key.c revision 1.42 1 /* $NetBSD: key.c,v 1.42 2007/03/09 00:40:39 liamjfoy Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.42 2007/03/09 00:40:39 liamjfoy Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66
67 #include <net/if.h>
68 #include <net/route.h>
69 #include <net/raw_cb.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #ifdef INET
76 #include <netinet/ip_var.h>
77 #endif
78
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet6/in6_var.h>
82 #include <netinet6/ip6_var.h>
83 #endif /* INET6 */
84
85 #ifdef INET
86 #include <netinet/in_pcb.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/in6_pcb.h>
90 #endif /* INET6 */
91
92 #include <net/pfkeyv2.h>
93 #include <netipsec/keydb.h>
94 #include <netipsec/key.h>
95 #include <netipsec/keysock.h>
96 #include <netipsec/key_debug.h>
97
98 #include <netipsec/ipsec.h>
99 #ifdef INET6
100 #include <netipsec/ipsec6.h>
101 #endif
102
103 #include <netipsec/xform.h>
104 #include <netipsec/ipsec_osdep.h>
105 #include <netipsec/ipcomp.h>
106
107
108 #include <machine/stdarg.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 /*
117 * Note on SA reference counting:
118 * - SAs that are not in DEAD state will have (total external reference + 1)
119 * following value in reference count field. they cannot be freed and are
120 * referenced from SA header.
121 * - SAs that are in DEAD state will have (total external reference)
122 * in reference count field. they are ready to be freed. reference from
123 * SA header will be removed in key_delsav(), when the reference count
124 * field hits 0 (= no external reference other than from SA header.
125 */
126
127 u_int32_t key_debug_level = 0;
128 static u_int key_spi_trycnt = 1000;
129 static u_int32_t key_spi_minval = 0x100;
130 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
131 static u_int32_t policy_id = 0;
132 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
133 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
134 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
135 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
136 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
137
138 static u_int32_t acq_seq = 0;
139 static int key_tick_init_random = 0;
140
141 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
142 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
143 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
144 /* registed list */
145 #ifndef IPSEC_NONBLOCK_ACQUIRE
146 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
147 #endif
148 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
149
150 /* search order for SAs */
151 static u_int saorder_state_valid[] = {
152 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
153 /*
154 * This order is important because we must select the oldest SA
155 * for outbound processing. For inbound, This is not important.
156 */
157 };
158 static u_int saorder_state_alive[] = {
159 /* except DEAD */
160 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
161 };
162 static u_int saorder_state_any[] = {
163 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
164 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
165 };
166
167 static const int minsize[] = {
168 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
169 sizeof(struct sadb_sa), /* SADB_EXT_SA */
170 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
171 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
172 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
173 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
174 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
175 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
176 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
177 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
178 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
179 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
180 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
181 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
182 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
183 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
184 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
185 0, /* SADB_X_EXT_KMPRIVATE */
186 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
187 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
188 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
189 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
190 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
191 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OA */
192 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
193 };
194 static const int maxsize[] = {
195 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
196 sizeof(struct sadb_sa), /* SADB_EXT_SA */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
200 0, /* SADB_EXT_ADDRESS_SRC */
201 0, /* SADB_EXT_ADDRESS_DST */
202 0, /* SADB_EXT_ADDRESS_PROXY */
203 0, /* SADB_EXT_KEY_AUTH */
204 0, /* SADB_EXT_KEY_ENCRYPT */
205 0, /* SADB_EXT_IDENTITY_SRC */
206 0, /* SADB_EXT_IDENTITY_DST */
207 0, /* SADB_EXT_SENSITIVITY */
208 0, /* SADB_EXT_PROPOSAL */
209 0, /* SADB_EXT_SUPPORTED_AUTH */
210 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
211 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
212 0, /* SADB_X_EXT_KMPRIVATE */
213 0, /* SADB_X_EXT_POLICY */
214 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
215 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
217 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
218 0, /* SADB_X_EXT_NAT_T_OA */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221
222 static int ipsec_esp_keymin = 256;
223 static int ipsec_esp_auth = 0;
224 static int ipsec_ah_keymin = 128;
225
226 #ifdef SYSCTL_DECL
227 SYSCTL_DECL(_net_key);
228 #endif
229
230 #ifdef SYSCTL_INT
231 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
232 &key_debug_level, 0, "");
233
234 /* max count of trial for the decision of spi value */
235 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
236 &key_spi_trycnt, 0, "");
237
238 /* minimum spi value to allocate automatically. */
239 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
240 &key_spi_minval, 0, "");
241
242 /* maximun spi value to allocate automatically. */
243 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
244 &key_spi_maxval, 0, "");
245
246 /* interval to initialize randseed */
247 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
248 &key_int_random, 0, "");
249
250 /* lifetime for larval SA */
251 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
252 &key_larval_lifetime, 0, "");
253
254 /* counter for blocking to send SADB_ACQUIRE to IKEd */
255 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
256 &key_blockacq_count, 0, "");
257
258 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
259 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
260 &key_blockacq_lifetime, 0, "");
261
262 /* ESP auth */
263 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
264 &ipsec_esp_auth, 0, "");
265
266 /* minimum ESP key length */
267 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
268 &ipsec_esp_keymin, 0, "");
269
270 /* minimum AH key length */
271 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
272 &ipsec_ah_keymin, 0, "");
273
274 /* perfered old SA rather than new SA */
275 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
276 &key_prefered_oldsa, 0, "");
277 #endif /* SYSCTL_INT */
278
279 #ifndef LIST_FOREACH
280 #define LIST_FOREACH(elm, head, field) \
281 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
282 #endif
283 #define __LIST_CHAINED(elm) \
284 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
285 #define LIST_INSERT_TAIL(head, elm, type, field) \
286 do {\
287 struct type *curelm = LIST_FIRST(head); \
288 if (curelm == NULL) {\
289 LIST_INSERT_HEAD(head, elm, field); \
290 } else { \
291 while (LIST_NEXT(curelm, field)) \
292 curelm = LIST_NEXT(curelm, field);\
293 LIST_INSERT_AFTER(curelm, elm, field);\
294 }\
295 } while (0)
296
297 #define KEY_CHKSASTATE(head, sav, name) \
298 do { \
299 if ((head) != (sav)) { \
300 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
301 (name), (head), (sav))); \
302 continue; \
303 } \
304 } while (0)
305
306 #define KEY_CHKSPDIR(head, sp, name) \
307 do { \
308 if ((head) != (sp)) { \
309 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
310 "anyway continue.\n", \
311 (name), (head), (sp))); \
312 } \
313 } while (0)
314
315 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
316
317 #if 1
318 #define KMALLOC(p, t, n) \
319 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
320 #define KFREE(p) \
321 free((p), M_SECA)
322 #else
323 #define KMALLOC(p, t, n) \
324 do { \
325 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
326 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
327 __FILE__, __LINE__, (p), #t, n); \
328 } while (0)
329
330 #define KFREE(p) \
331 do { \
332 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
333 free((p), M_SECA); \
334 } while (0)
335 #endif
336
337 /*
338 * set parameters into secpolicyindex buffer.
339 * Must allocate secpolicyindex buffer passed to this function.
340 */
341 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
342 do { \
343 bzero((idx), sizeof(struct secpolicyindex)); \
344 (idx)->dir = (_dir); \
345 (idx)->prefs = (ps); \
346 (idx)->prefd = (pd); \
347 (idx)->ul_proto = (ulp); \
348 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
349 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
350 } while (0)
351
352 /*
353 * set parameters into secasindex buffer.
354 * Must allocate secasindex buffer before calling this function.
355 */
356 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
357 do { \
358 bzero((idx), sizeof(struct secasindex)); \
359 (idx)->proto = (p); \
360 (idx)->mode = (m); \
361 (idx)->reqid = (r); \
362 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
363 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
364 } while (0)
365
366 /* key statistics */
367 struct _keystat {
368 u_long getspi_count; /* the avarage of count to try to get new SPI */
369 } keystat;
370
371 struct sadb_msghdr {
372 struct sadb_msg *msg;
373 struct sadb_ext *ext[SADB_EXT_MAX + 1];
374 int extoff[SADB_EXT_MAX + 1];
375 int extlen[SADB_EXT_MAX + 1];
376 };
377
378 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
379 static void key_freesp_so __P((struct secpolicy **));
380 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
381 static void key_delsp __P((struct secpolicy *));
382 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
383 static struct secpolicy *key_getspbyid __P((u_int32_t));
384 static u_int16_t key_newreqid __P((void));
385 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
386 const struct sadb_msghdr *, int, int, ...));
387 static int key_spdadd __P((struct socket *, struct mbuf *,
388 const struct sadb_msghdr *));
389 static u_int32_t key_getnewspid __P((void));
390 static int key_spddelete __P((struct socket *, struct mbuf *,
391 const struct sadb_msghdr *));
392 static int key_spddelete2 __P((struct socket *, struct mbuf *,
393 const struct sadb_msghdr *));
394 static int key_spdget __P((struct socket *, struct mbuf *,
395 const struct sadb_msghdr *));
396 static int key_spdflush __P((struct socket *, struct mbuf *,
397 const struct sadb_msghdr *));
398 static int key_spddump __P((struct socket *, struct mbuf *,
399 const struct sadb_msghdr *));
400 static struct mbuf * key_setspddump __P((int *errorp, pid_t));
401 static struct mbuf * key_setspddump_chain __P((int *errorp, int *lenp, pid_t pid));
402 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
403 u_int8_t, u_int32_t, pid_t));
404 static u_int key_getspreqmsglen __P((struct secpolicy *));
405 static int key_spdexpire __P((struct secpolicy *));
406 static struct secashead *key_newsah __P((struct secasindex *));
407 static void key_delsah __P((struct secashead *));
408 static struct secasvar *key_newsav __P((struct mbuf *,
409 const struct sadb_msghdr *, struct secashead *, int *,
410 const char*, int));
411 #define KEY_NEWSAV(m, sadb, sah, e) \
412 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
413 static void key_delsav __P((struct secasvar *));
414 static struct secashead *key_getsah __P((struct secasindex *));
415 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
416 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
417 static int key_setsaval __P((struct secasvar *, struct mbuf *,
418 const struct sadb_msghdr *));
419 static int key_mature __P((struct secasvar *));
420 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
421 u_int8_t, u_int32_t, u_int32_t));
422 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
423 u_int32_t, pid_t, u_int16_t));
424 static struct mbuf *key_setsadbsa __P((struct secasvar *));
425 static struct mbuf *key_setsadbaddr __P((u_int16_t,
426 const struct sockaddr *, u_int8_t, u_int16_t));
427 #if 0
428 static struct mbuf *key_setsadbident __P((u_int16_t, u_int16_t, void *,
429 int, u_int64_t));
430 #endif
431 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int16_t));
432 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
433 u_int32_t));
434 static void *key_newbuf __P((const void *, u_int));
435 #ifdef INET6
436 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
437 #endif
438
439 /* flags for key_cmpsaidx() */
440 #define CMP_HEAD 1 /* protocol, addresses. */
441 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
442 #define CMP_REQID 3 /* additionally HEAD, reaid. */
443 #define CMP_EXACTLY 4 /* all elements. */
444 static int key_cmpsaidx
445 __P((const struct secasindex *, const struct secasindex *, int));
446
447 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
448 static int key_bbcmp __P((const void *, const void *, u_int));
449 static void key_srandom __P((void));
450 static u_int16_t key_satype2proto __P((u_int8_t));
451 static u_int8_t key_proto2satype __P((u_int16_t));
452
453 static int key_getspi __P((struct socket *, struct mbuf *,
454 const struct sadb_msghdr *));
455 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
456 struct secasindex *));
457 static int key_update __P((struct socket *, struct mbuf *,
458 const struct sadb_msghdr *));
459 #ifdef IPSEC_DOSEQCHECK
460 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
461 #endif
462 static int key_add __P((struct socket *, struct mbuf *,
463 const struct sadb_msghdr *));
464 static int key_setident __P((struct secashead *, struct mbuf *,
465 const struct sadb_msghdr *));
466 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
467 const struct sadb_msghdr *));
468 static int key_delete __P((struct socket *, struct mbuf *,
469 const struct sadb_msghdr *));
470 static int key_get __P((struct socket *, struct mbuf *,
471 const struct sadb_msghdr *));
472
473 static void key_getcomb_setlifetime __P((struct sadb_comb *));
474 static struct mbuf *key_getcomb_esp __P((void));
475 static struct mbuf *key_getcomb_ah __P((void));
476 static struct mbuf *key_getcomb_ipcomp __P((void));
477 static struct mbuf *key_getprop __P((const struct secasindex *));
478
479 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
480 #ifndef IPSEC_NONBLOCK_ACQUIRE
481 static struct secacq *key_newacq __P((const struct secasindex *));
482 static struct secacq *key_getacq __P((const struct secasindex *));
483 static struct secacq *key_getacqbyseq __P((u_int32_t));
484 #endif
485 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
486 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
487 static int key_acquire2 __P((struct socket *, struct mbuf *,
488 const struct sadb_msghdr *));
489 static int key_register __P((struct socket *, struct mbuf *,
490 const struct sadb_msghdr *));
491 static int key_expire __P((struct secasvar *));
492 static int key_flush __P((struct socket *, struct mbuf *,
493 const struct sadb_msghdr *));
494 static struct mbuf *key_setdump_chain __P((u_int8_t req_satype, int *errorp,
495 int *lenp, pid_t pid));
496 static int key_dump __P((struct socket *, struct mbuf *,
497 const struct sadb_msghdr *));
498 static int key_promisc __P((struct socket *, struct mbuf *,
499 const struct sadb_msghdr *));
500 static int key_senderror __P((struct socket *, struct mbuf *, int));
501 static int key_validate_ext __P((const struct sadb_ext *, int));
502 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
503 #if 0
504 static const char *key_getfqdn __P((void));
505 static const char *key_getuserfqdn __P((void));
506 #endif
507 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
508 static inline void key_sp_dead __P((struct secpolicy *));
509 static void key_sp_unlink __P((struct secpolicy *sp));
510
511 static struct mbuf *key_alloc_mbuf __P((int));
512 struct callout key_timehandler_ch;
513
514 #define SA_ADDREF(p) do { \
515 (p)->refcnt++; \
516 IPSEC_ASSERT((p)->refcnt != 0, \
517 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
518 } while (0)
519 #define SA_DELREF(p) do { \
520 IPSEC_ASSERT((p)->refcnt > 0, \
521 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
522 (p)->refcnt--; \
523 } while (0)
524
525 #define SP_ADDREF(p) do { \
526 (p)->refcnt++; \
527 IPSEC_ASSERT((p)->refcnt != 0, \
528 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
529 } while (0)
530 #define SP_DELREF(p) do { \
531 IPSEC_ASSERT((p)->refcnt > 0, \
532 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
533 (p)->refcnt--; \
534 } while (0)
535
536
537 static inline void
538 key_sp_dead(struct secpolicy *sp)
539 {
540
541 /* mark the SP dead */
542 sp->state = IPSEC_SPSTATE_DEAD;
543 }
544
545 static void
546 key_sp_unlink(struct secpolicy *sp)
547 {
548
549 /* remove from SP index */
550 if (__LIST_CHAINED(sp)) {
551 LIST_REMOVE(sp, chain);
552 /* Release refcount held just for being on chain */
553 KEY_FREESP(&sp);
554 }
555 }
556
557
558 /*
559 * Return 0 when there are known to be no SP's for the specified
560 * direction. Otherwise return 1. This is used by IPsec code
561 * to optimize performance.
562 */
563 int
564 key_havesp(u_int dir)
565 {
566 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
567 LIST_FIRST(&sptree[dir]) != NULL : 1);
568 }
569
570 /* %%% IPsec policy management */
571 /*
572 * allocating a SP for OUTBOUND or INBOUND packet.
573 * Must call key_freesp() later.
574 * OUT: NULL: not found
575 * others: found and return the pointer.
576 */
577 struct secpolicy *
578 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
579 {
580 struct secpolicy *sp;
581 int s;
582
583 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
584 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
585 ("key_allocsp: invalid direction %u", dir));
586
587 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
588 printf("DP key_allocsp from %s:%u\n", where, tag));
589
590 /* get a SP entry */
591 s = splsoftnet(); /*called from softclock()*/
592 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
593 printf("*** objects\n");
594 kdebug_secpolicyindex(spidx));
595
596 LIST_FOREACH(sp, &sptree[dir], chain) {
597 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
598 printf("*** in SPD\n");
599 kdebug_secpolicyindex(&sp->spidx));
600
601 if (sp->state == IPSEC_SPSTATE_DEAD)
602 continue;
603 if (key_cmpspidx_withmask(&sp->spidx, spidx))
604 goto found;
605 }
606 sp = NULL;
607 found:
608 if (sp) {
609 /* sanity check */
610 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
611
612 /* found a SPD entry */
613 sp->lastused = time_second;
614 SP_ADDREF(sp);
615 }
616 splx(s);
617
618 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
619 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n",
620 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
621 return sp;
622 }
623
624 /*
625 * allocating a SP for OUTBOUND or INBOUND packet.
626 * Must call key_freesp() later.
627 * OUT: NULL: not found
628 * others: found and return the pointer.
629 */
630 struct secpolicy *
631 key_allocsp2(u_int32_t spi,
632 union sockaddr_union *dst,
633 u_int8_t proto,
634 u_int dir,
635 const char* where, int tag)
636 {
637 struct secpolicy *sp;
638 int s;
639
640 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
641 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
642 ("key_allocsp2: invalid direction %u", dir));
643
644 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
645 printf("DP key_allocsp2 from %s:%u\n", where, tag));
646
647 /* get a SP entry */
648 s = splsoftnet(); /*called from softclock()*/
649 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
650 printf("*** objects\n");
651 printf("spi %u proto %u dir %u\n", spi, proto, dir);
652 kdebug_sockaddr(&dst->sa));
653
654 LIST_FOREACH(sp, &sptree[dir], chain) {
655 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
656 printf("*** in SPD\n");
657 kdebug_secpolicyindex(&sp->spidx));
658
659 if (sp->state == IPSEC_SPSTATE_DEAD)
660 continue;
661 /* compare simple values, then dst address */
662 if (sp->spidx.ul_proto != proto)
663 continue;
664 /* NB: spi's must exist and match */
665 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
666 continue;
667 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
668 goto found;
669 }
670 sp = NULL;
671 found:
672 if (sp) {
673 /* sanity check */
674 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
675
676 /* found a SPD entry */
677 sp->lastused = time_second;
678 SP_ADDREF(sp);
679 }
680 splx(s);
681
682 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
683 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n",
684 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
685 return sp;
686 }
687
688 /*
689 * return a policy that matches this particular inbound packet.
690 * XXX slow
691 */
692 struct secpolicy *
693 key_gettunnel(const struct sockaddr *osrc,
694 const struct sockaddr *odst,
695 const struct sockaddr *isrc,
696 const struct sockaddr *idst,
697 const char* where, int tag)
698 {
699 struct secpolicy *sp;
700 const int dir = IPSEC_DIR_INBOUND;
701 int s;
702 struct ipsecrequest *r1, *r2, *p;
703 struct secpolicyindex spidx;
704
705 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
706 printf("DP key_gettunnel from %s:%u\n", where, tag));
707
708 if (isrc->sa_family != idst->sa_family) {
709 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
710 isrc->sa_family, idst->sa_family));
711 sp = NULL;
712 goto done;
713 }
714
715 s = splsoftnet(); /*called from softclock()*/
716 LIST_FOREACH(sp, &sptree[dir], chain) {
717 if (sp->state == IPSEC_SPSTATE_DEAD)
718 continue;
719
720 r1 = r2 = NULL;
721 for (p = sp->req; p; p = p->next) {
722 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
723 continue;
724
725 r1 = r2;
726 r2 = p;
727
728 if (!r1) {
729 /* here we look at address matches only */
730 spidx = sp->spidx;
731 if (isrc->sa_len > sizeof(spidx.src) ||
732 idst->sa_len > sizeof(spidx.dst))
733 continue;
734 bcopy(isrc, &spidx.src, isrc->sa_len);
735 bcopy(idst, &spidx.dst, idst->sa_len);
736 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
737 continue;
738 } else {
739 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
740 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
741 continue;
742 }
743
744 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
745 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
746 continue;
747
748 goto found;
749 }
750 }
751 sp = NULL;
752 found:
753 if (sp) {
754 sp->lastused = time_second;
755 SP_ADDREF(sp);
756 }
757 splx(s);
758 done:
759 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
760 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n",
761 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
762 return sp;
763 }
764
765 /*
766 * allocating an SA entry for an *OUTBOUND* packet.
767 * checking each request entries in SP, and acquire an SA if need.
768 * OUT: 0: there are valid requests.
769 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
770 */
771 int
772 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
773 {
774 u_int level;
775 int error;
776
777 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
778 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
779 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
780 saidx->mode == IPSEC_MODE_TUNNEL,
781 ("key_checkrequest: unexpected policy %u", saidx->mode));
782
783 /* get current level */
784 level = ipsec_get_reqlevel(isr);
785
786 /*
787 * XXX guard against protocol callbacks from the crypto
788 * thread as they reference ipsecrequest.sav which we
789 * temporarily null out below. Need to rethink how we
790 * handle bundled SA's in the callback thread.
791 */
792 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
793 #if 0
794 /*
795 * We do allocate new SA only if the state of SA in the holder is
796 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
797 */
798 if (isr->sav != NULL) {
799 if (isr->sav->sah == NULL)
800 panic("key_checkrequest: sah is null");
801 if (isr->sav == (struct secasvar *)LIST_FIRST(
802 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
803 KEY_FREESAV(&isr->sav);
804 isr->sav = NULL;
805 }
806 }
807 #else
808 /*
809 * we free any SA stashed in the IPsec request because a different
810 * SA may be involved each time this request is checked, either
811 * because new SAs are being configured, or this request is
812 * associated with an unconnected datagram socket, or this request
813 * is associated with a system default policy.
814 *
815 * The operation may have negative impact to performance. We may
816 * want to check cached SA carefully, rather than picking new SA
817 * every time.
818 */
819 if (isr->sav != NULL) {
820 KEY_FREESAV(&isr->sav);
821 isr->sav = NULL;
822 }
823 #endif
824
825 /*
826 * new SA allocation if no SA found.
827 * key_allocsa_policy should allocate the oldest SA available.
828 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
829 */
830 if (isr->sav == NULL)
831 isr->sav = key_allocsa_policy(saidx);
832
833 /* When there is SA. */
834 if (isr->sav != NULL) {
835 if (isr->sav->state != SADB_SASTATE_MATURE &&
836 isr->sav->state != SADB_SASTATE_DYING)
837 return EINVAL;
838 return 0;
839 }
840
841 /* there is no SA */
842 error = key_acquire(saidx, isr->sp);
843 if (error != 0) {
844 /* XXX What should I do ? */
845 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
846 "from key_acquire.\n", error));
847 return error;
848 }
849
850 if (level != IPSEC_LEVEL_REQUIRE) {
851 /* XXX sigh, the interface to this routine is botched */
852 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
853 return 0;
854 } else {
855 return ENOENT;
856 }
857 }
858
859 /*
860 * allocating a SA for policy entry from SAD.
861 * NOTE: searching SAD of aliving state.
862 * OUT: NULL: not found.
863 * others: found and return the pointer.
864 */
865 static struct secasvar *
866 key_allocsa_policy(const struct secasindex *saidx)
867 {
868 struct secashead *sah;
869 struct secasvar *sav;
870 u_int stateidx, state;
871
872 LIST_FOREACH(sah, &sahtree, chain) {
873 if (sah->state == SADB_SASTATE_DEAD)
874 continue;
875 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
876 goto found;
877 }
878
879 return NULL;
880
881 found:
882
883 /* search valid state */
884 for (stateidx = 0;
885 stateidx < _ARRAYLEN(saorder_state_valid);
886 stateidx++) {
887
888 state = saorder_state_valid[stateidx];
889
890 sav = key_do_allocsa_policy(sah, state);
891 if (sav != NULL)
892 return sav;
893 }
894
895 return NULL;
896 }
897
898 /*
899 * searching SAD with direction, protocol, mode and state.
900 * called by key_allocsa_policy().
901 * OUT:
902 * NULL : not found
903 * others : found, pointer to a SA.
904 */
905 static struct secasvar *
906 key_do_allocsa_policy(struct secashead *sah, u_int state)
907 {
908 struct secasvar *sav, *nextsav, *candidate, *d;
909
910 /* initilize */
911 candidate = NULL;
912
913 for (sav = LIST_FIRST(&sah->savtree[state]);
914 sav != NULL;
915 sav = nextsav) {
916
917 nextsav = LIST_NEXT(sav, chain);
918
919 /* sanity check */
920 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
921
922 /* initialize */
923 if (candidate == NULL) {
924 candidate = sav;
925 continue;
926 }
927
928 /* Which SA is the better ? */
929
930 /* sanity check 2 */
931 if (candidate->lft_c == NULL || sav->lft_c == NULL)
932 panic("key_do_allocsa_policy: "
933 "lifetime_current is NULL");
934
935 /* What the best method is to compare ? */
936 if (key_prefered_oldsa) {
937 if (candidate->lft_c->sadb_lifetime_addtime >
938 sav->lft_c->sadb_lifetime_addtime) {
939 candidate = sav;
940 }
941 continue;
942 /*NOTREACHED*/
943 }
944
945 /* prefered new sa rather than old sa */
946 if (candidate->lft_c->sadb_lifetime_addtime <
947 sav->lft_c->sadb_lifetime_addtime) {
948 d = candidate;
949 candidate = sav;
950 } else
951 d = sav;
952
953 /*
954 * prepared to delete the SA when there is more
955 * suitable candidate and the lifetime of the SA is not
956 * permanent.
957 */
958 if (d->lft_c->sadb_lifetime_addtime != 0) {
959 struct mbuf *m, *result;
960
961 key_sa_chgstate(d, SADB_SASTATE_DEAD);
962
963 IPSEC_ASSERT(d->refcnt > 0,
964 ("key_do_allocsa_policy: bogus ref count"));
965 m = key_setsadbmsg(SADB_DELETE, 0,
966 d->sah->saidx.proto, 0, 0, d->refcnt - 1);
967 if (!m)
968 goto msgfail;
969 result = m;
970
971 /* set sadb_address for saidx's. */
972 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
973 &d->sah->saidx.src.sa,
974 d->sah->saidx.src.sa.sa_len << 3,
975 IPSEC_ULPROTO_ANY);
976 if (!m)
977 goto msgfail;
978 m_cat(result, m);
979
980 /* set sadb_address for saidx's. */
981 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
982 &d->sah->saidx.src.sa,
983 d->sah->saidx.src.sa.sa_len << 3,
984 IPSEC_ULPROTO_ANY);
985 if (!m)
986 goto msgfail;
987 m_cat(result, m);
988
989 /* create SA extension */
990 m = key_setsadbsa(d);
991 if (!m)
992 goto msgfail;
993 m_cat(result, m);
994
995 if (result->m_len < sizeof(struct sadb_msg)) {
996 result = m_pullup(result,
997 sizeof(struct sadb_msg));
998 if (result == NULL)
999 goto msgfail;
1000 }
1001
1002 result->m_pkthdr.len = 0;
1003 for (m = result; m; m = m->m_next)
1004 result->m_pkthdr.len += m->m_len;
1005 mtod(result, struct sadb_msg *)->sadb_msg_len =
1006 PFKEY_UNIT64(result->m_pkthdr.len);
1007
1008 if (key_sendup_mbuf(NULL, result,
1009 KEY_SENDUP_REGISTERED))
1010 goto msgfail;
1011 msgfail:
1012 KEY_FREESAV(&d);
1013 }
1014 }
1015
1016 if (candidate) {
1017 SA_ADDREF(candidate);
1018 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1019 printf("DP allocsa_policy cause "
1020 "refcnt++:%d SA:%p\n",
1021 candidate->refcnt, candidate));
1022 }
1023 return candidate;
1024 }
1025
1026 /*
1027 * allocating a usable SA entry for a *INBOUND* packet.
1028 * Must call key_freesav() later.
1029 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1030 * NULL: not found, or error occurred.
1031 *
1032 * In the comparison, no source address is used--for RFC2401 conformance.
1033 * To quote, from section 4.1:
1034 * A security association is uniquely identified by a triple consisting
1035 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1036 * security protocol (AH or ESP) identifier.
1037 * Note that, however, we do need to keep source address in IPsec SA.
1038 * IKE specification and PF_KEY specification do assume that we
1039 * keep source address in IPsec SA. We see a tricky situation here.
1040 */
1041 struct secasvar *
1042 key_allocsa(
1043 const union sockaddr_union *dst,
1044 u_int proto,
1045 u_int32_t spi,
1046 const char* where, int tag)
1047 {
1048 struct secashead *sah;
1049 struct secasvar *sav;
1050 u_int stateidx, state;
1051 int s;
1052
1053 int must_check_spi = 1;
1054 int must_check_alg = 0;
1055 u_int16_t cpi = 0;
1056 u_int8_t algo = 0;
1057
1058 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1059
1060 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1061 printf("DP key_allocsa from %s:%u\n", where, tag));
1062
1063 /*
1064 * XXX IPCOMP case
1065 * We use cpi to define spi here. In the case where cpi <=
1066 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1067 * the real spi. In this case, don't check the spi but check the
1068 * algorithm
1069 */
1070
1071 if (proto == IPPROTO_IPCOMP) {
1072 u_int32_t tmp;
1073 tmp = ntohl(spi);
1074 cpi = (u_int16_t) tmp;
1075 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1076 algo = (u_int8_t) cpi;
1077 must_check_spi = 0;
1078 must_check_alg = 1;
1079 }
1080 }
1081
1082 /*
1083 * searching SAD.
1084 * XXX: to be checked internal IP header somewhere. Also when
1085 * IPsec tunnel packet is received. But ESP tunnel mode is
1086 * encrypted so we can't check internal IP header.
1087 */
1088 s = splsoftnet(); /*called from softclock()*/
1089 LIST_FOREACH(sah, &sahtree, chain) {
1090 /* search valid state */
1091 for (stateidx = 0;
1092 stateidx < _ARRAYLEN(saorder_state_valid);
1093 stateidx++) {
1094 state = saorder_state_valid[stateidx];
1095 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1096 /* sanity check */
1097 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1098 /* do not return entries w/ unusable state */
1099 if (sav->state != SADB_SASTATE_MATURE &&
1100 sav->state != SADB_SASTATE_DYING)
1101 continue;
1102 if (proto != sav->sah->saidx.proto)
1103 continue;
1104 if (must_check_spi && spi != sav->spi)
1105 continue;
1106 /* XXX only on the ipcomp case */
1107 if (must_check_alg && algo != sav->alg_comp)
1108 continue;
1109
1110 #if 0 /* don't check src */
1111 /* check src address */
1112 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1113 continue;
1114 #endif
1115 /* check dst address */
1116 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1117 continue;
1118 SA_ADDREF(sav);
1119 goto done;
1120 }
1121 }
1122 }
1123 sav = NULL;
1124 done:
1125 splx(s);
1126
1127 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1128 printf("DP key_allocsa return SA:%p; refcnt %u\n",
1129 sav, sav ? sav->refcnt : 0));
1130 return sav;
1131 }
1132
1133 /*
1134 * Must be called after calling key_allocsp().
1135 * For both the packet without socket and key_freeso().
1136 */
1137 void
1138 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1139 {
1140 struct secpolicy *sp = *spp;
1141
1142 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1143
1144 SP_DELREF(sp);
1145
1146 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1147 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1148 sp, sp->id, where, tag, sp->refcnt));
1149
1150 if (sp->refcnt == 0) {
1151 *spp = NULL;
1152 key_delsp(sp);
1153 }
1154 }
1155
1156 /*
1157 * Must be called after calling key_allocsp().
1158 * For the packet with socket.
1159 */
1160 void
1161 key_freeso(struct socket *so)
1162 {
1163 /* sanity check */
1164 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1165
1166 switch (so->so_proto->pr_domain->dom_family) {
1167 #ifdef INET
1168 case PF_INET:
1169 {
1170 struct inpcb *pcb = sotoinpcb(so);
1171
1172 /* Does it have a PCB ? */
1173 if (pcb == NULL)
1174 return;
1175 key_freesp_so(&pcb->inp_sp->sp_in);
1176 key_freesp_so(&pcb->inp_sp->sp_out);
1177 }
1178 break;
1179 #endif
1180 #ifdef INET6
1181 case PF_INET6:
1182 {
1183 #ifdef HAVE_NRL_INPCB
1184 struct inpcb *pcb = sotoinpcb(so);
1185
1186 /* Does it have a PCB ? */
1187 if (pcb == NULL)
1188 return;
1189 key_freesp_so(&pcb->inp_sp->sp_in);
1190 key_freesp_so(&pcb->inp_sp->sp_out);
1191 #else
1192 struct in6pcb *pcb = sotoin6pcb(so);
1193
1194 /* Does it have a PCB ? */
1195 if (pcb == NULL)
1196 return;
1197 key_freesp_so(&pcb->in6p_sp->sp_in);
1198 key_freesp_so(&pcb->in6p_sp->sp_out);
1199 #endif
1200 }
1201 break;
1202 #endif /* INET6 */
1203 default:
1204 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1205 so->so_proto->pr_domain->dom_family));
1206 return;
1207 }
1208 }
1209
1210 static void
1211 key_freesp_so(struct secpolicy **sp)
1212 {
1213 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1214
1215 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1216 (*sp)->policy == IPSEC_POLICY_BYPASS)
1217 return;
1218
1219 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1220 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1221 KEY_FREESP(sp);
1222 }
1223
1224 /*
1225 * Must be called after calling key_allocsa().
1226 * This function is called by key_freesp() to free some SA allocated
1227 * for a policy.
1228 */
1229 void
1230 key_freesav(struct secasvar **psav, const char* where, int tag)
1231 {
1232 struct secasvar *sav = *psav;
1233
1234 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1235
1236 SA_DELREF(sav);
1237
1238 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1239 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1240 sav, (u_long)ntohl(sav->spi),
1241 where, tag, sav->refcnt));
1242
1243 if (sav->refcnt == 0) {
1244 *psav = NULL;
1245 key_delsav(sav);
1246 }
1247 }
1248
1249 /* %%% SPD management */
1250 /*
1251 * free security policy entry.
1252 */
1253 static void
1254 key_delsp(struct secpolicy *sp)
1255 {
1256 int s;
1257
1258 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1259
1260 key_sp_dead(sp);
1261
1262 IPSEC_ASSERT(sp->refcnt == 0,
1263 ("key_delsp: SP with references deleted (refcnt %u)",
1264 sp->refcnt));
1265
1266 s = splsoftnet(); /*called from softclock()*/
1267
1268 {
1269 struct ipsecrequest *isr = sp->req, *nextisr;
1270
1271 while (isr != NULL) {
1272 if (isr->sav != NULL) {
1273 KEY_FREESAV(&isr->sav);
1274 isr->sav = NULL;
1275 }
1276
1277 nextisr = isr->next;
1278 KFREE(isr);
1279 isr = nextisr;
1280 }
1281 }
1282
1283 KFREE(sp);
1284
1285 splx(s);
1286 }
1287
1288 /*
1289 * search SPD
1290 * OUT: NULL : not found
1291 * others : found, pointer to a SP.
1292 */
1293 static struct secpolicy *
1294 key_getsp(struct secpolicyindex *spidx)
1295 {
1296 struct secpolicy *sp;
1297
1298 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1299
1300 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1301 if (sp->state == IPSEC_SPSTATE_DEAD)
1302 continue;
1303 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1304 SP_ADDREF(sp);
1305 return sp;
1306 }
1307 }
1308
1309 return NULL;
1310 }
1311
1312 /*
1313 * get SP by index.
1314 * OUT: NULL : not found
1315 * others : found, pointer to a SP.
1316 */
1317 static struct secpolicy *
1318 key_getspbyid(u_int32_t id)
1319 {
1320 struct secpolicy *sp;
1321
1322 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1323 if (sp->state == IPSEC_SPSTATE_DEAD)
1324 continue;
1325 if (sp->id == id) {
1326 SP_ADDREF(sp);
1327 return sp;
1328 }
1329 }
1330
1331 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1332 if (sp->state == IPSEC_SPSTATE_DEAD)
1333 continue;
1334 if (sp->id == id) {
1335 SP_ADDREF(sp);
1336 return sp;
1337 }
1338 }
1339
1340 return NULL;
1341 }
1342
1343 struct secpolicy *
1344 key_newsp(const char* where, int tag)
1345 {
1346 struct secpolicy *newsp = NULL;
1347
1348 newsp = (struct secpolicy *)
1349 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1350 if (newsp) {
1351 newsp->refcnt = 1;
1352 newsp->req = NULL;
1353 }
1354
1355 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1356 printf("DP key_newsp from %s:%u return SP:%p\n",
1357 where, tag, newsp));
1358 return newsp;
1359 }
1360
1361 /*
1362 * create secpolicy structure from sadb_x_policy structure.
1363 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1364 * so must be set properly later.
1365 */
1366 struct secpolicy *
1367 key_msg2sp(xpl0, len, error)
1368 struct sadb_x_policy *xpl0;
1369 size_t len;
1370 int *error;
1371 {
1372 struct secpolicy *newsp;
1373
1374 /* sanity check */
1375 if (xpl0 == NULL)
1376 panic("key_msg2sp: NULL pointer was passed");
1377 if (len < sizeof(*xpl0))
1378 panic("key_msg2sp: invalid length");
1379 if (len != PFKEY_EXTLEN(xpl0)) {
1380 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1381 *error = EINVAL;
1382 return NULL;
1383 }
1384
1385 if ((newsp = KEY_NEWSP()) == NULL) {
1386 *error = ENOBUFS;
1387 return NULL;
1388 }
1389
1390 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1391 newsp->policy = xpl0->sadb_x_policy_type;
1392
1393 /* check policy */
1394 switch (xpl0->sadb_x_policy_type) {
1395 case IPSEC_POLICY_DISCARD:
1396 case IPSEC_POLICY_NONE:
1397 case IPSEC_POLICY_ENTRUST:
1398 case IPSEC_POLICY_BYPASS:
1399 newsp->req = NULL;
1400 break;
1401
1402 case IPSEC_POLICY_IPSEC:
1403 {
1404 int tlen;
1405 struct sadb_x_ipsecrequest *xisr;
1406 struct ipsecrequest **p_isr = &newsp->req;
1407
1408 /* validity check */
1409 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1410 ipseclog((LOG_DEBUG,
1411 "key_msg2sp: Invalid msg length.\n"));
1412 KEY_FREESP(&newsp);
1413 *error = EINVAL;
1414 return NULL;
1415 }
1416
1417 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1418 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1419
1420 while (tlen > 0) {
1421 /* length check */
1422 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1423 ipseclog((LOG_DEBUG, "key_msg2sp: "
1424 "invalid ipsecrequest length.\n"));
1425 KEY_FREESP(&newsp);
1426 *error = EINVAL;
1427 return NULL;
1428 }
1429
1430 /* allocate request buffer */
1431 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1432 if ((*p_isr) == NULL) {
1433 ipseclog((LOG_DEBUG,
1434 "key_msg2sp: No more memory.\n"));
1435 KEY_FREESP(&newsp);
1436 *error = ENOBUFS;
1437 return NULL;
1438 }
1439 bzero(*p_isr, sizeof(**p_isr));
1440
1441 /* set values */
1442 (*p_isr)->next = NULL;
1443
1444 switch (xisr->sadb_x_ipsecrequest_proto) {
1445 case IPPROTO_ESP:
1446 case IPPROTO_AH:
1447 case IPPROTO_IPCOMP:
1448 break;
1449 default:
1450 ipseclog((LOG_DEBUG,
1451 "key_msg2sp: invalid proto type=%u\n",
1452 xisr->sadb_x_ipsecrequest_proto));
1453 KEY_FREESP(&newsp);
1454 *error = EPROTONOSUPPORT;
1455 return NULL;
1456 }
1457 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1458
1459 switch (xisr->sadb_x_ipsecrequest_mode) {
1460 case IPSEC_MODE_TRANSPORT:
1461 case IPSEC_MODE_TUNNEL:
1462 break;
1463 case IPSEC_MODE_ANY:
1464 default:
1465 ipseclog((LOG_DEBUG,
1466 "key_msg2sp: invalid mode=%u\n",
1467 xisr->sadb_x_ipsecrequest_mode));
1468 KEY_FREESP(&newsp);
1469 *error = EINVAL;
1470 return NULL;
1471 }
1472 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1473
1474 switch (xisr->sadb_x_ipsecrequest_level) {
1475 case IPSEC_LEVEL_DEFAULT:
1476 case IPSEC_LEVEL_USE:
1477 case IPSEC_LEVEL_REQUIRE:
1478 break;
1479 case IPSEC_LEVEL_UNIQUE:
1480 /* validity check */
1481 /*
1482 * If range violation of reqid, kernel will
1483 * update it, don't refuse it.
1484 */
1485 if (xisr->sadb_x_ipsecrequest_reqid
1486 > IPSEC_MANUAL_REQID_MAX) {
1487 ipseclog((LOG_DEBUG,
1488 "key_msg2sp: reqid=%d range "
1489 "violation, updated by kernel.\n",
1490 xisr->sadb_x_ipsecrequest_reqid));
1491 xisr->sadb_x_ipsecrequest_reqid = 0;
1492 }
1493
1494 /* allocate new reqid id if reqid is zero. */
1495 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1496 u_int16_t reqid;
1497 if ((reqid = key_newreqid()) == 0) {
1498 KEY_FREESP(&newsp);
1499 *error = ENOBUFS;
1500 return NULL;
1501 }
1502 (*p_isr)->saidx.reqid = reqid;
1503 xisr->sadb_x_ipsecrequest_reqid = reqid;
1504 } else {
1505 /* set it for manual keying. */
1506 (*p_isr)->saidx.reqid =
1507 xisr->sadb_x_ipsecrequest_reqid;
1508 }
1509 break;
1510
1511 default:
1512 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1513 xisr->sadb_x_ipsecrequest_level));
1514 KEY_FREESP(&newsp);
1515 *error = EINVAL;
1516 return NULL;
1517 }
1518 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1519
1520 /* set IP addresses if there */
1521 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1522 struct sockaddr *paddr;
1523
1524 paddr = (struct sockaddr *)(xisr + 1);
1525
1526 /* validity check */
1527 if (paddr->sa_len
1528 > sizeof((*p_isr)->saidx.src)) {
1529 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1530 "address length.\n"));
1531 KEY_FREESP(&newsp);
1532 *error = EINVAL;
1533 return NULL;
1534 }
1535 bcopy(paddr, &(*p_isr)->saidx.src,
1536 paddr->sa_len);
1537
1538 paddr = (struct sockaddr *)((char *)paddr
1539 + paddr->sa_len);
1540
1541 /* validity check */
1542 if (paddr->sa_len
1543 > sizeof((*p_isr)->saidx.dst)) {
1544 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1545 "address length.\n"));
1546 KEY_FREESP(&newsp);
1547 *error = EINVAL;
1548 return NULL;
1549 }
1550 bcopy(paddr, &(*p_isr)->saidx.dst,
1551 paddr->sa_len);
1552 }
1553
1554 (*p_isr)->sav = NULL;
1555 (*p_isr)->sp = newsp;
1556
1557 /* initialization for the next. */
1558 p_isr = &(*p_isr)->next;
1559 tlen -= xisr->sadb_x_ipsecrequest_len;
1560
1561 /* validity check */
1562 if (tlen < 0) {
1563 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1564 KEY_FREESP(&newsp);
1565 *error = EINVAL;
1566 return NULL;
1567 }
1568
1569 xisr = (struct sadb_x_ipsecrequest *)((char *)xisr
1570 + xisr->sadb_x_ipsecrequest_len);
1571 }
1572 }
1573 break;
1574 default:
1575 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1576 KEY_FREESP(&newsp);
1577 *error = EINVAL;
1578 return NULL;
1579 }
1580
1581 *error = 0;
1582 return newsp;
1583 }
1584
1585 static u_int16_t
1586 key_newreqid()
1587 {
1588 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1589
1590 auto_reqid = (auto_reqid == 0xffff
1591 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1592
1593 /* XXX should be unique check */
1594
1595 return auto_reqid;
1596 }
1597
1598 /*
1599 * copy secpolicy struct to sadb_x_policy structure indicated.
1600 */
1601 struct mbuf *
1602 key_sp2msg(sp)
1603 struct secpolicy *sp;
1604 {
1605 struct sadb_x_policy *xpl;
1606 int tlen;
1607 char *p;
1608 struct mbuf *m;
1609
1610 /* sanity check. */
1611 if (sp == NULL)
1612 panic("key_sp2msg: NULL pointer was passed");
1613
1614 tlen = key_getspreqmsglen(sp);
1615
1616 m = key_alloc_mbuf(tlen);
1617 if (!m || m->m_next) { /*XXX*/
1618 if (m)
1619 m_freem(m);
1620 return NULL;
1621 }
1622
1623 m->m_len = tlen;
1624 m->m_next = NULL;
1625 xpl = mtod(m, struct sadb_x_policy *);
1626 bzero(xpl, tlen);
1627
1628 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1629 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1630 xpl->sadb_x_policy_type = sp->policy;
1631 xpl->sadb_x_policy_dir = sp->spidx.dir;
1632 xpl->sadb_x_policy_id = sp->id;
1633 p = (char *)xpl + sizeof(*xpl);
1634
1635 /* if is the policy for ipsec ? */
1636 if (sp->policy == IPSEC_POLICY_IPSEC) {
1637 struct sadb_x_ipsecrequest *xisr;
1638 struct ipsecrequest *isr;
1639
1640 for (isr = sp->req; isr != NULL; isr = isr->next) {
1641
1642 xisr = (struct sadb_x_ipsecrequest *)p;
1643
1644 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1645 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1646 xisr->sadb_x_ipsecrequest_level = isr->level;
1647 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1648
1649 p += sizeof(*xisr);
1650 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1651 p += isr->saidx.src.sa.sa_len;
1652 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1653 p += isr->saidx.src.sa.sa_len;
1654
1655 xisr->sadb_x_ipsecrequest_len =
1656 PFKEY_ALIGN8(sizeof(*xisr)
1657 + isr->saidx.src.sa.sa_len
1658 + isr->saidx.dst.sa.sa_len);
1659 }
1660 }
1661
1662 return m;
1663 }
1664
1665 /* m will not be freed nor modified */
1666 static struct mbuf *
1667 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1668 int ndeep, int nitem, ...)
1669 {
1670 va_list ap;
1671 int idx;
1672 int i;
1673 struct mbuf *result = NULL, *n;
1674 int len;
1675
1676 if (m == NULL || mhp == NULL)
1677 panic("null pointer passed to key_gather");
1678
1679 va_start(ap, nitem);
1680 for (i = 0; i < nitem; i++) {
1681 idx = va_arg(ap, int);
1682 if (idx < 0 || idx > SADB_EXT_MAX)
1683 goto fail;
1684 /* don't attempt to pull empty extension */
1685 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1686 continue;
1687 if (idx != SADB_EXT_RESERVED &&
1688 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1689 continue;
1690
1691 if (idx == SADB_EXT_RESERVED) {
1692 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1693 #ifdef DIAGNOSTIC
1694 if (len > MHLEN)
1695 panic("assumption failed");
1696 #endif
1697 MGETHDR(n, M_DONTWAIT, MT_DATA);
1698 if (!n)
1699 goto fail;
1700 n->m_len = len;
1701 n->m_next = NULL;
1702 m_copydata(m, 0, sizeof(struct sadb_msg),
1703 mtod(n, void *));
1704 } else if (i < ndeep) {
1705 len = mhp->extlen[idx];
1706 n = key_alloc_mbuf(len);
1707 if (!n || n->m_next) { /*XXX*/
1708 if (n)
1709 m_freem(n);
1710 goto fail;
1711 }
1712 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1713 mtod(n, void *));
1714 } else {
1715 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1716 M_DONTWAIT);
1717 }
1718 if (n == NULL)
1719 goto fail;
1720
1721 if (result)
1722 m_cat(result, n);
1723 else
1724 result = n;
1725 }
1726 va_end(ap);
1727
1728 if ((result->m_flags & M_PKTHDR) != 0) {
1729 result->m_pkthdr.len = 0;
1730 for (n = result; n; n = n->m_next)
1731 result->m_pkthdr.len += n->m_len;
1732 }
1733
1734 return result;
1735
1736 fail:
1737 va_end(ap);
1738 m_freem(result);
1739 return NULL;
1740 }
1741
1742 /*
1743 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1744 * add an entry to SP database, when received
1745 * <base, address(SD), (lifetime(H),) policy>
1746 * from the user(?).
1747 * Adding to SP database,
1748 * and send
1749 * <base, address(SD), (lifetime(H),) policy>
1750 * to the socket which was send.
1751 *
1752 * SPDADD set a unique policy entry.
1753 * SPDSETIDX like SPDADD without a part of policy requests.
1754 * SPDUPDATE replace a unique policy entry.
1755 *
1756 * m will always be freed.
1757 */
1758 static int
1759 key_spdadd(so, m, mhp)
1760 struct socket *so;
1761 struct mbuf *m;
1762 const struct sadb_msghdr *mhp;
1763 {
1764 struct sadb_address *src0, *dst0;
1765 struct sadb_x_policy *xpl0, *xpl;
1766 struct sadb_lifetime *lft = NULL;
1767 struct secpolicyindex spidx;
1768 struct secpolicy *newsp;
1769 int error;
1770
1771 /* sanity check */
1772 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1773 panic("key_spdadd: NULL pointer is passed");
1774
1775 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1776 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1777 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1778 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1779 return key_senderror(so, m, EINVAL);
1780 }
1781 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1782 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1783 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1784 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1785 return key_senderror(so, m, EINVAL);
1786 }
1787 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1788 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1789 < sizeof(struct sadb_lifetime)) {
1790 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1791 return key_senderror(so, m, EINVAL);
1792 }
1793 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1794 }
1795
1796 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1797 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1798 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1799
1800 /* make secindex */
1801 /* XXX boundary check against sa_len */
1802 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1803 src0 + 1,
1804 dst0 + 1,
1805 src0->sadb_address_prefixlen,
1806 dst0->sadb_address_prefixlen,
1807 src0->sadb_address_proto,
1808 &spidx);
1809
1810 /* checking the direciton. */
1811 switch (xpl0->sadb_x_policy_dir) {
1812 case IPSEC_DIR_INBOUND:
1813 case IPSEC_DIR_OUTBOUND:
1814 break;
1815 default:
1816 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1817 mhp->msg->sadb_msg_errno = EINVAL;
1818 return 0;
1819 }
1820
1821 /* check policy */
1822 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1823 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1824 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1825 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1826 return key_senderror(so, m, EINVAL);
1827 }
1828
1829 /* policy requests are mandatory when action is ipsec. */
1830 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1831 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1832 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1833 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1834 return key_senderror(so, m, EINVAL);
1835 }
1836
1837 /*
1838 * checking there is SP already or not.
1839 * SPDUPDATE doesn't depend on whether there is a SP or not.
1840 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1841 * then error.
1842 */
1843 newsp = key_getsp(&spidx);
1844 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1845 if (newsp) {
1846 key_sp_dead(newsp);
1847 key_sp_unlink(newsp); /* XXX jrs ordering */
1848 KEY_FREESP(&newsp);
1849 newsp = NULL;
1850 }
1851 } else {
1852 if (newsp != NULL) {
1853 KEY_FREESP(&newsp);
1854 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1855 return key_senderror(so, m, EEXIST);
1856 }
1857 }
1858
1859 /* allocation new SP entry */
1860 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1861 return key_senderror(so, m, error);
1862 }
1863
1864 if ((newsp->id = key_getnewspid()) == 0) {
1865 KFREE(newsp);
1866 return key_senderror(so, m, ENOBUFS);
1867 }
1868
1869 /* XXX boundary check against sa_len */
1870 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1871 src0 + 1,
1872 dst0 + 1,
1873 src0->sadb_address_prefixlen,
1874 dst0->sadb_address_prefixlen,
1875 src0->sadb_address_proto,
1876 &newsp->spidx);
1877
1878 /* sanity check on addr pair */
1879 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1880 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1881 KFREE(newsp);
1882 return key_senderror(so, m, EINVAL);
1883 }
1884 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1885 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1886 KFREE(newsp);
1887 return key_senderror(so, m, EINVAL);
1888 }
1889 #if 1
1890 if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1891 struct sockaddr *sa;
1892 sa = (struct sockaddr *)(src0 + 1);
1893 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1894 KFREE(newsp);
1895 return key_senderror(so, m, EINVAL);
1896 }
1897 }
1898 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1899 struct sockaddr *sa;
1900 sa = (struct sockaddr *)(dst0 + 1);
1901 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1902 KFREE(newsp);
1903 return key_senderror(so, m, EINVAL);
1904 }
1905 }
1906 #endif
1907
1908 newsp->created = time_second;
1909 newsp->lastused = newsp->created;
1910 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1911 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1912
1913 newsp->refcnt = 1; /* do not reclaim until I say I do */
1914 newsp->state = IPSEC_SPSTATE_ALIVE;
1915 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1916
1917 /* delete the entry in spacqtree */
1918 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1919 struct secspacq *spacq;
1920 if ((spacq = key_getspacq(&spidx)) != NULL) {
1921 /* reset counter in order to deletion by timehandler. */
1922 spacq->created = time_second;
1923 spacq->count = 0;
1924 }
1925 }
1926
1927 #if defined(__NetBSD__)
1928 /* Invalidate all cached SPD pointers in the PCBs. */
1929 ipsec_invalpcbcacheall();
1930
1931 #if defined(GATEWAY)
1932 /* Invalidate the ipflow cache, as well. */
1933 ipflow_invalidate_all();
1934 #ifdef INET6
1935 ip6flow_invalidate_all();
1936 #endif /* INET6 */
1937 #endif /* GATEWAY */
1938 #endif /* __NetBSD__ */
1939
1940 {
1941 struct mbuf *n, *mpolicy;
1942 struct sadb_msg *newmsg;
1943 int off;
1944
1945 /* create new sadb_msg to reply. */
1946 if (lft) {
1947 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1948 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1949 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1950 } else {
1951 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1952 SADB_X_EXT_POLICY,
1953 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1954 }
1955 if (!n)
1956 return key_senderror(so, m, ENOBUFS);
1957
1958 if (n->m_len < sizeof(*newmsg)) {
1959 n = m_pullup(n, sizeof(*newmsg));
1960 if (!n)
1961 return key_senderror(so, m, ENOBUFS);
1962 }
1963 newmsg = mtod(n, struct sadb_msg *);
1964 newmsg->sadb_msg_errno = 0;
1965 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1966
1967 off = 0;
1968 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1969 sizeof(*xpl), &off);
1970 if (mpolicy == NULL) {
1971 /* n is already freed */
1972 return key_senderror(so, m, ENOBUFS);
1973 }
1974 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
1975 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1976 m_freem(n);
1977 return key_senderror(so, m, EINVAL);
1978 }
1979 xpl->sadb_x_policy_id = newsp->id;
1980
1981 m_freem(m);
1982 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1983 }
1984 }
1985
1986 /*
1987 * get new policy id.
1988 * OUT:
1989 * 0: failure.
1990 * others: success.
1991 */
1992 static u_int32_t
1993 key_getnewspid()
1994 {
1995 u_int32_t newid = 0;
1996 int count = key_spi_trycnt; /* XXX */
1997 struct secpolicy *sp;
1998
1999 /* when requesting to allocate spi ranged */
2000 while (count--) {
2001 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2002
2003 if ((sp = key_getspbyid(newid)) == NULL)
2004 break;
2005
2006 KEY_FREESP(&sp);
2007 }
2008
2009 if (count == 0 || newid == 0) {
2010 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2011 return 0;
2012 }
2013
2014 return newid;
2015 }
2016
2017 /*
2018 * SADB_SPDDELETE processing
2019 * receive
2020 * <base, address(SD), policy(*)>
2021 * from the user(?), and set SADB_SASTATE_DEAD,
2022 * and send,
2023 * <base, address(SD), policy(*)>
2024 * to the ikmpd.
2025 * policy(*) including direction of policy.
2026 *
2027 * m will always be freed.
2028 */
2029 static int
2030 key_spddelete(so, m, mhp)
2031 struct socket *so;
2032 struct mbuf *m;
2033 const struct sadb_msghdr *mhp;
2034 {
2035 struct sadb_address *src0, *dst0;
2036 struct sadb_x_policy *xpl0;
2037 struct secpolicyindex spidx;
2038 struct secpolicy *sp;
2039
2040 /* sanity check */
2041 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2042 panic("key_spddelete: NULL pointer is passed");
2043
2044 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2045 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2046 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2047 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2048 return key_senderror(so, m, EINVAL);
2049 }
2050 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2051 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2052 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2053 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2054 return key_senderror(so, m, EINVAL);
2055 }
2056
2057 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2058 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2059 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2060
2061 /* make secindex */
2062 /* XXX boundary check against sa_len */
2063 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2064 src0 + 1,
2065 dst0 + 1,
2066 src0->sadb_address_prefixlen,
2067 dst0->sadb_address_prefixlen,
2068 src0->sadb_address_proto,
2069 &spidx);
2070
2071 /* checking the direciton. */
2072 switch (xpl0->sadb_x_policy_dir) {
2073 case IPSEC_DIR_INBOUND:
2074 case IPSEC_DIR_OUTBOUND:
2075 break;
2076 default:
2077 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2078 return key_senderror(so, m, EINVAL);
2079 }
2080
2081 /* Is there SP in SPD ? */
2082 if ((sp = key_getsp(&spidx)) == NULL) {
2083 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2084 return key_senderror(so, m, EINVAL);
2085 }
2086
2087 /* save policy id to buffer to be returned. */
2088 xpl0->sadb_x_policy_id = sp->id;
2089
2090 key_sp_dead(sp);
2091 key_sp_unlink(sp); /* XXX jrs ordering */
2092 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2093
2094 #if defined(__NetBSD__)
2095 /* Invalidate all cached SPD pointers in the PCBs. */
2096 ipsec_invalpcbcacheall();
2097
2098 /* We're deleting policy; no need to invalidate the ipflow cache. */
2099 #endif /* __NetBSD__ */
2100
2101 {
2102 struct mbuf *n;
2103 struct sadb_msg *newmsg;
2104
2105 /* create new sadb_msg to reply. */
2106 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2107 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2108 if (!n)
2109 return key_senderror(so, m, ENOBUFS);
2110
2111 newmsg = mtod(n, struct sadb_msg *);
2112 newmsg->sadb_msg_errno = 0;
2113 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2114
2115 m_freem(m);
2116 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2117 }
2118 }
2119
2120 /*
2121 * SADB_SPDDELETE2 processing
2122 * receive
2123 * <base, policy(*)>
2124 * from the user(?), and set SADB_SASTATE_DEAD,
2125 * and send,
2126 * <base, policy(*)>
2127 * to the ikmpd.
2128 * policy(*) including direction of policy.
2129 *
2130 * m will always be freed.
2131 */
2132 static int
2133 key_spddelete2(so, m, mhp)
2134 struct socket *so;
2135 struct mbuf *m;
2136 const struct sadb_msghdr *mhp;
2137 {
2138 u_int32_t id;
2139 struct secpolicy *sp;
2140
2141 /* sanity check */
2142 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2143 panic("key_spddelete2: NULL pointer is passed");
2144
2145 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2146 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2147 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2148 key_senderror(so, m, EINVAL);
2149 return 0;
2150 }
2151
2152 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2153
2154 /* Is there SP in SPD ? */
2155 if ((sp = key_getspbyid(id)) == NULL) {
2156 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2157 key_senderror(so, m, EINVAL);
2158 }
2159
2160 key_sp_dead(sp);
2161 key_sp_unlink(sp); /* XXX jrs ordering */
2162 KEY_FREESP(&sp); /* ref gained by key_getsp */
2163 sp = NULL;
2164
2165 #if defined(__NetBSD__)
2166 /* Invalidate all cached SPD pointers in the PCBs. */
2167 ipsec_invalpcbcacheall();
2168
2169 /* We're deleting policy; no need to invalidate the ipflow cache. */
2170 #endif /* __NetBSD__ */
2171
2172 {
2173 struct mbuf *n, *nn;
2174 struct sadb_msg *newmsg;
2175 int off, len;
2176
2177 /* create new sadb_msg to reply. */
2178 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2179
2180 if (len > MCLBYTES)
2181 return key_senderror(so, m, ENOBUFS);
2182 MGETHDR(n, M_DONTWAIT, MT_DATA);
2183 if (n && len > MHLEN) {
2184 MCLGET(n, M_DONTWAIT);
2185 if ((n->m_flags & M_EXT) == 0) {
2186 m_freem(n);
2187 n = NULL;
2188 }
2189 }
2190 if (!n)
2191 return key_senderror(so, m, ENOBUFS);
2192
2193 n->m_len = len;
2194 n->m_next = NULL;
2195 off = 0;
2196
2197 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2198 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2199
2200 #ifdef DIAGNOSTIC
2201 if (off != len)
2202 panic("length inconsistency in key_spddelete2");
2203 #endif
2204
2205 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2206 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2207 if (!n->m_next) {
2208 m_freem(n);
2209 return key_senderror(so, m, ENOBUFS);
2210 }
2211
2212 n->m_pkthdr.len = 0;
2213 for (nn = n; nn; nn = nn->m_next)
2214 n->m_pkthdr.len += nn->m_len;
2215
2216 newmsg = mtod(n, struct sadb_msg *);
2217 newmsg->sadb_msg_errno = 0;
2218 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2219
2220 m_freem(m);
2221 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2222 }
2223 }
2224
2225 /*
2226 * SADB_X_GET processing
2227 * receive
2228 * <base, policy(*)>
2229 * from the user(?),
2230 * and send,
2231 * <base, address(SD), policy>
2232 * to the ikmpd.
2233 * policy(*) including direction of policy.
2234 *
2235 * m will always be freed.
2236 */
2237 static int
2238 key_spdget(so, m, mhp)
2239 struct socket *so;
2240 struct mbuf *m;
2241 const struct sadb_msghdr *mhp;
2242 {
2243 u_int32_t id;
2244 struct secpolicy *sp;
2245 struct mbuf *n;
2246
2247 /* sanity check */
2248 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2249 panic("key_spdget: NULL pointer is passed");
2250
2251 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2252 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2253 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2254 return key_senderror(so, m, EINVAL);
2255 }
2256
2257 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2258
2259 /* Is there SP in SPD ? */
2260 if ((sp = key_getspbyid(id)) == NULL) {
2261 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2262 return key_senderror(so, m, ENOENT);
2263 }
2264
2265 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2266 if (n != NULL) {
2267 m_freem(m);
2268 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2269 } else
2270 return key_senderror(so, m, ENOBUFS);
2271 }
2272
2273 /*
2274 * SADB_X_SPDACQUIRE processing.
2275 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2276 * send
2277 * <base, policy(*)>
2278 * to KMD, and expect to receive
2279 * <base> with SADB_X_SPDACQUIRE if error occurred,
2280 * or
2281 * <base, policy>
2282 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2283 * policy(*) is without policy requests.
2284 *
2285 * 0 : succeed
2286 * others: error number
2287 */
2288 int
2289 key_spdacquire(sp)
2290 struct secpolicy *sp;
2291 {
2292 struct mbuf *result = NULL, *m;
2293 struct secspacq *newspacq;
2294 int error;
2295
2296 /* sanity check */
2297 if (sp == NULL)
2298 panic("key_spdacquire: NULL pointer is passed");
2299 if (sp->req != NULL)
2300 panic("key_spdacquire: called but there is request");
2301 if (sp->policy != IPSEC_POLICY_IPSEC)
2302 panic("key_spdacquire: policy mismathed. IPsec is expected");
2303
2304 /* Get an entry to check whether sent message or not. */
2305 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2306 if (key_blockacq_count < newspacq->count) {
2307 /* reset counter and do send message. */
2308 newspacq->count = 0;
2309 } else {
2310 /* increment counter and do nothing. */
2311 newspacq->count++;
2312 return 0;
2313 }
2314 } else {
2315 /* make new entry for blocking to send SADB_ACQUIRE. */
2316 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2317 return ENOBUFS;
2318
2319 /* add to acqtree */
2320 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2321 }
2322
2323 /* create new sadb_msg to reply. */
2324 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2325 if (!m) {
2326 error = ENOBUFS;
2327 goto fail;
2328 }
2329 result = m;
2330
2331 result->m_pkthdr.len = 0;
2332 for (m = result; m; m = m->m_next)
2333 result->m_pkthdr.len += m->m_len;
2334
2335 mtod(result, struct sadb_msg *)->sadb_msg_len =
2336 PFKEY_UNIT64(result->m_pkthdr.len);
2337
2338 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2339
2340 fail:
2341 if (result)
2342 m_freem(result);
2343 return error;
2344 }
2345
2346 /*
2347 * SADB_SPDFLUSH processing
2348 * receive
2349 * <base>
2350 * from the user, and free all entries in secpctree.
2351 * and send,
2352 * <base>
2353 * to the user.
2354 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2355 *
2356 * m will always be freed.
2357 */
2358 static int
2359 key_spdflush(so, m, mhp)
2360 struct socket *so;
2361 struct mbuf *m;
2362 const struct sadb_msghdr *mhp;
2363 {
2364 struct sadb_msg *newmsg;
2365 struct secpolicy *sp;
2366 u_int dir;
2367
2368 /* sanity check */
2369 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2370 panic("key_spdflush: NULL pointer is passed");
2371
2372 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2373 return key_senderror(so, m, EINVAL);
2374
2375 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2376 struct secpolicy * nextsp;
2377 for (sp = LIST_FIRST(&sptree[dir]);
2378 sp != NULL;
2379 sp = nextsp) {
2380
2381 nextsp = LIST_NEXT(sp, chain);
2382 if (sp->state == IPSEC_SPSTATE_DEAD)
2383 continue;
2384 key_sp_dead(sp);
2385 key_sp_unlink(sp);
2386 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2387 continue;
2388 }
2389 }
2390
2391 #if defined(__NetBSD__)
2392 /* Invalidate all cached SPD pointers in the PCBs. */
2393 ipsec_invalpcbcacheall();
2394
2395 /* We're deleting policy; no need to invalidate the ipflow cache. */
2396 #endif /* __NetBSD__ */
2397
2398 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2399 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2400 return key_senderror(so, m, ENOBUFS);
2401 }
2402
2403 if (m->m_next)
2404 m_freem(m->m_next);
2405 m->m_next = NULL;
2406 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2407 newmsg = mtod(m, struct sadb_msg *);
2408 newmsg->sadb_msg_errno = 0;
2409 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2410
2411 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2412 }
2413
2414 static struct sockaddr key_src = {
2415 .sa_len = 2,
2416 .sa_family = PF_KEY,
2417 };
2418
2419 static struct mbuf *
2420 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2421 {
2422 struct secpolicy *sp;
2423 int cnt;
2424 u_int dir;
2425 struct mbuf *m, *n, *prev;
2426 int totlen;
2427
2428 *lenp = 0;
2429
2430 /* search SPD entry and get buffer size. */
2431 cnt = 0;
2432 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2433 LIST_FOREACH(sp, &sptree[dir], chain) {
2434 cnt++;
2435 }
2436 }
2437
2438 if (cnt == 0) {
2439 *errorp = ENOENT;
2440 return (NULL);
2441 }
2442
2443 m = NULL;
2444 prev = m;
2445 totlen = 0;
2446 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2447 LIST_FOREACH(sp, &sptree[dir], chain) {
2448 --cnt;
2449 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2450
2451 if (!n) {
2452 *errorp = ENOBUFS;
2453 if (m) m_freem(m);
2454 return (NULL);
2455 }
2456
2457 totlen += n->m_pkthdr.len;
2458 if (!m) {
2459 m = n;
2460 } else {
2461 prev->m_nextpkt = n;
2462 }
2463 prev = n;
2464 }
2465 }
2466
2467 *lenp = totlen;
2468 *errorp = 0;
2469 return (m);
2470 }
2471
2472 /*
2473 * SADB_SPDDUMP processing
2474 * receive
2475 * <base>
2476 * from the user, and dump all SP leaves
2477 * and send,
2478 * <base> .....
2479 * to the ikmpd.
2480 *
2481 * m will always be freed.
2482 */
2483 static int
2484 key_spddump(so, m0, mhp)
2485 struct socket *so;
2486 struct mbuf *m0;
2487 const struct sadb_msghdr *mhp;
2488 {
2489 struct mbuf *n;
2490 int error, len;
2491 int ok, s;
2492 pid_t pid;
2493
2494 /* sanity check */
2495 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2496 panic("key_spddump: NULL pointer is passed");
2497
2498
2499 pid = mhp->msg->sadb_msg_pid;
2500 /*
2501 * If the requestor has insufficient socket-buffer space
2502 * for the entire chain, nobody gets any response to the DUMP.
2503 * XXX For now, only the requestor ever gets anything.
2504 * Moreover, if the requestor has any space at all, they receive
2505 * the entire chain, otherwise the request is refused with ENOBUFS.
2506 */
2507 if (sbspace(&so->so_rcv) <= 0) {
2508 return key_senderror(so, m0, ENOBUFS);
2509 }
2510
2511 s = splsoftnet();
2512 n = key_setspddump_chain(&error, &len, pid);
2513 splx(s);
2514
2515 if (n == NULL) {
2516 return key_senderror(so, m0, ENOENT);
2517 }
2518 pfkeystat.in_total++;
2519 pfkeystat.in_bytes += len;
2520
2521 /*
2522 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2523 * The requestor receives either the entire chain, or an
2524 * error message with ENOBUFS.
2525 */
2526
2527 /*
2528 * sbappendchainwith record takes the chain of entries, one
2529 * packet-record per SPD entry, prepends the key_src sockaddr
2530 * to each packet-record, links the sockaddr mbufs into a new
2531 * list of records, then appends the entire resulting
2532 * list to the requesting socket.
2533 */
2534 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2535 n, SB_PRIO_ONESHOT_OVERFLOW);
2536
2537 if (!ok) {
2538 pfkeystat.in_nomem++;
2539 m_freem(n);
2540 return key_senderror(so, m0, ENOBUFS);
2541 }
2542
2543 m_freem(m0);
2544 return error;
2545 }
2546
2547 static struct mbuf *
2548 key_setdumpsp(sp, type, seq, pid)
2549 struct secpolicy *sp;
2550 u_int8_t type;
2551 u_int32_t seq;
2552 pid_t pid;
2553 {
2554 struct mbuf *result = NULL, *m;
2555
2556 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2557 if (!m)
2558 goto fail;
2559 result = m;
2560
2561 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2562 &sp->spidx.src.sa, sp->spidx.prefs,
2563 sp->spidx.ul_proto);
2564 if (!m)
2565 goto fail;
2566 m_cat(result, m);
2567
2568 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2569 &sp->spidx.dst.sa, sp->spidx.prefd,
2570 sp->spidx.ul_proto);
2571 if (!m)
2572 goto fail;
2573 m_cat(result, m);
2574
2575 m = key_sp2msg(sp);
2576 if (!m)
2577 goto fail;
2578 m_cat(result, m);
2579
2580 if ((result->m_flags & M_PKTHDR) == 0)
2581 goto fail;
2582
2583 if (result->m_len < sizeof(struct sadb_msg)) {
2584 result = m_pullup(result, sizeof(struct sadb_msg));
2585 if (result == NULL)
2586 goto fail;
2587 }
2588
2589 result->m_pkthdr.len = 0;
2590 for (m = result; m; m = m->m_next)
2591 result->m_pkthdr.len += m->m_len;
2592
2593 mtod(result, struct sadb_msg *)->sadb_msg_len =
2594 PFKEY_UNIT64(result->m_pkthdr.len);
2595
2596 return result;
2597
2598 fail:
2599 m_freem(result);
2600 return NULL;
2601 }
2602
2603 /*
2604 * get PFKEY message length for security policy and request.
2605 */
2606 static u_int
2607 key_getspreqmsglen(sp)
2608 struct secpolicy *sp;
2609 {
2610 u_int tlen;
2611
2612 tlen = sizeof(struct sadb_x_policy);
2613
2614 /* if is the policy for ipsec ? */
2615 if (sp->policy != IPSEC_POLICY_IPSEC)
2616 return tlen;
2617
2618 /* get length of ipsec requests */
2619 {
2620 struct ipsecrequest *isr;
2621 int len;
2622
2623 for (isr = sp->req; isr != NULL; isr = isr->next) {
2624 len = sizeof(struct sadb_x_ipsecrequest)
2625 + isr->saidx.src.sa.sa_len
2626 + isr->saidx.dst.sa.sa_len;
2627
2628 tlen += PFKEY_ALIGN8(len);
2629 }
2630 }
2631
2632 return tlen;
2633 }
2634
2635 /*
2636 * SADB_SPDEXPIRE processing
2637 * send
2638 * <base, address(SD), lifetime(CH), policy>
2639 * to KMD by PF_KEY.
2640 *
2641 * OUT: 0 : succeed
2642 * others : error number
2643 */
2644 static int
2645 key_spdexpire(sp)
2646 struct secpolicy *sp;
2647 {
2648 int s;
2649 struct mbuf *result = NULL, *m;
2650 int len;
2651 int error = -1;
2652 struct sadb_lifetime *lt;
2653
2654 /* XXX: Why do we lock ? */
2655 s = splsoftnet(); /*called from softclock()*/
2656
2657 /* sanity check */
2658 if (sp == NULL)
2659 panic("key_spdexpire: NULL pointer is passed");
2660
2661 /* set msg header */
2662 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2663 if (!m) {
2664 error = ENOBUFS;
2665 goto fail;
2666 }
2667 result = m;
2668
2669 /* create lifetime extension (current and hard) */
2670 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2671 m = key_alloc_mbuf(len);
2672 if (!m || m->m_next) { /*XXX*/
2673 if (m)
2674 m_freem(m);
2675 error = ENOBUFS;
2676 goto fail;
2677 }
2678 bzero(mtod(m, void *), len);
2679 lt = mtod(m, struct sadb_lifetime *);
2680 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2681 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2682 lt->sadb_lifetime_allocations = 0;
2683 lt->sadb_lifetime_bytes = 0;
2684 lt->sadb_lifetime_addtime = sp->created;
2685 lt->sadb_lifetime_usetime = sp->lastused;
2686 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2687 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2688 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2689 lt->sadb_lifetime_allocations = 0;
2690 lt->sadb_lifetime_bytes = 0;
2691 lt->sadb_lifetime_addtime = sp->lifetime;
2692 lt->sadb_lifetime_usetime = sp->validtime;
2693 m_cat(result, m);
2694
2695 /* set sadb_address for source */
2696 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2697 &sp->spidx.src.sa,
2698 sp->spidx.prefs, sp->spidx.ul_proto);
2699 if (!m) {
2700 error = ENOBUFS;
2701 goto fail;
2702 }
2703 m_cat(result, m);
2704
2705 /* set sadb_address for destination */
2706 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2707 &sp->spidx.dst.sa,
2708 sp->spidx.prefd, sp->spidx.ul_proto);
2709 if (!m) {
2710 error = ENOBUFS;
2711 goto fail;
2712 }
2713 m_cat(result, m);
2714
2715 /* set secpolicy */
2716 m = key_sp2msg(sp);
2717 if (!m) {
2718 error = ENOBUFS;
2719 goto fail;
2720 }
2721 m_cat(result, m);
2722
2723 if ((result->m_flags & M_PKTHDR) == 0) {
2724 error = EINVAL;
2725 goto fail;
2726 }
2727
2728 if (result->m_len < sizeof(struct sadb_msg)) {
2729 result = m_pullup(result, sizeof(struct sadb_msg));
2730 if (result == NULL) {
2731 error = ENOBUFS;
2732 goto fail;
2733 }
2734 }
2735
2736 result->m_pkthdr.len = 0;
2737 for (m = result; m; m = m->m_next)
2738 result->m_pkthdr.len += m->m_len;
2739
2740 mtod(result, struct sadb_msg *)->sadb_msg_len =
2741 PFKEY_UNIT64(result->m_pkthdr.len);
2742
2743 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2744
2745 fail:
2746 if (result)
2747 m_freem(result);
2748 splx(s);
2749 return error;
2750 }
2751
2752 /* %%% SAD management */
2753 /*
2754 * allocating a memory for new SA head, and copy from the values of mhp.
2755 * OUT: NULL : failure due to the lack of memory.
2756 * others : pointer to new SA head.
2757 */
2758 static struct secashead *
2759 key_newsah(saidx)
2760 struct secasindex *saidx;
2761 {
2762 struct secashead *newsah;
2763
2764 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2765
2766 newsah = (struct secashead *)
2767 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2768 if (newsah != NULL) {
2769 int i;
2770 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2771 LIST_INIT(&newsah->savtree[i]);
2772 newsah->saidx = *saidx;
2773
2774 /* add to saidxtree */
2775 newsah->state = SADB_SASTATE_MATURE;
2776 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2777 }
2778 return(newsah);
2779 }
2780
2781 /*
2782 * delete SA index and all SA registerd.
2783 */
2784 static void
2785 key_delsah(sah)
2786 struct secashead *sah;
2787 {
2788 struct secasvar *sav, *nextsav;
2789 u_int stateidx, state;
2790 int s;
2791 int zombie = 0;
2792
2793 /* sanity check */
2794 if (sah == NULL)
2795 panic("key_delsah: NULL pointer is passed");
2796
2797 s = splsoftnet(); /*called from softclock()*/
2798
2799 /* searching all SA registerd in the secindex. */
2800 for (stateidx = 0;
2801 stateidx < _ARRAYLEN(saorder_state_any);
2802 stateidx++) {
2803
2804 state = saorder_state_any[stateidx];
2805 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2806 sav != NULL;
2807 sav = nextsav) {
2808
2809 nextsav = LIST_NEXT(sav, chain);
2810
2811 if (sav->refcnt == 0) {
2812 /* sanity check */
2813 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2814 KEY_FREESAV(&sav);
2815 } else {
2816 /* give up to delete this sa */
2817 zombie++;
2818 }
2819 }
2820 }
2821
2822 /* don't delete sah only if there are savs. */
2823 if (zombie) {
2824 splx(s);
2825 return;
2826 }
2827
2828 rtcache_free(&sah->sa_route);
2829
2830 /* remove from tree of SA index */
2831 if (__LIST_CHAINED(sah))
2832 LIST_REMOVE(sah, chain);
2833
2834 KFREE(sah);
2835
2836 splx(s);
2837 return;
2838 }
2839
2840 /*
2841 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2842 * and copy the values of mhp into new buffer.
2843 * When SAD message type is GETSPI:
2844 * to set sequence number from acq_seq++,
2845 * to set zero to SPI.
2846 * not to call key_setsava().
2847 * OUT: NULL : fail
2848 * others : pointer to new secasvar.
2849 *
2850 * does not modify mbuf. does not free mbuf on error.
2851 */
2852 static struct secasvar *
2853 key_newsav(m, mhp, sah, errp, where, tag)
2854 struct mbuf *m;
2855 const struct sadb_msghdr *mhp;
2856 struct secashead *sah;
2857 int *errp;
2858 const char* where;
2859 int tag;
2860 {
2861 struct secasvar *newsav;
2862 const struct sadb_sa *xsa;
2863
2864 /* sanity check */
2865 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2866 panic("key_newsa: NULL pointer is passed");
2867
2868 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2869 if (newsav == NULL) {
2870 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2871 *errp = ENOBUFS;
2872 goto done;
2873 }
2874 bzero(newsav, sizeof(struct secasvar));
2875
2876 switch (mhp->msg->sadb_msg_type) {
2877 case SADB_GETSPI:
2878 newsav->spi = 0;
2879
2880 #ifdef IPSEC_DOSEQCHECK
2881 /* sync sequence number */
2882 if (mhp->msg->sadb_msg_seq == 0)
2883 newsav->seq =
2884 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2885 else
2886 #endif
2887 newsav->seq = mhp->msg->sadb_msg_seq;
2888 break;
2889
2890 case SADB_ADD:
2891 /* sanity check */
2892 if (mhp->ext[SADB_EXT_SA] == NULL) {
2893 KFREE(newsav), newsav = NULL;
2894 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2895 *errp = EINVAL;
2896 goto done;
2897 }
2898 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2899 newsav->spi = xsa->sadb_sa_spi;
2900 newsav->seq = mhp->msg->sadb_msg_seq;
2901 break;
2902 default:
2903 KFREE(newsav), newsav = NULL;
2904 *errp = EINVAL;
2905 goto done;
2906 }
2907
2908 /* copy sav values */
2909 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2910 *errp = key_setsaval(newsav, m, mhp);
2911 if (*errp) {
2912 KFREE(newsav), newsav = NULL;
2913 goto done;
2914 }
2915 }
2916
2917 /* reset created */
2918 newsav->created = time_second;
2919 newsav->pid = mhp->msg->sadb_msg_pid;
2920
2921 /* add to satree */
2922 newsav->sah = sah;
2923 newsav->refcnt = 1;
2924 newsav->state = SADB_SASTATE_LARVAL;
2925 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2926 secasvar, chain);
2927 done:
2928 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2929 printf("DP key_newsav from %s:%u return SP:%p\n",
2930 where, tag, newsav));
2931
2932 return newsav;
2933 }
2934
2935 /*
2936 * free() SA variable entry.
2937 */
2938 static void
2939 key_delsav(sav)
2940 struct secasvar *sav;
2941 {
2942 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
2943 IPSEC_ASSERT(sav->refcnt == 0,
2944 ("key_delsav: reference count %u > 0", sav->refcnt));
2945
2946 /* remove from SA header */
2947 if (__LIST_CHAINED(sav))
2948 LIST_REMOVE(sav, chain);
2949
2950 /*
2951 * Cleanup xform state. Note that zeroize'ing causes the
2952 * keys to be cleared; otherwise we must do it ourself.
2953 */
2954 if (sav->tdb_xform != NULL) {
2955 sav->tdb_xform->xf_zeroize(sav);
2956 sav->tdb_xform = NULL;
2957 } else {
2958 if (sav->key_auth != NULL)
2959 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2960 if (sav->key_enc != NULL)
2961 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2962 }
2963 if (sav->key_auth != NULL) {
2964 KFREE(sav->key_auth);
2965 sav->key_auth = NULL;
2966 }
2967 if (sav->key_enc != NULL) {
2968 KFREE(sav->key_enc);
2969 sav->key_enc = NULL;
2970 }
2971 if (sav->sched) {
2972 bzero(sav->sched, sav->schedlen);
2973 KFREE(sav->sched);
2974 sav->sched = NULL;
2975 }
2976 if (sav->replay != NULL) {
2977 KFREE(sav->replay);
2978 sav->replay = NULL;
2979 }
2980 if (sav->lft_c != NULL) {
2981 KFREE(sav->lft_c);
2982 sav->lft_c = NULL;
2983 }
2984 if (sav->lft_h != NULL) {
2985 KFREE(sav->lft_h);
2986 sav->lft_h = NULL;
2987 }
2988 if (sav->lft_s != NULL) {
2989 KFREE(sav->lft_s);
2990 sav->lft_s = NULL;
2991 }
2992 if (sav->iv != NULL) {
2993 KFREE(sav->iv);
2994 sav->iv = NULL;
2995 }
2996
2997 KFREE(sav);
2998
2999 return;
3000 }
3001
3002 /*
3003 * search SAD.
3004 * OUT:
3005 * NULL : not found
3006 * others : found, pointer to a SA.
3007 */
3008 static struct secashead *
3009 key_getsah(saidx)
3010 struct secasindex *saidx;
3011 {
3012 struct secashead *sah;
3013
3014 LIST_FOREACH(sah, &sahtree, chain) {
3015 if (sah->state == SADB_SASTATE_DEAD)
3016 continue;
3017 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3018 return sah;
3019 }
3020
3021 return NULL;
3022 }
3023
3024 /*
3025 * check not to be duplicated SPI.
3026 * NOTE: this function is too slow due to searching all SAD.
3027 * OUT:
3028 * NULL : not found
3029 * others : found, pointer to a SA.
3030 */
3031 static struct secasvar *
3032 key_checkspidup(saidx, spi)
3033 struct secasindex *saidx;
3034 u_int32_t spi;
3035 {
3036 struct secashead *sah;
3037 struct secasvar *sav;
3038
3039 /* check address family */
3040 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3041 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3042 return NULL;
3043 }
3044
3045 /* check all SAD */
3046 LIST_FOREACH(sah, &sahtree, chain) {
3047 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3048 continue;
3049 sav = key_getsavbyspi(sah, spi);
3050 if (sav != NULL)
3051 return sav;
3052 }
3053
3054 return NULL;
3055 }
3056
3057 /*
3058 * search SAD litmited alive SA, protocol, SPI.
3059 * OUT:
3060 * NULL : not found
3061 * others : found, pointer to a SA.
3062 */
3063 static struct secasvar *
3064 key_getsavbyspi(sah, spi)
3065 struct secashead *sah;
3066 u_int32_t spi;
3067 {
3068 struct secasvar *sav;
3069 u_int stateidx, state;
3070
3071 /* search all status */
3072 for (stateidx = 0;
3073 stateidx < _ARRAYLEN(saorder_state_alive);
3074 stateidx++) {
3075
3076 state = saorder_state_alive[stateidx];
3077 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3078
3079 /* sanity check */
3080 if (sav->state != state) {
3081 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3082 "invalid sav->state (queue: %d SA: %d)\n",
3083 state, sav->state));
3084 continue;
3085 }
3086
3087 if (sav->spi == spi)
3088 return sav;
3089 }
3090 }
3091
3092 return NULL;
3093 }
3094
3095 /*
3096 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3097 * You must update these if need.
3098 * OUT: 0: success.
3099 * !0: failure.
3100 *
3101 * does not modify mbuf. does not free mbuf on error.
3102 */
3103 static int
3104 key_setsaval(sav, m, mhp)
3105 struct secasvar *sav;
3106 struct mbuf *m;
3107 const struct sadb_msghdr *mhp;
3108 {
3109 int error = 0;
3110
3111 /* sanity check */
3112 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3113 panic("key_setsaval: NULL pointer is passed");
3114
3115 /* initialization */
3116 sav->replay = NULL;
3117 sav->key_auth = NULL;
3118 sav->key_enc = NULL;
3119 sav->sched = NULL;
3120 sav->schedlen = 0;
3121 sav->iv = NULL;
3122 sav->lft_c = NULL;
3123 sav->lft_h = NULL;
3124 sav->lft_s = NULL;
3125 sav->tdb_xform = NULL; /* transform */
3126 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3127 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3128 sav->tdb_compalgxform = NULL; /* compression algorithm */
3129
3130 /* SA */
3131 if (mhp->ext[SADB_EXT_SA] != NULL) {
3132 const struct sadb_sa *sa0;
3133
3134 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3135 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3136 error = EINVAL;
3137 goto fail;
3138 }
3139
3140 sav->alg_auth = sa0->sadb_sa_auth;
3141 sav->alg_enc = sa0->sadb_sa_encrypt;
3142 sav->flags = sa0->sadb_sa_flags;
3143
3144 /* replay window */
3145 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3146 sav->replay = (struct secreplay *)
3147 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3148 if (sav->replay == NULL) {
3149 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3150 error = ENOBUFS;
3151 goto fail;
3152 }
3153 if (sa0->sadb_sa_replay != 0)
3154 sav->replay->bitmap = (char*)(sav->replay+1);
3155 sav->replay->wsize = sa0->sadb_sa_replay;
3156 }
3157 }
3158
3159 /* Authentication keys */
3160 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3161 const struct sadb_key *key0;
3162 int len;
3163
3164 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3165 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3166
3167 error = 0;
3168 if (len < sizeof(*key0)) {
3169 error = EINVAL;
3170 goto fail;
3171 }
3172 switch (mhp->msg->sadb_msg_satype) {
3173 case SADB_SATYPE_AH:
3174 case SADB_SATYPE_ESP:
3175 case SADB_X_SATYPE_TCPSIGNATURE:
3176 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3177 sav->alg_auth != SADB_X_AALG_NULL)
3178 error = EINVAL;
3179 break;
3180 case SADB_X_SATYPE_IPCOMP:
3181 default:
3182 error = EINVAL;
3183 break;
3184 }
3185 if (error) {
3186 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3187 goto fail;
3188 }
3189
3190 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3191 if (sav->key_auth == NULL) {
3192 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3193 error = ENOBUFS;
3194 goto fail;
3195 }
3196 }
3197
3198 /* Encryption key */
3199 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3200 const struct sadb_key *key0;
3201 int len;
3202
3203 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3204 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3205
3206 error = 0;
3207 if (len < sizeof(*key0)) {
3208 error = EINVAL;
3209 goto fail;
3210 }
3211 switch (mhp->msg->sadb_msg_satype) {
3212 case SADB_SATYPE_ESP:
3213 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3214 sav->alg_enc != SADB_EALG_NULL) {
3215 error = EINVAL;
3216 break;
3217 }
3218 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3219 if (sav->key_enc == NULL) {
3220 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3221 error = ENOBUFS;
3222 goto fail;
3223 }
3224 break;
3225 case SADB_X_SATYPE_IPCOMP:
3226 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3227 error = EINVAL;
3228 sav->key_enc = NULL; /*just in case*/
3229 break;
3230 case SADB_SATYPE_AH:
3231 case SADB_X_SATYPE_TCPSIGNATURE:
3232 default:
3233 error = EINVAL;
3234 break;
3235 }
3236 if (error) {
3237 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3238 goto fail;
3239 }
3240 }
3241
3242 /* set iv */
3243 sav->ivlen = 0;
3244
3245 switch (mhp->msg->sadb_msg_satype) {
3246 case SADB_SATYPE_AH:
3247 error = xform_init(sav, XF_AH);
3248 break;
3249 case SADB_SATYPE_ESP:
3250 error = xform_init(sav, XF_ESP);
3251 break;
3252 case SADB_X_SATYPE_IPCOMP:
3253 error = xform_init(sav, XF_IPCOMP);
3254 break;
3255 case SADB_X_SATYPE_TCPSIGNATURE:
3256 error = xform_init(sav, XF_TCPSIGNATURE);
3257 break;
3258 }
3259 if (error) {
3260 ipseclog((LOG_DEBUG,
3261 "key_setsaval: unable to initialize SA type %u.\n",
3262 mhp->msg->sadb_msg_satype));
3263 goto fail;
3264 }
3265
3266 /* reset created */
3267 sav->created = time_second;
3268
3269 /* make lifetime for CURRENT */
3270 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3271 sizeof(struct sadb_lifetime));
3272 if (sav->lft_c == NULL) {
3273 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3274 error = ENOBUFS;
3275 goto fail;
3276 }
3277
3278 sav->lft_c->sadb_lifetime_len =
3279 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3280 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3281 sav->lft_c->sadb_lifetime_allocations = 0;
3282 sav->lft_c->sadb_lifetime_bytes = 0;
3283 sav->lft_c->sadb_lifetime_addtime = time_second;
3284 sav->lft_c->sadb_lifetime_usetime = 0;
3285
3286 /* lifetimes for HARD and SOFT */
3287 {
3288 const struct sadb_lifetime *lft0;
3289
3290 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3291 if (lft0 != NULL) {
3292 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3293 error = EINVAL;
3294 goto fail;
3295 }
3296 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3297 sizeof(*lft0));
3298 if (sav->lft_h == NULL) {
3299 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3300 error = ENOBUFS;
3301 goto fail;
3302 }
3303 /* to be initialize ? */
3304 }
3305
3306 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3307 if (lft0 != NULL) {
3308 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3309 error = EINVAL;
3310 goto fail;
3311 }
3312 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3313 sizeof(*lft0));
3314 if (sav->lft_s == NULL) {
3315 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3316 error = ENOBUFS;
3317 goto fail;
3318 }
3319 /* to be initialize ? */
3320 }
3321 }
3322
3323 return 0;
3324
3325 fail:
3326 /* initialization */
3327 if (sav->replay != NULL) {
3328 KFREE(sav->replay);
3329 sav->replay = NULL;
3330 }
3331 if (sav->key_auth != NULL) {
3332 KFREE(sav->key_auth);
3333 sav->key_auth = NULL;
3334 }
3335 if (sav->key_enc != NULL) {
3336 KFREE(sav->key_enc);
3337 sav->key_enc = NULL;
3338 }
3339 if (sav->sched) {
3340 KFREE(sav->sched);
3341 sav->sched = NULL;
3342 }
3343 if (sav->iv != NULL) {
3344 KFREE(sav->iv);
3345 sav->iv = NULL;
3346 }
3347 if (sav->lft_c != NULL) {
3348 KFREE(sav->lft_c);
3349 sav->lft_c = NULL;
3350 }
3351 if (sav->lft_h != NULL) {
3352 KFREE(sav->lft_h);
3353 sav->lft_h = NULL;
3354 }
3355 if (sav->lft_s != NULL) {
3356 KFREE(sav->lft_s);
3357 sav->lft_s = NULL;
3358 }
3359
3360 return error;
3361 }
3362
3363 /*
3364 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3365 * OUT: 0: valid
3366 * other: errno
3367 */
3368 static int
3369 key_mature(sav)
3370 struct secasvar *sav;
3371 {
3372 int error;
3373
3374 /* check SPI value */
3375 switch (sav->sah->saidx.proto) {
3376 case IPPROTO_ESP:
3377 case IPPROTO_AH:
3378 if (ntohl(sav->spi) <= 255) {
3379 ipseclog((LOG_DEBUG,
3380 "key_mature: illegal range of SPI %u.\n",
3381 (u_int32_t)ntohl(sav->spi)));
3382 return EINVAL;
3383 }
3384 break;
3385 }
3386
3387 /* check satype */
3388 switch (sav->sah->saidx.proto) {
3389 case IPPROTO_ESP:
3390 /* check flags */
3391 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3392 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3393 ipseclog((LOG_DEBUG, "key_mature: "
3394 "invalid flag (derived) given to old-esp.\n"));
3395 return EINVAL;
3396 }
3397 error = xform_init(sav, XF_ESP);
3398 break;
3399 case IPPROTO_AH:
3400 /* check flags */
3401 if (sav->flags & SADB_X_EXT_DERIV) {
3402 ipseclog((LOG_DEBUG, "key_mature: "
3403 "invalid flag (derived) given to AH SA.\n"));
3404 return EINVAL;
3405 }
3406 if (sav->alg_enc != SADB_EALG_NONE) {
3407 ipseclog((LOG_DEBUG, "key_mature: "
3408 "protocol and algorithm mismated.\n"));
3409 return(EINVAL);
3410 }
3411 error = xform_init(sav, XF_AH);
3412 break;
3413 case IPPROTO_IPCOMP:
3414 if (sav->alg_auth != SADB_AALG_NONE) {
3415 ipseclog((LOG_DEBUG, "key_mature: "
3416 "protocol and algorithm mismated.\n"));
3417 return(EINVAL);
3418 }
3419 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3420 && ntohl(sav->spi) >= 0x10000) {
3421 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3422 return(EINVAL);
3423 }
3424 error = xform_init(sav, XF_IPCOMP);
3425 break;
3426 case IPPROTO_TCP:
3427 if (sav->alg_enc != SADB_EALG_NONE) {
3428 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3429 "mismated.\n", __func__));
3430 return(EINVAL);
3431 }
3432 error = xform_init(sav, XF_TCPSIGNATURE);
3433 break;
3434 default:
3435 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3436 error = EPROTONOSUPPORT;
3437 break;
3438 }
3439 if (error == 0)
3440 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3441 return (error);
3442 }
3443
3444 /*
3445 * subroutine for SADB_GET and SADB_DUMP.
3446 */
3447 static struct mbuf *
3448 key_setdumpsa(sav, type, satype, seq, pid)
3449 struct secasvar *sav;
3450 u_int8_t type, satype;
3451 u_int32_t seq, pid;
3452 {
3453 struct mbuf *result = NULL, *tres = NULL, *m;
3454 int l = 0;
3455 int i;
3456 void *p;
3457 int dumporder[] = {
3458 SADB_EXT_SA, SADB_X_EXT_SA2,
3459 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3460 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3461 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3462 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3463 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3464 };
3465
3466 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3467 if (m == NULL)
3468 goto fail;
3469 result = m;
3470
3471 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3472 m = NULL;
3473 p = NULL;
3474 switch (dumporder[i]) {
3475 case SADB_EXT_SA:
3476 m = key_setsadbsa(sav);
3477 if (!m)
3478 goto fail;
3479 break;
3480
3481 case SADB_X_EXT_SA2:
3482 m = key_setsadbxsa2(sav->sah->saidx.mode,
3483 sav->replay ? sav->replay->count : 0,
3484 sav->sah->saidx.reqid);
3485 if (!m)
3486 goto fail;
3487 break;
3488
3489 case SADB_EXT_ADDRESS_SRC:
3490 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3491 &sav->sah->saidx.src.sa,
3492 FULLMASK, IPSEC_ULPROTO_ANY);
3493 if (!m)
3494 goto fail;
3495 break;
3496
3497 case SADB_EXT_ADDRESS_DST:
3498 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3499 &sav->sah->saidx.dst.sa,
3500 FULLMASK, IPSEC_ULPROTO_ANY);
3501 if (!m)
3502 goto fail;
3503 break;
3504
3505 case SADB_EXT_KEY_AUTH:
3506 if (!sav->key_auth)
3507 continue;
3508 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3509 p = sav->key_auth;
3510 break;
3511
3512 case SADB_EXT_KEY_ENCRYPT:
3513 if (!sav->key_enc)
3514 continue;
3515 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3516 p = sav->key_enc;
3517 break;
3518
3519 case SADB_EXT_LIFETIME_CURRENT:
3520 if (!sav->lft_c)
3521 continue;
3522 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3523 p = sav->lft_c;
3524 break;
3525
3526 case SADB_EXT_LIFETIME_HARD:
3527 if (!sav->lft_h)
3528 continue;
3529 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3530 p = sav->lft_h;
3531 break;
3532
3533 case SADB_EXT_LIFETIME_SOFT:
3534 if (!sav->lft_s)
3535 continue;
3536 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3537 p = sav->lft_s;
3538 break;
3539
3540 case SADB_EXT_ADDRESS_PROXY:
3541 case SADB_EXT_IDENTITY_SRC:
3542 case SADB_EXT_IDENTITY_DST:
3543 /* XXX: should we brought from SPD ? */
3544 case SADB_EXT_SENSITIVITY:
3545 default:
3546 continue;
3547 }
3548
3549 if ((!m && !p) || (m && p))
3550 goto fail;
3551 if (p && tres) {
3552 M_PREPEND(tres, l, M_DONTWAIT);
3553 if (!tres)
3554 goto fail;
3555 bcopy(p, mtod(tres, void *), l);
3556 continue;
3557 }
3558 if (p) {
3559 m = key_alloc_mbuf(l);
3560 if (!m)
3561 goto fail;
3562 m_copyback(m, 0, l, p);
3563 }
3564
3565 if (tres)
3566 m_cat(m, tres);
3567 tres = m;
3568 }
3569
3570 m_cat(result, tres);
3571
3572 if (result->m_len < sizeof(struct sadb_msg)) {
3573 result = m_pullup(result, sizeof(struct sadb_msg));
3574 if (result == NULL)
3575 goto fail;
3576 }
3577
3578 result->m_pkthdr.len = 0;
3579 for (m = result; m; m = m->m_next)
3580 result->m_pkthdr.len += m->m_len;
3581
3582 mtod(result, struct sadb_msg *)->sadb_msg_len =
3583 PFKEY_UNIT64(result->m_pkthdr.len);
3584
3585 return result;
3586
3587 fail:
3588 m_freem(result);
3589 m_freem(tres);
3590 return NULL;
3591 }
3592
3593 /*
3594 * set data into sadb_msg.
3595 */
3596 static struct mbuf *
3597 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3598 u_int8_t type, satype;
3599 u_int16_t tlen;
3600 u_int32_t seq;
3601 pid_t pid;
3602 u_int16_t reserved;
3603 {
3604 struct mbuf *m;
3605 struct sadb_msg *p;
3606 int len;
3607
3608 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3609 if (len > MCLBYTES)
3610 return NULL;
3611 MGETHDR(m, M_DONTWAIT, MT_DATA);
3612 if (m && len > MHLEN) {
3613 MCLGET(m, M_DONTWAIT);
3614 if ((m->m_flags & M_EXT) == 0) {
3615 m_freem(m);
3616 m = NULL;
3617 }
3618 }
3619 if (!m)
3620 return NULL;
3621 m->m_pkthdr.len = m->m_len = len;
3622 m->m_next = NULL;
3623
3624 p = mtod(m, struct sadb_msg *);
3625
3626 bzero(p, len);
3627 p->sadb_msg_version = PF_KEY_V2;
3628 p->sadb_msg_type = type;
3629 p->sadb_msg_errno = 0;
3630 p->sadb_msg_satype = satype;
3631 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3632 p->sadb_msg_reserved = reserved;
3633 p->sadb_msg_seq = seq;
3634 p->sadb_msg_pid = (u_int32_t)pid;
3635
3636 return m;
3637 }
3638
3639 /*
3640 * copy secasvar data into sadb_address.
3641 */
3642 static struct mbuf *
3643 key_setsadbsa(sav)
3644 struct secasvar *sav;
3645 {
3646 struct mbuf *m;
3647 struct sadb_sa *p;
3648 int len;
3649
3650 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3651 m = key_alloc_mbuf(len);
3652 if (!m || m->m_next) { /*XXX*/
3653 if (m)
3654 m_freem(m);
3655 return NULL;
3656 }
3657
3658 p = mtod(m, struct sadb_sa *);
3659
3660 bzero(p, len);
3661 p->sadb_sa_len = PFKEY_UNIT64(len);
3662 p->sadb_sa_exttype = SADB_EXT_SA;
3663 p->sadb_sa_spi = sav->spi;
3664 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3665 p->sadb_sa_state = sav->state;
3666 p->sadb_sa_auth = sav->alg_auth;
3667 p->sadb_sa_encrypt = sav->alg_enc;
3668 p->sadb_sa_flags = sav->flags;
3669
3670 return m;
3671 }
3672
3673 /*
3674 * set data into sadb_address.
3675 */
3676 static struct mbuf *
3677 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3678 u_int16_t exttype;
3679 const struct sockaddr *saddr;
3680 u_int8_t prefixlen;
3681 u_int16_t ul_proto;
3682 {
3683 struct mbuf *m;
3684 struct sadb_address *p;
3685 size_t len;
3686
3687 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3688 PFKEY_ALIGN8(saddr->sa_len);
3689 m = key_alloc_mbuf(len);
3690 if (!m || m->m_next) { /*XXX*/
3691 if (m)
3692 m_freem(m);
3693 return NULL;
3694 }
3695
3696 p = mtod(m, struct sadb_address *);
3697
3698 bzero(p, len);
3699 p->sadb_address_len = PFKEY_UNIT64(len);
3700 p->sadb_address_exttype = exttype;
3701 p->sadb_address_proto = ul_proto;
3702 if (prefixlen == FULLMASK) {
3703 switch (saddr->sa_family) {
3704 case AF_INET:
3705 prefixlen = sizeof(struct in_addr) << 3;
3706 break;
3707 case AF_INET6:
3708 prefixlen = sizeof(struct in6_addr) << 3;
3709 break;
3710 default:
3711 ; /*XXX*/
3712 }
3713 }
3714 p->sadb_address_prefixlen = prefixlen;
3715 p->sadb_address_reserved = 0;
3716
3717 bcopy(saddr,
3718 mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3719 saddr->sa_len);
3720
3721 return m;
3722 }
3723
3724 #if 0
3725 /*
3726 * set data into sadb_ident.
3727 */
3728 static struct mbuf *
3729 key_setsadbident(exttype, idtype, string, stringlen, id)
3730 u_int16_t exttype, idtype;
3731 void *string;
3732 int stringlen;
3733 u_int64_t id;
3734 {
3735 struct mbuf *m;
3736 struct sadb_ident *p;
3737 size_t len;
3738
3739 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3740 m = key_alloc_mbuf(len);
3741 if (!m || m->m_next) { /*XXX*/
3742 if (m)
3743 m_freem(m);
3744 return NULL;
3745 }
3746
3747 p = mtod(m, struct sadb_ident *);
3748
3749 bzero(p, len);
3750 p->sadb_ident_len = PFKEY_UNIT64(len);
3751 p->sadb_ident_exttype = exttype;
3752 p->sadb_ident_type = idtype;
3753 p->sadb_ident_reserved = 0;
3754 p->sadb_ident_id = id;
3755
3756 bcopy(string,
3757 mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3758 stringlen);
3759
3760 return m;
3761 }
3762 #endif
3763
3764 /*
3765 * set data into sadb_x_sa2.
3766 */
3767 static struct mbuf *
3768 key_setsadbxsa2(mode, seq, reqid)
3769 u_int8_t mode;
3770 u_int32_t seq;
3771 u_int16_t reqid;
3772 {
3773 struct mbuf *m;
3774 struct sadb_x_sa2 *p;
3775 size_t len;
3776
3777 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3778 m = key_alloc_mbuf(len);
3779 if (!m || m->m_next) { /*XXX*/
3780 if (m)
3781 m_freem(m);
3782 return NULL;
3783 }
3784
3785 p = mtod(m, struct sadb_x_sa2 *);
3786
3787 bzero(p, len);
3788 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3789 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3790 p->sadb_x_sa2_mode = mode;
3791 p->sadb_x_sa2_reserved1 = 0;
3792 p->sadb_x_sa2_reserved2 = 0;
3793 p->sadb_x_sa2_sequence = seq;
3794 p->sadb_x_sa2_reqid = reqid;
3795
3796 return m;
3797 }
3798
3799 /*
3800 * set data into sadb_x_policy
3801 */
3802 static struct mbuf *
3803 key_setsadbxpolicy(type, dir, id)
3804 u_int16_t type;
3805 u_int8_t dir;
3806 u_int32_t id;
3807 {
3808 struct mbuf *m;
3809 struct sadb_x_policy *p;
3810 size_t len;
3811
3812 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3813 m = key_alloc_mbuf(len);
3814 if (!m || m->m_next) { /*XXX*/
3815 if (m)
3816 m_freem(m);
3817 return NULL;
3818 }
3819
3820 p = mtod(m, struct sadb_x_policy *);
3821
3822 bzero(p, len);
3823 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3824 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3825 p->sadb_x_policy_type = type;
3826 p->sadb_x_policy_dir = dir;
3827 p->sadb_x_policy_id = id;
3828
3829 return m;
3830 }
3831
3832 /* %%% utilities */
3833 /*
3834 * copy a buffer into the new buffer allocated.
3835 */
3836 static void *
3837 key_newbuf(src, len)
3838 const void *src;
3839 u_int len;
3840 {
3841 void *new;
3842
3843 KMALLOC(new, void *, len);
3844 if (new == NULL) {
3845 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
3846 return NULL;
3847 }
3848 bcopy(src, new, len);
3849
3850 return new;
3851 }
3852
3853 /* compare my own address
3854 * OUT: 1: true, i.e. my address.
3855 * 0: false
3856 */
3857 int
3858 key_ismyaddr(sa)
3859 struct sockaddr *sa;
3860 {
3861 #ifdef INET
3862 struct sockaddr_in *sin;
3863 struct in_ifaddr *ia;
3864 #endif
3865
3866 /* sanity check */
3867 if (sa == NULL)
3868 panic("key_ismyaddr: NULL pointer is passed");
3869
3870 switch (sa->sa_family) {
3871 #ifdef INET
3872 case AF_INET:
3873 sin = (struct sockaddr_in *)sa;
3874 for (ia = in_ifaddrhead.tqh_first; ia;
3875 ia = ia->ia_link.tqe_next)
3876 {
3877 if (sin->sin_family == ia->ia_addr.sin_family &&
3878 sin->sin_len == ia->ia_addr.sin_len &&
3879 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3880 {
3881 return 1;
3882 }
3883 }
3884 break;
3885 #endif
3886 #ifdef INET6
3887 case AF_INET6:
3888 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3889 #endif
3890 }
3891
3892 return 0;
3893 }
3894
3895 #ifdef INET6
3896 /*
3897 * compare my own address for IPv6.
3898 * 1: ours
3899 * 0: other
3900 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3901 */
3902 #include <netinet6/in6_var.h>
3903
3904 static int
3905 key_ismyaddr6(sin6)
3906 struct sockaddr_in6 *sin6;
3907 {
3908 struct in6_ifaddr *ia;
3909 struct in6_multi *in6m;
3910
3911 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3912 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3913 (struct sockaddr *)&ia->ia_addr, 0) == 0)
3914 return 1;
3915
3916 /*
3917 * XXX Multicast
3918 * XXX why do we care about multlicast here while we don't care
3919 * about IPv4 multicast??
3920 * XXX scope
3921 */
3922 in6m = NULL;
3923 #ifdef __FreeBSD__
3924 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3925 #else
3926 for ((in6m) = ia->ia6_multiaddrs.lh_first;
3927 (in6m) != NULL &&
3928 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
3929 (in6m) = in6m->in6m_entry.le_next)
3930 continue;
3931 #endif
3932 if (in6m)
3933 return 1;
3934 }
3935
3936 /* loopback, just for safety */
3937 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3938 return 1;
3939
3940 return 0;
3941 }
3942 #endif /*INET6*/
3943
3944 /*
3945 * compare two secasindex structure.
3946 * flag can specify to compare 2 saidxes.
3947 * compare two secasindex structure without both mode and reqid.
3948 * don't compare port.
3949 * IN:
3950 * saidx0: source, it can be in SAD.
3951 * saidx1: object.
3952 * OUT:
3953 * 1 : equal
3954 * 0 : not equal
3955 */
3956 static int
3957 key_cmpsaidx(
3958 const struct secasindex *saidx0,
3959 const struct secasindex *saidx1,
3960 int flag)
3961 {
3962 /* sanity */
3963 if (saidx0 == NULL && saidx1 == NULL)
3964 return 1;
3965
3966 if (saidx0 == NULL || saidx1 == NULL)
3967 return 0;
3968
3969 if (saidx0->proto != saidx1->proto)
3970 return 0;
3971
3972 if (flag == CMP_EXACTLY) {
3973 if (saidx0->mode != saidx1->mode)
3974 return 0;
3975 if (saidx0->reqid != saidx1->reqid)
3976 return 0;
3977 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3978 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3979 return 0;
3980 } else {
3981
3982 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3983 if (flag == CMP_MODE_REQID
3984 ||flag == CMP_REQID) {
3985 /*
3986 * If reqid of SPD is non-zero, unique SA is required.
3987 * The result must be of same reqid in this case.
3988 */
3989 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3990 return 0;
3991 }
3992
3993 if (flag == CMP_MODE_REQID) {
3994 if (saidx0->mode != IPSEC_MODE_ANY
3995 && saidx0->mode != saidx1->mode)
3996 return 0;
3997 }
3998
3999 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
4000 return 0;
4001 }
4002 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
4003 return 0;
4004 }
4005 }
4006
4007 return 1;
4008 }
4009
4010 /*
4011 * compare two secindex structure exactly.
4012 * IN:
4013 * spidx0: source, it is often in SPD.
4014 * spidx1: object, it is often from PFKEY message.
4015 * OUT:
4016 * 1 : equal
4017 * 0 : not equal
4018 */
4019 int
4020 key_cmpspidx_exactly(
4021 struct secpolicyindex *spidx0,
4022 struct secpolicyindex *spidx1)
4023 {
4024 /* sanity */
4025 if (spidx0 == NULL && spidx1 == NULL)
4026 return 1;
4027
4028 if (spidx0 == NULL || spidx1 == NULL)
4029 return 0;
4030
4031 if (spidx0->prefs != spidx1->prefs
4032 || spidx0->prefd != spidx1->prefd
4033 || spidx0->ul_proto != spidx1->ul_proto)
4034 return 0;
4035
4036 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4037 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4038 }
4039
4040 /*
4041 * compare two secindex structure with mask.
4042 * IN:
4043 * spidx0: source, it is often in SPD.
4044 * spidx1: object, it is often from IP header.
4045 * OUT:
4046 * 1 : equal
4047 * 0 : not equal
4048 */
4049 int
4050 key_cmpspidx_withmask(
4051 struct secpolicyindex *spidx0,
4052 struct secpolicyindex *spidx1)
4053 {
4054 /* sanity */
4055 if (spidx0 == NULL && spidx1 == NULL)
4056 return 1;
4057
4058 if (spidx0 == NULL || spidx1 == NULL)
4059 return 0;
4060
4061 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4062 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4063 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4064 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4065 return 0;
4066
4067 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4068 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4069 && spidx0->ul_proto != spidx1->ul_proto)
4070 return 0;
4071
4072 switch (spidx0->src.sa.sa_family) {
4073 case AF_INET:
4074 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4075 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4076 return 0;
4077 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4078 &spidx1->src.sin.sin_addr, spidx0->prefs))
4079 return 0;
4080 break;
4081 case AF_INET6:
4082 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4083 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4084 return 0;
4085 /*
4086 * scope_id check. if sin6_scope_id is 0, we regard it
4087 * as a wildcard scope, which matches any scope zone ID.
4088 */
4089 if (spidx0->src.sin6.sin6_scope_id &&
4090 spidx1->src.sin6.sin6_scope_id &&
4091 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4092 return 0;
4093 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4094 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4095 return 0;
4096 break;
4097 default:
4098 /* XXX */
4099 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4100 return 0;
4101 break;
4102 }
4103
4104 switch (spidx0->dst.sa.sa_family) {
4105 case AF_INET:
4106 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4107 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4108 return 0;
4109 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4110 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4111 return 0;
4112 break;
4113 case AF_INET6:
4114 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4115 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4116 return 0;
4117 /*
4118 * scope_id check. if sin6_scope_id is 0, we regard it
4119 * as a wildcard scope, which matches any scope zone ID.
4120 */
4121 if (spidx0->src.sin6.sin6_scope_id &&
4122 spidx1->src.sin6.sin6_scope_id &&
4123 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4124 return 0;
4125 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4126 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4127 return 0;
4128 break;
4129 default:
4130 /* XXX */
4131 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4132 return 0;
4133 break;
4134 }
4135
4136 /* XXX Do we check other field ? e.g. flowinfo */
4137
4138 return 1;
4139 }
4140
4141 /* returns 0 on match */
4142 static int
4143 key_sockaddrcmp(
4144 const struct sockaddr *sa1,
4145 const struct sockaddr *sa2,
4146 int port)
4147 {
4148 #ifdef satosin
4149 #undef satosin
4150 #endif
4151 #define satosin(s) ((const struct sockaddr_in *)s)
4152 #ifdef satosin6
4153 #undef satosin6
4154 #endif
4155 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4156 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4157 return 1;
4158
4159 switch (sa1->sa_family) {
4160 case AF_INET:
4161 if (sa1->sa_len != sizeof(struct sockaddr_in))
4162 return 1;
4163 if (satosin(sa1)->sin_addr.s_addr !=
4164 satosin(sa2)->sin_addr.s_addr) {
4165 return 1;
4166 }
4167 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4168 return 1;
4169 break;
4170 case AF_INET6:
4171 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4172 return 1; /*EINVAL*/
4173 if (satosin6(sa1)->sin6_scope_id !=
4174 satosin6(sa2)->sin6_scope_id) {
4175 return 1;
4176 }
4177 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4178 &satosin6(sa2)->sin6_addr)) {
4179 return 1;
4180 }
4181 if (port &&
4182 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4183 return 1;
4184 }
4185 break;
4186 default:
4187 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4188 return 1;
4189 break;
4190 }
4191
4192 return 0;
4193 #undef satosin
4194 #undef satosin6
4195 }
4196
4197 /*
4198 * compare two buffers with mask.
4199 * IN:
4200 * addr1: source
4201 * addr2: object
4202 * bits: Number of bits to compare
4203 * OUT:
4204 * 1 : equal
4205 * 0 : not equal
4206 */
4207 static int
4208 key_bbcmp(const void *a1, const void *a2, u_int bits)
4209 {
4210 const unsigned char *p1 = a1;
4211 const unsigned char *p2 = a2;
4212
4213 /* XXX: This could be considerably faster if we compare a word
4214 * at a time, but it is complicated on LSB Endian machines */
4215
4216 /* Handle null pointers */
4217 if (p1 == NULL || p2 == NULL)
4218 return (p1 == p2);
4219
4220 while (bits >= 8) {
4221 if (*p1++ != *p2++)
4222 return 0;
4223 bits -= 8;
4224 }
4225
4226 if (bits > 0) {
4227 u_int8_t mask = ~((1<<(8-bits))-1);
4228 if ((*p1 & mask) != (*p2 & mask))
4229 return 0;
4230 }
4231 return 1; /* Match! */
4232 }
4233
4234 /*
4235 * time handler.
4236 * scanning SPD and SAD to check status for each entries,
4237 * and do to remove or to expire.
4238 * XXX: year 2038 problem may remain.
4239 */
4240 void
4241 key_timehandler(void* arg)
4242 {
4243 u_int dir;
4244 int s;
4245 time_t now = time_second;
4246
4247 s = splsoftnet(); /*called from softclock()*/
4248
4249 /* SPD */
4250 {
4251 struct secpolicy *sp, *nextsp;
4252
4253 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4254 for (sp = LIST_FIRST(&sptree[dir]);
4255 sp != NULL;
4256 sp = nextsp) {
4257
4258 nextsp = LIST_NEXT(sp, chain);
4259
4260 if (sp->state == IPSEC_SPSTATE_DEAD) {
4261 key_sp_unlink(sp); /*XXX*/
4262
4263 /* 'sp' dead; continue transfers to
4264 * 'sp = nextsp'
4265 */
4266 continue;
4267 }
4268
4269 if (sp->lifetime == 0 && sp->validtime == 0)
4270 continue;
4271
4272 /* the deletion will occur next time */
4273 if ((sp->lifetime && now - sp->created > sp->lifetime)
4274 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4275 key_sp_dead(sp);
4276 key_spdexpire(sp);
4277 continue;
4278 }
4279 }
4280 }
4281 }
4282
4283 /* SAD */
4284 {
4285 struct secashead *sah, *nextsah;
4286 struct secasvar *sav, *nextsav;
4287
4288 for (sah = LIST_FIRST(&sahtree);
4289 sah != NULL;
4290 sah = nextsah) {
4291
4292 nextsah = LIST_NEXT(sah, chain);
4293
4294 /* if sah has been dead, then delete it and process next sah. */
4295 if (sah->state == SADB_SASTATE_DEAD) {
4296 key_delsah(sah);
4297 continue;
4298 }
4299
4300 /* if LARVAL entry doesn't become MATURE, delete it. */
4301 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4302 sav != NULL;
4303 sav = nextsav) {
4304
4305 nextsav = LIST_NEXT(sav, chain);
4306
4307 if (now - sav->created > key_larval_lifetime) {
4308 KEY_FREESAV(&sav);
4309 }
4310 }
4311
4312 /*
4313 * check MATURE entry to start to send expire message
4314 * whether or not.
4315 */
4316 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4317 sav != NULL;
4318 sav = nextsav) {
4319
4320 nextsav = LIST_NEXT(sav, chain);
4321
4322 /* we don't need to check. */
4323 if (sav->lft_s == NULL)
4324 continue;
4325
4326 /* sanity check */
4327 if (sav->lft_c == NULL) {
4328 ipseclog((LOG_DEBUG,"key_timehandler: "
4329 "There is no CURRENT time, why?\n"));
4330 continue;
4331 }
4332
4333 /* check SOFT lifetime */
4334 if (sav->lft_s->sadb_lifetime_addtime != 0
4335 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4336 /*
4337 * check SA to be used whether or not.
4338 * when SA hasn't been used, delete it.
4339 */
4340 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4341 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4342 KEY_FREESAV(&sav);
4343 } else {
4344 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4345 /*
4346 * XXX If we keep to send expire
4347 * message in the status of
4348 * DYING. Do remove below code.
4349 */
4350 key_expire(sav);
4351 }
4352 }
4353 /* check SOFT lifetime by bytes */
4354 /*
4355 * XXX I don't know the way to delete this SA
4356 * when new SA is installed. Caution when it's
4357 * installed too big lifetime by time.
4358 */
4359 else if (sav->lft_s->sadb_lifetime_bytes != 0
4360 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4361
4362 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4363 /*
4364 * XXX If we keep to send expire
4365 * message in the status of
4366 * DYING. Do remove below code.
4367 */
4368 key_expire(sav);
4369 }
4370 }
4371
4372 /* check DYING entry to change status to DEAD. */
4373 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4374 sav != NULL;
4375 sav = nextsav) {
4376
4377 nextsav = LIST_NEXT(sav, chain);
4378
4379 /* we don't need to check. */
4380 if (sav->lft_h == NULL)
4381 continue;
4382
4383 /* sanity check */
4384 if (sav->lft_c == NULL) {
4385 ipseclog((LOG_DEBUG, "key_timehandler: "
4386 "There is no CURRENT time, why?\n"));
4387 continue;
4388 }
4389
4390 if (sav->lft_h->sadb_lifetime_addtime != 0
4391 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4392 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4393 KEY_FREESAV(&sav);
4394 }
4395 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4396 else if (sav->lft_s != NULL
4397 && sav->lft_s->sadb_lifetime_addtime != 0
4398 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4399 /*
4400 * XXX: should be checked to be
4401 * installed the valid SA.
4402 */
4403
4404 /*
4405 * If there is no SA then sending
4406 * expire message.
4407 */
4408 key_expire(sav);
4409 }
4410 #endif
4411 /* check HARD lifetime by bytes */
4412 else if (sav->lft_h->sadb_lifetime_bytes != 0
4413 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4414 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4415 KEY_FREESAV(&sav);
4416 }
4417 }
4418
4419 /* delete entry in DEAD */
4420 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4421 sav != NULL;
4422 sav = nextsav) {
4423
4424 nextsav = LIST_NEXT(sav, chain);
4425
4426 /* sanity check */
4427 if (sav->state != SADB_SASTATE_DEAD) {
4428 ipseclog((LOG_DEBUG, "key_timehandler: "
4429 "invalid sav->state "
4430 "(queue: %d SA: %d): "
4431 "kill it anyway\n",
4432 SADB_SASTATE_DEAD, sav->state));
4433 }
4434
4435 /*
4436 * do not call key_freesav() here.
4437 * sav should already be freed, and sav->refcnt
4438 * shows other references to sav
4439 * (such as from SPD).
4440 */
4441 }
4442 }
4443 }
4444
4445 #ifndef IPSEC_NONBLOCK_ACQUIRE
4446 /* ACQ tree */
4447 {
4448 struct secacq *acq, *nextacq;
4449
4450 for (acq = LIST_FIRST(&acqtree);
4451 acq != NULL;
4452 acq = nextacq) {
4453
4454 nextacq = LIST_NEXT(acq, chain);
4455
4456 if (now - acq->created > key_blockacq_lifetime
4457 && __LIST_CHAINED(acq)) {
4458 LIST_REMOVE(acq, chain);
4459 KFREE(acq);
4460 }
4461 }
4462 }
4463 #endif
4464
4465 /* SP ACQ tree */
4466 {
4467 struct secspacq *acq, *nextacq;
4468
4469 for (acq = LIST_FIRST(&spacqtree);
4470 acq != NULL;
4471 acq = nextacq) {
4472
4473 nextacq = LIST_NEXT(acq, chain);
4474
4475 if (now - acq->created > key_blockacq_lifetime
4476 && __LIST_CHAINED(acq)) {
4477 LIST_REMOVE(acq, chain);
4478 KFREE(acq);
4479 }
4480 }
4481 }
4482
4483 /* initialize random seed */
4484 if (key_tick_init_random++ > key_int_random) {
4485 key_tick_init_random = 0;
4486 key_srandom();
4487 }
4488
4489 #ifndef IPSEC_DEBUG2
4490 /* do exchange to tick time !! */
4491 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4492 #endif /* IPSEC_DEBUG2 */
4493
4494 splx(s);
4495 return;
4496 }
4497
4498 #ifdef __NetBSD__
4499 void srandom(int);
4500 void srandom(int arg) {return;}
4501 #endif
4502
4503 /*
4504 * to initialize a seed for random()
4505 */
4506 static void
4507 key_srandom()
4508 {
4509 srandom(time_second);
4510 }
4511
4512 u_long
4513 key_random()
4514 {
4515 u_long value;
4516
4517 key_randomfill(&value, sizeof(value));
4518 return value;
4519 }
4520
4521 void
4522 key_randomfill(p, l)
4523 void *p;
4524 size_t l;
4525 {
4526 size_t n;
4527 u_long v;
4528 static int warn = 1;
4529
4530 n = 0;
4531 n = (size_t)read_random(p, (u_int)l);
4532 /* last resort */
4533 while (n < l) {
4534 v = random();
4535 bcopy(&v, (u_int8_t *)p + n,
4536 l - n < sizeof(v) ? l - n : sizeof(v));
4537 n += sizeof(v);
4538
4539 if (warn) {
4540 printf("WARNING: pseudo-random number generator "
4541 "used for IPsec processing\n");
4542 warn = 0;
4543 }
4544 }
4545 }
4546
4547 /*
4548 * map SADB_SATYPE_* to IPPROTO_*.
4549 * if satype == SADB_SATYPE then satype is mapped to ~0.
4550 * OUT:
4551 * 0: invalid satype.
4552 */
4553 static u_int16_t
4554 key_satype2proto(satype)
4555 u_int8_t satype;
4556 {
4557 switch (satype) {
4558 case SADB_SATYPE_UNSPEC:
4559 return IPSEC_PROTO_ANY;
4560 case SADB_SATYPE_AH:
4561 return IPPROTO_AH;
4562 case SADB_SATYPE_ESP:
4563 return IPPROTO_ESP;
4564 case SADB_X_SATYPE_IPCOMP:
4565 return IPPROTO_IPCOMP;
4566 case SADB_X_SATYPE_TCPSIGNATURE:
4567 return IPPROTO_TCP;
4568 default:
4569 return 0;
4570 }
4571 /* NOTREACHED */
4572 }
4573
4574 /*
4575 * map IPPROTO_* to SADB_SATYPE_*
4576 * OUT:
4577 * 0: invalid protocol type.
4578 */
4579 static u_int8_t
4580 key_proto2satype(proto)
4581 u_int16_t proto;
4582 {
4583 switch (proto) {
4584 case IPPROTO_AH:
4585 return SADB_SATYPE_AH;
4586 case IPPROTO_ESP:
4587 return SADB_SATYPE_ESP;
4588 case IPPROTO_IPCOMP:
4589 return SADB_X_SATYPE_IPCOMP;
4590 case IPPROTO_TCP:
4591 return SADB_X_SATYPE_TCPSIGNATURE;
4592 default:
4593 return 0;
4594 }
4595 /* NOTREACHED */
4596 }
4597
4598 /* %%% PF_KEY */
4599 /*
4600 * SADB_GETSPI processing is to receive
4601 * <base, (SA2), src address, dst address, (SPI range)>
4602 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4603 * tree with the status of LARVAL, and send
4604 * <base, SA(*), address(SD)>
4605 * to the IKMPd.
4606 *
4607 * IN: mhp: pointer to the pointer to each header.
4608 * OUT: NULL if fail.
4609 * other if success, return pointer to the message to send.
4610 */
4611 static int
4612 key_getspi(so, m, mhp)
4613 struct socket *so;
4614 struct mbuf *m;
4615 const struct sadb_msghdr *mhp;
4616 {
4617 struct sadb_address *src0, *dst0;
4618 struct secasindex saidx;
4619 struct secashead *newsah;
4620 struct secasvar *newsav;
4621 u_int8_t proto;
4622 u_int32_t spi;
4623 u_int8_t mode;
4624 u_int16_t reqid;
4625 int error;
4626
4627 /* sanity check */
4628 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4629 panic("key_getspi: NULL pointer is passed");
4630
4631 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4632 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4633 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4634 return key_senderror(so, m, EINVAL);
4635 }
4636 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4637 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4638 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4639 return key_senderror(so, m, EINVAL);
4640 }
4641 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4642 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4643 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4644 } else {
4645 mode = IPSEC_MODE_ANY;
4646 reqid = 0;
4647 }
4648
4649 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4650 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4651
4652 /* map satype to proto */
4653 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4654 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4655 return key_senderror(so, m, EINVAL);
4656 }
4657
4658 /* make sure if port number is zero. */
4659 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4660 case AF_INET:
4661 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4662 sizeof(struct sockaddr_in))
4663 return key_senderror(so, m, EINVAL);
4664 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4665 break;
4666 case AF_INET6:
4667 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4668 sizeof(struct sockaddr_in6))
4669 return key_senderror(so, m, EINVAL);
4670 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4671 break;
4672 default:
4673 ; /*???*/
4674 }
4675 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4676 case AF_INET:
4677 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4678 sizeof(struct sockaddr_in))
4679 return key_senderror(so, m, EINVAL);
4680 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4681 break;
4682 case AF_INET6:
4683 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4684 sizeof(struct sockaddr_in6))
4685 return key_senderror(so, m, EINVAL);
4686 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4687 break;
4688 default:
4689 ; /*???*/
4690 }
4691
4692 /* XXX boundary check against sa_len */
4693 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4694
4695 /* SPI allocation */
4696 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4697 &saidx);
4698 if (spi == 0)
4699 return key_senderror(so, m, EINVAL);
4700
4701 /* get a SA index */
4702 if ((newsah = key_getsah(&saidx)) == NULL) {
4703 /* create a new SA index */
4704 if ((newsah = key_newsah(&saidx)) == NULL) {
4705 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4706 return key_senderror(so, m, ENOBUFS);
4707 }
4708 }
4709
4710 /* get a new SA */
4711 /* XXX rewrite */
4712 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4713 if (newsav == NULL) {
4714 /* XXX don't free new SA index allocated in above. */
4715 return key_senderror(so, m, error);
4716 }
4717
4718 /* set spi */
4719 newsav->spi = htonl(spi);
4720
4721 #ifndef IPSEC_NONBLOCK_ACQUIRE
4722 /* delete the entry in acqtree */
4723 if (mhp->msg->sadb_msg_seq != 0) {
4724 struct secacq *acq;
4725 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4726 /* reset counter in order to deletion by timehandler. */
4727 acq->created = time_second;
4728 acq->count = 0;
4729 }
4730 }
4731 #endif
4732
4733 {
4734 struct mbuf *n, *nn;
4735 struct sadb_sa *m_sa;
4736 struct sadb_msg *newmsg;
4737 int off, len;
4738
4739 /* create new sadb_msg to reply. */
4740 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4741 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4742 if (len > MCLBYTES)
4743 return key_senderror(so, m, ENOBUFS);
4744
4745 MGETHDR(n, M_DONTWAIT, MT_DATA);
4746 if (len > MHLEN) {
4747 MCLGET(n, M_DONTWAIT);
4748 if ((n->m_flags & M_EXT) == 0) {
4749 m_freem(n);
4750 n = NULL;
4751 }
4752 }
4753 if (!n)
4754 return key_senderror(so, m, ENOBUFS);
4755
4756 n->m_len = len;
4757 n->m_next = NULL;
4758 off = 0;
4759
4760 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4761 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4762
4763 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4764 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4765 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4766 m_sa->sadb_sa_spi = htonl(spi);
4767 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4768
4769 #ifdef DIAGNOSTIC
4770 if (off != len)
4771 panic("length inconsistency in key_getspi");
4772 #endif
4773
4774 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4775 SADB_EXT_ADDRESS_DST);
4776 if (!n->m_next) {
4777 m_freem(n);
4778 return key_senderror(so, m, ENOBUFS);
4779 }
4780
4781 if (n->m_len < sizeof(struct sadb_msg)) {
4782 n = m_pullup(n, sizeof(struct sadb_msg));
4783 if (n == NULL)
4784 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4785 }
4786
4787 n->m_pkthdr.len = 0;
4788 for (nn = n; nn; nn = nn->m_next)
4789 n->m_pkthdr.len += nn->m_len;
4790
4791 newmsg = mtod(n, struct sadb_msg *);
4792 newmsg->sadb_msg_seq = newsav->seq;
4793 newmsg->sadb_msg_errno = 0;
4794 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4795
4796 m_freem(m);
4797 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4798 }
4799 }
4800
4801 /*
4802 * allocating new SPI
4803 * called by key_getspi().
4804 * OUT:
4805 * 0: failure.
4806 * others: success.
4807 */
4808 static u_int32_t
4809 key_do_getnewspi(spirange, saidx)
4810 struct sadb_spirange *spirange;
4811 struct secasindex *saidx;
4812 {
4813 u_int32_t newspi;
4814 u_int32_t spmin, spmax;
4815 int count = key_spi_trycnt;
4816
4817 /* set spi range to allocate */
4818 if (spirange != NULL) {
4819 spmin = spirange->sadb_spirange_min;
4820 spmax = spirange->sadb_spirange_max;
4821 } else {
4822 spmin = key_spi_minval;
4823 spmax = key_spi_maxval;
4824 }
4825 /* IPCOMP needs 2-byte SPI */
4826 if (saidx->proto == IPPROTO_IPCOMP) {
4827 u_int32_t t;
4828 if (spmin >= 0x10000)
4829 spmin = 0xffff;
4830 if (spmax >= 0x10000)
4831 spmax = 0xffff;
4832 if (spmin > spmax) {
4833 t = spmin; spmin = spmax; spmax = t;
4834 }
4835 }
4836
4837 if (spmin == spmax) {
4838 if (key_checkspidup(saidx, spmin) != NULL) {
4839 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
4840 return 0;
4841 }
4842
4843 count--; /* taking one cost. */
4844 newspi = spmin;
4845
4846 } else {
4847
4848 /* init SPI */
4849 newspi = 0;
4850
4851 /* when requesting to allocate spi ranged */
4852 while (count--) {
4853 /* generate pseudo-random SPI value ranged. */
4854 newspi = spmin + (key_random() % (spmax - spmin + 1));
4855
4856 if (key_checkspidup(saidx, newspi) == NULL)
4857 break;
4858 }
4859
4860 if (count == 0 || newspi == 0) {
4861 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
4862 return 0;
4863 }
4864 }
4865
4866 /* statistics */
4867 keystat.getspi_count =
4868 (keystat.getspi_count + key_spi_trycnt - count) / 2;
4869
4870 return newspi;
4871 }
4872
4873 /*
4874 * SADB_UPDATE processing
4875 * receive
4876 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4877 * key(AE), (identity(SD),) (sensitivity)>
4878 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4879 * and send
4880 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4881 * (identity(SD),) (sensitivity)>
4882 * to the ikmpd.
4883 *
4884 * m will always be freed.
4885 */
4886 static int
4887 key_update(so, m, mhp)
4888 struct socket *so;
4889 struct mbuf *m;
4890 const struct sadb_msghdr *mhp;
4891 {
4892 struct sadb_sa *sa0;
4893 struct sadb_address *src0, *dst0;
4894 struct secasindex saidx;
4895 struct secashead *sah;
4896 struct secasvar *sav;
4897 u_int16_t proto;
4898 u_int8_t mode;
4899 u_int16_t reqid;
4900 int error;
4901
4902 /* sanity check */
4903 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4904 panic("key_update: NULL pointer is passed");
4905
4906 /* map satype to proto */
4907 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4908 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
4909 return key_senderror(so, m, EINVAL);
4910 }
4911
4912 if (mhp->ext[SADB_EXT_SA] == NULL ||
4913 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4914 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4915 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4916 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4917 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4918 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4919 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4920 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4921 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4922 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4923 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4924 return key_senderror(so, m, EINVAL);
4925 }
4926 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4927 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4928 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4929 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4930 return key_senderror(so, m, EINVAL);
4931 }
4932 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4933 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4934 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4935 } else {
4936 mode = IPSEC_MODE_ANY;
4937 reqid = 0;
4938 }
4939 /* XXX boundary checking for other extensions */
4940
4941 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4942 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4943 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4944
4945 /* XXX boundary check against sa_len */
4946 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4947
4948 /* get a SA header */
4949 if ((sah = key_getsah(&saidx)) == NULL) {
4950 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
4951 return key_senderror(so, m, ENOENT);
4952 }
4953
4954 /* set spidx if there */
4955 /* XXX rewrite */
4956 error = key_setident(sah, m, mhp);
4957 if (error)
4958 return key_senderror(so, m, error);
4959
4960 /* find a SA with sequence number. */
4961 #ifdef IPSEC_DOSEQCHECK
4962 if (mhp->msg->sadb_msg_seq != 0
4963 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4964 ipseclog((LOG_DEBUG,
4965 "key_update: no larval SA with sequence %u exists.\n",
4966 mhp->msg->sadb_msg_seq));
4967 return key_senderror(so, m, ENOENT);
4968 }
4969 #else
4970 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
4971 ipseclog((LOG_DEBUG,
4972 "key_update: no such a SA found (spi:%u)\n",
4973 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4974 return key_senderror(so, m, EINVAL);
4975 }
4976 #endif
4977
4978 /* validity check */
4979 if (sav->sah->saidx.proto != proto) {
4980 ipseclog((LOG_DEBUG,
4981 "key_update: protocol mismatched (DB=%u param=%u)\n",
4982 sav->sah->saidx.proto, proto));
4983 return key_senderror(so, m, EINVAL);
4984 }
4985 #ifdef IPSEC_DOSEQCHECK
4986 if (sav->spi != sa0->sadb_sa_spi) {
4987 ipseclog((LOG_DEBUG,
4988 "key_update: SPI mismatched (DB:%u param:%u)\n",
4989 (u_int32_t)ntohl(sav->spi),
4990 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4991 return key_senderror(so, m, EINVAL);
4992 }
4993 #endif
4994 if (sav->pid != mhp->msg->sadb_msg_pid) {
4995 ipseclog((LOG_DEBUG,
4996 "key_update: pid mismatched (DB:%u param:%u)\n",
4997 sav->pid, mhp->msg->sadb_msg_pid));
4998 return key_senderror(so, m, EINVAL);
4999 }
5000
5001 /* copy sav values */
5002 error = key_setsaval(sav, m, mhp);
5003 if (error) {
5004 KEY_FREESAV(&sav);
5005 return key_senderror(so, m, error);
5006 }
5007
5008 /* check SA values to be mature. */
5009 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5010 KEY_FREESAV(&sav);
5011 return key_senderror(so, m, 0);
5012 }
5013
5014 {
5015 struct mbuf *n;
5016
5017 /* set msg buf from mhp */
5018 n = key_getmsgbuf_x1(m, mhp);
5019 if (n == NULL) {
5020 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5021 return key_senderror(so, m, ENOBUFS);
5022 }
5023
5024 m_freem(m);
5025 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5026 }
5027 }
5028
5029 /*
5030 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5031 * only called by key_update().
5032 * OUT:
5033 * NULL : not found
5034 * others : found, pointer to a SA.
5035 */
5036 #ifdef IPSEC_DOSEQCHECK
5037 static struct secasvar *
5038 key_getsavbyseq(sah, seq)
5039 struct secashead *sah;
5040 u_int32_t seq;
5041 {
5042 struct secasvar *sav;
5043 u_int state;
5044
5045 state = SADB_SASTATE_LARVAL;
5046
5047 /* search SAD with sequence number ? */
5048 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5049
5050 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5051
5052 if (sav->seq == seq) {
5053 SA_ADDREF(sav);
5054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5055 printf("DP key_getsavbyseq cause "
5056 "refcnt++:%d SA:%p\n",
5057 sav->refcnt, sav));
5058 return sav;
5059 }
5060 }
5061
5062 return NULL;
5063 }
5064 #endif
5065
5066 /*
5067 * SADB_ADD processing
5068 * add an entry to SA database, when received
5069 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5070 * key(AE), (identity(SD),) (sensitivity)>
5071 * from the ikmpd,
5072 * and send
5073 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5074 * (identity(SD),) (sensitivity)>
5075 * to the ikmpd.
5076 *
5077 * IGNORE identity and sensitivity messages.
5078 *
5079 * m will always be freed.
5080 */
5081 static int
5082 key_add(so, m, mhp)
5083 struct socket *so;
5084 struct mbuf *m;
5085 const struct sadb_msghdr *mhp;
5086 {
5087 struct sadb_sa *sa0;
5088 struct sadb_address *src0, *dst0;
5089 struct secasindex saidx;
5090 struct secashead *newsah;
5091 struct secasvar *newsav;
5092 u_int16_t proto;
5093 u_int8_t mode;
5094 u_int16_t reqid;
5095 int error;
5096
5097 /* sanity check */
5098 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5099 panic("key_add: NULL pointer is passed");
5100
5101 /* map satype to proto */
5102 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5103 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5104 return key_senderror(so, m, EINVAL);
5105 }
5106
5107 if (mhp->ext[SADB_EXT_SA] == NULL ||
5108 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5109 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5110 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5111 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5112 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5113 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5114 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5115 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5116 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5117 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5118 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5119 return key_senderror(so, m, EINVAL);
5120 }
5121 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5122 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5123 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5124 /* XXX need more */
5125 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5126 return key_senderror(so, m, EINVAL);
5127 }
5128 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5129 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5130 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5131 } else {
5132 mode = IPSEC_MODE_ANY;
5133 reqid = 0;
5134 }
5135
5136 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5137 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5138 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5139
5140 /* XXX boundary check against sa_len */
5141 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5142
5143 /* get a SA header */
5144 if ((newsah = key_getsah(&saidx)) == NULL) {
5145 /* create a new SA header */
5146 if ((newsah = key_newsah(&saidx)) == NULL) {
5147 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5148 return key_senderror(so, m, ENOBUFS);
5149 }
5150 }
5151
5152 /* set spidx if there */
5153 /* XXX rewrite */
5154 error = key_setident(newsah, m, mhp);
5155 if (error) {
5156 return key_senderror(so, m, error);
5157 }
5158
5159 /* create new SA entry. */
5160 /* We can create new SA only if SPI is differenct. */
5161 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5162 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5163 return key_senderror(so, m, EEXIST);
5164 }
5165 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5166 if (newsav == NULL) {
5167 return key_senderror(so, m, error);
5168 }
5169
5170 /* check SA values to be mature. */
5171 if ((error = key_mature(newsav)) != 0) {
5172 KEY_FREESAV(&newsav);
5173 return key_senderror(so, m, error);
5174 }
5175
5176 /*
5177 * don't call key_freesav() here, as we would like to keep the SA
5178 * in the database on success.
5179 */
5180
5181 {
5182 struct mbuf *n;
5183
5184 /* set msg buf from mhp */
5185 n = key_getmsgbuf_x1(m, mhp);
5186 if (n == NULL) {
5187 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5188 return key_senderror(so, m, ENOBUFS);
5189 }
5190
5191 m_freem(m);
5192 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5193 }
5194 }
5195
5196 /* m is retained */
5197 static int
5198 key_setident(sah, m, mhp)
5199 struct secashead *sah;
5200 struct mbuf *m;
5201 const struct sadb_msghdr *mhp;
5202 {
5203 const struct sadb_ident *idsrc, *iddst;
5204 int idsrclen, iddstlen;
5205
5206 /* sanity check */
5207 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5208 panic("key_setident: NULL pointer is passed");
5209
5210 /* don't make buffer if not there */
5211 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5212 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5213 sah->idents = NULL;
5214 sah->identd = NULL;
5215 return 0;
5216 }
5217
5218 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5219 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5220 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5221 return EINVAL;
5222 }
5223
5224 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5225 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5226 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5227 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5228
5229 /* validity check */
5230 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5231 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5232 return EINVAL;
5233 }
5234
5235 switch (idsrc->sadb_ident_type) {
5236 case SADB_IDENTTYPE_PREFIX:
5237 case SADB_IDENTTYPE_FQDN:
5238 case SADB_IDENTTYPE_USERFQDN:
5239 default:
5240 /* XXX do nothing */
5241 sah->idents = NULL;
5242 sah->identd = NULL;
5243 return 0;
5244 }
5245
5246 /* make structure */
5247 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5248 if (sah->idents == NULL) {
5249 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5250 return ENOBUFS;
5251 }
5252 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5253 if (sah->identd == NULL) {
5254 KFREE(sah->idents);
5255 sah->idents = NULL;
5256 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5257 return ENOBUFS;
5258 }
5259 bcopy(idsrc, sah->idents, idsrclen);
5260 bcopy(iddst, sah->identd, iddstlen);
5261
5262 return 0;
5263 }
5264
5265 /*
5266 * m will not be freed on return.
5267 * it is caller's responsibility to free the result.
5268 */
5269 static struct mbuf *
5270 key_getmsgbuf_x1(m, mhp)
5271 struct mbuf *m;
5272 const struct sadb_msghdr *mhp;
5273 {
5274 struct mbuf *n;
5275
5276 /* sanity check */
5277 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5278 panic("key_getmsgbuf_x1: NULL pointer is passed");
5279
5280 /* create new sadb_msg to reply. */
5281 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5282 SADB_EXT_SA, SADB_X_EXT_SA2,
5283 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5284 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5285 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5286 if (!n)
5287 return NULL;
5288
5289 if (n->m_len < sizeof(struct sadb_msg)) {
5290 n = m_pullup(n, sizeof(struct sadb_msg));
5291 if (n == NULL)
5292 return NULL;
5293 }
5294 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5295 mtod(n, struct sadb_msg *)->sadb_msg_len =
5296 PFKEY_UNIT64(n->m_pkthdr.len);
5297
5298 return n;
5299 }
5300
5301 static int key_delete_all __P((struct socket *, struct mbuf *,
5302 const struct sadb_msghdr *, u_int16_t));
5303
5304 /*
5305 * SADB_DELETE processing
5306 * receive
5307 * <base, SA(*), address(SD)>
5308 * from the ikmpd, and set SADB_SASTATE_DEAD,
5309 * and send,
5310 * <base, SA(*), address(SD)>
5311 * to the ikmpd.
5312 *
5313 * m will always be freed.
5314 */
5315 static int
5316 key_delete(so, m, mhp)
5317 struct socket *so;
5318 struct mbuf *m;
5319 const struct sadb_msghdr *mhp;
5320 {
5321 struct sadb_sa *sa0;
5322 struct sadb_address *src0, *dst0;
5323 struct secasindex saidx;
5324 struct secashead *sah;
5325 struct secasvar *sav = NULL;
5326 u_int16_t proto;
5327
5328 /* sanity check */
5329 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5330 panic("key_delete: NULL pointer is passed");
5331
5332 /* map satype to proto */
5333 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5334 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5335 return key_senderror(so, m, EINVAL);
5336 }
5337
5338 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5339 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5340 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5341 return key_senderror(so, m, EINVAL);
5342 }
5343
5344 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5345 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5346 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5347 return key_senderror(so, m, EINVAL);
5348 }
5349
5350 if (mhp->ext[SADB_EXT_SA] == NULL) {
5351 /*
5352 * Caller wants us to delete all non-LARVAL SAs
5353 * that match the src/dst. This is used during
5354 * IKE INITIAL-CONTACT.
5355 */
5356 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5357 return key_delete_all(so, m, mhp, proto);
5358 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5359 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5360 return key_senderror(so, m, EINVAL);
5361 }
5362
5363 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5364 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5365 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5366
5367 /* XXX boundary check against sa_len */
5368 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5369
5370 /* get a SA header */
5371 LIST_FOREACH(sah, &sahtree, chain) {
5372 if (sah->state == SADB_SASTATE_DEAD)
5373 continue;
5374 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5375 continue;
5376
5377 /* get a SA with SPI. */
5378 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5379 if (sav)
5380 break;
5381 }
5382 if (sah == NULL) {
5383 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5384 return key_senderror(so, m, ENOENT);
5385 }
5386
5387 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5388 KEY_FREESAV(&sav);
5389
5390 {
5391 struct mbuf *n;
5392 struct sadb_msg *newmsg;
5393
5394 /* create new sadb_msg to reply. */
5395 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5396 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5397 if (!n)
5398 return key_senderror(so, m, ENOBUFS);
5399
5400 if (n->m_len < sizeof(struct sadb_msg)) {
5401 n = m_pullup(n, sizeof(struct sadb_msg));
5402 if (n == NULL)
5403 return key_senderror(so, m, ENOBUFS);
5404 }
5405 newmsg = mtod(n, struct sadb_msg *);
5406 newmsg->sadb_msg_errno = 0;
5407 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5408
5409 m_freem(m);
5410 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5411 }
5412 }
5413
5414 /*
5415 * delete all SAs for src/dst. Called from key_delete().
5416 */
5417 static int
5418 key_delete_all(so, m, mhp, proto)
5419 struct socket *so;
5420 struct mbuf *m;
5421 const struct sadb_msghdr *mhp;
5422 u_int16_t proto;
5423 {
5424 struct sadb_address *src0, *dst0;
5425 struct secasindex saidx;
5426 struct secashead *sah;
5427 struct secasvar *sav, *nextsav;
5428 u_int stateidx, state;
5429
5430 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5431 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5432
5433 /* XXX boundary check against sa_len */
5434 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5435
5436 LIST_FOREACH(sah, &sahtree, chain) {
5437 if (sah->state == SADB_SASTATE_DEAD)
5438 continue;
5439 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5440 continue;
5441
5442 /* Delete all non-LARVAL SAs. */
5443 for (stateidx = 0;
5444 stateidx < _ARRAYLEN(saorder_state_alive);
5445 stateidx++) {
5446 state = saorder_state_alive[stateidx];
5447 if (state == SADB_SASTATE_LARVAL)
5448 continue;
5449 for (sav = LIST_FIRST(&sah->savtree[state]);
5450 sav != NULL; sav = nextsav) {
5451 nextsav = LIST_NEXT(sav, chain);
5452 /* sanity check */
5453 if (sav->state != state) {
5454 ipseclog((LOG_DEBUG, "key_delete_all: "
5455 "invalid sav->state "
5456 "(queue: %d SA: %d)\n",
5457 state, sav->state));
5458 continue;
5459 }
5460
5461 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5462 KEY_FREESAV(&sav);
5463 }
5464 }
5465 }
5466 {
5467 struct mbuf *n;
5468 struct sadb_msg *newmsg;
5469
5470 /* create new sadb_msg to reply. */
5471 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5472 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5473 if (!n)
5474 return key_senderror(so, m, ENOBUFS);
5475
5476 if (n->m_len < sizeof(struct sadb_msg)) {
5477 n = m_pullup(n, sizeof(struct sadb_msg));
5478 if (n == NULL)
5479 return key_senderror(so, m, ENOBUFS);
5480 }
5481 newmsg = mtod(n, struct sadb_msg *);
5482 newmsg->sadb_msg_errno = 0;
5483 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5484
5485 m_freem(m);
5486 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5487 }
5488 }
5489
5490 /*
5491 * SADB_GET processing
5492 * receive
5493 * <base, SA(*), address(SD)>
5494 * from the ikmpd, and get a SP and a SA to respond,
5495 * and send,
5496 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5497 * (identity(SD),) (sensitivity)>
5498 * to the ikmpd.
5499 *
5500 * m will always be freed.
5501 */
5502 static int
5503 key_get(so, m, mhp)
5504 struct socket *so;
5505 struct mbuf *m;
5506 const struct sadb_msghdr *mhp;
5507 {
5508 struct sadb_sa *sa0;
5509 struct sadb_address *src0, *dst0;
5510 struct secasindex saidx;
5511 struct secashead *sah;
5512 struct secasvar *sav = NULL;
5513 u_int16_t proto;
5514
5515 /* sanity check */
5516 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5517 panic("key_get: NULL pointer is passed");
5518
5519 /* map satype to proto */
5520 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5521 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5522 return key_senderror(so, m, EINVAL);
5523 }
5524
5525 if (mhp->ext[SADB_EXT_SA] == NULL ||
5526 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5527 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5528 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5529 return key_senderror(so, m, EINVAL);
5530 }
5531 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5532 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5533 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5534 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5535 return key_senderror(so, m, EINVAL);
5536 }
5537
5538 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5539 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5540 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5541
5542 /* XXX boundary check against sa_len */
5543 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5544
5545 /* get a SA header */
5546 LIST_FOREACH(sah, &sahtree, chain) {
5547 if (sah->state == SADB_SASTATE_DEAD)
5548 continue;
5549 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5550 continue;
5551
5552 /* get a SA with SPI. */
5553 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5554 if (sav)
5555 break;
5556 }
5557 if (sah == NULL) {
5558 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5559 return key_senderror(so, m, ENOENT);
5560 }
5561
5562 {
5563 struct mbuf *n;
5564 u_int8_t satype;
5565
5566 /* map proto to satype */
5567 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5568 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5569 return key_senderror(so, m, EINVAL);
5570 }
5571
5572 /* create new sadb_msg to reply. */
5573 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5574 mhp->msg->sadb_msg_pid);
5575 if (!n)
5576 return key_senderror(so, m, ENOBUFS);
5577
5578 m_freem(m);
5579 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5580 }
5581 }
5582
5583 /* XXX make it sysctl-configurable? */
5584 static void
5585 key_getcomb_setlifetime(comb)
5586 struct sadb_comb *comb;
5587 {
5588
5589 comb->sadb_comb_soft_allocations = 1;
5590 comb->sadb_comb_hard_allocations = 1;
5591 comb->sadb_comb_soft_bytes = 0;
5592 comb->sadb_comb_hard_bytes = 0;
5593 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5594 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5595 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5596 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5597 }
5598
5599 /*
5600 * XXX reorder combinations by preference
5601 * XXX no idea if the user wants ESP authentication or not
5602 */
5603 static struct mbuf *
5604 key_getcomb_esp()
5605 {
5606 struct sadb_comb *comb;
5607 struct enc_xform *algo;
5608 struct mbuf *result = NULL, *m, *n;
5609 int encmin;
5610 int i, off, o;
5611 int totlen;
5612 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5613
5614 m = NULL;
5615 for (i = 1; i <= SADB_EALG_MAX; i++) {
5616 algo = esp_algorithm_lookup(i);
5617 if (algo == NULL)
5618 continue;
5619
5620 /* discard algorithms with key size smaller than system min */
5621 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5622 continue;
5623 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5624 encmin = ipsec_esp_keymin;
5625 else
5626 encmin = _BITS(algo->minkey);
5627
5628 if (ipsec_esp_auth)
5629 m = key_getcomb_ah();
5630 else {
5631 IPSEC_ASSERT(l <= MLEN,
5632 ("key_getcomb_esp: l=%u > MLEN=%lu",
5633 l, (u_long) MLEN));
5634 MGET(m, M_DONTWAIT, MT_DATA);
5635 if (m) {
5636 M_ALIGN(m, l);
5637 m->m_len = l;
5638 m->m_next = NULL;
5639 bzero(mtod(m, void *), m->m_len);
5640 }
5641 }
5642 if (!m)
5643 goto fail;
5644
5645 totlen = 0;
5646 for (n = m; n; n = n->m_next)
5647 totlen += n->m_len;
5648 IPSEC_ASSERT((totlen % l) == 0,
5649 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
5650
5651 for (off = 0; off < totlen; off += l) {
5652 n = m_pulldown(m, off, l, &o);
5653 if (!n) {
5654 /* m is already freed */
5655 goto fail;
5656 }
5657 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5658 bzero(comb, sizeof(*comb));
5659 key_getcomb_setlifetime(comb);
5660 comb->sadb_comb_encrypt = i;
5661 comb->sadb_comb_encrypt_minbits = encmin;
5662 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5663 }
5664
5665 if (!result)
5666 result = m;
5667 else
5668 m_cat(result, m);
5669 }
5670
5671 return result;
5672
5673 fail:
5674 if (result)
5675 m_freem(result);
5676 return NULL;
5677 }
5678
5679 static void
5680 key_getsizes_ah(
5681 const struct auth_hash *ah,
5682 int alg,
5683 u_int16_t* ksmin,
5684 u_int16_t* ksmax)
5685 {
5686 *ksmin = *ksmax = ah->keysize;
5687 if (ah->keysize == 0) {
5688 /*
5689 * Transform takes arbitrary key size but algorithm
5690 * key size is restricted. Enforce this here.
5691 */
5692 switch (alg) {
5693 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
5694 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
5695 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break;
5696 default:
5697 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
5698 alg));
5699 break;
5700 }
5701 }
5702 }
5703
5704 /*
5705 * XXX reorder combinations by preference
5706 */
5707 static struct mbuf *
5708 key_getcomb_ah()
5709 {
5710 struct sadb_comb *comb;
5711 struct auth_hash *algo;
5712 struct mbuf *m;
5713 u_int16_t minkeysize, maxkeysize;
5714 int i;
5715 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5716
5717 m = NULL;
5718 for (i = 1; i <= SADB_AALG_MAX; i++) {
5719 #if 1
5720 /* we prefer HMAC algorithms, not old algorithms */
5721 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5722 continue;
5723 #endif
5724 algo = ah_algorithm_lookup(i);
5725 if (!algo)
5726 continue;
5727 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5728 /* discard algorithms with key size smaller than system min */
5729 if (_BITS(minkeysize) < ipsec_ah_keymin)
5730 continue;
5731
5732 if (!m) {
5733 IPSEC_ASSERT(l <= MLEN,
5734 ("key_getcomb_ah: l=%u > MLEN=%lu",
5735 l, (u_long) MLEN));
5736 MGET(m, M_DONTWAIT, MT_DATA);
5737 if (m) {
5738 M_ALIGN(m, l);
5739 m->m_len = l;
5740 m->m_next = NULL;
5741 }
5742 } else
5743 M_PREPEND(m, l, M_DONTWAIT);
5744 if (!m)
5745 return NULL;
5746
5747 comb = mtod(m, struct sadb_comb *);
5748 bzero(comb, sizeof(*comb));
5749 key_getcomb_setlifetime(comb);
5750 comb->sadb_comb_auth = i;
5751 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5752 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5753 }
5754
5755 return m;
5756 }
5757
5758 /*
5759 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
5760 * XXX reorder combinations by preference
5761 */
5762 static struct mbuf *
5763 key_getcomb_ipcomp()
5764 {
5765 struct sadb_comb *comb;
5766 struct comp_algo *algo;
5767 struct mbuf *m;
5768 int i;
5769 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5770
5771 m = NULL;
5772 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5773 algo = ipcomp_algorithm_lookup(i);
5774 if (!algo)
5775 continue;
5776
5777 if (!m) {
5778 IPSEC_ASSERT(l <= MLEN,
5779 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
5780 l, (u_long) MLEN));
5781 MGET(m, M_DONTWAIT, MT_DATA);
5782 if (m) {
5783 M_ALIGN(m, l);
5784 m->m_len = l;
5785 m->m_next = NULL;
5786 }
5787 } else
5788 M_PREPEND(m, l, M_DONTWAIT);
5789 if (!m)
5790 return NULL;
5791
5792 comb = mtod(m, struct sadb_comb *);
5793 bzero(comb, sizeof(*comb));
5794 key_getcomb_setlifetime(comb);
5795 comb->sadb_comb_encrypt = i;
5796 /* what should we set into sadb_comb_*_{min,max}bits? */
5797 }
5798
5799 return m;
5800 }
5801
5802 /*
5803 * XXX no way to pass mode (transport/tunnel) to userland
5804 * XXX replay checking?
5805 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5806 */
5807 static struct mbuf *
5808 key_getprop(saidx)
5809 const struct secasindex *saidx;
5810 {
5811 struct sadb_prop *prop;
5812 struct mbuf *m, *n;
5813 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5814 int totlen;
5815
5816 switch (saidx->proto) {
5817 case IPPROTO_ESP:
5818 m = key_getcomb_esp();
5819 break;
5820 case IPPROTO_AH:
5821 m = key_getcomb_ah();
5822 break;
5823 case IPPROTO_IPCOMP:
5824 m = key_getcomb_ipcomp();
5825 break;
5826 default:
5827 return NULL;
5828 }
5829
5830 if (!m)
5831 return NULL;
5832 M_PREPEND(m, l, M_DONTWAIT);
5833 if (!m)
5834 return NULL;
5835
5836 totlen = 0;
5837 for (n = m; n; n = n->m_next)
5838 totlen += n->m_len;
5839
5840 prop = mtod(m, struct sadb_prop *);
5841 bzero(prop, sizeof(*prop));
5842 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5843 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5844 prop->sadb_prop_replay = 32; /* XXX */
5845
5846 return m;
5847 }
5848
5849 /*
5850 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5851 * send
5852 * <base, SA, address(SD), (address(P)), x_policy,
5853 * (identity(SD),) (sensitivity,) proposal>
5854 * to KMD, and expect to receive
5855 * <base> with SADB_ACQUIRE if error occurred,
5856 * or
5857 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
5858 * from KMD by PF_KEY.
5859 *
5860 * XXX x_policy is outside of RFC2367 (KAME extension).
5861 * XXX sensitivity is not supported.
5862 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5863 * see comment for key_getcomb_ipcomp().
5864 *
5865 * OUT:
5866 * 0 : succeed
5867 * others: error number
5868 */
5869 static int
5870 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5871 {
5872 struct mbuf *result = NULL, *m;
5873 #ifndef IPSEC_NONBLOCK_ACQUIRE
5874 struct secacq *newacq;
5875 #endif
5876 u_int8_t satype;
5877 int error = -1;
5878 u_int32_t seq;
5879
5880 /* sanity check */
5881 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
5882 satype = key_proto2satype(saidx->proto);
5883 IPSEC_ASSERT(satype != 0,
5884 ("key_acquire: null satype, protocol %u", saidx->proto));
5885
5886 #ifndef IPSEC_NONBLOCK_ACQUIRE
5887 /*
5888 * We never do anything about acquirng SA. There is anather
5889 * solution that kernel blocks to send SADB_ACQUIRE message until
5890 * getting something message from IKEd. In later case, to be
5891 * managed with ACQUIRING list.
5892 */
5893 /* Get an entry to check whether sending message or not. */
5894 if ((newacq = key_getacq(saidx)) != NULL) {
5895 if (key_blockacq_count < newacq->count) {
5896 /* reset counter and do send message. */
5897 newacq->count = 0;
5898 } else {
5899 /* increment counter and do nothing. */
5900 newacq->count++;
5901 return 0;
5902 }
5903 } else {
5904 /* make new entry for blocking to send SADB_ACQUIRE. */
5905 if ((newacq = key_newacq(saidx)) == NULL)
5906 return ENOBUFS;
5907
5908 /* add to acqtree */
5909 LIST_INSERT_HEAD(&acqtree, newacq, chain);
5910 }
5911 #endif
5912
5913
5914 #ifndef IPSEC_NONBLOCK_ACQUIRE
5915 seq = newacq->seq;
5916 #else
5917 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
5918 #endif
5919 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5920 if (!m) {
5921 error = ENOBUFS;
5922 goto fail;
5923 }
5924 result = m;
5925
5926 /* set sadb_address for saidx's. */
5927 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5928 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5929 if (!m) {
5930 error = ENOBUFS;
5931 goto fail;
5932 }
5933 m_cat(result, m);
5934
5935 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5936 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5937 if (!m) {
5938 error = ENOBUFS;
5939 goto fail;
5940 }
5941 m_cat(result, m);
5942
5943 /* XXX proxy address (optional) */
5944
5945 /* set sadb_x_policy */
5946 if (sp) {
5947 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5948 if (!m) {
5949 error = ENOBUFS;
5950 goto fail;
5951 }
5952 m_cat(result, m);
5953 }
5954
5955 /* XXX identity (optional) */
5956 #if 0
5957 if (idexttype && fqdn) {
5958 /* create identity extension (FQDN) */
5959 struct sadb_ident *id;
5960 int fqdnlen;
5961
5962 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
5963 id = (struct sadb_ident *)p;
5964 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5965 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5966 id->sadb_ident_exttype = idexttype;
5967 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5968 bcopy(fqdn, id + 1, fqdnlen);
5969 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5970 }
5971
5972 if (idexttype) {
5973 /* create identity extension (USERFQDN) */
5974 struct sadb_ident *id;
5975 int userfqdnlen;
5976
5977 if (userfqdn) {
5978 /* +1 for terminating-NUL */
5979 userfqdnlen = strlen(userfqdn) + 1;
5980 } else
5981 userfqdnlen = 0;
5982 id = (struct sadb_ident *)p;
5983 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5984 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5985 id->sadb_ident_exttype = idexttype;
5986 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5987 /* XXX is it correct? */
5988 if (curlwp)
5989 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
5990 if (userfqdn && userfqdnlen)
5991 bcopy(userfqdn, id + 1, userfqdnlen);
5992 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5993 }
5994 #endif
5995
5996 /* XXX sensitivity (optional) */
5997
5998 /* create proposal/combination extension */
5999 m = key_getprop(saidx);
6000 #if 0
6001 /*
6002 * spec conformant: always attach proposal/combination extension,
6003 * the problem is that we have no way to attach it for ipcomp,
6004 * due to the way sadb_comb is declared in RFC2367.
6005 */
6006 if (!m) {
6007 error = ENOBUFS;
6008 goto fail;
6009 }
6010 m_cat(result, m);
6011 #else
6012 /*
6013 * outside of spec; make proposal/combination extension optional.
6014 */
6015 if (m)
6016 m_cat(result, m);
6017 #endif
6018
6019 if ((result->m_flags & M_PKTHDR) == 0) {
6020 error = EINVAL;
6021 goto fail;
6022 }
6023
6024 if (result->m_len < sizeof(struct sadb_msg)) {
6025 result = m_pullup(result, sizeof(struct sadb_msg));
6026 if (result == NULL) {
6027 error = ENOBUFS;
6028 goto fail;
6029 }
6030 }
6031
6032 result->m_pkthdr.len = 0;
6033 for (m = result; m; m = m->m_next)
6034 result->m_pkthdr.len += m->m_len;
6035
6036 mtod(result, struct sadb_msg *)->sadb_msg_len =
6037 PFKEY_UNIT64(result->m_pkthdr.len);
6038
6039 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6040
6041 fail:
6042 if (result)
6043 m_freem(result);
6044 return error;
6045 }
6046
6047 #ifndef IPSEC_NONBLOCK_ACQUIRE
6048 static struct secacq *
6049 key_newacq(const struct secasindex *saidx)
6050 {
6051 struct secacq *newacq;
6052
6053 /* get new entry */
6054 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6055 if (newacq == NULL) {
6056 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6057 return NULL;
6058 }
6059 bzero(newacq, sizeof(*newacq));
6060
6061 /* copy secindex */
6062 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6063 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6064 newacq->created = time_second;
6065 newacq->count = 0;
6066
6067 return newacq;
6068 }
6069
6070 static struct secacq *
6071 key_getacq(const struct secasindex *saidx)
6072 {
6073 struct secacq *acq;
6074
6075 LIST_FOREACH(acq, &acqtree, chain) {
6076 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6077 return acq;
6078 }
6079
6080 return NULL;
6081 }
6082
6083 static struct secacq *
6084 key_getacqbyseq(seq)
6085 u_int32_t seq;
6086 {
6087 struct secacq *acq;
6088
6089 LIST_FOREACH(acq, &acqtree, chain) {
6090 if (acq->seq == seq)
6091 return acq;
6092 }
6093
6094 return NULL;
6095 }
6096 #endif
6097
6098 static struct secspacq *
6099 key_newspacq(spidx)
6100 struct secpolicyindex *spidx;
6101 {
6102 struct secspacq *acq;
6103
6104 /* get new entry */
6105 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6106 if (acq == NULL) {
6107 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6108 return NULL;
6109 }
6110 bzero(acq, sizeof(*acq));
6111
6112 /* copy secindex */
6113 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6114 acq->created = time_second;
6115 acq->count = 0;
6116
6117 return acq;
6118 }
6119
6120 static struct secspacq *
6121 key_getspacq(spidx)
6122 struct secpolicyindex *spidx;
6123 {
6124 struct secspacq *acq;
6125
6126 LIST_FOREACH(acq, &spacqtree, chain) {
6127 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6128 return acq;
6129 }
6130
6131 return NULL;
6132 }
6133
6134 /*
6135 * SADB_ACQUIRE processing,
6136 * in first situation, is receiving
6137 * <base>
6138 * from the ikmpd, and clear sequence of its secasvar entry.
6139 *
6140 * In second situation, is receiving
6141 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6142 * from a user land process, and return
6143 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6144 * to the socket.
6145 *
6146 * m will always be freed.
6147 */
6148 static int
6149 key_acquire2(so, m, mhp)
6150 struct socket *so;
6151 struct mbuf *m;
6152 const struct sadb_msghdr *mhp;
6153 {
6154 const struct sadb_address *src0, *dst0;
6155 struct secasindex saidx;
6156 struct secashead *sah;
6157 u_int16_t proto;
6158 int error;
6159
6160 /* sanity check */
6161 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6162 panic("key_acquire2: NULL pointer is passed");
6163
6164 /*
6165 * Error message from KMd.
6166 * We assume that if error was occurred in IKEd, the length of PFKEY
6167 * message is equal to the size of sadb_msg structure.
6168 * We do not raise error even if error occurred in this function.
6169 */
6170 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6171 #ifndef IPSEC_NONBLOCK_ACQUIRE
6172 struct secacq *acq;
6173
6174 /* check sequence number */
6175 if (mhp->msg->sadb_msg_seq == 0) {
6176 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6177 m_freem(m);
6178 return 0;
6179 }
6180
6181 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6182 /*
6183 * the specified larval SA is already gone, or we got
6184 * a bogus sequence number. we can silently ignore it.
6185 */
6186 m_freem(m);
6187 return 0;
6188 }
6189
6190 /* reset acq counter in order to deletion by timehander. */
6191 acq->created = time_second;
6192 acq->count = 0;
6193 #endif
6194 m_freem(m);
6195 return 0;
6196 }
6197
6198 /*
6199 * This message is from user land.
6200 */
6201
6202 /* map satype to proto */
6203 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6204 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6205 return key_senderror(so, m, EINVAL);
6206 }
6207
6208 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6209 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6210 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6211 /* error */
6212 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6213 return key_senderror(so, m, EINVAL);
6214 }
6215 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6216 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6217 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6218 /* error */
6219 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6220 return key_senderror(so, m, EINVAL);
6221 }
6222
6223 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6224 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6225
6226 /* XXX boundary check against sa_len */
6227 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6228
6229 /* get a SA index */
6230 LIST_FOREACH(sah, &sahtree, chain) {
6231 if (sah->state == SADB_SASTATE_DEAD)
6232 continue;
6233 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6234 break;
6235 }
6236 if (sah != NULL) {
6237 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6238 return key_senderror(so, m, EEXIST);
6239 }
6240
6241 error = key_acquire(&saidx, NULL);
6242 if (error != 0) {
6243 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6244 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6245 return key_senderror(so, m, error);
6246 }
6247
6248 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6249 }
6250
6251 /*
6252 * SADB_REGISTER processing.
6253 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6254 * receive
6255 * <base>
6256 * from the ikmpd, and register a socket to send PF_KEY messages,
6257 * and send
6258 * <base, supported>
6259 * to KMD by PF_KEY.
6260 * If socket is detached, must free from regnode.
6261 *
6262 * m will always be freed.
6263 */
6264 static int
6265 key_register(so, m, mhp)
6266 struct socket *so;
6267 struct mbuf *m;
6268 const struct sadb_msghdr *mhp;
6269 {
6270 struct secreg *reg, *newreg = 0;
6271
6272 /* sanity check */
6273 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6274 panic("key_register: NULL pointer is passed");
6275
6276 /* check for invalid register message */
6277 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6278 return key_senderror(so, m, EINVAL);
6279
6280 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6281 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6282 goto setmsg;
6283
6284 /* check whether existing or not */
6285 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6286 if (reg->so == so) {
6287 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6288 return key_senderror(so, m, EEXIST);
6289 }
6290 }
6291
6292 /* create regnode */
6293 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6294 if (newreg == NULL) {
6295 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6296 return key_senderror(so, m, ENOBUFS);
6297 }
6298 bzero(newreg, sizeof(*newreg));
6299
6300 newreg->so = so;
6301 ((struct keycb *)sotorawcb(so))->kp_registered++;
6302
6303 /* add regnode to regtree. */
6304 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6305
6306 setmsg:
6307 {
6308 struct mbuf *n;
6309 struct sadb_msg *newmsg;
6310 struct sadb_supported *sup;
6311 u_int len, alen, elen;
6312 int off;
6313 int i;
6314 struct sadb_alg *alg;
6315
6316 /* create new sadb_msg to reply. */
6317 alen = 0;
6318 for (i = 1; i <= SADB_AALG_MAX; i++) {
6319 if (ah_algorithm_lookup(i))
6320 alen += sizeof(struct sadb_alg);
6321 }
6322 if (alen)
6323 alen += sizeof(struct sadb_supported);
6324 elen = 0;
6325 for (i = 1; i <= SADB_EALG_MAX; i++) {
6326 if (esp_algorithm_lookup(i))
6327 elen += sizeof(struct sadb_alg);
6328 }
6329 if (elen)
6330 elen += sizeof(struct sadb_supported);
6331
6332 len = sizeof(struct sadb_msg) + alen + elen;
6333
6334 if (len > MCLBYTES)
6335 return key_senderror(so, m, ENOBUFS);
6336
6337 MGETHDR(n, M_DONTWAIT, MT_DATA);
6338 if (len > MHLEN) {
6339 MCLGET(n, M_DONTWAIT);
6340 if ((n->m_flags & M_EXT) == 0) {
6341 m_freem(n);
6342 n = NULL;
6343 }
6344 }
6345 if (!n)
6346 return key_senderror(so, m, ENOBUFS);
6347
6348 n->m_pkthdr.len = n->m_len = len;
6349 n->m_next = NULL;
6350 off = 0;
6351
6352 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6353 newmsg = mtod(n, struct sadb_msg *);
6354 newmsg->sadb_msg_errno = 0;
6355 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6356 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6357
6358 /* for authentication algorithm */
6359 if (alen) {
6360 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6361 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6362 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6363 off += PFKEY_ALIGN8(sizeof(*sup));
6364
6365 for (i = 1; i <= SADB_AALG_MAX; i++) {
6366 struct auth_hash *aalgo;
6367 u_int16_t minkeysize, maxkeysize;
6368
6369 aalgo = ah_algorithm_lookup(i);
6370 if (!aalgo)
6371 continue;
6372 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6373 alg->sadb_alg_id = i;
6374 alg->sadb_alg_ivlen = 0;
6375 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6376 alg->sadb_alg_minbits = _BITS(minkeysize);
6377 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6378 off += PFKEY_ALIGN8(sizeof(*alg));
6379 }
6380 }
6381
6382 /* for encryption algorithm */
6383 if (elen) {
6384 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6385 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6386 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6387 off += PFKEY_ALIGN8(sizeof(*sup));
6388
6389 for (i = 1; i <= SADB_EALG_MAX; i++) {
6390 struct enc_xform *ealgo;
6391
6392 ealgo = esp_algorithm_lookup(i);
6393 if (!ealgo)
6394 continue;
6395 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6396 alg->sadb_alg_id = i;
6397 alg->sadb_alg_ivlen = ealgo->blocksize;
6398 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6399 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6400 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6401 }
6402 }
6403
6404 #ifdef DIAGNOSTIC
6405 if (off != len)
6406 panic("length assumption failed in key_register");
6407 #endif
6408
6409 m_freem(m);
6410 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6411 }
6412 }
6413
6414 /*
6415 * free secreg entry registered.
6416 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6417 */
6418 void
6419 key_freereg(so)
6420 struct socket *so;
6421 {
6422 struct secreg *reg;
6423 int i;
6424
6425 /* sanity check */
6426 if (so == NULL)
6427 panic("key_freereg: NULL pointer is passed");
6428
6429 /*
6430 * check whether existing or not.
6431 * check all type of SA, because there is a potential that
6432 * one socket is registered to multiple type of SA.
6433 */
6434 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6435 LIST_FOREACH(reg, ®tree[i], chain) {
6436 if (reg->so == so
6437 && __LIST_CHAINED(reg)) {
6438 LIST_REMOVE(reg, chain);
6439 KFREE(reg);
6440 break;
6441 }
6442 }
6443 }
6444
6445 return;
6446 }
6447
6448 /*
6449 * SADB_EXPIRE processing
6450 * send
6451 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6452 * to KMD by PF_KEY.
6453 * NOTE: We send only soft lifetime extension.
6454 *
6455 * OUT: 0 : succeed
6456 * others : error number
6457 */
6458 static int
6459 key_expire(sav)
6460 struct secasvar *sav;
6461 {
6462 int s;
6463 int satype;
6464 struct mbuf *result = NULL, *m;
6465 int len;
6466 int error = -1;
6467 struct sadb_lifetime *lt;
6468
6469 /* XXX: Why do we lock ? */
6470 s = splsoftnet(); /*called from softclock()*/
6471
6472 /* sanity check */
6473 if (sav == NULL)
6474 panic("key_expire: NULL pointer is passed");
6475 if (sav->sah == NULL)
6476 panic("key_expire: Why was SA index in SA NULL");
6477 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6478 panic("key_expire: invalid proto is passed");
6479
6480 /* set msg header */
6481 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6482 if (!m) {
6483 error = ENOBUFS;
6484 goto fail;
6485 }
6486 result = m;
6487
6488 /* create SA extension */
6489 m = key_setsadbsa(sav);
6490 if (!m) {
6491 error = ENOBUFS;
6492 goto fail;
6493 }
6494 m_cat(result, m);
6495
6496 /* create SA extension */
6497 m = key_setsadbxsa2(sav->sah->saidx.mode,
6498 sav->replay ? sav->replay->count : 0,
6499 sav->sah->saidx.reqid);
6500 if (!m) {
6501 error = ENOBUFS;
6502 goto fail;
6503 }
6504 m_cat(result, m);
6505
6506 /* create lifetime extension (current and soft) */
6507 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6508 m = key_alloc_mbuf(len);
6509 if (!m || m->m_next) { /*XXX*/
6510 if (m)
6511 m_freem(m);
6512 error = ENOBUFS;
6513 goto fail;
6514 }
6515 bzero(mtod(m, void *), len);
6516 lt = mtod(m, struct sadb_lifetime *);
6517 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6518 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6519 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6520 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6521 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6522 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6523 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6524 bcopy(sav->lft_s, lt, sizeof(*lt));
6525 m_cat(result, m);
6526
6527 /* set sadb_address for source */
6528 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6529 &sav->sah->saidx.src.sa,
6530 FULLMASK, IPSEC_ULPROTO_ANY);
6531 if (!m) {
6532 error = ENOBUFS;
6533 goto fail;
6534 }
6535 m_cat(result, m);
6536
6537 /* set sadb_address for destination */
6538 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6539 &sav->sah->saidx.dst.sa,
6540 FULLMASK, IPSEC_ULPROTO_ANY);
6541 if (!m) {
6542 error = ENOBUFS;
6543 goto fail;
6544 }
6545 m_cat(result, m);
6546
6547 if ((result->m_flags & M_PKTHDR) == 0) {
6548 error = EINVAL;
6549 goto fail;
6550 }
6551
6552 if (result->m_len < sizeof(struct sadb_msg)) {
6553 result = m_pullup(result, sizeof(struct sadb_msg));
6554 if (result == NULL) {
6555 error = ENOBUFS;
6556 goto fail;
6557 }
6558 }
6559
6560 result->m_pkthdr.len = 0;
6561 for (m = result; m; m = m->m_next)
6562 result->m_pkthdr.len += m->m_len;
6563
6564 mtod(result, struct sadb_msg *)->sadb_msg_len =
6565 PFKEY_UNIT64(result->m_pkthdr.len);
6566
6567 splx(s);
6568 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6569
6570 fail:
6571 if (result)
6572 m_freem(result);
6573 splx(s);
6574 return error;
6575 }
6576
6577 /*
6578 * SADB_FLUSH processing
6579 * receive
6580 * <base>
6581 * from the ikmpd, and free all entries in secastree.
6582 * and send,
6583 * <base>
6584 * to the ikmpd.
6585 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6586 *
6587 * m will always be freed.
6588 */
6589 static int
6590 key_flush(so, m, mhp)
6591 struct socket *so;
6592 struct mbuf *m;
6593 const struct sadb_msghdr *mhp;
6594 {
6595 struct sadb_msg *newmsg;
6596 struct secashead *sah, *nextsah;
6597 struct secasvar *sav, *nextsav;
6598 u_int16_t proto;
6599 u_int8_t state;
6600 u_int stateidx;
6601
6602 /* sanity check */
6603 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6604 panic("key_flush: NULL pointer is passed");
6605
6606 /* map satype to proto */
6607 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6608 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6609 return key_senderror(so, m, EINVAL);
6610 }
6611
6612 /* no SATYPE specified, i.e. flushing all SA. */
6613 for (sah = LIST_FIRST(&sahtree);
6614 sah != NULL;
6615 sah = nextsah) {
6616 nextsah = LIST_NEXT(sah, chain);
6617
6618 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6619 && proto != sah->saidx.proto)
6620 continue;
6621
6622 for (stateidx = 0;
6623 stateidx < _ARRAYLEN(saorder_state_alive);
6624 stateidx++) {
6625 state = saorder_state_any[stateidx];
6626 for (sav = LIST_FIRST(&sah->savtree[state]);
6627 sav != NULL;
6628 sav = nextsav) {
6629
6630 nextsav = LIST_NEXT(sav, chain);
6631
6632 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6633 KEY_FREESAV(&sav);
6634 }
6635 }
6636
6637 sah->state = SADB_SASTATE_DEAD;
6638 }
6639
6640 if (m->m_len < sizeof(struct sadb_msg) ||
6641 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6642 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
6643 return key_senderror(so, m, ENOBUFS);
6644 }
6645
6646 if (m->m_next)
6647 m_freem(m->m_next);
6648 m->m_next = NULL;
6649 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6650 newmsg = mtod(m, struct sadb_msg *);
6651 newmsg->sadb_msg_errno = 0;
6652 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6653
6654 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6655 }
6656
6657
6658 static struct mbuf *
6659 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6660 {
6661 struct secashead *sah;
6662 struct secasvar *sav;
6663 u_int16_t proto;
6664 u_int stateidx;
6665 u_int8_t satype;
6666 u_int8_t state;
6667 int cnt;
6668 struct mbuf *m, *n, *prev;
6669 int totlen;
6670
6671 *lenp = 0;
6672
6673 /* map satype to proto */
6674 if ((proto = key_satype2proto(req_satype)) == 0) {
6675 *errorp = EINVAL;
6676 return (NULL);
6677 }
6678
6679 /* count sav entries to be sent to userland. */
6680 cnt = 0;
6681 LIST_FOREACH(sah, &sahtree, chain) {
6682 if (req_satype != SADB_SATYPE_UNSPEC &&
6683 proto != sah->saidx.proto)
6684 continue;
6685
6686 for (stateidx = 0;
6687 stateidx < _ARRAYLEN(saorder_state_any);
6688 stateidx++) {
6689 state = saorder_state_any[stateidx];
6690 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6691 cnt++;
6692 }
6693 }
6694 }
6695
6696 if (cnt == 0) {
6697 *errorp = ENOENT;
6698 return (NULL);
6699 }
6700
6701 /* send this to the userland, one at a time. */
6702 m = NULL;
6703 prev = m;
6704 LIST_FOREACH(sah, &sahtree, chain) {
6705 if (req_satype != SADB_SATYPE_UNSPEC &&
6706 proto != sah->saidx.proto)
6707 continue;
6708
6709 /* map proto to satype */
6710 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6711 m_freem(m);
6712 *errorp = EINVAL;
6713 return (NULL);
6714 }
6715
6716 for (stateidx = 0;
6717 stateidx < _ARRAYLEN(saorder_state_any);
6718 stateidx++) {
6719 state = saorder_state_any[stateidx];
6720 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6721 n = key_setdumpsa(sav, SADB_DUMP, satype,
6722 --cnt, pid);
6723 if (!n) {
6724 m_freem(m);
6725 *errorp = ENOBUFS;
6726 return (NULL);
6727 }
6728
6729 totlen += n->m_pkthdr.len;
6730 if (!m)
6731 m = n;
6732 else
6733 prev->m_nextpkt = n;
6734 prev = n;
6735 }
6736 }
6737 }
6738
6739 if (!m) {
6740 *errorp = EINVAL;
6741 return (NULL);
6742 }
6743
6744 if ((m->m_flags & M_PKTHDR) != 0) {
6745 m->m_pkthdr.len = 0;
6746 for (n = m; n; n = n->m_next)
6747 m->m_pkthdr.len += n->m_len;
6748 }
6749
6750 *errorp = 0;
6751 return (m);
6752 }
6753
6754 /*
6755 * SADB_DUMP processing
6756 * dump all entries including status of DEAD in SAD.
6757 * receive
6758 * <base>
6759 * from the ikmpd, and dump all secasvar leaves
6760 * and send,
6761 * <base> .....
6762 * to the ikmpd.
6763 *
6764 * m will always be freed.
6765 */
6766 static int
6767 key_dump(so, m0, mhp)
6768 struct socket *so;
6769 struct mbuf *m0;
6770 const struct sadb_msghdr *mhp;
6771 {
6772 u_int16_t proto;
6773 u_int8_t satype;
6774 struct mbuf *n;
6775 int s;
6776 int error, len, ok;
6777
6778 /* sanity check */
6779 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
6780 panic("key_dump: NULL pointer is passed");
6781
6782 /* map satype to proto */
6783 satype = mhp->msg->sadb_msg_satype;
6784 if ((proto = key_satype2proto(satype)) == 0) {
6785 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
6786 return key_senderror(so, m0, EINVAL);
6787 }
6788
6789 /*
6790 * If the requestor has insufficient socket-buffer space
6791 * for the entire chain, nobody gets any response to the DUMP.
6792 * XXX For now, only the requestor ever gets anything.
6793 * Moreover, if the requestor has any space at all, they receive
6794 * the entire chain, otherwise the request is refused with ENOBUFS.
6795 */
6796 if (sbspace(&so->so_rcv) <= 0) {
6797 return key_senderror(so, m0, ENOBUFS);
6798 }
6799
6800 s = splsoftnet();
6801 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
6802 splx(s);
6803
6804 if (n == NULL) {
6805 return key_senderror(so, m0, ENOENT);
6806 }
6807 pfkeystat.in_total++;
6808 pfkeystat.in_bytes += len;
6809
6810 /*
6811 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
6812 * The requestor receives either the entire chain, or an
6813 * error message with ENOBUFS.
6814 *
6815 * sbappendaddrchain() takes the chain of entries, one
6816 * packet-record per SPD entry, prepends the key_src sockaddr
6817 * to each packet-record, links the sockaddr mbufs into a new
6818 * list of records, then appends the entire resulting
6819 * list to the requesting socket.
6820 */
6821 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
6822 n, SB_PRIO_ONESHOT_OVERFLOW);
6823
6824 if (!ok) {
6825 pfkeystat.in_nomem++;
6826 m_freem(n);
6827 return key_senderror(so, m0, ENOBUFS);
6828 }
6829
6830 m_freem(m0);
6831 return 0;
6832 }
6833
6834 /*
6835 * SADB_X_PROMISC processing
6836 *
6837 * m will always be freed.
6838 */
6839 static int
6840 key_promisc(so, m, mhp)
6841 struct socket *so;
6842 struct mbuf *m;
6843 const struct sadb_msghdr *mhp;
6844 {
6845 int olen;
6846
6847 /* sanity check */
6848 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6849 panic("key_promisc: NULL pointer is passed");
6850
6851 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6852
6853 if (olen < sizeof(struct sadb_msg)) {
6854 #if 1
6855 return key_senderror(so, m, EINVAL);
6856 #else
6857 m_freem(m);
6858 return 0;
6859 #endif
6860 } else if (olen == sizeof(struct sadb_msg)) {
6861 /* enable/disable promisc mode */
6862 struct keycb *kp;
6863
6864 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6865 return key_senderror(so, m, EINVAL);
6866 mhp->msg->sadb_msg_errno = 0;
6867 switch (mhp->msg->sadb_msg_satype) {
6868 case 0:
6869 case 1:
6870 kp->kp_promisc = mhp->msg->sadb_msg_satype;
6871 break;
6872 default:
6873 return key_senderror(so, m, EINVAL);
6874 }
6875
6876 /* send the original message back to everyone */
6877 mhp->msg->sadb_msg_errno = 0;
6878 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6879 } else {
6880 /* send packet as is */
6881
6882 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6883
6884 /* TODO: if sadb_msg_seq is specified, send to specific pid */
6885 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6886 }
6887 }
6888
6889 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6890 const struct sadb_msghdr *)) = {
6891 NULL, /* SADB_RESERVED */
6892 key_getspi, /* SADB_GETSPI */
6893 key_update, /* SADB_UPDATE */
6894 key_add, /* SADB_ADD */
6895 key_delete, /* SADB_DELETE */
6896 key_get, /* SADB_GET */
6897 key_acquire2, /* SADB_ACQUIRE */
6898 key_register, /* SADB_REGISTER */
6899 NULL, /* SADB_EXPIRE */
6900 key_flush, /* SADB_FLUSH */
6901 key_dump, /* SADB_DUMP */
6902 key_promisc, /* SADB_X_PROMISC */
6903 NULL, /* SADB_X_PCHANGE */
6904 key_spdadd, /* SADB_X_SPDUPDATE */
6905 key_spdadd, /* SADB_X_SPDADD */
6906 key_spddelete, /* SADB_X_SPDDELETE */
6907 key_spdget, /* SADB_X_SPDGET */
6908 NULL, /* SADB_X_SPDACQUIRE */
6909 key_spddump, /* SADB_X_SPDDUMP */
6910 key_spdflush, /* SADB_X_SPDFLUSH */
6911 key_spdadd, /* SADB_X_SPDSETIDX */
6912 NULL, /* SADB_X_SPDEXPIRE */
6913 key_spddelete2, /* SADB_X_SPDDELETE2 */
6914 NULL, /* SADB_X_NAT_T_NEW_MAPPING */
6915 };
6916
6917 /*
6918 * parse sadb_msg buffer to process PFKEYv2,
6919 * and create a data to response if needed.
6920 * I think to be dealed with mbuf directly.
6921 * IN:
6922 * msgp : pointer to pointer to a received buffer pulluped.
6923 * This is rewrited to response.
6924 * so : pointer to socket.
6925 * OUT:
6926 * length for buffer to send to user process.
6927 */
6928 int
6929 key_parse(m, so)
6930 struct mbuf *m;
6931 struct socket *so;
6932 {
6933 struct sadb_msg *msg;
6934 struct sadb_msghdr mh;
6935 u_int orglen;
6936 int error;
6937 int target;
6938
6939 /* sanity check */
6940 if (m == NULL || so == NULL)
6941 panic("key_parse: NULL pointer is passed");
6942
6943 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
6944 KEYDEBUG(KEYDEBUG_KEY_DUMP,
6945 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
6946 kdebug_sadb(msg));
6947 #endif
6948
6949 if (m->m_len < sizeof(struct sadb_msg)) {
6950 m = m_pullup(m, sizeof(struct sadb_msg));
6951 if (!m)
6952 return ENOBUFS;
6953 }
6954 msg = mtod(m, struct sadb_msg *);
6955 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6956 target = KEY_SENDUP_ONE;
6957
6958 if ((m->m_flags & M_PKTHDR) == 0 ||
6959 m->m_pkthdr.len != m->m_pkthdr.len) {
6960 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
6961 pfkeystat.out_invlen++;
6962 error = EINVAL;
6963 goto senderror;
6964 }
6965
6966 if (msg->sadb_msg_version != PF_KEY_V2) {
6967 ipseclog((LOG_DEBUG,
6968 "key_parse: PF_KEY version %u is mismatched.\n",
6969 msg->sadb_msg_version));
6970 pfkeystat.out_invver++;
6971 error = EINVAL;
6972 goto senderror;
6973 }
6974
6975 if (msg->sadb_msg_type > SADB_MAX) {
6976 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
6977 msg->sadb_msg_type));
6978 pfkeystat.out_invmsgtype++;
6979 error = EINVAL;
6980 goto senderror;
6981 }
6982
6983 /* for old-fashioned code - should be nuked */
6984 if (m->m_pkthdr.len > MCLBYTES) {
6985 m_freem(m);
6986 return ENOBUFS;
6987 }
6988 if (m->m_next) {
6989 struct mbuf *n;
6990
6991 MGETHDR(n, M_DONTWAIT, MT_DATA);
6992 if (n && m->m_pkthdr.len > MHLEN) {
6993 MCLGET(n, M_DONTWAIT);
6994 if ((n->m_flags & M_EXT) == 0) {
6995 m_free(n);
6996 n = NULL;
6997 }
6998 }
6999 if (!n) {
7000 m_freem(m);
7001 return ENOBUFS;
7002 }
7003 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7004 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7005 n->m_next = NULL;
7006 m_freem(m);
7007 m = n;
7008 }
7009
7010 /* align the mbuf chain so that extensions are in contiguous region. */
7011 error = key_align(m, &mh);
7012 if (error)
7013 return error;
7014
7015 if (m->m_next) { /*XXX*/
7016 m_freem(m);
7017 return ENOBUFS;
7018 }
7019
7020 msg = mh.msg;
7021
7022 /* check SA type */
7023 switch (msg->sadb_msg_satype) {
7024 case SADB_SATYPE_UNSPEC:
7025 switch (msg->sadb_msg_type) {
7026 case SADB_GETSPI:
7027 case SADB_UPDATE:
7028 case SADB_ADD:
7029 case SADB_DELETE:
7030 case SADB_GET:
7031 case SADB_ACQUIRE:
7032 case SADB_EXPIRE:
7033 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7034 "when msg type=%u.\n", msg->sadb_msg_type));
7035 pfkeystat.out_invsatype++;
7036 error = EINVAL;
7037 goto senderror;
7038 }
7039 break;
7040 case SADB_SATYPE_AH:
7041 case SADB_SATYPE_ESP:
7042 case SADB_X_SATYPE_IPCOMP:
7043 case SADB_X_SATYPE_TCPSIGNATURE:
7044 switch (msg->sadb_msg_type) {
7045 case SADB_X_SPDADD:
7046 case SADB_X_SPDDELETE:
7047 case SADB_X_SPDGET:
7048 case SADB_X_SPDDUMP:
7049 case SADB_X_SPDFLUSH:
7050 case SADB_X_SPDSETIDX:
7051 case SADB_X_SPDUPDATE:
7052 case SADB_X_SPDDELETE2:
7053 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7054 msg->sadb_msg_type));
7055 pfkeystat.out_invsatype++;
7056 error = EINVAL;
7057 goto senderror;
7058 }
7059 break;
7060 case SADB_SATYPE_RSVP:
7061 case SADB_SATYPE_OSPFV2:
7062 case SADB_SATYPE_RIPV2:
7063 case SADB_SATYPE_MIP:
7064 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7065 msg->sadb_msg_satype));
7066 pfkeystat.out_invsatype++;
7067 error = EOPNOTSUPP;
7068 goto senderror;
7069 case 1: /* XXX: What does it do? */
7070 if (msg->sadb_msg_type == SADB_X_PROMISC)
7071 break;
7072 /*FALLTHROUGH*/
7073 default:
7074 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7075 msg->sadb_msg_satype));
7076 pfkeystat.out_invsatype++;
7077 error = EINVAL;
7078 goto senderror;
7079 }
7080
7081 /* check field of upper layer protocol and address family */
7082 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7083 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7084 struct sadb_address *src0, *dst0;
7085 u_int plen;
7086
7087 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7088 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7089
7090 /* check upper layer protocol */
7091 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7092 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7093 pfkeystat.out_invaddr++;
7094 error = EINVAL;
7095 goto senderror;
7096 }
7097
7098 /* check family */
7099 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7100 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7101 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7102 pfkeystat.out_invaddr++;
7103 error = EINVAL;
7104 goto senderror;
7105 }
7106 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7107 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7108 ipseclog((LOG_DEBUG,
7109 "key_parse: address struct size mismatched.\n"));
7110 pfkeystat.out_invaddr++;
7111 error = EINVAL;
7112 goto senderror;
7113 }
7114
7115 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7116 case AF_INET:
7117 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7118 sizeof(struct sockaddr_in)) {
7119 pfkeystat.out_invaddr++;
7120 error = EINVAL;
7121 goto senderror;
7122 }
7123 break;
7124 case AF_INET6:
7125 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7126 sizeof(struct sockaddr_in6)) {
7127 pfkeystat.out_invaddr++;
7128 error = EINVAL;
7129 goto senderror;
7130 }
7131 break;
7132 default:
7133 ipseclog((LOG_DEBUG,
7134 "key_parse: unsupported address family.\n"));
7135 pfkeystat.out_invaddr++;
7136 error = EAFNOSUPPORT;
7137 goto senderror;
7138 }
7139
7140 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7141 case AF_INET:
7142 plen = sizeof(struct in_addr) << 3;
7143 break;
7144 case AF_INET6:
7145 plen = sizeof(struct in6_addr) << 3;
7146 break;
7147 default:
7148 plen = 0; /*fool gcc*/
7149 break;
7150 }
7151
7152 /* check max prefix length */
7153 if (src0->sadb_address_prefixlen > plen ||
7154 dst0->sadb_address_prefixlen > plen) {
7155 ipseclog((LOG_DEBUG,
7156 "key_parse: illegal prefixlen.\n"));
7157 pfkeystat.out_invaddr++;
7158 error = EINVAL;
7159 goto senderror;
7160 }
7161
7162 /*
7163 * prefixlen == 0 is valid because there can be a case when
7164 * all addresses are matched.
7165 */
7166 }
7167
7168 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7169 key_typesw[msg->sadb_msg_type] == NULL) {
7170 pfkeystat.out_invmsgtype++;
7171 error = EINVAL;
7172 goto senderror;
7173 }
7174
7175 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7176
7177 senderror:
7178 msg->sadb_msg_errno = error;
7179 return key_sendup_mbuf(so, m, target);
7180 }
7181
7182 static int
7183 key_senderror(so, m, code)
7184 struct socket *so;
7185 struct mbuf *m;
7186 int code;
7187 {
7188 struct sadb_msg *msg;
7189
7190 if (m->m_len < sizeof(struct sadb_msg))
7191 panic("invalid mbuf passed to key_senderror");
7192
7193 msg = mtod(m, struct sadb_msg *);
7194 msg->sadb_msg_errno = code;
7195 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7196 }
7197
7198 /*
7199 * set the pointer to each header into message buffer.
7200 * m will be freed on error.
7201 * XXX larger-than-MCLBYTES extension?
7202 */
7203 static int
7204 key_align(m, mhp)
7205 struct mbuf *m;
7206 struct sadb_msghdr *mhp;
7207 {
7208 struct mbuf *n;
7209 struct sadb_ext *ext;
7210 size_t off, end;
7211 int extlen;
7212 int toff;
7213
7214 /* sanity check */
7215 if (m == NULL || mhp == NULL)
7216 panic("key_align: NULL pointer is passed");
7217 if (m->m_len < sizeof(struct sadb_msg))
7218 panic("invalid mbuf passed to key_align");
7219
7220 /* initialize */
7221 bzero(mhp, sizeof(*mhp));
7222
7223 mhp->msg = mtod(m, struct sadb_msg *);
7224 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7225
7226 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7227 extlen = end; /*just in case extlen is not updated*/
7228 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7229 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7230 if (!n) {
7231 /* m is already freed */
7232 return ENOBUFS;
7233 }
7234 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7235
7236 /* set pointer */
7237 switch (ext->sadb_ext_type) {
7238 case SADB_EXT_SA:
7239 case SADB_EXT_ADDRESS_SRC:
7240 case SADB_EXT_ADDRESS_DST:
7241 case SADB_EXT_ADDRESS_PROXY:
7242 case SADB_EXT_LIFETIME_CURRENT:
7243 case SADB_EXT_LIFETIME_HARD:
7244 case SADB_EXT_LIFETIME_SOFT:
7245 case SADB_EXT_KEY_AUTH:
7246 case SADB_EXT_KEY_ENCRYPT:
7247 case SADB_EXT_IDENTITY_SRC:
7248 case SADB_EXT_IDENTITY_DST:
7249 case SADB_EXT_SENSITIVITY:
7250 case SADB_EXT_PROPOSAL:
7251 case SADB_EXT_SUPPORTED_AUTH:
7252 case SADB_EXT_SUPPORTED_ENCRYPT:
7253 case SADB_EXT_SPIRANGE:
7254 case SADB_X_EXT_POLICY:
7255 case SADB_X_EXT_SA2:
7256 /* duplicate check */
7257 /*
7258 * XXX Are there duplication payloads of either
7259 * KEY_AUTH or KEY_ENCRYPT ?
7260 */
7261 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7262 ipseclog((LOG_DEBUG,
7263 "key_align: duplicate ext_type %u "
7264 "is passed.\n", ext->sadb_ext_type));
7265 m_freem(m);
7266 pfkeystat.out_dupext++;
7267 return EINVAL;
7268 }
7269 break;
7270 default:
7271 ipseclog((LOG_DEBUG,
7272 "key_align: invalid ext_type %u is passed.\n",
7273 ext->sadb_ext_type));
7274 m_freem(m);
7275 pfkeystat.out_invexttype++;
7276 return EINVAL;
7277 }
7278
7279 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7280
7281 if (key_validate_ext(ext, extlen)) {
7282 m_freem(m);
7283 pfkeystat.out_invlen++;
7284 return EINVAL;
7285 }
7286
7287 n = m_pulldown(m, off, extlen, &toff);
7288 if (!n) {
7289 /* m is already freed */
7290 return ENOBUFS;
7291 }
7292 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7293
7294 mhp->ext[ext->sadb_ext_type] = ext;
7295 mhp->extoff[ext->sadb_ext_type] = off;
7296 mhp->extlen[ext->sadb_ext_type] = extlen;
7297 }
7298
7299 if (off != end) {
7300 m_freem(m);
7301 pfkeystat.out_invlen++;
7302 return EINVAL;
7303 }
7304
7305 return 0;
7306 }
7307
7308 static int
7309 key_validate_ext(ext, len)
7310 const struct sadb_ext *ext;
7311 int len;
7312 {
7313 const struct sockaddr *sa;
7314 enum { NONE, ADDR } checktype = NONE;
7315 int baselen = 0;
7316 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7317
7318 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7319 return EINVAL;
7320
7321 /* if it does not match minimum/maximum length, bail */
7322 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7323 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7324 return EINVAL;
7325 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7326 return EINVAL;
7327 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7328 return EINVAL;
7329
7330 /* more checks based on sadb_ext_type XXX need more */
7331 switch (ext->sadb_ext_type) {
7332 case SADB_EXT_ADDRESS_SRC:
7333 case SADB_EXT_ADDRESS_DST:
7334 case SADB_EXT_ADDRESS_PROXY:
7335 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7336 checktype = ADDR;
7337 break;
7338 case SADB_EXT_IDENTITY_SRC:
7339 case SADB_EXT_IDENTITY_DST:
7340 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7341 SADB_X_IDENTTYPE_ADDR) {
7342 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7343 checktype = ADDR;
7344 } else
7345 checktype = NONE;
7346 break;
7347 default:
7348 checktype = NONE;
7349 break;
7350 }
7351
7352 switch (checktype) {
7353 case NONE:
7354 break;
7355 case ADDR:
7356 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7357 if (len < baselen + sal)
7358 return EINVAL;
7359 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7360 return EINVAL;
7361 break;
7362 }
7363
7364 return 0;
7365 }
7366
7367 void
7368 key_init()
7369 {
7370 int i;
7371
7372 callout_init(&key_timehandler_ch);
7373
7374 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7375 LIST_INIT(&sptree[i]);
7376 }
7377
7378 LIST_INIT(&sahtree);
7379
7380 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7381 LIST_INIT(®tree[i]);
7382 }
7383
7384 #ifndef IPSEC_NONBLOCK_ACQUIRE
7385 LIST_INIT(&acqtree);
7386 #endif
7387 LIST_INIT(&spacqtree);
7388
7389 /* system default */
7390 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7391 ip4_def_policy.refcnt++; /*never reclaim this*/
7392
7393
7394 #ifndef IPSEC_DEBUG2
7395 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7396 #endif /*IPSEC_DEBUG2*/
7397
7398 /* initialize key statistics */
7399 keystat.getspi_count = 1;
7400
7401 printf("IPsec: Initialized Security Association Processing.\n");
7402
7403 return;
7404 }
7405
7406 /*
7407 * XXX: maybe This function is called after INBOUND IPsec processing.
7408 *
7409 * Special check for tunnel-mode packets.
7410 * We must make some checks for consistency between inner and outer IP header.
7411 *
7412 * xxx more checks to be provided
7413 */
7414 int
7415 key_checktunnelsanity(
7416 struct secasvar *sav,
7417 u_int family,
7418 void *src,
7419 void *dst
7420 )
7421 {
7422 /* sanity check */
7423 if (sav->sah == NULL)
7424 panic("sav->sah == NULL at key_checktunnelsanity");
7425
7426 /* XXX: check inner IP header */
7427
7428 return 1;
7429 }
7430
7431 #if 0
7432 #define hostnamelen strlen(hostname)
7433
7434 /*
7435 * Get FQDN for the host.
7436 * If the administrator configured hostname (by hostname(1)) without
7437 * domain name, returns nothing.
7438 */
7439 static const char *
7440 key_getfqdn()
7441 {
7442 int i;
7443 int hasdot;
7444 static char fqdn[MAXHOSTNAMELEN + 1];
7445
7446 if (!hostnamelen)
7447 return NULL;
7448
7449 /* check if it comes with domain name. */
7450 hasdot = 0;
7451 for (i = 0; i < hostnamelen; i++) {
7452 if (hostname[i] == '.')
7453 hasdot++;
7454 }
7455 if (!hasdot)
7456 return NULL;
7457
7458 /* NOTE: hostname may not be NUL-terminated. */
7459 bzero(fqdn, sizeof(fqdn));
7460 bcopy(hostname, fqdn, hostnamelen);
7461 fqdn[hostnamelen] = '\0';
7462 return fqdn;
7463 }
7464
7465 /*
7466 * get username@FQDN for the host/user.
7467 */
7468 static const char *
7469 key_getuserfqdn()
7470 {
7471 const char *host;
7472 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7473 struct proc *p = curproc;
7474 char *q;
7475
7476 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7477 return NULL;
7478 if (!(host = key_getfqdn()))
7479 return NULL;
7480
7481 /* NOTE: s_login may not be-NUL terminated. */
7482 bzero(userfqdn, sizeof(userfqdn));
7483 bcopy(p->p_pgrp->pg_session->s_login, userfqdn, MAXLOGNAME);
7484 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7485 q = userfqdn + strlen(userfqdn);
7486 *q++ = '@';
7487 bcopy(host, q, strlen(host));
7488 q += strlen(host);
7489 *q++ = '\0';
7490
7491 return userfqdn;
7492 }
7493 #endif
7494
7495 /* record data transfer on SA, and update timestamps */
7496 void
7497 key_sa_recordxfer(sav, m)
7498 struct secasvar *sav;
7499 struct mbuf *m;
7500 {
7501 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7502 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7503 if (!sav->lft_c)
7504 return;
7505
7506 /*
7507 * XXX Currently, there is a difference of bytes size
7508 * between inbound and outbound processing.
7509 */
7510 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7511 /* to check bytes lifetime is done in key_timehandler(). */
7512
7513 /*
7514 * We use the number of packets as the unit of
7515 * sadb_lifetime_allocations. We increment the variable
7516 * whenever {esp,ah}_{in,out}put is called.
7517 */
7518 sav->lft_c->sadb_lifetime_allocations++;
7519 /* XXX check for expires? */
7520
7521 /*
7522 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7523 * in seconds. HARD and SOFT lifetime are measured by the time
7524 * difference (again in seconds) from sadb_lifetime_usetime.
7525 *
7526 * usetime
7527 * v expire expire
7528 * -----+-----+--------+---> t
7529 * <--------------> HARD
7530 * <-----> SOFT
7531 */
7532 sav->lft_c->sadb_lifetime_usetime = time_second;
7533 /* XXX check for expires? */
7534
7535 return;
7536 }
7537
7538 /* dumb version */
7539 void
7540 key_sa_routechange(dst)
7541 struct sockaddr *dst;
7542 {
7543 struct secashead *sah;
7544 struct route *ro;
7545
7546 LIST_FOREACH(sah, &sahtree, chain) {
7547 ro = &sah->sa_route;
7548 if (dst->sa_len == rtcache_getdst(ro)->sa_len &&
7549 memcmp(dst, rtcache_getdst(ro), dst->sa_len) == 0)
7550 rtcache_free(ro);
7551 }
7552
7553 return;
7554 }
7555
7556 static void
7557 key_sa_chgstate(sav, state)
7558 struct secasvar *sav;
7559 u_int8_t state;
7560 {
7561 if (sav == NULL)
7562 panic("key_sa_chgstate called with sav == NULL");
7563
7564 if (sav->state == state)
7565 return;
7566
7567 if (__LIST_CHAINED(sav))
7568 LIST_REMOVE(sav, chain);
7569
7570 sav->state = state;
7571 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7572 }
7573
7574 void
7575 key_sa_stir_iv(sav)
7576 struct secasvar *sav;
7577 {
7578
7579 if (!sav->iv)
7580 panic("key_sa_stir_iv called with sav == NULL");
7581 key_randomfill(sav->iv, sav->ivlen);
7582 }
7583
7584 /* XXX too much? */
7585 static struct mbuf *
7586 key_alloc_mbuf(l)
7587 int l;
7588 {
7589 struct mbuf *m = NULL, *n;
7590 int len, t;
7591
7592 len = l;
7593 while (len > 0) {
7594 MGET(n, M_DONTWAIT, MT_DATA);
7595 if (n && len > MLEN)
7596 MCLGET(n, M_DONTWAIT);
7597 if (!n) {
7598 m_freem(m);
7599 return NULL;
7600 }
7601
7602 n->m_next = NULL;
7603 n->m_len = 0;
7604 n->m_len = M_TRAILINGSPACE(n);
7605 /* use the bottom of mbuf, hoping we can prepend afterwards */
7606 if (n->m_len > len) {
7607 t = (n->m_len - len) & ~(sizeof(long) - 1);
7608 n->m_data += t;
7609 n->m_len = len;
7610 }
7611
7612 len -= n->m_len;
7613
7614 if (m)
7615 m_cat(m, n);
7616 else
7617 m = n;
7618 }
7619
7620 return m;
7621 }
7622
7623 static struct mbuf *
7624 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7625 {
7626 struct secashead *sah;
7627 struct secasvar *sav;
7628 u_int16_t proto;
7629 u_int stateidx;
7630 u_int8_t satype;
7631 u_int8_t state;
7632 int cnt;
7633 struct mbuf *m, *n;
7634
7635 /* map satype to proto */
7636 if ((proto = key_satype2proto(req_satype)) == 0) {
7637 *errorp = EINVAL;
7638 return (NULL);
7639 }
7640
7641 /* count sav entries to be sent to the userland. */
7642 cnt = 0;
7643 LIST_FOREACH(sah, &sahtree, chain) {
7644 if (req_satype != SADB_SATYPE_UNSPEC &&
7645 proto != sah->saidx.proto)
7646 continue;
7647
7648 for (stateidx = 0;
7649 stateidx < _ARRAYLEN(saorder_state_any);
7650 stateidx++) {
7651 state = saorder_state_any[stateidx];
7652 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7653 cnt++;
7654 }
7655 }
7656 }
7657
7658 if (cnt == 0) {
7659 *errorp = ENOENT;
7660 return (NULL);
7661 }
7662
7663 /* send this to the userland, one at a time. */
7664 m = NULL;
7665 LIST_FOREACH(sah, &sahtree, chain) {
7666 if (req_satype != SADB_SATYPE_UNSPEC &&
7667 proto != sah->saidx.proto)
7668 continue;
7669
7670 /* map proto to satype */
7671 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7672 m_freem(m);
7673 *errorp = EINVAL;
7674 return (NULL);
7675 }
7676
7677 for (stateidx = 0;
7678 stateidx < _ARRAYLEN(saorder_state_any);
7679 stateidx++) {
7680 state = saorder_state_any[stateidx];
7681 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7682 n = key_setdumpsa(sav, SADB_DUMP, satype,
7683 --cnt, pid);
7684 if (!n) {
7685 m_freem(m);
7686 *errorp = ENOBUFS;
7687 return (NULL);
7688 }
7689
7690 if (!m)
7691 m = n;
7692 else
7693 m_cat(m, n);
7694 }
7695 }
7696 }
7697
7698 if (!m) {
7699 *errorp = EINVAL;
7700 return (NULL);
7701 }
7702
7703 if ((m->m_flags & M_PKTHDR) != 0) {
7704 m->m_pkthdr.len = 0;
7705 for (n = m; n; n = n->m_next)
7706 m->m_pkthdr.len += n->m_len;
7707 }
7708
7709 *errorp = 0;
7710 return (m);
7711 }
7712
7713 static struct mbuf *
7714 key_setspddump(int *errorp, pid_t pid)
7715 {
7716 struct secpolicy *sp;
7717 int cnt;
7718 u_int dir;
7719 struct mbuf *m, *n;
7720
7721 /* search SPD entry and get buffer size. */
7722 cnt = 0;
7723 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7724 LIST_FOREACH(sp, &sptree[dir], chain) {
7725 cnt++;
7726 }
7727 }
7728
7729 if (cnt == 0) {
7730 *errorp = ENOENT;
7731 return (NULL);
7732 }
7733
7734 m = NULL;
7735 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7736 LIST_FOREACH(sp, &sptree[dir], chain) {
7737 --cnt;
7738 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
7739
7740 if (!n) {
7741 *errorp = ENOBUFS;
7742 m_freem(m);
7743 return (NULL);
7744 }
7745 if (!m)
7746 m = n;
7747 else {
7748 m->m_pkthdr.len += n->m_pkthdr.len;
7749 m_cat(m, n);
7750 }
7751 }
7752 }
7753
7754 *errorp = 0;
7755 return (m);
7756 }
7757
7758 static int
7759 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
7760 {
7761 struct mbuf *m, *n;
7762 int err2 = 0;
7763 char *p, *ep;
7764 size_t len;
7765 int s, error;
7766
7767 if (newp)
7768 return (EPERM);
7769 if (namelen != 1)
7770 return (EINVAL);
7771
7772 s = splsoftnet();
7773 m = key_setdump(name[0], &error, l->l_proc->p_pid);
7774 splx(s);
7775 if (!m)
7776 return (error);
7777 if (!oldp)
7778 *oldlenp = m->m_pkthdr.len;
7779 else {
7780 p = oldp;
7781 if (*oldlenp < m->m_pkthdr.len) {
7782 err2 = ENOMEM;
7783 ep = p + *oldlenp;
7784 } else {
7785 *oldlenp = m->m_pkthdr.len;
7786 ep = p + m->m_pkthdr.len;
7787 }
7788 for (n = m; n; n = n->m_next) {
7789 len = (ep - p < n->m_len) ?
7790 ep - p : n->m_len;
7791 error = copyout(mtod(n, const void *), p, len);
7792 p += len;
7793 if (error)
7794 break;
7795 }
7796 if (error == 0)
7797 error = err2;
7798 }
7799 m_freem(m);
7800
7801 return (error);
7802 }
7803
7804 static int
7805 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
7806 {
7807 struct mbuf *m, *n;
7808 int err2 = 0;
7809 char *p, *ep;
7810 size_t len;
7811 int s, error;
7812
7813 if (newp)
7814 return (EPERM);
7815 if (namelen != 0)
7816 return (EINVAL);
7817
7818 s = splsoftnet();
7819 m = key_setspddump(&error, l->l_proc->p_pid);
7820 splx(s);
7821 if (!m)
7822 return (error);
7823 if (!oldp)
7824 *oldlenp = m->m_pkthdr.len;
7825 else {
7826 p = oldp;
7827 if (*oldlenp < m->m_pkthdr.len) {
7828 err2 = ENOMEM;
7829 ep = p + *oldlenp;
7830 } else {
7831 *oldlenp = m->m_pkthdr.len;
7832 ep = p + m->m_pkthdr.len;
7833 }
7834 for (n = m; n; n = n->m_next) {
7835 len = (ep - p < n->m_len) ?
7836 ep - p : n->m_len;
7837 error = copyout(mtod(n, const void *), p, len);
7838 p += len;
7839 if (error)
7840 break;
7841 }
7842 if (error == 0)
7843 error = err2;
7844 }
7845 m_freem(m);
7846
7847 return (error);
7848 }
7849
7850 /*
7851 * Create sysctl tree for native FAST_IPSEC key knobs, originally
7852 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
7853 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
7854 * and in any case the part of our sysctl namespace used for dumping the
7855 * SPD and SA database *HAS* to be compatible with the KAME sysctl
7856 * namespace, for API reasons.
7857 *
7858 * Pending a consensus on the right way to fix this, add a level of
7859 * indirection in how we number the `native' FAST_IPSEC key nodes;
7860 * and (as requested by Andrew Brown) move registration of the
7861 * KAME-compatible names to a separate function.
7862 */
7863 #if 0
7864 # define FAST_IPSEC_PFKEY PF_KEY_V2
7865 # define FAST_IPSEC_PFKEY_NAME "keyv2"
7866 #else
7867 # define FAST_IPSEC_PFKEY PF_KEY
7868 # define FAST_IPSEC_PFKEY_NAME "key"
7869 #endif
7870
7871 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
7872 {
7873
7874 sysctl_createv(clog, 0, NULL, NULL,
7875 CTLFLAG_PERMANENT,
7876 CTLTYPE_NODE, "net", NULL,
7877 NULL, 0, NULL, 0,
7878 CTL_NET, CTL_EOL);
7879 sysctl_createv(clog, 0, NULL, NULL,
7880 CTLFLAG_PERMANENT,
7881 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL,
7882 NULL, 0, NULL, 0,
7883 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL);
7884
7885 sysctl_createv(clog, 0, NULL, NULL,
7886 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7887 CTLTYPE_INT, "debug", NULL,
7888 NULL, 0, &key_debug_level, 0,
7889 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
7890 sysctl_createv(clog, 0, NULL, NULL,
7891 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7892 CTLTYPE_INT, "spi_try", NULL,
7893 NULL, 0, &key_spi_trycnt, 0,
7894 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
7895 sysctl_createv(clog, 0, NULL, NULL,
7896 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7897 CTLTYPE_INT, "spi_min_value", NULL,
7898 NULL, 0, &key_spi_minval, 0,
7899 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
7900 sysctl_createv(clog, 0, NULL, NULL,
7901 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7902 CTLTYPE_INT, "spi_max_value", NULL,
7903 NULL, 0, &key_spi_maxval, 0,
7904 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
7905 sysctl_createv(clog, 0, NULL, NULL,
7906 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7907 CTLTYPE_INT, "random_int", NULL,
7908 NULL, 0, &key_int_random, 0,
7909 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
7910 sysctl_createv(clog, 0, NULL, NULL,
7911 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7912 CTLTYPE_INT, "larval_lifetime", NULL,
7913 NULL, 0, &key_larval_lifetime, 0,
7914 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
7915 sysctl_createv(clog, 0, NULL, NULL,
7916 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7917 CTLTYPE_INT, "blockacq_count", NULL,
7918 NULL, 0, &key_blockacq_count, 0,
7919 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
7920 sysctl_createv(clog, 0, NULL, NULL,
7921 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7922 CTLTYPE_INT, "blockacq_lifetime", NULL,
7923 NULL, 0, &key_blockacq_lifetime, 0,
7924 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
7925 sysctl_createv(clog, 0, NULL, NULL,
7926 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7927 CTLTYPE_INT, "esp_keymin", NULL,
7928 NULL, 0, &ipsec_esp_keymin, 0,
7929 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
7930 sysctl_createv(clog, 0, NULL, NULL,
7931 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7932 CTLTYPE_INT, "prefered_oldsa", NULL,
7933 NULL, 0, &key_prefered_oldsa, 0,
7934 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
7935 sysctl_createv(clog, 0, NULL, NULL,
7936 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7937 CTLTYPE_INT, "esp_auth", NULL,
7938 NULL, 0, &ipsec_esp_auth, 0,
7939 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
7940 sysctl_createv(clog, 0, NULL, NULL,
7941 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7942 CTLTYPE_INT, "ah_keymin", NULL,
7943 NULL, 0, &ipsec_ah_keymin, 0,
7944 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
7945 }
7946
7947 /*
7948 * Register sysctl names used by setkey(8). For historical reasons,
7949 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
7950 * for both FAST_IPSEC and KAME IPSEC.
7951 */
7952 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC")
7953 {
7954
7955 /* Make sure net.key exists before we register nodes underneath it. */
7956 sysctl_createv(clog, 0, NULL, NULL,
7957 CTLFLAG_PERMANENT,
7958 CTLTYPE_NODE, "net", NULL,
7959 NULL, 0, NULL, 0,
7960 CTL_NET, CTL_EOL);
7961 sysctl_createv(clog, 0, NULL, NULL,
7962 CTLFLAG_PERMANENT,
7963 CTLTYPE_NODE, "key", NULL,
7964 NULL, 0, NULL, 0,
7965 CTL_NET, PF_KEY, CTL_EOL);
7966
7967 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
7968 sysctl_createv(clog, 0, NULL, NULL,
7969 CTLFLAG_PERMANENT,
7970 CTLTYPE_STRUCT, "dumpsa", NULL,
7971 sysctl_net_key_dumpsa, 0, NULL, 0,
7972 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
7973 sysctl_createv(clog, 0, NULL, NULL,
7974 CTLFLAG_PERMANENT,
7975 CTLTYPE_STRUCT, "dumpsp", NULL,
7976 sysctl_net_key_dumpsp, 0, NULL, 0,
7977 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
7978 }
7979