key.c revision 1.36 1 /* $NetBSD: key.c,v 1.36 2007/02/17 22:34:16 dyoung Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.36 2007/02/17 22:34:16 dyoung Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66
67 #include <net/if.h>
68 #include <net/route.h>
69 #include <net/raw_cb.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #ifdef INET
76 #include <netinet/ip_var.h>
77 #endif
78
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet6/in6_var.h>
82 #include <netinet6/ip6_var.h>
83 #endif /* INET6 */
84
85 #ifdef INET
86 #include <netinet/in_pcb.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/in6_pcb.h>
90 #endif /* INET6 */
91
92 #include <net/pfkeyv2.h>
93 #include <netipsec/keydb.h>
94 #include <netipsec/key.h>
95 #include <netipsec/keysock.h>
96 #include <netipsec/key_debug.h>
97
98 #include <netipsec/ipsec.h>
99 #ifdef INET6
100 #include <netipsec/ipsec6.h>
101 #endif
102
103 #include <netipsec/xform.h>
104 #include <netipsec/ipsec_osdep.h>
105 #include <netipsec/ipcomp.h>
106
107
108 #include <machine/stdarg.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 /*
117 * Note on SA reference counting:
118 * - SAs that are not in DEAD state will have (total external reference + 1)
119 * following value in reference count field. they cannot be freed and are
120 * referenced from SA header.
121 * - SAs that are in DEAD state will have (total external reference)
122 * in reference count field. they are ready to be freed. reference from
123 * SA header will be removed in key_delsav(), when the reference count
124 * field hits 0 (= no external reference other than from SA header.
125 */
126
127 u_int32_t key_debug_level = 0;
128 static u_int key_spi_trycnt = 1000;
129 static u_int32_t key_spi_minval = 0x100;
130 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
131 static u_int32_t policy_id = 0;
132 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
133 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
134 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
135 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
136 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
137
138 static u_int32_t acq_seq = 0;
139 static int key_tick_init_random = 0;
140
141 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
142 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
143 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
144 /* registed list */
145 #ifndef IPSEC_NONBLOCK_ACQUIRE
146 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
147 #endif
148 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
149
150 /* search order for SAs */
151 static u_int saorder_state_valid[] = {
152 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
153 /*
154 * This order is important because we must select the oldest SA
155 * for outbound processing. For inbound, This is not important.
156 */
157 };
158 static u_int saorder_state_alive[] = {
159 /* except DEAD */
160 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
161 };
162 static u_int saorder_state_any[] = {
163 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
164 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
165 };
166
167 static const int minsize[] = {
168 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
169 sizeof(struct sadb_sa), /* SADB_EXT_SA */
170 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
171 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
172 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
173 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
174 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
175 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
176 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
177 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
178 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
179 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
180 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
181 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
182 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
183 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
184 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
185 0, /* SADB_X_EXT_KMPRIVATE */
186 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
187 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
188 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
189 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
190 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
191 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OA */
192 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
193 };
194 static const int maxsize[] = {
195 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
196 sizeof(struct sadb_sa), /* SADB_EXT_SA */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
200 0, /* SADB_EXT_ADDRESS_SRC */
201 0, /* SADB_EXT_ADDRESS_DST */
202 0, /* SADB_EXT_ADDRESS_PROXY */
203 0, /* SADB_EXT_KEY_AUTH */
204 0, /* SADB_EXT_KEY_ENCRYPT */
205 0, /* SADB_EXT_IDENTITY_SRC */
206 0, /* SADB_EXT_IDENTITY_DST */
207 0, /* SADB_EXT_SENSITIVITY */
208 0, /* SADB_EXT_PROPOSAL */
209 0, /* SADB_EXT_SUPPORTED_AUTH */
210 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
211 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
212 0, /* SADB_X_EXT_KMPRIVATE */
213 0, /* SADB_X_EXT_POLICY */
214 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
215 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
217 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
218 0, /* SADB_X_EXT_NAT_T_OA */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221
222 static int ipsec_esp_keymin = 256;
223 static int ipsec_esp_auth = 0;
224 static int ipsec_ah_keymin = 128;
225
226 #ifdef SYSCTL_DECL
227 SYSCTL_DECL(_net_key);
228 #endif
229
230 #ifdef SYSCTL_INT
231 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
232 &key_debug_level, 0, "");
233
234 /* max count of trial for the decision of spi value */
235 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
236 &key_spi_trycnt, 0, "");
237
238 /* minimum spi value to allocate automatically. */
239 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
240 &key_spi_minval, 0, "");
241
242 /* maximun spi value to allocate automatically. */
243 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
244 &key_spi_maxval, 0, "");
245
246 /* interval to initialize randseed */
247 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
248 &key_int_random, 0, "");
249
250 /* lifetime for larval SA */
251 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
252 &key_larval_lifetime, 0, "");
253
254 /* counter for blocking to send SADB_ACQUIRE to IKEd */
255 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
256 &key_blockacq_count, 0, "");
257
258 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
259 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
260 &key_blockacq_lifetime, 0, "");
261
262 /* ESP auth */
263 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
264 &ipsec_esp_auth, 0, "");
265
266 /* minimum ESP key length */
267 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
268 &ipsec_esp_keymin, 0, "");
269
270 /* minimum AH key length */
271 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
272 &ipsec_ah_keymin, 0, "");
273
274 /* perfered old SA rather than new SA */
275 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
276 &key_prefered_oldsa, 0, "");
277 #endif /* SYSCTL_INT */
278
279 #ifndef LIST_FOREACH
280 #define LIST_FOREACH(elm, head, field) \
281 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
282 #endif
283 #define __LIST_CHAINED(elm) \
284 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
285 #define LIST_INSERT_TAIL(head, elm, type, field) \
286 do {\
287 struct type *curelm = LIST_FIRST(head); \
288 if (curelm == NULL) {\
289 LIST_INSERT_HEAD(head, elm, field); \
290 } else { \
291 while (LIST_NEXT(curelm, field)) \
292 curelm = LIST_NEXT(curelm, field);\
293 LIST_INSERT_AFTER(curelm, elm, field);\
294 }\
295 } while (0)
296
297 #define KEY_CHKSASTATE(head, sav, name) \
298 do { \
299 if ((head) != (sav)) { \
300 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
301 (name), (head), (sav))); \
302 continue; \
303 } \
304 } while (0)
305
306 #define KEY_CHKSPDIR(head, sp, name) \
307 do { \
308 if ((head) != (sp)) { \
309 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
310 "anyway continue.\n", \
311 (name), (head), (sp))); \
312 } \
313 } while (0)
314
315 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
316
317 #if 1
318 #define KMALLOC(p, t, n) \
319 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
320 #define KFREE(p) \
321 free((caddr_t)(p), M_SECA)
322 #else
323 #define KMALLOC(p, t, n) \
324 do { \
325 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
326 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
327 __FILE__, __LINE__, (p), #t, n); \
328 } while (0)
329
330 #define KFREE(p) \
331 do { \
332 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
333 free((caddr_t)(p), M_SECA); \
334 } while (0)
335 #endif
336
337 /*
338 * set parameters into secpolicyindex buffer.
339 * Must allocate secpolicyindex buffer passed to this function.
340 */
341 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
342 do { \
343 bzero((idx), sizeof(struct secpolicyindex)); \
344 (idx)->dir = (_dir); \
345 (idx)->prefs = (ps); \
346 (idx)->prefd = (pd); \
347 (idx)->ul_proto = (ulp); \
348 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
349 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
350 } while (0)
351
352 /*
353 * set parameters into secasindex buffer.
354 * Must allocate secasindex buffer before calling this function.
355 */
356 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
357 do { \
358 bzero((idx), sizeof(struct secasindex)); \
359 (idx)->proto = (p); \
360 (idx)->mode = (m); \
361 (idx)->reqid = (r); \
362 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
363 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
364 } while (0)
365
366 /* key statistics */
367 struct _keystat {
368 u_long getspi_count; /* the avarage of count to try to get new SPI */
369 } keystat;
370
371 struct sadb_msghdr {
372 struct sadb_msg *msg;
373 struct sadb_ext *ext[SADB_EXT_MAX + 1];
374 int extoff[SADB_EXT_MAX + 1];
375 int extlen[SADB_EXT_MAX + 1];
376 };
377
378 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
379 static void key_freesp_so __P((struct secpolicy **));
380 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
381 static void key_delsp __P((struct secpolicy *));
382 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
383 static struct secpolicy *key_getspbyid __P((u_int32_t));
384 static u_int16_t key_newreqid __P((void));
385 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
386 const struct sadb_msghdr *, int, int, ...));
387 static int key_spdadd __P((struct socket *, struct mbuf *,
388 const struct sadb_msghdr *));
389 static u_int32_t key_getnewspid __P((void));
390 static int key_spddelete __P((struct socket *, struct mbuf *,
391 const struct sadb_msghdr *));
392 static int key_spddelete2 __P((struct socket *, struct mbuf *,
393 const struct sadb_msghdr *));
394 static int key_spdget __P((struct socket *, struct mbuf *,
395 const struct sadb_msghdr *));
396 static int key_spdflush __P((struct socket *, struct mbuf *,
397 const struct sadb_msghdr *));
398 static int key_spddump __P((struct socket *, struct mbuf *,
399 const struct sadb_msghdr *));
400 static struct mbuf * key_setspddump __P((int *errorp, pid_t));
401 static struct mbuf * key_setspddump_chain __P((int *errorp, int *lenp, pid_t pid));
402 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
403 u_int8_t, u_int32_t, pid_t));
404 static u_int key_getspreqmsglen __P((struct secpolicy *));
405 static int key_spdexpire __P((struct secpolicy *));
406 static struct secashead *key_newsah __P((struct secasindex *));
407 static void key_delsah __P((struct secashead *));
408 static struct secasvar *key_newsav __P((struct mbuf *,
409 const struct sadb_msghdr *, struct secashead *, int *,
410 const char*, int));
411 #define KEY_NEWSAV(m, sadb, sah, e) \
412 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
413 static void key_delsav __P((struct secasvar *));
414 static struct secashead *key_getsah __P((struct secasindex *));
415 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
416 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
417 static int key_setsaval __P((struct secasvar *, struct mbuf *,
418 const struct sadb_msghdr *));
419 static int key_mature __P((struct secasvar *));
420 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
421 u_int8_t, u_int32_t, u_int32_t));
422 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
423 u_int32_t, pid_t, u_int16_t));
424 static struct mbuf *key_setsadbsa __P((struct secasvar *));
425 static struct mbuf *key_setsadbaddr __P((u_int16_t,
426 const struct sockaddr *, u_int8_t, u_int16_t));
427 #if 0
428 static struct mbuf *key_setsadbident __P((u_int16_t, u_int16_t, caddr_t,
429 int, u_int64_t));
430 #endif
431 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int16_t));
432 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
433 u_int32_t));
434 static void *key_newbuf __P((const void *, u_int));
435 #ifdef INET6
436 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
437 #endif
438
439 /* flags for key_cmpsaidx() */
440 #define CMP_HEAD 1 /* protocol, addresses. */
441 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
442 #define CMP_REQID 3 /* additionally HEAD, reaid. */
443 #define CMP_EXACTLY 4 /* all elements. */
444 static int key_cmpsaidx
445 __P((const struct secasindex *, const struct secasindex *, int));
446
447 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
448 static int key_bbcmp __P((const void *, const void *, u_int));
449 static void key_srandom __P((void));
450 static u_int16_t key_satype2proto __P((u_int8_t));
451 static u_int8_t key_proto2satype __P((u_int16_t));
452
453 static int key_getspi __P((struct socket *, struct mbuf *,
454 const struct sadb_msghdr *));
455 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
456 struct secasindex *));
457 static int key_update __P((struct socket *, struct mbuf *,
458 const struct sadb_msghdr *));
459 #ifdef IPSEC_DOSEQCHECK
460 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
461 #endif
462 static int key_add __P((struct socket *, struct mbuf *,
463 const struct sadb_msghdr *));
464 static int key_setident __P((struct secashead *, struct mbuf *,
465 const struct sadb_msghdr *));
466 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
467 const struct sadb_msghdr *));
468 static int key_delete __P((struct socket *, struct mbuf *,
469 const struct sadb_msghdr *));
470 static int key_get __P((struct socket *, struct mbuf *,
471 const struct sadb_msghdr *));
472
473 static void key_getcomb_setlifetime __P((struct sadb_comb *));
474 static struct mbuf *key_getcomb_esp __P((void));
475 static struct mbuf *key_getcomb_ah __P((void));
476 static struct mbuf *key_getcomb_ipcomp __P((void));
477 static struct mbuf *key_getprop __P((const struct secasindex *));
478
479 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
480 #ifndef IPSEC_NONBLOCK_ACQUIRE
481 static struct secacq *key_newacq __P((const struct secasindex *));
482 static struct secacq *key_getacq __P((const struct secasindex *));
483 static struct secacq *key_getacqbyseq __P((u_int32_t));
484 #endif
485 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
486 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
487 static int key_acquire2 __P((struct socket *, struct mbuf *,
488 const struct sadb_msghdr *));
489 static int key_register __P((struct socket *, struct mbuf *,
490 const struct sadb_msghdr *));
491 static int key_expire __P((struct secasvar *));
492 static int key_flush __P((struct socket *, struct mbuf *,
493 const struct sadb_msghdr *));
494 static struct mbuf *key_setdump_chain __P((u_int8_t req_satype, int *errorp,
495 int *lenp, pid_t pid));
496 static int key_dump __P((struct socket *, struct mbuf *,
497 const struct sadb_msghdr *));
498 static int key_promisc __P((struct socket *, struct mbuf *,
499 const struct sadb_msghdr *));
500 static int key_senderror __P((struct socket *, struct mbuf *, int));
501 static int key_validate_ext __P((const struct sadb_ext *, int));
502 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
503 #if 0
504 static const char *key_getfqdn __P((void));
505 static const char *key_getuserfqdn __P((void));
506 #endif
507 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
508 static inline void key_sp_dead __P((struct secpolicy *));
509 static void key_sp_unlink __P((struct secpolicy *sp));
510
511 static struct mbuf *key_alloc_mbuf __P((int));
512 struct callout key_timehandler_ch;
513
514 #define SA_ADDREF(p) do { \
515 (p)->refcnt++; \
516 IPSEC_ASSERT((p)->refcnt != 0, \
517 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
518 } while (0)
519 #define SA_DELREF(p) do { \
520 IPSEC_ASSERT((p)->refcnt > 0, \
521 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
522 (p)->refcnt--; \
523 } while (0)
524
525 #define SP_ADDREF(p) do { \
526 (p)->refcnt++; \
527 IPSEC_ASSERT((p)->refcnt != 0, \
528 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
529 } while (0)
530 #define SP_DELREF(p) do { \
531 IPSEC_ASSERT((p)->refcnt > 0, \
532 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
533 (p)->refcnt--; \
534 } while (0)
535
536
537 static inline void
538 key_sp_dead(struct secpolicy *sp)
539 {
540
541 /* mark the SP dead */
542 sp->state = IPSEC_SPSTATE_DEAD;
543 }
544
545 static void
546 key_sp_unlink(struct secpolicy *sp)
547 {
548
549 /* remove from SP index */
550 if (__LIST_CHAINED(sp)) {
551 LIST_REMOVE(sp, chain);
552 /* Release refcount held just for being on chain */
553 KEY_FREESP(&sp);
554 }
555 }
556
557
558 /*
559 * Return 0 when there are known to be no SP's for the specified
560 * direction. Otherwise return 1. This is used by IPsec code
561 * to optimize performance.
562 */
563 int
564 key_havesp(u_int dir)
565 {
566 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
567 LIST_FIRST(&sptree[dir]) != NULL : 1);
568 }
569
570 /* %%% IPsec policy management */
571 /*
572 * allocating a SP for OUTBOUND or INBOUND packet.
573 * Must call key_freesp() later.
574 * OUT: NULL: not found
575 * others: found and return the pointer.
576 */
577 struct secpolicy *
578 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
579 {
580 struct secpolicy *sp;
581 int s;
582
583 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
584 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
585 ("key_allocsp: invalid direction %u", dir));
586
587 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
588 printf("DP key_allocsp from %s:%u\n", where, tag));
589
590 /* get a SP entry */
591 s = splsoftnet(); /*called from softclock()*/
592 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
593 printf("*** objects\n");
594 kdebug_secpolicyindex(spidx));
595
596 LIST_FOREACH(sp, &sptree[dir], chain) {
597 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
598 printf("*** in SPD\n");
599 kdebug_secpolicyindex(&sp->spidx));
600
601 if (sp->state == IPSEC_SPSTATE_DEAD)
602 continue;
603 if (key_cmpspidx_withmask(&sp->spidx, spidx))
604 goto found;
605 }
606 sp = NULL;
607 found:
608 if (sp) {
609 /* sanity check */
610 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
611
612 /* found a SPD entry */
613 sp->lastused = time_second;
614 SP_ADDREF(sp);
615 }
616 splx(s);
617
618 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
619 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n",
620 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
621 return sp;
622 }
623
624 /*
625 * allocating a SP for OUTBOUND or INBOUND packet.
626 * Must call key_freesp() later.
627 * OUT: NULL: not found
628 * others: found and return the pointer.
629 */
630 struct secpolicy *
631 key_allocsp2(u_int32_t spi,
632 union sockaddr_union *dst,
633 u_int8_t proto,
634 u_int dir,
635 const char* where, int tag)
636 {
637 struct secpolicy *sp;
638 int s;
639
640 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
641 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
642 ("key_allocsp2: invalid direction %u", dir));
643
644 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
645 printf("DP key_allocsp2 from %s:%u\n", where, tag));
646
647 /* get a SP entry */
648 s = splsoftnet(); /*called from softclock()*/
649 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
650 printf("*** objects\n");
651 printf("spi %u proto %u dir %u\n", spi, proto, dir);
652 kdebug_sockaddr(&dst->sa));
653
654 LIST_FOREACH(sp, &sptree[dir], chain) {
655 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
656 printf("*** in SPD\n");
657 kdebug_secpolicyindex(&sp->spidx));
658
659 if (sp->state == IPSEC_SPSTATE_DEAD)
660 continue;
661 /* compare simple values, then dst address */
662 if (sp->spidx.ul_proto != proto)
663 continue;
664 /* NB: spi's must exist and match */
665 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
666 continue;
667 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
668 goto found;
669 }
670 sp = NULL;
671 found:
672 if (sp) {
673 /* sanity check */
674 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
675
676 /* found a SPD entry */
677 sp->lastused = time_second;
678 SP_ADDREF(sp);
679 }
680 splx(s);
681
682 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
683 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n",
684 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
685 return sp;
686 }
687
688 /*
689 * return a policy that matches this particular inbound packet.
690 * XXX slow
691 */
692 struct secpolicy *
693 key_gettunnel(const struct sockaddr *osrc,
694 const struct sockaddr *odst,
695 const struct sockaddr *isrc,
696 const struct sockaddr *idst,
697 const char* where, int tag)
698 {
699 struct secpolicy *sp;
700 const int dir = IPSEC_DIR_INBOUND;
701 int s;
702 struct ipsecrequest *r1, *r2, *p;
703 struct secpolicyindex spidx;
704
705 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
706 printf("DP key_gettunnel from %s:%u\n", where, tag));
707
708 if (isrc->sa_family != idst->sa_family) {
709 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
710 isrc->sa_family, idst->sa_family));
711 sp = NULL;
712 goto done;
713 }
714
715 s = splsoftnet(); /*called from softclock()*/
716 LIST_FOREACH(sp, &sptree[dir], chain) {
717 if (sp->state == IPSEC_SPSTATE_DEAD)
718 continue;
719
720 r1 = r2 = NULL;
721 for (p = sp->req; p; p = p->next) {
722 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
723 continue;
724
725 r1 = r2;
726 r2 = p;
727
728 if (!r1) {
729 /* here we look at address matches only */
730 spidx = sp->spidx;
731 if (isrc->sa_len > sizeof(spidx.src) ||
732 idst->sa_len > sizeof(spidx.dst))
733 continue;
734 bcopy(isrc, &spidx.src, isrc->sa_len);
735 bcopy(idst, &spidx.dst, idst->sa_len);
736 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
737 continue;
738 } else {
739 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
740 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
741 continue;
742 }
743
744 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
745 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
746 continue;
747
748 goto found;
749 }
750 }
751 sp = NULL;
752 found:
753 if (sp) {
754 sp->lastused = time_second;
755 SP_ADDREF(sp);
756 }
757 splx(s);
758 done:
759 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
760 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n",
761 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
762 return sp;
763 }
764
765 /*
766 * allocating an SA entry for an *OUTBOUND* packet.
767 * checking each request entries in SP, and acquire an SA if need.
768 * OUT: 0: there are valid requests.
769 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
770 */
771 int
772 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
773 {
774 u_int level;
775 int error;
776
777 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
778 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
779 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
780 saidx->mode == IPSEC_MODE_TUNNEL,
781 ("key_checkrequest: unexpected policy %u", saidx->mode));
782
783 /* get current level */
784 level = ipsec_get_reqlevel(isr);
785
786 /*
787 * XXX guard against protocol callbacks from the crypto
788 * thread as they reference ipsecrequest.sav which we
789 * temporarily null out below. Need to rethink how we
790 * handle bundled SA's in the callback thread.
791 */
792 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
793 #if 0
794 /*
795 * We do allocate new SA only if the state of SA in the holder is
796 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
797 */
798 if (isr->sav != NULL) {
799 if (isr->sav->sah == NULL)
800 panic("key_checkrequest: sah is null");
801 if (isr->sav == (struct secasvar *)LIST_FIRST(
802 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
803 KEY_FREESAV(&isr->sav);
804 isr->sav = NULL;
805 }
806 }
807 #else
808 /*
809 * we free any SA stashed in the IPsec request because a different
810 * SA may be involved each time this request is checked, either
811 * because new SAs are being configured, or this request is
812 * associated with an unconnected datagram socket, or this request
813 * is associated with a system default policy.
814 *
815 * The operation may have negative impact to performance. We may
816 * want to check cached SA carefully, rather than picking new SA
817 * every time.
818 */
819 if (isr->sav != NULL) {
820 KEY_FREESAV(&isr->sav);
821 isr->sav = NULL;
822 }
823 #endif
824
825 /*
826 * new SA allocation if no SA found.
827 * key_allocsa_policy should allocate the oldest SA available.
828 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
829 */
830 if (isr->sav == NULL)
831 isr->sav = key_allocsa_policy(saidx);
832
833 /* When there is SA. */
834 if (isr->sav != NULL) {
835 if (isr->sav->state != SADB_SASTATE_MATURE &&
836 isr->sav->state != SADB_SASTATE_DYING)
837 return EINVAL;
838 return 0;
839 }
840
841 /* there is no SA */
842 error = key_acquire(saidx, isr->sp);
843 if (error != 0) {
844 /* XXX What should I do ? */
845 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
846 "from key_acquire.\n", error));
847 return error;
848 }
849
850 if (level != IPSEC_LEVEL_REQUIRE) {
851 /* XXX sigh, the interface to this routine is botched */
852 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
853 return 0;
854 } else {
855 return ENOENT;
856 }
857 }
858
859 /*
860 * allocating a SA for policy entry from SAD.
861 * NOTE: searching SAD of aliving state.
862 * OUT: NULL: not found.
863 * others: found and return the pointer.
864 */
865 static struct secasvar *
866 key_allocsa_policy(const struct secasindex *saidx)
867 {
868 struct secashead *sah;
869 struct secasvar *sav;
870 u_int stateidx, state;
871
872 LIST_FOREACH(sah, &sahtree, chain) {
873 if (sah->state == SADB_SASTATE_DEAD)
874 continue;
875 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
876 goto found;
877 }
878
879 return NULL;
880
881 found:
882
883 /* search valid state */
884 for (stateidx = 0;
885 stateidx < _ARRAYLEN(saorder_state_valid);
886 stateidx++) {
887
888 state = saorder_state_valid[stateidx];
889
890 sav = key_do_allocsa_policy(sah, state);
891 if (sav != NULL)
892 return sav;
893 }
894
895 return NULL;
896 }
897
898 /*
899 * searching SAD with direction, protocol, mode and state.
900 * called by key_allocsa_policy().
901 * OUT:
902 * NULL : not found
903 * others : found, pointer to a SA.
904 */
905 static struct secasvar *
906 key_do_allocsa_policy(struct secashead *sah, u_int state)
907 {
908 struct secasvar *sav, *nextsav, *candidate, *d;
909
910 /* initilize */
911 candidate = NULL;
912
913 for (sav = LIST_FIRST(&sah->savtree[state]);
914 sav != NULL;
915 sav = nextsav) {
916
917 nextsav = LIST_NEXT(sav, chain);
918
919 /* sanity check */
920 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
921
922 /* initialize */
923 if (candidate == NULL) {
924 candidate = sav;
925 continue;
926 }
927
928 /* Which SA is the better ? */
929
930 /* sanity check 2 */
931 if (candidate->lft_c == NULL || sav->lft_c == NULL)
932 panic("key_do_allocsa_policy: "
933 "lifetime_current is NULL");
934
935 /* What the best method is to compare ? */
936 if (key_prefered_oldsa) {
937 if (candidate->lft_c->sadb_lifetime_addtime >
938 sav->lft_c->sadb_lifetime_addtime) {
939 candidate = sav;
940 }
941 continue;
942 /*NOTREACHED*/
943 }
944
945 /* prefered new sa rather than old sa */
946 if (candidate->lft_c->sadb_lifetime_addtime <
947 sav->lft_c->sadb_lifetime_addtime) {
948 d = candidate;
949 candidate = sav;
950 } else
951 d = sav;
952
953 /*
954 * prepared to delete the SA when there is more
955 * suitable candidate and the lifetime of the SA is not
956 * permanent.
957 */
958 if (d->lft_c->sadb_lifetime_addtime != 0) {
959 struct mbuf *m, *result;
960
961 key_sa_chgstate(d, SADB_SASTATE_DEAD);
962
963 IPSEC_ASSERT(d->refcnt > 0,
964 ("key_do_allocsa_policy: bogus ref count"));
965 m = key_setsadbmsg(SADB_DELETE, 0,
966 d->sah->saidx.proto, 0, 0, d->refcnt - 1);
967 if (!m)
968 goto msgfail;
969 result = m;
970
971 /* set sadb_address for saidx's. */
972 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
973 &d->sah->saidx.src.sa,
974 d->sah->saidx.src.sa.sa_len << 3,
975 IPSEC_ULPROTO_ANY);
976 if (!m)
977 goto msgfail;
978 m_cat(result, m);
979
980 /* set sadb_address for saidx's. */
981 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
982 &d->sah->saidx.src.sa,
983 d->sah->saidx.src.sa.sa_len << 3,
984 IPSEC_ULPROTO_ANY);
985 if (!m)
986 goto msgfail;
987 m_cat(result, m);
988
989 /* create SA extension */
990 m = key_setsadbsa(d);
991 if (!m)
992 goto msgfail;
993 m_cat(result, m);
994
995 if (result->m_len < sizeof(struct sadb_msg)) {
996 result = m_pullup(result,
997 sizeof(struct sadb_msg));
998 if (result == NULL)
999 goto msgfail;
1000 }
1001
1002 result->m_pkthdr.len = 0;
1003 for (m = result; m; m = m->m_next)
1004 result->m_pkthdr.len += m->m_len;
1005 mtod(result, struct sadb_msg *)->sadb_msg_len =
1006 PFKEY_UNIT64(result->m_pkthdr.len);
1007
1008 if (key_sendup_mbuf(NULL, result,
1009 KEY_SENDUP_REGISTERED))
1010 goto msgfail;
1011 msgfail:
1012 KEY_FREESAV(&d);
1013 }
1014 }
1015
1016 if (candidate) {
1017 SA_ADDREF(candidate);
1018 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1019 printf("DP allocsa_policy cause "
1020 "refcnt++:%d SA:%p\n",
1021 candidate->refcnt, candidate));
1022 }
1023 return candidate;
1024 }
1025
1026 /*
1027 * allocating a usable SA entry for a *INBOUND* packet.
1028 * Must call key_freesav() later.
1029 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1030 * NULL: not found, or error occurred.
1031 *
1032 * In the comparison, no source address is used--for RFC2401 conformance.
1033 * To quote, from section 4.1:
1034 * A security association is uniquely identified by a triple consisting
1035 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1036 * security protocol (AH or ESP) identifier.
1037 * Note that, however, we do need to keep source address in IPsec SA.
1038 * IKE specification and PF_KEY specification do assume that we
1039 * keep source address in IPsec SA. We see a tricky situation here.
1040 */
1041 struct secasvar *
1042 key_allocsa(
1043 union sockaddr_union *dst,
1044 u_int proto,
1045 u_int32_t spi,
1046 const char* where, int tag)
1047 {
1048 struct secashead *sah;
1049 struct secasvar *sav;
1050 u_int stateidx, state;
1051 int s;
1052
1053 int must_check_spi = 1;
1054 int must_check_alg = 0;
1055 u_int16_t cpi = 0;
1056 u_int8_t algo = 0;
1057
1058 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1059
1060 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1061 printf("DP key_allocsa from %s:%u\n", where, tag));
1062
1063 /*
1064 * XXX IPCOMP case
1065 * We use cpi to define spi here. In the case where cpi <=
1066 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1067 * the real spi. In this case, don't check the spi but check the
1068 * algorithm
1069 */
1070
1071 if (proto == IPPROTO_IPCOMP) {
1072 u_int32_t tmp;
1073 tmp = ntohl(spi);
1074 cpi = (u_int16_t) tmp;
1075 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1076 algo = (u_int8_t) cpi;
1077 must_check_spi = 0;
1078 must_check_alg = 1;
1079 }
1080 }
1081
1082 /*
1083 * searching SAD.
1084 * XXX: to be checked internal IP header somewhere. Also when
1085 * IPsec tunnel packet is received. But ESP tunnel mode is
1086 * encrypted so we can't check internal IP header.
1087 */
1088 s = splsoftnet(); /*called from softclock()*/
1089 LIST_FOREACH(sah, &sahtree, chain) {
1090 /* search valid state */
1091 for (stateidx = 0;
1092 stateidx < _ARRAYLEN(saorder_state_valid);
1093 stateidx++) {
1094 state = saorder_state_valid[stateidx];
1095 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1096 /* sanity check */
1097 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1098 /* do not return entries w/ unusable state */
1099 if (sav->state != SADB_SASTATE_MATURE &&
1100 sav->state != SADB_SASTATE_DYING)
1101 continue;
1102 if (proto != sav->sah->saidx.proto)
1103 continue;
1104 if (must_check_spi && spi != sav->spi)
1105 continue;
1106 /* XXX only on the ipcomp case */
1107 if (must_check_alg && algo != sav->alg_comp)
1108 continue;
1109
1110 #if 0 /* don't check src */
1111 /* check src address */
1112 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1113 continue;
1114 #endif
1115 /* check dst address */
1116 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1117 continue;
1118 SA_ADDREF(sav);
1119 goto done;
1120 }
1121 }
1122 }
1123 sav = NULL;
1124 done:
1125 splx(s);
1126
1127 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1128 printf("DP key_allocsa return SA:%p; refcnt %u\n",
1129 sav, sav ? sav->refcnt : 0));
1130 return sav;
1131 }
1132
1133 /*
1134 * Must be called after calling key_allocsp().
1135 * For both the packet without socket and key_freeso().
1136 */
1137 void
1138 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1139 {
1140 struct secpolicy *sp = *spp;
1141
1142 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1143
1144 SP_DELREF(sp);
1145
1146 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1147 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1148 sp, sp->id, where, tag, sp->refcnt));
1149
1150 if (sp->refcnt == 0) {
1151 *spp = NULL;
1152 key_delsp(sp);
1153 }
1154 }
1155
1156 /*
1157 * Must be called after calling key_allocsp().
1158 * For the packet with socket.
1159 */
1160 void
1161 key_freeso(struct socket *so)
1162 {
1163 /* sanity check */
1164 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1165
1166 switch (so->so_proto->pr_domain->dom_family) {
1167 #ifdef INET
1168 case PF_INET:
1169 {
1170 struct inpcb *pcb = sotoinpcb(so);
1171
1172 /* Does it have a PCB ? */
1173 if (pcb == NULL)
1174 return;
1175 key_freesp_so(&pcb->inp_sp->sp_in);
1176 key_freesp_so(&pcb->inp_sp->sp_out);
1177 }
1178 break;
1179 #endif
1180 #ifdef INET6
1181 case PF_INET6:
1182 {
1183 #ifdef HAVE_NRL_INPCB
1184 struct inpcb *pcb = sotoinpcb(so);
1185
1186 /* Does it have a PCB ? */
1187 if (pcb == NULL)
1188 return;
1189 key_freesp_so(&pcb->inp_sp->sp_in);
1190 key_freesp_so(&pcb->inp_sp->sp_out);
1191 #else
1192 struct in6pcb *pcb = sotoin6pcb(so);
1193
1194 /* Does it have a PCB ? */
1195 if (pcb == NULL)
1196 return;
1197 key_freesp_so(&pcb->in6p_sp->sp_in);
1198 key_freesp_so(&pcb->in6p_sp->sp_out);
1199 #endif
1200 }
1201 break;
1202 #endif /* INET6 */
1203 default:
1204 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1205 so->so_proto->pr_domain->dom_family));
1206 return;
1207 }
1208 }
1209
1210 static void
1211 key_freesp_so(struct secpolicy **sp)
1212 {
1213 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1214
1215 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1216 (*sp)->policy == IPSEC_POLICY_BYPASS)
1217 return;
1218
1219 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1220 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1221 KEY_FREESP(sp);
1222 }
1223
1224 /*
1225 * Must be called after calling key_allocsa().
1226 * This function is called by key_freesp() to free some SA allocated
1227 * for a policy.
1228 */
1229 void
1230 key_freesav(struct secasvar **psav, const char* where, int tag)
1231 {
1232 struct secasvar *sav = *psav;
1233
1234 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1235
1236 SA_DELREF(sav);
1237
1238 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1239 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1240 sav, (u_long)ntohl(sav->spi),
1241 where, tag, sav->refcnt));
1242
1243 if (sav->refcnt == 0) {
1244 *psav = NULL;
1245 key_delsav(sav);
1246 }
1247 }
1248
1249 /* %%% SPD management */
1250 /*
1251 * free security policy entry.
1252 */
1253 static void
1254 key_delsp(struct secpolicy *sp)
1255 {
1256 int s;
1257
1258 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1259
1260 key_sp_dead(sp);
1261
1262 IPSEC_ASSERT(sp->refcnt == 0,
1263 ("key_delsp: SP with references deleted (refcnt %u)",
1264 sp->refcnt));
1265
1266 s = splsoftnet(); /*called from softclock()*/
1267
1268 {
1269 struct ipsecrequest *isr = sp->req, *nextisr;
1270
1271 while (isr != NULL) {
1272 if (isr->sav != NULL) {
1273 KEY_FREESAV(&isr->sav);
1274 isr->sav = NULL;
1275 }
1276
1277 nextisr = isr->next;
1278 KFREE(isr);
1279 isr = nextisr;
1280 }
1281 }
1282
1283 KFREE(sp);
1284
1285 splx(s);
1286 }
1287
1288 /*
1289 * search SPD
1290 * OUT: NULL : not found
1291 * others : found, pointer to a SP.
1292 */
1293 static struct secpolicy *
1294 key_getsp(struct secpolicyindex *spidx)
1295 {
1296 struct secpolicy *sp;
1297
1298 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1299
1300 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1301 if (sp->state == IPSEC_SPSTATE_DEAD)
1302 continue;
1303 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1304 SP_ADDREF(sp);
1305 return sp;
1306 }
1307 }
1308
1309 return NULL;
1310 }
1311
1312 /*
1313 * get SP by index.
1314 * OUT: NULL : not found
1315 * others : found, pointer to a SP.
1316 */
1317 static struct secpolicy *
1318 key_getspbyid(u_int32_t id)
1319 {
1320 struct secpolicy *sp;
1321
1322 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1323 if (sp->state == IPSEC_SPSTATE_DEAD)
1324 continue;
1325 if (sp->id == id) {
1326 SP_ADDREF(sp);
1327 return sp;
1328 }
1329 }
1330
1331 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1332 if (sp->state == IPSEC_SPSTATE_DEAD)
1333 continue;
1334 if (sp->id == id) {
1335 SP_ADDREF(sp);
1336 return sp;
1337 }
1338 }
1339
1340 return NULL;
1341 }
1342
1343 struct secpolicy *
1344 key_newsp(const char* where, int tag)
1345 {
1346 struct secpolicy *newsp = NULL;
1347
1348 newsp = (struct secpolicy *)
1349 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1350 if (newsp) {
1351 newsp->refcnt = 1;
1352 newsp->req = NULL;
1353 }
1354
1355 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1356 printf("DP key_newsp from %s:%u return SP:%p\n",
1357 where, tag, newsp));
1358 return newsp;
1359 }
1360
1361 /*
1362 * create secpolicy structure from sadb_x_policy structure.
1363 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1364 * so must be set properly later.
1365 */
1366 struct secpolicy *
1367 key_msg2sp(xpl0, len, error)
1368 struct sadb_x_policy *xpl0;
1369 size_t len;
1370 int *error;
1371 {
1372 struct secpolicy *newsp;
1373
1374 /* sanity check */
1375 if (xpl0 == NULL)
1376 panic("key_msg2sp: NULL pointer was passed");
1377 if (len < sizeof(*xpl0))
1378 panic("key_msg2sp: invalid length");
1379 if (len != PFKEY_EXTLEN(xpl0)) {
1380 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1381 *error = EINVAL;
1382 return NULL;
1383 }
1384
1385 if ((newsp = KEY_NEWSP()) == NULL) {
1386 *error = ENOBUFS;
1387 return NULL;
1388 }
1389
1390 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1391 newsp->policy = xpl0->sadb_x_policy_type;
1392
1393 /* check policy */
1394 switch (xpl0->sadb_x_policy_type) {
1395 case IPSEC_POLICY_DISCARD:
1396 case IPSEC_POLICY_NONE:
1397 case IPSEC_POLICY_ENTRUST:
1398 case IPSEC_POLICY_BYPASS:
1399 newsp->req = NULL;
1400 break;
1401
1402 case IPSEC_POLICY_IPSEC:
1403 {
1404 int tlen;
1405 struct sadb_x_ipsecrequest *xisr;
1406 struct ipsecrequest **p_isr = &newsp->req;
1407
1408 /* validity check */
1409 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1410 ipseclog((LOG_DEBUG,
1411 "key_msg2sp: Invalid msg length.\n"));
1412 KEY_FREESP(&newsp);
1413 *error = EINVAL;
1414 return NULL;
1415 }
1416
1417 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1418 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1419
1420 while (tlen > 0) {
1421 /* length check */
1422 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1423 ipseclog((LOG_DEBUG, "key_msg2sp: "
1424 "invalid ipsecrequest length.\n"));
1425 KEY_FREESP(&newsp);
1426 *error = EINVAL;
1427 return NULL;
1428 }
1429
1430 /* allocate request buffer */
1431 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1432 if ((*p_isr) == NULL) {
1433 ipseclog((LOG_DEBUG,
1434 "key_msg2sp: No more memory.\n"));
1435 KEY_FREESP(&newsp);
1436 *error = ENOBUFS;
1437 return NULL;
1438 }
1439 bzero(*p_isr, sizeof(**p_isr));
1440
1441 /* set values */
1442 (*p_isr)->next = NULL;
1443
1444 switch (xisr->sadb_x_ipsecrequest_proto) {
1445 case IPPROTO_ESP:
1446 case IPPROTO_AH:
1447 case IPPROTO_IPCOMP:
1448 break;
1449 default:
1450 ipseclog((LOG_DEBUG,
1451 "key_msg2sp: invalid proto type=%u\n",
1452 xisr->sadb_x_ipsecrequest_proto));
1453 KEY_FREESP(&newsp);
1454 *error = EPROTONOSUPPORT;
1455 return NULL;
1456 }
1457 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1458
1459 switch (xisr->sadb_x_ipsecrequest_mode) {
1460 case IPSEC_MODE_TRANSPORT:
1461 case IPSEC_MODE_TUNNEL:
1462 break;
1463 case IPSEC_MODE_ANY:
1464 default:
1465 ipseclog((LOG_DEBUG,
1466 "key_msg2sp: invalid mode=%u\n",
1467 xisr->sadb_x_ipsecrequest_mode));
1468 KEY_FREESP(&newsp);
1469 *error = EINVAL;
1470 return NULL;
1471 }
1472 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1473
1474 switch (xisr->sadb_x_ipsecrequest_level) {
1475 case IPSEC_LEVEL_DEFAULT:
1476 case IPSEC_LEVEL_USE:
1477 case IPSEC_LEVEL_REQUIRE:
1478 break;
1479 case IPSEC_LEVEL_UNIQUE:
1480 /* validity check */
1481 /*
1482 * If range violation of reqid, kernel will
1483 * update it, don't refuse it.
1484 */
1485 if (xisr->sadb_x_ipsecrequest_reqid
1486 > IPSEC_MANUAL_REQID_MAX) {
1487 ipseclog((LOG_DEBUG,
1488 "key_msg2sp: reqid=%d range "
1489 "violation, updated by kernel.\n",
1490 xisr->sadb_x_ipsecrequest_reqid));
1491 xisr->sadb_x_ipsecrequest_reqid = 0;
1492 }
1493
1494 /* allocate new reqid id if reqid is zero. */
1495 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1496 u_int16_t reqid;
1497 if ((reqid = key_newreqid()) == 0) {
1498 KEY_FREESP(&newsp);
1499 *error = ENOBUFS;
1500 return NULL;
1501 }
1502 (*p_isr)->saidx.reqid = reqid;
1503 xisr->sadb_x_ipsecrequest_reqid = reqid;
1504 } else {
1505 /* set it for manual keying. */
1506 (*p_isr)->saidx.reqid =
1507 xisr->sadb_x_ipsecrequest_reqid;
1508 }
1509 break;
1510
1511 default:
1512 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1513 xisr->sadb_x_ipsecrequest_level));
1514 KEY_FREESP(&newsp);
1515 *error = EINVAL;
1516 return NULL;
1517 }
1518 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1519
1520 /* set IP addresses if there */
1521 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1522 struct sockaddr *paddr;
1523
1524 paddr = (struct sockaddr *)(xisr + 1);
1525
1526 /* validity check */
1527 if (paddr->sa_len
1528 > sizeof((*p_isr)->saidx.src)) {
1529 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1530 "address length.\n"));
1531 KEY_FREESP(&newsp);
1532 *error = EINVAL;
1533 return NULL;
1534 }
1535 bcopy(paddr, &(*p_isr)->saidx.src,
1536 paddr->sa_len);
1537
1538 paddr = (struct sockaddr *)((caddr_t)paddr
1539 + paddr->sa_len);
1540
1541 /* validity check */
1542 if (paddr->sa_len
1543 > sizeof((*p_isr)->saidx.dst)) {
1544 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1545 "address length.\n"));
1546 KEY_FREESP(&newsp);
1547 *error = EINVAL;
1548 return NULL;
1549 }
1550 bcopy(paddr, &(*p_isr)->saidx.dst,
1551 paddr->sa_len);
1552 }
1553
1554 (*p_isr)->sav = NULL;
1555 (*p_isr)->sp = newsp;
1556
1557 /* initialization for the next. */
1558 p_isr = &(*p_isr)->next;
1559 tlen -= xisr->sadb_x_ipsecrequest_len;
1560
1561 /* validity check */
1562 if (tlen < 0) {
1563 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1564 KEY_FREESP(&newsp);
1565 *error = EINVAL;
1566 return NULL;
1567 }
1568
1569 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1570 + xisr->sadb_x_ipsecrequest_len);
1571 }
1572 }
1573 break;
1574 default:
1575 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1576 KEY_FREESP(&newsp);
1577 *error = EINVAL;
1578 return NULL;
1579 }
1580
1581 *error = 0;
1582 return newsp;
1583 }
1584
1585 static u_int16_t
1586 key_newreqid()
1587 {
1588 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1589
1590 auto_reqid = (auto_reqid == 0xffff
1591 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1592
1593 /* XXX should be unique check */
1594
1595 return auto_reqid;
1596 }
1597
1598 /*
1599 * copy secpolicy struct to sadb_x_policy structure indicated.
1600 */
1601 struct mbuf *
1602 key_sp2msg(sp)
1603 struct secpolicy *sp;
1604 {
1605 struct sadb_x_policy *xpl;
1606 int tlen;
1607 caddr_t p;
1608 struct mbuf *m;
1609
1610 /* sanity check. */
1611 if (sp == NULL)
1612 panic("key_sp2msg: NULL pointer was passed");
1613
1614 tlen = key_getspreqmsglen(sp);
1615
1616 m = key_alloc_mbuf(tlen);
1617 if (!m || m->m_next) { /*XXX*/
1618 if (m)
1619 m_freem(m);
1620 return NULL;
1621 }
1622
1623 m->m_len = tlen;
1624 m->m_next = NULL;
1625 xpl = mtod(m, struct sadb_x_policy *);
1626 bzero(xpl, tlen);
1627
1628 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1629 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1630 xpl->sadb_x_policy_type = sp->policy;
1631 xpl->sadb_x_policy_dir = sp->spidx.dir;
1632 xpl->sadb_x_policy_id = sp->id;
1633 p = (caddr_t)xpl + sizeof(*xpl);
1634
1635 /* if is the policy for ipsec ? */
1636 if (sp->policy == IPSEC_POLICY_IPSEC) {
1637 struct sadb_x_ipsecrequest *xisr;
1638 struct ipsecrequest *isr;
1639
1640 for (isr = sp->req; isr != NULL; isr = isr->next) {
1641
1642 xisr = (struct sadb_x_ipsecrequest *)p;
1643
1644 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1645 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1646 xisr->sadb_x_ipsecrequest_level = isr->level;
1647 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1648
1649 p += sizeof(*xisr);
1650 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1651 p += isr->saidx.src.sa.sa_len;
1652 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1653 p += isr->saidx.src.sa.sa_len;
1654
1655 xisr->sadb_x_ipsecrequest_len =
1656 PFKEY_ALIGN8(sizeof(*xisr)
1657 + isr->saidx.src.sa.sa_len
1658 + isr->saidx.dst.sa.sa_len);
1659 }
1660 }
1661
1662 return m;
1663 }
1664
1665 /* m will not be freed nor modified */
1666 static struct mbuf *
1667 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1668 int ndeep, int nitem, ...)
1669 {
1670 va_list ap;
1671 int idx;
1672 int i;
1673 struct mbuf *result = NULL, *n;
1674 int len;
1675
1676 if (m == NULL || mhp == NULL)
1677 panic("null pointer passed to key_gather");
1678
1679 va_start(ap, nitem);
1680 for (i = 0; i < nitem; i++) {
1681 idx = va_arg(ap, int);
1682 if (idx < 0 || idx > SADB_EXT_MAX)
1683 goto fail;
1684 /* don't attempt to pull empty extension */
1685 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1686 continue;
1687 if (idx != SADB_EXT_RESERVED &&
1688 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1689 continue;
1690
1691 if (idx == SADB_EXT_RESERVED) {
1692 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1693 #ifdef DIAGNOSTIC
1694 if (len > MHLEN)
1695 panic("assumption failed");
1696 #endif
1697 MGETHDR(n, M_DONTWAIT, MT_DATA);
1698 if (!n)
1699 goto fail;
1700 n->m_len = len;
1701 n->m_next = NULL;
1702 m_copydata(m, 0, sizeof(struct sadb_msg),
1703 mtod(n, caddr_t));
1704 } else if (i < ndeep) {
1705 len = mhp->extlen[idx];
1706 n = key_alloc_mbuf(len);
1707 if (!n || n->m_next) { /*XXX*/
1708 if (n)
1709 m_freem(n);
1710 goto fail;
1711 }
1712 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1713 mtod(n, caddr_t));
1714 } else {
1715 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1716 M_DONTWAIT);
1717 }
1718 if (n == NULL)
1719 goto fail;
1720
1721 if (result)
1722 m_cat(result, n);
1723 else
1724 result = n;
1725 }
1726 va_end(ap);
1727
1728 if ((result->m_flags & M_PKTHDR) != 0) {
1729 result->m_pkthdr.len = 0;
1730 for (n = result; n; n = n->m_next)
1731 result->m_pkthdr.len += n->m_len;
1732 }
1733
1734 return result;
1735
1736 fail:
1737 va_end(ap);
1738 m_freem(result);
1739 return NULL;
1740 }
1741
1742 /*
1743 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1744 * add an entry to SP database, when received
1745 * <base, address(SD), (lifetime(H),) policy>
1746 * from the user(?).
1747 * Adding to SP database,
1748 * and send
1749 * <base, address(SD), (lifetime(H),) policy>
1750 * to the socket which was send.
1751 *
1752 * SPDADD set a unique policy entry.
1753 * SPDSETIDX like SPDADD without a part of policy requests.
1754 * SPDUPDATE replace a unique policy entry.
1755 *
1756 * m will always be freed.
1757 */
1758 static int
1759 key_spdadd(so, m, mhp)
1760 struct socket *so;
1761 struct mbuf *m;
1762 const struct sadb_msghdr *mhp;
1763 {
1764 struct sadb_address *src0, *dst0;
1765 struct sadb_x_policy *xpl0, *xpl;
1766 struct sadb_lifetime *lft = NULL;
1767 struct secpolicyindex spidx;
1768 struct secpolicy *newsp;
1769 int error;
1770
1771 /* sanity check */
1772 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1773 panic("key_spdadd: NULL pointer is passed");
1774
1775 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1776 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1777 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1778 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1779 return key_senderror(so, m, EINVAL);
1780 }
1781 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1782 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1783 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1784 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1785 return key_senderror(so, m, EINVAL);
1786 }
1787 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1788 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1789 < sizeof(struct sadb_lifetime)) {
1790 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1791 return key_senderror(so, m, EINVAL);
1792 }
1793 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1794 }
1795
1796 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1797 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1798 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1799
1800 /* make secindex */
1801 /* XXX boundary check against sa_len */
1802 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1803 src0 + 1,
1804 dst0 + 1,
1805 src0->sadb_address_prefixlen,
1806 dst0->sadb_address_prefixlen,
1807 src0->sadb_address_proto,
1808 &spidx);
1809
1810 /* checking the direciton. */
1811 switch (xpl0->sadb_x_policy_dir) {
1812 case IPSEC_DIR_INBOUND:
1813 case IPSEC_DIR_OUTBOUND:
1814 break;
1815 default:
1816 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1817 mhp->msg->sadb_msg_errno = EINVAL;
1818 return 0;
1819 }
1820
1821 /* check policy */
1822 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1823 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1824 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1825 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1826 return key_senderror(so, m, EINVAL);
1827 }
1828
1829 /* policy requests are mandatory when action is ipsec. */
1830 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1831 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1832 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1833 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1834 return key_senderror(so, m, EINVAL);
1835 }
1836
1837 /*
1838 * checking there is SP already or not.
1839 * SPDUPDATE doesn't depend on whether there is a SP or not.
1840 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1841 * then error.
1842 */
1843 newsp = key_getsp(&spidx);
1844 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1845 if (newsp) {
1846 key_sp_dead(newsp);
1847 key_sp_unlink(newsp); /* XXX jrs ordering */
1848 KEY_FREESP(&newsp);
1849 newsp = NULL;
1850 }
1851 } else {
1852 if (newsp != NULL) {
1853 KEY_FREESP(&newsp);
1854 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1855 return key_senderror(so, m, EEXIST);
1856 }
1857 }
1858
1859 /* allocation new SP entry */
1860 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1861 return key_senderror(so, m, error);
1862 }
1863
1864 if ((newsp->id = key_getnewspid()) == 0) {
1865 KFREE(newsp);
1866 return key_senderror(so, m, ENOBUFS);
1867 }
1868
1869 /* XXX boundary check against sa_len */
1870 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1871 src0 + 1,
1872 dst0 + 1,
1873 src0->sadb_address_prefixlen,
1874 dst0->sadb_address_prefixlen,
1875 src0->sadb_address_proto,
1876 &newsp->spidx);
1877
1878 /* sanity check on addr pair */
1879 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1880 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1881 KFREE(newsp);
1882 return key_senderror(so, m, EINVAL);
1883 }
1884 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1885 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1886 KFREE(newsp);
1887 return key_senderror(so, m, EINVAL);
1888 }
1889 #if 1
1890 if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1891 struct sockaddr *sa;
1892 sa = (struct sockaddr *)(src0 + 1);
1893 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1894 KFREE(newsp);
1895 return key_senderror(so, m, EINVAL);
1896 }
1897 }
1898 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1899 struct sockaddr *sa;
1900 sa = (struct sockaddr *)(dst0 + 1);
1901 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1902 KFREE(newsp);
1903 return key_senderror(so, m, EINVAL);
1904 }
1905 }
1906 #endif
1907
1908 newsp->created = time_second;
1909 newsp->lastused = newsp->created;
1910 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1911 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1912
1913 newsp->refcnt = 1; /* do not reclaim until I say I do */
1914 newsp->state = IPSEC_SPSTATE_ALIVE;
1915 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1916
1917 /* delete the entry in spacqtree */
1918 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1919 struct secspacq *spacq;
1920 if ((spacq = key_getspacq(&spidx)) != NULL) {
1921 /* reset counter in order to deletion by timehandler. */
1922 spacq->created = time_second;
1923 spacq->count = 0;
1924 }
1925 }
1926
1927 #if defined(__NetBSD__)
1928 /* Invalidate all cached SPD pointers in the PCBs. */
1929 ipsec_invalpcbcacheall();
1930
1931 #if defined(GATEWAY)
1932 /* Invalidate the ipflow cache, as well. */
1933 ipflow_invalidate_all();
1934 #endif
1935 #endif /* __NetBSD__ */
1936
1937 {
1938 struct mbuf *n, *mpolicy;
1939 struct sadb_msg *newmsg;
1940 int off;
1941
1942 /* create new sadb_msg to reply. */
1943 if (lft) {
1944 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1945 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1946 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1947 } else {
1948 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1949 SADB_X_EXT_POLICY,
1950 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1951 }
1952 if (!n)
1953 return key_senderror(so, m, ENOBUFS);
1954
1955 if (n->m_len < sizeof(*newmsg)) {
1956 n = m_pullup(n, sizeof(*newmsg));
1957 if (!n)
1958 return key_senderror(so, m, ENOBUFS);
1959 }
1960 newmsg = mtod(n, struct sadb_msg *);
1961 newmsg->sadb_msg_errno = 0;
1962 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1963
1964 off = 0;
1965 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1966 sizeof(*xpl), &off);
1967 if (mpolicy == NULL) {
1968 /* n is already freed */
1969 return key_senderror(so, m, ENOBUFS);
1970 }
1971 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1972 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1973 m_freem(n);
1974 return key_senderror(so, m, EINVAL);
1975 }
1976 xpl->sadb_x_policy_id = newsp->id;
1977
1978 m_freem(m);
1979 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1980 }
1981 }
1982
1983 /*
1984 * get new policy id.
1985 * OUT:
1986 * 0: failure.
1987 * others: success.
1988 */
1989 static u_int32_t
1990 key_getnewspid()
1991 {
1992 u_int32_t newid = 0;
1993 int count = key_spi_trycnt; /* XXX */
1994 struct secpolicy *sp;
1995
1996 /* when requesting to allocate spi ranged */
1997 while (count--) {
1998 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1999
2000 if ((sp = key_getspbyid(newid)) == NULL)
2001 break;
2002
2003 KEY_FREESP(&sp);
2004 }
2005
2006 if (count == 0 || newid == 0) {
2007 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2008 return 0;
2009 }
2010
2011 return newid;
2012 }
2013
2014 /*
2015 * SADB_SPDDELETE processing
2016 * receive
2017 * <base, address(SD), policy(*)>
2018 * from the user(?), and set SADB_SASTATE_DEAD,
2019 * and send,
2020 * <base, address(SD), policy(*)>
2021 * to the ikmpd.
2022 * policy(*) including direction of policy.
2023 *
2024 * m will always be freed.
2025 */
2026 static int
2027 key_spddelete(so, m, mhp)
2028 struct socket *so;
2029 struct mbuf *m;
2030 const struct sadb_msghdr *mhp;
2031 {
2032 struct sadb_address *src0, *dst0;
2033 struct sadb_x_policy *xpl0;
2034 struct secpolicyindex spidx;
2035 struct secpolicy *sp;
2036
2037 /* sanity check */
2038 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2039 panic("key_spddelete: NULL pointer is passed");
2040
2041 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2042 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2043 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2044 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2045 return key_senderror(so, m, EINVAL);
2046 }
2047 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2048 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2049 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2050 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2051 return key_senderror(so, m, EINVAL);
2052 }
2053
2054 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2055 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2056 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2057
2058 /* make secindex */
2059 /* XXX boundary check against sa_len */
2060 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2061 src0 + 1,
2062 dst0 + 1,
2063 src0->sadb_address_prefixlen,
2064 dst0->sadb_address_prefixlen,
2065 src0->sadb_address_proto,
2066 &spidx);
2067
2068 /* checking the direciton. */
2069 switch (xpl0->sadb_x_policy_dir) {
2070 case IPSEC_DIR_INBOUND:
2071 case IPSEC_DIR_OUTBOUND:
2072 break;
2073 default:
2074 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2075 return key_senderror(so, m, EINVAL);
2076 }
2077
2078 /* Is there SP in SPD ? */
2079 if ((sp = key_getsp(&spidx)) == NULL) {
2080 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2081 return key_senderror(so, m, EINVAL);
2082 }
2083
2084 /* save policy id to buffer to be returned. */
2085 xpl0->sadb_x_policy_id = sp->id;
2086
2087 key_sp_dead(sp);
2088 key_sp_unlink(sp); /* XXX jrs ordering */
2089 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2090
2091 #if defined(__NetBSD__)
2092 /* Invalidate all cached SPD pointers in the PCBs. */
2093 ipsec_invalpcbcacheall();
2094
2095 /* We're deleting policy; no need to invalidate the ipflow cache. */
2096 #endif /* __NetBSD__ */
2097
2098 {
2099 struct mbuf *n;
2100 struct sadb_msg *newmsg;
2101
2102 /* create new sadb_msg to reply. */
2103 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2104 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2105 if (!n)
2106 return key_senderror(so, m, ENOBUFS);
2107
2108 newmsg = mtod(n, struct sadb_msg *);
2109 newmsg->sadb_msg_errno = 0;
2110 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2111
2112 m_freem(m);
2113 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2114 }
2115 }
2116
2117 /*
2118 * SADB_SPDDELETE2 processing
2119 * receive
2120 * <base, policy(*)>
2121 * from the user(?), and set SADB_SASTATE_DEAD,
2122 * and send,
2123 * <base, policy(*)>
2124 * to the ikmpd.
2125 * policy(*) including direction of policy.
2126 *
2127 * m will always be freed.
2128 */
2129 static int
2130 key_spddelete2(so, m, mhp)
2131 struct socket *so;
2132 struct mbuf *m;
2133 const struct sadb_msghdr *mhp;
2134 {
2135 u_int32_t id;
2136 struct secpolicy *sp;
2137
2138 /* sanity check */
2139 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2140 panic("key_spddelete2: NULL pointer is passed");
2141
2142 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2143 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2144 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2145 key_senderror(so, m, EINVAL);
2146 return 0;
2147 }
2148
2149 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2150
2151 /* Is there SP in SPD ? */
2152 if ((sp = key_getspbyid(id)) == NULL) {
2153 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2154 key_senderror(so, m, EINVAL);
2155 }
2156
2157 key_sp_dead(sp);
2158 key_sp_unlink(sp); /* XXX jrs ordering */
2159 KEY_FREESP(&sp); /* ref gained by key_getsp */
2160 sp = NULL;
2161
2162 #if defined(__NetBSD__)
2163 /* Invalidate all cached SPD pointers in the PCBs. */
2164 ipsec_invalpcbcacheall();
2165
2166 /* We're deleting policy; no need to invalidate the ipflow cache. */
2167 #endif /* __NetBSD__ */
2168
2169 {
2170 struct mbuf *n, *nn;
2171 struct sadb_msg *newmsg;
2172 int off, len;
2173
2174 /* create new sadb_msg to reply. */
2175 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2176
2177 if (len > MCLBYTES)
2178 return key_senderror(so, m, ENOBUFS);
2179 MGETHDR(n, M_DONTWAIT, MT_DATA);
2180 if (n && len > MHLEN) {
2181 MCLGET(n, M_DONTWAIT);
2182 if ((n->m_flags & M_EXT) == 0) {
2183 m_freem(n);
2184 n = NULL;
2185 }
2186 }
2187 if (!n)
2188 return key_senderror(so, m, ENOBUFS);
2189
2190 n->m_len = len;
2191 n->m_next = NULL;
2192 off = 0;
2193
2194 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2195 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2196
2197 #ifdef DIAGNOSTIC
2198 if (off != len)
2199 panic("length inconsistency in key_spddelete2");
2200 #endif
2201
2202 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2203 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2204 if (!n->m_next) {
2205 m_freem(n);
2206 return key_senderror(so, m, ENOBUFS);
2207 }
2208
2209 n->m_pkthdr.len = 0;
2210 for (nn = n; nn; nn = nn->m_next)
2211 n->m_pkthdr.len += nn->m_len;
2212
2213 newmsg = mtod(n, struct sadb_msg *);
2214 newmsg->sadb_msg_errno = 0;
2215 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2216
2217 m_freem(m);
2218 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2219 }
2220 }
2221
2222 /*
2223 * SADB_X_GET processing
2224 * receive
2225 * <base, policy(*)>
2226 * from the user(?),
2227 * and send,
2228 * <base, address(SD), policy>
2229 * to the ikmpd.
2230 * policy(*) including direction of policy.
2231 *
2232 * m will always be freed.
2233 */
2234 static int
2235 key_spdget(so, m, mhp)
2236 struct socket *so;
2237 struct mbuf *m;
2238 const struct sadb_msghdr *mhp;
2239 {
2240 u_int32_t id;
2241 struct secpolicy *sp;
2242 struct mbuf *n;
2243
2244 /* sanity check */
2245 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2246 panic("key_spdget: NULL pointer is passed");
2247
2248 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2249 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2250 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2251 return key_senderror(so, m, EINVAL);
2252 }
2253
2254 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2255
2256 /* Is there SP in SPD ? */
2257 if ((sp = key_getspbyid(id)) == NULL) {
2258 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2259 return key_senderror(so, m, ENOENT);
2260 }
2261
2262 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2263 if (n != NULL) {
2264 m_freem(m);
2265 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2266 } else
2267 return key_senderror(so, m, ENOBUFS);
2268 }
2269
2270 /*
2271 * SADB_X_SPDACQUIRE processing.
2272 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2273 * send
2274 * <base, policy(*)>
2275 * to KMD, and expect to receive
2276 * <base> with SADB_X_SPDACQUIRE if error occurred,
2277 * or
2278 * <base, policy>
2279 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2280 * policy(*) is without policy requests.
2281 *
2282 * 0 : succeed
2283 * others: error number
2284 */
2285 int
2286 key_spdacquire(sp)
2287 struct secpolicy *sp;
2288 {
2289 struct mbuf *result = NULL, *m;
2290 struct secspacq *newspacq;
2291 int error;
2292
2293 /* sanity check */
2294 if (sp == NULL)
2295 panic("key_spdacquire: NULL pointer is passed");
2296 if (sp->req != NULL)
2297 panic("key_spdacquire: called but there is request");
2298 if (sp->policy != IPSEC_POLICY_IPSEC)
2299 panic("key_spdacquire: policy mismathed. IPsec is expected");
2300
2301 /* Get an entry to check whether sent message or not. */
2302 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2303 if (key_blockacq_count < newspacq->count) {
2304 /* reset counter and do send message. */
2305 newspacq->count = 0;
2306 } else {
2307 /* increment counter and do nothing. */
2308 newspacq->count++;
2309 return 0;
2310 }
2311 } else {
2312 /* make new entry for blocking to send SADB_ACQUIRE. */
2313 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2314 return ENOBUFS;
2315
2316 /* add to acqtree */
2317 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2318 }
2319
2320 /* create new sadb_msg to reply. */
2321 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2322 if (!m) {
2323 error = ENOBUFS;
2324 goto fail;
2325 }
2326 result = m;
2327
2328 result->m_pkthdr.len = 0;
2329 for (m = result; m; m = m->m_next)
2330 result->m_pkthdr.len += m->m_len;
2331
2332 mtod(result, struct sadb_msg *)->sadb_msg_len =
2333 PFKEY_UNIT64(result->m_pkthdr.len);
2334
2335 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2336
2337 fail:
2338 if (result)
2339 m_freem(result);
2340 return error;
2341 }
2342
2343 /*
2344 * SADB_SPDFLUSH processing
2345 * receive
2346 * <base>
2347 * from the user, and free all entries in secpctree.
2348 * and send,
2349 * <base>
2350 * to the user.
2351 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2352 *
2353 * m will always be freed.
2354 */
2355 static int
2356 key_spdflush(so, m, mhp)
2357 struct socket *so;
2358 struct mbuf *m;
2359 const struct sadb_msghdr *mhp;
2360 {
2361 struct sadb_msg *newmsg;
2362 struct secpolicy *sp;
2363 u_int dir;
2364
2365 /* sanity check */
2366 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2367 panic("key_spdflush: NULL pointer is passed");
2368
2369 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2370 return key_senderror(so, m, EINVAL);
2371
2372 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2373 struct secpolicy * nextsp;
2374 for (sp = LIST_FIRST(&sptree[dir]);
2375 sp != NULL;
2376 sp = nextsp) {
2377
2378 nextsp = LIST_NEXT(sp, chain);
2379 if (sp->state == IPSEC_SPSTATE_DEAD)
2380 continue;
2381 key_sp_dead(sp);
2382 key_sp_unlink(sp);
2383 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2384 continue;
2385 }
2386 }
2387
2388 #if defined(__NetBSD__)
2389 /* Invalidate all cached SPD pointers in the PCBs. */
2390 ipsec_invalpcbcacheall();
2391
2392 /* We're deleting policy; no need to invalidate the ipflow cache. */
2393 #endif /* __NetBSD__ */
2394
2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2396 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2397 return key_senderror(so, m, ENOBUFS);
2398 }
2399
2400 if (m->m_next)
2401 m_freem(m->m_next);
2402 m->m_next = NULL;
2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2404 newmsg = mtod(m, struct sadb_msg *);
2405 newmsg->sadb_msg_errno = 0;
2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2407
2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2409 }
2410
2411 static struct sockaddr key_src = {
2412 .sa_len = 2,
2413 .sa_family = PF_KEY,
2414 };
2415
2416 static struct mbuf *
2417 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2418 {
2419 struct secpolicy *sp;
2420 int cnt;
2421 u_int dir;
2422 struct mbuf *m, *n, *prev;
2423 int totlen;
2424
2425 *lenp = 0;
2426
2427 /* search SPD entry and get buffer size. */
2428 cnt = 0;
2429 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2430 LIST_FOREACH(sp, &sptree[dir], chain) {
2431 cnt++;
2432 }
2433 }
2434
2435 if (cnt == 0) {
2436 *errorp = ENOENT;
2437 return (NULL);
2438 }
2439
2440 m = NULL;
2441 prev = m;
2442 totlen = 0;
2443 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2444 LIST_FOREACH(sp, &sptree[dir], chain) {
2445 --cnt;
2446 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2447
2448 if (!n) {
2449 *errorp = ENOBUFS;
2450 if (m) m_freem(m);
2451 return (NULL);
2452 }
2453
2454 totlen += n->m_pkthdr.len;
2455 if (!m) {
2456 m = n;
2457 } else {
2458 prev->m_nextpkt = n;
2459 }
2460 prev = n;
2461 }
2462 }
2463
2464 *lenp = totlen;
2465 *errorp = 0;
2466 return (m);
2467 }
2468
2469 /*
2470 * SADB_SPDDUMP processing
2471 * receive
2472 * <base>
2473 * from the user, and dump all SP leaves
2474 * and send,
2475 * <base> .....
2476 * to the ikmpd.
2477 *
2478 * m will always be freed.
2479 */
2480 static int
2481 key_spddump(so, m0, mhp)
2482 struct socket *so;
2483 struct mbuf *m0;
2484 const struct sadb_msghdr *mhp;
2485 {
2486 struct mbuf *n;
2487 int error, len;
2488 int ok, s;
2489 pid_t pid;
2490
2491 /* sanity check */
2492 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2493 panic("key_spddump: NULL pointer is passed");
2494
2495
2496 pid = mhp->msg->sadb_msg_pid;
2497 /*
2498 * If the requestor has insufficient socket-buffer space
2499 * for the entire chain, nobody gets any response to the DUMP.
2500 * XXX For now, only the requestor ever gets anything.
2501 * Moreover, if the requestor has any space at all, they receive
2502 * the entire chain, otherwise the request is refused with ENOBUFS.
2503 */
2504 if (sbspace(&so->so_rcv) <= 0) {
2505 return key_senderror(so, m0, ENOBUFS);
2506 }
2507
2508 s = splsoftnet();
2509 n = key_setspddump_chain(&error, &len, pid);
2510 splx(s);
2511
2512 if (n == NULL) {
2513 return key_senderror(so, m0, ENOENT);
2514 }
2515 pfkeystat.in_total++;
2516 pfkeystat.in_bytes += len;
2517
2518 /*
2519 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2520 * The requestor receives either the entire chain, or an
2521 * error message with ENOBUFS.
2522 */
2523
2524 /*
2525 * sbappendchainwith record takes the chain of entries, one
2526 * packet-record per SPD entry, prepends the key_src sockaddr
2527 * to each packet-record, links the sockaddr mbufs into a new
2528 * list of records, then appends the entire resulting
2529 * list to the requesting socket.
2530 */
2531 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2532 n, SB_PRIO_ONESHOT_OVERFLOW);
2533
2534 if (!ok) {
2535 pfkeystat.in_nomem++;
2536 m_freem(n);
2537 return key_senderror(so, m0, ENOBUFS);
2538 }
2539
2540 m_freem(m0);
2541 return error;
2542 }
2543
2544 static struct mbuf *
2545 key_setdumpsp(sp, type, seq, pid)
2546 struct secpolicy *sp;
2547 u_int8_t type;
2548 u_int32_t seq;
2549 pid_t pid;
2550 {
2551 struct mbuf *result = NULL, *m;
2552
2553 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2554 if (!m)
2555 goto fail;
2556 result = m;
2557
2558 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2559 &sp->spidx.src.sa, sp->spidx.prefs,
2560 sp->spidx.ul_proto);
2561 if (!m)
2562 goto fail;
2563 m_cat(result, m);
2564
2565 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2566 &sp->spidx.dst.sa, sp->spidx.prefd,
2567 sp->spidx.ul_proto);
2568 if (!m)
2569 goto fail;
2570 m_cat(result, m);
2571
2572 m = key_sp2msg(sp);
2573 if (!m)
2574 goto fail;
2575 m_cat(result, m);
2576
2577 if ((result->m_flags & M_PKTHDR) == 0)
2578 goto fail;
2579
2580 if (result->m_len < sizeof(struct sadb_msg)) {
2581 result = m_pullup(result, sizeof(struct sadb_msg));
2582 if (result == NULL)
2583 goto fail;
2584 }
2585
2586 result->m_pkthdr.len = 0;
2587 for (m = result; m; m = m->m_next)
2588 result->m_pkthdr.len += m->m_len;
2589
2590 mtod(result, struct sadb_msg *)->sadb_msg_len =
2591 PFKEY_UNIT64(result->m_pkthdr.len);
2592
2593 return result;
2594
2595 fail:
2596 m_freem(result);
2597 return NULL;
2598 }
2599
2600 /*
2601 * get PFKEY message length for security policy and request.
2602 */
2603 static u_int
2604 key_getspreqmsglen(sp)
2605 struct secpolicy *sp;
2606 {
2607 u_int tlen;
2608
2609 tlen = sizeof(struct sadb_x_policy);
2610
2611 /* if is the policy for ipsec ? */
2612 if (sp->policy != IPSEC_POLICY_IPSEC)
2613 return tlen;
2614
2615 /* get length of ipsec requests */
2616 {
2617 struct ipsecrequest *isr;
2618 int len;
2619
2620 for (isr = sp->req; isr != NULL; isr = isr->next) {
2621 len = sizeof(struct sadb_x_ipsecrequest)
2622 + isr->saidx.src.sa.sa_len
2623 + isr->saidx.dst.sa.sa_len;
2624
2625 tlen += PFKEY_ALIGN8(len);
2626 }
2627 }
2628
2629 return tlen;
2630 }
2631
2632 /*
2633 * SADB_SPDEXPIRE processing
2634 * send
2635 * <base, address(SD), lifetime(CH), policy>
2636 * to KMD by PF_KEY.
2637 *
2638 * OUT: 0 : succeed
2639 * others : error number
2640 */
2641 static int
2642 key_spdexpire(sp)
2643 struct secpolicy *sp;
2644 {
2645 int s;
2646 struct mbuf *result = NULL, *m;
2647 int len;
2648 int error = -1;
2649 struct sadb_lifetime *lt;
2650
2651 /* XXX: Why do we lock ? */
2652 s = splsoftnet(); /*called from softclock()*/
2653
2654 /* sanity check */
2655 if (sp == NULL)
2656 panic("key_spdexpire: NULL pointer is passed");
2657
2658 /* set msg header */
2659 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2660 if (!m) {
2661 error = ENOBUFS;
2662 goto fail;
2663 }
2664 result = m;
2665
2666 /* create lifetime extension (current and hard) */
2667 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2668 m = key_alloc_mbuf(len);
2669 if (!m || m->m_next) { /*XXX*/
2670 if (m)
2671 m_freem(m);
2672 error = ENOBUFS;
2673 goto fail;
2674 }
2675 bzero(mtod(m, caddr_t), len);
2676 lt = mtod(m, struct sadb_lifetime *);
2677 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2678 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2679 lt->sadb_lifetime_allocations = 0;
2680 lt->sadb_lifetime_bytes = 0;
2681 lt->sadb_lifetime_addtime = sp->created;
2682 lt->sadb_lifetime_usetime = sp->lastused;
2683 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2684 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2685 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2686 lt->sadb_lifetime_allocations = 0;
2687 lt->sadb_lifetime_bytes = 0;
2688 lt->sadb_lifetime_addtime = sp->lifetime;
2689 lt->sadb_lifetime_usetime = sp->validtime;
2690 m_cat(result, m);
2691
2692 /* set sadb_address for source */
2693 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2694 &sp->spidx.src.sa,
2695 sp->spidx.prefs, sp->spidx.ul_proto);
2696 if (!m) {
2697 error = ENOBUFS;
2698 goto fail;
2699 }
2700 m_cat(result, m);
2701
2702 /* set sadb_address for destination */
2703 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2704 &sp->spidx.dst.sa,
2705 sp->spidx.prefd, sp->spidx.ul_proto);
2706 if (!m) {
2707 error = ENOBUFS;
2708 goto fail;
2709 }
2710 m_cat(result, m);
2711
2712 /* set secpolicy */
2713 m = key_sp2msg(sp);
2714 if (!m) {
2715 error = ENOBUFS;
2716 goto fail;
2717 }
2718 m_cat(result, m);
2719
2720 if ((result->m_flags & M_PKTHDR) == 0) {
2721 error = EINVAL;
2722 goto fail;
2723 }
2724
2725 if (result->m_len < sizeof(struct sadb_msg)) {
2726 result = m_pullup(result, sizeof(struct sadb_msg));
2727 if (result == NULL) {
2728 error = ENOBUFS;
2729 goto fail;
2730 }
2731 }
2732
2733 result->m_pkthdr.len = 0;
2734 for (m = result; m; m = m->m_next)
2735 result->m_pkthdr.len += m->m_len;
2736
2737 mtod(result, struct sadb_msg *)->sadb_msg_len =
2738 PFKEY_UNIT64(result->m_pkthdr.len);
2739
2740 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2741
2742 fail:
2743 if (result)
2744 m_freem(result);
2745 splx(s);
2746 return error;
2747 }
2748
2749 /* %%% SAD management */
2750 /*
2751 * allocating a memory for new SA head, and copy from the values of mhp.
2752 * OUT: NULL : failure due to the lack of memory.
2753 * others : pointer to new SA head.
2754 */
2755 static struct secashead *
2756 key_newsah(saidx)
2757 struct secasindex *saidx;
2758 {
2759 struct secashead *newsah;
2760
2761 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2762
2763 newsah = (struct secashead *)
2764 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2765 if (newsah != NULL) {
2766 int i;
2767 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2768 LIST_INIT(&newsah->savtree[i]);
2769 newsah->saidx = *saidx;
2770
2771 /* add to saidxtree */
2772 newsah->state = SADB_SASTATE_MATURE;
2773 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2774 }
2775 return(newsah);
2776 }
2777
2778 /*
2779 * delete SA index and all SA registerd.
2780 */
2781 static void
2782 key_delsah(sah)
2783 struct secashead *sah;
2784 {
2785 struct secasvar *sav, *nextsav;
2786 u_int stateidx, state;
2787 int s;
2788 int zombie = 0;
2789
2790 /* sanity check */
2791 if (sah == NULL)
2792 panic("key_delsah: NULL pointer is passed");
2793
2794 s = splsoftnet(); /*called from softclock()*/
2795
2796 /* searching all SA registerd in the secindex. */
2797 for (stateidx = 0;
2798 stateidx < _ARRAYLEN(saorder_state_any);
2799 stateidx++) {
2800
2801 state = saorder_state_any[stateidx];
2802 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2803 sav != NULL;
2804 sav = nextsav) {
2805
2806 nextsav = LIST_NEXT(sav, chain);
2807
2808 if (sav->refcnt == 0) {
2809 /* sanity check */
2810 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2811 KEY_FREESAV(&sav);
2812 } else {
2813 /* give up to delete this sa */
2814 zombie++;
2815 }
2816 }
2817 }
2818
2819 /* don't delete sah only if there are savs. */
2820 if (zombie) {
2821 splx(s);
2822 return;
2823 }
2824
2825 rtcache_free(&sah->sa_route);
2826
2827 /* remove from tree of SA index */
2828 if (__LIST_CHAINED(sah))
2829 LIST_REMOVE(sah, chain);
2830
2831 KFREE(sah);
2832
2833 splx(s);
2834 return;
2835 }
2836
2837 /*
2838 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2839 * and copy the values of mhp into new buffer.
2840 * When SAD message type is GETSPI:
2841 * to set sequence number from acq_seq++,
2842 * to set zero to SPI.
2843 * not to call key_setsava().
2844 * OUT: NULL : fail
2845 * others : pointer to new secasvar.
2846 *
2847 * does not modify mbuf. does not free mbuf on error.
2848 */
2849 static struct secasvar *
2850 key_newsav(m, mhp, sah, errp, where, tag)
2851 struct mbuf *m;
2852 const struct sadb_msghdr *mhp;
2853 struct secashead *sah;
2854 int *errp;
2855 const char* where;
2856 int tag;
2857 {
2858 struct secasvar *newsav;
2859 const struct sadb_sa *xsa;
2860
2861 /* sanity check */
2862 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2863 panic("key_newsa: NULL pointer is passed");
2864
2865 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2866 if (newsav == NULL) {
2867 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2868 *errp = ENOBUFS;
2869 goto done;
2870 }
2871 bzero((caddr_t)newsav, sizeof(struct secasvar));
2872
2873 switch (mhp->msg->sadb_msg_type) {
2874 case SADB_GETSPI:
2875 newsav->spi = 0;
2876
2877 #ifdef IPSEC_DOSEQCHECK
2878 /* sync sequence number */
2879 if (mhp->msg->sadb_msg_seq == 0)
2880 newsav->seq =
2881 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2882 else
2883 #endif
2884 newsav->seq = mhp->msg->sadb_msg_seq;
2885 break;
2886
2887 case SADB_ADD:
2888 /* sanity check */
2889 if (mhp->ext[SADB_EXT_SA] == NULL) {
2890 KFREE(newsav), newsav = NULL;
2891 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2892 *errp = EINVAL;
2893 goto done;
2894 }
2895 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2896 newsav->spi = xsa->sadb_sa_spi;
2897 newsav->seq = mhp->msg->sadb_msg_seq;
2898 break;
2899 default:
2900 KFREE(newsav), newsav = NULL;
2901 *errp = EINVAL;
2902 goto done;
2903 }
2904
2905 /* copy sav values */
2906 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2907 *errp = key_setsaval(newsav, m, mhp);
2908 if (*errp) {
2909 KFREE(newsav), newsav = NULL;
2910 goto done;
2911 }
2912 }
2913
2914 /* reset created */
2915 newsav->created = time_second;
2916 newsav->pid = mhp->msg->sadb_msg_pid;
2917
2918 /* add to satree */
2919 newsav->sah = sah;
2920 newsav->refcnt = 1;
2921 newsav->state = SADB_SASTATE_LARVAL;
2922 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2923 secasvar, chain);
2924 done:
2925 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2926 printf("DP key_newsav from %s:%u return SP:%p\n",
2927 where, tag, newsav));
2928
2929 return newsav;
2930 }
2931
2932 /*
2933 * free() SA variable entry.
2934 */
2935 static void
2936 key_delsav(sav)
2937 struct secasvar *sav;
2938 {
2939 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
2940 IPSEC_ASSERT(sav->refcnt == 0,
2941 ("key_delsav: reference count %u > 0", sav->refcnt));
2942
2943 /* remove from SA header */
2944 if (__LIST_CHAINED(sav))
2945 LIST_REMOVE(sav, chain);
2946
2947 /*
2948 * Cleanup xform state. Note that zeroize'ing causes the
2949 * keys to be cleared; otherwise we must do it ourself.
2950 */
2951 if (sav->tdb_xform != NULL) {
2952 sav->tdb_xform->xf_zeroize(sav);
2953 sav->tdb_xform = NULL;
2954 } else {
2955 if (sav->key_auth != NULL)
2956 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2957 if (sav->key_enc != NULL)
2958 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2959 }
2960 if (sav->key_auth != NULL) {
2961 KFREE(sav->key_auth);
2962 sav->key_auth = NULL;
2963 }
2964 if (sav->key_enc != NULL) {
2965 KFREE(sav->key_enc);
2966 sav->key_enc = NULL;
2967 }
2968 if (sav->sched) {
2969 bzero(sav->sched, sav->schedlen);
2970 KFREE(sav->sched);
2971 sav->sched = NULL;
2972 }
2973 if (sav->replay != NULL) {
2974 KFREE(sav->replay);
2975 sav->replay = NULL;
2976 }
2977 if (sav->lft_c != NULL) {
2978 KFREE(sav->lft_c);
2979 sav->lft_c = NULL;
2980 }
2981 if (sav->lft_h != NULL) {
2982 KFREE(sav->lft_h);
2983 sav->lft_h = NULL;
2984 }
2985 if (sav->lft_s != NULL) {
2986 KFREE(sav->lft_s);
2987 sav->lft_s = NULL;
2988 }
2989 if (sav->iv != NULL) {
2990 KFREE(sav->iv);
2991 sav->iv = NULL;
2992 }
2993
2994 KFREE(sav);
2995
2996 return;
2997 }
2998
2999 /*
3000 * search SAD.
3001 * OUT:
3002 * NULL : not found
3003 * others : found, pointer to a SA.
3004 */
3005 static struct secashead *
3006 key_getsah(saidx)
3007 struct secasindex *saidx;
3008 {
3009 struct secashead *sah;
3010
3011 LIST_FOREACH(sah, &sahtree, chain) {
3012 if (sah->state == SADB_SASTATE_DEAD)
3013 continue;
3014 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3015 return sah;
3016 }
3017
3018 return NULL;
3019 }
3020
3021 /*
3022 * check not to be duplicated SPI.
3023 * NOTE: this function is too slow due to searching all SAD.
3024 * OUT:
3025 * NULL : not found
3026 * others : found, pointer to a SA.
3027 */
3028 static struct secasvar *
3029 key_checkspidup(saidx, spi)
3030 struct secasindex *saidx;
3031 u_int32_t spi;
3032 {
3033 struct secashead *sah;
3034 struct secasvar *sav;
3035
3036 /* check address family */
3037 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3038 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3039 return NULL;
3040 }
3041
3042 /* check all SAD */
3043 LIST_FOREACH(sah, &sahtree, chain) {
3044 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3045 continue;
3046 sav = key_getsavbyspi(sah, spi);
3047 if (sav != NULL)
3048 return sav;
3049 }
3050
3051 return NULL;
3052 }
3053
3054 /*
3055 * search SAD litmited alive SA, protocol, SPI.
3056 * OUT:
3057 * NULL : not found
3058 * others : found, pointer to a SA.
3059 */
3060 static struct secasvar *
3061 key_getsavbyspi(sah, spi)
3062 struct secashead *sah;
3063 u_int32_t spi;
3064 {
3065 struct secasvar *sav;
3066 u_int stateidx, state;
3067
3068 /* search all status */
3069 for (stateidx = 0;
3070 stateidx < _ARRAYLEN(saorder_state_alive);
3071 stateidx++) {
3072
3073 state = saorder_state_alive[stateidx];
3074 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3075
3076 /* sanity check */
3077 if (sav->state != state) {
3078 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3079 "invalid sav->state (queue: %d SA: %d)\n",
3080 state, sav->state));
3081 continue;
3082 }
3083
3084 if (sav->spi == spi)
3085 return sav;
3086 }
3087 }
3088
3089 return NULL;
3090 }
3091
3092 /*
3093 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3094 * You must update these if need.
3095 * OUT: 0: success.
3096 * !0: failure.
3097 *
3098 * does not modify mbuf. does not free mbuf on error.
3099 */
3100 static int
3101 key_setsaval(sav, m, mhp)
3102 struct secasvar *sav;
3103 struct mbuf *m;
3104 const struct sadb_msghdr *mhp;
3105 {
3106 int error = 0;
3107
3108 /* sanity check */
3109 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3110 panic("key_setsaval: NULL pointer is passed");
3111
3112 /* initialization */
3113 sav->replay = NULL;
3114 sav->key_auth = NULL;
3115 sav->key_enc = NULL;
3116 sav->sched = NULL;
3117 sav->schedlen = 0;
3118 sav->iv = NULL;
3119 sav->lft_c = NULL;
3120 sav->lft_h = NULL;
3121 sav->lft_s = NULL;
3122 sav->tdb_xform = NULL; /* transform */
3123 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3124 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3125 sav->tdb_compalgxform = NULL; /* compression algorithm */
3126
3127 /* SA */
3128 if (mhp->ext[SADB_EXT_SA] != NULL) {
3129 const struct sadb_sa *sa0;
3130
3131 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3132 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3133 error = EINVAL;
3134 goto fail;
3135 }
3136
3137 sav->alg_auth = sa0->sadb_sa_auth;
3138 sav->alg_enc = sa0->sadb_sa_encrypt;
3139 sav->flags = sa0->sadb_sa_flags;
3140
3141 /* replay window */
3142 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3143 sav->replay = (struct secreplay *)
3144 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3145 if (sav->replay == NULL) {
3146 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3147 error = ENOBUFS;
3148 goto fail;
3149 }
3150 if (sa0->sadb_sa_replay != 0)
3151 sav->replay->bitmap = (caddr_t)(sav->replay+1);
3152 sav->replay->wsize = sa0->sadb_sa_replay;
3153 }
3154 }
3155
3156 /* Authentication keys */
3157 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3158 const struct sadb_key *key0;
3159 int len;
3160
3161 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3162 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3163
3164 error = 0;
3165 if (len < sizeof(*key0)) {
3166 error = EINVAL;
3167 goto fail;
3168 }
3169 switch (mhp->msg->sadb_msg_satype) {
3170 case SADB_SATYPE_AH:
3171 case SADB_SATYPE_ESP:
3172 case SADB_X_SATYPE_TCPSIGNATURE:
3173 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3174 sav->alg_auth != SADB_X_AALG_NULL)
3175 error = EINVAL;
3176 break;
3177 case SADB_X_SATYPE_IPCOMP:
3178 default:
3179 error = EINVAL;
3180 break;
3181 }
3182 if (error) {
3183 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3184 goto fail;
3185 }
3186
3187 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3188 if (sav->key_auth == NULL) {
3189 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3190 error = ENOBUFS;
3191 goto fail;
3192 }
3193 }
3194
3195 /* Encryption key */
3196 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3197 const struct sadb_key *key0;
3198 int len;
3199
3200 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3201 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3202
3203 error = 0;
3204 if (len < sizeof(*key0)) {
3205 error = EINVAL;
3206 goto fail;
3207 }
3208 switch (mhp->msg->sadb_msg_satype) {
3209 case SADB_SATYPE_ESP:
3210 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3211 sav->alg_enc != SADB_EALG_NULL) {
3212 error = EINVAL;
3213 break;
3214 }
3215 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3216 if (sav->key_enc == NULL) {
3217 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3218 error = ENOBUFS;
3219 goto fail;
3220 }
3221 break;
3222 case SADB_X_SATYPE_IPCOMP:
3223 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3224 error = EINVAL;
3225 sav->key_enc = NULL; /*just in case*/
3226 break;
3227 case SADB_SATYPE_AH:
3228 case SADB_X_SATYPE_TCPSIGNATURE:
3229 default:
3230 error = EINVAL;
3231 break;
3232 }
3233 if (error) {
3234 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3235 goto fail;
3236 }
3237 }
3238
3239 /* set iv */
3240 sav->ivlen = 0;
3241
3242 switch (mhp->msg->sadb_msg_satype) {
3243 case SADB_SATYPE_AH:
3244 error = xform_init(sav, XF_AH);
3245 break;
3246 case SADB_SATYPE_ESP:
3247 error = xform_init(sav, XF_ESP);
3248 break;
3249 case SADB_X_SATYPE_IPCOMP:
3250 error = xform_init(sav, XF_IPCOMP);
3251 break;
3252 case SADB_X_SATYPE_TCPSIGNATURE:
3253 error = xform_init(sav, XF_TCPSIGNATURE);
3254 break;
3255 }
3256 if (error) {
3257 ipseclog((LOG_DEBUG,
3258 "key_setsaval: unable to initialize SA type %u.\n",
3259 mhp->msg->sadb_msg_satype));
3260 goto fail;
3261 }
3262
3263 /* reset created */
3264 sav->created = time_second;
3265
3266 /* make lifetime for CURRENT */
3267 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3268 sizeof(struct sadb_lifetime));
3269 if (sav->lft_c == NULL) {
3270 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3271 error = ENOBUFS;
3272 goto fail;
3273 }
3274
3275 sav->lft_c->sadb_lifetime_len =
3276 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3277 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3278 sav->lft_c->sadb_lifetime_allocations = 0;
3279 sav->lft_c->sadb_lifetime_bytes = 0;
3280 sav->lft_c->sadb_lifetime_addtime = time_second;
3281 sav->lft_c->sadb_lifetime_usetime = 0;
3282
3283 /* lifetimes for HARD and SOFT */
3284 {
3285 const struct sadb_lifetime *lft0;
3286
3287 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3288 if (lft0 != NULL) {
3289 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3290 error = EINVAL;
3291 goto fail;
3292 }
3293 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3294 sizeof(*lft0));
3295 if (sav->lft_h == NULL) {
3296 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3297 error = ENOBUFS;
3298 goto fail;
3299 }
3300 /* to be initialize ? */
3301 }
3302
3303 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3304 if (lft0 != NULL) {
3305 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3306 error = EINVAL;
3307 goto fail;
3308 }
3309 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3310 sizeof(*lft0));
3311 if (sav->lft_s == NULL) {
3312 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3313 error = ENOBUFS;
3314 goto fail;
3315 }
3316 /* to be initialize ? */
3317 }
3318 }
3319
3320 return 0;
3321
3322 fail:
3323 /* initialization */
3324 if (sav->replay != NULL) {
3325 KFREE(sav->replay);
3326 sav->replay = NULL;
3327 }
3328 if (sav->key_auth != NULL) {
3329 KFREE(sav->key_auth);
3330 sav->key_auth = NULL;
3331 }
3332 if (sav->key_enc != NULL) {
3333 KFREE(sav->key_enc);
3334 sav->key_enc = NULL;
3335 }
3336 if (sav->sched) {
3337 KFREE(sav->sched);
3338 sav->sched = NULL;
3339 }
3340 if (sav->iv != NULL) {
3341 KFREE(sav->iv);
3342 sav->iv = NULL;
3343 }
3344 if (sav->lft_c != NULL) {
3345 KFREE(sav->lft_c);
3346 sav->lft_c = NULL;
3347 }
3348 if (sav->lft_h != NULL) {
3349 KFREE(sav->lft_h);
3350 sav->lft_h = NULL;
3351 }
3352 if (sav->lft_s != NULL) {
3353 KFREE(sav->lft_s);
3354 sav->lft_s = NULL;
3355 }
3356
3357 return error;
3358 }
3359
3360 /*
3361 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3362 * OUT: 0: valid
3363 * other: errno
3364 */
3365 static int
3366 key_mature(sav)
3367 struct secasvar *sav;
3368 {
3369 int error;
3370
3371 /* check SPI value */
3372 switch (sav->sah->saidx.proto) {
3373 case IPPROTO_ESP:
3374 case IPPROTO_AH:
3375 if (ntohl(sav->spi) <= 255) {
3376 ipseclog((LOG_DEBUG,
3377 "key_mature: illegal range of SPI %u.\n",
3378 (u_int32_t)ntohl(sav->spi)));
3379 return EINVAL;
3380 }
3381 break;
3382 }
3383
3384 /* check satype */
3385 switch (sav->sah->saidx.proto) {
3386 case IPPROTO_ESP:
3387 /* check flags */
3388 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3389 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3390 ipseclog((LOG_DEBUG, "key_mature: "
3391 "invalid flag (derived) given to old-esp.\n"));
3392 return EINVAL;
3393 }
3394 error = xform_init(sav, XF_ESP);
3395 break;
3396 case IPPROTO_AH:
3397 /* check flags */
3398 if (sav->flags & SADB_X_EXT_DERIV) {
3399 ipseclog((LOG_DEBUG, "key_mature: "
3400 "invalid flag (derived) given to AH SA.\n"));
3401 return EINVAL;
3402 }
3403 if (sav->alg_enc != SADB_EALG_NONE) {
3404 ipseclog((LOG_DEBUG, "key_mature: "
3405 "protocol and algorithm mismated.\n"));
3406 return(EINVAL);
3407 }
3408 error = xform_init(sav, XF_AH);
3409 break;
3410 case IPPROTO_IPCOMP:
3411 if (sav->alg_auth != SADB_AALG_NONE) {
3412 ipseclog((LOG_DEBUG, "key_mature: "
3413 "protocol and algorithm mismated.\n"));
3414 return(EINVAL);
3415 }
3416 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3417 && ntohl(sav->spi) >= 0x10000) {
3418 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3419 return(EINVAL);
3420 }
3421 error = xform_init(sav, XF_IPCOMP);
3422 break;
3423 case IPPROTO_TCP:
3424 if (sav->alg_enc != SADB_EALG_NONE) {
3425 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3426 "mismated.\n", __func__));
3427 return(EINVAL);
3428 }
3429 error = xform_init(sav, XF_TCPSIGNATURE);
3430 break;
3431 default:
3432 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3433 error = EPROTONOSUPPORT;
3434 break;
3435 }
3436 if (error == 0)
3437 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3438 return (error);
3439 }
3440
3441 /*
3442 * subroutine for SADB_GET and SADB_DUMP.
3443 */
3444 static struct mbuf *
3445 key_setdumpsa(sav, type, satype, seq, pid)
3446 struct secasvar *sav;
3447 u_int8_t type, satype;
3448 u_int32_t seq, pid;
3449 {
3450 struct mbuf *result = NULL, *tres = NULL, *m;
3451 int l = 0;
3452 int i;
3453 void *p;
3454 int dumporder[] = {
3455 SADB_EXT_SA, SADB_X_EXT_SA2,
3456 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3457 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3458 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3459 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3460 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3461 };
3462
3463 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3464 if (m == NULL)
3465 goto fail;
3466 result = m;
3467
3468 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3469 m = NULL;
3470 p = NULL;
3471 switch (dumporder[i]) {
3472 case SADB_EXT_SA:
3473 m = key_setsadbsa(sav);
3474 if (!m)
3475 goto fail;
3476 break;
3477
3478 case SADB_X_EXT_SA2:
3479 m = key_setsadbxsa2(sav->sah->saidx.mode,
3480 sav->replay ? sav->replay->count : 0,
3481 sav->sah->saidx.reqid);
3482 if (!m)
3483 goto fail;
3484 break;
3485
3486 case SADB_EXT_ADDRESS_SRC:
3487 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3488 &sav->sah->saidx.src.sa,
3489 FULLMASK, IPSEC_ULPROTO_ANY);
3490 if (!m)
3491 goto fail;
3492 break;
3493
3494 case SADB_EXT_ADDRESS_DST:
3495 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3496 &sav->sah->saidx.dst.sa,
3497 FULLMASK, IPSEC_ULPROTO_ANY);
3498 if (!m)
3499 goto fail;
3500 break;
3501
3502 case SADB_EXT_KEY_AUTH:
3503 if (!sav->key_auth)
3504 continue;
3505 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3506 p = sav->key_auth;
3507 break;
3508
3509 case SADB_EXT_KEY_ENCRYPT:
3510 if (!sav->key_enc)
3511 continue;
3512 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3513 p = sav->key_enc;
3514 break;
3515
3516 case SADB_EXT_LIFETIME_CURRENT:
3517 if (!sav->lft_c)
3518 continue;
3519 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3520 p = sav->lft_c;
3521 break;
3522
3523 case SADB_EXT_LIFETIME_HARD:
3524 if (!sav->lft_h)
3525 continue;
3526 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3527 p = sav->lft_h;
3528 break;
3529
3530 case SADB_EXT_LIFETIME_SOFT:
3531 if (!sav->lft_s)
3532 continue;
3533 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3534 p = sav->lft_s;
3535 break;
3536
3537 case SADB_EXT_ADDRESS_PROXY:
3538 case SADB_EXT_IDENTITY_SRC:
3539 case SADB_EXT_IDENTITY_DST:
3540 /* XXX: should we brought from SPD ? */
3541 case SADB_EXT_SENSITIVITY:
3542 default:
3543 continue;
3544 }
3545
3546 if ((!m && !p) || (m && p))
3547 goto fail;
3548 if (p && tres) {
3549 M_PREPEND(tres, l, M_DONTWAIT);
3550 if (!tres)
3551 goto fail;
3552 bcopy(p, mtod(tres, caddr_t), l);
3553 continue;
3554 }
3555 if (p) {
3556 m = key_alloc_mbuf(l);
3557 if (!m)
3558 goto fail;
3559 m_copyback(m, 0, l, p);
3560 }
3561
3562 if (tres)
3563 m_cat(m, tres);
3564 tres = m;
3565 }
3566
3567 m_cat(result, tres);
3568
3569 if (result->m_len < sizeof(struct sadb_msg)) {
3570 result = m_pullup(result, sizeof(struct sadb_msg));
3571 if (result == NULL)
3572 goto fail;
3573 }
3574
3575 result->m_pkthdr.len = 0;
3576 for (m = result; m; m = m->m_next)
3577 result->m_pkthdr.len += m->m_len;
3578
3579 mtod(result, struct sadb_msg *)->sadb_msg_len =
3580 PFKEY_UNIT64(result->m_pkthdr.len);
3581
3582 return result;
3583
3584 fail:
3585 m_freem(result);
3586 m_freem(tres);
3587 return NULL;
3588 }
3589
3590 /*
3591 * set data into sadb_msg.
3592 */
3593 static struct mbuf *
3594 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3595 u_int8_t type, satype;
3596 u_int16_t tlen;
3597 u_int32_t seq;
3598 pid_t pid;
3599 u_int16_t reserved;
3600 {
3601 struct mbuf *m;
3602 struct sadb_msg *p;
3603 int len;
3604
3605 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3606 if (len > MCLBYTES)
3607 return NULL;
3608 MGETHDR(m, M_DONTWAIT, MT_DATA);
3609 if (m && len > MHLEN) {
3610 MCLGET(m, M_DONTWAIT);
3611 if ((m->m_flags & M_EXT) == 0) {
3612 m_freem(m);
3613 m = NULL;
3614 }
3615 }
3616 if (!m)
3617 return NULL;
3618 m->m_pkthdr.len = m->m_len = len;
3619 m->m_next = NULL;
3620
3621 p = mtod(m, struct sadb_msg *);
3622
3623 bzero(p, len);
3624 p->sadb_msg_version = PF_KEY_V2;
3625 p->sadb_msg_type = type;
3626 p->sadb_msg_errno = 0;
3627 p->sadb_msg_satype = satype;
3628 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3629 p->sadb_msg_reserved = reserved;
3630 p->sadb_msg_seq = seq;
3631 p->sadb_msg_pid = (u_int32_t)pid;
3632
3633 return m;
3634 }
3635
3636 /*
3637 * copy secasvar data into sadb_address.
3638 */
3639 static struct mbuf *
3640 key_setsadbsa(sav)
3641 struct secasvar *sav;
3642 {
3643 struct mbuf *m;
3644 struct sadb_sa *p;
3645 int len;
3646
3647 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3648 m = key_alloc_mbuf(len);
3649 if (!m || m->m_next) { /*XXX*/
3650 if (m)
3651 m_freem(m);
3652 return NULL;
3653 }
3654
3655 p = mtod(m, struct sadb_sa *);
3656
3657 bzero(p, len);
3658 p->sadb_sa_len = PFKEY_UNIT64(len);
3659 p->sadb_sa_exttype = SADB_EXT_SA;
3660 p->sadb_sa_spi = sav->spi;
3661 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3662 p->sadb_sa_state = sav->state;
3663 p->sadb_sa_auth = sav->alg_auth;
3664 p->sadb_sa_encrypt = sav->alg_enc;
3665 p->sadb_sa_flags = sav->flags;
3666
3667 return m;
3668 }
3669
3670 /*
3671 * set data into sadb_address.
3672 */
3673 static struct mbuf *
3674 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3675 u_int16_t exttype;
3676 const struct sockaddr *saddr;
3677 u_int8_t prefixlen;
3678 u_int16_t ul_proto;
3679 {
3680 struct mbuf *m;
3681 struct sadb_address *p;
3682 size_t len;
3683
3684 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3685 PFKEY_ALIGN8(saddr->sa_len);
3686 m = key_alloc_mbuf(len);
3687 if (!m || m->m_next) { /*XXX*/
3688 if (m)
3689 m_freem(m);
3690 return NULL;
3691 }
3692
3693 p = mtod(m, struct sadb_address *);
3694
3695 bzero(p, len);
3696 p->sadb_address_len = PFKEY_UNIT64(len);
3697 p->sadb_address_exttype = exttype;
3698 p->sadb_address_proto = ul_proto;
3699 if (prefixlen == FULLMASK) {
3700 switch (saddr->sa_family) {
3701 case AF_INET:
3702 prefixlen = sizeof(struct in_addr) << 3;
3703 break;
3704 case AF_INET6:
3705 prefixlen = sizeof(struct in6_addr) << 3;
3706 break;
3707 default:
3708 ; /*XXX*/
3709 }
3710 }
3711 p->sadb_address_prefixlen = prefixlen;
3712 p->sadb_address_reserved = 0;
3713
3714 bcopy(saddr,
3715 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3716 saddr->sa_len);
3717
3718 return m;
3719 }
3720
3721 #if 0
3722 /*
3723 * set data into sadb_ident.
3724 */
3725 static struct mbuf *
3726 key_setsadbident(exttype, idtype, string, stringlen, id)
3727 u_int16_t exttype, idtype;
3728 caddr_t string;
3729 int stringlen;
3730 u_int64_t id;
3731 {
3732 struct mbuf *m;
3733 struct sadb_ident *p;
3734 size_t len;
3735
3736 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3737 m = key_alloc_mbuf(len);
3738 if (!m || m->m_next) { /*XXX*/
3739 if (m)
3740 m_freem(m);
3741 return NULL;
3742 }
3743
3744 p = mtod(m, struct sadb_ident *);
3745
3746 bzero(p, len);
3747 p->sadb_ident_len = PFKEY_UNIT64(len);
3748 p->sadb_ident_exttype = exttype;
3749 p->sadb_ident_type = idtype;
3750 p->sadb_ident_reserved = 0;
3751 p->sadb_ident_id = id;
3752
3753 bcopy(string,
3754 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3755 stringlen);
3756
3757 return m;
3758 }
3759 #endif
3760
3761 /*
3762 * set data into sadb_x_sa2.
3763 */
3764 static struct mbuf *
3765 key_setsadbxsa2(mode, seq, reqid)
3766 u_int8_t mode;
3767 u_int32_t seq;
3768 u_int16_t reqid;
3769 {
3770 struct mbuf *m;
3771 struct sadb_x_sa2 *p;
3772 size_t len;
3773
3774 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3775 m = key_alloc_mbuf(len);
3776 if (!m || m->m_next) { /*XXX*/
3777 if (m)
3778 m_freem(m);
3779 return NULL;
3780 }
3781
3782 p = mtod(m, struct sadb_x_sa2 *);
3783
3784 bzero(p, len);
3785 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3786 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3787 p->sadb_x_sa2_mode = mode;
3788 p->sadb_x_sa2_reserved1 = 0;
3789 p->sadb_x_sa2_reserved2 = 0;
3790 p->sadb_x_sa2_sequence = seq;
3791 p->sadb_x_sa2_reqid = reqid;
3792
3793 return m;
3794 }
3795
3796 /*
3797 * set data into sadb_x_policy
3798 */
3799 static struct mbuf *
3800 key_setsadbxpolicy(type, dir, id)
3801 u_int16_t type;
3802 u_int8_t dir;
3803 u_int32_t id;
3804 {
3805 struct mbuf *m;
3806 struct sadb_x_policy *p;
3807 size_t len;
3808
3809 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3810 m = key_alloc_mbuf(len);
3811 if (!m || m->m_next) { /*XXX*/
3812 if (m)
3813 m_freem(m);
3814 return NULL;
3815 }
3816
3817 p = mtod(m, struct sadb_x_policy *);
3818
3819 bzero(p, len);
3820 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3821 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3822 p->sadb_x_policy_type = type;
3823 p->sadb_x_policy_dir = dir;
3824 p->sadb_x_policy_id = id;
3825
3826 return m;
3827 }
3828
3829 /* %%% utilities */
3830 /*
3831 * copy a buffer into the new buffer allocated.
3832 */
3833 static void *
3834 key_newbuf(src, len)
3835 const void *src;
3836 u_int len;
3837 {
3838 caddr_t new;
3839
3840 KMALLOC(new, caddr_t, len);
3841 if (new == NULL) {
3842 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
3843 return NULL;
3844 }
3845 bcopy(src, new, len);
3846
3847 return new;
3848 }
3849
3850 /* compare my own address
3851 * OUT: 1: true, i.e. my address.
3852 * 0: false
3853 */
3854 int
3855 key_ismyaddr(sa)
3856 struct sockaddr *sa;
3857 {
3858 #ifdef INET
3859 struct sockaddr_in *sin;
3860 struct in_ifaddr *ia;
3861 #endif
3862
3863 /* sanity check */
3864 if (sa == NULL)
3865 panic("key_ismyaddr: NULL pointer is passed");
3866
3867 switch (sa->sa_family) {
3868 #ifdef INET
3869 case AF_INET:
3870 sin = (struct sockaddr_in *)sa;
3871 for (ia = in_ifaddrhead.tqh_first; ia;
3872 ia = ia->ia_link.tqe_next)
3873 {
3874 if (sin->sin_family == ia->ia_addr.sin_family &&
3875 sin->sin_len == ia->ia_addr.sin_len &&
3876 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3877 {
3878 return 1;
3879 }
3880 }
3881 break;
3882 #endif
3883 #ifdef INET6
3884 case AF_INET6:
3885 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3886 #endif
3887 }
3888
3889 return 0;
3890 }
3891
3892 #ifdef INET6
3893 /*
3894 * compare my own address for IPv6.
3895 * 1: ours
3896 * 0: other
3897 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3898 */
3899 #include <netinet6/in6_var.h>
3900
3901 static int
3902 key_ismyaddr6(sin6)
3903 struct sockaddr_in6 *sin6;
3904 {
3905 struct in6_ifaddr *ia;
3906 struct in6_multi *in6m;
3907
3908 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3909 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3910 (struct sockaddr *)&ia->ia_addr, 0) == 0)
3911 return 1;
3912
3913 /*
3914 * XXX Multicast
3915 * XXX why do we care about multlicast here while we don't care
3916 * about IPv4 multicast??
3917 * XXX scope
3918 */
3919 in6m = NULL;
3920 #ifdef __FreeBSD__
3921 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3922 #else
3923 for ((in6m) = ia->ia6_multiaddrs.lh_first;
3924 (in6m) != NULL &&
3925 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
3926 (in6m) = in6m->in6m_entry.le_next)
3927 continue;
3928 #endif
3929 if (in6m)
3930 return 1;
3931 }
3932
3933 /* loopback, just for safety */
3934 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3935 return 1;
3936
3937 return 0;
3938 }
3939 #endif /*INET6*/
3940
3941 /*
3942 * compare two secasindex structure.
3943 * flag can specify to compare 2 saidxes.
3944 * compare two secasindex structure without both mode and reqid.
3945 * don't compare port.
3946 * IN:
3947 * saidx0: source, it can be in SAD.
3948 * saidx1: object.
3949 * OUT:
3950 * 1 : equal
3951 * 0 : not equal
3952 */
3953 static int
3954 key_cmpsaidx(
3955 const struct secasindex *saidx0,
3956 const struct secasindex *saidx1,
3957 int flag)
3958 {
3959 /* sanity */
3960 if (saidx0 == NULL && saidx1 == NULL)
3961 return 1;
3962
3963 if (saidx0 == NULL || saidx1 == NULL)
3964 return 0;
3965
3966 if (saidx0->proto != saidx1->proto)
3967 return 0;
3968
3969 if (flag == CMP_EXACTLY) {
3970 if (saidx0->mode != saidx1->mode)
3971 return 0;
3972 if (saidx0->reqid != saidx1->reqid)
3973 return 0;
3974 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3975 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3976 return 0;
3977 } else {
3978
3979 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3980 if (flag == CMP_MODE_REQID
3981 ||flag == CMP_REQID) {
3982 /*
3983 * If reqid of SPD is non-zero, unique SA is required.
3984 * The result must be of same reqid in this case.
3985 */
3986 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3987 return 0;
3988 }
3989
3990 if (flag == CMP_MODE_REQID) {
3991 if (saidx0->mode != IPSEC_MODE_ANY
3992 && saidx0->mode != saidx1->mode)
3993 return 0;
3994 }
3995
3996 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3997 return 0;
3998 }
3999 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
4000 return 0;
4001 }
4002 }
4003
4004 return 1;
4005 }
4006
4007 /*
4008 * compare two secindex structure exactly.
4009 * IN:
4010 * spidx0: source, it is often in SPD.
4011 * spidx1: object, it is often from PFKEY message.
4012 * OUT:
4013 * 1 : equal
4014 * 0 : not equal
4015 */
4016 int
4017 key_cmpspidx_exactly(
4018 struct secpolicyindex *spidx0,
4019 struct secpolicyindex *spidx1)
4020 {
4021 /* sanity */
4022 if (spidx0 == NULL && spidx1 == NULL)
4023 return 1;
4024
4025 if (spidx0 == NULL || spidx1 == NULL)
4026 return 0;
4027
4028 if (spidx0->prefs != spidx1->prefs
4029 || spidx0->prefd != spidx1->prefd
4030 || spidx0->ul_proto != spidx1->ul_proto)
4031 return 0;
4032
4033 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4034 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4035 }
4036
4037 /*
4038 * compare two secindex structure with mask.
4039 * IN:
4040 * spidx0: source, it is often in SPD.
4041 * spidx1: object, it is often from IP header.
4042 * OUT:
4043 * 1 : equal
4044 * 0 : not equal
4045 */
4046 int
4047 key_cmpspidx_withmask(
4048 struct secpolicyindex *spidx0,
4049 struct secpolicyindex *spidx1)
4050 {
4051 /* sanity */
4052 if (spidx0 == NULL && spidx1 == NULL)
4053 return 1;
4054
4055 if (spidx0 == NULL || spidx1 == NULL)
4056 return 0;
4057
4058 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4059 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4060 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4061 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4062 return 0;
4063
4064 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4065 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4066 && spidx0->ul_proto != spidx1->ul_proto)
4067 return 0;
4068
4069 switch (spidx0->src.sa.sa_family) {
4070 case AF_INET:
4071 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4072 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4073 return 0;
4074 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4075 &spidx1->src.sin.sin_addr, spidx0->prefs))
4076 return 0;
4077 break;
4078 case AF_INET6:
4079 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4080 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4081 return 0;
4082 /*
4083 * scope_id check. if sin6_scope_id is 0, we regard it
4084 * as a wildcard scope, which matches any scope zone ID.
4085 */
4086 if (spidx0->src.sin6.sin6_scope_id &&
4087 spidx1->src.sin6.sin6_scope_id &&
4088 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4089 return 0;
4090 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4091 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4092 return 0;
4093 break;
4094 default:
4095 /* XXX */
4096 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4097 return 0;
4098 break;
4099 }
4100
4101 switch (spidx0->dst.sa.sa_family) {
4102 case AF_INET:
4103 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4104 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4105 return 0;
4106 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4107 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4108 return 0;
4109 break;
4110 case AF_INET6:
4111 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4112 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4113 return 0;
4114 /*
4115 * scope_id check. if sin6_scope_id is 0, we regard it
4116 * as a wildcard scope, which matches any scope zone ID.
4117 */
4118 if (spidx0->src.sin6.sin6_scope_id &&
4119 spidx1->src.sin6.sin6_scope_id &&
4120 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4121 return 0;
4122 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4123 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4124 return 0;
4125 break;
4126 default:
4127 /* XXX */
4128 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4129 return 0;
4130 break;
4131 }
4132
4133 /* XXX Do we check other field ? e.g. flowinfo */
4134
4135 return 1;
4136 }
4137
4138 /* returns 0 on match */
4139 static int
4140 key_sockaddrcmp(
4141 const struct sockaddr *sa1,
4142 const struct sockaddr *sa2,
4143 int port)
4144 {
4145 #ifdef satosin
4146 #undef satosin
4147 #endif
4148 #define satosin(s) ((const struct sockaddr_in *)s)
4149 #ifdef satosin6
4150 #undef satosin6
4151 #endif
4152 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4153 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4154 return 1;
4155
4156 switch (sa1->sa_family) {
4157 case AF_INET:
4158 if (sa1->sa_len != sizeof(struct sockaddr_in))
4159 return 1;
4160 if (satosin(sa1)->sin_addr.s_addr !=
4161 satosin(sa2)->sin_addr.s_addr) {
4162 return 1;
4163 }
4164 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4165 return 1;
4166 break;
4167 case AF_INET6:
4168 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4169 return 1; /*EINVAL*/
4170 if (satosin6(sa1)->sin6_scope_id !=
4171 satosin6(sa2)->sin6_scope_id) {
4172 return 1;
4173 }
4174 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4175 &satosin6(sa2)->sin6_addr)) {
4176 return 1;
4177 }
4178 if (port &&
4179 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4180 return 1;
4181 }
4182 break;
4183 default:
4184 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4185 return 1;
4186 break;
4187 }
4188
4189 return 0;
4190 #undef satosin
4191 #undef satosin6
4192 }
4193
4194 /*
4195 * compare two buffers with mask.
4196 * IN:
4197 * addr1: source
4198 * addr2: object
4199 * bits: Number of bits to compare
4200 * OUT:
4201 * 1 : equal
4202 * 0 : not equal
4203 */
4204 static int
4205 key_bbcmp(const void *a1, const void *a2, u_int bits)
4206 {
4207 const unsigned char *p1 = a1;
4208 const unsigned char *p2 = a2;
4209
4210 /* XXX: This could be considerably faster if we compare a word
4211 * at a time, but it is complicated on LSB Endian machines */
4212
4213 /* Handle null pointers */
4214 if (p1 == NULL || p2 == NULL)
4215 return (p1 == p2);
4216
4217 while (bits >= 8) {
4218 if (*p1++ != *p2++)
4219 return 0;
4220 bits -= 8;
4221 }
4222
4223 if (bits > 0) {
4224 u_int8_t mask = ~((1<<(8-bits))-1);
4225 if ((*p1 & mask) != (*p2 & mask))
4226 return 0;
4227 }
4228 return 1; /* Match! */
4229 }
4230
4231 /*
4232 * time handler.
4233 * scanning SPD and SAD to check status for each entries,
4234 * and do to remove or to expire.
4235 * XXX: year 2038 problem may remain.
4236 */
4237 void
4238 key_timehandler(void* arg)
4239 {
4240 u_int dir;
4241 int s;
4242 time_t now = time_second;
4243
4244 s = splsoftnet(); /*called from softclock()*/
4245
4246 /* SPD */
4247 {
4248 struct secpolicy *sp, *nextsp;
4249
4250 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4251 for (sp = LIST_FIRST(&sptree[dir]);
4252 sp != NULL;
4253 sp = nextsp) {
4254
4255 nextsp = LIST_NEXT(sp, chain);
4256
4257 if (sp->state == IPSEC_SPSTATE_DEAD) {
4258 key_sp_unlink(sp); /*XXX*/
4259
4260 /* 'sp' dead; continue transfers to
4261 * 'sp = nextsp'
4262 */
4263 continue;
4264 }
4265
4266 if (sp->lifetime == 0 && sp->validtime == 0)
4267 continue;
4268
4269 /* the deletion will occur next time */
4270 if ((sp->lifetime && now - sp->created > sp->lifetime)
4271 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4272 key_sp_dead(sp);
4273 key_spdexpire(sp);
4274 continue;
4275 }
4276 }
4277 }
4278 }
4279
4280 /* SAD */
4281 {
4282 struct secashead *sah, *nextsah;
4283 struct secasvar *sav, *nextsav;
4284
4285 for (sah = LIST_FIRST(&sahtree);
4286 sah != NULL;
4287 sah = nextsah) {
4288
4289 nextsah = LIST_NEXT(sah, chain);
4290
4291 /* if sah has been dead, then delete it and process next sah. */
4292 if (sah->state == SADB_SASTATE_DEAD) {
4293 key_delsah(sah);
4294 continue;
4295 }
4296
4297 /* if LARVAL entry doesn't become MATURE, delete it. */
4298 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4299 sav != NULL;
4300 sav = nextsav) {
4301
4302 nextsav = LIST_NEXT(sav, chain);
4303
4304 if (now - sav->created > key_larval_lifetime) {
4305 KEY_FREESAV(&sav);
4306 }
4307 }
4308
4309 /*
4310 * check MATURE entry to start to send expire message
4311 * whether or not.
4312 */
4313 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4314 sav != NULL;
4315 sav = nextsav) {
4316
4317 nextsav = LIST_NEXT(sav, chain);
4318
4319 /* we don't need to check. */
4320 if (sav->lft_s == NULL)
4321 continue;
4322
4323 /* sanity check */
4324 if (sav->lft_c == NULL) {
4325 ipseclog((LOG_DEBUG,"key_timehandler: "
4326 "There is no CURRENT time, why?\n"));
4327 continue;
4328 }
4329
4330 /* check SOFT lifetime */
4331 if (sav->lft_s->sadb_lifetime_addtime != 0
4332 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4333 /*
4334 * check SA to be used whether or not.
4335 * when SA hasn't been used, delete it.
4336 */
4337 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4338 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4339 KEY_FREESAV(&sav);
4340 } else {
4341 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4342 /*
4343 * XXX If we keep to send expire
4344 * message in the status of
4345 * DYING. Do remove below code.
4346 */
4347 key_expire(sav);
4348 }
4349 }
4350 /* check SOFT lifetime by bytes */
4351 /*
4352 * XXX I don't know the way to delete this SA
4353 * when new SA is installed. Caution when it's
4354 * installed too big lifetime by time.
4355 */
4356 else if (sav->lft_s->sadb_lifetime_bytes != 0
4357 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4358
4359 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4360 /*
4361 * XXX If we keep to send expire
4362 * message in the status of
4363 * DYING. Do remove below code.
4364 */
4365 key_expire(sav);
4366 }
4367 }
4368
4369 /* check DYING entry to change status to DEAD. */
4370 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4371 sav != NULL;
4372 sav = nextsav) {
4373
4374 nextsav = LIST_NEXT(sav, chain);
4375
4376 /* we don't need to check. */
4377 if (sav->lft_h == NULL)
4378 continue;
4379
4380 /* sanity check */
4381 if (sav->lft_c == NULL) {
4382 ipseclog((LOG_DEBUG, "key_timehandler: "
4383 "There is no CURRENT time, why?\n"));
4384 continue;
4385 }
4386
4387 if (sav->lft_h->sadb_lifetime_addtime != 0
4388 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4389 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4390 KEY_FREESAV(&sav);
4391 }
4392 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4393 else if (sav->lft_s != NULL
4394 && sav->lft_s->sadb_lifetime_addtime != 0
4395 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4396 /*
4397 * XXX: should be checked to be
4398 * installed the valid SA.
4399 */
4400
4401 /*
4402 * If there is no SA then sending
4403 * expire message.
4404 */
4405 key_expire(sav);
4406 }
4407 #endif
4408 /* check HARD lifetime by bytes */
4409 else if (sav->lft_h->sadb_lifetime_bytes != 0
4410 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4411 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4412 KEY_FREESAV(&sav);
4413 }
4414 }
4415
4416 /* delete entry in DEAD */
4417 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4418 sav != NULL;
4419 sav = nextsav) {
4420
4421 nextsav = LIST_NEXT(sav, chain);
4422
4423 /* sanity check */
4424 if (sav->state != SADB_SASTATE_DEAD) {
4425 ipseclog((LOG_DEBUG, "key_timehandler: "
4426 "invalid sav->state "
4427 "(queue: %d SA: %d): "
4428 "kill it anyway\n",
4429 SADB_SASTATE_DEAD, sav->state));
4430 }
4431
4432 /*
4433 * do not call key_freesav() here.
4434 * sav should already be freed, and sav->refcnt
4435 * shows other references to sav
4436 * (such as from SPD).
4437 */
4438 }
4439 }
4440 }
4441
4442 #ifndef IPSEC_NONBLOCK_ACQUIRE
4443 /* ACQ tree */
4444 {
4445 struct secacq *acq, *nextacq;
4446
4447 for (acq = LIST_FIRST(&acqtree);
4448 acq != NULL;
4449 acq = nextacq) {
4450
4451 nextacq = LIST_NEXT(acq, chain);
4452
4453 if (now - acq->created > key_blockacq_lifetime
4454 && __LIST_CHAINED(acq)) {
4455 LIST_REMOVE(acq, chain);
4456 KFREE(acq);
4457 }
4458 }
4459 }
4460 #endif
4461
4462 /* SP ACQ tree */
4463 {
4464 struct secspacq *acq, *nextacq;
4465
4466 for (acq = LIST_FIRST(&spacqtree);
4467 acq != NULL;
4468 acq = nextacq) {
4469
4470 nextacq = LIST_NEXT(acq, chain);
4471
4472 if (now - acq->created > key_blockacq_lifetime
4473 && __LIST_CHAINED(acq)) {
4474 LIST_REMOVE(acq, chain);
4475 KFREE(acq);
4476 }
4477 }
4478 }
4479
4480 /* initialize random seed */
4481 if (key_tick_init_random++ > key_int_random) {
4482 key_tick_init_random = 0;
4483 key_srandom();
4484 }
4485
4486 #ifndef IPSEC_DEBUG2
4487 /* do exchange to tick time !! */
4488 callout_reset(&key_timehandler_ch, hz, key_timehandler, (void *)0);
4489 #endif /* IPSEC_DEBUG2 */
4490
4491 splx(s);
4492 return;
4493 }
4494
4495 #ifdef __NetBSD__
4496 void srandom(int);
4497 void srandom(int arg) {return;}
4498 #endif
4499
4500 /*
4501 * to initialize a seed for random()
4502 */
4503 static void
4504 key_srandom()
4505 {
4506 srandom(time_second);
4507 }
4508
4509 u_long
4510 key_random()
4511 {
4512 u_long value;
4513
4514 key_randomfill(&value, sizeof(value));
4515 return value;
4516 }
4517
4518 void
4519 key_randomfill(p, l)
4520 void *p;
4521 size_t l;
4522 {
4523 size_t n;
4524 u_long v;
4525 static int warn = 1;
4526
4527 n = 0;
4528 n = (size_t)read_random(p, (u_int)l);
4529 /* last resort */
4530 while (n < l) {
4531 v = random();
4532 bcopy(&v, (u_int8_t *)p + n,
4533 l - n < sizeof(v) ? l - n : sizeof(v));
4534 n += sizeof(v);
4535
4536 if (warn) {
4537 printf("WARNING: pseudo-random number generator "
4538 "used for IPsec processing\n");
4539 warn = 0;
4540 }
4541 }
4542 }
4543
4544 /*
4545 * map SADB_SATYPE_* to IPPROTO_*.
4546 * if satype == SADB_SATYPE then satype is mapped to ~0.
4547 * OUT:
4548 * 0: invalid satype.
4549 */
4550 static u_int16_t
4551 key_satype2proto(satype)
4552 u_int8_t satype;
4553 {
4554 switch (satype) {
4555 case SADB_SATYPE_UNSPEC:
4556 return IPSEC_PROTO_ANY;
4557 case SADB_SATYPE_AH:
4558 return IPPROTO_AH;
4559 case SADB_SATYPE_ESP:
4560 return IPPROTO_ESP;
4561 case SADB_X_SATYPE_IPCOMP:
4562 return IPPROTO_IPCOMP;
4563 case SADB_X_SATYPE_TCPSIGNATURE:
4564 return IPPROTO_TCP;
4565 default:
4566 return 0;
4567 }
4568 /* NOTREACHED */
4569 }
4570
4571 /*
4572 * map IPPROTO_* to SADB_SATYPE_*
4573 * OUT:
4574 * 0: invalid protocol type.
4575 */
4576 static u_int8_t
4577 key_proto2satype(proto)
4578 u_int16_t proto;
4579 {
4580 switch (proto) {
4581 case IPPROTO_AH:
4582 return SADB_SATYPE_AH;
4583 case IPPROTO_ESP:
4584 return SADB_SATYPE_ESP;
4585 case IPPROTO_IPCOMP:
4586 return SADB_X_SATYPE_IPCOMP;
4587 case IPPROTO_TCP:
4588 return SADB_X_SATYPE_TCPSIGNATURE;
4589 default:
4590 return 0;
4591 }
4592 /* NOTREACHED */
4593 }
4594
4595 /* %%% PF_KEY */
4596 /*
4597 * SADB_GETSPI processing is to receive
4598 * <base, (SA2), src address, dst address, (SPI range)>
4599 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4600 * tree with the status of LARVAL, and send
4601 * <base, SA(*), address(SD)>
4602 * to the IKMPd.
4603 *
4604 * IN: mhp: pointer to the pointer to each header.
4605 * OUT: NULL if fail.
4606 * other if success, return pointer to the message to send.
4607 */
4608 static int
4609 key_getspi(so, m, mhp)
4610 struct socket *so;
4611 struct mbuf *m;
4612 const struct sadb_msghdr *mhp;
4613 {
4614 struct sadb_address *src0, *dst0;
4615 struct secasindex saidx;
4616 struct secashead *newsah;
4617 struct secasvar *newsav;
4618 u_int8_t proto;
4619 u_int32_t spi;
4620 u_int8_t mode;
4621 u_int16_t reqid;
4622 int error;
4623
4624 /* sanity check */
4625 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4626 panic("key_getspi: NULL pointer is passed");
4627
4628 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4629 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4630 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4631 return key_senderror(so, m, EINVAL);
4632 }
4633 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4634 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4635 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4636 return key_senderror(so, m, EINVAL);
4637 }
4638 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4639 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4640 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4641 } else {
4642 mode = IPSEC_MODE_ANY;
4643 reqid = 0;
4644 }
4645
4646 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4647 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4648
4649 /* map satype to proto */
4650 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4651 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4652 return key_senderror(so, m, EINVAL);
4653 }
4654
4655 /* make sure if port number is zero. */
4656 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4657 case AF_INET:
4658 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4659 sizeof(struct sockaddr_in))
4660 return key_senderror(so, m, EINVAL);
4661 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4662 break;
4663 case AF_INET6:
4664 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4665 sizeof(struct sockaddr_in6))
4666 return key_senderror(so, m, EINVAL);
4667 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4668 break;
4669 default:
4670 ; /*???*/
4671 }
4672 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4673 case AF_INET:
4674 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4675 sizeof(struct sockaddr_in))
4676 return key_senderror(so, m, EINVAL);
4677 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4678 break;
4679 case AF_INET6:
4680 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4681 sizeof(struct sockaddr_in6))
4682 return key_senderror(so, m, EINVAL);
4683 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4684 break;
4685 default:
4686 ; /*???*/
4687 }
4688
4689 /* XXX boundary check against sa_len */
4690 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4691
4692 /* SPI allocation */
4693 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4694 &saidx);
4695 if (spi == 0)
4696 return key_senderror(so, m, EINVAL);
4697
4698 /* get a SA index */
4699 if ((newsah = key_getsah(&saidx)) == NULL) {
4700 /* create a new SA index */
4701 if ((newsah = key_newsah(&saidx)) == NULL) {
4702 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4703 return key_senderror(so, m, ENOBUFS);
4704 }
4705 }
4706
4707 /* get a new SA */
4708 /* XXX rewrite */
4709 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4710 if (newsav == NULL) {
4711 /* XXX don't free new SA index allocated in above. */
4712 return key_senderror(so, m, error);
4713 }
4714
4715 /* set spi */
4716 newsav->spi = htonl(spi);
4717
4718 #ifndef IPSEC_NONBLOCK_ACQUIRE
4719 /* delete the entry in acqtree */
4720 if (mhp->msg->sadb_msg_seq != 0) {
4721 struct secacq *acq;
4722 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4723 /* reset counter in order to deletion by timehandler. */
4724 acq->created = time_second;
4725 acq->count = 0;
4726 }
4727 }
4728 #endif
4729
4730 {
4731 struct mbuf *n, *nn;
4732 struct sadb_sa *m_sa;
4733 struct sadb_msg *newmsg;
4734 int off, len;
4735
4736 /* create new sadb_msg to reply. */
4737 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4738 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4739 if (len > MCLBYTES)
4740 return key_senderror(so, m, ENOBUFS);
4741
4742 MGETHDR(n, M_DONTWAIT, MT_DATA);
4743 if (len > MHLEN) {
4744 MCLGET(n, M_DONTWAIT);
4745 if ((n->m_flags & M_EXT) == 0) {
4746 m_freem(n);
4747 n = NULL;
4748 }
4749 }
4750 if (!n)
4751 return key_senderror(so, m, ENOBUFS);
4752
4753 n->m_len = len;
4754 n->m_next = NULL;
4755 off = 0;
4756
4757 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4758 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4759
4760 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4761 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4762 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4763 m_sa->sadb_sa_spi = htonl(spi);
4764 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4765
4766 #ifdef DIAGNOSTIC
4767 if (off != len)
4768 panic("length inconsistency in key_getspi");
4769 #endif
4770
4771 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4772 SADB_EXT_ADDRESS_DST);
4773 if (!n->m_next) {
4774 m_freem(n);
4775 return key_senderror(so, m, ENOBUFS);
4776 }
4777
4778 if (n->m_len < sizeof(struct sadb_msg)) {
4779 n = m_pullup(n, sizeof(struct sadb_msg));
4780 if (n == NULL)
4781 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4782 }
4783
4784 n->m_pkthdr.len = 0;
4785 for (nn = n; nn; nn = nn->m_next)
4786 n->m_pkthdr.len += nn->m_len;
4787
4788 newmsg = mtod(n, struct sadb_msg *);
4789 newmsg->sadb_msg_seq = newsav->seq;
4790 newmsg->sadb_msg_errno = 0;
4791 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4792
4793 m_freem(m);
4794 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4795 }
4796 }
4797
4798 /*
4799 * allocating new SPI
4800 * called by key_getspi().
4801 * OUT:
4802 * 0: failure.
4803 * others: success.
4804 */
4805 static u_int32_t
4806 key_do_getnewspi(spirange, saidx)
4807 struct sadb_spirange *spirange;
4808 struct secasindex *saidx;
4809 {
4810 u_int32_t newspi;
4811 u_int32_t spmin, spmax;
4812 int count = key_spi_trycnt;
4813
4814 /* set spi range to allocate */
4815 if (spirange != NULL) {
4816 spmin = spirange->sadb_spirange_min;
4817 spmax = spirange->sadb_spirange_max;
4818 } else {
4819 spmin = key_spi_minval;
4820 spmax = key_spi_maxval;
4821 }
4822 /* IPCOMP needs 2-byte SPI */
4823 if (saidx->proto == IPPROTO_IPCOMP) {
4824 u_int32_t t;
4825 if (spmin >= 0x10000)
4826 spmin = 0xffff;
4827 if (spmax >= 0x10000)
4828 spmax = 0xffff;
4829 if (spmin > spmax) {
4830 t = spmin; spmin = spmax; spmax = t;
4831 }
4832 }
4833
4834 if (spmin == spmax) {
4835 if (key_checkspidup(saidx, spmin) != NULL) {
4836 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
4837 return 0;
4838 }
4839
4840 count--; /* taking one cost. */
4841 newspi = spmin;
4842
4843 } else {
4844
4845 /* init SPI */
4846 newspi = 0;
4847
4848 /* when requesting to allocate spi ranged */
4849 while (count--) {
4850 /* generate pseudo-random SPI value ranged. */
4851 newspi = spmin + (key_random() % (spmax - spmin + 1));
4852
4853 if (key_checkspidup(saidx, newspi) == NULL)
4854 break;
4855 }
4856
4857 if (count == 0 || newspi == 0) {
4858 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
4859 return 0;
4860 }
4861 }
4862
4863 /* statistics */
4864 keystat.getspi_count =
4865 (keystat.getspi_count + key_spi_trycnt - count) / 2;
4866
4867 return newspi;
4868 }
4869
4870 /*
4871 * SADB_UPDATE processing
4872 * receive
4873 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4874 * key(AE), (identity(SD),) (sensitivity)>
4875 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4876 * and send
4877 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4878 * (identity(SD),) (sensitivity)>
4879 * to the ikmpd.
4880 *
4881 * m will always be freed.
4882 */
4883 static int
4884 key_update(so, m, mhp)
4885 struct socket *so;
4886 struct mbuf *m;
4887 const struct sadb_msghdr *mhp;
4888 {
4889 struct sadb_sa *sa0;
4890 struct sadb_address *src0, *dst0;
4891 struct secasindex saidx;
4892 struct secashead *sah;
4893 struct secasvar *sav;
4894 u_int16_t proto;
4895 u_int8_t mode;
4896 u_int16_t reqid;
4897 int error;
4898
4899 /* sanity check */
4900 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4901 panic("key_update: NULL pointer is passed");
4902
4903 /* map satype to proto */
4904 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4905 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
4906 return key_senderror(so, m, EINVAL);
4907 }
4908
4909 if (mhp->ext[SADB_EXT_SA] == NULL ||
4910 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4911 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4912 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4913 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4914 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4915 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4916 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4917 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4918 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4919 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4920 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4921 return key_senderror(so, m, EINVAL);
4922 }
4923 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4924 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4925 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4926 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4927 return key_senderror(so, m, EINVAL);
4928 }
4929 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4930 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4931 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4932 } else {
4933 mode = IPSEC_MODE_ANY;
4934 reqid = 0;
4935 }
4936 /* XXX boundary checking for other extensions */
4937
4938 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4939 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4940 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4941
4942 /* XXX boundary check against sa_len */
4943 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4944
4945 /* get a SA header */
4946 if ((sah = key_getsah(&saidx)) == NULL) {
4947 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
4948 return key_senderror(so, m, ENOENT);
4949 }
4950
4951 /* set spidx if there */
4952 /* XXX rewrite */
4953 error = key_setident(sah, m, mhp);
4954 if (error)
4955 return key_senderror(so, m, error);
4956
4957 /* find a SA with sequence number. */
4958 #ifdef IPSEC_DOSEQCHECK
4959 if (mhp->msg->sadb_msg_seq != 0
4960 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4961 ipseclog((LOG_DEBUG,
4962 "key_update: no larval SA with sequence %u exists.\n",
4963 mhp->msg->sadb_msg_seq));
4964 return key_senderror(so, m, ENOENT);
4965 }
4966 #else
4967 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
4968 ipseclog((LOG_DEBUG,
4969 "key_update: no such a SA found (spi:%u)\n",
4970 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4971 return key_senderror(so, m, EINVAL);
4972 }
4973 #endif
4974
4975 /* validity check */
4976 if (sav->sah->saidx.proto != proto) {
4977 ipseclog((LOG_DEBUG,
4978 "key_update: protocol mismatched (DB=%u param=%u)\n",
4979 sav->sah->saidx.proto, proto));
4980 return key_senderror(so, m, EINVAL);
4981 }
4982 #ifdef IPSEC_DOSEQCHECK
4983 if (sav->spi != sa0->sadb_sa_spi) {
4984 ipseclog((LOG_DEBUG,
4985 "key_update: SPI mismatched (DB:%u param:%u)\n",
4986 (u_int32_t)ntohl(sav->spi),
4987 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4988 return key_senderror(so, m, EINVAL);
4989 }
4990 #endif
4991 if (sav->pid != mhp->msg->sadb_msg_pid) {
4992 ipseclog((LOG_DEBUG,
4993 "key_update: pid mismatched (DB:%u param:%u)\n",
4994 sav->pid, mhp->msg->sadb_msg_pid));
4995 return key_senderror(so, m, EINVAL);
4996 }
4997
4998 /* copy sav values */
4999 error = key_setsaval(sav, m, mhp);
5000 if (error) {
5001 KEY_FREESAV(&sav);
5002 return key_senderror(so, m, error);
5003 }
5004
5005 /* check SA values to be mature. */
5006 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5007 KEY_FREESAV(&sav);
5008 return key_senderror(so, m, 0);
5009 }
5010
5011 {
5012 struct mbuf *n;
5013
5014 /* set msg buf from mhp */
5015 n = key_getmsgbuf_x1(m, mhp);
5016 if (n == NULL) {
5017 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5018 return key_senderror(so, m, ENOBUFS);
5019 }
5020
5021 m_freem(m);
5022 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5023 }
5024 }
5025
5026 /*
5027 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5028 * only called by key_update().
5029 * OUT:
5030 * NULL : not found
5031 * others : found, pointer to a SA.
5032 */
5033 #ifdef IPSEC_DOSEQCHECK
5034 static struct secasvar *
5035 key_getsavbyseq(sah, seq)
5036 struct secashead *sah;
5037 u_int32_t seq;
5038 {
5039 struct secasvar *sav;
5040 u_int state;
5041
5042 state = SADB_SASTATE_LARVAL;
5043
5044 /* search SAD with sequence number ? */
5045 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5046
5047 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5048
5049 if (sav->seq == seq) {
5050 SA_ADDREF(sav);
5051 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5052 printf("DP key_getsavbyseq cause "
5053 "refcnt++:%d SA:%p\n",
5054 sav->refcnt, sav));
5055 return sav;
5056 }
5057 }
5058
5059 return NULL;
5060 }
5061 #endif
5062
5063 /*
5064 * SADB_ADD processing
5065 * add an entry to SA database, when received
5066 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5067 * key(AE), (identity(SD),) (sensitivity)>
5068 * from the ikmpd,
5069 * and send
5070 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5071 * (identity(SD),) (sensitivity)>
5072 * to the ikmpd.
5073 *
5074 * IGNORE identity and sensitivity messages.
5075 *
5076 * m will always be freed.
5077 */
5078 static int
5079 key_add(so, m, mhp)
5080 struct socket *so;
5081 struct mbuf *m;
5082 const struct sadb_msghdr *mhp;
5083 {
5084 struct sadb_sa *sa0;
5085 struct sadb_address *src0, *dst0;
5086 struct secasindex saidx;
5087 struct secashead *newsah;
5088 struct secasvar *newsav;
5089 u_int16_t proto;
5090 u_int8_t mode;
5091 u_int16_t reqid;
5092 int error;
5093
5094 /* sanity check */
5095 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5096 panic("key_add: NULL pointer is passed");
5097
5098 /* map satype to proto */
5099 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5100 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5101 return key_senderror(so, m, EINVAL);
5102 }
5103
5104 if (mhp->ext[SADB_EXT_SA] == NULL ||
5105 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5106 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5107 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5108 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5109 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5110 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5111 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5112 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5113 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5114 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5115 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5116 return key_senderror(so, m, EINVAL);
5117 }
5118 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5119 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5120 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5121 /* XXX need more */
5122 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5123 return key_senderror(so, m, EINVAL);
5124 }
5125 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5126 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5127 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5128 } else {
5129 mode = IPSEC_MODE_ANY;
5130 reqid = 0;
5131 }
5132
5133 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5134 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5135 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5136
5137 /* XXX boundary check against sa_len */
5138 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5139
5140 /* get a SA header */
5141 if ((newsah = key_getsah(&saidx)) == NULL) {
5142 /* create a new SA header */
5143 if ((newsah = key_newsah(&saidx)) == NULL) {
5144 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5145 return key_senderror(so, m, ENOBUFS);
5146 }
5147 }
5148
5149 /* set spidx if there */
5150 /* XXX rewrite */
5151 error = key_setident(newsah, m, mhp);
5152 if (error) {
5153 return key_senderror(so, m, error);
5154 }
5155
5156 /* create new SA entry. */
5157 /* We can create new SA only if SPI is differenct. */
5158 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5159 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5160 return key_senderror(so, m, EEXIST);
5161 }
5162 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5163 if (newsav == NULL) {
5164 return key_senderror(so, m, error);
5165 }
5166
5167 /* check SA values to be mature. */
5168 if ((error = key_mature(newsav)) != 0) {
5169 KEY_FREESAV(&newsav);
5170 return key_senderror(so, m, error);
5171 }
5172
5173 /*
5174 * don't call key_freesav() here, as we would like to keep the SA
5175 * in the database on success.
5176 */
5177
5178 {
5179 struct mbuf *n;
5180
5181 /* set msg buf from mhp */
5182 n = key_getmsgbuf_x1(m, mhp);
5183 if (n == NULL) {
5184 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5185 return key_senderror(so, m, ENOBUFS);
5186 }
5187
5188 m_freem(m);
5189 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5190 }
5191 }
5192
5193 /* m is retained */
5194 static int
5195 key_setident(sah, m, mhp)
5196 struct secashead *sah;
5197 struct mbuf *m;
5198 const struct sadb_msghdr *mhp;
5199 {
5200 const struct sadb_ident *idsrc, *iddst;
5201 int idsrclen, iddstlen;
5202
5203 /* sanity check */
5204 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5205 panic("key_setident: NULL pointer is passed");
5206
5207 /* don't make buffer if not there */
5208 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5209 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5210 sah->idents = NULL;
5211 sah->identd = NULL;
5212 return 0;
5213 }
5214
5215 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5216 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5217 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5218 return EINVAL;
5219 }
5220
5221 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5222 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5223 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5224 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5225
5226 /* validity check */
5227 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5228 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5229 return EINVAL;
5230 }
5231
5232 switch (idsrc->sadb_ident_type) {
5233 case SADB_IDENTTYPE_PREFIX:
5234 case SADB_IDENTTYPE_FQDN:
5235 case SADB_IDENTTYPE_USERFQDN:
5236 default:
5237 /* XXX do nothing */
5238 sah->idents = NULL;
5239 sah->identd = NULL;
5240 return 0;
5241 }
5242
5243 /* make structure */
5244 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5245 if (sah->idents == NULL) {
5246 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5247 return ENOBUFS;
5248 }
5249 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5250 if (sah->identd == NULL) {
5251 KFREE(sah->idents);
5252 sah->idents = NULL;
5253 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5254 return ENOBUFS;
5255 }
5256 bcopy(idsrc, sah->idents, idsrclen);
5257 bcopy(iddst, sah->identd, iddstlen);
5258
5259 return 0;
5260 }
5261
5262 /*
5263 * m will not be freed on return.
5264 * it is caller's responsibility to free the result.
5265 */
5266 static struct mbuf *
5267 key_getmsgbuf_x1(m, mhp)
5268 struct mbuf *m;
5269 const struct sadb_msghdr *mhp;
5270 {
5271 struct mbuf *n;
5272
5273 /* sanity check */
5274 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5275 panic("key_getmsgbuf_x1: NULL pointer is passed");
5276
5277 /* create new sadb_msg to reply. */
5278 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5279 SADB_EXT_SA, SADB_X_EXT_SA2,
5280 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5281 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5282 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5283 if (!n)
5284 return NULL;
5285
5286 if (n->m_len < sizeof(struct sadb_msg)) {
5287 n = m_pullup(n, sizeof(struct sadb_msg));
5288 if (n == NULL)
5289 return NULL;
5290 }
5291 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5292 mtod(n, struct sadb_msg *)->sadb_msg_len =
5293 PFKEY_UNIT64(n->m_pkthdr.len);
5294
5295 return n;
5296 }
5297
5298 static int key_delete_all __P((struct socket *, struct mbuf *,
5299 const struct sadb_msghdr *, u_int16_t));
5300
5301 /*
5302 * SADB_DELETE processing
5303 * receive
5304 * <base, SA(*), address(SD)>
5305 * from the ikmpd, and set SADB_SASTATE_DEAD,
5306 * and send,
5307 * <base, SA(*), address(SD)>
5308 * to the ikmpd.
5309 *
5310 * m will always be freed.
5311 */
5312 static int
5313 key_delete(so, m, mhp)
5314 struct socket *so;
5315 struct mbuf *m;
5316 const struct sadb_msghdr *mhp;
5317 {
5318 struct sadb_sa *sa0;
5319 struct sadb_address *src0, *dst0;
5320 struct secasindex saidx;
5321 struct secashead *sah;
5322 struct secasvar *sav = NULL;
5323 u_int16_t proto;
5324
5325 /* sanity check */
5326 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5327 panic("key_delete: NULL pointer is passed");
5328
5329 /* map satype to proto */
5330 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5331 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5332 return key_senderror(so, m, EINVAL);
5333 }
5334
5335 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5336 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5337 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5338 return key_senderror(so, m, EINVAL);
5339 }
5340
5341 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5342 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5343 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5344 return key_senderror(so, m, EINVAL);
5345 }
5346
5347 if (mhp->ext[SADB_EXT_SA] == NULL) {
5348 /*
5349 * Caller wants us to delete all non-LARVAL SAs
5350 * that match the src/dst. This is used during
5351 * IKE INITIAL-CONTACT.
5352 */
5353 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5354 return key_delete_all(so, m, mhp, proto);
5355 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5356 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5357 return key_senderror(so, m, EINVAL);
5358 }
5359
5360 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5361 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5362 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5363
5364 /* XXX boundary check against sa_len */
5365 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5366
5367 /* get a SA header */
5368 LIST_FOREACH(sah, &sahtree, chain) {
5369 if (sah->state == SADB_SASTATE_DEAD)
5370 continue;
5371 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5372 continue;
5373
5374 /* get a SA with SPI. */
5375 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5376 if (sav)
5377 break;
5378 }
5379 if (sah == NULL) {
5380 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5381 return key_senderror(so, m, ENOENT);
5382 }
5383
5384 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5385 KEY_FREESAV(&sav);
5386
5387 {
5388 struct mbuf *n;
5389 struct sadb_msg *newmsg;
5390
5391 /* create new sadb_msg to reply. */
5392 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5393 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5394 if (!n)
5395 return key_senderror(so, m, ENOBUFS);
5396
5397 if (n->m_len < sizeof(struct sadb_msg)) {
5398 n = m_pullup(n, sizeof(struct sadb_msg));
5399 if (n == NULL)
5400 return key_senderror(so, m, ENOBUFS);
5401 }
5402 newmsg = mtod(n, struct sadb_msg *);
5403 newmsg->sadb_msg_errno = 0;
5404 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5405
5406 m_freem(m);
5407 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5408 }
5409 }
5410
5411 /*
5412 * delete all SAs for src/dst. Called from key_delete().
5413 */
5414 static int
5415 key_delete_all(so, m, mhp, proto)
5416 struct socket *so;
5417 struct mbuf *m;
5418 const struct sadb_msghdr *mhp;
5419 u_int16_t proto;
5420 {
5421 struct sadb_address *src0, *dst0;
5422 struct secasindex saidx;
5423 struct secashead *sah;
5424 struct secasvar *sav, *nextsav;
5425 u_int stateidx, state;
5426
5427 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5428 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5429
5430 /* XXX boundary check against sa_len */
5431 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5432
5433 LIST_FOREACH(sah, &sahtree, chain) {
5434 if (sah->state == SADB_SASTATE_DEAD)
5435 continue;
5436 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5437 continue;
5438
5439 /* Delete all non-LARVAL SAs. */
5440 for (stateidx = 0;
5441 stateidx < _ARRAYLEN(saorder_state_alive);
5442 stateidx++) {
5443 state = saorder_state_alive[stateidx];
5444 if (state == SADB_SASTATE_LARVAL)
5445 continue;
5446 for (sav = LIST_FIRST(&sah->savtree[state]);
5447 sav != NULL; sav = nextsav) {
5448 nextsav = LIST_NEXT(sav, chain);
5449 /* sanity check */
5450 if (sav->state != state) {
5451 ipseclog((LOG_DEBUG, "key_delete_all: "
5452 "invalid sav->state "
5453 "(queue: %d SA: %d)\n",
5454 state, sav->state));
5455 continue;
5456 }
5457
5458 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5459 KEY_FREESAV(&sav);
5460 }
5461 }
5462 }
5463 {
5464 struct mbuf *n;
5465 struct sadb_msg *newmsg;
5466
5467 /* create new sadb_msg to reply. */
5468 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5469 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5470 if (!n)
5471 return key_senderror(so, m, ENOBUFS);
5472
5473 if (n->m_len < sizeof(struct sadb_msg)) {
5474 n = m_pullup(n, sizeof(struct sadb_msg));
5475 if (n == NULL)
5476 return key_senderror(so, m, ENOBUFS);
5477 }
5478 newmsg = mtod(n, struct sadb_msg *);
5479 newmsg->sadb_msg_errno = 0;
5480 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5481
5482 m_freem(m);
5483 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5484 }
5485 }
5486
5487 /*
5488 * SADB_GET processing
5489 * receive
5490 * <base, SA(*), address(SD)>
5491 * from the ikmpd, and get a SP and a SA to respond,
5492 * and send,
5493 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5494 * (identity(SD),) (sensitivity)>
5495 * to the ikmpd.
5496 *
5497 * m will always be freed.
5498 */
5499 static int
5500 key_get(so, m, mhp)
5501 struct socket *so;
5502 struct mbuf *m;
5503 const struct sadb_msghdr *mhp;
5504 {
5505 struct sadb_sa *sa0;
5506 struct sadb_address *src0, *dst0;
5507 struct secasindex saidx;
5508 struct secashead *sah;
5509 struct secasvar *sav = NULL;
5510 u_int16_t proto;
5511
5512 /* sanity check */
5513 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5514 panic("key_get: NULL pointer is passed");
5515
5516 /* map satype to proto */
5517 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5518 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5519 return key_senderror(so, m, EINVAL);
5520 }
5521
5522 if (mhp->ext[SADB_EXT_SA] == NULL ||
5523 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5524 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5525 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5526 return key_senderror(so, m, EINVAL);
5527 }
5528 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5529 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5530 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5531 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5532 return key_senderror(so, m, EINVAL);
5533 }
5534
5535 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5536 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5537 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5538
5539 /* XXX boundary check against sa_len */
5540 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5541
5542 /* get a SA header */
5543 LIST_FOREACH(sah, &sahtree, chain) {
5544 if (sah->state == SADB_SASTATE_DEAD)
5545 continue;
5546 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5547 continue;
5548
5549 /* get a SA with SPI. */
5550 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5551 if (sav)
5552 break;
5553 }
5554 if (sah == NULL) {
5555 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5556 return key_senderror(so, m, ENOENT);
5557 }
5558
5559 {
5560 struct mbuf *n;
5561 u_int8_t satype;
5562
5563 /* map proto to satype */
5564 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5565 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5566 return key_senderror(so, m, EINVAL);
5567 }
5568
5569 /* create new sadb_msg to reply. */
5570 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5571 mhp->msg->sadb_msg_pid);
5572 if (!n)
5573 return key_senderror(so, m, ENOBUFS);
5574
5575 m_freem(m);
5576 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5577 }
5578 }
5579
5580 /* XXX make it sysctl-configurable? */
5581 static void
5582 key_getcomb_setlifetime(comb)
5583 struct sadb_comb *comb;
5584 {
5585
5586 comb->sadb_comb_soft_allocations = 1;
5587 comb->sadb_comb_hard_allocations = 1;
5588 comb->sadb_comb_soft_bytes = 0;
5589 comb->sadb_comb_hard_bytes = 0;
5590 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5591 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5592 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5593 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5594 }
5595
5596 /*
5597 * XXX reorder combinations by preference
5598 * XXX no idea if the user wants ESP authentication or not
5599 */
5600 static struct mbuf *
5601 key_getcomb_esp()
5602 {
5603 struct sadb_comb *comb;
5604 struct enc_xform *algo;
5605 struct mbuf *result = NULL, *m, *n;
5606 int encmin;
5607 int i, off, o;
5608 int totlen;
5609 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5610
5611 m = NULL;
5612 for (i = 1; i <= SADB_EALG_MAX; i++) {
5613 algo = esp_algorithm_lookup(i);
5614 if (algo == NULL)
5615 continue;
5616
5617 /* discard algorithms with key size smaller than system min */
5618 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5619 continue;
5620 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5621 encmin = ipsec_esp_keymin;
5622 else
5623 encmin = _BITS(algo->minkey);
5624
5625 if (ipsec_esp_auth)
5626 m = key_getcomb_ah();
5627 else {
5628 IPSEC_ASSERT(l <= MLEN,
5629 ("key_getcomb_esp: l=%u > MLEN=%lu",
5630 l, (u_long) MLEN));
5631 MGET(m, M_DONTWAIT, MT_DATA);
5632 if (m) {
5633 M_ALIGN(m, l);
5634 m->m_len = l;
5635 m->m_next = NULL;
5636 bzero(mtod(m, caddr_t), m->m_len);
5637 }
5638 }
5639 if (!m)
5640 goto fail;
5641
5642 totlen = 0;
5643 for (n = m; n; n = n->m_next)
5644 totlen += n->m_len;
5645 IPSEC_ASSERT((totlen % l) == 0,
5646 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
5647
5648 for (off = 0; off < totlen; off += l) {
5649 n = m_pulldown(m, off, l, &o);
5650 if (!n) {
5651 /* m is already freed */
5652 goto fail;
5653 }
5654 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5655 bzero(comb, sizeof(*comb));
5656 key_getcomb_setlifetime(comb);
5657 comb->sadb_comb_encrypt = i;
5658 comb->sadb_comb_encrypt_minbits = encmin;
5659 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5660 }
5661
5662 if (!result)
5663 result = m;
5664 else
5665 m_cat(result, m);
5666 }
5667
5668 return result;
5669
5670 fail:
5671 if (result)
5672 m_freem(result);
5673 return NULL;
5674 }
5675
5676 static void
5677 key_getsizes_ah(
5678 const struct auth_hash *ah,
5679 int alg,
5680 u_int16_t* ksmin,
5681 u_int16_t* ksmax)
5682 {
5683 *ksmin = *ksmax = ah->keysize;
5684 if (ah->keysize == 0) {
5685 /*
5686 * Transform takes arbitrary key size but algorithm
5687 * key size is restricted. Enforce this here.
5688 */
5689 switch (alg) {
5690 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
5691 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
5692 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break;
5693 default:
5694 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
5695 alg));
5696 break;
5697 }
5698 }
5699 }
5700
5701 /*
5702 * XXX reorder combinations by preference
5703 */
5704 static struct mbuf *
5705 key_getcomb_ah()
5706 {
5707 struct sadb_comb *comb;
5708 struct auth_hash *algo;
5709 struct mbuf *m;
5710 u_int16_t minkeysize, maxkeysize;
5711 int i;
5712 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5713
5714 m = NULL;
5715 for (i = 1; i <= SADB_AALG_MAX; i++) {
5716 #if 1
5717 /* we prefer HMAC algorithms, not old algorithms */
5718 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5719 continue;
5720 #endif
5721 algo = ah_algorithm_lookup(i);
5722 if (!algo)
5723 continue;
5724 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5725 /* discard algorithms with key size smaller than system min */
5726 if (_BITS(minkeysize) < ipsec_ah_keymin)
5727 continue;
5728
5729 if (!m) {
5730 IPSEC_ASSERT(l <= MLEN,
5731 ("key_getcomb_ah: l=%u > MLEN=%lu",
5732 l, (u_long) MLEN));
5733 MGET(m, M_DONTWAIT, MT_DATA);
5734 if (m) {
5735 M_ALIGN(m, l);
5736 m->m_len = l;
5737 m->m_next = NULL;
5738 }
5739 } else
5740 M_PREPEND(m, l, M_DONTWAIT);
5741 if (!m)
5742 return NULL;
5743
5744 comb = mtod(m, struct sadb_comb *);
5745 bzero(comb, sizeof(*comb));
5746 key_getcomb_setlifetime(comb);
5747 comb->sadb_comb_auth = i;
5748 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5749 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5750 }
5751
5752 return m;
5753 }
5754
5755 /*
5756 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
5757 * XXX reorder combinations by preference
5758 */
5759 static struct mbuf *
5760 key_getcomb_ipcomp()
5761 {
5762 struct sadb_comb *comb;
5763 struct comp_algo *algo;
5764 struct mbuf *m;
5765 int i;
5766 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5767
5768 m = NULL;
5769 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5770 algo = ipcomp_algorithm_lookup(i);
5771 if (!algo)
5772 continue;
5773
5774 if (!m) {
5775 IPSEC_ASSERT(l <= MLEN,
5776 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
5777 l, (u_long) MLEN));
5778 MGET(m, M_DONTWAIT, MT_DATA);
5779 if (m) {
5780 M_ALIGN(m, l);
5781 m->m_len = l;
5782 m->m_next = NULL;
5783 }
5784 } else
5785 M_PREPEND(m, l, M_DONTWAIT);
5786 if (!m)
5787 return NULL;
5788
5789 comb = mtod(m, struct sadb_comb *);
5790 bzero(comb, sizeof(*comb));
5791 key_getcomb_setlifetime(comb);
5792 comb->sadb_comb_encrypt = i;
5793 /* what should we set into sadb_comb_*_{min,max}bits? */
5794 }
5795
5796 return m;
5797 }
5798
5799 /*
5800 * XXX no way to pass mode (transport/tunnel) to userland
5801 * XXX replay checking?
5802 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5803 */
5804 static struct mbuf *
5805 key_getprop(saidx)
5806 const struct secasindex *saidx;
5807 {
5808 struct sadb_prop *prop;
5809 struct mbuf *m, *n;
5810 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5811 int totlen;
5812
5813 switch (saidx->proto) {
5814 case IPPROTO_ESP:
5815 m = key_getcomb_esp();
5816 break;
5817 case IPPROTO_AH:
5818 m = key_getcomb_ah();
5819 break;
5820 case IPPROTO_IPCOMP:
5821 m = key_getcomb_ipcomp();
5822 break;
5823 default:
5824 return NULL;
5825 }
5826
5827 if (!m)
5828 return NULL;
5829 M_PREPEND(m, l, M_DONTWAIT);
5830 if (!m)
5831 return NULL;
5832
5833 totlen = 0;
5834 for (n = m; n; n = n->m_next)
5835 totlen += n->m_len;
5836
5837 prop = mtod(m, struct sadb_prop *);
5838 bzero(prop, sizeof(*prop));
5839 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5840 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5841 prop->sadb_prop_replay = 32; /* XXX */
5842
5843 return m;
5844 }
5845
5846 /*
5847 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5848 * send
5849 * <base, SA, address(SD), (address(P)), x_policy,
5850 * (identity(SD),) (sensitivity,) proposal>
5851 * to KMD, and expect to receive
5852 * <base> with SADB_ACQUIRE if error occurred,
5853 * or
5854 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
5855 * from KMD by PF_KEY.
5856 *
5857 * XXX x_policy is outside of RFC2367 (KAME extension).
5858 * XXX sensitivity is not supported.
5859 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5860 * see comment for key_getcomb_ipcomp().
5861 *
5862 * OUT:
5863 * 0 : succeed
5864 * others: error number
5865 */
5866 static int
5867 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5868 {
5869 struct mbuf *result = NULL, *m;
5870 #ifndef IPSEC_NONBLOCK_ACQUIRE
5871 struct secacq *newacq;
5872 #endif
5873 u_int8_t satype;
5874 int error = -1;
5875 u_int32_t seq;
5876
5877 /* sanity check */
5878 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
5879 satype = key_proto2satype(saidx->proto);
5880 IPSEC_ASSERT(satype != 0,
5881 ("key_acquire: null satype, protocol %u", saidx->proto));
5882
5883 #ifndef IPSEC_NONBLOCK_ACQUIRE
5884 /*
5885 * We never do anything about acquirng SA. There is anather
5886 * solution that kernel blocks to send SADB_ACQUIRE message until
5887 * getting something message from IKEd. In later case, to be
5888 * managed with ACQUIRING list.
5889 */
5890 /* Get an entry to check whether sending message or not. */
5891 if ((newacq = key_getacq(saidx)) != NULL) {
5892 if (key_blockacq_count < newacq->count) {
5893 /* reset counter and do send message. */
5894 newacq->count = 0;
5895 } else {
5896 /* increment counter and do nothing. */
5897 newacq->count++;
5898 return 0;
5899 }
5900 } else {
5901 /* make new entry for blocking to send SADB_ACQUIRE. */
5902 if ((newacq = key_newacq(saidx)) == NULL)
5903 return ENOBUFS;
5904
5905 /* add to acqtree */
5906 LIST_INSERT_HEAD(&acqtree, newacq, chain);
5907 }
5908 #endif
5909
5910
5911 #ifndef IPSEC_NONBLOCK_ACQUIRE
5912 seq = newacq->seq;
5913 #else
5914 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
5915 #endif
5916 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5917 if (!m) {
5918 error = ENOBUFS;
5919 goto fail;
5920 }
5921 result = m;
5922
5923 /* set sadb_address for saidx's. */
5924 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5925 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5926 if (!m) {
5927 error = ENOBUFS;
5928 goto fail;
5929 }
5930 m_cat(result, m);
5931
5932 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5933 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5934 if (!m) {
5935 error = ENOBUFS;
5936 goto fail;
5937 }
5938 m_cat(result, m);
5939
5940 /* XXX proxy address (optional) */
5941
5942 /* set sadb_x_policy */
5943 if (sp) {
5944 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5945 if (!m) {
5946 error = ENOBUFS;
5947 goto fail;
5948 }
5949 m_cat(result, m);
5950 }
5951
5952 /* XXX identity (optional) */
5953 #if 0
5954 if (idexttype && fqdn) {
5955 /* create identity extension (FQDN) */
5956 struct sadb_ident *id;
5957 int fqdnlen;
5958
5959 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
5960 id = (struct sadb_ident *)p;
5961 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5962 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5963 id->sadb_ident_exttype = idexttype;
5964 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5965 bcopy(fqdn, id + 1, fqdnlen);
5966 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5967 }
5968
5969 if (idexttype) {
5970 /* create identity extension (USERFQDN) */
5971 struct sadb_ident *id;
5972 int userfqdnlen;
5973
5974 if (userfqdn) {
5975 /* +1 for terminating-NUL */
5976 userfqdnlen = strlen(userfqdn) + 1;
5977 } else
5978 userfqdnlen = 0;
5979 id = (struct sadb_ident *)p;
5980 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5981 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5982 id->sadb_ident_exttype = idexttype;
5983 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5984 /* XXX is it correct? */
5985 if (curlwp)
5986 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
5987 if (userfqdn && userfqdnlen)
5988 bcopy(userfqdn, id + 1, userfqdnlen);
5989 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5990 }
5991 #endif
5992
5993 /* XXX sensitivity (optional) */
5994
5995 /* create proposal/combination extension */
5996 m = key_getprop(saidx);
5997 #if 0
5998 /*
5999 * spec conformant: always attach proposal/combination extension,
6000 * the problem is that we have no way to attach it for ipcomp,
6001 * due to the way sadb_comb is declared in RFC2367.
6002 */
6003 if (!m) {
6004 error = ENOBUFS;
6005 goto fail;
6006 }
6007 m_cat(result, m);
6008 #else
6009 /*
6010 * outside of spec; make proposal/combination extension optional.
6011 */
6012 if (m)
6013 m_cat(result, m);
6014 #endif
6015
6016 if ((result->m_flags & M_PKTHDR) == 0) {
6017 error = EINVAL;
6018 goto fail;
6019 }
6020
6021 if (result->m_len < sizeof(struct sadb_msg)) {
6022 result = m_pullup(result, sizeof(struct sadb_msg));
6023 if (result == NULL) {
6024 error = ENOBUFS;
6025 goto fail;
6026 }
6027 }
6028
6029 result->m_pkthdr.len = 0;
6030 for (m = result; m; m = m->m_next)
6031 result->m_pkthdr.len += m->m_len;
6032
6033 mtod(result, struct sadb_msg *)->sadb_msg_len =
6034 PFKEY_UNIT64(result->m_pkthdr.len);
6035
6036 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6037
6038 fail:
6039 if (result)
6040 m_freem(result);
6041 return error;
6042 }
6043
6044 #ifndef IPSEC_NONBLOCK_ACQUIRE
6045 static struct secacq *
6046 key_newacq(const struct secasindex *saidx)
6047 {
6048 struct secacq *newacq;
6049
6050 /* get new entry */
6051 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6052 if (newacq == NULL) {
6053 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6054 return NULL;
6055 }
6056 bzero(newacq, sizeof(*newacq));
6057
6058 /* copy secindex */
6059 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6060 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6061 newacq->created = time_second;
6062 newacq->count = 0;
6063
6064 return newacq;
6065 }
6066
6067 static struct secacq *
6068 key_getacq(const struct secasindex *saidx)
6069 {
6070 struct secacq *acq;
6071
6072 LIST_FOREACH(acq, &acqtree, chain) {
6073 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6074 return acq;
6075 }
6076
6077 return NULL;
6078 }
6079
6080 static struct secacq *
6081 key_getacqbyseq(seq)
6082 u_int32_t seq;
6083 {
6084 struct secacq *acq;
6085
6086 LIST_FOREACH(acq, &acqtree, chain) {
6087 if (acq->seq == seq)
6088 return acq;
6089 }
6090
6091 return NULL;
6092 }
6093 #endif
6094
6095 static struct secspacq *
6096 key_newspacq(spidx)
6097 struct secpolicyindex *spidx;
6098 {
6099 struct secspacq *acq;
6100
6101 /* get new entry */
6102 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6103 if (acq == NULL) {
6104 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6105 return NULL;
6106 }
6107 bzero(acq, sizeof(*acq));
6108
6109 /* copy secindex */
6110 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6111 acq->created = time_second;
6112 acq->count = 0;
6113
6114 return acq;
6115 }
6116
6117 static struct secspacq *
6118 key_getspacq(spidx)
6119 struct secpolicyindex *spidx;
6120 {
6121 struct secspacq *acq;
6122
6123 LIST_FOREACH(acq, &spacqtree, chain) {
6124 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6125 return acq;
6126 }
6127
6128 return NULL;
6129 }
6130
6131 /*
6132 * SADB_ACQUIRE processing,
6133 * in first situation, is receiving
6134 * <base>
6135 * from the ikmpd, and clear sequence of its secasvar entry.
6136 *
6137 * In second situation, is receiving
6138 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6139 * from a user land process, and return
6140 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6141 * to the socket.
6142 *
6143 * m will always be freed.
6144 */
6145 static int
6146 key_acquire2(so, m, mhp)
6147 struct socket *so;
6148 struct mbuf *m;
6149 const struct sadb_msghdr *mhp;
6150 {
6151 const struct sadb_address *src0, *dst0;
6152 struct secasindex saidx;
6153 struct secashead *sah;
6154 u_int16_t proto;
6155 int error;
6156
6157 /* sanity check */
6158 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6159 panic("key_acquire2: NULL pointer is passed");
6160
6161 /*
6162 * Error message from KMd.
6163 * We assume that if error was occurred in IKEd, the length of PFKEY
6164 * message is equal to the size of sadb_msg structure.
6165 * We do not raise error even if error occurred in this function.
6166 */
6167 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6168 #ifndef IPSEC_NONBLOCK_ACQUIRE
6169 struct secacq *acq;
6170
6171 /* check sequence number */
6172 if (mhp->msg->sadb_msg_seq == 0) {
6173 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6174 m_freem(m);
6175 return 0;
6176 }
6177
6178 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6179 /*
6180 * the specified larval SA is already gone, or we got
6181 * a bogus sequence number. we can silently ignore it.
6182 */
6183 m_freem(m);
6184 return 0;
6185 }
6186
6187 /* reset acq counter in order to deletion by timehander. */
6188 acq->created = time_second;
6189 acq->count = 0;
6190 #endif
6191 m_freem(m);
6192 return 0;
6193 }
6194
6195 /*
6196 * This message is from user land.
6197 */
6198
6199 /* map satype to proto */
6200 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6201 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6202 return key_senderror(so, m, EINVAL);
6203 }
6204
6205 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6206 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6207 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6208 /* error */
6209 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6210 return key_senderror(so, m, EINVAL);
6211 }
6212 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6213 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6214 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6215 /* error */
6216 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6217 return key_senderror(so, m, EINVAL);
6218 }
6219
6220 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6221 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6222
6223 /* XXX boundary check against sa_len */
6224 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6225
6226 /* get a SA index */
6227 LIST_FOREACH(sah, &sahtree, chain) {
6228 if (sah->state == SADB_SASTATE_DEAD)
6229 continue;
6230 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6231 break;
6232 }
6233 if (sah != NULL) {
6234 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6235 return key_senderror(so, m, EEXIST);
6236 }
6237
6238 error = key_acquire(&saidx, NULL);
6239 if (error != 0) {
6240 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6241 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6242 return key_senderror(so, m, error);
6243 }
6244
6245 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6246 }
6247
6248 /*
6249 * SADB_REGISTER processing.
6250 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6251 * receive
6252 * <base>
6253 * from the ikmpd, and register a socket to send PF_KEY messages,
6254 * and send
6255 * <base, supported>
6256 * to KMD by PF_KEY.
6257 * If socket is detached, must free from regnode.
6258 *
6259 * m will always be freed.
6260 */
6261 static int
6262 key_register(so, m, mhp)
6263 struct socket *so;
6264 struct mbuf *m;
6265 const struct sadb_msghdr *mhp;
6266 {
6267 struct secreg *reg, *newreg = 0;
6268
6269 /* sanity check */
6270 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6271 panic("key_register: NULL pointer is passed");
6272
6273 /* check for invalid register message */
6274 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6275 return key_senderror(so, m, EINVAL);
6276
6277 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6278 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6279 goto setmsg;
6280
6281 /* check whether existing or not */
6282 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6283 if (reg->so == so) {
6284 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6285 return key_senderror(so, m, EEXIST);
6286 }
6287 }
6288
6289 /* create regnode */
6290 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6291 if (newreg == NULL) {
6292 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6293 return key_senderror(so, m, ENOBUFS);
6294 }
6295 bzero((caddr_t)newreg, sizeof(*newreg));
6296
6297 newreg->so = so;
6298 ((struct keycb *)sotorawcb(so))->kp_registered++;
6299
6300 /* add regnode to regtree. */
6301 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6302
6303 setmsg:
6304 {
6305 struct mbuf *n;
6306 struct sadb_msg *newmsg;
6307 struct sadb_supported *sup;
6308 u_int len, alen, elen;
6309 int off;
6310 int i;
6311 struct sadb_alg *alg;
6312
6313 /* create new sadb_msg to reply. */
6314 alen = 0;
6315 for (i = 1; i <= SADB_AALG_MAX; i++) {
6316 if (ah_algorithm_lookup(i))
6317 alen += sizeof(struct sadb_alg);
6318 }
6319 if (alen)
6320 alen += sizeof(struct sadb_supported);
6321 elen = 0;
6322 for (i = 1; i <= SADB_EALG_MAX; i++) {
6323 if (esp_algorithm_lookup(i))
6324 elen += sizeof(struct sadb_alg);
6325 }
6326 if (elen)
6327 elen += sizeof(struct sadb_supported);
6328
6329 len = sizeof(struct sadb_msg) + alen + elen;
6330
6331 if (len > MCLBYTES)
6332 return key_senderror(so, m, ENOBUFS);
6333
6334 MGETHDR(n, M_DONTWAIT, MT_DATA);
6335 if (len > MHLEN) {
6336 MCLGET(n, M_DONTWAIT);
6337 if ((n->m_flags & M_EXT) == 0) {
6338 m_freem(n);
6339 n = NULL;
6340 }
6341 }
6342 if (!n)
6343 return key_senderror(so, m, ENOBUFS);
6344
6345 n->m_pkthdr.len = n->m_len = len;
6346 n->m_next = NULL;
6347 off = 0;
6348
6349 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6350 newmsg = mtod(n, struct sadb_msg *);
6351 newmsg->sadb_msg_errno = 0;
6352 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6353 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6354
6355 /* for authentication algorithm */
6356 if (alen) {
6357 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6358 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6359 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6360 off += PFKEY_ALIGN8(sizeof(*sup));
6361
6362 for (i = 1; i <= SADB_AALG_MAX; i++) {
6363 struct auth_hash *aalgo;
6364 u_int16_t minkeysize, maxkeysize;
6365
6366 aalgo = ah_algorithm_lookup(i);
6367 if (!aalgo)
6368 continue;
6369 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6370 alg->sadb_alg_id = i;
6371 alg->sadb_alg_ivlen = 0;
6372 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6373 alg->sadb_alg_minbits = _BITS(minkeysize);
6374 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6375 off += PFKEY_ALIGN8(sizeof(*alg));
6376 }
6377 }
6378
6379 /* for encryption algorithm */
6380 if (elen) {
6381 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6382 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6383 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6384 off += PFKEY_ALIGN8(sizeof(*sup));
6385
6386 for (i = 1; i <= SADB_EALG_MAX; i++) {
6387 struct enc_xform *ealgo;
6388
6389 ealgo = esp_algorithm_lookup(i);
6390 if (!ealgo)
6391 continue;
6392 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6393 alg->sadb_alg_id = i;
6394 alg->sadb_alg_ivlen = ealgo->blocksize;
6395 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6396 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6397 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6398 }
6399 }
6400
6401 #ifdef DIAGNOSTIC
6402 if (off != len)
6403 panic("length assumption failed in key_register");
6404 #endif
6405
6406 m_freem(m);
6407 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6408 }
6409 }
6410
6411 /*
6412 * free secreg entry registered.
6413 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6414 */
6415 void
6416 key_freereg(so)
6417 struct socket *so;
6418 {
6419 struct secreg *reg;
6420 int i;
6421
6422 /* sanity check */
6423 if (so == NULL)
6424 panic("key_freereg: NULL pointer is passed");
6425
6426 /*
6427 * check whether existing or not.
6428 * check all type of SA, because there is a potential that
6429 * one socket is registered to multiple type of SA.
6430 */
6431 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6432 LIST_FOREACH(reg, ®tree[i], chain) {
6433 if (reg->so == so
6434 && __LIST_CHAINED(reg)) {
6435 LIST_REMOVE(reg, chain);
6436 KFREE(reg);
6437 break;
6438 }
6439 }
6440 }
6441
6442 return;
6443 }
6444
6445 /*
6446 * SADB_EXPIRE processing
6447 * send
6448 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6449 * to KMD by PF_KEY.
6450 * NOTE: We send only soft lifetime extension.
6451 *
6452 * OUT: 0 : succeed
6453 * others : error number
6454 */
6455 static int
6456 key_expire(sav)
6457 struct secasvar *sav;
6458 {
6459 int s;
6460 int satype;
6461 struct mbuf *result = NULL, *m;
6462 int len;
6463 int error = -1;
6464 struct sadb_lifetime *lt;
6465
6466 /* XXX: Why do we lock ? */
6467 s = splsoftnet(); /*called from softclock()*/
6468
6469 /* sanity check */
6470 if (sav == NULL)
6471 panic("key_expire: NULL pointer is passed");
6472 if (sav->sah == NULL)
6473 panic("key_expire: Why was SA index in SA NULL");
6474 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6475 panic("key_expire: invalid proto is passed");
6476
6477 /* set msg header */
6478 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6479 if (!m) {
6480 error = ENOBUFS;
6481 goto fail;
6482 }
6483 result = m;
6484
6485 /* create SA extension */
6486 m = key_setsadbsa(sav);
6487 if (!m) {
6488 error = ENOBUFS;
6489 goto fail;
6490 }
6491 m_cat(result, m);
6492
6493 /* create SA extension */
6494 m = key_setsadbxsa2(sav->sah->saidx.mode,
6495 sav->replay ? sav->replay->count : 0,
6496 sav->sah->saidx.reqid);
6497 if (!m) {
6498 error = ENOBUFS;
6499 goto fail;
6500 }
6501 m_cat(result, m);
6502
6503 /* create lifetime extension (current and soft) */
6504 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6505 m = key_alloc_mbuf(len);
6506 if (!m || m->m_next) { /*XXX*/
6507 if (m)
6508 m_freem(m);
6509 error = ENOBUFS;
6510 goto fail;
6511 }
6512 bzero(mtod(m, caddr_t), len);
6513 lt = mtod(m, struct sadb_lifetime *);
6514 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6515 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6516 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6517 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6518 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6519 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6520 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6521 bcopy(sav->lft_s, lt, sizeof(*lt));
6522 m_cat(result, m);
6523
6524 /* set sadb_address for source */
6525 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6526 &sav->sah->saidx.src.sa,
6527 FULLMASK, IPSEC_ULPROTO_ANY);
6528 if (!m) {
6529 error = ENOBUFS;
6530 goto fail;
6531 }
6532 m_cat(result, m);
6533
6534 /* set sadb_address for destination */
6535 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6536 &sav->sah->saidx.dst.sa,
6537 FULLMASK, IPSEC_ULPROTO_ANY);
6538 if (!m) {
6539 error = ENOBUFS;
6540 goto fail;
6541 }
6542 m_cat(result, m);
6543
6544 if ((result->m_flags & M_PKTHDR) == 0) {
6545 error = EINVAL;
6546 goto fail;
6547 }
6548
6549 if (result->m_len < sizeof(struct sadb_msg)) {
6550 result = m_pullup(result, sizeof(struct sadb_msg));
6551 if (result == NULL) {
6552 error = ENOBUFS;
6553 goto fail;
6554 }
6555 }
6556
6557 result->m_pkthdr.len = 0;
6558 for (m = result; m; m = m->m_next)
6559 result->m_pkthdr.len += m->m_len;
6560
6561 mtod(result, struct sadb_msg *)->sadb_msg_len =
6562 PFKEY_UNIT64(result->m_pkthdr.len);
6563
6564 splx(s);
6565 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6566
6567 fail:
6568 if (result)
6569 m_freem(result);
6570 splx(s);
6571 return error;
6572 }
6573
6574 /*
6575 * SADB_FLUSH processing
6576 * receive
6577 * <base>
6578 * from the ikmpd, and free all entries in secastree.
6579 * and send,
6580 * <base>
6581 * to the ikmpd.
6582 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6583 *
6584 * m will always be freed.
6585 */
6586 static int
6587 key_flush(so, m, mhp)
6588 struct socket *so;
6589 struct mbuf *m;
6590 const struct sadb_msghdr *mhp;
6591 {
6592 struct sadb_msg *newmsg;
6593 struct secashead *sah, *nextsah;
6594 struct secasvar *sav, *nextsav;
6595 u_int16_t proto;
6596 u_int8_t state;
6597 u_int stateidx;
6598
6599 /* sanity check */
6600 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6601 panic("key_flush: NULL pointer is passed");
6602
6603 /* map satype to proto */
6604 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6605 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6606 return key_senderror(so, m, EINVAL);
6607 }
6608
6609 /* no SATYPE specified, i.e. flushing all SA. */
6610 for (sah = LIST_FIRST(&sahtree);
6611 sah != NULL;
6612 sah = nextsah) {
6613 nextsah = LIST_NEXT(sah, chain);
6614
6615 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6616 && proto != sah->saidx.proto)
6617 continue;
6618
6619 for (stateidx = 0;
6620 stateidx < _ARRAYLEN(saorder_state_alive);
6621 stateidx++) {
6622 state = saorder_state_any[stateidx];
6623 for (sav = LIST_FIRST(&sah->savtree[state]);
6624 sav != NULL;
6625 sav = nextsav) {
6626
6627 nextsav = LIST_NEXT(sav, chain);
6628
6629 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6630 KEY_FREESAV(&sav);
6631 }
6632 }
6633
6634 sah->state = SADB_SASTATE_DEAD;
6635 }
6636
6637 if (m->m_len < sizeof(struct sadb_msg) ||
6638 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6639 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
6640 return key_senderror(so, m, ENOBUFS);
6641 }
6642
6643 if (m->m_next)
6644 m_freem(m->m_next);
6645 m->m_next = NULL;
6646 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6647 newmsg = mtod(m, struct sadb_msg *);
6648 newmsg->sadb_msg_errno = 0;
6649 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6650
6651 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6652 }
6653
6654
6655 static struct mbuf *
6656 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6657 {
6658 struct secashead *sah;
6659 struct secasvar *sav;
6660 u_int16_t proto;
6661 u_int stateidx;
6662 u_int8_t satype;
6663 u_int8_t state;
6664 int cnt;
6665 struct mbuf *m, *n, *prev;
6666 int totlen;
6667
6668 *lenp = 0;
6669
6670 /* map satype to proto */
6671 if ((proto = key_satype2proto(req_satype)) == 0) {
6672 *errorp = EINVAL;
6673 return (NULL);
6674 }
6675
6676 /* count sav entries to be sent to userland. */
6677 cnt = 0;
6678 LIST_FOREACH(sah, &sahtree, chain) {
6679 if (req_satype != SADB_SATYPE_UNSPEC &&
6680 proto != sah->saidx.proto)
6681 continue;
6682
6683 for (stateidx = 0;
6684 stateidx < _ARRAYLEN(saorder_state_any);
6685 stateidx++) {
6686 state = saorder_state_any[stateidx];
6687 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6688 cnt++;
6689 }
6690 }
6691 }
6692
6693 if (cnt == 0) {
6694 *errorp = ENOENT;
6695 return (NULL);
6696 }
6697
6698 /* send this to the userland, one at a time. */
6699 m = NULL;
6700 prev = m;
6701 LIST_FOREACH(sah, &sahtree, chain) {
6702 if (req_satype != SADB_SATYPE_UNSPEC &&
6703 proto != sah->saidx.proto)
6704 continue;
6705
6706 /* map proto to satype */
6707 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6708 m_freem(m);
6709 *errorp = EINVAL;
6710 return (NULL);
6711 }
6712
6713 for (stateidx = 0;
6714 stateidx < _ARRAYLEN(saorder_state_any);
6715 stateidx++) {
6716 state = saorder_state_any[stateidx];
6717 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6718 n = key_setdumpsa(sav, SADB_DUMP, satype,
6719 --cnt, pid);
6720 if (!n) {
6721 m_freem(m);
6722 *errorp = ENOBUFS;
6723 return (NULL);
6724 }
6725
6726 totlen += n->m_pkthdr.len;
6727 if (!m)
6728 m = n;
6729 else
6730 prev->m_nextpkt = n;
6731 prev = n;
6732 }
6733 }
6734 }
6735
6736 if (!m) {
6737 *errorp = EINVAL;
6738 return (NULL);
6739 }
6740
6741 if ((m->m_flags & M_PKTHDR) != 0) {
6742 m->m_pkthdr.len = 0;
6743 for (n = m; n; n = n->m_next)
6744 m->m_pkthdr.len += n->m_len;
6745 }
6746
6747 *errorp = 0;
6748 return (m);
6749 }
6750
6751 /*
6752 * SADB_DUMP processing
6753 * dump all entries including status of DEAD in SAD.
6754 * receive
6755 * <base>
6756 * from the ikmpd, and dump all secasvar leaves
6757 * and send,
6758 * <base> .....
6759 * to the ikmpd.
6760 *
6761 * m will always be freed.
6762 */
6763 static int
6764 key_dump(so, m0, mhp)
6765 struct socket *so;
6766 struct mbuf *m0;
6767 const struct sadb_msghdr *mhp;
6768 {
6769 u_int16_t proto;
6770 u_int8_t satype;
6771 struct mbuf *n;
6772 int s;
6773 int error, len, ok;
6774
6775 /* sanity check */
6776 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
6777 panic("key_dump: NULL pointer is passed");
6778
6779 /* map satype to proto */
6780 satype = mhp->msg->sadb_msg_satype;
6781 if ((proto = key_satype2proto(satype)) == 0) {
6782 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
6783 return key_senderror(so, m0, EINVAL);
6784 }
6785
6786 /*
6787 * If the requestor has insufficient socket-buffer space
6788 * for the entire chain, nobody gets any response to the DUMP.
6789 * XXX For now, only the requestor ever gets anything.
6790 * Moreover, if the requestor has any space at all, they receive
6791 * the entire chain, otherwise the request is refused with ENOBUFS.
6792 */
6793 if (sbspace(&so->so_rcv) <= 0) {
6794 return key_senderror(so, m0, ENOBUFS);
6795 }
6796
6797 s = splsoftnet();
6798 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
6799 splx(s);
6800
6801 if (n == NULL) {
6802 return key_senderror(so, m0, ENOENT);
6803 }
6804 pfkeystat.in_total++;
6805 pfkeystat.in_bytes += len;
6806
6807 /*
6808 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
6809 * The requestor receives either the entire chain, or an
6810 * error message with ENOBUFS.
6811 *
6812 * sbappendaddrchain() takes the chain of entries, one
6813 * packet-record per SPD entry, prepends the key_src sockaddr
6814 * to each packet-record, links the sockaddr mbufs into a new
6815 * list of records, then appends the entire resulting
6816 * list to the requesting socket.
6817 */
6818 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
6819 n, SB_PRIO_ONESHOT_OVERFLOW);
6820
6821 if (!ok) {
6822 pfkeystat.in_nomem++;
6823 m_freem(n);
6824 return key_senderror(so, m0, ENOBUFS);
6825 }
6826
6827 m_freem(m0);
6828 return 0;
6829 }
6830
6831 /*
6832 * SADB_X_PROMISC processing
6833 *
6834 * m will always be freed.
6835 */
6836 static int
6837 key_promisc(so, m, mhp)
6838 struct socket *so;
6839 struct mbuf *m;
6840 const struct sadb_msghdr *mhp;
6841 {
6842 int olen;
6843
6844 /* sanity check */
6845 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6846 panic("key_promisc: NULL pointer is passed");
6847
6848 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6849
6850 if (olen < sizeof(struct sadb_msg)) {
6851 #if 1
6852 return key_senderror(so, m, EINVAL);
6853 #else
6854 m_freem(m);
6855 return 0;
6856 #endif
6857 } else if (olen == sizeof(struct sadb_msg)) {
6858 /* enable/disable promisc mode */
6859 struct keycb *kp;
6860
6861 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6862 return key_senderror(so, m, EINVAL);
6863 mhp->msg->sadb_msg_errno = 0;
6864 switch (mhp->msg->sadb_msg_satype) {
6865 case 0:
6866 case 1:
6867 kp->kp_promisc = mhp->msg->sadb_msg_satype;
6868 break;
6869 default:
6870 return key_senderror(so, m, EINVAL);
6871 }
6872
6873 /* send the original message back to everyone */
6874 mhp->msg->sadb_msg_errno = 0;
6875 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6876 } else {
6877 /* send packet as is */
6878
6879 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6880
6881 /* TODO: if sadb_msg_seq is specified, send to specific pid */
6882 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6883 }
6884 }
6885
6886 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6887 const struct sadb_msghdr *)) = {
6888 NULL, /* SADB_RESERVED */
6889 key_getspi, /* SADB_GETSPI */
6890 key_update, /* SADB_UPDATE */
6891 key_add, /* SADB_ADD */
6892 key_delete, /* SADB_DELETE */
6893 key_get, /* SADB_GET */
6894 key_acquire2, /* SADB_ACQUIRE */
6895 key_register, /* SADB_REGISTER */
6896 NULL, /* SADB_EXPIRE */
6897 key_flush, /* SADB_FLUSH */
6898 key_dump, /* SADB_DUMP */
6899 key_promisc, /* SADB_X_PROMISC */
6900 NULL, /* SADB_X_PCHANGE */
6901 key_spdadd, /* SADB_X_SPDUPDATE */
6902 key_spdadd, /* SADB_X_SPDADD */
6903 key_spddelete, /* SADB_X_SPDDELETE */
6904 key_spdget, /* SADB_X_SPDGET */
6905 NULL, /* SADB_X_SPDACQUIRE */
6906 key_spddump, /* SADB_X_SPDDUMP */
6907 key_spdflush, /* SADB_X_SPDFLUSH */
6908 key_spdadd, /* SADB_X_SPDSETIDX */
6909 NULL, /* SADB_X_SPDEXPIRE */
6910 key_spddelete2, /* SADB_X_SPDDELETE2 */
6911 NULL, /* SADB_X_NAT_T_NEW_MAPPING */
6912 };
6913
6914 /*
6915 * parse sadb_msg buffer to process PFKEYv2,
6916 * and create a data to response if needed.
6917 * I think to be dealed with mbuf directly.
6918 * IN:
6919 * msgp : pointer to pointer to a received buffer pulluped.
6920 * This is rewrited to response.
6921 * so : pointer to socket.
6922 * OUT:
6923 * length for buffer to send to user process.
6924 */
6925 int
6926 key_parse(m, so)
6927 struct mbuf *m;
6928 struct socket *so;
6929 {
6930 struct sadb_msg *msg;
6931 struct sadb_msghdr mh;
6932 u_int orglen;
6933 int error;
6934 int target;
6935
6936 /* sanity check */
6937 if (m == NULL || so == NULL)
6938 panic("key_parse: NULL pointer is passed");
6939
6940 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
6941 KEYDEBUG(KEYDEBUG_KEY_DUMP,
6942 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
6943 kdebug_sadb(msg));
6944 #endif
6945
6946 if (m->m_len < sizeof(struct sadb_msg)) {
6947 m = m_pullup(m, sizeof(struct sadb_msg));
6948 if (!m)
6949 return ENOBUFS;
6950 }
6951 msg = mtod(m, struct sadb_msg *);
6952 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6953 target = KEY_SENDUP_ONE;
6954
6955 if ((m->m_flags & M_PKTHDR) == 0 ||
6956 m->m_pkthdr.len != m->m_pkthdr.len) {
6957 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
6958 pfkeystat.out_invlen++;
6959 error = EINVAL;
6960 goto senderror;
6961 }
6962
6963 if (msg->sadb_msg_version != PF_KEY_V2) {
6964 ipseclog((LOG_DEBUG,
6965 "key_parse: PF_KEY version %u is mismatched.\n",
6966 msg->sadb_msg_version));
6967 pfkeystat.out_invver++;
6968 error = EINVAL;
6969 goto senderror;
6970 }
6971
6972 if (msg->sadb_msg_type > SADB_MAX) {
6973 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
6974 msg->sadb_msg_type));
6975 pfkeystat.out_invmsgtype++;
6976 error = EINVAL;
6977 goto senderror;
6978 }
6979
6980 /* for old-fashioned code - should be nuked */
6981 if (m->m_pkthdr.len > MCLBYTES) {
6982 m_freem(m);
6983 return ENOBUFS;
6984 }
6985 if (m->m_next) {
6986 struct mbuf *n;
6987
6988 MGETHDR(n, M_DONTWAIT, MT_DATA);
6989 if (n && m->m_pkthdr.len > MHLEN) {
6990 MCLGET(n, M_DONTWAIT);
6991 if ((n->m_flags & M_EXT) == 0) {
6992 m_free(n);
6993 n = NULL;
6994 }
6995 }
6996 if (!n) {
6997 m_freem(m);
6998 return ENOBUFS;
6999 }
7000 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7001 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7002 n->m_next = NULL;
7003 m_freem(m);
7004 m = n;
7005 }
7006
7007 /* align the mbuf chain so that extensions are in contiguous region. */
7008 error = key_align(m, &mh);
7009 if (error)
7010 return error;
7011
7012 if (m->m_next) { /*XXX*/
7013 m_freem(m);
7014 return ENOBUFS;
7015 }
7016
7017 msg = mh.msg;
7018
7019 /* check SA type */
7020 switch (msg->sadb_msg_satype) {
7021 case SADB_SATYPE_UNSPEC:
7022 switch (msg->sadb_msg_type) {
7023 case SADB_GETSPI:
7024 case SADB_UPDATE:
7025 case SADB_ADD:
7026 case SADB_DELETE:
7027 case SADB_GET:
7028 case SADB_ACQUIRE:
7029 case SADB_EXPIRE:
7030 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7031 "when msg type=%u.\n", msg->sadb_msg_type));
7032 pfkeystat.out_invsatype++;
7033 error = EINVAL;
7034 goto senderror;
7035 }
7036 break;
7037 case SADB_SATYPE_AH:
7038 case SADB_SATYPE_ESP:
7039 case SADB_X_SATYPE_IPCOMP:
7040 case SADB_X_SATYPE_TCPSIGNATURE:
7041 switch (msg->sadb_msg_type) {
7042 case SADB_X_SPDADD:
7043 case SADB_X_SPDDELETE:
7044 case SADB_X_SPDGET:
7045 case SADB_X_SPDDUMP:
7046 case SADB_X_SPDFLUSH:
7047 case SADB_X_SPDSETIDX:
7048 case SADB_X_SPDUPDATE:
7049 case SADB_X_SPDDELETE2:
7050 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7051 msg->sadb_msg_type));
7052 pfkeystat.out_invsatype++;
7053 error = EINVAL;
7054 goto senderror;
7055 }
7056 break;
7057 case SADB_SATYPE_RSVP:
7058 case SADB_SATYPE_OSPFV2:
7059 case SADB_SATYPE_RIPV2:
7060 case SADB_SATYPE_MIP:
7061 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7062 msg->sadb_msg_satype));
7063 pfkeystat.out_invsatype++;
7064 error = EOPNOTSUPP;
7065 goto senderror;
7066 case 1: /* XXX: What does it do? */
7067 if (msg->sadb_msg_type == SADB_X_PROMISC)
7068 break;
7069 /*FALLTHROUGH*/
7070 default:
7071 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7072 msg->sadb_msg_satype));
7073 pfkeystat.out_invsatype++;
7074 error = EINVAL;
7075 goto senderror;
7076 }
7077
7078 /* check field of upper layer protocol and address family */
7079 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7080 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7081 struct sadb_address *src0, *dst0;
7082 u_int plen;
7083
7084 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7085 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7086
7087 /* check upper layer protocol */
7088 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7089 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7090 pfkeystat.out_invaddr++;
7091 error = EINVAL;
7092 goto senderror;
7093 }
7094
7095 /* check family */
7096 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7097 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7098 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7099 pfkeystat.out_invaddr++;
7100 error = EINVAL;
7101 goto senderror;
7102 }
7103 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7104 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7105 ipseclog((LOG_DEBUG,
7106 "key_parse: address struct size mismatched.\n"));
7107 pfkeystat.out_invaddr++;
7108 error = EINVAL;
7109 goto senderror;
7110 }
7111
7112 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7113 case AF_INET:
7114 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7115 sizeof(struct sockaddr_in)) {
7116 pfkeystat.out_invaddr++;
7117 error = EINVAL;
7118 goto senderror;
7119 }
7120 break;
7121 case AF_INET6:
7122 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7123 sizeof(struct sockaddr_in6)) {
7124 pfkeystat.out_invaddr++;
7125 error = EINVAL;
7126 goto senderror;
7127 }
7128 break;
7129 default:
7130 ipseclog((LOG_DEBUG,
7131 "key_parse: unsupported address family.\n"));
7132 pfkeystat.out_invaddr++;
7133 error = EAFNOSUPPORT;
7134 goto senderror;
7135 }
7136
7137 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7138 case AF_INET:
7139 plen = sizeof(struct in_addr) << 3;
7140 break;
7141 case AF_INET6:
7142 plen = sizeof(struct in6_addr) << 3;
7143 break;
7144 default:
7145 plen = 0; /*fool gcc*/
7146 break;
7147 }
7148
7149 /* check max prefix length */
7150 if (src0->sadb_address_prefixlen > plen ||
7151 dst0->sadb_address_prefixlen > plen) {
7152 ipseclog((LOG_DEBUG,
7153 "key_parse: illegal prefixlen.\n"));
7154 pfkeystat.out_invaddr++;
7155 error = EINVAL;
7156 goto senderror;
7157 }
7158
7159 /*
7160 * prefixlen == 0 is valid because there can be a case when
7161 * all addresses are matched.
7162 */
7163 }
7164
7165 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7166 key_typesw[msg->sadb_msg_type] == NULL) {
7167 pfkeystat.out_invmsgtype++;
7168 error = EINVAL;
7169 goto senderror;
7170 }
7171
7172 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7173
7174 senderror:
7175 msg->sadb_msg_errno = error;
7176 return key_sendup_mbuf(so, m, target);
7177 }
7178
7179 static int
7180 key_senderror(so, m, code)
7181 struct socket *so;
7182 struct mbuf *m;
7183 int code;
7184 {
7185 struct sadb_msg *msg;
7186
7187 if (m->m_len < sizeof(struct sadb_msg))
7188 panic("invalid mbuf passed to key_senderror");
7189
7190 msg = mtod(m, struct sadb_msg *);
7191 msg->sadb_msg_errno = code;
7192 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7193 }
7194
7195 /*
7196 * set the pointer to each header into message buffer.
7197 * m will be freed on error.
7198 * XXX larger-than-MCLBYTES extension?
7199 */
7200 static int
7201 key_align(m, mhp)
7202 struct mbuf *m;
7203 struct sadb_msghdr *mhp;
7204 {
7205 struct mbuf *n;
7206 struct sadb_ext *ext;
7207 size_t off, end;
7208 int extlen;
7209 int toff;
7210
7211 /* sanity check */
7212 if (m == NULL || mhp == NULL)
7213 panic("key_align: NULL pointer is passed");
7214 if (m->m_len < sizeof(struct sadb_msg))
7215 panic("invalid mbuf passed to key_align");
7216
7217 /* initialize */
7218 bzero(mhp, sizeof(*mhp));
7219
7220 mhp->msg = mtod(m, struct sadb_msg *);
7221 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7222
7223 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7224 extlen = end; /*just in case extlen is not updated*/
7225 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7226 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7227 if (!n) {
7228 /* m is already freed */
7229 return ENOBUFS;
7230 }
7231 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7232
7233 /* set pointer */
7234 switch (ext->sadb_ext_type) {
7235 case SADB_EXT_SA:
7236 case SADB_EXT_ADDRESS_SRC:
7237 case SADB_EXT_ADDRESS_DST:
7238 case SADB_EXT_ADDRESS_PROXY:
7239 case SADB_EXT_LIFETIME_CURRENT:
7240 case SADB_EXT_LIFETIME_HARD:
7241 case SADB_EXT_LIFETIME_SOFT:
7242 case SADB_EXT_KEY_AUTH:
7243 case SADB_EXT_KEY_ENCRYPT:
7244 case SADB_EXT_IDENTITY_SRC:
7245 case SADB_EXT_IDENTITY_DST:
7246 case SADB_EXT_SENSITIVITY:
7247 case SADB_EXT_PROPOSAL:
7248 case SADB_EXT_SUPPORTED_AUTH:
7249 case SADB_EXT_SUPPORTED_ENCRYPT:
7250 case SADB_EXT_SPIRANGE:
7251 case SADB_X_EXT_POLICY:
7252 case SADB_X_EXT_SA2:
7253 /* duplicate check */
7254 /*
7255 * XXX Are there duplication payloads of either
7256 * KEY_AUTH or KEY_ENCRYPT ?
7257 */
7258 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7259 ipseclog((LOG_DEBUG,
7260 "key_align: duplicate ext_type %u "
7261 "is passed.\n", ext->sadb_ext_type));
7262 m_freem(m);
7263 pfkeystat.out_dupext++;
7264 return EINVAL;
7265 }
7266 break;
7267 default:
7268 ipseclog((LOG_DEBUG,
7269 "key_align: invalid ext_type %u is passed.\n",
7270 ext->sadb_ext_type));
7271 m_freem(m);
7272 pfkeystat.out_invexttype++;
7273 return EINVAL;
7274 }
7275
7276 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7277
7278 if (key_validate_ext(ext, extlen)) {
7279 m_freem(m);
7280 pfkeystat.out_invlen++;
7281 return EINVAL;
7282 }
7283
7284 n = m_pulldown(m, off, extlen, &toff);
7285 if (!n) {
7286 /* m is already freed */
7287 return ENOBUFS;
7288 }
7289 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7290
7291 mhp->ext[ext->sadb_ext_type] = ext;
7292 mhp->extoff[ext->sadb_ext_type] = off;
7293 mhp->extlen[ext->sadb_ext_type] = extlen;
7294 }
7295
7296 if (off != end) {
7297 m_freem(m);
7298 pfkeystat.out_invlen++;
7299 return EINVAL;
7300 }
7301
7302 return 0;
7303 }
7304
7305 static int
7306 key_validate_ext(ext, len)
7307 const struct sadb_ext *ext;
7308 int len;
7309 {
7310 const struct sockaddr *sa;
7311 enum { NONE, ADDR } checktype = NONE;
7312 int baselen = 0;
7313 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7314
7315 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7316 return EINVAL;
7317
7318 /* if it does not match minimum/maximum length, bail */
7319 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7320 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7321 return EINVAL;
7322 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7323 return EINVAL;
7324 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7325 return EINVAL;
7326
7327 /* more checks based on sadb_ext_type XXX need more */
7328 switch (ext->sadb_ext_type) {
7329 case SADB_EXT_ADDRESS_SRC:
7330 case SADB_EXT_ADDRESS_DST:
7331 case SADB_EXT_ADDRESS_PROXY:
7332 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7333 checktype = ADDR;
7334 break;
7335 case SADB_EXT_IDENTITY_SRC:
7336 case SADB_EXT_IDENTITY_DST:
7337 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7338 SADB_X_IDENTTYPE_ADDR) {
7339 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7340 checktype = ADDR;
7341 } else
7342 checktype = NONE;
7343 break;
7344 default:
7345 checktype = NONE;
7346 break;
7347 }
7348
7349 switch (checktype) {
7350 case NONE:
7351 break;
7352 case ADDR:
7353 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7354 if (len < baselen + sal)
7355 return EINVAL;
7356 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7357 return EINVAL;
7358 break;
7359 }
7360
7361 return 0;
7362 }
7363
7364 void
7365 key_init()
7366 {
7367 int i;
7368
7369 callout_init(&key_timehandler_ch);
7370
7371 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7372 LIST_INIT(&sptree[i]);
7373 }
7374
7375 LIST_INIT(&sahtree);
7376
7377 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7378 LIST_INIT(®tree[i]);
7379 }
7380
7381 #ifndef IPSEC_NONBLOCK_ACQUIRE
7382 LIST_INIT(&acqtree);
7383 #endif
7384 LIST_INIT(&spacqtree);
7385
7386 /* system default */
7387 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7388 ip4_def_policy.refcnt++; /*never reclaim this*/
7389
7390
7391 #ifndef IPSEC_DEBUG2
7392 callout_reset(&key_timehandler_ch, hz, key_timehandler, (void *)0);
7393 #endif /*IPSEC_DEBUG2*/
7394
7395 /* initialize key statistics */
7396 keystat.getspi_count = 1;
7397
7398 printf("IPsec: Initialized Security Association Processing.\n");
7399
7400 return;
7401 }
7402
7403 /*
7404 * XXX: maybe This function is called after INBOUND IPsec processing.
7405 *
7406 * Special check for tunnel-mode packets.
7407 * We must make some checks for consistency between inner and outer IP header.
7408 *
7409 * xxx more checks to be provided
7410 */
7411 int
7412 key_checktunnelsanity(
7413 struct secasvar *sav,
7414 u_int family,
7415 caddr_t src,
7416 caddr_t dst
7417 )
7418 {
7419 /* sanity check */
7420 if (sav->sah == NULL)
7421 panic("sav->sah == NULL at key_checktunnelsanity");
7422
7423 /* XXX: check inner IP header */
7424
7425 return 1;
7426 }
7427
7428 #if 0
7429 #define hostnamelen strlen(hostname)
7430
7431 /*
7432 * Get FQDN for the host.
7433 * If the administrator configured hostname (by hostname(1)) without
7434 * domain name, returns nothing.
7435 */
7436 static const char *
7437 key_getfqdn()
7438 {
7439 int i;
7440 int hasdot;
7441 static char fqdn[MAXHOSTNAMELEN + 1];
7442
7443 if (!hostnamelen)
7444 return NULL;
7445
7446 /* check if it comes with domain name. */
7447 hasdot = 0;
7448 for (i = 0; i < hostnamelen; i++) {
7449 if (hostname[i] == '.')
7450 hasdot++;
7451 }
7452 if (!hasdot)
7453 return NULL;
7454
7455 /* NOTE: hostname may not be NUL-terminated. */
7456 bzero(fqdn, sizeof(fqdn));
7457 bcopy(hostname, fqdn, hostnamelen);
7458 fqdn[hostnamelen] = '\0';
7459 return fqdn;
7460 }
7461
7462 /*
7463 * get username@FQDN for the host/user.
7464 */
7465 static const char *
7466 key_getuserfqdn()
7467 {
7468 const char *host;
7469 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7470 struct proc *p = curproc;
7471 char *q;
7472
7473 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7474 return NULL;
7475 if (!(host = key_getfqdn()))
7476 return NULL;
7477
7478 /* NOTE: s_login may not be-NUL terminated. */
7479 bzero(userfqdn, sizeof(userfqdn));
7480 bcopy(p->p_pgrp->pg_session->s_login, userfqdn, MAXLOGNAME);
7481 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7482 q = userfqdn + strlen(userfqdn);
7483 *q++ = '@';
7484 bcopy(host, q, strlen(host));
7485 q += strlen(host);
7486 *q++ = '\0';
7487
7488 return userfqdn;
7489 }
7490 #endif
7491
7492 /* record data transfer on SA, and update timestamps */
7493 void
7494 key_sa_recordxfer(sav, m)
7495 struct secasvar *sav;
7496 struct mbuf *m;
7497 {
7498 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7499 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7500 if (!sav->lft_c)
7501 return;
7502
7503 /*
7504 * XXX Currently, there is a difference of bytes size
7505 * between inbound and outbound processing.
7506 */
7507 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7508 /* to check bytes lifetime is done in key_timehandler(). */
7509
7510 /*
7511 * We use the number of packets as the unit of
7512 * sadb_lifetime_allocations. We increment the variable
7513 * whenever {esp,ah}_{in,out}put is called.
7514 */
7515 sav->lft_c->sadb_lifetime_allocations++;
7516 /* XXX check for expires? */
7517
7518 /*
7519 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7520 * in seconds. HARD and SOFT lifetime are measured by the time
7521 * difference (again in seconds) from sadb_lifetime_usetime.
7522 *
7523 * usetime
7524 * v expire expire
7525 * -----+-----+--------+---> t
7526 * <--------------> HARD
7527 * <-----> SOFT
7528 */
7529 sav->lft_c->sadb_lifetime_usetime = time_second;
7530 /* XXX check for expires? */
7531
7532 return;
7533 }
7534
7535 /* dumb version */
7536 void
7537 key_sa_routechange(dst)
7538 struct sockaddr *dst;
7539 {
7540 struct secashead *sah;
7541 struct route *ro;
7542
7543 LIST_FOREACH(sah, &sahtree, chain) {
7544 ro = &sah->sa_route;
7545 if (dst->sa_len == rtcache_getdst(ro)->sa_len &&
7546 memcmp(dst, rtcache_getdst(ro), dst->sa_len) == 0)
7547 rtcache_free(ro);
7548 }
7549
7550 return;
7551 }
7552
7553 static void
7554 key_sa_chgstate(sav, state)
7555 struct secasvar *sav;
7556 u_int8_t state;
7557 {
7558 if (sav == NULL)
7559 panic("key_sa_chgstate called with sav == NULL");
7560
7561 if (sav->state == state)
7562 return;
7563
7564 if (__LIST_CHAINED(sav))
7565 LIST_REMOVE(sav, chain);
7566
7567 sav->state = state;
7568 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7569 }
7570
7571 void
7572 key_sa_stir_iv(sav)
7573 struct secasvar *sav;
7574 {
7575
7576 if (!sav->iv)
7577 panic("key_sa_stir_iv called with sav == NULL");
7578 key_randomfill(sav->iv, sav->ivlen);
7579 }
7580
7581 /* XXX too much? */
7582 static struct mbuf *
7583 key_alloc_mbuf(l)
7584 int l;
7585 {
7586 struct mbuf *m = NULL, *n;
7587 int len, t;
7588
7589 len = l;
7590 while (len > 0) {
7591 MGET(n, M_DONTWAIT, MT_DATA);
7592 if (n && len > MLEN)
7593 MCLGET(n, M_DONTWAIT);
7594 if (!n) {
7595 m_freem(m);
7596 return NULL;
7597 }
7598
7599 n->m_next = NULL;
7600 n->m_len = 0;
7601 n->m_len = M_TRAILINGSPACE(n);
7602 /* use the bottom of mbuf, hoping we can prepend afterwards */
7603 if (n->m_len > len) {
7604 t = (n->m_len - len) & ~(sizeof(long) - 1);
7605 n->m_data += t;
7606 n->m_len = len;
7607 }
7608
7609 len -= n->m_len;
7610
7611 if (m)
7612 m_cat(m, n);
7613 else
7614 m = n;
7615 }
7616
7617 return m;
7618 }
7619
7620 static struct mbuf *
7621 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7622 {
7623 struct secashead *sah;
7624 struct secasvar *sav;
7625 u_int16_t proto;
7626 u_int stateidx;
7627 u_int8_t satype;
7628 u_int8_t state;
7629 int cnt;
7630 struct mbuf *m, *n;
7631
7632 /* map satype to proto */
7633 if ((proto = key_satype2proto(req_satype)) == 0) {
7634 *errorp = EINVAL;
7635 return (NULL);
7636 }
7637
7638 /* count sav entries to be sent to the userland. */
7639 cnt = 0;
7640 LIST_FOREACH(sah, &sahtree, chain) {
7641 if (req_satype != SADB_SATYPE_UNSPEC &&
7642 proto != sah->saidx.proto)
7643 continue;
7644
7645 for (stateidx = 0;
7646 stateidx < _ARRAYLEN(saorder_state_any);
7647 stateidx++) {
7648 state = saorder_state_any[stateidx];
7649 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7650 cnt++;
7651 }
7652 }
7653 }
7654
7655 if (cnt == 0) {
7656 *errorp = ENOENT;
7657 return (NULL);
7658 }
7659
7660 /* send this to the userland, one at a time. */
7661 m = NULL;
7662 LIST_FOREACH(sah, &sahtree, chain) {
7663 if (req_satype != SADB_SATYPE_UNSPEC &&
7664 proto != sah->saidx.proto)
7665 continue;
7666
7667 /* map proto to satype */
7668 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7669 m_freem(m);
7670 *errorp = EINVAL;
7671 return (NULL);
7672 }
7673
7674 for (stateidx = 0;
7675 stateidx < _ARRAYLEN(saorder_state_any);
7676 stateidx++) {
7677 state = saorder_state_any[stateidx];
7678 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7679 n = key_setdumpsa(sav, SADB_DUMP, satype,
7680 --cnt, pid);
7681 if (!n) {
7682 m_freem(m);
7683 *errorp = ENOBUFS;
7684 return (NULL);
7685 }
7686
7687 if (!m)
7688 m = n;
7689 else
7690 m_cat(m, n);
7691 }
7692 }
7693 }
7694
7695 if (!m) {
7696 *errorp = EINVAL;
7697 return (NULL);
7698 }
7699
7700 if ((m->m_flags & M_PKTHDR) != 0) {
7701 m->m_pkthdr.len = 0;
7702 for (n = m; n; n = n->m_next)
7703 m->m_pkthdr.len += n->m_len;
7704 }
7705
7706 *errorp = 0;
7707 return (m);
7708 }
7709
7710 static struct mbuf *
7711 key_setspddump(int *errorp, pid_t pid)
7712 {
7713 struct secpolicy *sp;
7714 int cnt;
7715 u_int dir;
7716 struct mbuf *m, *n;
7717
7718 /* search SPD entry and get buffer size. */
7719 cnt = 0;
7720 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7721 LIST_FOREACH(sp, &sptree[dir], chain) {
7722 cnt++;
7723 }
7724 }
7725
7726 if (cnt == 0) {
7727 *errorp = ENOENT;
7728 return (NULL);
7729 }
7730
7731 m = NULL;
7732 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7733 LIST_FOREACH(sp, &sptree[dir], chain) {
7734 --cnt;
7735 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
7736
7737 if (!n) {
7738 *errorp = ENOBUFS;
7739 m_freem(m);
7740 return (NULL);
7741 }
7742 if (!m)
7743 m = n;
7744 else {
7745 m->m_pkthdr.len += n->m_pkthdr.len;
7746 m_cat(m, n);
7747 }
7748 }
7749 }
7750
7751 *errorp = 0;
7752 return (m);
7753 }
7754
7755 static int
7756 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
7757 {
7758 struct mbuf *m, *n;
7759 int err2 = 0;
7760 char *p, *ep;
7761 size_t len;
7762 int s, error;
7763
7764 if (newp)
7765 return (EPERM);
7766 if (namelen != 1)
7767 return (EINVAL);
7768
7769 s = splsoftnet();
7770 m = key_setdump(name[0], &error, l->l_proc->p_pid);
7771 splx(s);
7772 if (!m)
7773 return (error);
7774 if (!oldp)
7775 *oldlenp = m->m_pkthdr.len;
7776 else {
7777 p = oldp;
7778 if (*oldlenp < m->m_pkthdr.len) {
7779 err2 = ENOMEM;
7780 ep = p + *oldlenp;
7781 } else {
7782 *oldlenp = m->m_pkthdr.len;
7783 ep = p + m->m_pkthdr.len;
7784 }
7785 for (n = m; n; n = n->m_next) {
7786 len = (ep - p < n->m_len) ?
7787 ep - p : n->m_len;
7788 error = copyout(mtod(n, const void *), p, len);
7789 p += len;
7790 if (error)
7791 break;
7792 }
7793 if (error == 0)
7794 error = err2;
7795 }
7796 m_freem(m);
7797
7798 return (error);
7799 }
7800
7801 static int
7802 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
7803 {
7804 struct mbuf *m, *n;
7805 int err2 = 0;
7806 char *p, *ep;
7807 size_t len;
7808 int s, error;
7809
7810 if (newp)
7811 return (EPERM);
7812 if (namelen != 0)
7813 return (EINVAL);
7814
7815 s = splsoftnet();
7816 m = key_setspddump(&error, l->l_proc->p_pid);
7817 splx(s);
7818 if (!m)
7819 return (error);
7820 if (!oldp)
7821 *oldlenp = m->m_pkthdr.len;
7822 else {
7823 p = oldp;
7824 if (*oldlenp < m->m_pkthdr.len) {
7825 err2 = ENOMEM;
7826 ep = p + *oldlenp;
7827 } else {
7828 *oldlenp = m->m_pkthdr.len;
7829 ep = p + m->m_pkthdr.len;
7830 }
7831 for (n = m; n; n = n->m_next) {
7832 len = (ep - p < n->m_len) ?
7833 ep - p : n->m_len;
7834 error = copyout(mtod(n, const void *), p, len);
7835 p += len;
7836 if (error)
7837 break;
7838 }
7839 if (error == 0)
7840 error = err2;
7841 }
7842 m_freem(m);
7843
7844 return (error);
7845 }
7846
7847 /*
7848 * Create sysctl tree for native FAST_IPSEC key knobs, originally
7849 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
7850 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
7851 * and in any case the part of our sysctl namespace used for dumping the
7852 * SPD and SA database *HAS* to be compatible with the KAME sysctl
7853 * namespace, for API reasons.
7854 *
7855 * Pending a consensus on the right way to fix this, add a level of
7856 * indirection in how we number the `native' FAST_IPSEC key nodes;
7857 * and (as requested by Andrew Brown) move registration of the
7858 * KAME-compatible names to a separate function.
7859 */
7860 #if 0
7861 # define FAST_IPSEC_PFKEY PF_KEY_V2
7862 # define FAST_IPSEC_PFKEY_NAME "keyv2"
7863 #else
7864 # define FAST_IPSEC_PFKEY PF_KEY
7865 # define FAST_IPSEC_PFKEY_NAME "key"
7866 #endif
7867
7868 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
7869 {
7870
7871 sysctl_createv(clog, 0, NULL, NULL,
7872 CTLFLAG_PERMANENT,
7873 CTLTYPE_NODE, "net", NULL,
7874 NULL, 0, NULL, 0,
7875 CTL_NET, CTL_EOL);
7876 sysctl_createv(clog, 0, NULL, NULL,
7877 CTLFLAG_PERMANENT,
7878 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL,
7879 NULL, 0, NULL, 0,
7880 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL);
7881
7882 sysctl_createv(clog, 0, NULL, NULL,
7883 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7884 CTLTYPE_INT, "debug", NULL,
7885 NULL, 0, &key_debug_level, 0,
7886 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
7887 sysctl_createv(clog, 0, NULL, NULL,
7888 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7889 CTLTYPE_INT, "spi_try", NULL,
7890 NULL, 0, &key_spi_trycnt, 0,
7891 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
7892 sysctl_createv(clog, 0, NULL, NULL,
7893 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7894 CTLTYPE_INT, "spi_min_value", NULL,
7895 NULL, 0, &key_spi_minval, 0,
7896 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
7897 sysctl_createv(clog, 0, NULL, NULL,
7898 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7899 CTLTYPE_INT, "spi_max_value", NULL,
7900 NULL, 0, &key_spi_maxval, 0,
7901 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
7902 sysctl_createv(clog, 0, NULL, NULL,
7903 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7904 CTLTYPE_INT, "random_int", NULL,
7905 NULL, 0, &key_int_random, 0,
7906 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
7907 sysctl_createv(clog, 0, NULL, NULL,
7908 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7909 CTLTYPE_INT, "larval_lifetime", NULL,
7910 NULL, 0, &key_larval_lifetime, 0,
7911 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
7912 sysctl_createv(clog, 0, NULL, NULL,
7913 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7914 CTLTYPE_INT, "blockacq_count", NULL,
7915 NULL, 0, &key_blockacq_count, 0,
7916 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
7917 sysctl_createv(clog, 0, NULL, NULL,
7918 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7919 CTLTYPE_INT, "blockacq_lifetime", NULL,
7920 NULL, 0, &key_blockacq_lifetime, 0,
7921 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
7922 sysctl_createv(clog, 0, NULL, NULL,
7923 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7924 CTLTYPE_INT, "esp_keymin", NULL,
7925 NULL, 0, &ipsec_esp_keymin, 0,
7926 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
7927 sysctl_createv(clog, 0, NULL, NULL,
7928 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7929 CTLTYPE_INT, "prefered_oldsa", NULL,
7930 NULL, 0, &key_prefered_oldsa, 0,
7931 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
7932 sysctl_createv(clog, 0, NULL, NULL,
7933 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7934 CTLTYPE_INT, "esp_auth", NULL,
7935 NULL, 0, &ipsec_esp_auth, 0,
7936 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
7937 sysctl_createv(clog, 0, NULL, NULL,
7938 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7939 CTLTYPE_INT, "ah_keymin", NULL,
7940 NULL, 0, &ipsec_ah_keymin, 0,
7941 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
7942 }
7943
7944 /*
7945 * Register sysctl names used by setkey(8). For historical reasons,
7946 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
7947 * for both FAST_IPSEC and KAME IPSEC.
7948 */
7949 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC")
7950 {
7951
7952 /* Make sure net.key exists before we register nodes underneath it. */
7953 sysctl_createv(clog, 0, NULL, NULL,
7954 CTLFLAG_PERMANENT,
7955 CTLTYPE_NODE, "net", NULL,
7956 NULL, 0, NULL, 0,
7957 CTL_NET, CTL_EOL);
7958 sysctl_createv(clog, 0, NULL, NULL,
7959 CTLFLAG_PERMANENT,
7960 CTLTYPE_NODE, "key", NULL,
7961 NULL, 0, NULL, 0,
7962 CTL_NET, PF_KEY, CTL_EOL);
7963
7964 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
7965 sysctl_createv(clog, 0, NULL, NULL,
7966 CTLFLAG_PERMANENT,
7967 CTLTYPE_STRUCT, "dumpsa", NULL,
7968 sysctl_net_key_dumpsa, 0, NULL, 0,
7969 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
7970 sysctl_createv(clog, 0, NULL, NULL,
7971 CTLFLAG_PERMANENT,
7972 CTLTYPE_STRUCT, "dumpsp", NULL,
7973 sysctl_net_key_dumpsp, 0, NULL, 0,
7974 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
7975 }
7976