key.c revision 1.237 1 /* $NetBSD: key.c,v 1.237 2017/11/21 06:51:54 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.237 2017/11/21 06:51:54 ozaki-r Exp $");
36
37 /*
38 * This code is referred to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160 * - SP's lifetime is managed by localcount(9)
161 * - An SP that has been inserted to the key_spd.splist is initially referenced
162 * by none, i.e., a reference from the key_spd.splist isn't counted
163 * - When an SP is being destroyed, we change its state as DEAD, wait for
164 * references to the SP to be released, and then deallocate the SP
165 * (see key_unlink_sp)
166 * - Getting an SP
167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168 * - Must iterate the list and increment the reference count of a found SP
169 * (by key_sp_ref) in a pserialize read section
170 * - We can gain another reference from a held SP only if we check its state
171 * and take its reference in a pserialize read section
172 * (see esp_output for example)
173 * - We may get an SP from an SP cache. See below
174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175 * - Updating member variables of an SP
176 * - Most member variables of an SP are immutable
177 * - Only sp->state and sp->lastused can be changed
178 * - sp->state of an SP is updated only when destroying it under key_spd.lock
179 * - SP caches
180 * - SPs can be cached in PCBs
181 * - The lifetime of the caches is controlled by the global generation counter
182 * (ipsec_spdgen)
183 * - The global counter value is stored when an SP is cached
184 * - If the stored value is different from the global counter then the cache
185 * is considered invalidated
186 * - The counter is incremented when an SP is being destroyed
187 * - So checking the generation and taking a reference to an SP should be
188 * in a pserialize read section
189 * - Note that caching doesn't increment the reference counter of an SP
190 * - SPs in sockets
191 * - Userland programs can set a policy to a socket by
192 * setsockopt(IP_IPSEC_POLICY)
193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
194 * the key_spd.socksplist list (not the key_spd.splist)
195 * - Such a policy is destroyed when a corresponding socket is destroed,
196 * however, a socket can be destroyed in softint so we cannot destroy
197 * it directly instead we just mark it DEAD and delay the destruction
198 * until GC by the timer
199 */
200 /*
201 * Locking notes on SAD:
202 * - Data structures
203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204 * entries
205 * - An sav is supposed to be an SA from a viewpoint of users
206 * - A sah has sav lists for each SA state
207 * - Multiple sahs with the same saidx can exist
208 * - Only one entry has MATURE state and others should be DEAD
209 * - DEAD entries are just ignored from searching
210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with
211 * holding key_sad.lock which is a adaptive mutex
212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in
213 * pserialize(9) read sections
214 * - sah's lifetime is managed by localcount(9)
215 * - Getting an sah entry
216 * - We get an sah from the key_sad.sahlist
217 * - Must iterate the list and increment the reference count of a found sah
218 * (by key_sah_ref) in a pserialize read section
219 * - A gotten sah must be released after use by key_sah_unref
220 * - An sah is destroyed when its state become DEAD and no sav is
221 * listed to the sah
222 * - The destruction is done only in the timer (see key_timehandler_sad)
223 * - sav's lifetime is managed by localcount(9)
224 * - Getting an sav entry
225 * - First get an sah by saidx and get an sav from either of sah's savlists
226 * - Must iterate the list and increment the reference count of a found sav
227 * (by key_sa_ref) in a pserialize read section
228 * - We can gain another reference from a held SA only if we check its state
229 * and take its reference in a pserialize read section
230 * (see esp_output for example)
231 * - A gotten sav must be released after use by key_sa_unref
232 * - An sav is destroyed when its state become DEAD
233 */
234 /*
235 * Locking notes on misc data:
236 * - All lists of key_misc are protected by key_misc.lock
237 * - key_misc.lock must be held even for read accesses
238 */
239
240 /* SPD */
241 static struct {
242 kmutex_t lock;
243 kcondvar_t cv_lc;
244 struct pslist_head splist[IPSEC_DIR_MAX];
245 /*
246 * The list has SPs that are set to a socket via
247 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
248 */
249 struct pslist_head socksplist;
250
251 pserialize_t psz;
252 kcondvar_t cv_psz;
253 bool psz_performing;
254 } key_spd __cacheline_aligned;
255
256 /* SAD */
257 static struct {
258 kmutex_t lock;
259 kcondvar_t cv_lc;
260 struct pslist_head sahlist;
261
262 pserialize_t psz;
263 kcondvar_t cv_psz;
264 bool psz_performing;
265 } key_sad __cacheline_aligned;
266
267 /* Misc data */
268 static struct {
269 kmutex_t lock;
270 /* registed list */
271 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
272 #ifndef IPSEC_NONBLOCK_ACQUIRE
273 /* acquiring list */
274 LIST_HEAD(_acqlist, secacq) acqlist;
275 #endif
276 #ifdef notyet
277 /* SP acquiring list */
278 LIST_HEAD(_spacqlist, secspacq) spacqlist;
279 #endif
280 } key_misc __cacheline_aligned;
281
282 /* Macros for key_spd.splist */
283 #define SPLIST_ENTRY_INIT(sp) \
284 PSLIST_ENTRY_INIT((sp), pslist_entry)
285 #define SPLIST_ENTRY_DESTROY(sp) \
286 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
287 #define SPLIST_WRITER_REMOVE(sp) \
288 PSLIST_WRITER_REMOVE((sp), pslist_entry)
289 #define SPLIST_READER_EMPTY(dir) \
290 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
291 pslist_entry) == NULL)
292 #define SPLIST_READER_FOREACH(sp, dir) \
293 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
294 struct secpolicy, pslist_entry)
295 #define SPLIST_WRITER_FOREACH(sp, dir) \
296 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
297 struct secpolicy, pslist_entry)
298 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
299 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
300 #define SPLIST_WRITER_EMPTY(dir) \
301 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
302 pslist_entry) == NULL)
303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
304 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
305 pslist_entry)
306 #define SPLIST_WRITER_NEXT(sp) \
307 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
308 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
309 do { \
310 if (SPLIST_WRITER_EMPTY((dir))) { \
311 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
312 } else { \
313 struct secpolicy *__sp; \
314 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
315 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
316 SPLIST_WRITER_INSERT_AFTER(__sp,\
317 (new)); \
318 break; \
319 } \
320 } \
321 } \
322 } while (0)
323
324 /* Macros for key_spd.socksplist */
325 #define SOCKSPLIST_WRITER_FOREACH(sp) \
326 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
327 struct secpolicy, pslist_entry)
328 #define SOCKSPLIST_READER_EMPTY() \
329 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
330 pslist_entry) == NULL)
331
332 /* Macros for key_sad.sahlist */
333 #define SAHLIST_ENTRY_INIT(sah) \
334 PSLIST_ENTRY_INIT((sah), pslist_entry)
335 #define SAHLIST_ENTRY_DESTROY(sah) \
336 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
337 #define SAHLIST_WRITER_REMOVE(sah) \
338 PSLIST_WRITER_REMOVE((sah), pslist_entry)
339 #define SAHLIST_READER_FOREACH(sah) \
340 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
341 pslist_entry)
342 #define SAHLIST_WRITER_FOREACH(sah) \
343 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
344 pslist_entry)
345 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
346 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
347
348 /* Macros for key_sad.sahlist#savlist */
349 #define SAVLIST_ENTRY_INIT(sav) \
350 PSLIST_ENTRY_INIT((sav), pslist_entry)
351 #define SAVLIST_ENTRY_DESTROY(sav) \
352 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
353 #define SAVLIST_READER_FIRST(sah, state) \
354 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
355 pslist_entry)
356 #define SAVLIST_WRITER_REMOVE(sav) \
357 PSLIST_WRITER_REMOVE((sav), pslist_entry)
358 #define SAVLIST_READER_FOREACH(sav, sah, state) \
359 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
360 struct secasvar, pslist_entry)
361 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
362 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
363 struct secasvar, pslist_entry)
364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
365 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
367 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
368 #define SAVLIST_WRITER_EMPTY(sah, state) \
369 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
370 pslist_entry) == NULL)
371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
372 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
373 pslist_entry)
374 #define SAVLIST_WRITER_NEXT(sav) \
375 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
377 do { \
378 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
379 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
380 } else { \
381 struct secasvar *__sav; \
382 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
383 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
384 SAVLIST_WRITER_INSERT_AFTER(__sav,\
385 (new)); \
386 break; \
387 } \
388 } \
389 } \
390 } while (0)
391 #define SAVLIST_READER_NEXT(sav) \
392 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
393
394
395 /* search order for SAs */
396 /*
397 * This order is important because we must select the oldest SA
398 * for outbound processing. For inbound, This is not important.
399 */
400 static const u_int saorder_state_valid_prefer_old[] = {
401 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
402 };
403 static const u_int saorder_state_valid_prefer_new[] = {
404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
405 };
406
407 static const u_int saorder_state_alive[] = {
408 /* except DEAD */
409 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
410 };
411 static const u_int saorder_state_any[] = {
412 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
413 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
414 };
415
416 #define SASTATE_ALIVE_FOREACH(s) \
417 for (int _i = 0; \
418 _i < __arraycount(saorder_state_alive) ? \
419 (s) = saorder_state_alive[_i], true : false; \
420 _i++)
421 #define SASTATE_ANY_FOREACH(s) \
422 for (int _i = 0; \
423 _i < __arraycount(saorder_state_any) ? \
424 (s) = saorder_state_any[_i], true : false; \
425 _i++)
426
427 static const int minsize[] = {
428 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
429 sizeof(struct sadb_sa), /* SADB_EXT_SA */
430 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
433 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
436 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
437 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
438 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
440 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
441 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
442 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
444 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
445 0, /* SADB_X_EXT_KMPRIVATE */
446 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
447 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
448 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
449 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
451 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
453 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
454 };
455 static const int maxsize[] = {
456 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
457 sizeof(struct sadb_sa), /* SADB_EXT_SA */
458 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
461 0, /* SADB_EXT_ADDRESS_SRC */
462 0, /* SADB_EXT_ADDRESS_DST */
463 0, /* SADB_EXT_ADDRESS_PROXY */
464 0, /* SADB_EXT_KEY_AUTH */
465 0, /* SADB_EXT_KEY_ENCRYPT */
466 0, /* SADB_EXT_IDENTITY_SRC */
467 0, /* SADB_EXT_IDENTITY_DST */
468 0, /* SADB_EXT_SENSITIVITY */
469 0, /* SADB_EXT_PROPOSAL */
470 0, /* SADB_EXT_SUPPORTED_AUTH */
471 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
472 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
473 0, /* SADB_X_EXT_KMPRIVATE */
474 0, /* SADB_X_EXT_POLICY */
475 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
476 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
477 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
479 0, /* SADB_X_EXT_NAT_T_OAI */
480 0, /* SADB_X_EXT_NAT_T_OAR */
481 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
482 };
483
484 static int ipsec_esp_keymin = 256;
485 static int ipsec_esp_auth = 0;
486 static int ipsec_ah_keymin = 128;
487
488 #ifdef SYSCTL_DECL
489 SYSCTL_DECL(_net_key);
490 #endif
491
492 #ifdef SYSCTL_INT
493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
494 &key_debug_level, 0, "");
495
496 /* max count of trial for the decision of spi value */
497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
498 &key_spi_trycnt, 0, "");
499
500 /* minimum spi value to allocate automatically. */
501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
502 &key_spi_minval, 0, "");
503
504 /* maximun spi value to allocate automatically. */
505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
506 &key_spi_maxval, 0, "");
507
508 /* interval to initialize randseed */
509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
510 &key_int_random, 0, "");
511
512 /* lifetime for larval SA */
513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
514 &key_larval_lifetime, 0, "");
515
516 /* counter for blocking to send SADB_ACQUIRE to IKEd */
517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
518 &key_blockacq_count, 0, "");
519
520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
522 &key_blockacq_lifetime, 0, "");
523
524 /* ESP auth */
525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
526 &ipsec_esp_auth, 0, "");
527
528 /* minimum ESP key length */
529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
530 &ipsec_esp_keymin, 0, "");
531
532 /* minimum AH key length */
533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
534 &ipsec_ah_keymin, 0, "");
535
536 /* perfered old SA rather than new SA */
537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
538 &key_prefered_oldsa, 0, "");
539 #endif /* SYSCTL_INT */
540
541 #define __LIST_CHAINED(elm) \
542 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
543 #define LIST_INSERT_TAIL(head, elm, type, field) \
544 do {\
545 struct type *curelm = LIST_FIRST(head); \
546 if (curelm == NULL) {\
547 LIST_INSERT_HEAD(head, elm, field); \
548 } else { \
549 while (LIST_NEXT(curelm, field)) \
550 curelm = LIST_NEXT(curelm, field);\
551 LIST_INSERT_AFTER(curelm, elm, field);\
552 }\
553 } while (0)
554
555 #define KEY_CHKSASTATE(head, sav) \
556 /* do */ { \
557 if ((head) != (sav)) { \
558 IPSECLOG(LOG_DEBUG, \
559 "state mismatched (TREE=%d SA=%d)\n", \
560 (head), (sav)); \
561 continue; \
562 } \
563 } /* while (0) */
564
565 #define KEY_CHKSPDIR(head, sp) \
566 do { \
567 if ((head) != (sp)) { \
568 IPSECLOG(LOG_DEBUG, \
569 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
570 (head), (sp)); \
571 } \
572 } while (0)
573
574 /*
575 * set parameters into secasindex buffer.
576 * Must allocate secasindex buffer before calling this function.
577 */
578 static int
579 key_setsecasidx(int, int, int, const struct sockaddr *,
580 const struct sockaddr *, struct secasindex *);
581
582 /* key statistics */
583 struct _keystat {
584 u_long getspi_count; /* the avarage of count to try to get new SPI */
585 } keystat;
586
587 struct sadb_msghdr {
588 struct sadb_msg *msg;
589 void *ext[SADB_EXT_MAX + 1];
590 int extoff[SADB_EXT_MAX + 1];
591 int extlen[SADB_EXT_MAX + 1];
592 };
593
594 static void
595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
596
597 static const struct sockaddr *
598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
599 {
600
601 return PFKEY_ADDR_SADDR(mhp->ext[idx]);
602 }
603
604 static struct mbuf *
605 key_fill_replymsg(struct mbuf *m, int seq)
606 {
607 struct sadb_msg *msg;
608
609 if (m->m_len < sizeof(*msg)) {
610 m = m_pullup(m, sizeof(*msg));
611 if (m == NULL)
612 return NULL;
613 }
614 msg = mtod(m, struct sadb_msg *);
615 msg->sadb_msg_errno = 0;
616 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
617 if (seq != 0)
618 msg->sadb_msg_seq = seq;
619
620 return m;
621 }
622
623 #if 0
624 static void key_freeso(struct socket *);
625 static void key_freesp_so(struct secpolicy **);
626 #endif
627 static struct secpolicy *key_getsp (const struct secpolicyindex *);
628 static struct secpolicy *key_getspbyid (u_int32_t);
629 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
630 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
631 static void key_destroy_sp(struct secpolicy *);
632 static u_int16_t key_newreqid (void);
633 static struct mbuf *key_gather_mbuf (struct mbuf *,
634 const struct sadb_msghdr *, int, int, ...);
635 static int key_api_spdadd(struct socket *, struct mbuf *,
636 const struct sadb_msghdr *);
637 static u_int32_t key_getnewspid (void);
638 static int key_api_spddelete(struct socket *, struct mbuf *,
639 const struct sadb_msghdr *);
640 static int key_api_spddelete2(struct socket *, struct mbuf *,
641 const struct sadb_msghdr *);
642 static int key_api_spdget(struct socket *, struct mbuf *,
643 const struct sadb_msghdr *);
644 static int key_api_spdflush(struct socket *, struct mbuf *,
645 const struct sadb_msghdr *);
646 static int key_api_spddump(struct socket *, struct mbuf *,
647 const struct sadb_msghdr *);
648 static struct mbuf * key_setspddump (int *errorp, pid_t);
649 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
650 static int key_api_nat_map(struct socket *, struct mbuf *,
651 const struct sadb_msghdr *);
652 static struct mbuf *key_setdumpsp (struct secpolicy *,
653 u_int8_t, u_int32_t, pid_t);
654 static u_int key_getspreqmsglen (const struct secpolicy *);
655 static int key_spdexpire (struct secpolicy *);
656 static struct secashead *key_newsah (const struct secasindex *);
657 static void key_unlink_sah(struct secashead *);
658 static void key_destroy_sah(struct secashead *);
659 static bool key_sah_has_sav(struct secashead *);
660 static void key_sah_ref(struct secashead *);
661 static void key_sah_unref(struct secashead *);
662 static void key_init_sav(struct secasvar *);
663 static void key_destroy_sav(struct secasvar *);
664 static void key_destroy_sav_with_ref(struct secasvar *);
665 static struct secasvar *key_newsav(struct mbuf *,
666 const struct sadb_msghdr *, int *, const char*, int);
667 #define KEY_NEWSAV(m, sadb, e) \
668 key_newsav(m, sadb, e, __func__, __LINE__)
669 static void key_delsav (struct secasvar *);
670 static struct secashead *key_getsah(const struct secasindex *, int);
671 static struct secashead *key_getsah_ref(const struct secasindex *, int);
672 static bool key_checkspidup(const struct secasindex *, u_int32_t);
673 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
674 static int key_setsaval (struct secasvar *, struct mbuf *,
675 const struct sadb_msghdr *);
676 static void key_freesaval(struct secasvar *);
677 static int key_init_xform(struct secasvar *);
678 static void key_clear_xform(struct secasvar *);
679 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
680 u_int8_t, u_int32_t, u_int32_t);
681 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
682 static struct mbuf *key_setsadbxtype (u_int16_t);
683 static struct mbuf *key_setsadbxfrag (u_int16_t);
684 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
685 static int key_checksalen (const union sockaddr_union *);
686 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
687 u_int32_t, pid_t, u_int16_t);
688 static struct mbuf *key_setsadbsa (struct secasvar *);
689 static struct mbuf *key_setsadbaddr (u_int16_t,
690 const struct sockaddr *, u_int8_t, u_int16_t);
691 #if 0
692 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
693 int, u_int64_t);
694 #endif
695 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
696 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
697 u_int32_t);
698 static void *key_newbuf (const void *, u_int);
699 #ifdef INET6
700 static int key_ismyaddr6 (const struct sockaddr_in6 *);
701 #endif
702
703 static void sysctl_net_keyv2_setup(struct sysctllog **);
704 static void sysctl_net_key_compat_setup(struct sysctllog **);
705
706 /* flags for key_saidx_match() */
707 #define CMP_HEAD 1 /* protocol, addresses. */
708 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
709 #define CMP_REQID 3 /* additionally HEAD, reaid. */
710 #define CMP_EXACTLY 4 /* all elements. */
711 static int key_saidx_match(const struct secasindex *,
712 const struct secasindex *, int);
713
714 static int key_sockaddr_match(const struct sockaddr *,
715 const struct sockaddr *, int);
716 static int key_bb_match_withmask(const void *, const void *, u_int);
717 static u_int16_t key_satype2proto (u_int8_t);
718 static u_int8_t key_proto2satype (u_int16_t);
719
720 static int key_spidx_match_exactly(const struct secpolicyindex *,
721 const struct secpolicyindex *);
722 static int key_spidx_match_withmask(const struct secpolicyindex *,
723 const struct secpolicyindex *);
724
725 static int key_api_getspi(struct socket *, struct mbuf *,
726 const struct sadb_msghdr *);
727 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
728 const struct secasindex *);
729 static int key_handle_natt_info (struct secasvar *,
730 const struct sadb_msghdr *);
731 static int key_set_natt_ports (union sockaddr_union *,
732 union sockaddr_union *,
733 const struct sadb_msghdr *);
734 static int key_api_update(struct socket *, struct mbuf *,
735 const struct sadb_msghdr *);
736 #ifdef IPSEC_DOSEQCHECK
737 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
738 #endif
739 static int key_api_add(struct socket *, struct mbuf *,
740 const struct sadb_msghdr *);
741 static int key_setident (struct secashead *, struct mbuf *,
742 const struct sadb_msghdr *);
743 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
744 const struct sadb_msghdr *);
745 static int key_api_delete(struct socket *, struct mbuf *,
746 const struct sadb_msghdr *);
747 static int key_api_get(struct socket *, struct mbuf *,
748 const struct sadb_msghdr *);
749
750 static void key_getcomb_setlifetime (struct sadb_comb *);
751 static struct mbuf *key_getcomb_esp (void);
752 static struct mbuf *key_getcomb_ah (void);
753 static struct mbuf *key_getcomb_ipcomp (void);
754 static struct mbuf *key_getprop (const struct secasindex *);
755
756 static int key_acquire(const struct secasindex *, const struct secpolicy *);
757 static int key_acquire_sendup_mbuf_later(struct mbuf *);
758 static void key_acquire_sendup_pending_mbuf(void);
759 #ifndef IPSEC_NONBLOCK_ACQUIRE
760 static struct secacq *key_newacq (const struct secasindex *);
761 static struct secacq *key_getacq (const struct secasindex *);
762 static struct secacq *key_getacqbyseq (u_int32_t);
763 #endif
764 #ifdef notyet
765 static struct secspacq *key_newspacq (const struct secpolicyindex *);
766 static struct secspacq *key_getspacq (const struct secpolicyindex *);
767 #endif
768 static int key_api_acquire(struct socket *, struct mbuf *,
769 const struct sadb_msghdr *);
770 static int key_api_register(struct socket *, struct mbuf *,
771 const struct sadb_msghdr *);
772 static int key_expire (struct secasvar *);
773 static int key_api_flush(struct socket *, struct mbuf *,
774 const struct sadb_msghdr *);
775 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
776 int *lenp, pid_t pid);
777 static int key_api_dump(struct socket *, struct mbuf *,
778 const struct sadb_msghdr *);
779 static int key_api_promisc(struct socket *, struct mbuf *,
780 const struct sadb_msghdr *);
781 static int key_senderror (struct socket *, struct mbuf *, int);
782 static int key_validate_ext (const struct sadb_ext *, int);
783 static int key_align (struct mbuf *, struct sadb_msghdr *);
784 #if 0
785 static const char *key_getfqdn (void);
786 static const char *key_getuserfqdn (void);
787 #endif
788 static void key_sa_chgstate (struct secasvar *, u_int8_t);
789
790 static struct mbuf *key_alloc_mbuf (int);
791 static struct mbuf *key_alloc_mbuf_simple(int, int);
792
793 static void key_timehandler(void *);
794 static void key_timehandler_work(struct work *, void *);
795 static struct callout key_timehandler_ch;
796 static struct workqueue *key_timehandler_wq;
797 static struct work key_timehandler_wk;
798
799 u_int
800 key_sp_refcnt(const struct secpolicy *sp)
801 {
802
803 /* FIXME */
804 return 0;
805 }
806
807 #ifdef NET_MPSAFE
808 static void
809 key_spd_pserialize_perform(void)
810 {
811
812 KASSERT(mutex_owned(&key_spd.lock));
813
814 while (key_spd.psz_performing)
815 cv_wait(&key_spd.cv_psz, &key_spd.lock);
816 key_spd.psz_performing = true;
817 mutex_exit(&key_spd.lock);
818
819 pserialize_perform(key_spd.psz);
820
821 mutex_enter(&key_spd.lock);
822 key_spd.psz_performing = false;
823 cv_broadcast(&key_spd.cv_psz);
824 }
825 #endif
826
827 /*
828 * Remove the sp from the key_spd.splist and wait for references to the sp
829 * to be released. key_spd.lock must be held.
830 */
831 static void
832 key_unlink_sp(struct secpolicy *sp)
833 {
834
835 KASSERT(mutex_owned(&key_spd.lock));
836
837 sp->state = IPSEC_SPSTATE_DEAD;
838 SPLIST_WRITER_REMOVE(sp);
839
840 /* Invalidate all cached SPD pointers in the PCBs. */
841 ipsec_invalpcbcacheall();
842
843 #ifdef NET_MPSAFE
844 KASSERT(mutex_ownable(softnet_lock));
845 key_spd_pserialize_perform();
846 #endif
847
848 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
849 }
850
851 /*
852 * Return 0 when there are known to be no SP's for the specified
853 * direction. Otherwise return 1. This is used by IPsec code
854 * to optimize performance.
855 */
856 int
857 key_havesp(u_int dir)
858 {
859 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
860 !SPLIST_READER_EMPTY(dir) : 1);
861 }
862
863 /* %%% IPsec policy management */
864 /*
865 * allocating a SP for OUTBOUND or INBOUND packet.
866 * Must call key_freesp() later.
867 * OUT: NULL: not found
868 * others: found and return the pointer.
869 */
870 struct secpolicy *
871 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
872 u_int dir, const char* where, int tag)
873 {
874 struct secpolicy *sp;
875 int s;
876
877 KASSERT(spidx != NULL);
878 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
879
880 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
881
882 /* get a SP entry */
883 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
884 kdebug_secpolicyindex("objects", spidx);
885 }
886
887 s = pserialize_read_enter();
888 SPLIST_READER_FOREACH(sp, dir) {
889 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
890 kdebug_secpolicyindex("in SPD", &sp->spidx);
891 }
892
893 if (sp->state == IPSEC_SPSTATE_DEAD)
894 continue;
895 if (key_spidx_match_withmask(&sp->spidx, spidx))
896 goto found;
897 }
898 sp = NULL;
899 found:
900 if (sp) {
901 /* sanity check */
902 KEY_CHKSPDIR(sp->spidx.dir, dir);
903
904 /* found a SPD entry */
905 sp->lastused = time_uptime;
906 key_sp_ref(sp, where, tag);
907 }
908 pserialize_read_exit(s);
909
910 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
911 "DP return SP:%p (ID=%u) refcnt %u\n",
912 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
913 return sp;
914 }
915
916 /*
917 * return a policy that matches this particular inbound packet.
918 * XXX slow
919 */
920 struct secpolicy *
921 key_gettunnel(const struct sockaddr *osrc,
922 const struct sockaddr *odst,
923 const struct sockaddr *isrc,
924 const struct sockaddr *idst,
925 const char* where, int tag)
926 {
927 struct secpolicy *sp;
928 const int dir = IPSEC_DIR_INBOUND;
929 int s;
930 struct ipsecrequest *r1, *r2, *p;
931 struct secpolicyindex spidx;
932
933 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
934
935 if (isrc->sa_family != idst->sa_family) {
936 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
937 isrc->sa_family, idst->sa_family);
938 sp = NULL;
939 goto done;
940 }
941
942 s = pserialize_read_enter();
943 SPLIST_READER_FOREACH(sp, dir) {
944 if (sp->state == IPSEC_SPSTATE_DEAD)
945 continue;
946
947 r1 = r2 = NULL;
948 for (p = sp->req; p; p = p->next) {
949 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
950 continue;
951
952 r1 = r2;
953 r2 = p;
954
955 if (!r1) {
956 /* here we look at address matches only */
957 spidx = sp->spidx;
958 if (isrc->sa_len > sizeof(spidx.src) ||
959 idst->sa_len > sizeof(spidx.dst))
960 continue;
961 memcpy(&spidx.src, isrc, isrc->sa_len);
962 memcpy(&spidx.dst, idst, idst->sa_len);
963 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
964 continue;
965 } else {
966 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
967 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
968 continue;
969 }
970
971 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
972 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
973 continue;
974
975 goto found;
976 }
977 }
978 sp = NULL;
979 found:
980 if (sp) {
981 sp->lastused = time_uptime;
982 key_sp_ref(sp, where, tag);
983 }
984 pserialize_read_exit(s);
985 done:
986 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
987 "DP return SP:%p (ID=%u) refcnt %u\n",
988 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
989 return sp;
990 }
991
992 /*
993 * allocating an SA entry for an *OUTBOUND* packet.
994 * checking each request entries in SP, and acquire an SA if need.
995 * OUT: 0: there are valid requests.
996 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
997 */
998 int
999 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx,
1000 struct secasvar **ret)
1001 {
1002 u_int level;
1003 int error;
1004 struct secasvar *sav;
1005
1006 KASSERT(isr != NULL);
1007 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
1008 saidx->mode == IPSEC_MODE_TUNNEL,
1009 "unexpected policy %u", saidx->mode);
1010
1011 /* get current level */
1012 level = ipsec_get_reqlevel(isr);
1013
1014 /*
1015 * XXX guard against protocol callbacks from the crypto
1016 * thread as they reference ipsecrequest.sav which we
1017 * temporarily null out below. Need to rethink how we
1018 * handle bundled SA's in the callback thread.
1019 */
1020 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
1021
1022 sav = key_lookup_sa_bysaidx(saidx);
1023 if (sav != NULL) {
1024 *ret = sav;
1025 return 0;
1026 }
1027
1028 /* there is no SA */
1029 error = key_acquire(saidx, isr->sp);
1030 if (error != 0) {
1031 /* XXX What should I do ? */
1032 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1033 error);
1034 return error;
1035 }
1036
1037 if (level != IPSEC_LEVEL_REQUIRE) {
1038 /* XXX sigh, the interface to this routine is botched */
1039 *ret = NULL;
1040 return 0;
1041 } else {
1042 return ENOENT;
1043 }
1044 }
1045
1046 /*
1047 * looking up a SA for policy entry from SAD.
1048 * NOTE: searching SAD of aliving state.
1049 * OUT: NULL: not found.
1050 * others: found and return the pointer.
1051 */
1052 struct secasvar *
1053 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1054 {
1055 struct secashead *sah;
1056 struct secasvar *sav = NULL;
1057 u_int stateidx, state;
1058 const u_int *saorder_state_valid;
1059 int arraysize;
1060 int s;
1061
1062 s = pserialize_read_enter();
1063 sah = key_getsah(saidx, CMP_MODE_REQID);
1064 if (sah == NULL)
1065 goto out;
1066
1067 /*
1068 * search a valid state list for outbound packet.
1069 * This search order is important.
1070 */
1071 if (key_prefered_oldsa) {
1072 saorder_state_valid = saorder_state_valid_prefer_old;
1073 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1074 } else {
1075 saorder_state_valid = saorder_state_valid_prefer_new;
1076 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1077 }
1078
1079 /* search valid state */
1080 for (stateidx = 0;
1081 stateidx < arraysize;
1082 stateidx++) {
1083
1084 state = saorder_state_valid[stateidx];
1085
1086 if (key_prefered_oldsa)
1087 sav = SAVLIST_READER_FIRST(sah, state);
1088 else {
1089 /* XXX need O(1) lookup */
1090 struct secasvar *last = NULL;
1091
1092 SAVLIST_READER_FOREACH(sav, sah, state)
1093 last = sav;
1094 sav = last;
1095 }
1096 if (sav != NULL) {
1097 KEY_SA_REF(sav);
1098 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1099 "DP cause refcnt++:%d SA:%p\n",
1100 key_sa_refcnt(sav), sav);
1101 break;
1102 }
1103 }
1104 out:
1105 pserialize_read_exit(s);
1106
1107 return sav;
1108 }
1109
1110 #if 0
1111 static void
1112 key_sendup_message_delete(struct secasvar *sav)
1113 {
1114 struct mbuf *m, *result = 0;
1115 uint8_t satype;
1116
1117 satype = key_proto2satype(sav->sah->saidx.proto);
1118 if (satype == 0)
1119 goto msgfail;
1120
1121 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1122 if (m == NULL)
1123 goto msgfail;
1124 result = m;
1125
1126 /* set sadb_address for saidx's. */
1127 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1128 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1129 if (m == NULL)
1130 goto msgfail;
1131 m_cat(result, m);
1132
1133 /* set sadb_address for saidx's. */
1134 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1135 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1136 if (m == NULL)
1137 goto msgfail;
1138 m_cat(result, m);
1139
1140 /* create SA extension */
1141 m = key_setsadbsa(sav);
1142 if (m == NULL)
1143 goto msgfail;
1144 m_cat(result, m);
1145
1146 if (result->m_len < sizeof(struct sadb_msg)) {
1147 result = m_pullup(result, sizeof(struct sadb_msg));
1148 if (result == NULL)
1149 goto msgfail;
1150 }
1151
1152 result->m_pkthdr.len = 0;
1153 for (m = result; m; m = m->m_next)
1154 result->m_pkthdr.len += m->m_len;
1155 mtod(result, struct sadb_msg *)->sadb_msg_len =
1156 PFKEY_UNIT64(result->m_pkthdr.len);
1157
1158 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1159 result = NULL;
1160 msgfail:
1161 if (result)
1162 m_freem(result);
1163 }
1164 #endif
1165
1166 /*
1167 * allocating a usable SA entry for a *INBOUND* packet.
1168 * Must call key_freesav() later.
1169 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1170 * NULL: not found, or error occurred.
1171 *
1172 * In the comparison, no source address is used--for RFC2401 conformance.
1173 * To quote, from section 4.1:
1174 * A security association is uniquely identified by a triple consisting
1175 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1176 * security protocol (AH or ESP) identifier.
1177 * Note that, however, we do need to keep source address in IPsec SA.
1178 * IKE specification and PF_KEY specification do assume that we
1179 * keep source address in IPsec SA. We see a tricky situation here.
1180 *
1181 * sport and dport are used for NAT-T. network order is always used.
1182 */
1183 struct secasvar *
1184 key_lookup_sa(
1185 const union sockaddr_union *dst,
1186 u_int proto,
1187 u_int32_t spi,
1188 u_int16_t sport,
1189 u_int16_t dport,
1190 const char* where, int tag)
1191 {
1192 struct secashead *sah;
1193 struct secasvar *sav;
1194 u_int stateidx, state;
1195 const u_int *saorder_state_valid;
1196 int arraysize, chkport;
1197 int s;
1198
1199 int must_check_spi = 1;
1200 int must_check_alg = 0;
1201 u_int16_t cpi = 0;
1202 u_int8_t algo = 0;
1203
1204 if ((sport != 0) && (dport != 0))
1205 chkport = PORT_STRICT;
1206 else
1207 chkport = PORT_NONE;
1208
1209 KASSERT(dst != NULL);
1210
1211 /*
1212 * XXX IPCOMP case
1213 * We use cpi to define spi here. In the case where cpi <=
1214 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1215 * the real spi. In this case, don't check the spi but check the
1216 * algorithm
1217 */
1218
1219 if (proto == IPPROTO_IPCOMP) {
1220 u_int32_t tmp;
1221 tmp = ntohl(spi);
1222 cpi = (u_int16_t) tmp;
1223 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1224 algo = (u_int8_t) cpi;
1225 must_check_spi = 0;
1226 must_check_alg = 1;
1227 }
1228 }
1229 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1230 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1231 where, tag, must_check_spi, must_check_alg);
1232
1233
1234 /*
1235 * searching SAD.
1236 * XXX: to be checked internal IP header somewhere. Also when
1237 * IPsec tunnel packet is received. But ESP tunnel mode is
1238 * encrypted so we can't check internal IP header.
1239 */
1240 if (key_prefered_oldsa) {
1241 saorder_state_valid = saorder_state_valid_prefer_old;
1242 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1243 } else {
1244 saorder_state_valid = saorder_state_valid_prefer_new;
1245 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1246 }
1247 s = pserialize_read_enter();
1248 SAHLIST_READER_FOREACH(sah) {
1249 /* search valid state */
1250 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1251 state = saorder_state_valid[stateidx];
1252 SAVLIST_READER_FOREACH(sav, sah, state) {
1253 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1254 "try match spi %#x, %#x\n",
1255 ntohl(spi), ntohl(sav->spi));
1256 /* sanity check */
1257 KEY_CHKSASTATE(sav->state, state);
1258 /* do not return entries w/ unusable state */
1259 if (!SADB_SASTATE_USABLE_P(sav)) {
1260 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1261 "bad state %d\n", sav->state);
1262 continue;
1263 }
1264 if (proto != sav->sah->saidx.proto) {
1265 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1266 "proto fail %d != %d\n",
1267 proto, sav->sah->saidx.proto);
1268 continue;
1269 }
1270 if (must_check_spi && spi != sav->spi) {
1271 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1272 "spi fail %#x != %#x\n",
1273 ntohl(spi), ntohl(sav->spi));
1274 continue;
1275 }
1276 /* XXX only on the ipcomp case */
1277 if (must_check_alg && algo != sav->alg_comp) {
1278 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1279 "algo fail %d != %d\n",
1280 algo, sav->alg_comp);
1281 continue;
1282 }
1283
1284 #if 0 /* don't check src */
1285 /* Fix port in src->sa */
1286
1287 /* check src address */
1288 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1289 continue;
1290 #endif
1291 /* fix port of dst address XXX*/
1292 key_porttosaddr(__UNCONST(dst), dport);
1293 /* check dst address */
1294 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1295 continue;
1296 key_sa_ref(sav, where, tag);
1297 goto done;
1298 }
1299 }
1300 }
1301 sav = NULL;
1302 done:
1303 pserialize_read_exit(s);
1304
1305 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1306 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1307 return sav;
1308 }
1309
1310 static void
1311 key_validate_savlist(const struct secashead *sah, const u_int state)
1312 {
1313 #ifdef DEBUG
1314 struct secasvar *sav, *next;
1315 int s;
1316
1317 /*
1318 * The list should be sorted by lft_c->sadb_lifetime_addtime
1319 * in ascending order.
1320 */
1321 s = pserialize_read_enter();
1322 SAVLIST_READER_FOREACH(sav, sah, state) {
1323 next = SAVLIST_READER_NEXT(sav);
1324 if (next != NULL &&
1325 sav->lft_c != NULL && next->lft_c != NULL) {
1326 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1327 next->lft_c->sadb_lifetime_addtime,
1328 "savlist is not sorted: sah=%p, state=%d, "
1329 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1330 sav->lft_c->sadb_lifetime_addtime,
1331 next->lft_c->sadb_lifetime_addtime);
1332 }
1333 }
1334 pserialize_read_exit(s);
1335 #endif
1336 }
1337
1338 void
1339 key_init_sp(struct secpolicy *sp)
1340 {
1341
1342 ASSERT_SLEEPABLE();
1343
1344 sp->state = IPSEC_SPSTATE_ALIVE;
1345 if (sp->policy == IPSEC_POLICY_IPSEC)
1346 KASSERT(sp->req != NULL);
1347 localcount_init(&sp->localcount);
1348 SPLIST_ENTRY_INIT(sp);
1349 }
1350
1351 /*
1352 * Must be called in a pserialize read section. A held SP
1353 * must be released by key_sp_unref after use.
1354 */
1355 void
1356 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1357 {
1358
1359 localcount_acquire(&sp->localcount);
1360
1361 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1362 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1363 sp, sp->id, where, tag, key_sp_refcnt(sp));
1364 }
1365
1366 /*
1367 * Must be called without holding key_spd.lock because the lock
1368 * would be held in localcount_release.
1369 */
1370 void
1371 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1372 {
1373
1374 KDASSERT(mutex_ownable(&key_spd.lock));
1375
1376 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1377 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1378 sp, sp->id, where, tag, key_sp_refcnt(sp));
1379
1380 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
1381 }
1382
1383 static void
1384 key_init_sav(struct secasvar *sav)
1385 {
1386
1387 ASSERT_SLEEPABLE();
1388
1389 localcount_init(&sav->localcount);
1390 SAVLIST_ENTRY_INIT(sav);
1391 }
1392
1393 u_int
1394 key_sa_refcnt(const struct secasvar *sav)
1395 {
1396
1397 /* FIXME */
1398 return 0;
1399 }
1400
1401 void
1402 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1403 {
1404
1405 localcount_acquire(&sav->localcount);
1406
1407 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1408 "DP cause refcnt++: SA:%p from %s:%u\n",
1409 sav, where, tag);
1410 }
1411
1412 void
1413 key_sa_unref(struct secasvar *sav, const char* where, int tag)
1414 {
1415
1416 KDASSERT(mutex_ownable(&key_sad.lock));
1417
1418 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1419 "DP cause refcnt--: SA:%p from %s:%u\n",
1420 sav, where, tag);
1421
1422 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1423 }
1424
1425 #if 0
1426 /*
1427 * Must be called after calling key_lookup_sp*().
1428 * For the packet with socket.
1429 */
1430 static void
1431 key_freeso(struct socket *so)
1432 {
1433 /* sanity check */
1434 KASSERT(so != NULL);
1435
1436 switch (so->so_proto->pr_domain->dom_family) {
1437 #ifdef INET
1438 case PF_INET:
1439 {
1440 struct inpcb *pcb = sotoinpcb(so);
1441
1442 /* Does it have a PCB ? */
1443 if (pcb == NULL)
1444 return;
1445
1446 struct inpcbpolicy *sp = pcb->inp_sp;
1447 key_freesp_so(&sp->sp_in);
1448 key_freesp_so(&sp->sp_out);
1449 }
1450 break;
1451 #endif
1452 #ifdef INET6
1453 case PF_INET6:
1454 {
1455 #ifdef HAVE_NRL_INPCB
1456 struct inpcb *pcb = sotoinpcb(so);
1457 struct inpcbpolicy *sp = pcb->inp_sp;
1458
1459 /* Does it have a PCB ? */
1460 if (pcb == NULL)
1461 return;
1462 key_freesp_so(&sp->sp_in);
1463 key_freesp_so(&sp->sp_out);
1464 #else
1465 struct in6pcb *pcb = sotoin6pcb(so);
1466
1467 /* Does it have a PCB ? */
1468 if (pcb == NULL)
1469 return;
1470 key_freesp_so(&pcb->in6p_sp->sp_in);
1471 key_freesp_so(&pcb->in6p_sp->sp_out);
1472 #endif
1473 }
1474 break;
1475 #endif /* INET6 */
1476 default:
1477 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1478 so->so_proto->pr_domain->dom_family);
1479 return;
1480 }
1481 }
1482
1483 static void
1484 key_freesp_so(struct secpolicy **sp)
1485 {
1486
1487 KASSERT(sp != NULL);
1488 KASSERT(*sp != NULL);
1489
1490 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1491 (*sp)->policy == IPSEC_POLICY_BYPASS)
1492 return;
1493
1494 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1495 "invalid policy %u", (*sp)->policy);
1496 KEY_SP_UNREF(&sp);
1497 }
1498 #endif
1499
1500 #ifdef NET_MPSAFE
1501 static void
1502 key_sad_pserialize_perform(void)
1503 {
1504
1505 KASSERT(mutex_owned(&key_sad.lock));
1506
1507 while (key_sad.psz_performing)
1508 cv_wait(&key_sad.cv_psz, &key_sad.lock);
1509 key_sad.psz_performing = true;
1510 mutex_exit(&key_sad.lock);
1511
1512 pserialize_perform(key_sad.psz);
1513
1514 mutex_enter(&key_sad.lock);
1515 key_sad.psz_performing = false;
1516 cv_broadcast(&key_sad.cv_psz);
1517 }
1518 #endif
1519
1520 /*
1521 * Remove the sav from the savlist of its sah and wait for references to the sav
1522 * to be released. key_sad.lock must be held.
1523 */
1524 static void
1525 key_unlink_sav(struct secasvar *sav)
1526 {
1527
1528 KASSERT(mutex_owned(&key_sad.lock));
1529
1530 SAVLIST_WRITER_REMOVE(sav);
1531
1532 #ifdef NET_MPSAFE
1533 KASSERT(mutex_ownable(softnet_lock));
1534 key_sad_pserialize_perform();
1535 #endif
1536
1537 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1538 }
1539
1540 /*
1541 * Destroy an sav where the sav must be unlinked from an sah
1542 * by say key_unlink_sav.
1543 */
1544 static void
1545 key_destroy_sav(struct secasvar *sav)
1546 {
1547
1548 ASSERT_SLEEPABLE();
1549
1550 localcount_fini(&sav->localcount);
1551 SAVLIST_ENTRY_DESTROY(sav);
1552
1553 key_delsav(sav);
1554 }
1555
1556 /*
1557 * Destroy sav with holding its reference.
1558 */
1559 static void
1560 key_destroy_sav_with_ref(struct secasvar *sav)
1561 {
1562
1563 ASSERT_SLEEPABLE();
1564
1565 mutex_enter(&key_sad.lock);
1566 sav->state = SADB_SASTATE_DEAD;
1567 SAVLIST_WRITER_REMOVE(sav);
1568 mutex_exit(&key_sad.lock);
1569
1570 /* We cannot unref with holding key_sad.lock */
1571 KEY_SA_UNREF(&sav);
1572
1573 mutex_enter(&key_sad.lock);
1574 #ifdef NET_MPSAFE
1575 KASSERT(mutex_ownable(softnet_lock));
1576 key_sad_pserialize_perform();
1577 #endif
1578 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1579 mutex_exit(&key_sad.lock);
1580
1581 key_destroy_sav(sav);
1582 }
1583
1584 /* %%% SPD management */
1585 /*
1586 * free security policy entry.
1587 */
1588 static void
1589 key_destroy_sp(struct secpolicy *sp)
1590 {
1591
1592 SPLIST_ENTRY_DESTROY(sp);
1593 localcount_fini(&sp->localcount);
1594
1595 key_free_sp(sp);
1596
1597 key_update_used();
1598 }
1599
1600 void
1601 key_free_sp(struct secpolicy *sp)
1602 {
1603 struct ipsecrequest *isr = sp->req, *nextisr;
1604
1605 while (isr != NULL) {
1606 nextisr = isr->next;
1607 kmem_free(isr, sizeof(*isr));
1608 isr = nextisr;
1609 }
1610
1611 kmem_free(sp, sizeof(*sp));
1612 }
1613
1614 void
1615 key_socksplist_add(struct secpolicy *sp)
1616 {
1617
1618 mutex_enter(&key_spd.lock);
1619 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1620 mutex_exit(&key_spd.lock);
1621
1622 key_update_used();
1623 }
1624
1625 /*
1626 * search SPD
1627 * OUT: NULL : not found
1628 * others : found, pointer to a SP.
1629 */
1630 static struct secpolicy *
1631 key_getsp(const struct secpolicyindex *spidx)
1632 {
1633 struct secpolicy *sp;
1634 int s;
1635
1636 KASSERT(spidx != NULL);
1637
1638 s = pserialize_read_enter();
1639 SPLIST_READER_FOREACH(sp, spidx->dir) {
1640 if (sp->state == IPSEC_SPSTATE_DEAD)
1641 continue;
1642 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1643 KEY_SP_REF(sp);
1644 pserialize_read_exit(s);
1645 return sp;
1646 }
1647 }
1648 pserialize_read_exit(s);
1649
1650 return NULL;
1651 }
1652
1653 /*
1654 * search SPD and remove found SP
1655 * OUT: NULL : not found
1656 * others : found, pointer to a SP.
1657 */
1658 static struct secpolicy *
1659 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1660 {
1661 struct secpolicy *sp = NULL;
1662
1663 mutex_enter(&key_spd.lock);
1664 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1665 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1666
1667 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1668 key_unlink_sp(sp);
1669 goto out;
1670 }
1671 }
1672 sp = NULL;
1673 out:
1674 mutex_exit(&key_spd.lock);
1675
1676 return sp;
1677 }
1678
1679 /*
1680 * get SP by index.
1681 * OUT: NULL : not found
1682 * others : found, pointer to a SP.
1683 */
1684 static struct secpolicy *
1685 key_getspbyid(u_int32_t id)
1686 {
1687 struct secpolicy *sp;
1688 int s;
1689
1690 s = pserialize_read_enter();
1691 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1692 if (sp->state == IPSEC_SPSTATE_DEAD)
1693 continue;
1694 if (sp->id == id) {
1695 KEY_SP_REF(sp);
1696 goto out;
1697 }
1698 }
1699
1700 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1701 if (sp->state == IPSEC_SPSTATE_DEAD)
1702 continue;
1703 if (sp->id == id) {
1704 KEY_SP_REF(sp);
1705 goto out;
1706 }
1707 }
1708 out:
1709 pserialize_read_exit(s);
1710 return sp;
1711 }
1712
1713 /*
1714 * get SP by index, remove and return it.
1715 * OUT: NULL : not found
1716 * others : found, pointer to a SP.
1717 */
1718 static struct secpolicy *
1719 key_lookupbyid_and_remove_sp(u_int32_t id)
1720 {
1721 struct secpolicy *sp;
1722
1723 mutex_enter(&key_spd.lock);
1724 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1725 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1726 if (sp->id == id)
1727 goto out;
1728 }
1729
1730 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1731 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1732 if (sp->id == id)
1733 goto out;
1734 }
1735 out:
1736 if (sp != NULL)
1737 key_unlink_sp(sp);
1738 mutex_exit(&key_spd.lock);
1739 return sp;
1740 }
1741
1742 struct secpolicy *
1743 key_newsp(const char* where, int tag)
1744 {
1745 struct secpolicy *newsp = NULL;
1746
1747 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1748
1749 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1750 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1751 return newsp;
1752 }
1753
1754 /*
1755 * create secpolicy structure from sadb_x_policy structure.
1756 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1757 * so must be set properly later.
1758 */
1759 struct secpolicy *
1760 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1761 {
1762 struct secpolicy *newsp;
1763
1764 KASSERT(!cpu_softintr_p());
1765 KASSERT(xpl0 != NULL);
1766 KASSERT(len >= sizeof(*xpl0));
1767
1768 if (len != PFKEY_EXTLEN(xpl0)) {
1769 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1770 *error = EINVAL;
1771 return NULL;
1772 }
1773
1774 newsp = KEY_NEWSP();
1775 if (newsp == NULL) {
1776 *error = ENOBUFS;
1777 return NULL;
1778 }
1779
1780 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1781 newsp->policy = xpl0->sadb_x_policy_type;
1782
1783 /* check policy */
1784 switch (xpl0->sadb_x_policy_type) {
1785 case IPSEC_POLICY_DISCARD:
1786 case IPSEC_POLICY_NONE:
1787 case IPSEC_POLICY_ENTRUST:
1788 case IPSEC_POLICY_BYPASS:
1789 newsp->req = NULL;
1790 *error = 0;
1791 return newsp;
1792
1793 case IPSEC_POLICY_IPSEC:
1794 /* Continued */
1795 break;
1796 default:
1797 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1798 key_free_sp(newsp);
1799 *error = EINVAL;
1800 return NULL;
1801 }
1802
1803 /* IPSEC_POLICY_IPSEC */
1804 {
1805 int tlen;
1806 const struct sadb_x_ipsecrequest *xisr;
1807 uint16_t xisr_reqid;
1808 struct ipsecrequest **p_isr = &newsp->req;
1809
1810 /* validity check */
1811 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1812 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1813 *error = EINVAL;
1814 goto free_exit;
1815 }
1816
1817 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1818 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1819
1820 while (tlen > 0) {
1821 /* length check */
1822 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1823 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1824 *error = EINVAL;
1825 goto free_exit;
1826 }
1827
1828 /* allocate request buffer */
1829 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1830
1831 /* set values */
1832 (*p_isr)->next = NULL;
1833
1834 switch (xisr->sadb_x_ipsecrequest_proto) {
1835 case IPPROTO_ESP:
1836 case IPPROTO_AH:
1837 case IPPROTO_IPCOMP:
1838 break;
1839 default:
1840 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1841 xisr->sadb_x_ipsecrequest_proto);
1842 *error = EPROTONOSUPPORT;
1843 goto free_exit;
1844 }
1845 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1846
1847 switch (xisr->sadb_x_ipsecrequest_mode) {
1848 case IPSEC_MODE_TRANSPORT:
1849 case IPSEC_MODE_TUNNEL:
1850 break;
1851 case IPSEC_MODE_ANY:
1852 default:
1853 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1854 xisr->sadb_x_ipsecrequest_mode);
1855 *error = EINVAL;
1856 goto free_exit;
1857 }
1858 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1859
1860 switch (xisr->sadb_x_ipsecrequest_level) {
1861 case IPSEC_LEVEL_DEFAULT:
1862 case IPSEC_LEVEL_USE:
1863 case IPSEC_LEVEL_REQUIRE:
1864 break;
1865 case IPSEC_LEVEL_UNIQUE:
1866 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1867 /* validity check */
1868 /*
1869 * If range violation of reqid, kernel will
1870 * update it, don't refuse it.
1871 */
1872 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1873 IPSECLOG(LOG_DEBUG,
1874 "reqid=%d range "
1875 "violation, updated by kernel.\n",
1876 xisr_reqid);
1877 xisr_reqid = 0;
1878 }
1879
1880 /* allocate new reqid id if reqid is zero. */
1881 if (xisr_reqid == 0) {
1882 u_int16_t reqid = key_newreqid();
1883 if (reqid == 0) {
1884 *error = ENOBUFS;
1885 goto free_exit;
1886 }
1887 (*p_isr)->saidx.reqid = reqid;
1888 } else {
1889 /* set it for manual keying. */
1890 (*p_isr)->saidx.reqid = xisr_reqid;
1891 }
1892 break;
1893
1894 default:
1895 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1896 xisr->sadb_x_ipsecrequest_level);
1897 *error = EINVAL;
1898 goto free_exit;
1899 }
1900 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1901
1902 /* set IP addresses if there */
1903 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1904 const struct sockaddr *paddr;
1905
1906 paddr = (const struct sockaddr *)(xisr + 1);
1907
1908 /* validity check */
1909 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1910 IPSECLOG(LOG_DEBUG, "invalid request "
1911 "address length.\n");
1912 *error = EINVAL;
1913 goto free_exit;
1914 }
1915 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1916
1917 paddr = (const struct sockaddr *)((const char *)paddr
1918 + paddr->sa_len);
1919
1920 /* validity check */
1921 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1922 IPSECLOG(LOG_DEBUG, "invalid request "
1923 "address length.\n");
1924 *error = EINVAL;
1925 goto free_exit;
1926 }
1927 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1928 }
1929
1930 (*p_isr)->sp = newsp;
1931
1932 /* initialization for the next. */
1933 p_isr = &(*p_isr)->next;
1934 tlen -= xisr->sadb_x_ipsecrequest_len;
1935
1936 /* validity check */
1937 if (tlen < 0) {
1938 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1939 *error = EINVAL;
1940 goto free_exit;
1941 }
1942
1943 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1944 xisr->sadb_x_ipsecrequest_len);
1945 }
1946 }
1947
1948 *error = 0;
1949 return newsp;
1950
1951 free_exit:
1952 key_free_sp(newsp);
1953 return NULL;
1954 }
1955
1956 static u_int16_t
1957 key_newreqid(void)
1958 {
1959 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1960
1961 auto_reqid = (auto_reqid == 0xffff ?
1962 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1963
1964 /* XXX should be unique check */
1965
1966 return auto_reqid;
1967 }
1968
1969 /*
1970 * copy secpolicy struct to sadb_x_policy structure indicated.
1971 */
1972 struct mbuf *
1973 key_sp2msg(const struct secpolicy *sp)
1974 {
1975 struct sadb_x_policy *xpl;
1976 int tlen;
1977 char *p;
1978 struct mbuf *m;
1979
1980 KASSERT(sp != NULL);
1981
1982 tlen = key_getspreqmsglen(sp);
1983
1984 m = key_alloc_mbuf(tlen);
1985 if (!m || m->m_next) { /*XXX*/
1986 if (m)
1987 m_freem(m);
1988 return NULL;
1989 }
1990
1991 m->m_len = tlen;
1992 m->m_next = NULL;
1993 xpl = mtod(m, struct sadb_x_policy *);
1994 memset(xpl, 0, tlen);
1995
1996 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1997 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1998 xpl->sadb_x_policy_type = sp->policy;
1999 xpl->sadb_x_policy_dir = sp->spidx.dir;
2000 xpl->sadb_x_policy_id = sp->id;
2001 p = (char *)xpl + sizeof(*xpl);
2002
2003 /* if is the policy for ipsec ? */
2004 if (sp->policy == IPSEC_POLICY_IPSEC) {
2005 struct sadb_x_ipsecrequest *xisr;
2006 struct ipsecrequest *isr;
2007
2008 for (isr = sp->req; isr != NULL; isr = isr->next) {
2009
2010 xisr = (struct sadb_x_ipsecrequest *)p;
2011
2012 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
2013 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
2014 xisr->sadb_x_ipsecrequest_level = isr->level;
2015 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
2016
2017 p += sizeof(*xisr);
2018 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
2019 p += isr->saidx.src.sa.sa_len;
2020 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
2021 p += isr->saidx.src.sa.sa_len;
2022
2023 xisr->sadb_x_ipsecrequest_len =
2024 PFKEY_ALIGN8(sizeof(*xisr)
2025 + isr->saidx.src.sa.sa_len
2026 + isr->saidx.dst.sa.sa_len);
2027 }
2028 }
2029
2030 return m;
2031 }
2032
2033 /* m will not be freed nor modified */
2034 static struct mbuf *
2035 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
2036 int ndeep, int nitem, ...)
2037 {
2038 va_list ap;
2039 int idx;
2040 int i;
2041 struct mbuf *result = NULL, *n;
2042 int len;
2043
2044 KASSERT(m != NULL);
2045 KASSERT(mhp != NULL);
2046
2047 va_start(ap, nitem);
2048 for (i = 0; i < nitem; i++) {
2049 idx = va_arg(ap, int);
2050 if (idx < 0 || idx > SADB_EXT_MAX)
2051 goto fail;
2052 /* don't attempt to pull empty extension */
2053 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
2054 continue;
2055 if (idx != SADB_EXT_RESERVED &&
2056 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
2057 continue;
2058
2059 if (idx == SADB_EXT_RESERVED) {
2060 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
2061 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2062 MGETHDR(n, M_DONTWAIT, MT_DATA);
2063 if (!n)
2064 goto fail;
2065 n->m_len = len;
2066 n->m_next = NULL;
2067 m_copydata(m, 0, sizeof(struct sadb_msg),
2068 mtod(n, void *));
2069 } else if (i < ndeep) {
2070 len = mhp->extlen[idx];
2071 n = key_alloc_mbuf(len);
2072 if (!n || n->m_next) { /*XXX*/
2073 if (n)
2074 m_freem(n);
2075 goto fail;
2076 }
2077 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
2078 mtod(n, void *));
2079 } else {
2080 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
2081 M_DONTWAIT);
2082 }
2083 if (n == NULL)
2084 goto fail;
2085
2086 if (result)
2087 m_cat(result, n);
2088 else
2089 result = n;
2090 }
2091 va_end(ap);
2092
2093 if (result && (result->m_flags & M_PKTHDR) != 0) {
2094 result->m_pkthdr.len = 0;
2095 for (n = result; n; n = n->m_next)
2096 result->m_pkthdr.len += n->m_len;
2097 }
2098
2099 return result;
2100
2101 fail:
2102 va_end(ap);
2103 m_freem(result);
2104 return NULL;
2105 }
2106
2107 /*
2108 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2109 * add an entry to SP database, when received
2110 * <base, address(SD), (lifetime(H),) policy>
2111 * from the user(?).
2112 * Adding to SP database,
2113 * and send
2114 * <base, address(SD), (lifetime(H),) policy>
2115 * to the socket which was send.
2116 *
2117 * SPDADD set a unique policy entry.
2118 * SPDSETIDX like SPDADD without a part of policy requests.
2119 * SPDUPDATE replace a unique policy entry.
2120 *
2121 * m will always be freed.
2122 */
2123 static int
2124 key_api_spdadd(struct socket *so, struct mbuf *m,
2125 const struct sadb_msghdr *mhp)
2126 {
2127 const struct sockaddr *src, *dst;
2128 const struct sadb_x_policy *xpl0;
2129 struct sadb_x_policy *xpl;
2130 const struct sadb_lifetime *lft = NULL;
2131 struct secpolicyindex spidx;
2132 struct secpolicy *newsp;
2133 int error;
2134
2135 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2136 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2137 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2138 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2139 return key_senderror(so, m, EINVAL);
2140 }
2141 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2142 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2143 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2144 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2145 return key_senderror(so, m, EINVAL);
2146 }
2147 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2148 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2149 sizeof(struct sadb_lifetime)) {
2150 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2151 return key_senderror(so, m, EINVAL);
2152 }
2153 lft = mhp->ext[SADB_EXT_LIFETIME_HARD];
2154 }
2155
2156 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2157
2158 /* checking the direciton. */
2159 switch (xpl0->sadb_x_policy_dir) {
2160 case IPSEC_DIR_INBOUND:
2161 case IPSEC_DIR_OUTBOUND:
2162 break;
2163 default:
2164 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2165 return key_senderror(so, m, EINVAL);
2166 }
2167
2168 /* check policy */
2169 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2170 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2171 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2172 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2173 return key_senderror(so, m, EINVAL);
2174 }
2175
2176 /* policy requests are mandatory when action is ipsec. */
2177 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2178 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2179 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2180 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2181 return key_senderror(so, m, EINVAL);
2182 }
2183
2184 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2185 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2186
2187 /* sanity check on addr pair */
2188 if (src->sa_family != dst->sa_family)
2189 return key_senderror(so, m, EINVAL);
2190 if (src->sa_len != dst->sa_len)
2191 return key_senderror(so, m, EINVAL);
2192
2193 key_init_spidx_bymsghdr(&spidx, mhp);
2194
2195 /*
2196 * checking there is SP already or not.
2197 * SPDUPDATE doesn't depend on whether there is a SP or not.
2198 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2199 * then error.
2200 */
2201 {
2202 struct secpolicy *sp;
2203
2204 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2205 sp = key_lookup_and_remove_sp(&spidx);
2206 if (sp != NULL)
2207 key_destroy_sp(sp);
2208 } else {
2209 sp = key_getsp(&spidx);
2210 if (sp != NULL) {
2211 KEY_SP_UNREF(&sp);
2212 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2213 return key_senderror(so, m, EEXIST);
2214 }
2215 }
2216 }
2217
2218 /* allocation new SP entry */
2219 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2220 if (newsp == NULL) {
2221 return key_senderror(so, m, error);
2222 }
2223
2224 newsp->id = key_getnewspid();
2225 if (newsp->id == 0) {
2226 kmem_free(newsp, sizeof(*newsp));
2227 return key_senderror(so, m, ENOBUFS);
2228 }
2229
2230 newsp->spidx = spidx;
2231 newsp->created = time_uptime;
2232 newsp->lastused = newsp->created;
2233 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2234 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2235
2236 key_init_sp(newsp);
2237
2238 mutex_enter(&key_spd.lock);
2239 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2240 mutex_exit(&key_spd.lock);
2241
2242 #ifdef notyet
2243 /* delete the entry in key_misc.spacqlist */
2244 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2245 struct secspacq *spacq = key_getspacq(&spidx);
2246 if (spacq != NULL) {
2247 /* reset counter in order to deletion by timehandler. */
2248 spacq->created = time_uptime;
2249 spacq->count = 0;
2250 }
2251 }
2252 #endif
2253
2254 /* Invalidate all cached SPD pointers in the PCBs. */
2255 ipsec_invalpcbcacheall();
2256
2257 #if defined(GATEWAY)
2258 /* Invalidate the ipflow cache, as well. */
2259 ipflow_invalidate_all(0);
2260 #ifdef INET6
2261 if (in6_present)
2262 ip6flow_invalidate_all(0);
2263 #endif /* INET6 */
2264 #endif /* GATEWAY */
2265
2266 key_update_used();
2267
2268 {
2269 struct mbuf *n, *mpolicy;
2270 int off;
2271
2272 /* create new sadb_msg to reply. */
2273 if (lft) {
2274 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2275 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2276 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2277 } else {
2278 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2279 SADB_X_EXT_POLICY,
2280 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2281 }
2282 if (!n)
2283 return key_senderror(so, m, ENOBUFS);
2284
2285 n = key_fill_replymsg(n, 0);
2286 if (n == NULL)
2287 return key_senderror(so, m, ENOBUFS);
2288
2289 off = 0;
2290 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2291 sizeof(*xpl), &off);
2292 if (mpolicy == NULL) {
2293 /* n is already freed */
2294 return key_senderror(so, m, ENOBUFS);
2295 }
2296 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2297 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2298 m_freem(n);
2299 return key_senderror(so, m, EINVAL);
2300 }
2301 xpl->sadb_x_policy_id = newsp->id;
2302
2303 m_freem(m);
2304 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2305 }
2306 }
2307
2308 /*
2309 * get new policy id.
2310 * OUT:
2311 * 0: failure.
2312 * others: success.
2313 */
2314 static u_int32_t
2315 key_getnewspid(void)
2316 {
2317 u_int32_t newid = 0;
2318 int count = key_spi_trycnt; /* XXX */
2319 struct secpolicy *sp;
2320
2321 /* when requesting to allocate spi ranged */
2322 while (count--) {
2323 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2324
2325 sp = key_getspbyid(newid);
2326 if (sp == NULL)
2327 break;
2328
2329 KEY_SP_UNREF(&sp);
2330 }
2331
2332 if (count == 0 || newid == 0) {
2333 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2334 return 0;
2335 }
2336
2337 return newid;
2338 }
2339
2340 /*
2341 * SADB_SPDDELETE processing
2342 * receive
2343 * <base, address(SD), policy(*)>
2344 * from the user(?), and set SADB_SASTATE_DEAD,
2345 * and send,
2346 * <base, address(SD), policy(*)>
2347 * to the ikmpd.
2348 * policy(*) including direction of policy.
2349 *
2350 * m will always be freed.
2351 */
2352 static int
2353 key_api_spddelete(struct socket *so, struct mbuf *m,
2354 const struct sadb_msghdr *mhp)
2355 {
2356 struct sadb_x_policy *xpl0;
2357 struct secpolicyindex spidx;
2358 struct secpolicy *sp;
2359
2360 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2361 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2362 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2363 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2364 return key_senderror(so, m, EINVAL);
2365 }
2366 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2367 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2368 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2369 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2370 return key_senderror(so, m, EINVAL);
2371 }
2372
2373 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2374
2375 /* checking the directon. */
2376 switch (xpl0->sadb_x_policy_dir) {
2377 case IPSEC_DIR_INBOUND:
2378 case IPSEC_DIR_OUTBOUND:
2379 break;
2380 default:
2381 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2382 return key_senderror(so, m, EINVAL);
2383 }
2384
2385 /* make secindex */
2386 key_init_spidx_bymsghdr(&spidx, mhp);
2387
2388 /* Is there SP in SPD ? */
2389 sp = key_lookup_and_remove_sp(&spidx);
2390 if (sp == NULL) {
2391 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2392 return key_senderror(so, m, EINVAL);
2393 }
2394
2395 /* save policy id to buffer to be returned. */
2396 xpl0->sadb_x_policy_id = sp->id;
2397
2398 key_destroy_sp(sp);
2399
2400 /* We're deleting policy; no need to invalidate the ipflow cache. */
2401
2402 {
2403 struct mbuf *n;
2404
2405 /* create new sadb_msg to reply. */
2406 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2407 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2408 if (!n)
2409 return key_senderror(so, m, ENOBUFS);
2410
2411 n = key_fill_replymsg(n, 0);
2412 if (n == NULL)
2413 return key_senderror(so, m, ENOBUFS);
2414
2415 m_freem(m);
2416 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2417 }
2418 }
2419
2420 static struct mbuf *
2421 key_alloc_mbuf_simple(int len, int mflag)
2422 {
2423 struct mbuf *n;
2424
2425 MGETHDR(n, mflag, MT_DATA);
2426 if (n && len > MHLEN) {
2427 MCLGET(n, mflag);
2428 if ((n->m_flags & M_EXT) == 0) {
2429 m_freem(n);
2430 n = NULL;
2431 }
2432 }
2433 return n;
2434 }
2435
2436 /*
2437 * SADB_SPDDELETE2 processing
2438 * receive
2439 * <base, policy(*)>
2440 * from the user(?), and set SADB_SASTATE_DEAD,
2441 * and send,
2442 * <base, policy(*)>
2443 * to the ikmpd.
2444 * policy(*) including direction of policy.
2445 *
2446 * m will always be freed.
2447 */
2448 static int
2449 key_api_spddelete2(struct socket *so, struct mbuf *m,
2450 const struct sadb_msghdr *mhp)
2451 {
2452 u_int32_t id;
2453 struct secpolicy *sp;
2454 const struct sadb_x_policy *xpl;
2455
2456 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2457 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2458 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2459 return key_senderror(so, m, EINVAL);
2460 }
2461
2462 xpl = mhp->ext[SADB_X_EXT_POLICY];
2463 id = xpl->sadb_x_policy_id;
2464
2465 /* Is there SP in SPD ? */
2466 sp = key_lookupbyid_and_remove_sp(id);
2467 if (sp == NULL) {
2468 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2469 return key_senderror(so, m, EINVAL);
2470 }
2471
2472 key_destroy_sp(sp);
2473
2474 /* We're deleting policy; no need to invalidate the ipflow cache. */
2475
2476 {
2477 struct mbuf *n, *nn;
2478 int off, len;
2479
2480 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2481
2482 /* create new sadb_msg to reply. */
2483 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2484
2485 n = key_alloc_mbuf_simple(len, M_DONTWAIT);
2486 if (!n)
2487 return key_senderror(so, m, ENOBUFS);
2488
2489 n->m_len = len;
2490 n->m_next = NULL;
2491 off = 0;
2492
2493 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2494 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2495
2496 KASSERTMSG(off == len, "length inconsistency");
2497
2498 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2499 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2500 if (!n->m_next) {
2501 m_freem(n);
2502 return key_senderror(so, m, ENOBUFS);
2503 }
2504
2505 n->m_pkthdr.len = 0;
2506 for (nn = n; nn; nn = nn->m_next)
2507 n->m_pkthdr.len += nn->m_len;
2508
2509 n = key_fill_replymsg(n, 0);
2510 if (n == NULL)
2511 return key_senderror(so, m, ENOBUFS);
2512
2513 m_freem(m);
2514 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2515 }
2516 }
2517
2518 /*
2519 * SADB_X_GET processing
2520 * receive
2521 * <base, policy(*)>
2522 * from the user(?),
2523 * and send,
2524 * <base, address(SD), policy>
2525 * to the ikmpd.
2526 * policy(*) including direction of policy.
2527 *
2528 * m will always be freed.
2529 */
2530 static int
2531 key_api_spdget(struct socket *so, struct mbuf *m,
2532 const struct sadb_msghdr *mhp)
2533 {
2534 u_int32_t id;
2535 struct secpolicy *sp;
2536 struct mbuf *n;
2537 const struct sadb_x_policy *xpl;
2538
2539 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2540 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2541 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2542 return key_senderror(so, m, EINVAL);
2543 }
2544
2545 xpl = mhp->ext[SADB_X_EXT_POLICY];
2546 id = xpl->sadb_x_policy_id;
2547
2548 /* Is there SP in SPD ? */
2549 sp = key_getspbyid(id);
2550 if (sp == NULL) {
2551 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2552 return key_senderror(so, m, ENOENT);
2553 }
2554
2555 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2556 mhp->msg->sadb_msg_pid);
2557 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2558 if (n != NULL) {
2559 m_freem(m);
2560 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2561 } else
2562 return key_senderror(so, m, ENOBUFS);
2563 }
2564
2565 #ifdef notyet
2566 /*
2567 * SADB_X_SPDACQUIRE processing.
2568 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2569 * send
2570 * <base, policy(*)>
2571 * to KMD, and expect to receive
2572 * <base> with SADB_X_SPDACQUIRE if error occurred,
2573 * or
2574 * <base, policy>
2575 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2576 * policy(*) is without policy requests.
2577 *
2578 * 0 : succeed
2579 * others: error number
2580 */
2581 int
2582 key_spdacquire(const struct secpolicy *sp)
2583 {
2584 struct mbuf *result = NULL, *m;
2585 struct secspacq *newspacq;
2586 int error;
2587
2588 KASSERT(sp != NULL);
2589 KASSERTMSG(sp->req == NULL, "called but there is request");
2590 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2591 "policy mismathed. IPsec is expected");
2592
2593 /* Get an entry to check whether sent message or not. */
2594 newspacq = key_getspacq(&sp->spidx);
2595 if (newspacq != NULL) {
2596 if (key_blockacq_count < newspacq->count) {
2597 /* reset counter and do send message. */
2598 newspacq->count = 0;
2599 } else {
2600 /* increment counter and do nothing. */
2601 newspacq->count++;
2602 return 0;
2603 }
2604 } else {
2605 /* make new entry for blocking to send SADB_ACQUIRE. */
2606 newspacq = key_newspacq(&sp->spidx);
2607 if (newspacq == NULL)
2608 return ENOBUFS;
2609
2610 /* add to key_misc.acqlist */
2611 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2612 }
2613
2614 /* create new sadb_msg to reply. */
2615 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2616 if (!m) {
2617 error = ENOBUFS;
2618 goto fail;
2619 }
2620 result = m;
2621
2622 result->m_pkthdr.len = 0;
2623 for (m = result; m; m = m->m_next)
2624 result->m_pkthdr.len += m->m_len;
2625
2626 mtod(result, struct sadb_msg *)->sadb_msg_len =
2627 PFKEY_UNIT64(result->m_pkthdr.len);
2628
2629 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2630
2631 fail:
2632 if (result)
2633 m_freem(result);
2634 return error;
2635 }
2636 #endif /* notyet */
2637
2638 /*
2639 * SADB_SPDFLUSH processing
2640 * receive
2641 * <base>
2642 * from the user, and free all entries in secpctree.
2643 * and send,
2644 * <base>
2645 * to the user.
2646 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2647 *
2648 * m will always be freed.
2649 */
2650 static int
2651 key_api_spdflush(struct socket *so, struct mbuf *m,
2652 const struct sadb_msghdr *mhp)
2653 {
2654 struct sadb_msg *newmsg;
2655 struct secpolicy *sp;
2656 u_int dir;
2657
2658 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2659 return key_senderror(so, m, EINVAL);
2660
2661 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2662 retry:
2663 mutex_enter(&key_spd.lock);
2664 SPLIST_WRITER_FOREACH(sp, dir) {
2665 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2666 key_unlink_sp(sp);
2667 mutex_exit(&key_spd.lock);
2668 key_destroy_sp(sp);
2669 goto retry;
2670 }
2671 mutex_exit(&key_spd.lock);
2672 }
2673
2674 /* We're deleting policy; no need to invalidate the ipflow cache. */
2675
2676 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2677 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2678 return key_senderror(so, m, ENOBUFS);
2679 }
2680
2681 if (m->m_next)
2682 m_freem(m->m_next);
2683 m->m_next = NULL;
2684 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2685 newmsg = mtod(m, struct sadb_msg *);
2686 newmsg->sadb_msg_errno = 0;
2687 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2688
2689 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2690 }
2691
2692 static struct sockaddr key_src = {
2693 .sa_len = 2,
2694 .sa_family = PF_KEY,
2695 };
2696
2697 static struct mbuf *
2698 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2699 {
2700 struct secpolicy *sp;
2701 int cnt;
2702 u_int dir;
2703 struct mbuf *m, *n, *prev;
2704 int totlen;
2705
2706 KASSERT(mutex_owned(&key_spd.lock));
2707
2708 *lenp = 0;
2709
2710 /* search SPD entry and get buffer size. */
2711 cnt = 0;
2712 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2713 SPLIST_WRITER_FOREACH(sp, dir) {
2714 cnt++;
2715 }
2716 }
2717
2718 if (cnt == 0) {
2719 *errorp = ENOENT;
2720 return (NULL);
2721 }
2722
2723 m = NULL;
2724 prev = m;
2725 totlen = 0;
2726 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2727 SPLIST_WRITER_FOREACH(sp, dir) {
2728 --cnt;
2729 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2730
2731 if (!n) {
2732 *errorp = ENOBUFS;
2733 if (m)
2734 m_freem(m);
2735 return (NULL);
2736 }
2737
2738 totlen += n->m_pkthdr.len;
2739 if (!m) {
2740 m = n;
2741 } else {
2742 prev->m_nextpkt = n;
2743 }
2744 prev = n;
2745 }
2746 }
2747
2748 *lenp = totlen;
2749 *errorp = 0;
2750 return (m);
2751 }
2752
2753 /*
2754 * SADB_SPDDUMP processing
2755 * receive
2756 * <base>
2757 * from the user, and dump all SP leaves
2758 * and send,
2759 * <base> .....
2760 * to the ikmpd.
2761 *
2762 * m will always be freed.
2763 */
2764 static int
2765 key_api_spddump(struct socket *so, struct mbuf *m0,
2766 const struct sadb_msghdr *mhp)
2767 {
2768 struct mbuf *n;
2769 int error, len;
2770 int ok;
2771 pid_t pid;
2772
2773 pid = mhp->msg->sadb_msg_pid;
2774 /*
2775 * If the requestor has insufficient socket-buffer space
2776 * for the entire chain, nobody gets any response to the DUMP.
2777 * XXX For now, only the requestor ever gets anything.
2778 * Moreover, if the requestor has any space at all, they receive
2779 * the entire chain, otherwise the request is refused with ENOBUFS.
2780 */
2781 if (sbspace(&so->so_rcv) <= 0) {
2782 return key_senderror(so, m0, ENOBUFS);
2783 }
2784
2785 mutex_enter(&key_spd.lock);
2786 n = key_setspddump_chain(&error, &len, pid);
2787 mutex_exit(&key_spd.lock);
2788
2789 if (n == NULL) {
2790 return key_senderror(so, m0, ENOENT);
2791 }
2792 {
2793 uint64_t *ps = PFKEY_STAT_GETREF();
2794 ps[PFKEY_STAT_IN_TOTAL]++;
2795 ps[PFKEY_STAT_IN_BYTES] += len;
2796 PFKEY_STAT_PUTREF();
2797 }
2798
2799 /*
2800 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2801 * The requestor receives either the entire chain, or an
2802 * error message with ENOBUFS.
2803 */
2804
2805 /*
2806 * sbappendchainwith record takes the chain of entries, one
2807 * packet-record per SPD entry, prepends the key_src sockaddr
2808 * to each packet-record, links the sockaddr mbufs into a new
2809 * list of records, then appends the entire resulting
2810 * list to the requesting socket.
2811 */
2812 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2813 SB_PRIO_ONESHOT_OVERFLOW);
2814
2815 if (!ok) {
2816 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2817 m_freem(n);
2818 return key_senderror(so, m0, ENOBUFS);
2819 }
2820
2821 m_freem(m0);
2822 return error;
2823 }
2824
2825 /*
2826 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2827 */
2828 static int
2829 key_api_nat_map(struct socket *so, struct mbuf *m,
2830 const struct sadb_msghdr *mhp)
2831 {
2832 struct sadb_x_nat_t_type *type;
2833 struct sadb_x_nat_t_port *sport;
2834 struct sadb_x_nat_t_port *dport;
2835 struct sadb_address *iaddr, *raddr;
2836 struct sadb_x_nat_t_frag *frag;
2837
2838 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2839 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2840 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2841 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2842 return key_senderror(so, m, EINVAL);
2843 }
2844 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2845 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2846 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2847 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2848 return key_senderror(so, m, EINVAL);
2849 }
2850
2851 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2852 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2853 IPSECLOG(LOG_DEBUG, "invalid message\n");
2854 return key_senderror(so, m, EINVAL);
2855 }
2856
2857 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2858 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2859 IPSECLOG(LOG_DEBUG, "invalid message\n");
2860 return key_senderror(so, m, EINVAL);
2861 }
2862
2863 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2864 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2865 IPSECLOG(LOG_DEBUG, "invalid message\n");
2866 return key_senderror(so, m, EINVAL);
2867 }
2868
2869 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2870 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2871 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2872 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
2873 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
2874 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2875
2876 /*
2877 * XXX handle that, it should also contain a SA, or anything
2878 * that enable to update the SA information.
2879 */
2880
2881 return 0;
2882 }
2883
2884 static struct mbuf *
2885 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2886 {
2887 struct mbuf *result = NULL, *m;
2888
2889 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2890 key_sp_refcnt(sp));
2891 if (!m)
2892 goto fail;
2893 result = m;
2894
2895 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2896 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2897 if (!m)
2898 goto fail;
2899 m_cat(result, m);
2900
2901 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2902 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2903 if (!m)
2904 goto fail;
2905 m_cat(result, m);
2906
2907 m = key_sp2msg(sp);
2908 if (!m)
2909 goto fail;
2910 m_cat(result, m);
2911
2912 if ((result->m_flags & M_PKTHDR) == 0)
2913 goto fail;
2914
2915 if (result->m_len < sizeof(struct sadb_msg)) {
2916 result = m_pullup(result, sizeof(struct sadb_msg));
2917 if (result == NULL)
2918 goto fail;
2919 }
2920
2921 result->m_pkthdr.len = 0;
2922 for (m = result; m; m = m->m_next)
2923 result->m_pkthdr.len += m->m_len;
2924
2925 mtod(result, struct sadb_msg *)->sadb_msg_len =
2926 PFKEY_UNIT64(result->m_pkthdr.len);
2927
2928 return result;
2929
2930 fail:
2931 m_freem(result);
2932 return NULL;
2933 }
2934
2935 /*
2936 * get PFKEY message length for security policy and request.
2937 */
2938 static u_int
2939 key_getspreqmsglen(const struct secpolicy *sp)
2940 {
2941 u_int tlen;
2942
2943 tlen = sizeof(struct sadb_x_policy);
2944
2945 /* if is the policy for ipsec ? */
2946 if (sp->policy != IPSEC_POLICY_IPSEC)
2947 return tlen;
2948
2949 /* get length of ipsec requests */
2950 {
2951 const struct ipsecrequest *isr;
2952 int len;
2953
2954 for (isr = sp->req; isr != NULL; isr = isr->next) {
2955 len = sizeof(struct sadb_x_ipsecrequest)
2956 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2957
2958 tlen += PFKEY_ALIGN8(len);
2959 }
2960 }
2961
2962 return tlen;
2963 }
2964
2965 /*
2966 * SADB_SPDEXPIRE processing
2967 * send
2968 * <base, address(SD), lifetime(CH), policy>
2969 * to KMD by PF_KEY.
2970 *
2971 * OUT: 0 : succeed
2972 * others : error number
2973 */
2974 static int
2975 key_spdexpire(struct secpolicy *sp)
2976 {
2977 int s;
2978 struct mbuf *result = NULL, *m;
2979 int len;
2980 int error = -1;
2981 struct sadb_lifetime *lt;
2982
2983 /* XXX: Why do we lock ? */
2984 s = splsoftnet(); /*called from softclock()*/
2985
2986 KASSERT(sp != NULL);
2987
2988 /* set msg header */
2989 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2990 if (!m) {
2991 error = ENOBUFS;
2992 goto fail;
2993 }
2994 result = m;
2995
2996 /* create lifetime extension (current and hard) */
2997 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2998 m = key_alloc_mbuf(len);
2999 if (!m || m->m_next) { /*XXX*/
3000 if (m)
3001 m_freem(m);
3002 error = ENOBUFS;
3003 goto fail;
3004 }
3005 memset(mtod(m, void *), 0, len);
3006 lt = mtod(m, struct sadb_lifetime *);
3007 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3008 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3009 lt->sadb_lifetime_allocations = 0;
3010 lt->sadb_lifetime_bytes = 0;
3011 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
3012 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
3013 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
3014 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3015 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
3016 lt->sadb_lifetime_allocations = 0;
3017 lt->sadb_lifetime_bytes = 0;
3018 lt->sadb_lifetime_addtime = sp->lifetime;
3019 lt->sadb_lifetime_usetime = sp->validtime;
3020 m_cat(result, m);
3021
3022 /* set sadb_address for source */
3023 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
3024 sp->spidx.prefs, sp->spidx.ul_proto);
3025 if (!m) {
3026 error = ENOBUFS;
3027 goto fail;
3028 }
3029 m_cat(result, m);
3030
3031 /* set sadb_address for destination */
3032 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
3033 sp->spidx.prefd, sp->spidx.ul_proto);
3034 if (!m) {
3035 error = ENOBUFS;
3036 goto fail;
3037 }
3038 m_cat(result, m);
3039
3040 /* set secpolicy */
3041 m = key_sp2msg(sp);
3042 if (!m) {
3043 error = ENOBUFS;
3044 goto fail;
3045 }
3046 m_cat(result, m);
3047
3048 if ((result->m_flags & M_PKTHDR) == 0) {
3049 error = EINVAL;
3050 goto fail;
3051 }
3052
3053 if (result->m_len < sizeof(struct sadb_msg)) {
3054 result = m_pullup(result, sizeof(struct sadb_msg));
3055 if (result == NULL) {
3056 error = ENOBUFS;
3057 goto fail;
3058 }
3059 }
3060
3061 result->m_pkthdr.len = 0;
3062 for (m = result; m; m = m->m_next)
3063 result->m_pkthdr.len += m->m_len;
3064
3065 mtod(result, struct sadb_msg *)->sadb_msg_len =
3066 PFKEY_UNIT64(result->m_pkthdr.len);
3067
3068 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
3069
3070 fail:
3071 if (result)
3072 m_freem(result);
3073 splx(s);
3074 return error;
3075 }
3076
3077 /* %%% SAD management */
3078 /*
3079 * allocating a memory for new SA head, and copy from the values of mhp.
3080 * OUT: NULL : failure due to the lack of memory.
3081 * others : pointer to new SA head.
3082 */
3083 static struct secashead *
3084 key_newsah(const struct secasindex *saidx)
3085 {
3086 struct secashead *newsah;
3087 int i;
3088
3089 KASSERT(saidx != NULL);
3090
3091 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
3092 for (i = 0; i < __arraycount(newsah->savlist); i++)
3093 PSLIST_INIT(&newsah->savlist[i]);
3094 newsah->saidx = *saidx;
3095
3096 localcount_init(&newsah->localcount);
3097 /* Take a reference for the caller */
3098 localcount_acquire(&newsah->localcount);
3099
3100 /* Add to the sah list */
3101 SAHLIST_ENTRY_INIT(newsah);
3102 newsah->state = SADB_SASTATE_MATURE;
3103 mutex_enter(&key_sad.lock);
3104 SAHLIST_WRITER_INSERT_HEAD(newsah);
3105 mutex_exit(&key_sad.lock);
3106
3107 return newsah;
3108 }
3109
3110 static bool
3111 key_sah_has_sav(struct secashead *sah)
3112 {
3113 u_int state;
3114
3115 KASSERT(mutex_owned(&key_sad.lock));
3116
3117 SASTATE_ANY_FOREACH(state) {
3118 if (!SAVLIST_WRITER_EMPTY(sah, state))
3119 return true;
3120 }
3121
3122 return false;
3123 }
3124
3125 static void
3126 key_unlink_sah(struct secashead *sah)
3127 {
3128
3129 KASSERT(!cpu_softintr_p());
3130 KASSERT(mutex_owned(&key_sad.lock));
3131 KASSERT(sah->state == SADB_SASTATE_DEAD);
3132
3133 /* Remove from the sah list */
3134 SAHLIST_WRITER_REMOVE(sah);
3135
3136 #ifdef NET_MPSAFE
3137 KASSERT(mutex_ownable(softnet_lock));
3138 key_sad_pserialize_perform();
3139 #endif
3140
3141 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3142 }
3143
3144 static void
3145 key_destroy_sah(struct secashead *sah)
3146 {
3147
3148 rtcache_free(&sah->sa_route);
3149
3150 SAHLIST_ENTRY_DESTROY(sah);
3151 localcount_fini(&sah->localcount);
3152
3153 if (sah->idents != NULL)
3154 kmem_free(sah->idents, sah->idents_len);
3155 if (sah->identd != NULL)
3156 kmem_free(sah->identd, sah->identd_len);
3157
3158 kmem_free(sah, sizeof(*sah));
3159 }
3160
3161 /*
3162 * allocating a new SA with LARVAL state.
3163 * key_api_add() and key_api_getspi() call,
3164 * and copy the values of mhp into new buffer.
3165 * When SAD message type is GETSPI:
3166 * to set sequence number from acq_seq++,
3167 * to set zero to SPI.
3168 * not to call key_setsava().
3169 * OUT: NULL : fail
3170 * others : pointer to new secasvar.
3171 *
3172 * does not modify mbuf. does not free mbuf on error.
3173 */
3174 static struct secasvar *
3175 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3176 int *errp, const char* where, int tag)
3177 {
3178 struct secasvar *newsav;
3179 const struct sadb_sa *xsa;
3180
3181 KASSERT(!cpu_softintr_p());
3182 KASSERT(m != NULL);
3183 KASSERT(mhp != NULL);
3184 KASSERT(mhp->msg != NULL);
3185
3186 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3187
3188 switch (mhp->msg->sadb_msg_type) {
3189 case SADB_GETSPI:
3190 newsav->spi = 0;
3191
3192 #ifdef IPSEC_DOSEQCHECK
3193 /* sync sequence number */
3194 if (mhp->msg->sadb_msg_seq == 0)
3195 newsav->seq =
3196 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3197 else
3198 #endif
3199 newsav->seq = mhp->msg->sadb_msg_seq;
3200 break;
3201
3202 case SADB_ADD:
3203 /* sanity check */
3204 if (mhp->ext[SADB_EXT_SA] == NULL) {
3205 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3206 *errp = EINVAL;
3207 goto error;
3208 }
3209 xsa = mhp->ext[SADB_EXT_SA];
3210 newsav->spi = xsa->sadb_sa_spi;
3211 newsav->seq = mhp->msg->sadb_msg_seq;
3212 break;
3213 default:
3214 *errp = EINVAL;
3215 goto error;
3216 }
3217
3218 /* copy sav values */
3219 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3220 *errp = key_setsaval(newsav, m, mhp);
3221 if (*errp)
3222 goto error;
3223 } else {
3224 /* We don't allow lft_c to be NULL */
3225 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3226 KM_SLEEP);
3227 }
3228
3229 /* reset created */
3230 newsav->created = time_uptime;
3231 newsav->pid = mhp->msg->sadb_msg_pid;
3232
3233 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3234 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3235 return newsav;
3236
3237 error:
3238 KASSERT(*errp != 0);
3239 kmem_free(newsav, sizeof(*newsav));
3240 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3241 "DP from %s:%u return SA:NULL\n", where, tag);
3242 return NULL;
3243 }
3244
3245
3246 static void
3247 key_clear_xform(struct secasvar *sav)
3248 {
3249
3250 /*
3251 * Cleanup xform state. Note that zeroize'ing causes the
3252 * keys to be cleared; otherwise we must do it ourself.
3253 */
3254 if (sav->tdb_xform != NULL) {
3255 sav->tdb_xform->xf_zeroize(sav);
3256 sav->tdb_xform = NULL;
3257 } else {
3258 if (sav->key_auth != NULL)
3259 explicit_memset(_KEYBUF(sav->key_auth), 0,
3260 _KEYLEN(sav->key_auth));
3261 if (sav->key_enc != NULL)
3262 explicit_memset(_KEYBUF(sav->key_enc), 0,
3263 _KEYLEN(sav->key_enc));
3264 }
3265 }
3266
3267 /*
3268 * free() SA variable entry.
3269 */
3270 static void
3271 key_delsav(struct secasvar *sav)
3272 {
3273
3274 key_clear_xform(sav);
3275 key_freesaval(sav);
3276 kmem_free(sav, sizeof(*sav));
3277 }
3278
3279 /*
3280 * Must be called in a pserialize read section. A held sah
3281 * must be released by key_sah_unref after use.
3282 */
3283 static void
3284 key_sah_ref(struct secashead *sah)
3285 {
3286
3287 localcount_acquire(&sah->localcount);
3288 }
3289
3290 /*
3291 * Must be called without holding key_sad.lock because the lock
3292 * would be held in localcount_release.
3293 */
3294 static void
3295 key_sah_unref(struct secashead *sah)
3296 {
3297
3298 KDASSERT(mutex_ownable(&key_sad.lock));
3299
3300 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3301 }
3302
3303 /*
3304 * Search SAD and return sah. Must be called in a pserialize
3305 * read section.
3306 * OUT:
3307 * NULL : not found
3308 * others : found, pointer to a SA.
3309 */
3310 static struct secashead *
3311 key_getsah(const struct secasindex *saidx, int flag)
3312 {
3313 struct secashead *sah;
3314
3315 SAHLIST_READER_FOREACH(sah) {
3316 if (sah->state == SADB_SASTATE_DEAD)
3317 continue;
3318 if (key_saidx_match(&sah->saidx, saidx, flag))
3319 return sah;
3320 }
3321
3322 return NULL;
3323 }
3324
3325 /*
3326 * Search SAD and return sah. If sah is returned, the caller must call
3327 * key_sah_unref to releaset a reference.
3328 * OUT:
3329 * NULL : not found
3330 * others : found, pointer to a SA.
3331 */
3332 static struct secashead *
3333 key_getsah_ref(const struct secasindex *saidx, int flag)
3334 {
3335 struct secashead *sah;
3336 int s;
3337
3338 s = pserialize_read_enter();
3339 sah = key_getsah(saidx, flag);
3340 if (sah != NULL)
3341 key_sah_ref(sah);
3342 pserialize_read_exit(s);
3343
3344 return sah;
3345 }
3346
3347 /*
3348 * check not to be duplicated SPI.
3349 * NOTE: this function is too slow due to searching all SAD.
3350 * OUT:
3351 * NULL : not found
3352 * others : found, pointer to a SA.
3353 */
3354 static bool
3355 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3356 {
3357 struct secashead *sah;
3358 struct secasvar *sav;
3359 int s;
3360
3361 /* check address family */
3362 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3363 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3364 return false;
3365 }
3366
3367 /* check all SAD */
3368 s = pserialize_read_enter();
3369 SAHLIST_READER_FOREACH(sah) {
3370 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3371 continue;
3372 sav = key_getsavbyspi(sah, spi);
3373 if (sav != NULL) {
3374 pserialize_read_exit(s);
3375 KEY_SA_UNREF(&sav);
3376 return true;
3377 }
3378 }
3379 pserialize_read_exit(s);
3380
3381 return false;
3382 }
3383
3384 /*
3385 * search SAD litmited alive SA, protocol, SPI.
3386 * OUT:
3387 * NULL : not found
3388 * others : found, pointer to a SA.
3389 */
3390 static struct secasvar *
3391 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3392 {
3393 struct secasvar *sav = NULL;
3394 u_int state;
3395 int s;
3396
3397 /* search all status */
3398 s = pserialize_read_enter();
3399 SASTATE_ALIVE_FOREACH(state) {
3400 SAVLIST_READER_FOREACH(sav, sah, state) {
3401 /* sanity check */
3402 if (sav->state != state) {
3403 IPSECLOG(LOG_DEBUG,
3404 "invalid sav->state (queue: %d SA: %d)\n",
3405 state, sav->state);
3406 continue;
3407 }
3408
3409 if (sav->spi == spi) {
3410 KEY_SA_REF(sav);
3411 goto out;
3412 }
3413 }
3414 }
3415 out:
3416 pserialize_read_exit(s);
3417
3418 return sav;
3419 }
3420
3421 /*
3422 * Free allocated data to member variables of sav:
3423 * sav->replay, sav->key_* and sav->lft_*.
3424 */
3425 static void
3426 key_freesaval(struct secasvar *sav)
3427 {
3428
3429 KASSERT(key_sa_refcnt(sav) == 0);
3430
3431 if (sav->replay != NULL)
3432 kmem_intr_free(sav->replay, sav->replay_len);
3433 if (sav->key_auth != NULL)
3434 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3435 if (sav->key_enc != NULL)
3436 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3437 if (sav->lft_c != NULL)
3438 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3439 if (sav->lft_h != NULL)
3440 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3441 if (sav->lft_s != NULL)
3442 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3443 }
3444
3445 /*
3446 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3447 * You must update these if need.
3448 * OUT: 0: success.
3449 * !0: failure.
3450 *
3451 * does not modify mbuf. does not free mbuf on error.
3452 */
3453 static int
3454 key_setsaval(struct secasvar *sav, struct mbuf *m,
3455 const struct sadb_msghdr *mhp)
3456 {
3457 int error = 0;
3458
3459 KASSERT(!cpu_softintr_p());
3460 KASSERT(m != NULL);
3461 KASSERT(mhp != NULL);
3462 KASSERT(mhp->msg != NULL);
3463
3464 /* We shouldn't initialize sav variables while someone uses it. */
3465 KASSERT(key_sa_refcnt(sav) == 0);
3466
3467 /* SA */
3468 if (mhp->ext[SADB_EXT_SA] != NULL) {
3469 const struct sadb_sa *sa0;
3470
3471 sa0 = mhp->ext[SADB_EXT_SA];
3472 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3473 error = EINVAL;
3474 goto fail;
3475 }
3476
3477 sav->alg_auth = sa0->sadb_sa_auth;
3478 sav->alg_enc = sa0->sadb_sa_encrypt;
3479 sav->flags = sa0->sadb_sa_flags;
3480
3481 /* replay window */
3482 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3483 size_t len = sizeof(struct secreplay) +
3484 sa0->sadb_sa_replay;
3485 sav->replay = kmem_zalloc(len, KM_SLEEP);
3486 sav->replay_len = len;
3487 if (sa0->sadb_sa_replay != 0)
3488 sav->replay->bitmap = (char*)(sav->replay+1);
3489 sav->replay->wsize = sa0->sadb_sa_replay;
3490 }
3491 }
3492
3493 /* Authentication keys */
3494 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3495 const struct sadb_key *key0;
3496 int len;
3497
3498 key0 = mhp->ext[SADB_EXT_KEY_AUTH];
3499 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3500
3501 error = 0;
3502 if (len < sizeof(*key0)) {
3503 error = EINVAL;
3504 goto fail;
3505 }
3506 switch (mhp->msg->sadb_msg_satype) {
3507 case SADB_SATYPE_AH:
3508 case SADB_SATYPE_ESP:
3509 case SADB_X_SATYPE_TCPSIGNATURE:
3510 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3511 sav->alg_auth != SADB_X_AALG_NULL)
3512 error = EINVAL;
3513 break;
3514 case SADB_X_SATYPE_IPCOMP:
3515 default:
3516 error = EINVAL;
3517 break;
3518 }
3519 if (error) {
3520 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3521 goto fail;
3522 }
3523
3524 sav->key_auth = key_newbuf(key0, len);
3525 sav->key_auth_len = len;
3526 }
3527
3528 /* Encryption key */
3529 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3530 const struct sadb_key *key0;
3531 int len;
3532
3533 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT];
3534 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3535
3536 error = 0;
3537 if (len < sizeof(*key0)) {
3538 error = EINVAL;
3539 goto fail;
3540 }
3541 switch (mhp->msg->sadb_msg_satype) {
3542 case SADB_SATYPE_ESP:
3543 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3544 sav->alg_enc != SADB_EALG_NULL) {
3545 error = EINVAL;
3546 break;
3547 }
3548 sav->key_enc = key_newbuf(key0, len);
3549 sav->key_enc_len = len;
3550 break;
3551 case SADB_X_SATYPE_IPCOMP:
3552 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3553 error = EINVAL;
3554 sav->key_enc = NULL; /*just in case*/
3555 break;
3556 case SADB_SATYPE_AH:
3557 case SADB_X_SATYPE_TCPSIGNATURE:
3558 default:
3559 error = EINVAL;
3560 break;
3561 }
3562 if (error) {
3563 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3564 goto fail;
3565 }
3566 }
3567
3568 /* set iv */
3569 sav->ivlen = 0;
3570
3571 switch (mhp->msg->sadb_msg_satype) {
3572 case SADB_SATYPE_AH:
3573 error = xform_init(sav, XF_AH);
3574 break;
3575 case SADB_SATYPE_ESP:
3576 error = xform_init(sav, XF_ESP);
3577 break;
3578 case SADB_X_SATYPE_IPCOMP:
3579 error = xform_init(sav, XF_IPCOMP);
3580 break;
3581 case SADB_X_SATYPE_TCPSIGNATURE:
3582 error = xform_init(sav, XF_TCPSIGNATURE);
3583 break;
3584 }
3585 if (error) {
3586 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3587 mhp->msg->sadb_msg_satype);
3588 goto fail;
3589 }
3590
3591 /* reset created */
3592 sav->created = time_uptime;
3593
3594 /* make lifetime for CURRENT */
3595 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3596
3597 sav->lft_c->sadb_lifetime_len =
3598 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3599 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3600 sav->lft_c->sadb_lifetime_allocations = 0;
3601 sav->lft_c->sadb_lifetime_bytes = 0;
3602 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3603 sav->lft_c->sadb_lifetime_usetime = 0;
3604
3605 /* lifetimes for HARD and SOFT */
3606 {
3607 const struct sadb_lifetime *lft0;
3608
3609 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD];
3610 if (lft0 != NULL) {
3611 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3612 error = EINVAL;
3613 goto fail;
3614 }
3615 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3616 }
3617
3618 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT];
3619 if (lft0 != NULL) {
3620 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3621 error = EINVAL;
3622 goto fail;
3623 }
3624 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3625 /* to be initialize ? */
3626 }
3627 }
3628
3629 return 0;
3630
3631 fail:
3632 key_clear_xform(sav);
3633 key_freesaval(sav);
3634
3635 return error;
3636 }
3637
3638 /*
3639 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3640 * OUT: 0: valid
3641 * other: errno
3642 */
3643 static int
3644 key_init_xform(struct secasvar *sav)
3645 {
3646 int error;
3647
3648 /* We shouldn't initialize sav variables while someone uses it. */
3649 KASSERT(key_sa_refcnt(sav) == 0);
3650
3651 /* check SPI value */
3652 switch (sav->sah->saidx.proto) {
3653 case IPPROTO_ESP:
3654 case IPPROTO_AH:
3655 if (ntohl(sav->spi) <= 255) {
3656 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3657 (u_int32_t)ntohl(sav->spi));
3658 return EINVAL;
3659 }
3660 break;
3661 }
3662
3663 /* check satype */
3664 switch (sav->sah->saidx.proto) {
3665 case IPPROTO_ESP:
3666 /* check flags */
3667 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3668 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3669 IPSECLOG(LOG_DEBUG,
3670 "invalid flag (derived) given to old-esp.\n");
3671 return EINVAL;
3672 }
3673 error = xform_init(sav, XF_ESP);
3674 break;
3675 case IPPROTO_AH:
3676 /* check flags */
3677 if (sav->flags & SADB_X_EXT_DERIV) {
3678 IPSECLOG(LOG_DEBUG,
3679 "invalid flag (derived) given to AH SA.\n");
3680 return EINVAL;
3681 }
3682 if (sav->alg_enc != SADB_EALG_NONE) {
3683 IPSECLOG(LOG_DEBUG,
3684 "protocol and algorithm mismated.\n");
3685 return(EINVAL);
3686 }
3687 error = xform_init(sav, XF_AH);
3688 break;
3689 case IPPROTO_IPCOMP:
3690 if (sav->alg_auth != SADB_AALG_NONE) {
3691 IPSECLOG(LOG_DEBUG,
3692 "protocol and algorithm mismated.\n");
3693 return(EINVAL);
3694 }
3695 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3696 && ntohl(sav->spi) >= 0x10000) {
3697 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3698 return(EINVAL);
3699 }
3700 error = xform_init(sav, XF_IPCOMP);
3701 break;
3702 case IPPROTO_TCP:
3703 if (sav->alg_enc != SADB_EALG_NONE) {
3704 IPSECLOG(LOG_DEBUG,
3705 "protocol and algorithm mismated.\n");
3706 return(EINVAL);
3707 }
3708 error = xform_init(sav, XF_TCPSIGNATURE);
3709 break;
3710 default:
3711 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3712 error = EPROTONOSUPPORT;
3713 break;
3714 }
3715
3716 return error;
3717 }
3718
3719 /*
3720 * subroutine for SADB_GET and SADB_DUMP.
3721 */
3722 static struct mbuf *
3723 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3724 u_int32_t seq, u_int32_t pid)
3725 {
3726 struct mbuf *result = NULL, *tres = NULL, *m;
3727 int l = 0;
3728 int i;
3729 void *p;
3730 struct sadb_lifetime lt;
3731 int dumporder[] = {
3732 SADB_EXT_SA, SADB_X_EXT_SA2,
3733 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3734 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3735 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3736 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3737 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3738 SADB_X_EXT_NAT_T_TYPE,
3739 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3740 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3741 SADB_X_EXT_NAT_T_FRAG,
3742
3743 };
3744
3745 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav));
3746 if (m == NULL)
3747 goto fail;
3748 result = m;
3749
3750 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3751 m = NULL;
3752 p = NULL;
3753 switch (dumporder[i]) {
3754 case SADB_EXT_SA:
3755 m = key_setsadbsa(sav);
3756 break;
3757
3758 case SADB_X_EXT_SA2:
3759 m = key_setsadbxsa2(sav->sah->saidx.mode,
3760 sav->replay ? sav->replay->count : 0,
3761 sav->sah->saidx.reqid);
3762 break;
3763
3764 case SADB_EXT_ADDRESS_SRC:
3765 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3766 &sav->sah->saidx.src.sa,
3767 FULLMASK, IPSEC_ULPROTO_ANY);
3768 break;
3769
3770 case SADB_EXT_ADDRESS_DST:
3771 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3772 &sav->sah->saidx.dst.sa,
3773 FULLMASK, IPSEC_ULPROTO_ANY);
3774 break;
3775
3776 case SADB_EXT_KEY_AUTH:
3777 if (!sav->key_auth)
3778 continue;
3779 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3780 p = sav->key_auth;
3781 break;
3782
3783 case SADB_EXT_KEY_ENCRYPT:
3784 if (!sav->key_enc)
3785 continue;
3786 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3787 p = sav->key_enc;
3788 break;
3789
3790 case SADB_EXT_LIFETIME_CURRENT:
3791 KASSERT(sav->lft_c != NULL);
3792 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3793 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3794 lt.sadb_lifetime_addtime =
3795 time_mono_to_wall(lt.sadb_lifetime_addtime);
3796 lt.sadb_lifetime_usetime =
3797 time_mono_to_wall(lt.sadb_lifetime_usetime);
3798 p = <
3799 break;
3800
3801 case SADB_EXT_LIFETIME_HARD:
3802 if (!sav->lft_h)
3803 continue;
3804 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3805 p = sav->lft_h;
3806 break;
3807
3808 case SADB_EXT_LIFETIME_SOFT:
3809 if (!sav->lft_s)
3810 continue;
3811 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3812 p = sav->lft_s;
3813 break;
3814
3815 case SADB_X_EXT_NAT_T_TYPE:
3816 m = key_setsadbxtype(sav->natt_type);
3817 break;
3818
3819 case SADB_X_EXT_NAT_T_DPORT:
3820 if (sav->natt_type == 0)
3821 continue;
3822 m = key_setsadbxport(
3823 key_portfromsaddr(&sav->sah->saidx.dst),
3824 SADB_X_EXT_NAT_T_DPORT);
3825 break;
3826
3827 case SADB_X_EXT_NAT_T_SPORT:
3828 if (sav->natt_type == 0)
3829 continue;
3830 m = key_setsadbxport(
3831 key_portfromsaddr(&sav->sah->saidx.src),
3832 SADB_X_EXT_NAT_T_SPORT);
3833 break;
3834
3835 case SADB_X_EXT_NAT_T_FRAG:
3836 /* don't send frag info if not set */
3837 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3838 continue;
3839 m = key_setsadbxfrag(sav->esp_frag);
3840 break;
3841
3842 case SADB_X_EXT_NAT_T_OAI:
3843 case SADB_X_EXT_NAT_T_OAR:
3844 continue;
3845
3846 case SADB_EXT_ADDRESS_PROXY:
3847 case SADB_EXT_IDENTITY_SRC:
3848 case SADB_EXT_IDENTITY_DST:
3849 /* XXX: should we brought from SPD ? */
3850 case SADB_EXT_SENSITIVITY:
3851 default:
3852 continue;
3853 }
3854
3855 KASSERT(!(m && p));
3856 if (!m && !p)
3857 goto fail;
3858 if (p && tres) {
3859 M_PREPEND(tres, l, M_DONTWAIT);
3860 if (!tres)
3861 goto fail;
3862 memcpy(mtod(tres, void *), p, l);
3863 continue;
3864 }
3865 if (p) {
3866 m = key_alloc_mbuf(l);
3867 if (!m)
3868 goto fail;
3869 m_copyback(m, 0, l, p);
3870 }
3871
3872 if (tres)
3873 m_cat(m, tres);
3874 tres = m;
3875 }
3876
3877 m_cat(result, tres);
3878 tres = NULL; /* avoid free on error below */
3879
3880 if (result->m_len < sizeof(struct sadb_msg)) {
3881 result = m_pullup(result, sizeof(struct sadb_msg));
3882 if (result == NULL)
3883 goto fail;
3884 }
3885
3886 result->m_pkthdr.len = 0;
3887 for (m = result; m; m = m->m_next)
3888 result->m_pkthdr.len += m->m_len;
3889
3890 mtod(result, struct sadb_msg *)->sadb_msg_len =
3891 PFKEY_UNIT64(result->m_pkthdr.len);
3892
3893 return result;
3894
3895 fail:
3896 m_freem(result);
3897 m_freem(tres);
3898 return NULL;
3899 }
3900
3901
3902 /*
3903 * set a type in sadb_x_nat_t_type
3904 */
3905 static struct mbuf *
3906 key_setsadbxtype(u_int16_t type)
3907 {
3908 struct mbuf *m;
3909 size_t len;
3910 struct sadb_x_nat_t_type *p;
3911
3912 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3913
3914 m = key_alloc_mbuf(len);
3915 if (!m || m->m_next) { /*XXX*/
3916 if (m)
3917 m_freem(m);
3918 return NULL;
3919 }
3920
3921 p = mtod(m, struct sadb_x_nat_t_type *);
3922
3923 memset(p, 0, len);
3924 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3925 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3926 p->sadb_x_nat_t_type_type = type;
3927
3928 return m;
3929 }
3930 /*
3931 * set a port in sadb_x_nat_t_port. port is in network order
3932 */
3933 static struct mbuf *
3934 key_setsadbxport(u_int16_t port, u_int16_t type)
3935 {
3936 struct mbuf *m;
3937 size_t len;
3938 struct sadb_x_nat_t_port *p;
3939
3940 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3941
3942 m = key_alloc_mbuf(len);
3943 if (!m || m->m_next) { /*XXX*/
3944 if (m)
3945 m_freem(m);
3946 return NULL;
3947 }
3948
3949 p = mtod(m, struct sadb_x_nat_t_port *);
3950
3951 memset(p, 0, len);
3952 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3953 p->sadb_x_nat_t_port_exttype = type;
3954 p->sadb_x_nat_t_port_port = port;
3955
3956 return m;
3957 }
3958
3959 /*
3960 * set fragmentation info in sadb_x_nat_t_frag
3961 */
3962 static struct mbuf *
3963 key_setsadbxfrag(u_int16_t flen)
3964 {
3965 struct mbuf *m;
3966 size_t len;
3967 struct sadb_x_nat_t_frag *p;
3968
3969 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3970
3971 m = key_alloc_mbuf(len);
3972 if (!m || m->m_next) { /*XXX*/
3973 if (m)
3974 m_freem(m);
3975 return NULL;
3976 }
3977
3978 p = mtod(m, struct sadb_x_nat_t_frag *);
3979
3980 memset(p, 0, len);
3981 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3982 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3983 p->sadb_x_nat_t_frag_fraglen = flen;
3984
3985 return m;
3986 }
3987
3988 /*
3989 * Get port from sockaddr, port is in network order
3990 */
3991 u_int16_t
3992 key_portfromsaddr(const union sockaddr_union *saddr)
3993 {
3994 u_int16_t port;
3995
3996 switch (saddr->sa.sa_family) {
3997 case AF_INET: {
3998 port = saddr->sin.sin_port;
3999 break;
4000 }
4001 #ifdef INET6
4002 case AF_INET6: {
4003 port = saddr->sin6.sin6_port;
4004 break;
4005 }
4006 #endif
4007 default:
4008 printf("%s: unexpected address family\n", __func__);
4009 port = 0;
4010 break;
4011 }
4012
4013 return port;
4014 }
4015
4016
4017 /*
4018 * Set port is struct sockaddr. port is in network order
4019 */
4020 static void
4021 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
4022 {
4023 switch (saddr->sa.sa_family) {
4024 case AF_INET: {
4025 saddr->sin.sin_port = port;
4026 break;
4027 }
4028 #ifdef INET6
4029 case AF_INET6: {
4030 saddr->sin6.sin6_port = port;
4031 break;
4032 }
4033 #endif
4034 default:
4035 printf("%s: unexpected address family %d\n", __func__,
4036 saddr->sa.sa_family);
4037 break;
4038 }
4039
4040 return;
4041 }
4042
4043 /*
4044 * Safety check sa_len
4045 */
4046 static int
4047 key_checksalen(const union sockaddr_union *saddr)
4048 {
4049 switch (saddr->sa.sa_family) {
4050 case AF_INET:
4051 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
4052 return -1;
4053 break;
4054 #ifdef INET6
4055 case AF_INET6:
4056 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
4057 return -1;
4058 break;
4059 #endif
4060 default:
4061 printf("%s: unexpected sa_family %d\n", __func__,
4062 saddr->sa.sa_family);
4063 return -1;
4064 break;
4065 }
4066 return 0;
4067 }
4068
4069
4070 /*
4071 * set data into sadb_msg.
4072 */
4073 static struct mbuf *
4074 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
4075 u_int32_t seq, pid_t pid, u_int16_t reserved)
4076 {
4077 struct mbuf *m;
4078 struct sadb_msg *p;
4079 int len;
4080
4081 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
4082
4083 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
4084
4085 m = key_alloc_mbuf_simple(len, M_DONTWAIT);
4086 if (!m)
4087 return NULL;
4088 m->m_pkthdr.len = m->m_len = len;
4089 m->m_next = NULL;
4090
4091 p = mtod(m, struct sadb_msg *);
4092
4093 memset(p, 0, len);
4094 p->sadb_msg_version = PF_KEY_V2;
4095 p->sadb_msg_type = type;
4096 p->sadb_msg_errno = 0;
4097 p->sadb_msg_satype = satype;
4098 p->sadb_msg_len = PFKEY_UNIT64(tlen);
4099 p->sadb_msg_reserved = reserved;
4100 p->sadb_msg_seq = seq;
4101 p->sadb_msg_pid = (u_int32_t)pid;
4102
4103 return m;
4104 }
4105
4106 /*
4107 * copy secasvar data into sadb_address.
4108 */
4109 static struct mbuf *
4110 key_setsadbsa(struct secasvar *sav)
4111 {
4112 struct mbuf *m;
4113 struct sadb_sa *p;
4114 int len;
4115
4116 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4117 m = key_alloc_mbuf(len);
4118 if (!m || m->m_next) { /*XXX*/
4119 if (m)
4120 m_freem(m);
4121 return NULL;
4122 }
4123
4124 p = mtod(m, struct sadb_sa *);
4125
4126 memset(p, 0, len);
4127 p->sadb_sa_len = PFKEY_UNIT64(len);
4128 p->sadb_sa_exttype = SADB_EXT_SA;
4129 p->sadb_sa_spi = sav->spi;
4130 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4131 p->sadb_sa_state = sav->state;
4132 p->sadb_sa_auth = sav->alg_auth;
4133 p->sadb_sa_encrypt = sav->alg_enc;
4134 p->sadb_sa_flags = sav->flags;
4135
4136 return m;
4137 }
4138
4139 /*
4140 * set data into sadb_address.
4141 */
4142 static struct mbuf *
4143 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4144 u_int8_t prefixlen, u_int16_t ul_proto)
4145 {
4146 struct mbuf *m;
4147 struct sadb_address *p;
4148 size_t len;
4149
4150 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4151 PFKEY_ALIGN8(saddr->sa_len);
4152 m = key_alloc_mbuf(len);
4153 if (!m || m->m_next) { /*XXX*/
4154 if (m)
4155 m_freem(m);
4156 return NULL;
4157 }
4158
4159 p = mtod(m, struct sadb_address *);
4160
4161 memset(p, 0, len);
4162 p->sadb_address_len = PFKEY_UNIT64(len);
4163 p->sadb_address_exttype = exttype;
4164 p->sadb_address_proto = ul_proto;
4165 if (prefixlen == FULLMASK) {
4166 switch (saddr->sa_family) {
4167 case AF_INET:
4168 prefixlen = sizeof(struct in_addr) << 3;
4169 break;
4170 case AF_INET6:
4171 prefixlen = sizeof(struct in6_addr) << 3;
4172 break;
4173 default:
4174 ; /*XXX*/
4175 }
4176 }
4177 p->sadb_address_prefixlen = prefixlen;
4178 p->sadb_address_reserved = 0;
4179
4180 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4181 saddr, saddr->sa_len);
4182
4183 return m;
4184 }
4185
4186 #if 0
4187 /*
4188 * set data into sadb_ident.
4189 */
4190 static struct mbuf *
4191 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4192 void *string, int stringlen, u_int64_t id)
4193 {
4194 struct mbuf *m;
4195 struct sadb_ident *p;
4196 size_t len;
4197
4198 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4199 m = key_alloc_mbuf(len);
4200 if (!m || m->m_next) { /*XXX*/
4201 if (m)
4202 m_freem(m);
4203 return NULL;
4204 }
4205
4206 p = mtod(m, struct sadb_ident *);
4207
4208 memset(p, 0, len);
4209 p->sadb_ident_len = PFKEY_UNIT64(len);
4210 p->sadb_ident_exttype = exttype;
4211 p->sadb_ident_type = idtype;
4212 p->sadb_ident_reserved = 0;
4213 p->sadb_ident_id = id;
4214
4215 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4216 string, stringlen);
4217
4218 return m;
4219 }
4220 #endif
4221
4222 /*
4223 * set data into sadb_x_sa2.
4224 */
4225 static struct mbuf *
4226 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4227 {
4228 struct mbuf *m;
4229 struct sadb_x_sa2 *p;
4230 size_t len;
4231
4232 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4233 m = key_alloc_mbuf(len);
4234 if (!m || m->m_next) { /*XXX*/
4235 if (m)
4236 m_freem(m);
4237 return NULL;
4238 }
4239
4240 p = mtod(m, struct sadb_x_sa2 *);
4241
4242 memset(p, 0, len);
4243 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4244 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4245 p->sadb_x_sa2_mode = mode;
4246 p->sadb_x_sa2_reserved1 = 0;
4247 p->sadb_x_sa2_reserved2 = 0;
4248 p->sadb_x_sa2_sequence = seq;
4249 p->sadb_x_sa2_reqid = reqid;
4250
4251 return m;
4252 }
4253
4254 /*
4255 * set data into sadb_x_policy
4256 */
4257 static struct mbuf *
4258 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id)
4259 {
4260 struct mbuf *m;
4261 struct sadb_x_policy *p;
4262 size_t len;
4263
4264 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4265 m = key_alloc_mbuf(len);
4266 if (!m || m->m_next) { /*XXX*/
4267 if (m)
4268 m_freem(m);
4269 return NULL;
4270 }
4271
4272 p = mtod(m, struct sadb_x_policy *);
4273
4274 memset(p, 0, len);
4275 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4276 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4277 p->sadb_x_policy_type = type;
4278 p->sadb_x_policy_dir = dir;
4279 p->sadb_x_policy_id = id;
4280
4281 return m;
4282 }
4283
4284 /* %%% utilities */
4285 /*
4286 * copy a buffer into the new buffer allocated.
4287 */
4288 static void *
4289 key_newbuf(const void *src, u_int len)
4290 {
4291 void *new;
4292
4293 new = kmem_alloc(len, KM_SLEEP);
4294 memcpy(new, src, len);
4295
4296 return new;
4297 }
4298
4299 /* compare my own address
4300 * OUT: 1: true, i.e. my address.
4301 * 0: false
4302 */
4303 int
4304 key_ismyaddr(const struct sockaddr *sa)
4305 {
4306 #ifdef INET
4307 const struct sockaddr_in *sin;
4308 const struct in_ifaddr *ia;
4309 int s;
4310 #endif
4311
4312 KASSERT(sa != NULL);
4313
4314 switch (sa->sa_family) {
4315 #ifdef INET
4316 case AF_INET:
4317 sin = (const struct sockaddr_in *)sa;
4318 s = pserialize_read_enter();
4319 IN_ADDRLIST_READER_FOREACH(ia) {
4320 if (sin->sin_family == ia->ia_addr.sin_family &&
4321 sin->sin_len == ia->ia_addr.sin_len &&
4322 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4323 {
4324 pserialize_read_exit(s);
4325 return 1;
4326 }
4327 }
4328 pserialize_read_exit(s);
4329 break;
4330 #endif
4331 #ifdef INET6
4332 case AF_INET6:
4333 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4334 #endif
4335 }
4336
4337 return 0;
4338 }
4339
4340 #ifdef INET6
4341 /*
4342 * compare my own address for IPv6.
4343 * 1: ours
4344 * 0: other
4345 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4346 */
4347 #include <netinet6/in6_var.h>
4348
4349 static int
4350 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4351 {
4352 struct in6_ifaddr *ia;
4353 int s;
4354 struct psref psref;
4355 int bound;
4356 int ours = 1;
4357
4358 bound = curlwp_bind();
4359 s = pserialize_read_enter();
4360 IN6_ADDRLIST_READER_FOREACH(ia) {
4361 bool ingroup;
4362
4363 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4364 (const struct sockaddr *)&ia->ia_addr, 0)) {
4365 pserialize_read_exit(s);
4366 goto ours;
4367 }
4368 ia6_acquire(ia, &psref);
4369 pserialize_read_exit(s);
4370
4371 /*
4372 * XXX Multicast
4373 * XXX why do we care about multlicast here while we don't care
4374 * about IPv4 multicast??
4375 * XXX scope
4376 */
4377 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4378 if (ingroup) {
4379 ia6_release(ia, &psref);
4380 goto ours;
4381 }
4382
4383 s = pserialize_read_enter();
4384 ia6_release(ia, &psref);
4385 }
4386 pserialize_read_exit(s);
4387
4388 /* loopback, just for safety */
4389 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4390 goto ours;
4391
4392 ours = 0;
4393 ours:
4394 curlwp_bindx(bound);
4395
4396 return ours;
4397 }
4398 #endif /*INET6*/
4399
4400 /*
4401 * compare two secasindex structure.
4402 * flag can specify to compare 2 saidxes.
4403 * compare two secasindex structure without both mode and reqid.
4404 * don't compare port.
4405 * IN:
4406 * saidx0: source, it can be in SAD.
4407 * saidx1: object.
4408 * OUT:
4409 * 1 : equal
4410 * 0 : not equal
4411 */
4412 static int
4413 key_saidx_match(
4414 const struct secasindex *saidx0,
4415 const struct secasindex *saidx1,
4416 int flag)
4417 {
4418 int chkport;
4419 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4420
4421 KASSERT(saidx0 != NULL);
4422 KASSERT(saidx1 != NULL);
4423
4424 /* sanity */
4425 if (saidx0->proto != saidx1->proto)
4426 return 0;
4427
4428 if (flag == CMP_EXACTLY) {
4429 if (saidx0->mode != saidx1->mode)
4430 return 0;
4431 if (saidx0->reqid != saidx1->reqid)
4432 return 0;
4433 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4434 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4435 return 0;
4436 } else {
4437
4438 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4439 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4440 /*
4441 * If reqid of SPD is non-zero, unique SA is required.
4442 * The result must be of same reqid in this case.
4443 */
4444 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4445 return 0;
4446 }
4447
4448 if (flag == CMP_MODE_REQID) {
4449 if (saidx0->mode != IPSEC_MODE_ANY &&
4450 saidx0->mode != saidx1->mode)
4451 return 0;
4452 }
4453
4454
4455 sa0src = &saidx0->src.sa;
4456 sa0dst = &saidx0->dst.sa;
4457 sa1src = &saidx1->src.sa;
4458 sa1dst = &saidx1->dst.sa;
4459 /*
4460 * If NAT-T is enabled, check ports for tunnel mode.
4461 * Don't do it for transport mode, as there is no
4462 * port information available in the SP.
4463 * Also don't check ports if they are set to zero
4464 * in the SPD: This means we have a non-generated
4465 * SPD which can't know UDP ports.
4466 */
4467 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4468 chkport = PORT_LOOSE;
4469 else
4470 chkport = PORT_NONE;
4471
4472 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4473 return 0;
4474 }
4475 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4476 return 0;
4477 }
4478 }
4479
4480 return 1;
4481 }
4482
4483 /*
4484 * compare two secindex structure exactly.
4485 * IN:
4486 * spidx0: source, it is often in SPD.
4487 * spidx1: object, it is often from PFKEY message.
4488 * OUT:
4489 * 1 : equal
4490 * 0 : not equal
4491 */
4492 static int
4493 key_spidx_match_exactly(
4494 const struct secpolicyindex *spidx0,
4495 const struct secpolicyindex *spidx1)
4496 {
4497
4498 KASSERT(spidx0 != NULL);
4499 KASSERT(spidx1 != NULL);
4500
4501 /* sanity */
4502 if (spidx0->prefs != spidx1->prefs ||
4503 spidx0->prefd != spidx1->prefd ||
4504 spidx0->ul_proto != spidx1->ul_proto)
4505 return 0;
4506
4507 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4508 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4509 }
4510
4511 /*
4512 * compare two secindex structure with mask.
4513 * IN:
4514 * spidx0: source, it is often in SPD.
4515 * spidx1: object, it is often from IP header.
4516 * OUT:
4517 * 1 : equal
4518 * 0 : not equal
4519 */
4520 static int
4521 key_spidx_match_withmask(
4522 const struct secpolicyindex *spidx0,
4523 const struct secpolicyindex *spidx1)
4524 {
4525
4526 KASSERT(spidx0 != NULL);
4527 KASSERT(spidx1 != NULL);
4528
4529 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4530 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4531 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4532 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4533 return 0;
4534
4535 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4536 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4537 spidx0->ul_proto != spidx1->ul_proto)
4538 return 0;
4539
4540 switch (spidx0->src.sa.sa_family) {
4541 case AF_INET:
4542 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4543 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4544 return 0;
4545 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4546 &spidx1->src.sin.sin_addr, spidx0->prefs))
4547 return 0;
4548 break;
4549 case AF_INET6:
4550 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4551 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4552 return 0;
4553 /*
4554 * scope_id check. if sin6_scope_id is 0, we regard it
4555 * as a wildcard scope, which matches any scope zone ID.
4556 */
4557 if (spidx0->src.sin6.sin6_scope_id &&
4558 spidx1->src.sin6.sin6_scope_id &&
4559 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4560 return 0;
4561 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4562 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4563 return 0;
4564 break;
4565 default:
4566 /* XXX */
4567 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4568 return 0;
4569 break;
4570 }
4571
4572 switch (spidx0->dst.sa.sa_family) {
4573 case AF_INET:
4574 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4575 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4576 return 0;
4577 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4578 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4579 return 0;
4580 break;
4581 case AF_INET6:
4582 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4583 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4584 return 0;
4585 /*
4586 * scope_id check. if sin6_scope_id is 0, we regard it
4587 * as a wildcard scope, which matches any scope zone ID.
4588 */
4589 if (spidx0->src.sin6.sin6_scope_id &&
4590 spidx1->src.sin6.sin6_scope_id &&
4591 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4592 return 0;
4593 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4594 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4595 return 0;
4596 break;
4597 default:
4598 /* XXX */
4599 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4600 return 0;
4601 break;
4602 }
4603
4604 /* XXX Do we check other field ? e.g. flowinfo */
4605
4606 return 1;
4607 }
4608
4609 /* returns 0 on match */
4610 static int
4611 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4612 {
4613 switch (howport) {
4614 case PORT_NONE:
4615 return 0;
4616 case PORT_LOOSE:
4617 if (port1 == 0 || port2 == 0)
4618 return 0;
4619 /*FALLTHROUGH*/
4620 case PORT_STRICT:
4621 if (port1 != port2) {
4622 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4623 "port fail %d != %d\n", port1, port2);
4624 return 1;
4625 }
4626 return 0;
4627 default:
4628 KASSERT(0);
4629 return 1;
4630 }
4631 }
4632
4633 /* returns 1 on match */
4634 static int
4635 key_sockaddr_match(
4636 const struct sockaddr *sa1,
4637 const struct sockaddr *sa2,
4638 int howport)
4639 {
4640 const struct sockaddr_in *sin1, *sin2;
4641 const struct sockaddr_in6 *sin61, *sin62;
4642 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
4643
4644 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4645 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4646 "fam/len fail %d != %d || %d != %d\n",
4647 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4648 sa2->sa_len);
4649 return 0;
4650 }
4651
4652 switch (sa1->sa_family) {
4653 case AF_INET:
4654 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4655 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4656 "len fail %d != %zu\n",
4657 sa1->sa_len, sizeof(struct sockaddr_in));
4658 return 0;
4659 }
4660 sin1 = (const struct sockaddr_in *)sa1;
4661 sin2 = (const struct sockaddr_in *)sa2;
4662 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4663 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4664 "addr fail %s != %s\n",
4665 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4666 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
4667 return 0;
4668 }
4669 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4670 return 0;
4671 }
4672 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4673 "addr success %s[%d] == %s[%d]\n",
4674 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4675 sin1->sin_port,
4676 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
4677 sin2->sin_port);
4678 break;
4679 case AF_INET6:
4680 sin61 = (const struct sockaddr_in6 *)sa1;
4681 sin62 = (const struct sockaddr_in6 *)sa2;
4682 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4683 return 0; /*EINVAL*/
4684
4685 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4686 return 0;
4687 }
4688 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4689 return 0;
4690 }
4691 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4692 return 0;
4693 }
4694 break;
4695 default:
4696 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4697 return 0;
4698 break;
4699 }
4700
4701 return 1;
4702 }
4703
4704 /*
4705 * compare two buffers with mask.
4706 * IN:
4707 * addr1: source
4708 * addr2: object
4709 * bits: Number of bits to compare
4710 * OUT:
4711 * 1 : equal
4712 * 0 : not equal
4713 */
4714 static int
4715 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4716 {
4717 const unsigned char *p1 = a1;
4718 const unsigned char *p2 = a2;
4719
4720 /* XXX: This could be considerably faster if we compare a word
4721 * at a time, but it is complicated on LSB Endian machines */
4722
4723 /* Handle null pointers */
4724 if (p1 == NULL || p2 == NULL)
4725 return (p1 == p2);
4726
4727 while (bits >= 8) {
4728 if (*p1++ != *p2++)
4729 return 0;
4730 bits -= 8;
4731 }
4732
4733 if (bits > 0) {
4734 u_int8_t mask = ~((1<<(8-bits))-1);
4735 if ((*p1 & mask) != (*p2 & mask))
4736 return 0;
4737 }
4738 return 1; /* Match! */
4739 }
4740
4741 static void
4742 key_timehandler_spd(time_t now)
4743 {
4744 u_int dir;
4745 struct secpolicy *sp;
4746
4747 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4748 retry:
4749 mutex_enter(&key_spd.lock);
4750 SPLIST_WRITER_FOREACH(sp, dir) {
4751 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4752
4753 if (sp->lifetime == 0 && sp->validtime == 0)
4754 continue;
4755
4756 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4757 (sp->validtime && now - sp->lastused > sp->validtime)) {
4758 key_unlink_sp(sp);
4759 mutex_exit(&key_spd.lock);
4760 key_spdexpire(sp);
4761 key_destroy_sp(sp);
4762 goto retry;
4763 }
4764 }
4765 mutex_exit(&key_spd.lock);
4766 }
4767
4768 retry_socksplist:
4769 mutex_enter(&key_spd.lock);
4770 SOCKSPLIST_WRITER_FOREACH(sp) {
4771 if (sp->state != IPSEC_SPSTATE_DEAD)
4772 continue;
4773
4774 key_unlink_sp(sp);
4775 mutex_exit(&key_spd.lock);
4776 key_destroy_sp(sp);
4777 goto retry_socksplist;
4778 }
4779 mutex_exit(&key_spd.lock);
4780 }
4781
4782 static void
4783 key_timehandler_sad(time_t now)
4784 {
4785 struct secashead *sah;
4786 int s;
4787
4788 restart:
4789 mutex_enter(&key_sad.lock);
4790 SAHLIST_WRITER_FOREACH(sah) {
4791 /* If sah has been dead and has no sav, then delete it */
4792 if (sah->state == SADB_SASTATE_DEAD &&
4793 !key_sah_has_sav(sah)) {
4794 key_unlink_sah(sah);
4795 mutex_exit(&key_sad.lock);
4796 key_destroy_sah(sah);
4797 goto restart;
4798 }
4799 }
4800 mutex_exit(&key_sad.lock);
4801
4802 s = pserialize_read_enter();
4803 SAHLIST_READER_FOREACH(sah) {
4804 struct secasvar *sav;
4805
4806 key_sah_ref(sah);
4807 pserialize_read_exit(s);
4808
4809 /* if LARVAL entry doesn't become MATURE, delete it. */
4810 mutex_enter(&key_sad.lock);
4811 restart_sav_LARVAL:
4812 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4813 if (now - sav->created > key_larval_lifetime) {
4814 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4815 goto restart_sav_LARVAL;
4816 }
4817 }
4818 mutex_exit(&key_sad.lock);
4819
4820 /*
4821 * check MATURE entry to start to send expire message
4822 * whether or not.
4823 */
4824 restart_sav_MATURE:
4825 mutex_enter(&key_sad.lock);
4826 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4827 /* we don't need to check. */
4828 if (sav->lft_s == NULL)
4829 continue;
4830
4831 /* sanity check */
4832 KASSERT(sav->lft_c != NULL);
4833
4834 /* check SOFT lifetime */
4835 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4836 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4837 /*
4838 * check SA to be used whether or not.
4839 * when SA hasn't been used, delete it.
4840 */
4841 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4842 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4843 mutex_exit(&key_sad.lock);
4844 } else {
4845 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4846 mutex_exit(&key_sad.lock);
4847 /*
4848 * XXX If we keep to send expire
4849 * message in the status of
4850 * DYING. Do remove below code.
4851 */
4852 key_expire(sav);
4853 }
4854 goto restart_sav_MATURE;
4855 }
4856 /* check SOFT lifetime by bytes */
4857 /*
4858 * XXX I don't know the way to delete this SA
4859 * when new SA is installed. Caution when it's
4860 * installed too big lifetime by time.
4861 */
4862 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4863 sav->lft_s->sadb_lifetime_bytes <
4864 sav->lft_c->sadb_lifetime_bytes) {
4865
4866 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4867 mutex_exit(&key_sad.lock);
4868 /*
4869 * XXX If we keep to send expire
4870 * message in the status of
4871 * DYING. Do remove below code.
4872 */
4873 key_expire(sav);
4874 goto restart_sav_MATURE;
4875 }
4876 }
4877 mutex_exit(&key_sad.lock);
4878
4879 /* check DYING entry to change status to DEAD. */
4880 mutex_enter(&key_sad.lock);
4881 restart_sav_DYING:
4882 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4883 /* we don't need to check. */
4884 if (sav->lft_h == NULL)
4885 continue;
4886
4887 /* sanity check */
4888 KASSERT(sav->lft_c != NULL);
4889
4890 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4891 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4892 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4893 goto restart_sav_DYING;
4894 }
4895 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4896 else if (sav->lft_s != NULL
4897 && sav->lft_s->sadb_lifetime_addtime != 0
4898 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4899 /*
4900 * XXX: should be checked to be
4901 * installed the valid SA.
4902 */
4903
4904 /*
4905 * If there is no SA then sending
4906 * expire message.
4907 */
4908 key_expire(sav);
4909 }
4910 #endif
4911 /* check HARD lifetime by bytes */
4912 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4913 sav->lft_h->sadb_lifetime_bytes <
4914 sav->lft_c->sadb_lifetime_bytes) {
4915 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4916 goto restart_sav_DYING;
4917 }
4918 }
4919 mutex_exit(&key_sad.lock);
4920
4921 /* delete entry in DEAD */
4922 restart_sav_DEAD:
4923 mutex_enter(&key_sad.lock);
4924 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4925 key_unlink_sav(sav);
4926 mutex_exit(&key_sad.lock);
4927 key_destroy_sav(sav);
4928 goto restart_sav_DEAD;
4929 }
4930 mutex_exit(&key_sad.lock);
4931
4932 s = pserialize_read_enter();
4933 key_sah_unref(sah);
4934 }
4935 pserialize_read_exit(s);
4936 }
4937
4938 static void
4939 key_timehandler_acq(time_t now)
4940 {
4941 #ifndef IPSEC_NONBLOCK_ACQUIRE
4942 struct secacq *acq, *nextacq;
4943
4944 restart:
4945 mutex_enter(&key_misc.lock);
4946 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4947 if (now - acq->created > key_blockacq_lifetime) {
4948 LIST_REMOVE(acq, chain);
4949 mutex_exit(&key_misc.lock);
4950 kmem_free(acq, sizeof(*acq));
4951 goto restart;
4952 }
4953 }
4954 mutex_exit(&key_misc.lock);
4955 #endif
4956 }
4957
4958 static void
4959 key_timehandler_spacq(time_t now)
4960 {
4961 #ifdef notyet
4962 struct secspacq *acq, *nextacq;
4963
4964 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4965 if (now - acq->created > key_blockacq_lifetime) {
4966 KASSERT(__LIST_CHAINED(acq));
4967 LIST_REMOVE(acq, chain);
4968 kmem_free(acq, sizeof(*acq));
4969 }
4970 }
4971 #endif
4972 }
4973
4974 static unsigned int key_timehandler_work_enqueued = 0;
4975
4976 /*
4977 * time handler.
4978 * scanning SPD and SAD to check status for each entries,
4979 * and do to remove or to expire.
4980 */
4981 static void
4982 key_timehandler_work(struct work *wk, void *arg)
4983 {
4984 time_t now = time_uptime;
4985 IPSEC_DECLARE_LOCK_VARIABLE;
4986
4987 /* We can allow enqueuing another work at this point */
4988 atomic_swap_uint(&key_timehandler_work_enqueued, 0);
4989
4990 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4991
4992 key_timehandler_spd(now);
4993 key_timehandler_sad(now);
4994 key_timehandler_acq(now);
4995 key_timehandler_spacq(now);
4996
4997 key_acquire_sendup_pending_mbuf();
4998
4999 /* do exchange to tick time !! */
5000 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
5001
5002 IPSEC_RELEASE_GLOBAL_LOCKS();
5003 return;
5004 }
5005
5006 static void
5007 key_timehandler(void *arg)
5008 {
5009
5010 /* Avoid enqueuing another work when one is already enqueued */
5011 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
5012 return;
5013
5014 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
5015 }
5016
5017 u_long
5018 key_random(void)
5019 {
5020 u_long value;
5021
5022 key_randomfill(&value, sizeof(value));
5023 return value;
5024 }
5025
5026 void
5027 key_randomfill(void *p, size_t l)
5028 {
5029
5030 cprng_fast(p, l);
5031 }
5032
5033 /*
5034 * map SADB_SATYPE_* to IPPROTO_*.
5035 * if satype == SADB_SATYPE then satype is mapped to ~0.
5036 * OUT:
5037 * 0: invalid satype.
5038 */
5039 static u_int16_t
5040 key_satype2proto(u_int8_t satype)
5041 {
5042 switch (satype) {
5043 case SADB_SATYPE_UNSPEC:
5044 return IPSEC_PROTO_ANY;
5045 case SADB_SATYPE_AH:
5046 return IPPROTO_AH;
5047 case SADB_SATYPE_ESP:
5048 return IPPROTO_ESP;
5049 case SADB_X_SATYPE_IPCOMP:
5050 return IPPROTO_IPCOMP;
5051 case SADB_X_SATYPE_TCPSIGNATURE:
5052 return IPPROTO_TCP;
5053 default:
5054 return 0;
5055 }
5056 /* NOTREACHED */
5057 }
5058
5059 /*
5060 * map IPPROTO_* to SADB_SATYPE_*
5061 * OUT:
5062 * 0: invalid protocol type.
5063 */
5064 static u_int8_t
5065 key_proto2satype(u_int16_t proto)
5066 {
5067 switch (proto) {
5068 case IPPROTO_AH:
5069 return SADB_SATYPE_AH;
5070 case IPPROTO_ESP:
5071 return SADB_SATYPE_ESP;
5072 case IPPROTO_IPCOMP:
5073 return SADB_X_SATYPE_IPCOMP;
5074 case IPPROTO_TCP:
5075 return SADB_X_SATYPE_TCPSIGNATURE;
5076 default:
5077 return 0;
5078 }
5079 /* NOTREACHED */
5080 }
5081
5082 static int
5083 key_setsecasidx(int proto, int mode, int reqid,
5084 const struct sockaddr *src, const struct sockaddr *dst,
5085 struct secasindex * saidx)
5086 {
5087 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
5088 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
5089
5090 /* sa len safety check */
5091 if (key_checksalen(src_u) != 0)
5092 return -1;
5093 if (key_checksalen(dst_u) != 0)
5094 return -1;
5095
5096 memset(saidx, 0, sizeof(*saidx));
5097 saidx->proto = proto;
5098 saidx->mode = mode;
5099 saidx->reqid = reqid;
5100 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
5101 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
5102
5103 key_porttosaddr(&((saidx)->src), 0);
5104 key_porttosaddr(&((saidx)->dst), 0);
5105 return 0;
5106 }
5107
5108 static void
5109 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
5110 const struct sadb_msghdr *mhp)
5111 {
5112 const struct sadb_address *src0, *dst0;
5113 const struct sockaddr *src, *dst;
5114 const struct sadb_x_policy *xpl0;
5115
5116 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC];
5117 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST];
5118 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5119 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5120 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
5121
5122 memset(spidx, 0, sizeof(*spidx));
5123 spidx->dir = xpl0->sadb_x_policy_dir;
5124 spidx->prefs = src0->sadb_address_prefixlen;
5125 spidx->prefd = dst0->sadb_address_prefixlen;
5126 spidx->ul_proto = src0->sadb_address_proto;
5127 /* XXX boundary check against sa_len */
5128 memcpy(&spidx->src, src, src->sa_len);
5129 memcpy(&spidx->dst, dst, dst->sa_len);
5130 }
5131
5132 /* %%% PF_KEY */
5133 /*
5134 * SADB_GETSPI processing is to receive
5135 * <base, (SA2), src address, dst address, (SPI range)>
5136 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5137 * tree with the status of LARVAL, and send
5138 * <base, SA(*), address(SD)>
5139 * to the IKMPd.
5140 *
5141 * IN: mhp: pointer to the pointer to each header.
5142 * OUT: NULL if fail.
5143 * other if success, return pointer to the message to send.
5144 */
5145 static int
5146 key_api_getspi(struct socket *so, struct mbuf *m,
5147 const struct sadb_msghdr *mhp)
5148 {
5149 const struct sockaddr *src, *dst;
5150 struct secasindex saidx;
5151 struct secashead *sah;
5152 struct secasvar *newsav;
5153 u_int8_t proto;
5154 u_int32_t spi;
5155 u_int8_t mode;
5156 u_int16_t reqid;
5157 int error;
5158
5159 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5160 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5161 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5162 return key_senderror(so, m, EINVAL);
5163 }
5164 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5165 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5166 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5167 return key_senderror(so, m, EINVAL);
5168 }
5169 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5170 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5171 mode = sa2->sadb_x_sa2_mode;
5172 reqid = sa2->sadb_x_sa2_reqid;
5173 } else {
5174 mode = IPSEC_MODE_ANY;
5175 reqid = 0;
5176 }
5177
5178 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5179 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5180
5181 /* map satype to proto */
5182 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5183 if (proto == 0) {
5184 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5185 return key_senderror(so, m, EINVAL);
5186 }
5187
5188
5189 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5190 if (error != 0)
5191 return key_senderror(so, m, EINVAL);
5192
5193 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5194 if (error != 0)
5195 return key_senderror(so, m, EINVAL);
5196
5197 /* SPI allocation */
5198 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx);
5199 if (spi == 0)
5200 return key_senderror(so, m, EINVAL);
5201
5202 /* get a SA index */
5203 sah = key_getsah_ref(&saidx, CMP_REQID);
5204 if (sah == NULL) {
5205 /* create a new SA index */
5206 sah = key_newsah(&saidx);
5207 if (sah == NULL) {
5208 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5209 return key_senderror(so, m, ENOBUFS);
5210 }
5211 }
5212
5213 /* get a new SA */
5214 /* XXX rewrite */
5215 newsav = KEY_NEWSAV(m, mhp, &error);
5216 if (newsav == NULL) {
5217 key_sah_unref(sah);
5218 /* XXX don't free new SA index allocated in above. */
5219 return key_senderror(so, m, error);
5220 }
5221
5222 /* set spi */
5223 newsav->spi = htonl(spi);
5224
5225 /* Add to sah#savlist */
5226 key_init_sav(newsav);
5227 newsav->sah = sah;
5228 newsav->state = SADB_SASTATE_LARVAL;
5229 mutex_enter(&key_sad.lock);
5230 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5231 mutex_exit(&key_sad.lock);
5232 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5233
5234 key_sah_unref(sah);
5235
5236 #ifndef IPSEC_NONBLOCK_ACQUIRE
5237 /* delete the entry in key_misc.acqlist */
5238 if (mhp->msg->sadb_msg_seq != 0) {
5239 struct secacq *acq;
5240 mutex_enter(&key_misc.lock);
5241 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5242 if (acq != NULL) {
5243 /* reset counter in order to deletion by timehandler. */
5244 acq->created = time_uptime;
5245 acq->count = 0;
5246 }
5247 mutex_exit(&key_misc.lock);
5248 }
5249 #endif
5250
5251 {
5252 struct mbuf *n, *nn;
5253 struct sadb_sa *m_sa;
5254 int off, len;
5255
5256 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5257 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5258
5259 /* create new sadb_msg to reply. */
5260 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5261 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5262
5263 n = key_alloc_mbuf_simple(len, M_DONTWAIT);
5264 if (!n)
5265 return key_senderror(so, m, ENOBUFS);
5266
5267 n->m_len = len;
5268 n->m_next = NULL;
5269 off = 0;
5270
5271 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5272 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5273
5274 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5275 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5276 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5277 m_sa->sadb_sa_spi = htonl(spi);
5278 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5279
5280 KASSERTMSG(off == len, "length inconsistency");
5281
5282 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5283 SADB_EXT_ADDRESS_DST);
5284 if (!n->m_next) {
5285 m_freem(n);
5286 return key_senderror(so, m, ENOBUFS);
5287 }
5288
5289 if (n->m_len < sizeof(struct sadb_msg)) {
5290 n = m_pullup(n, sizeof(struct sadb_msg));
5291 if (n == NULL)
5292 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5293 }
5294
5295 n->m_pkthdr.len = 0;
5296 for (nn = n; nn; nn = nn->m_next)
5297 n->m_pkthdr.len += nn->m_len;
5298
5299 key_fill_replymsg(n, newsav->seq);
5300
5301 m_freem(m);
5302 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5303 }
5304 }
5305
5306 /*
5307 * allocating new SPI
5308 * called by key_api_getspi().
5309 * OUT:
5310 * 0: failure.
5311 * others: success.
5312 */
5313 static u_int32_t
5314 key_do_getnewspi(const struct sadb_spirange *spirange,
5315 const struct secasindex *saidx)
5316 {
5317 u_int32_t newspi;
5318 u_int32_t spmin, spmax;
5319 int count = key_spi_trycnt;
5320
5321 /* set spi range to allocate */
5322 if (spirange != NULL) {
5323 spmin = spirange->sadb_spirange_min;
5324 spmax = spirange->sadb_spirange_max;
5325 } else {
5326 spmin = key_spi_minval;
5327 spmax = key_spi_maxval;
5328 }
5329 /* IPCOMP needs 2-byte SPI */
5330 if (saidx->proto == IPPROTO_IPCOMP) {
5331 u_int32_t t;
5332 if (spmin >= 0x10000)
5333 spmin = 0xffff;
5334 if (spmax >= 0x10000)
5335 spmax = 0xffff;
5336 if (spmin > spmax) {
5337 t = spmin; spmin = spmax; spmax = t;
5338 }
5339 }
5340
5341 if (spmin == spmax) {
5342 if (key_checkspidup(saidx, htonl(spmin))) {
5343 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5344 return 0;
5345 }
5346
5347 count--; /* taking one cost. */
5348 newspi = spmin;
5349
5350 } else {
5351
5352 /* init SPI */
5353 newspi = 0;
5354
5355 /* when requesting to allocate spi ranged */
5356 while (count--) {
5357 /* generate pseudo-random SPI value ranged. */
5358 newspi = spmin + (key_random() % (spmax - spmin + 1));
5359
5360 if (!key_checkspidup(saidx, htonl(newspi)))
5361 break;
5362 }
5363
5364 if (count == 0 || newspi == 0) {
5365 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5366 return 0;
5367 }
5368 }
5369
5370 /* statistics */
5371 keystat.getspi_count =
5372 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5373
5374 return newspi;
5375 }
5376
5377 static int
5378 key_handle_natt_info(struct secasvar *sav,
5379 const struct sadb_msghdr *mhp)
5380 {
5381 const char *msg = "?" ;
5382 struct sadb_x_nat_t_type *type;
5383 struct sadb_x_nat_t_port *sport, *dport;
5384 struct sadb_address *iaddr, *raddr;
5385 struct sadb_x_nat_t_frag *frag;
5386
5387 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5388 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5389 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5390 return 0;
5391
5392 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5393 msg = "TYPE";
5394 goto bad;
5395 }
5396
5397 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5398 msg = "SPORT";
5399 goto bad;
5400 }
5401
5402 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5403 msg = "DPORT";
5404 goto bad;
5405 }
5406
5407 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5408 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5409 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5410 msg = "OAI";
5411 goto bad;
5412 }
5413 }
5414
5415 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5416 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5417 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5418 msg = "OAR";
5419 goto bad;
5420 }
5421 }
5422
5423 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5424 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5425 msg = "FRAG";
5426 goto bad;
5427 }
5428 }
5429
5430 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5431 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5432 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5433 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
5434 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
5435 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5436
5437 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5438 type->sadb_x_nat_t_type_type,
5439 ntohs(sport->sadb_x_nat_t_port_port),
5440 ntohs(dport->sadb_x_nat_t_port_port));
5441
5442 sav->natt_type = type->sadb_x_nat_t_type_type;
5443 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5444 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5445 if (frag)
5446 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5447 else
5448 sav->esp_frag = IP_MAXPACKET;
5449
5450 return 0;
5451 bad:
5452 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5453 __USE(msg);
5454 return -1;
5455 }
5456
5457 /* Just update the IPSEC_NAT_T ports if present */
5458 static int
5459 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5460 const struct sadb_msghdr *mhp)
5461 {
5462 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5463 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5464 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5465 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5466
5467 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5468 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5469 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5470 struct sadb_x_nat_t_type *type;
5471 struct sadb_x_nat_t_port *sport;
5472 struct sadb_x_nat_t_port *dport;
5473
5474 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5475 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5476 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5477 IPSECLOG(LOG_DEBUG, "invalid message\n");
5478 return -1;
5479 }
5480
5481 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5482 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5483 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5484
5485 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5486 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5487
5488 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5489 type->sadb_x_nat_t_type_type,
5490 ntohs(sport->sadb_x_nat_t_port_port),
5491 ntohs(dport->sadb_x_nat_t_port_port));
5492 }
5493
5494 return 0;
5495 }
5496
5497
5498 /*
5499 * SADB_UPDATE processing
5500 * receive
5501 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5502 * key(AE), (identity(SD),) (sensitivity)>
5503 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5504 * and send
5505 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5506 * (identity(SD),) (sensitivity)>
5507 * to the ikmpd.
5508 *
5509 * m will always be freed.
5510 */
5511 static int
5512 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5513 {
5514 struct sadb_sa *sa0;
5515 const struct sockaddr *src, *dst;
5516 struct secasindex saidx;
5517 struct secashead *sah;
5518 struct secasvar *sav, *newsav;
5519 u_int16_t proto;
5520 u_int8_t mode;
5521 u_int16_t reqid;
5522 int error;
5523
5524 /* map satype to proto */
5525 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5526 if (proto == 0) {
5527 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5528 return key_senderror(so, m, EINVAL);
5529 }
5530
5531 if (mhp->ext[SADB_EXT_SA] == NULL ||
5532 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5533 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5534 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5535 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5536 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5537 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5538 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5539 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5540 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5541 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5542 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5543 return key_senderror(so, m, EINVAL);
5544 }
5545 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5546 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5547 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5548 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5549 return key_senderror(so, m, EINVAL);
5550 }
5551 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5552 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5553 mode = sa2->sadb_x_sa2_mode;
5554 reqid = sa2->sadb_x_sa2_reqid;
5555 } else {
5556 mode = IPSEC_MODE_ANY;
5557 reqid = 0;
5558 }
5559 /* XXX boundary checking for other extensions */
5560
5561 sa0 = mhp->ext[SADB_EXT_SA];
5562 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5563 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5564
5565 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5566 if (error != 0)
5567 return key_senderror(so, m, EINVAL);
5568
5569 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5570 if (error != 0)
5571 return key_senderror(so, m, EINVAL);
5572
5573 /* get a SA header */
5574 sah = key_getsah_ref(&saidx, CMP_REQID);
5575 if (sah == NULL) {
5576 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5577 return key_senderror(so, m, ENOENT);
5578 }
5579
5580 /* set spidx if there */
5581 /* XXX rewrite */
5582 error = key_setident(sah, m, mhp);
5583 if (error)
5584 goto error_sah;
5585
5586 /* find a SA with sequence number. */
5587 #ifdef IPSEC_DOSEQCHECK
5588 if (mhp->msg->sadb_msg_seq != 0) {
5589 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5590 if (sav == NULL) {
5591 IPSECLOG(LOG_DEBUG,
5592 "no larval SA with sequence %u exists.\n",
5593 mhp->msg->sadb_msg_seq);
5594 error = ENOENT;
5595 goto error_sah;
5596 }
5597 }
5598 #else
5599 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5600 if (sav == NULL) {
5601 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5602 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5603 error = EINVAL;
5604 goto error_sah;
5605 }
5606 #endif
5607
5608 /* validity check */
5609 if (sav->sah->saidx.proto != proto) {
5610 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5611 sav->sah->saidx.proto, proto);
5612 error = EINVAL;
5613 goto error;
5614 }
5615 #ifdef IPSEC_DOSEQCHECK
5616 if (sav->spi != sa0->sadb_sa_spi) {
5617 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5618 (u_int32_t)ntohl(sav->spi),
5619 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5620 error = EINVAL;
5621 goto error;
5622 }
5623 #endif
5624 if (sav->pid != mhp->msg->sadb_msg_pid) {
5625 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5626 sav->pid, mhp->msg->sadb_msg_pid);
5627 error = EINVAL;
5628 goto error;
5629 }
5630
5631 /*
5632 * Allocate a new SA instead of modifying the existing SA directly
5633 * to avoid race conditions.
5634 */
5635 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5636
5637 /* copy sav values */
5638 newsav->spi = sav->spi;
5639 newsav->seq = sav->seq;
5640 newsav->created = sav->created;
5641 newsav->pid = sav->pid;
5642 newsav->sah = sav->sah;
5643
5644 error = key_setsaval(newsav, m, mhp);
5645 if (error) {
5646 key_delsav(newsav);
5647 goto error;
5648 }
5649
5650 error = key_handle_natt_info(newsav, mhp);
5651 if (error != 0) {
5652 key_delsav(newsav);
5653 goto error;
5654 }
5655
5656 error = key_init_xform(newsav);
5657 if (error != 0) {
5658 key_delsav(newsav);
5659 goto error;
5660 }
5661
5662 /* Add to sah#savlist */
5663 key_init_sav(newsav);
5664 newsav->state = SADB_SASTATE_MATURE;
5665 mutex_enter(&key_sad.lock);
5666 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5667 mutex_exit(&key_sad.lock);
5668 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5669
5670 key_sah_unref(sah);
5671 sah = NULL;
5672
5673 key_destroy_sav_with_ref(sav);
5674 sav = NULL;
5675
5676 {
5677 struct mbuf *n;
5678
5679 /* set msg buf from mhp */
5680 n = key_getmsgbuf_x1(m, mhp);
5681 if (n == NULL) {
5682 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5683 return key_senderror(so, m, ENOBUFS);
5684 }
5685
5686 m_freem(m);
5687 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5688 }
5689 error:
5690 KEY_SA_UNREF(&sav);
5691 error_sah:
5692 key_sah_unref(sah);
5693 return key_senderror(so, m, error);
5694 }
5695
5696 /*
5697 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5698 * only called by key_api_update().
5699 * OUT:
5700 * NULL : not found
5701 * others : found, pointer to a SA.
5702 */
5703 #ifdef IPSEC_DOSEQCHECK
5704 static struct secasvar *
5705 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5706 {
5707 struct secasvar *sav;
5708 u_int state;
5709 int s;
5710
5711 state = SADB_SASTATE_LARVAL;
5712
5713 /* search SAD with sequence number ? */
5714 s = pserialize_read_enter();
5715 SAVLIST_READER_FOREACH(sav, sah, state) {
5716 KEY_CHKSASTATE(state, sav->state);
5717
5718 if (sav->seq == seq) {
5719 SA_ADDREF(sav);
5720 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5721 "DP cause refcnt++:%d SA:%p\n",
5722 key_sa_refcnt(sav), sav);
5723 break;
5724 }
5725 }
5726 pserialize_read_exit(s);
5727
5728 return sav;
5729 }
5730 #endif
5731
5732 /*
5733 * SADB_ADD processing
5734 * add an entry to SA database, when received
5735 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5736 * key(AE), (identity(SD),) (sensitivity)>
5737 * from the ikmpd,
5738 * and send
5739 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5740 * (identity(SD),) (sensitivity)>
5741 * to the ikmpd.
5742 *
5743 * IGNORE identity and sensitivity messages.
5744 *
5745 * m will always be freed.
5746 */
5747 static int
5748 key_api_add(struct socket *so, struct mbuf *m,
5749 const struct sadb_msghdr *mhp)
5750 {
5751 struct sadb_sa *sa0;
5752 const struct sockaddr *src, *dst;
5753 struct secasindex saidx;
5754 struct secashead *sah;
5755 struct secasvar *newsav;
5756 u_int16_t proto;
5757 u_int8_t mode;
5758 u_int16_t reqid;
5759 int error;
5760
5761 /* map satype to proto */
5762 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5763 if (proto == 0) {
5764 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5765 return key_senderror(so, m, EINVAL);
5766 }
5767
5768 if (mhp->ext[SADB_EXT_SA] == NULL ||
5769 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5770 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5771 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5772 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5773 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5774 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5775 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5776 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5777 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5778 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5779 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5780 return key_senderror(so, m, EINVAL);
5781 }
5782 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5783 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5784 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5785 /* XXX need more */
5786 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5787 return key_senderror(so, m, EINVAL);
5788 }
5789 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5790 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5791 mode = sa2->sadb_x_sa2_mode;
5792 reqid = sa2->sadb_x_sa2_reqid;
5793 } else {
5794 mode = IPSEC_MODE_ANY;
5795 reqid = 0;
5796 }
5797
5798 sa0 = mhp->ext[SADB_EXT_SA];
5799 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5800 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5801
5802 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5803 if (error != 0)
5804 return key_senderror(so, m, EINVAL);
5805
5806 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5807 if (error != 0)
5808 return key_senderror(so, m, EINVAL);
5809
5810 /* get a SA header */
5811 sah = key_getsah_ref(&saidx, CMP_REQID);
5812 if (sah == NULL) {
5813 /* create a new SA header */
5814 sah = key_newsah(&saidx);
5815 if (sah == NULL) {
5816 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5817 return key_senderror(so, m, ENOBUFS);
5818 }
5819 }
5820
5821 /* set spidx if there */
5822 /* XXX rewrite */
5823 error = key_setident(sah, m, mhp);
5824 if (error)
5825 goto error;
5826
5827 {
5828 struct secasvar *sav;
5829
5830 /* We can create new SA only if SPI is differenct. */
5831 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5832 if (sav != NULL) {
5833 KEY_SA_UNREF(&sav);
5834 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5835 error = EEXIST;
5836 goto error;
5837 }
5838 }
5839
5840 /* create new SA entry. */
5841 newsav = KEY_NEWSAV(m, mhp, &error);
5842 if (newsav == NULL)
5843 goto error;
5844 newsav->sah = sah;
5845
5846 error = key_handle_natt_info(newsav, mhp);
5847 if (error != 0) {
5848 key_delsav(newsav);
5849 error = EINVAL;
5850 goto error;
5851 }
5852
5853 error = key_init_xform(newsav);
5854 if (error != 0) {
5855 key_delsav(newsav);
5856 goto error;
5857 }
5858
5859 /* Add to sah#savlist */
5860 key_init_sav(newsav);
5861 newsav->state = SADB_SASTATE_MATURE;
5862 mutex_enter(&key_sad.lock);
5863 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5864 mutex_exit(&key_sad.lock);
5865 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5866
5867 key_sah_unref(sah);
5868 sah = NULL;
5869
5870 /*
5871 * don't call key_freesav() here, as we would like to keep the SA
5872 * in the database on success.
5873 */
5874
5875 {
5876 struct mbuf *n;
5877
5878 /* set msg buf from mhp */
5879 n = key_getmsgbuf_x1(m, mhp);
5880 if (n == NULL) {
5881 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5882 return key_senderror(so, m, ENOBUFS);
5883 }
5884
5885 m_freem(m);
5886 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5887 }
5888 error:
5889 key_sah_unref(sah);
5890 return key_senderror(so, m, error);
5891 }
5892
5893 /* m is retained */
5894 static int
5895 key_setident(struct secashead *sah, struct mbuf *m,
5896 const struct sadb_msghdr *mhp)
5897 {
5898 const struct sadb_ident *idsrc, *iddst;
5899 int idsrclen, iddstlen;
5900
5901 KASSERT(!cpu_softintr_p());
5902 KASSERT(sah != NULL);
5903 KASSERT(m != NULL);
5904 KASSERT(mhp != NULL);
5905 KASSERT(mhp->msg != NULL);
5906
5907 /*
5908 * Can be called with an existing sah from key_api_update().
5909 */
5910 if (sah->idents != NULL) {
5911 kmem_free(sah->idents, sah->idents_len);
5912 sah->idents = NULL;
5913 sah->idents_len = 0;
5914 }
5915 if (sah->identd != NULL) {
5916 kmem_free(sah->identd, sah->identd_len);
5917 sah->identd = NULL;
5918 sah->identd_len = 0;
5919 }
5920
5921 /* don't make buffer if not there */
5922 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5923 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5924 sah->idents = NULL;
5925 sah->identd = NULL;
5926 return 0;
5927 }
5928
5929 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5930 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5931 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5932 return EINVAL;
5933 }
5934
5935 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC];
5936 iddst = mhp->ext[SADB_EXT_IDENTITY_DST];
5937 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5938 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5939
5940 /* validity check */
5941 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5942 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5943 return EINVAL;
5944 }
5945
5946 switch (idsrc->sadb_ident_type) {
5947 case SADB_IDENTTYPE_PREFIX:
5948 case SADB_IDENTTYPE_FQDN:
5949 case SADB_IDENTTYPE_USERFQDN:
5950 default:
5951 /* XXX do nothing */
5952 sah->idents = NULL;
5953 sah->identd = NULL;
5954 return 0;
5955 }
5956
5957 /* make structure */
5958 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5959 sah->idents_len = idsrclen;
5960 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5961 sah->identd_len = iddstlen;
5962 memcpy(sah->idents, idsrc, idsrclen);
5963 memcpy(sah->identd, iddst, iddstlen);
5964
5965 return 0;
5966 }
5967
5968 /*
5969 * m will not be freed on return.
5970 * it is caller's responsibility to free the result.
5971 */
5972 static struct mbuf *
5973 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5974 {
5975 struct mbuf *n;
5976
5977 KASSERT(m != NULL);
5978 KASSERT(mhp != NULL);
5979 KASSERT(mhp->msg != NULL);
5980
5981 /* create new sadb_msg to reply. */
5982 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5983 SADB_EXT_SA, SADB_X_EXT_SA2,
5984 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5985 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5986 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5987 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5988 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5989 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5990 if (!n)
5991 return NULL;
5992
5993 if (n->m_len < sizeof(struct sadb_msg)) {
5994 n = m_pullup(n, sizeof(struct sadb_msg));
5995 if (n == NULL)
5996 return NULL;
5997 }
5998 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5999 mtod(n, struct sadb_msg *)->sadb_msg_len =
6000 PFKEY_UNIT64(n->m_pkthdr.len);
6001
6002 return n;
6003 }
6004
6005 static int key_delete_all (struct socket *, struct mbuf *,
6006 const struct sadb_msghdr *, u_int16_t);
6007
6008 /*
6009 * SADB_DELETE processing
6010 * receive
6011 * <base, SA(*), address(SD)>
6012 * from the ikmpd, and set SADB_SASTATE_DEAD,
6013 * and send,
6014 * <base, SA(*), address(SD)>
6015 * to the ikmpd.
6016 *
6017 * m will always be freed.
6018 */
6019 static int
6020 key_api_delete(struct socket *so, struct mbuf *m,
6021 const struct sadb_msghdr *mhp)
6022 {
6023 struct sadb_sa *sa0;
6024 const struct sockaddr *src, *dst;
6025 struct secasindex saidx;
6026 struct secashead *sah;
6027 struct secasvar *sav = NULL;
6028 u_int16_t proto;
6029 int error;
6030
6031 /* map satype to proto */
6032 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6033 if (proto == 0) {
6034 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6035 return key_senderror(so, m, EINVAL);
6036 }
6037
6038 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6039 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6040 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6041 return key_senderror(so, m, EINVAL);
6042 }
6043
6044 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6045 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6046 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6047 return key_senderror(so, m, EINVAL);
6048 }
6049
6050 if (mhp->ext[SADB_EXT_SA] == NULL) {
6051 /*
6052 * Caller wants us to delete all non-LARVAL SAs
6053 * that match the src/dst. This is used during
6054 * IKE INITIAL-CONTACT.
6055 */
6056 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
6057 return key_delete_all(so, m, mhp, proto);
6058 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
6059 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6060 return key_senderror(so, m, EINVAL);
6061 }
6062
6063 sa0 = mhp->ext[SADB_EXT_SA];
6064 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6065 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6066
6067 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6068 if (error != 0)
6069 return key_senderror(so, m, EINVAL);
6070
6071 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6072 if (error != 0)
6073 return key_senderror(so, m, EINVAL);
6074
6075 /* get a SA header */
6076 sah = key_getsah_ref(&saidx, CMP_HEAD);
6077 if (sah != NULL) {
6078 /* get a SA with SPI. */
6079 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6080 key_sah_unref(sah);
6081 }
6082
6083 if (sav == NULL) {
6084 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6085 return key_senderror(so, m, ENOENT);
6086 }
6087
6088 key_destroy_sav_with_ref(sav);
6089 sav = NULL;
6090
6091 {
6092 struct mbuf *n;
6093
6094 /* create new sadb_msg to reply. */
6095 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6096 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6097 if (!n)
6098 return key_senderror(so, m, ENOBUFS);
6099
6100 n = key_fill_replymsg(n, 0);
6101 if (n == NULL)
6102 return key_senderror(so, m, ENOBUFS);
6103
6104 m_freem(m);
6105 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6106 }
6107 }
6108
6109 /*
6110 * delete all SAs for src/dst. Called from key_api_delete().
6111 */
6112 static int
6113 key_delete_all(struct socket *so, struct mbuf *m,
6114 const struct sadb_msghdr *mhp, u_int16_t proto)
6115 {
6116 const struct sockaddr *src, *dst;
6117 struct secasindex saidx;
6118 struct secashead *sah;
6119 struct secasvar *sav;
6120 u_int state;
6121 int error;
6122
6123 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6124 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6125
6126 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6127 if (error != 0)
6128 return key_senderror(so, m, EINVAL);
6129
6130 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6131 if (error != 0)
6132 return key_senderror(so, m, EINVAL);
6133
6134 sah = key_getsah_ref(&saidx, CMP_HEAD);
6135 if (sah != NULL) {
6136 /* Delete all non-LARVAL SAs. */
6137 SASTATE_ALIVE_FOREACH(state) {
6138 if (state == SADB_SASTATE_LARVAL)
6139 continue;
6140 restart:
6141 mutex_enter(&key_sad.lock);
6142 SAVLIST_WRITER_FOREACH(sav, sah, state) {
6143 sav->state = SADB_SASTATE_DEAD;
6144 key_unlink_sav(sav);
6145 mutex_exit(&key_sad.lock);
6146 key_destroy_sav(sav);
6147 goto restart;
6148 }
6149 mutex_exit(&key_sad.lock);
6150 }
6151 key_sah_unref(sah);
6152 }
6153 {
6154 struct mbuf *n;
6155
6156 /* create new sadb_msg to reply. */
6157 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6158 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6159 if (!n)
6160 return key_senderror(so, m, ENOBUFS);
6161
6162 n = key_fill_replymsg(n, 0);
6163 if (n == NULL)
6164 return key_senderror(so, m, ENOBUFS);
6165
6166 m_freem(m);
6167 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6168 }
6169 }
6170
6171 /*
6172 * SADB_GET processing
6173 * receive
6174 * <base, SA(*), address(SD)>
6175 * from the ikmpd, and get a SP and a SA to respond,
6176 * and send,
6177 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6178 * (identity(SD),) (sensitivity)>
6179 * to the ikmpd.
6180 *
6181 * m will always be freed.
6182 */
6183 static int
6184 key_api_get(struct socket *so, struct mbuf *m,
6185 const struct sadb_msghdr *mhp)
6186 {
6187 struct sadb_sa *sa0;
6188 const struct sockaddr *src, *dst;
6189 struct secasindex saidx;
6190 struct secasvar *sav = NULL;
6191 u_int16_t proto;
6192 int error;
6193
6194 /* map satype to proto */
6195 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6196 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6197 return key_senderror(so, m, EINVAL);
6198 }
6199
6200 if (mhp->ext[SADB_EXT_SA] == NULL ||
6201 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6202 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6203 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6204 return key_senderror(so, m, EINVAL);
6205 }
6206 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6207 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6208 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6209 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6210 return key_senderror(so, m, EINVAL);
6211 }
6212
6213 sa0 = mhp->ext[SADB_EXT_SA];
6214 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6215 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6216
6217 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6218 if (error != 0)
6219 return key_senderror(so, m, EINVAL);
6220
6221 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6222 if (error != 0)
6223 return key_senderror(so, m, EINVAL);
6224
6225 /* get a SA header */
6226 {
6227 struct secashead *sah;
6228 int s = pserialize_read_enter();
6229
6230 sah = key_getsah(&saidx, CMP_HEAD);
6231 if (sah != NULL) {
6232 /* get a SA with SPI. */
6233 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6234 }
6235 pserialize_read_exit(s);
6236 }
6237 if (sav == NULL) {
6238 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6239 return key_senderror(so, m, ENOENT);
6240 }
6241
6242 {
6243 struct mbuf *n;
6244 u_int8_t satype;
6245
6246 /* map proto to satype */
6247 satype = key_proto2satype(sav->sah->saidx.proto);
6248 if (satype == 0) {
6249 KEY_SA_UNREF(&sav);
6250 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6251 return key_senderror(so, m, EINVAL);
6252 }
6253
6254 /* create new sadb_msg to reply. */
6255 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6256 mhp->msg->sadb_msg_pid);
6257 KEY_SA_UNREF(&sav);
6258 if (!n)
6259 return key_senderror(so, m, ENOBUFS);
6260
6261 m_freem(m);
6262 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6263 }
6264 }
6265
6266 /* XXX make it sysctl-configurable? */
6267 static void
6268 key_getcomb_setlifetime(struct sadb_comb *comb)
6269 {
6270
6271 comb->sadb_comb_soft_allocations = 1;
6272 comb->sadb_comb_hard_allocations = 1;
6273 comb->sadb_comb_soft_bytes = 0;
6274 comb->sadb_comb_hard_bytes = 0;
6275 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6276 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6277 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6278 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6279 }
6280
6281 /*
6282 * XXX reorder combinations by preference
6283 * XXX no idea if the user wants ESP authentication or not
6284 */
6285 static struct mbuf *
6286 key_getcomb_esp(void)
6287 {
6288 struct sadb_comb *comb;
6289 const struct enc_xform *algo;
6290 struct mbuf *result = NULL, *m, *n;
6291 int encmin;
6292 int i, off, o;
6293 int totlen;
6294 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6295
6296 m = NULL;
6297 for (i = 1; i <= SADB_EALG_MAX; i++) {
6298 algo = esp_algorithm_lookup(i);
6299 if (algo == NULL)
6300 continue;
6301
6302 /* discard algorithms with key size smaller than system min */
6303 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6304 continue;
6305 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6306 encmin = ipsec_esp_keymin;
6307 else
6308 encmin = _BITS(algo->minkey);
6309
6310 if (ipsec_esp_auth)
6311 m = key_getcomb_ah();
6312 else {
6313 KASSERTMSG(l <= MLEN,
6314 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6315 MGET(m, M_DONTWAIT, MT_DATA);
6316 if (m) {
6317 M_ALIGN(m, l);
6318 m->m_len = l;
6319 m->m_next = NULL;
6320 memset(mtod(m, void *), 0, m->m_len);
6321 }
6322 }
6323 if (!m)
6324 goto fail;
6325
6326 totlen = 0;
6327 for (n = m; n; n = n->m_next)
6328 totlen += n->m_len;
6329 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6330
6331 for (off = 0; off < totlen; off += l) {
6332 n = m_pulldown(m, off, l, &o);
6333 if (!n) {
6334 /* m is already freed */
6335 goto fail;
6336 }
6337 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6338 memset(comb, 0, sizeof(*comb));
6339 key_getcomb_setlifetime(comb);
6340 comb->sadb_comb_encrypt = i;
6341 comb->sadb_comb_encrypt_minbits = encmin;
6342 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6343 }
6344
6345 if (!result)
6346 result = m;
6347 else
6348 m_cat(result, m);
6349 }
6350
6351 return result;
6352
6353 fail:
6354 if (result)
6355 m_freem(result);
6356 return NULL;
6357 }
6358
6359 static void
6360 key_getsizes_ah(const struct auth_hash *ah, int alg,
6361 u_int16_t* ksmin, u_int16_t* ksmax)
6362 {
6363 *ksmin = *ksmax = ah->keysize;
6364 if (ah->keysize == 0) {
6365 /*
6366 * Transform takes arbitrary key size but algorithm
6367 * key size is restricted. Enforce this here.
6368 */
6369 switch (alg) {
6370 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6371 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6372 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6373 default:
6374 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6375 break;
6376 }
6377 }
6378 }
6379
6380 /*
6381 * XXX reorder combinations by preference
6382 */
6383 static struct mbuf *
6384 key_getcomb_ah(void)
6385 {
6386 struct sadb_comb *comb;
6387 const struct auth_hash *algo;
6388 struct mbuf *m;
6389 u_int16_t minkeysize, maxkeysize;
6390 int i;
6391 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6392
6393 m = NULL;
6394 for (i = 1; i <= SADB_AALG_MAX; i++) {
6395 #if 1
6396 /* we prefer HMAC algorithms, not old algorithms */
6397 if (i != SADB_AALG_SHA1HMAC &&
6398 i != SADB_AALG_MD5HMAC &&
6399 i != SADB_X_AALG_SHA2_256 &&
6400 i != SADB_X_AALG_SHA2_384 &&
6401 i != SADB_X_AALG_SHA2_512)
6402 continue;
6403 #endif
6404 algo = ah_algorithm_lookup(i);
6405 if (!algo)
6406 continue;
6407 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6408 /* discard algorithms with key size smaller than system min */
6409 if (_BITS(minkeysize) < ipsec_ah_keymin)
6410 continue;
6411
6412 if (!m) {
6413 KASSERTMSG(l <= MLEN,
6414 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6415 MGET(m, M_DONTWAIT, MT_DATA);
6416 if (m) {
6417 M_ALIGN(m, l);
6418 m->m_len = l;
6419 m->m_next = NULL;
6420 }
6421 } else
6422 M_PREPEND(m, l, M_DONTWAIT);
6423 if (!m)
6424 return NULL;
6425
6426 if (m->m_len < sizeof(struct sadb_comb)) {
6427 m = m_pullup(m, sizeof(struct sadb_comb));
6428 if (m == NULL)
6429 return NULL;
6430 }
6431
6432 comb = mtod(m, struct sadb_comb *);
6433 memset(comb, 0, sizeof(*comb));
6434 key_getcomb_setlifetime(comb);
6435 comb->sadb_comb_auth = i;
6436 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6437 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6438 }
6439
6440 return m;
6441 }
6442
6443 /*
6444 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6445 * XXX reorder combinations by preference
6446 */
6447 static struct mbuf *
6448 key_getcomb_ipcomp(void)
6449 {
6450 struct sadb_comb *comb;
6451 const struct comp_algo *algo;
6452 struct mbuf *m;
6453 int i;
6454 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6455
6456 m = NULL;
6457 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6458 algo = ipcomp_algorithm_lookup(i);
6459 if (!algo)
6460 continue;
6461
6462 if (!m) {
6463 KASSERTMSG(l <= MLEN,
6464 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6465 MGET(m, M_DONTWAIT, MT_DATA);
6466 if (m) {
6467 M_ALIGN(m, l);
6468 m->m_len = l;
6469 m->m_next = NULL;
6470 }
6471 } else
6472 M_PREPEND(m, l, M_DONTWAIT);
6473 if (!m)
6474 return NULL;
6475
6476 if (m->m_len < sizeof(struct sadb_comb)) {
6477 m = m_pullup(m, sizeof(struct sadb_comb));
6478 if (m == NULL)
6479 return NULL;
6480 }
6481
6482 comb = mtod(m, struct sadb_comb *);
6483 memset(comb, 0, sizeof(*comb));
6484 key_getcomb_setlifetime(comb);
6485 comb->sadb_comb_encrypt = i;
6486 /* what should we set into sadb_comb_*_{min,max}bits? */
6487 }
6488
6489 return m;
6490 }
6491
6492 /*
6493 * XXX no way to pass mode (transport/tunnel) to userland
6494 * XXX replay checking?
6495 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6496 */
6497 static struct mbuf *
6498 key_getprop(const struct secasindex *saidx)
6499 {
6500 struct sadb_prop *prop;
6501 struct mbuf *m, *n;
6502 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6503 int totlen;
6504
6505 switch (saidx->proto) {
6506 case IPPROTO_ESP:
6507 m = key_getcomb_esp();
6508 break;
6509 case IPPROTO_AH:
6510 m = key_getcomb_ah();
6511 break;
6512 case IPPROTO_IPCOMP:
6513 m = key_getcomb_ipcomp();
6514 break;
6515 default:
6516 return NULL;
6517 }
6518
6519 if (!m)
6520 return NULL;
6521 M_PREPEND(m, l, M_DONTWAIT);
6522 if (!m)
6523 return NULL;
6524
6525 totlen = 0;
6526 for (n = m; n; n = n->m_next)
6527 totlen += n->m_len;
6528
6529 prop = mtod(m, struct sadb_prop *);
6530 memset(prop, 0, sizeof(*prop));
6531 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6532 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6533 prop->sadb_prop_replay = 32; /* XXX */
6534
6535 return m;
6536 }
6537
6538 /*
6539 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6540 * send
6541 * <base, SA, address(SD), (address(P)), x_policy,
6542 * (identity(SD),) (sensitivity,) proposal>
6543 * to KMD, and expect to receive
6544 * <base> with SADB_ACQUIRE if error occurred,
6545 * or
6546 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6547 * from KMD by PF_KEY.
6548 *
6549 * XXX x_policy is outside of RFC2367 (KAME extension).
6550 * XXX sensitivity is not supported.
6551 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6552 * see comment for key_getcomb_ipcomp().
6553 *
6554 * OUT:
6555 * 0 : succeed
6556 * others: error number
6557 */
6558 static int
6559 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp)
6560 {
6561 struct mbuf *result = NULL, *m;
6562 #ifndef IPSEC_NONBLOCK_ACQUIRE
6563 struct secacq *newacq;
6564 #endif
6565 u_int8_t satype;
6566 int error = -1;
6567 u_int32_t seq;
6568
6569 /* sanity check */
6570 KASSERT(saidx != NULL);
6571 satype = key_proto2satype(saidx->proto);
6572 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6573
6574 #ifndef IPSEC_NONBLOCK_ACQUIRE
6575 /*
6576 * We never do anything about acquirng SA. There is anather
6577 * solution that kernel blocks to send SADB_ACQUIRE message until
6578 * getting something message from IKEd. In later case, to be
6579 * managed with ACQUIRING list.
6580 */
6581 /* Get an entry to check whether sending message or not. */
6582 mutex_enter(&key_misc.lock);
6583 newacq = key_getacq(saidx);
6584 if (newacq != NULL) {
6585 if (key_blockacq_count < newacq->count) {
6586 /* reset counter and do send message. */
6587 newacq->count = 0;
6588 } else {
6589 /* increment counter and do nothing. */
6590 newacq->count++;
6591 mutex_exit(&key_misc.lock);
6592 return 0;
6593 }
6594 } else {
6595 /* make new entry for blocking to send SADB_ACQUIRE. */
6596 newacq = key_newacq(saidx);
6597 if (newacq == NULL) {
6598 mutex_exit(&key_misc.lock);
6599 return ENOBUFS;
6600 }
6601
6602 /* add to key_misc.acqlist */
6603 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6604 }
6605
6606 seq = newacq->seq;
6607 mutex_exit(&key_misc.lock);
6608 #else
6609 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6610 #endif
6611 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6612 if (!m) {
6613 error = ENOBUFS;
6614 goto fail;
6615 }
6616 result = m;
6617
6618 /* set sadb_address for saidx's. */
6619 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6620 IPSEC_ULPROTO_ANY);
6621 if (!m) {
6622 error = ENOBUFS;
6623 goto fail;
6624 }
6625 m_cat(result, m);
6626
6627 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6628 IPSEC_ULPROTO_ANY);
6629 if (!m) {
6630 error = ENOBUFS;
6631 goto fail;
6632 }
6633 m_cat(result, m);
6634
6635 /* XXX proxy address (optional) */
6636
6637 /* set sadb_x_policy */
6638 if (sp) {
6639 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6640 if (!m) {
6641 error = ENOBUFS;
6642 goto fail;
6643 }
6644 m_cat(result, m);
6645 }
6646
6647 /* XXX identity (optional) */
6648 #if 0
6649 if (idexttype && fqdn) {
6650 /* create identity extension (FQDN) */
6651 struct sadb_ident *id;
6652 int fqdnlen;
6653
6654 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6655 id = (struct sadb_ident *)p;
6656 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6657 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6658 id->sadb_ident_exttype = idexttype;
6659 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6660 memcpy(id + 1, fqdn, fqdnlen);
6661 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6662 }
6663
6664 if (idexttype) {
6665 /* create identity extension (USERFQDN) */
6666 struct sadb_ident *id;
6667 int userfqdnlen;
6668
6669 if (userfqdn) {
6670 /* +1 for terminating-NUL */
6671 userfqdnlen = strlen(userfqdn) + 1;
6672 } else
6673 userfqdnlen = 0;
6674 id = (struct sadb_ident *)p;
6675 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6676 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6677 id->sadb_ident_exttype = idexttype;
6678 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6679 /* XXX is it correct? */
6680 if (curlwp)
6681 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6682 if (userfqdn && userfqdnlen)
6683 memcpy(id + 1, userfqdn, userfqdnlen);
6684 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6685 }
6686 #endif
6687
6688 /* XXX sensitivity (optional) */
6689
6690 /* create proposal/combination extension */
6691 m = key_getprop(saidx);
6692 #if 0
6693 /*
6694 * spec conformant: always attach proposal/combination extension,
6695 * the problem is that we have no way to attach it for ipcomp,
6696 * due to the way sadb_comb is declared in RFC2367.
6697 */
6698 if (!m) {
6699 error = ENOBUFS;
6700 goto fail;
6701 }
6702 m_cat(result, m);
6703 #else
6704 /*
6705 * outside of spec; make proposal/combination extension optional.
6706 */
6707 if (m)
6708 m_cat(result, m);
6709 #endif
6710
6711 if ((result->m_flags & M_PKTHDR) == 0) {
6712 error = EINVAL;
6713 goto fail;
6714 }
6715
6716 if (result->m_len < sizeof(struct sadb_msg)) {
6717 result = m_pullup(result, sizeof(struct sadb_msg));
6718 if (result == NULL) {
6719 error = ENOBUFS;
6720 goto fail;
6721 }
6722 }
6723
6724 result->m_pkthdr.len = 0;
6725 for (m = result; m; m = m->m_next)
6726 result->m_pkthdr.len += m->m_len;
6727
6728 mtod(result, struct sadb_msg *)->sadb_msg_len =
6729 PFKEY_UNIT64(result->m_pkthdr.len);
6730
6731 /*
6732 * XXX we cannot call key_sendup_mbuf directly here because
6733 * it can cause a deadlock:
6734 * - We have a reference to an SP (and an SA) here
6735 * - key_sendup_mbuf will try to take key_so_mtx
6736 * - Some other thread may try to localcount_drain to the SP with
6737 * holding key_so_mtx in say key_api_spdflush
6738 * - In this case localcount_drain never return because key_sendup_mbuf
6739 * that has stuck on key_so_mtx never release a reference to the SP
6740 *
6741 * So defer key_sendup_mbuf to the timer.
6742 */
6743 return key_acquire_sendup_mbuf_later(result);
6744
6745 fail:
6746 if (result)
6747 m_freem(result);
6748 return error;
6749 }
6750
6751 static struct mbuf *key_acquire_mbuf_head = NULL;
6752 static unsigned key_acquire_mbuf_count = 0;
6753 #define KEY_ACQUIRE_MBUF_MAX 10
6754
6755 static void
6756 key_acquire_sendup_pending_mbuf(void)
6757 {
6758 struct mbuf *m, *prev;
6759 int error;
6760
6761 again:
6762 prev = NULL;
6763 mutex_enter(&key_misc.lock);
6764 m = key_acquire_mbuf_head;
6765 /* Get an earliest mbuf (one at the tail of the list) */
6766 while (m != NULL) {
6767 if (m->m_nextpkt == NULL) {
6768 if (prev != NULL)
6769 prev->m_nextpkt = NULL;
6770 if (m == key_acquire_mbuf_head)
6771 key_acquire_mbuf_head = NULL;
6772 key_acquire_mbuf_count--;
6773 break;
6774 }
6775 prev = m;
6776 m = m->m_nextpkt;
6777 }
6778 mutex_exit(&key_misc.lock);
6779
6780 if (m == NULL)
6781 return;
6782
6783 m->m_nextpkt = NULL;
6784 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
6785 if (error != 0)
6786 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
6787 error);
6788
6789 if (prev != NULL)
6790 goto again;
6791 }
6792
6793 static int
6794 key_acquire_sendup_mbuf_later(struct mbuf *m)
6795 {
6796
6797 mutex_enter(&key_misc.lock);
6798 /* Avoid queuing too much mbufs */
6799 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
6800 mutex_exit(&key_misc.lock);
6801 m_freem(m);
6802 return ENOBUFS; /* XXX */
6803 }
6804 /* Enqueue mbuf at the head of the list */
6805 m->m_nextpkt = key_acquire_mbuf_head;
6806 key_acquire_mbuf_head = m;
6807 key_acquire_mbuf_count++;
6808 mutex_exit(&key_misc.lock);
6809
6810 /* Kick the timer */
6811 key_timehandler(NULL);
6812
6813 return 0;
6814 }
6815
6816 #ifndef IPSEC_NONBLOCK_ACQUIRE
6817 static struct secacq *
6818 key_newacq(const struct secasindex *saidx)
6819 {
6820 struct secacq *newacq;
6821
6822 /* get new entry */
6823 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6824 if (newacq == NULL) {
6825 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6826 return NULL;
6827 }
6828
6829 /* copy secindex */
6830 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6831 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6832 newacq->created = time_uptime;
6833 newacq->count = 0;
6834
6835 return newacq;
6836 }
6837
6838 static struct secacq *
6839 key_getacq(const struct secasindex *saidx)
6840 {
6841 struct secacq *acq;
6842
6843 KASSERT(mutex_owned(&key_misc.lock));
6844
6845 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6846 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6847 return acq;
6848 }
6849
6850 return NULL;
6851 }
6852
6853 static struct secacq *
6854 key_getacqbyseq(u_int32_t seq)
6855 {
6856 struct secacq *acq;
6857
6858 KASSERT(mutex_owned(&key_misc.lock));
6859
6860 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6861 if (acq->seq == seq)
6862 return acq;
6863 }
6864
6865 return NULL;
6866 }
6867 #endif
6868
6869 #ifdef notyet
6870 static struct secspacq *
6871 key_newspacq(const struct secpolicyindex *spidx)
6872 {
6873 struct secspacq *acq;
6874
6875 /* get new entry */
6876 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6877 if (acq == NULL) {
6878 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6879 return NULL;
6880 }
6881
6882 /* copy secindex */
6883 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6884 acq->created = time_uptime;
6885 acq->count = 0;
6886
6887 return acq;
6888 }
6889
6890 static struct secspacq *
6891 key_getspacq(const struct secpolicyindex *spidx)
6892 {
6893 struct secspacq *acq;
6894
6895 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6896 if (key_spidx_match_exactly(spidx, &acq->spidx))
6897 return acq;
6898 }
6899
6900 return NULL;
6901 }
6902 #endif /* notyet */
6903
6904 /*
6905 * SADB_ACQUIRE processing,
6906 * in first situation, is receiving
6907 * <base>
6908 * from the ikmpd, and clear sequence of its secasvar entry.
6909 *
6910 * In second situation, is receiving
6911 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6912 * from a user land process, and return
6913 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6914 * to the socket.
6915 *
6916 * m will always be freed.
6917 */
6918 static int
6919 key_api_acquire(struct socket *so, struct mbuf *m,
6920 const struct sadb_msghdr *mhp)
6921 {
6922 const struct sockaddr *src, *dst;
6923 struct secasindex saidx;
6924 u_int16_t proto;
6925 int error;
6926
6927 /*
6928 * Error message from KMd.
6929 * We assume that if error was occurred in IKEd, the length of PFKEY
6930 * message is equal to the size of sadb_msg structure.
6931 * We do not raise error even if error occurred in this function.
6932 */
6933 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6934 #ifndef IPSEC_NONBLOCK_ACQUIRE
6935 struct secacq *acq;
6936
6937 /* check sequence number */
6938 if (mhp->msg->sadb_msg_seq == 0) {
6939 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6940 m_freem(m);
6941 return 0;
6942 }
6943
6944 mutex_enter(&key_misc.lock);
6945 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6946 if (acq == NULL) {
6947 mutex_exit(&key_misc.lock);
6948 /*
6949 * the specified larval SA is already gone, or we got
6950 * a bogus sequence number. we can silently ignore it.
6951 */
6952 m_freem(m);
6953 return 0;
6954 }
6955
6956 /* reset acq counter in order to deletion by timehander. */
6957 acq->created = time_uptime;
6958 acq->count = 0;
6959 mutex_exit(&key_misc.lock);
6960 #endif
6961 m_freem(m);
6962 return 0;
6963 }
6964
6965 /*
6966 * This message is from user land.
6967 */
6968
6969 /* map satype to proto */
6970 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6971 if (proto == 0) {
6972 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6973 return key_senderror(so, m, EINVAL);
6974 }
6975
6976 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6977 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6978 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6979 /* error */
6980 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6981 return key_senderror(so, m, EINVAL);
6982 }
6983 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6984 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6985 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6986 /* error */
6987 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6988 return key_senderror(so, m, EINVAL);
6989 }
6990
6991 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6992 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6993
6994 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6995 if (error != 0)
6996 return key_senderror(so, m, EINVAL);
6997
6998 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6999 if (error != 0)
7000 return key_senderror(so, m, EINVAL);
7001
7002 /* get a SA index */
7003 {
7004 struct secashead *sah;
7005 int s = pserialize_read_enter();
7006
7007 sah = key_getsah(&saidx, CMP_MODE_REQID);
7008 if (sah != NULL) {
7009 pserialize_read_exit(s);
7010 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
7011 return key_senderror(so, m, EEXIST);
7012 }
7013 pserialize_read_exit(s);
7014 }
7015
7016 error = key_acquire(&saidx, NULL);
7017 if (error != 0) {
7018 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
7019 error);
7020 return key_senderror(so, m, error);
7021 }
7022
7023 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
7024 }
7025
7026 /*
7027 * SADB_REGISTER processing.
7028 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7029 * receive
7030 * <base>
7031 * from the ikmpd, and register a socket to send PF_KEY messages,
7032 * and send
7033 * <base, supported>
7034 * to KMD by PF_KEY.
7035 * If socket is detached, must free from regnode.
7036 *
7037 * m will always be freed.
7038 */
7039 static int
7040 key_api_register(struct socket *so, struct mbuf *m,
7041 const struct sadb_msghdr *mhp)
7042 {
7043 struct secreg *reg, *newreg = 0;
7044
7045 /* check for invalid register message */
7046 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
7047 return key_senderror(so, m, EINVAL);
7048
7049 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7050 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7051 goto setmsg;
7052
7053 /* Allocate regnode in advance, out of mutex */
7054 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
7055
7056 /* check whether existing or not */
7057 mutex_enter(&key_misc.lock);
7058 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
7059 if (reg->so == so) {
7060 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
7061 mutex_exit(&key_misc.lock);
7062 kmem_free(newreg, sizeof(*newreg));
7063 return key_senderror(so, m, EEXIST);
7064 }
7065 }
7066
7067 newreg->so = so;
7068 ((struct keycb *)sotorawcb(so))->kp_registered++;
7069
7070 /* add regnode to key_misc.reglist. */
7071 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
7072 mutex_exit(&key_misc.lock);
7073
7074 setmsg:
7075 {
7076 struct mbuf *n;
7077 struct sadb_supported *sup;
7078 u_int len, alen, elen;
7079 int off;
7080 int i;
7081 struct sadb_alg *alg;
7082
7083 /* create new sadb_msg to reply. */
7084 alen = 0;
7085 for (i = 1; i <= SADB_AALG_MAX; i++) {
7086 if (ah_algorithm_lookup(i))
7087 alen += sizeof(struct sadb_alg);
7088 }
7089 if (alen)
7090 alen += sizeof(struct sadb_supported);
7091 elen = 0;
7092 for (i = 1; i <= SADB_EALG_MAX; i++) {
7093 if (esp_algorithm_lookup(i))
7094 elen += sizeof(struct sadb_alg);
7095 }
7096 if (elen)
7097 elen += sizeof(struct sadb_supported);
7098
7099 len = sizeof(struct sadb_msg) + alen + elen;
7100
7101 if (len > MCLBYTES)
7102 return key_senderror(so, m, ENOBUFS);
7103
7104 n = key_alloc_mbuf_simple(len, M_DONTWAIT);
7105 if (!n)
7106 return key_senderror(so, m, ENOBUFS);
7107
7108 n->m_pkthdr.len = n->m_len = len;
7109 n->m_next = NULL;
7110 off = 0;
7111
7112 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
7113 n = key_fill_replymsg(n, 0);
7114 if (n == NULL)
7115 return key_senderror(so, m, ENOBUFS);
7116
7117 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7118
7119 /* for authentication algorithm */
7120 if (alen) {
7121 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7122 sup->sadb_supported_len = PFKEY_UNIT64(alen);
7123 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7124 off += PFKEY_ALIGN8(sizeof(*sup));
7125
7126 for (i = 1; i <= SADB_AALG_MAX; i++) {
7127 const struct auth_hash *aalgo;
7128 u_int16_t minkeysize, maxkeysize;
7129
7130 aalgo = ah_algorithm_lookup(i);
7131 if (!aalgo)
7132 continue;
7133 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7134 alg->sadb_alg_id = i;
7135 alg->sadb_alg_ivlen = 0;
7136 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7137 alg->sadb_alg_minbits = _BITS(minkeysize);
7138 alg->sadb_alg_maxbits = _BITS(maxkeysize);
7139 off += PFKEY_ALIGN8(sizeof(*alg));
7140 }
7141 }
7142
7143 /* for encryption algorithm */
7144 if (elen) {
7145 sup = (struct sadb_supported *)(mtod(n, char *) + off);
7146 sup->sadb_supported_len = PFKEY_UNIT64(elen);
7147 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7148 off += PFKEY_ALIGN8(sizeof(*sup));
7149
7150 for (i = 1; i <= SADB_EALG_MAX; i++) {
7151 const struct enc_xform *ealgo;
7152
7153 ealgo = esp_algorithm_lookup(i);
7154 if (!ealgo)
7155 continue;
7156 alg = (struct sadb_alg *)(mtod(n, char *) + off);
7157 alg->sadb_alg_id = i;
7158 alg->sadb_alg_ivlen = ealgo->blocksize;
7159 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7160 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7161 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7162 }
7163 }
7164
7165 KASSERTMSG(off == len, "length inconsistency");
7166
7167 m_freem(m);
7168 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7169 }
7170 }
7171
7172 /*
7173 * free secreg entry registered.
7174 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7175 */
7176 void
7177 key_freereg(struct socket *so)
7178 {
7179 struct secreg *reg;
7180 int i;
7181
7182 KASSERT(!cpu_softintr_p());
7183 KASSERT(so != NULL);
7184
7185 /*
7186 * check whether existing or not.
7187 * check all type of SA, because there is a potential that
7188 * one socket is registered to multiple type of SA.
7189 */
7190 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7191 mutex_enter(&key_misc.lock);
7192 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7193 if (reg->so == so) {
7194 LIST_REMOVE(reg, chain);
7195 break;
7196 }
7197 }
7198 mutex_exit(&key_misc.lock);
7199 if (reg != NULL)
7200 kmem_free(reg, sizeof(*reg));
7201 }
7202
7203 return;
7204 }
7205
7206 /*
7207 * SADB_EXPIRE processing
7208 * send
7209 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7210 * to KMD by PF_KEY.
7211 * NOTE: We send only soft lifetime extension.
7212 *
7213 * OUT: 0 : succeed
7214 * others : error number
7215 */
7216 static int
7217 key_expire(struct secasvar *sav)
7218 {
7219 int s;
7220 int satype;
7221 struct mbuf *result = NULL, *m;
7222 int len;
7223 int error = -1;
7224 struct sadb_lifetime *lt;
7225
7226 /* XXX: Why do we lock ? */
7227 s = splsoftnet(); /*called from softclock()*/
7228
7229 KASSERT(sav != NULL);
7230
7231 satype = key_proto2satype(sav->sah->saidx.proto);
7232 KASSERTMSG(satype != 0, "invalid proto is passed");
7233
7234 /* set msg header */
7235 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav));
7236 if (!m) {
7237 error = ENOBUFS;
7238 goto fail;
7239 }
7240 result = m;
7241
7242 /* create SA extension */
7243 m = key_setsadbsa(sav);
7244 if (!m) {
7245 error = ENOBUFS;
7246 goto fail;
7247 }
7248 m_cat(result, m);
7249
7250 /* create SA extension */
7251 m = key_setsadbxsa2(sav->sah->saidx.mode,
7252 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7253 if (!m) {
7254 error = ENOBUFS;
7255 goto fail;
7256 }
7257 m_cat(result, m);
7258
7259 /* create lifetime extension (current and soft) */
7260 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7261 m = key_alloc_mbuf(len);
7262 if (!m || m->m_next) { /*XXX*/
7263 if (m)
7264 m_freem(m);
7265 error = ENOBUFS;
7266 goto fail;
7267 }
7268 memset(mtod(m, void *), 0, len);
7269 lt = mtod(m, struct sadb_lifetime *);
7270 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7271 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7272 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7273 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7274 lt->sadb_lifetime_addtime =
7275 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7276 lt->sadb_lifetime_usetime =
7277 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7278 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7279 memcpy(lt, sav->lft_s, sizeof(*lt));
7280 m_cat(result, m);
7281
7282 /* set sadb_address for source */
7283 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7284 FULLMASK, IPSEC_ULPROTO_ANY);
7285 if (!m) {
7286 error = ENOBUFS;
7287 goto fail;
7288 }
7289 m_cat(result, m);
7290
7291 /* set sadb_address for destination */
7292 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7293 FULLMASK, IPSEC_ULPROTO_ANY);
7294 if (!m) {
7295 error = ENOBUFS;
7296 goto fail;
7297 }
7298 m_cat(result, m);
7299
7300 if ((result->m_flags & M_PKTHDR) == 0) {
7301 error = EINVAL;
7302 goto fail;
7303 }
7304
7305 if (result->m_len < sizeof(struct sadb_msg)) {
7306 result = m_pullup(result, sizeof(struct sadb_msg));
7307 if (result == NULL) {
7308 error = ENOBUFS;
7309 goto fail;
7310 }
7311 }
7312
7313 result->m_pkthdr.len = 0;
7314 for (m = result; m; m = m->m_next)
7315 result->m_pkthdr.len += m->m_len;
7316
7317 mtod(result, struct sadb_msg *)->sadb_msg_len =
7318 PFKEY_UNIT64(result->m_pkthdr.len);
7319
7320 splx(s);
7321 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7322
7323 fail:
7324 if (result)
7325 m_freem(result);
7326 splx(s);
7327 return error;
7328 }
7329
7330 /*
7331 * SADB_FLUSH processing
7332 * receive
7333 * <base>
7334 * from the ikmpd, and free all entries in secastree.
7335 * and send,
7336 * <base>
7337 * to the ikmpd.
7338 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7339 *
7340 * m will always be freed.
7341 */
7342 static int
7343 key_api_flush(struct socket *so, struct mbuf *m,
7344 const struct sadb_msghdr *mhp)
7345 {
7346 struct sadb_msg *newmsg;
7347 struct secashead *sah;
7348 struct secasvar *sav;
7349 u_int16_t proto;
7350 u_int8_t state;
7351 int s;
7352
7353 /* map satype to proto */
7354 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7355 if (proto == 0) {
7356 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7357 return key_senderror(so, m, EINVAL);
7358 }
7359
7360 /* no SATYPE specified, i.e. flushing all SA. */
7361 s = pserialize_read_enter();
7362 SAHLIST_READER_FOREACH(sah) {
7363 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7364 proto != sah->saidx.proto)
7365 continue;
7366
7367 key_sah_ref(sah);
7368 pserialize_read_exit(s);
7369
7370 SASTATE_ALIVE_FOREACH(state) {
7371 restart:
7372 mutex_enter(&key_sad.lock);
7373 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7374 sav->state = SADB_SASTATE_DEAD;
7375 key_unlink_sav(sav);
7376 mutex_exit(&key_sad.lock);
7377 key_destroy_sav(sav);
7378 goto restart;
7379 }
7380 mutex_exit(&key_sad.lock);
7381 }
7382
7383 s = pserialize_read_enter();
7384 sah->state = SADB_SASTATE_DEAD;
7385 key_sah_unref(sah);
7386 }
7387 pserialize_read_exit(s);
7388
7389 if (m->m_len < sizeof(struct sadb_msg) ||
7390 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7391 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7392 return key_senderror(so, m, ENOBUFS);
7393 }
7394
7395 if (m->m_next)
7396 m_freem(m->m_next);
7397 m->m_next = NULL;
7398 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7399 newmsg = mtod(m, struct sadb_msg *);
7400 newmsg->sadb_msg_errno = 0;
7401 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7402
7403 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7404 }
7405
7406
7407 static struct mbuf *
7408 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7409 {
7410 struct secashead *sah;
7411 struct secasvar *sav;
7412 u_int16_t proto;
7413 u_int8_t satype;
7414 u_int8_t state;
7415 int cnt;
7416 struct mbuf *m, *n, *prev;
7417
7418 KASSERT(mutex_owned(&key_sad.lock));
7419
7420 *lenp = 0;
7421
7422 /* map satype to proto */
7423 proto = key_satype2proto(req_satype);
7424 if (proto == 0) {
7425 *errorp = EINVAL;
7426 return (NULL);
7427 }
7428
7429 /* count sav entries to be sent to userland. */
7430 cnt = 0;
7431 SAHLIST_WRITER_FOREACH(sah) {
7432 if (req_satype != SADB_SATYPE_UNSPEC &&
7433 proto != sah->saidx.proto)
7434 continue;
7435
7436 SASTATE_ANY_FOREACH(state) {
7437 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7438 cnt++;
7439 }
7440 }
7441 }
7442
7443 if (cnt == 0) {
7444 *errorp = ENOENT;
7445 return (NULL);
7446 }
7447
7448 /* send this to the userland, one at a time. */
7449 m = NULL;
7450 prev = m;
7451 SAHLIST_WRITER_FOREACH(sah) {
7452 if (req_satype != SADB_SATYPE_UNSPEC &&
7453 proto != sah->saidx.proto)
7454 continue;
7455
7456 /* map proto to satype */
7457 satype = key_proto2satype(sah->saidx.proto);
7458 if (satype == 0) {
7459 m_freem(m);
7460 *errorp = EINVAL;
7461 return (NULL);
7462 }
7463
7464 SASTATE_ANY_FOREACH(state) {
7465 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7466 n = key_setdumpsa(sav, SADB_DUMP, satype,
7467 --cnt, pid);
7468 if (!n) {
7469 m_freem(m);
7470 *errorp = ENOBUFS;
7471 return (NULL);
7472 }
7473
7474 if (!m)
7475 m = n;
7476 else
7477 prev->m_nextpkt = n;
7478 prev = n;
7479 }
7480 }
7481 }
7482
7483 if (!m) {
7484 *errorp = EINVAL;
7485 return (NULL);
7486 }
7487
7488 if ((m->m_flags & M_PKTHDR) != 0) {
7489 m->m_pkthdr.len = 0;
7490 for (n = m; n; n = n->m_next)
7491 m->m_pkthdr.len += n->m_len;
7492 }
7493
7494 *errorp = 0;
7495 return (m);
7496 }
7497
7498 /*
7499 * SADB_DUMP processing
7500 * dump all entries including status of DEAD in SAD.
7501 * receive
7502 * <base>
7503 * from the ikmpd, and dump all secasvar leaves
7504 * and send,
7505 * <base> .....
7506 * to the ikmpd.
7507 *
7508 * m will always be freed.
7509 */
7510 static int
7511 key_api_dump(struct socket *so, struct mbuf *m0,
7512 const struct sadb_msghdr *mhp)
7513 {
7514 u_int16_t proto;
7515 u_int8_t satype;
7516 struct mbuf *n;
7517 int error, len, ok;
7518
7519 /* map satype to proto */
7520 satype = mhp->msg->sadb_msg_satype;
7521 proto = key_satype2proto(satype);
7522 if (proto == 0) {
7523 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7524 return key_senderror(so, m0, EINVAL);
7525 }
7526
7527 /*
7528 * If the requestor has insufficient socket-buffer space
7529 * for the entire chain, nobody gets any response to the DUMP.
7530 * XXX For now, only the requestor ever gets anything.
7531 * Moreover, if the requestor has any space at all, they receive
7532 * the entire chain, otherwise the request is refused with ENOBUFS.
7533 */
7534 if (sbspace(&so->so_rcv) <= 0) {
7535 return key_senderror(so, m0, ENOBUFS);
7536 }
7537
7538 mutex_enter(&key_sad.lock);
7539 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7540 mutex_exit(&key_sad.lock);
7541
7542 if (n == NULL) {
7543 return key_senderror(so, m0, ENOENT);
7544 }
7545 {
7546 uint64_t *ps = PFKEY_STAT_GETREF();
7547 ps[PFKEY_STAT_IN_TOTAL]++;
7548 ps[PFKEY_STAT_IN_BYTES] += len;
7549 PFKEY_STAT_PUTREF();
7550 }
7551
7552 /*
7553 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7554 * The requestor receives either the entire chain, or an
7555 * error message with ENOBUFS.
7556 *
7557 * sbappendaddrchain() takes the chain of entries, one
7558 * packet-record per SPD entry, prepends the key_src sockaddr
7559 * to each packet-record, links the sockaddr mbufs into a new
7560 * list of records, then appends the entire resulting
7561 * list to the requesting socket.
7562 */
7563 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7564 SB_PRIO_ONESHOT_OVERFLOW);
7565
7566 if (!ok) {
7567 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7568 m_freem(n);
7569 return key_senderror(so, m0, ENOBUFS);
7570 }
7571
7572 m_freem(m0);
7573 return 0;
7574 }
7575
7576 /*
7577 * SADB_X_PROMISC processing
7578 *
7579 * m will always be freed.
7580 */
7581 static int
7582 key_api_promisc(struct socket *so, struct mbuf *m,
7583 const struct sadb_msghdr *mhp)
7584 {
7585 int olen;
7586
7587 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7588
7589 if (olen < sizeof(struct sadb_msg)) {
7590 #if 1
7591 return key_senderror(so, m, EINVAL);
7592 #else
7593 m_freem(m);
7594 return 0;
7595 #endif
7596 } else if (olen == sizeof(struct sadb_msg)) {
7597 /* enable/disable promisc mode */
7598 struct keycb *kp = (struct keycb *)sotorawcb(so);
7599 if (kp == NULL)
7600 return key_senderror(so, m, EINVAL);
7601 mhp->msg->sadb_msg_errno = 0;
7602 switch (mhp->msg->sadb_msg_satype) {
7603 case 0:
7604 case 1:
7605 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7606 break;
7607 default:
7608 return key_senderror(so, m, EINVAL);
7609 }
7610
7611 /* send the original message back to everyone */
7612 mhp->msg->sadb_msg_errno = 0;
7613 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7614 } else {
7615 /* send packet as is */
7616
7617 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7618
7619 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7620 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7621 }
7622 }
7623
7624 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7625 const struct sadb_msghdr *) = {
7626 NULL, /* SADB_RESERVED */
7627 key_api_getspi, /* SADB_GETSPI */
7628 key_api_update, /* SADB_UPDATE */
7629 key_api_add, /* SADB_ADD */
7630 key_api_delete, /* SADB_DELETE */
7631 key_api_get, /* SADB_GET */
7632 key_api_acquire, /* SADB_ACQUIRE */
7633 key_api_register, /* SADB_REGISTER */
7634 NULL, /* SADB_EXPIRE */
7635 key_api_flush, /* SADB_FLUSH */
7636 key_api_dump, /* SADB_DUMP */
7637 key_api_promisc, /* SADB_X_PROMISC */
7638 NULL, /* SADB_X_PCHANGE */
7639 key_api_spdadd, /* SADB_X_SPDUPDATE */
7640 key_api_spdadd, /* SADB_X_SPDADD */
7641 key_api_spddelete, /* SADB_X_SPDDELETE */
7642 key_api_spdget, /* SADB_X_SPDGET */
7643 NULL, /* SADB_X_SPDACQUIRE */
7644 key_api_spddump, /* SADB_X_SPDDUMP */
7645 key_api_spdflush, /* SADB_X_SPDFLUSH */
7646 key_api_spdadd, /* SADB_X_SPDSETIDX */
7647 NULL, /* SADB_X_SPDEXPIRE */
7648 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7649 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7650 };
7651
7652 /*
7653 * parse sadb_msg buffer to process PFKEYv2,
7654 * and create a data to response if needed.
7655 * I think to be dealed with mbuf directly.
7656 * IN:
7657 * msgp : pointer to pointer to a received buffer pulluped.
7658 * This is rewrited to response.
7659 * so : pointer to socket.
7660 * OUT:
7661 * length for buffer to send to user process.
7662 */
7663 int
7664 key_parse(struct mbuf *m, struct socket *so)
7665 {
7666 struct sadb_msg *msg;
7667 struct sadb_msghdr mh;
7668 u_int orglen;
7669 int error;
7670
7671 KASSERT(m != NULL);
7672 KASSERT(so != NULL);
7673
7674 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7675 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7676 kdebug_sadb("passed sadb_msg", msg);
7677 }
7678 #endif
7679
7680 if (m->m_len < sizeof(struct sadb_msg)) {
7681 m = m_pullup(m, sizeof(struct sadb_msg));
7682 if (!m)
7683 return ENOBUFS;
7684 }
7685 msg = mtod(m, struct sadb_msg *);
7686 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7687
7688 if ((m->m_flags & M_PKTHDR) == 0 ||
7689 m->m_pkthdr.len != orglen) {
7690 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7691 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7692 error = EINVAL;
7693 goto senderror;
7694 }
7695
7696 if (msg->sadb_msg_version != PF_KEY_V2) {
7697 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7698 msg->sadb_msg_version);
7699 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7700 error = EINVAL;
7701 goto senderror;
7702 }
7703
7704 if (msg->sadb_msg_type > SADB_MAX) {
7705 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7706 msg->sadb_msg_type);
7707 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7708 error = EINVAL;
7709 goto senderror;
7710 }
7711
7712 /* for old-fashioned code - should be nuked */
7713 if (m->m_pkthdr.len > MCLBYTES) {
7714 m_freem(m);
7715 return ENOBUFS;
7716 }
7717 if (m->m_next) {
7718 struct mbuf *n;
7719
7720 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_DONTWAIT);
7721 if (!n) {
7722 m_freem(m);
7723 return ENOBUFS;
7724 }
7725 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7726 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7727 n->m_next = NULL;
7728 m_freem(m);
7729 m = n;
7730 }
7731
7732 /* align the mbuf chain so that extensions are in contiguous region. */
7733 error = key_align(m, &mh);
7734 if (error)
7735 return error;
7736
7737 if (m->m_next) { /*XXX*/
7738 m_freem(m);
7739 return ENOBUFS;
7740 }
7741
7742 msg = mh.msg;
7743
7744 /* check SA type */
7745 switch (msg->sadb_msg_satype) {
7746 case SADB_SATYPE_UNSPEC:
7747 switch (msg->sadb_msg_type) {
7748 case SADB_GETSPI:
7749 case SADB_UPDATE:
7750 case SADB_ADD:
7751 case SADB_DELETE:
7752 case SADB_GET:
7753 case SADB_ACQUIRE:
7754 case SADB_EXPIRE:
7755 IPSECLOG(LOG_DEBUG,
7756 "must specify satype when msg type=%u.\n",
7757 msg->sadb_msg_type);
7758 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7759 error = EINVAL;
7760 goto senderror;
7761 }
7762 break;
7763 case SADB_SATYPE_AH:
7764 case SADB_SATYPE_ESP:
7765 case SADB_X_SATYPE_IPCOMP:
7766 case SADB_X_SATYPE_TCPSIGNATURE:
7767 switch (msg->sadb_msg_type) {
7768 case SADB_X_SPDADD:
7769 case SADB_X_SPDDELETE:
7770 case SADB_X_SPDGET:
7771 case SADB_X_SPDDUMP:
7772 case SADB_X_SPDFLUSH:
7773 case SADB_X_SPDSETIDX:
7774 case SADB_X_SPDUPDATE:
7775 case SADB_X_SPDDELETE2:
7776 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7777 msg->sadb_msg_type);
7778 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7779 error = EINVAL;
7780 goto senderror;
7781 }
7782 break;
7783 case SADB_SATYPE_RSVP:
7784 case SADB_SATYPE_OSPFV2:
7785 case SADB_SATYPE_RIPV2:
7786 case SADB_SATYPE_MIP:
7787 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7788 msg->sadb_msg_satype);
7789 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7790 error = EOPNOTSUPP;
7791 goto senderror;
7792 case 1: /* XXX: What does it do? */
7793 if (msg->sadb_msg_type == SADB_X_PROMISC)
7794 break;
7795 /*FALLTHROUGH*/
7796 default:
7797 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7798 msg->sadb_msg_satype);
7799 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7800 error = EINVAL;
7801 goto senderror;
7802 }
7803
7804 /* check field of upper layer protocol and address family */
7805 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7806 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7807 const struct sadb_address *src0, *dst0;
7808 const struct sockaddr *sa0, *da0;
7809 u_int plen;
7810
7811 src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
7812 dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
7813 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC);
7814 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST);
7815
7816 /* check upper layer protocol */
7817 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7818 IPSECLOG(LOG_DEBUG,
7819 "upper layer protocol mismatched.\n");
7820 goto invaddr;
7821 }
7822
7823 /* check family */
7824 if (sa0->sa_family != da0->sa_family) {
7825 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7826 goto invaddr;
7827 }
7828 if (sa0->sa_len != da0->sa_len) {
7829 IPSECLOG(LOG_DEBUG,
7830 "address struct size mismatched.\n");
7831 goto invaddr;
7832 }
7833
7834 switch (sa0->sa_family) {
7835 case AF_INET:
7836 if (sa0->sa_len != sizeof(struct sockaddr_in))
7837 goto invaddr;
7838 break;
7839 case AF_INET6:
7840 if (sa0->sa_len != sizeof(struct sockaddr_in6))
7841 goto invaddr;
7842 break;
7843 default:
7844 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7845 error = EAFNOSUPPORT;
7846 goto senderror;
7847 }
7848
7849 switch (sa0->sa_family) {
7850 case AF_INET:
7851 plen = sizeof(struct in_addr) << 3;
7852 break;
7853 case AF_INET6:
7854 plen = sizeof(struct in6_addr) << 3;
7855 break;
7856 default:
7857 plen = 0; /*fool gcc*/
7858 break;
7859 }
7860
7861 /* check max prefix length */
7862 if (src0->sadb_address_prefixlen > plen ||
7863 dst0->sadb_address_prefixlen > plen) {
7864 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7865 goto invaddr;
7866 }
7867
7868 /*
7869 * prefixlen == 0 is valid because there can be a case when
7870 * all addresses are matched.
7871 */
7872 }
7873
7874 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7875 key_api_typesw[msg->sadb_msg_type] == NULL) {
7876 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7877 error = EINVAL;
7878 goto senderror;
7879 }
7880
7881 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7882
7883 invaddr:
7884 error = EINVAL;
7885 senderror:
7886 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7887 return key_senderror(so, m, error);
7888 }
7889
7890 static int
7891 key_senderror(struct socket *so, struct mbuf *m, int code)
7892 {
7893 struct sadb_msg *msg;
7894
7895 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7896
7897 msg = mtod(m, struct sadb_msg *);
7898 msg->sadb_msg_errno = code;
7899 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7900 }
7901
7902 /*
7903 * set the pointer to each header into message buffer.
7904 * m will be freed on error.
7905 * XXX larger-than-MCLBYTES extension?
7906 */
7907 static int
7908 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7909 {
7910 struct mbuf *n;
7911 struct sadb_ext *ext;
7912 size_t off, end;
7913 int extlen;
7914 int toff;
7915
7916 KASSERT(m != NULL);
7917 KASSERT(mhp != NULL);
7918 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7919
7920 /* initialize */
7921 memset(mhp, 0, sizeof(*mhp));
7922
7923 mhp->msg = mtod(m, struct sadb_msg *);
7924 mhp->ext[0] = mhp->msg; /*XXX backward compat */
7925
7926 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7927 extlen = end; /*just in case extlen is not updated*/
7928 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7929 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7930 if (!n) {
7931 /* m is already freed */
7932 return ENOBUFS;
7933 }
7934 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7935
7936 /* set pointer */
7937 switch (ext->sadb_ext_type) {
7938 case SADB_EXT_SA:
7939 case SADB_EXT_ADDRESS_SRC:
7940 case SADB_EXT_ADDRESS_DST:
7941 case SADB_EXT_ADDRESS_PROXY:
7942 case SADB_EXT_LIFETIME_CURRENT:
7943 case SADB_EXT_LIFETIME_HARD:
7944 case SADB_EXT_LIFETIME_SOFT:
7945 case SADB_EXT_KEY_AUTH:
7946 case SADB_EXT_KEY_ENCRYPT:
7947 case SADB_EXT_IDENTITY_SRC:
7948 case SADB_EXT_IDENTITY_DST:
7949 case SADB_EXT_SENSITIVITY:
7950 case SADB_EXT_PROPOSAL:
7951 case SADB_EXT_SUPPORTED_AUTH:
7952 case SADB_EXT_SUPPORTED_ENCRYPT:
7953 case SADB_EXT_SPIRANGE:
7954 case SADB_X_EXT_POLICY:
7955 case SADB_X_EXT_SA2:
7956 case SADB_X_EXT_NAT_T_TYPE:
7957 case SADB_X_EXT_NAT_T_SPORT:
7958 case SADB_X_EXT_NAT_T_DPORT:
7959 case SADB_X_EXT_NAT_T_OAI:
7960 case SADB_X_EXT_NAT_T_OAR:
7961 case SADB_X_EXT_NAT_T_FRAG:
7962 /* duplicate check */
7963 /*
7964 * XXX Are there duplication payloads of either
7965 * KEY_AUTH or KEY_ENCRYPT ?
7966 */
7967 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7968 IPSECLOG(LOG_DEBUG,
7969 "duplicate ext_type %u is passed.\n",
7970 ext->sadb_ext_type);
7971 m_freem(m);
7972 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7973 return EINVAL;
7974 }
7975 break;
7976 default:
7977 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7978 ext->sadb_ext_type);
7979 m_freem(m);
7980 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7981 return EINVAL;
7982 }
7983
7984 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7985
7986 if (key_validate_ext(ext, extlen)) {
7987 m_freem(m);
7988 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7989 return EINVAL;
7990 }
7991
7992 n = m_pulldown(m, off, extlen, &toff);
7993 if (!n) {
7994 /* m is already freed */
7995 return ENOBUFS;
7996 }
7997 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7998
7999 mhp->ext[ext->sadb_ext_type] = ext;
8000 mhp->extoff[ext->sadb_ext_type] = off;
8001 mhp->extlen[ext->sadb_ext_type] = extlen;
8002 }
8003
8004 if (off != end) {
8005 m_freem(m);
8006 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8007 return EINVAL;
8008 }
8009
8010 return 0;
8011 }
8012
8013 static int
8014 key_validate_ext(const struct sadb_ext *ext, int len)
8015 {
8016 const struct sockaddr *sa;
8017 enum { NONE, ADDR } checktype = NONE;
8018 int baselen = 0;
8019 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8020
8021 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8022 return EINVAL;
8023
8024 /* if it does not match minimum/maximum length, bail */
8025 if (ext->sadb_ext_type >= __arraycount(minsize) ||
8026 ext->sadb_ext_type >= __arraycount(maxsize))
8027 return EINVAL;
8028 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8029 return EINVAL;
8030 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8031 return EINVAL;
8032
8033 /* more checks based on sadb_ext_type XXX need more */
8034 switch (ext->sadb_ext_type) {
8035 case SADB_EXT_ADDRESS_SRC:
8036 case SADB_EXT_ADDRESS_DST:
8037 case SADB_EXT_ADDRESS_PROXY:
8038 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8039 checktype = ADDR;
8040 break;
8041 case SADB_EXT_IDENTITY_SRC:
8042 case SADB_EXT_IDENTITY_DST:
8043 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8044 SADB_X_IDENTTYPE_ADDR) {
8045 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8046 checktype = ADDR;
8047 } else
8048 checktype = NONE;
8049 break;
8050 default:
8051 checktype = NONE;
8052 break;
8053 }
8054
8055 switch (checktype) {
8056 case NONE:
8057 break;
8058 case ADDR:
8059 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8060 if (len < baselen + sal)
8061 return EINVAL;
8062 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8063 return EINVAL;
8064 break;
8065 }
8066
8067 return 0;
8068 }
8069
8070 static int
8071 key_do_init(void)
8072 {
8073 int i, error;
8074
8075 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
8076
8077 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
8078 cv_init(&key_spd.cv_lc, "key_sp_lc");
8079 key_spd.psz = pserialize_create();
8080 cv_init(&key_spd.cv_psz, "key_sp_psz");
8081 key_spd.psz_performing = false;
8082
8083 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
8084 cv_init(&key_sad.cv_lc, "key_sa_lc");
8085 key_sad.psz = pserialize_create();
8086 cv_init(&key_sad.cv_psz, "key_sa_psz");
8087 key_sad.psz_performing = false;
8088
8089 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
8090
8091 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE);
8092 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
8093 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
8094 if (error != 0)
8095 panic("%s: workqueue_create failed (%d)\n", __func__, error);
8096
8097 for (i = 0; i < IPSEC_DIR_MAX; i++) {
8098 PSLIST_INIT(&key_spd.splist[i]);
8099 }
8100
8101 PSLIST_INIT(&key_spd.socksplist);
8102
8103 PSLIST_INIT(&key_sad.sahlist);
8104
8105 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8106 LIST_INIT(&key_misc.reglist[i]);
8107 }
8108
8109 #ifndef IPSEC_NONBLOCK_ACQUIRE
8110 LIST_INIT(&key_misc.acqlist);
8111 #endif
8112 #ifdef notyet
8113 LIST_INIT(&key_misc.spacqlist);
8114 #endif
8115
8116 /* system default */
8117 ip4_def_policy.policy = IPSEC_POLICY_NONE;
8118 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
8119 localcount_init(&ip4_def_policy.localcount);
8120
8121 #ifdef INET6
8122 ip6_def_policy.policy = IPSEC_POLICY_NONE;
8123 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
8124 localcount_init(&ip6_def_policy.localcount);
8125 #endif
8126
8127 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
8128
8129 /* initialize key statistics */
8130 keystat.getspi_count = 1;
8131
8132 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
8133
8134 return (0);
8135 }
8136
8137 void
8138 key_init(void)
8139 {
8140 static ONCE_DECL(key_init_once);
8141
8142 sysctl_net_keyv2_setup(NULL);
8143 sysctl_net_key_compat_setup(NULL);
8144
8145 RUN_ONCE(&key_init_once, key_do_init);
8146
8147 key_init_so();
8148 }
8149
8150 /*
8151 * XXX: maybe This function is called after INBOUND IPsec processing.
8152 *
8153 * Special check for tunnel-mode packets.
8154 * We must make some checks for consistency between inner and outer IP header.
8155 *
8156 * xxx more checks to be provided
8157 */
8158 int
8159 key_checktunnelsanity(
8160 struct secasvar *sav,
8161 u_int family,
8162 void *src,
8163 void *dst
8164 )
8165 {
8166
8167 /* XXX: check inner IP header */
8168
8169 return 1;
8170 }
8171
8172 #if 0
8173 #define hostnamelen strlen(hostname)
8174
8175 /*
8176 * Get FQDN for the host.
8177 * If the administrator configured hostname (by hostname(1)) without
8178 * domain name, returns nothing.
8179 */
8180 static const char *
8181 key_getfqdn(void)
8182 {
8183 int i;
8184 int hasdot;
8185 static char fqdn[MAXHOSTNAMELEN + 1];
8186
8187 if (!hostnamelen)
8188 return NULL;
8189
8190 /* check if it comes with domain name. */
8191 hasdot = 0;
8192 for (i = 0; i < hostnamelen; i++) {
8193 if (hostname[i] == '.')
8194 hasdot++;
8195 }
8196 if (!hasdot)
8197 return NULL;
8198
8199 /* NOTE: hostname may not be NUL-terminated. */
8200 memset(fqdn, 0, sizeof(fqdn));
8201 memcpy(fqdn, hostname, hostnamelen);
8202 fqdn[hostnamelen] = '\0';
8203 return fqdn;
8204 }
8205
8206 /*
8207 * get username@FQDN for the host/user.
8208 */
8209 static const char *
8210 key_getuserfqdn(void)
8211 {
8212 const char *host;
8213 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8214 struct proc *p = curproc;
8215 char *q;
8216
8217 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8218 return NULL;
8219 if (!(host = key_getfqdn()))
8220 return NULL;
8221
8222 /* NOTE: s_login may not be-NUL terminated. */
8223 memset(userfqdn, 0, sizeof(userfqdn));
8224 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8225 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
8226 q = userfqdn + strlen(userfqdn);
8227 *q++ = '@';
8228 memcpy(q, host, strlen(host));
8229 q += strlen(host);
8230 *q++ = '\0';
8231
8232 return userfqdn;
8233 }
8234 #endif
8235
8236 /* record data transfer on SA, and update timestamps */
8237 void
8238 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8239 {
8240
8241 KASSERT(sav != NULL);
8242 KASSERT(sav->lft_c != NULL);
8243 KASSERT(m != NULL);
8244
8245 /*
8246 * XXX Currently, there is a difference of bytes size
8247 * between inbound and outbound processing.
8248 */
8249 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8250 /* to check bytes lifetime is done in key_timehandler(). */
8251
8252 /*
8253 * We use the number of packets as the unit of
8254 * sadb_lifetime_allocations. We increment the variable
8255 * whenever {esp,ah}_{in,out}put is called.
8256 */
8257 sav->lft_c->sadb_lifetime_allocations++;
8258 /* XXX check for expires? */
8259
8260 /*
8261 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8262 * in seconds. HARD and SOFT lifetime are measured by the time
8263 * difference (again in seconds) from sadb_lifetime_usetime.
8264 *
8265 * usetime
8266 * v expire expire
8267 * -----+-----+--------+---> t
8268 * <--------------> HARD
8269 * <-----> SOFT
8270 */
8271 sav->lft_c->sadb_lifetime_usetime = time_uptime;
8272 /* XXX check for expires? */
8273
8274 return;
8275 }
8276
8277 /* dumb version */
8278 void
8279 key_sa_routechange(struct sockaddr *dst)
8280 {
8281 struct secashead *sah;
8282 int s;
8283
8284 s = pserialize_read_enter();
8285 SAHLIST_READER_FOREACH(sah) {
8286 struct route *ro;
8287 const struct sockaddr *sa;
8288
8289 key_sah_ref(sah);
8290 pserialize_read_exit(s);
8291
8292 ro = &sah->sa_route;
8293 sa = rtcache_getdst(ro);
8294 if (sa != NULL && dst->sa_len == sa->sa_len &&
8295 memcmp(dst, sa, dst->sa_len) == 0)
8296 rtcache_free(ro);
8297
8298 s = pserialize_read_enter();
8299 key_sah_unref(sah);
8300 }
8301 pserialize_read_exit(s);
8302
8303 return;
8304 }
8305
8306 static void
8307 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8308 {
8309 struct secasvar *_sav;
8310
8311 ASSERT_SLEEPABLE();
8312 KASSERT(mutex_owned(&key_sad.lock));
8313
8314 if (sav->state == state)
8315 return;
8316
8317 key_unlink_sav(sav);
8318 localcount_fini(&sav->localcount);
8319 SAVLIST_ENTRY_DESTROY(sav);
8320 key_init_sav(sav);
8321
8322 sav->state = state;
8323 if (!SADB_SASTATE_USABLE_P(sav)) {
8324 /* We don't need to care about the order */
8325 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8326 return;
8327 }
8328 /*
8329 * Sort the list by lft_c->sadb_lifetime_addtime
8330 * in ascending order.
8331 */
8332 SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8333 if (_sav->lft_c->sadb_lifetime_addtime >
8334 sav->lft_c->sadb_lifetime_addtime) {
8335 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8336 break;
8337 }
8338 }
8339 if (_sav == NULL) {
8340 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8341 }
8342 key_validate_savlist(sav->sah, state);
8343 }
8344
8345 /* XXX too much? */
8346 static struct mbuf *
8347 key_alloc_mbuf(int l)
8348 {
8349 struct mbuf *m = NULL, *n;
8350 int len, t;
8351
8352 len = l;
8353 while (len > 0) {
8354 MGET(n, M_DONTWAIT, MT_DATA);
8355 if (n && len > MLEN) {
8356 MCLGET(n, M_DONTWAIT);
8357 if ((n->m_flags & M_EXT) == 0) {
8358 m_freem(n);
8359 n = NULL;
8360 }
8361 }
8362 if (!n) {
8363 m_freem(m);
8364 return NULL;
8365 }
8366
8367 n->m_next = NULL;
8368 n->m_len = 0;
8369 n->m_len = M_TRAILINGSPACE(n);
8370 /* use the bottom of mbuf, hoping we can prepend afterwards */
8371 if (n->m_len > len) {
8372 t = (n->m_len - len) & ~(sizeof(long) - 1);
8373 n->m_data += t;
8374 n->m_len = len;
8375 }
8376
8377 len -= n->m_len;
8378
8379 if (m)
8380 m_cat(m, n);
8381 else
8382 m = n;
8383 }
8384
8385 return m;
8386 }
8387
8388 static struct mbuf *
8389 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8390 {
8391 struct secashead *sah;
8392 struct secasvar *sav;
8393 u_int16_t proto;
8394 u_int8_t satype;
8395 u_int8_t state;
8396 int cnt;
8397 struct mbuf *m, *n;
8398
8399 KASSERT(mutex_owned(&key_sad.lock));
8400
8401 /* map satype to proto */
8402 proto = key_satype2proto(req_satype);
8403 if (proto == 0) {
8404 *errorp = EINVAL;
8405 return (NULL);
8406 }
8407
8408 /* count sav entries to be sent to the userland. */
8409 cnt = 0;
8410 SAHLIST_WRITER_FOREACH(sah) {
8411 if (req_satype != SADB_SATYPE_UNSPEC &&
8412 proto != sah->saidx.proto)
8413 continue;
8414
8415 SASTATE_ANY_FOREACH(state) {
8416 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8417 cnt++;
8418 }
8419 }
8420 }
8421
8422 if (cnt == 0) {
8423 *errorp = ENOENT;
8424 return (NULL);
8425 }
8426
8427 /* send this to the userland, one at a time. */
8428 m = NULL;
8429 SAHLIST_WRITER_FOREACH(sah) {
8430 if (req_satype != SADB_SATYPE_UNSPEC &&
8431 proto != sah->saidx.proto)
8432 continue;
8433
8434 /* map proto to satype */
8435 satype = key_proto2satype(sah->saidx.proto);
8436 if (satype == 0) {
8437 m_freem(m);
8438 *errorp = EINVAL;
8439 return (NULL);
8440 }
8441
8442 SASTATE_ANY_FOREACH(state) {
8443 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8444 n = key_setdumpsa(sav, SADB_DUMP, satype,
8445 --cnt, pid);
8446 if (!n) {
8447 m_freem(m);
8448 *errorp = ENOBUFS;
8449 return (NULL);
8450 }
8451
8452 if (!m)
8453 m = n;
8454 else
8455 m_cat(m, n);
8456 }
8457 }
8458 }
8459
8460 if (!m) {
8461 *errorp = EINVAL;
8462 return (NULL);
8463 }
8464
8465 if ((m->m_flags & M_PKTHDR) != 0) {
8466 m->m_pkthdr.len = 0;
8467 for (n = m; n; n = n->m_next)
8468 m->m_pkthdr.len += n->m_len;
8469 }
8470
8471 *errorp = 0;
8472 return (m);
8473 }
8474
8475 static struct mbuf *
8476 key_setspddump(int *errorp, pid_t pid)
8477 {
8478 struct secpolicy *sp;
8479 int cnt;
8480 u_int dir;
8481 struct mbuf *m, *n;
8482
8483 KASSERT(mutex_owned(&key_spd.lock));
8484
8485 /* search SPD entry and get buffer size. */
8486 cnt = 0;
8487 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8488 SPLIST_WRITER_FOREACH(sp, dir) {
8489 cnt++;
8490 }
8491 }
8492
8493 if (cnt == 0) {
8494 *errorp = ENOENT;
8495 return (NULL);
8496 }
8497
8498 m = NULL;
8499 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8500 SPLIST_WRITER_FOREACH(sp, dir) {
8501 --cnt;
8502 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8503
8504 if (!n) {
8505 *errorp = ENOBUFS;
8506 m_freem(m);
8507 return (NULL);
8508 }
8509 if (!m)
8510 m = n;
8511 else {
8512 m->m_pkthdr.len += n->m_pkthdr.len;
8513 m_cat(m, n);
8514 }
8515 }
8516 }
8517
8518 *errorp = 0;
8519 return (m);
8520 }
8521
8522 int
8523 key_get_used(void) {
8524 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8525 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8526 !SOCKSPLIST_READER_EMPTY();
8527 }
8528
8529 void
8530 key_update_used(void)
8531 {
8532 switch (ipsec_enabled) {
8533 default:
8534 case 0:
8535 #ifdef notyet
8536 /* XXX: racy */
8537 ipsec_used = 0;
8538 #endif
8539 break;
8540 case 1:
8541 #ifndef notyet
8542 /* XXX: racy */
8543 if (!ipsec_used)
8544 #endif
8545 ipsec_used = key_get_used();
8546 break;
8547 case 2:
8548 ipsec_used = 1;
8549 break;
8550 }
8551 }
8552
8553 static int
8554 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8555 {
8556 struct mbuf *m, *n;
8557 int err2 = 0;
8558 char *p, *ep;
8559 size_t len;
8560 int error;
8561
8562 if (newp)
8563 return (EPERM);
8564 if (namelen != 1)
8565 return (EINVAL);
8566
8567 mutex_enter(&key_sad.lock);
8568 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8569 mutex_exit(&key_sad.lock);
8570 if (!m)
8571 return (error);
8572 if (!oldp)
8573 *oldlenp = m->m_pkthdr.len;
8574 else {
8575 p = oldp;
8576 if (*oldlenp < m->m_pkthdr.len) {
8577 err2 = ENOMEM;
8578 ep = p + *oldlenp;
8579 } else {
8580 *oldlenp = m->m_pkthdr.len;
8581 ep = p + m->m_pkthdr.len;
8582 }
8583 for (n = m; n; n = n->m_next) {
8584 len = (ep - p < n->m_len) ?
8585 ep - p : n->m_len;
8586 error = copyout(mtod(n, const void *), p, len);
8587 p += len;
8588 if (error)
8589 break;
8590 }
8591 if (error == 0)
8592 error = err2;
8593 }
8594 m_freem(m);
8595
8596 return (error);
8597 }
8598
8599 static int
8600 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8601 {
8602 struct mbuf *m, *n;
8603 int err2 = 0;
8604 char *p, *ep;
8605 size_t len;
8606 int error;
8607
8608 if (newp)
8609 return (EPERM);
8610 if (namelen != 0)
8611 return (EINVAL);
8612
8613 mutex_enter(&key_spd.lock);
8614 m = key_setspddump(&error, l->l_proc->p_pid);
8615 mutex_exit(&key_spd.lock);
8616 if (!m)
8617 return (error);
8618 if (!oldp)
8619 *oldlenp = m->m_pkthdr.len;
8620 else {
8621 p = oldp;
8622 if (*oldlenp < m->m_pkthdr.len) {
8623 err2 = ENOMEM;
8624 ep = p + *oldlenp;
8625 } else {
8626 *oldlenp = m->m_pkthdr.len;
8627 ep = p + m->m_pkthdr.len;
8628 }
8629 for (n = m; n; n = n->m_next) {
8630 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8631 error = copyout(mtod(n, const void *), p, len);
8632 p += len;
8633 if (error)
8634 break;
8635 }
8636 if (error == 0)
8637 error = err2;
8638 }
8639 m_freem(m);
8640
8641 return (error);
8642 }
8643
8644 /*
8645 * Create sysctl tree for native IPSEC key knobs, originally
8646 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8647 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8648 * and in any case the part of our sysctl namespace used for dumping the
8649 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8650 * namespace, for API reasons.
8651 *
8652 * Pending a consensus on the right way to fix this, add a level of
8653 * indirection in how we number the `native' IPSEC key nodes;
8654 * and (as requested by Andrew Brown) move registration of the
8655 * KAME-compatible names to a separate function.
8656 */
8657 #if 0
8658 # define IPSEC_PFKEY PF_KEY_V2
8659 # define IPSEC_PFKEY_NAME "keyv2"
8660 #else
8661 # define IPSEC_PFKEY PF_KEY
8662 # define IPSEC_PFKEY_NAME "key"
8663 #endif
8664
8665 static int
8666 sysctl_net_key_stats(SYSCTLFN_ARGS)
8667 {
8668
8669 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8670 }
8671
8672 static void
8673 sysctl_net_keyv2_setup(struct sysctllog **clog)
8674 {
8675
8676 sysctl_createv(clog, 0, NULL, NULL,
8677 CTLFLAG_PERMANENT,
8678 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8679 NULL, 0, NULL, 0,
8680 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8681
8682 sysctl_createv(clog, 0, NULL, NULL,
8683 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8684 CTLTYPE_INT, "debug", NULL,
8685 NULL, 0, &key_debug_level, 0,
8686 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8687 sysctl_createv(clog, 0, NULL, NULL,
8688 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8689 CTLTYPE_INT, "spi_try", NULL,
8690 NULL, 0, &key_spi_trycnt, 0,
8691 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8692 sysctl_createv(clog, 0, NULL, NULL,
8693 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8694 CTLTYPE_INT, "spi_min_value", NULL,
8695 NULL, 0, &key_spi_minval, 0,
8696 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8697 sysctl_createv(clog, 0, NULL, NULL,
8698 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8699 CTLTYPE_INT, "spi_max_value", NULL,
8700 NULL, 0, &key_spi_maxval, 0,
8701 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8702 sysctl_createv(clog, 0, NULL, NULL,
8703 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8704 CTLTYPE_INT, "random_int", NULL,
8705 NULL, 0, &key_int_random, 0,
8706 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8707 sysctl_createv(clog, 0, NULL, NULL,
8708 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8709 CTLTYPE_INT, "larval_lifetime", NULL,
8710 NULL, 0, &key_larval_lifetime, 0,
8711 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8712 sysctl_createv(clog, 0, NULL, NULL,
8713 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8714 CTLTYPE_INT, "blockacq_count", NULL,
8715 NULL, 0, &key_blockacq_count, 0,
8716 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8717 sysctl_createv(clog, 0, NULL, NULL,
8718 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8719 CTLTYPE_INT, "blockacq_lifetime", NULL,
8720 NULL, 0, &key_blockacq_lifetime, 0,
8721 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8722 sysctl_createv(clog, 0, NULL, NULL,
8723 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8724 CTLTYPE_INT, "esp_keymin", NULL,
8725 NULL, 0, &ipsec_esp_keymin, 0,
8726 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8727 sysctl_createv(clog, 0, NULL, NULL,
8728 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8729 CTLTYPE_INT, "prefered_oldsa", NULL,
8730 NULL, 0, &key_prefered_oldsa, 0,
8731 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8732 sysctl_createv(clog, 0, NULL, NULL,
8733 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8734 CTLTYPE_INT, "esp_auth", NULL,
8735 NULL, 0, &ipsec_esp_auth, 0,
8736 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8737 sysctl_createv(clog, 0, NULL, NULL,
8738 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8739 CTLTYPE_INT, "ah_keymin", NULL,
8740 NULL, 0, &ipsec_ah_keymin, 0,
8741 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8742 sysctl_createv(clog, 0, NULL, NULL,
8743 CTLFLAG_PERMANENT,
8744 CTLTYPE_STRUCT, "stats",
8745 SYSCTL_DESCR("PF_KEY statistics"),
8746 sysctl_net_key_stats, 0, NULL, 0,
8747 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8748 }
8749
8750 /*
8751 * Register sysctl names used by setkey(8). For historical reasons,
8752 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8753 * for both IPSEC and KAME IPSEC.
8754 */
8755 static void
8756 sysctl_net_key_compat_setup(struct sysctllog **clog)
8757 {
8758
8759 sysctl_createv(clog, 0, NULL, NULL,
8760 CTLFLAG_PERMANENT,
8761 CTLTYPE_NODE, "key", NULL,
8762 NULL, 0, NULL, 0,
8763 CTL_NET, PF_KEY, CTL_EOL);
8764
8765 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8766 sysctl_createv(clog, 0, NULL, NULL,
8767 CTLFLAG_PERMANENT,
8768 CTLTYPE_STRUCT, "dumpsa", NULL,
8769 sysctl_net_key_dumpsa, 0, NULL, 0,
8770 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8771 sysctl_createv(clog, 0, NULL, NULL,
8772 CTLFLAG_PERMANENT,
8773 CTLTYPE_STRUCT, "dumpsp", NULL,
8774 sysctl_net_key_dumpsp, 0, NULL, 0,
8775 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8776 }
8777