key.c revision 1.243 1 /* $NetBSD: key.c,v 1.243 2017/11/22 05:43:28 ozaki-r Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.243 2017/11/22 05:43:28 ozaki-r Exp $");
36
37 /*
38 * This code is referred to RFC 2367
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114
115
116 #include <net/net_osdep.h>
117
118 #define FULLMASK 0xff
119 #define _BITS(bytes) ((bytes) << 3)
120
121 #define PORT_NONE 0
122 #define PORT_LOOSE 1
123 #define PORT_STRICT 2
124
125 percpu_t *pfkeystat_percpu;
126
127 /*
128 * Note on SA reference counting:
129 * - SAs that are not in DEAD state will have (total external reference + 1)
130 * following value in reference count field. they cannot be freed and are
131 * referenced from SA header.
132 * - SAs that are in DEAD state will have (total external reference)
133 * in reference count field. they are ready to be freed. reference from
134 * SA header will be removed in key_delsav(), when the reference count
135 * field hits 0 (= no external reference other than from SA header.
136 */
137
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
148
149 static u_int32_t acq_seq = 0;
150
151 /*
152 * Locking order: there is no order for now; it means that any locks aren't
153 * overlapped.
154 */
155 /*
156 * Locking notes on SPD:
157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158 * which is a adaptive mutex
159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160 * - SP's lifetime is managed by localcount(9)
161 * - An SP that has been inserted to the key_spd.splist is initially referenced
162 * by none, i.e., a reference from the key_spd.splist isn't counted
163 * - When an SP is being destroyed, we change its state as DEAD, wait for
164 * references to the SP to be released, and then deallocate the SP
165 * (see key_unlink_sp)
166 * - Getting an SP
167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168 * - Must iterate the list and increment the reference count of a found SP
169 * (by key_sp_ref) in a pserialize read section
170 * - We can gain another reference from a held SP only if we check its state
171 * and take its reference in a pserialize read section
172 * (see esp_output for example)
173 * - We may get an SP from an SP cache. See below
174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175 * - Updating member variables of an SP
176 * - Most member variables of an SP are immutable
177 * - Only sp->state and sp->lastused can be changed
178 * - sp->state of an SP is updated only when destroying it under key_spd.lock
179 * - SP caches
180 * - SPs can be cached in PCBs
181 * - The lifetime of the caches is controlled by the global generation counter
182 * (ipsec_spdgen)
183 * - The global counter value is stored when an SP is cached
184 * - If the stored value is different from the global counter then the cache
185 * is considered invalidated
186 * - The counter is incremented when an SP is being destroyed
187 * - So checking the generation and taking a reference to an SP should be
188 * in a pserialize read section
189 * - Note that caching doesn't increment the reference counter of an SP
190 * - SPs in sockets
191 * - Userland programs can set a policy to a socket by
192 * setsockopt(IP_IPSEC_POLICY)
193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to
194 * the key_spd.socksplist list (not the key_spd.splist)
195 * - Such a policy is destroyed when a corresponding socket is destroed,
196 * however, a socket can be destroyed in softint so we cannot destroy
197 * it directly instead we just mark it DEAD and delay the destruction
198 * until GC by the timer
199 */
200 /*
201 * Locking notes on SAD:
202 * - Data structures
203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204 * entries
205 * - An sav is supposed to be an SA from a viewpoint of users
206 * - A sah has sav lists for each SA state
207 * - Multiple sahs with the same saidx can exist
208 * - Only one entry has MATURE state and others should be DEAD
209 * - DEAD entries are just ignored from searching
210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with
211 * holding key_sad.lock which is a adaptive mutex
212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in
213 * pserialize(9) read sections
214 * - sah's lifetime is managed by localcount(9)
215 * - Getting an sah entry
216 * - We get an sah from the key_sad.sahlist
217 * - Must iterate the list and increment the reference count of a found sah
218 * (by key_sah_ref) in a pserialize read section
219 * - A gotten sah must be released after use by key_sah_unref
220 * - An sah is destroyed when its state become DEAD and no sav is
221 * listed to the sah
222 * - The destruction is done only in the timer (see key_timehandler_sad)
223 * - sav's lifetime is managed by localcount(9)
224 * - Getting an sav entry
225 * - First get an sah by saidx and get an sav from either of sah's savlists
226 * - Must iterate the list and increment the reference count of a found sav
227 * (by key_sa_ref) in a pserialize read section
228 * - We can gain another reference from a held SA only if we check its state
229 * and take its reference in a pserialize read section
230 * (see esp_output for example)
231 * - A gotten sav must be released after use by key_sa_unref
232 * - An sav is destroyed when its state become DEAD
233 */
234 /*
235 * Locking notes on misc data:
236 * - All lists of key_misc are protected by key_misc.lock
237 * - key_misc.lock must be held even for read accesses
238 */
239
240 /* SPD */
241 static struct {
242 kmutex_t lock;
243 kcondvar_t cv_lc;
244 struct pslist_head splist[IPSEC_DIR_MAX];
245 /*
246 * The list has SPs that are set to a socket via
247 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
248 */
249 struct pslist_head socksplist;
250
251 pserialize_t psz;
252 kcondvar_t cv_psz;
253 bool psz_performing;
254 } key_spd __cacheline_aligned;
255
256 /* SAD */
257 static struct {
258 kmutex_t lock;
259 kcondvar_t cv_lc;
260 struct pslist_head sahlist;
261
262 pserialize_t psz;
263 kcondvar_t cv_psz;
264 bool psz_performing;
265 } key_sad __cacheline_aligned;
266
267 /* Misc data */
268 static struct {
269 kmutex_t lock;
270 /* registed list */
271 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
272 #ifndef IPSEC_NONBLOCK_ACQUIRE
273 /* acquiring list */
274 LIST_HEAD(_acqlist, secacq) acqlist;
275 #endif
276 #ifdef notyet
277 /* SP acquiring list */
278 LIST_HEAD(_spacqlist, secspacq) spacqlist;
279 #endif
280 } key_misc __cacheline_aligned;
281
282 /* Macros for key_spd.splist */
283 #define SPLIST_ENTRY_INIT(sp) \
284 PSLIST_ENTRY_INIT((sp), pslist_entry)
285 #define SPLIST_ENTRY_DESTROY(sp) \
286 PSLIST_ENTRY_DESTROY((sp), pslist_entry)
287 #define SPLIST_WRITER_REMOVE(sp) \
288 PSLIST_WRITER_REMOVE((sp), pslist_entry)
289 #define SPLIST_READER_EMPTY(dir) \
290 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
291 pslist_entry) == NULL)
292 #define SPLIST_READER_FOREACH(sp, dir) \
293 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
294 struct secpolicy, pslist_entry)
295 #define SPLIST_WRITER_FOREACH(sp, dir) \
296 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
297 struct secpolicy, pslist_entry)
298 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \
299 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
300 #define SPLIST_WRITER_EMPTY(dir) \
301 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
302 pslist_entry) == NULL)
303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
304 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
305 pslist_entry)
306 #define SPLIST_WRITER_NEXT(sp) \
307 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
308 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \
309 do { \
310 if (SPLIST_WRITER_EMPTY((dir))) { \
311 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
312 } else { \
313 struct secpolicy *__sp; \
314 SPLIST_WRITER_FOREACH(__sp, (dir)) { \
315 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
316 SPLIST_WRITER_INSERT_AFTER(__sp,\
317 (new)); \
318 break; \
319 } \
320 } \
321 } \
322 } while (0)
323
324 /* Macros for key_spd.socksplist */
325 #define SOCKSPLIST_WRITER_FOREACH(sp) \
326 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
327 struct secpolicy, pslist_entry)
328 #define SOCKSPLIST_READER_EMPTY() \
329 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
330 pslist_entry) == NULL)
331
332 /* Macros for key_sad.sahlist */
333 #define SAHLIST_ENTRY_INIT(sah) \
334 PSLIST_ENTRY_INIT((sah), pslist_entry)
335 #define SAHLIST_ENTRY_DESTROY(sah) \
336 PSLIST_ENTRY_DESTROY((sah), pslist_entry)
337 #define SAHLIST_WRITER_REMOVE(sah) \
338 PSLIST_WRITER_REMOVE((sah), pslist_entry)
339 #define SAHLIST_READER_FOREACH(sah) \
340 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
341 pslist_entry)
342 #define SAHLIST_WRITER_FOREACH(sah) \
343 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
344 pslist_entry)
345 #define SAHLIST_WRITER_INSERT_HEAD(sah) \
346 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
347
348 /* Macros for key_sad.sahlist#savlist */
349 #define SAVLIST_ENTRY_INIT(sav) \
350 PSLIST_ENTRY_INIT((sav), pslist_entry)
351 #define SAVLIST_ENTRY_DESTROY(sav) \
352 PSLIST_ENTRY_DESTROY((sav), pslist_entry)
353 #define SAVLIST_READER_FIRST(sah, state) \
354 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
355 pslist_entry)
356 #define SAVLIST_WRITER_REMOVE(sav) \
357 PSLIST_WRITER_REMOVE((sav), pslist_entry)
358 #define SAVLIST_READER_FOREACH(sav, sah, state) \
359 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
360 struct secasvar, pslist_entry)
361 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \
362 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
363 struct secasvar, pslist_entry)
364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
365 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
367 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
368 #define SAVLIST_WRITER_EMPTY(sah, state) \
369 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
370 pslist_entry) == NULL)
371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
372 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
373 pslist_entry)
374 #define SAVLIST_WRITER_NEXT(sav) \
375 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
377 do { \
378 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
379 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
380 } else { \
381 struct secasvar *__sav; \
382 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
383 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
384 SAVLIST_WRITER_INSERT_AFTER(__sav,\
385 (new)); \
386 break; \
387 } \
388 } \
389 } \
390 } while (0)
391 #define SAVLIST_READER_NEXT(sav) \
392 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
393
394
395 /* search order for SAs */
396 /*
397 * This order is important because we must select the oldest SA
398 * for outbound processing. For inbound, This is not important.
399 */
400 static const u_int saorder_state_valid_prefer_old[] = {
401 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
402 };
403 static const u_int saorder_state_valid_prefer_new[] = {
404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
405 };
406
407 static const u_int saorder_state_alive[] = {
408 /* except DEAD */
409 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
410 };
411 static const u_int saorder_state_any[] = {
412 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
413 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
414 };
415
416 #define SASTATE_ALIVE_FOREACH(s) \
417 for (int _i = 0; \
418 _i < __arraycount(saorder_state_alive) ? \
419 (s) = saorder_state_alive[_i], true : false; \
420 _i++)
421 #define SASTATE_ANY_FOREACH(s) \
422 for (int _i = 0; \
423 _i < __arraycount(saorder_state_any) ? \
424 (s) = saorder_state_any[_i], true : false; \
425 _i++)
426
427 static const int minsize[] = {
428 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
429 sizeof(struct sadb_sa), /* SADB_EXT_SA */
430 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
433 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
436 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
437 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
438 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
440 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
441 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
442 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
444 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
445 0, /* SADB_X_EXT_KMPRIVATE */
446 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
447 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
448 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
449 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
451 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
453 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
454 };
455 static const int maxsize[] = {
456 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
457 sizeof(struct sadb_sa), /* SADB_EXT_SA */
458 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
461 0, /* SADB_EXT_ADDRESS_SRC */
462 0, /* SADB_EXT_ADDRESS_DST */
463 0, /* SADB_EXT_ADDRESS_PROXY */
464 0, /* SADB_EXT_KEY_AUTH */
465 0, /* SADB_EXT_KEY_ENCRYPT */
466 0, /* SADB_EXT_IDENTITY_SRC */
467 0, /* SADB_EXT_IDENTITY_DST */
468 0, /* SADB_EXT_SENSITIVITY */
469 0, /* SADB_EXT_PROPOSAL */
470 0, /* SADB_EXT_SUPPORTED_AUTH */
471 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
472 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
473 0, /* SADB_X_EXT_KMPRIVATE */
474 0, /* SADB_X_EXT_POLICY */
475 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
476 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
477 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
479 0, /* SADB_X_EXT_NAT_T_OAI */
480 0, /* SADB_X_EXT_NAT_T_OAR */
481 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
482 };
483
484 static int ipsec_esp_keymin = 256;
485 static int ipsec_esp_auth = 0;
486 static int ipsec_ah_keymin = 128;
487
488 #ifdef SYSCTL_DECL
489 SYSCTL_DECL(_net_key);
490 #endif
491
492 #ifdef SYSCTL_INT
493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
494 &key_debug_level, 0, "");
495
496 /* max count of trial for the decision of spi value */
497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
498 &key_spi_trycnt, 0, "");
499
500 /* minimum spi value to allocate automatically. */
501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
502 &key_spi_minval, 0, "");
503
504 /* maximun spi value to allocate automatically. */
505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
506 &key_spi_maxval, 0, "");
507
508 /* interval to initialize randseed */
509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
510 &key_int_random, 0, "");
511
512 /* lifetime for larval SA */
513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
514 &key_larval_lifetime, 0, "");
515
516 /* counter for blocking to send SADB_ACQUIRE to IKEd */
517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
518 &key_blockacq_count, 0, "");
519
520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
522 &key_blockacq_lifetime, 0, "");
523
524 /* ESP auth */
525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
526 &ipsec_esp_auth, 0, "");
527
528 /* minimum ESP key length */
529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
530 &ipsec_esp_keymin, 0, "");
531
532 /* minimum AH key length */
533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
534 &ipsec_ah_keymin, 0, "");
535
536 /* perfered old SA rather than new SA */
537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
538 &key_prefered_oldsa, 0, "");
539 #endif /* SYSCTL_INT */
540
541 #define __LIST_CHAINED(elm) \
542 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
543 #define LIST_INSERT_TAIL(head, elm, type, field) \
544 do {\
545 struct type *curelm = LIST_FIRST(head); \
546 if (curelm == NULL) {\
547 LIST_INSERT_HEAD(head, elm, field); \
548 } else { \
549 while (LIST_NEXT(curelm, field)) \
550 curelm = LIST_NEXT(curelm, field);\
551 LIST_INSERT_AFTER(curelm, elm, field);\
552 }\
553 } while (0)
554
555 #define KEY_CHKSASTATE(head, sav) \
556 /* do */ { \
557 if ((head) != (sav)) { \
558 IPSECLOG(LOG_DEBUG, \
559 "state mismatched (TREE=%d SA=%d)\n", \
560 (head), (sav)); \
561 continue; \
562 } \
563 } /* while (0) */
564
565 #define KEY_CHKSPDIR(head, sp) \
566 do { \
567 if ((head) != (sp)) { \
568 IPSECLOG(LOG_DEBUG, \
569 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
570 (head), (sp)); \
571 } \
572 } while (0)
573
574 /*
575 * set parameters into secasindex buffer.
576 * Must allocate secasindex buffer before calling this function.
577 */
578 static int
579 key_setsecasidx(int, int, int, const struct sockaddr *,
580 const struct sockaddr *, struct secasindex *);
581
582 /* key statistics */
583 struct _keystat {
584 u_long getspi_count; /* the avarage of count to try to get new SPI */
585 } keystat;
586
587 struct sadb_msghdr {
588 struct sadb_msg *msg;
589 void *ext[SADB_EXT_MAX + 1];
590 int extoff[SADB_EXT_MAX + 1];
591 int extlen[SADB_EXT_MAX + 1];
592 };
593
594 static void
595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
596
597 static const struct sockaddr *
598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
599 {
600
601 return PFKEY_ADDR_SADDR(mhp->ext[idx]);
602 }
603
604 static void
605 key_fill_replymsg(struct mbuf *m, int seq)
606 {
607 struct sadb_msg *msg;
608
609 KASSERT(m->m_len >= sizeof(*msg));
610
611 msg = mtod(m, struct sadb_msg *);
612 msg->sadb_msg_errno = 0;
613 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
614 if (seq != 0)
615 msg->sadb_msg_seq = seq;
616 }
617
618 #if 0
619 static void key_freeso(struct socket *);
620 static void key_freesp_so(struct secpolicy **);
621 #endif
622 static struct secpolicy *key_getsp (const struct secpolicyindex *);
623 static struct secpolicy *key_getspbyid (u_int32_t);
624 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
625 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
626 static void key_destroy_sp(struct secpolicy *);
627 static u_int16_t key_newreqid (void);
628 static struct mbuf *key_gather_mbuf (struct mbuf *,
629 const struct sadb_msghdr *, int, int, ...);
630 static int key_api_spdadd(struct socket *, struct mbuf *,
631 const struct sadb_msghdr *);
632 static u_int32_t key_getnewspid (void);
633 static int key_api_spddelete(struct socket *, struct mbuf *,
634 const struct sadb_msghdr *);
635 static int key_api_spddelete2(struct socket *, struct mbuf *,
636 const struct sadb_msghdr *);
637 static int key_api_spdget(struct socket *, struct mbuf *,
638 const struct sadb_msghdr *);
639 static int key_api_spdflush(struct socket *, struct mbuf *,
640 const struct sadb_msghdr *);
641 static int key_api_spddump(struct socket *, struct mbuf *,
642 const struct sadb_msghdr *);
643 static struct mbuf * key_setspddump (int *errorp, pid_t);
644 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
645 static int key_api_nat_map(struct socket *, struct mbuf *,
646 const struct sadb_msghdr *);
647 static struct mbuf *key_setdumpsp (struct secpolicy *,
648 u_int8_t, u_int32_t, pid_t);
649 static u_int key_getspreqmsglen (const struct secpolicy *);
650 static int key_spdexpire (struct secpolicy *);
651 static struct secashead *key_newsah (const struct secasindex *);
652 static void key_unlink_sah(struct secashead *);
653 static void key_destroy_sah(struct secashead *);
654 static bool key_sah_has_sav(struct secashead *);
655 static void key_sah_ref(struct secashead *);
656 static void key_sah_unref(struct secashead *);
657 static void key_init_sav(struct secasvar *);
658 static void key_destroy_sav(struct secasvar *);
659 static void key_destroy_sav_with_ref(struct secasvar *);
660 static struct secasvar *key_newsav(struct mbuf *,
661 const struct sadb_msghdr *, int *, const char*, int);
662 #define KEY_NEWSAV(m, sadb, e) \
663 key_newsav(m, sadb, e, __func__, __LINE__)
664 static void key_delsav (struct secasvar *);
665 static struct secashead *key_getsah(const struct secasindex *, int);
666 static struct secashead *key_getsah_ref(const struct secasindex *, int);
667 static bool key_checkspidup(const struct secasindex *, u_int32_t);
668 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
669 static int key_setsaval (struct secasvar *, struct mbuf *,
670 const struct sadb_msghdr *);
671 static void key_freesaval(struct secasvar *);
672 static int key_init_xform(struct secasvar *);
673 static void key_clear_xform(struct secasvar *);
674 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
675 u_int8_t, u_int32_t, u_int32_t);
676 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
677 static struct mbuf *key_setsadbxtype (u_int16_t);
678 static struct mbuf *key_setsadbxfrag (u_int16_t);
679 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
680 static int key_checksalen (const union sockaddr_union *);
681 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
682 u_int32_t, pid_t, u_int16_t, int);
683 static struct mbuf *key_setsadbsa (struct secasvar *);
684 static struct mbuf *key_setsadbaddr(u_int16_t,
685 const struct sockaddr *, u_int8_t, u_int16_t, int);
686 #if 0
687 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
688 int, u_int64_t);
689 #endif
690 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
691 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
692 u_int32_t, int);
693 static void *key_newbuf (const void *, u_int);
694 #ifdef INET6
695 static int key_ismyaddr6 (const struct sockaddr_in6 *);
696 #endif
697
698 static void sysctl_net_keyv2_setup(struct sysctllog **);
699 static void sysctl_net_key_compat_setup(struct sysctllog **);
700
701 /* flags for key_saidx_match() */
702 #define CMP_HEAD 1 /* protocol, addresses. */
703 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
704 #define CMP_REQID 3 /* additionally HEAD, reaid. */
705 #define CMP_EXACTLY 4 /* all elements. */
706 static int key_saidx_match(const struct secasindex *,
707 const struct secasindex *, int);
708
709 static int key_sockaddr_match(const struct sockaddr *,
710 const struct sockaddr *, int);
711 static int key_bb_match_withmask(const void *, const void *, u_int);
712 static u_int16_t key_satype2proto (u_int8_t);
713 static u_int8_t key_proto2satype (u_int16_t);
714
715 static int key_spidx_match_exactly(const struct secpolicyindex *,
716 const struct secpolicyindex *);
717 static int key_spidx_match_withmask(const struct secpolicyindex *,
718 const struct secpolicyindex *);
719
720 static int key_api_getspi(struct socket *, struct mbuf *,
721 const struct sadb_msghdr *);
722 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
723 const struct secasindex *);
724 static int key_handle_natt_info (struct secasvar *,
725 const struct sadb_msghdr *);
726 static int key_set_natt_ports (union sockaddr_union *,
727 union sockaddr_union *,
728 const struct sadb_msghdr *);
729 static int key_api_update(struct socket *, struct mbuf *,
730 const struct sadb_msghdr *);
731 #ifdef IPSEC_DOSEQCHECK
732 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
733 #endif
734 static int key_api_add(struct socket *, struct mbuf *,
735 const struct sadb_msghdr *);
736 static int key_setident (struct secashead *, struct mbuf *,
737 const struct sadb_msghdr *);
738 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
739 const struct sadb_msghdr *);
740 static int key_api_delete(struct socket *, struct mbuf *,
741 const struct sadb_msghdr *);
742 static int key_api_get(struct socket *, struct mbuf *,
743 const struct sadb_msghdr *);
744
745 static void key_getcomb_setlifetime (struct sadb_comb *);
746 static struct mbuf *key_getcomb_esp(int);
747 static struct mbuf *key_getcomb_ah(int);
748 static struct mbuf *key_getcomb_ipcomp(int);
749 static struct mbuf *key_getprop(const struct secasindex *, int);
750
751 static int key_acquire(const struct secasindex *, const struct secpolicy *,
752 int);
753 static int key_acquire_sendup_mbuf_later(struct mbuf *);
754 static void key_acquire_sendup_pending_mbuf(void);
755 #ifndef IPSEC_NONBLOCK_ACQUIRE
756 static struct secacq *key_newacq (const struct secasindex *);
757 static struct secacq *key_getacq (const struct secasindex *);
758 static struct secacq *key_getacqbyseq (u_int32_t);
759 #endif
760 #ifdef notyet
761 static struct secspacq *key_newspacq (const struct secpolicyindex *);
762 static struct secspacq *key_getspacq (const struct secpolicyindex *);
763 #endif
764 static int key_api_acquire(struct socket *, struct mbuf *,
765 const struct sadb_msghdr *);
766 static int key_api_register(struct socket *, struct mbuf *,
767 const struct sadb_msghdr *);
768 static int key_expire (struct secasvar *);
769 static int key_api_flush(struct socket *, struct mbuf *,
770 const struct sadb_msghdr *);
771 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
772 int *lenp, pid_t pid);
773 static int key_api_dump(struct socket *, struct mbuf *,
774 const struct sadb_msghdr *);
775 static int key_api_promisc(struct socket *, struct mbuf *,
776 const struct sadb_msghdr *);
777 static int key_senderror (struct socket *, struct mbuf *, int);
778 static int key_validate_ext (const struct sadb_ext *, int);
779 static int key_align (struct mbuf *, struct sadb_msghdr *);
780 #if 0
781 static const char *key_getfqdn (void);
782 static const char *key_getuserfqdn (void);
783 #endif
784 static void key_sa_chgstate (struct secasvar *, u_int8_t);
785
786 static struct mbuf *key_alloc_mbuf(int, int);
787 static struct mbuf *key_alloc_mbuf_simple(int, int);
788
789 static void key_timehandler(void *);
790 static void key_timehandler_work(struct work *, void *);
791 static struct callout key_timehandler_ch;
792 static struct workqueue *key_timehandler_wq;
793 static struct work key_timehandler_wk;
794
795 u_int
796 key_sp_refcnt(const struct secpolicy *sp)
797 {
798
799 /* FIXME */
800 return 0;
801 }
802
803 #ifdef NET_MPSAFE
804 static void
805 key_spd_pserialize_perform(void)
806 {
807
808 KASSERT(mutex_owned(&key_spd.lock));
809
810 while (key_spd.psz_performing)
811 cv_wait(&key_spd.cv_psz, &key_spd.lock);
812 key_spd.psz_performing = true;
813 mutex_exit(&key_spd.lock);
814
815 pserialize_perform(key_spd.psz);
816
817 mutex_enter(&key_spd.lock);
818 key_spd.psz_performing = false;
819 cv_broadcast(&key_spd.cv_psz);
820 }
821 #endif
822
823 /*
824 * Remove the sp from the key_spd.splist and wait for references to the sp
825 * to be released. key_spd.lock must be held.
826 */
827 static void
828 key_unlink_sp(struct secpolicy *sp)
829 {
830
831 KASSERT(mutex_owned(&key_spd.lock));
832
833 sp->state = IPSEC_SPSTATE_DEAD;
834 SPLIST_WRITER_REMOVE(sp);
835
836 /* Invalidate all cached SPD pointers in the PCBs. */
837 ipsec_invalpcbcacheall();
838
839 #ifdef NET_MPSAFE
840 KASSERT(mutex_ownable(softnet_lock));
841 key_spd_pserialize_perform();
842 #endif
843
844 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
845 }
846
847 /*
848 * Return 0 when there are known to be no SP's for the specified
849 * direction. Otherwise return 1. This is used by IPsec code
850 * to optimize performance.
851 */
852 int
853 key_havesp(u_int dir)
854 {
855 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
856 !SPLIST_READER_EMPTY(dir) : 1);
857 }
858
859 /* %%% IPsec policy management */
860 /*
861 * allocating a SP for OUTBOUND or INBOUND packet.
862 * Must call key_freesp() later.
863 * OUT: NULL: not found
864 * others: found and return the pointer.
865 */
866 struct secpolicy *
867 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
868 u_int dir, const char* where, int tag)
869 {
870 struct secpolicy *sp;
871 int s;
872
873 KASSERT(spidx != NULL);
874 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
875
876 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
877
878 /* get a SP entry */
879 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
880 kdebug_secpolicyindex("objects", spidx);
881 }
882
883 s = pserialize_read_enter();
884 SPLIST_READER_FOREACH(sp, dir) {
885 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
886 kdebug_secpolicyindex("in SPD", &sp->spidx);
887 }
888
889 if (sp->state == IPSEC_SPSTATE_DEAD)
890 continue;
891 if (key_spidx_match_withmask(&sp->spidx, spidx))
892 goto found;
893 }
894 sp = NULL;
895 found:
896 if (sp) {
897 /* sanity check */
898 KEY_CHKSPDIR(sp->spidx.dir, dir);
899
900 /* found a SPD entry */
901 sp->lastused = time_uptime;
902 key_sp_ref(sp, where, tag);
903 }
904 pserialize_read_exit(s);
905
906 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
907 "DP return SP:%p (ID=%u) refcnt %u\n",
908 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
909 return sp;
910 }
911
912 /*
913 * return a policy that matches this particular inbound packet.
914 * XXX slow
915 */
916 struct secpolicy *
917 key_gettunnel(const struct sockaddr *osrc,
918 const struct sockaddr *odst,
919 const struct sockaddr *isrc,
920 const struct sockaddr *idst,
921 const char* where, int tag)
922 {
923 struct secpolicy *sp;
924 const int dir = IPSEC_DIR_INBOUND;
925 int s;
926 struct ipsecrequest *r1, *r2, *p;
927 struct secpolicyindex spidx;
928
929 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
930
931 if (isrc->sa_family != idst->sa_family) {
932 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
933 isrc->sa_family, idst->sa_family);
934 sp = NULL;
935 goto done;
936 }
937
938 s = pserialize_read_enter();
939 SPLIST_READER_FOREACH(sp, dir) {
940 if (sp->state == IPSEC_SPSTATE_DEAD)
941 continue;
942
943 r1 = r2 = NULL;
944 for (p = sp->req; p; p = p->next) {
945 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
946 continue;
947
948 r1 = r2;
949 r2 = p;
950
951 if (!r1) {
952 /* here we look at address matches only */
953 spidx = sp->spidx;
954 if (isrc->sa_len > sizeof(spidx.src) ||
955 idst->sa_len > sizeof(spidx.dst))
956 continue;
957 memcpy(&spidx.src, isrc, isrc->sa_len);
958 memcpy(&spidx.dst, idst, idst->sa_len);
959 if (!key_spidx_match_withmask(&sp->spidx, &spidx))
960 continue;
961 } else {
962 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
963 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
964 continue;
965 }
966
967 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
968 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
969 continue;
970
971 goto found;
972 }
973 }
974 sp = NULL;
975 found:
976 if (sp) {
977 sp->lastused = time_uptime;
978 key_sp_ref(sp, where, tag);
979 }
980 pserialize_read_exit(s);
981 done:
982 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
983 "DP return SP:%p (ID=%u) refcnt %u\n",
984 sp, sp ? sp->id : 0, key_sp_refcnt(sp));
985 return sp;
986 }
987
988 /*
989 * allocating an SA entry for an *OUTBOUND* packet.
990 * checking each request entries in SP, and acquire an SA if need.
991 * OUT: 0: there are valid requests.
992 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
993 */
994 int
995 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx,
996 struct secasvar **ret)
997 {
998 u_int level;
999 int error;
1000 struct secasvar *sav;
1001
1002 KASSERT(isr != NULL);
1003 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
1004 saidx->mode == IPSEC_MODE_TUNNEL,
1005 "unexpected policy %u", saidx->mode);
1006
1007 /* get current level */
1008 level = ipsec_get_reqlevel(isr);
1009
1010 /*
1011 * XXX guard against protocol callbacks from the crypto
1012 * thread as they reference ipsecrequest.sav which we
1013 * temporarily null out below. Need to rethink how we
1014 * handle bundled SA's in the callback thread.
1015 */
1016 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
1017
1018 sav = key_lookup_sa_bysaidx(saidx);
1019 if (sav != NULL) {
1020 *ret = sav;
1021 return 0;
1022 }
1023
1024 /* there is no SA */
1025 error = key_acquire(saidx, isr->sp, M_NOWAIT);
1026 if (error != 0) {
1027 /* XXX What should I do ? */
1028 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1029 error);
1030 return error;
1031 }
1032
1033 if (level != IPSEC_LEVEL_REQUIRE) {
1034 /* XXX sigh, the interface to this routine is botched */
1035 *ret = NULL;
1036 return 0;
1037 } else {
1038 return ENOENT;
1039 }
1040 }
1041
1042 /*
1043 * looking up a SA for policy entry from SAD.
1044 * NOTE: searching SAD of aliving state.
1045 * OUT: NULL: not found.
1046 * others: found and return the pointer.
1047 */
1048 struct secasvar *
1049 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1050 {
1051 struct secashead *sah;
1052 struct secasvar *sav = NULL;
1053 u_int stateidx, state;
1054 const u_int *saorder_state_valid;
1055 int arraysize;
1056 int s;
1057
1058 s = pserialize_read_enter();
1059 sah = key_getsah(saidx, CMP_MODE_REQID);
1060 if (sah == NULL)
1061 goto out;
1062
1063 /*
1064 * search a valid state list for outbound packet.
1065 * This search order is important.
1066 */
1067 if (key_prefered_oldsa) {
1068 saorder_state_valid = saorder_state_valid_prefer_old;
1069 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1070 } else {
1071 saorder_state_valid = saorder_state_valid_prefer_new;
1072 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1073 }
1074
1075 /* search valid state */
1076 for (stateidx = 0;
1077 stateidx < arraysize;
1078 stateidx++) {
1079
1080 state = saorder_state_valid[stateidx];
1081
1082 if (key_prefered_oldsa)
1083 sav = SAVLIST_READER_FIRST(sah, state);
1084 else {
1085 /* XXX need O(1) lookup */
1086 struct secasvar *last = NULL;
1087
1088 SAVLIST_READER_FOREACH(sav, sah, state)
1089 last = sav;
1090 sav = last;
1091 }
1092 if (sav != NULL) {
1093 KEY_SA_REF(sav);
1094 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1095 "DP cause refcnt++:%d SA:%p\n",
1096 key_sa_refcnt(sav), sav);
1097 break;
1098 }
1099 }
1100 out:
1101 pserialize_read_exit(s);
1102
1103 return sav;
1104 }
1105
1106 #if 0
1107 static void
1108 key_sendup_message_delete(struct secasvar *sav)
1109 {
1110 struct mbuf *m, *result = 0;
1111 uint8_t satype;
1112
1113 satype = key_proto2satype(sav->sah->saidx.proto);
1114 if (satype == 0)
1115 goto msgfail;
1116
1117 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1118 if (m == NULL)
1119 goto msgfail;
1120 result = m;
1121
1122 /* set sadb_address for saidx's. */
1123 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1124 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1125 if (m == NULL)
1126 goto msgfail;
1127 m_cat(result, m);
1128
1129 /* set sadb_address for saidx's. */
1130 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1131 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1132 if (m == NULL)
1133 goto msgfail;
1134 m_cat(result, m);
1135
1136 /* create SA extension */
1137 m = key_setsadbsa(sav);
1138 if (m == NULL)
1139 goto msgfail;
1140 m_cat(result, m);
1141
1142 if (result->m_len < sizeof(struct sadb_msg)) {
1143 result = m_pullup(result, sizeof(struct sadb_msg));
1144 if (result == NULL)
1145 goto msgfail;
1146 }
1147
1148 result->m_pkthdr.len = 0;
1149 for (m = result; m; m = m->m_next)
1150 result->m_pkthdr.len += m->m_len;
1151 mtod(result, struct sadb_msg *)->sadb_msg_len =
1152 PFKEY_UNIT64(result->m_pkthdr.len);
1153
1154 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1155 result = NULL;
1156 msgfail:
1157 if (result)
1158 m_freem(result);
1159 }
1160 #endif
1161
1162 /*
1163 * allocating a usable SA entry for a *INBOUND* packet.
1164 * Must call key_freesav() later.
1165 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1166 * NULL: not found, or error occurred.
1167 *
1168 * In the comparison, no source address is used--for RFC2401 conformance.
1169 * To quote, from section 4.1:
1170 * A security association is uniquely identified by a triple consisting
1171 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1172 * security protocol (AH or ESP) identifier.
1173 * Note that, however, we do need to keep source address in IPsec SA.
1174 * IKE specification and PF_KEY specification do assume that we
1175 * keep source address in IPsec SA. We see a tricky situation here.
1176 *
1177 * sport and dport are used for NAT-T. network order is always used.
1178 */
1179 struct secasvar *
1180 key_lookup_sa(
1181 const union sockaddr_union *dst,
1182 u_int proto,
1183 u_int32_t spi,
1184 u_int16_t sport,
1185 u_int16_t dport,
1186 const char* where, int tag)
1187 {
1188 struct secashead *sah;
1189 struct secasvar *sav;
1190 u_int stateidx, state;
1191 const u_int *saorder_state_valid;
1192 int arraysize, chkport;
1193 int s;
1194
1195 int must_check_spi = 1;
1196 int must_check_alg = 0;
1197 u_int16_t cpi = 0;
1198 u_int8_t algo = 0;
1199
1200 if ((sport != 0) && (dport != 0))
1201 chkport = PORT_STRICT;
1202 else
1203 chkport = PORT_NONE;
1204
1205 KASSERT(dst != NULL);
1206
1207 /*
1208 * XXX IPCOMP case
1209 * We use cpi to define spi here. In the case where cpi <=
1210 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1211 * the real spi. In this case, don't check the spi but check the
1212 * algorithm
1213 */
1214
1215 if (proto == IPPROTO_IPCOMP) {
1216 u_int32_t tmp;
1217 tmp = ntohl(spi);
1218 cpi = (u_int16_t) tmp;
1219 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1220 algo = (u_int8_t) cpi;
1221 must_check_spi = 0;
1222 must_check_alg = 1;
1223 }
1224 }
1225 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1226 "DP from %s:%u check_spi=%d, check_alg=%d\n",
1227 where, tag, must_check_spi, must_check_alg);
1228
1229
1230 /*
1231 * searching SAD.
1232 * XXX: to be checked internal IP header somewhere. Also when
1233 * IPsec tunnel packet is received. But ESP tunnel mode is
1234 * encrypted so we can't check internal IP header.
1235 */
1236 if (key_prefered_oldsa) {
1237 saorder_state_valid = saorder_state_valid_prefer_old;
1238 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1239 } else {
1240 saorder_state_valid = saorder_state_valid_prefer_new;
1241 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1242 }
1243 s = pserialize_read_enter();
1244 SAHLIST_READER_FOREACH(sah) {
1245 /* search valid state */
1246 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1247 state = saorder_state_valid[stateidx];
1248 SAVLIST_READER_FOREACH(sav, sah, state) {
1249 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1250 "try match spi %#x, %#x\n",
1251 ntohl(spi), ntohl(sav->spi));
1252 /* sanity check */
1253 KEY_CHKSASTATE(sav->state, state);
1254 /* do not return entries w/ unusable state */
1255 if (!SADB_SASTATE_USABLE_P(sav)) {
1256 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1257 "bad state %d\n", sav->state);
1258 continue;
1259 }
1260 if (proto != sav->sah->saidx.proto) {
1261 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1262 "proto fail %d != %d\n",
1263 proto, sav->sah->saidx.proto);
1264 continue;
1265 }
1266 if (must_check_spi && spi != sav->spi) {
1267 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1268 "spi fail %#x != %#x\n",
1269 ntohl(spi), ntohl(sav->spi));
1270 continue;
1271 }
1272 /* XXX only on the ipcomp case */
1273 if (must_check_alg && algo != sav->alg_comp) {
1274 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1275 "algo fail %d != %d\n",
1276 algo, sav->alg_comp);
1277 continue;
1278 }
1279
1280 #if 0 /* don't check src */
1281 /* Fix port in src->sa */
1282
1283 /* check src address */
1284 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1285 continue;
1286 #endif
1287 /* fix port of dst address XXX*/
1288 key_porttosaddr(__UNCONST(dst), dport);
1289 /* check dst address */
1290 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1291 continue;
1292 key_sa_ref(sav, where, tag);
1293 goto done;
1294 }
1295 }
1296 }
1297 sav = NULL;
1298 done:
1299 pserialize_read_exit(s);
1300
1301 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1302 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1303 return sav;
1304 }
1305
1306 static void
1307 key_validate_savlist(const struct secashead *sah, const u_int state)
1308 {
1309 #ifdef DEBUG
1310 struct secasvar *sav, *next;
1311 int s;
1312
1313 /*
1314 * The list should be sorted by lft_c->sadb_lifetime_addtime
1315 * in ascending order.
1316 */
1317 s = pserialize_read_enter();
1318 SAVLIST_READER_FOREACH(sav, sah, state) {
1319 next = SAVLIST_READER_NEXT(sav);
1320 if (next != NULL &&
1321 sav->lft_c != NULL && next->lft_c != NULL) {
1322 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1323 next->lft_c->sadb_lifetime_addtime,
1324 "savlist is not sorted: sah=%p, state=%d, "
1325 "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1326 sav->lft_c->sadb_lifetime_addtime,
1327 next->lft_c->sadb_lifetime_addtime);
1328 }
1329 }
1330 pserialize_read_exit(s);
1331 #endif
1332 }
1333
1334 void
1335 key_init_sp(struct secpolicy *sp)
1336 {
1337
1338 ASSERT_SLEEPABLE();
1339
1340 sp->state = IPSEC_SPSTATE_ALIVE;
1341 if (sp->policy == IPSEC_POLICY_IPSEC)
1342 KASSERT(sp->req != NULL);
1343 localcount_init(&sp->localcount);
1344 SPLIST_ENTRY_INIT(sp);
1345 }
1346
1347 /*
1348 * Must be called in a pserialize read section. A held SP
1349 * must be released by key_sp_unref after use.
1350 */
1351 void
1352 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1353 {
1354
1355 localcount_acquire(&sp->localcount);
1356
1357 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1358 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1359 sp, sp->id, where, tag, key_sp_refcnt(sp));
1360 }
1361
1362 /*
1363 * Must be called without holding key_spd.lock because the lock
1364 * would be held in localcount_release.
1365 */
1366 void
1367 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1368 {
1369
1370 KDASSERT(mutex_ownable(&key_spd.lock));
1371
1372 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1373 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1374 sp, sp->id, where, tag, key_sp_refcnt(sp));
1375
1376 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
1377 }
1378
1379 static void
1380 key_init_sav(struct secasvar *sav)
1381 {
1382
1383 ASSERT_SLEEPABLE();
1384
1385 localcount_init(&sav->localcount);
1386 SAVLIST_ENTRY_INIT(sav);
1387 }
1388
1389 u_int
1390 key_sa_refcnt(const struct secasvar *sav)
1391 {
1392
1393 /* FIXME */
1394 return 0;
1395 }
1396
1397 void
1398 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1399 {
1400
1401 localcount_acquire(&sav->localcount);
1402
1403 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1404 "DP cause refcnt++: SA:%p from %s:%u\n",
1405 sav, where, tag);
1406 }
1407
1408 void
1409 key_sa_unref(struct secasvar *sav, const char* where, int tag)
1410 {
1411
1412 KDASSERT(mutex_ownable(&key_sad.lock));
1413
1414 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1415 "DP cause refcnt--: SA:%p from %s:%u\n",
1416 sav, where, tag);
1417
1418 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1419 }
1420
1421 #if 0
1422 /*
1423 * Must be called after calling key_lookup_sp*().
1424 * For the packet with socket.
1425 */
1426 static void
1427 key_freeso(struct socket *so)
1428 {
1429 /* sanity check */
1430 KASSERT(so != NULL);
1431
1432 switch (so->so_proto->pr_domain->dom_family) {
1433 #ifdef INET
1434 case PF_INET:
1435 {
1436 struct inpcb *pcb = sotoinpcb(so);
1437
1438 /* Does it have a PCB ? */
1439 if (pcb == NULL)
1440 return;
1441
1442 struct inpcbpolicy *sp = pcb->inp_sp;
1443 key_freesp_so(&sp->sp_in);
1444 key_freesp_so(&sp->sp_out);
1445 }
1446 break;
1447 #endif
1448 #ifdef INET6
1449 case PF_INET6:
1450 {
1451 #ifdef HAVE_NRL_INPCB
1452 struct inpcb *pcb = sotoinpcb(so);
1453 struct inpcbpolicy *sp = pcb->inp_sp;
1454
1455 /* Does it have a PCB ? */
1456 if (pcb == NULL)
1457 return;
1458 key_freesp_so(&sp->sp_in);
1459 key_freesp_so(&sp->sp_out);
1460 #else
1461 struct in6pcb *pcb = sotoin6pcb(so);
1462
1463 /* Does it have a PCB ? */
1464 if (pcb == NULL)
1465 return;
1466 key_freesp_so(&pcb->in6p_sp->sp_in);
1467 key_freesp_so(&pcb->in6p_sp->sp_out);
1468 #endif
1469 }
1470 break;
1471 #endif /* INET6 */
1472 default:
1473 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1474 so->so_proto->pr_domain->dom_family);
1475 return;
1476 }
1477 }
1478
1479 static void
1480 key_freesp_so(struct secpolicy **sp)
1481 {
1482
1483 KASSERT(sp != NULL);
1484 KASSERT(*sp != NULL);
1485
1486 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1487 (*sp)->policy == IPSEC_POLICY_BYPASS)
1488 return;
1489
1490 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1491 "invalid policy %u", (*sp)->policy);
1492 KEY_SP_UNREF(&sp);
1493 }
1494 #endif
1495
1496 #ifdef NET_MPSAFE
1497 static void
1498 key_sad_pserialize_perform(void)
1499 {
1500
1501 KASSERT(mutex_owned(&key_sad.lock));
1502
1503 while (key_sad.psz_performing)
1504 cv_wait(&key_sad.cv_psz, &key_sad.lock);
1505 key_sad.psz_performing = true;
1506 mutex_exit(&key_sad.lock);
1507
1508 pserialize_perform(key_sad.psz);
1509
1510 mutex_enter(&key_sad.lock);
1511 key_sad.psz_performing = false;
1512 cv_broadcast(&key_sad.cv_psz);
1513 }
1514 #endif
1515
1516 /*
1517 * Remove the sav from the savlist of its sah and wait for references to the sav
1518 * to be released. key_sad.lock must be held.
1519 */
1520 static void
1521 key_unlink_sav(struct secasvar *sav)
1522 {
1523
1524 KASSERT(mutex_owned(&key_sad.lock));
1525
1526 SAVLIST_WRITER_REMOVE(sav);
1527
1528 #ifdef NET_MPSAFE
1529 KASSERT(mutex_ownable(softnet_lock));
1530 key_sad_pserialize_perform();
1531 #endif
1532
1533 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1534 }
1535
1536 /*
1537 * Destroy an sav where the sav must be unlinked from an sah
1538 * by say key_unlink_sav.
1539 */
1540 static void
1541 key_destroy_sav(struct secasvar *sav)
1542 {
1543
1544 ASSERT_SLEEPABLE();
1545
1546 localcount_fini(&sav->localcount);
1547 SAVLIST_ENTRY_DESTROY(sav);
1548
1549 key_delsav(sav);
1550 }
1551
1552 /*
1553 * Destroy sav with holding its reference.
1554 */
1555 static void
1556 key_destroy_sav_with_ref(struct secasvar *sav)
1557 {
1558
1559 ASSERT_SLEEPABLE();
1560
1561 mutex_enter(&key_sad.lock);
1562 sav->state = SADB_SASTATE_DEAD;
1563 SAVLIST_WRITER_REMOVE(sav);
1564 mutex_exit(&key_sad.lock);
1565
1566 /* We cannot unref with holding key_sad.lock */
1567 KEY_SA_UNREF(&sav);
1568
1569 mutex_enter(&key_sad.lock);
1570 #ifdef NET_MPSAFE
1571 KASSERT(mutex_ownable(softnet_lock));
1572 key_sad_pserialize_perform();
1573 #endif
1574 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1575 mutex_exit(&key_sad.lock);
1576
1577 key_destroy_sav(sav);
1578 }
1579
1580 /* %%% SPD management */
1581 /*
1582 * free security policy entry.
1583 */
1584 static void
1585 key_destroy_sp(struct secpolicy *sp)
1586 {
1587
1588 SPLIST_ENTRY_DESTROY(sp);
1589 localcount_fini(&sp->localcount);
1590
1591 key_free_sp(sp);
1592
1593 key_update_used();
1594 }
1595
1596 void
1597 key_free_sp(struct secpolicy *sp)
1598 {
1599 struct ipsecrequest *isr = sp->req, *nextisr;
1600
1601 while (isr != NULL) {
1602 nextisr = isr->next;
1603 kmem_free(isr, sizeof(*isr));
1604 isr = nextisr;
1605 }
1606
1607 kmem_free(sp, sizeof(*sp));
1608 }
1609
1610 void
1611 key_socksplist_add(struct secpolicy *sp)
1612 {
1613
1614 mutex_enter(&key_spd.lock);
1615 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1616 mutex_exit(&key_spd.lock);
1617
1618 key_update_used();
1619 }
1620
1621 /*
1622 * search SPD
1623 * OUT: NULL : not found
1624 * others : found, pointer to a SP.
1625 */
1626 static struct secpolicy *
1627 key_getsp(const struct secpolicyindex *spidx)
1628 {
1629 struct secpolicy *sp;
1630 int s;
1631
1632 KASSERT(spidx != NULL);
1633
1634 s = pserialize_read_enter();
1635 SPLIST_READER_FOREACH(sp, spidx->dir) {
1636 if (sp->state == IPSEC_SPSTATE_DEAD)
1637 continue;
1638 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1639 KEY_SP_REF(sp);
1640 pserialize_read_exit(s);
1641 return sp;
1642 }
1643 }
1644 pserialize_read_exit(s);
1645
1646 return NULL;
1647 }
1648
1649 /*
1650 * search SPD and remove found SP
1651 * OUT: NULL : not found
1652 * others : found, pointer to a SP.
1653 */
1654 static struct secpolicy *
1655 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1656 {
1657 struct secpolicy *sp = NULL;
1658
1659 mutex_enter(&key_spd.lock);
1660 SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1661 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1662
1663 if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1664 key_unlink_sp(sp);
1665 goto out;
1666 }
1667 }
1668 sp = NULL;
1669 out:
1670 mutex_exit(&key_spd.lock);
1671
1672 return sp;
1673 }
1674
1675 /*
1676 * get SP by index.
1677 * OUT: NULL : not found
1678 * others : found, pointer to a SP.
1679 */
1680 static struct secpolicy *
1681 key_getspbyid(u_int32_t id)
1682 {
1683 struct secpolicy *sp;
1684 int s;
1685
1686 s = pserialize_read_enter();
1687 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1688 if (sp->state == IPSEC_SPSTATE_DEAD)
1689 continue;
1690 if (sp->id == id) {
1691 KEY_SP_REF(sp);
1692 goto out;
1693 }
1694 }
1695
1696 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1697 if (sp->state == IPSEC_SPSTATE_DEAD)
1698 continue;
1699 if (sp->id == id) {
1700 KEY_SP_REF(sp);
1701 goto out;
1702 }
1703 }
1704 out:
1705 pserialize_read_exit(s);
1706 return sp;
1707 }
1708
1709 /*
1710 * get SP by index, remove and return it.
1711 * OUT: NULL : not found
1712 * others : found, pointer to a SP.
1713 */
1714 static struct secpolicy *
1715 key_lookupbyid_and_remove_sp(u_int32_t id)
1716 {
1717 struct secpolicy *sp;
1718
1719 mutex_enter(&key_spd.lock);
1720 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1721 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1722 if (sp->id == id)
1723 goto out;
1724 }
1725
1726 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1727 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1728 if (sp->id == id)
1729 goto out;
1730 }
1731 out:
1732 if (sp != NULL)
1733 key_unlink_sp(sp);
1734 mutex_exit(&key_spd.lock);
1735 return sp;
1736 }
1737
1738 struct secpolicy *
1739 key_newsp(const char* where, int tag)
1740 {
1741 struct secpolicy *newsp = NULL;
1742
1743 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1744
1745 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1746 "DP from %s:%u return SP:%p\n", where, tag, newsp);
1747 return newsp;
1748 }
1749
1750 /*
1751 * create secpolicy structure from sadb_x_policy structure.
1752 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1753 * so must be set properly later.
1754 */
1755 struct secpolicy *
1756 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1757 {
1758 struct secpolicy *newsp;
1759
1760 KASSERT(!cpu_softintr_p());
1761 KASSERT(xpl0 != NULL);
1762 KASSERT(len >= sizeof(*xpl0));
1763
1764 if (len != PFKEY_EXTLEN(xpl0)) {
1765 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1766 *error = EINVAL;
1767 return NULL;
1768 }
1769
1770 newsp = KEY_NEWSP();
1771 if (newsp == NULL) {
1772 *error = ENOBUFS;
1773 return NULL;
1774 }
1775
1776 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1777 newsp->policy = xpl0->sadb_x_policy_type;
1778
1779 /* check policy */
1780 switch (xpl0->sadb_x_policy_type) {
1781 case IPSEC_POLICY_DISCARD:
1782 case IPSEC_POLICY_NONE:
1783 case IPSEC_POLICY_ENTRUST:
1784 case IPSEC_POLICY_BYPASS:
1785 newsp->req = NULL;
1786 *error = 0;
1787 return newsp;
1788
1789 case IPSEC_POLICY_IPSEC:
1790 /* Continued */
1791 break;
1792 default:
1793 IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1794 key_free_sp(newsp);
1795 *error = EINVAL;
1796 return NULL;
1797 }
1798
1799 /* IPSEC_POLICY_IPSEC */
1800 {
1801 int tlen;
1802 const struct sadb_x_ipsecrequest *xisr;
1803 uint16_t xisr_reqid;
1804 struct ipsecrequest **p_isr = &newsp->req;
1805
1806 /* validity check */
1807 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1808 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1809 *error = EINVAL;
1810 goto free_exit;
1811 }
1812
1813 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1814 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1815
1816 while (tlen > 0) {
1817 /* length check */
1818 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1819 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1820 *error = EINVAL;
1821 goto free_exit;
1822 }
1823
1824 /* allocate request buffer */
1825 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1826
1827 /* set values */
1828 (*p_isr)->next = NULL;
1829
1830 switch (xisr->sadb_x_ipsecrequest_proto) {
1831 case IPPROTO_ESP:
1832 case IPPROTO_AH:
1833 case IPPROTO_IPCOMP:
1834 break;
1835 default:
1836 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1837 xisr->sadb_x_ipsecrequest_proto);
1838 *error = EPROTONOSUPPORT;
1839 goto free_exit;
1840 }
1841 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1842
1843 switch (xisr->sadb_x_ipsecrequest_mode) {
1844 case IPSEC_MODE_TRANSPORT:
1845 case IPSEC_MODE_TUNNEL:
1846 break;
1847 case IPSEC_MODE_ANY:
1848 default:
1849 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1850 xisr->sadb_x_ipsecrequest_mode);
1851 *error = EINVAL;
1852 goto free_exit;
1853 }
1854 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1855
1856 switch (xisr->sadb_x_ipsecrequest_level) {
1857 case IPSEC_LEVEL_DEFAULT:
1858 case IPSEC_LEVEL_USE:
1859 case IPSEC_LEVEL_REQUIRE:
1860 break;
1861 case IPSEC_LEVEL_UNIQUE:
1862 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1863 /* validity check */
1864 /*
1865 * If range violation of reqid, kernel will
1866 * update it, don't refuse it.
1867 */
1868 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1869 IPSECLOG(LOG_DEBUG,
1870 "reqid=%d range "
1871 "violation, updated by kernel.\n",
1872 xisr_reqid);
1873 xisr_reqid = 0;
1874 }
1875
1876 /* allocate new reqid id if reqid is zero. */
1877 if (xisr_reqid == 0) {
1878 u_int16_t reqid = key_newreqid();
1879 if (reqid == 0) {
1880 *error = ENOBUFS;
1881 goto free_exit;
1882 }
1883 (*p_isr)->saidx.reqid = reqid;
1884 } else {
1885 /* set it for manual keying. */
1886 (*p_isr)->saidx.reqid = xisr_reqid;
1887 }
1888 break;
1889
1890 default:
1891 IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1892 xisr->sadb_x_ipsecrequest_level);
1893 *error = EINVAL;
1894 goto free_exit;
1895 }
1896 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1897
1898 /* set IP addresses if there */
1899 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1900 const struct sockaddr *paddr;
1901
1902 paddr = (const struct sockaddr *)(xisr + 1);
1903
1904 /* validity check */
1905 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1906 IPSECLOG(LOG_DEBUG, "invalid request "
1907 "address length.\n");
1908 *error = EINVAL;
1909 goto free_exit;
1910 }
1911 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1912
1913 paddr = (const struct sockaddr *)((const char *)paddr
1914 + paddr->sa_len);
1915
1916 /* validity check */
1917 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1918 IPSECLOG(LOG_DEBUG, "invalid request "
1919 "address length.\n");
1920 *error = EINVAL;
1921 goto free_exit;
1922 }
1923 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1924 }
1925
1926 (*p_isr)->sp = newsp;
1927
1928 /* initialization for the next. */
1929 p_isr = &(*p_isr)->next;
1930 tlen -= xisr->sadb_x_ipsecrequest_len;
1931
1932 /* validity check */
1933 if (tlen < 0) {
1934 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1935 *error = EINVAL;
1936 goto free_exit;
1937 }
1938
1939 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1940 xisr->sadb_x_ipsecrequest_len);
1941 }
1942 }
1943
1944 *error = 0;
1945 return newsp;
1946
1947 free_exit:
1948 key_free_sp(newsp);
1949 return NULL;
1950 }
1951
1952 static u_int16_t
1953 key_newreqid(void)
1954 {
1955 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1956
1957 auto_reqid = (auto_reqid == 0xffff ?
1958 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1959
1960 /* XXX should be unique check */
1961
1962 return auto_reqid;
1963 }
1964
1965 /*
1966 * copy secpolicy struct to sadb_x_policy structure indicated.
1967 */
1968 struct mbuf *
1969 key_sp2msg(const struct secpolicy *sp, int mflag)
1970 {
1971 struct sadb_x_policy *xpl;
1972 int tlen;
1973 char *p;
1974 struct mbuf *m;
1975
1976 KASSERT(sp != NULL);
1977
1978 tlen = key_getspreqmsglen(sp);
1979
1980 m = key_alloc_mbuf(tlen, mflag);
1981 if (!m || m->m_next) { /*XXX*/
1982 if (m)
1983 m_freem(m);
1984 return NULL;
1985 }
1986
1987 m->m_len = tlen;
1988 m->m_next = NULL;
1989 xpl = mtod(m, struct sadb_x_policy *);
1990 memset(xpl, 0, tlen);
1991
1992 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1993 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1994 xpl->sadb_x_policy_type = sp->policy;
1995 xpl->sadb_x_policy_dir = sp->spidx.dir;
1996 xpl->sadb_x_policy_id = sp->id;
1997 p = (char *)xpl + sizeof(*xpl);
1998
1999 /* if is the policy for ipsec ? */
2000 if (sp->policy == IPSEC_POLICY_IPSEC) {
2001 struct sadb_x_ipsecrequest *xisr;
2002 struct ipsecrequest *isr;
2003
2004 for (isr = sp->req; isr != NULL; isr = isr->next) {
2005
2006 xisr = (struct sadb_x_ipsecrequest *)p;
2007
2008 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
2009 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
2010 xisr->sadb_x_ipsecrequest_level = isr->level;
2011 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
2012
2013 p += sizeof(*xisr);
2014 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
2015 p += isr->saidx.src.sa.sa_len;
2016 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
2017 p += isr->saidx.src.sa.sa_len;
2018
2019 xisr->sadb_x_ipsecrequest_len =
2020 PFKEY_ALIGN8(sizeof(*xisr)
2021 + isr->saidx.src.sa.sa_len
2022 + isr->saidx.dst.sa.sa_len);
2023 }
2024 }
2025
2026 return m;
2027 }
2028
2029 /*
2030 * m will not be freed nor modified. It never return NULL.
2031 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have
2032 * contiguous length at least sizeof(struct sadb_msg).
2033 */
2034 static struct mbuf *
2035 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
2036 int ndeep, int nitem, ...)
2037 {
2038 va_list ap;
2039 int idx;
2040 int i;
2041 struct mbuf *result = NULL, *n;
2042 int len;
2043
2044 KASSERT(m != NULL);
2045 KASSERT(mhp != NULL);
2046 KASSERT(!cpu_softintr_p());
2047
2048 va_start(ap, nitem);
2049 for (i = 0; i < nitem; i++) {
2050 idx = va_arg(ap, int);
2051 KASSERT(idx >= 0);
2052 KASSERT(idx <= SADB_EXT_MAX);
2053 /* don't attempt to pull empty extension */
2054 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
2055 continue;
2056 if (idx != SADB_EXT_RESERVED &&
2057 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
2058 continue;
2059
2060 if (idx == SADB_EXT_RESERVED) {
2061 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
2062 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2063 MGETHDR(n, M_WAITOK, MT_DATA);
2064 n->m_len = len;
2065 n->m_next = NULL;
2066 m_copydata(m, 0, sizeof(struct sadb_msg),
2067 mtod(n, void *));
2068 } else if (i < ndeep) {
2069 len = mhp->extlen[idx];
2070 n = key_alloc_mbuf(len, M_WAITOK);
2071 KASSERT(n->m_next == NULL);
2072 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
2073 mtod(n, void *));
2074 } else {
2075 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
2076 M_WAITOK);
2077 }
2078 KASSERT(n != NULL);
2079
2080 if (result)
2081 m_cat(result, n);
2082 else
2083 result = n;
2084 }
2085 va_end(ap);
2086
2087 KASSERT(result != NULL);
2088 if ((result->m_flags & M_PKTHDR) != 0) {
2089 result->m_pkthdr.len = 0;
2090 for (n = result; n; n = n->m_next)
2091 result->m_pkthdr.len += n->m_len;
2092 KASSERT(result->m_len >= sizeof(struct sadb_msg));
2093 }
2094
2095 return result;
2096 }
2097
2098 /*
2099 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2100 * add an entry to SP database, when received
2101 * <base, address(SD), (lifetime(H),) policy>
2102 * from the user(?).
2103 * Adding to SP database,
2104 * and send
2105 * <base, address(SD), (lifetime(H),) policy>
2106 * to the socket which was send.
2107 *
2108 * SPDADD set a unique policy entry.
2109 * SPDSETIDX like SPDADD without a part of policy requests.
2110 * SPDUPDATE replace a unique policy entry.
2111 *
2112 * m will always be freed.
2113 */
2114 static int
2115 key_api_spdadd(struct socket *so, struct mbuf *m,
2116 const struct sadb_msghdr *mhp)
2117 {
2118 const struct sockaddr *src, *dst;
2119 const struct sadb_x_policy *xpl0;
2120 struct sadb_x_policy *xpl;
2121 const struct sadb_lifetime *lft = NULL;
2122 struct secpolicyindex spidx;
2123 struct secpolicy *newsp;
2124 int error;
2125
2126 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2127 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2128 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2129 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2130 return key_senderror(so, m, EINVAL);
2131 }
2132 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2133 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2134 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2135 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2136 return key_senderror(so, m, EINVAL);
2137 }
2138 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2139 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2140 sizeof(struct sadb_lifetime)) {
2141 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2142 return key_senderror(so, m, EINVAL);
2143 }
2144 lft = mhp->ext[SADB_EXT_LIFETIME_HARD];
2145 }
2146
2147 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2148
2149 /* checking the direciton. */
2150 switch (xpl0->sadb_x_policy_dir) {
2151 case IPSEC_DIR_INBOUND:
2152 case IPSEC_DIR_OUTBOUND:
2153 break;
2154 default:
2155 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2156 return key_senderror(so, m, EINVAL);
2157 }
2158
2159 /* check policy */
2160 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2161 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2162 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2163 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2164 return key_senderror(so, m, EINVAL);
2165 }
2166
2167 /* policy requests are mandatory when action is ipsec. */
2168 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2169 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2170 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2171 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2172 return key_senderror(so, m, EINVAL);
2173 }
2174
2175 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2176 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2177
2178 /* sanity check on addr pair */
2179 if (src->sa_family != dst->sa_family)
2180 return key_senderror(so, m, EINVAL);
2181 if (src->sa_len != dst->sa_len)
2182 return key_senderror(so, m, EINVAL);
2183
2184 key_init_spidx_bymsghdr(&spidx, mhp);
2185
2186 /*
2187 * checking there is SP already or not.
2188 * SPDUPDATE doesn't depend on whether there is a SP or not.
2189 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2190 * then error.
2191 */
2192 {
2193 struct secpolicy *sp;
2194
2195 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2196 sp = key_lookup_and_remove_sp(&spidx);
2197 if (sp != NULL)
2198 key_destroy_sp(sp);
2199 } else {
2200 sp = key_getsp(&spidx);
2201 if (sp != NULL) {
2202 KEY_SP_UNREF(&sp);
2203 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2204 return key_senderror(so, m, EEXIST);
2205 }
2206 }
2207 }
2208
2209 /* allocation new SP entry */
2210 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2211 if (newsp == NULL) {
2212 return key_senderror(so, m, error);
2213 }
2214
2215 newsp->id = key_getnewspid();
2216 if (newsp->id == 0) {
2217 kmem_free(newsp, sizeof(*newsp));
2218 return key_senderror(so, m, ENOBUFS);
2219 }
2220
2221 newsp->spidx = spidx;
2222 newsp->created = time_uptime;
2223 newsp->lastused = newsp->created;
2224 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2225 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2226
2227 key_init_sp(newsp);
2228
2229 mutex_enter(&key_spd.lock);
2230 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2231 mutex_exit(&key_spd.lock);
2232
2233 #ifdef notyet
2234 /* delete the entry in key_misc.spacqlist */
2235 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2236 struct secspacq *spacq = key_getspacq(&spidx);
2237 if (spacq != NULL) {
2238 /* reset counter in order to deletion by timehandler. */
2239 spacq->created = time_uptime;
2240 spacq->count = 0;
2241 }
2242 }
2243 #endif
2244
2245 /* Invalidate all cached SPD pointers in the PCBs. */
2246 ipsec_invalpcbcacheall();
2247
2248 #if defined(GATEWAY)
2249 /* Invalidate the ipflow cache, as well. */
2250 ipflow_invalidate_all(0);
2251 #ifdef INET6
2252 if (in6_present)
2253 ip6flow_invalidate_all(0);
2254 #endif /* INET6 */
2255 #endif /* GATEWAY */
2256
2257 key_update_used();
2258
2259 {
2260 struct mbuf *n, *mpolicy;
2261 int off;
2262
2263 /* create new sadb_msg to reply. */
2264 if (lft) {
2265 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2266 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2267 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2268 } else {
2269 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2270 SADB_X_EXT_POLICY,
2271 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2272 }
2273
2274 key_fill_replymsg(n, 0);
2275 off = 0;
2276 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2277 sizeof(*xpl), &off);
2278 if (mpolicy == NULL) {
2279 /* n is already freed */
2280 return key_senderror(so, m, ENOBUFS);
2281 }
2282 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2283 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2284 m_freem(n);
2285 return key_senderror(so, m, EINVAL);
2286 }
2287 xpl->sadb_x_policy_id = newsp->id;
2288
2289 m_freem(m);
2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2291 }
2292 }
2293
2294 /*
2295 * get new policy id.
2296 * OUT:
2297 * 0: failure.
2298 * others: success.
2299 */
2300 static u_int32_t
2301 key_getnewspid(void)
2302 {
2303 u_int32_t newid = 0;
2304 int count = key_spi_trycnt; /* XXX */
2305 struct secpolicy *sp;
2306
2307 /* when requesting to allocate spi ranged */
2308 while (count--) {
2309 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2310
2311 sp = key_getspbyid(newid);
2312 if (sp == NULL)
2313 break;
2314
2315 KEY_SP_UNREF(&sp);
2316 }
2317
2318 if (count == 0 || newid == 0) {
2319 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2320 return 0;
2321 }
2322
2323 return newid;
2324 }
2325
2326 /*
2327 * SADB_SPDDELETE processing
2328 * receive
2329 * <base, address(SD), policy(*)>
2330 * from the user(?), and set SADB_SASTATE_DEAD,
2331 * and send,
2332 * <base, address(SD), policy(*)>
2333 * to the ikmpd.
2334 * policy(*) including direction of policy.
2335 *
2336 * m will always be freed.
2337 */
2338 static int
2339 key_api_spddelete(struct socket *so, struct mbuf *m,
2340 const struct sadb_msghdr *mhp)
2341 {
2342 struct sadb_x_policy *xpl0;
2343 struct secpolicyindex spidx;
2344 struct secpolicy *sp;
2345
2346 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2347 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2348 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2349 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2350 return key_senderror(so, m, EINVAL);
2351 }
2352 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2353 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2354 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2355 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2356 return key_senderror(so, m, EINVAL);
2357 }
2358
2359 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2360
2361 /* checking the directon. */
2362 switch (xpl0->sadb_x_policy_dir) {
2363 case IPSEC_DIR_INBOUND:
2364 case IPSEC_DIR_OUTBOUND:
2365 break;
2366 default:
2367 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2368 return key_senderror(so, m, EINVAL);
2369 }
2370
2371 /* make secindex */
2372 key_init_spidx_bymsghdr(&spidx, mhp);
2373
2374 /* Is there SP in SPD ? */
2375 sp = key_lookup_and_remove_sp(&spidx);
2376 if (sp == NULL) {
2377 IPSECLOG(LOG_DEBUG, "no SP found.\n");
2378 return key_senderror(so, m, EINVAL);
2379 }
2380
2381 /* save policy id to buffer to be returned. */
2382 xpl0->sadb_x_policy_id = sp->id;
2383
2384 key_destroy_sp(sp);
2385
2386 /* We're deleting policy; no need to invalidate the ipflow cache. */
2387
2388 {
2389 struct mbuf *n;
2390
2391 /* create new sadb_msg to reply. */
2392 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2393 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2394 key_fill_replymsg(n, 0);
2395 m_freem(m);
2396 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2397 }
2398 }
2399
2400 static struct mbuf *
2401 key_alloc_mbuf_simple(int len, int mflag)
2402 {
2403 struct mbuf *n;
2404
2405 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p()));
2406
2407 MGETHDR(n, mflag, MT_DATA);
2408 if (n && len > MHLEN) {
2409 MCLGET(n, mflag);
2410 if ((n->m_flags & M_EXT) == 0) {
2411 m_freem(n);
2412 n = NULL;
2413 }
2414 }
2415 return n;
2416 }
2417
2418 /*
2419 * SADB_SPDDELETE2 processing
2420 * receive
2421 * <base, policy(*)>
2422 * from the user(?), and set SADB_SASTATE_DEAD,
2423 * and send,
2424 * <base, policy(*)>
2425 * to the ikmpd.
2426 * policy(*) including direction of policy.
2427 *
2428 * m will always be freed.
2429 */
2430 static int
2431 key_api_spddelete2(struct socket *so, struct mbuf *m,
2432 const struct sadb_msghdr *mhp)
2433 {
2434 u_int32_t id;
2435 struct secpolicy *sp;
2436 const struct sadb_x_policy *xpl;
2437
2438 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2439 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2440 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2441 return key_senderror(so, m, EINVAL);
2442 }
2443
2444 xpl = mhp->ext[SADB_X_EXT_POLICY];
2445 id = xpl->sadb_x_policy_id;
2446
2447 /* Is there SP in SPD ? */
2448 sp = key_lookupbyid_and_remove_sp(id);
2449 if (sp == NULL) {
2450 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2451 return key_senderror(so, m, EINVAL);
2452 }
2453
2454 key_destroy_sp(sp);
2455
2456 /* We're deleting policy; no need to invalidate the ipflow cache. */
2457
2458 {
2459 struct mbuf *n, *nn;
2460 int off, len;
2461
2462 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2463
2464 /* create new sadb_msg to reply. */
2465 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2466
2467 n = key_alloc_mbuf_simple(len, M_WAITOK);
2468 n->m_len = len;
2469 n->m_next = NULL;
2470 off = 0;
2471
2472 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2473 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2474
2475 KASSERTMSG(off == len, "length inconsistency");
2476
2477 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2478 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK);
2479
2480 n->m_pkthdr.len = 0;
2481 for (nn = n; nn; nn = nn->m_next)
2482 n->m_pkthdr.len += nn->m_len;
2483
2484 key_fill_replymsg(n, 0);
2485 m_freem(m);
2486 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2487 }
2488 }
2489
2490 /*
2491 * SADB_X_GET processing
2492 * receive
2493 * <base, policy(*)>
2494 * from the user(?),
2495 * and send,
2496 * <base, address(SD), policy>
2497 * to the ikmpd.
2498 * policy(*) including direction of policy.
2499 *
2500 * m will always be freed.
2501 */
2502 static int
2503 key_api_spdget(struct socket *so, struct mbuf *m,
2504 const struct sadb_msghdr *mhp)
2505 {
2506 u_int32_t id;
2507 struct secpolicy *sp;
2508 struct mbuf *n;
2509 const struct sadb_x_policy *xpl;
2510
2511 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2512 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2513 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2514 return key_senderror(so, m, EINVAL);
2515 }
2516
2517 xpl = mhp->ext[SADB_X_EXT_POLICY];
2518 id = xpl->sadb_x_policy_id;
2519
2520 /* Is there SP in SPD ? */
2521 sp = key_getspbyid(id);
2522 if (sp == NULL) {
2523 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2524 return key_senderror(so, m, ENOENT);
2525 }
2526
2527 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2528 mhp->msg->sadb_msg_pid);
2529 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2530 m_freem(m);
2531 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2532 }
2533
2534 #ifdef notyet
2535 /*
2536 * SADB_X_SPDACQUIRE processing.
2537 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2538 * send
2539 * <base, policy(*)>
2540 * to KMD, and expect to receive
2541 * <base> with SADB_X_SPDACQUIRE if error occurred,
2542 * or
2543 * <base, policy>
2544 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2545 * policy(*) is without policy requests.
2546 *
2547 * 0 : succeed
2548 * others: error number
2549 */
2550 int
2551 key_spdacquire(const struct secpolicy *sp)
2552 {
2553 struct mbuf *result = NULL, *m;
2554 struct secspacq *newspacq;
2555 int error;
2556
2557 KASSERT(sp != NULL);
2558 KASSERTMSG(sp->req == NULL, "called but there is request");
2559 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2560 "policy mismathed. IPsec is expected");
2561
2562 /* Get an entry to check whether sent message or not. */
2563 newspacq = key_getspacq(&sp->spidx);
2564 if (newspacq != NULL) {
2565 if (key_blockacq_count < newspacq->count) {
2566 /* reset counter and do send message. */
2567 newspacq->count = 0;
2568 } else {
2569 /* increment counter and do nothing. */
2570 newspacq->count++;
2571 return 0;
2572 }
2573 } else {
2574 /* make new entry for blocking to send SADB_ACQUIRE. */
2575 newspacq = key_newspacq(&sp->spidx);
2576 if (newspacq == NULL)
2577 return ENOBUFS;
2578
2579 /* add to key_misc.acqlist */
2580 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2581 }
2582
2583 /* create new sadb_msg to reply. */
2584 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2585 if (!m) {
2586 error = ENOBUFS;
2587 goto fail;
2588 }
2589 result = m;
2590
2591 result->m_pkthdr.len = 0;
2592 for (m = result; m; m = m->m_next)
2593 result->m_pkthdr.len += m->m_len;
2594
2595 mtod(result, struct sadb_msg *)->sadb_msg_len =
2596 PFKEY_UNIT64(result->m_pkthdr.len);
2597
2598 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2599
2600 fail:
2601 if (result)
2602 m_freem(result);
2603 return error;
2604 }
2605 #endif /* notyet */
2606
2607 /*
2608 * SADB_SPDFLUSH processing
2609 * receive
2610 * <base>
2611 * from the user, and free all entries in secpctree.
2612 * and send,
2613 * <base>
2614 * to the user.
2615 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2616 *
2617 * m will always be freed.
2618 */
2619 static int
2620 key_api_spdflush(struct socket *so, struct mbuf *m,
2621 const struct sadb_msghdr *mhp)
2622 {
2623 struct sadb_msg *newmsg;
2624 struct secpolicy *sp;
2625 u_int dir;
2626
2627 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2628 return key_senderror(so, m, EINVAL);
2629
2630 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2631 retry:
2632 mutex_enter(&key_spd.lock);
2633 SPLIST_WRITER_FOREACH(sp, dir) {
2634 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2635 key_unlink_sp(sp);
2636 mutex_exit(&key_spd.lock);
2637 key_destroy_sp(sp);
2638 goto retry;
2639 }
2640 mutex_exit(&key_spd.lock);
2641 }
2642
2643 /* We're deleting policy; no need to invalidate the ipflow cache. */
2644
2645 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2646 IPSECLOG(LOG_DEBUG, "No more memory.\n");
2647 return key_senderror(so, m, ENOBUFS);
2648 }
2649
2650 if (m->m_next)
2651 m_freem(m->m_next);
2652 m->m_next = NULL;
2653 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2654 newmsg = mtod(m, struct sadb_msg *);
2655 newmsg->sadb_msg_errno = 0;
2656 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2657
2658 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2659 }
2660
2661 static struct sockaddr key_src = {
2662 .sa_len = 2,
2663 .sa_family = PF_KEY,
2664 };
2665
2666 static struct mbuf *
2667 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2668 {
2669 struct secpolicy *sp;
2670 int cnt;
2671 u_int dir;
2672 struct mbuf *m, *n, *prev;
2673 int totlen;
2674
2675 KASSERT(mutex_owned(&key_spd.lock));
2676
2677 *lenp = 0;
2678
2679 /* search SPD entry and get buffer size. */
2680 cnt = 0;
2681 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2682 SPLIST_WRITER_FOREACH(sp, dir) {
2683 cnt++;
2684 }
2685 }
2686
2687 if (cnt == 0) {
2688 *errorp = ENOENT;
2689 return (NULL);
2690 }
2691
2692 m = NULL;
2693 prev = m;
2694 totlen = 0;
2695 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2696 SPLIST_WRITER_FOREACH(sp, dir) {
2697 --cnt;
2698 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2699
2700 totlen += n->m_pkthdr.len;
2701 if (!m) {
2702 m = n;
2703 } else {
2704 prev->m_nextpkt = n;
2705 }
2706 prev = n;
2707 }
2708 }
2709
2710 *lenp = totlen;
2711 *errorp = 0;
2712 return (m);
2713 }
2714
2715 /*
2716 * SADB_SPDDUMP processing
2717 * receive
2718 * <base>
2719 * from the user, and dump all SP leaves
2720 * and send,
2721 * <base> .....
2722 * to the ikmpd.
2723 *
2724 * m will always be freed.
2725 */
2726 static int
2727 key_api_spddump(struct socket *so, struct mbuf *m0,
2728 const struct sadb_msghdr *mhp)
2729 {
2730 struct mbuf *n;
2731 int error, len;
2732 int ok;
2733 pid_t pid;
2734
2735 pid = mhp->msg->sadb_msg_pid;
2736 /*
2737 * If the requestor has insufficient socket-buffer space
2738 * for the entire chain, nobody gets any response to the DUMP.
2739 * XXX For now, only the requestor ever gets anything.
2740 * Moreover, if the requestor has any space at all, they receive
2741 * the entire chain, otherwise the request is refused with ENOBUFS.
2742 */
2743 if (sbspace(&so->so_rcv) <= 0) {
2744 return key_senderror(so, m0, ENOBUFS);
2745 }
2746
2747 mutex_enter(&key_spd.lock);
2748 n = key_setspddump_chain(&error, &len, pid);
2749 mutex_exit(&key_spd.lock);
2750
2751 if (n == NULL) {
2752 return key_senderror(so, m0, ENOENT);
2753 }
2754 {
2755 uint64_t *ps = PFKEY_STAT_GETREF();
2756 ps[PFKEY_STAT_IN_TOTAL]++;
2757 ps[PFKEY_STAT_IN_BYTES] += len;
2758 PFKEY_STAT_PUTREF();
2759 }
2760
2761 /*
2762 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2763 * The requestor receives either the entire chain, or an
2764 * error message with ENOBUFS.
2765 */
2766
2767 /*
2768 * sbappendchainwith record takes the chain of entries, one
2769 * packet-record per SPD entry, prepends the key_src sockaddr
2770 * to each packet-record, links the sockaddr mbufs into a new
2771 * list of records, then appends the entire resulting
2772 * list to the requesting socket.
2773 */
2774 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2775 SB_PRIO_ONESHOT_OVERFLOW);
2776
2777 if (!ok) {
2778 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2779 m_freem(n);
2780 return key_senderror(so, m0, ENOBUFS);
2781 }
2782
2783 m_freem(m0);
2784 return error;
2785 }
2786
2787 /*
2788 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2789 */
2790 static int
2791 key_api_nat_map(struct socket *so, struct mbuf *m,
2792 const struct sadb_msghdr *mhp)
2793 {
2794 struct sadb_x_nat_t_type *type;
2795 struct sadb_x_nat_t_port *sport;
2796 struct sadb_x_nat_t_port *dport;
2797 struct sadb_address *iaddr, *raddr;
2798 struct sadb_x_nat_t_frag *frag;
2799
2800 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2801 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2802 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2803 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2804 return key_senderror(so, m, EINVAL);
2805 }
2806 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2807 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2808 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2809 IPSECLOG(LOG_DEBUG, "invalid message.\n");
2810 return key_senderror(so, m, EINVAL);
2811 }
2812
2813 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2814 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2815 IPSECLOG(LOG_DEBUG, "invalid message\n");
2816 return key_senderror(so, m, EINVAL);
2817 }
2818
2819 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2820 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2821 IPSECLOG(LOG_DEBUG, "invalid message\n");
2822 return key_senderror(so, m, EINVAL);
2823 }
2824
2825 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2826 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2827 IPSECLOG(LOG_DEBUG, "invalid message\n");
2828 return key_senderror(so, m, EINVAL);
2829 }
2830
2831 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2832 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2833 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2834 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
2835 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
2836 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2837
2838 /*
2839 * XXX handle that, it should also contain a SA, or anything
2840 * that enable to update the SA information.
2841 */
2842
2843 return 0;
2844 }
2845
2846 /*
2847 * Never return NULL.
2848 */
2849 static struct mbuf *
2850 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2851 {
2852 struct mbuf *result = NULL, *m;
2853
2854 KASSERT(!cpu_softintr_p());
2855
2856 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2857 key_sp_refcnt(sp), M_WAITOK);
2858 result = m;
2859
2860 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2861 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK);
2862 m_cat(result, m);
2863
2864 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2865 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK);
2866 m_cat(result, m);
2867
2868 m = key_sp2msg(sp, M_WAITOK);
2869 m_cat(result, m);
2870
2871 KASSERT(result->m_flags & M_PKTHDR);
2872 KASSERT(result->m_len >= sizeof(struct sadb_msg));
2873
2874 result->m_pkthdr.len = 0;
2875 for (m = result; m; m = m->m_next)
2876 result->m_pkthdr.len += m->m_len;
2877
2878 mtod(result, struct sadb_msg *)->sadb_msg_len =
2879 PFKEY_UNIT64(result->m_pkthdr.len);
2880
2881 return result;
2882 }
2883
2884 /*
2885 * get PFKEY message length for security policy and request.
2886 */
2887 static u_int
2888 key_getspreqmsglen(const struct secpolicy *sp)
2889 {
2890 u_int tlen;
2891
2892 tlen = sizeof(struct sadb_x_policy);
2893
2894 /* if is the policy for ipsec ? */
2895 if (sp->policy != IPSEC_POLICY_IPSEC)
2896 return tlen;
2897
2898 /* get length of ipsec requests */
2899 {
2900 const struct ipsecrequest *isr;
2901 int len;
2902
2903 for (isr = sp->req; isr != NULL; isr = isr->next) {
2904 len = sizeof(struct sadb_x_ipsecrequest)
2905 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2906
2907 tlen += PFKEY_ALIGN8(len);
2908 }
2909 }
2910
2911 return tlen;
2912 }
2913
2914 /*
2915 * SADB_SPDEXPIRE processing
2916 * send
2917 * <base, address(SD), lifetime(CH), policy>
2918 * to KMD by PF_KEY.
2919 *
2920 * OUT: 0 : succeed
2921 * others : error number
2922 */
2923 static int
2924 key_spdexpire(struct secpolicy *sp)
2925 {
2926 int s;
2927 struct mbuf *result = NULL, *m;
2928 int len;
2929 int error = -1;
2930 struct sadb_lifetime *lt;
2931
2932 /* XXX: Why do we lock ? */
2933 s = splsoftnet(); /*called from softclock()*/
2934
2935 KASSERT(sp != NULL);
2936
2937 /* set msg header */
2938 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK);
2939 result = m;
2940
2941 /* create lifetime extension (current and hard) */
2942 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2943 m = key_alloc_mbuf(len, M_WAITOK);
2944 KASSERT(m->m_next == NULL);
2945
2946 memset(mtod(m, void *), 0, len);
2947 lt = mtod(m, struct sadb_lifetime *);
2948 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2949 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2950 lt->sadb_lifetime_allocations = 0;
2951 lt->sadb_lifetime_bytes = 0;
2952 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
2953 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
2954 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2955 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2956 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2957 lt->sadb_lifetime_allocations = 0;
2958 lt->sadb_lifetime_bytes = 0;
2959 lt->sadb_lifetime_addtime = sp->lifetime;
2960 lt->sadb_lifetime_usetime = sp->validtime;
2961 m_cat(result, m);
2962
2963 /* set sadb_address for source */
2964 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
2965 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK);
2966 m_cat(result, m);
2967
2968 /* set sadb_address for destination */
2969 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
2970 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK);
2971 m_cat(result, m);
2972
2973 /* set secpolicy */
2974 m = key_sp2msg(sp, M_WAITOK);
2975 m_cat(result, m);
2976
2977 KASSERT(result->m_flags & M_PKTHDR);
2978 KASSERT(result->m_len >= sizeof(struct sadb_msg));
2979
2980 result->m_pkthdr.len = 0;
2981 for (m = result; m; m = m->m_next)
2982 result->m_pkthdr.len += m->m_len;
2983
2984 mtod(result, struct sadb_msg *)->sadb_msg_len =
2985 PFKEY_UNIT64(result->m_pkthdr.len);
2986
2987 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2988 splx(s);
2989 return error;
2990 }
2991
2992 /* %%% SAD management */
2993 /*
2994 * allocating a memory for new SA head, and copy from the values of mhp.
2995 * OUT: NULL : failure due to the lack of memory.
2996 * others : pointer to new SA head.
2997 */
2998 static struct secashead *
2999 key_newsah(const struct secasindex *saidx)
3000 {
3001 struct secashead *newsah;
3002 int i;
3003
3004 KASSERT(saidx != NULL);
3005
3006 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
3007 for (i = 0; i < __arraycount(newsah->savlist); i++)
3008 PSLIST_INIT(&newsah->savlist[i]);
3009 newsah->saidx = *saidx;
3010
3011 localcount_init(&newsah->localcount);
3012 /* Take a reference for the caller */
3013 localcount_acquire(&newsah->localcount);
3014
3015 /* Add to the sah list */
3016 SAHLIST_ENTRY_INIT(newsah);
3017 newsah->state = SADB_SASTATE_MATURE;
3018 mutex_enter(&key_sad.lock);
3019 SAHLIST_WRITER_INSERT_HEAD(newsah);
3020 mutex_exit(&key_sad.lock);
3021
3022 return newsah;
3023 }
3024
3025 static bool
3026 key_sah_has_sav(struct secashead *sah)
3027 {
3028 u_int state;
3029
3030 KASSERT(mutex_owned(&key_sad.lock));
3031
3032 SASTATE_ANY_FOREACH(state) {
3033 if (!SAVLIST_WRITER_EMPTY(sah, state))
3034 return true;
3035 }
3036
3037 return false;
3038 }
3039
3040 static void
3041 key_unlink_sah(struct secashead *sah)
3042 {
3043
3044 KASSERT(!cpu_softintr_p());
3045 KASSERT(mutex_owned(&key_sad.lock));
3046 KASSERT(sah->state == SADB_SASTATE_DEAD);
3047
3048 /* Remove from the sah list */
3049 SAHLIST_WRITER_REMOVE(sah);
3050
3051 #ifdef NET_MPSAFE
3052 KASSERT(mutex_ownable(softnet_lock));
3053 key_sad_pserialize_perform();
3054 #endif
3055
3056 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3057 }
3058
3059 static void
3060 key_destroy_sah(struct secashead *sah)
3061 {
3062
3063 rtcache_free(&sah->sa_route);
3064
3065 SAHLIST_ENTRY_DESTROY(sah);
3066 localcount_fini(&sah->localcount);
3067
3068 if (sah->idents != NULL)
3069 kmem_free(sah->idents, sah->idents_len);
3070 if (sah->identd != NULL)
3071 kmem_free(sah->identd, sah->identd_len);
3072
3073 kmem_free(sah, sizeof(*sah));
3074 }
3075
3076 /*
3077 * allocating a new SA with LARVAL state.
3078 * key_api_add() and key_api_getspi() call,
3079 * and copy the values of mhp into new buffer.
3080 * When SAD message type is GETSPI:
3081 * to set sequence number from acq_seq++,
3082 * to set zero to SPI.
3083 * not to call key_setsava().
3084 * OUT: NULL : fail
3085 * others : pointer to new secasvar.
3086 *
3087 * does not modify mbuf. does not free mbuf on error.
3088 */
3089 static struct secasvar *
3090 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3091 int *errp, const char* where, int tag)
3092 {
3093 struct secasvar *newsav;
3094 const struct sadb_sa *xsa;
3095
3096 KASSERT(!cpu_softintr_p());
3097 KASSERT(m != NULL);
3098 KASSERT(mhp != NULL);
3099 KASSERT(mhp->msg != NULL);
3100
3101 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3102
3103 switch (mhp->msg->sadb_msg_type) {
3104 case SADB_GETSPI:
3105 newsav->spi = 0;
3106
3107 #ifdef IPSEC_DOSEQCHECK
3108 /* sync sequence number */
3109 if (mhp->msg->sadb_msg_seq == 0)
3110 newsav->seq =
3111 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3112 else
3113 #endif
3114 newsav->seq = mhp->msg->sadb_msg_seq;
3115 break;
3116
3117 case SADB_ADD:
3118 /* sanity check */
3119 if (mhp->ext[SADB_EXT_SA] == NULL) {
3120 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3121 *errp = EINVAL;
3122 goto error;
3123 }
3124 xsa = mhp->ext[SADB_EXT_SA];
3125 newsav->spi = xsa->sadb_sa_spi;
3126 newsav->seq = mhp->msg->sadb_msg_seq;
3127 break;
3128 default:
3129 *errp = EINVAL;
3130 goto error;
3131 }
3132
3133 /* copy sav values */
3134 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3135 *errp = key_setsaval(newsav, m, mhp);
3136 if (*errp)
3137 goto error;
3138 } else {
3139 /* We don't allow lft_c to be NULL */
3140 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3141 KM_SLEEP);
3142 }
3143
3144 /* reset created */
3145 newsav->created = time_uptime;
3146 newsav->pid = mhp->msg->sadb_msg_pid;
3147
3148 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3149 "DP from %s:%u return SA:%p\n", where, tag, newsav);
3150 return newsav;
3151
3152 error:
3153 KASSERT(*errp != 0);
3154 kmem_free(newsav, sizeof(*newsav));
3155 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3156 "DP from %s:%u return SA:NULL\n", where, tag);
3157 return NULL;
3158 }
3159
3160
3161 static void
3162 key_clear_xform(struct secasvar *sav)
3163 {
3164
3165 /*
3166 * Cleanup xform state. Note that zeroize'ing causes the
3167 * keys to be cleared; otherwise we must do it ourself.
3168 */
3169 if (sav->tdb_xform != NULL) {
3170 sav->tdb_xform->xf_zeroize(sav);
3171 sav->tdb_xform = NULL;
3172 } else {
3173 if (sav->key_auth != NULL)
3174 explicit_memset(_KEYBUF(sav->key_auth), 0,
3175 _KEYLEN(sav->key_auth));
3176 if (sav->key_enc != NULL)
3177 explicit_memset(_KEYBUF(sav->key_enc), 0,
3178 _KEYLEN(sav->key_enc));
3179 }
3180 }
3181
3182 /*
3183 * free() SA variable entry.
3184 */
3185 static void
3186 key_delsav(struct secasvar *sav)
3187 {
3188
3189 key_clear_xform(sav);
3190 key_freesaval(sav);
3191 kmem_free(sav, sizeof(*sav));
3192 }
3193
3194 /*
3195 * Must be called in a pserialize read section. A held sah
3196 * must be released by key_sah_unref after use.
3197 */
3198 static void
3199 key_sah_ref(struct secashead *sah)
3200 {
3201
3202 localcount_acquire(&sah->localcount);
3203 }
3204
3205 /*
3206 * Must be called without holding key_sad.lock because the lock
3207 * would be held in localcount_release.
3208 */
3209 static void
3210 key_sah_unref(struct secashead *sah)
3211 {
3212
3213 KDASSERT(mutex_ownable(&key_sad.lock));
3214
3215 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3216 }
3217
3218 /*
3219 * Search SAD and return sah. Must be called in a pserialize
3220 * read section.
3221 * OUT:
3222 * NULL : not found
3223 * others : found, pointer to a SA.
3224 */
3225 static struct secashead *
3226 key_getsah(const struct secasindex *saidx, int flag)
3227 {
3228 struct secashead *sah;
3229
3230 SAHLIST_READER_FOREACH(sah) {
3231 if (sah->state == SADB_SASTATE_DEAD)
3232 continue;
3233 if (key_saidx_match(&sah->saidx, saidx, flag))
3234 return sah;
3235 }
3236
3237 return NULL;
3238 }
3239
3240 /*
3241 * Search SAD and return sah. If sah is returned, the caller must call
3242 * key_sah_unref to releaset a reference.
3243 * OUT:
3244 * NULL : not found
3245 * others : found, pointer to a SA.
3246 */
3247 static struct secashead *
3248 key_getsah_ref(const struct secasindex *saidx, int flag)
3249 {
3250 struct secashead *sah;
3251 int s;
3252
3253 s = pserialize_read_enter();
3254 sah = key_getsah(saidx, flag);
3255 if (sah != NULL)
3256 key_sah_ref(sah);
3257 pserialize_read_exit(s);
3258
3259 return sah;
3260 }
3261
3262 /*
3263 * check not to be duplicated SPI.
3264 * NOTE: this function is too slow due to searching all SAD.
3265 * OUT:
3266 * NULL : not found
3267 * others : found, pointer to a SA.
3268 */
3269 static bool
3270 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3271 {
3272 struct secashead *sah;
3273 struct secasvar *sav;
3274 int s;
3275
3276 /* check address family */
3277 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3278 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3279 return false;
3280 }
3281
3282 /* check all SAD */
3283 s = pserialize_read_enter();
3284 SAHLIST_READER_FOREACH(sah) {
3285 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3286 continue;
3287 sav = key_getsavbyspi(sah, spi);
3288 if (sav != NULL) {
3289 pserialize_read_exit(s);
3290 KEY_SA_UNREF(&sav);
3291 return true;
3292 }
3293 }
3294 pserialize_read_exit(s);
3295
3296 return false;
3297 }
3298
3299 /*
3300 * search SAD litmited alive SA, protocol, SPI.
3301 * OUT:
3302 * NULL : not found
3303 * others : found, pointer to a SA.
3304 */
3305 static struct secasvar *
3306 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3307 {
3308 struct secasvar *sav = NULL;
3309 u_int state;
3310 int s;
3311
3312 /* search all status */
3313 s = pserialize_read_enter();
3314 SASTATE_ALIVE_FOREACH(state) {
3315 SAVLIST_READER_FOREACH(sav, sah, state) {
3316 /* sanity check */
3317 if (sav->state != state) {
3318 IPSECLOG(LOG_DEBUG,
3319 "invalid sav->state (queue: %d SA: %d)\n",
3320 state, sav->state);
3321 continue;
3322 }
3323
3324 if (sav->spi == spi) {
3325 KEY_SA_REF(sav);
3326 goto out;
3327 }
3328 }
3329 }
3330 out:
3331 pserialize_read_exit(s);
3332
3333 return sav;
3334 }
3335
3336 /*
3337 * Free allocated data to member variables of sav:
3338 * sav->replay, sav->key_* and sav->lft_*.
3339 */
3340 static void
3341 key_freesaval(struct secasvar *sav)
3342 {
3343
3344 KASSERT(key_sa_refcnt(sav) == 0);
3345
3346 if (sav->replay != NULL)
3347 kmem_intr_free(sav->replay, sav->replay_len);
3348 if (sav->key_auth != NULL)
3349 kmem_intr_free(sav->key_auth, sav->key_auth_len);
3350 if (sav->key_enc != NULL)
3351 kmem_intr_free(sav->key_enc, sav->key_enc_len);
3352 if (sav->lft_c != NULL)
3353 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3354 if (sav->lft_h != NULL)
3355 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3356 if (sav->lft_s != NULL)
3357 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3358 }
3359
3360 /*
3361 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3362 * You must update these if need.
3363 * OUT: 0: success.
3364 * !0: failure.
3365 *
3366 * does not modify mbuf. does not free mbuf on error.
3367 */
3368 static int
3369 key_setsaval(struct secasvar *sav, struct mbuf *m,
3370 const struct sadb_msghdr *mhp)
3371 {
3372 int error = 0;
3373
3374 KASSERT(!cpu_softintr_p());
3375 KASSERT(m != NULL);
3376 KASSERT(mhp != NULL);
3377 KASSERT(mhp->msg != NULL);
3378
3379 /* We shouldn't initialize sav variables while someone uses it. */
3380 KASSERT(key_sa_refcnt(sav) == 0);
3381
3382 /* SA */
3383 if (mhp->ext[SADB_EXT_SA] != NULL) {
3384 const struct sadb_sa *sa0;
3385
3386 sa0 = mhp->ext[SADB_EXT_SA];
3387 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3388 error = EINVAL;
3389 goto fail;
3390 }
3391
3392 sav->alg_auth = sa0->sadb_sa_auth;
3393 sav->alg_enc = sa0->sadb_sa_encrypt;
3394 sav->flags = sa0->sadb_sa_flags;
3395
3396 /* replay window */
3397 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3398 size_t len = sizeof(struct secreplay) +
3399 sa0->sadb_sa_replay;
3400 sav->replay = kmem_zalloc(len, KM_SLEEP);
3401 sav->replay_len = len;
3402 if (sa0->sadb_sa_replay != 0)
3403 sav->replay->bitmap = (char*)(sav->replay+1);
3404 sav->replay->wsize = sa0->sadb_sa_replay;
3405 }
3406 }
3407
3408 /* Authentication keys */
3409 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3410 const struct sadb_key *key0;
3411 int len;
3412
3413 key0 = mhp->ext[SADB_EXT_KEY_AUTH];
3414 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3415
3416 error = 0;
3417 if (len < sizeof(*key0)) {
3418 error = EINVAL;
3419 goto fail;
3420 }
3421 switch (mhp->msg->sadb_msg_satype) {
3422 case SADB_SATYPE_AH:
3423 case SADB_SATYPE_ESP:
3424 case SADB_X_SATYPE_TCPSIGNATURE:
3425 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3426 sav->alg_auth != SADB_X_AALG_NULL)
3427 error = EINVAL;
3428 break;
3429 case SADB_X_SATYPE_IPCOMP:
3430 default:
3431 error = EINVAL;
3432 break;
3433 }
3434 if (error) {
3435 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3436 goto fail;
3437 }
3438
3439 sav->key_auth = key_newbuf(key0, len);
3440 sav->key_auth_len = len;
3441 }
3442
3443 /* Encryption key */
3444 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3445 const struct sadb_key *key0;
3446 int len;
3447
3448 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT];
3449 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3450
3451 error = 0;
3452 if (len < sizeof(*key0)) {
3453 error = EINVAL;
3454 goto fail;
3455 }
3456 switch (mhp->msg->sadb_msg_satype) {
3457 case SADB_SATYPE_ESP:
3458 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3459 sav->alg_enc != SADB_EALG_NULL) {
3460 error = EINVAL;
3461 break;
3462 }
3463 sav->key_enc = key_newbuf(key0, len);
3464 sav->key_enc_len = len;
3465 break;
3466 case SADB_X_SATYPE_IPCOMP:
3467 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3468 error = EINVAL;
3469 sav->key_enc = NULL; /*just in case*/
3470 break;
3471 case SADB_SATYPE_AH:
3472 case SADB_X_SATYPE_TCPSIGNATURE:
3473 default:
3474 error = EINVAL;
3475 break;
3476 }
3477 if (error) {
3478 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3479 goto fail;
3480 }
3481 }
3482
3483 /* set iv */
3484 sav->ivlen = 0;
3485
3486 switch (mhp->msg->sadb_msg_satype) {
3487 case SADB_SATYPE_AH:
3488 error = xform_init(sav, XF_AH);
3489 break;
3490 case SADB_SATYPE_ESP:
3491 error = xform_init(sav, XF_ESP);
3492 break;
3493 case SADB_X_SATYPE_IPCOMP:
3494 error = xform_init(sav, XF_IPCOMP);
3495 break;
3496 case SADB_X_SATYPE_TCPSIGNATURE:
3497 error = xform_init(sav, XF_TCPSIGNATURE);
3498 break;
3499 }
3500 if (error) {
3501 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3502 mhp->msg->sadb_msg_satype);
3503 goto fail;
3504 }
3505
3506 /* reset created */
3507 sav->created = time_uptime;
3508
3509 /* make lifetime for CURRENT */
3510 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3511
3512 sav->lft_c->sadb_lifetime_len =
3513 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3514 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3515 sav->lft_c->sadb_lifetime_allocations = 0;
3516 sav->lft_c->sadb_lifetime_bytes = 0;
3517 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3518 sav->lft_c->sadb_lifetime_usetime = 0;
3519
3520 /* lifetimes for HARD and SOFT */
3521 {
3522 const struct sadb_lifetime *lft0;
3523
3524 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD];
3525 if (lft0 != NULL) {
3526 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3527 error = EINVAL;
3528 goto fail;
3529 }
3530 sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3531 }
3532
3533 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT];
3534 if (lft0 != NULL) {
3535 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3536 error = EINVAL;
3537 goto fail;
3538 }
3539 sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3540 /* to be initialize ? */
3541 }
3542 }
3543
3544 return 0;
3545
3546 fail:
3547 key_clear_xform(sav);
3548 key_freesaval(sav);
3549
3550 return error;
3551 }
3552
3553 /*
3554 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3555 * OUT: 0: valid
3556 * other: errno
3557 */
3558 static int
3559 key_init_xform(struct secasvar *sav)
3560 {
3561 int error;
3562
3563 /* We shouldn't initialize sav variables while someone uses it. */
3564 KASSERT(key_sa_refcnt(sav) == 0);
3565
3566 /* check SPI value */
3567 switch (sav->sah->saidx.proto) {
3568 case IPPROTO_ESP:
3569 case IPPROTO_AH:
3570 if (ntohl(sav->spi) <= 255) {
3571 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3572 (u_int32_t)ntohl(sav->spi));
3573 return EINVAL;
3574 }
3575 break;
3576 }
3577
3578 /* check satype */
3579 switch (sav->sah->saidx.proto) {
3580 case IPPROTO_ESP:
3581 /* check flags */
3582 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3583 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3584 IPSECLOG(LOG_DEBUG,
3585 "invalid flag (derived) given to old-esp.\n");
3586 return EINVAL;
3587 }
3588 error = xform_init(sav, XF_ESP);
3589 break;
3590 case IPPROTO_AH:
3591 /* check flags */
3592 if (sav->flags & SADB_X_EXT_DERIV) {
3593 IPSECLOG(LOG_DEBUG,
3594 "invalid flag (derived) given to AH SA.\n");
3595 return EINVAL;
3596 }
3597 if (sav->alg_enc != SADB_EALG_NONE) {
3598 IPSECLOG(LOG_DEBUG,
3599 "protocol and algorithm mismated.\n");
3600 return(EINVAL);
3601 }
3602 error = xform_init(sav, XF_AH);
3603 break;
3604 case IPPROTO_IPCOMP:
3605 if (sav->alg_auth != SADB_AALG_NONE) {
3606 IPSECLOG(LOG_DEBUG,
3607 "protocol and algorithm mismated.\n");
3608 return(EINVAL);
3609 }
3610 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3611 && ntohl(sav->spi) >= 0x10000) {
3612 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3613 return(EINVAL);
3614 }
3615 error = xform_init(sav, XF_IPCOMP);
3616 break;
3617 case IPPROTO_TCP:
3618 if (sav->alg_enc != SADB_EALG_NONE) {
3619 IPSECLOG(LOG_DEBUG,
3620 "protocol and algorithm mismated.\n");
3621 return(EINVAL);
3622 }
3623 error = xform_init(sav, XF_TCPSIGNATURE);
3624 break;
3625 default:
3626 IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3627 error = EPROTONOSUPPORT;
3628 break;
3629 }
3630
3631 return error;
3632 }
3633
3634 /*
3635 * subroutine for SADB_GET and SADB_DUMP. It never return NULL.
3636 */
3637 static struct mbuf *
3638 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3639 u_int32_t seq, u_int32_t pid)
3640 {
3641 struct mbuf *result = NULL, *tres = NULL, *m;
3642 int l = 0;
3643 int i;
3644 void *p;
3645 struct sadb_lifetime lt;
3646 int dumporder[] = {
3647 SADB_EXT_SA, SADB_X_EXT_SA2,
3648 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3649 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3650 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3651 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3652 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3653 SADB_X_EXT_NAT_T_TYPE,
3654 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3655 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3656 SADB_X_EXT_NAT_T_FRAG,
3657
3658 };
3659
3660 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK);
3661 result = m;
3662
3663 for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3664 m = NULL;
3665 p = NULL;
3666 switch (dumporder[i]) {
3667 case SADB_EXT_SA:
3668 m = key_setsadbsa(sav);
3669 break;
3670
3671 case SADB_X_EXT_SA2:
3672 m = key_setsadbxsa2(sav->sah->saidx.mode,
3673 sav->replay ? sav->replay->count : 0,
3674 sav->sah->saidx.reqid);
3675 break;
3676
3677 case SADB_EXT_ADDRESS_SRC:
3678 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3679 &sav->sah->saidx.src.sa,
3680 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
3681 break;
3682
3683 case SADB_EXT_ADDRESS_DST:
3684 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3685 &sav->sah->saidx.dst.sa,
3686 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
3687 break;
3688
3689 case SADB_EXT_KEY_AUTH:
3690 if (!sav->key_auth)
3691 continue;
3692 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3693 p = sav->key_auth;
3694 break;
3695
3696 case SADB_EXT_KEY_ENCRYPT:
3697 if (!sav->key_enc)
3698 continue;
3699 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3700 p = sav->key_enc;
3701 break;
3702
3703 case SADB_EXT_LIFETIME_CURRENT:
3704 KASSERT(sav->lft_c != NULL);
3705 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3706 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3707 lt.sadb_lifetime_addtime =
3708 time_mono_to_wall(lt.sadb_lifetime_addtime);
3709 lt.sadb_lifetime_usetime =
3710 time_mono_to_wall(lt.sadb_lifetime_usetime);
3711 p = <
3712 break;
3713
3714 case SADB_EXT_LIFETIME_HARD:
3715 if (!sav->lft_h)
3716 continue;
3717 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3718 p = sav->lft_h;
3719 break;
3720
3721 case SADB_EXT_LIFETIME_SOFT:
3722 if (!sav->lft_s)
3723 continue;
3724 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3725 p = sav->lft_s;
3726 break;
3727
3728 case SADB_X_EXT_NAT_T_TYPE:
3729 m = key_setsadbxtype(sav->natt_type);
3730 break;
3731
3732 case SADB_X_EXT_NAT_T_DPORT:
3733 if (sav->natt_type == 0)
3734 continue;
3735 m = key_setsadbxport(
3736 key_portfromsaddr(&sav->sah->saidx.dst),
3737 SADB_X_EXT_NAT_T_DPORT);
3738 break;
3739
3740 case SADB_X_EXT_NAT_T_SPORT:
3741 if (sav->natt_type == 0)
3742 continue;
3743 m = key_setsadbxport(
3744 key_portfromsaddr(&sav->sah->saidx.src),
3745 SADB_X_EXT_NAT_T_SPORT);
3746 break;
3747
3748 case SADB_X_EXT_NAT_T_FRAG:
3749 /* don't send frag info if not set */
3750 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3751 continue;
3752 m = key_setsadbxfrag(sav->esp_frag);
3753 break;
3754
3755 case SADB_X_EXT_NAT_T_OAI:
3756 case SADB_X_EXT_NAT_T_OAR:
3757 continue;
3758
3759 case SADB_EXT_ADDRESS_PROXY:
3760 case SADB_EXT_IDENTITY_SRC:
3761 case SADB_EXT_IDENTITY_DST:
3762 /* XXX: should we brought from SPD ? */
3763 case SADB_EXT_SENSITIVITY:
3764 default:
3765 continue;
3766 }
3767
3768 KASSERT(!(m && p));
3769 KASSERT(m != NULL || p != NULL);
3770 if (p && tres) {
3771 M_PREPEND(tres, l, M_WAITOK);
3772 memcpy(mtod(tres, void *), p, l);
3773 continue;
3774 }
3775 if (p) {
3776 m = key_alloc_mbuf(l, M_WAITOK);
3777 m_copyback(m, 0, l, p);
3778 }
3779
3780 if (tres)
3781 m_cat(m, tres);
3782 tres = m;
3783 }
3784
3785 m_cat(result, tres);
3786 tres = NULL; /* avoid free on error below */
3787
3788 KASSERT(result->m_len >= sizeof(struct sadb_msg));
3789
3790 result->m_pkthdr.len = 0;
3791 for (m = result; m; m = m->m_next)
3792 result->m_pkthdr.len += m->m_len;
3793
3794 mtod(result, struct sadb_msg *)->sadb_msg_len =
3795 PFKEY_UNIT64(result->m_pkthdr.len);
3796
3797 return result;
3798 }
3799
3800
3801 /*
3802 * set a type in sadb_x_nat_t_type
3803 */
3804 static struct mbuf *
3805 key_setsadbxtype(u_int16_t type)
3806 {
3807 struct mbuf *m;
3808 size_t len;
3809 struct sadb_x_nat_t_type *p;
3810
3811 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3812
3813 m = key_alloc_mbuf(len, M_WAITOK);
3814 KASSERT(m->m_next == NULL);
3815
3816 p = mtod(m, struct sadb_x_nat_t_type *);
3817
3818 memset(p, 0, len);
3819 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3820 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3821 p->sadb_x_nat_t_type_type = type;
3822
3823 return m;
3824 }
3825 /*
3826 * set a port in sadb_x_nat_t_port. port is in network order
3827 */
3828 static struct mbuf *
3829 key_setsadbxport(u_int16_t port, u_int16_t type)
3830 {
3831 struct mbuf *m;
3832 size_t len;
3833 struct sadb_x_nat_t_port *p;
3834
3835 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3836
3837 m = key_alloc_mbuf(len, M_WAITOK);
3838 KASSERT(m->m_next == NULL);
3839
3840 p = mtod(m, struct sadb_x_nat_t_port *);
3841
3842 memset(p, 0, len);
3843 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3844 p->sadb_x_nat_t_port_exttype = type;
3845 p->sadb_x_nat_t_port_port = port;
3846
3847 return m;
3848 }
3849
3850 /*
3851 * set fragmentation info in sadb_x_nat_t_frag
3852 */
3853 static struct mbuf *
3854 key_setsadbxfrag(u_int16_t flen)
3855 {
3856 struct mbuf *m;
3857 size_t len;
3858 struct sadb_x_nat_t_frag *p;
3859
3860 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3861
3862 m = key_alloc_mbuf(len, M_WAITOK);
3863 KASSERT(m->m_next == NULL);
3864
3865 p = mtod(m, struct sadb_x_nat_t_frag *);
3866
3867 memset(p, 0, len);
3868 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3869 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3870 p->sadb_x_nat_t_frag_fraglen = flen;
3871
3872 return m;
3873 }
3874
3875 /*
3876 * Get port from sockaddr, port is in network order
3877 */
3878 u_int16_t
3879 key_portfromsaddr(const union sockaddr_union *saddr)
3880 {
3881 u_int16_t port;
3882
3883 switch (saddr->sa.sa_family) {
3884 case AF_INET: {
3885 port = saddr->sin.sin_port;
3886 break;
3887 }
3888 #ifdef INET6
3889 case AF_INET6: {
3890 port = saddr->sin6.sin6_port;
3891 break;
3892 }
3893 #endif
3894 default:
3895 printf("%s: unexpected address family\n", __func__);
3896 port = 0;
3897 break;
3898 }
3899
3900 return port;
3901 }
3902
3903
3904 /*
3905 * Set port is struct sockaddr. port is in network order
3906 */
3907 static void
3908 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3909 {
3910 switch (saddr->sa.sa_family) {
3911 case AF_INET: {
3912 saddr->sin.sin_port = port;
3913 break;
3914 }
3915 #ifdef INET6
3916 case AF_INET6: {
3917 saddr->sin6.sin6_port = port;
3918 break;
3919 }
3920 #endif
3921 default:
3922 printf("%s: unexpected address family %d\n", __func__,
3923 saddr->sa.sa_family);
3924 break;
3925 }
3926
3927 return;
3928 }
3929
3930 /*
3931 * Safety check sa_len
3932 */
3933 static int
3934 key_checksalen(const union sockaddr_union *saddr)
3935 {
3936 switch (saddr->sa.sa_family) {
3937 case AF_INET:
3938 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3939 return -1;
3940 break;
3941 #ifdef INET6
3942 case AF_INET6:
3943 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3944 return -1;
3945 break;
3946 #endif
3947 default:
3948 printf("%s: unexpected sa_family %d\n", __func__,
3949 saddr->sa.sa_family);
3950 return -1;
3951 break;
3952 }
3953 return 0;
3954 }
3955
3956
3957 /*
3958 * set data into sadb_msg.
3959 */
3960 static struct mbuf *
3961 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3962 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag)
3963 {
3964 struct mbuf *m;
3965 struct sadb_msg *p;
3966 int len;
3967
3968 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
3969
3970 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3971
3972 m = key_alloc_mbuf_simple(len, mflag);
3973 if (!m)
3974 return NULL;
3975 m->m_pkthdr.len = m->m_len = len;
3976 m->m_next = NULL;
3977
3978 p = mtod(m, struct sadb_msg *);
3979
3980 memset(p, 0, len);
3981 p->sadb_msg_version = PF_KEY_V2;
3982 p->sadb_msg_type = type;
3983 p->sadb_msg_errno = 0;
3984 p->sadb_msg_satype = satype;
3985 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3986 p->sadb_msg_reserved = reserved;
3987 p->sadb_msg_seq = seq;
3988 p->sadb_msg_pid = (u_int32_t)pid;
3989
3990 return m;
3991 }
3992
3993 /*
3994 * copy secasvar data into sadb_address.
3995 */
3996 static struct mbuf *
3997 key_setsadbsa(struct secasvar *sav)
3998 {
3999 struct mbuf *m;
4000 struct sadb_sa *p;
4001 int len;
4002
4003 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4004 m = key_alloc_mbuf(len, M_WAITOK);
4005 KASSERT(m->m_next == NULL);
4006
4007 p = mtod(m, struct sadb_sa *);
4008
4009 memset(p, 0, len);
4010 p->sadb_sa_len = PFKEY_UNIT64(len);
4011 p->sadb_sa_exttype = SADB_EXT_SA;
4012 p->sadb_sa_spi = sav->spi;
4013 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4014 p->sadb_sa_state = sav->state;
4015 p->sadb_sa_auth = sav->alg_auth;
4016 p->sadb_sa_encrypt = sav->alg_enc;
4017 p->sadb_sa_flags = sav->flags;
4018
4019 return m;
4020 }
4021
4022 /*
4023 * set data into sadb_address.
4024 */
4025 static struct mbuf *
4026 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4027 u_int8_t prefixlen, u_int16_t ul_proto, int mflag)
4028 {
4029 struct mbuf *m;
4030 struct sadb_address *p;
4031 size_t len;
4032
4033 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4034 PFKEY_ALIGN8(saddr->sa_len);
4035 m = key_alloc_mbuf(len, mflag);
4036 if (!m || m->m_next) { /*XXX*/
4037 if (m)
4038 m_freem(m);
4039 return NULL;
4040 }
4041
4042 p = mtod(m, struct sadb_address *);
4043
4044 memset(p, 0, len);
4045 p->sadb_address_len = PFKEY_UNIT64(len);
4046 p->sadb_address_exttype = exttype;
4047 p->sadb_address_proto = ul_proto;
4048 if (prefixlen == FULLMASK) {
4049 switch (saddr->sa_family) {
4050 case AF_INET:
4051 prefixlen = sizeof(struct in_addr) << 3;
4052 break;
4053 case AF_INET6:
4054 prefixlen = sizeof(struct in6_addr) << 3;
4055 break;
4056 default:
4057 ; /*XXX*/
4058 }
4059 }
4060 p->sadb_address_prefixlen = prefixlen;
4061 p->sadb_address_reserved = 0;
4062
4063 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4064 saddr, saddr->sa_len);
4065
4066 return m;
4067 }
4068
4069 #if 0
4070 /*
4071 * set data into sadb_ident.
4072 */
4073 static struct mbuf *
4074 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4075 void *string, int stringlen, u_int64_t id)
4076 {
4077 struct mbuf *m;
4078 struct sadb_ident *p;
4079 size_t len;
4080
4081 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4082 m = key_alloc_mbuf(len);
4083 if (!m || m->m_next) { /*XXX*/
4084 if (m)
4085 m_freem(m);
4086 return NULL;
4087 }
4088
4089 p = mtod(m, struct sadb_ident *);
4090
4091 memset(p, 0, len);
4092 p->sadb_ident_len = PFKEY_UNIT64(len);
4093 p->sadb_ident_exttype = exttype;
4094 p->sadb_ident_type = idtype;
4095 p->sadb_ident_reserved = 0;
4096 p->sadb_ident_id = id;
4097
4098 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4099 string, stringlen);
4100
4101 return m;
4102 }
4103 #endif
4104
4105 /*
4106 * set data into sadb_x_sa2.
4107 */
4108 static struct mbuf *
4109 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4110 {
4111 struct mbuf *m;
4112 struct sadb_x_sa2 *p;
4113 size_t len;
4114
4115 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4116 m = key_alloc_mbuf(len, M_WAITOK);
4117 KASSERT(m->m_next == NULL);
4118
4119 p = mtod(m, struct sadb_x_sa2 *);
4120
4121 memset(p, 0, len);
4122 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4123 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4124 p->sadb_x_sa2_mode = mode;
4125 p->sadb_x_sa2_reserved1 = 0;
4126 p->sadb_x_sa2_reserved2 = 0;
4127 p->sadb_x_sa2_sequence = seq;
4128 p->sadb_x_sa2_reqid = reqid;
4129
4130 return m;
4131 }
4132
4133 /*
4134 * set data into sadb_x_policy
4135 */
4136 static struct mbuf *
4137 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id,
4138 int mflag)
4139 {
4140 struct mbuf *m;
4141 struct sadb_x_policy *p;
4142 size_t len;
4143
4144 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4145 m = key_alloc_mbuf(len, mflag);
4146 if (!m || m->m_next) { /*XXX*/
4147 if (m)
4148 m_freem(m);
4149 return NULL;
4150 }
4151
4152 p = mtod(m, struct sadb_x_policy *);
4153
4154 memset(p, 0, len);
4155 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4156 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4157 p->sadb_x_policy_type = type;
4158 p->sadb_x_policy_dir = dir;
4159 p->sadb_x_policy_id = id;
4160
4161 return m;
4162 }
4163
4164 /* %%% utilities */
4165 /*
4166 * copy a buffer into the new buffer allocated.
4167 */
4168 static void *
4169 key_newbuf(const void *src, u_int len)
4170 {
4171 void *new;
4172
4173 new = kmem_alloc(len, KM_SLEEP);
4174 memcpy(new, src, len);
4175
4176 return new;
4177 }
4178
4179 /* compare my own address
4180 * OUT: 1: true, i.e. my address.
4181 * 0: false
4182 */
4183 int
4184 key_ismyaddr(const struct sockaddr *sa)
4185 {
4186 #ifdef INET
4187 const struct sockaddr_in *sin;
4188 const struct in_ifaddr *ia;
4189 int s;
4190 #endif
4191
4192 KASSERT(sa != NULL);
4193
4194 switch (sa->sa_family) {
4195 #ifdef INET
4196 case AF_INET:
4197 sin = (const struct sockaddr_in *)sa;
4198 s = pserialize_read_enter();
4199 IN_ADDRLIST_READER_FOREACH(ia) {
4200 if (sin->sin_family == ia->ia_addr.sin_family &&
4201 sin->sin_len == ia->ia_addr.sin_len &&
4202 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4203 {
4204 pserialize_read_exit(s);
4205 return 1;
4206 }
4207 }
4208 pserialize_read_exit(s);
4209 break;
4210 #endif
4211 #ifdef INET6
4212 case AF_INET6:
4213 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4214 #endif
4215 }
4216
4217 return 0;
4218 }
4219
4220 #ifdef INET6
4221 /*
4222 * compare my own address for IPv6.
4223 * 1: ours
4224 * 0: other
4225 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4226 */
4227 #include <netinet6/in6_var.h>
4228
4229 static int
4230 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4231 {
4232 struct in6_ifaddr *ia;
4233 int s;
4234 struct psref psref;
4235 int bound;
4236 int ours = 1;
4237
4238 bound = curlwp_bind();
4239 s = pserialize_read_enter();
4240 IN6_ADDRLIST_READER_FOREACH(ia) {
4241 bool ingroup;
4242
4243 if (key_sockaddr_match((const struct sockaddr *)&sin6,
4244 (const struct sockaddr *)&ia->ia_addr, 0)) {
4245 pserialize_read_exit(s);
4246 goto ours;
4247 }
4248 ia6_acquire(ia, &psref);
4249 pserialize_read_exit(s);
4250
4251 /*
4252 * XXX Multicast
4253 * XXX why do we care about multlicast here while we don't care
4254 * about IPv4 multicast??
4255 * XXX scope
4256 */
4257 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4258 if (ingroup) {
4259 ia6_release(ia, &psref);
4260 goto ours;
4261 }
4262
4263 s = pserialize_read_enter();
4264 ia6_release(ia, &psref);
4265 }
4266 pserialize_read_exit(s);
4267
4268 /* loopback, just for safety */
4269 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4270 goto ours;
4271
4272 ours = 0;
4273 ours:
4274 curlwp_bindx(bound);
4275
4276 return ours;
4277 }
4278 #endif /*INET6*/
4279
4280 /*
4281 * compare two secasindex structure.
4282 * flag can specify to compare 2 saidxes.
4283 * compare two secasindex structure without both mode and reqid.
4284 * don't compare port.
4285 * IN:
4286 * saidx0: source, it can be in SAD.
4287 * saidx1: object.
4288 * OUT:
4289 * 1 : equal
4290 * 0 : not equal
4291 */
4292 static int
4293 key_saidx_match(
4294 const struct secasindex *saidx0,
4295 const struct secasindex *saidx1,
4296 int flag)
4297 {
4298 int chkport;
4299 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4300
4301 KASSERT(saidx0 != NULL);
4302 KASSERT(saidx1 != NULL);
4303
4304 /* sanity */
4305 if (saidx0->proto != saidx1->proto)
4306 return 0;
4307
4308 if (flag == CMP_EXACTLY) {
4309 if (saidx0->mode != saidx1->mode)
4310 return 0;
4311 if (saidx0->reqid != saidx1->reqid)
4312 return 0;
4313 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4314 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4315 return 0;
4316 } else {
4317
4318 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4319 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4320 /*
4321 * If reqid of SPD is non-zero, unique SA is required.
4322 * The result must be of same reqid in this case.
4323 */
4324 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4325 return 0;
4326 }
4327
4328 if (flag == CMP_MODE_REQID) {
4329 if (saidx0->mode != IPSEC_MODE_ANY &&
4330 saidx0->mode != saidx1->mode)
4331 return 0;
4332 }
4333
4334
4335 sa0src = &saidx0->src.sa;
4336 sa0dst = &saidx0->dst.sa;
4337 sa1src = &saidx1->src.sa;
4338 sa1dst = &saidx1->dst.sa;
4339 /*
4340 * If NAT-T is enabled, check ports for tunnel mode.
4341 * Don't do it for transport mode, as there is no
4342 * port information available in the SP.
4343 * Also don't check ports if they are set to zero
4344 * in the SPD: This means we have a non-generated
4345 * SPD which can't know UDP ports.
4346 */
4347 if (saidx1->mode == IPSEC_MODE_TUNNEL)
4348 chkport = PORT_LOOSE;
4349 else
4350 chkport = PORT_NONE;
4351
4352 if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4353 return 0;
4354 }
4355 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4356 return 0;
4357 }
4358 }
4359
4360 return 1;
4361 }
4362
4363 /*
4364 * compare two secindex structure exactly.
4365 * IN:
4366 * spidx0: source, it is often in SPD.
4367 * spidx1: object, it is often from PFKEY message.
4368 * OUT:
4369 * 1 : equal
4370 * 0 : not equal
4371 */
4372 static int
4373 key_spidx_match_exactly(
4374 const struct secpolicyindex *spidx0,
4375 const struct secpolicyindex *spidx1)
4376 {
4377
4378 KASSERT(spidx0 != NULL);
4379 KASSERT(spidx1 != NULL);
4380
4381 /* sanity */
4382 if (spidx0->prefs != spidx1->prefs ||
4383 spidx0->prefd != spidx1->prefd ||
4384 spidx0->ul_proto != spidx1->ul_proto)
4385 return 0;
4386
4387 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4388 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4389 }
4390
4391 /*
4392 * compare two secindex structure with mask.
4393 * IN:
4394 * spidx0: source, it is often in SPD.
4395 * spidx1: object, it is often from IP header.
4396 * OUT:
4397 * 1 : equal
4398 * 0 : not equal
4399 */
4400 static int
4401 key_spidx_match_withmask(
4402 const struct secpolicyindex *spidx0,
4403 const struct secpolicyindex *spidx1)
4404 {
4405
4406 KASSERT(spidx0 != NULL);
4407 KASSERT(spidx1 != NULL);
4408
4409 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4410 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4411 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4412 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4413 return 0;
4414
4415 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4416 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4417 spidx0->ul_proto != spidx1->ul_proto)
4418 return 0;
4419
4420 switch (spidx0->src.sa.sa_family) {
4421 case AF_INET:
4422 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4423 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4424 return 0;
4425 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4426 &spidx1->src.sin.sin_addr, spidx0->prefs))
4427 return 0;
4428 break;
4429 case AF_INET6:
4430 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4431 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4432 return 0;
4433 /*
4434 * scope_id check. if sin6_scope_id is 0, we regard it
4435 * as a wildcard scope, which matches any scope zone ID.
4436 */
4437 if (spidx0->src.sin6.sin6_scope_id &&
4438 spidx1->src.sin6.sin6_scope_id &&
4439 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4440 return 0;
4441 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4442 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4443 return 0;
4444 break;
4445 default:
4446 /* XXX */
4447 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4448 return 0;
4449 break;
4450 }
4451
4452 switch (spidx0->dst.sa.sa_family) {
4453 case AF_INET:
4454 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4455 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4456 return 0;
4457 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4458 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4459 return 0;
4460 break;
4461 case AF_INET6:
4462 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4463 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4464 return 0;
4465 /*
4466 * scope_id check. if sin6_scope_id is 0, we regard it
4467 * as a wildcard scope, which matches any scope zone ID.
4468 */
4469 if (spidx0->src.sin6.sin6_scope_id &&
4470 spidx1->src.sin6.sin6_scope_id &&
4471 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4472 return 0;
4473 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4474 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4475 return 0;
4476 break;
4477 default:
4478 /* XXX */
4479 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4480 return 0;
4481 break;
4482 }
4483
4484 /* XXX Do we check other field ? e.g. flowinfo */
4485
4486 return 1;
4487 }
4488
4489 /* returns 0 on match */
4490 static int
4491 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4492 {
4493 switch (howport) {
4494 case PORT_NONE:
4495 return 0;
4496 case PORT_LOOSE:
4497 if (port1 == 0 || port2 == 0)
4498 return 0;
4499 /*FALLTHROUGH*/
4500 case PORT_STRICT:
4501 if (port1 != port2) {
4502 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4503 "port fail %d != %d\n", port1, port2);
4504 return 1;
4505 }
4506 return 0;
4507 default:
4508 KASSERT(0);
4509 return 1;
4510 }
4511 }
4512
4513 /* returns 1 on match */
4514 static int
4515 key_sockaddr_match(
4516 const struct sockaddr *sa1,
4517 const struct sockaddr *sa2,
4518 int howport)
4519 {
4520 const struct sockaddr_in *sin1, *sin2;
4521 const struct sockaddr_in6 *sin61, *sin62;
4522 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
4523
4524 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4525 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4526 "fam/len fail %d != %d || %d != %d\n",
4527 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4528 sa2->sa_len);
4529 return 0;
4530 }
4531
4532 switch (sa1->sa_family) {
4533 case AF_INET:
4534 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4535 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4536 "len fail %d != %zu\n",
4537 sa1->sa_len, sizeof(struct sockaddr_in));
4538 return 0;
4539 }
4540 sin1 = (const struct sockaddr_in *)sa1;
4541 sin2 = (const struct sockaddr_in *)sa2;
4542 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4543 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4544 "addr fail %s != %s\n",
4545 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4546 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
4547 return 0;
4548 }
4549 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4550 return 0;
4551 }
4552 KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4553 "addr success %s[%d] == %s[%d]\n",
4554 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4555 sin1->sin_port,
4556 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
4557 sin2->sin_port);
4558 break;
4559 case AF_INET6:
4560 sin61 = (const struct sockaddr_in6 *)sa1;
4561 sin62 = (const struct sockaddr_in6 *)sa2;
4562 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4563 return 0; /*EINVAL*/
4564
4565 if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4566 return 0;
4567 }
4568 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4569 return 0;
4570 }
4571 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4572 return 0;
4573 }
4574 break;
4575 default:
4576 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4577 return 0;
4578 break;
4579 }
4580
4581 return 1;
4582 }
4583
4584 /*
4585 * compare two buffers with mask.
4586 * IN:
4587 * addr1: source
4588 * addr2: object
4589 * bits: Number of bits to compare
4590 * OUT:
4591 * 1 : equal
4592 * 0 : not equal
4593 */
4594 static int
4595 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4596 {
4597 const unsigned char *p1 = a1;
4598 const unsigned char *p2 = a2;
4599
4600 /* XXX: This could be considerably faster if we compare a word
4601 * at a time, but it is complicated on LSB Endian machines */
4602
4603 /* Handle null pointers */
4604 if (p1 == NULL || p2 == NULL)
4605 return (p1 == p2);
4606
4607 while (bits >= 8) {
4608 if (*p1++ != *p2++)
4609 return 0;
4610 bits -= 8;
4611 }
4612
4613 if (bits > 0) {
4614 u_int8_t mask = ~((1<<(8-bits))-1);
4615 if ((*p1 & mask) != (*p2 & mask))
4616 return 0;
4617 }
4618 return 1; /* Match! */
4619 }
4620
4621 static void
4622 key_timehandler_spd(time_t now)
4623 {
4624 u_int dir;
4625 struct secpolicy *sp;
4626
4627 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4628 retry:
4629 mutex_enter(&key_spd.lock);
4630 SPLIST_WRITER_FOREACH(sp, dir) {
4631 KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4632
4633 if (sp->lifetime == 0 && sp->validtime == 0)
4634 continue;
4635
4636 if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4637 (sp->validtime && now - sp->lastused > sp->validtime)) {
4638 key_unlink_sp(sp);
4639 mutex_exit(&key_spd.lock);
4640 key_spdexpire(sp);
4641 key_destroy_sp(sp);
4642 goto retry;
4643 }
4644 }
4645 mutex_exit(&key_spd.lock);
4646 }
4647
4648 retry_socksplist:
4649 mutex_enter(&key_spd.lock);
4650 SOCKSPLIST_WRITER_FOREACH(sp) {
4651 if (sp->state != IPSEC_SPSTATE_DEAD)
4652 continue;
4653
4654 key_unlink_sp(sp);
4655 mutex_exit(&key_spd.lock);
4656 key_destroy_sp(sp);
4657 goto retry_socksplist;
4658 }
4659 mutex_exit(&key_spd.lock);
4660 }
4661
4662 static void
4663 key_timehandler_sad(time_t now)
4664 {
4665 struct secashead *sah;
4666 int s;
4667
4668 restart:
4669 mutex_enter(&key_sad.lock);
4670 SAHLIST_WRITER_FOREACH(sah) {
4671 /* If sah has been dead and has no sav, then delete it */
4672 if (sah->state == SADB_SASTATE_DEAD &&
4673 !key_sah_has_sav(sah)) {
4674 key_unlink_sah(sah);
4675 mutex_exit(&key_sad.lock);
4676 key_destroy_sah(sah);
4677 goto restart;
4678 }
4679 }
4680 mutex_exit(&key_sad.lock);
4681
4682 s = pserialize_read_enter();
4683 SAHLIST_READER_FOREACH(sah) {
4684 struct secasvar *sav;
4685
4686 key_sah_ref(sah);
4687 pserialize_read_exit(s);
4688
4689 /* if LARVAL entry doesn't become MATURE, delete it. */
4690 mutex_enter(&key_sad.lock);
4691 restart_sav_LARVAL:
4692 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4693 if (now - sav->created > key_larval_lifetime) {
4694 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4695 goto restart_sav_LARVAL;
4696 }
4697 }
4698 mutex_exit(&key_sad.lock);
4699
4700 /*
4701 * check MATURE entry to start to send expire message
4702 * whether or not.
4703 */
4704 restart_sav_MATURE:
4705 mutex_enter(&key_sad.lock);
4706 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4707 /* we don't need to check. */
4708 if (sav->lft_s == NULL)
4709 continue;
4710
4711 /* sanity check */
4712 KASSERT(sav->lft_c != NULL);
4713
4714 /* check SOFT lifetime */
4715 if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4716 now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4717 /*
4718 * check SA to be used whether or not.
4719 * when SA hasn't been used, delete it.
4720 */
4721 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4722 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4723 mutex_exit(&key_sad.lock);
4724 } else {
4725 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4726 mutex_exit(&key_sad.lock);
4727 /*
4728 * XXX If we keep to send expire
4729 * message in the status of
4730 * DYING. Do remove below code.
4731 */
4732 key_expire(sav);
4733 }
4734 goto restart_sav_MATURE;
4735 }
4736 /* check SOFT lifetime by bytes */
4737 /*
4738 * XXX I don't know the way to delete this SA
4739 * when new SA is installed. Caution when it's
4740 * installed too big lifetime by time.
4741 */
4742 else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4743 sav->lft_s->sadb_lifetime_bytes <
4744 sav->lft_c->sadb_lifetime_bytes) {
4745
4746 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4747 mutex_exit(&key_sad.lock);
4748 /*
4749 * XXX If we keep to send expire
4750 * message in the status of
4751 * DYING. Do remove below code.
4752 */
4753 key_expire(sav);
4754 goto restart_sav_MATURE;
4755 }
4756 }
4757 mutex_exit(&key_sad.lock);
4758
4759 /* check DYING entry to change status to DEAD. */
4760 mutex_enter(&key_sad.lock);
4761 restart_sav_DYING:
4762 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4763 /* we don't need to check. */
4764 if (sav->lft_h == NULL)
4765 continue;
4766
4767 /* sanity check */
4768 KASSERT(sav->lft_c != NULL);
4769
4770 if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4771 now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4772 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4773 goto restart_sav_DYING;
4774 }
4775 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4776 else if (sav->lft_s != NULL
4777 && sav->lft_s->sadb_lifetime_addtime != 0
4778 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4779 /*
4780 * XXX: should be checked to be
4781 * installed the valid SA.
4782 */
4783
4784 /*
4785 * If there is no SA then sending
4786 * expire message.
4787 */
4788 key_expire(sav);
4789 }
4790 #endif
4791 /* check HARD lifetime by bytes */
4792 else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4793 sav->lft_h->sadb_lifetime_bytes <
4794 sav->lft_c->sadb_lifetime_bytes) {
4795 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4796 goto restart_sav_DYING;
4797 }
4798 }
4799 mutex_exit(&key_sad.lock);
4800
4801 /* delete entry in DEAD */
4802 restart_sav_DEAD:
4803 mutex_enter(&key_sad.lock);
4804 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4805 key_unlink_sav(sav);
4806 mutex_exit(&key_sad.lock);
4807 key_destroy_sav(sav);
4808 goto restart_sav_DEAD;
4809 }
4810 mutex_exit(&key_sad.lock);
4811
4812 s = pserialize_read_enter();
4813 key_sah_unref(sah);
4814 }
4815 pserialize_read_exit(s);
4816 }
4817
4818 static void
4819 key_timehandler_acq(time_t now)
4820 {
4821 #ifndef IPSEC_NONBLOCK_ACQUIRE
4822 struct secacq *acq, *nextacq;
4823
4824 restart:
4825 mutex_enter(&key_misc.lock);
4826 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4827 if (now - acq->created > key_blockacq_lifetime) {
4828 LIST_REMOVE(acq, chain);
4829 mutex_exit(&key_misc.lock);
4830 kmem_free(acq, sizeof(*acq));
4831 goto restart;
4832 }
4833 }
4834 mutex_exit(&key_misc.lock);
4835 #endif
4836 }
4837
4838 static void
4839 key_timehandler_spacq(time_t now)
4840 {
4841 #ifdef notyet
4842 struct secspacq *acq, *nextacq;
4843
4844 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4845 if (now - acq->created > key_blockacq_lifetime) {
4846 KASSERT(__LIST_CHAINED(acq));
4847 LIST_REMOVE(acq, chain);
4848 kmem_free(acq, sizeof(*acq));
4849 }
4850 }
4851 #endif
4852 }
4853
4854 static unsigned int key_timehandler_work_enqueued = 0;
4855
4856 /*
4857 * time handler.
4858 * scanning SPD and SAD to check status for each entries,
4859 * and do to remove or to expire.
4860 */
4861 static void
4862 key_timehandler_work(struct work *wk, void *arg)
4863 {
4864 time_t now = time_uptime;
4865 IPSEC_DECLARE_LOCK_VARIABLE;
4866
4867 /* We can allow enqueuing another work at this point */
4868 atomic_swap_uint(&key_timehandler_work_enqueued, 0);
4869
4870 IPSEC_ACQUIRE_GLOBAL_LOCKS();
4871
4872 key_timehandler_spd(now);
4873 key_timehandler_sad(now);
4874 key_timehandler_acq(now);
4875 key_timehandler_spacq(now);
4876
4877 key_acquire_sendup_pending_mbuf();
4878
4879 /* do exchange to tick time !! */
4880 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4881
4882 IPSEC_RELEASE_GLOBAL_LOCKS();
4883 return;
4884 }
4885
4886 static void
4887 key_timehandler(void *arg)
4888 {
4889
4890 /* Avoid enqueuing another work when one is already enqueued */
4891 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
4892 return;
4893
4894 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
4895 }
4896
4897 u_long
4898 key_random(void)
4899 {
4900 u_long value;
4901
4902 key_randomfill(&value, sizeof(value));
4903 return value;
4904 }
4905
4906 void
4907 key_randomfill(void *p, size_t l)
4908 {
4909
4910 cprng_fast(p, l);
4911 }
4912
4913 /*
4914 * map SADB_SATYPE_* to IPPROTO_*.
4915 * if satype == SADB_SATYPE then satype is mapped to ~0.
4916 * OUT:
4917 * 0: invalid satype.
4918 */
4919 static u_int16_t
4920 key_satype2proto(u_int8_t satype)
4921 {
4922 switch (satype) {
4923 case SADB_SATYPE_UNSPEC:
4924 return IPSEC_PROTO_ANY;
4925 case SADB_SATYPE_AH:
4926 return IPPROTO_AH;
4927 case SADB_SATYPE_ESP:
4928 return IPPROTO_ESP;
4929 case SADB_X_SATYPE_IPCOMP:
4930 return IPPROTO_IPCOMP;
4931 case SADB_X_SATYPE_TCPSIGNATURE:
4932 return IPPROTO_TCP;
4933 default:
4934 return 0;
4935 }
4936 /* NOTREACHED */
4937 }
4938
4939 /*
4940 * map IPPROTO_* to SADB_SATYPE_*
4941 * OUT:
4942 * 0: invalid protocol type.
4943 */
4944 static u_int8_t
4945 key_proto2satype(u_int16_t proto)
4946 {
4947 switch (proto) {
4948 case IPPROTO_AH:
4949 return SADB_SATYPE_AH;
4950 case IPPROTO_ESP:
4951 return SADB_SATYPE_ESP;
4952 case IPPROTO_IPCOMP:
4953 return SADB_X_SATYPE_IPCOMP;
4954 case IPPROTO_TCP:
4955 return SADB_X_SATYPE_TCPSIGNATURE;
4956 default:
4957 return 0;
4958 }
4959 /* NOTREACHED */
4960 }
4961
4962 static int
4963 key_setsecasidx(int proto, int mode, int reqid,
4964 const struct sockaddr *src, const struct sockaddr *dst,
4965 struct secasindex * saidx)
4966 {
4967 const union sockaddr_union *src_u = (const union sockaddr_union *)src;
4968 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
4969
4970 /* sa len safety check */
4971 if (key_checksalen(src_u) != 0)
4972 return -1;
4973 if (key_checksalen(dst_u) != 0)
4974 return -1;
4975
4976 memset(saidx, 0, sizeof(*saidx));
4977 saidx->proto = proto;
4978 saidx->mode = mode;
4979 saidx->reqid = reqid;
4980 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4981 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4982
4983 key_porttosaddr(&((saidx)->src), 0);
4984 key_porttosaddr(&((saidx)->dst), 0);
4985 return 0;
4986 }
4987
4988 static void
4989 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
4990 const struct sadb_msghdr *mhp)
4991 {
4992 const struct sadb_address *src0, *dst0;
4993 const struct sockaddr *src, *dst;
4994 const struct sadb_x_policy *xpl0;
4995
4996 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC];
4997 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST];
4998 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
4999 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5000 xpl0 = mhp->ext[SADB_X_EXT_POLICY];
5001
5002 memset(spidx, 0, sizeof(*spidx));
5003 spidx->dir = xpl0->sadb_x_policy_dir;
5004 spidx->prefs = src0->sadb_address_prefixlen;
5005 spidx->prefd = dst0->sadb_address_prefixlen;
5006 spidx->ul_proto = src0->sadb_address_proto;
5007 /* XXX boundary check against sa_len */
5008 memcpy(&spidx->src, src, src->sa_len);
5009 memcpy(&spidx->dst, dst, dst->sa_len);
5010 }
5011
5012 /* %%% PF_KEY */
5013 /*
5014 * SADB_GETSPI processing is to receive
5015 * <base, (SA2), src address, dst address, (SPI range)>
5016 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5017 * tree with the status of LARVAL, and send
5018 * <base, SA(*), address(SD)>
5019 * to the IKMPd.
5020 *
5021 * IN: mhp: pointer to the pointer to each header.
5022 * OUT: NULL if fail.
5023 * other if success, return pointer to the message to send.
5024 */
5025 static int
5026 key_api_getspi(struct socket *so, struct mbuf *m,
5027 const struct sadb_msghdr *mhp)
5028 {
5029 const struct sockaddr *src, *dst;
5030 struct secasindex saidx;
5031 struct secashead *sah;
5032 struct secasvar *newsav;
5033 u_int8_t proto;
5034 u_int32_t spi;
5035 u_int8_t mode;
5036 u_int16_t reqid;
5037 int error;
5038
5039 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5040 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5041 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5042 return key_senderror(so, m, EINVAL);
5043 }
5044 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5045 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5046 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5047 return key_senderror(so, m, EINVAL);
5048 }
5049 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5050 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5051 mode = sa2->sadb_x_sa2_mode;
5052 reqid = sa2->sadb_x_sa2_reqid;
5053 } else {
5054 mode = IPSEC_MODE_ANY;
5055 reqid = 0;
5056 }
5057
5058 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5059 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5060
5061 /* map satype to proto */
5062 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5063 if (proto == 0) {
5064 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5065 return key_senderror(so, m, EINVAL);
5066 }
5067
5068
5069 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5070 if (error != 0)
5071 return key_senderror(so, m, EINVAL);
5072
5073 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5074 if (error != 0)
5075 return key_senderror(so, m, EINVAL);
5076
5077 /* SPI allocation */
5078 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx);
5079 if (spi == 0)
5080 return key_senderror(so, m, EINVAL);
5081
5082 /* get a SA index */
5083 sah = key_getsah_ref(&saidx, CMP_REQID);
5084 if (sah == NULL) {
5085 /* create a new SA index */
5086 sah = key_newsah(&saidx);
5087 if (sah == NULL) {
5088 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5089 return key_senderror(so, m, ENOBUFS);
5090 }
5091 }
5092
5093 /* get a new SA */
5094 /* XXX rewrite */
5095 newsav = KEY_NEWSAV(m, mhp, &error);
5096 if (newsav == NULL) {
5097 key_sah_unref(sah);
5098 /* XXX don't free new SA index allocated in above. */
5099 return key_senderror(so, m, error);
5100 }
5101
5102 /* set spi */
5103 newsav->spi = htonl(spi);
5104
5105 /* Add to sah#savlist */
5106 key_init_sav(newsav);
5107 newsav->sah = sah;
5108 newsav->state = SADB_SASTATE_LARVAL;
5109 mutex_enter(&key_sad.lock);
5110 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5111 mutex_exit(&key_sad.lock);
5112 key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5113
5114 key_sah_unref(sah);
5115
5116 #ifndef IPSEC_NONBLOCK_ACQUIRE
5117 /* delete the entry in key_misc.acqlist */
5118 if (mhp->msg->sadb_msg_seq != 0) {
5119 struct secacq *acq;
5120 mutex_enter(&key_misc.lock);
5121 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5122 if (acq != NULL) {
5123 /* reset counter in order to deletion by timehandler. */
5124 acq->created = time_uptime;
5125 acq->count = 0;
5126 }
5127 mutex_exit(&key_misc.lock);
5128 }
5129 #endif
5130
5131 {
5132 struct mbuf *n, *nn;
5133 struct sadb_sa *m_sa;
5134 int off, len;
5135
5136 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5137 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5138
5139 /* create new sadb_msg to reply. */
5140 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5141 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5142
5143 n = key_alloc_mbuf_simple(len, M_WAITOK);
5144 n->m_len = len;
5145 n->m_next = NULL;
5146 off = 0;
5147
5148 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5149 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5150
5151 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5152 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5153 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5154 m_sa->sadb_sa_spi = htonl(spi);
5155 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5156
5157 KASSERTMSG(off == len, "length inconsistency");
5158
5159 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5160 SADB_EXT_ADDRESS_DST);
5161
5162 KASSERT(n->m_len >= sizeof(struct sadb_msg));
5163
5164 n->m_pkthdr.len = 0;
5165 for (nn = n; nn; nn = nn->m_next)
5166 n->m_pkthdr.len += nn->m_len;
5167
5168 key_fill_replymsg(n, newsav->seq);
5169 m_freem(m);
5170 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5171 }
5172 }
5173
5174 /*
5175 * allocating new SPI
5176 * called by key_api_getspi().
5177 * OUT:
5178 * 0: failure.
5179 * others: success.
5180 */
5181 static u_int32_t
5182 key_do_getnewspi(const struct sadb_spirange *spirange,
5183 const struct secasindex *saidx)
5184 {
5185 u_int32_t newspi;
5186 u_int32_t spmin, spmax;
5187 int count = key_spi_trycnt;
5188
5189 /* set spi range to allocate */
5190 if (spirange != NULL) {
5191 spmin = spirange->sadb_spirange_min;
5192 spmax = spirange->sadb_spirange_max;
5193 } else {
5194 spmin = key_spi_minval;
5195 spmax = key_spi_maxval;
5196 }
5197 /* IPCOMP needs 2-byte SPI */
5198 if (saidx->proto == IPPROTO_IPCOMP) {
5199 u_int32_t t;
5200 if (spmin >= 0x10000)
5201 spmin = 0xffff;
5202 if (spmax >= 0x10000)
5203 spmax = 0xffff;
5204 if (spmin > spmax) {
5205 t = spmin; spmin = spmax; spmax = t;
5206 }
5207 }
5208
5209 if (spmin == spmax) {
5210 if (key_checkspidup(saidx, htonl(spmin))) {
5211 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5212 return 0;
5213 }
5214
5215 count--; /* taking one cost. */
5216 newspi = spmin;
5217
5218 } else {
5219
5220 /* init SPI */
5221 newspi = 0;
5222
5223 /* when requesting to allocate spi ranged */
5224 while (count--) {
5225 /* generate pseudo-random SPI value ranged. */
5226 newspi = spmin + (key_random() % (spmax - spmin + 1));
5227
5228 if (!key_checkspidup(saidx, htonl(newspi)))
5229 break;
5230 }
5231
5232 if (count == 0 || newspi == 0) {
5233 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5234 return 0;
5235 }
5236 }
5237
5238 /* statistics */
5239 keystat.getspi_count =
5240 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5241
5242 return newspi;
5243 }
5244
5245 static int
5246 key_handle_natt_info(struct secasvar *sav,
5247 const struct sadb_msghdr *mhp)
5248 {
5249 const char *msg = "?" ;
5250 struct sadb_x_nat_t_type *type;
5251 struct sadb_x_nat_t_port *sport, *dport;
5252 struct sadb_address *iaddr, *raddr;
5253 struct sadb_x_nat_t_frag *frag;
5254
5255 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5256 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5257 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5258 return 0;
5259
5260 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5261 msg = "TYPE";
5262 goto bad;
5263 }
5264
5265 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5266 msg = "SPORT";
5267 goto bad;
5268 }
5269
5270 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5271 msg = "DPORT";
5272 goto bad;
5273 }
5274
5275 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5276 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5277 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5278 msg = "OAI";
5279 goto bad;
5280 }
5281 }
5282
5283 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5284 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5285 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5286 msg = "OAR";
5287 goto bad;
5288 }
5289 }
5290
5291 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5292 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5293 msg = "FRAG";
5294 goto bad;
5295 }
5296 }
5297
5298 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5299 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5300 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5301 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
5302 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
5303 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5304
5305 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5306 type->sadb_x_nat_t_type_type,
5307 ntohs(sport->sadb_x_nat_t_port_port),
5308 ntohs(dport->sadb_x_nat_t_port_port));
5309
5310 sav->natt_type = type->sadb_x_nat_t_type_type;
5311 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5312 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5313 if (frag)
5314 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5315 else
5316 sav->esp_frag = IP_MAXPACKET;
5317
5318 return 0;
5319 bad:
5320 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5321 __USE(msg);
5322 return -1;
5323 }
5324
5325 /* Just update the IPSEC_NAT_T ports if present */
5326 static int
5327 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5328 const struct sadb_msghdr *mhp)
5329 {
5330 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5331 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5332 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5333 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5334
5335 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5336 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5337 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5338 struct sadb_x_nat_t_type *type;
5339 struct sadb_x_nat_t_port *sport;
5340 struct sadb_x_nat_t_port *dport;
5341
5342 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5343 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5344 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5345 IPSECLOG(LOG_DEBUG, "invalid message\n");
5346 return -1;
5347 }
5348
5349 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5350 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5351 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5352
5353 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5354 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5355
5356 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5357 type->sadb_x_nat_t_type_type,
5358 ntohs(sport->sadb_x_nat_t_port_port),
5359 ntohs(dport->sadb_x_nat_t_port_port));
5360 }
5361
5362 return 0;
5363 }
5364
5365
5366 /*
5367 * SADB_UPDATE processing
5368 * receive
5369 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5370 * key(AE), (identity(SD),) (sensitivity)>
5371 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5372 * and send
5373 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5374 * (identity(SD),) (sensitivity)>
5375 * to the ikmpd.
5376 *
5377 * m will always be freed.
5378 */
5379 static int
5380 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5381 {
5382 struct sadb_sa *sa0;
5383 const struct sockaddr *src, *dst;
5384 struct secasindex saidx;
5385 struct secashead *sah;
5386 struct secasvar *sav, *newsav;
5387 u_int16_t proto;
5388 u_int8_t mode;
5389 u_int16_t reqid;
5390 int error;
5391
5392 /* map satype to proto */
5393 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5394 if (proto == 0) {
5395 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5396 return key_senderror(so, m, EINVAL);
5397 }
5398
5399 if (mhp->ext[SADB_EXT_SA] == NULL ||
5400 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5401 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5402 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5403 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5404 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5405 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5406 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5407 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5408 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5409 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5410 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5411 return key_senderror(so, m, EINVAL);
5412 }
5413 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5414 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5415 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5416 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5417 return key_senderror(so, m, EINVAL);
5418 }
5419 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5420 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5421 mode = sa2->sadb_x_sa2_mode;
5422 reqid = sa2->sadb_x_sa2_reqid;
5423 } else {
5424 mode = IPSEC_MODE_ANY;
5425 reqid = 0;
5426 }
5427 /* XXX boundary checking for other extensions */
5428
5429 sa0 = mhp->ext[SADB_EXT_SA];
5430 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5431 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5432
5433 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5434 if (error != 0)
5435 return key_senderror(so, m, EINVAL);
5436
5437 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5438 if (error != 0)
5439 return key_senderror(so, m, EINVAL);
5440
5441 /* get a SA header */
5442 sah = key_getsah_ref(&saidx, CMP_REQID);
5443 if (sah == NULL) {
5444 IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5445 return key_senderror(so, m, ENOENT);
5446 }
5447
5448 /* set spidx if there */
5449 /* XXX rewrite */
5450 error = key_setident(sah, m, mhp);
5451 if (error)
5452 goto error_sah;
5453
5454 /* find a SA with sequence number. */
5455 #ifdef IPSEC_DOSEQCHECK
5456 if (mhp->msg->sadb_msg_seq != 0) {
5457 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5458 if (sav == NULL) {
5459 IPSECLOG(LOG_DEBUG,
5460 "no larval SA with sequence %u exists.\n",
5461 mhp->msg->sadb_msg_seq);
5462 error = ENOENT;
5463 goto error_sah;
5464 }
5465 }
5466 #else
5467 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5468 if (sav == NULL) {
5469 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5470 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5471 error = EINVAL;
5472 goto error_sah;
5473 }
5474 #endif
5475
5476 /* validity check */
5477 if (sav->sah->saidx.proto != proto) {
5478 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5479 sav->sah->saidx.proto, proto);
5480 error = EINVAL;
5481 goto error;
5482 }
5483 #ifdef IPSEC_DOSEQCHECK
5484 if (sav->spi != sa0->sadb_sa_spi) {
5485 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5486 (u_int32_t)ntohl(sav->spi),
5487 (u_int32_t)ntohl(sa0->sadb_sa_spi));
5488 error = EINVAL;
5489 goto error;
5490 }
5491 #endif
5492 if (sav->pid != mhp->msg->sadb_msg_pid) {
5493 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5494 sav->pid, mhp->msg->sadb_msg_pid);
5495 error = EINVAL;
5496 goto error;
5497 }
5498
5499 /*
5500 * Allocate a new SA instead of modifying the existing SA directly
5501 * to avoid race conditions.
5502 */
5503 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5504
5505 /* copy sav values */
5506 newsav->spi = sav->spi;
5507 newsav->seq = sav->seq;
5508 newsav->created = sav->created;
5509 newsav->pid = sav->pid;
5510 newsav->sah = sav->sah;
5511
5512 error = key_setsaval(newsav, m, mhp);
5513 if (error) {
5514 key_delsav(newsav);
5515 goto error;
5516 }
5517
5518 error = key_handle_natt_info(newsav, mhp);
5519 if (error != 0) {
5520 key_delsav(newsav);
5521 goto error;
5522 }
5523
5524 error = key_init_xform(newsav);
5525 if (error != 0) {
5526 key_delsav(newsav);
5527 goto error;
5528 }
5529
5530 /* Add to sah#savlist */
5531 key_init_sav(newsav);
5532 newsav->state = SADB_SASTATE_MATURE;
5533 mutex_enter(&key_sad.lock);
5534 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5535 mutex_exit(&key_sad.lock);
5536 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5537
5538 key_sah_unref(sah);
5539 sah = NULL;
5540
5541 key_destroy_sav_with_ref(sav);
5542 sav = NULL;
5543
5544 {
5545 struct mbuf *n;
5546
5547 /* set msg buf from mhp */
5548 n = key_getmsgbuf_x1(m, mhp);
5549 if (n == NULL) {
5550 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5551 return key_senderror(so, m, ENOBUFS);
5552 }
5553
5554 m_freem(m);
5555 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5556 }
5557 error:
5558 KEY_SA_UNREF(&sav);
5559 error_sah:
5560 key_sah_unref(sah);
5561 return key_senderror(so, m, error);
5562 }
5563
5564 /*
5565 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5566 * only called by key_api_update().
5567 * OUT:
5568 * NULL : not found
5569 * others : found, pointer to a SA.
5570 */
5571 #ifdef IPSEC_DOSEQCHECK
5572 static struct secasvar *
5573 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5574 {
5575 struct secasvar *sav;
5576 u_int state;
5577 int s;
5578
5579 state = SADB_SASTATE_LARVAL;
5580
5581 /* search SAD with sequence number ? */
5582 s = pserialize_read_enter();
5583 SAVLIST_READER_FOREACH(sav, sah, state) {
5584 KEY_CHKSASTATE(state, sav->state);
5585
5586 if (sav->seq == seq) {
5587 SA_ADDREF(sav);
5588 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5589 "DP cause refcnt++:%d SA:%p\n",
5590 key_sa_refcnt(sav), sav);
5591 break;
5592 }
5593 }
5594 pserialize_read_exit(s);
5595
5596 return sav;
5597 }
5598 #endif
5599
5600 /*
5601 * SADB_ADD processing
5602 * add an entry to SA database, when received
5603 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5604 * key(AE), (identity(SD),) (sensitivity)>
5605 * from the ikmpd,
5606 * and send
5607 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5608 * (identity(SD),) (sensitivity)>
5609 * to the ikmpd.
5610 *
5611 * IGNORE identity and sensitivity messages.
5612 *
5613 * m will always be freed.
5614 */
5615 static int
5616 key_api_add(struct socket *so, struct mbuf *m,
5617 const struct sadb_msghdr *mhp)
5618 {
5619 struct sadb_sa *sa0;
5620 const struct sockaddr *src, *dst;
5621 struct secasindex saidx;
5622 struct secashead *sah;
5623 struct secasvar *newsav;
5624 u_int16_t proto;
5625 u_int8_t mode;
5626 u_int16_t reqid;
5627 int error;
5628
5629 /* map satype to proto */
5630 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5631 if (proto == 0) {
5632 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5633 return key_senderror(so, m, EINVAL);
5634 }
5635
5636 if (mhp->ext[SADB_EXT_SA] == NULL ||
5637 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5638 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5639 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5640 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5641 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5642 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5643 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5644 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5645 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5646 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5647 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5648 return key_senderror(so, m, EINVAL);
5649 }
5650 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5651 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5652 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5653 /* XXX need more */
5654 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5655 return key_senderror(so, m, EINVAL);
5656 }
5657 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5658 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5659 mode = sa2->sadb_x_sa2_mode;
5660 reqid = sa2->sadb_x_sa2_reqid;
5661 } else {
5662 mode = IPSEC_MODE_ANY;
5663 reqid = 0;
5664 }
5665
5666 sa0 = mhp->ext[SADB_EXT_SA];
5667 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5668 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5669
5670 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5671 if (error != 0)
5672 return key_senderror(so, m, EINVAL);
5673
5674 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5675 if (error != 0)
5676 return key_senderror(so, m, EINVAL);
5677
5678 /* get a SA header */
5679 sah = key_getsah_ref(&saidx, CMP_REQID);
5680 if (sah == NULL) {
5681 /* create a new SA header */
5682 sah = key_newsah(&saidx);
5683 if (sah == NULL) {
5684 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5685 return key_senderror(so, m, ENOBUFS);
5686 }
5687 }
5688
5689 /* set spidx if there */
5690 /* XXX rewrite */
5691 error = key_setident(sah, m, mhp);
5692 if (error)
5693 goto error;
5694
5695 {
5696 struct secasvar *sav;
5697
5698 /* We can create new SA only if SPI is differenct. */
5699 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5700 if (sav != NULL) {
5701 KEY_SA_UNREF(&sav);
5702 IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5703 error = EEXIST;
5704 goto error;
5705 }
5706 }
5707
5708 /* create new SA entry. */
5709 newsav = KEY_NEWSAV(m, mhp, &error);
5710 if (newsav == NULL)
5711 goto error;
5712 newsav->sah = sah;
5713
5714 error = key_handle_natt_info(newsav, mhp);
5715 if (error != 0) {
5716 key_delsav(newsav);
5717 error = EINVAL;
5718 goto error;
5719 }
5720
5721 error = key_init_xform(newsav);
5722 if (error != 0) {
5723 key_delsav(newsav);
5724 goto error;
5725 }
5726
5727 /* Add to sah#savlist */
5728 key_init_sav(newsav);
5729 newsav->state = SADB_SASTATE_MATURE;
5730 mutex_enter(&key_sad.lock);
5731 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5732 mutex_exit(&key_sad.lock);
5733 key_validate_savlist(sah, SADB_SASTATE_MATURE);
5734
5735 key_sah_unref(sah);
5736 sah = NULL;
5737
5738 /*
5739 * don't call key_freesav() here, as we would like to keep the SA
5740 * in the database on success.
5741 */
5742
5743 {
5744 struct mbuf *n;
5745
5746 /* set msg buf from mhp */
5747 n = key_getmsgbuf_x1(m, mhp);
5748 if (n == NULL) {
5749 IPSECLOG(LOG_DEBUG, "No more memory.\n");
5750 return key_senderror(so, m, ENOBUFS);
5751 }
5752
5753 m_freem(m);
5754 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5755 }
5756 error:
5757 key_sah_unref(sah);
5758 return key_senderror(so, m, error);
5759 }
5760
5761 /* m is retained */
5762 static int
5763 key_setident(struct secashead *sah, struct mbuf *m,
5764 const struct sadb_msghdr *mhp)
5765 {
5766 const struct sadb_ident *idsrc, *iddst;
5767 int idsrclen, iddstlen;
5768
5769 KASSERT(!cpu_softintr_p());
5770 KASSERT(sah != NULL);
5771 KASSERT(m != NULL);
5772 KASSERT(mhp != NULL);
5773 KASSERT(mhp->msg != NULL);
5774
5775 /*
5776 * Can be called with an existing sah from key_api_update().
5777 */
5778 if (sah->idents != NULL) {
5779 kmem_free(sah->idents, sah->idents_len);
5780 sah->idents = NULL;
5781 sah->idents_len = 0;
5782 }
5783 if (sah->identd != NULL) {
5784 kmem_free(sah->identd, sah->identd_len);
5785 sah->identd = NULL;
5786 sah->identd_len = 0;
5787 }
5788
5789 /* don't make buffer if not there */
5790 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5791 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5792 sah->idents = NULL;
5793 sah->identd = NULL;
5794 return 0;
5795 }
5796
5797 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5798 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5799 IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5800 return EINVAL;
5801 }
5802
5803 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC];
5804 iddst = mhp->ext[SADB_EXT_IDENTITY_DST];
5805 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5806 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5807
5808 /* validity check */
5809 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5810 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5811 return EINVAL;
5812 }
5813
5814 switch (idsrc->sadb_ident_type) {
5815 case SADB_IDENTTYPE_PREFIX:
5816 case SADB_IDENTTYPE_FQDN:
5817 case SADB_IDENTTYPE_USERFQDN:
5818 default:
5819 /* XXX do nothing */
5820 sah->idents = NULL;
5821 sah->identd = NULL;
5822 return 0;
5823 }
5824
5825 /* make structure */
5826 sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5827 sah->idents_len = idsrclen;
5828 sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5829 sah->identd_len = iddstlen;
5830 memcpy(sah->idents, idsrc, idsrclen);
5831 memcpy(sah->identd, iddst, iddstlen);
5832
5833 return 0;
5834 }
5835
5836 /*
5837 * m will not be freed on return. It never return NULL.
5838 * it is caller's responsibility to free the result.
5839 */
5840 static struct mbuf *
5841 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5842 {
5843 struct mbuf *n;
5844
5845 KASSERT(m != NULL);
5846 KASSERT(mhp != NULL);
5847 KASSERT(mhp->msg != NULL);
5848
5849 /* create new sadb_msg to reply. */
5850 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5851 SADB_EXT_SA, SADB_X_EXT_SA2,
5852 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5853 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5854 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5855 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5856 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5857 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5858
5859 KASSERT(n->m_len >= sizeof(struct sadb_msg));
5860
5861 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5862 mtod(n, struct sadb_msg *)->sadb_msg_len =
5863 PFKEY_UNIT64(n->m_pkthdr.len);
5864
5865 return n;
5866 }
5867
5868 static int key_delete_all (struct socket *, struct mbuf *,
5869 const struct sadb_msghdr *, u_int16_t);
5870
5871 /*
5872 * SADB_DELETE processing
5873 * receive
5874 * <base, SA(*), address(SD)>
5875 * from the ikmpd, and set SADB_SASTATE_DEAD,
5876 * and send,
5877 * <base, SA(*), address(SD)>
5878 * to the ikmpd.
5879 *
5880 * m will always be freed.
5881 */
5882 static int
5883 key_api_delete(struct socket *so, struct mbuf *m,
5884 const struct sadb_msghdr *mhp)
5885 {
5886 struct sadb_sa *sa0;
5887 const struct sockaddr *src, *dst;
5888 struct secasindex saidx;
5889 struct secashead *sah;
5890 struct secasvar *sav = NULL;
5891 u_int16_t proto;
5892 int error;
5893
5894 /* map satype to proto */
5895 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5896 if (proto == 0) {
5897 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5898 return key_senderror(so, m, EINVAL);
5899 }
5900
5901 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5902 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5903 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5904 return key_senderror(so, m, EINVAL);
5905 }
5906
5907 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5908 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5909 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5910 return key_senderror(so, m, EINVAL);
5911 }
5912
5913 if (mhp->ext[SADB_EXT_SA] == NULL) {
5914 /*
5915 * Caller wants us to delete all non-LARVAL SAs
5916 * that match the src/dst. This is used during
5917 * IKE INITIAL-CONTACT.
5918 */
5919 IPSECLOG(LOG_DEBUG, "doing delete all.\n");
5920 return key_delete_all(so, m, mhp, proto);
5921 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5922 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5923 return key_senderror(so, m, EINVAL);
5924 }
5925
5926 sa0 = mhp->ext[SADB_EXT_SA];
5927 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5928 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5929
5930 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5931 if (error != 0)
5932 return key_senderror(so, m, EINVAL);
5933
5934 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5935 if (error != 0)
5936 return key_senderror(so, m, EINVAL);
5937
5938 /* get a SA header */
5939 sah = key_getsah_ref(&saidx, CMP_HEAD);
5940 if (sah != NULL) {
5941 /* get a SA with SPI. */
5942 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5943 key_sah_unref(sah);
5944 }
5945
5946 if (sav == NULL) {
5947 IPSECLOG(LOG_DEBUG, "no SA found.\n");
5948 return key_senderror(so, m, ENOENT);
5949 }
5950
5951 key_destroy_sav_with_ref(sav);
5952 sav = NULL;
5953
5954 {
5955 struct mbuf *n;
5956
5957 /* create new sadb_msg to reply. */
5958 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5959 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5960
5961 key_fill_replymsg(n, 0);
5962 m_freem(m);
5963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5964 }
5965 }
5966
5967 /*
5968 * delete all SAs for src/dst. Called from key_api_delete().
5969 */
5970 static int
5971 key_delete_all(struct socket *so, struct mbuf *m,
5972 const struct sadb_msghdr *mhp, u_int16_t proto)
5973 {
5974 const struct sockaddr *src, *dst;
5975 struct secasindex saidx;
5976 struct secashead *sah;
5977 struct secasvar *sav;
5978 u_int state;
5979 int error;
5980
5981 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5982 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5983
5984 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
5985 if (error != 0)
5986 return key_senderror(so, m, EINVAL);
5987
5988 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5989 if (error != 0)
5990 return key_senderror(so, m, EINVAL);
5991
5992 sah = key_getsah_ref(&saidx, CMP_HEAD);
5993 if (sah != NULL) {
5994 /* Delete all non-LARVAL SAs. */
5995 SASTATE_ALIVE_FOREACH(state) {
5996 if (state == SADB_SASTATE_LARVAL)
5997 continue;
5998 restart:
5999 mutex_enter(&key_sad.lock);
6000 SAVLIST_WRITER_FOREACH(sav, sah, state) {
6001 sav->state = SADB_SASTATE_DEAD;
6002 key_unlink_sav(sav);
6003 mutex_exit(&key_sad.lock);
6004 key_destroy_sav(sav);
6005 goto restart;
6006 }
6007 mutex_exit(&key_sad.lock);
6008 }
6009 key_sah_unref(sah);
6010 }
6011 {
6012 struct mbuf *n;
6013
6014 /* create new sadb_msg to reply. */
6015 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6016 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6017
6018 key_fill_replymsg(n, 0);
6019 m_freem(m);
6020 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6021 }
6022 }
6023
6024 /*
6025 * SADB_GET processing
6026 * receive
6027 * <base, SA(*), address(SD)>
6028 * from the ikmpd, and get a SP and a SA to respond,
6029 * and send,
6030 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6031 * (identity(SD),) (sensitivity)>
6032 * to the ikmpd.
6033 *
6034 * m will always be freed.
6035 */
6036 static int
6037 key_api_get(struct socket *so, struct mbuf *m,
6038 const struct sadb_msghdr *mhp)
6039 {
6040 struct sadb_sa *sa0;
6041 const struct sockaddr *src, *dst;
6042 struct secasindex saidx;
6043 struct secasvar *sav = NULL;
6044 u_int16_t proto;
6045 int error;
6046
6047 /* map satype to proto */
6048 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6049 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6050 return key_senderror(so, m, EINVAL);
6051 }
6052
6053 if (mhp->ext[SADB_EXT_SA] == NULL ||
6054 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6055 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6056 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6057 return key_senderror(so, m, EINVAL);
6058 }
6059 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6060 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6061 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6062 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6063 return key_senderror(so, m, EINVAL);
6064 }
6065
6066 sa0 = mhp->ext[SADB_EXT_SA];
6067 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6068 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6069
6070 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6071 if (error != 0)
6072 return key_senderror(so, m, EINVAL);
6073
6074 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6075 if (error != 0)
6076 return key_senderror(so, m, EINVAL);
6077
6078 /* get a SA header */
6079 {
6080 struct secashead *sah;
6081 int s = pserialize_read_enter();
6082
6083 sah = key_getsah(&saidx, CMP_HEAD);
6084 if (sah != NULL) {
6085 /* get a SA with SPI. */
6086 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6087 }
6088 pserialize_read_exit(s);
6089 }
6090 if (sav == NULL) {
6091 IPSECLOG(LOG_DEBUG, "no SA found.\n");
6092 return key_senderror(so, m, ENOENT);
6093 }
6094
6095 {
6096 struct mbuf *n;
6097 u_int8_t satype;
6098
6099 /* map proto to satype */
6100 satype = key_proto2satype(sav->sah->saidx.proto);
6101 if (satype == 0) {
6102 KEY_SA_UNREF(&sav);
6103 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6104 return key_senderror(so, m, EINVAL);
6105 }
6106
6107 /* create new sadb_msg to reply. */
6108 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6109 mhp->msg->sadb_msg_pid);
6110 KEY_SA_UNREF(&sav);
6111 m_freem(m);
6112 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6113 }
6114 }
6115
6116 /* XXX make it sysctl-configurable? */
6117 static void
6118 key_getcomb_setlifetime(struct sadb_comb *comb)
6119 {
6120
6121 comb->sadb_comb_soft_allocations = 1;
6122 comb->sadb_comb_hard_allocations = 1;
6123 comb->sadb_comb_soft_bytes = 0;
6124 comb->sadb_comb_hard_bytes = 0;
6125 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6126 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6127 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
6128 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6129 }
6130
6131 /*
6132 * XXX reorder combinations by preference
6133 * XXX no idea if the user wants ESP authentication or not
6134 */
6135 static struct mbuf *
6136 key_getcomb_esp(int mflag)
6137 {
6138 struct sadb_comb *comb;
6139 const struct enc_xform *algo;
6140 struct mbuf *result = NULL, *m, *n;
6141 int encmin;
6142 int i, off, o;
6143 int totlen;
6144 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6145
6146 m = NULL;
6147 for (i = 1; i <= SADB_EALG_MAX; i++) {
6148 algo = esp_algorithm_lookup(i);
6149 if (algo == NULL)
6150 continue;
6151
6152 /* discard algorithms with key size smaller than system min */
6153 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6154 continue;
6155 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6156 encmin = ipsec_esp_keymin;
6157 else
6158 encmin = _BITS(algo->minkey);
6159
6160 if (ipsec_esp_auth)
6161 m = key_getcomb_ah(mflag);
6162 else {
6163 KASSERTMSG(l <= MLEN,
6164 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6165 MGET(m, mflag, MT_DATA);
6166 if (m) {
6167 M_ALIGN(m, l);
6168 m->m_len = l;
6169 m->m_next = NULL;
6170 memset(mtod(m, void *), 0, m->m_len);
6171 }
6172 }
6173 if (!m)
6174 goto fail;
6175
6176 totlen = 0;
6177 for (n = m; n; n = n->m_next)
6178 totlen += n->m_len;
6179 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6180
6181 for (off = 0; off < totlen; off += l) {
6182 n = m_pulldown(m, off, l, &o);
6183 if (!n) {
6184 /* m is already freed */
6185 goto fail;
6186 }
6187 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6188 memset(comb, 0, sizeof(*comb));
6189 key_getcomb_setlifetime(comb);
6190 comb->sadb_comb_encrypt = i;
6191 comb->sadb_comb_encrypt_minbits = encmin;
6192 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6193 }
6194
6195 if (!result)
6196 result = m;
6197 else
6198 m_cat(result, m);
6199 }
6200
6201 return result;
6202
6203 fail:
6204 if (result)
6205 m_freem(result);
6206 return NULL;
6207 }
6208
6209 static void
6210 key_getsizes_ah(const struct auth_hash *ah, int alg,
6211 u_int16_t* ksmin, u_int16_t* ksmax)
6212 {
6213 *ksmin = *ksmax = ah->keysize;
6214 if (ah->keysize == 0) {
6215 /*
6216 * Transform takes arbitrary key size but algorithm
6217 * key size is restricted. Enforce this here.
6218 */
6219 switch (alg) {
6220 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6221 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6222 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
6223 default:
6224 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6225 break;
6226 }
6227 }
6228 }
6229
6230 /*
6231 * XXX reorder combinations by preference
6232 */
6233 static struct mbuf *
6234 key_getcomb_ah(int mflag)
6235 {
6236 struct sadb_comb *comb;
6237 const struct auth_hash *algo;
6238 struct mbuf *m;
6239 u_int16_t minkeysize, maxkeysize;
6240 int i;
6241 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6242
6243 m = NULL;
6244 for (i = 1; i <= SADB_AALG_MAX; i++) {
6245 #if 1
6246 /* we prefer HMAC algorithms, not old algorithms */
6247 if (i != SADB_AALG_SHA1HMAC &&
6248 i != SADB_AALG_MD5HMAC &&
6249 i != SADB_X_AALG_SHA2_256 &&
6250 i != SADB_X_AALG_SHA2_384 &&
6251 i != SADB_X_AALG_SHA2_512)
6252 continue;
6253 #endif
6254 algo = ah_algorithm_lookup(i);
6255 if (!algo)
6256 continue;
6257 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6258 /* discard algorithms with key size smaller than system min */
6259 if (_BITS(minkeysize) < ipsec_ah_keymin)
6260 continue;
6261
6262 if (!m) {
6263 KASSERTMSG(l <= MLEN,
6264 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6265 MGET(m, mflag, MT_DATA);
6266 if (m) {
6267 M_ALIGN(m, l);
6268 m->m_len = l;
6269 m->m_next = NULL;
6270 }
6271 } else
6272 M_PREPEND(m, l, mflag);
6273 if (!m)
6274 return NULL;
6275
6276 if (m->m_len < sizeof(struct sadb_comb)) {
6277 m = m_pullup(m, sizeof(struct sadb_comb));
6278 if (m == NULL)
6279 return NULL;
6280 }
6281
6282 comb = mtod(m, struct sadb_comb *);
6283 memset(comb, 0, sizeof(*comb));
6284 key_getcomb_setlifetime(comb);
6285 comb->sadb_comb_auth = i;
6286 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6287 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6288 }
6289
6290 return m;
6291 }
6292
6293 /*
6294 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6295 * XXX reorder combinations by preference
6296 */
6297 static struct mbuf *
6298 key_getcomb_ipcomp(int mflag)
6299 {
6300 struct sadb_comb *comb;
6301 const struct comp_algo *algo;
6302 struct mbuf *m;
6303 int i;
6304 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6305
6306 m = NULL;
6307 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6308 algo = ipcomp_algorithm_lookup(i);
6309 if (!algo)
6310 continue;
6311
6312 if (!m) {
6313 KASSERTMSG(l <= MLEN,
6314 "l=%u > MLEN=%lu", l, (u_long) MLEN);
6315 MGET(m, mflag, MT_DATA);
6316 if (m) {
6317 M_ALIGN(m, l);
6318 m->m_len = l;
6319 m->m_next = NULL;
6320 }
6321 } else
6322 M_PREPEND(m, l, mflag);
6323 if (!m)
6324 return NULL;
6325
6326 if (m->m_len < sizeof(struct sadb_comb)) {
6327 m = m_pullup(m, sizeof(struct sadb_comb));
6328 if (m == NULL)
6329 return NULL;
6330 }
6331
6332 comb = mtod(m, struct sadb_comb *);
6333 memset(comb, 0, sizeof(*comb));
6334 key_getcomb_setlifetime(comb);
6335 comb->sadb_comb_encrypt = i;
6336 /* what should we set into sadb_comb_*_{min,max}bits? */
6337 }
6338
6339 return m;
6340 }
6341
6342 /*
6343 * XXX no way to pass mode (transport/tunnel) to userland
6344 * XXX replay checking?
6345 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6346 */
6347 static struct mbuf *
6348 key_getprop(const struct secasindex *saidx, int mflag)
6349 {
6350 struct sadb_prop *prop;
6351 struct mbuf *m, *n;
6352 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6353 int totlen;
6354
6355 switch (saidx->proto) {
6356 case IPPROTO_ESP:
6357 m = key_getcomb_esp(mflag);
6358 break;
6359 case IPPROTO_AH:
6360 m = key_getcomb_ah(mflag);
6361 break;
6362 case IPPROTO_IPCOMP:
6363 m = key_getcomb_ipcomp(mflag);
6364 break;
6365 default:
6366 return NULL;
6367 }
6368
6369 if (!m)
6370 return NULL;
6371 M_PREPEND(m, l, mflag);
6372 if (!m)
6373 return NULL;
6374
6375 totlen = 0;
6376 for (n = m; n; n = n->m_next)
6377 totlen += n->m_len;
6378
6379 prop = mtod(m, struct sadb_prop *);
6380 memset(prop, 0, sizeof(*prop));
6381 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6382 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6383 prop->sadb_prop_replay = 32; /* XXX */
6384
6385 return m;
6386 }
6387
6388 /*
6389 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6390 * send
6391 * <base, SA, address(SD), (address(P)), x_policy,
6392 * (identity(SD),) (sensitivity,) proposal>
6393 * to KMD, and expect to receive
6394 * <base> with SADB_ACQUIRE if error occurred,
6395 * or
6396 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6397 * from KMD by PF_KEY.
6398 *
6399 * XXX x_policy is outside of RFC2367 (KAME extension).
6400 * XXX sensitivity is not supported.
6401 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6402 * see comment for key_getcomb_ipcomp().
6403 *
6404 * OUT:
6405 * 0 : succeed
6406 * others: error number
6407 */
6408 static int
6409 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag)
6410 {
6411 struct mbuf *result = NULL, *m;
6412 #ifndef IPSEC_NONBLOCK_ACQUIRE
6413 struct secacq *newacq;
6414 #endif
6415 u_int8_t satype;
6416 int error = -1;
6417 u_int32_t seq;
6418
6419 /* sanity check */
6420 KASSERT(saidx != NULL);
6421 satype = key_proto2satype(saidx->proto);
6422 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6423
6424 #ifndef IPSEC_NONBLOCK_ACQUIRE
6425 /*
6426 * We never do anything about acquirng SA. There is anather
6427 * solution that kernel blocks to send SADB_ACQUIRE message until
6428 * getting something message from IKEd. In later case, to be
6429 * managed with ACQUIRING list.
6430 */
6431 /* Get an entry to check whether sending message or not. */
6432 mutex_enter(&key_misc.lock);
6433 newacq = key_getacq(saidx);
6434 if (newacq != NULL) {
6435 if (key_blockacq_count < newacq->count) {
6436 /* reset counter and do send message. */
6437 newacq->count = 0;
6438 } else {
6439 /* increment counter and do nothing. */
6440 newacq->count++;
6441 mutex_exit(&key_misc.lock);
6442 return 0;
6443 }
6444 } else {
6445 /* make new entry for blocking to send SADB_ACQUIRE. */
6446 newacq = key_newacq(saidx);
6447 if (newacq == NULL) {
6448 mutex_exit(&key_misc.lock);
6449 return ENOBUFS;
6450 }
6451
6452 /* add to key_misc.acqlist */
6453 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6454 }
6455
6456 seq = newacq->seq;
6457 mutex_exit(&key_misc.lock);
6458 #else
6459 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6460 #endif
6461 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag);
6462 if (!m) {
6463 error = ENOBUFS;
6464 goto fail;
6465 }
6466 result = m;
6467
6468 /* set sadb_address for saidx's. */
6469 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6470 IPSEC_ULPROTO_ANY, mflag);
6471 if (!m) {
6472 error = ENOBUFS;
6473 goto fail;
6474 }
6475 m_cat(result, m);
6476
6477 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6478 IPSEC_ULPROTO_ANY, mflag);
6479 if (!m) {
6480 error = ENOBUFS;
6481 goto fail;
6482 }
6483 m_cat(result, m);
6484
6485 /* XXX proxy address (optional) */
6486
6487 /* set sadb_x_policy */
6488 if (sp) {
6489 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
6490 mflag);
6491 if (!m) {
6492 error = ENOBUFS;
6493 goto fail;
6494 }
6495 m_cat(result, m);
6496 }
6497
6498 /* XXX identity (optional) */
6499 #if 0
6500 if (idexttype && fqdn) {
6501 /* create identity extension (FQDN) */
6502 struct sadb_ident *id;
6503 int fqdnlen;
6504
6505 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6506 id = (struct sadb_ident *)p;
6507 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6508 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6509 id->sadb_ident_exttype = idexttype;
6510 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6511 memcpy(id + 1, fqdn, fqdnlen);
6512 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6513 }
6514
6515 if (idexttype) {
6516 /* create identity extension (USERFQDN) */
6517 struct sadb_ident *id;
6518 int userfqdnlen;
6519
6520 if (userfqdn) {
6521 /* +1 for terminating-NUL */
6522 userfqdnlen = strlen(userfqdn) + 1;
6523 } else
6524 userfqdnlen = 0;
6525 id = (struct sadb_ident *)p;
6526 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6527 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6528 id->sadb_ident_exttype = idexttype;
6529 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6530 /* XXX is it correct? */
6531 if (curlwp)
6532 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6533 if (userfqdn && userfqdnlen)
6534 memcpy(id + 1, userfqdn, userfqdnlen);
6535 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6536 }
6537 #endif
6538
6539 /* XXX sensitivity (optional) */
6540
6541 /* create proposal/combination extension */
6542 m = key_getprop(saidx, mflag);
6543 #if 0
6544 /*
6545 * spec conformant: always attach proposal/combination extension,
6546 * the problem is that we have no way to attach it for ipcomp,
6547 * due to the way sadb_comb is declared in RFC2367.
6548 */
6549 if (!m) {
6550 error = ENOBUFS;
6551 goto fail;
6552 }
6553 m_cat(result, m);
6554 #else
6555 /*
6556 * outside of spec; make proposal/combination extension optional.
6557 */
6558 if (m)
6559 m_cat(result, m);
6560 #endif
6561
6562 KASSERT(result->m_flags & M_PKTHDR);
6563 KASSERT(result->m_len >= sizeof(struct sadb_msg));
6564
6565 result->m_pkthdr.len = 0;
6566 for (m = result; m; m = m->m_next)
6567 result->m_pkthdr.len += m->m_len;
6568
6569 mtod(result, struct sadb_msg *)->sadb_msg_len =
6570 PFKEY_UNIT64(result->m_pkthdr.len);
6571
6572 /*
6573 * Called from key_api_acquire that must come from userland, so
6574 * we can call key_sendup_mbuf immediately.
6575 */
6576 if (mflag == M_WAITOK)
6577 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6578 /*
6579 * XXX we cannot call key_sendup_mbuf directly here because
6580 * it can cause a deadlock:
6581 * - We have a reference to an SP (and an SA) here
6582 * - key_sendup_mbuf will try to take key_so_mtx
6583 * - Some other thread may try to localcount_drain to the SP with
6584 * holding key_so_mtx in say key_api_spdflush
6585 * - In this case localcount_drain never return because key_sendup_mbuf
6586 * that has stuck on key_so_mtx never release a reference to the SP
6587 *
6588 * So defer key_sendup_mbuf to the timer.
6589 */
6590 return key_acquire_sendup_mbuf_later(result);
6591
6592 fail:
6593 if (result)
6594 m_freem(result);
6595 return error;
6596 }
6597
6598 static struct mbuf *key_acquire_mbuf_head = NULL;
6599 static unsigned key_acquire_mbuf_count = 0;
6600 #define KEY_ACQUIRE_MBUF_MAX 10
6601
6602 static void
6603 key_acquire_sendup_pending_mbuf(void)
6604 {
6605 struct mbuf *m, *prev;
6606 int error;
6607
6608 again:
6609 prev = NULL;
6610 mutex_enter(&key_misc.lock);
6611 m = key_acquire_mbuf_head;
6612 /* Get an earliest mbuf (one at the tail of the list) */
6613 while (m != NULL) {
6614 if (m->m_nextpkt == NULL) {
6615 if (prev != NULL)
6616 prev->m_nextpkt = NULL;
6617 if (m == key_acquire_mbuf_head)
6618 key_acquire_mbuf_head = NULL;
6619 key_acquire_mbuf_count--;
6620 break;
6621 }
6622 prev = m;
6623 m = m->m_nextpkt;
6624 }
6625 mutex_exit(&key_misc.lock);
6626
6627 if (m == NULL)
6628 return;
6629
6630 m->m_nextpkt = NULL;
6631 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
6632 if (error != 0)
6633 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
6634 error);
6635
6636 if (prev != NULL)
6637 goto again;
6638 }
6639
6640 static int
6641 key_acquire_sendup_mbuf_later(struct mbuf *m)
6642 {
6643
6644 mutex_enter(&key_misc.lock);
6645 /* Avoid queuing too much mbufs */
6646 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
6647 mutex_exit(&key_misc.lock);
6648 m_freem(m);
6649 return ENOBUFS; /* XXX */
6650 }
6651 /* Enqueue mbuf at the head of the list */
6652 m->m_nextpkt = key_acquire_mbuf_head;
6653 key_acquire_mbuf_head = m;
6654 key_acquire_mbuf_count++;
6655 mutex_exit(&key_misc.lock);
6656
6657 /* Kick the timer */
6658 key_timehandler(NULL);
6659
6660 return 0;
6661 }
6662
6663 #ifndef IPSEC_NONBLOCK_ACQUIRE
6664 static struct secacq *
6665 key_newacq(const struct secasindex *saidx)
6666 {
6667 struct secacq *newacq;
6668
6669 /* get new entry */
6670 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6671 if (newacq == NULL) {
6672 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6673 return NULL;
6674 }
6675
6676 /* copy secindex */
6677 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6678 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6679 newacq->created = time_uptime;
6680 newacq->count = 0;
6681
6682 return newacq;
6683 }
6684
6685 static struct secacq *
6686 key_getacq(const struct secasindex *saidx)
6687 {
6688 struct secacq *acq;
6689
6690 KASSERT(mutex_owned(&key_misc.lock));
6691
6692 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6693 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6694 return acq;
6695 }
6696
6697 return NULL;
6698 }
6699
6700 static struct secacq *
6701 key_getacqbyseq(u_int32_t seq)
6702 {
6703 struct secacq *acq;
6704
6705 KASSERT(mutex_owned(&key_misc.lock));
6706
6707 LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6708 if (acq->seq == seq)
6709 return acq;
6710 }
6711
6712 return NULL;
6713 }
6714 #endif
6715
6716 #ifdef notyet
6717 static struct secspacq *
6718 key_newspacq(const struct secpolicyindex *spidx)
6719 {
6720 struct secspacq *acq;
6721
6722 /* get new entry */
6723 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6724 if (acq == NULL) {
6725 IPSECLOG(LOG_DEBUG, "No more memory.\n");
6726 return NULL;
6727 }
6728
6729 /* copy secindex */
6730 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6731 acq->created = time_uptime;
6732 acq->count = 0;
6733
6734 return acq;
6735 }
6736
6737 static struct secspacq *
6738 key_getspacq(const struct secpolicyindex *spidx)
6739 {
6740 struct secspacq *acq;
6741
6742 LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6743 if (key_spidx_match_exactly(spidx, &acq->spidx))
6744 return acq;
6745 }
6746
6747 return NULL;
6748 }
6749 #endif /* notyet */
6750
6751 /*
6752 * SADB_ACQUIRE processing,
6753 * in first situation, is receiving
6754 * <base>
6755 * from the ikmpd, and clear sequence of its secasvar entry.
6756 *
6757 * In second situation, is receiving
6758 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6759 * from a user land process, and return
6760 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6761 * to the socket.
6762 *
6763 * m will always be freed.
6764 */
6765 static int
6766 key_api_acquire(struct socket *so, struct mbuf *m,
6767 const struct sadb_msghdr *mhp)
6768 {
6769 const struct sockaddr *src, *dst;
6770 struct secasindex saidx;
6771 u_int16_t proto;
6772 int error;
6773
6774 /*
6775 * Error message from KMd.
6776 * We assume that if error was occurred in IKEd, the length of PFKEY
6777 * message is equal to the size of sadb_msg structure.
6778 * We do not raise error even if error occurred in this function.
6779 */
6780 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6781 #ifndef IPSEC_NONBLOCK_ACQUIRE
6782 struct secacq *acq;
6783
6784 /* check sequence number */
6785 if (mhp->msg->sadb_msg_seq == 0) {
6786 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6787 m_freem(m);
6788 return 0;
6789 }
6790
6791 mutex_enter(&key_misc.lock);
6792 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6793 if (acq == NULL) {
6794 mutex_exit(&key_misc.lock);
6795 /*
6796 * the specified larval SA is already gone, or we got
6797 * a bogus sequence number. we can silently ignore it.
6798 */
6799 m_freem(m);
6800 return 0;
6801 }
6802
6803 /* reset acq counter in order to deletion by timehander. */
6804 acq->created = time_uptime;
6805 acq->count = 0;
6806 mutex_exit(&key_misc.lock);
6807 #endif
6808 m_freem(m);
6809 return 0;
6810 }
6811
6812 /*
6813 * This message is from user land.
6814 */
6815
6816 /* map satype to proto */
6817 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6818 if (proto == 0) {
6819 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6820 return key_senderror(so, m, EINVAL);
6821 }
6822
6823 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6824 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6825 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6826 /* error */
6827 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6828 return key_senderror(so, m, EINVAL);
6829 }
6830 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6831 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6832 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6833 /* error */
6834 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6835 return key_senderror(so, m, EINVAL);
6836 }
6837
6838 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6839 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6840
6841 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6842 if (error != 0)
6843 return key_senderror(so, m, EINVAL);
6844
6845 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6846 if (error != 0)
6847 return key_senderror(so, m, EINVAL);
6848
6849 /* get a SA index */
6850 {
6851 struct secashead *sah;
6852 int s = pserialize_read_enter();
6853
6854 sah = key_getsah(&saidx, CMP_MODE_REQID);
6855 if (sah != NULL) {
6856 pserialize_read_exit(s);
6857 IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
6858 return key_senderror(so, m, EEXIST);
6859 }
6860 pserialize_read_exit(s);
6861 }
6862
6863 error = key_acquire(&saidx, NULL, M_WAITOK);
6864 if (error != 0) {
6865 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
6866 error);
6867 return key_senderror(so, m, error);
6868 }
6869
6870 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6871 }
6872
6873 /*
6874 * SADB_REGISTER processing.
6875 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6876 * receive
6877 * <base>
6878 * from the ikmpd, and register a socket to send PF_KEY messages,
6879 * and send
6880 * <base, supported>
6881 * to KMD by PF_KEY.
6882 * If socket is detached, must free from regnode.
6883 *
6884 * m will always be freed.
6885 */
6886 static int
6887 key_api_register(struct socket *so, struct mbuf *m,
6888 const struct sadb_msghdr *mhp)
6889 {
6890 struct secreg *reg, *newreg = 0;
6891
6892 /* check for invalid register message */
6893 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
6894 return key_senderror(so, m, EINVAL);
6895
6896 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6897 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6898 goto setmsg;
6899
6900 /* Allocate regnode in advance, out of mutex */
6901 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
6902
6903 /* check whether existing or not */
6904 mutex_enter(&key_misc.lock);
6905 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
6906 if (reg->so == so) {
6907 IPSECLOG(LOG_DEBUG, "socket exists already.\n");
6908 mutex_exit(&key_misc.lock);
6909 kmem_free(newreg, sizeof(*newreg));
6910 return key_senderror(so, m, EEXIST);
6911 }
6912 }
6913
6914 newreg->so = so;
6915 ((struct keycb *)sotorawcb(so))->kp_registered++;
6916
6917 /* add regnode to key_misc.reglist. */
6918 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
6919 mutex_exit(&key_misc.lock);
6920
6921 setmsg:
6922 {
6923 struct mbuf *n;
6924 struct sadb_supported *sup;
6925 u_int len, alen, elen;
6926 int off;
6927 int i;
6928 struct sadb_alg *alg;
6929
6930 /* create new sadb_msg to reply. */
6931 alen = 0;
6932 for (i = 1; i <= SADB_AALG_MAX; i++) {
6933 if (ah_algorithm_lookup(i))
6934 alen += sizeof(struct sadb_alg);
6935 }
6936 if (alen)
6937 alen += sizeof(struct sadb_supported);
6938 elen = 0;
6939 for (i = 1; i <= SADB_EALG_MAX; i++) {
6940 if (esp_algorithm_lookup(i))
6941 elen += sizeof(struct sadb_alg);
6942 }
6943 if (elen)
6944 elen += sizeof(struct sadb_supported);
6945
6946 len = sizeof(struct sadb_msg) + alen + elen;
6947
6948 if (len > MCLBYTES)
6949 return key_senderror(so, m, ENOBUFS);
6950
6951 n = key_alloc_mbuf_simple(len, M_WAITOK);
6952 n->m_pkthdr.len = n->m_len = len;
6953 n->m_next = NULL;
6954 off = 0;
6955
6956 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6957 key_fill_replymsg(n, 0);
6958
6959 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6960
6961 /* for authentication algorithm */
6962 if (alen) {
6963 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6964 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6965 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6966 off += PFKEY_ALIGN8(sizeof(*sup));
6967
6968 for (i = 1; i <= SADB_AALG_MAX; i++) {
6969 const struct auth_hash *aalgo;
6970 u_int16_t minkeysize, maxkeysize;
6971
6972 aalgo = ah_algorithm_lookup(i);
6973 if (!aalgo)
6974 continue;
6975 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6976 alg->sadb_alg_id = i;
6977 alg->sadb_alg_ivlen = 0;
6978 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6979 alg->sadb_alg_minbits = _BITS(minkeysize);
6980 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6981 off += PFKEY_ALIGN8(sizeof(*alg));
6982 }
6983 }
6984
6985 /* for encryption algorithm */
6986 if (elen) {
6987 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6988 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6989 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6990 off += PFKEY_ALIGN8(sizeof(*sup));
6991
6992 for (i = 1; i <= SADB_EALG_MAX; i++) {
6993 const struct enc_xform *ealgo;
6994
6995 ealgo = esp_algorithm_lookup(i);
6996 if (!ealgo)
6997 continue;
6998 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6999 alg->sadb_alg_id = i;
7000 alg->sadb_alg_ivlen = ealgo->blocksize;
7001 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7002 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7003 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7004 }
7005 }
7006
7007 KASSERTMSG(off == len, "length inconsistency");
7008
7009 m_freem(m);
7010 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7011 }
7012 }
7013
7014 /*
7015 * free secreg entry registered.
7016 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7017 */
7018 void
7019 key_freereg(struct socket *so)
7020 {
7021 struct secreg *reg;
7022 int i;
7023
7024 KASSERT(!cpu_softintr_p());
7025 KASSERT(so != NULL);
7026
7027 /*
7028 * check whether existing or not.
7029 * check all type of SA, because there is a potential that
7030 * one socket is registered to multiple type of SA.
7031 */
7032 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7033 mutex_enter(&key_misc.lock);
7034 LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7035 if (reg->so == so) {
7036 LIST_REMOVE(reg, chain);
7037 break;
7038 }
7039 }
7040 mutex_exit(&key_misc.lock);
7041 if (reg != NULL)
7042 kmem_free(reg, sizeof(*reg));
7043 }
7044
7045 return;
7046 }
7047
7048 /*
7049 * SADB_EXPIRE processing
7050 * send
7051 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7052 * to KMD by PF_KEY.
7053 * NOTE: We send only soft lifetime extension.
7054 *
7055 * OUT: 0 : succeed
7056 * others : error number
7057 */
7058 static int
7059 key_expire(struct secasvar *sav)
7060 {
7061 int s;
7062 int satype;
7063 struct mbuf *result = NULL, *m;
7064 int len;
7065 int error = -1;
7066 struct sadb_lifetime *lt;
7067
7068 /* XXX: Why do we lock ? */
7069 s = splsoftnet(); /*called from softclock()*/
7070
7071 KASSERT(sav != NULL);
7072
7073 satype = key_proto2satype(sav->sah->saidx.proto);
7074 KASSERTMSG(satype != 0, "invalid proto is passed");
7075
7076 /* set msg header */
7077 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav),
7078 M_WAITOK);
7079 result = m;
7080
7081 /* create SA extension */
7082 m = key_setsadbsa(sav);
7083 m_cat(result, m);
7084
7085 /* create SA extension */
7086 m = key_setsadbxsa2(sav->sah->saidx.mode,
7087 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7088 m_cat(result, m);
7089
7090 /* create lifetime extension (current and soft) */
7091 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7092 m = key_alloc_mbuf(len, M_WAITOK);
7093 KASSERT(m->m_next == NULL);
7094
7095 memset(mtod(m, void *), 0, len);
7096 lt = mtod(m, struct sadb_lifetime *);
7097 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7098 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7099 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7100 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7101 lt->sadb_lifetime_addtime =
7102 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7103 lt->sadb_lifetime_usetime =
7104 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7105 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7106 memcpy(lt, sav->lft_s, sizeof(*lt));
7107 m_cat(result, m);
7108
7109 /* set sadb_address for source */
7110 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7111 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
7112 m_cat(result, m);
7113
7114 /* set sadb_address for destination */
7115 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7116 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
7117 m_cat(result, m);
7118
7119 if ((result->m_flags & M_PKTHDR) == 0) {
7120 error = EINVAL;
7121 goto fail;
7122 }
7123
7124 if (result->m_len < sizeof(struct sadb_msg)) {
7125 result = m_pullup(result, sizeof(struct sadb_msg));
7126 if (result == NULL) {
7127 error = ENOBUFS;
7128 goto fail;
7129 }
7130 }
7131
7132 result->m_pkthdr.len = 0;
7133 for (m = result; m; m = m->m_next)
7134 result->m_pkthdr.len += m->m_len;
7135
7136 mtod(result, struct sadb_msg *)->sadb_msg_len =
7137 PFKEY_UNIT64(result->m_pkthdr.len);
7138
7139 splx(s);
7140 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7141
7142 fail:
7143 if (result)
7144 m_freem(result);
7145 splx(s);
7146 return error;
7147 }
7148
7149 /*
7150 * SADB_FLUSH processing
7151 * receive
7152 * <base>
7153 * from the ikmpd, and free all entries in secastree.
7154 * and send,
7155 * <base>
7156 * to the ikmpd.
7157 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7158 *
7159 * m will always be freed.
7160 */
7161 static int
7162 key_api_flush(struct socket *so, struct mbuf *m,
7163 const struct sadb_msghdr *mhp)
7164 {
7165 struct sadb_msg *newmsg;
7166 struct secashead *sah;
7167 struct secasvar *sav;
7168 u_int16_t proto;
7169 u_int8_t state;
7170 int s;
7171
7172 /* map satype to proto */
7173 proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7174 if (proto == 0) {
7175 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7176 return key_senderror(so, m, EINVAL);
7177 }
7178
7179 /* no SATYPE specified, i.e. flushing all SA. */
7180 s = pserialize_read_enter();
7181 SAHLIST_READER_FOREACH(sah) {
7182 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7183 proto != sah->saidx.proto)
7184 continue;
7185
7186 key_sah_ref(sah);
7187 pserialize_read_exit(s);
7188
7189 SASTATE_ALIVE_FOREACH(state) {
7190 restart:
7191 mutex_enter(&key_sad.lock);
7192 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7193 sav->state = SADB_SASTATE_DEAD;
7194 key_unlink_sav(sav);
7195 mutex_exit(&key_sad.lock);
7196 key_destroy_sav(sav);
7197 goto restart;
7198 }
7199 mutex_exit(&key_sad.lock);
7200 }
7201
7202 s = pserialize_read_enter();
7203 sah->state = SADB_SASTATE_DEAD;
7204 key_sah_unref(sah);
7205 }
7206 pserialize_read_exit(s);
7207
7208 if (m->m_len < sizeof(struct sadb_msg) ||
7209 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7210 IPSECLOG(LOG_DEBUG, "No more memory.\n");
7211 return key_senderror(so, m, ENOBUFS);
7212 }
7213
7214 if (m->m_next)
7215 m_freem(m->m_next);
7216 m->m_next = NULL;
7217 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7218 newmsg = mtod(m, struct sadb_msg *);
7219 newmsg->sadb_msg_errno = 0;
7220 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7221
7222 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7223 }
7224
7225
7226 static struct mbuf *
7227 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7228 {
7229 struct secashead *sah;
7230 struct secasvar *sav;
7231 u_int16_t proto;
7232 u_int8_t satype;
7233 u_int8_t state;
7234 int cnt;
7235 struct mbuf *m, *n, *prev;
7236
7237 KASSERT(mutex_owned(&key_sad.lock));
7238
7239 *lenp = 0;
7240
7241 /* map satype to proto */
7242 proto = key_satype2proto(req_satype);
7243 if (proto == 0) {
7244 *errorp = EINVAL;
7245 return (NULL);
7246 }
7247
7248 /* count sav entries to be sent to userland. */
7249 cnt = 0;
7250 SAHLIST_WRITER_FOREACH(sah) {
7251 if (req_satype != SADB_SATYPE_UNSPEC &&
7252 proto != sah->saidx.proto)
7253 continue;
7254
7255 SASTATE_ANY_FOREACH(state) {
7256 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7257 cnt++;
7258 }
7259 }
7260 }
7261
7262 if (cnt == 0) {
7263 *errorp = ENOENT;
7264 return (NULL);
7265 }
7266
7267 /* send this to the userland, one at a time. */
7268 m = NULL;
7269 prev = m;
7270 SAHLIST_WRITER_FOREACH(sah) {
7271 if (req_satype != SADB_SATYPE_UNSPEC &&
7272 proto != sah->saidx.proto)
7273 continue;
7274
7275 /* map proto to satype */
7276 satype = key_proto2satype(sah->saidx.proto);
7277 if (satype == 0) {
7278 m_freem(m);
7279 *errorp = EINVAL;
7280 return (NULL);
7281 }
7282
7283 SASTATE_ANY_FOREACH(state) {
7284 SAVLIST_WRITER_FOREACH(sav, sah, state) {
7285 n = key_setdumpsa(sav, SADB_DUMP, satype,
7286 --cnt, pid);
7287 if (!m)
7288 m = n;
7289 else
7290 prev->m_nextpkt = n;
7291 prev = n;
7292 }
7293 }
7294 }
7295
7296 if (!m) {
7297 *errorp = EINVAL;
7298 return (NULL);
7299 }
7300
7301 if ((m->m_flags & M_PKTHDR) != 0) {
7302 m->m_pkthdr.len = 0;
7303 for (n = m; n; n = n->m_next)
7304 m->m_pkthdr.len += n->m_len;
7305 }
7306
7307 *errorp = 0;
7308 return (m);
7309 }
7310
7311 /*
7312 * SADB_DUMP processing
7313 * dump all entries including status of DEAD in SAD.
7314 * receive
7315 * <base>
7316 * from the ikmpd, and dump all secasvar leaves
7317 * and send,
7318 * <base> .....
7319 * to the ikmpd.
7320 *
7321 * m will always be freed.
7322 */
7323 static int
7324 key_api_dump(struct socket *so, struct mbuf *m0,
7325 const struct sadb_msghdr *mhp)
7326 {
7327 u_int16_t proto;
7328 u_int8_t satype;
7329 struct mbuf *n;
7330 int error, len, ok;
7331
7332 /* map satype to proto */
7333 satype = mhp->msg->sadb_msg_satype;
7334 proto = key_satype2proto(satype);
7335 if (proto == 0) {
7336 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7337 return key_senderror(so, m0, EINVAL);
7338 }
7339
7340 /*
7341 * If the requestor has insufficient socket-buffer space
7342 * for the entire chain, nobody gets any response to the DUMP.
7343 * XXX For now, only the requestor ever gets anything.
7344 * Moreover, if the requestor has any space at all, they receive
7345 * the entire chain, otherwise the request is refused with ENOBUFS.
7346 */
7347 if (sbspace(&so->so_rcv) <= 0) {
7348 return key_senderror(so, m0, ENOBUFS);
7349 }
7350
7351 mutex_enter(&key_sad.lock);
7352 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7353 mutex_exit(&key_sad.lock);
7354
7355 if (n == NULL) {
7356 return key_senderror(so, m0, ENOENT);
7357 }
7358 {
7359 uint64_t *ps = PFKEY_STAT_GETREF();
7360 ps[PFKEY_STAT_IN_TOTAL]++;
7361 ps[PFKEY_STAT_IN_BYTES] += len;
7362 PFKEY_STAT_PUTREF();
7363 }
7364
7365 /*
7366 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7367 * The requestor receives either the entire chain, or an
7368 * error message with ENOBUFS.
7369 *
7370 * sbappendaddrchain() takes the chain of entries, one
7371 * packet-record per SPD entry, prepends the key_src sockaddr
7372 * to each packet-record, links the sockaddr mbufs into a new
7373 * list of records, then appends the entire resulting
7374 * list to the requesting socket.
7375 */
7376 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7377 SB_PRIO_ONESHOT_OVERFLOW);
7378
7379 if (!ok) {
7380 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7381 m_freem(n);
7382 return key_senderror(so, m0, ENOBUFS);
7383 }
7384
7385 m_freem(m0);
7386 return 0;
7387 }
7388
7389 /*
7390 * SADB_X_PROMISC processing
7391 *
7392 * m will always be freed.
7393 */
7394 static int
7395 key_api_promisc(struct socket *so, struct mbuf *m,
7396 const struct sadb_msghdr *mhp)
7397 {
7398 int olen;
7399
7400 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7401
7402 if (olen < sizeof(struct sadb_msg)) {
7403 #if 1
7404 return key_senderror(so, m, EINVAL);
7405 #else
7406 m_freem(m);
7407 return 0;
7408 #endif
7409 } else if (olen == sizeof(struct sadb_msg)) {
7410 /* enable/disable promisc mode */
7411 struct keycb *kp = (struct keycb *)sotorawcb(so);
7412 if (kp == NULL)
7413 return key_senderror(so, m, EINVAL);
7414 mhp->msg->sadb_msg_errno = 0;
7415 switch (mhp->msg->sadb_msg_satype) {
7416 case 0:
7417 case 1:
7418 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7419 break;
7420 default:
7421 return key_senderror(so, m, EINVAL);
7422 }
7423
7424 /* send the original message back to everyone */
7425 mhp->msg->sadb_msg_errno = 0;
7426 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7427 } else {
7428 /* send packet as is */
7429
7430 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7431
7432 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7433 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7434 }
7435 }
7436
7437 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7438 const struct sadb_msghdr *) = {
7439 NULL, /* SADB_RESERVED */
7440 key_api_getspi, /* SADB_GETSPI */
7441 key_api_update, /* SADB_UPDATE */
7442 key_api_add, /* SADB_ADD */
7443 key_api_delete, /* SADB_DELETE */
7444 key_api_get, /* SADB_GET */
7445 key_api_acquire, /* SADB_ACQUIRE */
7446 key_api_register, /* SADB_REGISTER */
7447 NULL, /* SADB_EXPIRE */
7448 key_api_flush, /* SADB_FLUSH */
7449 key_api_dump, /* SADB_DUMP */
7450 key_api_promisc, /* SADB_X_PROMISC */
7451 NULL, /* SADB_X_PCHANGE */
7452 key_api_spdadd, /* SADB_X_SPDUPDATE */
7453 key_api_spdadd, /* SADB_X_SPDADD */
7454 key_api_spddelete, /* SADB_X_SPDDELETE */
7455 key_api_spdget, /* SADB_X_SPDGET */
7456 NULL, /* SADB_X_SPDACQUIRE */
7457 key_api_spddump, /* SADB_X_SPDDUMP */
7458 key_api_spdflush, /* SADB_X_SPDFLUSH */
7459 key_api_spdadd, /* SADB_X_SPDSETIDX */
7460 NULL, /* SADB_X_SPDEXPIRE */
7461 key_api_spddelete2, /* SADB_X_SPDDELETE2 */
7462 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7463 };
7464
7465 /*
7466 * parse sadb_msg buffer to process PFKEYv2,
7467 * and create a data to response if needed.
7468 * I think to be dealed with mbuf directly.
7469 * IN:
7470 * msgp : pointer to pointer to a received buffer pulluped.
7471 * This is rewrited to response.
7472 * so : pointer to socket.
7473 * OUT:
7474 * length for buffer to send to user process.
7475 */
7476 int
7477 key_parse(struct mbuf *m, struct socket *so)
7478 {
7479 struct sadb_msg *msg;
7480 struct sadb_msghdr mh;
7481 u_int orglen;
7482 int error;
7483
7484 KASSERT(m != NULL);
7485 KASSERT(so != NULL);
7486
7487 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7488 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7489 kdebug_sadb("passed sadb_msg", msg);
7490 }
7491 #endif
7492
7493 if (m->m_len < sizeof(struct sadb_msg)) {
7494 m = m_pullup(m, sizeof(struct sadb_msg));
7495 if (!m)
7496 return ENOBUFS;
7497 }
7498 msg = mtod(m, struct sadb_msg *);
7499 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7500
7501 if ((m->m_flags & M_PKTHDR) == 0 ||
7502 m->m_pkthdr.len != orglen) {
7503 IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7504 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7505 error = EINVAL;
7506 goto senderror;
7507 }
7508
7509 if (msg->sadb_msg_version != PF_KEY_V2) {
7510 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7511 msg->sadb_msg_version);
7512 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7513 error = EINVAL;
7514 goto senderror;
7515 }
7516
7517 if (msg->sadb_msg_type > SADB_MAX) {
7518 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7519 msg->sadb_msg_type);
7520 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7521 error = EINVAL;
7522 goto senderror;
7523 }
7524
7525 /* for old-fashioned code - should be nuked */
7526 if (m->m_pkthdr.len > MCLBYTES) {
7527 m_freem(m);
7528 return ENOBUFS;
7529 }
7530 if (m->m_next) {
7531 struct mbuf *n;
7532
7533 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK);
7534
7535 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7536 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7537 n->m_next = NULL;
7538 m_freem(m);
7539 m = n;
7540 }
7541
7542 /* align the mbuf chain so that extensions are in contiguous region. */
7543 error = key_align(m, &mh);
7544 if (error)
7545 return error;
7546
7547 if (m->m_next) { /*XXX*/
7548 m_freem(m);
7549 return ENOBUFS;
7550 }
7551
7552 msg = mh.msg;
7553
7554 /* check SA type */
7555 switch (msg->sadb_msg_satype) {
7556 case SADB_SATYPE_UNSPEC:
7557 switch (msg->sadb_msg_type) {
7558 case SADB_GETSPI:
7559 case SADB_UPDATE:
7560 case SADB_ADD:
7561 case SADB_DELETE:
7562 case SADB_GET:
7563 case SADB_ACQUIRE:
7564 case SADB_EXPIRE:
7565 IPSECLOG(LOG_DEBUG,
7566 "must specify satype when msg type=%u.\n",
7567 msg->sadb_msg_type);
7568 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7569 error = EINVAL;
7570 goto senderror;
7571 }
7572 break;
7573 case SADB_SATYPE_AH:
7574 case SADB_SATYPE_ESP:
7575 case SADB_X_SATYPE_IPCOMP:
7576 case SADB_X_SATYPE_TCPSIGNATURE:
7577 switch (msg->sadb_msg_type) {
7578 case SADB_X_SPDADD:
7579 case SADB_X_SPDDELETE:
7580 case SADB_X_SPDGET:
7581 case SADB_X_SPDDUMP:
7582 case SADB_X_SPDFLUSH:
7583 case SADB_X_SPDSETIDX:
7584 case SADB_X_SPDUPDATE:
7585 case SADB_X_SPDDELETE2:
7586 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7587 msg->sadb_msg_type);
7588 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7589 error = EINVAL;
7590 goto senderror;
7591 }
7592 break;
7593 case SADB_SATYPE_RSVP:
7594 case SADB_SATYPE_OSPFV2:
7595 case SADB_SATYPE_RIPV2:
7596 case SADB_SATYPE_MIP:
7597 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7598 msg->sadb_msg_satype);
7599 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7600 error = EOPNOTSUPP;
7601 goto senderror;
7602 case 1: /* XXX: What does it do? */
7603 if (msg->sadb_msg_type == SADB_X_PROMISC)
7604 break;
7605 /*FALLTHROUGH*/
7606 default:
7607 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7608 msg->sadb_msg_satype);
7609 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7610 error = EINVAL;
7611 goto senderror;
7612 }
7613
7614 /* check field of upper layer protocol and address family */
7615 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7616 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7617 const struct sadb_address *src0, *dst0;
7618 const struct sockaddr *sa0, *da0;
7619 u_int plen;
7620
7621 src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
7622 dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
7623 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC);
7624 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST);
7625
7626 /* check upper layer protocol */
7627 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7628 IPSECLOG(LOG_DEBUG,
7629 "upper layer protocol mismatched.\n");
7630 goto invaddr;
7631 }
7632
7633 /* check family */
7634 if (sa0->sa_family != da0->sa_family) {
7635 IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7636 goto invaddr;
7637 }
7638 if (sa0->sa_len != da0->sa_len) {
7639 IPSECLOG(LOG_DEBUG,
7640 "address struct size mismatched.\n");
7641 goto invaddr;
7642 }
7643
7644 switch (sa0->sa_family) {
7645 case AF_INET:
7646 if (sa0->sa_len != sizeof(struct sockaddr_in))
7647 goto invaddr;
7648 break;
7649 case AF_INET6:
7650 if (sa0->sa_len != sizeof(struct sockaddr_in6))
7651 goto invaddr;
7652 break;
7653 default:
7654 IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7655 error = EAFNOSUPPORT;
7656 goto senderror;
7657 }
7658
7659 switch (sa0->sa_family) {
7660 case AF_INET:
7661 plen = sizeof(struct in_addr) << 3;
7662 break;
7663 case AF_INET6:
7664 plen = sizeof(struct in6_addr) << 3;
7665 break;
7666 default:
7667 plen = 0; /*fool gcc*/
7668 break;
7669 }
7670
7671 /* check max prefix length */
7672 if (src0->sadb_address_prefixlen > plen ||
7673 dst0->sadb_address_prefixlen > plen) {
7674 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7675 goto invaddr;
7676 }
7677
7678 /*
7679 * prefixlen == 0 is valid because there can be a case when
7680 * all addresses are matched.
7681 */
7682 }
7683
7684 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7685 key_api_typesw[msg->sadb_msg_type] == NULL) {
7686 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7687 error = EINVAL;
7688 goto senderror;
7689 }
7690
7691 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7692
7693 invaddr:
7694 error = EINVAL;
7695 senderror:
7696 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7697 return key_senderror(so, m, error);
7698 }
7699
7700 static int
7701 key_senderror(struct socket *so, struct mbuf *m, int code)
7702 {
7703 struct sadb_msg *msg;
7704
7705 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7706
7707 msg = mtod(m, struct sadb_msg *);
7708 msg->sadb_msg_errno = code;
7709 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7710 }
7711
7712 /*
7713 * set the pointer to each header into message buffer.
7714 * m will be freed on error.
7715 * XXX larger-than-MCLBYTES extension?
7716 */
7717 static int
7718 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7719 {
7720 struct mbuf *n;
7721 struct sadb_ext *ext;
7722 size_t off, end;
7723 int extlen;
7724 int toff;
7725
7726 KASSERT(m != NULL);
7727 KASSERT(mhp != NULL);
7728 KASSERT(m->m_len >= sizeof(struct sadb_msg));
7729
7730 /* initialize */
7731 memset(mhp, 0, sizeof(*mhp));
7732
7733 mhp->msg = mtod(m, struct sadb_msg *);
7734 mhp->ext[0] = mhp->msg; /*XXX backward compat */
7735
7736 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7737 extlen = end; /*just in case extlen is not updated*/
7738 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7739 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7740 if (!n) {
7741 /* m is already freed */
7742 return ENOBUFS;
7743 }
7744 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7745
7746 /* set pointer */
7747 switch (ext->sadb_ext_type) {
7748 case SADB_EXT_SA:
7749 case SADB_EXT_ADDRESS_SRC:
7750 case SADB_EXT_ADDRESS_DST:
7751 case SADB_EXT_ADDRESS_PROXY:
7752 case SADB_EXT_LIFETIME_CURRENT:
7753 case SADB_EXT_LIFETIME_HARD:
7754 case SADB_EXT_LIFETIME_SOFT:
7755 case SADB_EXT_KEY_AUTH:
7756 case SADB_EXT_KEY_ENCRYPT:
7757 case SADB_EXT_IDENTITY_SRC:
7758 case SADB_EXT_IDENTITY_DST:
7759 case SADB_EXT_SENSITIVITY:
7760 case SADB_EXT_PROPOSAL:
7761 case SADB_EXT_SUPPORTED_AUTH:
7762 case SADB_EXT_SUPPORTED_ENCRYPT:
7763 case SADB_EXT_SPIRANGE:
7764 case SADB_X_EXT_POLICY:
7765 case SADB_X_EXT_SA2:
7766 case SADB_X_EXT_NAT_T_TYPE:
7767 case SADB_X_EXT_NAT_T_SPORT:
7768 case SADB_X_EXT_NAT_T_DPORT:
7769 case SADB_X_EXT_NAT_T_OAI:
7770 case SADB_X_EXT_NAT_T_OAR:
7771 case SADB_X_EXT_NAT_T_FRAG:
7772 /* duplicate check */
7773 /*
7774 * XXX Are there duplication payloads of either
7775 * KEY_AUTH or KEY_ENCRYPT ?
7776 */
7777 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7778 IPSECLOG(LOG_DEBUG,
7779 "duplicate ext_type %u is passed.\n",
7780 ext->sadb_ext_type);
7781 m_freem(m);
7782 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7783 return EINVAL;
7784 }
7785 break;
7786 default:
7787 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7788 ext->sadb_ext_type);
7789 m_freem(m);
7790 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7791 return EINVAL;
7792 }
7793
7794 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7795
7796 if (key_validate_ext(ext, extlen)) {
7797 m_freem(m);
7798 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7799 return EINVAL;
7800 }
7801
7802 n = m_pulldown(m, off, extlen, &toff);
7803 if (!n) {
7804 /* m is already freed */
7805 return ENOBUFS;
7806 }
7807 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7808
7809 mhp->ext[ext->sadb_ext_type] = ext;
7810 mhp->extoff[ext->sadb_ext_type] = off;
7811 mhp->extlen[ext->sadb_ext_type] = extlen;
7812 }
7813
7814 if (off != end) {
7815 m_freem(m);
7816 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7817 return EINVAL;
7818 }
7819
7820 return 0;
7821 }
7822
7823 static int
7824 key_validate_ext(const struct sadb_ext *ext, int len)
7825 {
7826 const struct sockaddr *sa;
7827 enum { NONE, ADDR } checktype = NONE;
7828 int baselen = 0;
7829 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7830
7831 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7832 return EINVAL;
7833
7834 /* if it does not match minimum/maximum length, bail */
7835 if (ext->sadb_ext_type >= __arraycount(minsize) ||
7836 ext->sadb_ext_type >= __arraycount(maxsize))
7837 return EINVAL;
7838 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7839 return EINVAL;
7840 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7841 return EINVAL;
7842
7843 /* more checks based on sadb_ext_type XXX need more */
7844 switch (ext->sadb_ext_type) {
7845 case SADB_EXT_ADDRESS_SRC:
7846 case SADB_EXT_ADDRESS_DST:
7847 case SADB_EXT_ADDRESS_PROXY:
7848 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7849 checktype = ADDR;
7850 break;
7851 case SADB_EXT_IDENTITY_SRC:
7852 case SADB_EXT_IDENTITY_DST:
7853 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7854 SADB_X_IDENTTYPE_ADDR) {
7855 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7856 checktype = ADDR;
7857 } else
7858 checktype = NONE;
7859 break;
7860 default:
7861 checktype = NONE;
7862 break;
7863 }
7864
7865 switch (checktype) {
7866 case NONE:
7867 break;
7868 case ADDR:
7869 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7870 if (len < baselen + sal)
7871 return EINVAL;
7872 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7873 return EINVAL;
7874 break;
7875 }
7876
7877 return 0;
7878 }
7879
7880 static int
7881 key_do_init(void)
7882 {
7883 int i, error;
7884
7885 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
7886
7887 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
7888 cv_init(&key_spd.cv_lc, "key_sp_lc");
7889 key_spd.psz = pserialize_create();
7890 cv_init(&key_spd.cv_psz, "key_sp_psz");
7891 key_spd.psz_performing = false;
7892
7893 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
7894 cv_init(&key_sad.cv_lc, "key_sa_lc");
7895 key_sad.psz = pserialize_create();
7896 cv_init(&key_sad.cv_psz, "key_sa_psz");
7897 key_sad.psz_performing = false;
7898
7899 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7900
7901 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE);
7902 error = workqueue_create(&key_timehandler_wq, "key_timehandler",
7903 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
7904 if (error != 0)
7905 panic("%s: workqueue_create failed (%d)\n", __func__, error);
7906
7907 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7908 PSLIST_INIT(&key_spd.splist[i]);
7909 }
7910
7911 PSLIST_INIT(&key_spd.socksplist);
7912
7913 PSLIST_INIT(&key_sad.sahlist);
7914
7915 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7916 LIST_INIT(&key_misc.reglist[i]);
7917 }
7918
7919 #ifndef IPSEC_NONBLOCK_ACQUIRE
7920 LIST_INIT(&key_misc.acqlist);
7921 #endif
7922 #ifdef notyet
7923 LIST_INIT(&key_misc.spacqlist);
7924 #endif
7925
7926 /* system default */
7927 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7928 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
7929 localcount_init(&ip4_def_policy.localcount);
7930
7931 #ifdef INET6
7932 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7933 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
7934 localcount_init(&ip6_def_policy.localcount);
7935 #endif
7936
7937 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7938
7939 /* initialize key statistics */
7940 keystat.getspi_count = 1;
7941
7942 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7943
7944 return (0);
7945 }
7946
7947 void
7948 key_init(void)
7949 {
7950 static ONCE_DECL(key_init_once);
7951
7952 sysctl_net_keyv2_setup(NULL);
7953 sysctl_net_key_compat_setup(NULL);
7954
7955 RUN_ONCE(&key_init_once, key_do_init);
7956
7957 key_init_so();
7958 }
7959
7960 /*
7961 * XXX: maybe This function is called after INBOUND IPsec processing.
7962 *
7963 * Special check for tunnel-mode packets.
7964 * We must make some checks for consistency between inner and outer IP header.
7965 *
7966 * xxx more checks to be provided
7967 */
7968 int
7969 key_checktunnelsanity(
7970 struct secasvar *sav,
7971 u_int family,
7972 void *src,
7973 void *dst
7974 )
7975 {
7976
7977 /* XXX: check inner IP header */
7978
7979 return 1;
7980 }
7981
7982 #if 0
7983 #define hostnamelen strlen(hostname)
7984
7985 /*
7986 * Get FQDN for the host.
7987 * If the administrator configured hostname (by hostname(1)) without
7988 * domain name, returns nothing.
7989 */
7990 static const char *
7991 key_getfqdn(void)
7992 {
7993 int i;
7994 int hasdot;
7995 static char fqdn[MAXHOSTNAMELEN + 1];
7996
7997 if (!hostnamelen)
7998 return NULL;
7999
8000 /* check if it comes with domain name. */
8001 hasdot = 0;
8002 for (i = 0; i < hostnamelen; i++) {
8003 if (hostname[i] == '.')
8004 hasdot++;
8005 }
8006 if (!hasdot)
8007 return NULL;
8008
8009 /* NOTE: hostname may not be NUL-terminated. */
8010 memset(fqdn, 0, sizeof(fqdn));
8011 memcpy(fqdn, hostname, hostnamelen);
8012 fqdn[hostnamelen] = '\0';
8013 return fqdn;
8014 }
8015
8016 /*
8017 * get username@FQDN for the host/user.
8018 */
8019 static const char *
8020 key_getuserfqdn(void)
8021 {
8022 const char *host;
8023 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8024 struct proc *p = curproc;
8025 char *q;
8026
8027 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8028 return NULL;
8029 if (!(host = key_getfqdn()))
8030 return NULL;
8031
8032 /* NOTE: s_login may not be-NUL terminated. */
8033 memset(userfqdn, 0, sizeof(userfqdn));
8034 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8035 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
8036 q = userfqdn + strlen(userfqdn);
8037 *q++ = '@';
8038 memcpy(q, host, strlen(host));
8039 q += strlen(host);
8040 *q++ = '\0';
8041
8042 return userfqdn;
8043 }
8044 #endif
8045
8046 /* record data transfer on SA, and update timestamps */
8047 void
8048 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8049 {
8050
8051 KASSERT(sav != NULL);
8052 KASSERT(sav->lft_c != NULL);
8053 KASSERT(m != NULL);
8054
8055 /*
8056 * XXX Currently, there is a difference of bytes size
8057 * between inbound and outbound processing.
8058 */
8059 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8060 /* to check bytes lifetime is done in key_timehandler(). */
8061
8062 /*
8063 * We use the number of packets as the unit of
8064 * sadb_lifetime_allocations. We increment the variable
8065 * whenever {esp,ah}_{in,out}put is called.
8066 */
8067 sav->lft_c->sadb_lifetime_allocations++;
8068 /* XXX check for expires? */
8069
8070 /*
8071 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8072 * in seconds. HARD and SOFT lifetime are measured by the time
8073 * difference (again in seconds) from sadb_lifetime_usetime.
8074 *
8075 * usetime
8076 * v expire expire
8077 * -----+-----+--------+---> t
8078 * <--------------> HARD
8079 * <-----> SOFT
8080 */
8081 sav->lft_c->sadb_lifetime_usetime = time_uptime;
8082 /* XXX check for expires? */
8083
8084 return;
8085 }
8086
8087 /* dumb version */
8088 void
8089 key_sa_routechange(struct sockaddr *dst)
8090 {
8091 struct secashead *sah;
8092 int s;
8093
8094 s = pserialize_read_enter();
8095 SAHLIST_READER_FOREACH(sah) {
8096 struct route *ro;
8097 const struct sockaddr *sa;
8098
8099 key_sah_ref(sah);
8100 pserialize_read_exit(s);
8101
8102 ro = &sah->sa_route;
8103 sa = rtcache_getdst(ro);
8104 if (sa != NULL && dst->sa_len == sa->sa_len &&
8105 memcmp(dst, sa, dst->sa_len) == 0)
8106 rtcache_free(ro);
8107
8108 s = pserialize_read_enter();
8109 key_sah_unref(sah);
8110 }
8111 pserialize_read_exit(s);
8112
8113 return;
8114 }
8115
8116 static void
8117 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8118 {
8119 struct secasvar *_sav;
8120
8121 ASSERT_SLEEPABLE();
8122 KASSERT(mutex_owned(&key_sad.lock));
8123
8124 if (sav->state == state)
8125 return;
8126
8127 key_unlink_sav(sav);
8128 localcount_fini(&sav->localcount);
8129 SAVLIST_ENTRY_DESTROY(sav);
8130 key_init_sav(sav);
8131
8132 sav->state = state;
8133 if (!SADB_SASTATE_USABLE_P(sav)) {
8134 /* We don't need to care about the order */
8135 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8136 return;
8137 }
8138 /*
8139 * Sort the list by lft_c->sadb_lifetime_addtime
8140 * in ascending order.
8141 */
8142 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) {
8143 if (_sav->lft_c->sadb_lifetime_addtime >
8144 sav->lft_c->sadb_lifetime_addtime) {
8145 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8146 break;
8147 }
8148 }
8149 if (_sav == NULL) {
8150 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8151 }
8152 key_validate_savlist(sav->sah, state);
8153 }
8154
8155 /* XXX too much? */
8156 static struct mbuf *
8157 key_alloc_mbuf(int l, int mflag)
8158 {
8159 struct mbuf *m = NULL, *n;
8160 int len, t;
8161
8162 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p()));
8163
8164 len = l;
8165 while (len > 0) {
8166 MGET(n, mflag, MT_DATA);
8167 if (n && len > MLEN) {
8168 MCLGET(n, mflag);
8169 if ((n->m_flags & M_EXT) == 0) {
8170 m_freem(n);
8171 n = NULL;
8172 }
8173 }
8174 if (!n) {
8175 m_freem(m);
8176 return NULL;
8177 }
8178
8179 n->m_next = NULL;
8180 n->m_len = 0;
8181 n->m_len = M_TRAILINGSPACE(n);
8182 /* use the bottom of mbuf, hoping we can prepend afterwards */
8183 if (n->m_len > len) {
8184 t = (n->m_len - len) & ~(sizeof(long) - 1);
8185 n->m_data += t;
8186 n->m_len = len;
8187 }
8188
8189 len -= n->m_len;
8190
8191 if (m)
8192 m_cat(m, n);
8193 else
8194 m = n;
8195 }
8196
8197 return m;
8198 }
8199
8200 static struct mbuf *
8201 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8202 {
8203 struct secashead *sah;
8204 struct secasvar *sav;
8205 u_int16_t proto;
8206 u_int8_t satype;
8207 u_int8_t state;
8208 int cnt;
8209 struct mbuf *m, *n;
8210
8211 KASSERT(mutex_owned(&key_sad.lock));
8212
8213 /* map satype to proto */
8214 proto = key_satype2proto(req_satype);
8215 if (proto == 0) {
8216 *errorp = EINVAL;
8217 return (NULL);
8218 }
8219
8220 /* count sav entries to be sent to the userland. */
8221 cnt = 0;
8222 SAHLIST_WRITER_FOREACH(sah) {
8223 if (req_satype != SADB_SATYPE_UNSPEC &&
8224 proto != sah->saidx.proto)
8225 continue;
8226
8227 SASTATE_ANY_FOREACH(state) {
8228 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8229 cnt++;
8230 }
8231 }
8232 }
8233
8234 if (cnt == 0) {
8235 *errorp = ENOENT;
8236 return (NULL);
8237 }
8238
8239 /* send this to the userland, one at a time. */
8240 m = NULL;
8241 SAHLIST_WRITER_FOREACH(sah) {
8242 if (req_satype != SADB_SATYPE_UNSPEC &&
8243 proto != sah->saidx.proto)
8244 continue;
8245
8246 /* map proto to satype */
8247 satype = key_proto2satype(sah->saidx.proto);
8248 if (satype == 0) {
8249 m_freem(m);
8250 *errorp = EINVAL;
8251 return (NULL);
8252 }
8253
8254 SASTATE_ANY_FOREACH(state) {
8255 SAVLIST_WRITER_FOREACH(sav, sah, state) {
8256 n = key_setdumpsa(sav, SADB_DUMP, satype,
8257 --cnt, pid);
8258 if (!m)
8259 m = n;
8260 else
8261 m_cat(m, n);
8262 }
8263 }
8264 }
8265
8266 if (!m) {
8267 *errorp = EINVAL;
8268 return (NULL);
8269 }
8270
8271 if ((m->m_flags & M_PKTHDR) != 0) {
8272 m->m_pkthdr.len = 0;
8273 for (n = m; n; n = n->m_next)
8274 m->m_pkthdr.len += n->m_len;
8275 }
8276
8277 *errorp = 0;
8278 return (m);
8279 }
8280
8281 static struct mbuf *
8282 key_setspddump(int *errorp, pid_t pid)
8283 {
8284 struct secpolicy *sp;
8285 int cnt;
8286 u_int dir;
8287 struct mbuf *m, *n;
8288
8289 KASSERT(mutex_owned(&key_spd.lock));
8290
8291 /* search SPD entry and get buffer size. */
8292 cnt = 0;
8293 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8294 SPLIST_WRITER_FOREACH(sp, dir) {
8295 cnt++;
8296 }
8297 }
8298
8299 if (cnt == 0) {
8300 *errorp = ENOENT;
8301 return (NULL);
8302 }
8303
8304 m = NULL;
8305 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8306 SPLIST_WRITER_FOREACH(sp, dir) {
8307 --cnt;
8308 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8309
8310 if (!m)
8311 m = n;
8312 else {
8313 m->m_pkthdr.len += n->m_pkthdr.len;
8314 m_cat(m, n);
8315 }
8316 }
8317 }
8318
8319 *errorp = 0;
8320 return (m);
8321 }
8322
8323 int
8324 key_get_used(void) {
8325 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8326 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8327 !SOCKSPLIST_READER_EMPTY();
8328 }
8329
8330 void
8331 key_update_used(void)
8332 {
8333 switch (ipsec_enabled) {
8334 default:
8335 case 0:
8336 #ifdef notyet
8337 /* XXX: racy */
8338 ipsec_used = 0;
8339 #endif
8340 break;
8341 case 1:
8342 #ifndef notyet
8343 /* XXX: racy */
8344 if (!ipsec_used)
8345 #endif
8346 ipsec_used = key_get_used();
8347 break;
8348 case 2:
8349 ipsec_used = 1;
8350 break;
8351 }
8352 }
8353
8354 static int
8355 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8356 {
8357 struct mbuf *m, *n;
8358 int err2 = 0;
8359 char *p, *ep;
8360 size_t len;
8361 int error;
8362
8363 if (newp)
8364 return (EPERM);
8365 if (namelen != 1)
8366 return (EINVAL);
8367
8368 mutex_enter(&key_sad.lock);
8369 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8370 mutex_exit(&key_sad.lock);
8371 if (!m)
8372 return (error);
8373 if (!oldp)
8374 *oldlenp = m->m_pkthdr.len;
8375 else {
8376 p = oldp;
8377 if (*oldlenp < m->m_pkthdr.len) {
8378 err2 = ENOMEM;
8379 ep = p + *oldlenp;
8380 } else {
8381 *oldlenp = m->m_pkthdr.len;
8382 ep = p + m->m_pkthdr.len;
8383 }
8384 for (n = m; n; n = n->m_next) {
8385 len = (ep - p < n->m_len) ?
8386 ep - p : n->m_len;
8387 error = copyout(mtod(n, const void *), p, len);
8388 p += len;
8389 if (error)
8390 break;
8391 }
8392 if (error == 0)
8393 error = err2;
8394 }
8395 m_freem(m);
8396
8397 return (error);
8398 }
8399
8400 static int
8401 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8402 {
8403 struct mbuf *m, *n;
8404 int err2 = 0;
8405 char *p, *ep;
8406 size_t len;
8407 int error;
8408
8409 if (newp)
8410 return (EPERM);
8411 if (namelen != 0)
8412 return (EINVAL);
8413
8414 mutex_enter(&key_spd.lock);
8415 m = key_setspddump(&error, l->l_proc->p_pid);
8416 mutex_exit(&key_spd.lock);
8417 if (!m)
8418 return (error);
8419 if (!oldp)
8420 *oldlenp = m->m_pkthdr.len;
8421 else {
8422 p = oldp;
8423 if (*oldlenp < m->m_pkthdr.len) {
8424 err2 = ENOMEM;
8425 ep = p + *oldlenp;
8426 } else {
8427 *oldlenp = m->m_pkthdr.len;
8428 ep = p + m->m_pkthdr.len;
8429 }
8430 for (n = m; n; n = n->m_next) {
8431 len = (ep - p < n->m_len) ? ep - p : n->m_len;
8432 error = copyout(mtod(n, const void *), p, len);
8433 p += len;
8434 if (error)
8435 break;
8436 }
8437 if (error == 0)
8438 error = err2;
8439 }
8440 m_freem(m);
8441
8442 return (error);
8443 }
8444
8445 /*
8446 * Create sysctl tree for native IPSEC key knobs, originally
8447 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8448 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8449 * and in any case the part of our sysctl namespace used for dumping the
8450 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8451 * namespace, for API reasons.
8452 *
8453 * Pending a consensus on the right way to fix this, add a level of
8454 * indirection in how we number the `native' IPSEC key nodes;
8455 * and (as requested by Andrew Brown) move registration of the
8456 * KAME-compatible names to a separate function.
8457 */
8458 #if 0
8459 # define IPSEC_PFKEY PF_KEY_V2
8460 # define IPSEC_PFKEY_NAME "keyv2"
8461 #else
8462 # define IPSEC_PFKEY PF_KEY
8463 # define IPSEC_PFKEY_NAME "key"
8464 #endif
8465
8466 static int
8467 sysctl_net_key_stats(SYSCTLFN_ARGS)
8468 {
8469
8470 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8471 }
8472
8473 static void
8474 sysctl_net_keyv2_setup(struct sysctllog **clog)
8475 {
8476
8477 sysctl_createv(clog, 0, NULL, NULL,
8478 CTLFLAG_PERMANENT,
8479 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8480 NULL, 0, NULL, 0,
8481 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8482
8483 sysctl_createv(clog, 0, NULL, NULL,
8484 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8485 CTLTYPE_INT, "debug", NULL,
8486 NULL, 0, &key_debug_level, 0,
8487 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8488 sysctl_createv(clog, 0, NULL, NULL,
8489 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8490 CTLTYPE_INT, "spi_try", NULL,
8491 NULL, 0, &key_spi_trycnt, 0,
8492 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8493 sysctl_createv(clog, 0, NULL, NULL,
8494 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8495 CTLTYPE_INT, "spi_min_value", NULL,
8496 NULL, 0, &key_spi_minval, 0,
8497 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8498 sysctl_createv(clog, 0, NULL, NULL,
8499 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8500 CTLTYPE_INT, "spi_max_value", NULL,
8501 NULL, 0, &key_spi_maxval, 0,
8502 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8503 sysctl_createv(clog, 0, NULL, NULL,
8504 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8505 CTLTYPE_INT, "random_int", NULL,
8506 NULL, 0, &key_int_random, 0,
8507 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8508 sysctl_createv(clog, 0, NULL, NULL,
8509 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8510 CTLTYPE_INT, "larval_lifetime", NULL,
8511 NULL, 0, &key_larval_lifetime, 0,
8512 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8513 sysctl_createv(clog, 0, NULL, NULL,
8514 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8515 CTLTYPE_INT, "blockacq_count", NULL,
8516 NULL, 0, &key_blockacq_count, 0,
8517 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8518 sysctl_createv(clog, 0, NULL, NULL,
8519 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8520 CTLTYPE_INT, "blockacq_lifetime", NULL,
8521 NULL, 0, &key_blockacq_lifetime, 0,
8522 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8523 sysctl_createv(clog, 0, NULL, NULL,
8524 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8525 CTLTYPE_INT, "esp_keymin", NULL,
8526 NULL, 0, &ipsec_esp_keymin, 0,
8527 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8528 sysctl_createv(clog, 0, NULL, NULL,
8529 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8530 CTLTYPE_INT, "prefered_oldsa", NULL,
8531 NULL, 0, &key_prefered_oldsa, 0,
8532 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8533 sysctl_createv(clog, 0, NULL, NULL,
8534 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8535 CTLTYPE_INT, "esp_auth", NULL,
8536 NULL, 0, &ipsec_esp_auth, 0,
8537 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8538 sysctl_createv(clog, 0, NULL, NULL,
8539 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8540 CTLTYPE_INT, "ah_keymin", NULL,
8541 NULL, 0, &ipsec_ah_keymin, 0,
8542 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8543 sysctl_createv(clog, 0, NULL, NULL,
8544 CTLFLAG_PERMANENT,
8545 CTLTYPE_STRUCT, "stats",
8546 SYSCTL_DESCR("PF_KEY statistics"),
8547 sysctl_net_key_stats, 0, NULL, 0,
8548 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8549 }
8550
8551 /*
8552 * Register sysctl names used by setkey(8). For historical reasons,
8553 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8554 * for both IPSEC and KAME IPSEC.
8555 */
8556 static void
8557 sysctl_net_key_compat_setup(struct sysctllog **clog)
8558 {
8559
8560 sysctl_createv(clog, 0, NULL, NULL,
8561 CTLFLAG_PERMANENT,
8562 CTLTYPE_NODE, "key", NULL,
8563 NULL, 0, NULL, 0,
8564 CTL_NET, PF_KEY, CTL_EOL);
8565
8566 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8567 sysctl_createv(clog, 0, NULL, NULL,
8568 CTLFLAG_PERMANENT,
8569 CTLTYPE_STRUCT, "dumpsa", NULL,
8570 sysctl_net_key_dumpsa, 0, NULL, 0,
8571 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8572 sysctl_createv(clog, 0, NULL, NULL,
8573 CTLFLAG_PERMANENT,
8574 CTLTYPE_STRUCT, "dumpsp", NULL,
8575 sysctl_net_key_dumpsp, 0, NULL, 0,
8576 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8577 }
8578