC by the timer
199 */
200 /*
201 * Locking notes on SAD:
202 * - Data structures
203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204 * entries
205 * - An sav is supposed to be an SA from a viewpoint of users
206 * - A sah has sav lists for each SA state
207 * - Multiple sahs with the same saidx can exist
208 * - Only one entry has MATURE state and others should be DEAD
209 * - DEAD entries are just ignored from searching
210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with
211 * holding key_sad.lock which is a adaptive mutex
212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in
213 * pserialize(9) read sections
214 * - sah's lifetime is managed by localcount(9)
215 * - Getting an sah entry
216 * - We get an sah from the key_sad.sahlist
217 * - Must iterate the list and increment the reference count of a found sah
218 * (by key_sah_ref) in a pserialize read section
219 * - A gotten sah must be released after use by key_sah_unref
220 * - An sah is destroyed when its state become DEAD and no sav is
221 * listed to the sah
222 * - The destruction is done only in the timer (see key_timehandler_sad)
223 * - sav's lifetime is managed by localcount(9)
224 * - Getting an sav entry
225 * - First get an sah by saidx and get an sav from either of sah's savlists
226 * - Must iterate the list and increment the reference count of a found sav
227 * (by key_sa_ref) in a pserialize read section
228 * - We can gain another reference from a held SA only if we check its state
229 * and take its reference in a pserialize read section
230 * (see esp_output for example)
231 * - A gotten sav must be released after use by key_sa_unref
232 * - An sav is destroyed when its state become DEAD
233 */
234 /*
235 * Locking notes on misc data:
236 * - All lists of key_misc are protected by key_misc.lock
237 * - key_misc.lock must be held even for read accesses
238 */
239
240 /* SPD */
241 static struct {
242 kmutex_t lock;
243 kcondvar_t cv_lc;
244 struct pslist_head splist[IPSEC_DIR_MAX];
245 /*
246 * The list has SPs that are set to a socket via
247 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
248 */
249 struct pslist_head socksplist;
250
251 pserialize_t psz;
252 kcondvar_t cv_psz;
253 bool psz_performing;
254 } key_spd __cacheline_aligned;
255
256 /* SAD */
257 static struct {
258 kmutex_t lock;
259 kcondvar_t cv_lc;
260 struct pslist_head sahlist;
261
262 pserialize_t psz;
263 kcondvar_t cv_psz;
264 bool psz_performing;
265 } key_sad __cacheline_aligned;
266
267 /* Misc data */
268 static struct {
269 kmutex_t lock;
270 /* registed list */
271 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
272 #ifndef IPSEC_NONBLOCK_ACQUIRE
273 /* acquiring list */
274 LIST_HEAD(_acqlist, secacq) acqlist;
275 #endif
276 #ifdef notyet
277 /* SP acquiring list */
278 LIST_HEAD(_spacqlist, secspacq) spacqlist;
279 #endif
280 } key_misc __cacheline_aligned;
281
282 /* Macros for key_spd.splist */
283 #define SPLIST_ENTRY_INIT(sp) \
284 PSLIST_ENTRY_INIT((sp), pslist_entry)
285 #define SPLIST_ENTRY_DESTROY(sp) \
286 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
287 #define SPLIST_WRITER_REMOVE(sp) \
288 PSLIST_WRITER_REMOVE((sp), pslist_entry)
289 #define SPLIST_READER_EMPTY(dir) \
290 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
291 pslist_entry) == NULL)
292 #define SPLIST_READER_FOREACH(sp, dir) \
293 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
294 struct secpolicy, pslist_entry)
295 #define SPLIST_WRITER_FOREACH(sp, dir) \
296 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
297 struct secpolicy, pslist_entry)
298 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
299 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
300 #define SPLIST_WRITER_EMPTY(dir) \
301 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
302 pslist_entry) == NULL)
303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
304 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
305 pslist_entry)
306 #define SPLIST_WRITER_NEXT(sp) \
307 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
308 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
309 do { \
310 if (SPLIST_WRITER_EMPTY((dir))) { \
311 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
312 } else { \
313 struct secpolicy *__sp; \
314 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
315 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
316 SPLIST_WRITER_INSERT_AFTER(__sp,\
317 (new)); \
318 break; \
319 } \
320 } \
321 } \
322 } while (0)
323
324 /* Macros for key_spd.socksplist */
325 #define SOCKSPLIST_WRITER_FOREACH(sp) \
326 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
327 struct secpolicy, pslist_entry)
328 #define SOCKSPLIST_READER_EMPTY() \
329 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
330 pslist_entry) == NULL)
331
332 /* Macros for key_sad.sahlist */
333 #define SAHLIST_ENTRY_INIT(sah) \
334 PSLIST_ENTRY_INIT((sah), pslist_entry)
335 #define SAHLIST_ENTRY_DESTROY(sah) \
336 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
337 #define SAHLIST_WRITER_REMOVE(sah) \
338 PSLIST_WRITER_REMOVE((sah), pslist_entry)
339 #define SAHLIST_READER_FOREACH(sah) \
340 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
341 pslist_entry)
342 #define SAHLIST_WRITER_FOREACH(sah) \
343 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
344 pslist_entry)
345 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
346 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
347
348 /* Macros for key_sad.sahlist#savlist */
349 #define SAVLIST_ENTRY_INIT(sav) \
350 PSLIST_ENTRY_INIT((sav), pslist_entry)
351 #define SAVLIST_ENTRY_DESTROY(sav) \
352 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
353 #define SAVLIST_READER_FIRST(sah, state) \
354 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
355 pslist_entry)
356 #define SAVLIST_WRITER_REMOVE(sav) \
357 PSLIST_WRITER_REMOVE((sav), pslist_entry)
358 #define SAVLIST_READER_FOREACH(sav, sah, state) \
359 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
360 struct secasvar, pslist_entry)
361 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
362 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
363 struct secasvar, pslist_entry)
364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
365 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
367 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
368 #define SAVLIST_WRITER_EMPTY(sah, state) \
369 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
370 pslist_entry) == NULL)
371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
372 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
373 pslist_entry)
374 #define SAVLIST_WRITER_NEXT(sav) \
375 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
377 do { \
378 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
379 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
380 } else { \
381 struct secasvar *__sav; \
382 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
383 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
384 SAVLIST_WRITER_INSERT_AFTER(__sav,\
385 (new)); \
386 break; \
387 } \
388 } \
389 } \
390 } while (0)
391 #define SAVLIST_READER_NEXT(sav) \
392 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
393
394
395 /* search order for SAs */
396 /*
397 * This order is important because we must select the oldest SA
398 * for outbound processing. For inbound, This is not important.
399 */
400 static const u_int saorder_state_valid_prefer_old[] = {
401 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
402 };
403 static const u_int saorder_state_valid_prefer_new[] = {
404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
405 };
406
407 static const u_int saorder_state_alive[] = {
408 /* except DEAD */
409 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
410 };
411 static const u_int saorder_state_any[] = {
412 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
413 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
414 };
415
416 #define SASTATE_ALIVE_FOREACH(s) \
417 for (int _i = 0; \
418 _i < __arraycount(saorder_state_alive) ? \
419 (s) = saorder_state_alive[_i], true : false; \
420 _i++)
421 #define SASTATE_ANY_FOREACH(s) \
422 for (int _i = 0; \
423 _i < __arraycount(saorder_state_any) ? \
424 (s) = saorder_state_any[_i], true : false; \
425 _i++)
426
427 static const int minsize[] = {
428 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
429 sizeof(struct sadb_sa), /* SADB_EXT_SA */
430 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
433 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
436 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
437 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
438 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
440 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
441 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
442 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
444 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
445 0, /* SADB_X_EXT_KMPRIVATE */
446 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
447 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
448 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
449 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
451 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
453 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
454 };
455 static const int maxsize[] = {
456 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
457 sizeof(struct sadb_sa), /* SADB_EXT_SA */
458 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
461 0, /* SADB_EXT_ADDRESS_SRC */
462 0, /* SADB_EXT_ADDRESS_DST */
463 0, /* SADB_EXT_ADDRESS_PROXY */
464 0, /* SADB_EXT_KEY_AUTH */
465 0, /* SADB_EXT_KEY_ENCRYPT */
466 0, /* SADB_EXT_IDENTITY_SRC */
467 0, /* SADB_EXT_IDENTITY_DST */
468 0, /* SADB_EXT_SENSITIVITY */
469 0, /* SADB_EXT_PROPOSAL */
470 0, /* SADB_EXT_SUPPORTED_AUTH */
471 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
472 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
473 0, /* SADB_X_EXT_KMPRIVATE */
474 0, /* SADB_X_EXT_POLICY */
475 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
476 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
477 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
479 0, /* SADB_X_EXT_NAT_T_OAI */
480 0, /* SADB_X_EXT_NAT_T_OAR */
481 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
482 };
483
484 static int ipsec_esp_keymin = 256;
485 static int ipsec_esp_auth = 0;
486 static int ipsec_ah_keymin = 128;
487
488 #ifdef SYSCTL_DECL
489 SYSCTL_DECL(_net_key);
490 #endif
491
492 #ifdef SYSCTL_INT
493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
494 &key_debug_level, 0, "");
495
496 /* max count of trial for the decision of spi value */
497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
498 &key_spi_trycnt, 0, "");
499
500 /* minimum spi value to allocate automatically. */
501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
502 &key_spi_minval, 0, "");
503
504 /* maximun spi value to allocate automatically. */
505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
506 &key_spi_maxval, 0, "");
507
508 /* interval to initialize randseed */
509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
510 &key_int_random, 0, "");
511
512 /* lifetime for larval SA */
513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
514 &key_larval_lifetime, 0, "");
515
516 /* counter for blocking to send SADB_ACQUIRE to IKEd */
517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
518 &key_blockacq_count, 0, "");
519
520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
522 &key_blockacq_lifetime, 0, "");
523
524 /* ESP auth */
525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
526 &ipsec_esp_auth, 0, "");
527
528 /* minimum ESP key length */
529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
530 &ipsec_esp_keymin, 0, "");
531
532 /* minimum AH key length */
533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
534 &ipsec_ah_keymin, 0, "");
535
536 /* perfered old SA rather than new SA */
537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
538 &key_prefered_oldsa, 0, "");
539 #endif /* SYSCTL_INT */
540
541 #define __LIST_CHAINED(elm) \
542 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
543 #define LIST_INSERT_TAIL(head, elm, type, field) \
544 do {\
545 struct type *curelm = LIST_FIRST(head); \
546 if (curelm == NULL) {\
547 LIST_INSERT_HEAD(head, elm, field); \
548 } else { \
549 while (LIST_NEXT(curelm, field)) \
550 curelm = LIST_NEXT(curelm, field);\
551 LIST_INSERT_AFTER(curelm, elm, field);\
552 }\
553 } while (0)
554
555 #define KEY_CHKSASTATE(head, sav) \
556 /* do */ { \
557 if ((head) != (sav)) { \
558 IPSECLOG(LOG_DEBUG, \
559 "state mismatched (TREE=%d SA=%d)\n", \
560 (head), (sav)); \
561 continue; \
562 } \
563 } /* while (0) */
564
565 #define KEY_CHKSPDIR(head, sp) \
566 do { \
567 if ((head) != (sp)) { \
568 IPSECLOG(LOG_DEBUG, \
569 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
570 (head), (sp)); \
571 } \
572 } while (0)
573
574 /*
575 * set parameters into secasindex buffer.
576 * Must allocate secasindex buffer before calling this function.
577 */
578 static int
579 key_setsecasidx(int, int, int, const struct sockaddr *,
580 const struct sockaddr *, struct secasindex *);
581
582 /* key statistics */
583 struct _keystat {
584 u_long getspi_count; /* the avarage of count to try to get new SPI */
585 } keystat;
586
587 struct sadb_msghdr {
588 struct sadb_msg *msg;
589 void *ext[SADB_EXT_MAX + 1];
590 int extoff[SADB_EXT_MAX + 1];
591 int extlen[SADB_EXT_MAX + 1];
592 };
593
594 static void
595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
596
597 static const struct sockaddr *
598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
599 {
600
601 return PFKEY_ADDR_SADDR(mhp->ext[idx]);
602 }
603
604 static struct mbuf *
605 key_fill_replymsg(struct mbuf *m, int seq)
606 {
607 struct sadb_msg *msg;
608
609 if (m->m_len < sizeof(*msg)) {
610 m = m_pullup(m, sizeof(*msg));
611 if (m == NULL)
612 return NULL;
613 }
614 msg = mtod(m, struct sadb_msg *);
615 msg->sadb_msg_errno = 0;
616 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
617 if (seq != 0)
618 msg->sadb_msg_seq = seq;
619
620 return m;
621 }
622
623 static struct secasvar *key_lookup_sa_bysaidx(const struct secasindex *);
624 #if 0
625 static void key_freeso(struct socket *);
626 static void key_freesp_so(struct secpolicy **);
627 #endif
628 static struct secpolicy *key_getsp (const struct secpolicyindex *);
629 static struct secpolicy *key_getspbyid (u_int32_t);
630 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
631 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
632 static void key_destroy_sp(struct secpolicy *);
633 static u_int16_t key_newreqid (void);
634 static struct mbuf *key_gather_mbuf (struct mbuf *,
635 const struct sadb_msghdr *, int, int, ...);
636 static int key_api_spdadd(struct socket *, struct mbuf *,
637 const struct sadb_msghdr *);
638 static u_int32_t key_getnewspid (void);
639 static int key_api_spddelete(struct socket *, struct mbuf *,
640 const struct sadb_msghdr *);
641 static int key_api_spddelete2(struct socket *, struct mbuf *,
642 const struct sadb_msghdr *);
643 static int key_api_spdget(struct socket *, struct mbuf *,
644 const struct sadb_msghdr *);
645 static int key_api_spdflush(struct socket *, struct mbuf *,
646 const struct sadb_msghdr *);
647 static int key_api_spddump(struct socket *, struct mbuf *,
648 const struct sadb_msghdr *);
649 static struct mbuf * key_setspddump (int *errorp, pid_t);
650 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
651 static int key_api_nat_map(struct socket *, struct mbuf *,
652 const struct sadb_msghdr *);
653 static struct mbuf *key_setdumpsp (struct secpolicy *,
654 u_int8_t, u_int32_t, pid_t);
655 static u_int key_getspreqmsglen (const struct secpolicy *);
656 static int key_spdexpire (struct secpolicy *);
657 static struct secashead *key_newsah (const struct secasindex *);
658 static void key_unlink_sah(struct secashead *);
659 static void key_destroy_sah(struct secashead *);
660 static bool key_sah_has_sav(struct secashead *);
661 static void key_sah_ref(struct secashead *);
662 static void key_sah_unref(struct secashead *);
663 static void key_init_sav(struct secasvar *);
664 static void key_destroy_sav(struct secasvar *);
665 static void key_destroy_sav_with_ref(struct secasvar *);
666 static struct secasvar *key_newsav(struct mbuf *,
667 const struct sadb_msghdr *, int *, const char*, int);
668 #define KEY_NEWSAV(m, sadb, e) \
669 key_newsav(m, sadb, e, __func__, __LINE__)
670 static void key_delsav (struct secasvar *);
671 static struct secashead *key_getsah(const struct secasindex *, int);
672 static struct secashead *key_getsah_ref(const struct secasindex *, int);
673 static bool key_checkspidup(const struct secasindex *, u_int32_t);
674 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
675 static int key_setsaval (struct secasvar *, struct mbuf *,
676 const struct sadb_msghdr *);
677 static void key_freesaval(struct secasvar *);
678 static int key_init_xform(struct secasvar *);
679 static void key_clear_xform(struct secasvar *);
680 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
681 u_int8_t, u_int32_t, u_int32_t);
682 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
683 static struct mbuf *key_setsadbxtype (u_int16_t);
684 static struct mbuf *key_setsadbxfrag (u_int16_t);
685 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
686 static int key_checksalen (const union sockaddr_union *);
687 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
688 u_int32_t, pid_t, u_int16_t);
689 static struct mbuf *key_setsadbsa (struct secasvar *);
690 static struct mbuf *key_setsadbaddr (u_int16_t,
691 const struct sockaddr *, u_int8_t, u_int16_t);
692 #if 0
693 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
694 int, u_int64_t);
695 #endif
696 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
697 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
698 u_int32_t);
699 static void *key_newbuf (const void *, u_int);
700 #ifdef INET6
701 static int key_ismyaddr6 (const struct sockaddr_in6 *);
702 #endif
703
704 static void sysctl_net_keyv2_setup(struct sysctllog **);
705 static void sysctl_net_key_compat_setup(struct sysctllog **);
706
707 /* flags for key_saidx_match() */
708 #define CMP_HEAD 1 /* protocol, addresses. */
709 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
710 #define CMP_REQID 3 /* additionally HEAD, reaid. */
711 #define CMP_EXACTLY 4 /* all elements. */
712 static int key_saidx_match(const struct secasindex *,
713 const struct secasindex *, int);
714
715 static int key_sockaddr_match(const struct sockaddr *,
716 const struct sockaddr *, int);
717 static int key_bb_match_withmask(const void *, const void *, u_int);
718 static u_int16_t key_satype2proto (u_int8_t);
719 static u_int8_t key_proto2satype (u_int16_t);
720
721 static int key_spidx_match_exactly(const struct secpolicyindex *,
722 const struct secpolicyindex *);
723 static int key_spidx_match_withmask(const struct secpolicyindex *,
724 const struct secpolicyindex *);
725
726 static int key_api_getspi(struct socket *, struct mbuf *,
727 const struct sadb_msghdr *);
728 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
729 const struct secasindex *);
730 static int key_handle_natt_info (struct secasvar *,
731 const struct sadb_msghdr *);
732 static int key_set_natt_ports (union sockaddr_union *,
733 union sockaddr_union *,
734 const struct sadb_msghdr *);
735 static int key_api_update(struct socket *, struct mbuf *,
736 const struct sadb_msghdr *);
737 #ifdef IPSEC_DOSEQCHECK
738 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
739 #endif
740 static int key_api_add(struct socket *, struct mbuf *,
741 const struct sadb_msghdr *);
742 static int key_setident (struct secashead *, struct mbuf *,
743 const struct sadb_msghdr *);
744 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
745 const struct sadb_msghdr *);
746 static int key_api_delete(struct socket *, struct mbuf *,
747 const struct sadb_msghdr *);
748 static int key_api_get(struct socket *, struct mbuf *,
749 const struct sadb_msghdr *);
750
751 static void key_getcomb_setlifetime (struct sadb_comb *);
752 static struct mbuf *key_getcomb_esp (void);
753 static struct mbuf *key_getcomb_ah (void);
754 static struct mbuf *key_getcomb_ipcomp (void);
755 static struct mbuf *key_getprop (const struct secasindex *);
756
757 static int key_acquire (const struct secasindex *, struct secpolicy *);
758 static int key_acquire_sendup_mbuf_later(struct mbuf *);
759 static void key_acquire_sendup_pending_mbuf(void);
760 #ifndef IPSEC_NONBLOCK_ACQUIRE
761 static struct secacq *key_newacq (const struct secasindex *);
762 static struct secacq *key_getacq (const struct secasindex *);
763 static struct secacq *key_getacqbyseq (u_int32_t);
764 #endif
765 #ifdef notyet
766 static struct secspacq *key_newspacq (const struct secpolicyindex *);
767 static struct secspacq *key_getspacq (const struct secpolicyindex *);
768 #endif
769 static int key_api_acquire(struct socket *, struct mbuf *,
770 const struct sadb_msghdr *);
771 static int key_api_register(struct socket *, struct mbuf *,
772 const struct sadb_msghdr *);
773 static int key_expire (struct secasvar *);
774 static int key_api_flush(struct socket *, struct mbuf *,
775 const struct sadb_msghdr *);
776 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
777 int *lenp, pid_t pid);
778 static int key_api_dump(struct socket *, struct mbuf *,
779 const struct sadb_msghdr *);
780 static int key_api_promisc(struct socket *, struct mbuf *,
781 const struct sadb_msghdr *);
782 static int key_senderror (struct socket *, struct mbuf *, int);
783 static int key_validate_ext (const struct sadb_ext *, int);
784 static int key_align (struct mbuf *, struct sadb_msghdr *);
785 #if 0
786 static const char *key_getfqdn (void);
787 static const char *key_getuserfqdn (void);
788 #endif
789 static void key_sa_chgstate (struct secasvar *, u_int8_t);
790
791 static struct mbuf *key_alloc_mbuf (int);
792
793 static void key_timehandler(void *);
794 static void key_timehandler_work(struct work *, void *);
795 static struct callout key_timehandler_ch;
796 static struct workqueue *key_timehandler_wq;
797 static struct work key_timehandler_wk;
798
799 u_int
800 key_sp_refcnt(const struct secpolicy *sp)
801 {
802
803 /* FIXME */
804 return 0;
805 }
806
807 #ifdef NET_MPSAFE
808 static void
809 key_spd_pserialize_perform(void)
810 {
811
812 KASSERT(mutex_owned(&key_spd.lock));
813
814 while (key_spd.psz_performing)
815 cv_wait(&key_spd.cv_psz, &key_spd.lock);
816 key_spd.psz_performing = true;
817 mutex_exit(&key_spd.lock);
818
819 pserialize_perform(key_spd.psz);
820
821 mutex_enter(&key_spd.lock);
822 key_spd.psz_performing = false;
823 cv_broadcast(&key_spd.cv_psz);
824 }
825 #endif
826
827 /*
828 * Remove the sp from the key_spd.splist and wait for references to the sp
829 * to be released. key_spd.lock must be held.
830 */
831 static void
832 key_unlink_sp(struct secpolicy *sp)
833 {
834
835 KASSERT(mutex_owned(&key_spd.lock));
836
837 sp->state = IPSEC_SPSTATE_DEAD;
838 SPLIST_WRITER_REMOVE(sp);
839
840 /* Invalidate all cached SPD pointers in the PCBs. */
841 ipsec_invalpcbcacheall();
842
843 #ifdef NET_MPSAFE
844 KASSERT(mutex_ownable(softnet_lock));
845 key_spd_pserialize_perform();
846 #endif
847
848 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
849 }
850
851 /*
852 * Return 0 when there are known to be no SP's for the specified
853 * direction. Otherwise return 1. This is used by IPsec code
854 * to optimize performance.
855 */
856 int
857 key_havesp(u_int dir)
858 {
859 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
860 !SPLIST_READER_EMPTY(dir) : 1);
861 }
862
863 /* %%% IPsec policy management */
864 /*
865 * allocating a SP for OUTBOUND or INBOUND packet.
866 * Must call key_freesp() later.
867 * OUT: NULL: not found
868 * others: found and return the pointer.
869 */
870 struct secpolicy *
871 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
872 u_int dir, const char* where, int tag)
873 {
874 struct secpolicy *sp;
875 int s;
876
877 KASSERT(spidx != NULL);
878 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
879
880 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
881
882 /* get a SP entry */
883 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
884 kdebug_secpolicyindex("objects", spidx);
885 }
886
887 s = pserialize_read_enter();
888 SPLIST_READER_FOREACH(sp, dir) {
889 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
890 kdebug_secpolicyindex("in SPD", &sp->spidx);
891 }
892
893 if (sp->state == IPSEC_SPSTATE_DEAD)
894 continue;
895 if (key_spidx_match_withmask(&sp->spidx, spidx))
896 goto found;
897 }
898 sp = NULL;
899 found:
900 if (sp) {
901 /* sanity check */
902 KEY_CHKSPDIR(sp->spidx.dir, dir);
903
904 /* found a SPD entry */
905 sp->lastused = time_uptime;
906 key_sp_ref(sp, where, tag);
907 }
908 pserialize_read_exit(s);
909
910 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
911 "DP return SP:%p (ID=%u) refcnt %u\n",
912 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
913 return sp;
914 }
915
916 /*
917 * return a policy that matches this particular inbound packet.
918 * XXX slow
919 */
920 struct secpolicy *
921 key_gettunnel(const struct sockaddr *osrc,
922 const struct sockaddr *odst,
923 const struct sockaddr *isrc,
924 const struct sockaddr *idst,
925 const char* where, int tag)
926 {
927 struct secpolicy *sp;
928 const int dir = IPSEC_DIR_INBOUND;
929 int s;
930 struct ipsecrequest *r1, *r2, *p;
931 struct secpolicyindex spidx;
932
933 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
934
935 if (isrc->sa_family != idst->sa_family) {
936 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
937 isrc->sa_family, idst->sa_family);
938 sp = NULL;
939 goto done;
940 }
941
942 s = pserialize_read_enter();
943 SPLIST_READER_FOREACH(sp, dir) {
944 if (sp->state == IPSEC_SPSTATE_DEAD)
945 continue;
946
947 r1 = r2 = NULL;
948 for (p = sp->req; p; p = p->next) {
949 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
950 continue;
951
952 r1 = r2;
953 r2 = p;
954
955 if (!r1) {
956 /* here we look at address matches only */
957 spidx = sp->spidx;
958 if (isrc->sa_len > sizeof(spidx.src) ||
959 idst->sa_len > sizeof(spidx.dst))
960 continue;
961 memcpy(&spidx.src, isrc, isrc->sa_len);
962 memcpy(&spidx.dst, idst, idst->sa_len);
963 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
964 continue;
965 } else {
966 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
967 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
968 continue;
969 }
970
971 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
972 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
973 continue;
974
975 goto found;
976 }
977 }
978 sp = NULL;
979 found:
980 if (sp) {
981 sp->lastused = time_uptime;
982 key_sp_ref(sp, where, tag);
983 }
984 pserialize_read_exit(s);
985 done:
986 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
987 "DP return SP:%p (ID=%u) refcnt %u\n",
988 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
989 return sp;
990 }
991
992 /*
993 * allocating an SA entry for an *OUTBOUND* packet.
994 * checking each request entries in SP, and acquire an SA if need.
995 * OUT: 0: there are valid requests.
996 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
997 */
998 int
999 key_checkrequest(struct ipsecrequest *isr, struct secasvar **ret)
1000 {
1001 u_int level;
1002 int error;
1003 const struct secasindex *saidx = &isr->saidx;
1004 struct secasvar *sav;
1005
1006 KASSERT(isr != NULL);
1007 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
1008 saidx->mode == IPSEC_MODE_TUNNEL,
1009 "unexpected policy %u", saidx->mode);
1010
1011 /* get current level */
1012 level = ipsec_get_reqlevel(isr);
1013
1014 /*
1015 * XXX guard against protocol callbacks from the crypto
1016 * thread as they reference ipsecrequest.sav which we
1017 * temporarily null out below. Need to rethink how we
1018 * handle bundled SA's in the callback thread.
1019 */
1020 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
1021
1022 sav = key_lookup_sa_bysaidx(saidx);
1023 if (sav != NULL) {
1024 *ret = sav;
1025 return 0;
1026 }
1027
1028 /* there is no SA */
1029 error = key_acquire(saidx, isr->sp);
1030 if (error != 0) {
1031 /* XXX What should I do ? */
1032 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1033 error);
1034 return error;
1035 }
1036
1037 if (level != IPSEC_LEVEL_REQUIRE) {
1038 /* XXX sigh, the interface to this routine is botched */
1039 *ret = NULL;
1040 return 0;
1041 } else {
1042 return ENOENT;
1043 }
1044 }
1045
1046 /*
1047 * looking up a SA for policy entry from SAD.
1048 * NOTE: searching SAD of aliving state.
1049 * OUT: NULL: not found.
1050 * others: found and return the pointer.
1051 */
1052 static struct secasvar *
1053 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1054 {
1055 struct secashead *sah;
1056 struct secasvar *sav = NULL;
1057 u_int stateidx, state;
1058 const u_int *saorder_state_valid;
1059 int arraysize;
1060 int s;
1061
1062 s = pserialize_read_enter();
1063 sah = key_getsah(saidx, CMP_MODE_REQID);
1064 if (sah == NULL)
1065 goto out;
1066
1067 /*
1068 * search a valid state list for outbound packet.
1069 * This search order is important.
1070 */
1071 if (key_prefered_oldsa) {
1072 saorder_state_valid = saorder_state_valid_prefer_old;
1073 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1074 } else {
1075 saorder_state_valid = saorder_state_valid_prefer_new;
1076 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1077 }
1078
1079 /* search valid state */
1080 for (stateidx = 0;
1081 stateidx < arraysize;
1082 stateidx++) {
1083
1084 state = saorder_state_valid[stateidx];
1085
1086 if (key_prefered_oldsa)
1087 sav = SAVLIST_READER_FIRST(sah, state);
1088 else {
1089 /* XXX need O(1) lookup */
1090 struct secasvar *last = NULL;
1091
1092 SAVLIST_READER_FOREACH(sav, sah, state)
1093 last = sav;
1094 sav = last;
1095 }
1096 if (sav != NULL) {
1097 KEY_SA_REF(sav);
1098 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1099 "DP cause refcnt++:%d SA:%p\n",
1100 key_sa_refcnt(sav), sav);
1101 break;
1102 }
1103 }
1104 out:
1105 pserialize_read_exit(s);
1106
1107 return sav;
1108 }
1109
1110 #if 0
1111 static void
1112 key_sendup_message_delete(struct secasvar *sav)
1113 {
1114 struct mbuf *m, *result = 0;
1115 uint8_t satype;
1116
1117 satype = key_proto2satype(sav->sah->saidx.proto);
1118 if (satype == 0)
1119 goto msgfail;
1120
1121 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1122 if (m == NULL)
1123 goto msgfail;
1124 result = m;
1125
1126 /* set sadb_address for saidx's. */
1127 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1128 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1129 if (m == NULL)
1130 goto msgfail;
1131 m_cat(result, m);
1132
1133 /* set sadb_address for saidx's. */
1134 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1135 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1136 if (m == NULL)
1137 goto msgfail;
1138 m_cat(result, m);
1139
1140 /* create SA extension */
1141 m = key_setsadbsa(sav);
1142 if (m == NULL)
1143 goto msgfail;
1144 m_cat(result, m);
1145
1146 if (result->m_len < sizeof(struct sadb_msg)) {
1147 result = m_pullup(result, sizeof(struct sadb_msg));
1148 if (result == NULL)
1149 goto msgfail;
1150 }
1151
1152 result->m_pkthdr.len = 0;
1153 for (m = result; m; m = m->m_next)
1154 result->m_pkthdr.len += m->m_len;
1155 mtod(result, struct sadb_msg *)->sadb_msg_len =
1156 PFKEY_UNIT64(result->m_pkthdr.len);
1157
1158 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1159 result = NULL;
1160 msgfail:
1161 if (result)
1162 m_freem(result);
1163 }
1164 #endif
1165
1166 /*
1167 * allocating a usable SA entry for a *INBOUND* packet.
1168 * Must call key_freesav() later.
1169 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1170 * NULL: not found, or error occurred.
1171 *
1172 * In the comparison, no source address is used--for RFC2401 conformance.
1173 * To quote, from section 4.1:
1174 * A security association is uniquely identified by a triple consisting
1175 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1176 * security protocol (AH or ESP) identifier.
1177 * Note that, however, we do need to keep source address in IPsec SA.
1178 * IKE specification and PF_KEY specification do assume that we
1179 * keep source address in IPsec SA. We see a tricky situation here.
1180 *
1181 * sport and dport are used for NAT-T. network order is always used.
1182 */
1183 struct secasvar *
1184 key_lookup_sa(
1185 const union sockaddr_union *dst,
1186 u_int proto,
1187 u_int32_t spi,
1188 u_int16_t sport,
1189 u_int16_t dport,
1190 const char* where, int tag)
1191 {
1192 struct secashead *sah;
1193 struct secasvar *sav;
1194 u_int stateidx, state;
1195 const u_int *saorder_state_valid;
1196 int arraysize, chkport;
1197 int s;
1198
1199 int must_check_spi = 1;
1200 int must_check_alg = 0;
1201 u_int16_t cpi = 0;
1202 u_int8_t algo = 0;
1203
1204 if ((sport != 0) && (dport != 0))
1205 chkport = PORT_STRICT;
1206 else
1207 chkport = PORT_NONE;
1208
1209 KASSERT(dst != NULL);
1210
1211 /*
1212 * XXX IPCOMP case
1213 * We use cpi to define spi here. In the case where cpi <=
1214 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1215 * the real spi. In this case, don't check the spi but check the
1216 * algorithm
1217 */
1218
1219 if (proto == IPPROTO_IPCOMP) {
1220 u_int32_t tmp;
1221 tmp = ntohl(spi);
1222 cpi = (u_int16_t) tmp;
1223 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1224 algo = (u_int8_t) cpi;
1225 must_check_spi = 0;
1226 must_check_alg = 1;
1227 }
1228 }
1229 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1230 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1231 where, tag, must_check_spi, must_check_alg);
1232
1233
1234 /*
1235 * searching SAD.
1236 * XXX: to be checked internal IP header somewhere. Also when
1237 * IPsec tunnel packet is received. But ESP tunnel mode is
1238 * encrypted so we can't check internal IP header.
1239 */
1240 if (key_prefered_oldsa) {
1241 saorder_state_valid = saorder_state_valid_prefer_old;
1242 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1243 } else {
1244 saorder_state_valid = saorder_state_valid_prefer_new;
1245 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1246 }
1247 s = pserialize_read_enter();
1248 SAHLIST_READER_FOREACH(sah) {
1249 /* search valid state */
1250 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1251 state = saorder_state_valid[stateidx];
1252 SAVLIST_READER_FOREACH(sav, sah, state) {
1253 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1254 "try match spi %#x, %#x\n",
1255 ntohl(spi), ntohl(sav->spi));
1256 /* sanity check */
1257 KEY_CHKSASTATE(sav->state, state);
1258 /* do not return entries w/ unusable state */
1259 if (!SADB_SASTATE_USABLE_P(sav)) {
1260 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1261 "bad state %d\n", sav->state);
1262 continue;
1263 }
1264 if (proto != sav->sah->saidx.proto) {
1265 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1266 "proto fail %d != %d\n",
1267 proto, sav->sah->saidx.proto);
1268 continue;
1269 }
1270 if (must_check_spi && spi != sav->spi) {
1271 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1272 "spi fail %#x != %#x\n",
1273 ntohl(spi), ntohl(sav->spi));
1274 continue;
1275 }
1276 /* XXX only on the ipcomp case */
1277 if (must_check_alg && algo != sav->alg_comp) {
1278 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1279 "algo fail %d != %d\n",
1280 algo, sav->alg_comp);
1281 continue;
1282 }
1283
1284 #if 0 /* don't check src */
1285 /* Fix port in src->sa */
1286
1287 /* check src address */
1288 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1289 continue;
1290 #endif
1291 /* fix port of dst address XXX*/
1292 key_porttosaddr(__UNCONST(dst), dport);
1293 /* check dst address */
1294 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1295 continue;
1296 key_sa_ref(sav, where, tag);
1297 goto done;
1298 }
1299 }
1300 }
1301 sav = NULL;
1302 done:
1303 pserialize_read_exit(s);
1304
1305 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1306 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1307 return sav;
1308 }
1309
1310 static void
1311 key_validate_savlist(const struct secashead *sah, const u_int state)
1312 {
1313 #ifdef DEBUG
1314 struct secasvar *sav, *next;
1315 int s;
1316
1317 /*
1318 * The list should be sorted by lft_c->sadb_lifetime_addtime
1319 * in ascending order.
1320 */
1321 s = pserialize_read_enter();
1322 SAVLIST_READER_FOREACH(sav, sah, state) {
1323 next = SAVLIST_READER_NEXT(sav);
1324 if (next != NULL &&
1325 sav->lft_c != NULL && next->lft_c != NULL) {
1326 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1327 next->lft_c->sadb_lifetime_addtime,
1328 "savlist is not sorted: sah=%p, state=%d, "
1329 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1330 sav->lft_c->sadb_lifetime_addtime,
1331 next->lft_c->sadb_lifetime_addtime);
1332 }
1333 }
1334 pserialize_read_exit(s);
1335 #endif
1336 }
1337
1338 void
1339 key_init_sp(struct secpolicy *sp)
1340 {
1341
1342 ASSERT_SLEEPABLE();
1343
1344 sp->state = IPSEC_SPSTATE_ALIVE;
1345 if (sp->policy == IPSEC_POLICY_IPSEC)
1346 KASSERT(sp->req != NULL);
1347 localcount_init(&sp->localcount);
1348 SPLIST_ENTRY_INIT(sp);
1349 }
1350
1351 /*
1352 * Must be called in a pserialize read section. A held SP
1353 * must be released by key_sp_unref after use.
1354 */
1355 void
1356 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1357 {
1358
1359 localcount_acquire(&sp->localcount);
1360
1361 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1362 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1363 sp, sp->id, where, tag, key_sp_refcnt(sp));
1364 }
1365
1366 /*
1367 * Must be called without holding key_spd.lock because the lock
1368 * would be held in localcount_release.
1369 */
1370 void
1371 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1372 {
1373
1374 KDASSERT(mutex_ownable(&key_spd.lock));
1375
1376 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1377 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1378 sp, sp->id, where, tag, key_sp_refcnt(sp));
1379
1380 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
1381 }
1382
1383 static void
1384 key_init_sav(struct secasvar *sav)
1385 {
1386
1387 ASSERT_SLEEPABLE();
1388
1389 localcount_init(&sav->localcount);
1390 SAVLIST_ENTRY_INIT(sav);
1391 }
1392
1393 u_int
1394 key_sa_refcnt(const struct secasvar *sav)
1395 {
1396
1397 /* FIXME */
1398 return 0;
1399 }
1400
1401 void
1402 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1403 {
1404
1405 localcount_acquire(&sav->localcount);
1406
1407 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1408 "DP cause refcnt++: SA:%p from %s:%u\n",
1409 sav, where, tag);
1410 }
1411
1412 void
1413 key_sa_unref(struct secasvar *sav, const char* where, int tag)
1414 {
1415
1416 KDASSERT(mutex_ownable(&key_sad.lock));
1417
1418 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1419 "DP cause refcnt--: SA:%p from %s:%u\n",
1420 sav, where, tag);
1421
1422 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1423 }
1424
1425 #if 0
1426 /*
1427 * Must be called after calling key_lookup_sp*().
1428 * For the packet with socket.
1429 */
1430 static void
1431 key_freeso(struct socket *so)
1432 {
1433 /* sanity check */
1434 KASSERT(so != NULL);
1435
1436 switch (so->so_proto->pr_domain->dom_family) {
1437 #ifdef INET
1438 case PF_INET:
1439 {
1440 struct inpcb *pcb = sotoinpcb(so);
1441
1442 /* Does it have a PCB ? */
1443 if (pcb == NULL)
1444 return;
1445
1446 struct inpcbpolicy *sp = pcb->inp_sp;
1447 key_freesp_so(&sp->sp_in);
1448 key_freesp_so(&sp->sp_out);
1449 }
1450 break;
1451 #endif
1452 #ifdef INET6
1453 case PF_INET6:
1454 {
1455 #ifdef HAVE_NRL_INPCB
1456 struct inpcb *pcb = sotoinpcb(so);
1457 struct inpcbpolicy *sp = pcb->inp_sp;
1458
1459 /* Does it have a PCB ? */
1460 if (pcb == NULL)
1461 return;
1462 key_freesp_so(&sp->sp_in);
1463 key_freesp_so(&sp->sp_out);
1464 #else
1465 struct in6pcb *pcb = sotoin6pcb(so);
1466
1467 /* Does it have a PCB ? */
1468 if (pcb == NULL)
1469 return;
1470 key_freesp_so(&pcb->in6p_sp->sp_in);
1471 key_freesp_so(&pcb->in6p_sp->sp_out);
1472 #endif
1473 }
1474 break;
1475 #endif /* INET6 */
1476 default:
1477 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1478 so->so_proto->pr_domain->dom_family);
1479 return;
1480 }
1481 }
1482
1483 static void
1484 key_freesp_so(struct secpolicy **sp)
1485 {
1486
1487 KASSERT(sp != NULL);
1488 KASSERT(*sp != NULL);
1489
1490 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1491 (*sp)->policy == IPSEC_POLICY_BYPASS)
1492 return;
1493
1494 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1495 "invalid policy %u", (*sp)->policy);
1496 KEY_SP_UNREF(&sp);
1497 }
1498 #endif
1499
1500 #ifdef NET_MPSAFE
1501 static void
1502 key_sad_pserialize_perform(void)
1503 {
1504
1505 KASSERT(mutex_owned(&key_sad.lock));
1506
1507 while (key_sad.psz_performing)
1508 cv_wait(&key_sad.cv_psz, &key_sad.lock);
1509 key_sad.psz_performing = true;
1510 mutex_exit(&key_sad.lock);
1511
1512 pserialize_perform(key_sad.psz);
1513
1514 mutex_enter(&key_sad.lock);
1515 key_sad.psz_performing = false;
1516 cv_broadcast(&key_sad.cv_psz);
1517 }
1518 #endif
1519
1520 /*
1521 * Remove the sav from the savlist of its sah and wait for references to the sav
1522 * to be released. key_sad.lock must be held.
1523 */
1524 static void
1525 key_unlink_sav(struct secasvar *sav)
1526 {
1527
1528 KASSERT(mutex_owned(&key_sad.lock));
1529
1530 SAVLIST_WRITER_REMOVE(sav);
1531
1532 #ifdef NET_MPSAFE
1533 KASSERT(mutex_ownable(softnet_lock));
1534 key_sad_pserialize_perform();
1535 #endif
1536
1537 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1538 }
1539
1540 /*
1541 * Destroy an sav where the sav must be unlinked from an sah
1542 * by say key_unlink_sav.
1543 */
1544 static void
1545 key_destroy_sav(struct secasvar *sav)
1546 {
1547
1548 ASSERT_SLEEPABLE();
1549
1550 localcount_fini(&sav->localcount);
1551 SAVLIST_ENTRY_DESTROY(sav);
1552
1553 key_delsav(sav);
1554 }
1555
1556 /*
1557 * Destroy sav with holding its reference.
1558 */
1559 static void
1560 key_destroy_sav_with_ref(struct secasvar *sav)
1561 {
1562
1563 ASSERT_SLEEPABLE();
1564
1565 mutex_enter(&key_sad.lock);
1566 sav->state = SADB_SASTATE_DEAD;
1567 SAVLIST_WRITER_REMOVE(sav);
1568 mutex_exit(&key_sad.lock);
1569
1570 /* We cannot unref with holding key_sad.lock */
1571 KEY_SA_UNREF(&sav);
1572
1573 mutex_enter(&key_sad.lock);
1574 #ifdef NET_MPSAFE
1575 KASSERT(mutex_ownable(softnet_lock));
1576 key_sad_pserialize_perform();
1577 #endif
1578 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1579 mutex_exit(&key_sad.lock);
1580
1581 key_destroy_sav(sav);
1582 }
1583
1584 /* %%% SPD management */
1585 /*
1586 * free security policy entry.
1587 */
1588 static void
1589 key_destroy_sp(struct secpolicy *sp)
1590 {
1591
1592 SPLIST_ENTRY_DESTROY(sp);
1593 localcount_fini(&sp->localcount);
1594
1595 key_free_sp(sp);
1596
1597 key_update_used();
1598 }
1599
1600 void
1601 key_free_sp(struct secpolicy *sp)
1602 {
1603 struct ipsecrequest *isr = sp->req, *nextisr;
1604
1605 while (isr != NULL) {
1606 nextisr = isr->next;
1607 kmem_free(isr, sizeof(*isr));
1608 isr = nextisr;
1609 }
1610
1611 kmem_free(sp, sizeof(*sp));
1612 }
1613
1614 void
1615 key_socksplist_add(struct secpolicy *sp)
1616 {
1617
1618 mutex_enter(&key_spd.lock);
1619 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1620 mutex_exit(&key_spd.lock);
1621
1622 key_update_used();
1623 }
1624
1625 /*
1626 * search SPD
1627 * OUT: NULL : not found
1628 * others : found, pointer to a SP.
1629 */
1630 static struct secpolicy *
1631 key_getsp(const struct secpolicyindex *spidx)
1632 {
1633 struct secpolicy *sp;
1634 int s;
1635
1636 KASSERT(spidx != NULL);
1637
1638 s = pserialize_read_enter();
1639 SPLIST_READER_FOREACH(sp, spidx->dir) {
1640 if (sp->state == IPSEC_SPSTATE_DEAD)
1641 continue;
1642 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1643 KEY_SP_REF(sp);
1644 pserialize_read_exit(s);
1645 return sp;
1646 }
1647 }
1648 pserialize_read_exit(s);
1649
1650 return NULL;
1651 }
1652
1653 /*
1654 * search SPD and remove found SP
1655 * OUT: NULL : not found
1656 * others : found, pointer to a SP.
1657 */
1658 static struct secpolicy *
1659 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1660 {
1661 struct secpolicy *sp = NULL;
1662
1663 mutex_enter(&key_spd.lock);
1664 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1665 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1666
1667 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1668 key_unlink_sp(sp);
1669 goto out;
1670 }
1671 }
1672 sp = NULL;
1673 out:
1674 mutex_exit(&key_spd.lock);
1675
1676 return sp;
1677 }
1678
1679 /*
1680 * get SP by index.
1681 * OUT: NULL : not found
1682 * others : found, pointer to a SP.
1683 */
1684 static struct secpolicy *
1685 key_getspbyid(u_int32_t id)
1686 {
1687 struct secpolicy *sp;
1688 int s;
1689
1690 s = pserialize_read_enter();
1691 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1692 if (sp->state == IPSEC_SPSTATE_DEAD)
1693 continue;
1694 if (sp->id == id) {
1695 KEY_SP_REF(sp);
1696 goto out;
1697 }
1698 }
1699
1700 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1701 if (sp->state == IPSEC_SPSTATE_DEAD)
1702 continue;
1703 if (sp->id == id) {
1704 KEY_SP_REF(sp);
1705 goto out;
1706 }
1707 }
1708 out:
1709 pserialize_read_exit(s);
1710 return sp;
1711 }
1712
1713 /*
1714 * get SP by index, remove and return it.
1715 * OUT: NULL : not found
1716 * others : found, pointer to a SP.
1717 */
1718 static struct secpolicy *
1719 key_lookupbyid_and_remove_sp(u_int32_t id)
1720 {
1721 struct secpolicy *sp;
1722
1723 mutex_enter(&key_spd.lock);
1724 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1725 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1726 if (sp->id == id)
1727 goto out;
1728 }
1729
1730 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1731 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1732 if (sp->id == id)
1733 goto out;
1734 }
1735 out:
1736 if (sp != NULL)
1737 key_unlink_sp(sp);
1738 mutex_exit(&key_spd.lock);
1739 return sp;
1740 }
1741
1742 struct secpolicy *
1743 key_newsp(const char* where, int tag)
1744 {
1745 struct secpolicy *newsp = NULL;
1746
1747 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1748
1749 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1750 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1751 return newsp;
1752 }
1753
1754 /*
1755 * create secpolicy structure from sadb_x_policy structure.
1756 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1757 * so must be set properly later.
1758 */
1759 struct secpolicy *
1760 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1761 {
1762 struct secpolicy *newsp;
1763
1764 KASSERT(!cpu_softintr_p());
1765 KASSERT(xpl0 != NULL);
1766 KASSERT(len >= sizeof(*xpl0));
1767
1768 if (len != PFKEY_EXTLEN(xpl0)) {
1769 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1770 *error = EINVAL;
1771 return NULL;
1772 }
1773
1774 newsp = KEY_NEWSP();
1775 if (newsp == NULL) {
1776 *error = ENOBUFS;
1777 return NULL;
1778 }
1779
1780 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1781 newsp->policy = xpl0->sadb_x_policy_type;
1782
1783 /* check policy */
1784 switch (xpl0->sadb_x_policy_type) {
1785 case IPSEC_POLICY_DISCARD:
1786 case IPSEC_POLICY_NONE:
1787 case IPSEC_POLICY_ENTRUST:
1788 case IPSEC_POLICY_BYPASS:
1789 newsp->req = NULL;
1790 *error = 0;
1791 return newsp;
1792
1793 case IPSEC_POLICY_IPSEC:
1794 /* Continued */
1795 break;
1796 default:
1797 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1798 key_free_sp(newsp);
1799 *error = EINVAL;
1800 return NULL;
1801 }
1802
1803 /* IPSEC_POLICY_IPSEC */
1804 {
1805 int tlen;
1806 const struct sadb_x_ipsecrequest *xisr;
1807 uint16_t xisr_reqid;
1808 struct ipsecrequest **p_isr = &newsp->req;
1809
1810 /* validity check */
1811 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1812 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1813 *error = EINVAL;
1814 goto free_exit;
1815 }
1816
1817 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1818 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1819
1820 while (tlen > 0) {
1821 /* length check */
1822 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1823 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1824 *error = EINVAL;
1825 goto free_exit;
1826 }
1827
1828 /* allocate request buffer */
1829 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1830
1831 /* set values */
1832 (*p_isr)->next = NULL;
1833
1834 switch (xisr->sadb_x_ipsecrequest_proto) {
1835 case IPPROTO_ESP:
1836 case IPPROTO_AH:
1837 case IPPROTO_IPCOMP:
1838 break;
1839 default:
1840 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1841 xisr->sadb_x_ipsecrequest_proto);
1842 *error = EPROTONOSUPPORT;
1843 goto free_exit;
1844 }
1845 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1846
1847 switch (xisr->sadb_x_ipsecrequest_mode) {
1848 case IPSEC_MODE_TRANSPORT:
1849 case IPSEC_MODE_TUNNEL:
1850 break;
1851 case IPSEC_MODE_ANY:
1852 default:
1853 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1854 xisr->sadb_x_ipsecrequest_mode);
1855 *error = EINVAL;
1856 goto free_exit;
1857 }
1858 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1859
1860 switch (xisr->sadb_x_ipsecrequest_level) {
1861 case IPSEC_LEVEL_DEFAULT:
1862 case IPSEC_LEVEL_USE:
1863 case IPSEC_LEVEL_REQUIRE:
1864 break;
1865 case IPSEC_LEVEL_UNIQUE:
1866 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1867 /* validity check */
1868 /*
1869 * If range violation of reqid, kernel will
1870 * update it, don't refuse it.
1871 */
1872 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1873 IPSECLOG(LOG_DEBUG,
1874 "reqid=%d range "
1875 "violation, updated by kernel.\n",
1876 xisr_reqid);
1877 xisr_reqid = 0;
1878 }
1879
1880 /* allocate new reqid id if reqid is zero. */
1881 if (xisr_reqid == 0) {
1882 u_int16_t reqid = key_newreqid();
1883 if (reqid == 0) {
1884 *error = ENOBUFS;
1885 goto free_exit;
1886 }
1887 (*p_isr)->saidx.reqid = reqid;
1888 } else {
1889 /* set it for manual keying. */
1890 (*p_isr)->saidx.reqid = xisr_reqid;
1891 }
1892 break;
1893
1894 default:
1895 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1896 xisr->sadb_x_ipsecrequest_level);
1897 *error = EINVAL;
1898 goto free_exit;
1899 }
1900 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1901
1902 /* set IP addresses if there */
1903 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1904 const struct sockaddr *paddr;
1905
1906 paddr = (const struct sockaddr *)(xisr + 1);
1907
1908 /* validity check */
1909 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1910 IPSECLOG(LOG_DEBUG, "invalid request "
1911 "address length.\n");
1912 *error = EINVAL;
1913 goto free_exit;
1914 }
1915 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1916
1917 paddr = (const struct sockaddr *)((const char *)paddr
1918 + paddr->sa_len);
1919
1920 /* validity check */
1921 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1922 IPSECLOG(LOG_DEBUG, "invalid request "
1923 "address length.\n");
1924 *error = EINVAL;
1925 goto free_exit;
1926 }
1927 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1928 }
1929
1930 (*p_isr)->sp = newsp;
1931
1932 /* initialization for the next. */
1933 p_isr = &(*p_isr)->next;
1934 tlen -= xisr->sadb_x_ipsecrequest_len;
1935
1936 /* validity check */
1937 if (tlen < 0) {
1938 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1939 *error = EINVAL;
1940 goto free_exit;
1941 }
1942
1943 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1944 xisr->sadb_x_ipsecrequest_len);
1945 }
1946 }
1947
1948 *error = 0;
1949 return newsp;
1950
1951 free_exit:
1952 key_free_sp(newsp);
1953 return NULL;
1954 }
1955
1956 static u_int16_t
1957 key_newreqid(void)
1958 {
1959 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1960
1961 auto_reqid = (auto_reqid == 0xffff ?
1962 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1963
1964 /* XXX should be unique check */
1965
1966 return auto_reqid;
1967 }
1968
1969 /*
1970 * copy secpolicy struct to sadb_x_policy structure indicated.
1971 */
1972 struct mbuf *
1973 key_sp2msg(const struct secpolicy *sp)
1974 {
1975 struct sadb_x_policy *xpl;
1976 int tlen;
1977 char *p;
1978 struct mbuf *m;
1979
1980 KASSERT(sp != NULL);
1981
1982 tlen = key_getspreqmsglen(sp);
1983
1984 m = key_alloc_mbuf(tlen);
1985 if (!m || m->m_next) { /*XXX*/
1986 if (m)
1987 m_freem(m);
1988 return NULL;
1989 }
1990
1991 m->m_len = tlen;
1992 m->m_next = NULL;
1993 xpl = mtod(m, struct sadb_x_policy *);
1994 memset(xpl, 0, tlen);
1995
1996 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1997 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1998 xpl->sadb_x_policy_type = sp->policy;
1999 xpl->sadb_x_policy_dir = sp->spidx.dir;
2000 xpl->sadb_x_policy_id = sp->id;
2001 p = (char *)xpl + sizeof(*xpl);
2002
2003 /* if is the policy for ipsec ? */
2004 if (sp->policy == IPSEC_POLICY_IPSEC) {
2005 struct sadb_x_ipsecrequest *xisr;
2006 struct ipsecrequest *isr;
2007
2008 for (isr = sp->req; isr != NULL; isr = isr->next) {
2009
2010 xisr = (struct sadb_x_ipsecrequest *)p;
2011
2012 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
2013 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
2014 xisr->sadb_x_ipsecrequest_level = isr->level;
2015 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
2016
2017 p += sizeof(*xisr);
2018 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
2019 p += isr->saidx.src.sa.sa_len;
2020 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
2021 p += isr->saidx.src.sa.sa_len;
2022
2023 xisr->sadb_x_ipsecrequest_len =
2024 PFKEY_ALIGN8(sizeof(*xisr)
2025 + isr->saidx.src.sa.sa_len
2026 + isr->saidx.dst.sa.sa_len);
2027 }
2028 }
2029
2030 return m;
2031 }
2032
2033 /* m will not be freed nor modified */
2034 static struct mbuf *
2035 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
2036 int ndeep, int nitem, ...)
2037 {
2038 va_list ap;
2039 int idx;
2040 int i;
2041 struct mbuf *result = NULL, *n;
2042 int len;
2043
2044 KASSERT(m != NULL);
2045 KASSERT(mhp != NULL);
2046
2047 va_start(ap, nitem);
2048 for (i = 0; i < nitem; i++) {
2049 idx = va_arg(ap, int);
2050 if (idx < 0 || idx > SADB_EXT_MAX)
2051 goto fail;
2052 /* don't attempt to pull empty extension */
2053 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
2054 continue;
2055 if (idx != SADB_EXT_RESERVED &&
2056 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
2057 continue;
2058
2059 if (idx == SADB_EXT_RESERVED) {
2060 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
2061 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2062 MGETHDR(n, M_DONTWAIT, MT_DATA);
2063 if (!n)
2064 goto fail;
2065 n->m_len = len;
2066 n->m_next = NULL;
2067 m_copydata(m, 0, sizeof(struct sadb_msg),
2068 mtod(n, void *));
2069 } else if (i < ndeep) {
2070 len = mhp->extlen[idx];
2071 n = key_alloc_mbuf(len);
2072 if (!n || n->m_next) { /*XXX*/
2073 if (n)
2074 m_freem(n);
2075 goto fail;
2076 }
2077 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
2078 mtod(n, void *));
2079 } else {
2080 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
2081 M_DONTWAIT);
2082 }
2083 if (n == NULL)
2084 goto fail;
2085
2086 if (result)
2087 m_cat(result, n);
2088 else
2089 result = n;
2090 }
2091 va_end(ap);
2092
2093 if (result && (result->m_flags & M_PKTHDR) != 0) {
2094 result->m_pkthdr.len = 0;
2095 for (n = result; n; n = n->m_next)
2096 result->m_pkthdr.len += n->m_len;
2097 }
2098
2099 return result;
2100
2101 fail:
2102 va_end(ap);
2103 m_freem(result);
2104 return NULL;
2105 }
2106
2107 /*
2108 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2109 * add an entry to SP database, when received
2110 * <base, address(SD), (lifetime(H),) policy>
2111 * from the user(?).
2112 * Adding to SP database,
2113 * and send
2114 * <base, address(SD), (lifetime(H),) policy>
2115 * to the socket which was send.
2116 *
2117 * SPDADD set a unique policy entry.
2118 * SPDSETIDX like SPDADD without a part of policy requests.
2119 * SPDUPDATE replace a unique policy entry.
2120 *
2121 * m will always be freed.
2122 */
2123 static int
2124 key_api_spdadd(struct socket *so, struct mbuf *m,
2125 const struct sadb_msghdr *mhp)
2126 {
2127 const struct sockaddr *src, *dst;
2128 const struct sadb_x_policy *xpl0;
2129 struct sadb_x_policy *xpl;
2130 const struct sadb_lifetime *lft = NULL;
2131 struct secpolicyindex spidx;
2132 struct secpolicy *newsp;
2133 int error;
2134
2135 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2136 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2137 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2138 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2139 return key_senderror(so, m, EINVAL);
2140 }
2141 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2142 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2143 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2144 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2145 return key_senderror(so, m, EINVAL);
2146 }
2147 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2148 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2149 sizeof(struct sadb_lifetime)) {
2150 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2151 return key_senderror(so, m, EINVAL);
2152 }
2153 lft = mhp->ext[SADB_EXT_LIFETIME_HARD];
2154 }
2155
2156 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2157
2158 /* checking the direciton. */
2159 switch (xpl0->sadb_x_policy_dir) {
2160 case IPSEC_DIR_INBOUND:
2161 case IPSEC_DIR_OUTBOUND:
2162 break;
2163 default:
2164 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2165 return key_senderror(so, m, EINVAL);
2166 }
2167
2168 /* check policy */
2169 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2170 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2171 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2172 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2173 return key_senderror(so, m, EINVAL);
2174 }
2175
2176 /* policy requests are mandatory when action is ipsec. */
2177 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2178 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2179 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2180 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2181 return key_senderror(so, m, EINVAL);
2182 }
2183
2184 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2185 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2186
2187 /* sanity check on addr pair */
2188 if (src->sa_family != dst->sa_family)
2189 return key_senderror(so, m, EINVAL);
2190 if (src->sa_len != dst->sa_len)
2191 return key_senderror(so, m, EINVAL);
2192
2193 key_init_spidx_bymsghdr(&spidx, mhp);
2194
2195 /*
2196 * checking there is SP already or not.
2197 * SPDUPDATE doesn't depend on whether there is a SP or not.
2198 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2199 * then error.
2200 */
2201 {
2202 struct secpolicy *sp;
2203
2204 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2205 sp = key_lookup_and_remove_sp(&spidx);
2206 if (sp != NULL)
2207 key_destroy_sp(sp);
2208 } else {
2209 sp = key_getsp(&spidx);
2210 if (sp != NULL) {
2211 KEY_SP_UNREF(&sp);
2212 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2213 return key_senderror(so, m, EEXIST);
2214 }
2215 }
2216 }
2217
2218 /* allocation new SP entry */
2219 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2220 if (newsp == NULL) {
2221 return key_senderror(so, m, error);
2222 }
2223
2224 newsp->id = key_getnewspid();
2225 if (newsp->id == 0) {
2226 kmem_free(newsp, sizeof(*newsp));
2227 return key_senderror(so, m, ENOBUFS);
2228 }
2229
2230 newsp->spidx = spidx;
2231 newsp->created = time_uptime;
2232 newsp->lastused = newsp->created;
2233 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2234 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2235
2236 key_init_sp(newsp);
2237
2238 mutex_enter(&key_spd.lock);
2239 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2240 mutex_exit(&key_spd.lock);
2241
2242 #ifdef notyet
2243 /* delete the entry in key_misc.spacqlist */
2244 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2245 struct secspacq *spacq = key_getspacq(&spidx);
2246 if (spacq != NULL) {
2247 /* reset counter in order to deletion by timehandler. */
2248 spacq->created = time_uptime;
2249 spacq->count = 0;
2250 }
2251 }
2252 #endif
2253
2254 /* Invalidate all cached SPD pointers in the PCBs. */
2255 ipsec_invalpcbcacheall();
2256
2257 #if defined(GATEWAY)
2258 /* Invalidate the ipflow cache, as well. */
2259 ipflow_invalidate_all(0);
2260 #ifdef INET6
2261 if (in6_present)
2262 ip6flow_invalidate_all(0);
2263 #endif /* INET6 */
2264 #endif /* GATEWAY */
2265
2266 key_update_used();
2267
2268 {
2269 struct mbuf *n, *mpolicy;
2270 int off;
2271
2272 /* create new sadb_msg to reply. */
2273 if (lft) {
2274 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2275 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2276 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2277 } else {
2278 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2279 SADB_X_EXT_POLICY,
2280 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2281 }
2282 if (!n)
2283 return key_senderror(so, m, ENOBUFS);
2284
2285 n = key_fill_replymsg(n, 0);
2286 if (n == NULL)
2287 return key_senderror(so, m, ENOBUFS);
2288
2289 off = 0;
2290 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2291 sizeof(*xpl), &off);
2292 if (mpolicy == NULL) {
2293 /* n is already freed */
2294 return key_senderror(so, m, ENOBUFS);
2295 }
2296 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2297 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2298 m_freem(n);
2299 return key_senderror(so, m, EINVAL);
2300 }
2301 xpl->sadb_x_policy_id = newsp->id;
2302
2303 m_freem(m);
2304 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2305 }
2306 }
2307
2308 /*
2309 * get new policy id.
2310 * OUT:
2311 * 0: failure.
2312 * others: success.
2313 */
2314 static u_int32_t
2315 key_getnewspid(void)
2316 {
2317 u_int32_t newid = 0;
2318 int count = key_spi_trycnt; /* XXX */
2319 struct secpolicy *sp;
2320
2321 /* when requesting to allocate spi ranged */
2322 while (count--) {
2323 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2324
2325 sp = key_getspbyid(newid);
2326 if (sp == NULL)
2327 break;
2328
2329 KEY_SP_UNREF(&sp);
2330 }
2331
2332 if (count == 0 || newid == 0) {
2333 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2334 return 0;
2335 }
2336
2337 return newid;
2338 }
2339
2340 /*
2341 * SADB_SPDDELETE processing
2342 * receive
2343 * <base, address(SD), policy(*)>
2344 * from the user(?), and set SADB_SASTATE_DEAD,
2345 * and send,
2346 * <base, address(SD), policy(*)>
2347 * to the ikmpd.
2348 * policy(*) including direction of policy.
2349 *
2350 * m will always be freed.
2351 */
2352 static int
2353 key_api_spddelete(struct socket *so, struct mbuf *m,
2354 const struct sadb_msghdr *mhp)
2355 {
2356 struct sadb_x_policy *xpl0;
2357 struct secpolicyindex spidx;
2358 struct secpolicy *sp;
2359
2360 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2361 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2362 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2363 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2364 return key_senderror(so, m, EINVAL);
2365 }
2366 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2367 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2368 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2369 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2370 return key_senderror(so, m, EINVAL);
2371 }
2372
2373 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2374
2375 /* checking the directon. */
2376 switch (xpl0->sadb_x_policy_dir) {
2377 case IPSEC_DIR_INBOUND:
2378 case IPSEC_DIR_OUTBOUND:
2379 break;
2380 default:
2381 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2382 return key_senderror(so, m, EINVAL);
2383 }
2384
2385 /* make secindex */
2386 key_init_spidx_bymsghdr(&spidx, mhp);
2387
2388 /* Is there SP in SPD ? */
2389 sp = key_lookup_and_remove_sp(&spidx);
2390 if (sp == NULL) {
2391 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2392 return key_senderror(so, m, EINVAL);
2393 }
2394
2395 /* save policy id to buffer to be returned. */
2396 xpl0->sadb_x_policy_id = sp->id;
2397
2398 key_destroy_sp(sp);
2399
2400 /* We're deleting policy; no need to invalidate the ipflow cache. */
2401
2402 {
2403 struct mbuf *n;
2404
2405 /* create new sadb_msg to reply. */
2406 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2407 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2408 if (!n)
2409 return key_senderror(so, m, ENOBUFS);
2410
2411 n = key_fill_replymsg(n, 0);
2412 if (n == NULL)
2413 return key_senderror(so, m, ENOBUFS);
2414
2415 m_freem(m);
2416 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2417 }
2418 }
2419
2420 /*
2421 * SADB_SPDDELETE2 processing
2422 * receive
2423 * <base, policy(*)>
2424 * from the user(?), and set SADB_SASTATE_DEAD,
2425 * and send,
2426 * <base, policy(*)>
2427 * to the ikmpd.
2428 * policy(*) including direction of policy.
2429 *
2430 * m will always be freed.
2431 */
2432 static int
2433 key_api_spddelete2(struct socket *so, struct mbuf *m,
2434 const struct sadb_msghdr *mhp)
2435 {
2436 u_int32_t id;
2437 struct secpolicy *sp;
2438 const struct sadb_x_policy *xpl;
2439
2440 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2441 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2442 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2443 return key_senderror(so, m, EINVAL);
2444 }
2445
2446 xpl = mhp->ext[SADB_X_EXT_POLICY];
2447 id = xpl->sadb_x_policy_id;
2448
2449 /* Is there SP in SPD ? */
2450 sp = key_lookupbyid_and_remove_sp(id);
2451 if (sp == NULL) {
2452 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2453 return key_senderror(so, m, EINVAL);
2454 }
2455
2456 key_destroy_sp(sp);
2457
2458 /* We're deleting policy; no need to invalidate the ipflow cache. */
2459
2460 {
2461 struct mbuf *n, *nn;
2462 int off, len;
2463
2464 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2465
2466 /* create new sadb_msg to reply. */
2467 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2468
2469 MGETHDR(n, M_DONTWAIT, MT_DATA);
2470 if (n && len > MHLEN) {
2471 MCLGET(n, M_DONTWAIT);
2472 if ((n->m_flags & M_EXT) == 0) {
2473 m_freem(n);
2474 n = NULL;
2475 }
2476 }
2477 if (!n)
2478 return key_senderror(so, m, ENOBUFS);
2479
2480 n->m_len = len;
2481 n->m_next = NULL;
2482 off = 0;
2483
2484 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2485 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2486
2487 KASSERTMSG(off == len, "length inconsistency");
2488
2489 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2490 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2491 if (!n->m_next) {
2492 m_freem(n);
2493 return key_senderror(so, m, ENOBUFS);
2494 }
2495
2496 n->m_pkthdr.len = 0;
2497 for (nn = n; nn; nn = nn->m_next)
2498 n->m_pkthdr.len += nn->m_len;
2499
2500 n = key_fill_replymsg(n, 0);
2501 if (n == NULL)
2502 return key_senderror(so, m, ENOBUFS);
2503
2504 m_freem(m);
2505 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2506 }
2507 }
2508
2509 /*
2510 * SADB_X_GET processing
2511 * receive
2512 * <base, policy(*)>
2513 * from the user(?),
2514 * and send,
2515 * <base, address(SD), policy>
2516 * to the ikmpd.
2517 * policy(*) including direction of policy.
2518 *
2519 * m will always be freed.
2520 */
2521 static int
2522 key_api_spdget(struct socket *so, struct mbuf *m,
2523 const struct sadb_msghdr *mhp)
2524 {
2525 u_int32_t id;
2526 struct secpolicy *sp;
2527 struct mbuf *n;
2528 const struct sadb_x_policy *xpl;
2529
2530 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2531 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2532 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2533 return key_senderror(so, m, EINVAL);
2534 }
2535
2536 xpl = mhp->ext[SADB_X_EXT_POLICY];
2537 id = xpl->sadb_x_policy_id;
2538
2539 /* Is there SP in SPD ? */
2540 sp = key_getspbyid(id);
2541 if (sp == NULL) {
2542 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2543 return key_senderror(so, m, ENOENT);
2544 }
2545
2546 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2547 mhp->msg->sadb_msg_pid);
2548 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2549 if (n != NULL) {
2550 m_freem(m);
2551 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2552 } else
2553 return key_senderror(so, m, ENOBUFS);
2554 }
2555
2556 #ifdef notyet
2557 /*
2558 * SADB_X_SPDACQUIRE processing.
2559 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2560 * send
2561 * <base, policy(*)>
2562 * to KMD, and expect to receive
2563 * <base> with SADB_X_SPDACQUIRE if error occurred,
2564 * or
2565 * <base, policy>
2566 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2567 * policy(*) is without policy requests.
2568 *
2569 * 0 : succeed
2570 * others: error number
2571 */
2572 int
2573 key_spdacquire(const struct secpolicy *sp)
2574 {
2575 struct mbuf *result = NULL, *m;
2576 struct secspacq *newspacq;
2577 int error;
2578
2579 KASSERT(sp != NULL);
2580 KASSERTMSG(sp->req == NULL, "called but there is request");
2581 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2582 "policy mismathed. IPsec is expected");
2583
2584 /* Get an entry to check whether sent message or not. */
2585 newspacq = key_getspacq(&sp->spidx);
2586 if (newspacq != NULL) {
2587 if (key_blockacq_count < newspacq->count) {
2588 /* reset counter and do send message. */
2589 newspacq->count = 0;
2590 } else {
2591 /* increment counter and do nothing. */
2592 newspacq->count++;
2593 return 0;
2594 }
2595 } else {
2596 /* make new entry for blocking to send SADB_ACQUIRE. */
2597 newspacq = key_newspacq(&sp->spidx);
2598 if (newspacq == NULL)
2599 return ENOBUFS;
2600
2601 /* add to key_misc.acqlist */
2602 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2603 }
2604
2605 /* create new sadb_msg to reply. */
2606 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2607 if (!m) {
2608 error = ENOBUFS;
2609 goto fail;
2610 }
2611 result = m;
2612
2613 result->m_pkthdr.len = 0;
2614 for (m = result; m; m = m->m_next)
2615 result->m_pkthdr.len += m->m_len;
2616
2617 mtod(result, struct sadb_msg *)->sadb_msg_len =
2618 PFKEY_UNIT64(result->m_pkthdr.len);
2619
2620 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2621
2622 fail:
2623 if (result)
2624 m_freem(result);
2625 return error;
2626 }
2627 #endif /* notyet */
2628
2629 /*
2630 * SADB_SPDFLUSH processing
2631 * receive
2632 * <base>
2633 * from the user, and free all entries in secpctree.
2634 * and send,
2635 * <base>
2636 * to the user.
2637 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2638 *
2639 * m will always be freed.
2640 */
2641 static int
2642 key_api_spdflush(struct socket *so, struct mbuf *m,
2643 const struct sadb_msghdr *mhp)
2644 {
2645 struct sadb_msg *newmsg;
2646 struct secpolicy *sp;
2647 u_int dir;
2648
2649 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2650 return key_senderror(so, m, EINVAL);
2651
2652 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2653 retry:
2654 mutex_enter(&key_spd.lock);
2655 SPLIST_WRITER_FOREACH(sp, dir) {
2656 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2657 key_unlink_sp(sp);
2658 mutex_exit(&key_spd.lock);
2659 key_destroy_sp(sp);
2660 goto retry;
2661 }
2662 mutex_exit(&key_spd.lock);
2663 }
2664
2665 /* We're deleting policy; no need to invalidate the ipflow cache. */
2666
2667 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2668 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2669 return key_senderror(so, m, ENOBUFS);
2670 }
2671
2672 if (m->m_next)
2673 m_freem(m->m_next);
2674 m->m_next = NULL;
2675 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2676 newmsg = mtod(m, struct sadb_msg *);
2677 newmsg->sadb_msg_errno = 0;
2678 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2679
2680 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2681 }
2682
2683 static struct sockaddr key_src = {
2684 .sa_len = 2,
2685 .sa_family = PF_KEY,
2686 };
2687
2688 static struct mbuf *
2689 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2690 {
2691 struct secpolicy *sp;
2692 int cnt;
2693 u_int dir;
2694 struct mbuf *m, *n, *prev;
2695 int totlen;
2696
2697 KASSERT(mutex_owned(&key_spd.lock));
2698
2699 *lenp = 0;
2700
2701 /* search SPD entry and get buffer size. */
2702 cnt = 0;
2703 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2704 SPLIST_WRITER_FOREACH(sp, dir) {
2705 cnt++;
2706 }
2707 }
2708
2709 if (cnt == 0) {
2710 *errorp = ENOENT;
2711 return (NULL);
2712 }
2713
2714 m = NULL;
2715 prev = m;
2716 totlen = 0;
2717 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2718 SPLIST_WRITER_FOREACH(sp, dir) {
2719 --cnt;
2720 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2721
2722 if (!n) {
2723 *errorp = ENOBUFS;
2724 if (m)
2725 m_freem(m);
2726 return (NULL);
2727 }
2728
2729 totlen += n->m_pkthdr.len;
2730 if (!m) {
2731 m = n;
2732 } else {
2733 prev->m_nextpkt = n;
2734 }
2735 prev = n;
2736 }
2737 }
2738
2739 *lenp = totlen;
2740 *errorp = 0;
2741 return (m);
2742 }
2743
2744 /*
2745 * SADB_SPDDUMP processing
2746 * receive
2747 * <base>
2748 * from the user, and dump all SP leaves
2749 * and send,
2750 * <base> .....
2751 * to the ikmpd.
2752 *
2753 * m will always be freed.
2754 */
2755 static int
2756 key_api_spddump(struct socket *so, struct mbuf *m0,
2757 const struct sadb_msghdr *mhp)
2758 {
2759 struct mbuf *n;
2760 int error, len;
2761 int ok;
2762 pid_t pid;
2763
2764 pid = mhp->msg->sadb_msg_pid;
2765 /*
2766 * If the requestor has insufficient socket-buffer space
2767 * for the entire chain, nobody gets any response to the DUMP.
2768 * XXX For now, only the requestor ever gets anything.
2769 * Moreover, if the requestor has any space at all, they receive
2770 * the entire chain, otherwise the request is refused with ENOBUFS.
2771 */
2772 if (sbspace(&so->so_rcv) <= 0) {
2773 return key_senderror(so, m0, ENOBUFS);
2774 }
2775
2776 mutex_enter(&key_spd.lock);
2777 n = key_setspddump_chain(&error, &len, pid);
2778 mutex_exit(&key_spd.lock);
2779
2780 if (n == NULL) {
2781 return key_senderror(so, m0, ENOENT);
2782 }
2783 {
2784 uint64_t *ps = PFKEY_STAT_GETREF();
2785 ps[PFKEY_STAT_IN_TOTAL]++;
2786 ps[PFKEY_STAT_IN_BYTES] += len;
2787 PFKEY_STAT_PUTREF();
2788 }
2789
2790 /*
2791 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2792 * The requestor receives either the entire chain, or an
2793 * error message with ENOBUFS.
2794 */
2795
2796 /*
2797 * sbappendchainwith record takes the chain of entries, one
2798 * packet-record per SPD entry, prepends the key_src sockaddr
2799 * to each packet-record, links the sockaddr mbufs into a new
2800 * list of records, then appends the entire resulting
2801 * list to the requesting socket.
2802 */
2803 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2804 SB_PRIO_ONESHOT_OVERFLOW);
2805
2806 if (!ok) {
2807 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2808 m_freem(n);
2809 return key_senderror(so, m0, ENOBUFS);
2810 }
2811
2812 m_freem(m0);
2813 return error;
2814 }
2815
2816 /*
2817 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2818 */
2819 static int
2820 key_api_nat_map(struct socket *so, struct mbuf *m,
2821 const struct sadb_msghdr *mhp)
2822 {
2823 struct sadb_x_nat_t_type *type;
2824 struct sadb_x_nat_t_port *sport;
2825 struct sadb_x_nat_t_port *dport;
2826 struct sadb_address *iaddr, *raddr;
2827 struct sadb_x_nat_t_frag *frag;
2828
2829 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2830 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2831 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2832 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2833 return key_senderror(so, m, EINVAL);
2834 }
2835 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2836 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2837 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2838 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2839 return key_senderror(so, m, EINVAL);
2840 }
2841
2842 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2843 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2844 IPSECLOG(LOG_DEBUG, "invalid message\n");
2845 return key_senderror(so, m, EINVAL);
2846 }
2847
2848 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2849 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2850 IPSECLOG(LOG_DEBUG, "invalid message\n");
2851 return key_senderror(so, m, EINVAL);
2852 }
2853
2854 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2855 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2856 IPSECLOG(LOG_DEBUG, "invalid message\n");
2857 return key_senderror(so, m, EINVAL);
2858 }
2859
2860 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2861 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2862 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2863 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
2864 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
2865 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2866
2867 /*
2868 * XXX handle that, it should also contain a SA, or anything
2869 * that enable to update the SA information.
2870 */
2871
2872 return 0;
2873 }
2874
2875 static struct mbuf *
2876 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2877 {
2878 struct mbuf *result = NULL, *m;
2879
2880 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2881 key_sp_refcnt(sp));
2882 if (!m)
2883 goto fail;
2884 result = m;
2885
2886 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2887 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2888 if (!m)
2889 goto fail;
2890 m_cat(result, m);
2891
2892 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2893 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2894 if (!m)
2895 goto fail;
2896 m_cat(result, m);
2897
2898 m = key_sp2msg(sp);
2899 if (!m)
2900 goto fail;
2901 m_cat(result, m);
2902
2903 if ((result->m_flags & M_PKTHDR) == 0)
2904 goto fail;
2905
2906 if (result->m_len < sizeof(struct sadb_msg)) {
2907 result = m_pullup(result, sizeof(struct sadb_msg));
2908 if (result == NULL)
2909 goto fail;
2910 }
2911
2912 result->m_pkthdr.len = 0;
2913 for (m = result; m; m = m->m_next)
2914 result->m_pkthdr.len += m->m_len;
2915
2916 mtod(result, struct sadb_msg *)->sadb_msg_len =
2917 PFKEY_UNIT64(result->m_pkthdr.len);
2918
2919 return result;
2920
2921 fail:
2922 m_freem(result);
2923 return NULL;
2924 }
2925
2926 /*
2927 * get PFKEY message length for security policy and request.
2928 */
2929 static u_int
2930 key_getspreqmsglen(const struct secpolicy *sp)
2931 {
2932 u_int tlen;
2933
2934 tlen = sizeof(struct sadb_x_policy);
2935
2936 /* if is the policy for ipsec ? */
2937 if (sp->policy != IPSEC_POLICY_IPSEC)
2938 return tlen;
2939
2940 /* get length of ipsec requests */
2941 {
2942 const struct ipsecrequest *isr;
2943 int len;
2944
2945 for (isr = sp->req; isr != NULL; isr = isr->next) {
2946 len = sizeof(struct sadb_x_ipsecrequest)
2947 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2948
2949 tlen += PFKEY_ALIGN8(len);
2950 }
2951 }
2952
2953 return tlen;
2954 }
2955
2956 /*
2957 * SADB_SPDEXPIRE processing
2958 * send
2959 * <base, address(SD), lifetime(CH), policy>
2960 * to KMD by PF_KEY.
2961 *
2962 * OUT: 0 : succeed
2963 * others : error number
2964 */
2965 static int
2966 key_spdexpire(struct secpolicy *sp)
2967 {
2968 int s;
2969 struct mbuf *result = NULL, *m;
2970 int len;
2971 int error = -1;
2972 struct sadb_lifetime *lt;
2973
2974 /* XXX: Why do we lock ? */
2975 s = splsoftnet(); /*called from softclock()*/
2976
2977 KASSERT(sp != NULL);
2978
2979 /* set msg header */
2980 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2981 if (!m) {
2982 error = ENOBUFS;
2983 goto fail;
2984 }
2985 result = m;
2986
2987 /* create lifetime extension (current and hard) */
2988 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2989 m = key_alloc_mbuf(len);
2990 if (!m || m->m_next) { /*XXX*/
2991 if (m)
2992 m_freem(m);
2993 error = ENOBUFS;
2994 goto fail;
2995 }
2996 memset(mtod(m, void *), 0, len);
2997 lt = mtod(m, struct sadb_lifetime *);
2998 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2999 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3000 lt->sadb_lifetime_allocations = 0;
3001 lt->sadb_lifetime_bytes = 0;
3002 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
3003 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
3004 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
3005 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3006 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
3007 lt->sadb_lifetime_allocations = 0;
3008 lt->sadb_lifetime_bytes = 0;
3009 lt->sadb_lifetime_addtime = sp->lifetime;
3010 lt->sadb_lifetime_usetime = sp->validtime;
3011 m_cat(result, m);
3012
3013 /* set sadb_address for source */
3014 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
3015 sp->spidx.prefs, sp->spidx.ul_proto);
3016 if (!m) {
3017 error = ENOBUFS;
3018 goto fail;
3019 }
3020 m_cat(result, m);
3021
3022 /* set sadb_address for destination */
3023 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
3024 sp->spidx.prefd, sp->spidx.ul_proto);
3025 if (!m) {
3026 error = ENOBUFS;
3027 goto fail;
3028 }
3029 m_cat(result, m);
3030
3031 /* set secpolicy */
3032 m = key_sp2msg(sp);
3033 if (!m) {
3034 error = ENOBUFS;
3035 goto fail;
3036 }
3037 m_cat(result, m);
3038
3039 if ((result->m_flags & M_PKTHDR) == 0) {
3040 error = EINVAL;
3041 goto fail;
3042 }
3043
3044 if (result->m_len < sizeof(struct sadb_msg)) {
3045 result = m_pullup(result, sizeof(struct sadb_msg));
3046 if (result == NULL) {
3047 error = ENOBUFS;
3048 goto fail;
3049 }
3050 }
3051
3052 result->m_pkthdr.len = 0;
3053 for (m = result; m; m = m->m_next)
3054 result->m_pkthdr.len += m->m_len;
3055
3056 mtod(result, struct sadb_msg *)->sadb_msg_len =
3057 PFKEY_UNIT64(result->m_pkthdr.len);
3058
3059 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
3060
3061 fail:
3062 if (result)
3063 m_freem(result);
3064 splx(s);
3065 return error;
3066 }
3067
3068 /* %%% SAD management */
3069 /*
3070 * allocating a memory for new SA head, and copy from the values of mhp.
3071 * OUT: NULL : failure due to the lack of memory.
3072 * others : pointer to new SA head.
3073 */
3074 static struct secashead *
3075 key_newsah(const struct secasindex *saidx)
3076 {
3077 struct secashead *newsah;
3078 int i;
3079
3080 KASSERT(saidx != NULL);
3081
3082 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
3083 for (i = 0; i < __arraycount(newsah->savlist); i++)
3084 PSLIST_INIT(&newsah->savlist[i]);
3085 newsah->saidx = *saidx;
3086
3087 localcount_init(&newsah->localcount);
3088 /* Take a reference for the caller */
3089 localcount_acquire(&newsah->localcount);
3090
3091 /* Add to the sah list */
3092 SAHLIST_ENTRY_INIT(newsah);
3093 newsah->state = SADB_SASTATE_MATURE;
3094 mutex_enter(&key_sad.lock);
3095 SAHLIST_WRITER_INSERT_HEAD(newsah);
3096 mutex_exit(&key_sad.lock);
3097
3098 return newsah;
3099 }
3100
3101 static bool
3102 key_sah_has_sav(struct secashead *sah)
3103 {
3104 u_int state;
3105
3106 KASSERT(mutex_owned(&key_sad.lock));
3107
3108 SASTATE_ANY_FOREACH(state) {
3109 if (!SAVLIST_WRITER_EMPTY(sah, state))
3110 return true;
3111 }
3112
3113 return false;
3114 }
3115
3116 static void
3117 key_unlink_sah(struct secashead *sah)
3118 {
3119
3120 KASSERT(!cpu_softintr_p());
3121 KASSERT(mutex_owned(&key_sad.lock));
3122 KASSERT(sah->state == SADB_SASTATE_DEAD);
3123
3124 /* Remove from the sah list */
3125 SAHLIST_WRITER_REMOVE(sah);
3126
3127 #ifdef NET_MPSAFE
3128 KASSERT(mutex_ownable(softnet_lock));
3129 key_sad_pserialize_perform();
3130 #endif
3131
3132 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3133 }
3134
3135 static void
3136 key_destroy_sah(struct secashead *sah)
3137 {
3138
3139 rtcache_free(&sah->sa_route);
3140
3141 SAHLIST_ENTRY_DESTROY(sah);
3142 localcount_fini(&sah->localcount);
3143
3144 if (sah->idents != NULL)
3145 kmem_free(sah->idents, sah->idents_len);
3146 if (sah->identd != NULL)
3147 kmem_free(sah->identd, sah->identd_len);
3148
3149 kmem_free(sah, sizeof(*sah));
3150 }
3151
3152 /*
3153 * allocating a new SA with LARVAL state.
3154 * key_api_add() and key_api_getspi() call,
3155 * and copy the values of mhp into new buffer.
3156 * When SAD message type is GETSPI:
3157 * to set sequence number from acq_seq++,
3158 * to set zero to SPI.
3159 * not to call key_setsava().
3160 * OUT: NULL : fail
3161 * others : pointer to new secasvar.
3162 *
3163 * does not modify mbuf. does not free mbuf on error.
3164 */
3165 static struct secasvar *
3166 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3167 int *errp, const char* where, int tag)
3168 {
3169 struct secasvar *newsav;
3170 const struct sadb_sa *xsa;
3171
3172 KASSERT(!cpu_softintr_p());
3173 KASSERT(m != NULL);
3174 KASSERT(mhp != NULL);
3175 KASSERT(mhp->msg != NULL);
3176
3177 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3178
3179 switch (mhp->msg->sadb_msg_type) {
3180 case SADB_GETSPI:
3181 newsav->spi = 0;
3182
3183 #ifdef IPSEC_DOSEQCHECK
3184 /* sync sequence number */
3185 if (mhp->msg->sadb_msg_seq == 0)
3186 newsav->seq =
3187 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3188 else
3189 #endif
3190 newsav->seq = mhp->msg->sadb_msg_seq;
3191 break;
3192
3193 case SADB_ADD:
3194 /* sanity check */
3195 if (mhp->ext[SADB_EXT_SA] == NULL) {
3196 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3197 *errp = EINVAL;
3198 goto error;
3199 }
3200 xsa = mhp->ext[SADB_EXT_SA];
3201 newsav->spi = xsa->sadb_sa_spi;
3202 newsav->seq = mhp->msg->sadb_msg_seq;
3203 break;
3204 default:
3205 *errp = EINVAL;
3206 goto error;
3207 }
3208
3209 /* copy sav values */
3210 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3211 *errp = key_setsaval(newsav, m, mhp);
3212 if (*errp)
3213 goto error;
3214 } else {
3215 /* We don't allow lft_c to be NULL */
3216 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3217 KM_SLEEP);
3218 }
3219
3220 /* reset created */
3221 newsav->created = time_uptime;
3222 newsav->pid = mhp->msg->sadb_msg_pid;
3223
3224 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3225 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3226 return newsav;
3227
3228 error:
3229 KASSERT(*errp != 0);
3230 kmem_free(newsav, sizeof(*newsav));
3231 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3232 "DP from %s:%u return SA:NULL\n", where, tag);
3233 return NULL;
3234 }
3235
3236
3237 static void
3238 key_clear_xform(struct secasvar *sav)
3239 {
3240
3241 /*
3242 * Cleanup xform state. Note that zeroize'ing causes the
3243 * keys to be cleared; otherwise we must do it ourself.
3244 */
3245 if (sav->tdb_xform != NULL) {
3246 sav->tdb_xform->xf_zeroize(sav);
3247 sav->tdb_xform = NULL;
3248 } else {
3249 if (sav->key_auth != NULL)
3250 explicit_memset(_KEYBUF(sav->key_auth), 0,
3251 _KEYLEN(sav->key_auth));
3252 if (sav->key_enc != NULL)
3253 explicit_memset(_KEYBUF(sav->key_enc), 0,
3254 _KEYLEN(sav->key_enc));
3255 }
3256 }
3257
3258 /*
3259 * free() SA variable entry.
3260 */
3261 static void
3262 key_delsav(struct secasvar *sav)
3263 {
3264
3265 key_clear_xform(sav);
3266 key_freesaval(sav);
3267 kmem_free(sav, sizeof(*sav));
3268 }
3269
3270 /*
3271 * Must be called in a pserialize read section. A held sah
3272 * must be released by key_sah_unref after use.
3273 */
3274 static void
3275 key_sah_ref(struct secashead *sah)
3276 {
3277
3278 localcount_acquire(&sah->localcount);
3279 }
3280
3281 /*
3282 * Must be called without holding key_sad.lock because the lock
3283 * would be held in localcount_release.
3284 */
3285 static void
3286 key_sah_unref(struct secashead *sah)
3287 {
3288
3289 KDASSERT(mutex_ownable(&key_sad.lock));
3290
3291 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3292 }
3293
3294 /*
3295 * Search SAD and return sah. Must be called in a pserialize
3296 * read section.
3297 * OUT:
3298 * NULL : not found
3299 * others : found, pointer to a SA.
3300 */
3301 static struct secashead *
3302 key_getsah(const struct secasindex *saidx, int flag)
3303 {
3304 struct secashead *sah;
3305
3306 SAHLIST_READER_FOREACH(sah) {
3307 if (sah->state == SADB_SASTATE_DEAD)
3308 continue;
3309 if (key_saidx_match(&sah->saidx, saidx, flag))
3310 return sah;
3311 }
3312
3313 return NULL;
3314 }
3315
3316 /*
3317 * Search SAD and return sah. If sah is returned, the caller must call
3318 * key_sah_unref to releaset a reference.
3319 * OUT:
3320 * NULL : not found
3321 * others : found, pointer to a SA.
3322 */
3323 static struct secashead *
3324 key_getsah_ref(const struct secasindex *saidx, int flag)
3325 {
3326 struct secashead *sah;
3327 int s;
3328
3329 s = pserialize_read_enter();
3330 sah = key_getsah(saidx, flag);
3331 if (sah != NULL)
3332 key_sah_ref(sah);
3333 pserialize_read_exit(s);
3334
3335 return sah;
3336 }
3337
3338 /*
3339 * check not to be duplicated SPI.
3340 * NOTE: this function is too slow due to searching all SAD.
3341 * OUT:
3342 * NULL : not found
3343 * others : found, pointer to a SA.
3344 */
3345 static bool
3346 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3347 {
3348 struct secashead *sah;
3349 struct secasvar *sav;
3350 int s;
3351
3352 /* check address family */
3353 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3354 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3355 return false;
3356 }
3357
3358 /* check all SAD */
3359 s = pserialize_read_enter();
3360 SAHLIST_READER_FOREACH(sah) {
3361 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3362 continue;
3363 sav = key_getsavbyspi(sah, spi);
3364 if (sav != NULL) {
3365 pserialize_read_exit(s);
3366 KEY_SA_UNREF(&sav);
3367 return true;
3368 }
3369 }
3370 pserialize_read_exit(s);
3371
3372 return false;
3373 }
3374
3375 /*
3376 * search SAD litmited alive SA, protocol, SPI.
3377 * OUT:
3378 * NULL : not found
3379 * others : found, pointer to a SA.
3380 */
3381 static struct secasvar *
3382 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3383 {
3384 struct secasvar *sav = NULL;
3385 u_int state;
3386 int s;
3387
3388 /* search all status */
3389 s = pserialize_read_enter();
3390 SASTATE_ALIVE_FOREACH(state) {
3391 SAVLIST_READER_FOREACH(sav, sah, state) {
3392 /* sanity check */
3393 if (sav->state != state) {
3394 IPSECLOG(LOG_DEBUG,
3395 "invalid sav->state (queue: %d SA: %d)\n",
3396 state, sav->state);
3397 continue;
3398 }
3399
3400 if (sav->spi == spi) {
3401 KEY_SA_REF(sav);
3402 goto out;
3403 }
3404 }
3405 }
3406 out:
3407 pserialize_read_exit(s);
3408
3409 return sav;
3410 }
3411
3412 /*
3413 * Free allocated data to member variables of sav:
3414 * sav->replay, sav->key_* and sav->lft_*.
3415 */
3416 static void
3417 key_freesaval(struct secasvar *sav)
3418 {
3419
3420 KASSERT(key_sa_refcnt(sav) == 0);
3421
3422 if (sav->replay != NULL)
3423 kmem_intr_free(sav->replay, sav->replay_len);
3424 if (sav->key_auth != NULL)
3425 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3426 if (sav->key_enc != NULL)
3427 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3428 if (sav->lft_c != NULL)
3429 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3430 if (sav->lft_h != NULL)
3431 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3432 if (sav->lft_s != NULL)
3433 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3434 }
3435
3436 /*
3437 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3438 * You must update these if need.
3439 * OUT: 0: success.
3440 * !0: failure.
3441 *
3442 * does not modify mbuf. does not free mbuf on error.
3443 */
3444 static int
3445 key_setsaval(struct secasvar *sav, struct mbuf *m,
3446 const struct sadb_msghdr *mhp)
3447 {
3448 int error = 0;
3449
3450 KASSERT(!cpu_softintr_p());
3451 KASSERT(m != NULL);
3452 KASSERT(mhp != NULL);
3453 KASSERT(mhp->msg != NULL);
3454
3455 /* We shouldn't initialize sav variables while someone uses it. */
3456 KASSERT(key_sa_refcnt(sav) == 0);
3457
3458 /* SA */
3459 if (mhp->ext[SADB_EXT_SA] != NULL) {
3460 const struct sadb_sa *sa0;
3461
3462 sa0 = mhp->ext[SADB_EXT_SA];
3463 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3464 error = EINVAL;
3465 goto fail;
3466 }
3467
3468 sav->alg_auth = sa0->sadb_sa_auth;
3469 sav->alg_enc = sa0->sadb_sa_encrypt;
3470 sav->flags = sa0->sadb_sa_flags;
3471
3472 /* replay window */
3473 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3474 size_t len = sizeof(struct secreplay) +
3475 sa0->sadb_sa_replay;
3476 sav->replay = kmem_zalloc(len, KM_SLEEP);
3477 sav->replay_len = len;
3478 if (sa0->sadb_sa_replay != 0)
3479 sav->replay->bitmap = (char*)(sav->replay+1);
3480 sav->replay->wsize = sa0->sadb_sa_replay;
3481 }
3482 }
3483
3484 /* Authentication keys */
3485 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3486 const struct sadb_key *key0;
3487 int len;
3488
3489 key0 = mhp->ext[SADB_EXT_KEY_AUTH];
3490 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3491
3492 error = 0;
3493 if (len < sizeof(*key0)) {
3494 error = EINVAL;
3495 goto fail;
3496 }
3497 switch (mhp->msg->sadb_msg_satype) {
3498 case SADB_SATYPE_AH:
3499 case SADB_SATYPE_ESP:
3500 case SADB_X_SATYPE_TCPSIGNATURE:
3501 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3502 sav->alg_auth != SADB_X_AALG_NULL)
3503 error = EINVAL;
3504 break;
3505 case SADB_X_SATYPE_IPCOMP:
3506 default:
3507 error = EINVAL;
3508 break;
3509 }
3510 if (error) {
3511 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3512 goto fail;
3513 }
3514
3515 sav->key_auth = key_newbuf(key0, len);
3516 sav->key_auth_len = len;
3517 }
3518
3519 /* Encryption key */
3520 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3521 const struct sadb_key *key0;
3522 int len;
3523
3524 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT];
3525 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3526
3527 error = 0;
3528 if (len < sizeof(*key0)) {
3529 error = EINVAL;
3530 goto fail;
3531 }
3532 switch (mhp->msg->sadb_msg_satype) {
3533 case SADB_SATYPE_ESP:
3534 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3535 sav->alg_enc != SADB_EALG_NULL) {
3536 error = EINVAL;
3537 break;
3538 }
3539 sav->key_enc = key_newbuf(key0, len);
3540 sav->key_enc_len = len;
3541 break;
3542 case SADB_X_SATYPE_IPCOMP:
3543 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3544 error = EINVAL;
3545 sav->key_enc = NULL; /*just in case*/
3546 break;
3547 case SADB_SATYPE_AH:
3548 case SADB_X_SATYPE_TCPSIGNATURE:
3549 default:
3550 error = EINVAL;
3551 break;
3552 }
3553 if (error) {
3554 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3555 goto fail;
3556 }
3557 }
3558
3559 /* set iv */
3560 sav->ivlen = 0;
3561
3562 switch (mhp->msg->sadb_msg_satype) {
3563 case SADB_SATYPE_AH:
3564 error = xform_init(sav, XF_AH);
3565 break;
3566 case SADB_SATYPE_ESP:
3567 error = xform_init(sav, XF_ESP);
3568 break;
3569 case SADB_X_SATYPE_IPCOMP:
3570 error = xform_init(sav, XF_IPCOMP);
3571 break;
3572 case SADB_X_SATYPE_TCPSIGNATURE:
3573 error = xform_init(sav, XF_TCPSIGNATURE);
3574 break;
3575 }
3576 if (error) {
3577 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3578 mhp->msg->sadb_msg_satype);
3579 goto fail;
3580 }
3581
3582 /* reset created */
3583 sav->created = time_uptime;
3584
3585 /* make lifetime for CURRENT */
3586 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3587
3588 sav->lft_c->sadb_lifetime_len =
3589 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3590 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3591 sav->lft_c->sadb_lifetime_allocations = 0;
3592 sav->lft_c->sadb_lifetime_bytes = 0;
3593 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3594 sav->lft_c->sadb_lifetime_usetime = 0;
3595
3596 /* lifetimes for HARD and SOFT */
3597 {
3598 const struct sadb_lifetime *lft0;
3599
3600 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD];
3601 if (lft0 != NULL) {
3602 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3603 error = EINVAL;
3604 goto fail;
3605 }
3606 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3607 }
3608
3609 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT];
3610 if (lft0 != NULL) {
3611 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3612 error = EINVAL;
3613 goto fail;
3614 }
3615 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3616 /* to be initialize ? */
3617 }
3618 }
3619
3620 return 0;
3621
3622 fail:
3623 key_clear_xform(sav);
3624 key_freesaval(sav);
3625
3626 return error;
3627 }
3628
3629 /*
3630 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3631 * OUT: 0: valid
3632 * other: errno
3633 */
3634 static int
3635 key_init_xform(struct secasvar *sav)
3636 {
3637 int error;
3638
3639 /* We shouldn't initialize sav variables while someone uses it. */
3640 KASSERT(key_sa_refcnt(sav) == 0);
3641
3642 /* check SPI value */
3643 switch (sav->sah->saidx.proto) {
3644 case IPPROTO_ESP:
3645 case IPPROTO_AH:
3646 if (ntohl(sav->spi) <= 255) {
3647 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3648 (u_int32_t)ntohl(sav->spi));
3649 return EINVAL;
3650 }
3651 break;
3652 }
3653
3654 /* check satype */
3655 switch (sav->sah->saidx.proto) {
3656 case IPPROTO_ESP:
3657 /* check flags */
3658 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3659 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3660 IPSECLOG(LOG_DEBUG,
3661 "invalid flag (derived) given to old-esp.\n");
3662 return EINVAL;
3663 }
3664 error = xform_init(sav, XF_ESP);
3665 break;
3666 case IPPROTO_AH:
3667 /* check flags */
3668 if (sav->flags & SADB_X_EXT_DERIV) {
3669 IPSECLOG(LOG_DEBUG,
3670 "invalid flag (derived) given to AH SA.\n");
3671 return EINVAL;
3672 }
3673 if (sav->alg_enc != SADB_EALG_NONE) {
3674 IPSECLOG(LOG_DEBUG,
3675 "protocol and algorithm mismated.\n");
3676 return(EINVAL);
3677 }
3678 error = xform_init(sav, XF_AH);
3679 break;
3680 case IPPROTO_IPCOMP:
3681 if (sav->alg_auth != SADB_AALG_NONE) {
3682 IPSECLOG(LOG_DEBUG,
3683 "protocol and algorithm mismated.\n");
3684 return(EINVAL);
3685 }
3686 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3687 && ntohl(sav->spi) >= 0x10000) {
3688 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3689 return(EINVAL);
3690 }
3691 error = xform_init(sav, XF_IPCOMP);
3692 break;
3693 case IPPROTO_TCP:
3694 if (sav->alg_enc != SADB_EALG_NONE) {
3695 IPSECLOG(LOG_DEBUG,
3696 "protocol and algorithm mismated.\n");
3697 return(EINVAL);
3698 }
3699 error = xform_init(sav, XF_TCPSIGNATURE);
3700 break;
3701 default:
3702 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3703 error = EPROTONOSUPPORT;
3704 break;
3705 }
3706
3707 return error;
3708 }
3709
3710 /*
3711 * subroutine for SADB_GET and SADB_DUMP.
3712 */
3713 static struct mbuf *
3714 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3715 u_int32_t seq, u_int32_t pid)
3716 {
3717 struct mbuf *result = NULL, *tres = NULL, *m;
3718 int l = 0;
3719 int i;
3720 void *p;
3721 struct sadb_lifetime lt;
3722 int dumporder[] = {
3723 SADB_EXT_SA, SADB_X_EXT_SA2,
3724 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3725 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3726 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3727 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3728 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3729 SADB_X_EXT_NAT_T_TYPE,
3730 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3731 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3732 SADB_X_EXT_NAT_T_FRAG,
3733
3734 };
3735
3736 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav));
3737 if (m == NULL)
3738 goto fail;
3739 result = m;
3740
3741 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3742 m = NULL;
3743 p = NULL;
3744 switch (dumporder[i]) {
3745 case SADB_EXT_SA:
3746 m = key_setsadbsa(sav);
3747 break;
3748
3749 case SADB_X_EXT_SA2:
3750 m = key_setsadbxsa2(sav->sah->saidx.mode,
3751 sav->replay ? sav->replay->count : 0,
3752 sav->sah->saidx.reqid);
3753 break;
3754
3755 case SADB_EXT_ADDRESS_SRC:
3756 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3757 &sav->sah->saidx.src.sa,
3758 FULLMASK, IPSEC_ULPROTO_ANY);
3759 break;
3760
3761 case SADB_EXT_ADDRESS_DST:
3762 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3763 &sav->sah->saidx.dst.sa,
3764 FULLMASK, IPSEC_ULPROTO_ANY);
3765 break;
3766
3767 case SADB_EXT_KEY_AUTH:
3768 if (!sav->key_auth)
3769 continue;
3770 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3771 p = sav->key_auth;
3772 break;
3773
3774 case SADB_EXT_KEY_ENCRYPT:
3775 if (!sav->key_enc)
3776 continue;
3777 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3778 p = sav->key_enc;
3779 break;
3780
3781 case SADB_EXT_LIFETIME_CURRENT:
3782 KASSERT(sav->lft_c != NULL);
3783 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3784 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3785 lt.sadb_lifetime_addtime =
3786 time_mono_to_wall(lt.sadb_lifetime_addtime);
3787 lt.sadb_lifetime_usetime =
3788 time_mono_to_wall(lt.sadb_lifetime_usetime);
3789 p = <
3790 break;
3791
3792 case SADB_EXT_LIFETIME_HARD:
3793 if (!sav->lft_h)
3794 continue;
3795 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3796 p = sav->lft_h;
3797 break;
3798
3799 case SADB_EXT_LIFETIME_SOFT:
3800 if (!sav->lft_s)
3801 continue;
3802 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3803 p = sav->lft_s;
3804 break;
3805
3806 case SADB_X_EXT_NAT_T_TYPE:
3807 m = key_setsadbxtype(sav->natt_type);
3808 break;
3809
3810 case SADB_X_EXT_NAT_T_DPORT:
3811 if (sav->natt_type == 0)
3812 continue;
3813 m = key_setsadbxport(
3814 key_portfromsaddr(&sav->sah->saidx.dst),
3815 SADB_X_EXT_NAT_T_DPORT);
3816 break;
3817
3818 case SADB_X_EXT_NAT_T_SPORT:
3819 if (sav->natt_type == 0)
3820 continue;
3821 m = key_setsadbxport(
3822 key_portfromsaddr(&sav->sah->saidx.src),
3823 SADB_X_EXT_NAT_T_SPORT);
3824 break;
3825
3826 case SADB_X_EXT_NAT_T_FRAG:
3827 /* don't send frag info if not set */
3828 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3829 continue;
3830 m = key_setsadbxfrag(sav->esp_frag);
3831 break;
3832
3833 case SADB_X_EXT_NAT_T_OAI:
3834 case SADB_X_EXT_NAT_T_OAR:
3835 continue;
3836
3837 case SADB_EXT_ADDRESS_PROXY:
3838 case SADB_EXT_IDENTITY_SRC:
3839 case SADB_EXT_IDENTITY_DST:
3840 /* XXX: should we brought from SPD ? */
3841 case SADB_EXT_SENSITIVITY:
3842 default:
3843 continue;
3844 }
3845
3846 KASSERT(!(m && p));
3847 if (!m && !p)
3848 goto fail;
3849 if (p && tres) {
3850 M_PREPEND(tres, l, M_DONTWAIT);
3851 if (!tres)
3852 goto fail;
3853 memcpy(mtod(tres, void *), p, l);
3854 continue;
3855 }
3856 if (p) {
3857 m = key_alloc_mbuf(l);
3858 if (!m)
3859 goto fail;
3860 m_copyback(m, 0, l, p);
3861 }
3862
3863 if (tres)
3864 m_cat(m, tres);
3865 tres = m;
3866 }
3867
3868 m_cat(result, tres);
3869 tres = NULL; /* avoid free on error below */
3870
3871 if (result->m_len < sizeof(struct sadb_msg)) {
3872 result = m_pullup(result, sizeof(struct sadb_msg));
3873 if (result == NULL)
3874 goto fail;
3875 }
3876
3877 result->m_pkthdr.len = 0;
3878 for (m = result; m; m = m->m_next)
3879 result->m_pkthdr.len += m->m_len;
3880
3881 mtod(result, struct sadb_msg *)->sadb_msg_len =
3882 PFKEY_UNIT64(result->m_pkthdr.len);
3883
3884 return result;
3885
3886 fail:
3887 m_freem(result);
3888 m_freem(tres);
3889 return NULL;
3890 }
3891
3892
3893 /*
3894 * set a type in sadb_x_nat_t_type
3895 */
3896 static struct mbuf *
3897 key_setsadbxtype(u_int16_t type)
3898 {
3899 struct mbuf *m;
3900 size_t len;
3901 struct sadb_x_nat_t_type *p;
3902
3903 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3904
3905 m = key_alloc_mbuf(len);
3906 if (!m || m->m_next) { /*XXX*/
3907 if (m)
3908 m_freem(m);
3909 return NULL;
3910 }
3911
3912 p = mtod(m, struct sadb_x_nat_t_type *);
3913
3914 memset(p, 0, len);
3915 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3916 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3917 p->sadb_x_nat_t_type_type = type;
3918
3919 return m;
3920 }
3921 /*
3922 * set a port in sadb_x_nat_t_port. port is in network order
3923 */
3924 static struct mbuf *
3925 key_setsadbxport(u_int16_t port, u_int16_t type)
3926 {
3927 struct mbuf *m;
3928 size_t len;
3929 struct sadb_x_nat_t_port *p;
3930
3931 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3932
3933 m = key_alloc_mbuf(len);
3934 if (!m || m->m_next) { /*XXX*/
3935 if (m)
3936 m_freem(m);
3937 return NULL;
3938 }
3939
3940 p = mtod(m, struct sadb_x_nat_t_port *);
3941
3942 memset(p, 0, len);
3943 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3944 p->sadb_x_nat_t_port_exttype = type;
3945 p->sadb_x_nat_t_port_port = port;
3946
3947 return m;
3948 }
3949
3950 /*
3951 * set fragmentation info in sadb_x_nat_t_frag
3952 */
3953 static struct mbuf *
3954 key_setsadbxfrag(u_int16_t flen)
3955 {
3956 struct mbuf *m;
3957 size_t len;
3958 struct sadb_x_nat_t_frag *p;
3959
3960 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3961
3962 m = key_alloc_mbuf(len);
3963 if (!m || m->m_next) { /*XXX*/
3964 if (m)
3965 m_freem(m);
3966 return NULL;
3967 }
3968
3969 p = mtod(m, struct sadb_x_nat_t_frag *);
3970
3971 memset(p, 0, len);
3972 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3973 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3974 p->sadb_x_nat_t_frag_fraglen = flen;
3975
3976 return m;
3977 }
3978
3979 /*
3980 * Get port from sockaddr, port is in network order
3981 */
3982 u_int16_t
3983 key_portfromsaddr(const union sockaddr_union *saddr)
3984 {
3985 u_int16_t port;
3986
3987 switch (saddr->sa.sa_family) {
3988 case AF_INET: {
3989 port = saddr->sin.sin_port;
3990 break;
3991 }
3992 #ifdef INET6
3993 case AF_INET6: {
3994 port = saddr->sin6.sin6_port;
3995 break;
3996 }
3997 #endif
3998 default:
3999 printf("%s: unexpected address family\n", __func__);
4000 port = 0;
4001 break;
4002 }
4003
4004 return port;
4005 }
4006
4007
4008 /*
4009 * Set port is struct sockaddr. port is in network order
4010 */
4011 static void
4012 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
4013 {
4014 switch (saddr->sa.sa_family) {
4015 case AF_INET: {
4016 saddr->sin.sin_port = port;
4017 break;
4018 }
4019 #ifdef INET6
4020 case AF_INET6: {
4021 saddr->sin6.sin6_port = port;
4022 break;
4023 }
4024 #endif
4025 default:
4026 printf("%s: unexpected address family %d\n", __func__,
4027 saddr->sa.sa_family);
4028 break;
4029 }
4030
4031 return;
4032 }
4033
4034 /*
4035 * Safety check sa_len
4036 */
4037 static int
4038 key_checksalen(const union sockaddr_union *saddr)
4039 {
4040 switch (saddr->sa.sa_family) {
4041 case AF_INET:
4042 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
4043 return -1;
4044 break;
4045 #ifdef INET6
4046 case AF_INET6:
4047 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
4048 return -1;
4049 break;
4050 #endif
4051 default:
4052 printf("%s: unexpected sa_family %d\n", __func__,
4053 saddr->sa.sa_family);
4054 return -1;
4055 break;
4056 }
4057 return 0;
4058 }
4059
4060
4061 /*
4062 * set data into sadb_msg.
4063 */
4064 static struct mbuf *
4065 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
4066 u_int32_t seq, pid_t pid, u_int16_t reserved)
4067 {
4068 struct mbuf *m;
4069 struct sadb_msg *p;
4070 int len;
4071
4072 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
4073
4074 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
4075
4076 MGETHDR(m, M_DONTWAIT, MT_DATA);
4077 if (m && len > MHLEN) {
4078 MCLGET(m, M_DONTWAIT);
4079 if ((m->m_flags & M_EXT) == 0) {
4080 m_freem(m);
4081 m = NULL;
4082 }
4083 }
4084 if (!m)
4085 return NULL;
4086 m->m_pkthdr.len = m->m_len = len;
4087 m->m_next = NULL;
4088
4089 p = mtod(m, struct sadb_msg *);
4090
4091 memset(p, 0, len);
4092 p->sadb_msg_version = PF_KEY_V2;
4093 p->sadb_msg_type = type;
4094 p->sadb_msg_errno = 0;
4095 p->sadb_msg_satype = satype;
4096 p->sadb_msg_len = PFKEY_UNIT64(tlen);
4097 p->sadb_msg_reserved = reserved;
4098 p->sadb_msg_seq = seq;
4099 p->sadb_msg_pid = (u_int32_t)pid;
4100
4101 return m;
4102 }
4103
4104 /*
4105 * copy secasvar data into sadb_address.
4106 */
4107 static struct mbuf *
4108 key_setsadbsa(struct secasvar *sav)
4109 {
4110 struct mbuf *m;
4111 struct sadb_sa *p;
4112 int len;
4113
4114 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4115 m = key_alloc_mbuf(len);
4116 if (!m || m->m_next) { /*XXX*/
4117 if (m)
4118 m_freem(m);
4119 return NULL;
4120 }
4121
4122 p = mtod(m, struct sadb_sa *);
4123
4124 memset(p, 0, len);
4125 p->sadb_sa_len = PFKEY_UNIT64(len);
4126 p->sadb_sa_exttype = SADB_EXT_SA;
4127 p->sadb_sa_spi = sav->spi;
4128 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4129 p->sadb_sa_state = sav->state;
4130 p->sadb_sa_auth = sav->alg_auth;
4131 p->sadb_sa_encrypt = sav->alg_enc;
4132 p->sadb_sa_flags = sav->flags;
4133
4134 return m;
4135 }
4136
4137 /*
4138 * set data into sadb_address.
4139 */
4140 static struct mbuf *
4141 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4142 u_int8_t prefixlen, u_int16_t ul_proto)
4143 {
4144 struct mbuf *m;
4145 struct sadb_address *p;
4146 size_t len;
4147
4148 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4149 PFKEY_ALIGN8(saddr->sa_len);
4150 m = key_alloc_mbuf(len);
4151 if (!m || m->m_next) { /*XXX*/
4152 if (m)
4153 m_freem(m);
4154 return NULL;
4155 }
4156
4157 p = mtod(m, struct sadb_address *);
4158
4159 memset(p, 0, len);
4160 p->sadb_address_len = PFKEY_UNIT64(len);
4161 p->sadb_address_exttype = exttype;
4162 p->sadb_address_proto = ul_proto;
4163 if (prefixlen == FULLMASK) {
4164 switch (saddr->sa_family) {
4165 case AF_INET:
4166 prefixlen = sizeof(struct in_addr) << 3;
4167 break;
4168 case AF_INET6:
4169 prefixlen = sizeof(struct in6_addr) << 3;
4170 break;
4171 default:
4172 ; /*XXX*/
4173 }
4174 }
4175 p->sadb_address_prefixlen = prefixlen;
4176 p->sadb_address_reserved = 0;
4177
4178 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4179 saddr, saddr->sa_len);
4180
4181 return m;
4182 }
4183
4184 #if 0
4185 /*
4186 * set data into sadb_ident.
4187 */
4188 static struct mbuf *
4189 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4190 void *string, int stringlen, u_int64_t id)
4191 {
4192 struct mbuf *m;
4193 struct sadb_ident *p;
4194 size_t len;
4195
4196 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4197 m = key_alloc_mbuf(len);
4198 if (!m || m->m_next) { /*XXX*/
4199 if (m)
4200 m_freem(m);
4201 return NULL;
4202 }
4203
4204 p = mtod(m, struct sadb_ident *);
4205
4206 memset(p, 0, len);
4207 p->sadb_ident_len = PFKEY_UNIT64(len);
4208 p->sadb_ident_exttype = exttype;
4209 p->sadb_ident_type = idtype;
4210 p->sadb_ident_reserved = 0;
4211 p->sadb_ident_id = id;
4212
4213 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4214 string, stringlen);
4215
4216 return m;
4217 }
4218 #endif
4219
4220 /*
4221 * set data into sadb_x_sa2.
4222 */
4223 static struct mbuf *
4224 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4225 {
4226 struct mbuf *m;
4227 struct sadb_x_sa2 *p;
4228 size_t len;
4229
4230 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4231 m = key_alloc_mbuf(len);
4232 if (!m || m->m_next) { /*XXX*/
4233 if (m)
4234 m_freem(m);
4235 return NULL;
4236 }
4237
4238 p = mtod(m, struct sadb_x_sa2 *);
4239
4240 memset(p, 0, len);
4241 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4242 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4243 p->sadb_x_sa2_mode = mode;
4244 p->sadb_x_sa2_reserved1 = 0;
4245 p->sadb_x_sa2_reserved2 = 0;
4246 p->sadb_x_sa2_sequence = seq;
4247 p->sadb_x_sa2_reqid = reqid;
4248
4249 return m;
4250 }
4251
4252 /*
4253 * set data into sadb_x_policy
4254 */
4255 static struct mbuf *
4256 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4257 {
4258 struct mbuf *m;
4259 struct sadb_x_policy *p;
4260 size_t len;
4261
4262 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4263 m = key_alloc_mbuf(len);
4264 if (!m || m->m_next) { /*XXX*/
4265 if (m)
4266 m_freem(m);
4267 return NULL;
4268 }
4269
4270 p = mtod(m, struct sadb_x_policy *);
4271
4272 memset(p, 0, len);
4273 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4274 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4275 p->sadb_x_policy_type = type;
4276 p->sadb_x_policy_dir = dir;
4277 p->sadb_x_policy_id = id;
4278
4279 return m;
4280 }
4281
4282 /* %%% utilities */
4283 /*
4284 * copy a buffer into the new buffer allocated.
4285 */
4286 static void *
4287 key_newbuf(const void *src, u_int len)
4288 {
4289 void *new;
4290
4291 new = kmem_alloc(len, KM_SLEEP);
4292 memcpy(new, src, len);
4293
4294 return new;
4295 }
4296
4297 /* compare my own address
4298 * OUT: 1: true, i.e. my address.
4299 * 0: false
4300 */
4301 int
4302 key_ismyaddr(const struct sockaddr *sa)
4303 {
4304 #ifdef INET
4305 const struct sockaddr_in *sin;
4306 const struct in_ifaddr *ia;
4307 int s;
4308 #endif
4309
4310 KASSERT(sa != NULL);
4311
4312 switch (sa->sa_family) {
4313 #ifdef INET
4314 case AF_INET:
4315 sin = (const struct sockaddr_in *)sa;
4316 s = pserialize_read_enter();
4317 IN_ADDRLIST_READER_FOREACH(ia) {
4318 if (sin->sin_family == ia->ia_addr.sin_family &&
4319 sin->sin_len == ia->ia_addr.sin_len &&
4320 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4321 {
4322 pserialize_read_exit(s);
4323 return 1;
4324 }
4325 }
4326 pserialize_read_exit(s);
4327 break;
4328 #endif
4329 #ifdef INET6
4330 case AF_INET6:
4331 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4332 #endif
4333 }
4334
4335 return 0;
4336 }
4337
4338 #ifdef INET6
4339 /*
4340 * compare my own address for IPv6.
4341 * 1: ours
4342 * 0: other
4343 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4344 */
4345 #include <netinet6/in6_var.h>
4346
4347 static int
4348 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4349 {
4350 struct in6_ifaddr *ia;
4351 int s;
4352 struct psref psref;
4353 int bound;
4354 int ours = 1;
4355
4356 bound = curlwp_bind();
4357 s = pserialize_read_enter();
4358 IN6_ADDRLIST_READER_FOREACH(ia) {
4359 bool ingroup;
4360
4361 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4362 (const struct sockaddr *)&ia->ia_addr, 0)) {
4363 pserialize_read_exit(s);
4364 goto ours;
4365 }
4366 ia6_acquire(ia, &psref);
4367 pserialize_read_exit(s);
4368
4369 /*
4370 * XXX Multicast
4371 * XXX why do we care about multlicast here while we don't care
4372 * about IPv4 multicast??
4373 * XXX scope
4374 */
4375 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4376 if (ingroup) {
4377 ia6_release(ia, &psref);
4378 goto ours;
4379 }
4380
4381 s = pserialize_read_enter();
4382 ia6_release(ia, &psref);
4383 }
4384 pserialize_read_exit(s);
4385
4386 /* loopback, just for safety */
4387 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4388 goto ours;
4389
4390 ours = 0;
4391 ours:
4392 curlwp_bindx(bound);
4393
4394 return ours;
4395 }
4396 #endif /*INET6*/
4397
4398 /*
4399 * compare two secasindex structure.
4400 * flag can specify to compare 2 saidxes.
4401 * compare two secasindex structure without both mode and reqid.
4402 * don't compare port.
4403 * IN:
4404 * saidx0: source, it can be in SAD.
4405 * saidx1: object.
4406 * OUT:
4407 * 1 : equal
4408 * 0 : not equal
4409 */
4410 static int
4411 key_saidx_match(
4412 const struct secasindex *saidx0,
4413 const struct secasindex *saidx1,
4414 int flag)
4415 {
4416 int chkport;
4417 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4418
4419 KASSERT(saidx0 != NULL);
4420 KASSERT(saidx1 != NULL);
4421
4422 /* sanity */
4423 if (saidx0->proto != saidx1->proto)
4424 return 0;
4425
4426 if (flag == CMP_EXACTLY) {
4427 if (saidx0->mode != saidx1->mode)
4428 return 0;
4429 if (saidx0->reqid != saidx1->reqid)
4430 return 0;
4431 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4432 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4433 return 0;
4434 } else {
4435
4436 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4437 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4438 /*
4439 * If reqid of SPD is non-zero, unique SA is required.
4440 * The result must be of same reqid in this case.
4441 */
4442 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4443 return 0;
4444 }
4445
4446 if (flag == CMP_MODE_REQID) {
4447 if (saidx0->mode != IPSEC_MODE_ANY &&
4448 saidx0->mode != saidx1->mode)
4449 return 0;
4450 }
4451
4452
4453 sa0src = &saidx0->src.sa;
4454 sa0dst = &saidx0->dst.sa;
4455 sa1src = &saidx1->src.sa;
4456 sa1dst = &saidx1->dst.sa;
4457 /*
4458 * If NAT-T is enabled, check ports for tunnel mode.
4459 * Don't do it for transport mode, as there is no
4460 * port information available in the SP.
4461 * Also don't check ports if they are set to zero
4462 * in the SPD: This means we have a non-generated
4463 * SPD which can't know UDP ports.
4464 */
4465 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4466 chkport = PORT_LOOSE;
4467 else
4468 chkport = PORT_NONE;
4469
4470 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4471 return 0;
4472 }
4473 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4474 return 0;
4475 }
4476 }
4477
4478 return 1;
4479 }
4480
4481 /*
4482 * compare two secindex structure exactly.
4483 * IN:
4484 * spidx0: source, it is often in SPD.
4485 * spidx1: object, it is often from PFKEY message.
4486 * OUT:
4487 * 1 : equal
4488 * 0 : not equal
4489 */
4490 static int
4491 key_spidx_match_exactly(
4492 const struct secpolicyindex *spidx0,
4493 const struct secpolicyindex *spidx1)
4494 {
4495
4496 KASSERT(spidx0 != NULL);
4497 KASSERT(spidx1 != NULL);
4498
4499 /* sanity */
4500 if (spidx0->prefs != spidx1->prefs ||
4501 spidx0->prefd != spidx1->prefd ||
4502 spidx0->ul_proto != spidx1->ul_proto)
4503 return 0;
4504
4505 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4506 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4507 }
4508
4509 /*
4510 * compare two secindex structure with mask.
4511 * IN:
4512 * spidx0: source, it is often in SPD.
4513 * spidx1: object, it is often from IP header.
4514 * OUT:
4515 * 1 : equal
4516 * 0 : not equal
4517 */
4518 static int
4519 key_spidx_match_withmask(
4520 const struct secpolicyindex *spidx0,
4521 const struct secpolicyindex *spidx1)
4522 {
4523
4524 KASSERT(spidx0 != NULL);
4525 KASSERT(spidx1 != NULL);
4526
4527 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4528 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4529 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4530 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4531 return 0;
4532
4533 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4534 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4535 spidx0->ul_proto != spidx1->ul_proto)
4536 return 0;
4537
4538 switch (spidx0->src.sa.sa_family) {
4539 case AF_INET:
4540 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4541 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4542 return 0;
4543 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4544 &spidx1->src.sin.sin_addr, spidx0->prefs))
4545 return 0;
4546 break;
4547 case AF_INET6:
4548 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4549 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4550 return 0;
4551 /*
4552 * scope_id check. if sin6_scope_id is 0, we regard it
4553 * as a wildcard scope, which matches any scope zone ID.
4554 */
4555 if (spidx0->src.sin6.sin6_scope_id &&
4556 spidx1->src.sin6.sin6_scope_id &&
4557 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4558 return 0;
4559 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4560 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4561 return 0;
4562 break;
4563 default:
4564 /* XXX */
4565 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4566 return 0;
4567 break;
4568 }
4569
4570 switch (spidx0->dst.sa.sa_family) {
4571 case AF_INET:
4572 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4573 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4574 return 0;
4575 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4576 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4577 return 0;
4578 break;
4579 case AF_INET6:
4580 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4581 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4582 return 0;
4583 /*
4584 * scope_id check. if sin6_scope_id is 0, we regard it
4585 * as a wildcard scope, which matches any scope zone ID.
4586 */
4587 if (spidx0->src.sin6.sin6_scope_id &&
4588 spidx1->src.sin6.sin6_scope_id &&
4589 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4590 return 0;
4591 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4592 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4593 return 0;
4594 break;
4595 default:
4596 /* XXX */
4597 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4598 return 0;
4599 break;
4600 }
4601
4602 /* XXX Do we check other field ? e.g. flowinfo */
4603
4604 return 1;
4605 }
4606
4607 /* returns 0 on match */
4608 static int
4609 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4610 {
4611 switch (howport) {
4612 case PORT_NONE:
4613 return 0;
4614 case PORT_LOOSE:
4615 if (port1 == 0 || port2 == 0)
4616 return 0;
4617 /*FALLTHROUGH*/
4618 case PORT_STRICT:
4619 if (port1 != port2) {
4620 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4621 "port fail %d != %d\n", port1, port2);
4622 return 1;
4623 }
4624 return 0;
4625 default:
4626 KASSERT(0);
4627 return 1;
4628 }
4629 }
4630
4631 /* returns 1 on match */
4632 static int
4633 key_sockaddr_match(
4634 const struct sockaddr *sa1,
4635 const struct sockaddr *sa2,
4636 int howport)
4637 {
4638 const struct sockaddr_in *sin1, *sin2;
4639 const struct sockaddr_in6 *sin61, *sin62;
4640 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
4641
4642 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4643 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4644 "fam/len fail %d != %d || %d != %d\n",
4645 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4646 sa2->sa_len);
4647 return 0;
4648 }
4649
4650 switch (sa1->sa_family) {
4651 case AF_INET:
4652 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4653 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4654 "len fail %d != %zu\n",
4655 sa1->sa_len, sizeof(struct sockaddr_in));
4656 return 0;
4657 }
4658 sin1 = (const struct sockaddr_in *)sa1;
4659 sin2 = (const struct sockaddr_in *)sa2;
4660 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4661 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4662 "addr fail %s != %s\n",
4663 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4664 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
4665 return 0;
4666 }
4667 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4668 return 0;
4669 }
4670 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4671 "addr success %s[%d] == %s[%d]\n",
4672 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4673 sin1->sin_port,
4674 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
4675 sin2->sin_port);
4676 break;
4677 case AF_INET6:
4678 sin61 = (const struct sockaddr_in6 *)sa1;
4679 sin62 = (const struct sockaddr_in6 *)sa2;
4680 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4681 return 0; /*EINVAL*/
4682
4683 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4684 return 0;
4685 }
4686 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4687 return 0;
4688 }
4689 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4690 return 0;
4691 }
4692 break;
4693 default:
4694 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4695 return 0;
4696 break;
4697 }
4698
4699 return 1;
4700 }
4701
4702 /*
4703 * compare two buffers with mask.
4704 * IN:
4705 * addr1: source
4706 * addr2: object
4707 * bits: Number of bits to compare
4708 * OUT:
4709 * 1 : equal
4710 * 0 : not equal
4711 */
4712 static int
4713 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4714 {
4715 const unsigned char *p1 = a1;
4716 const unsigned char *p2 = a2;
4717
4718 /* XXX: This could be considerably faster if we compare a word
4719 * at a time, but it is complicated on LSB Endian machines */
4720
4721 /* Handle null pointers */
4722 if (p1 == NULL || p2 == NULL)
4723 return (p1 == p2);
4724
4725 while (bits >= 8) {
4726 if (*p1++ != *p2++)
4727 return 0;
4728 bits -= 8;
4729 }
4730
4731 if (bits > 0) {
4732 u_int8_t mask = ~((1<<(8-bits))-1);
4733 if ((*p1 & mask) != (*p2 & mask))
4734 return 0;
4735 }
4736 return 1; /* Match! */
4737 }
4738
4739 static void
4740 key_timehandler_spd(time_t now)
4741 {
4742 u_int dir;
4743 struct secpolicy *sp;
4744
4745 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4746 retry:
4747 mutex_enter(&key_spd.lock);
4748 SPLIST_WRITER_FOREACH(sp, dir) {
4749 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4750
4751 if (sp->lifetime == 0 && sp->validtime == 0)
4752 continue;
4753
4754 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4755 (sp->validtime && now - sp->lastused > sp->validtime)) {
4756 key_unlink_sp(sp);
4757 mutex_exit(&key_spd.lock);
4758 key_spdexpire(sp);
4759 key_destroy_sp(sp);
4760 goto retry;
4761 }
4762 }
4763 mutex_exit(&key_spd.lock);
4764 }
4765
4766 retry_socksplist:
4767 mutex_enter(&key_spd.lock);
4768 SOCKSPLIST_WRITER_FOREACH(sp) {
4769 if (sp->state != IPSEC_SPSTATE_DEAD)
4770 continue;
4771
4772 key_unlink_sp(sp);
4773 mutex_exit(&key_spd.lock);
4774 key_destroy_sp(sp);
4775 goto retry_socksplist;
4776 }
4777 mutex_exit(&key_spd.lock);
4778 }
4779
4780 static void
4781 key_timehandler_sad(time_t now)
4782 {
4783 struct secashead *sah;
4784 int s;
4785
4786 restart:
4787 mutex_enter(&key_sad.lock);
4788 SAHLIST_WRITER_FOREACH(sah) {
4789 /* If sah has been dead and has no sav, then delete it */
4790 if (sah->state == SADB_SASTATE_DEAD &&
4791 !key_sah_has_sav(sah)) {
4792 key_unlink_sah(sah);
4793 mutex_exit(&key_sad.lock);
4794 key_destroy_sah(sah);
4795 goto restart;
4796 }
4797 }
4798 mutex_exit(&key_sad.lock);
4799
4800 s = pserialize_read_enter();
4801 SAHLIST_READER_FOREACH(sah) {
4802 struct secasvar *sav;
4803
4804 key_sah_ref(sah);
4805 pserialize_read_exit(s);
4806
4807 /* if LARVAL entry doesn't become MATURE, delete it. */
4808 mutex_enter(&key_sad.lock);
4809 restart_sav_LARVAL:
4810 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4811 if (now - sav->created > key_larval_lifetime) {
4812 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4813 goto restart_sav_LARVAL;
4814 }
4815 }
4816 mutex_exit(&key_sad.lock);
4817
4818 /*
4819 * check MATURE entry to start to send expire message
4820 * whether or not.
4821 */
4822 restart_sav_MATURE:
4823 mutex_enter(&key_sad.lock);
4824 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4825 /* we don't need to check. */
4826 if (sav->lft_s == NULL)
4827 continue;
4828
4829 /* sanity check */
4830 KASSERT(sav->lft_c != NULL);
4831
4832 /* check SOFT lifetime */
4833 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4834 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4835 /*
4836 * check SA to be used whether or not.
4837 * when SA hasn't been used, delete it.
4838 */
4839 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4840 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4841 mutex_exit(&key_sad.lock);
4842 } else {
4843 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4844 mutex_exit(&key_sad.lock);
4845 /*
4846 * XXX If we keep to send expire
4847 * message in the status of
4848 * DYING. Do remove below code.
4849 */
4850 key_expire(sav);
4851 }
4852 goto restart_sav_MATURE;
4853 }
4854 /* check SOFT lifetime by bytes */
4855 /*
4856 * XXX I don't know the way to delete this SA
4857 * when new SA is installed. Caution when it's
4858 * installed too big lifetime by time.
4859 */
4860 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4861 sav->lft_s->sadb_lifetime_bytes <
4862 sav->lft_c->sadb_lifetime_bytes) {
4863
4864 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4865 mutex_exit(&key_sad.lock);
4866 /*
4867 * XXX If we keep to send expire
4868 * message in the status of
4869 * DYING. Do remove below code.
4870 */
4871 key_expire(sav);
4872 goto restart_sav_MATURE;
4873 }
4874 }
4875 mutex_exit(&key_sad.lock);
4876
4877 /* check DYING entry to change status to DEAD. */
4878 mutex_enter(&key_sad.lock);
4879 restart_sav_DYING:
4880 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4881 /* we don't need to check. */
4882 if (sav->lft_h == NULL)
4883 continue;
4884
4885 /* sanity check */
4886 KASSERT(sav->lft_c != NULL);
4887
4888 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4889 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4890 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4891 goto restart_sav_DYING;
4892 }
4893 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4894 else if (sav->lft_s != NULL
4895 && sav->lft_s->sadb_lifetime_addtime != 0
4896 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4897 /*
4898 * XXX: should be checked to be
4899 * installed the valid SA.
4900 */
4901
4902 /*
4903 * If there is no SA then sending
4904 * expire message.
4905 */
4906 key_expire(sav);
4907 }
4908 #endif
4909 /* check HARD lifetime by bytes */
4910 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4911 sav->lft_h->sadb_lifetime_bytes <
4912 sav->lft_c->sadb_lifetime_bytes) {
4913 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4914 goto restart_sav_DYING;
4915 }
4916 }
4917 mutex_exit(&key_sad.lock);
4918
4919 /* delete entry in DEAD */
4920 restart_sav_DEAD:
4921 mutex_enter(&key_sad.lock);
4922 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4923 key_unlink_sav(sav);
4924 mutex_exit(&key_sad.lock);
4925 key_destroy_sav(sav);
4926 goto restart_sav_DEAD;
4927 }
4928 mutex_exit(&key_sad.lock);
4929
4930 s = pserialize_read_enter();
4931 key_sah_unref(sah);
4932 }
4933 pserialize_read_exit(s);
4934 }
4935
4936 static void
4937 key_timehandler_acq(time_t now)
4938 {
4939 #ifndef IPSEC_NONBLOCK_ACQUIRE
4940 struct secacq *acq, *nextacq;
4941
4942 restart:
4943 mutex_enter(&key_misc.lock);
4944 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4945 if (now - acq->created > key_blockacq_lifetime) {
4946 LIST_REMOVE(acq, chain);
4947 mutex_exit(&key_misc.lock);
4948 kmem_free(acq, sizeof(*acq));
4949 goto restart;
4950 }
4951 }
4952 mutex_exit(&key_misc.lock);
4953 #endif
4954 }
4955
4956 static void
4957 key_timehandler_spacq(time_t now)
4958 {
4959 #ifdef notyet
4960 struct secspacq *acq, *nextacq;
4961
4962 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4963 if (now - acq->created > key_blockacq_lifetime) {
4964 KASSERT(__LIST_CHAINED(acq));
4965 LIST_REMOVE(acq, chain);
4966 kmem_free(acq, sizeof(*acq));
4967 }
4968 }
4969 #endif
4970 }
4971
4972 static unsigned int key_timehandler_work_enqueued = 0;
4973
4974 /*
4975 * time handler.
4976 * scanning SPD and SAD to check status for each entries,
4977 * and do to remove or to expire.
4978 */
4979 static void
4980 key_timehandler_work(struct work *wk, void *arg)
4981 {
4982 time_t now = time_uptime;
4983 IPSEC_DECLARE_LOCK_VARIABLE;
4984
4985 /* We can allow enqueuing another work at this point */
4986 atomic_swap_uint(&key_timehandler_work_enqueued, 0);
4987
4988 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4989
4990 key_timehandler_spd(now);
4991 key_timehandler_sad(now);
4992 key_timehandler_acq(now);
4993 key_timehandler_spacq(now);
4994
4995 key_acquire_sendup_pending_mbuf();
4996
4997 /* do exchange to tick time !! */
4998 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4999
5000 IPSEC_RELEASE_GLOBAL_LOCKS();
5001 return;
5002 }
5003
5004 static void
5005 key_timehandler(void *arg)
5006 {
5007
5008 /* Avoid enqueuing another work when one is already enqueued */
5009 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
5010 return;
5011
5012 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
5013 }
5014
5015 u_long
5016 key_random(void)
5017 {
5018 u_long value;
5019
5020 key_randomfill(&value, sizeof(value));
5021 return value;
5022 }
5023
5024 void
5025 key_randomfill(void *p, size_t l)
5026 {
5027
5028 cprng_fast(p, l);
5029 }
5030
5031 /*
5032 * map SADB_SATYPE_* to IPPROTO_*.
5033 * if satype == SADB_SATYPE then satype is mapped to ~0.
5034 * OUT:
5035 * 0: invalid satype.
5036 */
5037 static u_int16_t
5038 key_satype2proto(u_int8_t satype)
5039 {
5040 switch (satype) {
5041 case SADB_SATYPE_UNSPEC:
5042 return IPSEC_PROTO_ANY;
5043 case SADB_SATYPE_AH:
5044 return IPPROTO_AH;
5045 case SADB_SATYPE_ESP:
5046 return IPPROTO_ESP;
5047 case SADB_X_SATYPE_IPCOMP:
5048 return IPPROTO_IPCOMP;
5049 case SADB_X_SATYPE_TCPSIGNATURE:
5050 return IPPROTO_TCP;
5051 default:
5052 return 0;
5053 }
5054 /* NOTREACHED */
5055 }
5056
5057 /*
5058 * map IPPROTO_* to SADB_SATYPE_*
5059 * OUT:
5060 * 0: invalid protocol type.
5061 */
5062 static u_int8_t
5063 key_proto2satype(u_int16_t proto)
5064 {
5065 switch (proto) {
5066 case IPPROTO_AH:
5067 return SADB_SATYPE_AH;
5068 case IPPROTO_ESP:
5069 return SADB_SATYPE_ESP;
5070 case IPPROTO_IPCOMP:
5071 return SADB_X_SATYPE_IPCOMP;
5072 case IPPROTO_TCP:
5073 return SADB_X_SATYPE_TCPSIGNATURE;
5074 default:
5075 return 0;
5076 }
5077 /* NOTREACHED */
5078 }
5079
5080 static int
5081 key_setsecasidx(int proto, int mode, int reqid,
5082 const struct sockaddr *src, const struct sockaddr *dst,
5083 struct secasindex * saidx)
5084 {
5085 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
5086 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
5087
5088 /* sa len safety check */
5089 if (key_checksalen(src_u) != 0)
5090 return -1;
5091 if (key_checksalen(dst_u) != 0)
5092 return -1;
5093
5094 memset(saidx, 0, sizeof(*saidx));
5095 saidx->proto = proto;
5096 saidx->mode = mode;
5097 saidx->reqid = reqid;
5098 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
5099 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
5100
5101 key_porttosaddr(&((saidx)->src), 0);
5102 key_porttosaddr(&((saidx)->dst), 0);
5103 return 0;
5104 }
5105
5106 static void
5107 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
5108 const struct sadb_msghdr *mhp)
5109 {
5110 const struct sadb_address *src0, *dst0;
5111 const struct sockaddr *src, *dst;
5112 const struct sadb_x_policy *xpl0;
5113
5114 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC];
5115 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST];
5116 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5117 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5118 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
5119
5120 memset(spidx, 0, sizeof(*spidx));
5121 spidx->dir = xpl0->sadb_x_policy_dir;
5122 spidx->prefs = src0->sadb_address_prefixlen;
5123 spidx->prefd = dst0->sadb_address_prefixlen;
5124 spidx->ul_proto = src0->sadb_address_proto;
5125 /* XXX boundary check against sa_len */
5126 memcpy(&spidx->src, src, src->sa_len);
5127 memcpy(&spidx->dst, dst, dst->sa_len);
5128 }
5129
5130 /* %%% PF_KEY */
5131 /*
5132 * SADB_GETSPI processing is to receive
5133 * <base, (SA2), src address, dst address, (SPI range)>
5134 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5135 * tree with the status of LARVAL, and send
5136 * <base, SA(*), address(SD)>
5137 * to the IKMPd.
5138 *
5139 * IN: mhp: pointer to the pointer to each header.
5140 * OUT: NULL if fail.
5141 * other if success, return pointer to the message to send.
5142 */
5143 static int
5144 key_api_getspi(struct socket *so, struct mbuf *m,
5145 const struct sadb_msghdr *mhp)
5146 {
5147 const struct sockaddr *src, *dst;
5148 struct secasindex saidx;
5149 struct secashead *sah;
5150 struct secasvar *newsav;
5151 u_int8_t proto;
5152 u_int32_t spi;
5153 u_int8_t mode;
5154 u_int16_t reqid;
5155 int error;
5156
5157 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5158 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5159 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5160 return key_senderror(so, m, EINVAL);
5161 }
5162 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5163 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5164 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5165 return key_senderror(so, m, EINVAL);
5166 }
5167 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5168 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5169 mode = sa2->sadb_x_sa2_mode;
5170 reqid = sa2->sadb_x_sa2_reqid;
5171 } else {
5172 mode = IPSEC_MODE_ANY;
5173 reqid = 0;
5174 }
5175
5176 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5177 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5178
5179 /* map satype to proto */
5180 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5181 if (proto == 0) {
5182 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5183 return key_senderror(so, m, EINVAL);
5184 }
5185
5186
5187 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5188 if (error != 0)
5189 return key_senderror(so, m, EINVAL);
5190
5191 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5192 if (error != 0)
5193 return key_senderror(so, m, EINVAL);
5194
5195 /* SPI allocation */
5196 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx);
5197 if (spi == 0)
5198 return key_senderror(so, m, EINVAL);
5199
5200 /* get a SA index */
5201 sah = key_getsah_ref(&saidx, CMP_REQID);
5202 if (sah == NULL) {
5203 /* create a new SA index */
5204 sah = key_newsah(&saidx);
5205 if (sah == NULL) {
5206 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5207 return key_senderror(so, m, ENOBUFS);
5208 }
5209 }
5210
5211 /* get a new SA */
5212 /* XXX rewrite */
5213 newsav = KEY_NEWSAV(m, mhp, &error);
5214 if (newsav == NULL) {
5215 key_sah_unref(sah);
5216 /* XXX don't free new SA index allocated in above. */
5217 return key_senderror(so, m, error);
5218 }
5219
5220 /* set spi */
5221 newsav->spi = htonl(spi);
5222
5223 /* Add to sah#savlist */
5224 key_init_sav(newsav);
5225 newsav->sah = sah;
5226 newsav->state = SADB_SASTATE_LARVAL;
5227 mutex_enter(&key_sad.lock);
5228 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5229 mutex_exit(&key_sad.lock);
5230 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5231
5232 key_sah_unref(sah);
5233
5234 #ifndef IPSEC_NONBLOCK_ACQUIRE
5235 /* delete the entry in key_misc.acqlist */
5236 if (mhp->msg->sadb_msg_seq != 0) {
5237 struct secacq *acq;
5238 mutex_enter(&key_misc.lock);
5239 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5240 if (acq != NULL) {
5241 /* reset counter in order to deletion by timehandler. */
5242 acq->created = time_uptime;
5243 acq->count = 0;
5244 }
5245 mutex_exit(&key_misc.lock);
5246 }
5247 #endif
5248
5249 {
5250 struct mbuf *n, *nn;
5251 struct sadb_sa *m_sa;
5252 int off, len;
5253
5254 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5255 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5256
5257 /* create new sadb_msg to reply. */
5258 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5259 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5260
5261 MGETHDR(n, M_DONTWAIT, MT_DATA);
5262 if (len > MHLEN) {
5263 MCLGET(n, M_DONTWAIT);
5264 if ((n->m_flags & M_EXT) == 0) {
5265 m_freem(n);
5266 n = NULL;
5267 }
5268 }
5269 if (!n)
5270 return key_senderror(so, m, ENOBUFS);
5271
5272 n->m_len = len;
5273 n->m_next = NULL;
5274 off = 0;
5275
5276 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5277 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5278
5279 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5280 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5281 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5282 m_sa->sadb_sa_spi = htonl(spi);
5283 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5284
5285 KASSERTMSG(off == len, "length inconsistency");
5286
5287 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5288 SADB_EXT_ADDRESS_DST);
5289 if (!n->m_next) {
5290 m_freem(n);
5291 return key_senderror(so, m, ENOBUFS);
5292 }
5293
5294 if (n->m_len < sizeof(struct sadb_msg)) {
5295 n = m_pullup(n, sizeof(struct sadb_msg));
5296 if (n == NULL)
5297 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5298 }
5299
5300 n->m_pkthdr.len = 0;
5301 for (nn = n; nn; nn = nn->m_next)
5302 n->m_pkthdr.len += nn->m_len;
5303
5304 key_fill_replymsg(n, newsav->seq);
5305
5306 m_freem(m);
5307 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5308 }
5309 }
5310
5311 /*
5312 * allocating new SPI
5313 * called by key_api_getspi().
5314 * OUT:
5315 * 0: failure.
5316 * others: success.
5317 */
5318 static u_int32_t
5319 key_do_getnewspi(const struct sadb_spirange *spirange,
5320 const struct secasindex *saidx)
5321 {
5322 u_int32_t newspi;
5323 u_int32_t spmin, spmax;
5324 int count = key_spi_trycnt;
5325
5326 /* set spi range to allocate */
5327 if (spirange != NULL) {
5328 spmin = spirange->sadb_spirange_min;
5329 spmax = spirange->sadb_spirange_max;
5330 } else {
5331 spmin = key_spi_minval;
5332 spmax = key_spi_maxval;
5333 }
5334 /* IPCOMP needs 2-byte SPI */
5335 if (saidx->proto == IPPROTO_IPCOMP) {
5336 u_int32_t t;
5337 if (spmin >= 0x10000)
5338 spmin = 0xffff;
5339 if (spmax >= 0x10000)
5340 spmax = 0xffff;
5341 if (spmin > spmax) {
5342 t = spmin; spmin = spmax; spmax = t;
5343 }
5344 }
5345
5346 if (spmin == spmax) {
5347 if (key_checkspidup(saidx, htonl(spmin))) {
5348 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5349 return 0;
5350 }
5351
5352 count--; /* taking one cost. */
5353 newspi = spmin;
5354
5355 } else {
5356
5357 /* init SPI */
5358 newspi = 0;
5359
5360 /* when requesting to allocate spi ranged */
5361 while (count--) {
5362 /* generate pseudo-random SPI value ranged. */
5363 newspi = spmin + (key_random() % (spmax - spmin + 1));
5364
5365 if (!key_checkspidup(saidx, htonl(newspi)))
5366 break;
5367 }
5368
5369 if (count == 0 || newspi == 0) {
5370 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5371 return 0;
5372 }
5373 }
5374
5375 /* statistics */
5376 keystat.getspi_count =
5377 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5378
5379 return newspi;
5380 }
5381
5382 static int
5383 key_handle_natt_info(struct secasvar *sav,
5384 const struct sadb_msghdr *mhp)
5385 {
5386 const char *msg = "?" ;
5387 struct sadb_x_nat_t_type *type;
5388 struct sadb_x_nat_t_port *sport, *dport;
5389 struct sadb_address *iaddr, *raddr;
5390 struct sadb_x_nat_t_frag *frag;
5391
5392 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5393 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5394 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5395 return 0;
5396
5397 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5398 msg = "TYPE";
5399 goto bad;
5400 }
5401
5402 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5403 msg = "SPORT";
5404 goto bad;
5405 }
5406
5407 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5408 msg = "DPORT";
5409 goto bad;
5410 }
5411
5412 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5413 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5414 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5415 msg = "OAI";
5416 goto bad;
5417 }
5418 }
5419
5420 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5421 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5422 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5423 msg = "OAR";
5424 goto bad;
5425 }
5426 }
5427
5428 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5429 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5430 msg = "FRAG";
5431 goto bad;
5432 }
5433 }
5434
5435 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5436 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5437 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5438 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
5439 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
5440 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5441
5442 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5443 type->sadb_x_nat_t_type_type,
5444 ntohs(sport->sadb_x_nat_t_port_port),
5445 ntohs(dport->sadb_x_nat_t_port_port));
5446
5447 sav->natt_type = type->sadb_x_nat_t_type_type;
5448 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5449 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5450 if (frag)
5451 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5452 else
5453 sav->esp_frag = IP_MAXPACKET;
5454
5455 return 0;
5456 bad:
5457 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5458 __USE(msg);
5459 return -1;
5460 }
5461
5462 /* Just update the IPSEC_NAT_T ports if present */
5463 static int
5464 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5465 const struct sadb_msghdr *mhp)
5466 {
5467 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5468 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5469 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5470 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5471
5472 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5473 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5474 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5475 struct sadb_x_nat_t_type *type;
5476 struct sadb_x_nat_t_port *sport;
5477 struct sadb_x_nat_t_port *dport;
5478
5479 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5480 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5481 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5482 IPSECLOG(LOG_DEBUG, "invalid message\n");
5483 return -1;
5484 }
5485
5486 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5487 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5488 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5489
5490 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5491 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5492
5493 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5494 type->sadb_x_nat_t_type_type,
5495 ntohs(sport->sadb_x_nat_t_port_port),
5496 ntohs(dport->sadb_x_nat_t_port_port));
5497 }
5498
5499 return 0;
5500 }
5501
5502
5503 /*
5504 * SADB_UPDATE processing
5505 * receive
5506 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5507 * key(AE), (identity(SD),) (sensitivity)>
5508 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5509 * and send
5510 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5511 * (identity(SD),) (sensitivity)>
5512 * to the ikmpd.
5513 *
5514 * m will always be freed.
5515 */
5516 static int
5517 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5518 {
5519 struct sadb_sa *sa0;
5520 const struct sockaddr *src, *dst;
5521 struct secasindex saidx;
5522 struct secashead *sah;
5523 struct secasvar *sav, *newsav;
5524 u_int16_t proto;
5525 u_int8_t mode;
5526 u_int16_t reqid;
5527 int error;
5528
5529 /* map satype to proto */
5530 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5531 if (proto == 0) {
5532 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5533 return key_senderror(so, m, EINVAL);
5534 }
5535
5536 if (mhp->ext[SADB_EXT_SA] == NULL ||
5537 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5538 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5539 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5540 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5541 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5542 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5543 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5544 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5545 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5546 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5547 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5548 return key_senderror(so, m, EINVAL);
5549 }
5550 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5551 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5552 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5553 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5554 return key_senderror(so, m, EINVAL);
5555 }
5556 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5557 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5558 mode = sa2->sadb_x_sa2_mode;
5559 reqid = sa2->sadb_x_sa2_reqid;
5560 } else {
5561 mode = IPSEC_MODE_ANY;
5562 reqid = 0;
5563 }
5564 /* XXX boundary checking for other extensions */
5565
5566 sa0 = mhp->ext[SADB_EXT_SA];
5567 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5568 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5569
5570 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5571 if (error != 0)
5572 return key_senderror(so, m, EINVAL);
5573
5574 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5575 if (error != 0)
5576 return key_senderror(so, m, EINVAL);
5577
5578 /* get a SA header */
5579 sah = key_getsah_ref(&saidx, CMP_REQID);
5580 if (sah == NULL) {
5581 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5582 return key_senderror(so, m, ENOENT);
5583 }
5584
5585 /* set spidx if there */
5586 /* XXX rewrite */
5587 error = key_setident(sah, m, mhp);
5588 if (error)
5589 goto error_sah;
5590
5591 /* find a SA with sequence number. */
5592 #ifdef IPSEC_DOSEQCHECK
5593 if (mhp->msg->sadb_msg_seq != 0) {
5594 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5595 if (sav == NULL) {
5596 IPSECLOG(LOG_DEBUG,
5597 "no larval SA with sequence %u exists.\n",
5598 mhp->msg->sadb_msg_seq);
5599 error = ENOENT;
5600 goto error_sah;
5601 }
5602 }
5603 #else
5604 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5605 if (sav == NULL) {
5606 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5607 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5608 error = EINVAL;
5609 goto error_sah;
5610 }
5611 #endif
5612
5613 /* validity check */
5614 if (sav->sah->saidx.proto != proto) {
5615 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5616 sav->sah->saidx.proto, proto);
5617 error = EINVAL;
5618 goto error;
5619 }
5620 #ifdef IPSEC_DOSEQCHECK
5621 if (sav->spi != sa0->sadb_sa_spi) {
5622 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5623 (u_int32_t)ntohl(sav->spi),
5624 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5625 error = EINVAL;
5626 goto error;
5627 }
5628 #endif
5629 if (sav->pid != mhp->msg->sadb_msg_pid) {
5630 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5631 sav->pid, mhp->msg->sadb_msg_pid);
5632 error = EINVAL;
5633 goto error;
5634 }
5635
5636 /*
5637 * Allocate a new SA instead of modifying the existing SA directly
5638 * to avoid race conditions.
5639 */
5640 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5641
5642 /* copy sav values */
5643 newsav->spi = sav->spi;
5644 newsav->seq = sav->seq;
5645 newsav->created = sav->created;
5646 newsav->pid = sav->pid;
5647 newsav->sah = sav->sah;
5648
5649 error = key_setsaval(newsav, m, mhp);
5650 if (error) {
5651 key_delsav(newsav);
5652 goto error;
5653 }
5654
5655 error = key_handle_natt_info(newsav, mhp);
5656 if (error != 0) {
5657 key_delsav(newsav);
5658 goto error;
5659 }
5660
5661 error = key_init_xform(newsav);
5662 if (error != 0) {
5663 key_delsav(newsav);
5664 goto error;
5665 }
5666
5667 /* Add to sah#savlist */
5668 key_init_sav(newsav);
5669 newsav->state = SADB_SASTATE_MATURE;
5670 mutex_enter(&key_sad.lock);
5671 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5672 mutex_exit(&key_sad.lock);
5673 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5674
5675 key_sah_unref(sah);
5676 sah = NULL;
5677
5678 key_destroy_sav_with_ref(sav);
5679 sav = NULL;
5680
5681 {
5682 struct mbuf *n;
5683
5684 /* set msg buf from mhp */
5685 n = key_getmsgbuf_x1(m, mhp);
5686 if (n == NULL) {
5687 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5688 return key_senderror(so, m, ENOBUFS);
5689 }
5690
5691 m_freem(m);
5692 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5693 }
5694 error:
5695 KEY_SA_UNREF(&sav);
5696 error_sah:
5697 key_sah_unref(sah);
5698 return key_senderror(so, m, error);
5699 }
5700
5701 /*
5702 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5703 * only called by key_api_update().
5704 * OUT:
5705 * NULL : not found
5706 * others : found, pointer to a SA.
5707 */
5708 #ifdef IPSEC_DOSEQCHECK
5709 static struct secasvar *
5710 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5711 {
5712 struct secasvar *sav;
5713 u_int state;
5714 int s;
5715
5716 state = SADB_SASTATE_LARVAL;
5717
5718 /* search SAD with sequence number ? */
5719 s = pserialize_read_enter();
5720 SAVLIST_READER_FOREACH(sav, sah, state) {
5721 KEY_CHKSASTATE(state, sav->state);
5722
5723 if (sav->seq == seq) {
5724 SA_ADDREF(sav);
5725 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5726 "DP cause refcnt++:%d SA:%p\n",
5727 key_sa_refcnt(sav), sav);
5728 break;
5729 }
5730 }
5731 pserialize_read_exit(s);
5732
5733 return sav;
5734 }
5735 #endif
5736
5737 /*
5738 * SADB_ADD processing
5739 * add an entry to SA database, when received
5740 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5741 * key(AE), (identity(SD),) (sensitivity)>
5742 * from the ikmpd,
5743 * and send
5744 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5745 * (identity(SD),) (sensitivity)>
5746 * to the ikmpd.
5747 *
5748 * IGNORE identity and sensitivity messages.
5749 *
5750 * m will always be freed.
5751 */
5752 static int
5753 key_api_add(struct socket *so, struct mbuf *m,
5754 const struct sadb_msghdr *mhp)
5755 {
5756 struct sadb_sa *sa0;
5757 const struct sockaddr *src, *dst;
5758 struct secasindex saidx;
5759 struct secashead *sah;
5760 struct secasvar *newsav;
5761 u_int16_t proto;
5762 u_int8_t mode;
5763 u_int16_t reqid;
5764 int error;
5765
5766 /* map satype to proto */
5767 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5768 if (proto == 0) {
5769 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5770 return key_senderror(so, m, EINVAL);
5771 }
5772
5773 if (mhp->ext[SADB_EXT_SA] == NULL ||
5774 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5775 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5776 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5777 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5778 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5779 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5780 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5781 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5782 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5783 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5784 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5785 return key_senderror(so, m, EINVAL);
5786 }
5787 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5788 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5789 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5790 /* XXX need more */
5791 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5792 return key_senderror(so, m, EINVAL);
5793 }
5794 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5795 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5796 mode = sa2->sadb_x_sa2_mode;
5797 reqid = sa2->sadb_x_sa2_reqid;
5798 } else {
5799 mode = IPSEC_MODE_ANY;
5800 reqid = 0;
5801 }
5802
5803 sa0 = mhp->ext[SADB_EXT_SA];
5804 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5805 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5806
5807 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5808 if (error != 0)
5809 return key_senderror(so, m, EINVAL);
5810
5811 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5812 if (error != 0)
5813 return key_senderror(so, m, EINVAL);
5814
5815 /* get a SA header */
5816 sah = key_getsah_ref(&saidx, CMP_REQID);
5817 if (sah == NULL) {
5818 /* create a new SA header */
5819 sah = key_newsah(&saidx);
5820 if (sah == NULL) {
5821 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5822 return key_senderror(so, m, ENOBUFS);
5823 }
5824 }
5825
5826 /* set spidx if there */
5827 /* XXX rewrite */
5828 error = key_setident(sah, m, mhp);
5829 if (error)
5830 goto error;
5831
5832 {
5833 struct secasvar *sav;
5834
5835 /* We can create new SA only if SPI is differenct. */
5836 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5837 if (sav != NULL) {
5838 KEY_SA_UNREF(&sav);
5839 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5840 error = EEXIST;
5841 goto error;
5842 }
5843 }
5844
5845 /* create new SA entry. */
5846 newsav = KEY_NEWSAV(m, mhp, &error);
5847 if (newsav == NULL)
5848 goto error;
5849 newsav->sah = sah;
5850
5851 error = key_handle_natt_info(newsav, mhp);
5852 if (error != 0) {
5853 key_delsav(newsav);
5854 error = EINVAL;
5855 goto error;
5856 }
5857
5858 error = key_init_xform(newsav);
5859 if (error != 0) {
5860 key_delsav(newsav);
5861 goto error;
5862 }
5863
5864 /* Add to sah#savlist */
5865 key_init_sav(newsav);
5866 newsav->state = SADB_SASTATE_MATURE;
5867 mutex_enter(&key_sad.lock);
5868 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5869 mutex_exit(&key_sad.lock);
5870 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5871
5872 key_sah_unref(sah);
5873 sah = NULL;
5874
5875 /*
5876 * don't call key_freesav() here, as we would like to keep the SA
5877 * in the database on success.
5878 */
5879
5880 {
5881 struct mbuf *n;
5882
5883 /* set msg buf from mhp */
5884 n = key_getmsgbuf_x1(m, mhp);
5885 if (n == NULL) {
5886 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5887 return key_senderror(so, m, ENOBUFS);
5888 }
5889
5890 m_freem(m);
5891 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5892 }
5893 error:
5894 key_sah_unref(sah);
5895 return key_senderror(so, m, error);
5896 }
5897
5898 /* m is retained */
5899 static int
5900 key_setident(struct secashead *sah, struct mbuf *m,
5901 const struct sadb_msghdr *mhp)
5902 {
5903 const struct sadb_ident *idsrc, *iddst;
5904 int idsrclen, iddstlen;
5905
5906 KASSERT(!cpu_softintr_p());
5907 KASSERT(sah != NULL);
5908 KASSERT(m != NULL);
5909 KASSERT(mhp != NULL);
5910 KASSERT(mhp->msg != NULL);
5911
5912 /*
5913 * Can be called with an existing sah from key_api_update().
5914 */
5915 if (sah->idents != NULL) {
5916 kmem_free(sah->idents, sah->idents_len);
5917 sah->idents = NULL;
5918 sah->idents_len = 0;
5919 }
5920 if (sah->identd != NULL) {
5921 kmem_free(sah->identd, sah->identd_len);
5922 sah->identd = NULL;
5923 sah->identd_len = 0;
5924 }
5925
5926 /* don't make buffer if not there */
5927 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5928 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5929 sah->idents = NULL;
5930 sah->identd = NULL;
5931 return 0;
5932 }
5933
5934 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5935 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5936 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5937 return EINVAL;
5938 }
5939
5940 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC];
5941 iddst = mhp->ext[SADB_EXT_IDENTITY_DST];
5942 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5943 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5944
5945 /* validity check */
5946 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5947 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5948 return EINVAL;
5949 }
5950
5951 switch (idsrc->sadb_ident_type) {
5952 case SADB_IDENTTYPE_PREFIX:
5953 case SADB_IDENTTYPE_FQDN:
5954 case SADB_IDENTTYPE_USERFQDN:
5955 default:
5956 /* XXX do nothing */
5957 sah->idents = NULL;
5958 sah->identd = NULL;
5959 return 0;
5960 }
5961
5962 /* make structure */
5963 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5964 sah->idents_len = idsrclen;
5965 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5966 sah->identd_len = iddstlen;
5967 memcpy(sah->idents, idsrc, idsrclen);
5968 memcpy(sah->identd, iddst, iddstlen);
5969
5970 return 0;
5971 }
5972
5973 /*
5974 * m will not be freed on return.
5975 * it is caller's responsibility to free the result.
5976 */
5977 static struct mbuf *
5978 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5979 {
5980 struct mbuf *n;
5981
5982 KASSERT(m != NULL);
5983 KASSERT(mhp != NULL);
5984 KASSERT(mhp->msg != NULL);
5985
5986 /* create new sadb_msg to reply. */
5987 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5988 SADB_EXT_SA, SADB_X_EXT_SA2,
5989 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5990 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5991 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5992 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5993 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5994 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5995 if (!n)
5996 return NULL;
5997
5998 if (n->m_len < sizeof(struct sadb_msg)) {
5999 n = m_pullup(n, sizeof(struct sadb_msg));
6000 if (n == NULL)
6001 return NULL;
6002 }
6003 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
6004 mtod(n, struct sadb_msg *)->sadb_msg_len =
6005 PFKEY_UNIT64(n->m_pkthdr.len);
6006
6007 return n;
6008 }
6009
6010 static int key_delete_all (struct socket *, struct mbuf *,
6011 const struct sadb_msghdr *, u_int16_t);
6012
6013 /*
6014 * SADB_DELETE processing
6015 * receive
6016 * <base, SA(*), address(SD)>
6017 * from the ikmpd, and set SADB_SASTATE_DEAD,
6018 * and send,
6019 * <base, SA(*), address(SD)>
6020 * to the ikmpd.
6021 *
6022 * m will always be freed.
6023 */
6024 static int
6025 key_api_delete(struct socket *so, struct mbuf *m,
6026 const struct sadb_msghdr *mhp)
6027 {
6028 struct sadb_sa *sa0;
6029 const struct sockaddr *src, *dst;
6030 struct secasindex saidx;
6031 struct secashead *sah;
6032 struct secasvar *sav = NULL;
6033 u_int16_t proto;
6034 int error;
6035
6036 /* map satype to proto */
6037 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6038 if (proto == 0) {
6039 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6040 return key_senderror(so, m, EINVAL);
6041 }
6042
6043 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6044 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6045 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6046 return key_senderror(so, m, EINVAL);
6047 }
6048
6049 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6050 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6051 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6052 return key_senderror(so, m, EINVAL);
6053 }
6054
6055 if (mhp->ext[SADB_EXT_SA] == NULL) {
6056 /*
6057 * Caller wants us to delete all non-LARVAL SAs
6058 * that match the src/dst. This is used during
6059 * IKE INITIAL-CONTACT.
6060 */
6061 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
6062 return key_delete_all(so, m, mhp, proto);
6063 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
6064 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6065 return key_senderror(so, m, EINVAL);
6066 }
6067
6068 sa0 = mhp->ext[SADB_EXT_SA];
6069 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6070 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6071
6072 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6073 if (error != 0)
6074 return key_senderror(so, m, EINVAL);
6075
6076 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6077 if (error != 0)
6078 return key_senderror(so, m, EINVAL);
6079
6080 /* get a SA header */
6081 sah = key_getsah_ref(&saidx, CMP_HEAD);
6082 if (sah != NULL) {
6083 /* get a SA with SPI. */
6084 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6085 key_sah_unref(sah);
6086 }
6087
6088 if (sav == NULL) {
6089 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6090 return key_senderror(so, m, ENOENT);
6091 }
6092
6093 key_destroy_sav_with_ref(sav);
6094 sav = NULL;
6095
6096 {
6097 struct mbuf *n;
6098
6099 /* create new sadb_msg to reply. */
6100 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6101 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6102 if (!n)
6103 return key_senderror(so, m, ENOBUFS);
6104
6105 n = key_fill_replymsg(n, 0);
6106 if (n == NULL)
6107 return key_senderror(so, m, ENOBUFS);
6108
6109 m_freem(m);
6110 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6111 }
6112 }
6113
6114 /*
6115 * delete all SAs for src/dst. Called from key_api_delete().
6116 */
6117 static int
6118 key_delete_all(struct socket *so, struct mbuf *m,
6119 const struct sadb_msghdr *mhp, u_int16_t proto)
6120 {
6121 const struct sockaddr *src, *dst;
6122 struct secasindex saidx;
6123 struct secashead *sah;
6124 struct secasvar *sav;
6125 u_int state;
6126 int error;
6127
6128 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6129 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6130
6131 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6132 if (error != 0)
6133 return key_senderror(so, m, EINVAL);
6134
6135 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6136 if (error != 0)
6137 return key_senderror(so, m, EINVAL);
6138
6139 sah = key_getsah_ref(&saidx, CMP_HEAD);
6140 if (sah != NULL) {
6141 /* Delete all non-LARVAL SAs. */
6142 SASTATE_ALIVE_FOREACH(state) {
6143 if (state == SADB_SASTATE_LARVAL)
6144 continue;
6145 restart:
6146 mutex_enter(&key_sad.lock);
6147 SAVLIST_WRITER_FOREACH(sav, sah, state) {
6148 sav->state = SADB_SASTATE_DEAD;
6149 key_unlink_sav(sav);
6150 mutex_exit(&key_sad.lock);
6151 key_destroy_sav(sav);
6152 goto restart;
6153 }
6154 mutex_exit(&key_sad.lock);
6155 }
6156 key_sah_unref(sah);
6157 }
6158 {
6159 struct mbuf *n;
6160
6161 /* create new sadb_msg to reply. */
6162 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6163 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6164 if (!n)
6165 return key_senderror(so, m, ENOBUFS);
6166
6167 n = key_fill_replymsg(n, 0);
6168 if (n == NULL)
6169 return key_senderror(so, m, ENOBUFS);
6170
6171 m_freem(m);
6172 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6173 }
6174 }
6175
6176 /*
6177 * SADB_GET processing
6178 * receive
6179 * <base, SA(*), address(SD)>
6180 * from the ikmpd, and get a SP and a SA to respond,
6181 * and send,
6182 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6183 * (identity(SD),) (sensitivity)>
6184 * to the ikmpd.
6185 *
6186 * m will always be freed.
6187 */
6188 static int
6189 key_api_get(struct socket *so, struct mbuf *m,
6190 const struct sadb_msghdr *mhp)
6191 {
6192 struct sadb_sa *sa0;
6193 const struct sockaddr *src, *dst;
6194 struct secasindex saidx;
6195 struct secasvar *sav = NULL;
6196 u_int16_t proto;
6197 int error;
6198
6199 /* map satype to proto */
6200 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6201 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6202 return key_senderror(so, m, EINVAL);
6203 }
6204
6205 if (mhp->ext[SADB_EXT_SA] == NULL ||
6206 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6207 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6208 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6209 return key_senderror(so, m, EINVAL);
6210 }
6211 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6212 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6213 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6214 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6215 return key_senderror(so, m, EINVAL);
6216 }
6217
6218 sa0 = mhp->ext[SADB_EXT_SA];
6219 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6220 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6221
6222 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6223 if (error != 0)
6224 return key_senderror(so, m, EINVAL);
6225
6226 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6227 if (error != 0)
6228 return key_senderror(so, m, EINVAL);
6229
6230 /* get a SA header */
6231 {
6232 struct secashead *sah;
6233 int s = pserialize_read_enter();
6234
6235 sah = key_getsah(&saidx, CMP_HEAD);
6236 if (sah != NULL) {
6237 /* get a SA with SPI. */
6238 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6239 }
6240 pserialize_read_exit(s);
6241 }
6242 if (sav == NULL) {
6243 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6244 return key_senderror(so, m, ENOENT);
6245 }
6246
6247 {
6248 struct mbuf *n;
6249 u_int8_t satype;
6250
6251 /* map proto to satype */
6252 satype = key_proto2satype(sav->sah->saidx.proto);
6253 if (satype == 0) {
6254 KEY_SA_UNREF(&sav);
6255 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6256 return key_senderror(so, m, EINVAL);
6257 }
6258
6259 /* create new sadb_msg to reply. */
6260 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6261 mhp->msg->sadb_msg_pid);
6262 KEY_SA_UNREF(&sav);
6263 if (!n)
6264 return key_senderror(so, m, ENOBUFS);
6265
6266 m_freem(m);
6267 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6268 }
6269 }
6270
6271 /* XXX make it sysctl-configurable? */
6272 static void
6273 key_getcomb_setlifetime(struct sadb_comb *comb)
6274 {
6275
6276 comb->sadb_comb_soft_allocations = 1;
6277 comb->sadb_comb_hard_allocations = 1;
6278 comb->sadb_comb_soft_bytes = 0;
6279 comb->sadb_comb_hard_bytes = 0;
6280 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6281 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6282 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6283 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6284 }
6285
6286 /*
6287 * XXX reorder combinations by preference
6288 * XXX no idea if the user wants ESP authentication or not
6289 */
6290 static struct mbuf *
6291 key_getcomb_esp(void)
6292 {
6293 struct sadb_comb *comb;
6294 const struct enc_xform *algo;
6295 struct mbuf *result = NULL, *m, *n;
6296 int encmin;
6297 int i, off, o;
6298 int totlen;
6299 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6300
6301 m = NULL;
6302 for (i = 1; i <= SADB_EALG_MAX; i++) {
6303 algo = esp_algorithm_lookup(i);
6304 if (algo == NULL)
6305 continue;
6306
6307 /* discard algorithms with key size smaller than system min */
6308 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6309 continue;
6310 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6311 encmin = ipsec_esp_keymin;
6312 else
6313 encmin = _BITS(algo->minkey);
6314
6315 if (ipsec_esp_auth)
6316 m = key_getcomb_ah();
6317 else {
6318 KASSERTMSG(l <= MLEN,
6319 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6320 MGET(m, M_DONTWAIT, MT_DATA);
6321 if (m) {
6322 M_ALIGN(m, l);
6323 m->m_len = l;
6324 m->m_next = NULL;
6325 memset(mtod(m, void *), 0, m->m_len);
6326 }
6327 }
6328 if (!m)
6329 goto fail;
6330
6331 totlen = 0;
6332 for (n = m; n; n = n->m_next)
6333 totlen += n->m_len;
6334 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6335
6336 for (off = 0; off < totlen; off += l) {
6337 n = m_pulldown(m, off, l, &o);
6338 if (!n) {
6339 /* m is already freed */
6340 goto fail;
6341 }
6342 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6343 memset(comb, 0, sizeof(*comb));
6344 key_getcomb_setlifetime(comb);
6345 comb->sadb_comb_encrypt = i;
6346 comb->sadb_comb_encrypt_minbits = encmin;
6347 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6348 }
6349
6350 if (!result)
6351 result = m;
6352 else
6353 m_cat(result, m);
6354 }
6355
6356 return result;
6357
6358 fail:
6359 if (result)
6360 m_freem(result);
6361 return NULL;
6362 }
6363
6364 static void
6365 key_getsizes_ah(const struct auth_hash *ah, int alg,
6366 u_int16_t* ksmin, u_int16_t* ksmax)
6367 {
6368 *ksmin = *ksmax = ah->keysize;
6369 if (ah->keysize == 0) {
6370 /*
6371 * Transform takes arbitrary key size but algorithm
6372 * key size is restricted. Enforce this here.
6373 */
6374 switch (alg) {
6375 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6376 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6377 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6378 default:
6379 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6380 break;
6381 }
6382 }
6383 }
6384
6385 /*
6386 * XXX reorder combinations by preference
6387 */
6388 static struct mbuf *
6389 key_getcomb_ah(void)
6390 {
6391 struct sadb_comb *comb;
6392 const struct auth_hash *algo;
6393 struct mbuf *m;
6394 u_int16_t minkeysize, maxkeysize;
6395 int i;
6396 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6397
6398 m = NULL;
6399 for (i = 1; i <= SADB_AALG_MAX; i++) {
6400 #if 1
6401 /* we prefer HMAC algorithms, not old algorithms */
6402 if (i != SADB_AALG_SHA1HMAC &&
6403 i != SADB_AALG_MD5HMAC &&
6404 i != SADB_X_AALG_SHA2_256 &&
6405 i != SADB_X_AALG_SHA2_384 &&
6406 i != SADB_X_AALG_SHA2_512)
6407 continue;
6408 #endif
6409 algo = ah_algorithm_lookup(i);
6410 if (!algo)
6411 continue;
6412 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6413 /* discard algorithms with key size smaller than system min */
6414 if (_BITS(minkeysize) < ipsec_ah_keymin)
6415 continue;
6416
6417 if (!m) {
6418 KASSERTMSG(l <= MLEN,
6419 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6420 MGET(m, M_DONTWAIT, MT_DATA);
6421 if (m) {
6422 M_ALIGN(m, l);
6423 m->m_len = l;
6424 m->m_next = NULL;
6425 }
6426 } else
6427 M_PREPEND(m, l, M_DONTWAIT);
6428 if (!m)
6429 return NULL;
6430
6431 if (m->m_len < sizeof(struct sadb_comb)) {
6432 m = m_pullup(m, sizeof(struct sadb_comb));
6433 if (m == NULL)
6434 return NULL;
6435 }
6436
6437 comb = mtod(m, struct sadb_comb *);
6438 memset(comb, 0, sizeof(*comb));
6439 key_getcomb_setlifetime(comb);
6440 comb->sadb_comb_auth = i;
6441 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6442 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6443 }
6444
6445 return m;
6446 }
6447
6448 /*
6449 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6450 * XXX reorder combinations by preference
6451 */
6452 static struct mbuf *
6453 key_getcomb_ipcomp(void)
6454 {
6455 struct sadb_comb *comb;
6456 const struct comp_algo *algo;
6457 struct mbuf *m;
6458 int i;
6459 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6460
6461 m = NULL;
6462 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6463 algo = ipcomp_algorithm_lookup(i);
6464 if (!algo)
6465 continue;
6466
6467 if (!m) {
6468 KASSERTMSG(l <= MLEN,
6469 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6470 MGET(m, M_DONTWAIT, MT_DATA);
6471 if (m) {
6472 M_ALIGN(m, l);
6473 m->m_len = l;
6474 m->m_next = NULL;
6475 }
6476 } else
6477 M_PREPEND(m, l, M_DONTWAIT);
6478 if (!m)
6479 return NULL;
6480
6481 if (m->m_len < sizeof(struct sadb_comb)) {
6482 m = m_pullup(m, sizeof(struct sadb_comb));
6483 if (m == NULL)
6484 return NULL;
6485 }
6486
6487 comb = mtod(m, struct sadb_comb *);
6488 memset(comb, 0, sizeof(*comb));
6489 key_getcomb_setlifetime(comb);
6490 comb->sadb_comb_encrypt = i;
6491 /* what should we set into sadb_comb_*_{min,max}bits? */
6492 }
6493
6494 return m;
6495 }
6496
6497 /*
6498 * XXX no way to pass mode (transport/tunnel) to userland
6499 * XXX replay checking?
6500 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6501 */
6502 static struct mbuf *
6503 key_getprop(const struct secasindex *saidx)
6504 {
6505 struct sadb_prop *prop;
6506 struct mbuf *m, *n;
6507 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6508 int totlen;
6509
6510 switch (saidx->proto) {
6511 case IPPROTO_ESP:
6512 m = key_getcomb_esp();
6513 break;
6514 case IPPROTO_AH:
6515 m = key_getcomb_ah();
6516 break;
6517 case IPPROTO_IPCOMP:
6518 m = key_getcomb_ipcomp();
6519 break;
6520 default:
6521 return NULL;
6522 }
6523
6524 if (!m)
6525 return NULL;
6526 M_PREPEND(m, l, M_DONTWAIT);
6527 if (!m)
6528 return NULL;
6529
6530 totlen = 0;
6531 for (n = m; n; n = n->m_next)
6532 totlen += n->m_len;
6533
6534 prop = mtod(m, struct sadb_prop *);
6535 memset(prop, 0, sizeof(*prop));
6536 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6537 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6538 prop->sadb_prop_replay = 32; /* XXX */
6539
6540 return m;
6541 }
6542
6543 /*
6544 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6545 * send
6546 * <base, SA, address(SD), (address(P)), x_policy,
6547 * (identity(SD),) (sensitivity,) proposal>
6548 * to KMD, and expect to receive
6549 * <base> with SADB_ACQUIRE if error occurred,
6550 * or
6551 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6552 * from KMD by PF_KEY.
6553 *
6554 * XXX x_policy is outside of RFC2367 (KAME extension).
6555 * XXX sensitivity is not supported.
6556 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6557 * see comment for key_getcomb_ipcomp().
6558 *
6559 * OUT:
6560 * 0 : succeed
6561 * others: error number
6562 */
6563 static int
6564 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6565 {
6566 struct mbuf *result = NULL, *m;
6567 #ifndef IPSEC_NONBLOCK_ACQUIRE
6568 struct secacq *newacq;
6569 #endif
6570 u_int8_t satype;
6571 int error = -1;
6572 u_int32_t seq;
6573
6574 /* sanity check */
6575 KASSERT(saidx != NULL);
6576 satype = key_proto2satype(saidx->proto);
6577 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6578
6579 #ifndef IPSEC_NONBLOCK_ACQUIRE
6580 /*
6581 * We never do anything about acquirng SA. There is anather
6582 * solution that kernel blocks to send SADB_ACQUIRE message until
6583 * getting something message from IKEd. In later case, to be
6584 * managed with ACQUIRING list.
6585 */
6586 /* Get an entry to check whether sending message or not. */
6587 mutex_enter(&key_misc.lock);
6588 newacq = key_getacq(saidx);
6589 if (newacq != NULL) {
6590 if (key_blockacq_count < newacq->count) {
6591 /* reset counter and do send message. */
6592 newacq->count = 0;
6593 } else {
6594 /* increment counter and do nothing. */
6595 newacq->count++;
6596 mutex_exit(&key_misc.lock);
6597 return 0;
6598 }
6599 } else {
6600 /* make new entry for blocking to send SADB_ACQUIRE. */
6601 newacq = key_newacq(saidx);
6602 if (newacq == NULL) {
6603 mutex_exit(&key_misc.lock);
6604 return ENOBUFS;
6605 }
6606
6607 /* add to key_misc.acqlist */
6608 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6609 }
6610
6611 seq = newacq->seq;
6612 mutex_exit(&key_misc.lock);
6613 #else
6614 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6615 #endif
6616 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6617 if (!m) {
6618 error = ENOBUFS;
6619 goto fail;
6620 }
6621 result = m;
6622
6623 /* set sadb_address for saidx's. */
6624 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6625 IPSEC_ULPROTO_ANY);
6626 if (!m) {
6627 error = ENOBUFS;
6628 goto fail;
6629 }
6630 m_cat(result, m);
6631
6632 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6633 IPSEC_ULPROTO_ANY);
6634 if (!m) {
6635 error = ENOBUFS;
6636 goto fail;
6637 }
6638 m_cat(result, m);
6639
6640 /* XXX proxy address (optional) */
6641
6642 /* set sadb_x_policy */
6643 if (sp) {
6644 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6645 if (!m) {
6646 error = ENOBUFS;
6647 goto fail;
6648 }
6649 m_cat(result, m);
6650 }
6651
6652 /* XXX identity (optional) */
6653 #if 0
6654 if (idexttype && fqdn) {
6655 /* create identity extension (FQDN) */
6656 struct sadb_ident *id;
6657 int fqdnlen;
6658
6659 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6660 id = (struct sadb_ident *)p;
6661 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6662 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6663 id->sadb_ident_exttype = idexttype;
6664 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6665 memcpy(id + 1, fqdn, fqdnlen);
6666 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6667 }
6668
6669 if (idexttype) {
6670 /* create identity extension (USERFQDN) */
6671 struct sadb_ident *id;
6672 int userfqdnlen;
6673
6674 if (userfqdn) {
6675 /* +1 for terminating-NUL */
6676 userfqdnlen = strlen(userfqdn) + 1;
6677 } else
6678 userfqdnlen = 0;
6679 id = (struct sadb_ident *)p;
6680 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6681 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6682 id->sadb_ident_exttype = idexttype;
6683 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6684 /* XXX is it correct? */
6685 if (curlwp)
6686 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6687 if (userfqdn && userfqdnlen)
6688 memcpy(id + 1, userfqdn, userfqdnlen);
6689 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6690 }
6691 #endif
6692
6693 /* XXX sensitivity (optional) */
6694
6695 /* create proposal/combination extension */
6696 m = key_getprop(saidx);
6697 #if 0
6698 /*
6699 * spec conformant: always attach proposal/combination extension,
6700 * the problem is that we have no way to attach it for ipcomp,
6701 * due to the way sadb_comb is declared in RFC2367.
6702 */
6703 if (!m) {
6704 error = ENOBUFS;
6705 goto fail;
6706 }
6707 m_cat(result, m);
6708 #else
6709 /*
6710 * outside of spec; make proposal/combination extension optional.
6711 */
6712 if (m)
6713 m_cat(result, m);
6714 #endif
6715
6716 if ((result->m_flags & M_PKTHDR) == 0) {
6717 error = EINVAL;
6718 goto fail;
6719 }
6720
6721 if (result->m_len < sizeof(struct sadb_msg)) {
6722 result = m_pullup(result, sizeof(struct sadb_msg));
6723 if (result == NULL) {
6724 error = ENOBUFS;
6725 goto fail;
6726 }
6727 }
6728
6729 result->m_pkthdr.len = 0;
6730 for (m = result; m; m = m->m_next)
6731 result->m_pkthdr.len += m->m_len;
6732
6733 mtod(result, struct sadb_msg *)->sadb_msg_len =
6734 PFKEY_UNIT64(result->m_pkthdr.len);
6735
6736 /*
6737 * XXX we cannot call key_sendup_mbuf directly here because
6738 * it can cause a deadlock:
6739 * - We have a reference to an SP (and an SA) here
6740 * - key_sendup_mbuf will try to take key_so_mtx
6741 * - Some other thread may try to localcount_drain to the SP with
6742 * holding key_so_mtx in say key_api_spdflush
6743 * - In this case localcount_drain never return because key_sendup_mbuf
6744 * that has stuck on key_so_mtx never release a reference to the SP
6745 *
6746 * So defer key_sendup_mbuf to the timer.
6747 */
6748 return key_acquire_sendup_mbuf_later(result);
6749
6750 fail:
6751 if (result)
6752 m_freem(result);
6753 return error;
6754 }
6755
6756 static struct mbuf *key_acquire_mbuf_head = NULL;
6757 static unsigned key_acquire_mbuf_count = 0;
6758 #define KEY_ACQUIRE_MBUF_MAX 10
6759
6760 static void
6761 key_acquire_sendup_pending_mbuf(void)
6762 {
6763 struct mbuf *m, *prev;
6764 int error;
6765
6766 again:
6767 prev = NULL;
6768 mutex_enter(&key_misc.lock);
6769 m = key_acquire_mbuf_head;
6770 /* Get an earliest mbuf (one at the tail of the list) */
6771 while (m != NULL) {
6772 if (m->m_nextpkt == NULL) {
6773 if (prev != NULL)
6774 prev->m_nextpkt = NULL;
6775 if (m == key_acquire_mbuf_head)
6776 key_acquire_mbuf_head = NULL;
6777 key_acquire_mbuf_count--;
6778 break;
6779 }
6780 prev = m;
6781 m = m->m_nextpkt;
6782 }
6783 mutex_exit(&key_misc.lock);
6784
6785 if (m == NULL)
6786 return;
6787
6788 m->m_nextpkt = NULL;
6789 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
6790 if (error != 0)
6791 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
6792 error);
6793
6794 if (prev != NULL)
6795 goto again;
6796 }
6797
6798 static int
6799 key_acquire_sendup_mbuf_later(struct mbuf *m)
6800 {
6801
6802 mutex_enter(&key_misc.lock);
6803 /* Avoid queuing too much mbufs */
6804 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
6805 mutex_exit(&key_misc.lock);
6806 m_freem(m);
6807 return ENOBUFS; /* XXX */
6808 }
6809 /* Enqueue mbuf at the head of the list */
6810 m->m_nextpkt = key_acquire_mbuf_head;
6811 key_acquire_mbuf_head = m;
6812 key_acquire_mbuf_count++;
6813 mutex_exit(&key_misc.lock);
6814
6815 /* Kick the timer */
6816 key_timehandler(NULL);
6817
6818 return 0;
6819 }
6820
6821 #ifndef IPSEC_NONBLOCK_ACQUIRE
6822 static struct secacq *
6823 key_newacq(const struct secasindex *saidx)
6824 {
6825 struct secacq *newacq;
6826
6827 /* get new entry */
6828 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6829 if (newacq == NULL) {
6830 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6831 return NULL;
6832 }
6833
6834 /* copy secindex */
6835 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6836 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6837 newacq->created = time_uptime;
6838 newacq->count = 0;
6839
6840 return newacq;
6841 }
6842
6843 static struct secacq *
6844 key_getacq(const struct secasindex *saidx)
6845 {
6846 struct secacq *acq;
6847
6848 KASSERT(mutex_owned(&key_misc.lock));
6849
6850 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6851 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6852 return acq;
6853 }
6854
6855 return NULL;
6856 }
6857
6858 static struct secacq *
6859 key_getacqbyseq(u_int32_t seq)
6860 {
6861 struct secacq *acq;
6862
6863 KASSERT(mutex_owned(&key_misc.lock));
6864
6865 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6866 if (acq->seq == seq)
6867 return acq;
6868 }
6869
6870 return NULL;
6871 }
6872 #endif
6873
6874 #ifdef notyet
6875 static struct secspacq *
6876 key_newspacq(const struct secpolicyindex *spidx)
6877 {
6878 struct secspacq *acq;
6879
6880 /* get new entry */
6881 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6882 if (acq == NULL) {
6883 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6884 return NULL;
6885 }
6886
6887 /* copy secindex */
6888 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6889 acq->created = time_uptime;
6890 acq->count = 0;
6891
6892 return acq;
6893 }
6894
6895 static struct secspacq *
6896 key_getspacq(const struct secpolicyindex *spidx)
6897 {
6898 struct secspacq *acq;
6899
6900 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6901 if (key_spidx_match_exactly(spidx, &acq->spidx))
6902 return acq;
6903 }
6904
6905 return NULL;
6906 }
6907 #endif /* notyet */
6908
6909 /*
6910 * SADB_ACQUIRE processing,
6911 * in first situation, is receiving
6912 * <base>
6913 * from the ikmpd, and clear sequence of its secasvar entry.
6914 *
6915 * In second situation, is receiving
6916 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6917 * from a user land process, and return
6918 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6919 * to the socket.
6920 *
6921 * m will always be freed.
6922 */
6923 static int
6924 key_api_acquire(struct socket *so, struct mbuf *m,
6925 const struct sadb_msghdr *mhp)
6926 {
6927 const struct sockaddr *src, *dst;
6928 struct secasindex saidx;
6929 u_int16_t proto;
6930 int error;
6931
6932 /*
6933 * Error message from KMd.
6934 * We assume that if error was occurred in IKEd, the length of PFKEY
6935 * message is equal to the size of sadb_msg structure.
6936 * We do not raise error even if error occurred in this function.
6937 */
6938 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6939 #ifndef IPSEC_NONBLOCK_ACQUIRE
6940 struct secacq *acq;
6941
6942 /* check sequence number */
6943 if (mhp->msg->sadb_msg_seq == 0) {
6944 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6945 m_freem(m);
6946 return 0;
6947 }
6948
6949 mutex_enter(&key_misc.lock);
6950 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6951 if (acq == NULL) {
6952 mutex_exit(&key_misc.lock);
6953 /*
6954 * the specified larval SA is already gone, or we got
6955 * a bogus sequence number. we can silently ignore it.
6956 */
6957 m_freem(m);
6958 return 0;
6959 }
6960
6961 /* reset acq counter in order to deletion by timehander. */
6962 acq->created = time_uptime;
6963 acq->count = 0;
6964 mutex_exit(&key_misc.lock);
6965 #endif
6966 m_freem(m);
6967 return 0;
6968 }
6969
6970 /*
6971 * This message is from user land.
6972 */
6973
6974 /* map satype to proto */
6975 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6976 if (proto == 0) {
6977 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6978 return key_senderror(so, m, EINVAL);
6979 }
6980
6981 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6982 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6983 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6984 /* error */
6985 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6986 return key_senderror(so, m, EINVAL);
6987 }
6988 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6989 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6990 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6991 /* error */
6992 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6993 return key_senderror(so, m, EINVAL);
6994 }
6995
6996 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6997 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6998
6999 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
7000 if (error != 0)
7001 return key_senderror(so, m, EINVAL);
7002
7003 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
7004 if (error != 0)
7005 return key_senderror(so, m, EINVAL);
7006
7007 /* get a SA index */
7008 {
7009 struct secashead *sah;
7010 int s = pserialize_read_enter();
7011
7012 sah = key_getsah(&saidx, CMP_MODE_REQID);
7013 if (sah != NULL) {
7014 pserialize_read_exit(s);
7015 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
7016 return key_senderror(so, m, EEXIST);
7017 }
7018 pserialize_read_exit(s);
7019 }
7020
7021 error = key_acquire(&saidx, NULL);
7022 if (error != 0) {
7023 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
7024 error);
7025 return key_senderror(so, m, error);
7026 }
7027
7028 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
7029 }
7030
7031 /*
7032 * SADB_REGISTER processing.
7033 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7034 * receive
7035 * <base>
7036 * from the ikmpd, and register a socket to send PF_KEY messages,
7037 * and send
7038 * <base, supported>
7039 * to KMD by PF_KEY.
7040 * If socket is detached, must free from regnode.
7041 *
7042 * m will always be freed.
7043 */
7044 static int
7045 key_api_register(struct socket *so, struct mbuf *m,
7046 const struct sadb_msghdr *mhp)
7047 {
7048 struct secreg *reg, *newreg = 0;
7049
7050 /* check for invalid register message */
7051 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
7052 return key_senderror(so, m, EINVAL);
7053
7054 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7055 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7056 goto setmsg;
7057
7058 /* Allocate regnode in advance, out of mutex */
7059 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
7060
7061 /* check whether existing or not */
7062 mutex_enter(&key_misc.lock);
7063 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
7064 if (reg->so == so) {
7065 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
7066 mutex_exit(&key_misc.lock);
7067 kmem_free(newreg, sizeof(*newreg));
7068 return key_senderror(so, m, EEXIST);
7069 }
7070 }
7071
7072 newreg->so = so;
7073 ((struct keycb *)sotorawcb(so))->kp_registered++;
7074
7075 /* add regnode to key_misc.reglist. */
7076 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
7077 mutex_exit(&key_misc.lock);
7078
7079 setmsg:
7080 {
7081 struct mbuf *n;
7082 struct sadb_supported *sup;
7083 u_int len, alen, elen;
7084 int off;
7085 int i;
7086 struct sadb_alg *alg;
7087
7088 /* create new sadb_msg to reply. */
7089 alen = 0;
7090 for (i = 1; i <= SADB_AALG_MAX; i++) {
7091 if (ah_algorithm_lookup(i))
7092 alen += sizeof(struct sadb_alg);
7093 }
7094 if (alen)
7095 alen += sizeof(struct sadb_supported);
7096 elen = 0;
7097 for (i = 1; i <= SADB_EALG_MAX; i++) {
7098 if (esp_algorithm_lookup(i))
7099 elen += sizeof(struct sadb_alg);
7100 }
7101 if (elen)
7102 elen += sizeof(struct sadb_supported);
7103
7104 len = sizeof(struct sadb_msg) + alen + elen;
7105
7106 if (len > MCLBYTES)
7107 return key_senderror(so, m, ENOBUFS);
7108
7109 MGETHDR(n, M_DONTWAIT, MT_DATA);
7110 if (len > MHLEN) {
7111 MCLGET(n, M_DONTWAIT);
7112 if ((n->m_flags & M_EXT) == 0) {
7113 m_freem(n);
7114 n = NULL;
7115 }
7116 }
7117 if (!n)
7118 return key_senderror(so, m, ENOBUFS);
7119
7120 n->m_pkthdr.len = n->m_len = len;
7121 n->m_next = NULL;
7122 off = 0;
7123
7124 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
7125 n = key_fill_replymsg(n, 0);
7126 if (n == NULL)
7127 return key_senderror(so, m, ENOBUFS);
7128
7129 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7130
7131 /* for authentication algorithm */
7132 if (alen) {
7133 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7134 sup->sadb_supported_len = PFKEY_UNIT64(alen);
7135 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7136 off += PFKEY_ALIGN8(sizeof(*sup));
7137
7138 for (i = 1; i <= SADB_AALG_MAX; i++) {
7139 const struct auth_hash *aalgo;
7140 u_int16_t minkeysize, maxkeysize;
7141
7142 aalgo = ah_algorithm_lookup(i);
7143 if (!aalgo)
7144 continue;
7145 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7146 alg->sadb_alg_id = i;
7147 alg->sadb_alg_ivlen = 0;
7148 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7149 alg->sadb_alg_minbits = _BITS(minkeysize);
7150 alg->sadb_alg_maxbits = _BITS(maxkeysize);
7151 off += PFKEY_ALIGN8(sizeof(*alg));
7152 }
7153 }
7154
7155 /* for encryption algorithm */
7156 if (elen) {
7157 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7158 sup->sadb_supported_len = PFKEY_UNIT64(elen);
7159 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7160 off += PFKEY_ALIGN8(sizeof(*sup));
7161
7162 for (i = 1; i <= SADB_EALG_MAX; i++) {
7163 const struct enc_xform *ealgo;
7164
7165 ealgo = esp_algorithm_lookup(i);
7166 if (!ealgo)
7167 continue;
7168 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7169 alg->sadb_alg_id = i;
7170 alg->sadb_alg_ivlen = ealgo->blocksize;
7171 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7172 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7173 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7174 }
7175 }
7176
7177 KASSERTMSG(off == len, "length inconsistency");
7178
7179 m_freem(m);
7180 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7181 }
7182 }
7183
7184 /*
7185 * free secreg entry registered.
7186 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7187 */
7188 void
7189 key_freereg(struct socket *so)
7190 {
7191 struct secreg *reg;
7192 int i;
7193
7194 KASSERT(!cpu_softintr_p());
7195 KASSERT(so != NULL);
7196
7197 /*
7198 * check whether existing or not.
7199 * check all type of SA, because there is a potential that
7200 * one socket is registered to multiple type of SA.
7201 */
7202 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7203 mutex_enter(&key_misc.lock);
7204 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7205 if (reg->so == so) {
7206 LIST_REMOVE(reg, chain);
7207 break;
7208 }
7209 }
7210 mutex_exit(&key_misc.lock);
7211 if (reg != NULL)
7212 kmem_free(reg, sizeof(*reg));
7213 }
7214
7215 return;
7216 }
7217
7218 /*
7219 * SADB_EXPIRE processing
7220 * send
7221 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7222 * to KMD by PF_KEY.
7223 * NOTE: We send only soft lifetime extension.
7224 *
7225 * OUT: 0 : succeed
7226 * others : error number
7227 */
7228 static int
7229 key_expire(struct secasvar *sav)
7230 {
7231 int s;
7232 int satype;
7233 struct mbuf *result = NULL, *m;
7234 int len;
7235 int error = -1;
7236 struct sadb_lifetime *lt;
7237
7238 /* XXX: Why do we lock ? */
7239 s = splsoftnet(); /*called from softclock()*/
7240
7241 KASSERT(sav != NULL);
7242
7243 satype = key_proto2satype(sav->sah->saidx.proto);
7244 KASSERTMSG(satype != 0, "invalid proto is passed");
7245
7246 /* set msg header */
7247 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav));
7248 if (!m) {
7249 error = ENOBUFS;
7250 goto fail;
7251 }
7252 result = m;
7253
7254 /* create SA extension */
7255 m = key_setsadbsa(sav);
7256 if (!m) {
7257 error = ENOBUFS;
7258 goto fail;
7259 }
7260 m_cat(result, m);
7261
7262 /* create SA extension */
7263 m = key_setsadbxsa2(sav->sah->saidx.mode,
7264 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7265 if (!m) {
7266 error = ENOBUFS;
7267 goto fail;
7268 }
7269 m_cat(result, m);
7270
7271 /* create lifetime extension (current and soft) */
7272 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7273 m = key_alloc_mbuf(len);
7274 if (!m || m->m_next) { /*XXX*/
7275 if (m)
7276 m_freem(m);
7277 error = ENOBUFS;
7278 goto fail;
7279 }
7280 memset(mtod(m, void *), 0, len);
7281 lt = mtod(m, struct sadb_lifetime *);
7282 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7283 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7284 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7285 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7286 lt->sadb_lifetime_addtime =
7287 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7288 lt->sadb_lifetime_usetime =
7289 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7290 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7291 memcpy(lt, sav->lft_s, sizeof(*lt));
7292 m_cat(result, m);
7293
7294 /* set sadb_address for source */
7295 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7296 FULLMASK, IPSEC_ULPROTO_ANY);
7297 if (!m) {
7298 error = ENOBUFS;
7299 goto fail;
7300 }
7301 m_cat(result, m);
7302
7303 /* set sadb_address for destination */
7304 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7305 FULLMASK, IPSEC_ULPROTO_ANY);
7306 if (!m) {
7307 error = ENOBUFS;
7308 goto fail;
7309 }
7310 m_cat(result, m);
7311
7312 if ((result->m_flags & M_PKTHDR) == 0) {
7313 error = EINVAL;
7314 goto fail;
7315 }
7316
7317 if (result->m_len < sizeof(struct sadb_msg)) {
7318 result = m_pullup(result, sizeof(struct sadb_msg));
7319 if (result == NULL) {
7320 error = ENOBUFS;
7321 goto fail;
7322 }
7323 }
7324
7325 result->m_pkthdr.len = 0;
7326 for (m = result; m; m = m->m_next)
7327 result->m_pkthdr.len += m->m_len;
7328
7329 mtod(result, struct sadb_msg *)->sadb_msg_len =
7330 PFKEY_UNIT64(result->m_pkthdr.len);
7331
7332 splx(s);
7333 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7334
7335 fail:
7336 if (result)
7337 m_freem(result);
7338 splx(s);
7339 return error;
7340 }
7341
7342 /*
7343 * SADB_FLUSH processing
7344 * receive
7345 * <base>
7346 * from the ikmpd, and free all entries in secastree.
7347 * and send,
7348 * <base>
7349 * to the ikmpd.
7350 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7351 *
7352 * m will always be freed.
7353 */
7354 static int
7355 key_api_flush(struct socket *so, struct mbuf *m,
7356 const struct sadb_msghdr *mhp)
7357 {
7358 struct sadb_msg *newmsg;
7359 struct secashead *sah;
7360 struct secasvar *sav;
7361 u_int16_t proto;
7362 u_int8_t state;
7363 int s;
7364
7365 /* map satype to proto */
7366 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7367 if (proto == 0) {
7368 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7369 return key_senderror(so, m, EINVAL);
7370 }
7371
7372 /* no SATYPE specified, i.e. flushing all SA. */
7373 s = pserialize_read_enter();
7374 SAHLIST_READER_FOREACH(sah) {
7375 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7376 proto != sah->saidx.proto)
7377 continue;
7378
7379 key_sah_ref(sah);
7380 pserialize_read_exit(s);
7381
7382 SASTATE_ALIVE_FOREACH(state) {
7383 restart:
7384 mutex_enter(&key_sad.lock);
7385 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7386 sav->state = SADB_SASTATE_DEAD;
7387 key_unlink_sav(sav);
7388 mutex_exit(&key_sad.lock);
7389 key_destroy_sav(sav);
7390 goto restart;
7391 }
7392 mutex_exit(&key_sad.lock);
7393 }
7394
7395 s = pserialize_read_enter();
7396 sah->state = SADB_SASTATE_DEAD;
7397 key_sah_unref(sah);
7398 }
7399 pserialize_read_exit(s);
7400
7401 if (m->m_len < sizeof(struct sadb_msg) ||
7402 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7403 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7404 return key_senderror(so, m, ENOBUFS);
7405 }
7406
7407 if (m->m_next)
7408 m_freem(m->m_next);
7409 m->m_next = NULL;
7410 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7411 newmsg = mtod(m, struct sadb_msg *);
7412 newmsg->sadb_msg_errno = 0;
7413 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7414
7415 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7416 }
7417
7418
7419 static struct mbuf *
7420 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7421 {
7422 struct secashead *sah;
7423 struct secasvar *sav;
7424 u_int16_t proto;
7425 u_int8_t satype;
7426 u_int8_t state;
7427 int cnt;
7428 struct mbuf *m, *n, *prev;
7429
7430 KASSERT(mutex_owned(&key_sad.lock));
7431
7432 *lenp = 0;
7433
7434 /* map satype to proto */
7435 proto = key_satype2proto(req_satype);
7436 if (proto == 0) {
7437 *errorp = EINVAL;
7438 return (NULL);
7439 }
7440
7441 /* count sav entries to be sent to userland. */
7442 cnt = 0;
7443 SAHLIST_WRITER_FOREACH(sah) {
7444 if (req_satype != SADB_SATYPE_UNSPEC &&
7445 proto != sah->saidx.proto)
7446 continue;
7447
7448 SASTATE_ANY_FOREACH(state) {
7449 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7450 cnt++;
7451 }
7452 }
7453 }
7454
7455 if (cnt == 0) {
7456 *errorp = ENOENT;
7457 return (NULL);
7458 }
7459
7460 /* send this to the userland, one at a time. */
7461 m = NULL;
7462 prev = m;
7463 SAHLIST_WRITER_FOREACH(sah) {
7464 if (req_satype != SADB_SATYPE_UNSPEC &&
7465 proto != sah->saidx.proto)
7466 continue;
7467
7468 /* map proto to satype */
7469 satype = key_proto2satype(sah->saidx.proto);
7470 if (satype == 0) {
7471 m_freem(m);
7472 *errorp = EINVAL;
7473 return (NULL);
7474 }
7475
7476 SASTATE_ANY_FOREACH(state) {
7477 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7478 n = key_setdumpsa(sav, SADB_DUMP, satype,
7479 --cnt, pid);
7480 if (!n) {
7481 m_freem(m);
7482 *errorp = ENOBUFS;
7483 return (NULL);
7484 }
7485
7486 if (!m)
7487 m = n;
7488 else
7489 prev->m_nextpkt = n;
7490 prev = n;
7491 }
7492 }
7493 }
7494
7495 if (!m) {
7496 *errorp = EINVAL;
7497 return (NULL);
7498 }
7499
7500 if ((m->m_flags & M_PKTHDR) != 0) {
7501 m->m_pkthdr.len = 0;
7502 for (n = m; n; n = n->m_next)
7503 m->m_pkthdr.len += n->m_len;
7504 }
7505
7506 *errorp = 0;
7507 return (m);
7508 }
7509
7510 /*
7511 * SADB_DUMP processing
7512 * dump all entries including status of DEAD in SAD.
7513 * receive
7514 * <base>
7515 * from the ikmpd, and dump all secasvar leaves
7516 * and send,
7517 * <base> .....
7518 * to the ikmpd.
7519 *
7520 * m will always be freed.
7521 */
7522 static int
7523 key_api_dump(struct socket *so, struct mbuf *m0,
7524 const struct sadb_msghdr *mhp)
7525 {
7526 u_int16_t proto;
7527 u_int8_t satype;
7528 struct mbuf *n;
7529 int error, len, ok;
7530
7531 /* map satype to proto */
7532 satype = mhp->msg->sadb_msg_satype;
7533 proto = key_satype2proto(satype);
7534 if (proto == 0) {
7535 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7536 return key_senderror(so, m0, EINVAL);
7537 }
7538
7539 /*
7540 * If the requestor has insufficient socket-buffer space
7541 * for the entire chain, nobody gets any response to the DUMP.
7542 * XXX For now, only the requestor ever gets anything.
7543 * Moreover, if the requestor has any space at all, they receive
7544 * the entire chain, otherwise the request is refused with ENOBUFS.
7545 */
7546 if (sbspace(&so->so_rcv) <= 0) {
7547 return key_senderror(so, m0, ENOBUFS);
7548 }
7549
7550 mutex_enter(&key_sad.lock);
7551 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7552 mutex_exit(&key_sad.lock);
7553
7554 if (n == NULL) {
7555 return key_senderror(so, m0, ENOENT);
7556 }
7557 {
7558 uint64_t *ps = PFKEY_STAT_GETREF();
7559 ps[PFKEY_STAT_IN_TOTAL]++;
7560 ps[PFKEY_STAT_IN_BYTES] += len;
7561 PFKEY_STAT_PUTREF();
7562 }
7563
7564 /*
7565 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7566 * The requestor receives either the entire chain, or an
7567 * error message with ENOBUFS.
7568 *
7569 * sbappendaddrchain() takes the chain of entries, one
7570 * packet-record per SPD entry, prepends the key_src sockaddr
7571 * to each packet-record, links the sockaddr mbufs into a new
7572 * list of records, then appends the entire resulting
7573 * list to the requesting socket.
7574 */
7575 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7576 SB_PRIO_ONESHOT_OVERFLOW);
7577
7578 if (!ok) {
7579 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7580 m_freem(n);
7581 return key_senderror(so, m0, ENOBUFS);
7582 }
7583
7584 m_freem(m0);
7585 return 0;
7586 }
7587
7588 /*
7589 * SADB_X_PROMISC processing
7590 *
7591 * m will always be freed.
7592 */
7593 static int
7594 key_api_promisc(struct socket *so, struct mbuf *m,
7595 const struct sadb_msghdr *mhp)
7596 {
7597 int olen;
7598
7599 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7600
7601 if (olen < sizeof(struct sadb_msg)) {
7602 #if 1
7603 return key_senderror(so, m, EINVAL);
7604 #else
7605 m_freem(m);
7606 return 0;
7607 #endif
7608 } else if (olen == sizeof(struct sadb_msg)) {
7609 /* enable/disable promisc mode */
7610 struct keycb *kp = (struct keycb *)sotorawcb(so);
7611 if (kp == NULL)
7612 return key_senderror(so, m, EINVAL);
7613 mhp->msg->sadb_msg_errno = 0;
7614 switch (mhp->msg->sadb_msg_satype) {
7615 case 0:
7616 case 1:
7617 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7618 break;
7619 default:
7620 return key_senderror(so, m, EINVAL);
7621 }
7622
7623 /* send the original message back to everyone */
7624 mhp->msg->sadb_msg_errno = 0;
7625 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7626 } else {
7627 /* send packet as is */
7628
7629 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7630
7631 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7632 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7633 }
7634 }
7635
7636 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7637 const struct sadb_msghdr *) = {
7638 NULL, /* SADB_RESERVED */
7639 key_api_getspi, /* SADB_GETSPI */
7640 key_api_update, /* SADB_UPDATE */
7641 key_api_add, /* SADB_ADD */
7642 key_api_delete, /* SADB_DELETE */
7643 key_api_get, /* SADB_GET */
7644 key_api_acquire, /* SADB_ACQUIRE */
7645 key_api_register, /* SADB_REGISTER */
7646 NULL, /* SADB_EXPIRE */
7647 key_api_flush, /* SADB_FLUSH */
7648 key_api_dump, /* SADB_DUMP */
7649 key_api_promisc, /* SADB_X_PROMISC */
7650 NULL, /* SADB_X_PCHANGE */
7651 key_api_spdadd, /* SADB_X_SPDUPDATE */
7652 key_api_spdadd, /* SADB_X_SPDADD */
7653 key_api_spddelete, /* SADB_X_SPDDELETE */
7654 key_api_spdget, /* SADB_X_SPDGET */
7655 NULL, /* SADB_X_SPDACQUIRE */
7656 key_api_spddump, /* SADB_X_SPDDUMP */
7657 key_api_spdflush, /* SADB_X_SPDFLUSH */
7658 key_api_spdadd, /* SADB_X_SPDSETIDX */
7659 NULL, /* SADB_X_SPDEXPIRE */
7660 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7661 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7662 };
7663
7664 /*
7665 * parse sadb_msg buffer to process PFKEYv2,
7666 * and create a data to response if needed.
7667 * I think to be dealed with mbuf directly.
7668 * IN:
7669 * msgp : pointer to pointer to a received buffer pulluped.
7670 * This is rewrited to response.
7671 * so : pointer to socket.
7672 * OUT:
7673 * length for buffer to send to user process.
7674 */
7675 int
7676 key_parse(struct mbuf *m, struct socket *so)
7677 {
7678 struct sadb_msg *msg;
7679 struct sadb_msghdr mh;
7680 u_int orglen;
7681 int error;
7682
7683 KASSERT(m != NULL);
7684 KASSERT(so != NULL);
7685
7686 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7687 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7688 kdebug_sadb("passed sadb_msg", msg);
7689 }
7690 #endif
7691
7692 if (m->m_len < sizeof(struct sadb_msg)) {
7693 m = m_pullup(m, sizeof(struct sadb_msg));
7694 if (!m)
7695 return ENOBUFS;
7696 }
7697 msg = mtod(m, struct sadb_msg *);
7698 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7699
7700 if ((m->m_flags & M_PKTHDR) == 0 ||
7701 m->m_pkthdr.len != orglen) {
7702 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7703 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7704 error = EINVAL;
7705 goto senderror;
7706 }
7707
7708 if (msg->sadb_msg_version != PF_KEY_V2) {
7709 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7710 msg->sadb_msg_version);
7711 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7712 error = EINVAL;
7713 goto senderror;
7714 }
7715
7716 if (msg->sadb_msg_type > SADB_MAX) {
7717 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7718 msg->sadb_msg_type);
7719 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7720 error = EINVAL;
7721 goto senderror;
7722 }
7723
7724 /* for old-fashioned code - should be nuked */
7725 if (m->m_pkthdr.len > MCLBYTES) {
7726 m_freem(m);
7727 return ENOBUFS;
7728 }
7729 if (m->m_next) {
7730 struct mbuf *n;
7731
7732 MGETHDR(n, M_DONTWAIT, MT_DATA);
7733 if (n && m->m_pkthdr.len > MHLEN) {
7734 MCLGET(n, M_DONTWAIT);
7735 if ((n->m_flags & M_EXT) == 0) {
7736 m_free(n);
7737 n = NULL;
7738 }
7739 }
7740 if (!n) {
7741 m_freem(m);
7742 return ENOBUFS;
7743 }
7744 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7745 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7746 n->m_next = NULL;
7747 m_freem(m);
7748 m = n;
7749 }
7750
7751 /* align the mbuf chain so that extensions are in contiguous region. */
7752 error = key_align(m, &mh);
7753 if (error)
7754 return error;
7755
7756 if (m->m_next) { /*XXX*/
7757 m_freem(m);
7758 return ENOBUFS;
7759 }
7760
7761 msg = mh.msg;
7762
7763 /* check SA type */
7764 switch (msg->sadb_msg_satype) {
7765 case SADB_SATYPE_UNSPEC:
7766 switch (msg->sadb_msg_type) {
7767 case SADB_GETSPI:
7768 case SADB_UPDATE:
7769 case SADB_ADD:
7770 case SADB_DELETE:
7771 case SADB_GET:
7772 case SADB_ACQUIRE:
7773 case SADB_EXPIRE:
7774 IPSECLOG(LOG_DEBUG,
7775 "must specify satype when msg type=%u.\n",
7776 msg->sadb_msg_type);
7777 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7778 error = EINVAL;
7779 goto senderror;
7780 }
7781 break;
7782 case SADB_SATYPE_AH:
7783 case SADB_SATYPE_ESP:
7784 case SADB_X_SATYPE_IPCOMP:
7785 case SADB_X_SATYPE_TCPSIGNATURE:
7786 switch (msg->sadb_msg_type) {
7787 case SADB_X_SPDADD:
7788 case SADB_X_SPDDELETE:
7789 case SADB_X_SPDGET:
7790 case SADB_X_SPDDUMP:
7791 case SADB_X_SPDFLUSH:
7792 case SADB_X_SPDSETIDX:
7793 case SADB_X_SPDUPDATE:
7794 case SADB_X_SPDDELETE2:
7795 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7796 msg->sadb_msg_type);
7797 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7798 error = EINVAL;
7799 goto senderror;
7800 }
7801 break;
7802 case SADB_SATYPE_RSVP:
7803 case SADB_SATYPE_OSPFV2:
7804 case SADB_SATYPE_RIPV2:
7805 case SADB_SATYPE_MIP:
7806 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7807 msg->sadb_msg_satype);
7808 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7809 error = EOPNOTSUPP;
7810 goto senderror;
7811 case 1: /* XXX: What does it do? */
7812 if (msg->sadb_msg_type == SADB_X_PROMISC)
7813 break;
7814 /*FALLTHROUGH*/
7815 default:
7816 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7817 msg->sadb_msg_satype);
7818 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7819 error = EINVAL;
7820 goto senderror;
7821 }
7822
7823 /* check field of upper layer protocol and address family */
7824 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7825 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7826 const struct sadb_address *src0, *dst0;
7827 const struct sockaddr *sa0, *da0;
7828 u_int plen;
7829
7830 src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
7831 dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
7832 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC);
7833 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST);
7834
7835 /* check upper layer protocol */
7836 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7837 IPSECLOG(LOG_DEBUG,
7838 "upper layer protocol mismatched.\n");
7839 goto invaddr;
7840 }
7841
7842 /* check family */
7843 if (sa0->sa_family != da0->sa_family) {
7844 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7845 goto invaddr;
7846 }
7847 if (sa0->sa_len != da0->sa_len) {
7848 IPSECLOG(LOG_DEBUG,
7849 "address struct size mismatched.\n");
7850 goto invaddr;
7851 }
7852
7853 switch (sa0->sa_family) {
7854 case AF_INET:
7855 if (sa0->sa_len != sizeof(struct sockaddr_in))
7856 goto invaddr;
7857 break;
7858 case AF_INET6:
7859 if (sa0->sa_len != sizeof(struct sockaddr_in6))
7860 goto invaddr;
7861 break;
7862 default:
7863 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7864 error = EAFNOSUPPORT;
7865 goto senderror;
7866 }
7867
7868 switch (sa0->sa_family) {
7869 case AF_INET:
7870 plen = sizeof(struct in_addr) << 3;
7871 break;
7872 case AF_INET6:
7873 plen = sizeof(struct in6_addr) << 3;
7874 break;
7875 default:
7876 plen = 0; /*fool gcc*/
7877 break;
7878 }
7879
7880 /* check max prefix length */
7881 if (src0->sadb_address_prefixlen > plen ||
7882 dst0->sadb_address_prefixlen > plen) {
7883 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7884 goto invaddr;
7885 }
7886
7887 /*
7888 * prefixlen == 0 is valid because there can be a case when
7889 * all addresses are matched.
7890 */
7891 }
7892
7893 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7894 key_api_typesw[msg->sadb_msg_type] == NULL) {
7895 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7896 error = EINVAL;
7897 goto senderror;
7898 }
7899
7900 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7901
7902 invaddr:
7903 error = EINVAL;
7904 senderror:
7905 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7906 return key_senderror(so, m, error);
7907 }
7908
7909 static int
7910 key_senderror(struct socket *so, struct mbuf *m, int code)
7911 {
7912 struct sadb_msg *msg;
7913
7914 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7915
7916 msg = mtod(m, struct sadb_msg *);
7917 msg->sadb_msg_errno = code;
7918 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7919 }
7920
7921 /*
7922 * set the pointer to each header into message buffer.
7923 * m will be freed on error.
7924 * XXX larger-than-MCLBYTES extension?
7925 */
7926 static int
7927 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7928 {
7929 struct mbuf *n;
7930 struct sadb_ext *ext;
7931 size_t off, end;
7932 int extlen;
7933 int toff;
7934
7935 KASSERT(m != NULL);
7936 KASSERT(mhp != NULL);
7937 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7938
7939 /* initialize */
7940 memset(mhp, 0, sizeof(*mhp));
7941
7942 mhp->msg = mtod(m, struct sadb_msg *);
7943 mhp->ext[0] = mhp->msg; /*XXX backward compat */
7944
7945 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7946 extlen = end; /*just in case extlen is not updated*/
7947 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7948 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7949 if (!n) {
7950 /* m is already freed */
7951 return ENOBUFS;
7952 }
7953 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7954
7955 /* set pointer */
7956 switch (ext->sadb_ext_type) {
7957 case SADB_EXT_SA:
7958 case SADB_EXT_ADDRESS_SRC:
7959 case SADB_EXT_ADDRESS_DST:
7960 case SADB_EXT_ADDRESS_PROXY:
7961 case SADB_EXT_LIFETIME_CURRENT:
7962 case SADB_EXT_LIFETIME_HARD:
7963 case SADB_EXT_LIFETIME_SOFT:
7964 case SADB_EXT_KEY_AUTH:
7965 case SADB_EXT_KEY_ENCRYPT:
7966 case SADB_EXT_IDENTITY_SRC:
7967 case SADB_EXT_IDENTITY_DST:
7968 case SADB_EXT_SENSITIVITY:
7969 case SADB_EXT_PROPOSAL:
7970 case SADB_EXT_SUPPORTED_AUTH:
7971 case SADB_EXT_SUPPORTED_ENCRYPT:
7972 case SADB_EXT_SPIRANGE:
7973 case SADB_X_EXT_POLICY:
7974 case SADB_X_EXT_SA2:
7975 case SADB_X_EXT_NAT_T_TYPE:
7976 case SADB_X_EXT_NAT_T_SPORT:
7977 case SADB_X_EXT_NAT_T_DPORT:
7978 case SADB_X_EXT_NAT_T_OAI:
7979 case SADB_X_EXT_NAT_T_OAR:
7980 case SADB_X_EXT_NAT_T_FRAG:
7981 /* duplicate check */
7982 /*
7983 * XXX Are there duplication payloads of either
7984 * KEY_AUTH or KEY_ENCRYPT ?
7985 */
7986 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7987 IPSECLOG(LOG_DEBUG,
7988 "duplicate ext_type %u is passed.\n",
7989 ext->sadb_ext_type);
7990 m_freem(m);
7991 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7992 return EINVAL;
7993 }
7994 break;
7995 default:
7996 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7997 ext->sadb_ext_type);
7998 m_freem(m);
7999 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
8000 return EINVAL;
8001 }
8002
8003 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8004
8005 if (key_validate_ext(ext, extlen)) {
8006 m_freem(m);
8007 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8008 return EINVAL;
8009 }
8010
8011 n = m_pulldown(m, off, extlen, &toff);
8012 if (!n) {
8013 /* m is already freed */
8014 return ENOBUFS;
8015 }
8016 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
8017
8018 mhp->ext[ext->sadb_ext_type] = ext;
8019 mhp->extoff[ext->sadb_ext_type] = off;
8020 mhp->extlen[ext->sadb_ext_type] = extlen;
8021 }
8022
8023 if (off != end) {
8024 m_freem(m);
8025 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8026 return EINVAL;
8027 }
8028
8029 return 0;
8030 }
8031
8032 static int
8033 key_validate_ext(const struct sadb_ext *ext, int len)
8034 {
8035 const struct sockaddr *sa;
8036 enum { NONE, ADDR } checktype = NONE;
8037 int baselen = 0;
8038 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8039
8040 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8041 return EINVAL;
8042
8043 /* if it does not match minimum/maximum length, bail */
8044 if (ext->sadb_ext_type >= __arraycount(minsize) ||
8045 ext->sadb_ext_type >= __arraycount(maxsize))
8046 return EINVAL;
8047 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8048 return EINVAL;
8049 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8050 return EINVAL;
8051
8052 /* more checks based on sadb_ext_type XXX need more */
8053 switch (ext->sadb_ext_type) {
8054 case SADB_EXT_ADDRESS_SRC:
8055 case SADB_EXT_ADDRESS_DST:
8056 case SADB_EXT_ADDRESS_PROXY:
8057 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8058 checktype = ADDR;
8059 break;
8060 case SADB_EXT_IDENTITY_SRC:
8061 case SADB_EXT_IDENTITY_DST:
8062 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8063 SADB_X_IDENTTYPE_ADDR) {
8064 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8065 checktype = ADDR;
8066 } else
8067 checktype = NONE;
8068 break;
8069 default:
8070 checktype = NONE;
8071 break;
8072 }
8073
8074 switch (checktype) {
8075 case NONE:
8076 break;
8077 case ADDR:
8078 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8079 if (len < baselen + sal)
8080 return EINVAL;
8081 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8082 return EINVAL;
8083 break;
8084 }
8085
8086 return 0;
8087 }
8088
8089 static int
8090 key_do_init(void)
8091 {
8092 int i, error;
8093
8094 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
8095
8096 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
8097 cv_init(&key_spd.cv_lc, "key_sp_lc");
8098 key_spd.psz = pserialize_create();
8099 cv_init(&key_spd.cv_psz, "key_sp_psz");
8100 key_spd.psz_performing = false;
8101
8102 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
8103 cv_init(&key_sad.cv_lc, "key_sa_lc");
8104 key_sad.psz = pserialize_create();
8105 cv_init(&key_sad.cv_psz, "key_sa_psz");
8106 key_sad.psz_performing = false;
8107
8108 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
8109
8110 callout_init(&key_timehandler_ch, 0);
8111 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
8112 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
8113 if (error != 0)
8114 panic("%s: workqueue_create failed (%d)\n", __func__, error);
8115
8116 for (i = 0; i < IPSEC_DIR_MAX; i++) {
8117 PSLIST_INIT(&key_spd.splist[i]);
8118 }
8119
8120 PSLIST_INIT(&key_spd.socksplist);
8121
8122 PSLIST_INIT(&key_sad.sahlist);
8123
8124 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8125 LIST_INIT(&key_misc.reglist[i]);
8126 }
8127
8128 #ifndef IPSEC_NONBLOCK_ACQUIRE
8129 LIST_INIT(&key_misc.acqlist);
8130 #endif
8131 #ifdef notyet
8132 LIST_INIT(&key_misc.spacqlist);
8133 #endif
8134
8135 /* system default */
8136 ip4_def_policy.policy = IPSEC_POLICY_NONE;
8137 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
8138 localcount_init(&ip4_def_policy.localcount);
8139
8140 #ifdef INET6
8141 ip6_def_policy.policy = IPSEC_POLICY_NONE;
8142 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
8143 localcount_init(&ip6_def_policy.localcount);
8144 #endif
8145
8146 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
8147
8148 /* initialize key statistics */
8149 keystat.getspi_count = 1;
8150
8151 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
8152
8153 return (0);
8154 }
8155
8156 void
8157 key_init(void)
8158 {
8159 static ONCE_DECL(key_init_once);
8160
8161 sysctl_net_keyv2_setup(NULL);
8162 sysctl_net_key_compat_setup(NULL);
8163
8164 RUN_ONCE(&key_init_once, key_do_init);
8165
8166 key_init_so();
8167 }
8168
8169 /*
8170 * XXX: maybe This function is called after INBOUND IPsec processing.
8171 *
8172 * Special check for tunnel-mode packets.
8173 * We must make some checks for consistency between inner and outer IP header.
8174 *
8175 * xxx more checks to be provided
8176 */
8177 int
8178 key_checktunnelsanity(
8179 struct secasvar *sav,
8180 u_int family,
8181 void *src,
8182 void *dst
8183 )
8184 {
8185
8186 /* XXX: check inner IP header */
8187
8188 return 1;
8189 }
8190
8191 #if 0
8192 #define hostnamelen strlen(hostname)
8193
8194 /*
8195 * Get FQDN for the host.
8196 * If the administrator configured hostname (by hostname(1)) without
8197 * domain name, returns nothing.
8198 */
8199 static const char *
8200 key_getfqdn(void)
8201 {
8202 int i;
8203 int hasdot;
8204 static char fqdn[MAXHOSTNAMELEN + 1];
8205
8206 if (!hostnamelen)
8207 return NULL;
8208
8209 /* check if it comes with domain name. */
8210 hasdot = 0;
8211 for (i = 0; i < hostnamelen; i++) {
8212 if (hostname[i] == '.')
8213 hasdot++;
8214 }
8215 if (!hasdot)
8216 return NULL;
8217
8218 /* NOTE: hostname may not be NUL-terminated. */
8219 memset(fqdn, 0, sizeof(fqdn));
8220 memcpy(fqdn, hostname, hostnamelen);
8221 fqdn[hostnamelen] = '\0';
8222 return fqdn;
8223 }
8224
8225 /*
8226 * get username@FQDN for the host/user.
8227 */
8228 static const char *
8229 key_getuserfqdn(void)
8230 {
8231 const char *host;
8232 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8233 struct proc *p = curproc;
8234 char *q;
8235
8236 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8237 return NULL;
8238 if (!(host = key_getfqdn()))
8239 return NULL;
8240
8241 /* NOTE: s_login may not be-NUL terminated. */
8242 memset(userfqdn, 0, sizeof(userfqdn));
8243 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8244 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
8245 q = userfqdn + strlen(userfqdn);
8246 *q++ = '@';
8247 memcpy(q, host, strlen(host));
8248 q += strlen(host);
8249 *q++ = '\0';
8250
8251 return userfqdn;
8252 }
8253 #endif
8254
8255 /* record data transfer on SA, and update timestamps */
8256 void
8257 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8258 {
8259
8260 KASSERT(sav != NULL);
8261 KASSERT(sav->lft_c != NULL);
8262 KASSERT(m != NULL);
8263
8264 /*
8265 * XXX Currently, there is a difference of bytes size
8266 * between inbound and outbound processing.
8267 */
8268 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8269 /* to check bytes lifetime is done in key_timehandler(). */
8270
8271 /*
8272 * We use the number of packets as the unit of
8273 * sadb_lifetime_allocations. We increment the variable
8274 * whenever {esp,ah}_{in,out}put is called.
8275 */
8276 sav->lft_c->sadb_lifetime_allocations++;
8277 /* XXX check for expires? */
8278
8279 /*
8280 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8281 * in seconds. HARD and SOFT lifetime are measured by the time
8282 * difference (again in seconds) from sadb_lifetime_usetime.
8283 *
8284 * usetime
8285 * v expire expire
8286 * -----+-----+--------+---> t
8287 * <--------------> HARD
8288 * <-----> SOFT
8289 */
8290 sav->lft_c->sadb_lifetime_usetime = time_uptime;
8291 /* XXX check for expires? */
8292
8293 return;
8294 }
8295
8296 /* dumb version */
8297 void
8298 key_sa_routechange(struct sockaddr *dst)
8299 {
8300 struct secashead *sah;
8301 int s;
8302
8303 s = pserialize_read_enter();
8304 SAHLIST_READER_FOREACH(sah) {
8305 struct route *ro;
8306 const struct sockaddr *sa;
8307
8308 key_sah_ref(sah);
8309 pserialize_read_exit(s);
8310
8311 ro = &sah->sa_route;
8312 sa = rtcache_getdst(ro);
8313 if (sa != NULL && dst->sa_len == sa->sa_len &&
8314 memcmp(dst, sa, dst->sa_len) == 0)
8315 rtcache_free(ro);
8316
8317 s = pserialize_read_enter();
8318 key_sah_unref(sah);
8319 }
8320 pserialize_read_exit(s);
8321
8322 return;
8323 }
8324
8325 static void
8326 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8327 {
8328 struct secasvar *_sav;
8329
8330 ASSERT_SLEEPABLE();
8331 KASSERT(mutex_owned(&key_sad.lock));
8332
8333 if (sav->state == state)
8334 return;
8335
8336 key_unlink_sav(sav);
8337 localcount_fini(&sav->localcount);
8338 SAVLIST_ENTRY_DESTROY(sav);
8339 key_init_sav(sav);
8340
8341 sav->state = state;
8342 if (!SADB_SASTATE_USABLE_P(sav)) {
8343 /* We don't need to care about the order */
8344 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8345 return;
8346 }
8347 /*
8348 * Sort the list by lft_c->sadb_lifetime_addtime
8349 * in ascending order.
8350 */
8351 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8352 if (_sav->lft_c->sadb_lifetime_addtime >
8353 sav->lft_c->sadb_lifetime_addtime) {
8354 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8355 break;
8356 }
8357 }
8358 if (_sav == NULL) {
8359 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8360 }
8361 key_validate_savlist(sav->sah, state);
8362 }
8363
8364 /* XXX too much? */
8365 static struct mbuf *
8366 key_alloc_mbuf(int l)
8367 {
8368 struct mbuf *m = NULL, *n;
8369 int len, t;
8370
8371 len = l;
8372 while (len > 0) {
8373 MGET(n, M_DONTWAIT, MT_DATA);
8374 if (n && len > MLEN)
8375 MCLGET(n, M_DONTWAIT);
8376 if (!n) {
8377 m_freem(m);
8378 return NULL;
8379 }
8380
8381 n->m_next = NULL;
8382 n->m_len = 0;
8383 n->m_len = M_TRAILINGSPACE(n);
8384 /* use the bottom of mbuf, hoping we can prepend afterwards */
8385 if (n->m_len > len) {
8386 t = (n->m_len - len) & ~(sizeof(long) - 1);
8387 n->m_data += t;
8388 n->m_len = len;
8389 }
8390
8391 len -= n->m_len;
8392
8393 if (m)
8394 m_cat(m, n);
8395 else
8396 m = n;
8397 }
8398
8399 return m;
8400 }
8401
8402 static struct mbuf *
8403 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8404 {
8405 struct secashead *sah;
8406 struct secasvar *sav;
8407 u_int16_t proto;
8408 u_int8_t satype;
8409 u_int8_t state;
8410 int cnt;
8411 struct mbuf *m, *n;
8412
8413 KASSERT(mutex_owned(&key_sad.lock));
8414
8415 /* map satype to proto */
8416 proto = key_satype2proto(req_satype);
8417 if (proto == 0) {
8418 *errorp = EINVAL;
8419 return (NULL);
8420 }
8421
8422 /* count sav entries to be sent to the userland. */
8423 cnt = 0;
8424 SAHLIST_WRITER_FOREACH(sah) {
8425 if (req_satype != SADB_SATYPE_UNSPEC &&
8426 proto != sah->saidx.proto)
8427 continue;
8428
8429 SASTATE_ANY_FOREACH(state) {
8430 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8431 cnt++;
8432 }
8433 }
8434 }
8435
8436 if (cnt == 0) {
8437 *errorp = ENOENT;
8438 return (NULL);
8439 }
8440
8441 /* send this to the userland, one at a time. */
8442 m = NULL;
8443 SAHLIST_WRITER_FOREACH(sah) {
8444 if (req_satype != SADB_SATYPE_UNSPEC &&
8445 proto != sah->saidx.proto)
8446 continue;
8447
8448 /* map proto to satype */
8449 satype = key_proto2satype(sah->saidx.proto);
8450 if (satype == 0) {
8451 m_freem(m);
8452 *errorp = EINVAL;
8453 return (NULL);
8454 }
8455
8456 SASTATE_ANY_FOREACH(state) {
8457 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8458 n = key_setdumpsa(sav, SADB_DUMP, satype,
8459 --cnt, pid);
8460 if (!n) {
8461 m_freem(m);
8462 *errorp = ENOBUFS;
8463 return (NULL);
8464 }
8465
8466 if (!m)
8467 m = n;
8468 else
8469 m_cat(m, n);
8470 }
8471 }
8472 }
8473
8474 if (!m) {
8475 *errorp = EINVAL;
8476 return (NULL);
8477 }
8478
8479 if ((m->m_flags & M_PKTHDR) != 0) {
8480 m->m_pkthdr.len = 0;
8481 for (n = m; n; n = n->m_next)
8482 m->m_pkthdr.len += n->m_len;
8483 }
8484
8485 *errorp = 0;
8486 return (m);
8487 }
8488
8489 static struct mbuf *
8490 key_setspddump(int *errorp, pid_t pid)
8491 {
8492 struct secpolicy *sp;
8493 int cnt;
8494 u_int dir;
8495 struct mbuf *m, *n;
8496
8497 KASSERT(mutex_owned(&key_spd.lock));
8498
8499 /* search SPD entry and get buffer size. */
8500 cnt = 0;
8501 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8502 SPLIST_WRITER_FOREACH(sp, dir) {
8503 cnt++;
8504 }
8505 }
8506
8507 if (cnt == 0) {
8508 *errorp = ENOENT;
8509 return (NULL);
8510 }
8511
8512 m = NULL;
8513 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8514 SPLIST_WRITER_FOREACH(sp, dir) {
8515 --cnt;
8516 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8517
8518 if (!n) {
8519 *errorp = ENOBUFS;
8520 m_freem(m);
8521 return (NULL);
8522 }
8523 if (!m)
8524 m = n;
8525 else {
8526 m->m_pkthdr.len += n->m_pkthdr.len;
8527 m_cat(m, n);
8528 }
8529 }
8530 }
8531
8532 *errorp = 0;
8533 return (m);
8534 }
8535
8536 int
8537 key_get_used(void) {
8538 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8539 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8540 !SOCKSPLIST_READER_EMPTY();
8541 }
8542
8543 void
8544 key_update_used(void)
8545 {
8546 switch (ipsec_enabled) {
8547 default:
8548 case 0:
8549 #ifdef notyet
8550 /* XXX: racy */
8551 ipsec_used = 0;
8552 #endif
8553 break;
8554 case 1:
8555 #ifndef notyet
8556 /* XXX: racy */
8557 if (!ipsec_used)
8558 #endif
8559 ipsec_used = key_get_used();
8560 break;
8561 case 2:
8562 ipsec_used = 1;
8563 break;
8564 }
8565 }
8566
8567 static int
8568 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8569 {
8570 struct mbuf *m, *n;
8571 int err2 = 0;
8572 char *p, *ep;
8573 size_t len;
8574 int error;
8575
8576 if (newp)
8577 return (EPERM);
8578 if (namelen != 1)
8579 return (EINVAL);
8580
8581 mutex_enter(&key_sad.lock);
8582 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8583 mutex_exit(&key_sad.lock);
8584 if (!m)
8585 return (error);
8586 if (!oldp)
8587 *oldlenp = m->m_pkthdr.len;
8588 else {
8589 p = oldp;
8590 if (*oldlenp < m->m_pkthdr.len) {
8591 err2 = ENOMEM;
8592 ep = p + *oldlenp;
8593 } else {
8594 *oldlenp = m->m_pkthdr.len;
8595 ep = p + m->m_pkthdr.len;
8596 }
8597 for (n = m; n; n = n->m_next) {
8598 len = (ep - p < n->m_len) ?
8599 ep - p : n->m_len;
8600 error = copyout(mtod(n, const void *), p, len);
8601 p += len;
8602 if (error)
8603 break;
8604 }
8605 if (error == 0)
8606 error = err2;
8607 }
8608 m_freem(m);
8609
8610 return (error);
8611 }
8612
8613 static int
8614 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8615 {
8616 struct mbuf *m, *n;
8617 int err2 = 0;
8618 char *p, *ep;
8619 size_t len;
8620 int error;
8621
8622 if (newp)
8623 return (EPERM);
8624 if (namelen != 0)
8625 return (EINVAL);
8626
8627 mutex_enter(&key_spd.lock);
8628 m = key_setspddump(&error, l->l_proc->p_pid);
8629 mutex_exit(&key_spd.lock);
8630 if (!m)
8631 return (error);
8632 if (!oldp)
8633 *oldlenp = m->m_pkthdr.len;
8634 else {
8635 p = oldp;
8636 if (*oldlenp < m->m_pkthdr.len) {
8637 err2 = ENOMEM;
8638 ep = p + *oldlenp;
8639 } else {
8640 *oldlenp = m->m_pkthdr.len;
8641 ep = p + m->m_pkthdr.len;
8642 }
8643 for (n = m; n; n = n->m_next) {
8644 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8645 error = copyout(mtod(n, const void *), p, len);
8646 p += len;
8647 if (error)
8648 break;
8649 }
8650 if (error == 0)
8651 error = err2;
8652 }
8653 m_freem(m);
8654
8655 return (error);
8656 }
8657
8658 /*
8659 * Create sysctl tree for native IPSEC key knobs, originally
8660 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8661 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8662 * and in any case the part of our sysctl namespace used for dumping the
8663 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8664 * namespace, for API reasons.
8665 *
8666 * Pending a consensus on the right way to fix this, add a level of
8667 * indirection in how we number the `native' IPSEC key nodes;
8668 * and (as requested by Andrew Brown) move registration of the
8669 * KAME-compatible names to a separate function.
8670 */
8671 #if 0
8672 # define IPSEC_PFKEY PF_KEY_V2
8673 # define IPSEC_PFKEY_NAME "keyv2"
8674 #else
8675 # define IPSEC_PFKEY PF_KEY
8676 # define IPSEC_PFKEY_NAME "key"
8677 #endif
8678
8679 static int
8680 sysctl_net_key_stats(SYSCTLFN_ARGS)
8681 {
8682
8683 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8684 }
8685
8686 static void
8687 sysctl_net_keyv2_setup(struct sysctllog **clog)
8688 {
8689
8690 sysctl_createv(clog, 0, NULL, NULL,
8691 CTLFLAG_PERMANENT,
8692 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8693 NULL, 0, NULL, 0,
8694 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8695
8696 sysctl_createv(clog, 0, NULL, NULL,
8697 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8698 CTLTYPE_INT, "debug", NULL,
8699 NULL, 0, &key_debug_level, 0,
8700 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8701 sysctl_createv(clog, 0, NULL, NULL,
8702 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8703 CTLTYPE_INT, "spi_try", NULL,
8704 NULL, 0, &key_spi_trycnt, 0,
8705 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8706 sysctl_createv(clog, 0, NULL, NULL,
8707 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8708 CTLTYPE_INT, "spi_min_value", NULL,
8709 NULL, 0, &key_spi_minval, 0,
8710 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8711 sysctl_createv(clog, 0, NULL, NULL,
8712 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8713 CTLTYPE_INT, "spi_max_value", NULL,
8714 NULL, 0, &key_spi_maxval, 0,
8715 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8716 sysctl_createv(clog, 0, NULL, NULL,
8717 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8718 CTLTYPE_INT, "random_int", NULL,
8719 NULL, 0, &key_int_random, 0,
8720 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8721 sysctl_createv(clog, 0, NULL, NULL,
8722 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8723 CTLTYPE_INT, "larval_lifetime", NULL,
8724 NULL, 0, &key_larval_lifetime, 0,
8725 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8726 sysctl_createv(clog, 0, NULL, NULL,
8727 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8728 CTLTYPE_INT, "blockacq_count", NULL,
8729 NULL, 0, &key_blockacq_count, 0,
8730 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8731 sysctl_createv(clog, 0, NULL, NULL,
8732 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8733 CTLTYPE_INT, "blockacq_lifetime", NULL,
8734 NULL, 0, &key_blockacq_lifetime, 0,
8735 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8736 sysctl_createv(clog, 0, NULL, NULL,
8737 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8738 CTLTYPE_INT, "esp_keymin", NULL,
8739 NULL, 0, &ipsec_esp_keymin, 0,
8740 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8741 sysctl_createv(clog, 0, NULL, NULL,
8742 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8743 CTLTYPE_INT, "prefered_oldsa", NULL,
8744 NULL, 0, &key_prefered_oldsa, 0,
8745 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8746 sysctl_createv(clog, 0, NULL, NULL,
8747 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8748 CTLTYPE_INT, "esp_auth", NULL,
8749 NULL, 0, &ipsec_esp_auth, 0,
8750 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8751 sysctl_createv(clog, 0, NULL, NULL,
8752 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8753 CTLTYPE_INT, "ah_keymin", NULL,
8754 NULL, 0, &ipsec_ah_keymin, 0,
8755 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8756 sysctl_createv(clog, 0, NULL, NULL,
8757 CTLFLAG_PERMANENT,
8758 CTLTYPE_STRUCT, "stats",
8759 SYSCTL_DESCR("PF_KEY statistics"),
8760 sysctl_net_key_stats, 0, NULL, 0,
8761 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8762 }
8763
8764 /*
8765 * Register sysctl names used by setkey(8). For historical reasons,
8766 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8767 * for both IPSEC and KAME IPSEC.
8768 */
8769 static void
8770 sysctl_net_key_compat_setup(struct sysctllog **clog)
8771 {
8772
8773 sysctl_createv(clog, 0, NULL, NULL,
8774 CTLFLAG_PERMANENT,
8775 CTLTYPE_NODE, "key", NULL,
8776 NULL, 0, NULL, 0,
8777 CTL_NET, PF_KEY, CTL_EOL);
8778
8779 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8780 sysctl_createv(clog, 0, NULL, NULL,
8781 CTLFLAG_PERMANENT,
8782 CTLTYPE_STRUCT, "dumpsa", NULL,
8783 sysctl_net_key_dumpsa, 0, NULL, 0,
8784 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8785 sysctl_createv(clog, 0, NULL, NULL,
8786 CTLFLAG_PERMANENT,
8787 CTLTYPE_STRUCT, "dumpsp", NULL,
8788 sysctl_net_key_dumpsp, 0, NULL, 0,
8789 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8790 }
8791