key.c revision 1.234 1 /* $NetBSD: key.c,v 1.234 2017/10/03 08:56:52 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.234 2017/10/03 08:56:52 ozaki-r Exp $");
36
37 /*
38 * This code is referred to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160 * - SP's lifetime is managed by localcount(9)
161 * - An SP that has been inserted to the key_spd.splist is initially referenced
162 * by none, i.e., a reference from the key_spd.splist isn't counted
163 * - When an SP is being destroyed, we change its state as DEAD, wait for
164 * references to the SP to be released, and then deallocate the SP
165 * (see key_unlink_sp)
166 * - Getting an SP
167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168 * - Must iterate the list and increment the reference count of a found SP
169 * (by key_sp_ref) in a pserialize read section
170 * - We can gain another reference from a held SP only if we check its state
171 * and take its reference in a pserialize read section
172 * (see esp_output for example)
173 * - We may get an SP from an SP cache. See below
174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175 * - Updating member variables of an SP
176 * - Most member variables of an SP are immutable
177 * - Only sp->state and sp->lastused can be changed
178 * - sp->state of an SP is updated only when destroying it under key_spd.lock
179 * - SP caches
180 * - SPs can be cached in PCBs
181 * - The lifetime of the caches is controlled by the global generation counter
182 * (ipsec_spdgen)
183 * - The global counter value is stored when an SP is cached
184 * - If the stored value is different from the global counter then the cache
185 * is considered invalidated
186 * - The counter is incremented when an SP is being destroyed
187 * - So checking the generation and taking a reference to an SP should be
188 * in a pserialize read section
189 * - Note that caching doesn't increment the reference counter of an SP
190 * - SPs in sockets
191 * - Userland programs can set a policy to a socket by
192 * setsockopt(IP_IPSEC_POLICY)
193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
194 * the key_spd.socksplist list (not the key_spd.splist)
195 * - Such a policy is destroyed when a corresponding socket is destroed,
196 * however, a socket can be destroyed in softint so we cannot destroy
197 * it directly instead we just mark it DEAD and delay the destruction
198 * until GC by the timer
199 */
200 /*
201 * Locking notes on SAD:
202 * - Data structures
203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204 * entries
205 * - An sav is supposed to be an SA from a viewpoint of users
206 * - A sah has sav lists for each SA state
207 * - Multiple sahs with the same saidx can exist
208 * - Only one entry has MATURE state and others should be DEAD
209 * - DEAD entries are just ignored from searching
210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with
211 * holding key_sad.lock which is a adaptive mutex
212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in
213 * pserialize(9) read sections
214 * - sah's lifetime is managed by localcount(9)
215 * - Getting an sah entry
216 * - We get an sah from the key_sad.sahlist
217 * - Must iterate the list and increment the reference count of a found sah
218 * (by key_sah_ref) in a pserialize read section
219 * - A gotten sah must be released after use by key_sah_unref
220 * - An sah is destroyed when its state become DEAD and no sav is
221 * listed to the sah
222 * - The destruction is done only in the timer (see key_timehandler_sad)
223 * - sav's lifetime is managed by localcount(9)
224 * - Getting an sav entry
225 * - First get an sah by saidx and get an sav from either of sah's savlists
226 * - Must iterate the list and increment the reference count of a found sav
227 * (by key_sa_ref) in a pserialize read section
228 * - We can gain another reference from a held SA only if we check its state
229 * and take its reference in a pserialize read section
230 * (see esp_output for example)
231 * - A gotten sav must be released after use by key_sa_unref
232 * - An sav is destroyed when its state become DEAD
233 */
234 /*
235 * Locking notes on misc data:
236 * - All lists of key_misc are protected by key_misc.lock
237 * - key_misc.lock must be held even for read accesses
238 */
239
240 /* SPD */
241 static struct {
242 kmutex_t lock;
243 kcondvar_t cv_lc;
244 struct pslist_head splist[IPSEC_DIR_MAX];
245 /*
246 * The list has SPs that are set to a socket via
247 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
248 */
249 struct pslist_head socksplist;
250
251 pserialize_t psz;
252 kcondvar_t cv_psz;
253 bool psz_performing;
254 } key_spd __cacheline_aligned;
255
256 /* SAD */
257 static struct {
258 kmutex_t lock;
259 kcondvar_t cv_lc;
260 struct pslist_head sahlist;
261
262 pserialize_t psz;
263 kcondvar_t cv_psz;
264 bool psz_performing;
265 } key_sad __cacheline_aligned;
266
267 /* Misc data */
268 static struct {
269 kmutex_t lock;
270 /* registed list */
271 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
272 #ifndef IPSEC_NONBLOCK_ACQUIRE
273 /* acquiring list */
274 LIST_HEAD(_acqlist, secacq) acqlist;
275 #endif
276 #ifdef notyet
277 /* SP acquiring list */
278 LIST_HEAD(_spacqlist, secspacq) spacqlist;
279 #endif
280 } key_misc __cacheline_aligned;
281
282 /* Macros for key_spd.splist */
283 #define SPLIST_ENTRY_INIT(sp) \
284 PSLIST_ENTRY_INIT((sp), pslist_entry)
285 #define SPLIST_ENTRY_DESTROY(sp) \
286 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
287 #define SPLIST_WRITER_REMOVE(sp) \
288 PSLIST_WRITER_REMOVE((sp), pslist_entry)
289 #define SPLIST_READER_EMPTY(dir) \
290 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
291 pslist_entry) == NULL)
292 #define SPLIST_READER_FOREACH(sp, dir) \
293 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
294 struct secpolicy, pslist_entry)
295 #define SPLIST_WRITER_FOREACH(sp, dir) \
296 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
297 struct secpolicy, pslist_entry)
298 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
299 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
300 #define SPLIST_WRITER_EMPTY(dir) \
301 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
302 pslist_entry) == NULL)
303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
304 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
305 pslist_entry)
306 #define SPLIST_WRITER_NEXT(sp) \
307 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
308 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
309 do { \
310 if (SPLIST_WRITER_EMPTY((dir))) { \
311 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
312 } else { \
313 struct secpolicy *__sp; \
314 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
315 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
316 SPLIST_WRITER_INSERT_AFTER(__sp,\
317 (new)); \
318 break; \
319 } \
320 } \
321 } \
322 } while (0)
323
324 /* Macros for key_spd.socksplist */
325 #define SOCKSPLIST_WRITER_FOREACH(sp) \
326 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
327 struct secpolicy, pslist_entry)
328 #define SOCKSPLIST_READER_EMPTY() \
329 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
330 pslist_entry) == NULL)
331
332 /* Macros for key_sad.sahlist */
333 #define SAHLIST_ENTRY_INIT(sah) \
334 PSLIST_ENTRY_INIT((sah), pslist_entry)
335 #define SAHLIST_ENTRY_DESTROY(sah) \
336 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
337 #define SAHLIST_WRITER_REMOVE(sah) \
338 PSLIST_WRITER_REMOVE((sah), pslist_entry)
339 #define SAHLIST_READER_FOREACH(sah) \
340 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
341 pslist_entry)
342 #define SAHLIST_WRITER_FOREACH(sah) \
343 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
344 pslist_entry)
345 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
346 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
347
348 /* Macros for key_sad.sahlist#savlist */
349 #define SAVLIST_ENTRY_INIT(sav) \
350 PSLIST_ENTRY_INIT((sav), pslist_entry)
351 #define SAVLIST_ENTRY_DESTROY(sav) \
352 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
353 #define SAVLIST_READER_FIRST(sah, state) \
354 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
355 pslist_entry)
356 #define SAVLIST_WRITER_REMOVE(sav) \
357 PSLIST_WRITER_REMOVE((sav), pslist_entry)
358 #define SAVLIST_READER_FOREACH(sav, sah, state) \
359 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
360 struct secasvar, pslist_entry)
361 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
362 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
363 struct secasvar, pslist_entry)
364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
365 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
367 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
368 #define SAVLIST_WRITER_EMPTY(sah, state) \
369 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
370 pslist_entry) == NULL)
371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
372 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
373 pslist_entry)
374 #define SAVLIST_WRITER_NEXT(sav) \
375 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
377 do { \
378 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
379 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
380 } else { \
381 struct secasvar *__sav; \
382 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
383 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
384 SAVLIST_WRITER_INSERT_AFTER(__sav,\
385 (new)); \
386 break; \
387 } \
388 } \
389 } \
390 } while (0)
391 #define SAVLIST_READER_NEXT(sav) \
392 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
393
394
395 /* search order for SAs */
396 /*
397 * This order is important because we must select the oldest SA
398 * for outbound processing. For inbound, This is not important.
399 */
400 static const u_int saorder_state_valid_prefer_old[] = {
401 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
402 };
403 static const u_int saorder_state_valid_prefer_new[] = {
404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
405 };
406
407 static const u_int saorder_state_alive[] = {
408 /* except DEAD */
409 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
410 };
411 static const u_int saorder_state_any[] = {
412 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
413 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
414 };
415
416 #define SASTATE_ALIVE_FOREACH(s) \
417 for (int _i = 0; \
418 _i < __arraycount(saorder_state_alive) ? \
419 (s) = saorder_state_alive[_i], true : false; \
420 _i++)
421 #define SASTATE_ANY_FOREACH(s) \
422 for (int _i = 0; \
423 _i < __arraycount(saorder_state_any) ? \
424 (s) = saorder_state_any[_i], true : false; \
425 _i++)
426
427 static const int minsize[] = {
428 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
429 sizeof(struct sadb_sa), /* SADB_EXT_SA */
430 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
433 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
436 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
437 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
438 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
440 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
441 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
442 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
444 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
445 0, /* SADB_X_EXT_KMPRIVATE */
446 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
447 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
448 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
449 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
451 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
453 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
454 };
455 static const int maxsize[] = {
456 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
457 sizeof(struct sadb_sa), /* SADB_EXT_SA */
458 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
461 0, /* SADB_EXT_ADDRESS_SRC */
462 0, /* SADB_EXT_ADDRESS_DST */
463 0, /* SADB_EXT_ADDRESS_PROXY */
464 0, /* SADB_EXT_KEY_AUTH */
465 0, /* SADB_EXT_KEY_ENCRYPT */
466 0, /* SADB_EXT_IDENTITY_SRC */
467 0, /* SADB_EXT_IDENTITY_DST */
468 0, /* SADB_EXT_SENSITIVITY */
469 0, /* SADB_EXT_PROPOSAL */
470 0, /* SADB_EXT_SUPPORTED_AUTH */
471 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
472 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
473 0, /* SADB_X_EXT_KMPRIVATE */
474 0, /* SADB_X_EXT_POLICY */
475 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
476 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
477 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
479 0, /* SADB_X_EXT_NAT_T_OAI */
480 0, /* SADB_X_EXT_NAT_T_OAR */
481 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
482 };
483
484 static int ipsec_esp_keymin = 256;
485 static int ipsec_esp_auth = 0;
486 static int ipsec_ah_keymin = 128;
487
488 #ifdef SYSCTL_DECL
489 SYSCTL_DECL(_net_key);
490 #endif
491
492 #ifdef SYSCTL_INT
493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
494 &key_debug_level, 0, "");
495
496 /* max count of trial for the decision of spi value */
497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
498 &key_spi_trycnt, 0, "");
499
500 /* minimum spi value to allocate automatically. */
501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
502 &key_spi_minval, 0, "");
503
504 /* maximun spi value to allocate automatically. */
505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
506 &key_spi_maxval, 0, "");
507
508 /* interval to initialize randseed */
509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
510 &key_int_random, 0, "");
511
512 /* lifetime for larval SA */
513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
514 &key_larval_lifetime, 0, "");
515
516 /* counter for blocking to send SADB_ACQUIRE to IKEd */
517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
518 &key_blockacq_count, 0, "");
519
520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
522 &key_blockacq_lifetime, 0, "");
523
524 /* ESP auth */
525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
526 &ipsec_esp_auth, 0, "");
527
528 /* minimum ESP key length */
529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
530 &ipsec_esp_keymin, 0, "");
531
532 /* minimum AH key length */
533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
534 &ipsec_ah_keymin, 0, "");
535
536 /* perfered old SA rather than new SA */
537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
538 &key_prefered_oldsa, 0, "");
539 #endif /* SYSCTL_INT */
540
541 #define __LIST_CHAINED(elm) \
542 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
543 #define LIST_INSERT_TAIL(head, elm, type, field) \
544 do {\
545 struct type *curelm = LIST_FIRST(head); \
546 if (curelm == NULL) {\
547 LIST_INSERT_HEAD(head, elm, field); \
548 } else { \
549 while (LIST_NEXT(curelm, field)) \
550 curelm = LIST_NEXT(curelm, field);\
551 LIST_INSERT_AFTER(curelm, elm, field);\
552 }\
553 } while (0)
554
555 #define KEY_CHKSASTATE(head, sav) \
556 /* do */ { \
557 if ((head) != (sav)) { \
558 IPSECLOG(LOG_DEBUG, \
559 "state mismatched (TREE=%d SA=%d)\n", \
560 (head), (sav)); \
561 continue; \
562 } \
563 } /* while (0) */
564
565 #define KEY_CHKSPDIR(head, sp) \
566 do { \
567 if ((head) != (sp)) { \
568 IPSECLOG(LOG_DEBUG, \
569 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
570 (head), (sp)); \
571 } \
572 } while (0)
573
574 /*
575 * set parameters into secasindex buffer.
576 * Must allocate secasindex buffer before calling this function.
577 */
578 static int
579 key_setsecasidx(int, int, int, const struct sockaddr *,
580 const struct sockaddr *, struct secasindex *);
581
582 /* key statistics */
583 struct _keystat {
584 u_long getspi_count; /* the avarage of count to try to get new SPI */
585 } keystat;
586
587 struct sadb_msghdr {
588 struct sadb_msg *msg;
589 void *ext[SADB_EXT_MAX + 1];
590 int extoff[SADB_EXT_MAX + 1];
591 int extlen[SADB_EXT_MAX + 1];
592 };
593
594 static void
595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
596
597 static const struct sockaddr *
598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
599 {
600
601 return PFKEY_ADDR_SADDR(mhp->ext[idx]);
602 }
603
604 static struct mbuf *
605 key_fill_replymsg(struct mbuf *m, int seq)
606 {
607 struct sadb_msg *msg;
608
609 if (m->m_len < sizeof(*msg)) {
610 m = m_pullup(m, sizeof(*msg));
611 if (m == NULL)
612 return NULL;
613 }
614 msg = mtod(m, struct sadb_msg *);
615 msg->sadb_msg_errno = 0;
616 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
617 if (seq != 0)
618 msg->sadb_msg_seq = seq;
619
620 return m;
621 }
622
623 #if 0
624 static void key_freeso(struct socket *);
625 static void key_freesp_so(struct secpolicy **);
626 #endif
627 static struct secpolicy *key_getsp (const struct secpolicyindex *);
628 static struct secpolicy *key_getspbyid (u_int32_t);
629 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
630 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
631 static void key_destroy_sp(struct secpolicy *);
632 static u_int16_t key_newreqid (void);
633 static struct mbuf *key_gather_mbuf (struct mbuf *,
634 const struct sadb_msghdr *, int, int, ...);
635 static int key_api_spdadd(struct socket *, struct mbuf *,
636 const struct sadb_msghdr *);
637 static u_int32_t key_getnewspid (void);
638 static int key_api_spddelete(struct socket *, struct mbuf *,
639 const struct sadb_msghdr *);
640 static int key_api_spddelete2(struct socket *, struct mbuf *,
641 const struct sadb_msghdr *);
642 static int key_api_spdget(struct socket *, struct mbuf *,
643 const struct sadb_msghdr *);
644 static int key_api_spdflush(struct socket *, struct mbuf *,
645 const struct sadb_msghdr *);
646 static int key_api_spddump(struct socket *, struct mbuf *,
647 const struct sadb_msghdr *);
648 static struct mbuf * key_setspddump (int *errorp, pid_t);
649 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
650 static int key_api_nat_map(struct socket *, struct mbuf *,
651 const struct sadb_msghdr *);
652 static struct mbuf *key_setdumpsp (struct secpolicy *,
653 u_int8_t, u_int32_t, pid_t);
654 static u_int key_getspreqmsglen (const struct secpolicy *);
655 static int key_spdexpire (struct secpolicy *);
656 static struct secashead *key_newsah (const struct secasindex *);
657 static void key_unlink_sah(struct secashead *);
658 static void key_destroy_sah(struct secashead *);
659 static bool key_sah_has_sav(struct secashead *);
660 static void key_sah_ref(struct secashead *);
661 static void key_sah_unref(struct secashead *);
662 static void key_init_sav(struct secasvar *);
663 static void key_destroy_sav(struct secasvar *);
664 static void key_destroy_sav_with_ref(struct secasvar *);
665 static struct secasvar *key_newsav(struct mbuf *,
666 const struct sadb_msghdr *, int *, const char*, int);
667 #define KEY_NEWSAV(m, sadb, e) \
668 key_newsav(m, sadb, e, __func__, __LINE__)
669 static void key_delsav (struct secasvar *);
670 static struct secashead *key_getsah(const struct secasindex *, int);
671 static struct secashead *key_getsah_ref(const struct secasindex *, int);
672 static bool key_checkspidup(const struct secasindex *, u_int32_t);
673 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
674 static int key_setsaval (struct secasvar *, struct mbuf *,
675 const struct sadb_msghdr *);
676 static void key_freesaval(struct secasvar *);
677 static int key_init_xform(struct secasvar *);
678 static void key_clear_xform(struct secasvar *);
679 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
680 u_int8_t, u_int32_t, u_int32_t);
681 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
682 static struct mbuf *key_setsadbxtype (u_int16_t);
683 static struct mbuf *key_setsadbxfrag (u_int16_t);
684 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
685 static int key_checksalen (const union sockaddr_union *);
686 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
687 u_int32_t, pid_t, u_int16_t);
688 static struct mbuf *key_setsadbsa (struct secasvar *);
689 static struct mbuf *key_setsadbaddr (u_int16_t,
690 const struct sockaddr *, u_int8_t, u_int16_t);
691 #if 0
692 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
693 int, u_int64_t);
694 #endif
695 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
696 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
697 u_int32_t);
698 static void *key_newbuf (const void *, u_int);
699 #ifdef INET6
700 static int key_ismyaddr6 (const struct sockaddr_in6 *);
701 #endif
702
703 static void sysctl_net_keyv2_setup(struct sysctllog **);
704 static void sysctl_net_key_compat_setup(struct sysctllog **);
705
706 /* flags for key_saidx_match() */
707 #define CMP_HEAD 1 /* protocol, addresses. */
708 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
709 #define CMP_REQID 3 /* additionally HEAD, reaid. */
710 #define CMP_EXACTLY 4 /* all elements. */
711 static int key_saidx_match(const struct secasindex *,
712 const struct secasindex *, int);
713
714 static int key_sockaddr_match(const struct sockaddr *,
715 const struct sockaddr *, int);
716 static int key_bb_match_withmask(const void *, const void *, u_int);
717 static u_int16_t key_satype2proto (u_int8_t);
718 static u_int8_t key_proto2satype (u_int16_t);
719
720 static int key_spidx_match_exactly(const struct secpolicyindex *,
721 const struct secpolicyindex *);
722 static int key_spidx_match_withmask(const struct secpolicyindex *,
723 const struct secpolicyindex *);
724
725 static int key_api_getspi(struct socket *, struct mbuf *,
726 const struct sadb_msghdr *);
727 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
728 const struct secasindex *);
729 static int key_handle_natt_info (struct secasvar *,
730 const struct sadb_msghdr *);
731 static int key_set_natt_ports (union sockaddr_union *,
732 union sockaddr_union *,
733 const struct sadb_msghdr *);
734 static int key_api_update(struct socket *, struct mbuf *,
735 const struct sadb_msghdr *);
736 #ifdef IPSEC_DOSEQCHECK
737 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
738 #endif
739 static int key_api_add(struct socket *, struct mbuf *,
740 const struct sadb_msghdr *);
741 static int key_setident (struct secashead *, struct mbuf *,
742 const struct sadb_msghdr *);
743 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
744 const struct sadb_msghdr *);
745 static int key_api_delete(struct socket *, struct mbuf *,
746 const struct sadb_msghdr *);
747 static int key_api_get(struct socket *, struct mbuf *,
748 const struct sadb_msghdr *);
749
750 static void key_getcomb_setlifetime (struct sadb_comb *);
751 static struct mbuf *key_getcomb_esp (void);
752 static struct mbuf *key_getcomb_ah (void);
753 static struct mbuf *key_getcomb_ipcomp (void);
754 static struct mbuf *key_getprop (const struct secasindex *);
755
756 static int key_acquire(const struct secasindex *, const struct secpolicy *);
757 static int key_acquire_sendup_mbuf_later(struct mbuf *);
758 static void key_acquire_sendup_pending_mbuf(void);
759 #ifndef IPSEC_NONBLOCK_ACQUIRE
760 static struct secacq *key_newacq (const struct secasindex *);
761 static struct secacq *key_getacq (const struct secasindex *);
762 static struct secacq *key_getacqbyseq (u_int32_t);
763 #endif
764 #ifdef notyet
765 static struct secspacq *key_newspacq (const struct secpolicyindex *);
766 static struct secspacq *key_getspacq (const struct secpolicyindex *);
767 #endif
768 static int key_api_acquire(struct socket *, struct mbuf *,
769 const struct sadb_msghdr *);
770 static int key_api_register(struct socket *, struct mbuf *,
771 const struct sadb_msghdr *);
772 static int key_expire (struct secasvar *);
773 static int key_api_flush(struct socket *, struct mbuf *,
774 const struct sadb_msghdr *);
775 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
776 int *lenp, pid_t pid);
777 static int key_api_dump(struct socket *, struct mbuf *,
778 const struct sadb_msghdr *);
779 static int key_api_promisc(struct socket *, struct mbuf *,
780 const struct sadb_msghdr *);
781 static int key_senderror (struct socket *, struct mbuf *, int);
782 static int key_validate_ext (const struct sadb_ext *, int);
783 static int key_align (struct mbuf *, struct sadb_msghdr *);
784 #if 0
785 static const char *key_getfqdn (void);
786 static const char *key_getuserfqdn (void);
787 #endif
788 static void key_sa_chgstate (struct secasvar *, u_int8_t);
789
790 static struct mbuf *key_alloc_mbuf (int);
791
792 static void key_timehandler(void *);
793 static void key_timehandler_work(struct work *, void *);
794 static struct callout key_timehandler_ch;
795 static struct workqueue *key_timehandler_wq;
796 static struct work key_timehandler_wk;
797
798 u_int
799 key_sp_refcnt(const struct secpolicy *sp)
800 {
801
802 /* FIXME */
803 return 0;
804 }
805
806 #ifdef NET_MPSAFE
807 static void
808 key_spd_pserialize_perform(void)
809 {
810
811 KASSERT(mutex_owned(&key_spd.lock));
812
813 while (key_spd.psz_performing)
814 cv_wait(&key_spd.cv_psz, &key_spd.lock);
815 key_spd.psz_performing = true;
816 mutex_exit(&key_spd.lock);
817
818 pserialize_perform(key_spd.psz);
819
820 mutex_enter(&key_spd.lock);
821 key_spd.psz_performing = false;
822 cv_broadcast(&key_spd.cv_psz);
823 }
824 #endif
825
826 /*
827 * Remove the sp from the key_spd.splist and wait for references to the sp
828 * to be released. key_spd.lock must be held.
829 */
830 static void
831 key_unlink_sp(struct secpolicy *sp)
832 {
833
834 KASSERT(mutex_owned(&key_spd.lock));
835
836 sp->state = IPSEC_SPSTATE_DEAD;
837 SPLIST_WRITER_REMOVE(sp);
838
839 /* Invalidate all cached SPD pointers in the PCBs. */
840 ipsec_invalpcbcacheall();
841
842 #ifdef NET_MPSAFE
843 KASSERT(mutex_ownable(softnet_lock));
844 key_spd_pserialize_perform();
845 #endif
846
847 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
848 }
849
850 /*
851 * Return 0 when there are known to be no SP's for the specified
852 * direction. Otherwise return 1. This is used by IPsec code
853 * to optimize performance.
854 */
855 int
856 key_havesp(u_int dir)
857 {
858 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
859 !SPLIST_READER_EMPTY(dir) : 1);
860 }
861
862 /* %%% IPsec policy management */
863 /*
864 * allocating a SP for OUTBOUND or INBOUND packet.
865 * Must call key_freesp() later.
866 * OUT: NULL: not found
867 * others: found and return the pointer.
868 */
869 struct secpolicy *
870 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
871 u_int dir, const char* where, int tag)
872 {
873 struct secpolicy *sp;
874 int s;
875
876 KASSERT(spidx != NULL);
877 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
878
879 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
880
881 /* get a SP entry */
882 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
883 kdebug_secpolicyindex("objects", spidx);
884 }
885
886 s = pserialize_read_enter();
887 SPLIST_READER_FOREACH(sp, dir) {
888 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
889 kdebug_secpolicyindex("in SPD", &sp->spidx);
890 }
891
892 if (sp->state == IPSEC_SPSTATE_DEAD)
893 continue;
894 if (key_spidx_match_withmask(&sp->spidx, spidx))
895 goto found;
896 }
897 sp = NULL;
898 found:
899 if (sp) {
900 /* sanity check */
901 KEY_CHKSPDIR(sp->spidx.dir, dir);
902
903 /* found a SPD entry */
904 sp->lastused = time_uptime;
905 key_sp_ref(sp, where, tag);
906 }
907 pserialize_read_exit(s);
908
909 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
910 "DP return SP:%p (ID=%u) refcnt %u\n",
911 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
912 return sp;
913 }
914
915 /*
916 * return a policy that matches this particular inbound packet.
917 * XXX slow
918 */
919 struct secpolicy *
920 key_gettunnel(const struct sockaddr *osrc,
921 const struct sockaddr *odst,
922 const struct sockaddr *isrc,
923 const struct sockaddr *idst,
924 const char* where, int tag)
925 {
926 struct secpolicy *sp;
927 const int dir = IPSEC_DIR_INBOUND;
928 int s;
929 struct ipsecrequest *r1, *r2, *p;
930 struct secpolicyindex spidx;
931
932 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
933
934 if (isrc->sa_family != idst->sa_family) {
935 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
936 isrc->sa_family, idst->sa_family);
937 sp = NULL;
938 goto done;
939 }
940
941 s = pserialize_read_enter();
942 SPLIST_READER_FOREACH(sp, dir) {
943 if (sp->state == IPSEC_SPSTATE_DEAD)
944 continue;
945
946 r1 = r2 = NULL;
947 for (p = sp->req; p; p = p->next) {
948 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
949 continue;
950
951 r1 = r2;
952 r2 = p;
953
954 if (!r1) {
955 /* here we look at address matches only */
956 spidx = sp->spidx;
957 if (isrc->sa_len > sizeof(spidx.src) ||
958 idst->sa_len > sizeof(spidx.dst))
959 continue;
960 memcpy(&spidx.src, isrc, isrc->sa_len);
961 memcpy(&spidx.dst, idst, idst->sa_len);
962 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
963 continue;
964 } else {
965 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
966 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
967 continue;
968 }
969
970 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
971 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
972 continue;
973
974 goto found;
975 }
976 }
977 sp = NULL;
978 found:
979 if (sp) {
980 sp->lastused = time_uptime;
981 key_sp_ref(sp, where, tag);
982 }
983 pserialize_read_exit(s);
984 done:
985 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
986 "DP return SP:%p (ID=%u) refcnt %u\n",
987 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
988 return sp;
989 }
990
991 /*
992 * allocating an SA entry for an *OUTBOUND* packet.
993 * checking each request entries in SP, and acquire an SA if need.
994 * OUT: 0: there are valid requests.
995 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
996 */
997 int
998 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx,
999 struct secasvar **ret)
1000 {
1001 u_int level;
1002 int error;
1003 struct secasvar *sav;
1004
1005 KASSERT(isr != NULL);
1006 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
1007 saidx->mode == IPSEC_MODE_TUNNEL,
1008 "unexpected policy %u", saidx->mode);
1009
1010 /* get current level */
1011 level = ipsec_get_reqlevel(isr);
1012
1013 /*
1014 * XXX guard against protocol callbacks from the crypto
1015 * thread as they reference ipsecrequest.sav which we
1016 * temporarily null out below. Need to rethink how we
1017 * handle bundled SA's in the callback thread.
1018 */
1019 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
1020
1021 sav = key_lookup_sa_bysaidx(saidx);
1022 if (sav != NULL) {
1023 *ret = sav;
1024 return 0;
1025 }
1026
1027 /* there is no SA */
1028 error = key_acquire(saidx, isr->sp);
1029 if (error != 0) {
1030 /* XXX What should I do ? */
1031 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1032 error);
1033 return error;
1034 }
1035
1036 if (level != IPSEC_LEVEL_REQUIRE) {
1037 /* XXX sigh, the interface to this routine is botched */
1038 *ret = NULL;
1039 return 0;
1040 } else {
1041 return ENOENT;
1042 }
1043 }
1044
1045 /*
1046 * looking up a SA for policy entry from SAD.
1047 * NOTE: searching SAD of aliving state.
1048 * OUT: NULL: not found.
1049 * others: found and return the pointer.
1050 */
1051 struct secasvar *
1052 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1053 {
1054 struct secashead *sah;
1055 struct secasvar *sav = NULL;
1056 u_int stateidx, state;
1057 const u_int *saorder_state_valid;
1058 int arraysize;
1059 int s;
1060
1061 s = pserialize_read_enter();
1062 sah = key_getsah(saidx, CMP_MODE_REQID);
1063 if (sah == NULL)
1064 goto out;
1065
1066 /*
1067 * search a valid state list for outbound packet.
1068 * This search order is important.
1069 */
1070 if (key_prefered_oldsa) {
1071 saorder_state_valid = saorder_state_valid_prefer_old;
1072 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1073 } else {
1074 saorder_state_valid = saorder_state_valid_prefer_new;
1075 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1076 }
1077
1078 /* search valid state */
1079 for (stateidx = 0;
1080 stateidx < arraysize;
1081 stateidx++) {
1082
1083 state = saorder_state_valid[stateidx];
1084
1085 if (key_prefered_oldsa)
1086 sav = SAVLIST_READER_FIRST(sah, state);
1087 else {
1088 /* XXX need O(1) lookup */
1089 struct secasvar *last = NULL;
1090
1091 SAVLIST_READER_FOREACH(sav, sah, state)
1092 last = sav;
1093 sav = last;
1094 }
1095 if (sav != NULL) {
1096 KEY_SA_REF(sav);
1097 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1098 "DP cause refcnt++:%d SA:%p\n",
1099 key_sa_refcnt(sav), sav);
1100 break;
1101 }
1102 }
1103 out:
1104 pserialize_read_exit(s);
1105
1106 return sav;
1107 }
1108
1109 #if 0
1110 static void
1111 key_sendup_message_delete(struct secasvar *sav)
1112 {
1113 struct mbuf *m, *result = 0;
1114 uint8_t satype;
1115
1116 satype = key_proto2satype(sav->sah->saidx.proto);
1117 if (satype == 0)
1118 goto msgfail;
1119
1120 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1121 if (m == NULL)
1122 goto msgfail;
1123 result = m;
1124
1125 /* set sadb_address for saidx's. */
1126 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1127 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1128 if (m == NULL)
1129 goto msgfail;
1130 m_cat(result, m);
1131
1132 /* set sadb_address for saidx's. */
1133 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1134 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1135 if (m == NULL)
1136 goto msgfail;
1137 m_cat(result, m);
1138
1139 /* create SA extension */
1140 m = key_setsadbsa(sav);
1141 if (m == NULL)
1142 goto msgfail;
1143 m_cat(result, m);
1144
1145 if (result->m_len < sizeof(struct sadb_msg)) {
1146 result = m_pullup(result, sizeof(struct sadb_msg));
1147 if (result == NULL)
1148 goto msgfail;
1149 }
1150
1151 result->m_pkthdr.len = 0;
1152 for (m = result; m; m = m->m_next)
1153 result->m_pkthdr.len += m->m_len;
1154 mtod(result, struct sadb_msg *)->sadb_msg_len =
1155 PFKEY_UNIT64(result->m_pkthdr.len);
1156
1157 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1158 result = NULL;
1159 msgfail:
1160 if (result)
1161 m_freem(result);
1162 }
1163 #endif
1164
1165 /*
1166 * allocating a usable SA entry for a *INBOUND* packet.
1167 * Must call key_freesav() later.
1168 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1169 * NULL: not found, or error occurred.
1170 *
1171 * In the comparison, no source address is used--for RFC2401 conformance.
1172 * To quote, from section 4.1:
1173 * A security association is uniquely identified by a triple consisting
1174 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1175 * security protocol (AH or ESP) identifier.
1176 * Note that, however, we do need to keep source address in IPsec SA.
1177 * IKE specification and PF_KEY specification do assume that we
1178 * keep source address in IPsec SA. We see a tricky situation here.
1179 *
1180 * sport and dport are used for NAT-T. network order is always used.
1181 */
1182 struct secasvar *
1183 key_lookup_sa(
1184 const union sockaddr_union *dst,
1185 u_int proto,
1186 u_int32_t spi,
1187 u_int16_t sport,
1188 u_int16_t dport,
1189 const char* where, int tag)
1190 {
1191 struct secashead *sah;
1192 struct secasvar *sav;
1193 u_int stateidx, state;
1194 const u_int *saorder_state_valid;
1195 int arraysize, chkport;
1196 int s;
1197
1198 int must_check_spi = 1;
1199 int must_check_alg = 0;
1200 u_int16_t cpi = 0;
1201 u_int8_t algo = 0;
1202
1203 if ((sport != 0) && (dport != 0))
1204 chkport = PORT_STRICT;
1205 else
1206 chkport = PORT_NONE;
1207
1208 KASSERT(dst != NULL);
1209
1210 /*
1211 * XXX IPCOMP case
1212 * We use cpi to define spi here. In the case where cpi <=
1213 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1214 * the real spi. In this case, don't check the spi but check the
1215 * algorithm
1216 */
1217
1218 if (proto == IPPROTO_IPCOMP) {
1219 u_int32_t tmp;
1220 tmp = ntohl(spi);
1221 cpi = (u_int16_t) tmp;
1222 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1223 algo = (u_int8_t) cpi;
1224 must_check_spi = 0;
1225 must_check_alg = 1;
1226 }
1227 }
1228 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1229 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1230 where, tag, must_check_spi, must_check_alg);
1231
1232
1233 /*
1234 * searching SAD.
1235 * XXX: to be checked internal IP header somewhere. Also when
1236 * IPsec tunnel packet is received. But ESP tunnel mode is
1237 * encrypted so we can't check internal IP header.
1238 */
1239 if (key_prefered_oldsa) {
1240 saorder_state_valid = saorder_state_valid_prefer_old;
1241 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1242 } else {
1243 saorder_state_valid = saorder_state_valid_prefer_new;
1244 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1245 }
1246 s = pserialize_read_enter();
1247 SAHLIST_READER_FOREACH(sah) {
1248 /* search valid state */
1249 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1250 state = saorder_state_valid[stateidx];
1251 SAVLIST_READER_FOREACH(sav, sah, state) {
1252 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1253 "try match spi %#x, %#x\n",
1254 ntohl(spi), ntohl(sav->spi));
1255 /* sanity check */
1256 KEY_CHKSASTATE(sav->state, state);
1257 /* do not return entries w/ unusable state */
1258 if (!SADB_SASTATE_USABLE_P(sav)) {
1259 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1260 "bad state %d\n", sav->state);
1261 continue;
1262 }
1263 if (proto != sav->sah->saidx.proto) {
1264 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1265 "proto fail %d != %d\n",
1266 proto, sav->sah->saidx.proto);
1267 continue;
1268 }
1269 if (must_check_spi && spi != sav->spi) {
1270 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1271 "spi fail %#x != %#x\n",
1272 ntohl(spi), ntohl(sav->spi));
1273 continue;
1274 }
1275 /* XXX only on the ipcomp case */
1276 if (must_check_alg && algo != sav->alg_comp) {
1277 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1278 "algo fail %d != %d\n",
1279 algo, sav->alg_comp);
1280 continue;
1281 }
1282
1283 #if 0 /* don't check src */
1284 /* Fix port in src->sa */
1285
1286 /* check src address */
1287 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1288 continue;
1289 #endif
1290 /* fix port of dst address XXX*/
1291 key_porttosaddr(__UNCONST(dst), dport);
1292 /* check dst address */
1293 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1294 continue;
1295 key_sa_ref(sav, where, tag);
1296 goto done;
1297 }
1298 }
1299 }
1300 sav = NULL;
1301 done:
1302 pserialize_read_exit(s);
1303
1304 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1305 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1306 return sav;
1307 }
1308
1309 static void
1310 key_validate_savlist(const struct secashead *sah, const u_int state)
1311 {
1312 #ifdef DEBUG
1313 struct secasvar *sav, *next;
1314 int s;
1315
1316 /*
1317 * The list should be sorted by lft_c->sadb_lifetime_addtime
1318 * in ascending order.
1319 */
1320 s = pserialize_read_enter();
1321 SAVLIST_READER_FOREACH(sav, sah, state) {
1322 next = SAVLIST_READER_NEXT(sav);
1323 if (next != NULL &&
1324 sav->lft_c != NULL && next->lft_c != NULL) {
1325 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1326 next->lft_c->sadb_lifetime_addtime,
1327 "savlist is not sorted: sah=%p, state=%d, "
1328 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1329 sav->lft_c->sadb_lifetime_addtime,
1330 next->lft_c->sadb_lifetime_addtime);
1331 }
1332 }
1333 pserialize_read_exit(s);
1334 #endif
1335 }
1336
1337 void
1338 key_init_sp(struct secpolicy *sp)
1339 {
1340
1341 ASSERT_SLEEPABLE();
1342
1343 sp->state = IPSEC_SPSTATE_ALIVE;
1344 if (sp->policy == IPSEC_POLICY_IPSEC)
1345 KASSERT(sp->req != NULL);
1346 localcount_init(&sp->localcount);
1347 SPLIST_ENTRY_INIT(sp);
1348 }
1349
1350 /*
1351 * Must be called in a pserialize read section. A held SP
1352 * must be released by key_sp_unref after use.
1353 */
1354 void
1355 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1356 {
1357
1358 localcount_acquire(&sp->localcount);
1359
1360 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1361 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1362 sp, sp->id, where, tag, key_sp_refcnt(sp));
1363 }
1364
1365 /*
1366 * Must be called without holding key_spd.lock because the lock
1367 * would be held in localcount_release.
1368 */
1369 void
1370 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1371 {
1372
1373 KDASSERT(mutex_ownable(&key_spd.lock));
1374
1375 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1376 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1377 sp, sp->id, where, tag, key_sp_refcnt(sp));
1378
1379 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
1380 }
1381
1382 static void
1383 key_init_sav(struct secasvar *sav)
1384 {
1385
1386 ASSERT_SLEEPABLE();
1387
1388 localcount_init(&sav->localcount);
1389 SAVLIST_ENTRY_INIT(sav);
1390 }
1391
1392 u_int
1393 key_sa_refcnt(const struct secasvar *sav)
1394 {
1395
1396 /* FIXME */
1397 return 0;
1398 }
1399
1400 void
1401 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1402 {
1403
1404 localcount_acquire(&sav->localcount);
1405
1406 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1407 "DP cause refcnt++: SA:%p from %s:%u\n",
1408 sav, where, tag);
1409 }
1410
1411 void
1412 key_sa_unref(struct secasvar *sav, const char* where, int tag)
1413 {
1414
1415 KDASSERT(mutex_ownable(&key_sad.lock));
1416
1417 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1418 "DP cause refcnt--: SA:%p from %s:%u\n",
1419 sav, where, tag);
1420
1421 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1422 }
1423
1424 #if 0
1425 /*
1426 * Must be called after calling key_lookup_sp*().
1427 * For the packet with socket.
1428 */
1429 static void
1430 key_freeso(struct socket *so)
1431 {
1432 /* sanity check */
1433 KASSERT(so != NULL);
1434
1435 switch (so->so_proto->pr_domain->dom_family) {
1436 #ifdef INET
1437 case PF_INET:
1438 {
1439 struct inpcb *pcb = sotoinpcb(so);
1440
1441 /* Does it have a PCB ? */
1442 if (pcb == NULL)
1443 return;
1444
1445 struct inpcbpolicy *sp = pcb->inp_sp;
1446 key_freesp_so(&sp->sp_in);
1447 key_freesp_so(&sp->sp_out);
1448 }
1449 break;
1450 #endif
1451 #ifdef INET6
1452 case PF_INET6:
1453 {
1454 #ifdef HAVE_NRL_INPCB
1455 struct inpcb *pcb = sotoinpcb(so);
1456 struct inpcbpolicy *sp = pcb->inp_sp;
1457
1458 /* Does it have a PCB ? */
1459 if (pcb == NULL)
1460 return;
1461 key_freesp_so(&sp->sp_in);
1462 key_freesp_so(&sp->sp_out);
1463 #else
1464 struct in6pcb *pcb = sotoin6pcb(so);
1465
1466 /* Does it have a PCB ? */
1467 if (pcb == NULL)
1468 return;
1469 key_freesp_so(&pcb->in6p_sp->sp_in);
1470 key_freesp_so(&pcb->in6p_sp->sp_out);
1471 #endif
1472 }
1473 break;
1474 #endif /* INET6 */
1475 default:
1476 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1477 so->so_proto->pr_domain->dom_family);
1478 return;
1479 }
1480 }
1481
1482 static void
1483 key_freesp_so(struct secpolicy **sp)
1484 {
1485
1486 KASSERT(sp != NULL);
1487 KASSERT(*sp != NULL);
1488
1489 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1490 (*sp)->policy == IPSEC_POLICY_BYPASS)
1491 return;
1492
1493 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1494 "invalid policy %u", (*sp)->policy);
1495 KEY_SP_UNREF(&sp);
1496 }
1497 #endif
1498
1499 #ifdef NET_MPSAFE
1500 static void
1501 key_sad_pserialize_perform(void)
1502 {
1503
1504 KASSERT(mutex_owned(&key_sad.lock));
1505
1506 while (key_sad.psz_performing)
1507 cv_wait(&key_sad.cv_psz, &key_sad.lock);
1508 key_sad.psz_performing = true;
1509 mutex_exit(&key_sad.lock);
1510
1511 pserialize_perform(key_sad.psz);
1512
1513 mutex_enter(&key_sad.lock);
1514 key_sad.psz_performing = false;
1515 cv_broadcast(&key_sad.cv_psz);
1516 }
1517 #endif
1518
1519 /*
1520 * Remove the sav from the savlist of its sah and wait for references to the sav
1521 * to be released. key_sad.lock must be held.
1522 */
1523 static void
1524 key_unlink_sav(struct secasvar *sav)
1525 {
1526
1527 KASSERT(mutex_owned(&key_sad.lock));
1528
1529 SAVLIST_WRITER_REMOVE(sav);
1530
1531 #ifdef NET_MPSAFE
1532 KASSERT(mutex_ownable(softnet_lock));
1533 key_sad_pserialize_perform();
1534 #endif
1535
1536 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1537 }
1538
1539 /*
1540 * Destroy an sav where the sav must be unlinked from an sah
1541 * by say key_unlink_sav.
1542 */
1543 static void
1544 key_destroy_sav(struct secasvar *sav)
1545 {
1546
1547 ASSERT_SLEEPABLE();
1548
1549 localcount_fini(&sav->localcount);
1550 SAVLIST_ENTRY_DESTROY(sav);
1551
1552 key_delsav(sav);
1553 }
1554
1555 /*
1556 * Destroy sav with holding its reference.
1557 */
1558 static void
1559 key_destroy_sav_with_ref(struct secasvar *sav)
1560 {
1561
1562 ASSERT_SLEEPABLE();
1563
1564 mutex_enter(&key_sad.lock);
1565 sav->state = SADB_SASTATE_DEAD;
1566 SAVLIST_WRITER_REMOVE(sav);
1567 mutex_exit(&key_sad.lock);
1568
1569 /* We cannot unref with holding key_sad.lock */
1570 KEY_SA_UNREF(&sav);
1571
1572 mutex_enter(&key_sad.lock);
1573 #ifdef NET_MPSAFE
1574 KASSERT(mutex_ownable(softnet_lock));
1575 key_sad_pserialize_perform();
1576 #endif
1577 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1578 mutex_exit(&key_sad.lock);
1579
1580 key_destroy_sav(sav);
1581 }
1582
1583 /* %%% SPD management */
1584 /*
1585 * free security policy entry.
1586 */
1587 static void
1588 key_destroy_sp(struct secpolicy *sp)
1589 {
1590
1591 SPLIST_ENTRY_DESTROY(sp);
1592 localcount_fini(&sp->localcount);
1593
1594 key_free_sp(sp);
1595
1596 key_update_used();
1597 }
1598
1599 void
1600 key_free_sp(struct secpolicy *sp)
1601 {
1602 struct ipsecrequest *isr = sp->req, *nextisr;
1603
1604 while (isr != NULL) {
1605 nextisr = isr->next;
1606 kmem_free(isr, sizeof(*isr));
1607 isr = nextisr;
1608 }
1609
1610 kmem_free(sp, sizeof(*sp));
1611 }
1612
1613 void
1614 key_socksplist_add(struct secpolicy *sp)
1615 {
1616
1617 mutex_enter(&key_spd.lock);
1618 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1619 mutex_exit(&key_spd.lock);
1620
1621 key_update_used();
1622 }
1623
1624 /*
1625 * search SPD
1626 * OUT: NULL : not found
1627 * others : found, pointer to a SP.
1628 */
1629 static struct secpolicy *
1630 key_getsp(const struct secpolicyindex *spidx)
1631 {
1632 struct secpolicy *sp;
1633 int s;
1634
1635 KASSERT(spidx != NULL);
1636
1637 s = pserialize_read_enter();
1638 SPLIST_READER_FOREACH(sp, spidx->dir) {
1639 if (sp->state == IPSEC_SPSTATE_DEAD)
1640 continue;
1641 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1642 KEY_SP_REF(sp);
1643 pserialize_read_exit(s);
1644 return sp;
1645 }
1646 }
1647 pserialize_read_exit(s);
1648
1649 return NULL;
1650 }
1651
1652 /*
1653 * search SPD and remove found SP
1654 * OUT: NULL : not found
1655 * others : found, pointer to a SP.
1656 */
1657 static struct secpolicy *
1658 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1659 {
1660 struct secpolicy *sp = NULL;
1661
1662 mutex_enter(&key_spd.lock);
1663 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1664 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1665
1666 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1667 key_unlink_sp(sp);
1668 goto out;
1669 }
1670 }
1671 sp = NULL;
1672 out:
1673 mutex_exit(&key_spd.lock);
1674
1675 return sp;
1676 }
1677
1678 /*
1679 * get SP by index.
1680 * OUT: NULL : not found
1681 * others : found, pointer to a SP.
1682 */
1683 static struct secpolicy *
1684 key_getspbyid(u_int32_t id)
1685 {
1686 struct secpolicy *sp;
1687 int s;
1688
1689 s = pserialize_read_enter();
1690 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1691 if (sp->state == IPSEC_SPSTATE_DEAD)
1692 continue;
1693 if (sp->id == id) {
1694 KEY_SP_REF(sp);
1695 goto out;
1696 }
1697 }
1698
1699 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1700 if (sp->state == IPSEC_SPSTATE_DEAD)
1701 continue;
1702 if (sp->id == id) {
1703 KEY_SP_REF(sp);
1704 goto out;
1705 }
1706 }
1707 out:
1708 pserialize_read_exit(s);
1709 return sp;
1710 }
1711
1712 /*
1713 * get SP by index, remove and return it.
1714 * OUT: NULL : not found
1715 * others : found, pointer to a SP.
1716 */
1717 static struct secpolicy *
1718 key_lookupbyid_and_remove_sp(u_int32_t id)
1719 {
1720 struct secpolicy *sp;
1721
1722 mutex_enter(&key_spd.lock);
1723 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1724 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1725 if (sp->id == id)
1726 goto out;
1727 }
1728
1729 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1730 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1731 if (sp->id == id)
1732 goto out;
1733 }
1734 out:
1735 if (sp != NULL)
1736 key_unlink_sp(sp);
1737 mutex_exit(&key_spd.lock);
1738 return sp;
1739 }
1740
1741 struct secpolicy *
1742 key_newsp(const char* where, int tag)
1743 {
1744 struct secpolicy *newsp = NULL;
1745
1746 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1747
1748 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1749 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1750 return newsp;
1751 }
1752
1753 /*
1754 * create secpolicy structure from sadb_x_policy structure.
1755 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1756 * so must be set properly later.
1757 */
1758 struct secpolicy *
1759 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1760 {
1761 struct secpolicy *newsp;
1762
1763 KASSERT(!cpu_softintr_p());
1764 KASSERT(xpl0 != NULL);
1765 KASSERT(len >= sizeof(*xpl0));
1766
1767 if (len != PFKEY_EXTLEN(xpl0)) {
1768 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1769 *error = EINVAL;
1770 return NULL;
1771 }
1772
1773 newsp = KEY_NEWSP();
1774 if (newsp == NULL) {
1775 *error = ENOBUFS;
1776 return NULL;
1777 }
1778
1779 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1780 newsp->policy = xpl0->sadb_x_policy_type;
1781
1782 /* check policy */
1783 switch (xpl0->sadb_x_policy_type) {
1784 case IPSEC_POLICY_DISCARD:
1785 case IPSEC_POLICY_NONE:
1786 case IPSEC_POLICY_ENTRUST:
1787 case IPSEC_POLICY_BYPASS:
1788 newsp->req = NULL;
1789 *error = 0;
1790 return newsp;
1791
1792 case IPSEC_POLICY_IPSEC:
1793 /* Continued */
1794 break;
1795 default:
1796 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1797 key_free_sp(newsp);
1798 *error = EINVAL;
1799 return NULL;
1800 }
1801
1802 /* IPSEC_POLICY_IPSEC */
1803 {
1804 int tlen;
1805 const struct sadb_x_ipsecrequest *xisr;
1806 uint16_t xisr_reqid;
1807 struct ipsecrequest **p_isr = &newsp->req;
1808
1809 /* validity check */
1810 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1811 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1812 *error = EINVAL;
1813 goto free_exit;
1814 }
1815
1816 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1817 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1818
1819 while (tlen > 0) {
1820 /* length check */
1821 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1822 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1823 *error = EINVAL;
1824 goto free_exit;
1825 }
1826
1827 /* allocate request buffer */
1828 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1829
1830 /* set values */
1831 (*p_isr)->next = NULL;
1832
1833 switch (xisr->sadb_x_ipsecrequest_proto) {
1834 case IPPROTO_ESP:
1835 case IPPROTO_AH:
1836 case IPPROTO_IPCOMP:
1837 break;
1838 default:
1839 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1840 xisr->sadb_x_ipsecrequest_proto);
1841 *error = EPROTONOSUPPORT;
1842 goto free_exit;
1843 }
1844 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1845
1846 switch (xisr->sadb_x_ipsecrequest_mode) {
1847 case IPSEC_MODE_TRANSPORT:
1848 case IPSEC_MODE_TUNNEL:
1849 break;
1850 case IPSEC_MODE_ANY:
1851 default:
1852 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1853 xisr->sadb_x_ipsecrequest_mode);
1854 *error = EINVAL;
1855 goto free_exit;
1856 }
1857 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1858
1859 switch (xisr->sadb_x_ipsecrequest_level) {
1860 case IPSEC_LEVEL_DEFAULT:
1861 case IPSEC_LEVEL_USE:
1862 case IPSEC_LEVEL_REQUIRE:
1863 break;
1864 case IPSEC_LEVEL_UNIQUE:
1865 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1866 /* validity check */
1867 /*
1868 * If range violation of reqid, kernel will
1869 * update it, don't refuse it.
1870 */
1871 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1872 IPSECLOG(LOG_DEBUG,
1873 "reqid=%d range "
1874 "violation, updated by kernel.\n",
1875 xisr_reqid);
1876 xisr_reqid = 0;
1877 }
1878
1879 /* allocate new reqid id if reqid is zero. */
1880 if (xisr_reqid == 0) {
1881 u_int16_t reqid = key_newreqid();
1882 if (reqid == 0) {
1883 *error = ENOBUFS;
1884 goto free_exit;
1885 }
1886 (*p_isr)->saidx.reqid = reqid;
1887 } else {
1888 /* set it for manual keying. */
1889 (*p_isr)->saidx.reqid = xisr_reqid;
1890 }
1891 break;
1892
1893 default:
1894 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1895 xisr->sadb_x_ipsecrequest_level);
1896 *error = EINVAL;
1897 goto free_exit;
1898 }
1899 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1900
1901 /* set IP addresses if there */
1902 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1903 const struct sockaddr *paddr;
1904
1905 paddr = (const struct sockaddr *)(xisr + 1);
1906
1907 /* validity check */
1908 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1909 IPSECLOG(LOG_DEBUG, "invalid request "
1910 "address length.\n");
1911 *error = EINVAL;
1912 goto free_exit;
1913 }
1914 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1915
1916 paddr = (const struct sockaddr *)((const char *)paddr
1917 + paddr->sa_len);
1918
1919 /* validity check */
1920 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1921 IPSECLOG(LOG_DEBUG, "invalid request "
1922 "address length.\n");
1923 *error = EINVAL;
1924 goto free_exit;
1925 }
1926 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1927 }
1928
1929 (*p_isr)->sp = newsp;
1930
1931 /* initialization for the next. */
1932 p_isr = &(*p_isr)->next;
1933 tlen -= xisr->sadb_x_ipsecrequest_len;
1934
1935 /* validity check */
1936 if (tlen < 0) {
1937 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1938 *error = EINVAL;
1939 goto free_exit;
1940 }
1941
1942 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1943 xisr->sadb_x_ipsecrequest_len);
1944 }
1945 }
1946
1947 *error = 0;
1948 return newsp;
1949
1950 free_exit:
1951 key_free_sp(newsp);
1952 return NULL;
1953 }
1954
1955 static u_int16_t
1956 key_newreqid(void)
1957 {
1958 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1959
1960 auto_reqid = (auto_reqid == 0xffff ?
1961 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1962
1963 /* XXX should be unique check */
1964
1965 return auto_reqid;
1966 }
1967
1968 /*
1969 * copy secpolicy struct to sadb_x_policy structure indicated.
1970 */
1971 struct mbuf *
1972 key_sp2msg(const struct secpolicy *sp)
1973 {
1974 struct sadb_x_policy *xpl;
1975 int tlen;
1976 char *p;
1977 struct mbuf *m;
1978
1979 KASSERT(sp != NULL);
1980
1981 tlen = key_getspreqmsglen(sp);
1982
1983 m = key_alloc_mbuf(tlen);
1984 if (!m || m->m_next) { /*XXX*/
1985 if (m)
1986 m_freem(m);
1987 return NULL;
1988 }
1989
1990 m->m_len = tlen;
1991 m->m_next = NULL;
1992 xpl = mtod(m, struct sadb_x_policy *);
1993 memset(xpl, 0, tlen);
1994
1995 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1996 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1997 xpl->sadb_x_policy_type = sp->policy;
1998 xpl->sadb_x_policy_dir = sp->spidx.dir;
1999 xpl->sadb_x_policy_id = sp->id;
2000 p = (char *)xpl + sizeof(*xpl);
2001
2002 /* if is the policy for ipsec ? */
2003 if (sp->policy == IPSEC_POLICY_IPSEC) {
2004 struct sadb_x_ipsecrequest *xisr;
2005 struct ipsecrequest *isr;
2006
2007 for (isr = sp->req; isr != NULL; isr = isr->next) {
2008
2009 xisr = (struct sadb_x_ipsecrequest *)p;
2010
2011 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
2012 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
2013 xisr->sadb_x_ipsecrequest_level = isr->level;
2014 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
2015
2016 p += sizeof(*xisr);
2017 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
2018 p += isr->saidx.src.sa.sa_len;
2019 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
2020 p += isr->saidx.src.sa.sa_len;
2021
2022 xisr->sadb_x_ipsecrequest_len =
2023 PFKEY_ALIGN8(sizeof(*xisr)
2024 + isr->saidx.src.sa.sa_len
2025 + isr->saidx.dst.sa.sa_len);
2026 }
2027 }
2028
2029 return m;
2030 }
2031
2032 /* m will not be freed nor modified */
2033 static struct mbuf *
2034 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
2035 int ndeep, int nitem, ...)
2036 {
2037 va_list ap;
2038 int idx;
2039 int i;
2040 struct mbuf *result = NULL, *n;
2041 int len;
2042
2043 KASSERT(m != NULL);
2044 KASSERT(mhp != NULL);
2045
2046 va_start(ap, nitem);
2047 for (i = 0; i < nitem; i++) {
2048 idx = va_arg(ap, int);
2049 if (idx < 0 || idx > SADB_EXT_MAX)
2050 goto fail;
2051 /* don't attempt to pull empty extension */
2052 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
2053 continue;
2054 if (idx != SADB_EXT_RESERVED &&
2055 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
2056 continue;
2057
2058 if (idx == SADB_EXT_RESERVED) {
2059 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
2060 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2061 MGETHDR(n, M_DONTWAIT, MT_DATA);
2062 if (!n)
2063 goto fail;
2064 n->m_len = len;
2065 n->m_next = NULL;
2066 m_copydata(m, 0, sizeof(struct sadb_msg),
2067 mtod(n, void *));
2068 } else if (i < ndeep) {
2069 len = mhp->extlen[idx];
2070 n = key_alloc_mbuf(len);
2071 if (!n || n->m_next) { /*XXX*/
2072 if (n)
2073 m_freem(n);
2074 goto fail;
2075 }
2076 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
2077 mtod(n, void *));
2078 } else {
2079 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
2080 M_DONTWAIT);
2081 }
2082 if (n == NULL)
2083 goto fail;
2084
2085 if (result)
2086 m_cat(result, n);
2087 else
2088 result = n;
2089 }
2090 va_end(ap);
2091
2092 if (result && (result->m_flags & M_PKTHDR) != 0) {
2093 result->m_pkthdr.len = 0;
2094 for (n = result; n; n = n->m_next)
2095 result->m_pkthdr.len += n->m_len;
2096 }
2097
2098 return result;
2099
2100 fail:
2101 va_end(ap);
2102 m_freem(result);
2103 return NULL;
2104 }
2105
2106 /*
2107 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2108 * add an entry to SP database, when received
2109 * <base, address(SD), (lifetime(H),) policy>
2110 * from the user(?).
2111 * Adding to SP database,
2112 * and send
2113 * <base, address(SD), (lifetime(H),) policy>
2114 * to the socket which was send.
2115 *
2116 * SPDADD set a unique policy entry.
2117 * SPDSETIDX like SPDADD without a part of policy requests.
2118 * SPDUPDATE replace a unique policy entry.
2119 *
2120 * m will always be freed.
2121 */
2122 static int
2123 key_api_spdadd(struct socket *so, struct mbuf *m,
2124 const struct sadb_msghdr *mhp)
2125 {
2126 const struct sockaddr *src, *dst;
2127 const struct sadb_x_policy *xpl0;
2128 struct sadb_x_policy *xpl;
2129 const struct sadb_lifetime *lft = NULL;
2130 struct secpolicyindex spidx;
2131 struct secpolicy *newsp;
2132 int error;
2133
2134 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2135 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2136 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2137 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2138 return key_senderror(so, m, EINVAL);
2139 }
2140 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2141 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2142 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2143 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2144 return key_senderror(so, m, EINVAL);
2145 }
2146 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2147 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2148 sizeof(struct sadb_lifetime)) {
2149 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2150 return key_senderror(so, m, EINVAL);
2151 }
2152 lft = mhp->ext[SADB_EXT_LIFETIME_HARD];
2153 }
2154
2155 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2156
2157 /* checking the direciton. */
2158 switch (xpl0->sadb_x_policy_dir) {
2159 case IPSEC_DIR_INBOUND:
2160 case IPSEC_DIR_OUTBOUND:
2161 break;
2162 default:
2163 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2164 return key_senderror(so, m, EINVAL);
2165 }
2166
2167 /* check policy */
2168 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2169 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2170 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2171 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2172 return key_senderror(so, m, EINVAL);
2173 }
2174
2175 /* policy requests are mandatory when action is ipsec. */
2176 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2177 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2178 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2179 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2180 return key_senderror(so, m, EINVAL);
2181 }
2182
2183 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2184 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2185
2186 /* sanity check on addr pair */
2187 if (src->sa_family != dst->sa_family)
2188 return key_senderror(so, m, EINVAL);
2189 if (src->sa_len != dst->sa_len)
2190 return key_senderror(so, m, EINVAL);
2191
2192 key_init_spidx_bymsghdr(&spidx, mhp);
2193
2194 /*
2195 * checking there is SP already or not.
2196 * SPDUPDATE doesn't depend on whether there is a SP or not.
2197 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2198 * then error.
2199 */
2200 {
2201 struct secpolicy *sp;
2202
2203 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2204 sp = key_lookup_and_remove_sp(&spidx);
2205 if (sp != NULL)
2206 key_destroy_sp(sp);
2207 } else {
2208 sp = key_getsp(&spidx);
2209 if (sp != NULL) {
2210 KEY_SP_UNREF(&sp);
2211 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2212 return key_senderror(so, m, EEXIST);
2213 }
2214 }
2215 }
2216
2217 /* allocation new SP entry */
2218 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2219 if (newsp == NULL) {
2220 return key_senderror(so, m, error);
2221 }
2222
2223 newsp->id = key_getnewspid();
2224 if (newsp->id == 0) {
2225 kmem_free(newsp, sizeof(*newsp));
2226 return key_senderror(so, m, ENOBUFS);
2227 }
2228
2229 newsp->spidx = spidx;
2230 newsp->created = time_uptime;
2231 newsp->lastused = newsp->created;
2232 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2233 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2234
2235 key_init_sp(newsp);
2236
2237 mutex_enter(&key_spd.lock);
2238 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2239 mutex_exit(&key_spd.lock);
2240
2241 #ifdef notyet
2242 /* delete the entry in key_misc.spacqlist */
2243 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2244 struct secspacq *spacq = key_getspacq(&spidx);
2245 if (spacq != NULL) {
2246 /* reset counter in order to deletion by timehandler. */
2247 spacq->created = time_uptime;
2248 spacq->count = 0;
2249 }
2250 }
2251 #endif
2252
2253 /* Invalidate all cached SPD pointers in the PCBs. */
2254 ipsec_invalpcbcacheall();
2255
2256 #if defined(GATEWAY)
2257 /* Invalidate the ipflow cache, as well. */
2258 ipflow_invalidate_all(0);
2259 #ifdef INET6
2260 if (in6_present)
2261 ip6flow_invalidate_all(0);
2262 #endif /* INET6 */
2263 #endif /* GATEWAY */
2264
2265 key_update_used();
2266
2267 {
2268 struct mbuf *n, *mpolicy;
2269 int off;
2270
2271 /* create new sadb_msg to reply. */
2272 if (lft) {
2273 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2274 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2275 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2276 } else {
2277 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2278 SADB_X_EXT_POLICY,
2279 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2280 }
2281 if (!n)
2282 return key_senderror(so, m, ENOBUFS);
2283
2284 n = key_fill_replymsg(n, 0);
2285 if (n == NULL)
2286 return key_senderror(so, m, ENOBUFS);
2287
2288 off = 0;
2289 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2290 sizeof(*xpl), &off);
2291 if (mpolicy == NULL) {
2292 /* n is already freed */
2293 return key_senderror(so, m, ENOBUFS);
2294 }
2295 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2296 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2297 m_freem(n);
2298 return key_senderror(so, m, EINVAL);
2299 }
2300 xpl->sadb_x_policy_id = newsp->id;
2301
2302 m_freem(m);
2303 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2304 }
2305 }
2306
2307 /*
2308 * get new policy id.
2309 * OUT:
2310 * 0: failure.
2311 * others: success.
2312 */
2313 static u_int32_t
2314 key_getnewspid(void)
2315 {
2316 u_int32_t newid = 0;
2317 int count = key_spi_trycnt; /* XXX */
2318 struct secpolicy *sp;
2319
2320 /* when requesting to allocate spi ranged */
2321 while (count--) {
2322 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2323
2324 sp = key_getspbyid(newid);
2325 if (sp == NULL)
2326 break;
2327
2328 KEY_SP_UNREF(&sp);
2329 }
2330
2331 if (count == 0 || newid == 0) {
2332 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2333 return 0;
2334 }
2335
2336 return newid;
2337 }
2338
2339 /*
2340 * SADB_SPDDELETE processing
2341 * receive
2342 * <base, address(SD), policy(*)>
2343 * from the user(?), and set SADB_SASTATE_DEAD,
2344 * and send,
2345 * <base, address(SD), policy(*)>
2346 * to the ikmpd.
2347 * policy(*) including direction of policy.
2348 *
2349 * m will always be freed.
2350 */
2351 static int
2352 key_api_spddelete(struct socket *so, struct mbuf *m,
2353 const struct sadb_msghdr *mhp)
2354 {
2355 struct sadb_x_policy *xpl0;
2356 struct secpolicyindex spidx;
2357 struct secpolicy *sp;
2358
2359 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2360 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2361 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2362 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2363 return key_senderror(so, m, EINVAL);
2364 }
2365 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2366 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2367 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2368 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2369 return key_senderror(so, m, EINVAL);
2370 }
2371
2372 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2373
2374 /* checking the directon. */
2375 switch (xpl0->sadb_x_policy_dir) {
2376 case IPSEC_DIR_INBOUND:
2377 case IPSEC_DIR_OUTBOUND:
2378 break;
2379 default:
2380 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2381 return key_senderror(so, m, EINVAL);
2382 }
2383
2384 /* make secindex */
2385 key_init_spidx_bymsghdr(&spidx, mhp);
2386
2387 /* Is there SP in SPD ? */
2388 sp = key_lookup_and_remove_sp(&spidx);
2389 if (sp == NULL) {
2390 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2391 return key_senderror(so, m, EINVAL);
2392 }
2393
2394 /* save policy id to buffer to be returned. */
2395 xpl0->sadb_x_policy_id = sp->id;
2396
2397 key_destroy_sp(sp);
2398
2399 /* We're deleting policy; no need to invalidate the ipflow cache. */
2400
2401 {
2402 struct mbuf *n;
2403
2404 /* create new sadb_msg to reply. */
2405 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2406 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2407 if (!n)
2408 return key_senderror(so, m, ENOBUFS);
2409
2410 n = key_fill_replymsg(n, 0);
2411 if (n == NULL)
2412 return key_senderror(so, m, ENOBUFS);
2413
2414 m_freem(m);
2415 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2416 }
2417 }
2418
2419 /*
2420 * SADB_SPDDELETE2 processing
2421 * receive
2422 * <base, policy(*)>
2423 * from the user(?), and set SADB_SASTATE_DEAD,
2424 * and send,
2425 * <base, policy(*)>
2426 * to the ikmpd.
2427 * policy(*) including direction of policy.
2428 *
2429 * m will always be freed.
2430 */
2431 static int
2432 key_api_spddelete2(struct socket *so, struct mbuf *m,
2433 const struct sadb_msghdr *mhp)
2434 {
2435 u_int32_t id;
2436 struct secpolicy *sp;
2437 const struct sadb_x_policy *xpl;
2438
2439 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2440 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2441 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2442 return key_senderror(so, m, EINVAL);
2443 }
2444
2445 xpl = mhp->ext[SADB_X_EXT_POLICY];
2446 id = xpl->sadb_x_policy_id;
2447
2448 /* Is there SP in SPD ? */
2449 sp = key_lookupbyid_and_remove_sp(id);
2450 if (sp == NULL) {
2451 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2452 return key_senderror(so, m, EINVAL);
2453 }
2454
2455 key_destroy_sp(sp);
2456
2457 /* We're deleting policy; no need to invalidate the ipflow cache. */
2458
2459 {
2460 struct mbuf *n, *nn;
2461 int off, len;
2462
2463 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2464
2465 /* create new sadb_msg to reply. */
2466 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2467
2468 MGETHDR(n, M_DONTWAIT, MT_DATA);
2469 if (n && len > MHLEN) {
2470 MCLGET(n, M_DONTWAIT);
2471 if ((n->m_flags & M_EXT) == 0) {
2472 m_freem(n);
2473 n = NULL;
2474 }
2475 }
2476 if (!n)
2477 return key_senderror(so, m, ENOBUFS);
2478
2479 n->m_len = len;
2480 n->m_next = NULL;
2481 off = 0;
2482
2483 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2484 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2485
2486 KASSERTMSG(off == len, "length inconsistency");
2487
2488 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2489 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2490 if (!n->m_next) {
2491 m_freem(n);
2492 return key_senderror(so, m, ENOBUFS);
2493 }
2494
2495 n->m_pkthdr.len = 0;
2496 for (nn = n; nn; nn = nn->m_next)
2497 n->m_pkthdr.len += nn->m_len;
2498
2499 n = key_fill_replymsg(n, 0);
2500 if (n == NULL)
2501 return key_senderror(so, m, ENOBUFS);
2502
2503 m_freem(m);
2504 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2505 }
2506 }
2507
2508 /*
2509 * SADB_X_GET processing
2510 * receive
2511 * <base, policy(*)>
2512 * from the user(?),
2513 * and send,
2514 * <base, address(SD), policy>
2515 * to the ikmpd.
2516 * policy(*) including direction of policy.
2517 *
2518 * m will always be freed.
2519 */
2520 static int
2521 key_api_spdget(struct socket *so, struct mbuf *m,
2522 const struct sadb_msghdr *mhp)
2523 {
2524 u_int32_t id;
2525 struct secpolicy *sp;
2526 struct mbuf *n;
2527 const struct sadb_x_policy *xpl;
2528
2529 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2530 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2531 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2532 return key_senderror(so, m, EINVAL);
2533 }
2534
2535 xpl = mhp->ext[SADB_X_EXT_POLICY];
2536 id = xpl->sadb_x_policy_id;
2537
2538 /* Is there SP in SPD ? */
2539 sp = key_getspbyid(id);
2540 if (sp == NULL) {
2541 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2542 return key_senderror(so, m, ENOENT);
2543 }
2544
2545 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2546 mhp->msg->sadb_msg_pid);
2547 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2548 if (n != NULL) {
2549 m_freem(m);
2550 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2551 } else
2552 return key_senderror(so, m, ENOBUFS);
2553 }
2554
2555 #ifdef notyet
2556 /*
2557 * SADB_X_SPDACQUIRE processing.
2558 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2559 * send
2560 * <base, policy(*)>
2561 * to KMD, and expect to receive
2562 * <base> with SADB_X_SPDACQUIRE if error occurred,
2563 * or
2564 * <base, policy>
2565 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2566 * policy(*) is without policy requests.
2567 *
2568 * 0 : succeed
2569 * others: error number
2570 */
2571 int
2572 key_spdacquire(const struct secpolicy *sp)
2573 {
2574 struct mbuf *result = NULL, *m;
2575 struct secspacq *newspacq;
2576 int error;
2577
2578 KASSERT(sp != NULL);
2579 KASSERTMSG(sp->req == NULL, "called but there is request");
2580 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2581 "policy mismathed. IPsec is expected");
2582
2583 /* Get an entry to check whether sent message or not. */
2584 newspacq = key_getspacq(&sp->spidx);
2585 if (newspacq != NULL) {
2586 if (key_blockacq_count < newspacq->count) {
2587 /* reset counter and do send message. */
2588 newspacq->count = 0;
2589 } else {
2590 /* increment counter and do nothing. */
2591 newspacq->count++;
2592 return 0;
2593 }
2594 } else {
2595 /* make new entry for blocking to send SADB_ACQUIRE. */
2596 newspacq = key_newspacq(&sp->spidx);
2597 if (newspacq == NULL)
2598 return ENOBUFS;
2599
2600 /* add to key_misc.acqlist */
2601 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2602 }
2603
2604 /* create new sadb_msg to reply. */
2605 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2606 if (!m) {
2607 error = ENOBUFS;
2608 goto fail;
2609 }
2610 result = m;
2611
2612 result->m_pkthdr.len = 0;
2613 for (m = result; m; m = m->m_next)
2614 result->m_pkthdr.len += m->m_len;
2615
2616 mtod(result, struct sadb_msg *)->sadb_msg_len =
2617 PFKEY_UNIT64(result->m_pkthdr.len);
2618
2619 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2620
2621 fail:
2622 if (result)
2623 m_freem(result);
2624 return error;
2625 }
2626 #endif /* notyet */
2627
2628 /*
2629 * SADB_SPDFLUSH processing
2630 * receive
2631 * <base>
2632 * from the user, and free all entries in secpctree.
2633 * and send,
2634 * <base>
2635 * to the user.
2636 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2637 *
2638 * m will always be freed.
2639 */
2640 static int
2641 key_api_spdflush(struct socket *so, struct mbuf *m,
2642 const struct sadb_msghdr *mhp)
2643 {
2644 struct sadb_msg *newmsg;
2645 struct secpolicy *sp;
2646 u_int dir;
2647
2648 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2649 return key_senderror(so, m, EINVAL);
2650
2651 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2652 retry:
2653 mutex_enter(&key_spd.lock);
2654 SPLIST_WRITER_FOREACH(sp, dir) {
2655 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2656 key_unlink_sp(sp);
2657 mutex_exit(&key_spd.lock);
2658 key_destroy_sp(sp);
2659 goto retry;
2660 }
2661 mutex_exit(&key_spd.lock);
2662 }
2663
2664 /* We're deleting policy; no need to invalidate the ipflow cache. */
2665
2666 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2667 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2668 return key_senderror(so, m, ENOBUFS);
2669 }
2670
2671 if (m->m_next)
2672 m_freem(m->m_next);
2673 m->m_next = NULL;
2674 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2675 newmsg = mtod(m, struct sadb_msg *);
2676 newmsg->sadb_msg_errno = 0;
2677 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2678
2679 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2680 }
2681
2682 static struct sockaddr key_src = {
2683 .sa_len = 2,
2684 .sa_family = PF_KEY,
2685 };
2686
2687 static struct mbuf *
2688 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2689 {
2690 struct secpolicy *sp;
2691 int cnt;
2692 u_int dir;
2693 struct mbuf *m, *n, *prev;
2694 int totlen;
2695
2696 KASSERT(mutex_owned(&key_spd.lock));
2697
2698 *lenp = 0;
2699
2700 /* search SPD entry and get buffer size. */
2701 cnt = 0;
2702 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2703 SPLIST_WRITER_FOREACH(sp, dir) {
2704 cnt++;
2705 }
2706 }
2707
2708 if (cnt == 0) {
2709 *errorp = ENOENT;
2710 return (NULL);
2711 }
2712
2713 m = NULL;
2714 prev = m;
2715 totlen = 0;
2716 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2717 SPLIST_WRITER_FOREACH(sp, dir) {
2718 --cnt;
2719 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2720
2721 if (!n) {
2722 *errorp = ENOBUFS;
2723 if (m)
2724 m_freem(m);
2725 return (NULL);
2726 }
2727
2728 totlen += n->m_pkthdr.len;
2729 if (!m) {
2730 m = n;
2731 } else {
2732 prev->m_nextpkt = n;
2733 }
2734 prev = n;
2735 }
2736 }
2737
2738 *lenp = totlen;
2739 *errorp = 0;
2740 return (m);
2741 }
2742
2743 /*
2744 * SADB_SPDDUMP processing
2745 * receive
2746 * <base>
2747 * from the user, and dump all SP leaves
2748 * and send,
2749 * <base> .....
2750 * to the ikmpd.
2751 *
2752 * m will always be freed.
2753 */
2754 static int
2755 key_api_spddump(struct socket *so, struct mbuf *m0,
2756 const struct sadb_msghdr *mhp)
2757 {
2758 struct mbuf *n;
2759 int error, len;
2760 int ok;
2761 pid_t pid;
2762
2763 pid = mhp->msg->sadb_msg_pid;
2764 /*
2765 * If the requestor has insufficient socket-buffer space
2766 * for the entire chain, nobody gets any response to the DUMP.
2767 * XXX For now, only the requestor ever gets anything.
2768 * Moreover, if the requestor has any space at all, they receive
2769 * the entire chain, otherwise the request is refused with ENOBUFS.
2770 */
2771 if (sbspace(&so->so_rcv) <= 0) {
2772 return key_senderror(so, m0, ENOBUFS);
2773 }
2774
2775 mutex_enter(&key_spd.lock);
2776 n = key_setspddump_chain(&error, &len, pid);
2777 mutex_exit(&key_spd.lock);
2778
2779 if (n == NULL) {
2780 return key_senderror(so, m0, ENOENT);
2781 }
2782 {
2783 uint64_t *ps = PFKEY_STAT_GETREF();
2784 ps[PFKEY_STAT_IN_TOTAL]++;
2785 ps[PFKEY_STAT_IN_BYTES] += len;
2786 PFKEY_STAT_PUTREF();
2787 }
2788
2789 /*
2790 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2791 * The requestor receives either the entire chain, or an
2792 * error message with ENOBUFS.
2793 */
2794
2795 /*
2796 * sbappendchainwith record takes the chain of entries, one
2797 * packet-record per SPD entry, prepends the key_src sockaddr
2798 * to each packet-record, links the sockaddr mbufs into a new
2799 * list of records, then appends the entire resulting
2800 * list to the requesting socket.
2801 */
2802 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2803 SB_PRIO_ONESHOT_OVERFLOW);
2804
2805 if (!ok) {
2806 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2807 m_freem(n);
2808 return key_senderror(so, m0, ENOBUFS);
2809 }
2810
2811 m_freem(m0);
2812 return error;
2813 }
2814
2815 /*
2816 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2817 */
2818 static int
2819 key_api_nat_map(struct socket *so, struct mbuf *m,
2820 const struct sadb_msghdr *mhp)
2821 {
2822 struct sadb_x_nat_t_type *type;
2823 struct sadb_x_nat_t_port *sport;
2824 struct sadb_x_nat_t_port *dport;
2825 struct sadb_address *iaddr, *raddr;
2826 struct sadb_x_nat_t_frag *frag;
2827
2828 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2829 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2830 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2831 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2832 return key_senderror(so, m, EINVAL);
2833 }
2834 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2835 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2836 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2837 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2838 return key_senderror(so, m, EINVAL);
2839 }
2840
2841 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2842 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2843 IPSECLOG(LOG_DEBUG, "invalid message\n");
2844 return key_senderror(so, m, EINVAL);
2845 }
2846
2847 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2848 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2849 IPSECLOG(LOG_DEBUG, "invalid message\n");
2850 return key_senderror(so, m, EINVAL);
2851 }
2852
2853 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2854 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2855 IPSECLOG(LOG_DEBUG, "invalid message\n");
2856 return key_senderror(so, m, EINVAL);
2857 }
2858
2859 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2860 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2861 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2862 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
2863 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
2864 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2865
2866 /*
2867 * XXX handle that, it should also contain a SA, or anything
2868 * that enable to update the SA information.
2869 */
2870
2871 return 0;
2872 }
2873
2874 static struct mbuf *
2875 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2876 {
2877 struct mbuf *result = NULL, *m;
2878
2879 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2880 key_sp_refcnt(sp));
2881 if (!m)
2882 goto fail;
2883 result = m;
2884
2885 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2886 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2887 if (!m)
2888 goto fail;
2889 m_cat(result, m);
2890
2891 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2892 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2893 if (!m)
2894 goto fail;
2895 m_cat(result, m);
2896
2897 m = key_sp2msg(sp);
2898 if (!m)
2899 goto fail;
2900 m_cat(result, m);
2901
2902 if ((result->m_flags & M_PKTHDR) == 0)
2903 goto fail;
2904
2905 if (result->m_len < sizeof(struct sadb_msg)) {
2906 result = m_pullup(result, sizeof(struct sadb_msg));
2907 if (result == NULL)
2908 goto fail;
2909 }
2910
2911 result->m_pkthdr.len = 0;
2912 for (m = result; m; m = m->m_next)
2913 result->m_pkthdr.len += m->m_len;
2914
2915 mtod(result, struct sadb_msg *)->sadb_msg_len =
2916 PFKEY_UNIT64(result->m_pkthdr.len);
2917
2918 return result;
2919
2920 fail:
2921 m_freem(result);
2922 return NULL;
2923 }
2924
2925 /*
2926 * get PFKEY message length for security policy and request.
2927 */
2928 static u_int
2929 key_getspreqmsglen(const struct secpolicy *sp)
2930 {
2931 u_int tlen;
2932
2933 tlen = sizeof(struct sadb_x_policy);
2934
2935 /* if is the policy for ipsec ? */
2936 if (sp->policy != IPSEC_POLICY_IPSEC)
2937 return tlen;
2938
2939 /* get length of ipsec requests */
2940 {
2941 const struct ipsecrequest *isr;
2942 int len;
2943
2944 for (isr = sp->req; isr != NULL; isr = isr->next) {
2945 len = sizeof(struct sadb_x_ipsecrequest)
2946 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2947
2948 tlen += PFKEY_ALIGN8(len);
2949 }
2950 }
2951
2952 return tlen;
2953 }
2954
2955 /*
2956 * SADB_SPDEXPIRE processing
2957 * send
2958 * <base, address(SD), lifetime(CH), policy>
2959 * to KMD by PF_KEY.
2960 *
2961 * OUT: 0 : succeed
2962 * others : error number
2963 */
2964 static int
2965 key_spdexpire(struct secpolicy *sp)
2966 {
2967 int s;
2968 struct mbuf *result = NULL, *m;
2969 int len;
2970 int error = -1;
2971 struct sadb_lifetime *lt;
2972
2973 /* XXX: Why do we lock ? */
2974 s = splsoftnet(); /*called from softclock()*/
2975
2976 KASSERT(sp != NULL);
2977
2978 /* set msg header */
2979 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2980 if (!m) {
2981 error = ENOBUFS;
2982 goto fail;
2983 }
2984 result = m;
2985
2986 /* create lifetime extension (current and hard) */
2987 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2988 m = key_alloc_mbuf(len);
2989 if (!m || m->m_next) { /*XXX*/
2990 if (m)
2991 m_freem(m);
2992 error = ENOBUFS;
2993 goto fail;
2994 }
2995 memset(mtod(m, void *), 0, len);
2996 lt = mtod(m, struct sadb_lifetime *);
2997 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2998 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2999 lt->sadb_lifetime_allocations = 0;
3000 lt->sadb_lifetime_bytes = 0;
3001 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
3002 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
3003 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
3004 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3005 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
3006 lt->sadb_lifetime_allocations = 0;
3007 lt->sadb_lifetime_bytes = 0;
3008 lt->sadb_lifetime_addtime = sp->lifetime;
3009 lt->sadb_lifetime_usetime = sp->validtime;
3010 m_cat(result, m);
3011
3012 /* set sadb_address for source */
3013 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
3014 sp->spidx.prefs, sp->spidx.ul_proto);
3015 if (!m) {
3016 error = ENOBUFS;
3017 goto fail;
3018 }
3019 m_cat(result, m);
3020
3021 /* set sadb_address for destination */
3022 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
3023 sp->spidx.prefd, sp->spidx.ul_proto);
3024 if (!m) {
3025 error = ENOBUFS;
3026 goto fail;
3027 }
3028 m_cat(result, m);
3029
3030 /* set secpolicy */
3031 m = key_sp2msg(sp);
3032 if (!m) {
3033 error = ENOBUFS;
3034 goto fail;
3035 }
3036 m_cat(result, m);
3037
3038 if ((result->m_flags & M_PKTHDR) == 0) {
3039 error = EINVAL;
3040 goto fail;
3041 }
3042
3043 if (result->m_len < sizeof(struct sadb_msg)) {
3044 result = m_pullup(result, sizeof(struct sadb_msg));
3045 if (result == NULL) {
3046 error = ENOBUFS;
3047 goto fail;
3048 }
3049 }
3050
3051 result->m_pkthdr.len = 0;
3052 for (m = result; m; m = m->m_next)
3053 result->m_pkthdr.len += m->m_len;
3054
3055 mtod(result, struct sadb_msg *)->sadb_msg_len =
3056 PFKEY_UNIT64(result->m_pkthdr.len);
3057
3058 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
3059
3060 fail:
3061 if (result)
3062 m_freem(result);
3063 splx(s);
3064 return error;
3065 }
3066
3067 /* %%% SAD management */
3068 /*
3069 * allocating a memory for new SA head, and copy from the values of mhp.
3070 * OUT: NULL : failure due to the lack of memory.
3071 * others : pointer to new SA head.
3072 */
3073 static struct secashead *
3074 key_newsah(const struct secasindex *saidx)
3075 {
3076 struct secashead *newsah;
3077 int i;
3078
3079 KASSERT(saidx != NULL);
3080
3081 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
3082 for (i = 0; i < __arraycount(newsah->savlist); i++)
3083 PSLIST_INIT(&newsah->savlist[i]);
3084 newsah->saidx = *saidx;
3085
3086 localcount_init(&newsah->localcount);
3087 /* Take a reference for the caller */
3088 localcount_acquire(&newsah->localcount);
3089
3090 /* Add to the sah list */
3091 SAHLIST_ENTRY_INIT(newsah);
3092 newsah->state = SADB_SASTATE_MATURE;
3093 mutex_enter(&key_sad.lock);
3094 SAHLIST_WRITER_INSERT_HEAD(newsah);
3095 mutex_exit(&key_sad.lock);
3096
3097 return newsah;
3098 }
3099
3100 static bool
3101 key_sah_has_sav(struct secashead *sah)
3102 {
3103 u_int state;
3104
3105 KASSERT(mutex_owned(&key_sad.lock));
3106
3107 SASTATE_ANY_FOREACH(state) {
3108 if (!SAVLIST_WRITER_EMPTY(sah, state))
3109 return true;
3110 }
3111
3112 return false;
3113 }
3114
3115 static void
3116 key_unlink_sah(struct secashead *sah)
3117 {
3118
3119 KASSERT(!cpu_softintr_p());
3120 KASSERT(mutex_owned(&key_sad.lock));
3121 KASSERT(sah->state == SADB_SASTATE_DEAD);
3122
3123 /* Remove from the sah list */
3124 SAHLIST_WRITER_REMOVE(sah);
3125
3126 #ifdef NET_MPSAFE
3127 KASSERT(mutex_ownable(softnet_lock));
3128 key_sad_pserialize_perform();
3129 #endif
3130
3131 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3132 }
3133
3134 static void
3135 key_destroy_sah(struct secashead *sah)
3136 {
3137
3138 rtcache_free(&sah->sa_route);
3139
3140 SAHLIST_ENTRY_DESTROY(sah);
3141 localcount_fini(&sah->localcount);
3142
3143 if (sah->idents != NULL)
3144 kmem_free(sah->idents, sah->idents_len);
3145 if (sah->identd != NULL)
3146 kmem_free(sah->identd, sah->identd_len);
3147
3148 kmem_free(sah, sizeof(*sah));
3149 }
3150
3151 /*
3152 * allocating a new SA with LARVAL state.
3153 * key_api_add() and key_api_getspi() call,
3154 * and copy the values of mhp into new buffer.
3155 * When SAD message type is GETSPI:
3156 * to set sequence number from acq_seq++,
3157 * to set zero to SPI.
3158 * not to call key_setsava().
3159 * OUT: NULL : fail
3160 * others : pointer to new secasvar.
3161 *
3162 * does not modify mbuf. does not free mbuf on error.
3163 */
3164 static struct secasvar *
3165 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3166 int *errp, const char* where, int tag)
3167 {
3168 struct secasvar *newsav;
3169 const struct sadb_sa *xsa;
3170
3171 KASSERT(!cpu_softintr_p());
3172 KASSERT(m != NULL);
3173 KASSERT(mhp != NULL);
3174 KASSERT(mhp->msg != NULL);
3175
3176 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3177
3178 switch (mhp->msg->sadb_msg_type) {
3179 case SADB_GETSPI:
3180 newsav->spi = 0;
3181
3182 #ifdef IPSEC_DOSEQCHECK
3183 /* sync sequence number */
3184 if (mhp->msg->sadb_msg_seq == 0)
3185 newsav->seq =
3186 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3187 else
3188 #endif
3189 newsav->seq = mhp->msg->sadb_msg_seq;
3190 break;
3191
3192 case SADB_ADD:
3193 /* sanity check */
3194 if (mhp->ext[SADB_EXT_SA] == NULL) {
3195 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3196 *errp = EINVAL;
3197 goto error;
3198 }
3199 xsa = mhp->ext[SADB_EXT_SA];
3200 newsav->spi = xsa->sadb_sa_spi;
3201 newsav->seq = mhp->msg->sadb_msg_seq;
3202 break;
3203 default:
3204 *errp = EINVAL;
3205 goto error;
3206 }
3207
3208 /* copy sav values */
3209 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3210 *errp = key_setsaval(newsav, m, mhp);
3211 if (*errp)
3212 goto error;
3213 } else {
3214 /* We don't allow lft_c to be NULL */
3215 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3216 KM_SLEEP);
3217 }
3218
3219 /* reset created */
3220 newsav->created = time_uptime;
3221 newsav->pid = mhp->msg->sadb_msg_pid;
3222
3223 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3224 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3225 return newsav;
3226
3227 error:
3228 KASSERT(*errp != 0);
3229 kmem_free(newsav, sizeof(*newsav));
3230 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3231 "DP from %s:%u return SA:NULL\n", where, tag);
3232 return NULL;
3233 }
3234
3235
3236 static void
3237 key_clear_xform(struct secasvar *sav)
3238 {
3239
3240 /*
3241 * Cleanup xform state. Note that zeroize'ing causes the
3242 * keys to be cleared; otherwise we must do it ourself.
3243 */
3244 if (sav->tdb_xform != NULL) {
3245 sav->tdb_xform->xf_zeroize(sav);
3246 sav->tdb_xform = NULL;
3247 } else {
3248 if (sav->key_auth != NULL)
3249 explicit_memset(_KEYBUF(sav->key_auth), 0,
3250 _KEYLEN(sav->key_auth));
3251 if (sav->key_enc != NULL)
3252 explicit_memset(_KEYBUF(sav->key_enc), 0,
3253 _KEYLEN(sav->key_enc));
3254 }
3255 }
3256
3257 /*
3258 * free() SA variable entry.
3259 */
3260 static void
3261 key_delsav(struct secasvar *sav)
3262 {
3263
3264 key_clear_xform(sav);
3265 key_freesaval(sav);
3266 kmem_free(sav, sizeof(*sav));
3267 }
3268
3269 /*
3270 * Must be called in a pserialize read section. A held sah
3271 * must be released by key_sah_unref after use.
3272 */
3273 static void
3274 key_sah_ref(struct secashead *sah)
3275 {
3276
3277 localcount_acquire(&sah->localcount);
3278 }
3279
3280 /*
3281 * Must be called without holding key_sad.lock because the lock
3282 * would be held in localcount_release.
3283 */
3284 static void
3285 key_sah_unref(struct secashead *sah)
3286 {
3287
3288 KDASSERT(mutex_ownable(&key_sad.lock));
3289
3290 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3291 }
3292
3293 /*
3294 * Search SAD and return sah. Must be called in a pserialize
3295 * read section.
3296 * OUT:
3297 * NULL : not found
3298 * others : found, pointer to a SA.
3299 */
3300 static struct secashead *
3301 key_getsah(const struct secasindex *saidx, int flag)
3302 {
3303 struct secashead *sah;
3304
3305 SAHLIST_READER_FOREACH(sah) {
3306 if (sah->state == SADB_SASTATE_DEAD)
3307 continue;
3308 if (key_saidx_match(&sah->saidx, saidx, flag))
3309 return sah;
3310 }
3311
3312 return NULL;
3313 }
3314
3315 /*
3316 * Search SAD and return sah. If sah is returned, the caller must call
3317 * key_sah_unref to releaset a reference.
3318 * OUT:
3319 * NULL : not found
3320 * others : found, pointer to a SA.
3321 */
3322 static struct secashead *
3323 key_getsah_ref(const struct secasindex *saidx, int flag)
3324 {
3325 struct secashead *sah;
3326 int s;
3327
3328 s = pserialize_read_enter();
3329 sah = key_getsah(saidx, flag);
3330 if (sah != NULL)
3331 key_sah_ref(sah);
3332 pserialize_read_exit(s);
3333
3334 return sah;
3335 }
3336
3337 /*
3338 * check not to be duplicated SPI.
3339 * NOTE: this function is too slow due to searching all SAD.
3340 * OUT:
3341 * NULL : not found
3342 * others : found, pointer to a SA.
3343 */
3344 static bool
3345 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3346 {
3347 struct secashead *sah;
3348 struct secasvar *sav;
3349 int s;
3350
3351 /* check address family */
3352 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3353 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3354 return false;
3355 }
3356
3357 /* check all SAD */
3358 s = pserialize_read_enter();
3359 SAHLIST_READER_FOREACH(sah) {
3360 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3361 continue;
3362 sav = key_getsavbyspi(sah, spi);
3363 if (sav != NULL) {
3364 pserialize_read_exit(s);
3365 KEY_SA_UNREF(&sav);
3366 return true;
3367 }
3368 }
3369 pserialize_read_exit(s);
3370
3371 return false;
3372 }
3373
3374 /*
3375 * search SAD litmited alive SA, protocol, SPI.
3376 * OUT:
3377 * NULL : not found
3378 * others : found, pointer to a SA.
3379 */
3380 static struct secasvar *
3381 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3382 {
3383 struct secasvar *sav = NULL;
3384 u_int state;
3385 int s;
3386
3387 /* search all status */
3388 s = pserialize_read_enter();
3389 SASTATE_ALIVE_FOREACH(state) {
3390 SAVLIST_READER_FOREACH(sav, sah, state) {
3391 /* sanity check */
3392 if (sav->state != state) {
3393 IPSECLOG(LOG_DEBUG,
3394 "invalid sav->state (queue: %d SA: %d)\n",
3395 state, sav->state);
3396 continue;
3397 }
3398
3399 if (sav->spi == spi) {
3400 KEY_SA_REF(sav);
3401 goto out;
3402 }
3403 }
3404 }
3405 out:
3406 pserialize_read_exit(s);
3407
3408 return sav;
3409 }
3410
3411 /*
3412 * Free allocated data to member variables of sav:
3413 * sav->replay, sav->key_* and sav->lft_*.
3414 */
3415 static void
3416 key_freesaval(struct secasvar *sav)
3417 {
3418
3419 KASSERT(key_sa_refcnt(sav) == 0);
3420
3421 if (sav->replay != NULL)
3422 kmem_intr_free(sav->replay, sav->replay_len);
3423 if (sav->key_auth != NULL)
3424 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3425 if (sav->key_enc != NULL)
3426 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3427 if (sav->lft_c != NULL)
3428 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3429 if (sav->lft_h != NULL)
3430 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3431 if (sav->lft_s != NULL)
3432 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3433 }
3434
3435 /*
3436 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3437 * You must update these if need.
3438 * OUT: 0: success.
3439 * !0: failure.
3440 *
3441 * does not modify mbuf. does not free mbuf on error.
3442 */
3443 static int
3444 key_setsaval(struct secasvar *sav, struct mbuf *m,
3445 const struct sadb_msghdr *mhp)
3446 {
3447 int error = 0;
3448
3449 KASSERT(!cpu_softintr_p());
3450 KASSERT(m != NULL);
3451 KASSERT(mhp != NULL);
3452 KASSERT(mhp->msg != NULL);
3453
3454 /* We shouldn't initialize sav variables while someone uses it. */
3455 KASSERT(key_sa_refcnt(sav) == 0);
3456
3457 /* SA */
3458 if (mhp->ext[SADB_EXT_SA] != NULL) {
3459 const struct sadb_sa *sa0;
3460
3461 sa0 = mhp->ext[SADB_EXT_SA];
3462 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3463 error = EINVAL;
3464 goto fail;
3465 }
3466
3467 sav->alg_auth = sa0->sadb_sa_auth;
3468 sav->alg_enc = sa0->sadb_sa_encrypt;
3469 sav->flags = sa0->sadb_sa_flags;
3470
3471 /* replay window */
3472 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3473 size_t len = sizeof(struct secreplay) +
3474 sa0->sadb_sa_replay;
3475 sav->replay = kmem_zalloc(len, KM_SLEEP);
3476 sav->replay_len = len;
3477 if (sa0->sadb_sa_replay != 0)
3478 sav->replay->bitmap = (char*)(sav->replay+1);
3479 sav->replay->wsize = sa0->sadb_sa_replay;
3480 }
3481 }
3482
3483 /* Authentication keys */
3484 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3485 const struct sadb_key *key0;
3486 int len;
3487
3488 key0 = mhp->ext[SADB_EXT_KEY_AUTH];
3489 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3490
3491 error = 0;
3492 if (len < sizeof(*key0)) {
3493 error = EINVAL;
3494 goto fail;
3495 }
3496 switch (mhp->msg->sadb_msg_satype) {
3497 case SADB_SATYPE_AH:
3498 case SADB_SATYPE_ESP:
3499 case SADB_X_SATYPE_TCPSIGNATURE:
3500 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3501 sav->alg_auth != SADB_X_AALG_NULL)
3502 error = EINVAL;
3503 break;
3504 case SADB_X_SATYPE_IPCOMP:
3505 default:
3506 error = EINVAL;
3507 break;
3508 }
3509 if (error) {
3510 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3511 goto fail;
3512 }
3513
3514 sav->key_auth = key_newbuf(key0, len);
3515 sav->key_auth_len = len;
3516 }
3517
3518 /* Encryption key */
3519 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3520 const struct sadb_key *key0;
3521 int len;
3522
3523 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT];
3524 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3525
3526 error = 0;
3527 if (len < sizeof(*key0)) {
3528 error = EINVAL;
3529 goto fail;
3530 }
3531 switch (mhp->msg->sadb_msg_satype) {
3532 case SADB_SATYPE_ESP:
3533 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3534 sav->alg_enc != SADB_EALG_NULL) {
3535 error = EINVAL;
3536 break;
3537 }
3538 sav->key_enc = key_newbuf(key0, len);
3539 sav->key_enc_len = len;
3540 break;
3541 case SADB_X_SATYPE_IPCOMP:
3542 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3543 error = EINVAL;
3544 sav->key_enc = NULL; /*just in case*/
3545 break;
3546 case SADB_SATYPE_AH:
3547 case SADB_X_SATYPE_TCPSIGNATURE:
3548 default:
3549 error = EINVAL;
3550 break;
3551 }
3552 if (error) {
3553 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3554 goto fail;
3555 }
3556 }
3557
3558 /* set iv */
3559 sav->ivlen = 0;
3560
3561 switch (mhp->msg->sadb_msg_satype) {
3562 case SADB_SATYPE_AH:
3563 error = xform_init(sav, XF_AH);
3564 break;
3565 case SADB_SATYPE_ESP:
3566 error = xform_init(sav, XF_ESP);
3567 break;
3568 case SADB_X_SATYPE_IPCOMP:
3569 error = xform_init(sav, XF_IPCOMP);
3570 break;
3571 case SADB_X_SATYPE_TCPSIGNATURE:
3572 error = xform_init(sav, XF_TCPSIGNATURE);
3573 break;
3574 }
3575 if (error) {
3576 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3577 mhp->msg->sadb_msg_satype);
3578 goto fail;
3579 }
3580
3581 /* reset created */
3582 sav->created = time_uptime;
3583
3584 /* make lifetime for CURRENT */
3585 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3586
3587 sav->lft_c->sadb_lifetime_len =
3588 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3589 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3590 sav->lft_c->sadb_lifetime_allocations = 0;
3591 sav->lft_c->sadb_lifetime_bytes = 0;
3592 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3593 sav->lft_c->sadb_lifetime_usetime = 0;
3594
3595 /* lifetimes for HARD and SOFT */
3596 {
3597 const struct sadb_lifetime *lft0;
3598
3599 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD];
3600 if (lft0 != NULL) {
3601 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3602 error = EINVAL;
3603 goto fail;
3604 }
3605 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3606 }
3607
3608 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT];
3609 if (lft0 != NULL) {
3610 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3611 error = EINVAL;
3612 goto fail;
3613 }
3614 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3615 /* to be initialize ? */
3616 }
3617 }
3618
3619 return 0;
3620
3621 fail:
3622 key_clear_xform(sav);
3623 key_freesaval(sav);
3624
3625 return error;
3626 }
3627
3628 /*
3629 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3630 * OUT: 0: valid
3631 * other: errno
3632 */
3633 static int
3634 key_init_xform(struct secasvar *sav)
3635 {
3636 int error;
3637
3638 /* We shouldn't initialize sav variables while someone uses it. */
3639 KASSERT(key_sa_refcnt(sav) == 0);
3640
3641 /* check SPI value */
3642 switch (sav->sah->saidx.proto) {
3643 case IPPROTO_ESP:
3644 case IPPROTO_AH:
3645 if (ntohl(sav->spi) <= 255) {
3646 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3647 (u_int32_t)ntohl(sav->spi));
3648 return EINVAL;
3649 }
3650 break;
3651 }
3652
3653 /* check satype */
3654 switch (sav->sah->saidx.proto) {
3655 case IPPROTO_ESP:
3656 /* check flags */
3657 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3658 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3659 IPSECLOG(LOG_DEBUG,
3660 "invalid flag (derived) given to old-esp.\n");
3661 return EINVAL;
3662 }
3663 error = xform_init(sav, XF_ESP);
3664 break;
3665 case IPPROTO_AH:
3666 /* check flags */
3667 if (sav->flags & SADB_X_EXT_DERIV) {
3668 IPSECLOG(LOG_DEBUG,
3669 "invalid flag (derived) given to AH SA.\n");
3670 return EINVAL;
3671 }
3672 if (sav->alg_enc != SADB_EALG_NONE) {
3673 IPSECLOG(LOG_DEBUG,
3674 "protocol and algorithm mismated.\n");
3675 return(EINVAL);
3676 }
3677 error = xform_init(sav, XF_AH);
3678 break;
3679 case IPPROTO_IPCOMP:
3680 if (sav->alg_auth != SADB_AALG_NONE) {
3681 IPSECLOG(LOG_DEBUG,
3682 "protocol and algorithm mismated.\n");
3683 return(EINVAL);
3684 }
3685 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3686 && ntohl(sav->spi) >= 0x10000) {
3687 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3688 return(EINVAL);
3689 }
3690 error = xform_init(sav, XF_IPCOMP);
3691 break;
3692 case IPPROTO_TCP:
3693 if (sav->alg_enc != SADB_EALG_NONE) {
3694 IPSECLOG(LOG_DEBUG,
3695 "protocol and algorithm mismated.\n");
3696 return(EINVAL);
3697 }
3698 error = xform_init(sav, XF_TCPSIGNATURE);
3699 break;
3700 default:
3701 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3702 error = EPROTONOSUPPORT;
3703 break;
3704 }
3705
3706 return error;
3707 }
3708
3709 /*
3710 * subroutine for SADB_GET and SADB_DUMP.
3711 */
3712 static struct mbuf *
3713 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3714 u_int32_t seq, u_int32_t pid)
3715 {
3716 struct mbuf *result = NULL, *tres = NULL, *m;
3717 int l = 0;
3718 int i;
3719 void *p;
3720 struct sadb_lifetime lt;
3721 int dumporder[] = {
3722 SADB_EXT_SA, SADB_X_EXT_SA2,
3723 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3724 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3725 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3726 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3727 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3728 SADB_X_EXT_NAT_T_TYPE,
3729 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3730 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3731 SADB_X_EXT_NAT_T_FRAG,
3732
3733 };
3734
3735 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav));
3736 if (m == NULL)
3737 goto fail;
3738 result = m;
3739
3740 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3741 m = NULL;
3742 p = NULL;
3743 switch (dumporder[i]) {
3744 case SADB_EXT_SA:
3745 m = key_setsadbsa(sav);
3746 break;
3747
3748 case SADB_X_EXT_SA2:
3749 m = key_setsadbxsa2(sav->sah->saidx.mode,
3750 sav->replay ? sav->replay->count : 0,
3751 sav->sah->saidx.reqid);
3752 break;
3753
3754 case SADB_EXT_ADDRESS_SRC:
3755 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3756 &sav->sah->saidx.src.sa,
3757 FULLMASK, IPSEC_ULPROTO_ANY);
3758 break;
3759
3760 case SADB_EXT_ADDRESS_DST:
3761 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3762 &sav->sah->saidx.dst.sa,
3763 FULLMASK, IPSEC_ULPROTO_ANY);
3764 break;
3765
3766 case SADB_EXT_KEY_AUTH:
3767 if (!sav->key_auth)
3768 continue;
3769 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3770 p = sav->key_auth;
3771 break;
3772
3773 case SADB_EXT_KEY_ENCRYPT:
3774 if (!sav->key_enc)
3775 continue;
3776 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3777 p = sav->key_enc;
3778 break;
3779
3780 case SADB_EXT_LIFETIME_CURRENT:
3781 KASSERT(sav->lft_c != NULL);
3782 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3783 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3784 lt.sadb_lifetime_addtime =
3785 time_mono_to_wall(lt.sadb_lifetime_addtime);
3786 lt.sadb_lifetime_usetime =
3787 time_mono_to_wall(lt.sadb_lifetime_usetime);
3788 p = <
3789 break;
3790
3791 case SADB_EXT_LIFETIME_HARD:
3792 if (!sav->lft_h)
3793 continue;
3794 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3795 p = sav->lft_h;
3796 break;
3797
3798 case SADB_EXT_LIFETIME_SOFT:
3799 if (!sav->lft_s)
3800 continue;
3801 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3802 p = sav->lft_s;
3803 break;
3804
3805 case SADB_X_EXT_NAT_T_TYPE:
3806 m = key_setsadbxtype(sav->natt_type);
3807 break;
3808
3809 case SADB_X_EXT_NAT_T_DPORT:
3810 if (sav->natt_type == 0)
3811 continue;
3812 m = key_setsadbxport(
3813 key_portfromsaddr(&sav->sah->saidx.dst),
3814 SADB_X_EXT_NAT_T_DPORT);
3815 break;
3816
3817 case SADB_X_EXT_NAT_T_SPORT:
3818 if (sav->natt_type == 0)
3819 continue;
3820 m = key_setsadbxport(
3821 key_portfromsaddr(&sav->sah->saidx.src),
3822 SADB_X_EXT_NAT_T_SPORT);
3823 break;
3824
3825 case SADB_X_EXT_NAT_T_FRAG:
3826 /* don't send frag info if not set */
3827 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3828 continue;
3829 m = key_setsadbxfrag(sav->esp_frag);
3830 break;
3831
3832 case SADB_X_EXT_NAT_T_OAI:
3833 case SADB_X_EXT_NAT_T_OAR:
3834 continue;
3835
3836 case SADB_EXT_ADDRESS_PROXY:
3837 case SADB_EXT_IDENTITY_SRC:
3838 case SADB_EXT_IDENTITY_DST:
3839 /* XXX: should we brought from SPD ? */
3840 case SADB_EXT_SENSITIVITY:
3841 default:
3842 continue;
3843 }
3844
3845 KASSERT(!(m && p));
3846 if (!m && !p)
3847 goto fail;
3848 if (p && tres) {
3849 M_PREPEND(tres, l, M_DONTWAIT);
3850 if (!tres)
3851 goto fail;
3852 memcpy(mtod(tres, void *), p, l);
3853 continue;
3854 }
3855 if (p) {
3856 m = key_alloc_mbuf(l);
3857 if (!m)
3858 goto fail;
3859 m_copyback(m, 0, l, p);
3860 }
3861
3862 if (tres)
3863 m_cat(m, tres);
3864 tres = m;
3865 }
3866
3867 m_cat(result, tres);
3868 tres = NULL; /* avoid free on error below */
3869
3870 if (result->m_len < sizeof(struct sadb_msg)) {
3871 result = m_pullup(result, sizeof(struct sadb_msg));
3872 if (result == NULL)
3873 goto fail;
3874 }
3875
3876 result->m_pkthdr.len = 0;
3877 for (m = result; m; m = m->m_next)
3878 result->m_pkthdr.len += m->m_len;
3879
3880 mtod(result, struct sadb_msg *)->sadb_msg_len =
3881 PFKEY_UNIT64(result->m_pkthdr.len);
3882
3883 return result;
3884
3885 fail:
3886 m_freem(result);
3887 m_freem(tres);
3888 return NULL;
3889 }
3890
3891
3892 /*
3893 * set a type in sadb_x_nat_t_type
3894 */
3895 static struct mbuf *
3896 key_setsadbxtype(u_int16_t type)
3897 {
3898 struct mbuf *m;
3899 size_t len;
3900 struct sadb_x_nat_t_type *p;
3901
3902 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3903
3904 m = key_alloc_mbuf(len);
3905 if (!m || m->m_next) { /*XXX*/
3906 if (m)
3907 m_freem(m);
3908 return NULL;
3909 }
3910
3911 p = mtod(m, struct sadb_x_nat_t_type *);
3912
3913 memset(p, 0, len);
3914 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3915 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3916 p->sadb_x_nat_t_type_type = type;
3917
3918 return m;
3919 }
3920 /*
3921 * set a port in sadb_x_nat_t_port. port is in network order
3922 */
3923 static struct mbuf *
3924 key_setsadbxport(u_int16_t port, u_int16_t type)
3925 {
3926 struct mbuf *m;
3927 size_t len;
3928 struct sadb_x_nat_t_port *p;
3929
3930 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3931
3932 m = key_alloc_mbuf(len);
3933 if (!m || m->m_next) { /*XXX*/
3934 if (m)
3935 m_freem(m);
3936 return NULL;
3937 }
3938
3939 p = mtod(m, struct sadb_x_nat_t_port *);
3940
3941 memset(p, 0, len);
3942 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3943 p->sadb_x_nat_t_port_exttype = type;
3944 p->sadb_x_nat_t_port_port = port;
3945
3946 return m;
3947 }
3948
3949 /*
3950 * set fragmentation info in sadb_x_nat_t_frag
3951 */
3952 static struct mbuf *
3953 key_setsadbxfrag(u_int16_t flen)
3954 {
3955 struct mbuf *m;
3956 size_t len;
3957 struct sadb_x_nat_t_frag *p;
3958
3959 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3960
3961 m = key_alloc_mbuf(len);
3962 if (!m || m->m_next) { /*XXX*/
3963 if (m)
3964 m_freem(m);
3965 return NULL;
3966 }
3967
3968 p = mtod(m, struct sadb_x_nat_t_frag *);
3969
3970 memset(p, 0, len);
3971 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3972 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3973 p->sadb_x_nat_t_frag_fraglen = flen;
3974
3975 return m;
3976 }
3977
3978 /*
3979 * Get port from sockaddr, port is in network order
3980 */
3981 u_int16_t
3982 key_portfromsaddr(const union sockaddr_union *saddr)
3983 {
3984 u_int16_t port;
3985
3986 switch (saddr->sa.sa_family) {
3987 case AF_INET: {
3988 port = saddr->sin.sin_port;
3989 break;
3990 }
3991 #ifdef INET6
3992 case AF_INET6: {
3993 port = saddr->sin6.sin6_port;
3994 break;
3995 }
3996 #endif
3997 default:
3998 printf("%s: unexpected address family\n", __func__);
3999 port = 0;
4000 break;
4001 }
4002
4003 return port;
4004 }
4005
4006
4007 /*
4008 * Set port is struct sockaddr. port is in network order
4009 */
4010 static void
4011 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
4012 {
4013 switch (saddr->sa.sa_family) {
4014 case AF_INET: {
4015 saddr->sin.sin_port = port;
4016 break;
4017 }
4018 #ifdef INET6
4019 case AF_INET6: {
4020 saddr->sin6.sin6_port = port;
4021 break;
4022 }
4023 #endif
4024 default:
4025 printf("%s: unexpected address family %d\n", __func__,
4026 saddr->sa.sa_family);
4027 break;
4028 }
4029
4030 return;
4031 }
4032
4033 /*
4034 * Safety check sa_len
4035 */
4036 static int
4037 key_checksalen(const union sockaddr_union *saddr)
4038 {
4039 switch (saddr->sa.sa_family) {
4040 case AF_INET:
4041 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
4042 return -1;
4043 break;
4044 #ifdef INET6
4045 case AF_INET6:
4046 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
4047 return -1;
4048 break;
4049 #endif
4050 default:
4051 printf("%s: unexpected sa_family %d\n", __func__,
4052 saddr->sa.sa_family);
4053 return -1;
4054 break;
4055 }
4056 return 0;
4057 }
4058
4059
4060 /*
4061 * set data into sadb_msg.
4062 */
4063 static struct mbuf *
4064 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
4065 u_int32_t seq, pid_t pid, u_int16_t reserved)
4066 {
4067 struct mbuf *m;
4068 struct sadb_msg *p;
4069 int len;
4070
4071 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
4072
4073 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
4074
4075 MGETHDR(m, M_DONTWAIT, MT_DATA);
4076 if (m && len > MHLEN) {
4077 MCLGET(m, M_DONTWAIT);
4078 if ((m->m_flags & M_EXT) == 0) {
4079 m_freem(m);
4080 m = NULL;
4081 }
4082 }
4083 if (!m)
4084 return NULL;
4085 m->m_pkthdr.len = m->m_len = len;
4086 m->m_next = NULL;
4087
4088 p = mtod(m, struct sadb_msg *);
4089
4090 memset(p, 0, len);
4091 p->sadb_msg_version = PF_KEY_V2;
4092 p->sadb_msg_type = type;
4093 p->sadb_msg_errno = 0;
4094 p->sadb_msg_satype = satype;
4095 p->sadb_msg_len = PFKEY_UNIT64(tlen);
4096 p->sadb_msg_reserved = reserved;
4097 p->sadb_msg_seq = seq;
4098 p->sadb_msg_pid = (u_int32_t)pid;
4099
4100 return m;
4101 }
4102
4103 /*
4104 * copy secasvar data into sadb_address.
4105 */
4106 static struct mbuf *
4107 key_setsadbsa(struct secasvar *sav)
4108 {
4109 struct mbuf *m;
4110 struct sadb_sa *p;
4111 int len;
4112
4113 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4114 m = key_alloc_mbuf(len);
4115 if (!m || m->m_next) { /*XXX*/
4116 if (m)
4117 m_freem(m);
4118 return NULL;
4119 }
4120
4121 p = mtod(m, struct sadb_sa *);
4122
4123 memset(p, 0, len);
4124 p->sadb_sa_len = PFKEY_UNIT64(len);
4125 p->sadb_sa_exttype = SADB_EXT_SA;
4126 p->sadb_sa_spi = sav->spi;
4127 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4128 p->sadb_sa_state = sav->state;
4129 p->sadb_sa_auth = sav->alg_auth;
4130 p->sadb_sa_encrypt = sav->alg_enc;
4131 p->sadb_sa_flags = sav->flags;
4132
4133 return m;
4134 }
4135
4136 /*
4137 * set data into sadb_address.
4138 */
4139 static struct mbuf *
4140 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4141 u_int8_t prefixlen, u_int16_t ul_proto)
4142 {
4143 struct mbuf *m;
4144 struct sadb_address *p;
4145 size_t len;
4146
4147 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4148 PFKEY_ALIGN8(saddr->sa_len);
4149 m = key_alloc_mbuf(len);
4150 if (!m || m->m_next) { /*XXX*/
4151 if (m)
4152 m_freem(m);
4153 return NULL;
4154 }
4155
4156 p = mtod(m, struct sadb_address *);
4157
4158 memset(p, 0, len);
4159 p->sadb_address_len = PFKEY_UNIT64(len);
4160 p->sadb_address_exttype = exttype;
4161 p->sadb_address_proto = ul_proto;
4162 if (prefixlen == FULLMASK) {
4163 switch (saddr->sa_family) {
4164 case AF_INET:
4165 prefixlen = sizeof(struct in_addr) << 3;
4166 break;
4167 case AF_INET6:
4168 prefixlen = sizeof(struct in6_addr) << 3;
4169 break;
4170 default:
4171 ; /*XXX*/
4172 }
4173 }
4174 p->sadb_address_prefixlen = prefixlen;
4175 p->sadb_address_reserved = 0;
4176
4177 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4178 saddr, saddr->sa_len);
4179
4180 return m;
4181 }
4182
4183 #if 0
4184 /*
4185 * set data into sadb_ident.
4186 */
4187 static struct mbuf *
4188 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4189 void *string, int stringlen, u_int64_t id)
4190 {
4191 struct mbuf *m;
4192 struct sadb_ident *p;
4193 size_t len;
4194
4195 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4196 m = key_alloc_mbuf(len);
4197 if (!m || m->m_next) { /*XXX*/
4198 if (m)
4199 m_freem(m);
4200 return NULL;
4201 }
4202
4203 p = mtod(m, struct sadb_ident *);
4204
4205 memset(p, 0, len);
4206 p->sadb_ident_len = PFKEY_UNIT64(len);
4207 p->sadb_ident_exttype = exttype;
4208 p->sadb_ident_type = idtype;
4209 p->sadb_ident_reserved = 0;
4210 p->sadb_ident_id = id;
4211
4212 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4213 string, stringlen);
4214
4215 return m;
4216 }
4217 #endif
4218
4219 /*
4220 * set data into sadb_x_sa2.
4221 */
4222 static struct mbuf *
4223 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4224 {
4225 struct mbuf *m;
4226 struct sadb_x_sa2 *p;
4227 size_t len;
4228
4229 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4230 m = key_alloc_mbuf(len);
4231 if (!m || m->m_next) { /*XXX*/
4232 if (m)
4233 m_freem(m);
4234 return NULL;
4235 }
4236
4237 p = mtod(m, struct sadb_x_sa2 *);
4238
4239 memset(p, 0, len);
4240 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4241 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4242 p->sadb_x_sa2_mode = mode;
4243 p->sadb_x_sa2_reserved1 = 0;
4244 p->sadb_x_sa2_reserved2 = 0;
4245 p->sadb_x_sa2_sequence = seq;
4246 p->sadb_x_sa2_reqid = reqid;
4247
4248 return m;
4249 }
4250
4251 /*
4252 * set data into sadb_x_policy
4253 */
4254 static struct mbuf *
4255 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id)
4256 {
4257 struct mbuf *m;
4258 struct sadb_x_policy *p;
4259 size_t len;
4260
4261 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4262 m = key_alloc_mbuf(len);
4263 if (!m || m->m_next) { /*XXX*/
4264 if (m)
4265 m_freem(m);
4266 return NULL;
4267 }
4268
4269 p = mtod(m, struct sadb_x_policy *);
4270
4271 memset(p, 0, len);
4272 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4273 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4274 p->sadb_x_policy_type = type;
4275 p->sadb_x_policy_dir = dir;
4276 p->sadb_x_policy_id = id;
4277
4278 return m;
4279 }
4280
4281 /* %%% utilities */
4282 /*
4283 * copy a buffer into the new buffer allocated.
4284 */
4285 static void *
4286 key_newbuf(const void *src, u_int len)
4287 {
4288 void *new;
4289
4290 new = kmem_alloc(len, KM_SLEEP);
4291 memcpy(new, src, len);
4292
4293 return new;
4294 }
4295
4296 /* compare my own address
4297 * OUT: 1: true, i.e. my address.
4298 * 0: false
4299 */
4300 int
4301 key_ismyaddr(const struct sockaddr *sa)
4302 {
4303 #ifdef INET
4304 const struct sockaddr_in *sin;
4305 const struct in_ifaddr *ia;
4306 int s;
4307 #endif
4308
4309 KASSERT(sa != NULL);
4310
4311 switch (sa->sa_family) {
4312 #ifdef INET
4313 case AF_INET:
4314 sin = (const struct sockaddr_in *)sa;
4315 s = pserialize_read_enter();
4316 IN_ADDRLIST_READER_FOREACH(ia) {
4317 if (sin->sin_family == ia->ia_addr.sin_family &&
4318 sin->sin_len == ia->ia_addr.sin_len &&
4319 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4320 {
4321 pserialize_read_exit(s);
4322 return 1;
4323 }
4324 }
4325 pserialize_read_exit(s);
4326 break;
4327 #endif
4328 #ifdef INET6
4329 case AF_INET6:
4330 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4331 #endif
4332 }
4333
4334 return 0;
4335 }
4336
4337 #ifdef INET6
4338 /*
4339 * compare my own address for IPv6.
4340 * 1: ours
4341 * 0: other
4342 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4343 */
4344 #include <netinet6/in6_var.h>
4345
4346 static int
4347 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4348 {
4349 struct in6_ifaddr *ia;
4350 int s;
4351 struct psref psref;
4352 int bound;
4353 int ours = 1;
4354
4355 bound = curlwp_bind();
4356 s = pserialize_read_enter();
4357 IN6_ADDRLIST_READER_FOREACH(ia) {
4358 bool ingroup;
4359
4360 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4361 (const struct sockaddr *)&ia->ia_addr, 0)) {
4362 pserialize_read_exit(s);
4363 goto ours;
4364 }
4365 ia6_acquire(ia, &psref);
4366 pserialize_read_exit(s);
4367
4368 /*
4369 * XXX Multicast
4370 * XXX why do we care about multlicast here while we don't care
4371 * about IPv4 multicast??
4372 * XXX scope
4373 */
4374 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4375 if (ingroup) {
4376 ia6_release(ia, &psref);
4377 goto ours;
4378 }
4379
4380 s = pserialize_read_enter();
4381 ia6_release(ia, &psref);
4382 }
4383 pserialize_read_exit(s);
4384
4385 /* loopback, just for safety */
4386 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4387 goto ours;
4388
4389 ours = 0;
4390 ours:
4391 curlwp_bindx(bound);
4392
4393 return ours;
4394 }
4395 #endif /*INET6*/
4396
4397 /*
4398 * compare two secasindex structure.
4399 * flag can specify to compare 2 saidxes.
4400 * compare two secasindex structure without both mode and reqid.
4401 * don't compare port.
4402 * IN:
4403 * saidx0: source, it can be in SAD.
4404 * saidx1: object.
4405 * OUT:
4406 * 1 : equal
4407 * 0 : not equal
4408 */
4409 static int
4410 key_saidx_match(
4411 const struct secasindex *saidx0,
4412 const struct secasindex *saidx1,
4413 int flag)
4414 {
4415 int chkport;
4416 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4417
4418 KASSERT(saidx0 != NULL);
4419 KASSERT(saidx1 != NULL);
4420
4421 /* sanity */
4422 if (saidx0->proto != saidx1->proto)
4423 return 0;
4424
4425 if (flag == CMP_EXACTLY) {
4426 if (saidx0->mode != saidx1->mode)
4427 return 0;
4428 if (saidx0->reqid != saidx1->reqid)
4429 return 0;
4430 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4431 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4432 return 0;
4433 } else {
4434
4435 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4436 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4437 /*
4438 * If reqid of SPD is non-zero, unique SA is required.
4439 * The result must be of same reqid in this case.
4440 */
4441 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4442 return 0;
4443 }
4444
4445 if (flag == CMP_MODE_REQID) {
4446 if (saidx0->mode != IPSEC_MODE_ANY &&
4447 saidx0->mode != saidx1->mode)
4448 return 0;
4449 }
4450
4451
4452 sa0src = &saidx0->src.sa;
4453 sa0dst = &saidx0->dst.sa;
4454 sa1src = &saidx1->src.sa;
4455 sa1dst = &saidx1->dst.sa;
4456 /*
4457 * If NAT-T is enabled, check ports for tunnel mode.
4458 * Don't do it for transport mode, as there is no
4459 * port information available in the SP.
4460 * Also don't check ports if they are set to zero
4461 * in the SPD: This means we have a non-generated
4462 * SPD which can't know UDP ports.
4463 */
4464 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4465 chkport = PORT_LOOSE;
4466 else
4467 chkport = PORT_NONE;
4468
4469 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4470 return 0;
4471 }
4472 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4473 return 0;
4474 }
4475 }
4476
4477 return 1;
4478 }
4479
4480 /*
4481 * compare two secindex structure exactly.
4482 * IN:
4483 * spidx0: source, it is often in SPD.
4484 * spidx1: object, it is often from PFKEY message.
4485 * OUT:
4486 * 1 : equal
4487 * 0 : not equal
4488 */
4489 static int
4490 key_spidx_match_exactly(
4491 const struct secpolicyindex *spidx0,
4492 const struct secpolicyindex *spidx1)
4493 {
4494
4495 KASSERT(spidx0 != NULL);
4496 KASSERT(spidx1 != NULL);
4497
4498 /* sanity */
4499 if (spidx0->prefs != spidx1->prefs ||
4500 spidx0->prefd != spidx1->prefd ||
4501 spidx0->ul_proto != spidx1->ul_proto)
4502 return 0;
4503
4504 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4505 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4506 }
4507
4508 /*
4509 * compare two secindex structure with mask.
4510 * IN:
4511 * spidx0: source, it is often in SPD.
4512 * spidx1: object, it is often from IP header.
4513 * OUT:
4514 * 1 : equal
4515 * 0 : not equal
4516 */
4517 static int
4518 key_spidx_match_withmask(
4519 const struct secpolicyindex *spidx0,
4520 const struct secpolicyindex *spidx1)
4521 {
4522
4523 KASSERT(spidx0 != NULL);
4524 KASSERT(spidx1 != NULL);
4525
4526 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4527 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4528 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4529 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4530 return 0;
4531
4532 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4533 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4534 spidx0->ul_proto != spidx1->ul_proto)
4535 return 0;
4536
4537 switch (spidx0->src.sa.sa_family) {
4538 case AF_INET:
4539 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4540 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4541 return 0;
4542 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4543 &spidx1->src.sin.sin_addr, spidx0->prefs))
4544 return 0;
4545 break;
4546 case AF_INET6:
4547 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4548 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4549 return 0;
4550 /*
4551 * scope_id check. if sin6_scope_id is 0, we regard it
4552 * as a wildcard scope, which matches any scope zone ID.
4553 */
4554 if (spidx0->src.sin6.sin6_scope_id &&
4555 spidx1->src.sin6.sin6_scope_id &&
4556 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4557 return 0;
4558 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4559 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4560 return 0;
4561 break;
4562 default:
4563 /* XXX */
4564 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4565 return 0;
4566 break;
4567 }
4568
4569 switch (spidx0->dst.sa.sa_family) {
4570 case AF_INET:
4571 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4572 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4573 return 0;
4574 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4575 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4576 return 0;
4577 break;
4578 case AF_INET6:
4579 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4580 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4581 return 0;
4582 /*
4583 * scope_id check. if sin6_scope_id is 0, we regard it
4584 * as a wildcard scope, which matches any scope zone ID.
4585 */
4586 if (spidx0->src.sin6.sin6_scope_id &&
4587 spidx1->src.sin6.sin6_scope_id &&
4588 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4589 return 0;
4590 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4591 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4592 return 0;
4593 break;
4594 default:
4595 /* XXX */
4596 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4597 return 0;
4598 break;
4599 }
4600
4601 /* XXX Do we check other field ? e.g. flowinfo */
4602
4603 return 1;
4604 }
4605
4606 /* returns 0 on match */
4607 static int
4608 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4609 {
4610 switch (howport) {
4611 case PORT_NONE:
4612 return 0;
4613 case PORT_LOOSE:
4614 if (port1 == 0 || port2 == 0)
4615 return 0;
4616 /*FALLTHROUGH*/
4617 case PORT_STRICT:
4618 if (port1 != port2) {
4619 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4620 "port fail %d != %d\n", port1, port2);
4621 return 1;
4622 }
4623 return 0;
4624 default:
4625 KASSERT(0);
4626 return 1;
4627 }
4628 }
4629
4630 /* returns 1 on match */
4631 static int
4632 key_sockaddr_match(
4633 const struct sockaddr *sa1,
4634 const struct sockaddr *sa2,
4635 int howport)
4636 {
4637 const struct sockaddr_in *sin1, *sin2;
4638 const struct sockaddr_in6 *sin61, *sin62;
4639 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
4640
4641 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4642 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4643 "fam/len fail %d != %d || %d != %d\n",
4644 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4645 sa2->sa_len);
4646 return 0;
4647 }
4648
4649 switch (sa1->sa_family) {
4650 case AF_INET:
4651 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4652 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4653 "len fail %d != %zu\n",
4654 sa1->sa_len, sizeof(struct sockaddr_in));
4655 return 0;
4656 }
4657 sin1 = (const struct sockaddr_in *)sa1;
4658 sin2 = (const struct sockaddr_in *)sa2;
4659 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4660 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4661 "addr fail %s != %s\n",
4662 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4663 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
4664 return 0;
4665 }
4666 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4667 return 0;
4668 }
4669 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4670 "addr success %s[%d] == %s[%d]\n",
4671 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4672 sin1->sin_port,
4673 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
4674 sin2->sin_port);
4675 break;
4676 case AF_INET6:
4677 sin61 = (const struct sockaddr_in6 *)sa1;
4678 sin62 = (const struct sockaddr_in6 *)sa2;
4679 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4680 return 0; /*EINVAL*/
4681
4682 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4683 return 0;
4684 }
4685 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4686 return 0;
4687 }
4688 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4689 return 0;
4690 }
4691 break;
4692 default:
4693 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4694 return 0;
4695 break;
4696 }
4697
4698 return 1;
4699 }
4700
4701 /*
4702 * compare two buffers with mask.
4703 * IN:
4704 * addr1: source
4705 * addr2: object
4706 * bits: Number of bits to compare
4707 * OUT:
4708 * 1 : equal
4709 * 0 : not equal
4710 */
4711 static int
4712 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4713 {
4714 const unsigned char *p1 = a1;
4715 const unsigned char *p2 = a2;
4716
4717 /* XXX: This could be considerably faster if we compare a word
4718 * at a time, but it is complicated on LSB Endian machines */
4719
4720 /* Handle null pointers */
4721 if (p1 == NULL || p2 == NULL)
4722 return (p1 == p2);
4723
4724 while (bits >= 8) {
4725 if (*p1++ != *p2++)
4726 return 0;
4727 bits -= 8;
4728 }
4729
4730 if (bits > 0) {
4731 u_int8_t mask = ~((1<<(8-bits))-1);
4732 if ((*p1 & mask) != (*p2 & mask))
4733 return 0;
4734 }
4735 return 1; /* Match! */
4736 }
4737
4738 static void
4739 key_timehandler_spd(time_t now)
4740 {
4741 u_int dir;
4742 struct secpolicy *sp;
4743
4744 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4745 retry:
4746 mutex_enter(&key_spd.lock);
4747 SPLIST_WRITER_FOREACH(sp, dir) {
4748 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4749
4750 if (sp->lifetime == 0 && sp->validtime == 0)
4751 continue;
4752
4753 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4754 (sp->validtime && now - sp->lastused > sp->validtime)) {
4755 key_unlink_sp(sp);
4756 mutex_exit(&key_spd.lock);
4757 key_spdexpire(sp);
4758 key_destroy_sp(sp);
4759 goto retry;
4760 }
4761 }
4762 mutex_exit(&key_spd.lock);
4763 }
4764
4765 retry_socksplist:
4766 mutex_enter(&key_spd.lock);
4767 SOCKSPLIST_WRITER_FOREACH(sp) {
4768 if (sp->state != IPSEC_SPSTATE_DEAD)
4769 continue;
4770
4771 key_unlink_sp(sp);
4772 mutex_exit(&key_spd.lock);
4773 key_destroy_sp(sp);
4774 goto retry_socksplist;
4775 }
4776 mutex_exit(&key_spd.lock);
4777 }
4778
4779 static void
4780 key_timehandler_sad(time_t now)
4781 {
4782 struct secashead *sah;
4783 int s;
4784
4785 restart:
4786 mutex_enter(&key_sad.lock);
4787 SAHLIST_WRITER_FOREACH(sah) {
4788 /* If sah has been dead and has no sav, then delete it */
4789 if (sah->state == SADB_SASTATE_DEAD &&
4790 !key_sah_has_sav(sah)) {
4791 key_unlink_sah(sah);
4792 mutex_exit(&key_sad.lock);
4793 key_destroy_sah(sah);
4794 goto restart;
4795 }
4796 }
4797 mutex_exit(&key_sad.lock);
4798
4799 s = pserialize_read_enter();
4800 SAHLIST_READER_FOREACH(sah) {
4801 struct secasvar *sav;
4802
4803 key_sah_ref(sah);
4804 pserialize_read_exit(s);
4805
4806 /* if LARVAL entry doesn't become MATURE, delete it. */
4807 mutex_enter(&key_sad.lock);
4808 restart_sav_LARVAL:
4809 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4810 if (now - sav->created > key_larval_lifetime) {
4811 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4812 goto restart_sav_LARVAL;
4813 }
4814 }
4815 mutex_exit(&key_sad.lock);
4816
4817 /*
4818 * check MATURE entry to start to send expire message
4819 * whether or not.
4820 */
4821 restart_sav_MATURE:
4822 mutex_enter(&key_sad.lock);
4823 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4824 /* we don't need to check. */
4825 if (sav->lft_s == NULL)
4826 continue;
4827
4828 /* sanity check */
4829 KASSERT(sav->lft_c != NULL);
4830
4831 /* check SOFT lifetime */
4832 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4833 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4834 /*
4835 * check SA to be used whether or not.
4836 * when SA hasn't been used, delete it.
4837 */
4838 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4839 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4840 mutex_exit(&key_sad.lock);
4841 } else {
4842 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4843 mutex_exit(&key_sad.lock);
4844 /*
4845 * XXX If we keep to send expire
4846 * message in the status of
4847 * DYING. Do remove below code.
4848 */
4849 key_expire(sav);
4850 }
4851 goto restart_sav_MATURE;
4852 }
4853 /* check SOFT lifetime by bytes */
4854 /*
4855 * XXX I don't know the way to delete this SA
4856 * when new SA is installed. Caution when it's
4857 * installed too big lifetime by time.
4858 */
4859 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4860 sav->lft_s->sadb_lifetime_bytes <
4861 sav->lft_c->sadb_lifetime_bytes) {
4862
4863 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4864 mutex_exit(&key_sad.lock);
4865 /*
4866 * XXX If we keep to send expire
4867 * message in the status of
4868 * DYING. Do remove below code.
4869 */
4870 key_expire(sav);
4871 goto restart_sav_MATURE;
4872 }
4873 }
4874 mutex_exit(&key_sad.lock);
4875
4876 /* check DYING entry to change status to DEAD. */
4877 mutex_enter(&key_sad.lock);
4878 restart_sav_DYING:
4879 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4880 /* we don't need to check. */
4881 if (sav->lft_h == NULL)
4882 continue;
4883
4884 /* sanity check */
4885 KASSERT(sav->lft_c != NULL);
4886
4887 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4888 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4889 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4890 goto restart_sav_DYING;
4891 }
4892 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4893 else if (sav->lft_s != NULL
4894 && sav->lft_s->sadb_lifetime_addtime != 0
4895 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4896 /*
4897 * XXX: should be checked to be
4898 * installed the valid SA.
4899 */
4900
4901 /*
4902 * If there is no SA then sending
4903 * expire message.
4904 */
4905 key_expire(sav);
4906 }
4907 #endif
4908 /* check HARD lifetime by bytes */
4909 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4910 sav->lft_h->sadb_lifetime_bytes <
4911 sav->lft_c->sadb_lifetime_bytes) {
4912 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4913 goto restart_sav_DYING;
4914 }
4915 }
4916 mutex_exit(&key_sad.lock);
4917
4918 /* delete entry in DEAD */
4919 restart_sav_DEAD:
4920 mutex_enter(&key_sad.lock);
4921 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4922 key_unlink_sav(sav);
4923 mutex_exit(&key_sad.lock);
4924 key_destroy_sav(sav);
4925 goto restart_sav_DEAD;
4926 }
4927 mutex_exit(&key_sad.lock);
4928
4929 s = pserialize_read_enter();
4930 key_sah_unref(sah);
4931 }
4932 pserialize_read_exit(s);
4933 }
4934
4935 static void
4936 key_timehandler_acq(time_t now)
4937 {
4938 #ifndef IPSEC_NONBLOCK_ACQUIRE
4939 struct secacq *acq, *nextacq;
4940
4941 restart:
4942 mutex_enter(&key_misc.lock);
4943 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4944 if (now - acq->created > key_blockacq_lifetime) {
4945 LIST_REMOVE(acq, chain);
4946 mutex_exit(&key_misc.lock);
4947 kmem_free(acq, sizeof(*acq));
4948 goto restart;
4949 }
4950 }
4951 mutex_exit(&key_misc.lock);
4952 #endif
4953 }
4954
4955 static void
4956 key_timehandler_spacq(time_t now)
4957 {
4958 #ifdef notyet
4959 struct secspacq *acq, *nextacq;
4960
4961 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4962 if (now - acq->created > key_blockacq_lifetime) {
4963 KASSERT(__LIST_CHAINED(acq));
4964 LIST_REMOVE(acq, chain);
4965 kmem_free(acq, sizeof(*acq));
4966 }
4967 }
4968 #endif
4969 }
4970
4971 static unsigned int key_timehandler_work_enqueued = 0;
4972
4973 /*
4974 * time handler.
4975 * scanning SPD and SAD to check status for each entries,
4976 * and do to remove or to expire.
4977 */
4978 static void
4979 key_timehandler_work(struct work *wk, void *arg)
4980 {
4981 time_t now = time_uptime;
4982 IPSEC_DECLARE_LOCK_VARIABLE;
4983
4984 /* We can allow enqueuing another work at this point */
4985 atomic_swap_uint(&key_timehandler_work_enqueued, 0);
4986
4987 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4988
4989 key_timehandler_spd(now);
4990 key_timehandler_sad(now);
4991 key_timehandler_acq(now);
4992 key_timehandler_spacq(now);
4993
4994 key_acquire_sendup_pending_mbuf();
4995
4996 /* do exchange to tick time !! */
4997 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4998
4999 IPSEC_RELEASE_GLOBAL_LOCKS();
5000 return;
5001 }
5002
5003 static void
5004 key_timehandler(void *arg)
5005 {
5006
5007 /* Avoid enqueuing another work when one is already enqueued */
5008 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
5009 return;
5010
5011 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
5012 }
5013
5014 u_long
5015 key_random(void)
5016 {
5017 u_long value;
5018
5019 key_randomfill(&value, sizeof(value));
5020 return value;
5021 }
5022
5023 void
5024 key_randomfill(void *p, size_t l)
5025 {
5026
5027 cprng_fast(p, l);
5028 }
5029
5030 /*
5031 * map SADB_SATYPE_* to IPPROTO_*.
5032 * if satype == SADB_SATYPE then satype is mapped to ~0.
5033 * OUT:
5034 * 0: invalid satype.
5035 */
5036 static u_int16_t
5037 key_satype2proto(u_int8_t satype)
5038 {
5039 switch (satype) {
5040 case SADB_SATYPE_UNSPEC:
5041 return IPSEC_PROTO_ANY;
5042 case SADB_SATYPE_AH:
5043 return IPPROTO_AH;
5044 case SADB_SATYPE_ESP:
5045 return IPPROTO_ESP;
5046 case SADB_X_SATYPE_IPCOMP:
5047 return IPPROTO_IPCOMP;
5048 case SADB_X_SATYPE_TCPSIGNATURE:
5049 return IPPROTO_TCP;
5050 default:
5051 return 0;
5052 }
5053 /* NOTREACHED */
5054 }
5055
5056 /*
5057 * map IPPROTO_* to SADB_SATYPE_*
5058 * OUT:
5059 * 0: invalid protocol type.
5060 */
5061 static u_int8_t
5062 key_proto2satype(u_int16_t proto)
5063 {
5064 switch (proto) {
5065 case IPPROTO_AH:
5066 return SADB_SATYPE_AH;
5067 case IPPROTO_ESP:
5068 return SADB_SATYPE_ESP;
5069 case IPPROTO_IPCOMP:
5070 return SADB_X_SATYPE_IPCOMP;
5071 case IPPROTO_TCP:
5072 return SADB_X_SATYPE_TCPSIGNATURE;
5073 default:
5074 return 0;
5075 }
5076 /* NOTREACHED */
5077 }
5078
5079 static int
5080 key_setsecasidx(int proto, int mode, int reqid,
5081 const struct sockaddr *src, const struct sockaddr *dst,
5082 struct secasindex * saidx)
5083 {
5084 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
5085 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
5086
5087 /* sa len safety check */
5088 if (key_checksalen(src_u) != 0)
5089 return -1;
5090 if (key_checksalen(dst_u) != 0)
5091 return -1;
5092
5093 memset(saidx, 0, sizeof(*saidx));
5094 saidx->proto = proto;
5095 saidx->mode = mode;
5096 saidx->reqid = reqid;
5097 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
5098 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
5099
5100 key_porttosaddr(&((saidx)->src), 0);
5101 key_porttosaddr(&((saidx)->dst), 0);
5102 return 0;
5103 }
5104
5105 static void
5106 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
5107 const struct sadb_msghdr *mhp)
5108 {
5109 const struct sadb_address *src0, *dst0;
5110 const struct sockaddr *src, *dst;
5111 const struct sadb_x_policy *xpl0;
5112
5113 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC];
5114 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST];
5115 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5116 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5117 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
5118
5119 memset(spidx, 0, sizeof(*spidx));
5120 spidx->dir = xpl0->sadb_x_policy_dir;
5121 spidx->prefs = src0->sadb_address_prefixlen;
5122 spidx->prefd = dst0->sadb_address_prefixlen;
5123 spidx->ul_proto = src0->sadb_address_proto;
5124 /* XXX boundary check against sa_len */
5125 memcpy(&spidx->src, src, src->sa_len);
5126 memcpy(&spidx->dst, dst, dst->sa_len);
5127 }
5128
5129 /* %%% PF_KEY */
5130 /*
5131 * SADB_GETSPI processing is to receive
5132 * <base, (SA2), src address, dst address, (SPI range)>
5133 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5134 * tree with the status of LARVAL, and send
5135 * <base, SA(*), address(SD)>
5136 * to the IKMPd.
5137 *
5138 * IN: mhp: pointer to the pointer to each header.
5139 * OUT: NULL if fail.
5140 * other if success, return pointer to the message to send.
5141 */
5142 static int
5143 key_api_getspi(struct socket *so, struct mbuf *m,
5144 const struct sadb_msghdr *mhp)
5145 {
5146 const struct sockaddr *src, *dst;
5147 struct secasindex saidx;
5148 struct secashead *sah;
5149 struct secasvar *newsav;
5150 u_int8_t proto;
5151 u_int32_t spi;
5152 u_int8_t mode;
5153 u_int16_t reqid;
5154 int error;
5155
5156 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5157 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5158 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5159 return key_senderror(so, m, EINVAL);
5160 }
5161 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5162 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5163 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5164 return key_senderror(so, m, EINVAL);
5165 }
5166 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5167 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5168 mode = sa2->sadb_x_sa2_mode;
5169 reqid = sa2->sadb_x_sa2_reqid;
5170 } else {
5171 mode = IPSEC_MODE_ANY;
5172 reqid = 0;
5173 }
5174
5175 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5176 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5177
5178 /* map satype to proto */
5179 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5180 if (proto == 0) {
5181 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5182 return key_senderror(so, m, EINVAL);
5183 }
5184
5185
5186 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5187 if (error != 0)
5188 return key_senderror(so, m, EINVAL);
5189
5190 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5191 if (error != 0)
5192 return key_senderror(so, m, EINVAL);
5193
5194 /* SPI allocation */
5195 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx);
5196 if (spi == 0)
5197 return key_senderror(so, m, EINVAL);
5198
5199 /* get a SA index */
5200 sah = key_getsah_ref(&saidx, CMP_REQID);
5201 if (sah == NULL) {
5202 /* create a new SA index */
5203 sah = key_newsah(&saidx);
5204 if (sah == NULL) {
5205 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5206 return key_senderror(so, m, ENOBUFS);
5207 }
5208 }
5209
5210 /* get a new SA */
5211 /* XXX rewrite */
5212 newsav = KEY_NEWSAV(m, mhp, &error);
5213 if (newsav == NULL) {
5214 key_sah_unref(sah);
5215 /* XXX don't free new SA index allocated in above. */
5216 return key_senderror(so, m, error);
5217 }
5218
5219 /* set spi */
5220 newsav->spi = htonl(spi);
5221
5222 /* Add to sah#savlist */
5223 key_init_sav(newsav);
5224 newsav->sah = sah;
5225 newsav->state = SADB_SASTATE_LARVAL;
5226 mutex_enter(&key_sad.lock);
5227 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5228 mutex_exit(&key_sad.lock);
5229 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5230
5231 key_sah_unref(sah);
5232
5233 #ifndef IPSEC_NONBLOCK_ACQUIRE
5234 /* delete the entry in key_misc.acqlist */
5235 if (mhp->msg->sadb_msg_seq != 0) {
5236 struct secacq *acq;
5237 mutex_enter(&key_misc.lock);
5238 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5239 if (acq != NULL) {
5240 /* reset counter in order to deletion by timehandler. */
5241 acq->created = time_uptime;
5242 acq->count = 0;
5243 }
5244 mutex_exit(&key_misc.lock);
5245 }
5246 #endif
5247
5248 {
5249 struct mbuf *n, *nn;
5250 struct sadb_sa *m_sa;
5251 int off, len;
5252
5253 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5254 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5255
5256 /* create new sadb_msg to reply. */
5257 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5258 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5259
5260 MGETHDR(n, M_DONTWAIT, MT_DATA);
5261 if (len > MHLEN) {
5262 MCLGET(n, M_DONTWAIT);
5263 if ((n->m_flags & M_EXT) == 0) {
5264 m_freem(n);
5265 n = NULL;
5266 }
5267 }
5268 if (!n)
5269 return key_senderror(so, m, ENOBUFS);
5270
5271 n->m_len = len;
5272 n->m_next = NULL;
5273 off = 0;
5274
5275 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5276 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5277
5278 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5279 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5280 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5281 m_sa->sadb_sa_spi = htonl(spi);
5282 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5283
5284 KASSERTMSG(off == len, "length inconsistency");
5285
5286 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5287 SADB_EXT_ADDRESS_DST);
5288 if (!n->m_next) {
5289 m_freem(n);
5290 return key_senderror(so, m, ENOBUFS);
5291 }
5292
5293 if (n->m_len < sizeof(struct sadb_msg)) {
5294 n = m_pullup(n, sizeof(struct sadb_msg));
5295 if (n == NULL)
5296 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5297 }
5298
5299 n->m_pkthdr.len = 0;
5300 for (nn = n; nn; nn = nn->m_next)
5301 n->m_pkthdr.len += nn->m_len;
5302
5303 key_fill_replymsg(n, newsav->seq);
5304
5305 m_freem(m);
5306 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5307 }
5308 }
5309
5310 /*
5311 * allocating new SPI
5312 * called by key_api_getspi().
5313 * OUT:
5314 * 0: failure.
5315 * others: success.
5316 */
5317 static u_int32_t
5318 key_do_getnewspi(const struct sadb_spirange *spirange,
5319 const struct secasindex *saidx)
5320 {
5321 u_int32_t newspi;
5322 u_int32_t spmin, spmax;
5323 int count = key_spi_trycnt;
5324
5325 /* set spi range to allocate */
5326 if (spirange != NULL) {
5327 spmin = spirange->sadb_spirange_min;
5328 spmax = spirange->sadb_spirange_max;
5329 } else {
5330 spmin = key_spi_minval;
5331 spmax = key_spi_maxval;
5332 }
5333 /* IPCOMP needs 2-byte SPI */
5334 if (saidx->proto == IPPROTO_IPCOMP) {
5335 u_int32_t t;
5336 if (spmin >= 0x10000)
5337 spmin = 0xffff;
5338 if (spmax >= 0x10000)
5339 spmax = 0xffff;
5340 if (spmin > spmax) {
5341 t = spmin; spmin = spmax; spmax = t;
5342 }
5343 }
5344
5345 if (spmin == spmax) {
5346 if (key_checkspidup(saidx, htonl(spmin))) {
5347 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5348 return 0;
5349 }
5350
5351 count--; /* taking one cost. */
5352 newspi = spmin;
5353
5354 } else {
5355
5356 /* init SPI */
5357 newspi = 0;
5358
5359 /* when requesting to allocate spi ranged */
5360 while (count--) {
5361 /* generate pseudo-random SPI value ranged. */
5362 newspi = spmin + (key_random() % (spmax - spmin + 1));
5363
5364 if (!key_checkspidup(saidx, htonl(newspi)))
5365 break;
5366 }
5367
5368 if (count == 0 || newspi == 0) {
5369 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5370 return 0;
5371 }
5372 }
5373
5374 /* statistics */
5375 keystat.getspi_count =
5376 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5377
5378 return newspi;
5379 }
5380
5381 static int
5382 key_handle_natt_info(struct secasvar *sav,
5383 const struct sadb_msghdr *mhp)
5384 {
5385 const char *msg = "?" ;
5386 struct sadb_x_nat_t_type *type;
5387 struct sadb_x_nat_t_port *sport, *dport;
5388 struct sadb_address *iaddr, *raddr;
5389 struct sadb_x_nat_t_frag *frag;
5390
5391 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5392 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5393 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5394 return 0;
5395
5396 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5397 msg = "TYPE";
5398 goto bad;
5399 }
5400
5401 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5402 msg = "SPORT";
5403 goto bad;
5404 }
5405
5406 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5407 msg = "DPORT";
5408 goto bad;
5409 }
5410
5411 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5412 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5413 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5414 msg = "OAI";
5415 goto bad;
5416 }
5417 }
5418
5419 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5420 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5421 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5422 msg = "OAR";
5423 goto bad;
5424 }
5425 }
5426
5427 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5428 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5429 msg = "FRAG";
5430 goto bad;
5431 }
5432 }
5433
5434 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5435 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5436 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5437 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
5438 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
5439 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5440
5441 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5442 type->sadb_x_nat_t_type_type,
5443 ntohs(sport->sadb_x_nat_t_port_port),
5444 ntohs(dport->sadb_x_nat_t_port_port));
5445
5446 sav->natt_type = type->sadb_x_nat_t_type_type;
5447 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5448 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5449 if (frag)
5450 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5451 else
5452 sav->esp_frag = IP_MAXPACKET;
5453
5454 return 0;
5455 bad:
5456 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5457 __USE(msg);
5458 return -1;
5459 }
5460
5461 /* Just update the IPSEC_NAT_T ports if present */
5462 static int
5463 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5464 const struct sadb_msghdr *mhp)
5465 {
5466 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5467 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5468 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5469 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5470
5471 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5472 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5473 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5474 struct sadb_x_nat_t_type *type;
5475 struct sadb_x_nat_t_port *sport;
5476 struct sadb_x_nat_t_port *dport;
5477
5478 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5479 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5480 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5481 IPSECLOG(LOG_DEBUG, "invalid message\n");
5482 return -1;
5483 }
5484
5485 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5486 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5487 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5488
5489 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5490 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5491
5492 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5493 type->sadb_x_nat_t_type_type,
5494 ntohs(sport->sadb_x_nat_t_port_port),
5495 ntohs(dport->sadb_x_nat_t_port_port));
5496 }
5497
5498 return 0;
5499 }
5500
5501
5502 /*
5503 * SADB_UPDATE processing
5504 * receive
5505 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5506 * key(AE), (identity(SD),) (sensitivity)>
5507 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5508 * and send
5509 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5510 * (identity(SD),) (sensitivity)>
5511 * to the ikmpd.
5512 *
5513 * m will always be freed.
5514 */
5515 static int
5516 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5517 {
5518 struct sadb_sa *sa0;
5519 const struct sockaddr *src, *dst;
5520 struct secasindex saidx;
5521 struct secashead *sah;
5522 struct secasvar *sav, *newsav;
5523 u_int16_t proto;
5524 u_int8_t mode;
5525 u_int16_t reqid;
5526 int error;
5527
5528 /* map satype to proto */
5529 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5530 if (proto == 0) {
5531 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5532 return key_senderror(so, m, EINVAL);
5533 }
5534
5535 if (mhp->ext[SADB_EXT_SA] == NULL ||
5536 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5537 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5538 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5539 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5540 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5541 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5542 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5543 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5544 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5545 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5546 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5547 return key_senderror(so, m, EINVAL);
5548 }
5549 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5550 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5551 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5552 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5553 return key_senderror(so, m, EINVAL);
5554 }
5555 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5556 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5557 mode = sa2->sadb_x_sa2_mode;
5558 reqid = sa2->sadb_x_sa2_reqid;
5559 } else {
5560 mode = IPSEC_MODE_ANY;
5561 reqid = 0;
5562 }
5563 /* XXX boundary checking for other extensions */
5564
5565 sa0 = mhp->ext[SADB_EXT_SA];
5566 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5567 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5568
5569 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5570 if (error != 0)
5571 return key_senderror(so, m, EINVAL);
5572
5573 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5574 if (error != 0)
5575 return key_senderror(so, m, EINVAL);
5576
5577 /* get a SA header */
5578 sah = key_getsah_ref(&saidx, CMP_REQID);
5579 if (sah == NULL) {
5580 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5581 return key_senderror(so, m, ENOENT);
5582 }
5583
5584 /* set spidx if there */
5585 /* XXX rewrite */
5586 error = key_setident(sah, m, mhp);
5587 if (error)
5588 goto error_sah;
5589
5590 /* find a SA with sequence number. */
5591 #ifdef IPSEC_DOSEQCHECK
5592 if (mhp->msg->sadb_msg_seq != 0) {
5593 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5594 if (sav == NULL) {
5595 IPSECLOG(LOG_DEBUG,
5596 "no larval SA with sequence %u exists.\n",
5597 mhp->msg->sadb_msg_seq);
5598 error = ENOENT;
5599 goto error_sah;
5600 }
5601 }
5602 #else
5603 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5604 if (sav == NULL) {
5605 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5606 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5607 error = EINVAL;
5608 goto error_sah;
5609 }
5610 #endif
5611
5612 /* validity check */
5613 if (sav->sah->saidx.proto != proto) {
5614 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5615 sav->sah->saidx.proto, proto);
5616 error = EINVAL;
5617 goto error;
5618 }
5619 #ifdef IPSEC_DOSEQCHECK
5620 if (sav->spi != sa0->sadb_sa_spi) {
5621 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5622 (u_int32_t)ntohl(sav->spi),
5623 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5624 error = EINVAL;
5625 goto error;
5626 }
5627 #endif
5628 if (sav->pid != mhp->msg->sadb_msg_pid) {
5629 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5630 sav->pid, mhp->msg->sadb_msg_pid);
5631 error = EINVAL;
5632 goto error;
5633 }
5634
5635 /*
5636 * Allocate a new SA instead of modifying the existing SA directly
5637 * to avoid race conditions.
5638 */
5639 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5640
5641 /* copy sav values */
5642 newsav->spi = sav->spi;
5643 newsav->seq = sav->seq;
5644 newsav->created = sav->created;
5645 newsav->pid = sav->pid;
5646 newsav->sah = sav->sah;
5647
5648 error = key_setsaval(newsav, m, mhp);
5649 if (error) {
5650 key_delsav(newsav);
5651 goto error;
5652 }
5653
5654 error = key_handle_natt_info(newsav, mhp);
5655 if (error != 0) {
5656 key_delsav(newsav);
5657 goto error;
5658 }
5659
5660 error = key_init_xform(newsav);
5661 if (error != 0) {
5662 key_delsav(newsav);
5663 goto error;
5664 }
5665
5666 /* Add to sah#savlist */
5667 key_init_sav(newsav);
5668 newsav->state = SADB_SASTATE_MATURE;
5669 mutex_enter(&key_sad.lock);
5670 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5671 mutex_exit(&key_sad.lock);
5672 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5673
5674 key_sah_unref(sah);
5675 sah = NULL;
5676
5677 key_destroy_sav_with_ref(sav);
5678 sav = NULL;
5679
5680 {
5681 struct mbuf *n;
5682
5683 /* set msg buf from mhp */
5684 n = key_getmsgbuf_x1(m, mhp);
5685 if (n == NULL) {
5686 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5687 return key_senderror(so, m, ENOBUFS);
5688 }
5689
5690 m_freem(m);
5691 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5692 }
5693 error:
5694 KEY_SA_UNREF(&sav);
5695 error_sah:
5696 key_sah_unref(sah);
5697 return key_senderror(so, m, error);
5698 }
5699
5700 /*
5701 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5702 * only called by key_api_update().
5703 * OUT:
5704 * NULL : not found
5705 * others : found, pointer to a SA.
5706 */
5707 #ifdef IPSEC_DOSEQCHECK
5708 static struct secasvar *
5709 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5710 {
5711 struct secasvar *sav;
5712 u_int state;
5713 int s;
5714
5715 state = SADB_SASTATE_LARVAL;
5716
5717 /* search SAD with sequence number ? */
5718 s = pserialize_read_enter();
5719 SAVLIST_READER_FOREACH(sav, sah, state) {
5720 KEY_CHKSASTATE(state, sav->state);
5721
5722 if (sav->seq == seq) {
5723 SA_ADDREF(sav);
5724 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5725 "DP cause refcnt++:%d SA:%p\n",
5726 key_sa_refcnt(sav), sav);
5727 break;
5728 }
5729 }
5730 pserialize_read_exit(s);
5731
5732 return sav;
5733 }
5734 #endif
5735
5736 /*
5737 * SADB_ADD processing
5738 * add an entry to SA database, when received
5739 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5740 * key(AE), (identity(SD),) (sensitivity)>
5741 * from the ikmpd,
5742 * and send
5743 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5744 * (identity(SD),) (sensitivity)>
5745 * to the ikmpd.
5746 *
5747 * IGNORE identity and sensitivity messages.
5748 *
5749 * m will always be freed.
5750 */
5751 static int
5752 key_api_add(struct socket *so, struct mbuf *m,
5753 const struct sadb_msghdr *mhp)
5754 {
5755 struct sadb_sa *sa0;
5756 const struct sockaddr *src, *dst;
5757 struct secasindex saidx;
5758 struct secashead *sah;
5759 struct secasvar *newsav;
5760 u_int16_t proto;
5761 u_int8_t mode;
5762 u_int16_t reqid;
5763 int error;
5764
5765 /* map satype to proto */
5766 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5767 if (proto == 0) {
5768 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5769 return key_senderror(so, m, EINVAL);
5770 }
5771
5772 if (mhp->ext[SADB_EXT_SA] == NULL ||
5773 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5774 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5775 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5776 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5777 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5778 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5779 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5780 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5781 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5782 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5783 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5784 return key_senderror(so, m, EINVAL);
5785 }
5786 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5787 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5788 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5789 /* XXX need more */
5790 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5791 return key_senderror(so, m, EINVAL);
5792 }
5793 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5794 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5795 mode = sa2->sadb_x_sa2_mode;
5796 reqid = sa2->sadb_x_sa2_reqid;
5797 } else {
5798 mode = IPSEC_MODE_ANY;
5799 reqid = 0;
5800 }
5801
5802 sa0 = mhp->ext[SADB_EXT_SA];
5803 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5804 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5805
5806 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5807 if (error != 0)
5808 return key_senderror(so, m, EINVAL);
5809
5810 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5811 if (error != 0)
5812 return key_senderror(so, m, EINVAL);
5813
5814 /* get a SA header */
5815 sah = key_getsah_ref(&saidx, CMP_REQID);
5816 if (sah == NULL) {
5817 /* create a new SA header */
5818 sah = key_newsah(&saidx);
5819 if (sah == NULL) {
5820 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5821 return key_senderror(so, m, ENOBUFS);
5822 }
5823 }
5824
5825 /* set spidx if there */
5826 /* XXX rewrite */
5827 error = key_setident(sah, m, mhp);
5828 if (error)
5829 goto error;
5830
5831 {
5832 struct secasvar *sav;
5833
5834 /* We can create new SA only if SPI is differenct. */
5835 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5836 if (sav != NULL) {
5837 KEY_SA_UNREF(&sav);
5838 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5839 error = EEXIST;
5840 goto error;
5841 }
5842 }
5843
5844 /* create new SA entry. */
5845 newsav = KEY_NEWSAV(m, mhp, &error);
5846 if (newsav == NULL)
5847 goto error;
5848 newsav->sah = sah;
5849
5850 error = key_handle_natt_info(newsav, mhp);
5851 if (error != 0) {
5852 key_delsav(newsav);
5853 error = EINVAL;
5854 goto error;
5855 }
5856
5857 error = key_init_xform(newsav);
5858 if (error != 0) {
5859 key_delsav(newsav);
5860 goto error;
5861 }
5862
5863 /* Add to sah#savlist */
5864 key_init_sav(newsav);
5865 newsav->state = SADB_SASTATE_MATURE;
5866 mutex_enter(&key_sad.lock);
5867 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5868 mutex_exit(&key_sad.lock);
5869 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5870
5871 key_sah_unref(sah);
5872 sah = NULL;
5873
5874 /*
5875 * don't call key_freesav() here, as we would like to keep the SA
5876 * in the database on success.
5877 */
5878
5879 {
5880 struct mbuf *n;
5881
5882 /* set msg buf from mhp */
5883 n = key_getmsgbuf_x1(m, mhp);
5884 if (n == NULL) {
5885 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5886 return key_senderror(so, m, ENOBUFS);
5887 }
5888
5889 m_freem(m);
5890 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5891 }
5892 error:
5893 key_sah_unref(sah);
5894 return key_senderror(so, m, error);
5895 }
5896
5897 /* m is retained */
5898 static int
5899 key_setident(struct secashead *sah, struct mbuf *m,
5900 const struct sadb_msghdr *mhp)
5901 {
5902 const struct sadb_ident *idsrc, *iddst;
5903 int idsrclen, iddstlen;
5904
5905 KASSERT(!cpu_softintr_p());
5906 KASSERT(sah != NULL);
5907 KASSERT(m != NULL);
5908 KASSERT(mhp != NULL);
5909 KASSERT(mhp->msg != NULL);
5910
5911 /*
5912 * Can be called with an existing sah from key_api_update().
5913 */
5914 if (sah->idents != NULL) {
5915 kmem_free(sah->idents, sah->idents_len);
5916 sah->idents = NULL;
5917 sah->idents_len = 0;
5918 }
5919 if (sah->identd != NULL) {
5920 kmem_free(sah->identd, sah->identd_len);
5921 sah->identd = NULL;
5922 sah->identd_len = 0;
5923 }
5924
5925 /* don't make buffer if not there */
5926 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5927 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5928 sah->idents = NULL;
5929 sah->identd = NULL;
5930 return 0;
5931 }
5932
5933 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5934 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5935 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5936 return EINVAL;
5937 }
5938
5939 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC];
5940 iddst = mhp->ext[SADB_EXT_IDENTITY_DST];
5941 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5942 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5943
5944 /* validity check */
5945 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5946 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5947 return EINVAL;
5948 }
5949
5950 switch (idsrc->sadb_ident_type) {
5951 case SADB_IDENTTYPE_PREFIX:
5952 case SADB_IDENTTYPE_FQDN:
5953 case SADB_IDENTTYPE_USERFQDN:
5954 default:
5955 /* XXX do nothing */
5956 sah->idents = NULL;
5957 sah->identd = NULL;
5958 return 0;
5959 }
5960
5961 /* make structure */
5962 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5963 sah->idents_len = idsrclen;
5964 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5965 sah->identd_len = iddstlen;
5966 memcpy(sah->idents, idsrc, idsrclen);
5967 memcpy(sah->identd, iddst, iddstlen);
5968
5969 return 0;
5970 }
5971
5972 /*
5973 * m will not be freed on return.
5974 * it is caller's responsibility to free the result.
5975 */
5976 static struct mbuf *
5977 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5978 {
5979 struct mbuf *n;
5980
5981 KASSERT(m != NULL);
5982 KASSERT(mhp != NULL);
5983 KASSERT(mhp->msg != NULL);
5984
5985 /* create new sadb_msg to reply. */
5986 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5987 SADB_EXT_SA, SADB_X_EXT_SA2,
5988 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5989 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5990 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5991 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5992 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5993 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5994 if (!n)
5995 return NULL;
5996
5997 if (n->m_len < sizeof(struct sadb_msg)) {
5998 n = m_pullup(n, sizeof(struct sadb_msg));
5999 if (n == NULL)
6000 return NULL;
6001 }
6002 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
6003 mtod(n, struct sadb_msg *)->sadb_msg_len =
6004 PFKEY_UNIT64(n->m_pkthdr.len);
6005
6006 return n;
6007 }
6008
6009 static int key_delete_all (struct socket *, struct mbuf *,
6010 const struct sadb_msghdr *, u_int16_t);
6011
6012 /*
6013 * SADB_DELETE processing
6014 * receive
6015 * <base, SA(*), address(SD)>
6016 * from the ikmpd, and set SADB_SASTATE_DEAD,
6017 * and send,
6018 * <base, SA(*), address(SD)>
6019 * to the ikmpd.
6020 *
6021 * m will always be freed.
6022 */
6023 static int
6024 key_api_delete(struct socket *so, struct mbuf *m,
6025 const struct sadb_msghdr *mhp)
6026 {
6027 struct sadb_sa *sa0;
6028 const struct sockaddr *src, *dst;
6029 struct secasindex saidx;
6030 struct secashead *sah;
6031 struct secasvar *sav = NULL;
6032 u_int16_t proto;
6033 int error;
6034
6035 /* map satype to proto */
6036 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6037 if (proto == 0) {
6038 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6039 return key_senderror(so, m, EINVAL);
6040 }
6041
6042 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6043 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6044 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6045 return key_senderror(so, m, EINVAL);
6046 }
6047
6048 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6049 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6050 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6051 return key_senderror(so, m, EINVAL);
6052 }
6053
6054 if (mhp->ext[SADB_EXT_SA] == NULL) {
6055 /*
6056 * Caller wants us to delete all non-LARVAL SAs
6057 * that match the src/dst. This is used during
6058 * IKE INITIAL-CONTACT.
6059 */
6060 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
6061 return key_delete_all(so, m, mhp, proto);
6062 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
6063 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6064 return key_senderror(so, m, EINVAL);
6065 }
6066
6067 sa0 = mhp->ext[SADB_EXT_SA];
6068 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6069 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6070
6071 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6072 if (error != 0)
6073 return key_senderror(so, m, EINVAL);
6074
6075 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6076 if (error != 0)
6077 return key_senderror(so, m, EINVAL);
6078
6079 /* get a SA header */
6080 sah = key_getsah_ref(&saidx, CMP_HEAD);
6081 if (sah != NULL) {
6082 /* get a SA with SPI. */
6083 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6084 key_sah_unref(sah);
6085 }
6086
6087 if (sav == NULL) {
6088 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6089 return key_senderror(so, m, ENOENT);
6090 }
6091
6092 key_destroy_sav_with_ref(sav);
6093 sav = NULL;
6094
6095 {
6096 struct mbuf *n;
6097
6098 /* create new sadb_msg to reply. */
6099 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6100 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6101 if (!n)
6102 return key_senderror(so, m, ENOBUFS);
6103
6104 n = key_fill_replymsg(n, 0);
6105 if (n == NULL)
6106 return key_senderror(so, m, ENOBUFS);
6107
6108 m_freem(m);
6109 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6110 }
6111 }
6112
6113 /*
6114 * delete all SAs for src/dst. Called from key_api_delete().
6115 */
6116 static int
6117 key_delete_all(struct socket *so, struct mbuf *m,
6118 const struct sadb_msghdr *mhp, u_int16_t proto)
6119 {
6120 const struct sockaddr *src, *dst;
6121 struct secasindex saidx;
6122 struct secashead *sah;
6123 struct secasvar *sav;
6124 u_int state;
6125 int error;
6126
6127 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6128 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6129
6130 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6131 if (error != 0)
6132 return key_senderror(so, m, EINVAL);
6133
6134 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6135 if (error != 0)
6136 return key_senderror(so, m, EINVAL);
6137
6138 sah = key_getsah_ref(&saidx, CMP_HEAD);
6139 if (sah != NULL) {
6140 /* Delete all non-LARVAL SAs. */
6141 SASTATE_ALIVE_FOREACH(state) {
6142 if (state == SADB_SASTATE_LARVAL)
6143 continue;
6144 restart:
6145 mutex_enter(&key_sad.lock);
6146 SAVLIST_WRITER_FOREACH(sav, sah, state) {
6147 sav->state = SADB_SASTATE_DEAD;
6148 key_unlink_sav(sav);
6149 mutex_exit(&key_sad.lock);
6150 key_destroy_sav(sav);
6151 goto restart;
6152 }
6153 mutex_exit(&key_sad.lock);
6154 }
6155 key_sah_unref(sah);
6156 }
6157 {
6158 struct mbuf *n;
6159
6160 /* create new sadb_msg to reply. */
6161 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6162 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6163 if (!n)
6164 return key_senderror(so, m, ENOBUFS);
6165
6166 n = key_fill_replymsg(n, 0);
6167 if (n == NULL)
6168 return key_senderror(so, m, ENOBUFS);
6169
6170 m_freem(m);
6171 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6172 }
6173 }
6174
6175 /*
6176 * SADB_GET processing
6177 * receive
6178 * <base, SA(*), address(SD)>
6179 * from the ikmpd, and get a SP and a SA to respond,
6180 * and send,
6181 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6182 * (identity(SD),) (sensitivity)>
6183 * to the ikmpd.
6184 *
6185 * m will always be freed.
6186 */
6187 static int
6188 key_api_get(struct socket *so, struct mbuf *m,
6189 const struct sadb_msghdr *mhp)
6190 {
6191 struct sadb_sa *sa0;
6192 const struct sockaddr *src, *dst;
6193 struct secasindex saidx;
6194 struct secasvar *sav = NULL;
6195 u_int16_t proto;
6196 int error;
6197
6198 /* map satype to proto */
6199 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6200 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6201 return key_senderror(so, m, EINVAL);
6202 }
6203
6204 if (mhp->ext[SADB_EXT_SA] == NULL ||
6205 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6206 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6207 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6208 return key_senderror(so, m, EINVAL);
6209 }
6210 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6211 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6212 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6213 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6214 return key_senderror(so, m, EINVAL);
6215 }
6216
6217 sa0 = mhp->ext[SADB_EXT_SA];
6218 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6219 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6220
6221 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6222 if (error != 0)
6223 return key_senderror(so, m, EINVAL);
6224
6225 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6226 if (error != 0)
6227 return key_senderror(so, m, EINVAL);
6228
6229 /* get a SA header */
6230 {
6231 struct secashead *sah;
6232 int s = pserialize_read_enter();
6233
6234 sah = key_getsah(&saidx, CMP_HEAD);
6235 if (sah != NULL) {
6236 /* get a SA with SPI. */
6237 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6238 }
6239 pserialize_read_exit(s);
6240 }
6241 if (sav == NULL) {
6242 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6243 return key_senderror(so, m, ENOENT);
6244 }
6245
6246 {
6247 struct mbuf *n;
6248 u_int8_t satype;
6249
6250 /* map proto to satype */
6251 satype = key_proto2satype(sav->sah->saidx.proto);
6252 if (satype == 0) {
6253 KEY_SA_UNREF(&sav);
6254 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6255 return key_senderror(so, m, EINVAL);
6256 }
6257
6258 /* create new sadb_msg to reply. */
6259 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6260 mhp->msg->sadb_msg_pid);
6261 KEY_SA_UNREF(&sav);
6262 if (!n)
6263 return key_senderror(so, m, ENOBUFS);
6264
6265 m_freem(m);
6266 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6267 }
6268 }
6269
6270 /* XXX make it sysctl-configurable? */
6271 static void
6272 key_getcomb_setlifetime(struct sadb_comb *comb)
6273 {
6274
6275 comb->sadb_comb_soft_allocations = 1;
6276 comb->sadb_comb_hard_allocations = 1;
6277 comb->sadb_comb_soft_bytes = 0;
6278 comb->sadb_comb_hard_bytes = 0;
6279 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6280 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6281 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6282 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6283 }
6284
6285 /*
6286 * XXX reorder combinations by preference
6287 * XXX no idea if the user wants ESP authentication or not
6288 */
6289 static struct mbuf *
6290 key_getcomb_esp(void)
6291 {
6292 struct sadb_comb *comb;
6293 const struct enc_xform *algo;
6294 struct mbuf *result = NULL, *m, *n;
6295 int encmin;
6296 int i, off, o;
6297 int totlen;
6298 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6299
6300 m = NULL;
6301 for (i = 1; i <= SADB_EALG_MAX; i++) {
6302 algo = esp_algorithm_lookup(i);
6303 if (algo == NULL)
6304 continue;
6305
6306 /* discard algorithms with key size smaller than system min */
6307 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6308 continue;
6309 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6310 encmin = ipsec_esp_keymin;
6311 else
6312 encmin = _BITS(algo->minkey);
6313
6314 if (ipsec_esp_auth)
6315 m = key_getcomb_ah();
6316 else {
6317 KASSERTMSG(l <= MLEN,
6318 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6319 MGET(m, M_DONTWAIT, MT_DATA);
6320 if (m) {
6321 M_ALIGN(m, l);
6322 m->m_len = l;
6323 m->m_next = NULL;
6324 memset(mtod(m, void *), 0, m->m_len);
6325 }
6326 }
6327 if (!m)
6328 goto fail;
6329
6330 totlen = 0;
6331 for (n = m; n; n = n->m_next)
6332 totlen += n->m_len;
6333 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6334
6335 for (off = 0; off < totlen; off += l) {
6336 n = m_pulldown(m, off, l, &o);
6337 if (!n) {
6338 /* m is already freed */
6339 goto fail;
6340 }
6341 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6342 memset(comb, 0, sizeof(*comb));
6343 key_getcomb_setlifetime(comb);
6344 comb->sadb_comb_encrypt = i;
6345 comb->sadb_comb_encrypt_minbits = encmin;
6346 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6347 }
6348
6349 if (!result)
6350 result = m;
6351 else
6352 m_cat(result, m);
6353 }
6354
6355 return result;
6356
6357 fail:
6358 if (result)
6359 m_freem(result);
6360 return NULL;
6361 }
6362
6363 static void
6364 key_getsizes_ah(const struct auth_hash *ah, int alg,
6365 u_int16_t* ksmin, u_int16_t* ksmax)
6366 {
6367 *ksmin = *ksmax = ah->keysize;
6368 if (ah->keysize == 0) {
6369 /*
6370 * Transform takes arbitrary key size but algorithm
6371 * key size is restricted. Enforce this here.
6372 */
6373 switch (alg) {
6374 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6375 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6376 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6377 default:
6378 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6379 break;
6380 }
6381 }
6382 }
6383
6384 /*
6385 * XXX reorder combinations by preference
6386 */
6387 static struct mbuf *
6388 key_getcomb_ah(void)
6389 {
6390 struct sadb_comb *comb;
6391 const struct auth_hash *algo;
6392 struct mbuf *m;
6393 u_int16_t minkeysize, maxkeysize;
6394 int i;
6395 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6396
6397 m = NULL;
6398 for (i = 1; i <= SADB_AALG_MAX; i++) {
6399 #if 1
6400 /* we prefer HMAC algorithms, not old algorithms */
6401 if (i != SADB_AALG_SHA1HMAC &&
6402 i != SADB_AALG_MD5HMAC &&
6403 i != SADB_X_AALG_SHA2_256 &&
6404 i != SADB_X_AALG_SHA2_384 &&
6405 i != SADB_X_AALG_SHA2_512)
6406 continue;
6407 #endif
6408 algo = ah_algorithm_lookup(i);
6409 if (!algo)
6410 continue;
6411 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6412 /* discard algorithms with key size smaller than system min */
6413 if (_BITS(minkeysize) < ipsec_ah_keymin)
6414 continue;
6415
6416 if (!m) {
6417 KASSERTMSG(l <= MLEN,
6418 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6419 MGET(m, M_DONTWAIT, MT_DATA);
6420 if (m) {
6421 M_ALIGN(m, l);
6422 m->m_len = l;
6423 m->m_next = NULL;
6424 }
6425 } else
6426 M_PREPEND(m, l, M_DONTWAIT);
6427 if (!m)
6428 return NULL;
6429
6430 if (m->m_len < sizeof(struct sadb_comb)) {
6431 m = m_pullup(m, sizeof(struct sadb_comb));
6432 if (m == NULL)
6433 return NULL;
6434 }
6435
6436 comb = mtod(m, struct sadb_comb *);
6437 memset(comb, 0, sizeof(*comb));
6438 key_getcomb_setlifetime(comb);
6439 comb->sadb_comb_auth = i;
6440 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6441 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6442 }
6443
6444 return m;
6445 }
6446
6447 /*
6448 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6449 * XXX reorder combinations by preference
6450 */
6451 static struct mbuf *
6452 key_getcomb_ipcomp(void)
6453 {
6454 struct sadb_comb *comb;
6455 const struct comp_algo *algo;
6456 struct mbuf *m;
6457 int i;
6458 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6459
6460 m = NULL;
6461 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6462 algo = ipcomp_algorithm_lookup(i);
6463 if (!algo)
6464 continue;
6465
6466 if (!m) {
6467 KASSERTMSG(l <= MLEN,
6468 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6469 MGET(m, M_DONTWAIT, MT_DATA);
6470 if (m) {
6471 M_ALIGN(m, l);
6472 m->m_len = l;
6473 m->m_next = NULL;
6474 }
6475 } else
6476 M_PREPEND(m, l, M_DONTWAIT);
6477 if (!m)
6478 return NULL;
6479
6480 if (m->m_len < sizeof(struct sadb_comb)) {
6481 m = m_pullup(m, sizeof(struct sadb_comb));
6482 if (m == NULL)
6483 return NULL;
6484 }
6485
6486 comb = mtod(m, struct sadb_comb *);
6487 memset(comb, 0, sizeof(*comb));
6488 key_getcomb_setlifetime(comb);
6489 comb->sadb_comb_encrypt = i;
6490 /* what should we set into sadb_comb_*_{min,max}bits? */
6491 }
6492
6493 return m;
6494 }
6495
6496 /*
6497 * XXX no way to pass mode (transport/tunnel) to userland
6498 * XXX replay checking?
6499 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6500 */
6501 static struct mbuf *
6502 key_getprop(const struct secasindex *saidx)
6503 {
6504 struct sadb_prop *prop;
6505 struct mbuf *m, *n;
6506 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6507 int totlen;
6508
6509 switch (saidx->proto) {
6510 case IPPROTO_ESP:
6511 m = key_getcomb_esp();
6512 break;
6513 case IPPROTO_AH:
6514 m = key_getcomb_ah();
6515 break;
6516 case IPPROTO_IPCOMP:
6517 m = key_getcomb_ipcomp();
6518 break;
6519 default:
6520 return NULL;
6521 }
6522
6523 if (!m)
6524 return NULL;
6525 M_PREPEND(m, l, M_DONTWAIT);
6526 if (!m)
6527 return NULL;
6528
6529 totlen = 0;
6530 for (n = m; n; n = n->m_next)
6531 totlen += n->m_len;
6532
6533 prop = mtod(m, struct sadb_prop *);
6534 memset(prop, 0, sizeof(*prop));
6535 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6536 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6537 prop->sadb_prop_replay = 32; /* XXX */
6538
6539 return m;
6540 }
6541
6542 /*
6543 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6544 * send
6545 * <base, SA, address(SD), (address(P)), x_policy,
6546 * (identity(SD),) (sensitivity,) proposal>
6547 * to KMD, and expect to receive
6548 * <base> with SADB_ACQUIRE if error occurred,
6549 * or
6550 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6551 * from KMD by PF_KEY.
6552 *
6553 * XXX x_policy is outside of RFC2367 (KAME extension).
6554 * XXX sensitivity is not supported.
6555 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6556 * see comment for key_getcomb_ipcomp().
6557 *
6558 * OUT:
6559 * 0 : succeed
6560 * others: error number
6561 */
6562 static int
6563 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp)
6564 {
6565 struct mbuf *result = NULL, *m;
6566 #ifndef IPSEC_NONBLOCK_ACQUIRE
6567 struct secacq *newacq;
6568 #endif
6569 u_int8_t satype;
6570 int error = -1;
6571 u_int32_t seq;
6572
6573 /* sanity check */
6574 KASSERT(saidx != NULL);
6575 satype = key_proto2satype(saidx->proto);
6576 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6577
6578 #ifndef IPSEC_NONBLOCK_ACQUIRE
6579 /*
6580 * We never do anything about acquirng SA. There is anather
6581 * solution that kernel blocks to send SADB_ACQUIRE message until
6582 * getting something message from IKEd. In later case, to be
6583 * managed with ACQUIRING list.
6584 */
6585 /* Get an entry to check whether sending message or not. */
6586 mutex_enter(&key_misc.lock);
6587 newacq = key_getacq(saidx);
6588 if (newacq != NULL) {
6589 if (key_blockacq_count < newacq->count) {
6590 /* reset counter and do send message. */
6591 newacq->count = 0;
6592 } else {
6593 /* increment counter and do nothing. */
6594 newacq->count++;
6595 mutex_exit(&key_misc.lock);
6596 return 0;
6597 }
6598 } else {
6599 /* make new entry for blocking to send SADB_ACQUIRE. */
6600 newacq = key_newacq(saidx);
6601 if (newacq == NULL) {
6602 mutex_exit(&key_misc.lock);
6603 return ENOBUFS;
6604 }
6605
6606 /* add to key_misc.acqlist */
6607 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6608 }
6609
6610 seq = newacq->seq;
6611 mutex_exit(&key_misc.lock);
6612 #else
6613 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6614 #endif
6615 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6616 if (!m) {
6617 error = ENOBUFS;
6618 goto fail;
6619 }
6620 result = m;
6621
6622 /* set sadb_address for saidx's. */
6623 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6624 IPSEC_ULPROTO_ANY);
6625 if (!m) {
6626 error = ENOBUFS;
6627 goto fail;
6628 }
6629 m_cat(result, m);
6630
6631 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6632 IPSEC_ULPROTO_ANY);
6633 if (!m) {
6634 error = ENOBUFS;
6635 goto fail;
6636 }
6637 m_cat(result, m);
6638
6639 /* XXX proxy address (optional) */
6640
6641 /* set sadb_x_policy */
6642 if (sp) {
6643 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6644 if (!m) {
6645 error = ENOBUFS;
6646 goto fail;
6647 }
6648 m_cat(result, m);
6649 }
6650
6651 /* XXX identity (optional) */
6652 #if 0
6653 if (idexttype && fqdn) {
6654 /* create identity extension (FQDN) */
6655 struct sadb_ident *id;
6656 int fqdnlen;
6657
6658 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6659 id = (struct sadb_ident *)p;
6660 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6661 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6662 id->sadb_ident_exttype = idexttype;
6663 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6664 memcpy(id + 1, fqdn, fqdnlen);
6665 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6666 }
6667
6668 if (idexttype) {
6669 /* create identity extension (USERFQDN) */
6670 struct sadb_ident *id;
6671 int userfqdnlen;
6672
6673 if (userfqdn) {
6674 /* +1 for terminating-NUL */
6675 userfqdnlen = strlen(userfqdn) + 1;
6676 } else
6677 userfqdnlen = 0;
6678 id = (struct sadb_ident *)p;
6679 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6680 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6681 id->sadb_ident_exttype = idexttype;
6682 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6683 /* XXX is it correct? */
6684 if (curlwp)
6685 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6686 if (userfqdn && userfqdnlen)
6687 memcpy(id + 1, userfqdn, userfqdnlen);
6688 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6689 }
6690 #endif
6691
6692 /* XXX sensitivity (optional) */
6693
6694 /* create proposal/combination extension */
6695 m = key_getprop(saidx);
6696 #if 0
6697 /*
6698 * spec conformant: always attach proposal/combination extension,
6699 * the problem is that we have no way to attach it for ipcomp,
6700 * due to the way sadb_comb is declared in RFC2367.
6701 */
6702 if (!m) {
6703 error = ENOBUFS;
6704 goto fail;
6705 }
6706 m_cat(result, m);
6707 #else
6708 /*
6709 * outside of spec; make proposal/combination extension optional.
6710 */
6711 if (m)
6712 m_cat(result, m);
6713 #endif
6714
6715 if ((result->m_flags & M_PKTHDR) == 0) {
6716 error = EINVAL;
6717 goto fail;
6718 }
6719
6720 if (result->m_len < sizeof(struct sadb_msg)) {
6721 result = m_pullup(result, sizeof(struct sadb_msg));
6722 if (result == NULL) {
6723 error = ENOBUFS;
6724 goto fail;
6725 }
6726 }
6727
6728 result->m_pkthdr.len = 0;
6729 for (m = result; m; m = m->m_next)
6730 result->m_pkthdr.len += m->m_len;
6731
6732 mtod(result, struct sadb_msg *)->sadb_msg_len =
6733 PFKEY_UNIT64(result->m_pkthdr.len);
6734
6735 /*
6736 * XXX we cannot call key_sendup_mbuf directly here because
6737 * it can cause a deadlock:
6738 * - We have a reference to an SP (and an SA) here
6739 * - key_sendup_mbuf will try to take key_so_mtx
6740 * - Some other thread may try to localcount_drain to the SP with
6741 * holding key_so_mtx in say key_api_spdflush
6742 * - In this case localcount_drain never return because key_sendup_mbuf
6743 * that has stuck on key_so_mtx never release a reference to the SP
6744 *
6745 * So defer key_sendup_mbuf to the timer.
6746 */
6747 return key_acquire_sendup_mbuf_later(result);
6748
6749 fail:
6750 if (result)
6751 m_freem(result);
6752 return error;
6753 }
6754
6755 static struct mbuf *key_acquire_mbuf_head = NULL;
6756 static unsigned key_acquire_mbuf_count = 0;
6757 #define KEY_ACQUIRE_MBUF_MAX 10
6758
6759 static void
6760 key_acquire_sendup_pending_mbuf(void)
6761 {
6762 struct mbuf *m, *prev;
6763 int error;
6764
6765 again:
6766 prev = NULL;
6767 mutex_enter(&key_misc.lock);
6768 m = key_acquire_mbuf_head;
6769 /* Get an earliest mbuf (one at the tail of the list) */
6770 while (m != NULL) {
6771 if (m->m_nextpkt == NULL) {
6772 if (prev != NULL)
6773 prev->m_nextpkt = NULL;
6774 if (m == key_acquire_mbuf_head)
6775 key_acquire_mbuf_head = NULL;
6776 key_acquire_mbuf_count--;
6777 break;
6778 }
6779 prev = m;
6780 m = m->m_nextpkt;
6781 }
6782 mutex_exit(&key_misc.lock);
6783
6784 if (m == NULL)
6785 return;
6786
6787 m->m_nextpkt = NULL;
6788 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
6789 if (error != 0)
6790 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
6791 error);
6792
6793 if (prev != NULL)
6794 goto again;
6795 }
6796
6797 static int
6798 key_acquire_sendup_mbuf_later(struct mbuf *m)
6799 {
6800
6801 mutex_enter(&key_misc.lock);
6802 /* Avoid queuing too much mbufs */
6803 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
6804 mutex_exit(&key_misc.lock);
6805 m_freem(m);
6806 return ENOBUFS; /* XXX */
6807 }
6808 /* Enqueue mbuf at the head of the list */
6809 m->m_nextpkt = key_acquire_mbuf_head;
6810 key_acquire_mbuf_head = m;
6811 key_acquire_mbuf_count++;
6812 mutex_exit(&key_misc.lock);
6813
6814 /* Kick the timer */
6815 key_timehandler(NULL);
6816
6817 return 0;
6818 }
6819
6820 #ifndef IPSEC_NONBLOCK_ACQUIRE
6821 static struct secacq *
6822 key_newacq(const struct secasindex *saidx)
6823 {
6824 struct secacq *newacq;
6825
6826 /* get new entry */
6827 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6828 if (newacq == NULL) {
6829 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6830 return NULL;
6831 }
6832
6833 /* copy secindex */
6834 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6835 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6836 newacq->created = time_uptime;
6837 newacq->count = 0;
6838
6839 return newacq;
6840 }
6841
6842 static struct secacq *
6843 key_getacq(const struct secasindex *saidx)
6844 {
6845 struct secacq *acq;
6846
6847 KASSERT(mutex_owned(&key_misc.lock));
6848
6849 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6850 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6851 return acq;
6852 }
6853
6854 return NULL;
6855 }
6856
6857 static struct secacq *
6858 key_getacqbyseq(u_int32_t seq)
6859 {
6860 struct secacq *acq;
6861
6862 KASSERT(mutex_owned(&key_misc.lock));
6863
6864 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6865 if (acq->seq == seq)
6866 return acq;
6867 }
6868
6869 return NULL;
6870 }
6871 #endif
6872
6873 #ifdef notyet
6874 static struct secspacq *
6875 key_newspacq(const struct secpolicyindex *spidx)
6876 {
6877 struct secspacq *acq;
6878
6879 /* get new entry */
6880 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6881 if (acq == NULL) {
6882 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6883 return NULL;
6884 }
6885
6886 /* copy secindex */
6887 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6888 acq->created = time_uptime;
6889 acq->count = 0;
6890
6891 return acq;
6892 }
6893
6894 static struct secspacq *
6895 key_getspacq(const struct secpolicyindex *spidx)
6896 {
6897 struct secspacq *acq;
6898
6899 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6900 if (key_spidx_match_exactly(spidx, &acq->spidx))
6901 return acq;
6902 }
6903
6904 return NULL;
6905 }
6906 #endif /* notyet */
6907
6908 /*
6909 * SADB_ACQUIRE processing,
6910 * in first situation, is receiving
6911 * <base>
6912 * from the ikmpd, and clear sequence of its secasvar entry.
6913 *
6914 * In second situation, is receiving
6915 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6916 * from a user land process, and return
6917 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6918 * to the socket.
6919 *
6920 * m will always be freed.
6921 */
6922 static int
6923 key_api_acquire(struct socket *so, struct mbuf *m,
6924 const struct sadb_msghdr *mhp)
6925 {
6926 const struct sockaddr *src, *dst;
6927 struct secasindex saidx;
6928 u_int16_t proto;
6929 int error;
6930
6931 /*
6932 * Error message from KMd.
6933 * We assume that if error was occurred in IKEd, the length of PFKEY
6934 * message is equal to the size of sadb_msg structure.
6935 * We do not raise error even if error occurred in this function.
6936 */
6937 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6938 #ifndef IPSEC_NONBLOCK_ACQUIRE
6939 struct secacq *acq;
6940
6941 /* check sequence number */
6942 if (mhp->msg->sadb_msg_seq == 0) {
6943 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6944 m_freem(m);
6945 return 0;
6946 }
6947
6948 mutex_enter(&key_misc.lock);
6949 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6950 if (acq == NULL) {
6951 mutex_exit(&key_misc.lock);
6952 /*
6953 * the specified larval SA is already gone, or we got
6954 * a bogus sequence number. we can silently ignore it.
6955 */
6956 m_freem(m);
6957 return 0;
6958 }
6959
6960 /* reset acq counter in order to deletion by timehander. */
6961 acq->created = time_uptime;
6962 acq->count = 0;
6963 mutex_exit(&key_misc.lock);
6964 #endif
6965 m_freem(m);
6966 return 0;
6967 }
6968
6969 /*
6970 * This message is from user land.
6971 */
6972
6973 /* map satype to proto */
6974 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6975 if (proto == 0) {
6976 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6977 return key_senderror(so, m, EINVAL);
6978 }
6979
6980 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6981 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6982 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6983 /* error */
6984 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6985 return key_senderror(so, m, EINVAL);
6986 }
6987 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6988 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6989 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6990 /* error */
6991 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6992 return key_senderror(so, m, EINVAL);
6993 }
6994
6995 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6996 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6997
6998 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6999 if (error != 0)
7000 return key_senderror(so, m, EINVAL);
7001
7002 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
7003 if (error != 0)
7004 return key_senderror(so, m, EINVAL);
7005
7006 /* get a SA index */
7007 {
7008 struct secashead *sah;
7009 int s = pserialize_read_enter();
7010
7011 sah = key_getsah(&saidx, CMP_MODE_REQID);
7012 if (sah != NULL) {
7013 pserialize_read_exit(s);
7014 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
7015 return key_senderror(so, m, EEXIST);
7016 }
7017 pserialize_read_exit(s);
7018 }
7019
7020 error = key_acquire(&saidx, NULL);
7021 if (error != 0) {
7022 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
7023 error);
7024 return key_senderror(so, m, error);
7025 }
7026
7027 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
7028 }
7029
7030 /*
7031 * SADB_REGISTER processing.
7032 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7033 * receive
7034 * <base>
7035 * from the ikmpd, and register a socket to send PF_KEY messages,
7036 * and send
7037 * <base, supported>
7038 * to KMD by PF_KEY.
7039 * If socket is detached, must free from regnode.
7040 *
7041 * m will always be freed.
7042 */
7043 static int
7044 key_api_register(struct socket *so, struct mbuf *m,
7045 const struct sadb_msghdr *mhp)
7046 {
7047 struct secreg *reg, *newreg = 0;
7048
7049 /* check for invalid register message */
7050 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
7051 return key_senderror(so, m, EINVAL);
7052
7053 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7054 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7055 goto setmsg;
7056
7057 /* Allocate regnode in advance, out of mutex */
7058 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
7059
7060 /* check whether existing or not */
7061 mutex_enter(&key_misc.lock);
7062 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
7063 if (reg->so == so) {
7064 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
7065 mutex_exit(&key_misc.lock);
7066 kmem_free(newreg, sizeof(*newreg));
7067 return key_senderror(so, m, EEXIST);
7068 }
7069 }
7070
7071 newreg->so = so;
7072 ((struct keycb *)sotorawcb(so))->kp_registered++;
7073
7074 /* add regnode to key_misc.reglist. */
7075 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
7076 mutex_exit(&key_misc.lock);
7077
7078 setmsg:
7079 {
7080 struct mbuf *n;
7081 struct sadb_supported *sup;
7082 u_int len, alen, elen;
7083 int off;
7084 int i;
7085 struct sadb_alg *alg;
7086
7087 /* create new sadb_msg to reply. */
7088 alen = 0;
7089 for (i = 1; i <= SADB_AALG_MAX; i++) {
7090 if (ah_algorithm_lookup(i))
7091 alen += sizeof(struct sadb_alg);
7092 }
7093 if (alen)
7094 alen += sizeof(struct sadb_supported);
7095 elen = 0;
7096 for (i = 1; i <= SADB_EALG_MAX; i++) {
7097 if (esp_algorithm_lookup(i))
7098 elen += sizeof(struct sadb_alg);
7099 }
7100 if (elen)
7101 elen += sizeof(struct sadb_supported);
7102
7103 len = sizeof(struct sadb_msg) + alen + elen;
7104
7105 if (len > MCLBYTES)
7106 return key_senderror(so, m, ENOBUFS);
7107
7108 MGETHDR(n, M_DONTWAIT, MT_DATA);
7109 if (len > MHLEN) {
7110 MCLGET(n, M_DONTWAIT);
7111 if ((n->m_flags & M_EXT) == 0) {
7112 m_freem(n);
7113 n = NULL;
7114 }
7115 }
7116 if (!n)
7117 return key_senderror(so, m, ENOBUFS);
7118
7119 n->m_pkthdr.len = n->m_len = len;
7120 n->m_next = NULL;
7121 off = 0;
7122
7123 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
7124 n = key_fill_replymsg(n, 0);
7125 if (n == NULL)
7126 return key_senderror(so, m, ENOBUFS);
7127
7128 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7129
7130 /* for authentication algorithm */
7131 if (alen) {
7132 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7133 sup->sadb_supported_len = PFKEY_UNIT64(alen);
7134 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7135 off += PFKEY_ALIGN8(sizeof(*sup));
7136
7137 for (i = 1; i <= SADB_AALG_MAX; i++) {
7138 const struct auth_hash *aalgo;
7139 u_int16_t minkeysize, maxkeysize;
7140
7141 aalgo = ah_algorithm_lookup(i);
7142 if (!aalgo)
7143 continue;
7144 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7145 alg->sadb_alg_id = i;
7146 alg->sadb_alg_ivlen = 0;
7147 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7148 alg->sadb_alg_minbits = _BITS(minkeysize);
7149 alg->sadb_alg_maxbits = _BITS(maxkeysize);
7150 off += PFKEY_ALIGN8(sizeof(*alg));
7151 }
7152 }
7153
7154 /* for encryption algorithm */
7155 if (elen) {
7156 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7157 sup->sadb_supported_len = PFKEY_UNIT64(elen);
7158 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7159 off += PFKEY_ALIGN8(sizeof(*sup));
7160
7161 for (i = 1; i <= SADB_EALG_MAX; i++) {
7162 const struct enc_xform *ealgo;
7163
7164 ealgo = esp_algorithm_lookup(i);
7165 if (!ealgo)
7166 continue;
7167 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7168 alg->sadb_alg_id = i;
7169 alg->sadb_alg_ivlen = ealgo->blocksize;
7170 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7171 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7172 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7173 }
7174 }
7175
7176 KASSERTMSG(off == len, "length inconsistency");
7177
7178 m_freem(m);
7179 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7180 }
7181 }
7182
7183 /*
7184 * free secreg entry registered.
7185 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7186 */
7187 void
7188 key_freereg(struct socket *so)
7189 {
7190 struct secreg *reg;
7191 int i;
7192
7193 KASSERT(!cpu_softintr_p());
7194 KASSERT(so != NULL);
7195
7196 /*
7197 * check whether existing or not.
7198 * check all type of SA, because there is a potential that
7199 * one socket is registered to multiple type of SA.
7200 */
7201 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7202 mutex_enter(&key_misc.lock);
7203 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7204 if (reg->so == so) {
7205 LIST_REMOVE(reg, chain);
7206 break;
7207 }
7208 }
7209 mutex_exit(&key_misc.lock);
7210 if (reg != NULL)
7211 kmem_free(reg, sizeof(*reg));
7212 }
7213
7214 return;
7215 }
7216
7217 /*
7218 * SADB_EXPIRE processing
7219 * send
7220 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7221 * to KMD by PF_KEY.
7222 * NOTE: We send only soft lifetime extension.
7223 *
7224 * OUT: 0 : succeed
7225 * others : error number
7226 */
7227 static int
7228 key_expire(struct secasvar *sav)
7229 {
7230 int s;
7231 int satype;
7232 struct mbuf *result = NULL, *m;
7233 int len;
7234 int error = -1;
7235 struct sadb_lifetime *lt;
7236
7237 /* XXX: Why do we lock ? */
7238 s = splsoftnet(); /*called from softclock()*/
7239
7240 KASSERT(sav != NULL);
7241
7242 satype = key_proto2satype(sav->sah->saidx.proto);
7243 KASSERTMSG(satype != 0, "invalid proto is passed");
7244
7245 /* set msg header */
7246 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav));
7247 if (!m) {
7248 error = ENOBUFS;
7249 goto fail;
7250 }
7251 result = m;
7252
7253 /* create SA extension */
7254 m = key_setsadbsa(sav);
7255 if (!m) {
7256 error = ENOBUFS;
7257 goto fail;
7258 }
7259 m_cat(result, m);
7260
7261 /* create SA extension */
7262 m = key_setsadbxsa2(sav->sah->saidx.mode,
7263 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7264 if (!m) {
7265 error = ENOBUFS;
7266 goto fail;
7267 }
7268 m_cat(result, m);
7269
7270 /* create lifetime extension (current and soft) */
7271 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7272 m = key_alloc_mbuf(len);
7273 if (!m || m->m_next) { /*XXX*/
7274 if (m)
7275 m_freem(m);
7276 error = ENOBUFS;
7277 goto fail;
7278 }
7279 memset(mtod(m, void *), 0, len);
7280 lt = mtod(m, struct sadb_lifetime *);
7281 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7282 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7283 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7284 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7285 lt->sadb_lifetime_addtime =
7286 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7287 lt->sadb_lifetime_usetime =
7288 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7289 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7290 memcpy(lt, sav->lft_s, sizeof(*lt));
7291 m_cat(result, m);
7292
7293 /* set sadb_address for source */
7294 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7295 FULLMASK, IPSEC_ULPROTO_ANY);
7296 if (!m) {
7297 error = ENOBUFS;
7298 goto fail;
7299 }
7300 m_cat(result, m);
7301
7302 /* set sadb_address for destination */
7303 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7304 FULLMASK, IPSEC_ULPROTO_ANY);
7305 if (!m) {
7306 error = ENOBUFS;
7307 goto fail;
7308 }
7309 m_cat(result, m);
7310
7311 if ((result->m_flags & M_PKTHDR) == 0) {
7312 error = EINVAL;
7313 goto fail;
7314 }
7315
7316 if (result->m_len < sizeof(struct sadb_msg)) {
7317 result = m_pullup(result, sizeof(struct sadb_msg));
7318 if (result == NULL) {
7319 error = ENOBUFS;
7320 goto fail;
7321 }
7322 }
7323
7324 result->m_pkthdr.len = 0;
7325 for (m = result; m; m = m->m_next)
7326 result->m_pkthdr.len += m->m_len;
7327
7328 mtod(result, struct sadb_msg *)->sadb_msg_len =
7329 PFKEY_UNIT64(result->m_pkthdr.len);
7330
7331 splx(s);
7332 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7333
7334 fail:
7335 if (result)
7336 m_freem(result);
7337 splx(s);
7338 return error;
7339 }
7340
7341 /*
7342 * SADB_FLUSH processing
7343 * receive
7344 * <base>
7345 * from the ikmpd, and free all entries in secastree.
7346 * and send,
7347 * <base>
7348 * to the ikmpd.
7349 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7350 *
7351 * m will always be freed.
7352 */
7353 static int
7354 key_api_flush(struct socket *so, struct mbuf *m,
7355 const struct sadb_msghdr *mhp)
7356 {
7357 struct sadb_msg *newmsg;
7358 struct secashead *sah;
7359 struct secasvar *sav;
7360 u_int16_t proto;
7361 u_int8_t state;
7362 int s;
7363
7364 /* map satype to proto */
7365 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7366 if (proto == 0) {
7367 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7368 return key_senderror(so, m, EINVAL);
7369 }
7370
7371 /* no SATYPE specified, i.e. flushing all SA. */
7372 s = pserialize_read_enter();
7373 SAHLIST_READER_FOREACH(sah) {
7374 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7375 proto != sah->saidx.proto)
7376 continue;
7377
7378 key_sah_ref(sah);
7379 pserialize_read_exit(s);
7380
7381 SASTATE_ALIVE_FOREACH(state) {
7382 restart:
7383 mutex_enter(&key_sad.lock);
7384 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7385 sav->state = SADB_SASTATE_DEAD;
7386 key_unlink_sav(sav);
7387 mutex_exit(&key_sad.lock);
7388 key_destroy_sav(sav);
7389 goto restart;
7390 }
7391 mutex_exit(&key_sad.lock);
7392 }
7393
7394 s = pserialize_read_enter();
7395 sah->state = SADB_SASTATE_DEAD;
7396 key_sah_unref(sah);
7397 }
7398 pserialize_read_exit(s);
7399
7400 if (m->m_len < sizeof(struct sadb_msg) ||
7401 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7402 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7403 return key_senderror(so, m, ENOBUFS);
7404 }
7405
7406 if (m->m_next)
7407 m_freem(m->m_next);
7408 m->m_next = NULL;
7409 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7410 newmsg = mtod(m, struct sadb_msg *);
7411 newmsg->sadb_msg_errno = 0;
7412 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7413
7414 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7415 }
7416
7417
7418 static struct mbuf *
7419 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7420 {
7421 struct secashead *sah;
7422 struct secasvar *sav;
7423 u_int16_t proto;
7424 u_int8_t satype;
7425 u_int8_t state;
7426 int cnt;
7427 struct mbuf *m, *n, *prev;
7428
7429 KASSERT(mutex_owned(&key_sad.lock));
7430
7431 *lenp = 0;
7432
7433 /* map satype to proto */
7434 proto = key_satype2proto(req_satype);
7435 if (proto == 0) {
7436 *errorp = EINVAL;
7437 return (NULL);
7438 }
7439
7440 /* count sav entries to be sent to userland. */
7441 cnt = 0;
7442 SAHLIST_WRITER_FOREACH(sah) {
7443 if (req_satype != SADB_SATYPE_UNSPEC &&
7444 proto != sah->saidx.proto)
7445 continue;
7446
7447 SASTATE_ANY_FOREACH(state) {
7448 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7449 cnt++;
7450 }
7451 }
7452 }
7453
7454 if (cnt == 0) {
7455 *errorp = ENOENT;
7456 return (NULL);
7457 }
7458
7459 /* send this to the userland, one at a time. */
7460 m = NULL;
7461 prev = m;
7462 SAHLIST_WRITER_FOREACH(sah) {
7463 if (req_satype != SADB_SATYPE_UNSPEC &&
7464 proto != sah->saidx.proto)
7465 continue;
7466
7467 /* map proto to satype */
7468 satype = key_proto2satype(sah->saidx.proto);
7469 if (satype == 0) {
7470 m_freem(m);
7471 *errorp = EINVAL;
7472 return (NULL);
7473 }
7474
7475 SASTATE_ANY_FOREACH(state) {
7476 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7477 n = key_setdumpsa(sav, SADB_DUMP, satype,
7478 --cnt, pid);
7479 if (!n) {
7480 m_freem(m);
7481 *errorp = ENOBUFS;
7482 return (NULL);
7483 }
7484
7485 if (!m)
7486 m = n;
7487 else
7488 prev->m_nextpkt = n;
7489 prev = n;
7490 }
7491 }
7492 }
7493
7494 if (!m) {
7495 *errorp = EINVAL;
7496 return (NULL);
7497 }
7498
7499 if ((m->m_flags & M_PKTHDR) != 0) {
7500 m->m_pkthdr.len = 0;
7501 for (n = m; n; n = n->m_next)
7502 m->m_pkthdr.len += n->m_len;
7503 }
7504
7505 *errorp = 0;
7506 return (m);
7507 }
7508
7509 /*
7510 * SADB_DUMP processing
7511 * dump all entries including status of DEAD in SAD.
7512 * receive
7513 * <base>
7514 * from the ikmpd, and dump all secasvar leaves
7515 * and send,
7516 * <base> .....
7517 * to the ikmpd.
7518 *
7519 * m will always be freed.
7520 */
7521 static int
7522 key_api_dump(struct socket *so, struct mbuf *m0,
7523 const struct sadb_msghdr *mhp)
7524 {
7525 u_int16_t proto;
7526 u_int8_t satype;
7527 struct mbuf *n;
7528 int error, len, ok;
7529
7530 /* map satype to proto */
7531 satype = mhp->msg->sadb_msg_satype;
7532 proto = key_satype2proto(satype);
7533 if (proto == 0) {
7534 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7535 return key_senderror(so, m0, EINVAL);
7536 }
7537
7538 /*
7539 * If the requestor has insufficient socket-buffer space
7540 * for the entire chain, nobody gets any response to the DUMP.
7541 * XXX For now, only the requestor ever gets anything.
7542 * Moreover, if the requestor has any space at all, they receive
7543 * the entire chain, otherwise the request is refused with ENOBUFS.
7544 */
7545 if (sbspace(&so->so_rcv) <= 0) {
7546 return key_senderror(so, m0, ENOBUFS);
7547 }
7548
7549 mutex_enter(&key_sad.lock);
7550 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7551 mutex_exit(&key_sad.lock);
7552
7553 if (n == NULL) {
7554 return key_senderror(so, m0, ENOENT);
7555 }
7556 {
7557 uint64_t *ps = PFKEY_STAT_GETREF();
7558 ps[PFKEY_STAT_IN_TOTAL]++;
7559 ps[PFKEY_STAT_IN_BYTES] += len;
7560 PFKEY_STAT_PUTREF();
7561 }
7562
7563 /*
7564 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7565 * The requestor receives either the entire chain, or an
7566 * error message with ENOBUFS.
7567 *
7568 * sbappendaddrchain() takes the chain of entries, one
7569 * packet-record per SPD entry, prepends the key_src sockaddr
7570 * to each packet-record, links the sockaddr mbufs into a new
7571 * list of records, then appends the entire resulting
7572 * list to the requesting socket.
7573 */
7574 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7575 SB_PRIO_ONESHOT_OVERFLOW);
7576
7577 if (!ok) {
7578 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7579 m_freem(n);
7580 return key_senderror(so, m0, ENOBUFS);
7581 }
7582
7583 m_freem(m0);
7584 return 0;
7585 }
7586
7587 /*
7588 * SADB_X_PROMISC processing
7589 *
7590 * m will always be freed.
7591 */
7592 static int
7593 key_api_promisc(struct socket *so, struct mbuf *m,
7594 const struct sadb_msghdr *mhp)
7595 {
7596 int olen;
7597
7598 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7599
7600 if (olen < sizeof(struct sadb_msg)) {
7601 #if 1
7602 return key_senderror(so, m, EINVAL);
7603 #else
7604 m_freem(m);
7605 return 0;
7606 #endif
7607 } else if (olen == sizeof(struct sadb_msg)) {
7608 /* enable/disable promisc mode */
7609 struct keycb *kp = (struct keycb *)sotorawcb(so);
7610 if (kp == NULL)
7611 return key_senderror(so, m, EINVAL);
7612 mhp->msg->sadb_msg_errno = 0;
7613 switch (mhp->msg->sadb_msg_satype) {
7614 case 0:
7615 case 1:
7616 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7617 break;
7618 default:
7619 return key_senderror(so, m, EINVAL);
7620 }
7621
7622 /* send the original message back to everyone */
7623 mhp->msg->sadb_msg_errno = 0;
7624 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7625 } else {
7626 /* send packet as is */
7627
7628 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7629
7630 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7631 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7632 }
7633 }
7634
7635 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7636 const struct sadb_msghdr *) = {
7637 NULL, /* SADB_RESERVED */
7638 key_api_getspi, /* SADB_GETSPI */
7639 key_api_update, /* SADB_UPDATE */
7640 key_api_add, /* SADB_ADD */
7641 key_api_delete, /* SADB_DELETE */
7642 key_api_get, /* SADB_GET */
7643 key_api_acquire, /* SADB_ACQUIRE */
7644 key_api_register, /* SADB_REGISTER */
7645 NULL, /* SADB_EXPIRE */
7646 key_api_flush, /* SADB_FLUSH */
7647 key_api_dump, /* SADB_DUMP */
7648 key_api_promisc, /* SADB_X_PROMISC */
7649 NULL, /* SADB_X_PCHANGE */
7650 key_api_spdadd, /* SADB_X_SPDUPDATE */
7651 key_api_spdadd, /* SADB_X_SPDADD */
7652 key_api_spddelete, /* SADB_X_SPDDELETE */
7653 key_api_spdget, /* SADB_X_SPDGET */
7654 NULL, /* SADB_X_SPDACQUIRE */
7655 key_api_spddump, /* SADB_X_SPDDUMP */
7656 key_api_spdflush, /* SADB_X_SPDFLUSH */
7657 key_api_spdadd, /* SADB_X_SPDSETIDX */
7658 NULL, /* SADB_X_SPDEXPIRE */
7659 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7660 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7661 };
7662
7663 /*
7664 * parse sadb_msg buffer to process PFKEYv2,
7665 * and create a data to response if needed.
7666 * I think to be dealed with mbuf directly.
7667 * IN:
7668 * msgp : pointer to pointer to a received buffer pulluped.
7669 * This is rewrited to response.
7670 * so : pointer to socket.
7671 * OUT:
7672 * length for buffer to send to user process.
7673 */
7674 int
7675 key_parse(struct mbuf *m, struct socket *so)
7676 {
7677 struct sadb_msg *msg;
7678 struct sadb_msghdr mh;
7679 u_int orglen;
7680 int error;
7681
7682 KASSERT(m != NULL);
7683 KASSERT(so != NULL);
7684
7685 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7686 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7687 kdebug_sadb("passed sadb_msg", msg);
7688 }
7689 #endif
7690
7691 if (m->m_len < sizeof(struct sadb_msg)) {
7692 m = m_pullup(m, sizeof(struct sadb_msg));
7693 if (!m)
7694 return ENOBUFS;
7695 }
7696 msg = mtod(m, struct sadb_msg *);
7697 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7698
7699 if ((m->m_flags & M_PKTHDR) == 0 ||
7700 m->m_pkthdr.len != orglen) {
7701 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7702 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7703 error = EINVAL;
7704 goto senderror;
7705 }
7706
7707 if (msg->sadb_msg_version != PF_KEY_V2) {
7708 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7709 msg->sadb_msg_version);
7710 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7711 error = EINVAL;
7712 goto senderror;
7713 }
7714
7715 if (msg->sadb_msg_type > SADB_MAX) {
7716 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7717 msg->sadb_msg_type);
7718 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7719 error = EINVAL;
7720 goto senderror;
7721 }
7722
7723 /* for old-fashioned code - should be nuked */
7724 if (m->m_pkthdr.len > MCLBYTES) {
7725 m_freem(m);
7726 return ENOBUFS;
7727 }
7728 if (m->m_next) {
7729 struct mbuf *n;
7730
7731 MGETHDR(n, M_DONTWAIT, MT_DATA);
7732 if (n && m->m_pkthdr.len > MHLEN) {
7733 MCLGET(n, M_DONTWAIT);
7734 if ((n->m_flags & M_EXT) == 0) {
7735 m_free(n);
7736 n = NULL;
7737 }
7738 }
7739 if (!n) {
7740 m_freem(m);
7741 return ENOBUFS;
7742 }
7743 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7744 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7745 n->m_next = NULL;
7746 m_freem(m);
7747 m = n;
7748 }
7749
7750 /* align the mbuf chain so that extensions are in contiguous region. */
7751 error = key_align(m, &mh);
7752 if (error)
7753 return error;
7754
7755 if (m->m_next) { /*XXX*/
7756 m_freem(m);
7757 return ENOBUFS;
7758 }
7759
7760 msg = mh.msg;
7761
7762 /* check SA type */
7763 switch (msg->sadb_msg_satype) {
7764 case SADB_SATYPE_UNSPEC:
7765 switch (msg->sadb_msg_type) {
7766 case SADB_GETSPI:
7767 case SADB_UPDATE:
7768 case SADB_ADD:
7769 case SADB_DELETE:
7770 case SADB_GET:
7771 case SADB_ACQUIRE:
7772 case SADB_EXPIRE:
7773 IPSECLOG(LOG_DEBUG,
7774 "must specify satype when msg type=%u.\n",
7775 msg->sadb_msg_type);
7776 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7777 error = EINVAL;
7778 goto senderror;
7779 }
7780 break;
7781 case SADB_SATYPE_AH:
7782 case SADB_SATYPE_ESP:
7783 case SADB_X_SATYPE_IPCOMP:
7784 case SADB_X_SATYPE_TCPSIGNATURE:
7785 switch (msg->sadb_msg_type) {
7786 case SADB_X_SPDADD:
7787 case SADB_X_SPDDELETE:
7788 case SADB_X_SPDGET:
7789 case SADB_X_SPDDUMP:
7790 case SADB_X_SPDFLUSH:
7791 case SADB_X_SPDSETIDX:
7792 case SADB_X_SPDUPDATE:
7793 case SADB_X_SPDDELETE2:
7794 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7795 msg->sadb_msg_type);
7796 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7797 error = EINVAL;
7798 goto senderror;
7799 }
7800 break;
7801 case SADB_SATYPE_RSVP:
7802 case SADB_SATYPE_OSPFV2:
7803 case SADB_SATYPE_RIPV2:
7804 case SADB_SATYPE_MIP:
7805 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7806 msg->sadb_msg_satype);
7807 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7808 error = EOPNOTSUPP;
7809 goto senderror;
7810 case 1: /* XXX: What does it do? */
7811 if (msg->sadb_msg_type == SADB_X_PROMISC)
7812 break;
7813 /*FALLTHROUGH*/
7814 default:
7815 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7816 msg->sadb_msg_satype);
7817 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7818 error = EINVAL;
7819 goto senderror;
7820 }
7821
7822 /* check field of upper layer protocol and address family */
7823 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7824 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7825 const struct sadb_address *src0, *dst0;
7826 const struct sockaddr *sa0, *da0;
7827 u_int plen;
7828
7829 src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
7830 dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
7831 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC);
7832 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST);
7833
7834 /* check upper layer protocol */
7835 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7836 IPSECLOG(LOG_DEBUG,
7837 "upper layer protocol mismatched.\n");
7838 goto invaddr;
7839 }
7840
7841 /* check family */
7842 if (sa0->sa_family != da0->sa_family) {
7843 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7844 goto invaddr;
7845 }
7846 if (sa0->sa_len != da0->sa_len) {
7847 IPSECLOG(LOG_DEBUG,
7848 "address struct size mismatched.\n");
7849 goto invaddr;
7850 }
7851
7852 switch (sa0->sa_family) {
7853 case AF_INET:
7854 if (sa0->sa_len != sizeof(struct sockaddr_in))
7855 goto invaddr;
7856 break;
7857 case AF_INET6:
7858 if (sa0->sa_len != sizeof(struct sockaddr_in6))
7859 goto invaddr;
7860 break;
7861 default:
7862 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7863 error = EAFNOSUPPORT;
7864 goto senderror;
7865 }
7866
7867 switch (sa0->sa_family) {
7868 case AF_INET:
7869 plen = sizeof(struct in_addr) << 3;
7870 break;
7871 case AF_INET6:
7872 plen = sizeof(struct in6_addr) << 3;
7873 break;
7874 default:
7875 plen = 0; /*fool gcc*/
7876 break;
7877 }
7878
7879 /* check max prefix length */
7880 if (src0->sadb_address_prefixlen > plen ||
7881 dst0->sadb_address_prefixlen > plen) {
7882 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7883 goto invaddr;
7884 }
7885
7886 /*
7887 * prefixlen == 0 is valid because there can be a case when
7888 * all addresses are matched.
7889 */
7890 }
7891
7892 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7893 key_api_typesw[msg->sadb_msg_type] == NULL) {
7894 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7895 error = EINVAL;
7896 goto senderror;
7897 }
7898
7899 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7900
7901 invaddr:
7902 error = EINVAL;
7903 senderror:
7904 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7905 return key_senderror(so, m, error);
7906 }
7907
7908 static int
7909 key_senderror(struct socket *so, struct mbuf *m, int code)
7910 {
7911 struct sadb_msg *msg;
7912
7913 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7914
7915 msg = mtod(m, struct sadb_msg *);
7916 msg->sadb_msg_errno = code;
7917 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7918 }
7919
7920 /*
7921 * set the pointer to each header into message buffer.
7922 * m will be freed on error.
7923 * XXX larger-than-MCLBYTES extension?
7924 */
7925 static int
7926 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7927 {
7928 struct mbuf *n;
7929 struct sadb_ext *ext;
7930 size_t off, end;
7931 int extlen;
7932 int toff;
7933
7934 KASSERT(m != NULL);
7935 KASSERT(mhp != NULL);
7936 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7937
7938 /* initialize */
7939 memset(mhp, 0, sizeof(*mhp));
7940
7941 mhp->msg = mtod(m, struct sadb_msg *);
7942 mhp->ext[0] = mhp->msg; /*XXX backward compat */
7943
7944 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7945 extlen = end; /*just in case extlen is not updated*/
7946 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7947 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7948 if (!n) {
7949 /* m is already freed */
7950 return ENOBUFS;
7951 }
7952 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7953
7954 /* set pointer */
7955 switch (ext->sadb_ext_type) {
7956 case SADB_EXT_SA:
7957 case SADB_EXT_ADDRESS_SRC:
7958 case SADB_EXT_ADDRESS_DST:
7959 case SADB_EXT_ADDRESS_PROXY:
7960 case SADB_EXT_LIFETIME_CURRENT:
7961 case SADB_EXT_LIFETIME_HARD:
7962 case SADB_EXT_LIFETIME_SOFT:
7963 case SADB_EXT_KEY_AUTH:
7964 case SADB_EXT_KEY_ENCRYPT:
7965 case SADB_EXT_IDENTITY_SRC:
7966 case SADB_EXT_IDENTITY_DST:
7967 case SADB_EXT_SENSITIVITY:
7968 case SADB_EXT_PROPOSAL:
7969 case SADB_EXT_SUPPORTED_AUTH:
7970 case SADB_EXT_SUPPORTED_ENCRYPT:
7971 case SADB_EXT_SPIRANGE:
7972 case SADB_X_EXT_POLICY:
7973 case SADB_X_EXT_SA2:
7974 case SADB_X_EXT_NAT_T_TYPE:
7975 case SADB_X_EXT_NAT_T_SPORT:
7976 case SADB_X_EXT_NAT_T_DPORT:
7977 case SADB_X_EXT_NAT_T_OAI:
7978 case SADB_X_EXT_NAT_T_OAR:
7979 case SADB_X_EXT_NAT_T_FRAG:
7980 /* duplicate check */
7981 /*
7982 * XXX Are there duplication payloads of either
7983 * KEY_AUTH or KEY_ENCRYPT ?
7984 */
7985 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7986 IPSECLOG(LOG_DEBUG,
7987 "duplicate ext_type %u is passed.\n",
7988 ext->sadb_ext_type);
7989 m_freem(m);
7990 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7991 return EINVAL;
7992 }
7993 break;
7994 default:
7995 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7996 ext->sadb_ext_type);
7997 m_freem(m);
7998 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7999 return EINVAL;
8000 }
8001
8002 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8003
8004 if (key_validate_ext(ext, extlen)) {
8005 m_freem(m);
8006 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8007 return EINVAL;
8008 }
8009
8010 n = m_pulldown(m, off, extlen, &toff);
8011 if (!n) {
8012 /* m is already freed */
8013 return ENOBUFS;
8014 }
8015 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
8016
8017 mhp->ext[ext->sadb_ext_type] = ext;
8018 mhp->extoff[ext->sadb_ext_type] = off;
8019 mhp->extlen[ext->sadb_ext_type] = extlen;
8020 }
8021
8022 if (off != end) {
8023 m_freem(m);
8024 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8025 return EINVAL;
8026 }
8027
8028 return 0;
8029 }
8030
8031 static int
8032 key_validate_ext(const struct sadb_ext *ext, int len)
8033 {
8034 const struct sockaddr *sa;
8035 enum { NONE, ADDR } checktype = NONE;
8036 int baselen = 0;
8037 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8038
8039 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8040 return EINVAL;
8041
8042 /* if it does not match minimum/maximum length, bail */
8043 if (ext->sadb_ext_type >= __arraycount(minsize) ||
8044 ext->sadb_ext_type >= __arraycount(maxsize))
8045 return EINVAL;
8046 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8047 return EINVAL;
8048 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8049 return EINVAL;
8050
8051 /* more checks based on sadb_ext_type XXX need more */
8052 switch (ext->sadb_ext_type) {
8053 case SADB_EXT_ADDRESS_SRC:
8054 case SADB_EXT_ADDRESS_DST:
8055 case SADB_EXT_ADDRESS_PROXY:
8056 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8057 checktype = ADDR;
8058 break;
8059 case SADB_EXT_IDENTITY_SRC:
8060 case SADB_EXT_IDENTITY_DST:
8061 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8062 SADB_X_IDENTTYPE_ADDR) {
8063 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8064 checktype = ADDR;
8065 } else
8066 checktype = NONE;
8067 break;
8068 default:
8069 checktype = NONE;
8070 break;
8071 }
8072
8073 switch (checktype) {
8074 case NONE:
8075 break;
8076 case ADDR:
8077 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8078 if (len < baselen + sal)
8079 return EINVAL;
8080 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8081 return EINVAL;
8082 break;
8083 }
8084
8085 return 0;
8086 }
8087
8088 static int
8089 key_do_init(void)
8090 {
8091 int i, error;
8092
8093 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
8094
8095 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
8096 cv_init(&key_spd.cv_lc, "key_sp_lc");
8097 key_spd.psz = pserialize_create();
8098 cv_init(&key_spd.cv_psz, "key_sp_psz");
8099 key_spd.psz_performing = false;
8100
8101 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
8102 cv_init(&key_sad.cv_lc, "key_sa_lc");
8103 key_sad.psz = pserialize_create();
8104 cv_init(&key_sad.cv_psz, "key_sa_psz");
8105 key_sad.psz_performing = false;
8106
8107 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
8108
8109 callout_init(&key_timehandler_ch, 0);
8110 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
8111 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
8112 if (error != 0)
8113 panic("%s: workqueue_create failed (%d)\n", __func__, error);
8114
8115 for (i = 0; i < IPSEC_DIR_MAX; i++) {
8116 PSLIST_INIT(&key_spd.splist[i]);
8117 }
8118
8119 PSLIST_INIT(&key_spd.socksplist);
8120
8121 PSLIST_INIT(&key_sad.sahlist);
8122
8123 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8124 LIST_INIT(&key_misc.reglist[i]);
8125 }
8126
8127 #ifndef IPSEC_NONBLOCK_ACQUIRE
8128 LIST_INIT(&key_misc.acqlist);
8129 #endif
8130 #ifdef notyet
8131 LIST_INIT(&key_misc.spacqlist);
8132 #endif
8133
8134 /* system default */
8135 ip4_def_policy.policy = IPSEC_POLICY_NONE;
8136 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
8137 localcount_init(&ip4_def_policy.localcount);
8138
8139 #ifdef INET6
8140 ip6_def_policy.policy = IPSEC_POLICY_NONE;
8141 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
8142 localcount_init(&ip6_def_policy.localcount);
8143 #endif
8144
8145 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
8146
8147 /* initialize key statistics */
8148 keystat.getspi_count = 1;
8149
8150 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
8151
8152 return (0);
8153 }
8154
8155 void
8156 key_init(void)
8157 {
8158 static ONCE_DECL(key_init_once);
8159
8160 sysctl_net_keyv2_setup(NULL);
8161 sysctl_net_key_compat_setup(NULL);
8162
8163 RUN_ONCE(&key_init_once, key_do_init);
8164
8165 key_init_so();
8166 }
8167
8168 /*
8169 * XXX: maybe This function is called after INBOUND IPsec processing.
8170 *
8171 * Special check for tunnel-mode packets.
8172 * We must make some checks for consistency between inner and outer IP header.
8173 *
8174 * xxx more checks to be provided
8175 */
8176 int
8177 key_checktunnelsanity(
8178 struct secasvar *sav,
8179 u_int family,
8180 void *src,
8181 void *dst
8182 )
8183 {
8184
8185 /* XXX: check inner IP header */
8186
8187 return 1;
8188 }
8189
8190 #if 0
8191 #define hostnamelen strlen(hostname)
8192
8193 /*
8194 * Get FQDN for the host.
8195 * If the administrator configured hostname (by hostname(1)) without
8196 * domain name, returns nothing.
8197 */
8198 static const char *
8199 key_getfqdn(void)
8200 {
8201 int i;
8202 int hasdot;
8203 static char fqdn[MAXHOSTNAMELEN + 1];
8204
8205 if (!hostnamelen)
8206 return NULL;
8207
8208 /* check if it comes with domain name. */
8209 hasdot = 0;
8210 for (i = 0; i < hostnamelen; i++) {
8211 if (hostname[i] == '.')
8212 hasdot++;
8213 }
8214 if (!hasdot)
8215 return NULL;
8216
8217 /* NOTE: hostname may not be NUL-terminated. */
8218 memset(fqdn, 0, sizeof(fqdn));
8219 memcpy(fqdn, hostname, hostnamelen);
8220 fqdn[hostnamelen] = '\0';
8221 return fqdn;
8222 }
8223
8224 /*
8225 * get username@FQDN for the host/user.
8226 */
8227 static const char *
8228 key_getuserfqdn(void)
8229 {
8230 const char *host;
8231 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8232 struct proc *p = curproc;
8233 char *q;
8234
8235 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8236 return NULL;
8237 if (!(host = key_getfqdn()))
8238 return NULL;
8239
8240 /* NOTE: s_login may not be-NUL terminated. */
8241 memset(userfqdn, 0, sizeof(userfqdn));
8242 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8243 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
8244 q = userfqdn + strlen(userfqdn);
8245 *q++ = '@';
8246 memcpy(q, host, strlen(host));
8247 q += strlen(host);
8248 *q++ = '\0';
8249
8250 return userfqdn;
8251 }
8252 #endif
8253
8254 /* record data transfer on SA, and update timestamps */
8255 void
8256 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8257 {
8258
8259 KASSERT(sav != NULL);
8260 KASSERT(sav->lft_c != NULL);
8261 KASSERT(m != NULL);
8262
8263 /*
8264 * XXX Currently, there is a difference of bytes size
8265 * between inbound and outbound processing.
8266 */
8267 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8268 /* to check bytes lifetime is done in key_timehandler(). */
8269
8270 /*
8271 * We use the number of packets as the unit of
8272 * sadb_lifetime_allocations. We increment the variable
8273 * whenever {esp,ah}_{in,out}put is called.
8274 */
8275 sav->lft_c->sadb_lifetime_allocations++;
8276 /* XXX check for expires? */
8277
8278 /*
8279 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8280 * in seconds. HARD and SOFT lifetime are measured by the time
8281 * difference (again in seconds) from sadb_lifetime_usetime.
8282 *
8283 * usetime
8284 * v expire expire
8285 * -----+-----+--------+---> t
8286 * <--------------> HARD
8287 * <-----> SOFT
8288 */
8289 sav->lft_c->sadb_lifetime_usetime = time_uptime;
8290 /* XXX check for expires? */
8291
8292 return;
8293 }
8294
8295 /* dumb version */
8296 void
8297 key_sa_routechange(struct sockaddr *dst)
8298 {
8299 struct secashead *sah;
8300 int s;
8301
8302 s = pserialize_read_enter();
8303 SAHLIST_READER_FOREACH(sah) {
8304 struct route *ro;
8305 const struct sockaddr *sa;
8306
8307 key_sah_ref(sah);
8308 pserialize_read_exit(s);
8309
8310 ro = &sah->sa_route;
8311 sa = rtcache_getdst(ro);
8312 if (sa != NULL && dst->sa_len == sa->sa_len &&
8313 memcmp(dst, sa, dst->sa_len) == 0)
8314 rtcache_free(ro);
8315
8316 s = pserialize_read_enter();
8317 key_sah_unref(sah);
8318 }
8319 pserialize_read_exit(s);
8320
8321 return;
8322 }
8323
8324 static void
8325 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8326 {
8327 struct secasvar *_sav;
8328
8329 ASSERT_SLEEPABLE();
8330 KASSERT(mutex_owned(&key_sad.lock));
8331
8332 if (sav->state == state)
8333 return;
8334
8335 key_unlink_sav(sav);
8336 localcount_fini(&sav->localcount);
8337 SAVLIST_ENTRY_DESTROY(sav);
8338 key_init_sav(sav);
8339
8340 sav->state = state;
8341 if (!SADB_SASTATE_USABLE_P(sav)) {
8342 /* We don't need to care about the order */
8343 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8344 return;
8345 }
8346 /*
8347 * Sort the list by lft_c->sadb_lifetime_addtime
8348 * in ascending order.
8349 */
8350 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8351 if (_sav->lft_c->sadb_lifetime_addtime >
8352 sav->lft_c->sadb_lifetime_addtime) {
8353 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8354 break;
8355 }
8356 }
8357 if (_sav == NULL) {
8358 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8359 }
8360 key_validate_savlist(sav->sah, state);
8361 }
8362
8363 /* XXX too much? */
8364 static struct mbuf *
8365 key_alloc_mbuf(int l)
8366 {
8367 struct mbuf *m = NULL, *n;
8368 int len, t;
8369
8370 len = l;
8371 while (len > 0) {
8372 MGET(n, M_DONTWAIT, MT_DATA);
8373 if (n && len > MLEN)
8374 MCLGET(n, M_DONTWAIT);
8375 if (!n) {
8376 m_freem(m);
8377 return NULL;
8378 }
8379
8380 n->m_next = NULL;
8381 n->m_len = 0;
8382 n->m_len = M_TRAILINGSPACE(n);
8383 /* use the bottom of mbuf, hoping we can prepend afterwards */
8384 if (n->m_len > len) {
8385 t = (n->m_len - len) & ~(sizeof(long) - 1);
8386 n->m_data += t;
8387 n->m_len = len;
8388 }
8389
8390 len -= n->m_len;
8391
8392 if (m)
8393 m_cat(m, n);
8394 else
8395 m = n;
8396 }
8397
8398 return m;
8399 }
8400
8401 static struct mbuf *
8402 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8403 {
8404 struct secashead *sah;
8405 struct secasvar *sav;
8406 u_int16_t proto;
8407 u_int8_t satype;
8408 u_int8_t state;
8409 int cnt;
8410 struct mbuf *m, *n;
8411
8412 KASSERT(mutex_owned(&key_sad.lock));
8413
8414 /* map satype to proto */
8415 proto = key_satype2proto(req_satype);
8416 if (proto == 0) {
8417 *errorp = EINVAL;
8418 return (NULL);
8419 }
8420
8421 /* count sav entries to be sent to the userland. */
8422 cnt = 0;
8423 SAHLIST_WRITER_FOREACH(sah) {
8424 if (req_satype != SADB_SATYPE_UNSPEC &&
8425 proto != sah->saidx.proto)
8426 continue;
8427
8428 SASTATE_ANY_FOREACH(state) {
8429 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8430 cnt++;
8431 }
8432 }
8433 }
8434
8435 if (cnt == 0) {
8436 *errorp = ENOENT;
8437 return (NULL);
8438 }
8439
8440 /* send this to the userland, one at a time. */
8441 m = NULL;
8442 SAHLIST_WRITER_FOREACH(sah) {
8443 if (req_satype != SADB_SATYPE_UNSPEC &&
8444 proto != sah->saidx.proto)
8445 continue;
8446
8447 /* map proto to satype */
8448 satype = key_proto2satype(sah->saidx.proto);
8449 if (satype == 0) {
8450 m_freem(m);
8451 *errorp = EINVAL;
8452 return (NULL);
8453 }
8454
8455 SASTATE_ANY_FOREACH(state) {
8456 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8457 n = key_setdumpsa(sav, SADB_DUMP, satype,
8458 --cnt, pid);
8459 if (!n) {
8460 m_freem(m);
8461 *errorp = ENOBUFS;
8462 return (NULL);
8463 }
8464
8465 if (!m)
8466 m = n;
8467 else
8468 m_cat(m, n);
8469 }
8470 }
8471 }
8472
8473 if (!m) {
8474 *errorp = EINVAL;
8475 return (NULL);
8476 }
8477
8478 if ((m->m_flags & M_PKTHDR) != 0) {
8479 m->m_pkthdr.len = 0;
8480 for (n = m; n; n = n->m_next)
8481 m->m_pkthdr.len += n->m_len;
8482 }
8483
8484 *errorp = 0;
8485 return (m);
8486 }
8487
8488 static struct mbuf *
8489 key_setspddump(int *errorp, pid_t pid)
8490 {
8491 struct secpolicy *sp;
8492 int cnt;
8493 u_int dir;
8494 struct mbuf *m, *n;
8495
8496 KASSERT(mutex_owned(&key_spd.lock));
8497
8498 /* search SPD entry and get buffer size. */
8499 cnt = 0;
8500 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8501 SPLIST_WRITER_FOREACH(sp, dir) {
8502 cnt++;
8503 }
8504 }
8505
8506 if (cnt == 0) {
8507 *errorp = ENOENT;
8508 return (NULL);
8509 }
8510
8511 m = NULL;
8512 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8513 SPLIST_WRITER_FOREACH(sp, dir) {
8514 --cnt;
8515 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8516
8517 if (!n) {
8518 *errorp = ENOBUFS;
8519 m_freem(m);
8520 return (NULL);
8521 }
8522 if (!m)
8523 m = n;
8524 else {
8525 m->m_pkthdr.len += n->m_pkthdr.len;
8526 m_cat(m, n);
8527 }
8528 }
8529 }
8530
8531 *errorp = 0;
8532 return (m);
8533 }
8534
8535 int
8536 key_get_used(void) {
8537 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8538 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8539 !SOCKSPLIST_READER_EMPTY();
8540 }
8541
8542 void
8543 key_update_used(void)
8544 {
8545 switch (ipsec_enabled) {
8546 default:
8547 case 0:
8548 #ifdef notyet
8549 /* XXX: racy */
8550 ipsec_used = 0;
8551 #endif
8552 break;
8553 case 1:
8554 #ifndef notyet
8555 /* XXX: racy */
8556 if (!ipsec_used)
8557 #endif
8558 ipsec_used = key_get_used();
8559 break;
8560 case 2:
8561 ipsec_used = 1;
8562 break;
8563 }
8564 }
8565
8566 static int
8567 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8568 {
8569 struct mbuf *m, *n;
8570 int err2 = 0;
8571 char *p, *ep;
8572 size_t len;
8573 int error;
8574
8575 if (newp)
8576 return (EPERM);
8577 if (namelen != 1)
8578 return (EINVAL);
8579
8580 mutex_enter(&key_sad.lock);
8581 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8582 mutex_exit(&key_sad.lock);
8583 if (!m)
8584 return (error);
8585 if (!oldp)
8586 *oldlenp = m->m_pkthdr.len;
8587 else {
8588 p = oldp;
8589 if (*oldlenp < m->m_pkthdr.len) {
8590 err2 = ENOMEM;
8591 ep = p + *oldlenp;
8592 } else {
8593 *oldlenp = m->m_pkthdr.len;
8594 ep = p + m->m_pkthdr.len;
8595 }
8596 for (n = m; n; n = n->m_next) {
8597 len = (ep - p < n->m_len) ?
8598 ep - p : n->m_len;
8599 error = copyout(mtod(n, const void *), p, len);
8600 p += len;
8601 if (error)
8602 break;
8603 }
8604 if (error == 0)
8605 error = err2;
8606 }
8607 m_freem(m);
8608
8609 return (error);
8610 }
8611
8612 static int
8613 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8614 {
8615 struct mbuf *m, *n;
8616 int err2 = 0;
8617 char *p, *ep;
8618 size_t len;
8619 int error;
8620
8621 if (newp)
8622 return (EPERM);
8623 if (namelen != 0)
8624 return (EINVAL);
8625
8626 mutex_enter(&key_spd.lock);
8627 m = key_setspddump(&error, l->l_proc->p_pid);
8628 mutex_exit(&key_spd.lock);
8629 if (!m)
8630 return (error);
8631 if (!oldp)
8632 *oldlenp = m->m_pkthdr.len;
8633 else {
8634 p = oldp;
8635 if (*oldlenp < m->m_pkthdr.len) {
8636 err2 = ENOMEM;
8637 ep = p + *oldlenp;
8638 } else {
8639 *oldlenp = m->m_pkthdr.len;
8640 ep = p + m->m_pkthdr.len;
8641 }
8642 for (n = m; n; n = n->m_next) {
8643 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8644 error = copyout(mtod(n, const void *), p, len);
8645 p += len;
8646 if (error)
8647 break;
8648 }
8649 if (error == 0)
8650 error = err2;
8651 }
8652 m_freem(m);
8653
8654 return (error);
8655 }
8656
8657 /*
8658 * Create sysctl tree for native IPSEC key knobs, originally
8659 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8660 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8661 * and in any case the part of our sysctl namespace used for dumping the
8662 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8663 * namespace, for API reasons.
8664 *
8665 * Pending a consensus on the right way to fix this, add a level of
8666 * indirection in how we number the `native' IPSEC key nodes;
8667 * and (as requested by Andrew Brown) move registration of the
8668 * KAME-compatible names to a separate function.
8669 */
8670 #if 0
8671 # define IPSEC_PFKEY PF_KEY_V2
8672 # define IPSEC_PFKEY_NAME "keyv2"
8673 #else
8674 # define IPSEC_PFKEY PF_KEY
8675 # define IPSEC_PFKEY_NAME "key"
8676 #endif
8677
8678 static int
8679 sysctl_net_key_stats(SYSCTLFN_ARGS)
8680 {
8681
8682 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8683 }
8684
8685 static void
8686 sysctl_net_keyv2_setup(struct sysctllog **clog)
8687 {
8688
8689 sysctl_createv(clog, 0, NULL, NULL,
8690 CTLFLAG_PERMANENT,
8691 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8692 NULL, 0, NULL, 0,
8693 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8694
8695 sysctl_createv(clog, 0, NULL, NULL,
8696 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8697 CTLTYPE_INT, "debug", NULL,
8698 NULL, 0, &key_debug_level, 0,
8699 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8700 sysctl_createv(clog, 0, NULL, NULL,
8701 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8702 CTLTYPE_INT, "spi_try", NULL,
8703 NULL, 0, &key_spi_trycnt, 0,
8704 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8705 sysctl_createv(clog, 0, NULL, NULL,
8706 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8707 CTLTYPE_INT, "spi_min_value", NULL,
8708 NULL, 0, &key_spi_minval, 0,
8709 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8710 sysctl_createv(clog, 0, NULL, NULL,
8711 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8712 CTLTYPE_INT, "spi_max_value", NULL,
8713 NULL, 0, &key_spi_maxval, 0,
8714 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8715 sysctl_createv(clog, 0, NULL, NULL,
8716 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8717 CTLTYPE_INT, "random_int", NULL,
8718 NULL, 0, &key_int_random, 0,
8719 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8720 sysctl_createv(clog, 0, NULL, NULL,
8721 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8722 CTLTYPE_INT, "larval_lifetime", NULL,
8723 NULL, 0, &key_larval_lifetime, 0,
8724 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8725 sysctl_createv(clog, 0, NULL, NULL,
8726 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8727 CTLTYPE_INT, "blockacq_count", NULL,
8728 NULL, 0, &key_blockacq_count, 0,
8729 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8730 sysctl_createv(clog, 0, NULL, NULL,
8731 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8732 CTLTYPE_INT, "blockacq_lifetime", NULL,
8733 NULL, 0, &key_blockacq_lifetime, 0,
8734 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8735 sysctl_createv(clog, 0, NULL, NULL,
8736 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8737 CTLTYPE_INT, "esp_keymin", NULL,
8738 NULL, 0, &ipsec_esp_keymin, 0,
8739 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8740 sysctl_createv(clog, 0, NULL, NULL,
8741 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8742 CTLTYPE_INT, "prefered_oldsa", NULL,
8743 NULL, 0, &key_prefered_oldsa, 0,
8744 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8745 sysctl_createv(clog, 0, NULL, NULL,
8746 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8747 CTLTYPE_INT, "esp_auth", NULL,
8748 NULL, 0, &ipsec_esp_auth, 0,
8749 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8750 sysctl_createv(clog, 0, NULL, NULL,
8751 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8752 CTLTYPE_INT, "ah_keymin", NULL,
8753 NULL, 0, &ipsec_ah_keymin, 0,
8754 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8755 sysctl_createv(clog, 0, NULL, NULL,
8756 CTLFLAG_PERMANENT,
8757 CTLTYPE_STRUCT, "stats",
8758 SYSCTL_DESCR("PF_KEY statistics"),
8759 sysctl_net_key_stats, 0, NULL, 0,
8760 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8761 }
8762
8763 /*
8764 * Register sysctl names used by setkey(8). For historical reasons,
8765 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8766 * for both IPSEC and KAME IPSEC.
8767 */
8768 static void
8769 sysctl_net_key_compat_setup(struct sysctllog **clog)
8770 {
8771
8772 sysctl_createv(clog, 0, NULL, NULL,
8773 CTLFLAG_PERMANENT,
8774 CTLTYPE_NODE, "key", NULL,
8775 NULL, 0, NULL, 0,
8776 CTL_NET, PF_KEY, CTL_EOL);
8777
8778 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8779 sysctl_createv(clog, 0, NULL, NULL,
8780 CTLFLAG_PERMANENT,
8781 CTLTYPE_STRUCT, "dumpsa", NULL,
8782 sysctl_net_key_dumpsa, 0, NULL, 0,
8783 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8784 sysctl_createv(clog, 0, NULL, NULL,
8785 CTLFLAG_PERMANENT,
8786 CTLTYPE_STRUCT, "dumpsp", NULL,
8787 sysctl_net_key_dumpsp, 0, NULL, 0,
8788 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8789 }
8790