Home | History | Annotate | Line # | Download | only in netipsec
key.c revision 1.282
      1 /*	$NetBSD: key.c,v 1.282 2023/08/10 06:44:12 andvar Exp $	*/
      2 /*	$FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $	*/
      3 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
      4 
      5 /*
      6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of the project nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.282 2023/08/10 06:44:12 andvar Exp $");
     36 
     37 /*
     38  * This code is referred to RFC 2367
     39  */
     40 
     41 #if defined(_KERNEL_OPT)
     42 #include "opt_inet.h"
     43 #include "opt_ipsec.h"
     44 #include "opt_gateway.h"
     45 #include "opt_net_mpsafe.h"
     46 #endif
     47 
     48 #include <sys/types.h>
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/kernel.h>
     53 #include <sys/mbuf.h>
     54 #include <sys/domain.h>
     55 #include <sys/socket.h>
     56 #include <sys/socketvar.h>
     57 #include <sys/sysctl.h>
     58 #include <sys/errno.h>
     59 #include <sys/proc.h>
     60 #include <sys/queue.h>
     61 #include <sys/syslog.h>
     62 #include <sys/once.h>
     63 #include <sys/cprng.h>
     64 #include <sys/psref.h>
     65 #include <sys/lwp.h>
     66 #include <sys/workqueue.h>
     67 #include <sys/kmem.h>
     68 #include <sys/cpu.h>
     69 #include <sys/atomic.h>
     70 #include <sys/pslist.h>
     71 #include <sys/mutex.h>
     72 #include <sys/condvar.h>
     73 #include <sys/localcount.h>
     74 #include <sys/pserialize.h>
     75 #include <sys/hash.h>
     76 #include <sys/xcall.h>
     77 
     78 #include <net/if.h>
     79 #include <net/route.h>
     80 
     81 #include <netinet/in.h>
     82 #include <netinet/in_systm.h>
     83 #include <netinet/ip.h>
     84 #include <netinet/in_var.h>
     85 #ifdef INET
     86 #include <netinet/ip_var.h>
     87 #endif
     88 
     89 #ifdef INET6
     90 #include <netinet/ip6.h>
     91 #include <netinet6/in6_var.h>
     92 #include <netinet6/ip6_var.h>
     93 #endif /* INET6 */
     94 
     95 #ifdef INET
     96 #include <netinet/in_pcb.h>
     97 #endif
     98 #ifdef INET6
     99 #include <netinet6/in6_pcb.h>
    100 #endif /* INET6 */
    101 
    102 #include <net/pfkeyv2.h>
    103 #include <netipsec/keydb.h>
    104 #include <netipsec/key.h>
    105 #include <netipsec/keysock.h>
    106 #include <netipsec/key_debug.h>
    107 
    108 #include <netipsec/ipsec.h>
    109 #ifdef INET6
    110 #include <netipsec/ipsec6.h>
    111 #endif
    112 #include <netipsec/ipsec_private.h>
    113 
    114 #include <netipsec/xform.h>
    115 #include <netipsec/ipcomp.h>
    116 
    117 #define FULLMASK	0xffu
    118 #define	_BITS(bytes)	((bytes) << 3)
    119 
    120 #define PORT_NONE	0
    121 #define PORT_LOOSE	1
    122 #define PORT_STRICT	2
    123 
    124 #ifndef SAHHASH_NHASH
    125 #define SAHHASH_NHASH		128
    126 #endif
    127 
    128 #ifndef SAVLUT_NHASH
    129 #define SAVLUT_NHASH		128
    130 #endif
    131 
    132 percpu_t *pfkeystat_percpu;
    133 
    134 /*
    135  * Note on SA reference counting:
    136  * - SAs that are not in DEAD state will have (total external reference + 1)
    137  *   following value in reference count field.  they cannot be freed and are
    138  *   referenced from SA header.
    139  * - SAs that are in DEAD state will have (total external reference)
    140  *   in reference count field.  they are ready to be freed.  reference from
    141  *   SA header will be removed in key_delsav(), when the reference count
    142  *   field hits 0 (= no external reference other than from SA header.
    143  */
    144 
    145 u_int32_t key_debug_level = 0;
    146 static u_int key_spi_trycnt = 1000;
    147 static u_int32_t key_spi_minval = 0x100;
    148 static u_int32_t key_spi_maxval = 0x0fffffff;	/* XXX */
    149 static u_int32_t policy_id = 0;
    150 static u_int key_int_random = 60;	/*interval to initialize randseed,1(m)*/
    151 static u_int key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
    152 static int key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
    153 static int key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
    154 static int key_prefered_oldsa = 0;	/* prefered old sa rather than new sa.*/
    155 
    156 static u_int32_t acq_seq = 0;
    157 
    158 /*
    159  * Locking order: there is no order for now; it means that any locks aren't
    160  * overlapped.
    161  */
    162 /*
    163  * Locking notes on SPD:
    164  * - Modifications to the key_spd.splist must be done with holding key_spd.lock
    165  *   which is a adaptive mutex
    166  * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
    167  * - SP's lifetime is managed by localcount(9)
    168  * - An SP that has been inserted to the key_spd.splist is initially referenced
    169  *   by none, i.e., a reference from the key_spd.splist isn't counted
    170  * - When an SP is being destroyed, we change its state as DEAD, wait for
    171  *   references to the SP to be released, and then deallocate the SP
    172  *   (see key_unlink_sp)
    173  * - Getting an SP
    174  *   - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
    175  *     - Must iterate the list and increment the reference count of a found SP
    176  *       (by key_sp_ref) in a pserialize read section
    177  *   - We can gain another reference from a held SP only if we check its state
    178  *     and take its reference in a pserialize read section
    179  *     (see esp_output for example)
    180  *   - We may get an SP from an SP cache. See below
    181  *   - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
    182  * - Updating member variables of an SP
    183  *   - Most member variables of an SP are immutable
    184  *   - Only sp->state and sp->lastused can be changed
    185  *   - sp->state of an SP is updated only when destroying it under key_spd.lock
    186  * - SP caches
    187  *   - SPs can be cached in PCBs
    188  *   - The lifetime of the caches is controlled by the global generation counter
    189  *     (ipsec_spdgen)
    190  *   - The global counter value is stored when an SP is cached
    191  *   - If the stored value is different from the global counter then the cache
    192  *     is considered invalidated
    193  *   - The counter is incremented when an SP is being destroyed
    194  *   - So checking the generation and taking a reference to an SP should be
    195  *     in a pserialize read section
    196  *   - Note that caching doesn't increment the reference counter of an SP
    197  * - SPs in sockets
    198  *   - Userland programs can set a policy to a socket by
    199  *     setsockopt(IP_IPSEC_POLICY)
    200  *   - Such policies (SPs) are set to a socket (PCB) and also inserted to
    201  *     the key_spd.socksplist list (not the key_spd.splist)
    202  *   - Such a policy is destroyed when a corresponding socket is destroed,
    203  *     however, a socket can be destroyed in softint so we cannot destroy
    204  *     it directly instead we just mark it DEAD and delay the destruction
    205  *     until GC by the timer
    206  * - SP origin
    207  *   - SPs can be created by both userland programs and kernel components.
    208  *     The SPs created in kernel must not be removed by userland programs,
    209  *     although the SPs can be read by userland programs.
    210  */
    211 /*
    212  * Locking notes on SAD:
    213  * - Data structures
    214  *   - SAs are managed by the list called key_sad.sahlists and sav lists of
    215  *     sah entries
    216  *     - An sav is supposed to be an SA from a viewpoint of users
    217  *   - A sah has sav lists for each SA state
    218  *   - Multiple saves with the same saidx can exist
    219  *     - Only one entry has MATURE state and others should be DEAD
    220  *     - DEAD entries are just ignored from searching
    221  *   - All sav whose state is MATURE or DYING are registered to the lookup
    222  *     table called key_sad.savlut in addition to the savlists.
    223  *     - The table is used to search an sav without use of saidx.
    224  * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut
    225  *   must be done with holding key_sad.lock which is a adaptive mutex
    226  * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut
    227  *   must be in pserialize(9) read sections
    228  * - sah's lifetime is managed by localcount(9)
    229  * - Getting an sah entry
    230  *   - We get an sah from the key_sad.sahlists
    231  *     - Must iterate the list and increment the reference count of a found sah
    232  *       (by key_sah_ref) in a pserialize read section
    233  *   - A gotten sah must be released after use by key_sah_unref
    234  * - An sah is destroyed when its state become DEAD and no sav is
    235  *   listed to the sah
    236  *   - The destruction is done only in the timer (see key_timehandler_sad)
    237  * - sav's lifetime is managed by localcount(9)
    238  * - Getting an sav entry
    239  *   - First get an sah by saidx and get an sav from either of sah's savlists
    240  *     - Must iterate the list and increment the reference count of a found sav
    241  *       (by key_sa_ref) in a pserialize read section
    242  *   - We can gain another reference from a held SA only if we check its state
    243  *     and take its reference in a pserialize read section
    244  *     (see esp_output for example)
    245  *   - A gotten sav must be released after use by key_sa_unref
    246  * - An sav is destroyed when its state become DEAD
    247  */
    248 /*
    249  * Locking notes on misc data:
    250  * - All lists of key_misc are protected by key_misc.lock
    251  *   - key_misc.lock must be held even for read accesses
    252  */
    253 
    254 /* SPD */
    255 static struct {
    256 	kmutex_t lock;
    257 	kcondvar_t cv_lc;
    258 	struct pslist_head splist[IPSEC_DIR_MAX];
    259 	/*
    260 	 * The list has SPs that are set to a socket via
    261 	 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
    262 	 */
    263 	struct pslist_head socksplist;
    264 
    265 	pserialize_t psz;
    266 	kcondvar_t cv_psz;
    267 	bool psz_performing;
    268 } key_spd __cacheline_aligned;
    269 
    270 /* SAD */
    271 static struct {
    272 	kmutex_t lock;
    273 	kcondvar_t cv_lc;
    274 	struct pslist_head *sahlists;
    275 	u_long sahlistmask;
    276 	struct pslist_head *savlut;
    277 	u_long savlutmask;
    278 
    279 	pserialize_t psz;
    280 	kcondvar_t cv_psz;
    281 	bool psz_performing;
    282 } key_sad __cacheline_aligned;
    283 
    284 /* Misc data */
    285 static struct {
    286 	kmutex_t lock;
    287 	/* registed list */
    288 	LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
    289 #ifndef IPSEC_NONBLOCK_ACQUIRE
    290 	/* acquiring list */
    291 	LIST_HEAD(_acqlist, secacq) acqlist;
    292 #endif
    293 #ifdef notyet
    294 	/* SP acquiring list */
    295 	LIST_HEAD(_spacqlist, secspacq) spacqlist;
    296 #endif
    297 } key_misc __cacheline_aligned;
    298 
    299 /* Macros for key_spd.splist */
    300 #define SPLIST_ENTRY_INIT(sp)						\
    301 	PSLIST_ENTRY_INIT((sp), pslist_entry)
    302 #define SPLIST_ENTRY_DESTROY(sp)					\
    303 	PSLIST_ENTRY_DESTROY((sp), pslist_entry)
    304 #define SPLIST_WRITER_REMOVE(sp)					\
    305 	PSLIST_WRITER_REMOVE((sp), pslist_entry)
    306 #define SPLIST_READER_EMPTY(dir)					\
    307 	(PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy,	\
    308 	                     pslist_entry) == NULL)
    309 #define SPLIST_READER_FOREACH(sp, dir)					\
    310 	PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)],		\
    311 	                      struct secpolicy, pslist_entry)
    312 #define SPLIST_WRITER_FOREACH(sp, dir)					\
    313 	PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)],		\
    314 	                      struct secpolicy, pslist_entry)
    315 #define SPLIST_WRITER_INSERT_AFTER(sp, new)				\
    316 	PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
    317 #define SPLIST_WRITER_EMPTY(dir)					\
    318 	(PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy,	\
    319 	                     pslist_entry) == NULL)
    320 #define SPLIST_WRITER_INSERT_HEAD(dir, sp)				\
    321 	PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp),		\
    322 	                          pslist_entry)
    323 #define SPLIST_WRITER_NEXT(sp)						\
    324 	PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
    325 #define SPLIST_WRITER_INSERT_TAIL(dir, new)				\
    326 	do {								\
    327 		if (SPLIST_WRITER_EMPTY((dir))) {			\
    328 			SPLIST_WRITER_INSERT_HEAD((dir), (new));	\
    329 		} else {						\
    330 			struct secpolicy *__sp;				\
    331 			SPLIST_WRITER_FOREACH(__sp, (dir)) {		\
    332 				if (SPLIST_WRITER_NEXT(__sp) == NULL) {	\
    333 					SPLIST_WRITER_INSERT_AFTER(__sp,\
    334 					    (new));			\
    335 					break;				\
    336 				}					\
    337 			}						\
    338 		}							\
    339 	} while (0)
    340 
    341 /* Macros for key_spd.socksplist */
    342 #define SOCKSPLIST_WRITER_FOREACH(sp)					\
    343 	PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist,		\
    344 	                      struct secpolicy,	pslist_entry)
    345 #define SOCKSPLIST_READER_EMPTY()					\
    346 	(PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy,	\
    347 	                     pslist_entry) == NULL)
    348 
    349 /* Macros for key_sad.sahlist */
    350 #define SAHLIST_ENTRY_INIT(sah)						\
    351 	PSLIST_ENTRY_INIT((sah), pslist_entry)
    352 #define SAHLIST_ENTRY_DESTROY(sah)					\
    353 	PSLIST_ENTRY_DESTROY((sah), pslist_entry)
    354 #define SAHLIST_WRITER_REMOVE(sah)					\
    355 	PSLIST_WRITER_REMOVE((sah), pslist_entry)
    356 #define SAHLIST_READER_FOREACH(sah)					\
    357 	for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++)	\
    358 		PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah],	\
    359 		                      struct secashead, pslist_entry)
    360 #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx)			\
    361 	PSLIST_READER_FOREACH((sah),					\
    362 	    &key_sad.sahlists[key_saidxhash((saidx),			\
    363 	                       key_sad.sahlistmask)],			\
    364 	    struct secashead, pslist_entry)
    365 #define SAHLIST_WRITER_FOREACH(sah)					\
    366 	for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++)	\
    367 		PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah],	\
    368 		                     struct secashead, pslist_entry)
    369 #define SAHLIST_WRITER_INSERT_HEAD(sah)					\
    370 	PSLIST_WRITER_INSERT_HEAD(					\
    371 	    &key_sad.sahlists[key_saidxhash(&(sah)->saidx,		\
    372 	                      key_sad.sahlistmask)],	\
    373 	    (sah), pslist_entry)
    374 
    375 /* Macros for key_sad.sahlist#savlist */
    376 #define SAVLIST_ENTRY_INIT(sav)						\
    377 	PSLIST_ENTRY_INIT((sav), pslist_entry)
    378 #define SAVLIST_ENTRY_DESTROY(sav)					\
    379 	PSLIST_ENTRY_DESTROY((sav), pslist_entry)
    380 #define SAVLIST_READER_FIRST(sah, state)				\
    381 	PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar,	\
    382 	                    pslist_entry)
    383 #define SAVLIST_WRITER_REMOVE(sav)					\
    384 	PSLIST_WRITER_REMOVE((sav), pslist_entry)
    385 #define SAVLIST_READER_FOREACH(sav, sah, state)				\
    386 	PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)],		\
    387 	                      struct secasvar, pslist_entry)
    388 #define SAVLIST_WRITER_FOREACH(sav, sah, state)				\
    389 	PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)],		\
    390 	                      struct secasvar, pslist_entry)
    391 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new)				\
    392 	PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
    393 #define SAVLIST_WRITER_INSERT_AFTER(sav, new)				\
    394 	PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
    395 #define SAVLIST_WRITER_EMPTY(sah, state)				\
    396 	(PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar,	\
    397 	                     pslist_entry) == NULL)
    398 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav)			\
    399 	PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav),	\
    400 	                          pslist_entry)
    401 #define SAVLIST_WRITER_NEXT(sav)					\
    402 	PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
    403 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new)			\
    404 	do {								\
    405 		if (SAVLIST_WRITER_EMPTY((sah), (state))) {		\
    406 			SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
    407 		} else {						\
    408 			struct secasvar *__sav;				\
    409 			SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) {	\
    410 				if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
    411 					SAVLIST_WRITER_INSERT_AFTER(__sav,\
    412 					    (new));			\
    413 					break;				\
    414 				}					\
    415 			}						\
    416 		}							\
    417 	} while (0)
    418 #define SAVLIST_READER_NEXT(sav)					\
    419 	PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
    420 
    421 /* Macros for key_sad.savlut */
    422 #define SAVLUT_ENTRY_INIT(sav)						\
    423 	PSLIST_ENTRY_INIT((sav), pslist_entry_savlut)
    424 #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key)		\
    425 	PSLIST_READER_FOREACH((sav),					\
    426 	&key_sad.savlut[key_savluthash(dst, proto, hash_key,		\
    427 	                  key_sad.savlutmask)],				\
    428 	struct secasvar, pslist_entry_savlut)
    429 #define SAVLUT_WRITER_INSERT_HEAD(sav)					\
    430 	key_savlut_writer_insert_head((sav))
    431 #define SAVLUT_WRITER_REMOVE(sav)					\
    432 	do {								\
    433 		if (!(sav)->savlut_added)				\
    434 			break;						\
    435 		PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut);	\
    436 		(sav)->savlut_added = false;				\
    437 	} while(0)
    438 
    439 /* search order for SAs */
    440 	/*
    441 	 * This order is important because we must select the oldest SA
    442 	 * for outbound processing.  For inbound, This is not important.
    443 	 */
    444 static const u_int saorder_state_valid_prefer_old[] = {
    445 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
    446 };
    447 static const u_int saorder_state_valid_prefer_new[] = {
    448 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
    449 };
    450 
    451 static const u_int saorder_state_alive[] = {
    452 	/* except DEAD */
    453 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
    454 };
    455 static const u_int saorder_state_any[] = {
    456 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
    457 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
    458 };
    459 
    460 #define SASTATE_ALIVE_FOREACH(s)				\
    461 	for (int _i = 0;					\
    462 	    _i < __arraycount(saorder_state_alive) ?		\
    463 	    (s) = saorder_state_alive[_i], true : false;	\
    464 	    _i++)
    465 #define SASTATE_ANY_FOREACH(s)					\
    466 	for (int _i = 0;					\
    467 	    _i < __arraycount(saorder_state_any) ?		\
    468 	    (s) = saorder_state_any[_i], true : false;		\
    469 	    _i++)
    470 #define SASTATE_USABLE_FOREACH(s)				\
    471 	for (int _i = 0;					\
    472 	    _i < __arraycount(saorder_state_valid_prefer_new) ?	\
    473 	    (s) = saorder_state_valid_prefer_new[_i],		\
    474 	    true : false;					\
    475 	    _i++)
    476 
    477 static const int minsize[] = {
    478 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
    479 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
    480 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
    481 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
    482 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
    483 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
    484 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
    485 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
    486 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
    487 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
    488 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
    489 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
    490 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
    491 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
    492 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
    493 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
    494 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
    495 	0,				/* SADB_X_EXT_KMPRIVATE */
    496 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
    497 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
    498 	sizeof(struct sadb_x_nat_t_type),	/* SADB_X_EXT_NAT_T_TYPE */
    499 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_SPORT */
    500 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_DPORT */
    501 	sizeof(struct sadb_address),		/* SADB_X_EXT_NAT_T_OAI */
    502 	sizeof(struct sadb_address),		/* SADB_X_EXT_NAT_T_OAR */
    503 	sizeof(struct sadb_x_nat_t_frag),	/* SADB_X_EXT_NAT_T_FRAG */
    504 };
    505 static const int maxsize[] = {
    506 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
    507 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
    508 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
    509 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
    510 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
    511 	0,				/* SADB_EXT_ADDRESS_SRC */
    512 	0,				/* SADB_EXT_ADDRESS_DST */
    513 	0,				/* SADB_EXT_ADDRESS_PROXY */
    514 	0,				/* SADB_EXT_KEY_AUTH */
    515 	0,				/* SADB_EXT_KEY_ENCRYPT */
    516 	0,				/* SADB_EXT_IDENTITY_SRC */
    517 	0,				/* SADB_EXT_IDENTITY_DST */
    518 	0,				/* SADB_EXT_SENSITIVITY */
    519 	0,				/* SADB_EXT_PROPOSAL */
    520 	0,				/* SADB_EXT_SUPPORTED_AUTH */
    521 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
    522 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
    523 	0,				/* SADB_X_EXT_KMPRIVATE */
    524 	0,				/* SADB_X_EXT_POLICY */
    525 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
    526 	sizeof(struct sadb_x_nat_t_type),	/* SADB_X_EXT_NAT_T_TYPE */
    527 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_SPORT */
    528 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_DPORT */
    529 	0,					/* SADB_X_EXT_NAT_T_OAI */
    530 	0,					/* SADB_X_EXT_NAT_T_OAR */
    531 	sizeof(struct sadb_x_nat_t_frag),	/* SADB_X_EXT_NAT_T_FRAG */
    532 };
    533 
    534 static int ipsec_esp_keymin = 256;
    535 static int ipsec_esp_auth = 0;
    536 static int ipsec_ah_keymin = 128;
    537 static bool ipsec_allow_different_idtype = false;
    538 
    539 #ifdef SYSCTL_DECL
    540 SYSCTL_DECL(_net_key);
    541 #endif
    542 
    543 #ifdef SYSCTL_INT
    544 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,	CTLFLAG_RW, \
    545 	&key_debug_level,	0,	"");
    546 
    547 /* max count of trial for the decision of spi value */
    548 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,		spi_trycnt,	CTLFLAG_RW, \
    549 	&key_spi_trycnt,	0,	"");
    550 
    551 /* minimum spi value to allocate automatically. */
    552 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,	spi_minval,	CTLFLAG_RW, \
    553 	&key_spi_minval,	0,	"");
    554 
    555 /* maximun spi value to allocate automatically. */
    556 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,	spi_maxval,	CTLFLAG_RW, \
    557 	&key_spi_maxval,	0,	"");
    558 
    559 /* interval to initialize randseed */
    560 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT,	int_random,	CTLFLAG_RW, \
    561 	&key_int_random,	0,	"");
    562 
    563 /* lifetime for larval SA */
    564 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,	larval_lifetime, CTLFLAG_RW, \
    565 	&key_larval_lifetime,	0,	"");
    566 
    567 /* counter for blocking to send SADB_ACQUIRE to IKEd */
    568 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,	blockacq_count,	CTLFLAG_RW, \
    569 	&key_blockacq_count,	0,	"");
    570 
    571 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
    572 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,	blockacq_lifetime, CTLFLAG_RW, \
    573 	&key_blockacq_lifetime,	0,	"");
    574 
    575 /* ESP auth */
    576 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth, CTLFLAG_RW, \
    577 	&ipsec_esp_auth,	0,	"");
    578 
    579 /* minimum ESP key length */
    580 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN,	esp_keymin, CTLFLAG_RW, \
    581 	&ipsec_esp_keymin,	0,	"");
    582 
    583 /* minimum AH key length */
    584 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin, CTLFLAG_RW, \
    585 	&ipsec_ah_keymin,	0,	"");
    586 
    587 /* perfered old SA rather than new SA */
    588 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,	prefered_oldsa, CTLFLAG_RW,\
    589 	&key_prefered_oldsa,	0,	"");
    590 #endif /* SYSCTL_INT */
    591 
    592 #define __LIST_CHAINED(elm) \
    593 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
    594 #define LIST_INSERT_TAIL(head, elm, type, field) \
    595 do {\
    596 	struct type *curelm = LIST_FIRST(head); \
    597 	if (curelm == NULL) {\
    598 		LIST_INSERT_HEAD(head, elm, field); \
    599 	} else { \
    600 		while (LIST_NEXT(curelm, field)) \
    601 			curelm = LIST_NEXT(curelm, field);\
    602 		LIST_INSERT_AFTER(curelm, elm, field);\
    603 	}\
    604 } while (0)
    605 
    606 #define KEY_CHKSASTATE(head, sav) \
    607 /* do */ { \
    608 	if ((head) != (sav)) {						\
    609 		IPSECLOG(LOG_DEBUG,					\
    610 		    "state mismatched (TREE=%d SA=%d)\n",		\
    611 		    (head), (sav));					\
    612 		continue;						\
    613 	}								\
    614 } /* while (0) */
    615 
    616 #define KEY_CHKSPDIR(head, sp) \
    617 do { \
    618 	if ((head) != (sp)) {						\
    619 		IPSECLOG(LOG_DEBUG,					\
    620 		    "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
    621 		    (head), (sp));					\
    622 	}								\
    623 } while (0)
    624 
    625 /*
    626  * set parameters into secasindex buffer.
    627  * Must allocate secasindex buffer before calling this function.
    628  */
    629 static int
    630 key_setsecasidx(int, int, int, const struct sockaddr *,
    631     const struct sockaddr *, struct secasindex *);
    632 
    633 /* key statistics */
    634 struct _keystat {
    635 	u_long getspi_count; /* the avarage of count to try to get new SPI */
    636 } keystat;
    637 
    638 static void
    639 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
    640 
    641 static const struct sockaddr *
    642 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
    643 {
    644 
    645 	return PFKEY_ADDR_SADDR(mhp->ext[idx]);
    646 }
    647 
    648 static void
    649 key_fill_replymsg(struct mbuf *m, int seq)
    650 {
    651 	struct sadb_msg *msg;
    652 
    653 	KASSERT(m->m_len >= sizeof(*msg));
    654 
    655 	msg = mtod(m, struct sadb_msg *);
    656 	msg->sadb_msg_errno = 0;
    657 	msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
    658 	if (seq != 0)
    659 		msg->sadb_msg_seq = seq;
    660 }
    661 
    662 #if 0
    663 static void key_freeso(struct socket *);
    664 static void key_freesp_so(struct secpolicy **);
    665 #endif
    666 static struct secpolicy *key_getsp (const struct secpolicyindex *);
    667 static struct secpolicy *key_getspbyid (u_int32_t);
    668 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool);
    669 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool);
    670 static void key_destroy_sp(struct secpolicy *);
    671 static struct mbuf *key_gather_mbuf (struct mbuf *,
    672 	const struct sadb_msghdr *, int, int, ...);
    673 static int key_api_spdadd(struct socket *, struct mbuf *,
    674 	const struct sadb_msghdr *);
    675 static u_int32_t key_getnewspid (void);
    676 static int key_api_spddelete(struct socket *, struct mbuf *,
    677 	const struct sadb_msghdr *);
    678 static int key_api_spddelete2(struct socket *, struct mbuf *,
    679 	const struct sadb_msghdr *);
    680 static int key_api_spdget(struct socket *, struct mbuf *,
    681 	const struct sadb_msghdr *);
    682 static int key_api_spdflush(struct socket *, struct mbuf *,
    683 	const struct sadb_msghdr *);
    684 static int key_api_spddump(struct socket *, struct mbuf *,
    685 	const struct sadb_msghdr *);
    686 static struct mbuf * key_setspddump (int *errorp, pid_t);
    687 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
    688 static int key_api_nat_map(struct socket *, struct mbuf *,
    689 	const struct sadb_msghdr *);
    690 static struct mbuf *key_setdumpsp (struct secpolicy *,
    691 	u_int8_t, u_int32_t, pid_t);
    692 static u_int key_getspreqmsglen (const struct secpolicy *);
    693 static int key_spdexpire (struct secpolicy *);
    694 static struct secashead *key_newsah (const struct secasindex *);
    695 static void key_unlink_sah(struct secashead *);
    696 static void key_destroy_sah(struct secashead *);
    697 static bool key_sah_has_sav(struct secashead *);
    698 static void key_sah_ref(struct secashead *);
    699 static void key_sah_unref(struct secashead *);
    700 static void key_init_sav(struct secasvar *);
    701 static void key_wait_sav(struct secasvar *);
    702 static void key_destroy_sav(struct secasvar *);
    703 static struct secasvar *key_newsav(struct mbuf *,
    704 	const struct sadb_msghdr *, int *, int, const char*, int);
    705 #define	KEY_NEWSAV(m, sadb, e, proto)				\
    706 	key_newsav(m, sadb, e, proto, __func__, __LINE__)
    707 static void key_delsav (struct secasvar *);
    708 static struct secashead *key_getsah(const struct secasindex *, int);
    709 static struct secashead *key_getsah_ref(const struct secasindex *, int);
    710 static bool key_checkspidup(const struct secasindex *, u_int32_t);
    711 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
    712 static int key_setsaval (struct secasvar *, struct mbuf *,
    713 	const struct sadb_msghdr *);
    714 static void key_freesaval(struct secasvar *);
    715 static int key_init_xform(struct secasvar *);
    716 static void key_clear_xform(struct secasvar *);
    717 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
    718 	u_int8_t, u_int32_t, u_int32_t);
    719 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
    720 static struct mbuf *key_setsadbxtype (u_int16_t);
    721 static struct mbuf *key_setsadbxfrag (u_int16_t);
    722 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
    723 static int key_checksalen (const union sockaddr_union *);
    724 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
    725 	u_int32_t, pid_t, u_int16_t, int);
    726 static struct mbuf *key_setsadbsa (struct secasvar *);
    727 static struct mbuf *key_setsadbaddr(u_int16_t,
    728 	const struct sockaddr *, u_int8_t, u_int16_t, int);
    729 #if 0
    730 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
    731 	int, u_int64_t);
    732 #endif
    733 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
    734 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
    735 	u_int32_t, int);
    736 static void *key_newbuf (const void *, u_int);
    737 #ifdef INET6
    738 static int key_ismyaddr6 (const struct sockaddr_in6 *);
    739 #endif
    740 
    741 static void sysctl_net_keyv2_setup(struct sysctllog **);
    742 static void sysctl_net_key_compat_setup(struct sysctllog **);
    743 
    744 /* flags for key_saidx_match() */
    745 #define CMP_HEAD	1	/* protocol, addresses. */
    746 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
    747 #define CMP_REQID	3	/* additionally HEAD, reaid. */
    748 #define CMP_EXACTLY	4	/* all elements. */
    749 static int key_saidx_match(const struct secasindex *,
    750     const struct secasindex *, int);
    751 
    752 static int key_sockaddr_match(const struct sockaddr *,
    753     const struct sockaddr *, int);
    754 static int key_bb_match_withmask(const void *, const void *, u_int);
    755 static u_int16_t key_satype2proto (u_int8_t);
    756 static u_int8_t key_proto2satype (u_int16_t);
    757 
    758 static int key_spidx_match_exactly(const struct secpolicyindex *,
    759     const struct secpolicyindex *);
    760 static int key_spidx_match_withmask(const struct secpolicyindex *,
    761     const struct secpolicyindex *);
    762 
    763 static int key_api_getspi(struct socket *, struct mbuf *,
    764 	const struct sadb_msghdr *);
    765 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
    766 					const struct secasindex *);
    767 static int key_handle_natt_info (struct secasvar *,
    768 				     const struct sadb_msghdr *);
    769 static int key_set_natt_ports (union sockaddr_union *,
    770 			 	union sockaddr_union *,
    771 				const struct sadb_msghdr *);
    772 static int key_api_update(struct socket *, struct mbuf *,
    773 	const struct sadb_msghdr *);
    774 #ifdef IPSEC_DOSEQCHECK
    775 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
    776 #endif
    777 static int key_api_add(struct socket *, struct mbuf *,
    778 	const struct sadb_msghdr *);
    779 static int key_setident (struct secashead *, struct mbuf *,
    780 	const struct sadb_msghdr *);
    781 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
    782 	const struct sadb_msghdr *);
    783 static int key_api_delete(struct socket *, struct mbuf *,
    784 	const struct sadb_msghdr *);
    785 static int key_api_get(struct socket *, struct mbuf *,
    786 	const struct sadb_msghdr *);
    787 
    788 static void key_getcomb_setlifetime (struct sadb_comb *);
    789 static struct mbuf *key_getcomb_esp(int);
    790 static struct mbuf *key_getcomb_ah(int);
    791 static struct mbuf *key_getcomb_ipcomp(int);
    792 static struct mbuf *key_getprop(const struct secasindex *, int);
    793 
    794 static int key_acquire(const struct secasindex *, const struct secpolicy *,
    795 	    int);
    796 static int key_acquire_sendup_mbuf_later(struct mbuf *);
    797 static void key_acquire_sendup_pending_mbuf(void);
    798 #ifndef IPSEC_NONBLOCK_ACQUIRE
    799 static struct secacq *key_newacq (const struct secasindex *);
    800 static struct secacq *key_getacq (const struct secasindex *);
    801 static struct secacq *key_getacqbyseq (u_int32_t);
    802 #endif
    803 #ifdef notyet
    804 static struct secspacq *key_newspacq (const struct secpolicyindex *);
    805 static struct secspacq *key_getspacq (const struct secpolicyindex *);
    806 #endif
    807 static int key_api_acquire(struct socket *, struct mbuf *,
    808 	const struct sadb_msghdr *);
    809 static int key_api_register(struct socket *, struct mbuf *,
    810 	const struct sadb_msghdr *);
    811 static int key_expire (struct secasvar *);
    812 static int key_api_flush(struct socket *, struct mbuf *,
    813 	const struct sadb_msghdr *);
    814 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
    815 	int *lenp, pid_t pid);
    816 static int key_api_dump(struct socket *, struct mbuf *,
    817 	const struct sadb_msghdr *);
    818 static int key_api_promisc(struct socket *, struct mbuf *,
    819 	const struct sadb_msghdr *);
    820 static int key_senderror (struct socket *, struct mbuf *, int);
    821 static int key_validate_ext (const struct sadb_ext *, int);
    822 static int key_align (struct mbuf *, struct sadb_msghdr *);
    823 #if 0
    824 static const char *key_getfqdn (void);
    825 static const char *key_getuserfqdn (void);
    826 #endif
    827 static void key_sa_chgstate (struct secasvar *, u_int8_t);
    828 
    829 static struct mbuf *key_alloc_mbuf(int, int);
    830 static struct mbuf *key_alloc_mbuf_simple(int, int);
    831 
    832 static void key_timehandler(void *);
    833 static void key_timehandler_work(struct work *, void *);
    834 static struct callout	key_timehandler_ch;
    835 static struct workqueue	*key_timehandler_wq;
    836 static struct work	key_timehandler_wk;
    837 
    838 static inline void
    839     key_savlut_writer_insert_head(struct secasvar *sav);
    840 static inline uint32_t
    841     key_saidxhash(const struct secasindex *, u_long);
    842 static inline uint32_t
    843     key_savluthash(const struct sockaddr *,
    844     uint32_t, uint32_t, u_long);
    845 
    846 /*
    847  * Utilities for percpu counters for sadb_lifetime_allocations and
    848  * sadb_lifetime_bytes.
    849  */
    850 #define LIFETIME_COUNTER_ALLOCATIONS	0
    851 #define LIFETIME_COUNTER_BYTES		1
    852 #define LIFETIME_COUNTER_SIZE		2
    853 
    854 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE];
    855 
    856 static void
    857 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused)
    858 {
    859 	lifetime_counters_t *one = p;
    860 	lifetime_counters_t *sum = arg;
    861 
    862 	(*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS];
    863 	(*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES];
    864 }
    865 
    866 u_int
    867 key_sp_refcnt(const struct secpolicy *sp)
    868 {
    869 
    870 	/* FIXME */
    871 	return 0;
    872 }
    873 
    874 void
    875 key_sp_touch(struct secpolicy *sp)
    876 {
    877 
    878 	sp->lastused = time_uptime;
    879 }
    880 
    881 static void
    882 key_spd_pserialize_perform(void)
    883 {
    884 
    885 	KASSERT(mutex_owned(&key_spd.lock));
    886 
    887 	while (key_spd.psz_performing)
    888 		cv_wait(&key_spd.cv_psz, &key_spd.lock);
    889 	key_spd.psz_performing = true;
    890 	mutex_exit(&key_spd.lock);
    891 
    892 	pserialize_perform(key_spd.psz);
    893 
    894 	mutex_enter(&key_spd.lock);
    895 	key_spd.psz_performing = false;
    896 	cv_broadcast(&key_spd.cv_psz);
    897 }
    898 
    899 /*
    900  * Remove the sp from the key_spd.splist and wait for references to the sp
    901  * to be released. key_spd.lock must be held.
    902  */
    903 static void
    904 key_unlink_sp(struct secpolicy *sp)
    905 {
    906 
    907 	KASSERT(mutex_owned(&key_spd.lock));
    908 
    909 	sp->state = IPSEC_SPSTATE_DEAD;
    910 	SPLIST_WRITER_REMOVE(sp);
    911 
    912 	/* Invalidate all cached SPD pointers in the PCBs. */
    913 	ipsec_invalpcbcacheall();
    914 
    915 	KDASSERT(mutex_ownable(softnet_lock));
    916 	key_spd_pserialize_perform();
    917 
    918 	localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
    919 }
    920 
    921 /*
    922  * Return 0 when there are known to be no SP's for the specified
    923  * direction.  Otherwise return 1.  This is used by IPsec code
    924  * to optimize performance.
    925  */
    926 int
    927 key_havesp(u_int dir)
    928 {
    929 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
    930 		!SPLIST_READER_EMPTY(dir) : 1);
    931 }
    932 
    933 /* %%% IPsec policy management */
    934 /*
    935  * allocating a SP for OUTBOUND or INBOUND packet.
    936  * Must call key_freesp() later.
    937  * OUT:	NULL:	not found
    938  *	others:	found and return the pointer.
    939  */
    940 struct secpolicy *
    941 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
    942     u_int dir, const char* where, int tag)
    943 {
    944 	struct secpolicy *sp;
    945 	int s;
    946 
    947 	KASSERT(spidx != NULL);
    948 	KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
    949 
    950 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
    951 
    952 	/* get a SP entry */
    953 	if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
    954 		kdebug_secpolicyindex("objects", spidx);
    955 	}
    956 
    957 	s = pserialize_read_enter();
    958 	SPLIST_READER_FOREACH(sp, dir) {
    959 		if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
    960 			kdebug_secpolicyindex("in SPD", &sp->spidx);
    961 		}
    962 
    963 		if (sp->state == IPSEC_SPSTATE_DEAD)
    964 			continue;
    965 		if (key_spidx_match_withmask(&sp->spidx, spidx))
    966 			goto found;
    967 	}
    968 	sp = NULL;
    969 found:
    970 	if (sp) {
    971 		/* sanity check */
    972 		KEY_CHKSPDIR(sp->spidx.dir, dir);
    973 
    974 		/* found a SPD entry */
    975 		key_sp_touch(sp);
    976 		key_sp_ref(sp, where, tag);
    977 	}
    978 	pserialize_read_exit(s);
    979 
    980 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
    981 	    "DP return SP:%p (ID=%u) refcnt %u\n",
    982 	    sp, sp ? sp->id : 0, key_sp_refcnt(sp));
    983 	return sp;
    984 }
    985 
    986 /*
    987  * return a policy that matches this particular inbound packet.
    988  * XXX slow
    989  */
    990 struct secpolicy *
    991 key_gettunnel(const struct sockaddr *osrc,
    992 	      const struct sockaddr *odst,
    993 	      const struct sockaddr *isrc,
    994 	      const struct sockaddr *idst,
    995 	      const char* where, int tag)
    996 {
    997 	struct secpolicy *sp;
    998 	const int dir = IPSEC_DIR_INBOUND;
    999 	int s;
   1000 	struct ipsecrequest *r1, *r2, *p;
   1001 	struct secpolicyindex spidx;
   1002 
   1003 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
   1004 
   1005 	if (isrc->sa_family != idst->sa_family) {
   1006 		IPSECLOG(LOG_ERR,
   1007 		    "address family mismatched src %u, dst %u.\n",
   1008 		    isrc->sa_family, idst->sa_family);
   1009 		sp = NULL;
   1010 		goto done;
   1011 	}
   1012 
   1013 	s = pserialize_read_enter();
   1014 	SPLIST_READER_FOREACH(sp, dir) {
   1015 		if (sp->state == IPSEC_SPSTATE_DEAD)
   1016 			continue;
   1017 
   1018 		r1 = r2 = NULL;
   1019 		for (p = sp->req; p; p = p->next) {
   1020 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
   1021 				continue;
   1022 
   1023 			r1 = r2;
   1024 			r2 = p;
   1025 
   1026 			if (!r1) {
   1027 				/* here we look at address matches only */
   1028 				spidx = sp->spidx;
   1029 				if (isrc->sa_len > sizeof(spidx.src) ||
   1030 				    idst->sa_len > sizeof(spidx.dst))
   1031 					continue;
   1032 				memcpy(&spidx.src, isrc, isrc->sa_len);
   1033 				memcpy(&spidx.dst, idst, idst->sa_len);
   1034 				if (!key_spidx_match_withmask(&sp->spidx, &spidx))
   1035 					continue;
   1036 			} else {
   1037 				if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
   1038 				    !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
   1039 					continue;
   1040 			}
   1041 
   1042 			if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
   1043 			    !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
   1044 				continue;
   1045 
   1046 			goto found;
   1047 		}
   1048 	}
   1049 	sp = NULL;
   1050 found:
   1051 	if (sp) {
   1052 		key_sp_touch(sp);
   1053 		key_sp_ref(sp, where, tag);
   1054 	}
   1055 	pserialize_read_exit(s);
   1056 done:
   1057 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1058 	    "DP return SP:%p (ID=%u) refcnt %u\n",
   1059 	    sp, sp ? sp->id : 0, key_sp_refcnt(sp));
   1060 	return sp;
   1061 }
   1062 
   1063 /*
   1064  * allocating an SA entry for an *OUTBOUND* packet.
   1065  * checking each request entries in SP, and acquire an SA if need.
   1066  * OUT:	0: there are valid requests.
   1067  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
   1068  */
   1069 int
   1070 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx,
   1071     struct secasvar **ret)
   1072 {
   1073 	u_int level;
   1074 	int error;
   1075 	struct secasvar *sav;
   1076 
   1077 	KASSERT(isr != NULL);
   1078 	KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
   1079 	    saidx->mode == IPSEC_MODE_TUNNEL,
   1080 	    "unexpected policy %u", saidx->mode);
   1081 
   1082 	/* get current level */
   1083 	level = ipsec_get_reqlevel(isr);
   1084 
   1085 	/*
   1086 	 * XXX guard against protocol callbacks from the crypto
   1087 	 * thread as they reference ipsecrequest.sav which we
   1088 	 * temporarily null out below.  Need to rethink how we
   1089 	 * handle bundled SA's in the callback thread.
   1090 	 */
   1091 
   1092 	sav = key_lookup_sa_bysaidx(saidx);
   1093 	if (sav != NULL) {
   1094 		*ret = sav;
   1095 		return 0;
   1096 	}
   1097 
   1098 	/* there is no SA */
   1099 	error = key_acquire(saidx, isr->sp, M_NOWAIT);
   1100 	if (error != 0) {
   1101 		/* XXX What should I do ? */
   1102 		IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
   1103 		    error);
   1104 		return error;
   1105 	}
   1106 
   1107 	if (level != IPSEC_LEVEL_REQUIRE) {
   1108 		/* XXX sigh, the interface to this routine is botched */
   1109 		*ret = NULL;
   1110 		return 0;
   1111 	} else {
   1112 		return ENOENT;
   1113 	}
   1114 }
   1115 
   1116 /*
   1117  * looking up a SA for policy entry from SAD.
   1118  * NOTE: searching SAD of aliving state.
   1119  * OUT:	NULL:	not found.
   1120  *	others:	found and return the pointer.
   1121  */
   1122 struct secasvar *
   1123 key_lookup_sa_bysaidx(const struct secasindex *saidx)
   1124 {
   1125 	struct secashead *sah;
   1126 	struct secasvar *sav = NULL;
   1127 	u_int stateidx, state;
   1128 	const u_int *saorder_state_valid;
   1129 	int arraysize;
   1130 	int s;
   1131 
   1132 	s = pserialize_read_enter();
   1133 	sah = key_getsah(saidx, CMP_MODE_REQID);
   1134 	if (sah == NULL)
   1135 		goto out;
   1136 
   1137 	/*
   1138 	 * search a valid state list for outbound packet.
   1139 	 * This search order is important.
   1140 	 */
   1141 	if (key_prefered_oldsa) {
   1142 		saorder_state_valid = saorder_state_valid_prefer_old;
   1143 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
   1144 	} else {
   1145 		saorder_state_valid = saorder_state_valid_prefer_new;
   1146 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
   1147 	}
   1148 
   1149 	/* search valid state */
   1150 	for (stateidx = 0;
   1151 	     stateidx < arraysize;
   1152 	     stateidx++) {
   1153 
   1154 		state = saorder_state_valid[stateidx];
   1155 
   1156 		if (key_prefered_oldsa)
   1157 			sav = SAVLIST_READER_FIRST(sah, state);
   1158 		else {
   1159 			/* XXX need O(1) lookup */
   1160 			struct secasvar *last = NULL;
   1161 
   1162 			SAVLIST_READER_FOREACH(sav, sah, state)
   1163 				last = sav;
   1164 			sav = last;
   1165 		}
   1166 		if (sav != NULL) {
   1167 			KEY_SA_REF(sav);
   1168 			KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1169 			    "DP cause refcnt++:%d SA:%p\n",
   1170 			    key_sa_refcnt(sav), sav);
   1171 			break;
   1172 		}
   1173 	}
   1174 out:
   1175 	pserialize_read_exit(s);
   1176 
   1177 	return sav;
   1178 }
   1179 
   1180 #if 0
   1181 static void
   1182 key_sendup_message_delete(struct secasvar *sav)
   1183 {
   1184 	struct mbuf *m, *result = 0;
   1185 	uint8_t satype;
   1186 
   1187 	satype = key_proto2satype(sav->sah->saidx.proto);
   1188 	if (satype == 0)
   1189 		goto msgfail;
   1190 
   1191 	m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
   1192 	if (m == NULL)
   1193 		goto msgfail;
   1194 	result = m;
   1195 
   1196 	/* set sadb_address for saidx's. */
   1197 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
   1198 	    _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY);
   1199 	if (m == NULL)
   1200 		goto msgfail;
   1201 	m_cat(result, m);
   1202 
   1203 	/* set sadb_address for saidx's. */
   1204 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
   1205 	    _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY);
   1206 	if (m == NULL)
   1207 		goto msgfail;
   1208 	m_cat(result, m);
   1209 
   1210 	/* create SA extension */
   1211 	m = key_setsadbsa(sav);
   1212 	if (m == NULL)
   1213 		goto msgfail;
   1214 	m_cat(result, m);
   1215 
   1216 	if (result->m_len < sizeof(struct sadb_msg)) {
   1217 		result = m_pullup(result, sizeof(struct sadb_msg));
   1218 		if (result == NULL)
   1219 			goto msgfail;
   1220 	}
   1221 
   1222 	result->m_pkthdr.len = 0;
   1223 	for (m = result; m; m = m->m_next)
   1224 		result->m_pkthdr.len += m->m_len;
   1225 	mtod(result, struct sadb_msg *)->sadb_msg_len =
   1226 	    PFKEY_UNIT64(result->m_pkthdr.len);
   1227 
   1228 	key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
   1229 	result = NULL;
   1230 msgfail:
   1231 	if (result)
   1232 		m_freem(result);
   1233 }
   1234 #endif
   1235 
   1236 /*
   1237  * allocating a usable SA entry for a *INBOUND* packet.
   1238  * Must call key_freesav() later.
   1239  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
   1240  *	NULL:		not found, or error occurred.
   1241  *
   1242  * In the comparison, no source address is used--for RFC2401 conformance.
   1243  * To quote, from section 4.1:
   1244  *	A security association is uniquely identified by a triple consisting
   1245  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
   1246  *	security protocol (AH or ESP) identifier.
   1247  * Note that, however, we do need to keep source address in IPsec SA.
   1248  * IKE specification and PF_KEY specification do assume that we
   1249  * keep source address in IPsec SA.  We see a tricky situation here.
   1250  *
   1251  * sport and dport are used for NAT-T. network order is always used.
   1252  */
   1253 struct secasvar *
   1254 key_lookup_sa(
   1255 	const union sockaddr_union *dst,
   1256 	u_int proto,
   1257 	u_int32_t spi,
   1258 	u_int16_t sport,
   1259 	u_int16_t dport,
   1260 	const char* where, int tag)
   1261 {
   1262 	struct secasvar *sav;
   1263 	int chkport;
   1264 	int s;
   1265 
   1266 	int must_check_spi = 1;
   1267 	int must_check_alg = 0;
   1268 	u_int16_t cpi = 0;
   1269 	u_int8_t algo = 0;
   1270 	uint32_t hash_key = spi;
   1271 
   1272 	if ((sport != 0) && (dport != 0))
   1273 		chkport = PORT_STRICT;
   1274 	else
   1275 		chkport = PORT_NONE;
   1276 
   1277 	KASSERT(dst != NULL);
   1278 
   1279 	/*
   1280 	 * XXX IPCOMP case
   1281 	 * We use cpi to define spi here. In the case where cpi <=
   1282 	 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
   1283 	 * the real spi. In this case, don't check the spi but check the
   1284 	 * algorithm
   1285 	 */
   1286 
   1287 	if (proto == IPPROTO_IPCOMP) {
   1288 		u_int32_t tmp;
   1289 		tmp = ntohl(spi);
   1290 		cpi = (u_int16_t) tmp;
   1291 		if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
   1292 			algo = (u_int8_t) cpi;
   1293 			hash_key = algo;
   1294 			must_check_spi = 0;
   1295 			must_check_alg = 1;
   1296 		}
   1297 	}
   1298 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1299 	    "DP from %s:%u check_spi=%d(%#x), check_alg=%d(%d), proto=%d\n",
   1300 	    where, tag,
   1301 	    must_check_spi, ntohl(spi),
   1302 	    must_check_alg, algo,
   1303 	    proto);
   1304 
   1305 
   1306 	/*
   1307 	 * searching SAD.
   1308 	 * XXX: to be checked internal IP header somewhere.  Also when
   1309 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
   1310 	 * encrypted so we can't check internal IP header.
   1311 	 */
   1312 	s = pserialize_read_enter();
   1313 	SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) {
   1314 		KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   1315 		    "try match spi %#x, %#x\n",
   1316 		    ntohl(spi), ntohl(sav->spi));
   1317 
   1318 		/* do not return entries w/ unusable state */
   1319 		if (!SADB_SASTATE_USABLE_P(sav)) {
   1320 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   1321 			    "bad state %d\n", sav->state);
   1322 			continue;
   1323 		}
   1324 		if (proto != sav->sah->saidx.proto) {
   1325 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   1326 			    "proto fail %d != %d\n",
   1327 			    proto, sav->sah->saidx.proto);
   1328 			continue;
   1329 		}
   1330 		if (must_check_spi && spi != sav->spi) {
   1331 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   1332 			    "spi fail %#x != %#x\n",
   1333 			    ntohl(spi), ntohl(sav->spi));
   1334 			continue;
   1335 		}
   1336 		/* XXX only on the ipcomp case */
   1337 		if (must_check_alg && algo != sav->alg_comp) {
   1338 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   1339 			    "algo fail %d != %d\n",
   1340 			    algo, sav->alg_comp);
   1341 			continue;
   1342 		}
   1343 
   1344 #if 0	/* don't check src */
   1345 	/* Fix port in src->sa */
   1346 
   1347 		/* check src address */
   1348 		if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
   1349 			continue;
   1350 #endif
   1351 		/* fix port of dst address XXX*/
   1352 		key_porttosaddr(__UNCONST(dst), dport);
   1353 		/* check dst address */
   1354 		if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
   1355 			continue;
   1356 		key_sa_ref(sav, where, tag);
   1357 		goto done;
   1358 	}
   1359 	sav = NULL;
   1360 done:
   1361 	pserialize_read_exit(s);
   1362 
   1363 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1364 	    "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
   1365 	return sav;
   1366 }
   1367 
   1368 static void
   1369 key_validate_savlist(const struct secashead *sah, const u_int state)
   1370 {
   1371 #ifdef DEBUG
   1372 	struct secasvar *sav, *next;
   1373 	int s;
   1374 
   1375 	/*
   1376 	 * The list should be sorted by lft_c->sadb_lifetime_addtime
   1377 	 * in ascending order.
   1378 	 */
   1379 	s = pserialize_read_enter();
   1380 	SAVLIST_READER_FOREACH(sav, sah, state) {
   1381 		next = SAVLIST_READER_NEXT(sav);
   1382 		if (next != NULL &&
   1383 		    sav->lft_c != NULL && next->lft_c != NULL) {
   1384 			KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
   1385 			    next->lft_c->sadb_lifetime_addtime,
   1386 			    "savlist is not sorted: sah=%p, state=%d, "
   1387 			    "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
   1388 			    sav->lft_c->sadb_lifetime_addtime,
   1389 			    next->lft_c->sadb_lifetime_addtime);
   1390 		}
   1391 	}
   1392 	pserialize_read_exit(s);
   1393 #endif
   1394 }
   1395 
   1396 void
   1397 key_init_sp(struct secpolicy *sp)
   1398 {
   1399 
   1400 	ASSERT_SLEEPABLE();
   1401 
   1402 	sp->state = IPSEC_SPSTATE_ALIVE;
   1403 	if (sp->policy == IPSEC_POLICY_IPSEC)
   1404 		KASSERT(sp->req != NULL);
   1405 	localcount_init(&sp->localcount);
   1406 	SPLIST_ENTRY_INIT(sp);
   1407 }
   1408 
   1409 /*
   1410  * Must be called in a pserialize read section. A held SP
   1411  * must be released by key_sp_unref after use.
   1412  */
   1413 void
   1414 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
   1415 {
   1416 
   1417 	localcount_acquire(&sp->localcount);
   1418 
   1419 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1420 	    "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
   1421 	    sp, sp->id, where, tag, key_sp_refcnt(sp));
   1422 }
   1423 
   1424 /*
   1425  * Must be called without holding key_spd.lock because the lock
   1426  * would be held in localcount_release.
   1427  */
   1428 void
   1429 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
   1430 {
   1431 
   1432 	KDASSERT(mutex_ownable(&key_spd.lock));
   1433 
   1434 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1435 	    "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
   1436 	    sp, sp->id, where, tag, key_sp_refcnt(sp));
   1437 
   1438 	localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
   1439 }
   1440 
   1441 static void
   1442 key_init_sav(struct secasvar *sav)
   1443 {
   1444 
   1445 	ASSERT_SLEEPABLE();
   1446 
   1447 	localcount_init(&sav->localcount);
   1448 	SAVLIST_ENTRY_INIT(sav);
   1449 	SAVLUT_ENTRY_INIT(sav);
   1450 }
   1451 
   1452 u_int
   1453 key_sa_refcnt(const struct secasvar *sav)
   1454 {
   1455 
   1456 	/* FIXME */
   1457 	return 0;
   1458 }
   1459 
   1460 void
   1461 key_sa_ref(struct secasvar *sav, const char* where, int tag)
   1462 {
   1463 
   1464 	localcount_acquire(&sav->localcount);
   1465 
   1466 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1467 	    "DP cause refcnt++: SA:%p from %s:%u\n",
   1468 	    sav, where, tag);
   1469 }
   1470 
   1471 void
   1472 key_sa_unref(struct secasvar *sav, const char* where, int tag)
   1473 {
   1474 
   1475 	KDASSERT(mutex_ownable(&key_sad.lock));
   1476 
   1477 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1478 	    "DP cause refcnt--: SA:%p from %s:%u\n",
   1479 	    sav, where, tag);
   1480 
   1481 	localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
   1482 }
   1483 
   1484 #if 0
   1485 /*
   1486  * Must be called after calling key_lookup_sp*().
   1487  * For the packet with socket.
   1488  */
   1489 static void
   1490 key_freeso(struct socket *so)
   1491 {
   1492 	/* sanity check */
   1493 	KASSERT(so != NULL);
   1494 
   1495 	switch (so->so_proto->pr_domain->dom_family) {
   1496 #ifdef INET
   1497 	case PF_INET:
   1498 	    {
   1499 		struct inpcb *pcb = sotoinpcb(so);
   1500 
   1501 		/* Does it have a PCB ? */
   1502 		if (pcb == NULL)
   1503 			return;
   1504 
   1505 		struct inpcbpolicy *sp = pcb->inp_sp;
   1506 		key_freesp_so(&sp->sp_in);
   1507 		key_freesp_so(&sp->sp_out);
   1508 	    }
   1509 		break;
   1510 #endif
   1511 #ifdef INET6
   1512 	case PF_INET6:
   1513 	    {
   1514 #ifdef HAVE_NRL_INPCB
   1515 		struct inpcb *pcb  = sotoinpcb(so);
   1516 		struct inpcbpolicy *sp = pcb->inp_sp;
   1517 
   1518 		/* Does it have a PCB ? */
   1519 		if (pcb == NULL)
   1520 			return;
   1521 		key_freesp_so(&sp->sp_in);
   1522 		key_freesp_so(&sp->sp_out);
   1523 #else
   1524 		struct in6pcb *pcb  = sotoin6pcb(so);
   1525 
   1526 		/* Does it have a PCB ? */
   1527 		if (pcb == NULL)
   1528 			return;
   1529 		key_freesp_so(&pcb->in6p_sp->sp_in);
   1530 		key_freesp_so(&pcb->in6p_sp->sp_out);
   1531 #endif
   1532 	    }
   1533 		break;
   1534 #endif /* INET6 */
   1535 	default:
   1536 		IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
   1537 		    so->so_proto->pr_domain->dom_family);
   1538 		return;
   1539 	}
   1540 }
   1541 
   1542 static void
   1543 key_freesp_so(struct secpolicy **sp)
   1544 {
   1545 
   1546 	KASSERT(sp != NULL);
   1547 	KASSERT(*sp != NULL);
   1548 
   1549 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
   1550 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
   1551 		return;
   1552 
   1553 	KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
   1554 	    "invalid policy %u", (*sp)->policy);
   1555 	KEY_SP_UNREF(&sp);
   1556 }
   1557 #endif
   1558 
   1559 static void
   1560 key_sad_pserialize_perform(void)
   1561 {
   1562 
   1563 	KASSERT(mutex_owned(&key_sad.lock));
   1564 
   1565 	while (key_sad.psz_performing)
   1566 		cv_wait(&key_sad.cv_psz, &key_sad.lock);
   1567 	key_sad.psz_performing = true;
   1568 	mutex_exit(&key_sad.lock);
   1569 
   1570 	pserialize_perform(key_sad.psz);
   1571 
   1572 	mutex_enter(&key_sad.lock);
   1573 	key_sad.psz_performing = false;
   1574 	cv_broadcast(&key_sad.cv_psz);
   1575 }
   1576 
   1577 /*
   1578  * Remove the sav from the savlist of its sah and wait for references to the sav
   1579  * to be released. key_sad.lock must be held.
   1580  */
   1581 static void
   1582 key_unlink_sav(struct secasvar *sav)
   1583 {
   1584 
   1585 	KASSERT(mutex_owned(&key_sad.lock));
   1586 
   1587 	SAVLIST_WRITER_REMOVE(sav);
   1588 	SAVLUT_WRITER_REMOVE(sav);
   1589 
   1590 	KDASSERT(mutex_ownable(softnet_lock));
   1591 	key_sad_pserialize_perform();
   1592 
   1593 	localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
   1594 }
   1595 
   1596 /*
   1597  * Destroy an sav where the sav must be unlinked from an sah
   1598  * by say key_unlink_sav.
   1599  */
   1600 static void
   1601 key_destroy_sav(struct secasvar *sav)
   1602 {
   1603 
   1604 	ASSERT_SLEEPABLE();
   1605 
   1606 	localcount_fini(&sav->localcount);
   1607 	SAVLIST_ENTRY_DESTROY(sav);
   1608 
   1609 	key_delsav(sav);
   1610 }
   1611 
   1612 /*
   1613  * Wait for references of a passed sav to go away.
   1614  */
   1615 static void
   1616 key_wait_sav(struct secasvar *sav)
   1617 {
   1618 
   1619 	ASSERT_SLEEPABLE();
   1620 
   1621 	mutex_enter(&key_sad.lock);
   1622 	KASSERT(sav->state == SADB_SASTATE_DEAD);
   1623 	KDASSERT(mutex_ownable(softnet_lock));
   1624 	key_sad_pserialize_perform();
   1625 	localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
   1626 	mutex_exit(&key_sad.lock);
   1627 }
   1628 
   1629 /* %%% SPD management */
   1630 /*
   1631  * free security policy entry.
   1632  */
   1633 static void
   1634 key_destroy_sp(struct secpolicy *sp)
   1635 {
   1636 
   1637 	SPLIST_ENTRY_DESTROY(sp);
   1638 	localcount_fini(&sp->localcount);
   1639 
   1640 	key_free_sp(sp);
   1641 
   1642 	key_update_used();
   1643 }
   1644 
   1645 void
   1646 key_free_sp(struct secpolicy *sp)
   1647 {
   1648 	struct ipsecrequest *isr = sp->req, *nextisr;
   1649 
   1650 	while (isr != NULL) {
   1651 		nextisr = isr->next;
   1652 		kmem_free(isr, sizeof(*isr));
   1653 		isr = nextisr;
   1654 	}
   1655 
   1656 	kmem_free(sp, sizeof(*sp));
   1657 }
   1658 
   1659 void
   1660 key_socksplist_add(struct secpolicy *sp)
   1661 {
   1662 
   1663 	mutex_enter(&key_spd.lock);
   1664 	PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
   1665 	mutex_exit(&key_spd.lock);
   1666 
   1667 	key_update_used();
   1668 }
   1669 
   1670 /*
   1671  * search SPD
   1672  * OUT:	NULL	: not found
   1673  *	others	: found, pointer to a SP.
   1674  */
   1675 static struct secpolicy *
   1676 key_getsp(const struct secpolicyindex *spidx)
   1677 {
   1678 	struct secpolicy *sp;
   1679 	int s;
   1680 
   1681 	KASSERT(spidx != NULL);
   1682 
   1683 	s = pserialize_read_enter();
   1684 	SPLIST_READER_FOREACH(sp, spidx->dir) {
   1685 		if (sp->state == IPSEC_SPSTATE_DEAD)
   1686 			continue;
   1687 		if (key_spidx_match_exactly(spidx, &sp->spidx)) {
   1688 			KEY_SP_REF(sp);
   1689 			pserialize_read_exit(s);
   1690 			return sp;
   1691 		}
   1692 	}
   1693 	pserialize_read_exit(s);
   1694 
   1695 	return NULL;
   1696 }
   1697 
   1698 /*
   1699  * search SPD and remove found SP
   1700  * OUT:	NULL	: not found
   1701  *	others	: found, pointer to a SP.
   1702  */
   1703 static struct secpolicy *
   1704 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel)
   1705 {
   1706 	struct secpolicy *sp = NULL;
   1707 
   1708 	mutex_enter(&key_spd.lock);
   1709 	SPLIST_WRITER_FOREACH(sp, spidx->dir) {
   1710 		KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u",
   1711 		    sp->state);
   1712 		/*
   1713 		 * SPs created in kernel(e.g. ipsec(4) I/F) must not be
   1714 		 * removed by userland programs.
   1715 		 */
   1716 		if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL)
   1717 			continue;
   1718 		if (key_spidx_match_exactly(spidx, &sp->spidx)) {
   1719 			key_unlink_sp(sp);
   1720 			goto out;
   1721 		}
   1722 	}
   1723 	sp = NULL;
   1724 out:
   1725 	mutex_exit(&key_spd.lock);
   1726 
   1727 	return sp;
   1728 }
   1729 
   1730 /*
   1731  * get SP by index.
   1732  * OUT:	NULL	: not found
   1733  *	others	: found, pointer to a SP.
   1734  */
   1735 static struct secpolicy *
   1736 key_getspbyid(u_int32_t id)
   1737 {
   1738 	struct secpolicy *sp;
   1739 	int s;
   1740 
   1741 	s = pserialize_read_enter();
   1742 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
   1743 		if (sp->state == IPSEC_SPSTATE_DEAD)
   1744 			continue;
   1745 		if (sp->id == id) {
   1746 			KEY_SP_REF(sp);
   1747 			goto out;
   1748 		}
   1749 	}
   1750 
   1751 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
   1752 		if (sp->state == IPSEC_SPSTATE_DEAD)
   1753 			continue;
   1754 		if (sp->id == id) {
   1755 			KEY_SP_REF(sp);
   1756 			goto out;
   1757 		}
   1758 	}
   1759 out:
   1760 	pserialize_read_exit(s);
   1761 	return sp;
   1762 }
   1763 
   1764 /*
   1765  * get SP by index, remove and return it.
   1766  * OUT:	NULL	: not found
   1767  *	others	: found, pointer to a SP.
   1768  */
   1769 static struct secpolicy *
   1770 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel)
   1771 {
   1772 	struct secpolicy *sp;
   1773 
   1774 	mutex_enter(&key_spd.lock);
   1775 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
   1776 		KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u",
   1777 		    sp->state);
   1778 		/*
   1779 		 * SPs created in kernel(e.g. ipsec(4) I/F) must not be
   1780 		 * removed by userland programs.
   1781 		 */
   1782 		if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL)
   1783 			continue;
   1784 		if (sp->id == id)
   1785 			goto out;
   1786 	}
   1787 
   1788 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
   1789 		KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u",
   1790 		    sp->state);
   1791 		/*
   1792 		 * SPs created in kernel(e.g. ipsec(4) I/F) must not be
   1793 		 * removed by userland programs.
   1794 		 */
   1795 		if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL)
   1796 			continue;
   1797 		if (sp->id == id)
   1798 			goto out;
   1799 	}
   1800 out:
   1801 	if (sp != NULL)
   1802 		key_unlink_sp(sp);
   1803 	mutex_exit(&key_spd.lock);
   1804 	return sp;
   1805 }
   1806 
   1807 struct secpolicy *
   1808 key_newsp(const char* where, int tag)
   1809 {
   1810 	struct secpolicy *newsp = NULL;
   1811 
   1812 	newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
   1813 
   1814 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   1815 	    "DP from %s:%u return SP:%p\n", where, tag, newsp);
   1816 	return newsp;
   1817 }
   1818 
   1819 /*
   1820  * create secpolicy structure from sadb_x_policy structure.
   1821  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
   1822  * so must be set properly later.
   1823  */
   1824 static struct secpolicy *
   1825 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error,
   1826     bool from_kernel)
   1827 {
   1828 	struct secpolicy *newsp;
   1829 
   1830 	KASSERT(!cpu_softintr_p());
   1831 	KASSERT(xpl0 != NULL);
   1832 	KASSERT(len >= sizeof(*xpl0));
   1833 
   1834 	if (len != PFKEY_EXTLEN(xpl0)) {
   1835 		IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
   1836 		*error = EINVAL;
   1837 		return NULL;
   1838 	}
   1839 
   1840 	newsp = KEY_NEWSP();
   1841 	if (newsp == NULL) {
   1842 		*error = ENOBUFS;
   1843 		return NULL;
   1844 	}
   1845 
   1846 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
   1847 	newsp->policy = xpl0->sadb_x_policy_type;
   1848 
   1849 	/* check policy */
   1850 	switch (xpl0->sadb_x_policy_type) {
   1851 	case IPSEC_POLICY_DISCARD:
   1852 	case IPSEC_POLICY_NONE:
   1853 	case IPSEC_POLICY_ENTRUST:
   1854 	case IPSEC_POLICY_BYPASS:
   1855 		newsp->req = NULL;
   1856 		*error = 0;
   1857 		return newsp;
   1858 
   1859 	case IPSEC_POLICY_IPSEC:
   1860 		/* Continued */
   1861 		break;
   1862 	default:
   1863 		IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
   1864 		key_free_sp(newsp);
   1865 		*error = EINVAL;
   1866 		return NULL;
   1867 	}
   1868 
   1869 	/* IPSEC_POLICY_IPSEC */
   1870     {
   1871 	int tlen;
   1872 	const struct sadb_x_ipsecrequest *xisr;
   1873 	uint16_t xisr_reqid;
   1874 	struct ipsecrequest **p_isr = &newsp->req;
   1875 
   1876 	/* validity check */
   1877 	if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
   1878 		IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
   1879 		*error = EINVAL;
   1880 		goto free_exit;
   1881 	}
   1882 
   1883 	tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
   1884 	xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
   1885 
   1886 	while (tlen > 0) {
   1887 		/* length check */
   1888 		if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
   1889 			IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
   1890 			*error = EINVAL;
   1891 			goto free_exit;
   1892 		}
   1893 
   1894 		/* allocate request buffer */
   1895 		*p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
   1896 
   1897 		/* set values */
   1898 		(*p_isr)->next = NULL;
   1899 
   1900 		switch (xisr->sadb_x_ipsecrequest_proto) {
   1901 		case IPPROTO_ESP:
   1902 		case IPPROTO_AH:
   1903 		case IPPROTO_IPCOMP:
   1904 			break;
   1905 		default:
   1906 			IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
   1907 			    xisr->sadb_x_ipsecrequest_proto);
   1908 			*error = EPROTONOSUPPORT;
   1909 			goto free_exit;
   1910 		}
   1911 		(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
   1912 
   1913 		switch (xisr->sadb_x_ipsecrequest_mode) {
   1914 		case IPSEC_MODE_TRANSPORT:
   1915 		case IPSEC_MODE_TUNNEL:
   1916 			break;
   1917 		case IPSEC_MODE_ANY:
   1918 		default:
   1919 			IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
   1920 			    xisr->sadb_x_ipsecrequest_mode);
   1921 			*error = EINVAL;
   1922 			goto free_exit;
   1923 		}
   1924 		(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
   1925 
   1926 		switch (xisr->sadb_x_ipsecrequest_level) {
   1927 		case IPSEC_LEVEL_DEFAULT:
   1928 		case IPSEC_LEVEL_USE:
   1929 		case IPSEC_LEVEL_REQUIRE:
   1930 			break;
   1931 		case IPSEC_LEVEL_UNIQUE:
   1932 			xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
   1933 			/* validity check */
   1934 			/*
   1935 			 * case 1) from_kernel == false
   1936 			 * That means the request comes from userland.
   1937 			 * If range violation of reqid, kernel will
   1938 			 * update it, don't refuse it.
   1939 			 *
   1940 			 * case 2) from_kernel == true
   1941 			 * That means the request comes from kernel
   1942 			 * (e.g. ipsec(4) I/F).
   1943 			 * Use thre requested reqid to avoid inconsistency
   1944 			 * between kernel's reqid and the reqid in pf_key
   1945 			 * message sent to userland. The pf_key message is
   1946 			 * built by diverting request mbuf.
   1947 			 */
   1948 			if (!from_kernel &&
   1949 			    xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
   1950 				IPSECLOG(LOG_DEBUG,
   1951 				    "reqid=%d range "
   1952 				    "violation, updated by kernel.\n",
   1953 				    xisr_reqid);
   1954 				xisr_reqid = 0;
   1955 			}
   1956 
   1957 			/* allocate new reqid id if reqid is zero. */
   1958 			if (xisr_reqid == 0) {
   1959 				u_int16_t reqid = key_newreqid();
   1960 				if (reqid == 0) {
   1961 					*error = ENOBUFS;
   1962 					goto free_exit;
   1963 				}
   1964 				(*p_isr)->saidx.reqid = reqid;
   1965 			} else {
   1966 			/* set it for manual keying. */
   1967 				(*p_isr)->saidx.reqid = xisr_reqid;
   1968 			}
   1969 			break;
   1970 
   1971 		default:
   1972 			IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
   1973 			    xisr->sadb_x_ipsecrequest_level);
   1974 			*error = EINVAL;
   1975 			goto free_exit;
   1976 		}
   1977 		(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
   1978 
   1979 		/* set IP addresses if there */
   1980 		/*
   1981 		 * NOTE:
   1982 		 * MOBIKE Extensions for PF_KEY draft says:
   1983 		 *     If tunnel mode is specified, the sadb_x_ipsecrequest
   1984 		 *     structure is followed by two sockaddr structures that
   1985 		 *     define the tunnel endpoint addresses.  In the case that
   1986 		 *     transport mode is used, no additional addresses are
   1987 		 *     specified.
   1988 		 * see: https://tools.ietf.org/html/draft-schilcher-mobike-pfkey-extension-01
   1989 		 *
   1990 		 * And then, the IP addresses will be set by
   1991 		 * ipsec_fill_saidx_bymbuf() from packet in transport mode.
   1992 		 * This behavior is used by NAT-T enabled ipsecif(4).
   1993 		 */
   1994 		if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
   1995 			const struct sockaddr *paddr;
   1996 
   1997 			paddr = (const struct sockaddr *)(xisr + 1);
   1998 
   1999 			/* validity check */
   2000 			if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
   2001 				IPSECLOG(LOG_DEBUG, "invalid request "
   2002 				    "address length.\n");
   2003 				*error = EINVAL;
   2004 				goto free_exit;
   2005 			}
   2006 			memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
   2007 
   2008 			paddr = (const struct sockaddr *)((const char *)paddr
   2009 			    + paddr->sa_len);
   2010 
   2011 			/* validity check */
   2012 			if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
   2013 				IPSECLOG(LOG_DEBUG, "invalid request "
   2014 				    "address length.\n");
   2015 				*error = EINVAL;
   2016 				goto free_exit;
   2017 			}
   2018 			memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
   2019 		}
   2020 
   2021 		(*p_isr)->sp = newsp;
   2022 
   2023 		/* initialization for the next. */
   2024 		p_isr = &(*p_isr)->next;
   2025 		tlen -= xisr->sadb_x_ipsecrequest_len;
   2026 
   2027 		/* validity check */
   2028 		if (tlen < 0) {
   2029 			IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
   2030 			*error = EINVAL;
   2031 			goto free_exit;
   2032 		}
   2033 
   2034 		xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
   2035 		    xisr->sadb_x_ipsecrequest_len);
   2036 	}
   2037     }
   2038 
   2039 	*error = 0;
   2040 	return newsp;
   2041 
   2042 free_exit:
   2043 	key_free_sp(newsp);
   2044 	return NULL;
   2045 }
   2046 
   2047 struct secpolicy *
   2048 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
   2049 {
   2050 
   2051 	return _key_msg2sp(xpl0, len, error, false);
   2052 }
   2053 
   2054 u_int16_t
   2055 key_newreqid(void)
   2056 {
   2057 	static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
   2058 
   2059 	auto_reqid = (auto_reqid == 0xffff ?
   2060 	    IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
   2061 
   2062 	/* XXX should be unique check */
   2063 
   2064 	return auto_reqid;
   2065 }
   2066 
   2067 /*
   2068  * copy secpolicy struct to sadb_x_policy structure indicated.
   2069  */
   2070 struct mbuf *
   2071 key_sp2msg(const struct secpolicy *sp, int mflag)
   2072 {
   2073 	struct sadb_x_policy *xpl;
   2074 	int tlen;
   2075 	char *p;
   2076 	struct mbuf *m;
   2077 
   2078 	KASSERT(sp != NULL);
   2079 
   2080 	tlen = key_getspreqmsglen(sp);
   2081 
   2082 	m = key_alloc_mbuf(tlen, mflag);
   2083 	if (!m || m->m_next) {	/*XXX*/
   2084 		if (m)
   2085 			m_freem(m);
   2086 		return NULL;
   2087 	}
   2088 
   2089 	m->m_len = tlen;
   2090 	m->m_next = NULL;
   2091 	xpl = mtod(m, struct sadb_x_policy *);
   2092 	memset(xpl, 0, tlen);
   2093 
   2094 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
   2095 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
   2096 	xpl->sadb_x_policy_type = sp->policy;
   2097 	xpl->sadb_x_policy_dir = sp->spidx.dir;
   2098 	xpl->sadb_x_policy_id = sp->id;
   2099 	if (sp->origin == IPSEC_SPORIGIN_KERNEL)
   2100 		xpl->sadb_x_policy_flags |= IPSEC_POLICY_FLAG_ORIGIN_KERNEL;
   2101 	p = (char *)xpl + sizeof(*xpl);
   2102 
   2103 	/* if is the policy for ipsec ? */
   2104 	if (sp->policy == IPSEC_POLICY_IPSEC) {
   2105 		struct sadb_x_ipsecrequest *xisr;
   2106 		struct ipsecrequest *isr;
   2107 
   2108 		for (isr = sp->req; isr != NULL; isr = isr->next) {
   2109 
   2110 			xisr = (struct sadb_x_ipsecrequest *)p;
   2111 
   2112 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
   2113 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
   2114 			xisr->sadb_x_ipsecrequest_level = isr->level;
   2115 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
   2116 
   2117 			p += sizeof(*xisr);
   2118 			memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
   2119 			p += isr->saidx.src.sa.sa_len;
   2120 			memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
   2121 			p += isr->saidx.src.sa.sa_len;
   2122 
   2123 			xisr->sadb_x_ipsecrequest_len =
   2124 			    PFKEY_ALIGN8(sizeof(*xisr)
   2125 			    + isr->saidx.src.sa.sa_len
   2126 			    + isr->saidx.dst.sa.sa_len);
   2127 		}
   2128 	}
   2129 
   2130 	return m;
   2131 }
   2132 
   2133 /*
   2134  * m will not be freed nor modified. It never return NULL.
   2135  * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have
   2136  * contiguous length at least sizeof(struct sadb_msg).
   2137  */
   2138 static struct mbuf *
   2139 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
   2140 		int ndeep, int nitem, ...)
   2141 {
   2142 	va_list ap;
   2143 	int idx;
   2144 	int i;
   2145 	struct mbuf *result = NULL, *n;
   2146 	int len;
   2147 
   2148 	KASSERT(m != NULL);
   2149 	KASSERT(mhp != NULL);
   2150 	KASSERT(!cpu_softintr_p());
   2151 
   2152 	va_start(ap, nitem);
   2153 	for (i = 0; i < nitem; i++) {
   2154 		idx = va_arg(ap, int);
   2155 		KASSERT(idx >= 0);
   2156 		KASSERT(idx <= SADB_EXT_MAX);
   2157 		/* don't attempt to pull empty extension */
   2158 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
   2159 			continue;
   2160 		if (idx != SADB_EXT_RESERVED &&
   2161 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
   2162 			continue;
   2163 
   2164 		if (idx == SADB_EXT_RESERVED) {
   2165 			CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
   2166 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
   2167 			MGETHDR(n, M_WAITOK, MT_DATA);
   2168 			n->m_len = len;
   2169 			n->m_next = NULL;
   2170 			m_copydata(m, 0, sizeof(struct sadb_msg),
   2171 			    mtod(n, void *));
   2172 		} else if (i < ndeep) {
   2173 			len = mhp->extlen[idx];
   2174 			n = key_alloc_mbuf(len, M_WAITOK);
   2175 			KASSERT(n->m_next == NULL);
   2176 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
   2177 			    mtod(n, void *));
   2178 		} else {
   2179 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
   2180 			    M_WAITOK);
   2181 		}
   2182 		KASSERT(n != NULL);
   2183 
   2184 		if (result)
   2185 			m_cat(result, n);
   2186 		else
   2187 			result = n;
   2188 	}
   2189 	va_end(ap);
   2190 
   2191 	KASSERT(result != NULL);
   2192 	if ((result->m_flags & M_PKTHDR) != 0) {
   2193 		result->m_pkthdr.len = 0;
   2194 		for (n = result; n; n = n->m_next)
   2195 			result->m_pkthdr.len += n->m_len;
   2196 		KASSERT(result->m_len >= sizeof(struct sadb_msg));
   2197 	}
   2198 
   2199 	return result;
   2200 }
   2201 
   2202 /*
   2203  * The argument _sp must not overwrite until SP is created and registered
   2204  * successfully.
   2205  */
   2206 static int
   2207 key_spdadd(struct socket *so, struct mbuf *m,
   2208 	   const struct sadb_msghdr *mhp, struct secpolicy **_sp,
   2209 	   bool from_kernel)
   2210 {
   2211 	const struct sockaddr *src, *dst;
   2212 	const struct sadb_x_policy *xpl0;
   2213 	struct sadb_x_policy *xpl;
   2214 	const struct sadb_lifetime *lft = NULL;
   2215 	struct secpolicyindex spidx;
   2216 	struct secpolicy *newsp;
   2217 	int error;
   2218 	uint32_t sadb_x_policy_id;
   2219 
   2220 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   2221 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
   2222 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
   2223 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   2224 		return key_senderror(so, m, EINVAL);
   2225 	}
   2226 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   2227 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
   2228 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
   2229 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   2230 		return key_senderror(so, m, EINVAL);
   2231 	}
   2232 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
   2233 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
   2234 		    sizeof(struct sadb_lifetime)) {
   2235 			IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   2236 			return key_senderror(so, m, EINVAL);
   2237 		}
   2238 		lft = mhp->ext[SADB_EXT_LIFETIME_HARD];
   2239 	}
   2240 
   2241 	xpl0 = mhp->ext[SADB_X_EXT_POLICY];
   2242 
   2243 	/* checking the direction. */
   2244 	switch (xpl0->sadb_x_policy_dir) {
   2245 	case IPSEC_DIR_INBOUND:
   2246 	case IPSEC_DIR_OUTBOUND:
   2247 		break;
   2248 	default:
   2249 		IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
   2250 		return key_senderror(so, m, EINVAL);
   2251 	}
   2252 
   2253 	/* check policy */
   2254 	/* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
   2255 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
   2256 	    xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
   2257 		IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
   2258 		return key_senderror(so, m, EINVAL);
   2259 	}
   2260 
   2261 	/* policy requests are mandatory when action is ipsec. */
   2262 	if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
   2263 	    xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
   2264 	    mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
   2265 		IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
   2266 		return key_senderror(so, m, EINVAL);
   2267 	}
   2268 
   2269 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   2270 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   2271 
   2272 	/* sanity check on addr pair */
   2273 	if (src->sa_family != dst->sa_family)
   2274 		return key_senderror(so, m, EINVAL);
   2275 	if (src->sa_len != dst->sa_len)
   2276 		return key_senderror(so, m, EINVAL);
   2277 
   2278 	key_init_spidx_bymsghdr(&spidx, mhp);
   2279 
   2280 	/*
   2281 	 * checking there is SP already or not.
   2282 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
   2283 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
   2284 	 * then error.
   2285 	 */
   2286     {
   2287 	struct secpolicy *sp;
   2288 
   2289 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
   2290 		sp = key_lookup_and_remove_sp(&spidx, from_kernel);
   2291 		if (sp != NULL)
   2292 			key_destroy_sp(sp);
   2293 	} else {
   2294 		sp = key_getsp(&spidx);
   2295 		if (sp != NULL) {
   2296 			KEY_SP_UNREF(&sp);
   2297 			IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
   2298 			return key_senderror(so, m, EEXIST);
   2299 		}
   2300 	}
   2301     }
   2302 
   2303 	/* allocation new SP entry */
   2304 	newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel);
   2305 	if (newsp == NULL) {
   2306 		return key_senderror(so, m, error);
   2307 	}
   2308 
   2309 	newsp->id = key_getnewspid();
   2310 	if (newsp->id == 0) {
   2311 		kmem_free(newsp, sizeof(*newsp));
   2312 		return key_senderror(so, m, ENOBUFS);
   2313 	}
   2314 
   2315 	newsp->spidx = spidx;
   2316 	newsp->created = time_uptime;
   2317 	newsp->lastused = newsp->created;
   2318 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
   2319 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
   2320 	if (from_kernel)
   2321 		newsp->origin = IPSEC_SPORIGIN_KERNEL;
   2322 	else
   2323 		newsp->origin = IPSEC_SPORIGIN_USER;
   2324 
   2325 	key_init_sp(newsp);
   2326 	if (from_kernel)
   2327 		KEY_SP_REF(newsp);
   2328 
   2329 	sadb_x_policy_id = newsp->id;
   2330 
   2331 	if (_sp != NULL)
   2332 		*_sp = newsp;
   2333 
   2334 	mutex_enter(&key_spd.lock);
   2335 	SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
   2336 	mutex_exit(&key_spd.lock);
   2337 	/*
   2338 	 * We don't have a reference to newsp, so we must not touch newsp from
   2339 	 * now on.  If you want to do, you must take a reference beforehand.
   2340 	 */
   2341 	newsp = NULL;
   2342 
   2343 #ifdef notyet
   2344 	/* delete the entry in key_misc.spacqlist */
   2345 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
   2346 		struct secspacq *spacq = key_getspacq(&spidx);
   2347 		if (spacq != NULL) {
   2348 			/* reset counter in order to deletion by timehandler. */
   2349 			spacq->created = time_uptime;
   2350 			spacq->count = 0;
   2351 		}
   2352     	}
   2353 #endif
   2354 
   2355 	/* Invalidate all cached SPD pointers in the PCBs. */
   2356 	ipsec_invalpcbcacheall();
   2357 
   2358 #if defined(GATEWAY)
   2359 	/* Invalidate the ipflow cache, as well. */
   2360 	ipflow_invalidate_all(0);
   2361 #ifdef INET6
   2362 	if (in6_present)
   2363 		ip6flow_invalidate_all(0);
   2364 #endif /* INET6 */
   2365 #endif /* GATEWAY */
   2366 
   2367 	key_update_used();
   2368 
   2369     {
   2370 	struct mbuf *n, *mpolicy;
   2371 	int off;
   2372 
   2373 	/* create new sadb_msg to reply. */
   2374 	if (lft) {
   2375 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
   2376 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
   2377 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
   2378 	} else {
   2379 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
   2380 		    SADB_X_EXT_POLICY,
   2381 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
   2382 	}
   2383 
   2384 	key_fill_replymsg(n, 0);
   2385 	off = 0;
   2386 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
   2387 	    sizeof(*xpl), &off);
   2388 	if (mpolicy == NULL) {
   2389 		/* n is already freed */
   2390 		/*
   2391 		 * valid sp has been created, so we does not overwrite _sp
   2392 		 * NULL here. let caller decide to use the sp or not.
   2393 		 */
   2394 		return key_senderror(so, m, ENOBUFS);
   2395 	}
   2396 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
   2397 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
   2398 		m_freem(n);
   2399 		/* ditto */
   2400 		return key_senderror(so, m, EINVAL);
   2401 	}
   2402 
   2403 	xpl->sadb_x_policy_id = sadb_x_policy_id;
   2404 
   2405 	m_freem(m);
   2406 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
   2407     }
   2408 }
   2409 
   2410 /*
   2411  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
   2412  * add an entry to SP database, when received
   2413  *   <base, address(SD), (lifetime(H),) policy>
   2414  * from the user(?).
   2415  * Adding to SP database,
   2416  * and send
   2417  *   <base, address(SD), (lifetime(H),) policy>
   2418  * to the socket which was send.
   2419  *
   2420  * SPDADD set a unique policy entry.
   2421  * SPDSETIDX like SPDADD without a part of policy requests.
   2422  * SPDUPDATE replace a unique policy entry.
   2423  *
   2424  * m will always be freed.
   2425  */
   2426 static int
   2427 key_api_spdadd(struct socket *so, struct mbuf *m,
   2428 	       const struct sadb_msghdr *mhp)
   2429 {
   2430 
   2431 	return key_spdadd(so, m, mhp, NULL, false);
   2432 }
   2433 
   2434 struct secpolicy *
   2435 key_kpi_spdadd(struct mbuf *m)
   2436 {
   2437 	struct sadb_msghdr mh;
   2438 	int error;
   2439 	struct secpolicy *sp = NULL;
   2440 
   2441 	error = key_align(m, &mh);
   2442 	if (error)
   2443 		return NULL;
   2444 
   2445 	error = key_spdadd(NULL, m, &mh, &sp, true);
   2446 	if (error) {
   2447 		/*
   2448 		 * Currently, when key_spdadd() cannot send a PFKEY message
   2449 		 * which means SP has been created, key_spdadd() returns error
   2450 		 * although SP is created successfully.
   2451 		 * Kernel components would not care PFKEY messages, so return
   2452 		 * the "sp" regardless of error code. key_spdadd() overwrites
   2453 		 * the argument only if SP  is created successfully.
   2454 		 */
   2455 	}
   2456 	return sp;
   2457 }
   2458 
   2459 /*
   2460  * get new policy id.
   2461  * OUT:
   2462  *	0:	failure.
   2463  *	others: success.
   2464  */
   2465 static u_int32_t
   2466 key_getnewspid(void)
   2467 {
   2468 	u_int32_t newid = 0;
   2469 	int count = key_spi_trycnt;	/* XXX */
   2470 	struct secpolicy *sp;
   2471 
   2472 	/* when requesting to allocate spi ranged */
   2473 	while (count--) {
   2474 		newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
   2475 
   2476 		sp = key_getspbyid(newid);
   2477 		if (sp == NULL)
   2478 			break;
   2479 
   2480 		KEY_SP_UNREF(&sp);
   2481 	}
   2482 
   2483 	if (count == 0 || newid == 0) {
   2484 		IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
   2485 		return 0;
   2486 	}
   2487 
   2488 	return newid;
   2489 }
   2490 
   2491 /*
   2492  * SADB_SPDDELETE processing
   2493  * receive
   2494  *   <base, address(SD), policy(*)>
   2495  * from the user(?), and set SADB_SASTATE_DEAD,
   2496  * and send,
   2497  *   <base, address(SD), policy(*)>
   2498  * to the ikmpd.
   2499  * policy(*) including direction of policy.
   2500  *
   2501  * m will always be freed.
   2502  */
   2503 static int
   2504 key_api_spddelete(struct socket *so, struct mbuf *m,
   2505               const struct sadb_msghdr *mhp)
   2506 {
   2507 	struct sadb_x_policy *xpl0;
   2508 	struct secpolicyindex spidx;
   2509 	struct secpolicy *sp;
   2510 
   2511 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   2512 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
   2513 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
   2514 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   2515 		return key_senderror(so, m, EINVAL);
   2516 	}
   2517 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   2518 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
   2519 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
   2520 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   2521 		return key_senderror(so, m, EINVAL);
   2522 	}
   2523 
   2524 	xpl0 = mhp->ext[SADB_X_EXT_POLICY];
   2525 
   2526 	/* checking the direction. */
   2527 	switch (xpl0->sadb_x_policy_dir) {
   2528 	case IPSEC_DIR_INBOUND:
   2529 	case IPSEC_DIR_OUTBOUND:
   2530 		break;
   2531 	default:
   2532 		IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
   2533 		return key_senderror(so, m, EINVAL);
   2534 	}
   2535 
   2536 	/* make secindex */
   2537 	key_init_spidx_bymsghdr(&spidx, mhp);
   2538 
   2539 	/* Is there SP in SPD ? */
   2540 	sp = key_lookup_and_remove_sp(&spidx, false);
   2541 	if (sp == NULL) {
   2542 		IPSECLOG(LOG_DEBUG, "no SP found.\n");
   2543 		return key_senderror(so, m, EINVAL);
   2544 	}
   2545 
   2546 	/* save policy id to buffer to be returned. */
   2547 	xpl0->sadb_x_policy_id = sp->id;
   2548 
   2549 	key_destroy_sp(sp);
   2550 
   2551 	/* We're deleting policy; no need to invalidate the ipflow cache. */
   2552 
   2553     {
   2554 	struct mbuf *n;
   2555 
   2556 	/* create new sadb_msg to reply. */
   2557 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
   2558 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
   2559 	key_fill_replymsg(n, 0);
   2560 	m_freem(m);
   2561 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
   2562     }
   2563 }
   2564 
   2565 static struct mbuf *
   2566 key_alloc_mbuf_simple(int len, int mflag)
   2567 {
   2568 	struct mbuf *n;
   2569 
   2570 	KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p()));
   2571 
   2572 	MGETHDR(n, mflag, MT_DATA);
   2573 	if (n && len > MHLEN) {
   2574 		MCLGET(n, mflag);
   2575 		if ((n->m_flags & M_EXT) == 0) {
   2576 			m_freem(n);
   2577 			n = NULL;
   2578 		}
   2579 	}
   2580 	return n;
   2581 }
   2582 
   2583 /*
   2584  * SADB_SPDDELETE2 processing
   2585  * receive
   2586  *   <base, policy(*)>
   2587  * from the user(?), and set SADB_SASTATE_DEAD,
   2588  * and send,
   2589  *   <base, policy(*)>
   2590  * to the ikmpd.
   2591  * policy(*) including direction of policy.
   2592  *
   2593  * m will always be freed.
   2594  */
   2595 static int
   2596 key_spddelete2(struct socket *so, struct mbuf *m,
   2597 	       const struct sadb_msghdr *mhp, bool from_kernel)
   2598 {
   2599 	u_int32_t id;
   2600 	struct secpolicy *sp;
   2601 	const struct sadb_x_policy *xpl;
   2602 
   2603 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
   2604 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
   2605 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   2606 		return key_senderror(so, m, EINVAL);
   2607 	}
   2608 
   2609 	xpl = mhp->ext[SADB_X_EXT_POLICY];
   2610 	id = xpl->sadb_x_policy_id;
   2611 
   2612 	/* Is there SP in SPD ? */
   2613 	sp = key_lookupbyid_and_remove_sp(id, from_kernel);
   2614 	if (sp == NULL) {
   2615 		IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
   2616 		return key_senderror(so, m, EINVAL);
   2617 	}
   2618 
   2619 	key_destroy_sp(sp);
   2620 
   2621 	/* We're deleting policy; no need to invalidate the ipflow cache. */
   2622 
   2623     {
   2624 	struct mbuf *n, *nn;
   2625 	int off, len;
   2626 
   2627 	CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
   2628 
   2629 	/* create new sadb_msg to reply. */
   2630 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
   2631 
   2632 	n = key_alloc_mbuf_simple(len, M_WAITOK);
   2633 	n->m_len = len;
   2634 	n->m_next = NULL;
   2635 	off = 0;
   2636 
   2637 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
   2638 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
   2639 
   2640 	KASSERTMSG(off == len, "length inconsistency");
   2641 
   2642 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
   2643 	    mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK);
   2644 
   2645 	n->m_pkthdr.len = 0;
   2646 	for (nn = n; nn; nn = nn->m_next)
   2647 		n->m_pkthdr.len += nn->m_len;
   2648 
   2649 	key_fill_replymsg(n, 0);
   2650 	m_freem(m);
   2651 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
   2652     }
   2653 }
   2654 
   2655 /*
   2656  * SADB_SPDDELETE2 processing
   2657  * receive
   2658  *   <base, policy(*)>
   2659  * from the user(?), and set SADB_SASTATE_DEAD,
   2660  * and send,
   2661  *   <base, policy(*)>
   2662  * to the ikmpd.
   2663  * policy(*) including direction of policy.
   2664  *
   2665  * m will always be freed.
   2666  */
   2667 static int
   2668 key_api_spddelete2(struct socket *so, struct mbuf *m,
   2669 	       const struct sadb_msghdr *mhp)
   2670 {
   2671 
   2672 	return key_spddelete2(so, m, mhp, false);
   2673 }
   2674 
   2675 int
   2676 key_kpi_spddelete2(struct mbuf *m)
   2677 {
   2678 	struct sadb_msghdr mh;
   2679 	int error;
   2680 
   2681 	error = key_align(m, &mh);
   2682 	if (error)
   2683 		return EINVAL;
   2684 
   2685 	return key_spddelete2(NULL, m, &mh, true);
   2686 }
   2687 
   2688 /*
   2689  * SADB_X_GET processing
   2690  * receive
   2691  *   <base, policy(*)>
   2692  * from the user(?),
   2693  * and send,
   2694  *   <base, address(SD), policy>
   2695  * to the ikmpd.
   2696  * policy(*) including direction of policy.
   2697  *
   2698  * m will always be freed.
   2699  */
   2700 static int
   2701 key_api_spdget(struct socket *so, struct mbuf *m,
   2702 	   const struct sadb_msghdr *mhp)
   2703 {
   2704 	u_int32_t id;
   2705 	struct secpolicy *sp;
   2706 	struct mbuf *n;
   2707 	const struct sadb_x_policy *xpl;
   2708 
   2709 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
   2710 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
   2711 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   2712 		return key_senderror(so, m, EINVAL);
   2713 	}
   2714 
   2715 	xpl = mhp->ext[SADB_X_EXT_POLICY];
   2716 	id = xpl->sadb_x_policy_id;
   2717 
   2718 	/* Is there SP in SPD ? */
   2719 	sp = key_getspbyid(id);
   2720 	if (sp == NULL) {
   2721 		IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
   2722 		return key_senderror(so, m, ENOENT);
   2723 	}
   2724 
   2725 	n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
   2726 	    mhp->msg->sadb_msg_pid);
   2727 	KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
   2728 	m_freem(m);
   2729 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
   2730 }
   2731 
   2732 #ifdef notyet
   2733 /*
   2734  * SADB_X_SPDACQUIRE processing.
   2735  * Acquire policy and SA(s) for a *OUTBOUND* packet.
   2736  * send
   2737  *   <base, policy(*)>
   2738  * to KMD, and expect to receive
   2739  *   <base> with SADB_X_SPDACQUIRE if error occurred,
   2740  * or
   2741  *   <base, policy>
   2742  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
   2743  * policy(*) is without policy requests.
   2744  *
   2745  *    0     : succeed
   2746  *    others: error number
   2747  */
   2748 int
   2749 key_spdacquire(const struct secpolicy *sp)
   2750 {
   2751 	struct mbuf *result = NULL, *m;
   2752 	struct secspacq *newspacq;
   2753 	int error;
   2754 
   2755 	KASSERT(sp != NULL);
   2756 	KASSERTMSG(sp->req == NULL, "called but there is request");
   2757 	KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
   2758 	    "policy mismathed. IPsec is expected");
   2759 
   2760 	/* Get an entry to check whether sent message or not. */
   2761 	newspacq = key_getspacq(&sp->spidx);
   2762 	if (newspacq != NULL) {
   2763 		if (key_blockacq_count < newspacq->count) {
   2764 			/* reset counter and do send message. */
   2765 			newspacq->count = 0;
   2766 		} else {
   2767 			/* increment counter and do nothing. */
   2768 			newspacq->count++;
   2769 			return 0;
   2770 		}
   2771 	} else {
   2772 		/* make new entry for blocking to send SADB_ACQUIRE. */
   2773 		newspacq = key_newspacq(&sp->spidx);
   2774 		if (newspacq == NULL)
   2775 			return ENOBUFS;
   2776 
   2777 		/* add to key_misc.acqlist */
   2778 		LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
   2779 	}
   2780 
   2781 	/* create new sadb_msg to reply. */
   2782 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
   2783 	if (!m) {
   2784 		error = ENOBUFS;
   2785 		goto fail;
   2786 	}
   2787 	result = m;
   2788 
   2789 	result->m_pkthdr.len = 0;
   2790 	for (m = result; m; m = m->m_next)
   2791 		result->m_pkthdr.len += m->m_len;
   2792 
   2793 	mtod(result, struct sadb_msg *)->sadb_msg_len =
   2794 	    PFKEY_UNIT64(result->m_pkthdr.len);
   2795 
   2796 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
   2797 
   2798 fail:
   2799 	if (result)
   2800 		m_freem(result);
   2801 	return error;
   2802 }
   2803 #endif /* notyet */
   2804 
   2805 /*
   2806  * SADB_SPDFLUSH processing
   2807  * receive
   2808  *   <base>
   2809  * from the user, and free all entries in secpctree.
   2810  * and send,
   2811  *   <base>
   2812  * to the user.
   2813  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
   2814  *
   2815  * m will always be freed.
   2816  */
   2817 static int
   2818 key_api_spdflush(struct socket *so, struct mbuf *m,
   2819 	     const struct sadb_msghdr *mhp)
   2820 {
   2821 	struct sadb_msg *newmsg;
   2822 	struct secpolicy *sp;
   2823 	u_int dir;
   2824 
   2825 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
   2826 		return key_senderror(so, m, EINVAL);
   2827 
   2828 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
   2829 	    retry:
   2830 		mutex_enter(&key_spd.lock);
   2831 		SPLIST_WRITER_FOREACH(sp, dir) {
   2832 			KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD,
   2833 			    "sp->state=%u", sp->state);
   2834 			/*
   2835 			 * Userlang programs can remove SPs created by userland
   2836 			 * probrams only, that is, they cannot remove SPs
   2837 			 * created in kernel(e.g. ipsec(4) I/F).
   2838 			 */
   2839 			if (sp->origin == IPSEC_SPORIGIN_USER) {
   2840 				key_unlink_sp(sp);
   2841 				mutex_exit(&key_spd.lock);
   2842 				key_destroy_sp(sp);
   2843 				goto retry;
   2844 			}
   2845 		}
   2846 		mutex_exit(&key_spd.lock);
   2847 	}
   2848 
   2849 	/* We're deleting policy; no need to invalidate the ipflow cache. */
   2850 
   2851 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
   2852 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
   2853 		return key_senderror(so, m, ENOBUFS);
   2854 	}
   2855 
   2856 	if (m->m_next)
   2857 		m_freem(m->m_next);
   2858 	m->m_next = NULL;
   2859 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
   2860 	newmsg = mtod(m, struct sadb_msg *);
   2861 	newmsg->sadb_msg_errno = 0;
   2862 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
   2863 
   2864 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
   2865 }
   2866 
   2867 static struct sockaddr key_src = {
   2868 	.sa_len = 2,
   2869 	.sa_family = PF_KEY,
   2870 };
   2871 
   2872 static struct mbuf *
   2873 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
   2874 {
   2875 	struct secpolicy *sp;
   2876 	int cnt;
   2877 	u_int dir;
   2878 	struct mbuf *m, *n, *prev;
   2879 	int totlen;
   2880 
   2881 	KASSERT(mutex_owned(&key_spd.lock));
   2882 
   2883 	*lenp = 0;
   2884 
   2885 	/* search SPD entry and get buffer size. */
   2886 	cnt = 0;
   2887 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
   2888 		SPLIST_WRITER_FOREACH(sp, dir) {
   2889 			cnt++;
   2890 		}
   2891 	}
   2892 
   2893 	if (cnt == 0) {
   2894 		*errorp = ENOENT;
   2895 		return (NULL);
   2896 	}
   2897 
   2898 	m = NULL;
   2899 	prev = m;
   2900 	totlen = 0;
   2901 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
   2902 		SPLIST_WRITER_FOREACH(sp, dir) {
   2903 			--cnt;
   2904 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
   2905 
   2906 			totlen += n->m_pkthdr.len;
   2907 			if (!m) {
   2908 				m = n;
   2909 			} else {
   2910 				prev->m_nextpkt = n;
   2911 			}
   2912 			prev = n;
   2913 		}
   2914 	}
   2915 
   2916 	*lenp = totlen;
   2917 	*errorp = 0;
   2918 	return (m);
   2919 }
   2920 
   2921 /*
   2922  * SADB_SPDDUMP processing
   2923  * receive
   2924  *   <base>
   2925  * from the user, and dump all SP leaves
   2926  * and send,
   2927  *   <base> .....
   2928  * to the ikmpd.
   2929  *
   2930  * m will always be freed.
   2931  */
   2932 static int
   2933 key_api_spddump(struct socket *so, struct mbuf *m0,
   2934  	    const struct sadb_msghdr *mhp)
   2935 {
   2936 	struct mbuf *n;
   2937 	int error, len;
   2938 	int ok;
   2939 	pid_t pid;
   2940 
   2941 	pid = mhp->msg->sadb_msg_pid;
   2942 	/*
   2943 	 * If the requestor has insufficient socket-buffer space
   2944 	 * for the entire chain, nobody gets any response to the DUMP.
   2945 	 * XXX For now, only the requestor ever gets anything.
   2946 	 * Moreover, if the requestor has any space at all, they receive
   2947 	 * the entire chain, otherwise the request is refused with  ENOBUFS.
   2948 	 */
   2949 	if (sbspace(&so->so_rcv) <= 0) {
   2950 		return key_senderror(so, m0, ENOBUFS);
   2951 	}
   2952 
   2953 	mutex_enter(&key_spd.lock);
   2954 	n = key_setspddump_chain(&error, &len, pid);
   2955 	mutex_exit(&key_spd.lock);
   2956 
   2957 	if (n == NULL) {
   2958 		return key_senderror(so, m0, ENOENT);
   2959 	}
   2960 	{
   2961 		uint64_t *ps = PFKEY_STAT_GETREF();
   2962 		ps[PFKEY_STAT_IN_TOTAL]++;
   2963 		ps[PFKEY_STAT_IN_BYTES] += len;
   2964 		PFKEY_STAT_PUTREF();
   2965 	}
   2966 
   2967 	/*
   2968 	 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
   2969 	 * The requestor receives either the entire chain, or an
   2970 	 * error message with ENOBUFS.
   2971 	 */
   2972 
   2973 	/*
   2974 	 * sbappendchainwith record takes the chain of entries, one
   2975 	 * packet-record per SPD entry, prepends the key_src sockaddr
   2976 	 * to each packet-record, links the sockaddr mbufs into a new
   2977 	 * list of records, then   appends the entire resulting
   2978 	 * list to the requesting socket.
   2979 	 */
   2980 	ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
   2981 	    SB_PRIO_ONESHOT_OVERFLOW);
   2982 
   2983 	if (!ok) {
   2984 		PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
   2985 		m_freem(n);
   2986 		return key_senderror(so, m0, ENOBUFS);
   2987 	}
   2988 
   2989 	m_freem(m0);
   2990 	return error;
   2991 }
   2992 
   2993 /*
   2994  * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
   2995  */
   2996 static int
   2997 key_api_nat_map(struct socket *so, struct mbuf *m,
   2998 	    const struct sadb_msghdr *mhp)
   2999 {
   3000 	struct sadb_x_nat_t_type *type;
   3001 	struct sadb_x_nat_t_port *sport;
   3002 	struct sadb_x_nat_t_port *dport;
   3003 	struct sadb_address *iaddr, *raddr;
   3004 	struct sadb_x_nat_t_frag *frag;
   3005 
   3006 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
   3007 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
   3008 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
   3009 		IPSECLOG(LOG_DEBUG, "invalid message.\n");
   3010 		return key_senderror(so, m, EINVAL);
   3011 	}
   3012 	if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
   3013 	    (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
   3014 	    (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
   3015 		IPSECLOG(LOG_DEBUG, "invalid message.\n");
   3016 		return key_senderror(so, m, EINVAL);
   3017 	}
   3018 
   3019 	if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
   3020 	    (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
   3021 		IPSECLOG(LOG_DEBUG, "invalid message\n");
   3022 		return key_senderror(so, m, EINVAL);
   3023 	}
   3024 
   3025 	if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
   3026 	    (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
   3027 		IPSECLOG(LOG_DEBUG, "invalid message\n");
   3028 		return key_senderror(so, m, EINVAL);
   3029 	}
   3030 
   3031 	if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
   3032 	    (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
   3033 		IPSECLOG(LOG_DEBUG, "invalid message\n");
   3034 		return key_senderror(so, m, EINVAL);
   3035 	}
   3036 
   3037 	type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
   3038 	sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
   3039 	dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
   3040 	iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
   3041 	raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
   3042 	frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
   3043 
   3044 	/*
   3045 	 * XXX handle that, it should also contain a SA, or anything
   3046 	 * that enable to update the SA information.
   3047 	 */
   3048 
   3049 	return 0;
   3050 }
   3051 
   3052 /*
   3053  * Never return NULL.
   3054  */
   3055 static struct mbuf *
   3056 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
   3057 {
   3058 	struct mbuf *result = NULL, *m;
   3059 
   3060 	KASSERT(!cpu_softintr_p());
   3061 
   3062 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
   3063 	    key_sp_refcnt(sp), M_WAITOK);
   3064 	result = m;
   3065 
   3066 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
   3067 	    &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK);
   3068 	m_cat(result, m);
   3069 
   3070 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
   3071 	    &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK);
   3072 	m_cat(result, m);
   3073 
   3074 	m = key_sp2msg(sp, M_WAITOK);
   3075 	m_cat(result, m);
   3076 
   3077 	KASSERT(result->m_flags & M_PKTHDR);
   3078 	KASSERT(result->m_len >= sizeof(struct sadb_msg));
   3079 
   3080 	result->m_pkthdr.len = 0;
   3081 	for (m = result; m; m = m->m_next)
   3082 		result->m_pkthdr.len += m->m_len;
   3083 
   3084 	mtod(result, struct sadb_msg *)->sadb_msg_len =
   3085 	    PFKEY_UNIT64(result->m_pkthdr.len);
   3086 
   3087 	return result;
   3088 }
   3089 
   3090 /*
   3091  * get PFKEY message length for security policy and request.
   3092  */
   3093 static u_int
   3094 key_getspreqmsglen(const struct secpolicy *sp)
   3095 {
   3096 	u_int tlen;
   3097 
   3098 	tlen = sizeof(struct sadb_x_policy);
   3099 
   3100 	/* if is the policy for ipsec ? */
   3101 	if (sp->policy != IPSEC_POLICY_IPSEC)
   3102 		return tlen;
   3103 
   3104 	/* get length of ipsec requests */
   3105     {
   3106 	const struct ipsecrequest *isr;
   3107 	int len;
   3108 
   3109 	for (isr = sp->req; isr != NULL; isr = isr->next) {
   3110 		len = sizeof(struct sadb_x_ipsecrequest)
   3111 		    + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
   3112 
   3113 		tlen += PFKEY_ALIGN8(len);
   3114 	}
   3115     }
   3116 
   3117 	return tlen;
   3118 }
   3119 
   3120 /*
   3121  * SADB_SPDEXPIRE processing
   3122  * send
   3123  *   <base, address(SD), lifetime(CH), policy>
   3124  * to KMD by PF_KEY.
   3125  *
   3126  * OUT:	0	: succeed
   3127  *	others	: error number
   3128  */
   3129 static int
   3130 key_spdexpire(struct secpolicy *sp)
   3131 {
   3132 	int s;
   3133 	struct mbuf *result = NULL, *m;
   3134 	int len;
   3135 	int error = -1;
   3136 	struct sadb_lifetime *lt;
   3137 
   3138 	/* XXX: Why do we lock ? */
   3139 	s = splsoftnet();	/*called from softclock()*/
   3140 
   3141 	KASSERT(sp != NULL);
   3142 
   3143 	/* set msg header */
   3144 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK);
   3145 	result = m;
   3146 
   3147 	/* create lifetime extension (current and hard) */
   3148 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
   3149 	m = key_alloc_mbuf(len, M_WAITOK);
   3150 	KASSERT(m->m_next == NULL);
   3151 
   3152 	memset(mtod(m, void *), 0, len);
   3153 	lt = mtod(m, struct sadb_lifetime *);
   3154 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
   3155 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
   3156 	lt->sadb_lifetime_allocations = 0;
   3157 	lt->sadb_lifetime_bytes = 0;
   3158 	lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
   3159 	lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
   3160 	lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
   3161 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
   3162 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
   3163 	lt->sadb_lifetime_allocations = 0;
   3164 	lt->sadb_lifetime_bytes = 0;
   3165 	lt->sadb_lifetime_addtime = sp->lifetime;
   3166 	lt->sadb_lifetime_usetime = sp->validtime;
   3167 	m_cat(result, m);
   3168 
   3169 	/* set sadb_address for source */
   3170 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
   3171 	    sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK);
   3172 	m_cat(result, m);
   3173 
   3174 	/* set sadb_address for destination */
   3175 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
   3176 	    sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK);
   3177 	m_cat(result, m);
   3178 
   3179 	/* set secpolicy */
   3180 	m = key_sp2msg(sp, M_WAITOK);
   3181 	m_cat(result, m);
   3182 
   3183 	KASSERT(result->m_flags & M_PKTHDR);
   3184 	KASSERT(result->m_len >= sizeof(struct sadb_msg));
   3185 
   3186 	result->m_pkthdr.len = 0;
   3187 	for (m = result; m; m = m->m_next)
   3188 		result->m_pkthdr.len += m->m_len;
   3189 
   3190 	mtod(result, struct sadb_msg *)->sadb_msg_len =
   3191 	    PFKEY_UNIT64(result->m_pkthdr.len);
   3192 
   3193 	error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
   3194 	splx(s);
   3195 	return error;
   3196 }
   3197 
   3198 /* %%% SAD management */
   3199 /*
   3200  * allocating a memory for new SA head, and copy from the values of mhp.
   3201  * OUT:	NULL	: failure due to the lack of memory.
   3202  *	others	: pointer to new SA head.
   3203  */
   3204 static struct secashead *
   3205 key_newsah(const struct secasindex *saidx)
   3206 {
   3207 	struct secashead *newsah;
   3208 	int i;
   3209 
   3210 	KASSERT(saidx != NULL);
   3211 
   3212 	newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
   3213 	for (i = 0; i < __arraycount(newsah->savlist); i++)
   3214 		PSLIST_INIT(&newsah->savlist[i]);
   3215 	newsah->saidx = *saidx;
   3216 
   3217 	localcount_init(&newsah->localcount);
   3218 	/* Take a reference for the caller */
   3219 	localcount_acquire(&newsah->localcount);
   3220 
   3221 	/* Add to the sah list */
   3222 	SAHLIST_ENTRY_INIT(newsah);
   3223 	newsah->state = SADB_SASTATE_MATURE;
   3224 	mutex_enter(&key_sad.lock);
   3225 	SAHLIST_WRITER_INSERT_HEAD(newsah);
   3226 	mutex_exit(&key_sad.lock);
   3227 
   3228 	return newsah;
   3229 }
   3230 
   3231 static bool
   3232 key_sah_has_sav(struct secashead *sah)
   3233 {
   3234 	u_int state;
   3235 
   3236 	KASSERT(mutex_owned(&key_sad.lock));
   3237 
   3238 	SASTATE_ANY_FOREACH(state) {
   3239 		if (!SAVLIST_WRITER_EMPTY(sah, state))
   3240 			return true;
   3241 	}
   3242 
   3243 	return false;
   3244 }
   3245 
   3246 static void
   3247 key_unlink_sah(struct secashead *sah)
   3248 {
   3249 
   3250 	KASSERT(!cpu_softintr_p());
   3251 	KASSERT(mutex_owned(&key_sad.lock));
   3252 	KASSERTMSG(sah->state == SADB_SASTATE_DEAD, "sah->state=%u", sah->state);
   3253 
   3254 	/* Remove from the sah list */
   3255 	SAHLIST_WRITER_REMOVE(sah);
   3256 
   3257 	KDASSERT(mutex_ownable(softnet_lock));
   3258 	key_sad_pserialize_perform();
   3259 
   3260 	localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
   3261 }
   3262 
   3263 static void
   3264 key_destroy_sah(struct secashead *sah)
   3265 {
   3266 
   3267 	rtcache_free(&sah->sa_route);
   3268 
   3269 	SAHLIST_ENTRY_DESTROY(sah);
   3270 	localcount_fini(&sah->localcount);
   3271 
   3272 	if (sah->idents != NULL)
   3273 		kmem_free(sah->idents, sah->idents_len);
   3274 	if (sah->identd != NULL)
   3275 		kmem_free(sah->identd, sah->identd_len);
   3276 
   3277 	kmem_free(sah, sizeof(*sah));
   3278 }
   3279 
   3280 /*
   3281  * allocating a new SA with LARVAL state.
   3282  * key_api_add() and key_api_getspi() call,
   3283  * and copy the values of mhp into new buffer.
   3284  * When SAD message type is GETSPI:
   3285  *	to set sequence number from acq_seq++,
   3286  *	to set zero to SPI.
   3287  *	not to call key_setsaval().
   3288  * OUT:	NULL	: fail
   3289  *	others	: pointer to new secasvar.
   3290  *
   3291  * does not modify mbuf.  does not free mbuf on error.
   3292  */
   3293 static struct secasvar *
   3294 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
   3295     int *errp, int proto, const char* where, int tag)
   3296 {
   3297 	struct secasvar *newsav;
   3298 	const struct sadb_sa *xsa;
   3299 
   3300 	KASSERT(!cpu_softintr_p());
   3301 	KASSERT(m != NULL);
   3302 	KASSERT(mhp != NULL);
   3303 	KASSERT(mhp->msg != NULL);
   3304 
   3305 	newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
   3306 
   3307 	switch (mhp->msg->sadb_msg_type) {
   3308 	case SADB_GETSPI:
   3309 		newsav->spi = 0;
   3310 
   3311 #ifdef IPSEC_DOSEQCHECK
   3312 		/* sync sequence number */
   3313 		if (mhp->msg->sadb_msg_seq == 0)
   3314 			newsav->seq =
   3315 			    (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
   3316 		else
   3317 #endif
   3318 			newsav->seq = mhp->msg->sadb_msg_seq;
   3319 		break;
   3320 
   3321 	case SADB_ADD:
   3322 		/* sanity check */
   3323 		if (mhp->ext[SADB_EXT_SA] == NULL) {
   3324 			IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   3325 			*errp = EINVAL;
   3326 			goto error;
   3327 		}
   3328 		xsa = mhp->ext[SADB_EXT_SA];
   3329 		newsav->spi = xsa->sadb_sa_spi;
   3330 		newsav->seq = mhp->msg->sadb_msg_seq;
   3331 		break;
   3332 	default:
   3333 		*errp = EINVAL;
   3334 		goto error;
   3335 	}
   3336 
   3337 	/* copy sav values */
   3338 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
   3339 		*errp = key_setsaval(newsav, m, mhp);
   3340 		if (*errp)
   3341 			goto error;
   3342 	} else {
   3343 		/* We don't allow lft_c to be NULL */
   3344 		newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
   3345 		    KM_SLEEP);
   3346 		newsav->lft_c_counters_percpu =
   3347 		    percpu_alloc(sizeof(lifetime_counters_t));
   3348 	}
   3349 
   3350 	/* reset created */
   3351 	newsav->created = time_uptime;
   3352 	newsav->pid = mhp->msg->sadb_msg_pid;
   3353 
   3354 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   3355 	    "DP from %s:%u return SA:%p spi=%#x proto=%d\n",
   3356 	    where, tag, newsav, ntohl(newsav->spi), proto);
   3357 	return newsav;
   3358 
   3359 error:
   3360 	KASSERT(*errp != 0);
   3361 	kmem_free(newsav, sizeof(*newsav));
   3362 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   3363 	    "DP from %s:%u return SA:NULL\n", where, tag);
   3364 	return NULL;
   3365 }
   3366 
   3367 
   3368 static void
   3369 key_clear_xform(struct secasvar *sav)
   3370 {
   3371 
   3372 	/*
   3373 	 * Cleanup xform state.  Note that zeroize'ing causes the
   3374 	 * keys to be cleared; otherwise we must do it ourself.
   3375 	 */
   3376 	if (sav->tdb_xform != NULL) {
   3377 		sav->tdb_xform->xf_zeroize(sav);
   3378 		sav->tdb_xform = NULL;
   3379 	} else {
   3380 		if (sav->key_auth != NULL)
   3381 			explicit_memset(_KEYBUF(sav->key_auth), 0,
   3382 			    _KEYLEN(sav->key_auth));
   3383 		if (sav->key_enc != NULL)
   3384 			explicit_memset(_KEYBUF(sav->key_enc), 0,
   3385 			    _KEYLEN(sav->key_enc));
   3386 	}
   3387 }
   3388 
   3389 /*
   3390  * free() SA variable entry.
   3391  */
   3392 static void
   3393 key_delsav(struct secasvar *sav)
   3394 {
   3395 
   3396 	key_clear_xform(sav);
   3397 	key_freesaval(sav);
   3398 	kmem_free(sav, sizeof(*sav));
   3399 }
   3400 
   3401 /*
   3402  * Must be called in a pserialize read section. A held sah
   3403  * must be released by key_sah_unref after use.
   3404  */
   3405 static void
   3406 key_sah_ref(struct secashead *sah)
   3407 {
   3408 
   3409 	localcount_acquire(&sah->localcount);
   3410 }
   3411 
   3412 /*
   3413  * Must be called without holding key_sad.lock because the lock
   3414  * would be held in localcount_release.
   3415  */
   3416 static void
   3417 key_sah_unref(struct secashead *sah)
   3418 {
   3419 
   3420 	KDASSERT(mutex_ownable(&key_sad.lock));
   3421 
   3422 	localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
   3423 }
   3424 
   3425 /*
   3426  * Search SAD and return sah. Must be called in a pserialize
   3427  * read section.
   3428  * OUT:
   3429  *	NULL	: not found
   3430  *	others	: found, pointer to a SA.
   3431  */
   3432 static struct secashead *
   3433 key_getsah(const struct secasindex *saidx, int flag)
   3434 {
   3435 	struct secashead *sah;
   3436 
   3437 	SAHLIST_READER_FOREACH_SAIDX(sah, saidx) {
   3438 		if (sah->state == SADB_SASTATE_DEAD)
   3439 			continue;
   3440 		if (key_saidx_match(&sah->saidx, saidx, flag))
   3441 			return sah;
   3442 	}
   3443 
   3444 	return NULL;
   3445 }
   3446 
   3447 /*
   3448  * Search SAD and return sah. If sah is returned, the caller must call
   3449  * key_sah_unref to releaset a reference.
   3450  * OUT:
   3451  *	NULL	: not found
   3452  *	others	: found, pointer to a SA.
   3453  */
   3454 static struct secashead *
   3455 key_getsah_ref(const struct secasindex *saidx, int flag)
   3456 {
   3457 	struct secashead *sah;
   3458 	int s;
   3459 
   3460 	s = pserialize_read_enter();
   3461 	sah = key_getsah(saidx, flag);
   3462 	if (sah != NULL)
   3463 		key_sah_ref(sah);
   3464 	pserialize_read_exit(s);
   3465 
   3466 	return sah;
   3467 }
   3468 
   3469 /*
   3470  * check not to be duplicated SPI.
   3471  * NOTE: this function is too slow due to searching all SAD.
   3472  * OUT:
   3473  *	NULL	: not found
   3474  *	others	: found, pointer to a SA.
   3475  */
   3476 static bool
   3477 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
   3478 {
   3479 	struct secashead *sah;
   3480 	struct secasvar *sav;
   3481 
   3482 	/* check address family */
   3483 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
   3484 		IPSECLOG(LOG_DEBUG,
   3485 		    "address family mismatched src %u, dst %u.\n",
   3486 		    saidx->src.sa.sa_family, saidx->dst.sa.sa_family);
   3487 		return false;
   3488 	}
   3489 
   3490 	/* check all SAD */
   3491 	/* key_ismyaddr may sleep, so use mutex, not pserialize, here. */
   3492 	mutex_enter(&key_sad.lock);
   3493 	SAHLIST_WRITER_FOREACH(sah) {
   3494 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
   3495 			continue;
   3496 		sav = key_getsavbyspi(sah, spi);
   3497 		if (sav != NULL) {
   3498 			KEY_SA_UNREF(&sav);
   3499 			mutex_exit(&key_sad.lock);
   3500 			return true;
   3501 		}
   3502 	}
   3503 	mutex_exit(&key_sad.lock);
   3504 
   3505 	return false;
   3506 }
   3507 
   3508 /*
   3509  * search SAD litmited alive SA, protocol, SPI.
   3510  * OUT:
   3511  *	NULL	: not found
   3512  *	others	: found, pointer to a SA.
   3513  */
   3514 static struct secasvar *
   3515 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
   3516 {
   3517 	struct secasvar *sav = NULL;
   3518 	u_int state;
   3519 	int s;
   3520 
   3521 	/* search all status */
   3522 	s = pserialize_read_enter();
   3523 	SASTATE_ALIVE_FOREACH(state) {
   3524 		SAVLIST_READER_FOREACH(sav, sah, state) {
   3525 			/* sanity check */
   3526 			if (sav->state != state) {
   3527 				IPSECLOG(LOG_DEBUG,
   3528 				    "invalid sav->state (queue: %d SA: %d)\n",
   3529 				    state, sav->state);
   3530 				continue;
   3531 			}
   3532 
   3533 			if (sav->spi == spi) {
   3534 				KEY_SA_REF(sav);
   3535 				goto out;
   3536 			}
   3537 		}
   3538 	}
   3539 out:
   3540 	pserialize_read_exit(s);
   3541 
   3542 	return sav;
   3543 }
   3544 
   3545 /*
   3546  * Search SAD litmited alive SA by an SPI and remove it from a list.
   3547  * OUT:
   3548  *	NULL	: not found
   3549  *	others	: found, pointer to a SA.
   3550  */
   3551 static struct secasvar *
   3552 key_lookup_and_remove_sav(struct secashead *sah, u_int32_t spi,
   3553     const struct secasvar *hint)
   3554 {
   3555 	struct secasvar *sav = NULL;
   3556 	u_int state;
   3557 
   3558 	/* search all status */
   3559 	mutex_enter(&key_sad.lock);
   3560 	SASTATE_ALIVE_FOREACH(state) {
   3561 		SAVLIST_WRITER_FOREACH(sav, sah, state) {
   3562 			KASSERT(sav->state == state);
   3563 
   3564 			if (sav->spi == spi) {
   3565 				if (hint != NULL && hint != sav)
   3566 					continue;
   3567 				sav->state = SADB_SASTATE_DEAD;
   3568 				SAVLIST_WRITER_REMOVE(sav);
   3569 				SAVLUT_WRITER_REMOVE(sav);
   3570 				goto out;
   3571 			}
   3572 		}
   3573 	}
   3574 out:
   3575 	mutex_exit(&key_sad.lock);
   3576 
   3577 	return sav;
   3578 }
   3579 
   3580 /*
   3581  * Free allocated data to member variables of sav:
   3582  * sav->replay, sav->key_* and sav->lft_*.
   3583  */
   3584 static void
   3585 key_freesaval(struct secasvar *sav)
   3586 {
   3587 
   3588 	KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u",
   3589 	    key_sa_refcnt(sav));
   3590 
   3591 	if (sav->replay != NULL)
   3592 		kmem_free(sav->replay, sav->replay_len);
   3593 	if (sav->key_auth != NULL)
   3594 		kmem_free(sav->key_auth, sav->key_auth_len);
   3595 	if (sav->key_enc != NULL)
   3596 		kmem_free(sav->key_enc, sav->key_enc_len);
   3597 	if (sav->lft_c_counters_percpu != NULL) {
   3598 		percpu_free(sav->lft_c_counters_percpu,
   3599 		    sizeof(lifetime_counters_t));
   3600 	}
   3601 	if (sav->lft_c != NULL)
   3602 		kmem_free(sav->lft_c, sizeof(*(sav->lft_c)));
   3603 	if (sav->lft_h != NULL)
   3604 		kmem_free(sav->lft_h, sizeof(*(sav->lft_h)));
   3605 	if (sav->lft_s != NULL)
   3606 		kmem_free(sav->lft_s, sizeof(*(sav->lft_s)));
   3607 }
   3608 
   3609 /*
   3610  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
   3611  * You must update these if need.
   3612  * OUT:	0:	success.
   3613  *	!0:	failure.
   3614  *
   3615  * does not modify mbuf.  does not free mbuf on error.
   3616  */
   3617 static int
   3618 key_setsaval(struct secasvar *sav, struct mbuf *m,
   3619 	     const struct sadb_msghdr *mhp)
   3620 {
   3621 	int error = 0;
   3622 
   3623 	KASSERT(!cpu_softintr_p());
   3624 	KASSERT(m != NULL);
   3625 	KASSERT(mhp != NULL);
   3626 	KASSERT(mhp->msg != NULL);
   3627 
   3628 	/* We shouldn't initialize sav variables while someone uses it. */
   3629 	KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u",
   3630 	    key_sa_refcnt(sav));
   3631 
   3632 	/* SA */
   3633 	if (mhp->ext[SADB_EXT_SA] != NULL) {
   3634 		const struct sadb_sa *sa0;
   3635 
   3636 		sa0 = mhp->ext[SADB_EXT_SA];
   3637 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
   3638 			error = EINVAL;
   3639 			goto fail;
   3640 		}
   3641 
   3642 		sav->alg_auth = sa0->sadb_sa_auth;
   3643 		sav->alg_enc = sa0->sadb_sa_encrypt;
   3644 		sav->flags = sa0->sadb_sa_flags;
   3645 
   3646 		/* replay window */
   3647 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
   3648 			size_t len = sizeof(struct secreplay) +
   3649 			    sa0->sadb_sa_replay;
   3650 			sav->replay = kmem_zalloc(len, KM_SLEEP);
   3651 			sav->replay_len = len;
   3652 			if (sa0->sadb_sa_replay != 0)
   3653 				sav->replay->bitmap = (char*)(sav->replay+1);
   3654 			sav->replay->wsize = sa0->sadb_sa_replay;
   3655 		}
   3656 	}
   3657 
   3658 	/* Authentication keys */
   3659 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
   3660 		const struct sadb_key *key0;
   3661 		int len;
   3662 
   3663 		key0 = mhp->ext[SADB_EXT_KEY_AUTH];
   3664 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
   3665 
   3666 		error = 0;
   3667 		if (len < sizeof(*key0)) {
   3668 			error = EINVAL;
   3669 			goto fail;
   3670 		}
   3671 		switch (mhp->msg->sadb_msg_satype) {
   3672 		case SADB_SATYPE_AH:
   3673 		case SADB_SATYPE_ESP:
   3674 		case SADB_X_SATYPE_TCPSIGNATURE:
   3675 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
   3676 			    sav->alg_auth != SADB_X_AALG_NULL)
   3677 				error = EINVAL;
   3678 			break;
   3679 		case SADB_X_SATYPE_IPCOMP:
   3680 		default:
   3681 			error = EINVAL;
   3682 			break;
   3683 		}
   3684 		if (error) {
   3685 			IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
   3686 			goto fail;
   3687 		}
   3688 
   3689 		sav->key_auth = key_newbuf(key0, len);
   3690 		sav->key_auth_len = len;
   3691 	}
   3692 
   3693 	/* Encryption key */
   3694 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
   3695 		const struct sadb_key *key0;
   3696 		int len;
   3697 
   3698 		key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT];
   3699 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
   3700 
   3701 		error = 0;
   3702 		if (len < sizeof(*key0)) {
   3703 			error = EINVAL;
   3704 			goto fail;
   3705 		}
   3706 		switch (mhp->msg->sadb_msg_satype) {
   3707 		case SADB_SATYPE_ESP:
   3708 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
   3709 			    sav->alg_enc != SADB_EALG_NULL) {
   3710 				error = EINVAL;
   3711 				break;
   3712 			}
   3713 			sav->key_enc = key_newbuf(key0, len);
   3714 			sav->key_enc_len = len;
   3715 			break;
   3716 		case SADB_X_SATYPE_IPCOMP:
   3717 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
   3718 				error = EINVAL;
   3719 			sav->key_enc = NULL;	/*just in case*/
   3720 			break;
   3721 		case SADB_SATYPE_AH:
   3722 		case SADB_X_SATYPE_TCPSIGNATURE:
   3723 		default:
   3724 			error = EINVAL;
   3725 			break;
   3726 		}
   3727 		if (error) {
   3728 			IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
   3729 			goto fail;
   3730 		}
   3731 	}
   3732 
   3733 	/* set iv */
   3734 	sav->ivlen = 0;
   3735 
   3736 	switch (mhp->msg->sadb_msg_satype) {
   3737 	case SADB_SATYPE_AH:
   3738 		error = xform_init(sav, XF_AH);
   3739 		break;
   3740 	case SADB_SATYPE_ESP:
   3741 		error = xform_init(sav, XF_ESP);
   3742 		break;
   3743 	case SADB_X_SATYPE_IPCOMP:
   3744 		error = xform_init(sav, XF_IPCOMP);
   3745 		break;
   3746 	case SADB_X_SATYPE_TCPSIGNATURE:
   3747 		error = xform_init(sav, XF_TCPSIGNATURE);
   3748 		break;
   3749 	default:
   3750 		error = EOPNOTSUPP;
   3751 		break;
   3752 	}
   3753 	if (error) {
   3754 		IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u (%d)\n",
   3755 		    mhp->msg->sadb_msg_satype, error);
   3756 		goto fail;
   3757 	}
   3758 
   3759 	/* reset created */
   3760 	sav->created = time_uptime;
   3761 
   3762 	/* make lifetime for CURRENT */
   3763 	sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
   3764 
   3765 	sav->lft_c->sadb_lifetime_len =
   3766 	    PFKEY_UNIT64(sizeof(struct sadb_lifetime));
   3767 	sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
   3768 	sav->lft_c->sadb_lifetime_allocations = 0;
   3769 	sav->lft_c->sadb_lifetime_bytes = 0;
   3770 	sav->lft_c->sadb_lifetime_addtime = time_uptime;
   3771 	sav->lft_c->sadb_lifetime_usetime = 0;
   3772 
   3773 	sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t));
   3774 
   3775 	/* lifetimes for HARD and SOFT */
   3776     {
   3777 	const struct sadb_lifetime *lft0;
   3778 
   3779 	lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD];
   3780 	if (lft0 != NULL) {
   3781 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
   3782 			error = EINVAL;
   3783 			goto fail;
   3784 		}
   3785 		sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
   3786 	}
   3787 
   3788 	lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT];
   3789 	if (lft0 != NULL) {
   3790 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
   3791 			error = EINVAL;
   3792 			goto fail;
   3793 		}
   3794 		sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
   3795 		/* to be initialize ? */
   3796 	}
   3797     }
   3798 
   3799 	return 0;
   3800 
   3801  fail:
   3802 	key_clear_xform(sav);
   3803 	key_freesaval(sav);
   3804 
   3805 	return error;
   3806 }
   3807 
   3808 /*
   3809  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
   3810  * OUT:	0:	valid
   3811  *	other:	errno
   3812  */
   3813 static int
   3814 key_init_xform(struct secasvar *sav)
   3815 {
   3816 	int error;
   3817 
   3818 	/* We shouldn't initialize sav variables while someone uses it. */
   3819 	KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u",
   3820 	    key_sa_refcnt(sav));
   3821 
   3822 	/* check SPI value */
   3823 	switch (sav->sah->saidx.proto) {
   3824 	case IPPROTO_ESP:
   3825 	case IPPROTO_AH:
   3826 		if (ntohl(sav->spi) <= 255) {
   3827 			IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
   3828 			    (u_int32_t)ntohl(sav->spi));
   3829 			return EINVAL;
   3830 		}
   3831 		break;
   3832 	}
   3833 
   3834 	/* check algo */
   3835 	switch (sav->sah->saidx.proto) {
   3836 	case IPPROTO_AH:
   3837 	case IPPROTO_TCP:
   3838 		if (sav->alg_enc != SADB_EALG_NONE) {
   3839 			IPSECLOG(LOG_DEBUG,
   3840 			    "protocol %u and algorithm mismatched %u != %u.\n",
   3841 			    sav->sah->saidx.proto,
   3842 			    sav->alg_enc, SADB_EALG_NONE);
   3843 			return EINVAL;
   3844 		}
   3845 		break;
   3846 	case IPPROTO_IPCOMP:
   3847 		if (sav->alg_auth != SADB_AALG_NONE) {
   3848 			IPSECLOG(LOG_DEBUG,
   3849 			    "protocol %u and algorithm mismatched %d != %d.\n",
   3850 			    sav->sah->saidx.proto,
   3851 			    sav->alg_auth, SADB_AALG_NONE);
   3852 			return(EINVAL);
   3853 		}
   3854 		break;
   3855 	default:
   3856 		break;
   3857 	}
   3858 
   3859 	/* check satype */
   3860 	switch (sav->sah->saidx.proto) {
   3861 	case IPPROTO_ESP:
   3862 		/* check flags */
   3863 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
   3864 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
   3865 			IPSECLOG(LOG_DEBUG,
   3866 			    "invalid flag (derived) given to old-esp.\n");
   3867 			return EINVAL;
   3868 		}
   3869 		error = xform_init(sav, XF_ESP);
   3870 		break;
   3871 	case IPPROTO_AH:
   3872 		/* check flags */
   3873 		if (sav->flags & SADB_X_EXT_DERIV) {
   3874 			IPSECLOG(LOG_DEBUG,
   3875 			    "invalid flag (derived) given to AH SA.\n");
   3876 			return EINVAL;
   3877 		}
   3878 		error = xform_init(sav, XF_AH);
   3879 		break;
   3880 	case IPPROTO_IPCOMP:
   3881 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
   3882 		    && ntohl(sav->spi) >= 0x10000) {
   3883 			IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
   3884 			return(EINVAL);
   3885 		}
   3886 		error = xform_init(sav, XF_IPCOMP);
   3887 		break;
   3888 	case IPPROTO_TCP:
   3889 		error = xform_init(sav, XF_TCPSIGNATURE);
   3890 		break;
   3891 	default:
   3892 		IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
   3893 		error = EPROTONOSUPPORT;
   3894 		break;
   3895 	}
   3896 
   3897 	return error;
   3898 }
   3899 
   3900 /*
   3901  * subroutine for SADB_GET and SADB_DUMP. It never return NULL.
   3902  */
   3903 static struct mbuf *
   3904 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
   3905 	      u_int32_t seq, u_int32_t pid)
   3906 {
   3907 	struct mbuf *result = NULL, *tres = NULL, *m;
   3908 	int l = 0;
   3909 	int i;
   3910 	void *p;
   3911 	struct sadb_lifetime lt;
   3912 	int dumporder[] = {
   3913 		SADB_EXT_SA, SADB_X_EXT_SA2,
   3914 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
   3915 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
   3916 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
   3917 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
   3918 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
   3919 		SADB_X_EXT_NAT_T_TYPE,
   3920 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
   3921 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
   3922 		SADB_X_EXT_NAT_T_FRAG,
   3923 
   3924 	};
   3925 
   3926 	m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK);
   3927 	result = m;
   3928 
   3929 	for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
   3930 		m = NULL;
   3931 		p = NULL;
   3932 		switch (dumporder[i]) {
   3933 		case SADB_EXT_SA:
   3934 			m = key_setsadbsa(sav);
   3935 			break;
   3936 
   3937 		case SADB_X_EXT_SA2:
   3938 			m = key_setsadbxsa2(sav->sah->saidx.mode,
   3939 			    sav->replay ? sav->replay->count : 0,
   3940 			    sav->sah->saidx.reqid);
   3941 			break;
   3942 
   3943 		case SADB_EXT_ADDRESS_SRC:
   3944 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
   3945 			    &sav->sah->saidx.src.sa,
   3946 			    FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
   3947 			break;
   3948 
   3949 		case SADB_EXT_ADDRESS_DST:
   3950 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
   3951 			    &sav->sah->saidx.dst.sa,
   3952 			    FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
   3953 			break;
   3954 
   3955 		case SADB_EXT_KEY_AUTH:
   3956 			if (!sav->key_auth)
   3957 				continue;
   3958 			l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
   3959 			p = sav->key_auth;
   3960 			break;
   3961 
   3962 		case SADB_EXT_KEY_ENCRYPT:
   3963 			if (!sav->key_enc)
   3964 				continue;
   3965 			l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
   3966 			p = sav->key_enc;
   3967 			break;
   3968 
   3969 		case SADB_EXT_LIFETIME_CURRENT: {
   3970 			lifetime_counters_t sum = {0};
   3971 
   3972 			KASSERT(sav->lft_c != NULL);
   3973 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
   3974 			memcpy(&lt, sav->lft_c, sizeof(struct sadb_lifetime));
   3975 			lt.sadb_lifetime_addtime =
   3976 			    time_mono_to_wall(lt.sadb_lifetime_addtime);
   3977 			lt.sadb_lifetime_usetime =
   3978 			    time_mono_to_wall(lt.sadb_lifetime_usetime);
   3979 			percpu_foreach_xcall(sav->lft_c_counters_percpu,
   3980 			    XC_HIGHPRI_IPL(IPL_SOFTNET),
   3981 			    key_sum_lifetime_counters, sum);
   3982 			lt.sadb_lifetime_allocations =
   3983 			    sum[LIFETIME_COUNTER_ALLOCATIONS];
   3984 			lt.sadb_lifetime_bytes =
   3985 			    sum[LIFETIME_COUNTER_BYTES];
   3986 			p = &lt;
   3987 			break;
   3988 		    }
   3989 
   3990 		case SADB_EXT_LIFETIME_HARD:
   3991 			if (!sav->lft_h)
   3992 				continue;
   3993 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
   3994 			p = sav->lft_h;
   3995 			break;
   3996 
   3997 		case SADB_EXT_LIFETIME_SOFT:
   3998 			if (!sav->lft_s)
   3999 				continue;
   4000 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
   4001 			p = sav->lft_s;
   4002 			break;
   4003 
   4004 		case SADB_X_EXT_NAT_T_TYPE:
   4005 			m = key_setsadbxtype(sav->natt_type);
   4006 			break;
   4007 
   4008 		case SADB_X_EXT_NAT_T_DPORT:
   4009 			if (sav->natt_type == 0)
   4010 				continue;
   4011 			m = key_setsadbxport(
   4012 			    key_portfromsaddr(&sav->sah->saidx.dst),
   4013 			    SADB_X_EXT_NAT_T_DPORT);
   4014 			break;
   4015 
   4016 		case SADB_X_EXT_NAT_T_SPORT:
   4017 			if (sav->natt_type == 0)
   4018 				continue;
   4019 			m = key_setsadbxport(
   4020 			    key_portfromsaddr(&sav->sah->saidx.src),
   4021 			    SADB_X_EXT_NAT_T_SPORT);
   4022 			break;
   4023 
   4024 		case SADB_X_EXT_NAT_T_FRAG:
   4025 			/* don't send frag info if not set */
   4026 			if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
   4027 				continue;
   4028 			m = key_setsadbxfrag(sav->esp_frag);
   4029 			break;
   4030 
   4031 		case SADB_X_EXT_NAT_T_OAI:
   4032 		case SADB_X_EXT_NAT_T_OAR:
   4033 			continue;
   4034 
   4035 		case SADB_EXT_ADDRESS_PROXY:
   4036 		case SADB_EXT_IDENTITY_SRC:
   4037 		case SADB_EXT_IDENTITY_DST:
   4038 			/* XXX: should we brought from SPD ? */
   4039 		case SADB_EXT_SENSITIVITY:
   4040 		default:
   4041 			continue;
   4042 		}
   4043 
   4044 		KASSERT(!(m && p));
   4045 		KASSERT(m != NULL || p != NULL);
   4046 		if (p && tres) {
   4047 			M_PREPEND(tres, l, M_WAITOK);
   4048 			memcpy(mtod(tres, void *), p, l);
   4049 			continue;
   4050 		}
   4051 		if (p) {
   4052 			m = key_alloc_mbuf(l, M_WAITOK);
   4053 			m_copyback(m, 0, l, p);
   4054 		}
   4055 
   4056 		if (tres)
   4057 			m_cat(m, tres);
   4058 		tres = m;
   4059 	}
   4060 
   4061 	m_cat(result, tres);
   4062 	tres = NULL; /* avoid free on error below */
   4063 
   4064 	KASSERT(result->m_len >= sizeof(struct sadb_msg));
   4065 
   4066 	result->m_pkthdr.len = 0;
   4067 	for (m = result; m; m = m->m_next)
   4068 		result->m_pkthdr.len += m->m_len;
   4069 
   4070 	mtod(result, struct sadb_msg *)->sadb_msg_len =
   4071 	    PFKEY_UNIT64(result->m_pkthdr.len);
   4072 
   4073 	return result;
   4074 }
   4075 
   4076 
   4077 /*
   4078  * set a type in sadb_x_nat_t_type
   4079  */
   4080 static struct mbuf *
   4081 key_setsadbxtype(u_int16_t type)
   4082 {
   4083 	struct mbuf *m;
   4084 	size_t len;
   4085 	struct sadb_x_nat_t_type *p;
   4086 
   4087 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
   4088 
   4089 	m = key_alloc_mbuf(len, M_WAITOK);
   4090 	KASSERT(m->m_next == NULL);
   4091 
   4092 	p = mtod(m, struct sadb_x_nat_t_type *);
   4093 
   4094 	memset(p, 0, len);
   4095 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
   4096 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
   4097 	p->sadb_x_nat_t_type_type = type;
   4098 
   4099 	return m;
   4100 }
   4101 /*
   4102  * set a port in sadb_x_nat_t_port. port is in network order
   4103  */
   4104 static struct mbuf *
   4105 key_setsadbxport(u_int16_t port, u_int16_t type)
   4106 {
   4107 	struct mbuf *m;
   4108 	size_t len;
   4109 	struct sadb_x_nat_t_port *p;
   4110 
   4111 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
   4112 
   4113 	m = key_alloc_mbuf(len, M_WAITOK);
   4114 	KASSERT(m->m_next == NULL);
   4115 
   4116 	p = mtod(m, struct sadb_x_nat_t_port *);
   4117 
   4118 	memset(p, 0, len);
   4119 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
   4120 	p->sadb_x_nat_t_port_exttype = type;
   4121 	p->sadb_x_nat_t_port_port = port;
   4122 
   4123 	return m;
   4124 }
   4125 
   4126 /*
   4127  * set fragmentation info in sadb_x_nat_t_frag
   4128  */
   4129 static struct mbuf *
   4130 key_setsadbxfrag(u_int16_t flen)
   4131 {
   4132 	struct mbuf *m;
   4133 	size_t len;
   4134 	struct sadb_x_nat_t_frag *p;
   4135 
   4136 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
   4137 
   4138 	m = key_alloc_mbuf(len, M_WAITOK);
   4139 	KASSERT(m->m_next == NULL);
   4140 
   4141 	p = mtod(m, struct sadb_x_nat_t_frag *);
   4142 
   4143 	memset(p, 0, len);
   4144 	p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
   4145 	p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
   4146 	p->sadb_x_nat_t_frag_fraglen = flen;
   4147 
   4148 	return m;
   4149 }
   4150 
   4151 /*
   4152  * Get port from sockaddr, port is in network order
   4153  */
   4154 u_int16_t
   4155 key_portfromsaddr(const union sockaddr_union *saddr)
   4156 {
   4157 	u_int16_t port;
   4158 
   4159 	switch (saddr->sa.sa_family) {
   4160 	case AF_INET: {
   4161 		port = saddr->sin.sin_port;
   4162 		break;
   4163 	}
   4164 #ifdef INET6
   4165 	case AF_INET6: {
   4166 		port = saddr->sin6.sin6_port;
   4167 		break;
   4168 	}
   4169 #endif
   4170 	default:
   4171 		printf("%s: unexpected address family\n", __func__);
   4172 		port = 0;
   4173 		break;
   4174 	}
   4175 
   4176 	return port;
   4177 }
   4178 
   4179 
   4180 /*
   4181  * Set port is struct sockaddr. port is in network order
   4182  */
   4183 static void
   4184 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
   4185 {
   4186 	switch (saddr->sa.sa_family) {
   4187 	case AF_INET: {
   4188 		saddr->sin.sin_port = port;
   4189 		break;
   4190 	}
   4191 #ifdef INET6
   4192 	case AF_INET6: {
   4193 		saddr->sin6.sin6_port = port;
   4194 		break;
   4195 	}
   4196 #endif
   4197 	default:
   4198 		printf("%s: unexpected address family %d\n", __func__,
   4199 		    saddr->sa.sa_family);
   4200 		break;
   4201 	}
   4202 
   4203 	return;
   4204 }
   4205 
   4206 /*
   4207  * Safety check sa_len
   4208  */
   4209 static int
   4210 key_checksalen(const union sockaddr_union *saddr)
   4211 {
   4212 	switch (saddr->sa.sa_family) {
   4213 	case AF_INET:
   4214 		if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
   4215 			return -1;
   4216 		break;
   4217 #ifdef INET6
   4218 	case AF_INET6:
   4219 		if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
   4220 			return -1;
   4221 		break;
   4222 #endif
   4223 	default:
   4224 		printf("%s: unexpected sa_family %d\n", __func__,
   4225 		    saddr->sa.sa_family);
   4226 			return -1;
   4227 		break;
   4228 	}
   4229 	return 0;
   4230 }
   4231 
   4232 
   4233 /*
   4234  * set data into sadb_msg.
   4235  */
   4236 static struct mbuf *
   4237 key_setsadbmsg(u_int8_t type,  u_int16_t tlen, u_int8_t satype,
   4238 	       u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag)
   4239 {
   4240 	struct mbuf *m;
   4241 	struct sadb_msg *p;
   4242 	int len;
   4243 
   4244 	CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
   4245 
   4246 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
   4247 
   4248 	m = key_alloc_mbuf_simple(len, mflag);
   4249 	if (!m)
   4250 		return NULL;
   4251 	m->m_pkthdr.len = m->m_len = len;
   4252 	m->m_next = NULL;
   4253 
   4254 	p = mtod(m, struct sadb_msg *);
   4255 
   4256 	memset(p, 0, len);
   4257 	p->sadb_msg_version = PF_KEY_V2;
   4258 	p->sadb_msg_type = type;
   4259 	p->sadb_msg_errno = 0;
   4260 	p->sadb_msg_satype = satype;
   4261 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
   4262 	p->sadb_msg_reserved = reserved;
   4263 	p->sadb_msg_seq = seq;
   4264 	p->sadb_msg_pid = (u_int32_t)pid;
   4265 
   4266 	return m;
   4267 }
   4268 
   4269 /*
   4270  * copy secasvar data into sadb_address.
   4271  */
   4272 static struct mbuf *
   4273 key_setsadbsa(struct secasvar *sav)
   4274 {
   4275 	struct mbuf *m;
   4276 	struct sadb_sa *p;
   4277 	int len;
   4278 
   4279 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
   4280 	m = key_alloc_mbuf(len, M_WAITOK);
   4281 	KASSERT(m->m_next == NULL);
   4282 
   4283 	p = mtod(m, struct sadb_sa *);
   4284 
   4285 	memset(p, 0, len);
   4286 	p->sadb_sa_len = PFKEY_UNIT64(len);
   4287 	p->sadb_sa_exttype = SADB_EXT_SA;
   4288 	p->sadb_sa_spi = sav->spi;
   4289 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
   4290 	p->sadb_sa_state = sav->state;
   4291 	p->sadb_sa_auth = sav->alg_auth;
   4292 	p->sadb_sa_encrypt = sav->alg_enc;
   4293 	p->sadb_sa_flags = sav->flags;
   4294 
   4295 	return m;
   4296 }
   4297 
   4298 static uint8_t
   4299 key_sabits(const struct sockaddr *saddr)
   4300 {
   4301 	switch (saddr->sa_family) {
   4302 	case AF_INET:
   4303 		return _BITS(sizeof(struct in_addr));
   4304 	case AF_INET6:
   4305 		return _BITS(sizeof(struct in6_addr));
   4306 	default:
   4307 		return FULLMASK;
   4308 	}
   4309 }
   4310 
   4311 /*
   4312  * set data into sadb_address.
   4313  */
   4314 static struct mbuf *
   4315 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
   4316 		u_int8_t prefixlen, u_int16_t ul_proto, int mflag)
   4317 {
   4318 	struct mbuf *m;
   4319 	struct sadb_address *p;
   4320 	size_t len;
   4321 
   4322 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
   4323 	    PFKEY_ALIGN8(saddr->sa_len);
   4324 	m = key_alloc_mbuf(len, mflag);
   4325 	if (!m || m->m_next) {	/*XXX*/
   4326 		if (m)
   4327 			m_freem(m);
   4328 		return NULL;
   4329 	}
   4330 
   4331 	p = mtod(m, struct sadb_address *);
   4332 
   4333 	memset(p, 0, len);
   4334 	p->sadb_address_len = PFKEY_UNIT64(len);
   4335 	p->sadb_address_exttype = exttype;
   4336 	p->sadb_address_proto = ul_proto;
   4337 	if (prefixlen == FULLMASK) {
   4338 		prefixlen = key_sabits(saddr);
   4339 	}
   4340 	p->sadb_address_prefixlen = prefixlen;
   4341 	p->sadb_address_reserved = 0;
   4342 
   4343 	memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
   4344 	    saddr, saddr->sa_len);
   4345 
   4346 	return m;
   4347 }
   4348 
   4349 #if 0
   4350 /*
   4351  * set data into sadb_ident.
   4352  */
   4353 static struct mbuf *
   4354 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
   4355 		 void *string, int stringlen, u_int64_t id)
   4356 {
   4357 	struct mbuf *m;
   4358 	struct sadb_ident *p;
   4359 	size_t len;
   4360 
   4361 	len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
   4362 	m = key_alloc_mbuf(len);
   4363 	if (!m || m->m_next) {	/*XXX*/
   4364 		if (m)
   4365 			m_freem(m);
   4366 		return NULL;
   4367 	}
   4368 
   4369 	p = mtod(m, struct sadb_ident *);
   4370 
   4371 	memset(p, 0, len);
   4372 	p->sadb_ident_len = PFKEY_UNIT64(len);
   4373 	p->sadb_ident_exttype = exttype;
   4374 	p->sadb_ident_type = idtype;
   4375 	p->sadb_ident_reserved = 0;
   4376 	p->sadb_ident_id = id;
   4377 
   4378 	memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
   4379 	   	   string, stringlen);
   4380 
   4381 	return m;
   4382 }
   4383 #endif
   4384 
   4385 /*
   4386  * set data into sadb_x_sa2.
   4387  */
   4388 static struct mbuf *
   4389 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
   4390 {
   4391 	struct mbuf *m;
   4392 	struct sadb_x_sa2 *p;
   4393 	size_t len;
   4394 
   4395 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
   4396 	m = key_alloc_mbuf(len, M_WAITOK);
   4397 	KASSERT(m->m_next == NULL);
   4398 
   4399 	p = mtod(m, struct sadb_x_sa2 *);
   4400 
   4401 	memset(p, 0, len);
   4402 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
   4403 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
   4404 	p->sadb_x_sa2_mode = mode;
   4405 	p->sadb_x_sa2_reserved1 = 0;
   4406 	p->sadb_x_sa2_reserved2 = 0;
   4407 	p->sadb_x_sa2_sequence = seq;
   4408 	p->sadb_x_sa2_reqid = reqid;
   4409 
   4410 	return m;
   4411 }
   4412 
   4413 /*
   4414  * set data into sadb_x_policy
   4415  */
   4416 static struct mbuf *
   4417 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id,
   4418     int mflag)
   4419 {
   4420 	struct mbuf *m;
   4421 	struct sadb_x_policy *p;
   4422 	size_t len;
   4423 
   4424 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
   4425 	m = key_alloc_mbuf(len, mflag);
   4426 	if (!m || m->m_next) {	/*XXX*/
   4427 		if (m)
   4428 			m_freem(m);
   4429 		return NULL;
   4430 	}
   4431 
   4432 	p = mtod(m, struct sadb_x_policy *);
   4433 
   4434 	memset(p, 0, len);
   4435 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
   4436 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
   4437 	p->sadb_x_policy_type = type;
   4438 	p->sadb_x_policy_dir = dir;
   4439 	p->sadb_x_policy_id = id;
   4440 
   4441 	return m;
   4442 }
   4443 
   4444 /* %%% utilities */
   4445 /*
   4446  * copy a buffer into the new buffer allocated.
   4447  */
   4448 static void *
   4449 key_newbuf(const void *src, u_int len)
   4450 {
   4451 	void *new;
   4452 
   4453 	new = kmem_alloc(len, KM_SLEEP);
   4454 	memcpy(new, src, len);
   4455 
   4456 	return new;
   4457 }
   4458 
   4459 /* compare my own address
   4460  * OUT:	1: true, i.e. my address.
   4461  *	0: false
   4462  */
   4463 int
   4464 key_ismyaddr(const struct sockaddr *sa)
   4465 {
   4466 #ifdef INET
   4467 	const struct sockaddr_in *sin;
   4468 	const struct in_ifaddr *ia;
   4469 	int s;
   4470 #endif
   4471 
   4472 	KASSERT(sa != NULL);
   4473 
   4474 	switch (sa->sa_family) {
   4475 #ifdef INET
   4476 	case AF_INET:
   4477 		sin = (const struct sockaddr_in *)sa;
   4478 		s = pserialize_read_enter();
   4479 		IN_ADDRLIST_READER_FOREACH(ia) {
   4480 			if (sin->sin_family == ia->ia_addr.sin_family &&
   4481 			    sin->sin_len == ia->ia_addr.sin_len &&
   4482 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
   4483 			{
   4484 				pserialize_read_exit(s);
   4485 				return 1;
   4486 			}
   4487 		}
   4488 		pserialize_read_exit(s);
   4489 		break;
   4490 #endif
   4491 #ifdef INET6
   4492 	case AF_INET6:
   4493 		return key_ismyaddr6((const struct sockaddr_in6 *)sa);
   4494 #endif
   4495 	}
   4496 
   4497 	return 0;
   4498 }
   4499 
   4500 #ifdef INET6
   4501 /*
   4502  * compare my own address for IPv6.
   4503  * 1: ours
   4504  * 0: other
   4505  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
   4506  */
   4507 #include <netinet6/in6_var.h>
   4508 
   4509 static int
   4510 key_ismyaddr6(const struct sockaddr_in6 *sin6)
   4511 {
   4512 	struct in6_ifaddr *ia;
   4513 	int s;
   4514 	struct psref psref;
   4515 	int bound;
   4516 	int ours = 1;
   4517 
   4518 	bound = curlwp_bind();
   4519 	s = pserialize_read_enter();
   4520 	IN6_ADDRLIST_READER_FOREACH(ia) {
   4521 		if (key_sockaddr_match((const struct sockaddr *)&sin6,
   4522 		    (const struct sockaddr *)&ia->ia_addr, 0)) {
   4523 			pserialize_read_exit(s);
   4524 			goto ours;
   4525 		}
   4526 
   4527 		if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
   4528 			bool ingroup;
   4529 
   4530 			ia6_acquire(ia, &psref);
   4531 			pserialize_read_exit(s);
   4532 
   4533 			/*
   4534 			 * XXX Multicast
   4535 			 * XXX why do we care about multlicast here while we don't care
   4536 			 * about IPv4 multicast??
   4537 			 * XXX scope
   4538 			 */
   4539 			ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
   4540 			if (ingroup) {
   4541 				ia6_release(ia, &psref);
   4542 				goto ours;
   4543 			}
   4544 
   4545 			s = pserialize_read_enter();
   4546 			ia6_release(ia, &psref);
   4547 		}
   4548 
   4549 	}
   4550 	pserialize_read_exit(s);
   4551 
   4552 	/* loopback, just for safety */
   4553 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
   4554 		goto ours;
   4555 
   4556 	ours = 0;
   4557 ours:
   4558 	curlwp_bindx(bound);
   4559 
   4560 	return ours;
   4561 }
   4562 #endif /*INET6*/
   4563 
   4564 /*
   4565  * compare two secasindex structure.
   4566  * flag can specify to compare 2 saidxes.
   4567  * compare two secasindex structure without both mode and reqid.
   4568  * don't compare port.
   4569  * IN:
   4570  *      saidx0: source, it can be in SAD.
   4571  *      saidx1: object.
   4572  * OUT:
   4573  *      1 : equal
   4574  *      0 : not equal
   4575  */
   4576 static int
   4577 key_saidx_match(
   4578 	const struct secasindex *saidx0,
   4579 	const struct secasindex *saidx1,
   4580 	int flag)
   4581 {
   4582 	int chkport;
   4583 	const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
   4584 
   4585 	KASSERT(saidx0 != NULL);
   4586 	KASSERT(saidx1 != NULL);
   4587 
   4588 	/* sanity */
   4589 	if (saidx0->proto != saidx1->proto)
   4590 		return 0;
   4591 
   4592 	if (flag == CMP_EXACTLY) {
   4593 		if (saidx0->mode != saidx1->mode)
   4594 			return 0;
   4595 		if (saidx0->reqid != saidx1->reqid)
   4596 			return 0;
   4597 		if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
   4598 		    memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
   4599 			return 0;
   4600 	} else {
   4601 
   4602 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
   4603 		if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
   4604 			/*
   4605 			 * If reqid of SPD is non-zero, unique SA is required.
   4606 			 * The result must be of same reqid in this case.
   4607 			 */
   4608 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
   4609 				return 0;
   4610 		}
   4611 
   4612 		if (flag == CMP_MODE_REQID) {
   4613 			if (saidx0->mode != IPSEC_MODE_ANY &&
   4614 			    saidx0->mode != saidx1->mode)
   4615 				return 0;
   4616 		}
   4617 
   4618 
   4619 		sa0src = &saidx0->src.sa;
   4620 		sa0dst = &saidx0->dst.sa;
   4621 		sa1src = &saidx1->src.sa;
   4622 		sa1dst = &saidx1->dst.sa;
   4623 		/*
   4624 		 * If NAT-T is enabled, check ports for tunnel mode.
   4625 		 * For ipsecif(4), check ports for transport mode, too.
   4626 		 * Don't check ports if they are set to zero
   4627 		 * in the SPD: This means we have a non-generated
   4628 		 * SPD which can't know UDP ports.
   4629 		 */
   4630 		if (saidx1->mode == IPSEC_MODE_TUNNEL ||
   4631 		    saidx1->mode == IPSEC_MODE_TRANSPORT)
   4632 			chkport = PORT_LOOSE;
   4633 		else
   4634 			chkport = PORT_NONE;
   4635 
   4636 		if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
   4637 			return 0;
   4638 		}
   4639 		if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
   4640 			return 0;
   4641 		}
   4642 	}
   4643 
   4644 	return 1;
   4645 }
   4646 
   4647 /*
   4648  * compare two secindex structure exactly.
   4649  * IN:
   4650  *	spidx0: source, it is often in SPD.
   4651  *	spidx1: object, it is often from PFKEY message.
   4652  * OUT:
   4653  *	1 : equal
   4654  *	0 : not equal
   4655  */
   4656 static int
   4657 key_spidx_match_exactly(
   4658 	const struct secpolicyindex *spidx0,
   4659 	const struct secpolicyindex *spidx1)
   4660 {
   4661 
   4662 	KASSERT(spidx0 != NULL);
   4663 	KASSERT(spidx1 != NULL);
   4664 
   4665 	/* sanity */
   4666 	if (spidx0->prefs != spidx1->prefs ||
   4667 	    spidx0->prefd != spidx1->prefd ||
   4668 	    spidx0->ul_proto != spidx1->ul_proto)
   4669 		return 0;
   4670 
   4671 	return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
   4672 	       key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
   4673 }
   4674 
   4675 /*
   4676  * compare two secindex structure with mask.
   4677  * IN:
   4678  *	spidx0: source, it is often in SPD.
   4679  *	spidx1: object, it is often from IP header.
   4680  * OUT:
   4681  *	1 : equal
   4682  *	0 : not equal
   4683  */
   4684 static int
   4685 key_spidx_match_withmask(
   4686 	const struct secpolicyindex *spidx0,
   4687 	const struct secpolicyindex *spidx1)
   4688 {
   4689 
   4690 	KASSERT(spidx0 != NULL);
   4691 	KASSERT(spidx1 != NULL);
   4692 
   4693 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
   4694 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
   4695 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
   4696 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) {
   4697 		KEYDEBUG_PRINTF(KEYDEBUG_MATCH, ".sa wrong\n");
   4698 		return 0;
   4699 	}
   4700 
   4701 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
   4702 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
   4703 	    spidx0->ul_proto != spidx1->ul_proto) {
   4704 		KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "proto wrong\n");
   4705 		return 0;
   4706 	}
   4707 
   4708 	switch (spidx0->src.sa.sa_family) {
   4709 	case AF_INET:
   4710 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
   4711 		    spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) {
   4712 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src port wrong\n");
   4713 			return 0;
   4714 		}
   4715 		if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
   4716 					   &spidx1->src.sin.sin_addr, spidx0->prefs)) {
   4717 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src addr wrong\n");
   4718 			return 0;
   4719 		}
   4720 		break;
   4721 	case AF_INET6:
   4722 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
   4723 		    spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) {
   4724 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src port wrong\n");
   4725 			return 0;
   4726 		}
   4727 		/*
   4728 		 * scope_id check. if sin6_scope_id is 0, we regard it
   4729 		 * as a wildcard scope, which matches any scope zone ID.
   4730 		 */
   4731 		if (spidx0->src.sin6.sin6_scope_id &&
   4732 		    spidx1->src.sin6.sin6_scope_id &&
   4733 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) {
   4734 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src scope wrong\n");
   4735 			return 0;
   4736 		}
   4737 		if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
   4738 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs)) {
   4739 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src addr wrong\n");
   4740 			return 0;
   4741 		}
   4742 		break;
   4743 	default:
   4744 		/* XXX */
   4745 		if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) {
   4746 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "src memcmp wrong\n");
   4747 			return 0;
   4748 		}
   4749 		break;
   4750 	}
   4751 
   4752 	switch (spidx0->dst.sa.sa_family) {
   4753 	case AF_INET:
   4754 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
   4755 		    spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) {
   4756 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst port wrong\n");
   4757 			return 0;
   4758 		}
   4759 		if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
   4760 		    &spidx1->dst.sin.sin_addr, spidx0->prefd)) {
   4761 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst addr wrong\n");
   4762 			return 0;
   4763 		}
   4764 		break;
   4765 	case AF_INET6:
   4766 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
   4767 		    spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) {
   4768 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst port wrong\n");
   4769 			return 0;
   4770 		}
   4771 		/*
   4772 		 * scope_id check. if sin6_scope_id is 0, we regard it
   4773 		 * as a wildcard scope, which matches any scope zone ID.
   4774 		 */
   4775 		if (spidx0->src.sin6.sin6_scope_id &&
   4776 		    spidx1->src.sin6.sin6_scope_id &&
   4777 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) {
   4778 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "DP v6 dst scope wrong\n");
   4779 			return 0;
   4780 		}
   4781 		if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
   4782 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) {
   4783 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst addr wrong\n");
   4784 			return 0;
   4785 		}
   4786 		break;
   4787 	default:
   4788 		/* XXX */
   4789 		if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) {
   4790 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "dst memcmp wrong\n");
   4791 			return 0;
   4792 		}
   4793 		break;
   4794 	}
   4795 
   4796 	/* XXX Do we check other field ?  e.g. flowinfo */
   4797 
   4798 	return 1;
   4799 }
   4800 
   4801 /* returns 0 on match */
   4802 static int
   4803 key_portcomp(in_port_t port1, in_port_t port2, int howport)
   4804 {
   4805 	switch (howport) {
   4806 	case PORT_NONE:
   4807 		return 0;
   4808 	case PORT_LOOSE:
   4809 		if (port1 == 0 || port2 == 0)
   4810 			return 0;
   4811 		/*FALLTHROUGH*/
   4812 	case PORT_STRICT:
   4813 		if (port1 != port2) {
   4814 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   4815 			    "port fail %d != %d\n", ntohs(port1), ntohs(port2));
   4816 			return 1;
   4817 		}
   4818 		return 0;
   4819 	default:
   4820 		KASSERT(0);
   4821 		return 1;
   4822 	}
   4823 }
   4824 
   4825 /* returns 1 on match */
   4826 static int
   4827 key_sockaddr_match(
   4828 	const struct sockaddr *sa1,
   4829 	const struct sockaddr *sa2,
   4830 	int howport)
   4831 {
   4832 	const struct sockaddr_in *sin1, *sin2;
   4833 	const struct sockaddr_in6 *sin61, *sin62;
   4834 	char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
   4835 
   4836 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
   4837 		KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   4838 		    "fam/len fail %d != %d || %d != %d\n",
   4839 			sa1->sa_family, sa2->sa_family, sa1->sa_len,
   4840 			sa2->sa_len);
   4841 		return 0;
   4842 	}
   4843 
   4844 	switch (sa1->sa_family) {
   4845 	case AF_INET:
   4846 		if (sa1->sa_len != sizeof(struct sockaddr_in)) {
   4847 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   4848 			    "len fail %d != %zu\n",
   4849 			    sa1->sa_len, sizeof(struct sockaddr_in));
   4850 			return 0;
   4851 		}
   4852 		sin1 = (const struct sockaddr_in *)sa1;
   4853 		sin2 = (const struct sockaddr_in *)sa2;
   4854 		if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
   4855 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   4856 			    "addr fail %s != %s\n",
   4857 			    (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
   4858 			    (in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
   4859 			return 0;
   4860 		}
   4861 		if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
   4862 			return 0;
   4863 		}
   4864 		KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
   4865 		    "addr success %s[%d] == %s[%d]\n",
   4866 		    (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
   4867 		    ntohs(sin1->sin_port),
   4868 		    (in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
   4869 		    ntohs(sin2->sin_port));
   4870 		break;
   4871 	case AF_INET6:
   4872 		sin61 = (const struct sockaddr_in6 *)sa1;
   4873 		sin62 = (const struct sockaddr_in6 *)sa2;
   4874 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
   4875 			return 0;	/*EINVAL*/
   4876 
   4877 		if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
   4878 			return 0;
   4879 		}
   4880 		if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
   4881 			return 0;
   4882 		}
   4883 		if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
   4884 			return 0;
   4885 		}
   4886 		break;
   4887 	default:
   4888 		if (memcmp(sa1, sa2, sa1->sa_len) != 0)
   4889 			return 0;
   4890 		break;
   4891 	}
   4892 
   4893 	return 1;
   4894 }
   4895 
   4896 /*
   4897  * compare two buffers with mask.
   4898  * IN:
   4899  *	addr1: source
   4900  *	addr2: object
   4901  *	bits:  Number of bits to compare
   4902  * OUT:
   4903  *	1 : equal
   4904  *	0 : not equal
   4905  */
   4906 static int
   4907 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
   4908 {
   4909 	const unsigned char *p1 = a1;
   4910 	const unsigned char *p2 = a2;
   4911 
   4912 	/* XXX: This could be considerably faster if we compare a word
   4913 	 * at a time, but it is complicated on LSB Endian machines */
   4914 
   4915 	/* Handle null pointers */
   4916 	if (p1 == NULL || p2 == NULL)
   4917 		return (p1 == p2);
   4918 
   4919 	while (bits >= 8) {
   4920 		if (*p1++ != *p2++)
   4921 			return 0;
   4922 		bits -= 8;
   4923 	}
   4924 
   4925 	if (bits > 0) {
   4926 		u_int8_t mask = ~((1<<(8-bits))-1);
   4927 		if ((*p1 & mask) != (*p2 & mask))
   4928 			return 0;
   4929 	}
   4930 	return 1;	/* Match! */
   4931 }
   4932 
   4933 static void
   4934 key_timehandler_spd(void)
   4935 {
   4936 	u_int dir;
   4937 	struct secpolicy *sp;
   4938 	volatile time_t now;
   4939 
   4940 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
   4941 	    retry:
   4942 		mutex_enter(&key_spd.lock);
   4943 		/*
   4944 		 * To avoid for sp->created to overtake "now" because of
   4945 		 * waiting mutex, set time_uptime here.
   4946 		 */
   4947 		now = time_uptime;
   4948 		SPLIST_WRITER_FOREACH(sp, dir) {
   4949 			KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD,
   4950 			    "sp->state=%u", sp->state);
   4951 
   4952 			if (sp->lifetime == 0 && sp->validtime == 0)
   4953 				continue;
   4954 
   4955 			if ((sp->lifetime && now - sp->created > sp->lifetime) ||
   4956 			    (sp->validtime && now - sp->lastused > sp->validtime)) {
   4957 				key_unlink_sp(sp);
   4958 				mutex_exit(&key_spd.lock);
   4959 				key_spdexpire(sp);
   4960 				key_destroy_sp(sp);
   4961 				goto retry;
   4962 			}
   4963 		}
   4964 		mutex_exit(&key_spd.lock);
   4965 	}
   4966 
   4967     retry_socksplist:
   4968 	mutex_enter(&key_spd.lock);
   4969 	SOCKSPLIST_WRITER_FOREACH(sp) {
   4970 		if (sp->state != IPSEC_SPSTATE_DEAD)
   4971 			continue;
   4972 
   4973 		key_unlink_sp(sp);
   4974 		mutex_exit(&key_spd.lock);
   4975 		key_destroy_sp(sp);
   4976 		goto retry_socksplist;
   4977 	}
   4978 	mutex_exit(&key_spd.lock);
   4979 }
   4980 
   4981 static void
   4982 key_timehandler_sad(void)
   4983 {
   4984 	struct secashead *sah;
   4985 	int s;
   4986 	volatile time_t now;
   4987 
   4988 restart:
   4989 	mutex_enter(&key_sad.lock);
   4990 	SAHLIST_WRITER_FOREACH(sah) {
   4991 		/* If sah has been dead and has no sav, then delete it */
   4992 		if (sah->state == SADB_SASTATE_DEAD &&
   4993 		    !key_sah_has_sav(sah)) {
   4994 			key_unlink_sah(sah);
   4995 			mutex_exit(&key_sad.lock);
   4996 			key_destroy_sah(sah);
   4997 			goto restart;
   4998 		}
   4999 	}
   5000 	mutex_exit(&key_sad.lock);
   5001 
   5002 	s = pserialize_read_enter();
   5003 	SAHLIST_READER_FOREACH(sah) {
   5004 		struct secasvar *sav;
   5005 
   5006 		key_sah_ref(sah);
   5007 		pserialize_read_exit(s);
   5008 
   5009 		/* if LARVAL entry doesn't become MATURE, delete it. */
   5010 		mutex_enter(&key_sad.lock);
   5011 	restart_sav_LARVAL:
   5012 		/*
   5013 		 * Same as key_timehandler_spd(), set time_uptime here.
   5014 		 */
   5015 		now = time_uptime;
   5016 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
   5017 			if (now - sav->created > key_larval_lifetime) {
   5018 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
   5019 				goto restart_sav_LARVAL;
   5020 			}
   5021 		}
   5022 		mutex_exit(&key_sad.lock);
   5023 
   5024 		/*
   5025 		 * check MATURE entry to start to send expire message
   5026 		 * whether or not.
   5027 		 */
   5028 	restart_sav_MATURE:
   5029 		mutex_enter(&key_sad.lock);
   5030 		/*
   5031 		 * ditto
   5032 		 */
   5033 		now = time_uptime;
   5034 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
   5035 			/* we don't need to check. */
   5036 			if (sav->lft_s == NULL)
   5037 				continue;
   5038 
   5039 			/* sanity check */
   5040 			KASSERT(sav->lft_c != NULL);
   5041 
   5042 			/* check SOFT lifetime */
   5043 			if (sav->lft_s->sadb_lifetime_addtime != 0 &&
   5044 			    now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
   5045 				/*
   5046 				 * check SA to be used whether or not.
   5047 				 * when SA hasn't been used, delete it.
   5048 				 */
   5049 				if (sav->lft_c->sadb_lifetime_usetime == 0) {
   5050 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
   5051 					mutex_exit(&key_sad.lock);
   5052 				} else {
   5053 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
   5054 					mutex_exit(&key_sad.lock);
   5055 					/*
   5056 					 * XXX If we keep to send expire
   5057 					 * message in the status of
   5058 					 * DYING. Do remove below code.
   5059 					 */
   5060 					key_expire(sav);
   5061 				}
   5062 				goto restart_sav_MATURE;
   5063 			}
   5064 			/* check SOFT lifetime by bytes */
   5065 			/*
   5066 			 * XXX I don't know the way to delete this SA
   5067 			 * when new SA is installed.  Caution when it's
   5068 			 * installed too big lifetime by time.
   5069 			 */
   5070 			else {
   5071 				uint64_t lft_c_bytes = 0;
   5072 				lifetime_counters_t sum = {0};
   5073 
   5074 				percpu_foreach_xcall(sav->lft_c_counters_percpu,
   5075 				    XC_HIGHPRI_IPL(IPL_SOFTNET),
   5076 				    key_sum_lifetime_counters, sum);
   5077 				lft_c_bytes = sum[LIFETIME_COUNTER_BYTES];
   5078 
   5079 				if (sav->lft_s->sadb_lifetime_bytes == 0 ||
   5080 				    sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes)
   5081 					continue;
   5082 
   5083 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
   5084 				mutex_exit(&key_sad.lock);
   5085 				/*
   5086 				 * XXX If we keep to send expire
   5087 				 * message in the status of
   5088 				 * DYING. Do remove below code.
   5089 				 */
   5090 				key_expire(sav);
   5091 				goto restart_sav_MATURE;
   5092 			}
   5093 		}
   5094 		mutex_exit(&key_sad.lock);
   5095 
   5096 		/* check DYING entry to change status to DEAD. */
   5097 		mutex_enter(&key_sad.lock);
   5098 	restart_sav_DYING:
   5099 		/*
   5100 		 * ditto
   5101 		 */
   5102 		now = time_uptime;
   5103 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
   5104 			/* we don't need to check. */
   5105 			if (sav->lft_h == NULL)
   5106 				continue;
   5107 
   5108 			/* sanity check */
   5109 			KASSERT(sav->lft_c != NULL);
   5110 
   5111 			if (sav->lft_h->sadb_lifetime_addtime != 0 &&
   5112 			    now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
   5113 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
   5114 				goto restart_sav_DYING;
   5115 			}
   5116 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
   5117 			else if (sav->lft_s != NULL
   5118 			      && sav->lft_s->sadb_lifetime_addtime != 0
   5119 			      && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
   5120 				/*
   5121 				 * XXX: should be checked to be
   5122 				 * installed the valid SA.
   5123 				 */
   5124 
   5125 				/*
   5126 				 * If there is no SA then sending
   5127 				 * expire message.
   5128 				 */
   5129 				key_expire(sav);
   5130 			}
   5131 #endif
   5132 			/* check HARD lifetime by bytes */
   5133 			else {
   5134 				uint64_t lft_c_bytes = 0;
   5135 				lifetime_counters_t sum = {0};
   5136 
   5137 				percpu_foreach_xcall(sav->lft_c_counters_percpu,
   5138 				    XC_HIGHPRI_IPL(IPL_SOFTNET),
   5139 				    key_sum_lifetime_counters, sum);
   5140 				lft_c_bytes = sum[LIFETIME_COUNTER_BYTES];
   5141 
   5142 				if (sav->lft_h->sadb_lifetime_bytes == 0 ||
   5143 				    sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes)
   5144 					continue;
   5145 
   5146 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
   5147 				goto restart_sav_DYING;
   5148 			}
   5149 		}
   5150 		mutex_exit(&key_sad.lock);
   5151 
   5152 		/* delete entry in DEAD */
   5153 	restart_sav_DEAD:
   5154 		mutex_enter(&key_sad.lock);
   5155 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
   5156 			key_unlink_sav(sav);
   5157 			mutex_exit(&key_sad.lock);
   5158 			key_destroy_sav(sav);
   5159 			goto restart_sav_DEAD;
   5160 		}
   5161 		mutex_exit(&key_sad.lock);
   5162 
   5163 		s = pserialize_read_enter();
   5164 		key_sah_unref(sah);
   5165 	}
   5166 	pserialize_read_exit(s);
   5167 }
   5168 
   5169 static void
   5170 key_timehandler_acq(void)
   5171 {
   5172 #ifndef IPSEC_NONBLOCK_ACQUIRE
   5173 	struct secacq *acq, *nextacq;
   5174 	volatile time_t now;
   5175 
   5176     restart:
   5177 	mutex_enter(&key_misc.lock);
   5178 	/*
   5179 	 * Same as key_timehandler_spd(), set time_uptime here.
   5180 	 */
   5181 	now = time_uptime;
   5182 	LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
   5183 		if (now - acq->created > key_blockacq_lifetime) {
   5184 			LIST_REMOVE(acq, chain);
   5185 			mutex_exit(&key_misc.lock);
   5186 			kmem_free(acq, sizeof(*acq));
   5187 			goto restart;
   5188 		}
   5189 	}
   5190 	mutex_exit(&key_misc.lock);
   5191 #endif
   5192 }
   5193 
   5194 static void
   5195 key_timehandler_spacq(void)
   5196 {
   5197 #ifdef notyet
   5198 	struct secspacq *acq, *nextacq;
   5199 	time_t now = time_uptime;
   5200 
   5201 	LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
   5202 		if (now - acq->created > key_blockacq_lifetime) {
   5203 			KASSERT(__LIST_CHAINED(acq));
   5204 			LIST_REMOVE(acq, chain);
   5205 			kmem_free(acq, sizeof(*acq));
   5206 		}
   5207 	}
   5208 #endif
   5209 }
   5210 
   5211 static unsigned int key_timehandler_work_enqueued = 0;
   5212 
   5213 /*
   5214  * time handler.
   5215  * scanning SPD and SAD to check status for each entries,
   5216  * and do to remove or to expire.
   5217  */
   5218 static void
   5219 key_timehandler_work(struct work *wk, void *arg)
   5220 {
   5221 
   5222 	/* We can allow enqueuing another work at this point */
   5223 	atomic_swap_uint(&key_timehandler_work_enqueued, 0);
   5224 
   5225 	key_timehandler_spd();
   5226 	key_timehandler_sad();
   5227 	key_timehandler_acq();
   5228 	key_timehandler_spacq();
   5229 
   5230 	key_acquire_sendup_pending_mbuf();
   5231 
   5232 	/* do exchange to tick time !! */
   5233 	callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
   5234 
   5235 	return;
   5236 }
   5237 
   5238 static void
   5239 key_timehandler(void *arg)
   5240 {
   5241 
   5242 	/* Avoid enqueuing another work when one is already enqueued */
   5243 	if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
   5244 		return;
   5245 
   5246 	workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
   5247 }
   5248 
   5249 u_long
   5250 key_random(void)
   5251 {
   5252 	u_long value;
   5253 
   5254 	key_randomfill(&value, sizeof(value));
   5255 	return value;
   5256 }
   5257 
   5258 void
   5259 key_randomfill(void *p, size_t l)
   5260 {
   5261 
   5262 	cprng_fast(p, l);
   5263 }
   5264 
   5265 /*
   5266  * map SADB_SATYPE_* to IPPROTO_*.
   5267  * if satype == SADB_SATYPE then satype is mapped to ~0.
   5268  * OUT:
   5269  *	0: invalid satype.
   5270  */
   5271 static u_int16_t
   5272 key_satype2proto(u_int8_t satype)
   5273 {
   5274 	switch (satype) {
   5275 	case SADB_SATYPE_UNSPEC:
   5276 		return IPSEC_PROTO_ANY;
   5277 	case SADB_SATYPE_AH:
   5278 		return IPPROTO_AH;
   5279 	case SADB_SATYPE_ESP:
   5280 		return IPPROTO_ESP;
   5281 	case SADB_X_SATYPE_IPCOMP:
   5282 		return IPPROTO_IPCOMP;
   5283 	case SADB_X_SATYPE_TCPSIGNATURE:
   5284 		return IPPROTO_TCP;
   5285 	default:
   5286 		return 0;
   5287 	}
   5288 	/* NOTREACHED */
   5289 }
   5290 
   5291 /*
   5292  * map IPPROTO_* to SADB_SATYPE_*
   5293  * OUT:
   5294  *	0: invalid protocol type.
   5295  */
   5296 static u_int8_t
   5297 key_proto2satype(u_int16_t proto)
   5298 {
   5299 	switch (proto) {
   5300 	case IPPROTO_AH:
   5301 		return SADB_SATYPE_AH;
   5302 	case IPPROTO_ESP:
   5303 		return SADB_SATYPE_ESP;
   5304 	case IPPROTO_IPCOMP:
   5305 		return SADB_X_SATYPE_IPCOMP;
   5306 	case IPPROTO_TCP:
   5307 		return SADB_X_SATYPE_TCPSIGNATURE;
   5308 	default:
   5309 		return 0;
   5310 	}
   5311 	/* NOTREACHED */
   5312 }
   5313 
   5314 static int
   5315 key_setsecasidx(int proto, int mode, int reqid,
   5316     const struct sockaddr *src, const struct sockaddr *dst,
   5317     struct secasindex * saidx)
   5318 {
   5319 	const union sockaddr_union *src_u = (const union sockaddr_union *)src;
   5320 	const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
   5321 
   5322 	/* sa len safety check */
   5323 	if (key_checksalen(src_u) != 0)
   5324 		return -1;
   5325 	if (key_checksalen(dst_u) != 0)
   5326 		return -1;
   5327 
   5328 	memset(saidx, 0, sizeof(*saidx));
   5329 	saidx->proto = proto;
   5330 	saidx->mode = mode;
   5331 	saidx->reqid = reqid;
   5332 	memcpy(&saidx->src, src_u, src_u->sa.sa_len);
   5333 	memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
   5334 
   5335 	key_porttosaddr(&((saidx)->src), 0);
   5336 	key_porttosaddr(&((saidx)->dst), 0);
   5337 	return 0;
   5338 }
   5339 
   5340 static void
   5341 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
   5342     const struct sadb_msghdr *mhp)
   5343 {
   5344 	const struct sadb_address *src0, *dst0;
   5345 	const struct sockaddr *src, *dst;
   5346 	const struct sadb_x_policy *xpl0;
   5347 
   5348 	src0 = mhp->ext[SADB_EXT_ADDRESS_SRC];
   5349 	dst0 = mhp->ext[SADB_EXT_ADDRESS_DST];
   5350 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   5351 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   5352 	xpl0 = mhp->ext[SADB_X_EXT_POLICY];
   5353 
   5354 	memset(spidx, 0, sizeof(*spidx));
   5355 	spidx->dir = xpl0->sadb_x_policy_dir;
   5356 	spidx->prefs = src0->sadb_address_prefixlen;
   5357 	spidx->prefd = dst0->sadb_address_prefixlen;
   5358 	spidx->ul_proto = src0->sadb_address_proto;
   5359 	/* XXX boundary check against sa_len */
   5360 	memcpy(&spidx->src, src, src->sa_len);
   5361 	memcpy(&spidx->dst, dst, dst->sa_len);
   5362 }
   5363 
   5364 /* %%% PF_KEY */
   5365 /*
   5366  * SADB_GETSPI processing is to receive
   5367  *	<base, (SA2), src address, dst address, (SPI range)>
   5368  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
   5369  * tree with the status of LARVAL, and send
   5370  *	<base, SA(*), address(SD)>
   5371  * to the IKMPd.
   5372  *
   5373  * IN:	mhp: pointer to the pointer to each header.
   5374  * OUT:	NULL if fail.
   5375  *	other if success, return pointer to the message to send.
   5376  */
   5377 static int
   5378 key_api_getspi(struct socket *so, struct mbuf *m,
   5379 	   const struct sadb_msghdr *mhp)
   5380 {
   5381 	const struct sockaddr *src, *dst;
   5382 	struct secasindex saidx;
   5383 	struct secashead *sah;
   5384 	struct secasvar *newsav;
   5385 	u_int8_t proto;
   5386 	u_int32_t spi;
   5387 	u_int8_t mode;
   5388 	u_int16_t reqid;
   5389 	int error;
   5390 
   5391 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   5392 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
   5393 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   5394 		return key_senderror(so, m, EINVAL);
   5395 	}
   5396 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   5397 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
   5398 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   5399 		return key_senderror(so, m, EINVAL);
   5400 	}
   5401 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
   5402 		const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
   5403 		mode = sa2->sadb_x_sa2_mode;
   5404 		reqid = sa2->sadb_x_sa2_reqid;
   5405 	} else {
   5406 		mode = IPSEC_MODE_ANY;
   5407 		reqid = 0;
   5408 	}
   5409 
   5410 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   5411 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   5412 
   5413 	/* map satype to proto */
   5414 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
   5415 	if (proto == 0) {
   5416 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   5417 		return key_senderror(so, m, EINVAL);
   5418 	}
   5419 
   5420 
   5421 	error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
   5422 	if (error != 0)
   5423 		return key_senderror(so, m, EINVAL);
   5424 
   5425 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
   5426 	if (error != 0)
   5427 		return key_senderror(so, m, EINVAL);
   5428 
   5429 	/* SPI allocation */
   5430 	spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx);
   5431 	if (spi == 0)
   5432 		return key_senderror(so, m, EINVAL);
   5433 
   5434 	/* get a SA index */
   5435 	sah = key_getsah_ref(&saidx, CMP_REQID);
   5436 	if (sah == NULL) {
   5437 		/* create a new SA index */
   5438 		sah = key_newsah(&saidx);
   5439 		if (sah == NULL) {
   5440 			IPSECLOG(LOG_DEBUG, "No more memory.\n");
   5441 			return key_senderror(so, m, ENOBUFS);
   5442 		}
   5443 	}
   5444 
   5445 	/* get a new SA */
   5446 	/* XXX rewrite */
   5447 	newsav = KEY_NEWSAV(m, mhp, &error, proto);
   5448 	if (newsav == NULL) {
   5449 		key_sah_unref(sah);
   5450 		/* XXX don't free new SA index allocated in above. */
   5451 		return key_senderror(so, m, error);
   5452 	}
   5453 
   5454 	/* set spi */
   5455 	newsav->spi = htonl(spi);
   5456 
   5457 	/* Add to sah#savlist */
   5458 	key_init_sav(newsav);
   5459 	newsav->sah = sah;
   5460 	newsav->state = SADB_SASTATE_LARVAL;
   5461 	mutex_enter(&key_sad.lock);
   5462 	SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
   5463 	mutex_exit(&key_sad.lock);
   5464 	key_validate_savlist(sah, SADB_SASTATE_LARVAL);
   5465 
   5466 	key_sah_unref(sah);
   5467 
   5468 #ifndef IPSEC_NONBLOCK_ACQUIRE
   5469 	/* delete the entry in key_misc.acqlist */
   5470 	if (mhp->msg->sadb_msg_seq != 0) {
   5471 		struct secacq *acq;
   5472 		mutex_enter(&key_misc.lock);
   5473 		acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
   5474 		if (acq != NULL) {
   5475 			/* reset counter in order to deletion by timehandler. */
   5476 			acq->created = time_uptime;
   5477 			acq->count = 0;
   5478 		}
   5479 		mutex_exit(&key_misc.lock);
   5480 	}
   5481 #endif
   5482 
   5483     {
   5484 	struct mbuf *n, *nn;
   5485 	struct sadb_sa *m_sa;
   5486 	int off, len;
   5487 
   5488 	CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
   5489 	    PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
   5490 
   5491 	/* create new sadb_msg to reply. */
   5492 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
   5493 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
   5494 
   5495 	n = key_alloc_mbuf_simple(len, M_WAITOK);
   5496 	n->m_len = len;
   5497 	n->m_next = NULL;
   5498 	off = 0;
   5499 
   5500 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
   5501 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
   5502 
   5503 	m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
   5504 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
   5505 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
   5506 	m_sa->sadb_sa_spi = htonl(spi);
   5507 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
   5508 
   5509 	KASSERTMSG(off == len, "length inconsistency");
   5510 
   5511 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
   5512 	    SADB_EXT_ADDRESS_DST);
   5513 
   5514 	KASSERT(n->m_len >= sizeof(struct sadb_msg));
   5515 
   5516 	n->m_pkthdr.len = 0;
   5517 	for (nn = n; nn; nn = nn->m_next)
   5518 		n->m_pkthdr.len += nn->m_len;
   5519 
   5520 	key_fill_replymsg(n, newsav->seq);
   5521 	m_freem(m);
   5522 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
   5523     }
   5524 }
   5525 
   5526 /*
   5527  * allocating new SPI
   5528  * called by key_api_getspi().
   5529  * OUT:
   5530  *	0:	failure.
   5531  *	others: success.
   5532  */
   5533 static u_int32_t
   5534 key_do_getnewspi(const struct sadb_spirange *spirange,
   5535 		 const struct secasindex *saidx)
   5536 {
   5537 	u_int32_t newspi;
   5538 	u_int32_t spmin, spmax;
   5539 	int count = key_spi_trycnt;
   5540 
   5541 	/* set spi range to allocate */
   5542 	if (spirange != NULL) {
   5543 		spmin = spirange->sadb_spirange_min;
   5544 		spmax = spirange->sadb_spirange_max;
   5545 	} else {
   5546 		spmin = key_spi_minval;
   5547 		spmax = key_spi_maxval;
   5548 	}
   5549 	/* IPCOMP needs 2-byte SPI */
   5550 	if (saidx->proto == IPPROTO_IPCOMP) {
   5551 		u_int32_t t;
   5552 		if (spmin >= 0x10000)
   5553 			spmin = 0xffff;
   5554 		if (spmax >= 0x10000)
   5555 			spmax = 0xffff;
   5556 		if (spmin > spmax) {
   5557 			t = spmin; spmin = spmax; spmax = t;
   5558 		}
   5559 	}
   5560 
   5561 	if (spmin == spmax) {
   5562 		if (key_checkspidup(saidx, htonl(spmin))) {
   5563 			IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
   5564 			return 0;
   5565 		}
   5566 
   5567 		count--; /* taking one cost. */
   5568 		newspi = spmin;
   5569 
   5570 	} else {
   5571 
   5572 		/* init SPI */
   5573 		newspi = 0;
   5574 
   5575 		/* when requesting to allocate spi ranged */
   5576 		while (count--) {
   5577 			/* generate pseudo-random SPI value ranged. */
   5578 			newspi = spmin + (key_random() % (spmax - spmin + 1));
   5579 
   5580 			if (!key_checkspidup(saidx, htonl(newspi)))
   5581 				break;
   5582 		}
   5583 
   5584 		if (count == 0 || newspi == 0) {
   5585 			IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
   5586 			return 0;
   5587 		}
   5588 	}
   5589 
   5590 	/* statistics */
   5591 	keystat.getspi_count =
   5592 	    (keystat.getspi_count + key_spi_trycnt - count) / 2;
   5593 
   5594 	return newspi;
   5595 }
   5596 
   5597 static int
   5598 key_handle_natt_info(struct secasvar *sav,
   5599       		     const struct sadb_msghdr *mhp)
   5600 {
   5601 	const char *msg = "?" ;
   5602 	struct sadb_x_nat_t_type *type;
   5603 	struct sadb_x_nat_t_port *sport, *dport;
   5604 	struct sadb_address *iaddr, *raddr;
   5605 	struct sadb_x_nat_t_frag *frag;
   5606 
   5607 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
   5608 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
   5609 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
   5610 		return 0;
   5611 
   5612 	if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
   5613 		msg = "TYPE";
   5614 		goto bad;
   5615 	}
   5616 
   5617 	if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
   5618 		msg = "SPORT";
   5619 		goto bad;
   5620 	}
   5621 
   5622 	if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
   5623 		msg = "DPORT";
   5624 		goto bad;
   5625 	}
   5626 
   5627 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
   5628 		IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
   5629 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
   5630 			msg = "OAI";
   5631 			goto bad;
   5632 		}
   5633 	}
   5634 
   5635 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
   5636 		IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
   5637 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
   5638 			msg = "OAR";
   5639 			goto bad;
   5640 		}
   5641 	}
   5642 
   5643 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
   5644 	    if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
   5645 		    msg = "FRAG";
   5646 		    goto bad;
   5647 	    }
   5648 	}
   5649 
   5650 	type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
   5651 	sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
   5652 	dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
   5653 	iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
   5654 	raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
   5655 	frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
   5656 
   5657 	IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
   5658 	    type->sadb_x_nat_t_type_type,
   5659 	    ntohs(sport->sadb_x_nat_t_port_port),
   5660 	    ntohs(dport->sadb_x_nat_t_port_port));
   5661 
   5662 	sav->natt_type = type->sadb_x_nat_t_type_type;
   5663 	key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
   5664 	key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
   5665 	if (frag)
   5666 		sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
   5667 	else
   5668 		sav->esp_frag = IP_MAXPACKET;
   5669 
   5670 	return 0;
   5671 bad:
   5672 	IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
   5673 	__USE(msg);
   5674 	return -1;
   5675 }
   5676 
   5677 /* Just update the IPSEC_NAT_T ports if present */
   5678 static int
   5679 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
   5680       		     const struct sadb_msghdr *mhp)
   5681 {
   5682 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
   5683 		IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
   5684 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
   5685 		IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
   5686 
   5687 	if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
   5688 	    (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
   5689 	    (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
   5690 		struct sadb_x_nat_t_type *type;
   5691 		struct sadb_x_nat_t_port *sport;
   5692 		struct sadb_x_nat_t_port *dport;
   5693 
   5694 		if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
   5695 		    (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
   5696 		    (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
   5697 			IPSECLOG(LOG_DEBUG, "invalid message\n");
   5698 			return -1;
   5699 		}
   5700 
   5701 		type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
   5702 		sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
   5703 		dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
   5704 
   5705 		key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
   5706 		key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
   5707 
   5708 		IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
   5709 		    type->sadb_x_nat_t_type_type,
   5710 		    ntohs(sport->sadb_x_nat_t_port_port),
   5711 		    ntohs(dport->sadb_x_nat_t_port_port));
   5712 	}
   5713 
   5714 	return 0;
   5715 }
   5716 
   5717 
   5718 /*
   5719  * SADB_UPDATE processing
   5720  * receive
   5721  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
   5722  *       key(AE), (identity(SD),) (sensitivity)>
   5723  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
   5724  * and send
   5725  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
   5726  *       (identity(SD),) (sensitivity)>
   5727  * to the ikmpd.
   5728  *
   5729  * m will always be freed.
   5730  */
   5731 static int
   5732 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
   5733 {
   5734 	struct sadb_sa *sa0;
   5735 	const struct sockaddr *src, *dst;
   5736 	struct secasindex saidx;
   5737 	struct secashead *sah;
   5738 	struct secasvar *sav, *newsav, *oldsav;
   5739 	u_int16_t proto;
   5740 	u_int8_t mode;
   5741 	u_int16_t reqid;
   5742 	int error;
   5743 
   5744 	/* map satype to proto */
   5745 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
   5746 	if (proto == 0) {
   5747 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   5748 		return key_senderror(so, m, EINVAL);
   5749 	}
   5750 
   5751 	if (mhp->ext[SADB_EXT_SA] == NULL ||
   5752 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   5753 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
   5754 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
   5755 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
   5756 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
   5757 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
   5758 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
   5759 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
   5760 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
   5761 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
   5762 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   5763 		return key_senderror(so, m, EINVAL);
   5764 	}
   5765 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
   5766 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   5767 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
   5768 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   5769 		return key_senderror(so, m, EINVAL);
   5770 	}
   5771 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
   5772 		const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
   5773 		mode = sa2->sadb_x_sa2_mode;
   5774 		reqid = sa2->sadb_x_sa2_reqid;
   5775 	} else {
   5776 		mode = IPSEC_MODE_ANY;
   5777 		reqid = 0;
   5778 	}
   5779 	/* XXX boundary checking for other extensions */
   5780 
   5781 	sa0 = mhp->ext[SADB_EXT_SA];
   5782 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   5783 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   5784 
   5785 	error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
   5786 	if (error != 0)
   5787 		return key_senderror(so, m, EINVAL);
   5788 
   5789 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
   5790 	if (error != 0)
   5791 		return key_senderror(so, m, EINVAL);
   5792 
   5793 	/* get a SA header */
   5794 	sah = key_getsah_ref(&saidx, CMP_REQID);
   5795 	if (sah == NULL) {
   5796 		IPSECLOG(LOG_DEBUG, "no SA index found.\n");
   5797 		return key_senderror(so, m, ENOENT);
   5798 	}
   5799 
   5800 	/* set spidx if there */
   5801 	/* XXX rewrite */
   5802 	error = key_setident(sah, m, mhp);
   5803 	if (error)
   5804 		goto error_sah;
   5805 
   5806 	/* find a SA with sequence number. */
   5807 #ifdef IPSEC_DOSEQCHECK
   5808 	if (mhp->msg->sadb_msg_seq != 0) {
   5809 		sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
   5810 		if (sav == NULL) {
   5811 			IPSECLOG(LOG_DEBUG,
   5812 			    "no larval SA with sequence %u exists.\n",
   5813 			    mhp->msg->sadb_msg_seq);
   5814 			error = ENOENT;
   5815 			goto error_sah;
   5816 		}
   5817 	}
   5818 #else
   5819 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
   5820 	if (sav == NULL) {
   5821 		IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
   5822 		    (u_int32_t)ntohl(sa0->sadb_sa_spi));
   5823 		error = EINVAL;
   5824 		goto error_sah;
   5825 	}
   5826 #endif
   5827 
   5828 	/* validity check */
   5829 	if (sav->sah->saidx.proto != proto) {
   5830 		IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
   5831 		    sav->sah->saidx.proto, proto);
   5832 		error = EINVAL;
   5833 		goto error;
   5834 	}
   5835 #ifdef IPSEC_DOSEQCHECK
   5836 	if (sav->spi != sa0->sadb_sa_spi) {
   5837 		IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
   5838 		    (u_int32_t)ntohl(sav->spi),
   5839 		    (u_int32_t)ntohl(sa0->sadb_sa_spi));
   5840 		error = EINVAL;
   5841 		goto error;
   5842 	}
   5843 #endif
   5844 	if (sav->pid != mhp->msg->sadb_msg_pid) {
   5845 		IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
   5846 		    sav->pid, mhp->msg->sadb_msg_pid);
   5847 		error = EINVAL;
   5848 		goto error;
   5849 	}
   5850 
   5851 	/*
   5852 	 * Allocate a new SA instead of modifying the existing SA directly
   5853 	 * to avoid race conditions.
   5854 	 */
   5855 	newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
   5856 
   5857 	/* copy sav values */
   5858 	newsav->spi = sav->spi;
   5859 	newsav->seq = sav->seq;
   5860 	newsav->created = sav->created;
   5861 	newsav->pid = sav->pid;
   5862 	newsav->sah = sav->sah;
   5863  	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   5864 	    "DP from %s:%u update SA:%p to SA:%p spi=%#x proto=%d\n",
   5865 	    __func__, __LINE__, sav, newsav,
   5866 	    ntohl(newsav->spi), proto);
   5867 
   5868 	error = key_setsaval(newsav, m, mhp);
   5869 	if (error) {
   5870 		kmem_free(newsav, sizeof(*newsav));
   5871 		goto error;
   5872 	}
   5873 
   5874 	error = key_handle_natt_info(newsav, mhp);
   5875 	if (error != 0) {
   5876 		key_delsav(newsav);
   5877 		goto error;
   5878 	}
   5879 
   5880 	error = key_init_xform(newsav);
   5881 	if (error != 0) {
   5882 		key_delsav(newsav);
   5883 		goto error;
   5884 	}
   5885 
   5886 	/* Add to sah#savlist */
   5887 	key_init_sav(newsav);
   5888 	newsav->state = SADB_SASTATE_MATURE;
   5889 	mutex_enter(&key_sad.lock);
   5890 	SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
   5891 	SAVLUT_WRITER_INSERT_HEAD(newsav);
   5892 	mutex_exit(&key_sad.lock);
   5893 	key_validate_savlist(sah, SADB_SASTATE_MATURE);
   5894 
   5895 	/*
   5896 	 * We need to lookup and remove the sav atomically, so get it again
   5897 	 * here by a special API while we have a reference to it.
   5898 	 */
   5899 	oldsav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, sav);
   5900 	KASSERT(oldsav == NULL || oldsav == sav);
   5901 	/* We can release the reference because of oldsav */
   5902 	KEY_SA_UNREF(&sav);
   5903 	if (oldsav == NULL) {
   5904 		/* Someone has already removed the sav.  Nothing to do. */
   5905 	} else {
   5906 		key_wait_sav(oldsav);
   5907 		key_destroy_sav(oldsav);
   5908 		oldsav = NULL;
   5909 	}
   5910 	sav = NULL;
   5911 
   5912 	key_sah_unref(sah);
   5913 	sah = NULL;
   5914 
   5915     {
   5916 	struct mbuf *n;
   5917 
   5918 	/* set msg buf from mhp */
   5919 	n = key_getmsgbuf_x1(m, mhp);
   5920 	if (n == NULL) {
   5921 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
   5922 		return key_senderror(so, m, ENOBUFS);
   5923 	}
   5924 
   5925 	m_freem(m);
   5926 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
   5927     }
   5928 error:
   5929 	KEY_SA_UNREF(&sav);
   5930 error_sah:
   5931 	key_sah_unref(sah);
   5932 	return key_senderror(so, m, error);
   5933 }
   5934 
   5935 /*
   5936  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
   5937  * only called by key_api_update().
   5938  * OUT:
   5939  *	NULL	: not found
   5940  *	others	: found, pointer to a SA.
   5941  */
   5942 #ifdef IPSEC_DOSEQCHECK
   5943 static struct secasvar *
   5944 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
   5945 {
   5946 	struct secasvar *sav;
   5947 	u_int state;
   5948 	int s;
   5949 
   5950 	state = SADB_SASTATE_LARVAL;
   5951 
   5952 	/* search SAD with sequence number ? */
   5953 	s = pserialize_read_enter();
   5954 	SAVLIST_READER_FOREACH(sav, sah, state) {
   5955 		KEY_CHKSASTATE(state, sav->state);
   5956 
   5957 		if (sav->seq == seq) {
   5958 			SA_ADDREF(sav);
   5959 			KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
   5960 			    "DP cause refcnt++:%d SA:%p\n",
   5961 			    key_sa_refcnt(sav), sav);
   5962 			break;
   5963 		}
   5964 	}
   5965 	pserialize_read_exit(s);
   5966 
   5967 	return sav;
   5968 }
   5969 #endif
   5970 
   5971 /*
   5972  * SADB_ADD processing
   5973  * add an entry to SA database, when received
   5974  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
   5975  *       key(AE), (identity(SD),) (sensitivity)>
   5976  * from the ikmpd,
   5977  * and send
   5978  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
   5979  *       (identity(SD),) (sensitivity)>
   5980  * to the ikmpd.
   5981  *
   5982  * IGNORE identity and sensitivity messages.
   5983  *
   5984  * m will always be freed.
   5985  */
   5986 static int
   5987 key_api_add(struct socket *so, struct mbuf *m,
   5988 	const struct sadb_msghdr *mhp)
   5989 {
   5990 	struct sadb_sa *sa0;
   5991 	const struct sockaddr *src, *dst;
   5992 	struct secasindex saidx;
   5993 	struct secashead *sah;
   5994 	struct secasvar *newsav;
   5995 	u_int16_t proto;
   5996 	u_int8_t mode;
   5997 	u_int16_t reqid;
   5998 	int error;
   5999 
   6000 	/* map satype to proto */
   6001 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
   6002 	if (proto == 0) {
   6003 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   6004 		return key_senderror(so, m, EINVAL);
   6005 	}
   6006 
   6007 	if (mhp->ext[SADB_EXT_SA] == NULL ||
   6008 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   6009 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
   6010 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
   6011 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
   6012 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
   6013 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
   6014 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
   6015 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
   6016 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
   6017 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
   6018 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   6019 		return key_senderror(so, m, EINVAL);
   6020 	}
   6021 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
   6022 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   6023 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
   6024 		/* XXX need more */
   6025 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   6026 		return key_senderror(so, m, EINVAL);
   6027 	}
   6028 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
   6029 		const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
   6030 		mode = sa2->sadb_x_sa2_mode;
   6031 		reqid = sa2->sadb_x_sa2_reqid;
   6032 	} else {
   6033 		mode = IPSEC_MODE_ANY;
   6034 		reqid = 0;
   6035 	}
   6036 
   6037 	sa0 = mhp->ext[SADB_EXT_SA];
   6038 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   6039 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   6040 
   6041 	error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
   6042 	if (error != 0)
   6043 		return key_senderror(so, m, EINVAL);
   6044 
   6045 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
   6046 	if (error != 0)
   6047 		return key_senderror(so, m, EINVAL);
   6048 
   6049 	/* get a SA header */
   6050 	sah = key_getsah_ref(&saidx, CMP_REQID);
   6051 	if (sah == NULL) {
   6052 		/* create a new SA header */
   6053 		sah = key_newsah(&saidx);
   6054 		if (sah == NULL) {
   6055 			IPSECLOG(LOG_DEBUG, "No more memory.\n");
   6056 			return key_senderror(so, m, ENOBUFS);
   6057 		}
   6058 	}
   6059 
   6060 	/* set spidx if there */
   6061 	/* XXX rewrite */
   6062 	error = key_setident(sah, m, mhp);
   6063 	if (error)
   6064 		goto error;
   6065 
   6066     {
   6067 	struct secasvar *sav;
   6068 
   6069 	/* We can create new SA only if SPI is differenct. */
   6070 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
   6071 	if (sav != NULL) {
   6072 		KEY_SA_UNREF(&sav);
   6073 		IPSECLOG(LOG_DEBUG, "SA already exists.\n");
   6074 		error = EEXIST;
   6075 		goto error;
   6076 	}
   6077     }
   6078 
   6079 	/* create new SA entry. */
   6080 	newsav = KEY_NEWSAV(m, mhp, &error, proto);
   6081 	if (newsav == NULL)
   6082 		goto error;
   6083 	newsav->sah = sah;
   6084 
   6085 	error = key_handle_natt_info(newsav, mhp);
   6086 	if (error != 0) {
   6087 		key_delsav(newsav);
   6088 		error = EINVAL;
   6089 		goto error;
   6090 	}
   6091 
   6092 	error = key_init_xform(newsav);
   6093 	if (error != 0) {
   6094 		key_delsav(newsav);
   6095 		goto error;
   6096 	}
   6097 
   6098 	/* Add to sah#savlist */
   6099 	key_init_sav(newsav);
   6100 	newsav->state = SADB_SASTATE_MATURE;
   6101 	mutex_enter(&key_sad.lock);
   6102 	SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
   6103 	SAVLUT_WRITER_INSERT_HEAD(newsav);
   6104 	mutex_exit(&key_sad.lock);
   6105 	key_validate_savlist(sah, SADB_SASTATE_MATURE);
   6106 
   6107 	key_sah_unref(sah);
   6108 	sah = NULL;
   6109 
   6110 	/*
   6111 	 * don't call key_freesav() here, as we would like to keep the SA
   6112 	 * in the database on success.
   6113 	 */
   6114 
   6115     {
   6116 	struct mbuf *n;
   6117 
   6118 	/* set msg buf from mhp */
   6119 	n = key_getmsgbuf_x1(m, mhp);
   6120 	if (n == NULL) {
   6121 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
   6122 		return key_senderror(so, m, ENOBUFS);
   6123 	}
   6124 
   6125 	m_freem(m);
   6126 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
   6127     }
   6128 error:
   6129 	key_sah_unref(sah);
   6130 	return key_senderror(so, m, error);
   6131 }
   6132 
   6133 /* m is retained */
   6134 static int
   6135 key_setident(struct secashead *sah, struct mbuf *m,
   6136 	     const struct sadb_msghdr *mhp)
   6137 {
   6138 	const struct sadb_ident *idsrc, *iddst;
   6139 	int idsrclen, iddstlen;
   6140 
   6141 	KASSERT(!cpu_softintr_p());
   6142 	KASSERT(sah != NULL);
   6143 	KASSERT(m != NULL);
   6144 	KASSERT(mhp != NULL);
   6145 	KASSERT(mhp->msg != NULL);
   6146 
   6147 	/*
   6148 	 * Can be called with an existing sah from key_api_update().
   6149 	 */
   6150 	if (sah->idents != NULL) {
   6151 		kmem_free(sah->idents, sah->idents_len);
   6152 		sah->idents = NULL;
   6153 		sah->idents_len = 0;
   6154 	}
   6155 	if (sah->identd != NULL) {
   6156 		kmem_free(sah->identd, sah->identd_len);
   6157 		sah->identd = NULL;
   6158 		sah->identd_len = 0;
   6159 	}
   6160 
   6161 	/* don't make buffer if not there */
   6162 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
   6163 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
   6164 		sah->idents = NULL;
   6165 		sah->identd = NULL;
   6166 		return 0;
   6167 	}
   6168 
   6169 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
   6170 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
   6171 		IPSECLOG(LOG_DEBUG, "invalid identity.\n");
   6172 		return EINVAL;
   6173 	}
   6174 
   6175 	idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC];
   6176 	iddst = mhp->ext[SADB_EXT_IDENTITY_DST];
   6177 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
   6178 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
   6179 
   6180 	/* validity check */
   6181 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
   6182 		IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n",
   6183 		    idsrc->sadb_ident_type, iddst->sadb_ident_type);
   6184 		/*
   6185 		 * Some VPN appliances(e.g. NetScreen) can send different
   6186 		 * identifier types on IDii and IDir, so be able to allow
   6187 		 * such message.
   6188 		 */
   6189 		if (!ipsec_allow_different_idtype) {
   6190 			return EINVAL;
   6191 		}
   6192 	}
   6193 
   6194 	switch (idsrc->sadb_ident_type) {
   6195 	case SADB_IDENTTYPE_PREFIX:
   6196 	case SADB_IDENTTYPE_FQDN:
   6197 	case SADB_IDENTTYPE_USERFQDN:
   6198 	default:
   6199 		/* XXX do nothing */
   6200 		sah->idents = NULL;
   6201 		sah->identd = NULL;
   6202 	 	return 0;
   6203 	}
   6204 
   6205 	/* make structure */
   6206 	sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
   6207 	sah->idents_len = idsrclen;
   6208 	sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
   6209 	sah->identd_len = iddstlen;
   6210 	memcpy(sah->idents, idsrc, idsrclen);
   6211 	memcpy(sah->identd, iddst, iddstlen);
   6212 
   6213 	return 0;
   6214 }
   6215 
   6216 /*
   6217  * m will not be freed on return. It never return NULL.
   6218  * it is caller's responsibility to free the result.
   6219  */
   6220 static struct mbuf *
   6221 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
   6222 {
   6223 	struct mbuf *n;
   6224 
   6225 	KASSERT(m != NULL);
   6226 	KASSERT(mhp != NULL);
   6227 	KASSERT(mhp->msg != NULL);
   6228 
   6229 	/* create new sadb_msg to reply. */
   6230 	n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
   6231 	    SADB_EXT_SA, SADB_X_EXT_SA2,
   6232 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
   6233 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
   6234 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
   6235 	    SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
   6236 	    SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
   6237 	    SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
   6238 
   6239 	KASSERT(n->m_len >= sizeof(struct sadb_msg));
   6240 
   6241 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
   6242 	mtod(n, struct sadb_msg *)->sadb_msg_len =
   6243 	    PFKEY_UNIT64(n->m_pkthdr.len);
   6244 
   6245 	return n;
   6246 }
   6247 
   6248 static int key_delete_all (struct socket *, struct mbuf *,
   6249 			   const struct sadb_msghdr *, u_int16_t);
   6250 
   6251 /*
   6252  * SADB_DELETE processing
   6253  * receive
   6254  *   <base, SA(*), address(SD)>
   6255  * from the ikmpd, and set SADB_SASTATE_DEAD,
   6256  * and send,
   6257  *   <base, SA(*), address(SD)>
   6258  * to the ikmpd.
   6259  *
   6260  * m will always be freed.
   6261  */
   6262 static int
   6263 key_api_delete(struct socket *so, struct mbuf *m,
   6264 	   const struct sadb_msghdr *mhp)
   6265 {
   6266 	struct sadb_sa *sa0;
   6267 	const struct sockaddr *src, *dst;
   6268 	struct secasindex saidx;
   6269 	struct secashead *sah;
   6270 	struct secasvar *sav = NULL;
   6271 	u_int16_t proto;
   6272 	int error;
   6273 
   6274 	/* map satype to proto */
   6275 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
   6276 	if (proto == 0) {
   6277 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   6278 		return key_senderror(so, m, EINVAL);
   6279 	}
   6280 
   6281 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   6282 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
   6283 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   6284 		return key_senderror(so, m, EINVAL);
   6285 	}
   6286 
   6287 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   6288 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
   6289 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   6290 		return key_senderror(so, m, EINVAL);
   6291 	}
   6292 
   6293 	if (mhp->ext[SADB_EXT_SA] == NULL) {
   6294 		/*
   6295 		 * Caller wants us to delete all non-LARVAL SAs
   6296 		 * that match the src/dst.  This is used during
   6297 		 * IKE INITIAL-CONTACT.
   6298 		 */
   6299 		IPSECLOG(LOG_DEBUG, "doing delete all.\n");
   6300 		return key_delete_all(so, m, mhp, proto);
   6301 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
   6302 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   6303 		return key_senderror(so, m, EINVAL);
   6304 	}
   6305 
   6306 	sa0 = mhp->ext[SADB_EXT_SA];
   6307 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   6308 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   6309 
   6310 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
   6311 	if (error != 0)
   6312 		return key_senderror(so, m, EINVAL);
   6313 
   6314 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
   6315 	if (error != 0)
   6316 		return key_senderror(so, m, EINVAL);
   6317 
   6318 	/* get a SA header */
   6319 	sah = key_getsah_ref(&saidx, CMP_HEAD);
   6320 	if (sah != NULL) {
   6321 		/* get a SA with SPI. */
   6322 		sav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, NULL);
   6323 		key_sah_unref(sah);
   6324 	}
   6325 
   6326 	if (sav == NULL) {
   6327 		IPSECLOG(LOG_DEBUG, "no SA found.\n");
   6328 		return key_senderror(so, m, ENOENT);
   6329 	}
   6330 
   6331 	key_wait_sav(sav);
   6332 	key_destroy_sav(sav);
   6333 	sav = NULL;
   6334 
   6335     {
   6336 	struct mbuf *n;
   6337 
   6338 	/* create new sadb_msg to reply. */
   6339 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
   6340 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
   6341 
   6342 	key_fill_replymsg(n, 0);
   6343 	m_freem(m);
   6344 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
   6345     }
   6346 }
   6347 
   6348 /*
   6349  * delete all SAs for src/dst.  Called from key_api_delete().
   6350  */
   6351 static int
   6352 key_delete_all(struct socket *so, struct mbuf *m,
   6353 	       const struct sadb_msghdr *mhp, u_int16_t proto)
   6354 {
   6355 	const struct sockaddr *src, *dst;
   6356 	struct secasindex saidx;
   6357 	struct secashead *sah;
   6358 	struct secasvar *sav;
   6359 	u_int state;
   6360 	int error;
   6361 
   6362 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   6363 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   6364 
   6365 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
   6366 	if (error != 0)
   6367 		return key_senderror(so, m, EINVAL);
   6368 
   6369 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
   6370 	if (error != 0)
   6371 		return key_senderror(so, m, EINVAL);
   6372 
   6373 	sah = key_getsah_ref(&saidx, CMP_HEAD);
   6374 	if (sah != NULL) {
   6375 		/* Delete all non-LARVAL SAs. */
   6376 		SASTATE_ALIVE_FOREACH(state) {
   6377 			if (state == SADB_SASTATE_LARVAL)
   6378 				continue;
   6379 		restart:
   6380 			mutex_enter(&key_sad.lock);
   6381 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
   6382 				sav->state = SADB_SASTATE_DEAD;
   6383 				key_unlink_sav(sav);
   6384 				mutex_exit(&key_sad.lock);
   6385 				key_destroy_sav(sav);
   6386 				goto restart;
   6387 			}
   6388 			mutex_exit(&key_sad.lock);
   6389 		}
   6390 		key_sah_unref(sah);
   6391 	}
   6392     {
   6393 	struct mbuf *n;
   6394 
   6395 	/* create new sadb_msg to reply. */
   6396 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
   6397 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
   6398 
   6399 	key_fill_replymsg(n, 0);
   6400 	m_freem(m);
   6401 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
   6402     }
   6403 }
   6404 
   6405 /*
   6406  * SADB_GET processing
   6407  * receive
   6408  *   <base, SA(*), address(SD)>
   6409  * from the ikmpd, and get a SP and a SA to respond,
   6410  * and send,
   6411  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
   6412  *       (identity(SD),) (sensitivity)>
   6413  * to the ikmpd.
   6414  *
   6415  * m will always be freed.
   6416  */
   6417 static int
   6418 key_api_get(struct socket *so, struct mbuf *m,
   6419 	const struct sadb_msghdr *mhp)
   6420 {
   6421 	struct sadb_sa *sa0;
   6422 	const struct sockaddr *src, *dst;
   6423 	struct secasindex saidx;
   6424 	struct secasvar *sav = NULL;
   6425 	u_int16_t proto;
   6426 	int error;
   6427 
   6428 	/* map satype to proto */
   6429 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
   6430 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   6431 		return key_senderror(so, m, EINVAL);
   6432 	}
   6433 
   6434 	if (mhp->ext[SADB_EXT_SA] == NULL ||
   6435 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   6436 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
   6437 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   6438 		return key_senderror(so, m, EINVAL);
   6439 	}
   6440 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
   6441 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   6442 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
   6443 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   6444 		return key_senderror(so, m, EINVAL);
   6445 	}
   6446 
   6447 	sa0 = mhp->ext[SADB_EXT_SA];
   6448 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   6449 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   6450 
   6451 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
   6452 	if (error != 0)
   6453 		return key_senderror(so, m, EINVAL);
   6454 
   6455 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
   6456 	if (error != 0)
   6457 		return key_senderror(so, m, EINVAL);
   6458 
   6459 	/* get a SA header */
   6460     {
   6461 	struct secashead *sah;
   6462 	int s = pserialize_read_enter();
   6463 
   6464 	sah = key_getsah(&saidx, CMP_HEAD);
   6465 	if (sah != NULL) {
   6466 		/* get a SA with SPI. */
   6467 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
   6468 	}
   6469 	pserialize_read_exit(s);
   6470     }
   6471 	if (sav == NULL) {
   6472 		IPSECLOG(LOG_DEBUG, "no SA found.\n");
   6473 		return key_senderror(so, m, ENOENT);
   6474 	}
   6475 
   6476     {
   6477 	struct mbuf *n;
   6478 	u_int8_t satype;
   6479 
   6480 	/* map proto to satype */
   6481 	satype = key_proto2satype(sav->sah->saidx.proto);
   6482 	if (satype == 0) {
   6483 		KEY_SA_UNREF(&sav);
   6484 		IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
   6485 		return key_senderror(so, m, EINVAL);
   6486 	}
   6487 
   6488 	/* create new sadb_msg to reply. */
   6489 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
   6490 	    mhp->msg->sadb_msg_pid);
   6491 	KEY_SA_UNREF(&sav);
   6492 	m_freem(m);
   6493 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
   6494     }
   6495 }
   6496 
   6497 /* XXX make it sysctl-configurable? */
   6498 static void
   6499 key_getcomb_setlifetime(struct sadb_comb *comb)
   6500 {
   6501 
   6502 	comb->sadb_comb_soft_allocations = 1;
   6503 	comb->sadb_comb_hard_allocations = 1;
   6504 	comb->sadb_comb_soft_bytes = 0;
   6505 	comb->sadb_comb_hard_bytes = 0;
   6506 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
   6507 	comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
   6508 	comb->sadb_comb_hard_usetime = 28800;	/* 8 hours */
   6509 	comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
   6510 }
   6511 
   6512 /*
   6513  * XXX reorder combinations by preference
   6514  * XXX no idea if the user wants ESP authentication or not
   6515  */
   6516 static struct mbuf *
   6517 key_getcomb_esp(int mflag)
   6518 {
   6519 	struct sadb_comb *comb;
   6520 	const struct enc_xform *algo;
   6521 	struct mbuf *result = NULL, *m, *n;
   6522 	int encmin;
   6523 	int i, off, o;
   6524 	int totlen;
   6525 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
   6526 
   6527 	m = NULL;
   6528 	for (i = 1; i <= SADB_EALG_MAX; i++) {
   6529 		algo = esp_algorithm_lookup(i);
   6530 		if (algo == NULL)
   6531 			continue;
   6532 
   6533 		/* discard algorithms with key size smaller than system min */
   6534 		if (_BITS(algo->maxkey) < ipsec_esp_keymin)
   6535 			continue;
   6536 		if (_BITS(algo->minkey) < ipsec_esp_keymin)
   6537 			encmin = ipsec_esp_keymin;
   6538 		else
   6539 			encmin = _BITS(algo->minkey);
   6540 
   6541 		if (ipsec_esp_auth)
   6542 			m = key_getcomb_ah(mflag);
   6543 		else {
   6544 			KASSERTMSG(l <= MLEN,
   6545 			    "l=%u > MLEN=%lu", l, (u_long) MLEN);
   6546 			MGET(m, mflag, MT_DATA);
   6547 			if (m) {
   6548 				m_align(m, l);
   6549 				m->m_len = l;
   6550 				m->m_next = NULL;
   6551 				memset(mtod(m, void *), 0, m->m_len);
   6552 			}
   6553 		}
   6554 		if (!m)
   6555 			goto fail;
   6556 
   6557 		totlen = 0;
   6558 		for (n = m; n; n = n->m_next)
   6559 			totlen += n->m_len;
   6560 		KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
   6561 
   6562 		for (off = 0; off < totlen; off += l) {
   6563 			n = m_pulldown(m, off, l, &o);
   6564 			if (!n) {
   6565 				/* m is already freed */
   6566 				goto fail;
   6567 			}
   6568 			comb = (struct sadb_comb *)(mtod(n, char *) + o);
   6569 			memset(comb, 0, sizeof(*comb));
   6570 			key_getcomb_setlifetime(comb);
   6571 			comb->sadb_comb_encrypt = i;
   6572 			comb->sadb_comb_encrypt_minbits = encmin;
   6573 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
   6574 		}
   6575 
   6576 		if (!result)
   6577 			result = m;
   6578 		else
   6579 			m_cat(result, m);
   6580 	}
   6581 
   6582 	return result;
   6583 
   6584  fail:
   6585 	if (result)
   6586 		m_freem(result);
   6587 	return NULL;
   6588 }
   6589 
   6590 static void
   6591 key_getsizes_ah(const struct auth_hash *ah, int alg,
   6592 	        u_int16_t* ksmin, u_int16_t* ksmax)
   6593 {
   6594 	*ksmin = *ksmax = ah->keysize;
   6595 	if (ah->keysize == 0) {
   6596 		/*
   6597 		 * Transform takes arbitrary key size but algorithm
   6598 		 * key size is restricted.  Enforce this here.
   6599 		 */
   6600 		switch (alg) {
   6601 		case SADB_X_AALG_MD5:	*ksmin = *ksmax = 16; break;
   6602 		case SADB_X_AALG_SHA:	*ksmin = *ksmax = 20; break;
   6603 		case SADB_X_AALG_NULL:	*ksmin = 0; *ksmax = 256; break;
   6604 		default:
   6605 			IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
   6606 			break;
   6607 		}
   6608 	}
   6609 }
   6610 
   6611 /*
   6612  * XXX reorder combinations by preference
   6613  */
   6614 static struct mbuf *
   6615 key_getcomb_ah(int mflag)
   6616 {
   6617 	struct sadb_comb *comb;
   6618 	const struct auth_hash *algo;
   6619 	struct mbuf *m;
   6620 	u_int16_t minkeysize, maxkeysize;
   6621 	int i;
   6622 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
   6623 
   6624 	m = NULL;
   6625 	for (i = 1; i <= SADB_AALG_MAX; i++) {
   6626 #if 1
   6627 		/* we prefer HMAC algorithms, not old algorithms */
   6628 		if (i != SADB_AALG_SHA1HMAC &&
   6629 		    i != SADB_AALG_MD5HMAC &&
   6630 		    i != SADB_X_AALG_SHA2_256 &&
   6631 		    i != SADB_X_AALG_SHA2_384 &&
   6632 		    i != SADB_X_AALG_SHA2_512)
   6633 			continue;
   6634 #endif
   6635 		algo = ah_algorithm_lookup(i);
   6636 		if (!algo)
   6637 			continue;
   6638 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
   6639 		/* discard algorithms with key size smaller than system min */
   6640 		if (_BITS(minkeysize) < ipsec_ah_keymin)
   6641 			continue;
   6642 
   6643 		if (!m) {
   6644 			KASSERTMSG(l <= MLEN,
   6645 			    "l=%u > MLEN=%lu", l, (u_long) MLEN);
   6646 			MGET(m, mflag, MT_DATA);
   6647 			if (m) {
   6648 				m_align(m, l);
   6649 				m->m_len = l;
   6650 				m->m_next = NULL;
   6651 			}
   6652 		} else
   6653 			M_PREPEND(m, l, mflag);
   6654 		if (!m)
   6655 			return NULL;
   6656 
   6657 		if (m->m_len < sizeof(struct sadb_comb)) {
   6658 			m = m_pullup(m, sizeof(struct sadb_comb));
   6659 			if (m == NULL)
   6660 				return NULL;
   6661 		}
   6662 
   6663 		comb = mtod(m, struct sadb_comb *);
   6664 		memset(comb, 0, sizeof(*comb));
   6665 		key_getcomb_setlifetime(comb);
   6666 		comb->sadb_comb_auth = i;
   6667 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
   6668 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
   6669 	}
   6670 
   6671 	return m;
   6672 }
   6673 
   6674 /*
   6675  * not really an official behavior.  discussed in pf_key (at) inner.net in Sep2000.
   6676  * XXX reorder combinations by preference
   6677  */
   6678 static struct mbuf *
   6679 key_getcomb_ipcomp(int mflag)
   6680 {
   6681 	struct sadb_comb *comb;
   6682 	const struct comp_algo *algo;
   6683 	struct mbuf *m;
   6684 	int i;
   6685 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
   6686 
   6687 	m = NULL;
   6688 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
   6689 		algo = ipcomp_algorithm_lookup(i);
   6690 		if (!algo)
   6691 			continue;
   6692 
   6693 		if (!m) {
   6694 			KASSERTMSG(l <= MLEN,
   6695 			    "l=%u > MLEN=%lu", l, (u_long) MLEN);
   6696 			MGET(m, mflag, MT_DATA);
   6697 			if (m) {
   6698 				m_align(m, l);
   6699 				m->m_len = l;
   6700 				m->m_next = NULL;
   6701 			}
   6702 		} else
   6703 			M_PREPEND(m, l, mflag);
   6704 		if (!m)
   6705 			return NULL;
   6706 
   6707 		if (m->m_len < sizeof(struct sadb_comb)) {
   6708 			m = m_pullup(m, sizeof(struct sadb_comb));
   6709 			if (m == NULL)
   6710 				return NULL;
   6711 		}
   6712 
   6713 		comb = mtod(m, struct sadb_comb *);
   6714 		memset(comb, 0, sizeof(*comb));
   6715 		key_getcomb_setlifetime(comb);
   6716 		comb->sadb_comb_encrypt = i;
   6717 		/* what should we set into sadb_comb_*_{min,max}bits? */
   6718 	}
   6719 
   6720 	return m;
   6721 }
   6722 
   6723 /*
   6724  * XXX no way to pass mode (transport/tunnel) to userland
   6725  * XXX replay checking?
   6726  * XXX sysctl interface to ipsec_{ah,esp}_keymin
   6727  */
   6728 static struct mbuf *
   6729 key_getprop(const struct secasindex *saidx, int mflag)
   6730 {
   6731 	struct sadb_prop *prop;
   6732 	struct mbuf *m, *n;
   6733 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
   6734 	int totlen;
   6735 
   6736 	switch (saidx->proto)  {
   6737 	case IPPROTO_ESP:
   6738 		m = key_getcomb_esp(mflag);
   6739 		break;
   6740 	case IPPROTO_AH:
   6741 		m = key_getcomb_ah(mflag);
   6742 		break;
   6743 	case IPPROTO_IPCOMP:
   6744 		m = key_getcomb_ipcomp(mflag);
   6745 		break;
   6746 	default:
   6747 		return NULL;
   6748 	}
   6749 
   6750 	if (!m)
   6751 		return NULL;
   6752 	M_PREPEND(m, l, mflag);
   6753 	if (!m)
   6754 		return NULL;
   6755 
   6756 	totlen = 0;
   6757 	for (n = m; n; n = n->m_next)
   6758 		totlen += n->m_len;
   6759 
   6760 	prop = mtod(m, struct sadb_prop *);
   6761 	memset(prop, 0, sizeof(*prop));
   6762 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
   6763 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
   6764 	prop->sadb_prop_replay = 32;	/* XXX */
   6765 
   6766 	return m;
   6767 }
   6768 
   6769 /*
   6770  * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
   6771  * send
   6772  *   <base, SA, address(SD), (address(P)), x_policy,
   6773  *       (identity(SD),) (sensitivity,) proposal>
   6774  * to KMD, and expect to receive
   6775  *   <base> with SADB_ACQUIRE if error occurred,
   6776  * or
   6777  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
   6778  * from KMD by PF_KEY.
   6779  *
   6780  * XXX x_policy is outside of RFC2367 (KAME extension).
   6781  * XXX sensitivity is not supported.
   6782  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
   6783  * see comment for key_getcomb_ipcomp().
   6784  *
   6785  * OUT:
   6786  *    0     : succeed
   6787  *    others: error number
   6788  */
   6789 static int
   6790 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag)
   6791 {
   6792 	struct mbuf *result = NULL, *m;
   6793 #ifndef IPSEC_NONBLOCK_ACQUIRE
   6794 	struct secacq *newacq;
   6795 #endif
   6796 	u_int8_t satype;
   6797 	int error = -1;
   6798 	u_int32_t seq;
   6799 
   6800 	/* sanity check */
   6801 	KASSERT(saidx != NULL);
   6802 	satype = key_proto2satype(saidx->proto);
   6803 	KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
   6804 
   6805 #ifndef IPSEC_NONBLOCK_ACQUIRE
   6806 	/*
   6807 	 * We never do anything about acquiring SA.  There is another
   6808 	 * solution that kernel blocks to send SADB_ACQUIRE message until
   6809 	 * getting something message from IKEd.  In later case, to be
   6810 	 * managed with ACQUIRING list.
   6811 	 */
   6812 	/* Get an entry to check whether sending message or not. */
   6813 	mutex_enter(&key_misc.lock);
   6814 	newacq = key_getacq(saidx);
   6815 	if (newacq != NULL) {
   6816 		if (key_blockacq_count < newacq->count) {
   6817 			/* reset counter and do send message. */
   6818 			newacq->count = 0;
   6819 		} else {
   6820 			/* increment counter and do nothing. */
   6821 			newacq->count++;
   6822 			mutex_exit(&key_misc.lock);
   6823 			return 0;
   6824 		}
   6825 	} else {
   6826 		/* make new entry for blocking to send SADB_ACQUIRE. */
   6827 		newacq = key_newacq(saidx);
   6828 		if (newacq == NULL) {
   6829 			mutex_exit(&key_misc.lock);
   6830 			return ENOBUFS;
   6831 		}
   6832 
   6833 		/* add to key_misc.acqlist */
   6834 		LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
   6835 	}
   6836 
   6837 	seq = newacq->seq;
   6838 	mutex_exit(&key_misc.lock);
   6839 #else
   6840 	seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
   6841 #endif
   6842 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag);
   6843 	if (!m) {
   6844 		error = ENOBUFS;
   6845 		goto fail;
   6846 	}
   6847 	result = m;
   6848 
   6849 	/* set sadb_address for saidx's. */
   6850 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
   6851 	    IPSEC_ULPROTO_ANY, mflag);
   6852 	if (!m) {
   6853 		error = ENOBUFS;
   6854 		goto fail;
   6855 	}
   6856 	m_cat(result, m);
   6857 
   6858 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
   6859 	    IPSEC_ULPROTO_ANY, mflag);
   6860 	if (!m) {
   6861 		error = ENOBUFS;
   6862 		goto fail;
   6863 	}
   6864 	m_cat(result, m);
   6865 
   6866 	/* XXX proxy address (optional) */
   6867 
   6868 	/* set sadb_x_policy */
   6869 	if (sp) {
   6870 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
   6871 		    mflag);
   6872 		if (!m) {
   6873 			error = ENOBUFS;
   6874 			goto fail;
   6875 		}
   6876 		m_cat(result, m);
   6877 	}
   6878 
   6879 	/* XXX identity (optional) */
   6880 #if 0
   6881 	if (idexttype && fqdn) {
   6882 		/* create identity extension (FQDN) */
   6883 		struct sadb_ident *id;
   6884 		int fqdnlen;
   6885 
   6886 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
   6887 		id = (struct sadb_ident *)p;
   6888 		memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
   6889 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
   6890 		id->sadb_ident_exttype = idexttype;
   6891 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
   6892 		memcpy(id + 1, fqdn, fqdnlen);
   6893 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
   6894 	}
   6895 
   6896 	if (idexttype) {
   6897 		/* create identity extension (USERFQDN) */
   6898 		struct sadb_ident *id;
   6899 		int userfqdnlen;
   6900 
   6901 		if (userfqdn) {
   6902 			/* +1 for terminating-NUL */
   6903 			userfqdnlen = strlen(userfqdn) + 1;
   6904 		} else
   6905 			userfqdnlen = 0;
   6906 		id = (struct sadb_ident *)p;
   6907 		memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
   6908 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
   6909 		id->sadb_ident_exttype = idexttype;
   6910 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
   6911 		/* XXX is it correct? */
   6912 		if (curlwp)
   6913 			id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
   6914 		if (userfqdn && userfqdnlen)
   6915 			memcpy(id + 1, userfqdn, userfqdnlen);
   6916 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
   6917 	}
   6918 #endif
   6919 
   6920 	/* XXX sensitivity (optional) */
   6921 
   6922 	/* create proposal/combination extension */
   6923 	m = key_getprop(saidx, mflag);
   6924 #if 0
   6925 	/*
   6926 	 * spec conformant: always attach proposal/combination extension,
   6927 	 * the problem is that we have no way to attach it for ipcomp,
   6928 	 * due to the way sadb_comb is declared in RFC2367.
   6929 	 */
   6930 	if (!m) {
   6931 		error = ENOBUFS;
   6932 		goto fail;
   6933 	}
   6934 	m_cat(result, m);
   6935 #else
   6936 	/*
   6937 	 * outside of spec; make proposal/combination extension optional.
   6938 	 */
   6939 	if (m)
   6940 		m_cat(result, m);
   6941 #endif
   6942 
   6943 	KASSERT(result->m_flags & M_PKTHDR);
   6944 	KASSERT(result->m_len >= sizeof(struct sadb_msg));
   6945 
   6946 	result->m_pkthdr.len = 0;
   6947 	for (m = result; m; m = m->m_next)
   6948 		result->m_pkthdr.len += m->m_len;
   6949 
   6950 	mtod(result, struct sadb_msg *)->sadb_msg_len =
   6951 	    PFKEY_UNIT64(result->m_pkthdr.len);
   6952 
   6953 	/*
   6954 	 * Called from key_api_acquire that must come from userland, so
   6955 	 * we can call key_sendup_mbuf immediately.
   6956 	 */
   6957 	if (mflag == M_WAITOK)
   6958 		return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
   6959 	/*
   6960 	 * XXX we cannot call key_sendup_mbuf directly here because
   6961 	 * it can cause a deadlock:
   6962 	 * - We have a reference to an SP (and an SA) here
   6963 	 * - key_sendup_mbuf will try to take key_so_mtx
   6964 	 * - Some other thread may try to localcount_drain to the SP with
   6965 	 *   holding key_so_mtx in say key_api_spdflush
   6966 	 * - In this case localcount_drain never return because key_sendup_mbuf
   6967 	 *   that has stuck on key_so_mtx never release a reference to the SP
   6968 	 *
   6969 	 * So defer key_sendup_mbuf to the timer.
   6970 	 */
   6971 	return key_acquire_sendup_mbuf_later(result);
   6972 
   6973  fail:
   6974 	if (result)
   6975 		m_freem(result);
   6976 	return error;
   6977 }
   6978 
   6979 static struct mbuf *key_acquire_mbuf_head = NULL;
   6980 static unsigned key_acquire_mbuf_count = 0;
   6981 #define KEY_ACQUIRE_MBUF_MAX	10
   6982 
   6983 static void
   6984 key_acquire_sendup_pending_mbuf(void)
   6985 {
   6986 	struct mbuf *m, *prev;
   6987 	int error;
   6988 
   6989 again:
   6990 	prev = NULL;
   6991 	mutex_enter(&key_misc.lock);
   6992 	m = key_acquire_mbuf_head;
   6993 	/* Get an earliest mbuf (one at the tail of the list) */
   6994 	while (m != NULL) {
   6995 		if (m->m_nextpkt == NULL) {
   6996 			if (prev != NULL)
   6997 				prev->m_nextpkt = NULL;
   6998 			if (m == key_acquire_mbuf_head)
   6999 				key_acquire_mbuf_head = NULL;
   7000 			key_acquire_mbuf_count--;
   7001 			break;
   7002 		}
   7003 		prev = m;
   7004 		m = m->m_nextpkt;
   7005 	}
   7006 	mutex_exit(&key_misc.lock);
   7007 
   7008 	if (m == NULL)
   7009 		return;
   7010 
   7011 	m->m_nextpkt = NULL;
   7012 	error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
   7013 	if (error != 0)
   7014 		IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
   7015 		    error);
   7016 
   7017 	if (prev != NULL)
   7018 		goto again;
   7019 }
   7020 
   7021 static int
   7022 key_acquire_sendup_mbuf_later(struct mbuf *m)
   7023 {
   7024 
   7025 	mutex_enter(&key_misc.lock);
   7026 	/* Avoid queuing too much mbufs */
   7027 	if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
   7028 		mutex_exit(&key_misc.lock);
   7029 		m_freem(m);
   7030 		return ENOBUFS; /* XXX */
   7031 	}
   7032 	/* Enqueue mbuf at the head of the list */
   7033 	m->m_nextpkt = key_acquire_mbuf_head;
   7034 	key_acquire_mbuf_head = m;
   7035 	key_acquire_mbuf_count++;
   7036 	mutex_exit(&key_misc.lock);
   7037 
   7038 	/* Kick the timer */
   7039 	key_timehandler(NULL);
   7040 
   7041 	return 0;
   7042 }
   7043 
   7044 #ifndef IPSEC_NONBLOCK_ACQUIRE
   7045 static struct secacq *
   7046 key_newacq(const struct secasindex *saidx)
   7047 {
   7048 	struct secacq *newacq;
   7049 
   7050 	/* get new entry */
   7051 	newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
   7052 	if (newacq == NULL) {
   7053 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
   7054 		return NULL;
   7055 	}
   7056 
   7057 	/* copy secindex */
   7058 	memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
   7059 	newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
   7060 	newacq->created = time_uptime;
   7061 	newacq->count = 0;
   7062 
   7063 	return newacq;
   7064 }
   7065 
   7066 static struct secacq *
   7067 key_getacq(const struct secasindex *saidx)
   7068 {
   7069 	struct secacq *acq;
   7070 
   7071 	KASSERT(mutex_owned(&key_misc.lock));
   7072 
   7073 	LIST_FOREACH(acq, &key_misc.acqlist, chain) {
   7074 		if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
   7075 			return acq;
   7076 	}
   7077 
   7078 	return NULL;
   7079 }
   7080 
   7081 static struct secacq *
   7082 key_getacqbyseq(u_int32_t seq)
   7083 {
   7084 	struct secacq *acq;
   7085 
   7086 	KASSERT(mutex_owned(&key_misc.lock));
   7087 
   7088 	LIST_FOREACH(acq, &key_misc.acqlist, chain) {
   7089 		if (acq->seq == seq)
   7090 			return acq;
   7091 	}
   7092 
   7093 	return NULL;
   7094 }
   7095 #endif
   7096 
   7097 #ifdef notyet
   7098 static struct secspacq *
   7099 key_newspacq(const struct secpolicyindex *spidx)
   7100 {
   7101 	struct secspacq *acq;
   7102 
   7103 	/* get new entry */
   7104 	acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
   7105 	if (acq == NULL) {
   7106 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
   7107 		return NULL;
   7108 	}
   7109 
   7110 	/* copy secindex */
   7111 	memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
   7112 	acq->created = time_uptime;
   7113 	acq->count = 0;
   7114 
   7115 	return acq;
   7116 }
   7117 
   7118 static struct secspacq *
   7119 key_getspacq(const struct secpolicyindex *spidx)
   7120 {
   7121 	struct secspacq *acq;
   7122 
   7123 	LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
   7124 		if (key_spidx_match_exactly(spidx, &acq->spidx))
   7125 			return acq;
   7126 	}
   7127 
   7128 	return NULL;
   7129 }
   7130 #endif /* notyet */
   7131 
   7132 /*
   7133  * SADB_ACQUIRE processing,
   7134  * in first situation, is receiving
   7135  *   <base>
   7136  * from the ikmpd, and clear sequence of its secasvar entry.
   7137  *
   7138  * In second situation, is receiving
   7139  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
   7140  * from a user land process, and return
   7141  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
   7142  * to the socket.
   7143  *
   7144  * m will always be freed.
   7145  */
   7146 static int
   7147 key_api_acquire(struct socket *so, struct mbuf *m,
   7148       	     const struct sadb_msghdr *mhp)
   7149 {
   7150 	const struct sockaddr *src, *dst;
   7151 	struct secasindex saidx;
   7152 	u_int16_t proto;
   7153 	int error;
   7154 
   7155 	/*
   7156 	 * Error message from KMd.
   7157 	 * We assume that if error was occurred in IKEd, the length of PFKEY
   7158 	 * message is equal to the size of sadb_msg structure.
   7159 	 * We do not raise error even if error occurred in this function.
   7160 	 */
   7161 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
   7162 #ifndef IPSEC_NONBLOCK_ACQUIRE
   7163 		struct secacq *acq;
   7164 
   7165 		/* check sequence number */
   7166 		if (mhp->msg->sadb_msg_seq == 0) {
   7167 			IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
   7168 			m_freem(m);
   7169 			return 0;
   7170 		}
   7171 
   7172 		mutex_enter(&key_misc.lock);
   7173 		acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
   7174 		if (acq == NULL) {
   7175 			mutex_exit(&key_misc.lock);
   7176 			/*
   7177 			 * the specified larval SA is already gone, or we got
   7178 			 * a bogus sequence number.  we can silently ignore it.
   7179 			 */
   7180 			m_freem(m);
   7181 			return 0;
   7182 		}
   7183 
   7184 		/* reset acq counter in order to deletion by timehander. */
   7185 		acq->created = time_uptime;
   7186 		acq->count = 0;
   7187 		mutex_exit(&key_misc.lock);
   7188 #endif
   7189 		m_freem(m);
   7190 		return 0;
   7191 	}
   7192 
   7193 	/*
   7194 	 * This message is from user land.
   7195 	 */
   7196 
   7197 	/* map satype to proto */
   7198 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
   7199 	if (proto == 0) {
   7200 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   7201 		return key_senderror(so, m, EINVAL);
   7202 	}
   7203 
   7204 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
   7205 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
   7206 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
   7207 		/* error */
   7208 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   7209 		return key_senderror(so, m, EINVAL);
   7210 	}
   7211 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
   7212 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
   7213 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
   7214 		/* error */
   7215 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
   7216 		return key_senderror(so, m, EINVAL);
   7217 	}
   7218 
   7219 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
   7220 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
   7221 
   7222 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
   7223 	if (error != 0)
   7224 		return key_senderror(so, m, EINVAL);
   7225 
   7226 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
   7227 	if (error != 0)
   7228 		return key_senderror(so, m, EINVAL);
   7229 
   7230 	/* get a SA index */
   7231     {
   7232 	struct secashead *sah;
   7233 	int s = pserialize_read_enter();
   7234 
   7235 	sah = key_getsah(&saidx, CMP_MODE_REQID);
   7236 	if (sah != NULL) {
   7237 		pserialize_read_exit(s);
   7238 		IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
   7239 		return key_senderror(so, m, EEXIST);
   7240 	}
   7241 	pserialize_read_exit(s);
   7242     }
   7243 
   7244 	error = key_acquire(&saidx, NULL, M_WAITOK);
   7245 	if (error != 0) {
   7246 		IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
   7247 		    error);
   7248 		return key_senderror(so, m, error);
   7249 	}
   7250 
   7251 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
   7252 }
   7253 
   7254 /*
   7255  * SADB_REGISTER processing.
   7256  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
   7257  * receive
   7258  *   <base>
   7259  * from the ikmpd, and register a socket to send PF_KEY messages,
   7260  * and send
   7261  *   <base, supported>
   7262  * to KMD by PF_KEY.
   7263  * If socket is detached, must free from regnode.
   7264  *
   7265  * m will always be freed.
   7266  */
   7267 static int
   7268 key_api_register(struct socket *so, struct mbuf *m,
   7269 	     const struct sadb_msghdr *mhp)
   7270 {
   7271 	struct secreg *reg, *newreg = 0;
   7272 
   7273 	/* check for invalid register message */
   7274 	if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
   7275 		return key_senderror(so, m, EINVAL);
   7276 
   7277 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
   7278 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
   7279 		goto setmsg;
   7280 
   7281 	/* Allocate regnode in advance, out of mutex */
   7282 	newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
   7283 
   7284 	/* check whether existing or not */
   7285 	mutex_enter(&key_misc.lock);
   7286 	LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
   7287 		if (reg->so == so) {
   7288 			IPSECLOG(LOG_DEBUG, "socket exists already.\n");
   7289 			mutex_exit(&key_misc.lock);
   7290 			kmem_free(newreg, sizeof(*newreg));
   7291 			return key_senderror(so, m, EEXIST);
   7292 		}
   7293 	}
   7294 
   7295 	newreg->so = so;
   7296 	((struct keycb *)sotorawcb(so))->kp_registered++;
   7297 
   7298 	/* add regnode to key_misc.reglist. */
   7299 	LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
   7300 	mutex_exit(&key_misc.lock);
   7301 
   7302   setmsg:
   7303     {
   7304 	struct mbuf *n;
   7305 	struct sadb_supported *sup;
   7306 	u_int len, alen, elen;
   7307 	int off;
   7308 	int i;
   7309 	struct sadb_alg *alg;
   7310 
   7311 	/* create new sadb_msg to reply. */
   7312 	alen = 0;
   7313 	for (i = 1; i <= SADB_AALG_MAX; i++) {
   7314 		if (ah_algorithm_lookup(i))
   7315 			alen += sizeof(struct sadb_alg);
   7316 	}
   7317 	if (alen)
   7318 		alen += sizeof(struct sadb_supported);
   7319 	elen = 0;
   7320 	for (i = 1; i <= SADB_EALG_MAX; i++) {
   7321 		if (esp_algorithm_lookup(i))
   7322 			elen += sizeof(struct sadb_alg);
   7323 	}
   7324 	if (elen)
   7325 		elen += sizeof(struct sadb_supported);
   7326 
   7327 	len = sizeof(struct sadb_msg) + alen + elen;
   7328 
   7329 	if (len > MCLBYTES)
   7330 		return key_senderror(so, m, ENOBUFS);
   7331 
   7332 	n = key_alloc_mbuf_simple(len, M_WAITOK);
   7333 	n->m_pkthdr.len = n->m_len = len;
   7334 	n->m_next = NULL;
   7335 	off = 0;
   7336 
   7337 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
   7338 	key_fill_replymsg(n, 0);
   7339 
   7340 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
   7341 
   7342 	/* for authentication algorithm */
   7343 	if (alen) {
   7344 		sup = (struct sadb_supported *)(mtod(n, char *) + off);
   7345 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
   7346 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
   7347 		sup->sadb_supported_reserved = 0;
   7348 		off += PFKEY_ALIGN8(sizeof(*sup));
   7349 
   7350 		for (i = 1; i <= SADB_AALG_MAX; i++) {
   7351 			const struct auth_hash *aalgo;
   7352 			u_int16_t minkeysize, maxkeysize;
   7353 
   7354 			aalgo = ah_algorithm_lookup(i);
   7355 			if (!aalgo)
   7356 				continue;
   7357 			alg = (struct sadb_alg *)(mtod(n, char *) + off);
   7358 			alg->sadb_alg_id = i;
   7359 			alg->sadb_alg_ivlen = 0;
   7360 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
   7361 			alg->sadb_alg_minbits = _BITS(minkeysize);
   7362 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
   7363 			alg->sadb_alg_reserved = 0;
   7364 			off += PFKEY_ALIGN8(sizeof(*alg));
   7365 		}
   7366 	}
   7367 
   7368 	/* for encryption algorithm */
   7369 	if (elen) {
   7370 		sup = (struct sadb_supported *)(mtod(n, char *) + off);
   7371 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
   7372 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
   7373 		sup->sadb_supported_reserved = 0;
   7374 		off += PFKEY_ALIGN8(sizeof(*sup));
   7375 
   7376 		for (i = 1; i <= SADB_EALG_MAX; i++) {
   7377 			const struct enc_xform *ealgo;
   7378 
   7379 			ealgo = esp_algorithm_lookup(i);
   7380 			if (!ealgo)
   7381 				continue;
   7382 			alg = (struct sadb_alg *)(mtod(n, char *) + off);
   7383 			alg->sadb_alg_id = i;
   7384 			alg->sadb_alg_ivlen = ealgo->blocksize;
   7385 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
   7386 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
   7387 			alg->sadb_alg_reserved = 0;
   7388 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
   7389 		}
   7390 	}
   7391 
   7392 	KASSERTMSG(off == len, "length inconsistency");
   7393 
   7394 	m_freem(m);
   7395 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
   7396     }
   7397 }
   7398 
   7399 /*
   7400  * free secreg entry registered.
   7401  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
   7402  */
   7403 void
   7404 key_freereg(struct socket *so)
   7405 {
   7406 	struct secreg *reg;
   7407 	int i;
   7408 
   7409 	KASSERT(!cpu_softintr_p());
   7410 	KASSERT(so != NULL);
   7411 
   7412 	/*
   7413 	 * check whether existing or not.
   7414 	 * check all type of SA, because there is a potential that
   7415 	 * one socket is registered to multiple type of SA.
   7416 	 */
   7417 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
   7418 		mutex_enter(&key_misc.lock);
   7419 		LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
   7420 			if (reg->so == so) {
   7421 				LIST_REMOVE(reg, chain);
   7422 				break;
   7423 			}
   7424 		}
   7425 		mutex_exit(&key_misc.lock);
   7426 		if (reg != NULL)
   7427 			kmem_free(reg, sizeof(*reg));
   7428 	}
   7429 
   7430 	return;
   7431 }
   7432 
   7433 /*
   7434  * SADB_EXPIRE processing
   7435  * send
   7436  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
   7437  * to KMD by PF_KEY.
   7438  * NOTE: We send only soft lifetime extension.
   7439  *
   7440  * OUT:	0	: succeed
   7441  *	others	: error number
   7442  */
   7443 static int
   7444 key_expire(struct secasvar *sav)
   7445 {
   7446 	int s;
   7447 	int satype;
   7448 	struct mbuf *result = NULL, *m;
   7449 	int len;
   7450 	int error = -1;
   7451 	struct sadb_lifetime *lt;
   7452 	lifetime_counters_t sum = {0};
   7453 
   7454 	/* XXX: Why do we lock ? */
   7455 	s = splsoftnet();	/*called from softclock()*/
   7456 
   7457 	KASSERT(sav != NULL);
   7458 
   7459 	satype = key_proto2satype(sav->sah->saidx.proto);
   7460 	KASSERTMSG(satype != 0, "invalid proto is passed");
   7461 
   7462 	/* set msg header */
   7463 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav),
   7464 	    M_WAITOK);
   7465 	result = m;
   7466 
   7467 	/* create SA extension */
   7468 	m = key_setsadbsa(sav);
   7469 	m_cat(result, m);
   7470 
   7471 	/* create SA extension */
   7472 	m = key_setsadbxsa2(sav->sah->saidx.mode,
   7473 	    sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
   7474 	m_cat(result, m);
   7475 
   7476 	/* create lifetime extension (current and soft) */
   7477 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
   7478 	m = key_alloc_mbuf(len, M_WAITOK);
   7479 	KASSERT(m->m_next == NULL);
   7480 
   7481 	memset(mtod(m, void *), 0, len);
   7482 	lt = mtod(m, struct sadb_lifetime *);
   7483 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
   7484 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
   7485 	percpu_foreach_xcall(sav->lft_c_counters_percpu,
   7486 	    XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum);
   7487 	lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS];
   7488 	lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES];
   7489 	lt->sadb_lifetime_addtime =
   7490 	    time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
   7491 	lt->sadb_lifetime_usetime =
   7492 	    time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
   7493 	lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
   7494 	memcpy(lt, sav->lft_s, sizeof(*lt));
   7495 	m_cat(result, m);
   7496 
   7497 	/* set sadb_address for source */
   7498 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
   7499 	    FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
   7500 	m_cat(result, m);
   7501 
   7502 	/* set sadb_address for destination */
   7503 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
   7504 	    FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
   7505 	m_cat(result, m);
   7506 
   7507 	if ((result->m_flags & M_PKTHDR) == 0) {
   7508 		error = EINVAL;
   7509 		goto fail;
   7510 	}
   7511 
   7512 	if (result->m_len < sizeof(struct sadb_msg)) {
   7513 		result = m_pullup(result, sizeof(struct sadb_msg));
   7514 		if (result == NULL) {
   7515 			error = ENOBUFS;
   7516 			goto fail;
   7517 		}
   7518 	}
   7519 
   7520 	result->m_pkthdr.len = 0;
   7521 	for (m = result; m; m = m->m_next)
   7522 		result->m_pkthdr.len += m->m_len;
   7523 
   7524 	mtod(result, struct sadb_msg *)->sadb_msg_len =
   7525 	    PFKEY_UNIT64(result->m_pkthdr.len);
   7526 
   7527 	splx(s);
   7528 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
   7529 
   7530  fail:
   7531 	if (result)
   7532 		m_freem(result);
   7533 	splx(s);
   7534 	return error;
   7535 }
   7536 
   7537 /*
   7538  * SADB_FLUSH processing
   7539  * receive
   7540  *   <base>
   7541  * from the ikmpd, and free all entries in secastree.
   7542  * and send,
   7543  *   <base>
   7544  * to the ikmpd.
   7545  * NOTE: to do is only marking SADB_SASTATE_DEAD.
   7546  *
   7547  * m will always be freed.
   7548  */
   7549 static int
   7550 key_api_flush(struct socket *so, struct mbuf *m,
   7551           const struct sadb_msghdr *mhp)
   7552 {
   7553 	struct sadb_msg *newmsg;
   7554 	struct secashead *sah;
   7555 	struct secasvar *sav;
   7556 	u_int16_t proto;
   7557 	u_int8_t state;
   7558 	int s;
   7559 
   7560 	/* map satype to proto */
   7561 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
   7562 	if (proto == 0) {
   7563 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   7564 		return key_senderror(so, m, EINVAL);
   7565 	}
   7566 
   7567 	/* no SATYPE specified, i.e. flushing all SA. */
   7568 	s = pserialize_read_enter();
   7569 	SAHLIST_READER_FOREACH(sah) {
   7570 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
   7571 		    proto != sah->saidx.proto)
   7572 			continue;
   7573 
   7574 		key_sah_ref(sah);
   7575 		pserialize_read_exit(s);
   7576 
   7577 		SASTATE_ALIVE_FOREACH(state) {
   7578 		restart:
   7579 			mutex_enter(&key_sad.lock);
   7580 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
   7581 				sav->state = SADB_SASTATE_DEAD;
   7582 				key_unlink_sav(sav);
   7583 				mutex_exit(&key_sad.lock);
   7584 				key_destroy_sav(sav);
   7585 				goto restart;
   7586 			}
   7587 			mutex_exit(&key_sad.lock);
   7588 		}
   7589 
   7590 		s = pserialize_read_enter();
   7591 		sah->state = SADB_SASTATE_DEAD;
   7592 		key_sah_unref(sah);
   7593 	}
   7594 	pserialize_read_exit(s);
   7595 
   7596 	if (m->m_len < sizeof(struct sadb_msg) ||
   7597 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
   7598 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
   7599 		return key_senderror(so, m, ENOBUFS);
   7600 	}
   7601 
   7602 	if (m->m_next)
   7603 		m_freem(m->m_next);
   7604 	m->m_next = NULL;
   7605 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
   7606 	newmsg = mtod(m, struct sadb_msg *);
   7607 	newmsg->sadb_msg_errno = 0;
   7608 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
   7609 
   7610 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
   7611 }
   7612 
   7613 
   7614 static struct mbuf *
   7615 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
   7616 {
   7617 	struct secashead *sah;
   7618 	struct secasvar *sav;
   7619 	u_int16_t proto;
   7620 	u_int8_t satype;
   7621 	u_int8_t state;
   7622 	int cnt;
   7623 	struct mbuf *m, *n, *prev;
   7624 
   7625 	KASSERT(mutex_owned(&key_sad.lock));
   7626 
   7627 	*lenp = 0;
   7628 
   7629 	/* map satype to proto */
   7630 	proto = key_satype2proto(req_satype);
   7631 	if (proto == 0) {
   7632 		*errorp = EINVAL;
   7633 		return (NULL);
   7634 	}
   7635 
   7636 	/* count sav entries to be sent to userland. */
   7637 	cnt = 0;
   7638 	SAHLIST_WRITER_FOREACH(sah) {
   7639 		if (req_satype != SADB_SATYPE_UNSPEC &&
   7640 		    proto != sah->saidx.proto)
   7641 			continue;
   7642 
   7643 		SASTATE_ANY_FOREACH(state) {
   7644 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
   7645 				cnt++;
   7646 			}
   7647 		}
   7648 	}
   7649 
   7650 	if (cnt == 0) {
   7651 		*errorp = ENOENT;
   7652 		return (NULL);
   7653 	}
   7654 
   7655 	/* send this to the userland, one at a time. */
   7656 	m = NULL;
   7657 	prev = m;
   7658 	SAHLIST_WRITER_FOREACH(sah) {
   7659 		if (req_satype != SADB_SATYPE_UNSPEC &&
   7660 		    proto != sah->saidx.proto)
   7661 			continue;
   7662 
   7663 		/* map proto to satype */
   7664 		satype = key_proto2satype(sah->saidx.proto);
   7665 		if (satype == 0) {
   7666 			m_freem(m);
   7667 			*errorp = EINVAL;
   7668 			return (NULL);
   7669 		}
   7670 
   7671 		SASTATE_ANY_FOREACH(state) {
   7672 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
   7673 				n = key_setdumpsa(sav, SADB_DUMP, satype,
   7674 				    --cnt, pid);
   7675 				if (!m)
   7676 					m = n;
   7677 				else
   7678 					prev->m_nextpkt = n;
   7679 				prev = n;
   7680 			}
   7681 		}
   7682 	}
   7683 
   7684 	if (!m) {
   7685 		*errorp = EINVAL;
   7686 		return (NULL);
   7687 	}
   7688 
   7689 	if ((m->m_flags & M_PKTHDR) != 0) {
   7690 		m->m_pkthdr.len = 0;
   7691 		for (n = m; n; n = n->m_next)
   7692 			m->m_pkthdr.len += n->m_len;
   7693 	}
   7694 
   7695 	*errorp = 0;
   7696 	return (m);
   7697 }
   7698 
   7699 /*
   7700  * SADB_DUMP processing
   7701  * dump all entries including status of DEAD in SAD.
   7702  * receive
   7703  *   <base>
   7704  * from the ikmpd, and dump all secasvar leaves
   7705  * and send,
   7706  *   <base> .....
   7707  * to the ikmpd.
   7708  *
   7709  * m will always be freed.
   7710  */
   7711 static int
   7712 key_api_dump(struct socket *so, struct mbuf *m0,
   7713 	 const struct sadb_msghdr *mhp)
   7714 {
   7715 	u_int16_t proto;
   7716 	u_int8_t satype;
   7717 	struct mbuf *n;
   7718 	int error, len, ok;
   7719 
   7720 	/* map satype to proto */
   7721 	satype = mhp->msg->sadb_msg_satype;
   7722 	proto = key_satype2proto(satype);
   7723 	if (proto == 0) {
   7724 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
   7725 		return key_senderror(so, m0, EINVAL);
   7726 	}
   7727 
   7728 	/*
   7729 	 * If the requestor has insufficient socket-buffer space
   7730 	 * for the entire chain, nobody gets any response to the DUMP.
   7731 	 * XXX For now, only the requestor ever gets anything.
   7732 	 * Moreover, if the requestor has any space at all, they receive
   7733 	 * the entire chain, otherwise the request is refused with ENOBUFS.
   7734 	 */
   7735 	if (sbspace(&so->so_rcv) <= 0) {
   7736 		return key_senderror(so, m0, ENOBUFS);
   7737 	}
   7738 
   7739 	mutex_enter(&key_sad.lock);
   7740 	n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
   7741 	mutex_exit(&key_sad.lock);
   7742 
   7743 	if (n == NULL) {
   7744 		return key_senderror(so, m0, ENOENT);
   7745 	}
   7746 	{
   7747 		uint64_t *ps = PFKEY_STAT_GETREF();
   7748 		ps[PFKEY_STAT_IN_TOTAL]++;
   7749 		ps[PFKEY_STAT_IN_BYTES] += len;
   7750 		PFKEY_STAT_PUTREF();
   7751 	}
   7752 
   7753 	/*
   7754 	 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
   7755 	 * The requestor receives either the entire chain, or an
   7756 	 * error message with ENOBUFS.
   7757 	 *
   7758 	 * sbappendaddrchain() takes the chain of entries, one
   7759 	 * packet-record per SPD entry, prepends the key_src sockaddr
   7760 	 * to each packet-record, links the sockaddr mbufs into a new
   7761 	 * list of records, then   appends the entire resulting
   7762 	 * list to the requesting socket.
   7763 	 */
   7764 	ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
   7765 	    SB_PRIO_ONESHOT_OVERFLOW);
   7766 
   7767 	if (!ok) {
   7768 		PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
   7769 		m_freem(n);
   7770 		return key_senderror(so, m0, ENOBUFS);
   7771 	}
   7772 
   7773 	m_freem(m0);
   7774 	return 0;
   7775 }
   7776 
   7777 /*
   7778  * SADB_X_PROMISC processing
   7779  *
   7780  * m will always be freed.
   7781  */
   7782 static int
   7783 key_api_promisc(struct socket *so, struct mbuf *m,
   7784 	    const struct sadb_msghdr *mhp)
   7785 {
   7786 	int olen;
   7787 
   7788 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
   7789 
   7790 	if (olen < sizeof(struct sadb_msg)) {
   7791 #if 1
   7792 		return key_senderror(so, m, EINVAL);
   7793 #else
   7794 		m_freem(m);
   7795 		return 0;
   7796 #endif
   7797 	} else if (olen == sizeof(struct sadb_msg)) {
   7798 		/* enable/disable promisc mode */
   7799 		struct keycb *kp = (struct keycb *)sotorawcb(so);
   7800 		if (kp == NULL)
   7801 			return key_senderror(so, m, EINVAL);
   7802 		mhp->msg->sadb_msg_errno = 0;
   7803 		switch (mhp->msg->sadb_msg_satype) {
   7804 		case 0:
   7805 		case 1:
   7806 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
   7807 			break;
   7808 		default:
   7809 			return key_senderror(so, m, EINVAL);
   7810 		}
   7811 
   7812 		/* send the original message back to everyone */
   7813 		mhp->msg->sadb_msg_errno = 0;
   7814 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
   7815 	} else {
   7816 		/* send packet as is */
   7817 
   7818 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
   7819 
   7820 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
   7821 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
   7822 	}
   7823 }
   7824 
   7825 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
   7826 		const struct sadb_msghdr *) = {
   7827 	NULL,			/* SADB_RESERVED */
   7828 	key_api_getspi,		/* SADB_GETSPI */
   7829 	key_api_update,		/* SADB_UPDATE */
   7830 	key_api_add,		/* SADB_ADD */
   7831 	key_api_delete,		/* SADB_DELETE */
   7832 	key_api_get,		/* SADB_GET */
   7833 	key_api_acquire,	/* SADB_ACQUIRE */
   7834 	key_api_register,	/* SADB_REGISTER */
   7835 	NULL,			/* SADB_EXPIRE */
   7836 	key_api_flush,		/* SADB_FLUSH */
   7837 	key_api_dump,		/* SADB_DUMP */
   7838 	key_api_promisc,	/* SADB_X_PROMISC */
   7839 	NULL,			/* SADB_X_PCHANGE */
   7840 	key_api_spdadd,		/* SADB_X_SPDUPDATE */
   7841 	key_api_spdadd,		/* SADB_X_SPDADD */
   7842 	key_api_spddelete,	/* SADB_X_SPDDELETE */
   7843 	key_api_spdget,		/* SADB_X_SPDGET */
   7844 	NULL,			/* SADB_X_SPDACQUIRE */
   7845 	key_api_spddump,	/* SADB_X_SPDDUMP */
   7846 	key_api_spdflush,	/* SADB_X_SPDFLUSH */
   7847 	key_api_spdadd,		/* SADB_X_SPDSETIDX */
   7848 	NULL,			/* SADB_X_SPDEXPIRE */
   7849 	key_api_spddelete2,	/* SADB_X_SPDDELETE2 */
   7850 	key_api_nat_map,	/* SADB_X_NAT_T_NEW_MAPPING */
   7851 };
   7852 
   7853 /*
   7854  * parse sadb_msg buffer to process PFKEYv2,
   7855  * and create a data to response if needed.
   7856  * I think to be dealed with mbuf directly.
   7857  * IN:
   7858  *     msgp  : pointer to pointer to a received buffer pulluped.
   7859  *             This is rewrited to response.
   7860  *     so    : pointer to socket.
   7861  * OUT:
   7862  *    length for buffer to send to user process.
   7863  */
   7864 int
   7865 key_parse(struct mbuf *m, struct socket *so)
   7866 {
   7867 	struct sadb_msg *msg;
   7868 	struct sadb_msghdr mh;
   7869 	u_int orglen;
   7870 	int error;
   7871 
   7872 	KASSERT(m != NULL);
   7873 	KASSERT(so != NULL);
   7874 
   7875 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
   7876 	if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
   7877 		kdebug_sadb("passed sadb_msg", msg);
   7878 	}
   7879 #endif
   7880 
   7881 	if (m->m_len < sizeof(struct sadb_msg)) {
   7882 		m = m_pullup(m, sizeof(struct sadb_msg));
   7883 		if (!m)
   7884 			return ENOBUFS;
   7885 	}
   7886 	msg = mtod(m, struct sadb_msg *);
   7887 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
   7888 
   7889 	if ((m->m_flags & M_PKTHDR) == 0 ||
   7890 	    m->m_pkthdr.len != orglen) {
   7891 		IPSECLOG(LOG_DEBUG, "invalid message length.\n");
   7892 		PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
   7893 		error = EINVAL;
   7894 		goto senderror;
   7895 	}
   7896 
   7897 	if (msg->sadb_msg_version != PF_KEY_V2) {
   7898 		IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
   7899 		    msg->sadb_msg_version);
   7900 		PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
   7901 		error = EINVAL;
   7902 		goto senderror;
   7903 	}
   7904 
   7905 	if (msg->sadb_msg_type > SADB_MAX) {
   7906 		IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
   7907 		    msg->sadb_msg_type);
   7908 		PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
   7909 		error = EINVAL;
   7910 		goto senderror;
   7911 	}
   7912 
   7913 	/* for old-fashioned code - should be nuked */
   7914 	if (m->m_pkthdr.len > MCLBYTES) {
   7915 		m_freem(m);
   7916 		return ENOBUFS;
   7917 	}
   7918 	if (m->m_next) {
   7919 		struct mbuf *n;
   7920 
   7921 		n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK);
   7922 
   7923 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
   7924 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
   7925 		n->m_next = NULL;
   7926 		m_freem(m);
   7927 		m = n;
   7928 	}
   7929 
   7930 	/* align the mbuf chain so that extensions are in contiguous region. */
   7931 	error = key_align(m, &mh);
   7932 	if (error)
   7933 		return error;
   7934 
   7935 	if (m->m_next) {	/*XXX*/
   7936 		m_freem(m);
   7937 		return ENOBUFS;
   7938 	}
   7939 
   7940 	msg = mh.msg;
   7941 
   7942 	/* check SA type */
   7943 	switch (msg->sadb_msg_satype) {
   7944 	case SADB_SATYPE_UNSPEC:
   7945 		switch (msg->sadb_msg_type) {
   7946 		case SADB_GETSPI:
   7947 		case SADB_UPDATE:
   7948 		case SADB_ADD:
   7949 		case SADB_DELETE:
   7950 		case SADB_GET:
   7951 		case SADB_ACQUIRE:
   7952 		case SADB_EXPIRE:
   7953 			IPSECLOG(LOG_DEBUG,
   7954 			    "must specify satype when msg type=%u.\n",
   7955 			    msg->sadb_msg_type);
   7956 			PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
   7957 			error = EINVAL;
   7958 			goto senderror;
   7959 		}
   7960 		break;
   7961 	case SADB_SATYPE_AH:
   7962 	case SADB_SATYPE_ESP:
   7963 	case SADB_X_SATYPE_IPCOMP:
   7964 	case SADB_X_SATYPE_TCPSIGNATURE:
   7965 		switch (msg->sadb_msg_type) {
   7966 		case SADB_X_SPDADD:
   7967 		case SADB_X_SPDDELETE:
   7968 		case SADB_X_SPDGET:
   7969 		case SADB_X_SPDDUMP:
   7970 		case SADB_X_SPDFLUSH:
   7971 		case SADB_X_SPDSETIDX:
   7972 		case SADB_X_SPDUPDATE:
   7973 		case SADB_X_SPDDELETE2:
   7974 			IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
   7975 			    msg->sadb_msg_type);
   7976 			PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
   7977 			error = EINVAL;
   7978 			goto senderror;
   7979 		}
   7980 		break;
   7981 	case SADB_SATYPE_RSVP:
   7982 	case SADB_SATYPE_OSPFV2:
   7983 	case SADB_SATYPE_RIPV2:
   7984 	case SADB_SATYPE_MIP:
   7985 		IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
   7986 		    msg->sadb_msg_satype);
   7987 		PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
   7988 		error = EOPNOTSUPP;
   7989 		goto senderror;
   7990 	case 1:	/* XXX: What does it do? */
   7991 		if (msg->sadb_msg_type == SADB_X_PROMISC)
   7992 			break;
   7993 		/*FALLTHROUGH*/
   7994 	default:
   7995 		IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
   7996 		    msg->sadb_msg_satype);
   7997 		PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
   7998 		error = EINVAL;
   7999 		goto senderror;
   8000 	}
   8001 
   8002 	/* check field of upper layer protocol and address family */
   8003 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
   8004 	    mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
   8005 		const struct sadb_address *src0, *dst0;
   8006 		const struct sockaddr *sa0, *da0;
   8007 		u_int plen;
   8008 
   8009 		src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
   8010 		dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
   8011 		sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC);
   8012 		da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST);
   8013 
   8014 		/* check upper layer protocol */
   8015 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
   8016 			IPSECLOG(LOG_DEBUG,
   8017 			    "upper layer protocol mismatched src %u, dst %u.\n",
   8018 			    src0->sadb_address_proto, dst0->sadb_address_proto);
   8019 
   8020 			goto invaddr;
   8021 		}
   8022 
   8023 		/* check family */
   8024 		if (sa0->sa_family != da0->sa_family) {
   8025 			IPSECLOG(LOG_DEBUG,
   8026 			    "address family mismatched src %u, dst %u.\n",
   8027 			    sa0->sa_family, da0->sa_family);
   8028 			goto invaddr;
   8029 		}
   8030 		if (sa0->sa_len != da0->sa_len) {
   8031 			IPSECLOG(LOG_DEBUG,
   8032 			    "address size mismatched src %u, dst %u.\n",
   8033 			    sa0->sa_len, da0->sa_len);
   8034 			goto invaddr;
   8035 		}
   8036 
   8037 		switch (sa0->sa_family) {
   8038 		case AF_INET:
   8039 			if (sa0->sa_len != sizeof(struct sockaddr_in)) {
   8040 				IPSECLOG(LOG_DEBUG,
   8041 				    "address size mismatched %u != %zu.\n",
   8042 				    sa0->sa_len, sizeof(struct sockaddr_in));
   8043 				goto invaddr;
   8044 			}
   8045 			break;
   8046 		case AF_INET6:
   8047 			if (sa0->sa_len != sizeof(struct sockaddr_in6)) {
   8048 				IPSECLOG(LOG_DEBUG,
   8049 				    "address size mismatched %u != %zu.\n",
   8050 				    sa0->sa_len, sizeof(struct sockaddr_in6));
   8051 				goto invaddr;
   8052 			}
   8053 			break;
   8054 		default:
   8055 			IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n",
   8056 			    sa0->sa_family);
   8057 			error = EAFNOSUPPORT;
   8058 			goto senderror;
   8059 		}
   8060 		plen = key_sabits(sa0);
   8061 
   8062 		/* check max prefix length */
   8063 		if (src0->sadb_address_prefixlen > plen ||
   8064 		    dst0->sadb_address_prefixlen > plen) {
   8065 			IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
   8066 			goto invaddr;
   8067 		}
   8068 
   8069 		/*
   8070 		 * prefixlen == 0 is valid because there can be a case when
   8071 		 * all addresses are matched.
   8072 		 */
   8073 	}
   8074 
   8075 	if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
   8076 	    key_api_typesw[msg->sadb_msg_type] == NULL) {
   8077 		PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
   8078 		error = EINVAL;
   8079 		goto senderror;
   8080 	}
   8081 
   8082 	return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
   8083 
   8084 invaddr:
   8085 	error = EINVAL;
   8086 senderror:
   8087 	PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
   8088 	return key_senderror(so, m, error);
   8089 }
   8090 
   8091 static int
   8092 key_senderror(struct socket *so, struct mbuf *m, int code)
   8093 {
   8094 	struct sadb_msg *msg;
   8095 
   8096 	KASSERT(m->m_len >= sizeof(struct sadb_msg));
   8097 
   8098 	if (so == NULL) {
   8099 		/*
   8100 		 * This means the request comes from kernel.
   8101 		 * As the request comes from kernel, it is unnecessary to
   8102 		 * send message to userland. Just return errcode directly.
   8103 		 */
   8104 		m_freem(m);
   8105 		return code;
   8106 	}
   8107 
   8108 	msg = mtod(m, struct sadb_msg *);
   8109 	msg->sadb_msg_errno = code;
   8110 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
   8111 }
   8112 
   8113 /*
   8114  * set the pointer to each header into message buffer.
   8115  * m will be freed on error.
   8116  * XXX larger-than-MCLBYTES extension?
   8117  */
   8118 static int
   8119 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
   8120 {
   8121 	struct mbuf *n;
   8122 	struct sadb_ext *ext;
   8123 	size_t off, end;
   8124 	int extlen;
   8125 	int toff;
   8126 
   8127 	KASSERT(m != NULL);
   8128 	KASSERT(mhp != NULL);
   8129 	KASSERT(m->m_len >= sizeof(struct sadb_msg));
   8130 
   8131 	/* initialize */
   8132 	memset(mhp, 0, sizeof(*mhp));
   8133 
   8134 	mhp->msg = mtod(m, struct sadb_msg *);
   8135 	mhp->ext[0] = mhp->msg;	/*XXX backward compat */
   8136 
   8137 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
   8138 	extlen = end;	/*just in case extlen is not updated*/
   8139 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
   8140 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
   8141 		if (!n) {
   8142 			/* m is already freed */
   8143 			return ENOBUFS;
   8144 		}
   8145 		ext = (struct sadb_ext *)(mtod(n, char *) + toff);
   8146 
   8147 		/* set pointer */
   8148 		switch (ext->sadb_ext_type) {
   8149 		case SADB_EXT_SA:
   8150 		case SADB_EXT_ADDRESS_SRC:
   8151 		case SADB_EXT_ADDRESS_DST:
   8152 		case SADB_EXT_ADDRESS_PROXY:
   8153 		case SADB_EXT_LIFETIME_CURRENT:
   8154 		case SADB_EXT_LIFETIME_HARD:
   8155 		case SADB_EXT_LIFETIME_SOFT:
   8156 		case SADB_EXT_KEY_AUTH:
   8157 		case SADB_EXT_KEY_ENCRYPT:
   8158 		case SADB_EXT_IDENTITY_SRC:
   8159 		case SADB_EXT_IDENTITY_DST:
   8160 		case SADB_EXT_SENSITIVITY:
   8161 		case SADB_EXT_PROPOSAL:
   8162 		case SADB_EXT_SUPPORTED_AUTH:
   8163 		case SADB_EXT_SUPPORTED_ENCRYPT:
   8164 		case SADB_EXT_SPIRANGE:
   8165 		case SADB_X_EXT_POLICY:
   8166 		case SADB_X_EXT_SA2:
   8167 		case SADB_X_EXT_NAT_T_TYPE:
   8168 		case SADB_X_EXT_NAT_T_SPORT:
   8169 		case SADB_X_EXT_NAT_T_DPORT:
   8170 		case SADB_X_EXT_NAT_T_OAI:
   8171 		case SADB_X_EXT_NAT_T_OAR:
   8172 		case SADB_X_EXT_NAT_T_FRAG:
   8173 			/* duplicate check */
   8174 			/*
   8175 			 * XXX Are there duplication payloads of either
   8176 			 * KEY_AUTH or KEY_ENCRYPT ?
   8177 			 */
   8178 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
   8179 				IPSECLOG(LOG_DEBUG,
   8180 				    "duplicate ext_type %u is passed.\n",
   8181 				    ext->sadb_ext_type);
   8182 				m_freem(m);
   8183 				PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
   8184 				return EINVAL;
   8185 			}
   8186 			break;
   8187 		default:
   8188 			IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
   8189 			    ext->sadb_ext_type);
   8190 			m_freem(m);
   8191 			PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
   8192 			return EINVAL;
   8193 		}
   8194 
   8195 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
   8196 
   8197 		if (key_validate_ext(ext, extlen)) {
   8198 			m_freem(m);
   8199 			PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
   8200 			return EINVAL;
   8201 		}
   8202 
   8203 		n = m_pulldown(m, off, extlen, &toff);
   8204 		if (!n) {
   8205 			/* m is already freed */
   8206 			return ENOBUFS;
   8207 		}
   8208 		ext = (struct sadb_ext *)(mtod(n, char *) + toff);
   8209 
   8210 		mhp->ext[ext->sadb_ext_type] = ext;
   8211 		mhp->extoff[ext->sadb_ext_type] = off;
   8212 		mhp->extlen[ext->sadb_ext_type] = extlen;
   8213 	}
   8214 
   8215 	if (off != end) {
   8216 		m_freem(m);
   8217 		PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
   8218 		return EINVAL;
   8219 	}
   8220 
   8221 	return 0;
   8222 }
   8223 
   8224 static int
   8225 key_validate_ext(const struct sadb_ext *ext, int len)
   8226 {
   8227 	const struct sockaddr *sa;
   8228 	enum { NONE, ADDR } checktype = NONE;
   8229 	int baselen = 0;
   8230 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
   8231 
   8232 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
   8233 		return EINVAL;
   8234 
   8235 	/* if it does not match minimum/maximum length, bail */
   8236 	if (ext->sadb_ext_type >= __arraycount(minsize) ||
   8237 	    ext->sadb_ext_type >= __arraycount(maxsize))
   8238 		return EINVAL;
   8239 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
   8240 		return EINVAL;
   8241 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
   8242 		return EINVAL;
   8243 
   8244 	/* more checks based on sadb_ext_type XXX need more */
   8245 	switch (ext->sadb_ext_type) {
   8246 	case SADB_EXT_ADDRESS_SRC:
   8247 	case SADB_EXT_ADDRESS_DST:
   8248 	case SADB_EXT_ADDRESS_PROXY:
   8249 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
   8250 		checktype = ADDR;
   8251 		break;
   8252 	case SADB_EXT_IDENTITY_SRC:
   8253 	case SADB_EXT_IDENTITY_DST:
   8254 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
   8255 		    SADB_X_IDENTTYPE_ADDR) {
   8256 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
   8257 			checktype = ADDR;
   8258 		} else
   8259 			checktype = NONE;
   8260 		break;
   8261 	default:
   8262 		checktype = NONE;
   8263 		break;
   8264 	}
   8265 
   8266 	switch (checktype) {
   8267 	case NONE:
   8268 		break;
   8269 	case ADDR:
   8270 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
   8271 		if (len < baselen + sal)
   8272 			return EINVAL;
   8273 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
   8274 			return EINVAL;
   8275 		break;
   8276 	}
   8277 
   8278 	return 0;
   8279 }
   8280 
   8281 static int
   8282 key_do_init(void)
   8283 {
   8284 	int i, error;
   8285 
   8286 	mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
   8287 
   8288 	mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
   8289 	cv_init(&key_spd.cv_lc, "key_sp_lc");
   8290 	key_spd.psz = pserialize_create();
   8291 	cv_init(&key_spd.cv_psz, "key_sp_psz");
   8292 	key_spd.psz_performing = false;
   8293 
   8294 	mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
   8295 	cv_init(&key_sad.cv_lc, "key_sa_lc");
   8296 	key_sad.psz = pserialize_create();
   8297 	cv_init(&key_sad.cv_psz, "key_sa_psz");
   8298 	key_sad.psz_performing = false;
   8299 
   8300 	pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
   8301 
   8302 	callout_init(&key_timehandler_ch, CALLOUT_MPSAFE);
   8303 	error = workqueue_create(&key_timehandler_wq, "key_timehandler",
   8304 	    key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
   8305 	if (error != 0)
   8306 		panic("%s: workqueue_create failed (%d)\n", __func__, error);
   8307 
   8308 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
   8309 		PSLIST_INIT(&key_spd.splist[i]);
   8310 	}
   8311 
   8312 	PSLIST_INIT(&key_spd.socksplist);
   8313 
   8314 	key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true,
   8315 	    &key_sad.sahlistmask);
   8316 	key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true,
   8317 	    &key_sad.savlutmask);
   8318 
   8319 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
   8320 		LIST_INIT(&key_misc.reglist[i]);
   8321 	}
   8322 
   8323 #ifndef IPSEC_NONBLOCK_ACQUIRE
   8324 	LIST_INIT(&key_misc.acqlist);
   8325 #endif
   8326 #ifdef notyet
   8327 	LIST_INIT(&key_misc.spacqlist);
   8328 #endif
   8329 
   8330 	/* system default */
   8331 	ip4_def_policy.policy = IPSEC_POLICY_NONE;
   8332 	ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
   8333 	localcount_init(&ip4_def_policy.localcount);
   8334 
   8335 #ifdef INET6
   8336 	ip6_def_policy.policy = IPSEC_POLICY_NONE;
   8337 	ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
   8338 	localcount_init(&ip6_def_policy.localcount);
   8339 #endif
   8340 
   8341 	callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
   8342 
   8343 	/* initialize key statistics */
   8344 	keystat.getspi_count = 1;
   8345 
   8346 	aprint_verbose("IPsec: Initialized Security Association Processing.\n");
   8347 
   8348 	return (0);
   8349 }
   8350 
   8351 void
   8352 key_init(void)
   8353 {
   8354 	static ONCE_DECL(key_init_once);
   8355 
   8356 	sysctl_net_keyv2_setup(NULL);
   8357 	sysctl_net_key_compat_setup(NULL);
   8358 
   8359 	RUN_ONCE(&key_init_once, key_do_init);
   8360 
   8361 	key_init_so();
   8362 }
   8363 
   8364 /*
   8365  * XXX: maybe This function is called after INBOUND IPsec processing.
   8366  *
   8367  * Special check for tunnel-mode packets.
   8368  * We must make some checks for consistency between inner and outer IP header.
   8369  *
   8370  * xxx more checks to be provided
   8371  */
   8372 int
   8373 key_checktunnelsanity(
   8374     struct secasvar *sav,
   8375     u_int family,
   8376     void *src,
   8377     void *dst
   8378 )
   8379 {
   8380 
   8381 	/* XXX: check inner IP header */
   8382 
   8383 	return 1;
   8384 }
   8385 
   8386 #if 0
   8387 #define hostnamelen	strlen(hostname)
   8388 
   8389 /*
   8390  * Get FQDN for the host.
   8391  * If the administrator configured hostname (by hostname(1)) without
   8392  * domain name, returns nothing.
   8393  */
   8394 static const char *
   8395 key_getfqdn(void)
   8396 {
   8397 	int i;
   8398 	int hasdot;
   8399 	static char fqdn[MAXHOSTNAMELEN + 1];
   8400 
   8401 	if (!hostnamelen)
   8402 		return NULL;
   8403 
   8404 	/* check if it comes with domain name. */
   8405 	hasdot = 0;
   8406 	for (i = 0; i < hostnamelen; i++) {
   8407 		if (hostname[i] == '.')
   8408 			hasdot++;
   8409 	}
   8410 	if (!hasdot)
   8411 		return NULL;
   8412 
   8413 	/* NOTE: hostname may not be NUL-terminated. */
   8414 	memset(fqdn, 0, sizeof(fqdn));
   8415 	memcpy(fqdn, hostname, hostnamelen);
   8416 	fqdn[hostnamelen] = '\0';
   8417 	return fqdn;
   8418 }
   8419 
   8420 /*
   8421  * get username@FQDN for the host/user.
   8422  */
   8423 static const char *
   8424 key_getuserfqdn(void)
   8425 {
   8426 	const char *host;
   8427 	static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
   8428 	struct proc *p = curproc;
   8429 	char *q;
   8430 
   8431 	if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
   8432 		return NULL;
   8433 	if (!(host = key_getfqdn()))
   8434 		return NULL;
   8435 
   8436 	/* NOTE: s_login may not be-NUL terminated. */
   8437 	memset(userfqdn, 0, sizeof(userfqdn));
   8438 	memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
   8439 	userfqdn[MAXLOGNAME] = '\0';	/* safeguard */
   8440 	q = userfqdn + strlen(userfqdn);
   8441 	*q++ = '@';
   8442 	memcpy(q, host, strlen(host));
   8443 	q += strlen(host);
   8444 	*q++ = '\0';
   8445 
   8446 	return userfqdn;
   8447 }
   8448 #endif
   8449 
   8450 /* record data transfer on SA, and update timestamps */
   8451 void
   8452 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
   8453 {
   8454 	lifetime_counters_t *counters;
   8455 
   8456 	KASSERT(sav != NULL);
   8457 	KASSERT(sav->lft_c != NULL);
   8458 	KASSERT(m != NULL);
   8459 
   8460 	counters = percpu_getref(sav->lft_c_counters_percpu);
   8461 
   8462 	/*
   8463 	 * XXX Currently, there is a difference of bytes size
   8464 	 * between inbound and outbound processing.
   8465 	 */
   8466 	(*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len;
   8467 	/* to check bytes lifetime is done in key_timehandler(). */
   8468 
   8469 	/*
   8470 	 * We use the number of packets as the unit of
   8471 	 * sadb_lifetime_allocations.  We increment the variable
   8472 	 * whenever {esp,ah}_{in,out}put is called.
   8473 	 */
   8474 	(*counters)[LIFETIME_COUNTER_ALLOCATIONS]++;
   8475 	/* XXX check for expires? */
   8476 
   8477 	percpu_putref(sav->lft_c_counters_percpu);
   8478 
   8479 	/*
   8480 	 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
   8481 	 * in seconds.  HARD and SOFT lifetime are measured by the time
   8482 	 * difference (again in seconds) from sadb_lifetime_usetime.
   8483 	 *
   8484 	 *	usetime
   8485 	 *	v     expire   expire
   8486 	 * -----+-----+--------+---> t
   8487 	 *	<--------------> HARD
   8488 	 *	<-----> SOFT
   8489 	 */
   8490 	sav->lft_c->sadb_lifetime_usetime = time_uptime;
   8491 	/* XXX check for expires? */
   8492 
   8493 	return;
   8494 }
   8495 
   8496 /* dumb version */
   8497 void
   8498 key_sa_routechange(struct sockaddr *dst)
   8499 {
   8500 	struct secashead *sah;
   8501 	int s;
   8502 
   8503 	s = pserialize_read_enter();
   8504 	SAHLIST_READER_FOREACH(sah) {
   8505 		struct route *ro;
   8506 		const struct sockaddr *sa;
   8507 
   8508 		key_sah_ref(sah);
   8509 		pserialize_read_exit(s);
   8510 
   8511 		ro = &sah->sa_route;
   8512 		sa = rtcache_getdst(ro);
   8513 		if (sa != NULL && dst->sa_len == sa->sa_len &&
   8514 		    memcmp(dst, sa, dst->sa_len) == 0)
   8515 			rtcache_free(ro);
   8516 
   8517 		s = pserialize_read_enter();
   8518 		key_sah_unref(sah);
   8519 	}
   8520 	pserialize_read_exit(s);
   8521 
   8522 	return;
   8523 }
   8524 
   8525 static void
   8526 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
   8527 {
   8528 	struct secasvar *_sav;
   8529 
   8530 	ASSERT_SLEEPABLE();
   8531 	KASSERT(mutex_owned(&key_sad.lock));
   8532 
   8533 	if (sav->state == state)
   8534 		return;
   8535 
   8536 	key_unlink_sav(sav);
   8537 	localcount_fini(&sav->localcount);
   8538 	SAVLIST_ENTRY_DESTROY(sav);
   8539 	key_init_sav(sav);
   8540 
   8541 	sav->state = state;
   8542 	if (!SADB_SASTATE_USABLE_P(sav)) {
   8543 		/* We don't need to care about the order */
   8544 		SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
   8545 		return;
   8546 	}
   8547 	/*
   8548 	 * Sort the list by lft_c->sadb_lifetime_addtime
   8549 	 * in ascending order.
   8550 	 */
   8551 	SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) {
   8552 		if (_sav->lft_c->sadb_lifetime_addtime >
   8553 		    sav->lft_c->sadb_lifetime_addtime) {
   8554 			SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
   8555 			break;
   8556 		}
   8557 	}
   8558 	if (_sav == NULL) {
   8559 		SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
   8560 	}
   8561 
   8562 	SAVLUT_WRITER_INSERT_HEAD(sav);
   8563 
   8564 	key_validate_savlist(sav->sah, state);
   8565 }
   8566 
   8567 /* XXX too much? */
   8568 static struct mbuf *
   8569 key_alloc_mbuf(int l, int mflag)
   8570 {
   8571 	struct mbuf *m = NULL, *n;
   8572 	int len, t;
   8573 
   8574 	KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p()));
   8575 
   8576 	len = l;
   8577 	while (len > 0) {
   8578 		MGET(n, mflag, MT_DATA);
   8579 		if (n && len > MLEN) {
   8580 			MCLGET(n, mflag);
   8581 			if ((n->m_flags & M_EXT) == 0) {
   8582 				m_freem(n);
   8583 				n = NULL;
   8584 			}
   8585 		}
   8586 		if (!n) {
   8587 			m_freem(m);
   8588 			return NULL;
   8589 		}
   8590 
   8591 		n->m_next = NULL;
   8592 		n->m_len = 0;
   8593 		n->m_len = M_TRAILINGSPACE(n);
   8594 		/* use the bottom of mbuf, hoping we can prepend afterwards */
   8595 		if (n->m_len > len) {
   8596 			t = (n->m_len - len) & ~(sizeof(long) - 1);
   8597 			n->m_data += t;
   8598 			n->m_len = len;
   8599 		}
   8600 
   8601 		len -= n->m_len;
   8602 
   8603 		if (m)
   8604 			m_cat(m, n);
   8605 		else
   8606 			m = n;
   8607 	}
   8608 
   8609 	return m;
   8610 }
   8611 
   8612 static struct mbuf *
   8613 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
   8614 {
   8615 	struct secashead *sah;
   8616 	struct secasvar *sav;
   8617 	u_int16_t proto;
   8618 	u_int8_t satype;
   8619 	u_int8_t state;
   8620 	int cnt;
   8621 	struct mbuf *m, *n;
   8622 
   8623 	KASSERT(mutex_owned(&key_sad.lock));
   8624 
   8625 	/* map satype to proto */
   8626 	proto = key_satype2proto(req_satype);
   8627 	if (proto == 0) {
   8628 		*errorp = EINVAL;
   8629 		return (NULL);
   8630 	}
   8631 
   8632 	/* count sav entries to be sent to the userland. */
   8633 	cnt = 0;
   8634 	SAHLIST_WRITER_FOREACH(sah) {
   8635 		if (req_satype != SADB_SATYPE_UNSPEC &&
   8636 		    proto != sah->saidx.proto)
   8637 			continue;
   8638 
   8639 		SASTATE_ANY_FOREACH(state) {
   8640 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
   8641 				cnt++;
   8642 			}
   8643 		}
   8644 	}
   8645 
   8646 	if (cnt == 0) {
   8647 		*errorp = ENOENT;
   8648 		return (NULL);
   8649 	}
   8650 
   8651 	/* send this to the userland, one at a time. */
   8652 	m = NULL;
   8653 	SAHLIST_WRITER_FOREACH(sah) {
   8654 		if (req_satype != SADB_SATYPE_UNSPEC &&
   8655 		    proto != sah->saidx.proto)
   8656 			continue;
   8657 
   8658 		/* map proto to satype */
   8659 		satype = key_proto2satype(sah->saidx.proto);
   8660 		if (satype == 0) {
   8661 			m_freem(m);
   8662 			*errorp = EINVAL;
   8663 			return (NULL);
   8664 		}
   8665 
   8666 		SASTATE_ANY_FOREACH(state) {
   8667 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
   8668 				n = key_setdumpsa(sav, SADB_DUMP, satype,
   8669 				    --cnt, pid);
   8670 				if (!m)
   8671 					m = n;
   8672 				else
   8673 					m_cat(m, n);
   8674 			}
   8675 		}
   8676 	}
   8677 
   8678 	if (!m) {
   8679 		*errorp = EINVAL;
   8680 		return (NULL);
   8681 	}
   8682 
   8683 	if ((m->m_flags & M_PKTHDR) != 0) {
   8684 		m->m_pkthdr.len = 0;
   8685 		for (n = m; n; n = n->m_next)
   8686 			m->m_pkthdr.len += n->m_len;
   8687 	}
   8688 
   8689 	*errorp = 0;
   8690 	return (m);
   8691 }
   8692 
   8693 static struct mbuf *
   8694 key_setspddump(int *errorp, pid_t pid)
   8695 {
   8696 	struct secpolicy *sp;
   8697 	int cnt;
   8698 	u_int dir;
   8699 	struct mbuf *m, *n;
   8700 
   8701 	KASSERT(mutex_owned(&key_spd.lock));
   8702 
   8703 	/* search SPD entry and get buffer size. */
   8704 	cnt = 0;
   8705 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
   8706 		SPLIST_WRITER_FOREACH(sp, dir) {
   8707 			cnt++;
   8708 		}
   8709 	}
   8710 
   8711 	if (cnt == 0) {
   8712 		*errorp = ENOENT;
   8713 		return (NULL);
   8714 	}
   8715 
   8716 	m = NULL;
   8717 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
   8718 		SPLIST_WRITER_FOREACH(sp, dir) {
   8719 			--cnt;
   8720 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
   8721 
   8722 			if (!m)
   8723 				m = n;
   8724 			else {
   8725 				m->m_pkthdr.len += n->m_pkthdr.len;
   8726 				m_cat(m, n);
   8727 			}
   8728 		}
   8729 	}
   8730 
   8731 	*errorp = 0;
   8732 	return (m);
   8733 }
   8734 
   8735 int
   8736 key_get_used(void) {
   8737 	return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
   8738 	    !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
   8739 	    !SOCKSPLIST_READER_EMPTY();
   8740 }
   8741 
   8742 void
   8743 key_update_used(void)
   8744 {
   8745 	switch (ipsec_enabled) {
   8746 	default:
   8747 	case 0:
   8748 #ifdef notyet
   8749 		/* XXX: racy */
   8750 		ipsec_used = 0;
   8751 #endif
   8752 		break;
   8753 	case 1:
   8754 #ifndef notyet
   8755 		/* XXX: racy */
   8756 		if (!ipsec_used)
   8757 #endif
   8758 		ipsec_used = key_get_used();
   8759 		break;
   8760 	case 2:
   8761 		ipsec_used = 1;
   8762 		break;
   8763 	}
   8764 }
   8765 
   8766 static inline void
   8767 key_savlut_writer_insert_head(struct secasvar *sav)
   8768 {
   8769 	uint32_t hash_key;
   8770 	uint32_t hash;
   8771 
   8772 	KASSERT(mutex_owned(&key_sad.lock));
   8773 	KASSERT(!sav->savlut_added);
   8774 
   8775 	hash_key = sav->spi;
   8776 
   8777 	hash = key_savluthash(&sav->sah->saidx.dst.sa,
   8778 	    sav->sah->saidx.proto, hash_key, key_sad.savlutmask);
   8779 
   8780 	PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav,
   8781 	    pslist_entry_savlut);
   8782 	sav->savlut_added = true;
   8783 }
   8784 
   8785 /*
   8786  * Calculate hash using protocol, source address,
   8787  * and destination address included in saidx.
   8788  */
   8789 static inline uint32_t
   8790 key_saidxhash(const struct secasindex *saidx, u_long mask)
   8791 {
   8792 	uint32_t hash32;
   8793 	const struct sockaddr_in *sin;
   8794 	const struct sockaddr_in6 *sin6;
   8795 
   8796 	hash32 = saidx->proto;
   8797 
   8798 	switch (saidx->src.sa.sa_family) {
   8799 	case AF_INET:
   8800 		sin = &saidx->src.sin;
   8801 		hash32 = hash32_buf(&sin->sin_addr,
   8802 		    sizeof(sin->sin_addr), hash32);
   8803 		sin = &saidx->dst.sin;
   8804 		hash32 = hash32_buf(&sin->sin_addr,
   8805 		    sizeof(sin->sin_addr), hash32 << 1);
   8806 		break;
   8807 	case AF_INET6:
   8808 		sin6 = &saidx->src.sin6;
   8809 		hash32 = hash32_buf(&sin6->sin6_addr,
   8810 		    sizeof(sin6->sin6_addr), hash32);
   8811 		sin6 = &saidx->dst.sin6;
   8812 		hash32 = hash32_buf(&sin6->sin6_addr,
   8813 		    sizeof(sin6->sin6_addr), hash32 << 1);
   8814 		break;
   8815 	default:
   8816 		hash32 = 0;
   8817 		break;
   8818 	}
   8819 
   8820 	return hash32 & mask;
   8821 }
   8822 
   8823 /*
   8824  * Calculate hash using destination address, protocol,
   8825  * and spi. Those parameter depend on the search of
   8826  * key_lookup_sa().
   8827  */
   8828 static uint32_t
   8829 key_savluthash(const struct sockaddr *dst, uint32_t proto,
   8830     uint32_t spi, u_long mask)
   8831 {
   8832 	uint32_t hash32;
   8833 	const struct sockaddr_in *sin;
   8834 	const struct sockaddr_in6 *sin6;
   8835 
   8836 	hash32 = hash32_buf(&proto, sizeof(proto), spi);
   8837 
   8838 	switch(dst->sa_family) {
   8839 	case AF_INET:
   8840 		sin = satocsin(dst);
   8841 		hash32 = hash32_buf(&sin->sin_addr,
   8842 		    sizeof(sin->sin_addr), hash32);
   8843 		break;
   8844 	case AF_INET6:
   8845 		sin6 = satocsin6(dst);
   8846 		hash32 = hash32_buf(&sin6->sin6_addr,
   8847 		    sizeof(sin6->sin6_addr), hash32);
   8848 		break;
   8849 	default:
   8850 		hash32 = 0;
   8851 	}
   8852 
   8853 	return hash32 & mask;
   8854 }
   8855 
   8856 static int
   8857 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
   8858 {
   8859 	struct mbuf *m, *n;
   8860 	int err2 = 0;
   8861 	char *p, *ep;
   8862 	size_t len;
   8863 	int error;
   8864 
   8865 	if (newp)
   8866 		return (EPERM);
   8867 	if (namelen != 1)
   8868 		return (EINVAL);
   8869 
   8870 	mutex_enter(&key_sad.lock);
   8871 	m = key_setdump(name[0], &error, l->l_proc->p_pid);
   8872 	mutex_exit(&key_sad.lock);
   8873 	if (!m)
   8874 		return (error);
   8875 	if (!oldp)
   8876 		*oldlenp = m->m_pkthdr.len;
   8877 	else {
   8878 		p = oldp;
   8879 		if (*oldlenp < m->m_pkthdr.len) {
   8880 			err2 = ENOMEM;
   8881 			ep = p + *oldlenp;
   8882 		} else {
   8883 			*oldlenp = m->m_pkthdr.len;
   8884 			ep = p + m->m_pkthdr.len;
   8885 		}
   8886 		for (n = m; n; n = n->m_next) {
   8887 			len =  (ep - p < n->m_len) ?
   8888 				ep - p : n->m_len;
   8889 			error = copyout(mtod(n, const void *), p, len);
   8890 			p += len;
   8891 			if (error)
   8892 				break;
   8893 		}
   8894 		if (error == 0)
   8895 			error = err2;
   8896 	}
   8897 	m_freem(m);
   8898 
   8899 	return (error);
   8900 }
   8901 
   8902 static int
   8903 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
   8904 {
   8905 	struct mbuf *m, *n;
   8906 	int err2 = 0;
   8907 	char *p, *ep;
   8908 	size_t len;
   8909 	int error;
   8910 
   8911 	if (newp)
   8912 		return (EPERM);
   8913 	if (namelen != 0)
   8914 		return (EINVAL);
   8915 
   8916 	mutex_enter(&key_spd.lock);
   8917 	m = key_setspddump(&error, l->l_proc->p_pid);
   8918 	mutex_exit(&key_spd.lock);
   8919 	if (!m)
   8920 		return (error);
   8921 	if (!oldp)
   8922 		*oldlenp = m->m_pkthdr.len;
   8923 	else {
   8924 		p = oldp;
   8925 		if (*oldlenp < m->m_pkthdr.len) {
   8926 			err2 = ENOMEM;
   8927 			ep = p + *oldlenp;
   8928 		} else {
   8929 			*oldlenp = m->m_pkthdr.len;
   8930 			ep = p + m->m_pkthdr.len;
   8931 		}
   8932 		for (n = m; n; n = n->m_next) {
   8933 			len = (ep - p < n->m_len) ? ep - p : n->m_len;
   8934 			error = copyout(mtod(n, const void *), p, len);
   8935 			p += len;
   8936 			if (error)
   8937 				break;
   8938 		}
   8939 		if (error == 0)
   8940 			error = err2;
   8941 	}
   8942 	m_freem(m);
   8943 
   8944 	return (error);
   8945 }
   8946 
   8947 /*
   8948  * Create sysctl tree for native IPSEC key knobs, originally
   8949  * under name "net.keyv2"  * with MIB number { CTL_NET, PF_KEY_V2. }.
   8950  * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
   8951  * and in any case the part of our sysctl namespace used for dumping the
   8952  * SPD and SA database  *HAS* to be compatible with the KAME sysctl
   8953  * namespace, for API reasons.
   8954  *
   8955  * Pending a consensus on the right way  to fix this, add a level of
   8956  * indirection in how we number the `native' IPSEC key nodes;
   8957  * and (as requested by Andrew Brown)  move registration of the
   8958  * KAME-compatible names  to a separate function.
   8959  */
   8960 #if 0
   8961 #  define IPSEC_PFKEY PF_KEY_V2
   8962 # define IPSEC_PFKEY_NAME "keyv2"
   8963 #else
   8964 #  define IPSEC_PFKEY PF_KEY
   8965 # define IPSEC_PFKEY_NAME "key"
   8966 #endif
   8967 
   8968 static int
   8969 sysctl_net_key_stats(SYSCTLFN_ARGS)
   8970 {
   8971 
   8972 	return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
   8973 }
   8974 
   8975 static void
   8976 sysctl_net_keyv2_setup(struct sysctllog **clog)
   8977 {
   8978 
   8979 	sysctl_createv(clog, 0, NULL, NULL,
   8980 		       CTLFLAG_PERMANENT,
   8981 		       CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
   8982 		       NULL, 0, NULL, 0,
   8983 		       CTL_NET, IPSEC_PFKEY, CTL_EOL);
   8984 
   8985 	sysctl_createv(clog, 0, NULL, NULL,
   8986 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   8987 		       CTLTYPE_INT, "debug", NULL,
   8988 		       NULL, 0, &key_debug_level, 0,
   8989 		       CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
   8990 	sysctl_createv(clog, 0, NULL, NULL,
   8991 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   8992 		       CTLTYPE_INT, "spi_try", NULL,
   8993 		       NULL, 0, &key_spi_trycnt, 0,
   8994 		       CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
   8995 	sysctl_createv(clog, 0, NULL, NULL,
   8996 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   8997 		       CTLTYPE_INT, "spi_min_value", NULL,
   8998 		       NULL, 0, &key_spi_minval, 0,
   8999 		       CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
   9000 	sysctl_createv(clog, 0, NULL, NULL,
   9001 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9002 		       CTLTYPE_INT, "spi_max_value", NULL,
   9003 		       NULL, 0, &key_spi_maxval, 0,
   9004 		       CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
   9005 	sysctl_createv(clog, 0, NULL, NULL,
   9006 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9007 		       CTLTYPE_INT, "random_int", NULL,
   9008 		       NULL, 0, &key_int_random, 0,
   9009 		       CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
   9010 	sysctl_createv(clog, 0, NULL, NULL,
   9011 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9012 		       CTLTYPE_INT, "larval_lifetime", NULL,
   9013 		       NULL, 0, &key_larval_lifetime, 0,
   9014 		       CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
   9015 	sysctl_createv(clog, 0, NULL, NULL,
   9016 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9017 		       CTLTYPE_INT, "blockacq_count", NULL,
   9018 		       NULL, 0, &key_blockacq_count, 0,
   9019 		       CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
   9020 	sysctl_createv(clog, 0, NULL, NULL,
   9021 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9022 		       CTLTYPE_INT, "blockacq_lifetime", NULL,
   9023 		       NULL, 0, &key_blockacq_lifetime, 0,
   9024 		       CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
   9025 	sysctl_createv(clog, 0, NULL, NULL,
   9026 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9027 		       CTLTYPE_INT, "esp_keymin", NULL,
   9028 		       NULL, 0, &ipsec_esp_keymin, 0,
   9029 		       CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
   9030 	sysctl_createv(clog, 0, NULL, NULL,
   9031 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9032 		       CTLTYPE_INT, "prefered_oldsa", NULL,
   9033 		       NULL, 0, &key_prefered_oldsa, 0,
   9034 		       CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
   9035 	sysctl_createv(clog, 0, NULL, NULL,
   9036 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9037 		       CTLTYPE_INT, "esp_auth", NULL,
   9038 		       NULL, 0, &ipsec_esp_auth, 0,
   9039 		       CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
   9040 	sysctl_createv(clog, 0, NULL, NULL,
   9041 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9042 		       CTLTYPE_INT, "ah_keymin", NULL,
   9043 		       NULL, 0, &ipsec_ah_keymin, 0,
   9044 		       CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
   9045 	sysctl_createv(clog, 0, NULL, NULL,
   9046 		       CTLFLAG_PERMANENT,
   9047 		       CTLTYPE_STRUCT, "stats",
   9048 		       SYSCTL_DESCR("PF_KEY statistics"),
   9049 		       sysctl_net_key_stats, 0, NULL, 0,
   9050 		       CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
   9051 	sysctl_createv(clog, 0, NULL, NULL,
   9052 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   9053 		       CTLTYPE_BOOL, "allow_different_idtype", NULL,
   9054 		       NULL, 0, &ipsec_allow_different_idtype, 0,
   9055 		       CTL_NET, IPSEC_PFKEY, KEYCTL_ALLOW_DIFFERENT_IDTYPE, CTL_EOL);
   9056 }
   9057 
   9058 /*
   9059  * Register sysctl names used by setkey(8). For historical reasons,
   9060  * and to share a single API, these names appear under { CTL_NET, PF_KEY }
   9061  * for both IPSEC and KAME IPSEC.
   9062  */
   9063 static void
   9064 sysctl_net_key_compat_setup(struct sysctllog **clog)
   9065 {
   9066 
   9067 	sysctl_createv(clog, 0, NULL, NULL,
   9068 		       CTLFLAG_PERMANENT,
   9069 		       CTLTYPE_NODE, "key", NULL,
   9070 		       NULL, 0, NULL, 0,
   9071 		       CTL_NET, PF_KEY, CTL_EOL);
   9072 
   9073 	/* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
   9074 	sysctl_createv(clog, 0, NULL, NULL,
   9075 		       CTLFLAG_PERMANENT,
   9076 		       CTLTYPE_STRUCT, "dumpsa", NULL,
   9077 		       sysctl_net_key_dumpsa, 0, NULL, 0,
   9078 		       CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
   9079 	sysctl_createv(clog, 0, NULL, NULL,
   9080 		       CTLFLAG_PERMANENT,
   9081 		       CTLTYPE_STRUCT, "dumpsp", NULL,
   9082 		       sysctl_net_key_dumpsp, 0, NULL, 0,
   9083 		       CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
   9084 }
   9085