key.c revision 1.44 1 /* $NetBSD: key.c,v 1.44 2007/04/09 21:07:03 degroote Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.44 2007/04/09 21:07:03 degroote Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66
67 #include <net/if.h>
68 #include <net/route.h>
69 #include <net/raw_cb.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #ifdef INET
76 #include <netinet/ip_var.h>
77 #endif
78
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet6/in6_var.h>
82 #include <netinet6/ip6_var.h>
83 #endif /* INET6 */
84
85 #ifdef INET
86 #include <netinet/in_pcb.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/in6_pcb.h>
90 #endif /* INET6 */
91
92 #include <net/pfkeyv2.h>
93 #include <netipsec/keydb.h>
94 #include <netipsec/key.h>
95 #include <netipsec/keysock.h>
96 #include <netipsec/key_debug.h>
97
98 #include <netipsec/ipsec.h>
99 #ifdef INET6
100 #include <netipsec/ipsec6.h>
101 #endif
102
103 #include <netipsec/xform.h>
104 #include <netipsec/ipsec_osdep.h>
105 #include <netipsec/ipcomp.h>
106
107
108 #include <machine/stdarg.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 /*
117 * Note on SA reference counting:
118 * - SAs that are not in DEAD state will have (total external reference + 1)
119 * following value in reference count field. they cannot be freed and are
120 * referenced from SA header.
121 * - SAs that are in DEAD state will have (total external reference)
122 * in reference count field. they are ready to be freed. reference from
123 * SA header will be removed in key_delsav(), when the reference count
124 * field hits 0 (= no external reference other than from SA header.
125 */
126
127 u_int32_t key_debug_level = 0;
128 static u_int key_spi_trycnt = 1000;
129 static u_int32_t key_spi_minval = 0x100;
130 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
131 static u_int32_t policy_id = 0;
132 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
133 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
134 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
135 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
136 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
137
138 static u_int32_t acq_seq = 0;
139 static int key_tick_init_random = 0;
140
141 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
142 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
143 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
144 /* registed list */
145 #ifndef IPSEC_NONBLOCK_ACQUIRE
146 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
147 #endif
148 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
149
150 /* search order for SAs */
151 static u_int saorder_state_valid[] = {
152 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
153 /*
154 * This order is important because we must select the oldest SA
155 * for outbound processing. For inbound, This is not important.
156 */
157 };
158 static u_int saorder_state_alive[] = {
159 /* except DEAD */
160 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
161 };
162 static u_int saorder_state_any[] = {
163 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
164 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
165 };
166
167 static const int minsize[] = {
168 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
169 sizeof(struct sadb_sa), /* SADB_EXT_SA */
170 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
171 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
172 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
173 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
174 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
175 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
176 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
177 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
178 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
179 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
180 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
181 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
182 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
183 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
184 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
185 0, /* SADB_X_EXT_KMPRIVATE */
186 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
187 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
188 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
189 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
190 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
191 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OA */
192 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
193 };
194 static const int maxsize[] = {
195 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
196 sizeof(struct sadb_sa), /* SADB_EXT_SA */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
198 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
199 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
200 0, /* SADB_EXT_ADDRESS_SRC */
201 0, /* SADB_EXT_ADDRESS_DST */
202 0, /* SADB_EXT_ADDRESS_PROXY */
203 0, /* SADB_EXT_KEY_AUTH */
204 0, /* SADB_EXT_KEY_ENCRYPT */
205 0, /* SADB_EXT_IDENTITY_SRC */
206 0, /* SADB_EXT_IDENTITY_DST */
207 0, /* SADB_EXT_SENSITIVITY */
208 0, /* SADB_EXT_PROPOSAL */
209 0, /* SADB_EXT_SUPPORTED_AUTH */
210 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
211 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
212 0, /* SADB_X_EXT_KMPRIVATE */
213 0, /* SADB_X_EXT_POLICY */
214 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
215 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
216 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
217 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
218 0, /* SADB_X_EXT_NAT_T_OA */
219 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
220 };
221
222 static int ipsec_esp_keymin = 256;
223 static int ipsec_esp_auth = 0;
224 static int ipsec_ah_keymin = 128;
225
226 #ifdef SYSCTL_DECL
227 SYSCTL_DECL(_net_key);
228 #endif
229
230 #ifdef SYSCTL_INT
231 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
232 &key_debug_level, 0, "");
233
234 /* max count of trial for the decision of spi value */
235 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
236 &key_spi_trycnt, 0, "");
237
238 /* minimum spi value to allocate automatically. */
239 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
240 &key_spi_minval, 0, "");
241
242 /* maximun spi value to allocate automatically. */
243 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
244 &key_spi_maxval, 0, "");
245
246 /* interval to initialize randseed */
247 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
248 &key_int_random, 0, "");
249
250 /* lifetime for larval SA */
251 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
252 &key_larval_lifetime, 0, "");
253
254 /* counter for blocking to send SADB_ACQUIRE to IKEd */
255 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
256 &key_blockacq_count, 0, "");
257
258 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
259 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
260 &key_blockacq_lifetime, 0, "");
261
262 /* ESP auth */
263 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
264 &ipsec_esp_auth, 0, "");
265
266 /* minimum ESP key length */
267 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
268 &ipsec_esp_keymin, 0, "");
269
270 /* minimum AH key length */
271 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
272 &ipsec_ah_keymin, 0, "");
273
274 /* perfered old SA rather than new SA */
275 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
276 &key_prefered_oldsa, 0, "");
277 #endif /* SYSCTL_INT */
278
279 #ifndef LIST_FOREACH
280 #define LIST_FOREACH(elm, head, field) \
281 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
282 #endif
283 #define __LIST_CHAINED(elm) \
284 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
285 #define LIST_INSERT_TAIL(head, elm, type, field) \
286 do {\
287 struct type *curelm = LIST_FIRST(head); \
288 if (curelm == NULL) {\
289 LIST_INSERT_HEAD(head, elm, field); \
290 } else { \
291 while (LIST_NEXT(curelm, field)) \
292 curelm = LIST_NEXT(curelm, field);\
293 LIST_INSERT_AFTER(curelm, elm, field);\
294 }\
295 } while (0)
296
297 #define KEY_CHKSASTATE(head, sav, name) \
298 do { \
299 if ((head) != (sav)) { \
300 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
301 (name), (head), (sav))); \
302 continue; \
303 } \
304 } while (0)
305
306 #define KEY_CHKSPDIR(head, sp, name) \
307 do { \
308 if ((head) != (sp)) { \
309 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
310 "anyway continue.\n", \
311 (name), (head), (sp))); \
312 } \
313 } while (0)
314
315 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
316
317 #if 1
318 #define KMALLOC(p, t, n) \
319 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
320 #define KFREE(p) \
321 free((p), M_SECA)
322 #else
323 #define KMALLOC(p, t, n) \
324 do { \
325 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
326 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
327 __FILE__, __LINE__, (p), #t, n); \
328 } while (0)
329
330 #define KFREE(p) \
331 do { \
332 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
333 free((p), M_SECA); \
334 } while (0)
335 #endif
336
337 /*
338 * set parameters into secpolicyindex buffer.
339 * Must allocate secpolicyindex buffer passed to this function.
340 */
341 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
342 do { \
343 bzero((idx), sizeof(struct secpolicyindex)); \
344 (idx)->dir = (_dir); \
345 (idx)->prefs = (ps); \
346 (idx)->prefd = (pd); \
347 (idx)->ul_proto = (ulp); \
348 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
349 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
350 } while (0)
351
352 /*
353 * set parameters into secasindex buffer.
354 * Must allocate secasindex buffer before calling this function.
355 */
356 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
357 do { \
358 bzero((idx), sizeof(struct secasindex)); \
359 (idx)->proto = (p); \
360 (idx)->mode = (m); \
361 (idx)->reqid = (r); \
362 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
363 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
364 } while (0)
365
366 /* key statistics */
367 struct _keystat {
368 u_long getspi_count; /* the avarage of count to try to get new SPI */
369 } keystat;
370
371 struct sadb_msghdr {
372 struct sadb_msg *msg;
373 struct sadb_ext *ext[SADB_EXT_MAX + 1];
374 int extoff[SADB_EXT_MAX + 1];
375 int extlen[SADB_EXT_MAX + 1];
376 };
377
378 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
379 static void key_freesp_so __P((struct secpolicy **));
380 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
381 static void key_delsp __P((struct secpolicy *));
382 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
383 static struct secpolicy *key_getspbyid __P((u_int32_t));
384 static u_int16_t key_newreqid __P((void));
385 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
386 const struct sadb_msghdr *, int, int, ...));
387 static int key_spdadd __P((struct socket *, struct mbuf *,
388 const struct sadb_msghdr *));
389 static u_int32_t key_getnewspid __P((void));
390 static int key_spddelete __P((struct socket *, struct mbuf *,
391 const struct sadb_msghdr *));
392 static int key_spddelete2 __P((struct socket *, struct mbuf *,
393 const struct sadb_msghdr *));
394 static int key_spdget __P((struct socket *, struct mbuf *,
395 const struct sadb_msghdr *));
396 static int key_spdflush __P((struct socket *, struct mbuf *,
397 const struct sadb_msghdr *));
398 static int key_spddump __P((struct socket *, struct mbuf *,
399 const struct sadb_msghdr *));
400 static struct mbuf * key_setspddump __P((int *errorp, pid_t));
401 static struct mbuf * key_setspddump_chain __P((int *errorp, int *lenp, pid_t pid));
402 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
403 u_int8_t, u_int32_t, pid_t));
404 static u_int key_getspreqmsglen __P((struct secpolicy *));
405 static int key_spdexpire __P((struct secpolicy *));
406 static struct secashead *key_newsah __P((struct secasindex *));
407 static void key_delsah __P((struct secashead *));
408 static struct secasvar *key_newsav __P((struct mbuf *,
409 const struct sadb_msghdr *, struct secashead *, int *,
410 const char*, int));
411 #define KEY_NEWSAV(m, sadb, sah, e) \
412 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
413 static void key_delsav __P((struct secasvar *));
414 static struct secashead *key_getsah __P((struct secasindex *));
415 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
416 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
417 static int key_setsaval __P((struct secasvar *, struct mbuf *,
418 const struct sadb_msghdr *));
419 static int key_mature __P((struct secasvar *));
420 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
421 u_int8_t, u_int32_t, u_int32_t));
422 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
423 u_int32_t, pid_t, u_int16_t));
424 static struct mbuf *key_setsadbsa __P((struct secasvar *));
425 static struct mbuf *key_setsadbaddr __P((u_int16_t,
426 const struct sockaddr *, u_int8_t, u_int16_t));
427 #if 0
428 static struct mbuf *key_setsadbident __P((u_int16_t, u_int16_t, void *,
429 int, u_int64_t));
430 #endif
431 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int16_t));
432 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
433 u_int32_t));
434 static void *key_newbuf __P((const void *, u_int));
435 #ifdef INET6
436 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
437 #endif
438
439 /* flags for key_cmpsaidx() */
440 #define CMP_HEAD 1 /* protocol, addresses. */
441 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
442 #define CMP_REQID 3 /* additionally HEAD, reaid. */
443 #define CMP_EXACTLY 4 /* all elements. */
444 static int key_cmpsaidx
445 __P((const struct secasindex *, const struct secasindex *, int));
446
447 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
448 static int key_bbcmp __P((const void *, const void *, u_int));
449 static void key_srandom __P((void));
450 static u_int16_t key_satype2proto __P((u_int8_t));
451 static u_int8_t key_proto2satype __P((u_int16_t));
452
453 static int key_getspi __P((struct socket *, struct mbuf *,
454 const struct sadb_msghdr *));
455 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
456 struct secasindex *));
457 static int key_update __P((struct socket *, struct mbuf *,
458 const struct sadb_msghdr *));
459 #ifdef IPSEC_DOSEQCHECK
460 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
461 #endif
462 static int key_add __P((struct socket *, struct mbuf *,
463 const struct sadb_msghdr *));
464 static int key_setident __P((struct secashead *, struct mbuf *,
465 const struct sadb_msghdr *));
466 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
467 const struct sadb_msghdr *));
468 static int key_delete __P((struct socket *, struct mbuf *,
469 const struct sadb_msghdr *));
470 static int key_get __P((struct socket *, struct mbuf *,
471 const struct sadb_msghdr *));
472
473 static void key_getcomb_setlifetime __P((struct sadb_comb *));
474 static struct mbuf *key_getcomb_esp __P((void));
475 static struct mbuf *key_getcomb_ah __P((void));
476 static struct mbuf *key_getcomb_ipcomp __P((void));
477 static struct mbuf *key_getprop __P((const struct secasindex *));
478
479 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
480 #ifndef IPSEC_NONBLOCK_ACQUIRE
481 static struct secacq *key_newacq __P((const struct secasindex *));
482 static struct secacq *key_getacq __P((const struct secasindex *));
483 static struct secacq *key_getacqbyseq __P((u_int32_t));
484 #endif
485 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
486 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
487 static int key_acquire2 __P((struct socket *, struct mbuf *,
488 const struct sadb_msghdr *));
489 static int key_register __P((struct socket *, struct mbuf *,
490 const struct sadb_msghdr *));
491 static int key_expire __P((struct secasvar *));
492 static int key_flush __P((struct socket *, struct mbuf *,
493 const struct sadb_msghdr *));
494 static struct mbuf *key_setdump_chain __P((u_int8_t req_satype, int *errorp,
495 int *lenp, pid_t pid));
496 static int key_dump __P((struct socket *, struct mbuf *,
497 const struct sadb_msghdr *));
498 static int key_promisc __P((struct socket *, struct mbuf *,
499 const struct sadb_msghdr *));
500 static int key_senderror __P((struct socket *, struct mbuf *, int));
501 static int key_validate_ext __P((const struct sadb_ext *, int));
502 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
503 #if 0
504 static const char *key_getfqdn __P((void));
505 static const char *key_getuserfqdn __P((void));
506 #endif
507 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
508 static inline void key_sp_dead __P((struct secpolicy *));
509 static void key_sp_unlink __P((struct secpolicy *sp));
510
511 static struct mbuf *key_alloc_mbuf __P((int));
512 struct callout key_timehandler_ch;
513
514 #define SA_ADDREF(p) do { \
515 (p)->refcnt++; \
516 IPSEC_ASSERT((p)->refcnt != 0, \
517 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
518 } while (0)
519 #define SA_DELREF(p) do { \
520 IPSEC_ASSERT((p)->refcnt > 0, \
521 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
522 (p)->refcnt--; \
523 } while (0)
524
525 #define SP_ADDREF(p) do { \
526 (p)->refcnt++; \
527 IPSEC_ASSERT((p)->refcnt != 0, \
528 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
529 } while (0)
530 #define SP_DELREF(p) do { \
531 IPSEC_ASSERT((p)->refcnt > 0, \
532 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
533 (p)->refcnt--; \
534 } while (0)
535
536
537 static inline void
538 key_sp_dead(struct secpolicy *sp)
539 {
540
541 /* mark the SP dead */
542 sp->state = IPSEC_SPSTATE_DEAD;
543 }
544
545 static void
546 key_sp_unlink(struct secpolicy *sp)
547 {
548
549 /* remove from SP index */
550 if (__LIST_CHAINED(sp)) {
551 LIST_REMOVE(sp, chain);
552 /* Release refcount held just for being on chain */
553 KEY_FREESP(&sp);
554 }
555 }
556
557
558 /*
559 * Return 0 when there are known to be no SP's for the specified
560 * direction. Otherwise return 1. This is used by IPsec code
561 * to optimize performance.
562 */
563 int
564 key_havesp(u_int dir)
565 {
566 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
567 LIST_FIRST(&sptree[dir]) != NULL : 1);
568 }
569
570 /* %%% IPsec policy management */
571 /*
572 * allocating a SP for OUTBOUND or INBOUND packet.
573 * Must call key_freesp() later.
574 * OUT: NULL: not found
575 * others: found and return the pointer.
576 */
577 struct secpolicy *
578 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
579 {
580 struct secpolicy *sp;
581 int s;
582
583 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
584 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
585 ("key_allocsp: invalid direction %u", dir));
586
587 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
588 printf("DP key_allocsp from %s:%u\n", where, tag));
589
590 /* get a SP entry */
591 s = splsoftnet(); /*called from softclock()*/
592 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
593 printf("*** objects\n");
594 kdebug_secpolicyindex(spidx));
595
596 LIST_FOREACH(sp, &sptree[dir], chain) {
597 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
598 printf("*** in SPD\n");
599 kdebug_secpolicyindex(&sp->spidx));
600
601 if (sp->state == IPSEC_SPSTATE_DEAD)
602 continue;
603 if (key_cmpspidx_withmask(&sp->spidx, spidx))
604 goto found;
605 }
606 sp = NULL;
607 found:
608 if (sp) {
609 /* sanity check */
610 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
611
612 /* found a SPD entry */
613 sp->lastused = time_second;
614 SP_ADDREF(sp);
615 }
616 splx(s);
617
618 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
619 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n",
620 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
621 return sp;
622 }
623
624 /*
625 * allocating a SP for OUTBOUND or INBOUND packet.
626 * Must call key_freesp() later.
627 * OUT: NULL: not found
628 * others: found and return the pointer.
629 */
630 struct secpolicy *
631 key_allocsp2(u_int32_t spi,
632 union sockaddr_union *dst,
633 u_int8_t proto,
634 u_int dir,
635 const char* where, int tag)
636 {
637 struct secpolicy *sp;
638 int s;
639
640 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
641 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
642 ("key_allocsp2: invalid direction %u", dir));
643
644 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
645 printf("DP key_allocsp2 from %s:%u\n", where, tag));
646
647 /* get a SP entry */
648 s = splsoftnet(); /*called from softclock()*/
649 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
650 printf("*** objects\n");
651 printf("spi %u proto %u dir %u\n", spi, proto, dir);
652 kdebug_sockaddr(&dst->sa));
653
654 LIST_FOREACH(sp, &sptree[dir], chain) {
655 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
656 printf("*** in SPD\n");
657 kdebug_secpolicyindex(&sp->spidx));
658
659 if (sp->state == IPSEC_SPSTATE_DEAD)
660 continue;
661 /* compare simple values, then dst address */
662 if (sp->spidx.ul_proto != proto)
663 continue;
664 /* NB: spi's must exist and match */
665 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
666 continue;
667 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
668 goto found;
669 }
670 sp = NULL;
671 found:
672 if (sp) {
673 /* sanity check */
674 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
675
676 /* found a SPD entry */
677 sp->lastused = time_second;
678 SP_ADDREF(sp);
679 }
680 splx(s);
681
682 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
683 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n",
684 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
685 return sp;
686 }
687
688 /*
689 * return a policy that matches this particular inbound packet.
690 * XXX slow
691 */
692 struct secpolicy *
693 key_gettunnel(const struct sockaddr *osrc,
694 const struct sockaddr *odst,
695 const struct sockaddr *isrc,
696 const struct sockaddr *idst,
697 const char* where, int tag)
698 {
699 struct secpolicy *sp;
700 const int dir = IPSEC_DIR_INBOUND;
701 int s;
702 struct ipsecrequest *r1, *r2, *p;
703 struct secpolicyindex spidx;
704
705 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
706 printf("DP key_gettunnel from %s:%u\n", where, tag));
707
708 if (isrc->sa_family != idst->sa_family) {
709 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
710 isrc->sa_family, idst->sa_family));
711 sp = NULL;
712 goto done;
713 }
714
715 s = splsoftnet(); /*called from softclock()*/
716 LIST_FOREACH(sp, &sptree[dir], chain) {
717 if (sp->state == IPSEC_SPSTATE_DEAD)
718 continue;
719
720 r1 = r2 = NULL;
721 for (p = sp->req; p; p = p->next) {
722 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
723 continue;
724
725 r1 = r2;
726 r2 = p;
727
728 if (!r1) {
729 /* here we look at address matches only */
730 spidx = sp->spidx;
731 if (isrc->sa_len > sizeof(spidx.src) ||
732 idst->sa_len > sizeof(spidx.dst))
733 continue;
734 bcopy(isrc, &spidx.src, isrc->sa_len);
735 bcopy(idst, &spidx.dst, idst->sa_len);
736 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
737 continue;
738 } else {
739 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
740 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
741 continue;
742 }
743
744 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
745 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
746 continue;
747
748 goto found;
749 }
750 }
751 sp = NULL;
752 found:
753 if (sp) {
754 sp->lastused = time_second;
755 SP_ADDREF(sp);
756 }
757 splx(s);
758 done:
759 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
760 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n",
761 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
762 return sp;
763 }
764
765 /*
766 * allocating an SA entry for an *OUTBOUND* packet.
767 * checking each request entries in SP, and acquire an SA if need.
768 * OUT: 0: there are valid requests.
769 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
770 */
771 int
772 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
773 {
774 u_int level;
775 int error;
776
777 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
778 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
779 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
780 saidx->mode == IPSEC_MODE_TUNNEL,
781 ("key_checkrequest: unexpected policy %u", saidx->mode));
782
783 /* get current level */
784 level = ipsec_get_reqlevel(isr);
785
786 /*
787 * XXX guard against protocol callbacks from the crypto
788 * thread as they reference ipsecrequest.sav which we
789 * temporarily null out below. Need to rethink how we
790 * handle bundled SA's in the callback thread.
791 */
792 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
793 #if 0
794 /*
795 * We do allocate new SA only if the state of SA in the holder is
796 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
797 */
798 if (isr->sav != NULL) {
799 if (isr->sav->sah == NULL)
800 panic("key_checkrequest: sah is null");
801 if (isr->sav == (struct secasvar *)LIST_FIRST(
802 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
803 KEY_FREESAV(&isr->sav);
804 isr->sav = NULL;
805 }
806 }
807 #else
808 /*
809 * we free any SA stashed in the IPsec request because a different
810 * SA may be involved each time this request is checked, either
811 * because new SAs are being configured, or this request is
812 * associated with an unconnected datagram socket, or this request
813 * is associated with a system default policy.
814 *
815 * The operation may have negative impact to performance. We may
816 * want to check cached SA carefully, rather than picking new SA
817 * every time.
818 */
819 if (isr->sav != NULL) {
820 KEY_FREESAV(&isr->sav);
821 isr->sav = NULL;
822 }
823 #endif
824
825 /*
826 * new SA allocation if no SA found.
827 * key_allocsa_policy should allocate the oldest SA available.
828 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
829 */
830 if (isr->sav == NULL)
831 isr->sav = key_allocsa_policy(saidx);
832
833 /* When there is SA. */
834 if (isr->sav != NULL) {
835 if (isr->sav->state != SADB_SASTATE_MATURE &&
836 isr->sav->state != SADB_SASTATE_DYING)
837 return EINVAL;
838 return 0;
839 }
840
841 /* there is no SA */
842 error = key_acquire(saidx, isr->sp);
843 if (error != 0) {
844 /* XXX What should I do ? */
845 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
846 "from key_acquire.\n", error));
847 return error;
848 }
849
850 if (level != IPSEC_LEVEL_REQUIRE) {
851 /* XXX sigh, the interface to this routine is botched */
852 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
853 return 0;
854 } else {
855 return ENOENT;
856 }
857 }
858
859 /*
860 * allocating a SA for policy entry from SAD.
861 * NOTE: searching SAD of aliving state.
862 * OUT: NULL: not found.
863 * others: found and return the pointer.
864 */
865 static struct secasvar *
866 key_allocsa_policy(const struct secasindex *saidx)
867 {
868 struct secashead *sah;
869 struct secasvar *sav;
870 u_int stateidx, state;
871
872 LIST_FOREACH(sah, &sahtree, chain) {
873 if (sah->state == SADB_SASTATE_DEAD)
874 continue;
875 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
876 goto found;
877 }
878
879 return NULL;
880
881 found:
882
883 /* search valid state */
884 for (stateidx = 0;
885 stateidx < _ARRAYLEN(saorder_state_valid);
886 stateidx++) {
887
888 state = saorder_state_valid[stateidx];
889
890 sav = key_do_allocsa_policy(sah, state);
891 if (sav != NULL)
892 return sav;
893 }
894
895 return NULL;
896 }
897
898 /*
899 * searching SAD with direction, protocol, mode and state.
900 * called by key_allocsa_policy().
901 * OUT:
902 * NULL : not found
903 * others : found, pointer to a SA.
904 */
905 static struct secasvar *
906 key_do_allocsa_policy(struct secashead *sah, u_int state)
907 {
908 struct secasvar *sav, *nextsav, *candidate, *d;
909
910 /* initilize */
911 candidate = NULL;
912
913 for (sav = LIST_FIRST(&sah->savtree[state]);
914 sav != NULL;
915 sav = nextsav) {
916
917 nextsav = LIST_NEXT(sav, chain);
918
919 /* sanity check */
920 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
921
922 /* initialize */
923 if (candidate == NULL) {
924 candidate = sav;
925 continue;
926 }
927
928 /* Which SA is the better ? */
929
930 /* sanity check 2 */
931 if (candidate->lft_c == NULL || sav->lft_c == NULL)
932 panic("key_do_allocsa_policy: "
933 "lifetime_current is NULL");
934
935 /* What the best method is to compare ? */
936 if (key_prefered_oldsa) {
937 if (candidate->lft_c->sadb_lifetime_addtime >
938 sav->lft_c->sadb_lifetime_addtime) {
939 candidate = sav;
940 }
941 continue;
942 /*NOTREACHED*/
943 }
944
945 /* prefered new sa rather than old sa */
946 if (candidate->lft_c->sadb_lifetime_addtime <
947 sav->lft_c->sadb_lifetime_addtime) {
948 d = candidate;
949 candidate = sav;
950 } else
951 d = sav;
952
953 /*
954 * prepared to delete the SA when there is more
955 * suitable candidate and the lifetime of the SA is not
956 * permanent.
957 */
958 if (d->lft_c->sadb_lifetime_addtime != 0) {
959 struct mbuf *m, *result;
960
961 key_sa_chgstate(d, SADB_SASTATE_DEAD);
962
963 IPSEC_ASSERT(d->refcnt > 0,
964 ("key_do_allocsa_policy: bogus ref count"));
965 m = key_setsadbmsg(SADB_DELETE, 0,
966 d->sah->saidx.proto, 0, 0, d->refcnt - 1);
967 if (!m)
968 goto msgfail;
969 result = m;
970
971 /* set sadb_address for saidx's. */
972 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
973 &d->sah->saidx.src.sa,
974 d->sah->saidx.src.sa.sa_len << 3,
975 IPSEC_ULPROTO_ANY);
976 if (!m)
977 goto msgfail;
978 m_cat(result, m);
979
980 /* set sadb_address for saidx's. */
981 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
982 &d->sah->saidx.src.sa,
983 d->sah->saidx.src.sa.sa_len << 3,
984 IPSEC_ULPROTO_ANY);
985 if (!m)
986 goto msgfail;
987 m_cat(result, m);
988
989 /* create SA extension */
990 m = key_setsadbsa(d);
991 if (!m)
992 goto msgfail;
993 m_cat(result, m);
994
995 if (result->m_len < sizeof(struct sadb_msg)) {
996 result = m_pullup(result,
997 sizeof(struct sadb_msg));
998 if (result == NULL)
999 goto msgfail;
1000 }
1001
1002 result->m_pkthdr.len = 0;
1003 for (m = result; m; m = m->m_next)
1004 result->m_pkthdr.len += m->m_len;
1005 mtod(result, struct sadb_msg *)->sadb_msg_len =
1006 PFKEY_UNIT64(result->m_pkthdr.len);
1007
1008 if (key_sendup_mbuf(NULL, result,
1009 KEY_SENDUP_REGISTERED))
1010 goto msgfail;
1011 msgfail:
1012 KEY_FREESAV(&d);
1013 }
1014 }
1015
1016 if (candidate) {
1017 SA_ADDREF(candidate);
1018 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1019 printf("DP allocsa_policy cause "
1020 "refcnt++:%d SA:%p\n",
1021 candidate->refcnt, candidate));
1022 }
1023 return candidate;
1024 }
1025
1026 /*
1027 * allocating a usable SA entry for a *INBOUND* packet.
1028 * Must call key_freesav() later.
1029 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1030 * NULL: not found, or error occurred.
1031 *
1032 * In the comparison, no source address is used--for RFC2401 conformance.
1033 * To quote, from section 4.1:
1034 * A security association is uniquely identified by a triple consisting
1035 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1036 * security protocol (AH or ESP) identifier.
1037 * Note that, however, we do need to keep source address in IPsec SA.
1038 * IKE specification and PF_KEY specification do assume that we
1039 * keep source address in IPsec SA. We see a tricky situation here.
1040 */
1041 struct secasvar *
1042 key_allocsa(
1043 const union sockaddr_union *dst,
1044 u_int proto,
1045 u_int32_t spi,
1046 const char* where, int tag)
1047 {
1048 struct secashead *sah;
1049 struct secasvar *sav;
1050 u_int stateidx, state;
1051 int s;
1052
1053 int must_check_spi = 1;
1054 int must_check_alg = 0;
1055 u_int16_t cpi = 0;
1056 u_int8_t algo = 0;
1057
1058 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1059
1060 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1061 printf("DP key_allocsa from %s:%u\n", where, tag));
1062
1063 /*
1064 * XXX IPCOMP case
1065 * We use cpi to define spi here. In the case where cpi <=
1066 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1067 * the real spi. In this case, don't check the spi but check the
1068 * algorithm
1069 */
1070
1071 if (proto == IPPROTO_IPCOMP) {
1072 u_int32_t tmp;
1073 tmp = ntohl(spi);
1074 cpi = (u_int16_t) tmp;
1075 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1076 algo = (u_int8_t) cpi;
1077 must_check_spi = 0;
1078 must_check_alg = 1;
1079 }
1080 }
1081
1082 /*
1083 * searching SAD.
1084 * XXX: to be checked internal IP header somewhere. Also when
1085 * IPsec tunnel packet is received. But ESP tunnel mode is
1086 * encrypted so we can't check internal IP header.
1087 */
1088 s = splsoftnet(); /*called from softclock()*/
1089 LIST_FOREACH(sah, &sahtree, chain) {
1090 /* search valid state */
1091 for (stateidx = 0;
1092 stateidx < _ARRAYLEN(saorder_state_valid);
1093 stateidx++) {
1094 state = saorder_state_valid[stateidx];
1095 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1096 /* sanity check */
1097 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1098 /* do not return entries w/ unusable state */
1099 if (sav->state != SADB_SASTATE_MATURE &&
1100 sav->state != SADB_SASTATE_DYING)
1101 continue;
1102 if (proto != sav->sah->saidx.proto)
1103 continue;
1104 if (must_check_spi && spi != sav->spi)
1105 continue;
1106 /* XXX only on the ipcomp case */
1107 if (must_check_alg && algo != sav->alg_comp)
1108 continue;
1109
1110 #if 0 /* don't check src */
1111 /* check src address */
1112 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1113 continue;
1114 #endif
1115 /* check dst address */
1116 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1117 continue;
1118 SA_ADDREF(sav);
1119 goto done;
1120 }
1121 }
1122 }
1123 sav = NULL;
1124 done:
1125 splx(s);
1126
1127 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1128 printf("DP key_allocsa return SA:%p; refcnt %u\n",
1129 sav, sav ? sav->refcnt : 0));
1130 return sav;
1131 }
1132
1133 /*
1134 * Must be called after calling key_allocsp().
1135 * For both the packet without socket and key_freeso().
1136 */
1137 void
1138 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1139 {
1140 struct secpolicy *sp = *spp;
1141
1142 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1143
1144 SP_DELREF(sp);
1145
1146 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1147 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1148 sp, sp->id, where, tag, sp->refcnt));
1149
1150 if (sp->refcnt == 0) {
1151 *spp = NULL;
1152 key_delsp(sp);
1153 }
1154 }
1155
1156 /*
1157 * Must be called after calling key_allocsp().
1158 * For the packet with socket.
1159 */
1160 void
1161 key_freeso(struct socket *so)
1162 {
1163 /* sanity check */
1164 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1165
1166 switch (so->so_proto->pr_domain->dom_family) {
1167 #ifdef INET
1168 case PF_INET:
1169 {
1170 struct inpcb *pcb = sotoinpcb(so);
1171
1172 /* Does it have a PCB ? */
1173 if (pcb == NULL)
1174 return;
1175 key_freesp_so(&pcb->inp_sp->sp_in);
1176 key_freesp_so(&pcb->inp_sp->sp_out);
1177 }
1178 break;
1179 #endif
1180 #ifdef INET6
1181 case PF_INET6:
1182 {
1183 #ifdef HAVE_NRL_INPCB
1184 struct inpcb *pcb = sotoinpcb(so);
1185
1186 /* Does it have a PCB ? */
1187 if (pcb == NULL)
1188 return;
1189 key_freesp_so(&pcb->inp_sp->sp_in);
1190 key_freesp_so(&pcb->inp_sp->sp_out);
1191 #else
1192 struct in6pcb *pcb = sotoin6pcb(so);
1193
1194 /* Does it have a PCB ? */
1195 if (pcb == NULL)
1196 return;
1197 key_freesp_so(&pcb->in6p_sp->sp_in);
1198 key_freesp_so(&pcb->in6p_sp->sp_out);
1199 #endif
1200 }
1201 break;
1202 #endif /* INET6 */
1203 default:
1204 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1205 so->so_proto->pr_domain->dom_family));
1206 return;
1207 }
1208 }
1209
1210 static void
1211 key_freesp_so(struct secpolicy **sp)
1212 {
1213 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1214
1215 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1216 (*sp)->policy == IPSEC_POLICY_BYPASS)
1217 return;
1218
1219 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1220 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1221 KEY_FREESP(sp);
1222 }
1223
1224 /*
1225 * Must be called after calling key_allocsa().
1226 * This function is called by key_freesp() to free some SA allocated
1227 * for a policy.
1228 */
1229 void
1230 key_freesav(struct secasvar **psav, const char* where, int tag)
1231 {
1232 struct secasvar *sav = *psav;
1233
1234 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1235
1236 SA_DELREF(sav);
1237
1238 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1239 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1240 sav, (u_long)ntohl(sav->spi),
1241 where, tag, sav->refcnt));
1242
1243 if (sav->refcnt == 0) {
1244 *psav = NULL;
1245 key_delsav(sav);
1246 }
1247 }
1248
1249 /* %%% SPD management */
1250 /*
1251 * free security policy entry.
1252 */
1253 static void
1254 key_delsp(struct secpolicy *sp)
1255 {
1256 int s;
1257
1258 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1259
1260 key_sp_dead(sp);
1261
1262 IPSEC_ASSERT(sp->refcnt == 0,
1263 ("key_delsp: SP with references deleted (refcnt %u)",
1264 sp->refcnt));
1265
1266 s = splsoftnet(); /*called from softclock()*/
1267
1268 {
1269 struct ipsecrequest *isr = sp->req, *nextisr;
1270
1271 while (isr != NULL) {
1272 if (isr->sav != NULL) {
1273 KEY_FREESAV(&isr->sav);
1274 isr->sav = NULL;
1275 }
1276
1277 nextisr = isr->next;
1278 KFREE(isr);
1279 isr = nextisr;
1280 }
1281 }
1282
1283 KFREE(sp);
1284
1285 splx(s);
1286 }
1287
1288 /*
1289 * search SPD
1290 * OUT: NULL : not found
1291 * others : found, pointer to a SP.
1292 */
1293 static struct secpolicy *
1294 key_getsp(struct secpolicyindex *spidx)
1295 {
1296 struct secpolicy *sp;
1297
1298 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1299
1300 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1301 if (sp->state == IPSEC_SPSTATE_DEAD)
1302 continue;
1303 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1304 SP_ADDREF(sp);
1305 return sp;
1306 }
1307 }
1308
1309 return NULL;
1310 }
1311
1312 /*
1313 * get SP by index.
1314 * OUT: NULL : not found
1315 * others : found, pointer to a SP.
1316 */
1317 static struct secpolicy *
1318 key_getspbyid(u_int32_t id)
1319 {
1320 struct secpolicy *sp;
1321
1322 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1323 if (sp->state == IPSEC_SPSTATE_DEAD)
1324 continue;
1325 if (sp->id == id) {
1326 SP_ADDREF(sp);
1327 return sp;
1328 }
1329 }
1330
1331 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1332 if (sp->state == IPSEC_SPSTATE_DEAD)
1333 continue;
1334 if (sp->id == id) {
1335 SP_ADDREF(sp);
1336 return sp;
1337 }
1338 }
1339
1340 return NULL;
1341 }
1342
1343 struct secpolicy *
1344 key_newsp(const char* where, int tag)
1345 {
1346 struct secpolicy *newsp = NULL;
1347
1348 newsp = (struct secpolicy *)
1349 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1350 if (newsp) {
1351 newsp->refcnt = 1;
1352 newsp->req = NULL;
1353 }
1354
1355 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1356 printf("DP key_newsp from %s:%u return SP:%p\n",
1357 where, tag, newsp));
1358 return newsp;
1359 }
1360
1361 /*
1362 * create secpolicy structure from sadb_x_policy structure.
1363 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1364 * so must be set properly later.
1365 */
1366 struct secpolicy *
1367 key_msg2sp(xpl0, len, error)
1368 struct sadb_x_policy *xpl0;
1369 size_t len;
1370 int *error;
1371 {
1372 struct secpolicy *newsp;
1373
1374 /* sanity check */
1375 if (xpl0 == NULL)
1376 panic("key_msg2sp: NULL pointer was passed");
1377 if (len < sizeof(*xpl0))
1378 panic("key_msg2sp: invalid length");
1379 if (len != PFKEY_EXTLEN(xpl0)) {
1380 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1381 *error = EINVAL;
1382 return NULL;
1383 }
1384
1385 if ((newsp = KEY_NEWSP()) == NULL) {
1386 *error = ENOBUFS;
1387 return NULL;
1388 }
1389
1390 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1391 newsp->policy = xpl0->sadb_x_policy_type;
1392
1393 /* check policy */
1394 switch (xpl0->sadb_x_policy_type) {
1395 case IPSEC_POLICY_DISCARD:
1396 case IPSEC_POLICY_NONE:
1397 case IPSEC_POLICY_ENTRUST:
1398 case IPSEC_POLICY_BYPASS:
1399 newsp->req = NULL;
1400 break;
1401
1402 case IPSEC_POLICY_IPSEC:
1403 {
1404 int tlen;
1405 struct sadb_x_ipsecrequest *xisr;
1406 struct ipsecrequest **p_isr = &newsp->req;
1407
1408 /* validity check */
1409 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1410 ipseclog((LOG_DEBUG,
1411 "key_msg2sp: Invalid msg length.\n"));
1412 KEY_FREESP(&newsp);
1413 *error = EINVAL;
1414 return NULL;
1415 }
1416
1417 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1418 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1419
1420 while (tlen > 0) {
1421 /* length check */
1422 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1423 ipseclog((LOG_DEBUG, "key_msg2sp: "
1424 "invalid ipsecrequest length.\n"));
1425 KEY_FREESP(&newsp);
1426 *error = EINVAL;
1427 return NULL;
1428 }
1429
1430 /* allocate request buffer */
1431 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1432 if ((*p_isr) == NULL) {
1433 ipseclog((LOG_DEBUG,
1434 "key_msg2sp: No more memory.\n"));
1435 KEY_FREESP(&newsp);
1436 *error = ENOBUFS;
1437 return NULL;
1438 }
1439 bzero(*p_isr, sizeof(**p_isr));
1440
1441 /* set values */
1442 (*p_isr)->next = NULL;
1443
1444 switch (xisr->sadb_x_ipsecrequest_proto) {
1445 case IPPROTO_ESP:
1446 case IPPROTO_AH:
1447 case IPPROTO_IPCOMP:
1448 break;
1449 default:
1450 ipseclog((LOG_DEBUG,
1451 "key_msg2sp: invalid proto type=%u\n",
1452 xisr->sadb_x_ipsecrequest_proto));
1453 KEY_FREESP(&newsp);
1454 *error = EPROTONOSUPPORT;
1455 return NULL;
1456 }
1457 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1458
1459 switch (xisr->sadb_x_ipsecrequest_mode) {
1460 case IPSEC_MODE_TRANSPORT:
1461 case IPSEC_MODE_TUNNEL:
1462 break;
1463 case IPSEC_MODE_ANY:
1464 default:
1465 ipseclog((LOG_DEBUG,
1466 "key_msg2sp: invalid mode=%u\n",
1467 xisr->sadb_x_ipsecrequest_mode));
1468 KEY_FREESP(&newsp);
1469 *error = EINVAL;
1470 return NULL;
1471 }
1472 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1473
1474 switch (xisr->sadb_x_ipsecrequest_level) {
1475 case IPSEC_LEVEL_DEFAULT:
1476 case IPSEC_LEVEL_USE:
1477 case IPSEC_LEVEL_REQUIRE:
1478 break;
1479 case IPSEC_LEVEL_UNIQUE:
1480 /* validity check */
1481 /*
1482 * If range violation of reqid, kernel will
1483 * update it, don't refuse it.
1484 */
1485 if (xisr->sadb_x_ipsecrequest_reqid
1486 > IPSEC_MANUAL_REQID_MAX) {
1487 ipseclog((LOG_DEBUG,
1488 "key_msg2sp: reqid=%d range "
1489 "violation, updated by kernel.\n",
1490 xisr->sadb_x_ipsecrequest_reqid));
1491 xisr->sadb_x_ipsecrequest_reqid = 0;
1492 }
1493
1494 /* allocate new reqid id if reqid is zero. */
1495 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1496 u_int16_t reqid;
1497 if ((reqid = key_newreqid()) == 0) {
1498 KEY_FREESP(&newsp);
1499 *error = ENOBUFS;
1500 return NULL;
1501 }
1502 (*p_isr)->saidx.reqid = reqid;
1503 xisr->sadb_x_ipsecrequest_reqid = reqid;
1504 } else {
1505 /* set it for manual keying. */
1506 (*p_isr)->saidx.reqid =
1507 xisr->sadb_x_ipsecrequest_reqid;
1508 }
1509 break;
1510
1511 default:
1512 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1513 xisr->sadb_x_ipsecrequest_level));
1514 KEY_FREESP(&newsp);
1515 *error = EINVAL;
1516 return NULL;
1517 }
1518 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1519
1520 /* set IP addresses if there */
1521 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1522 struct sockaddr *paddr;
1523
1524 paddr = (struct sockaddr *)(xisr + 1);
1525
1526 /* validity check */
1527 if (paddr->sa_len
1528 > sizeof((*p_isr)->saidx.src)) {
1529 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1530 "address length.\n"));
1531 KEY_FREESP(&newsp);
1532 *error = EINVAL;
1533 return NULL;
1534 }
1535 bcopy(paddr, &(*p_isr)->saidx.src,
1536 paddr->sa_len);
1537
1538 paddr = (struct sockaddr *)((char *)paddr
1539 + paddr->sa_len);
1540
1541 /* validity check */
1542 if (paddr->sa_len
1543 > sizeof((*p_isr)->saidx.dst)) {
1544 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1545 "address length.\n"));
1546 KEY_FREESP(&newsp);
1547 *error = EINVAL;
1548 return NULL;
1549 }
1550 bcopy(paddr, &(*p_isr)->saidx.dst,
1551 paddr->sa_len);
1552 }
1553
1554 (*p_isr)->sav = NULL;
1555 (*p_isr)->sp = newsp;
1556
1557 /* initialization for the next. */
1558 p_isr = &(*p_isr)->next;
1559 tlen -= xisr->sadb_x_ipsecrequest_len;
1560
1561 /* validity check */
1562 if (tlen < 0) {
1563 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1564 KEY_FREESP(&newsp);
1565 *error = EINVAL;
1566 return NULL;
1567 }
1568
1569 xisr = (struct sadb_x_ipsecrequest *)((char *)xisr
1570 + xisr->sadb_x_ipsecrequest_len);
1571 }
1572 }
1573 break;
1574 default:
1575 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1576 KEY_FREESP(&newsp);
1577 *error = EINVAL;
1578 return NULL;
1579 }
1580
1581 *error = 0;
1582 return newsp;
1583 }
1584
1585 static u_int16_t
1586 key_newreqid()
1587 {
1588 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1589
1590 auto_reqid = (auto_reqid == 0xffff
1591 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1592
1593 /* XXX should be unique check */
1594
1595 return auto_reqid;
1596 }
1597
1598 /*
1599 * copy secpolicy struct to sadb_x_policy structure indicated.
1600 */
1601 struct mbuf *
1602 key_sp2msg(sp)
1603 struct secpolicy *sp;
1604 {
1605 struct sadb_x_policy *xpl;
1606 int tlen;
1607 char *p;
1608 struct mbuf *m;
1609
1610 /* sanity check. */
1611 if (sp == NULL)
1612 panic("key_sp2msg: NULL pointer was passed");
1613
1614 tlen = key_getspreqmsglen(sp);
1615
1616 m = key_alloc_mbuf(tlen);
1617 if (!m || m->m_next) { /*XXX*/
1618 if (m)
1619 m_freem(m);
1620 return NULL;
1621 }
1622
1623 m->m_len = tlen;
1624 m->m_next = NULL;
1625 xpl = mtod(m, struct sadb_x_policy *);
1626 bzero(xpl, tlen);
1627
1628 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1629 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1630 xpl->sadb_x_policy_type = sp->policy;
1631 xpl->sadb_x_policy_dir = sp->spidx.dir;
1632 xpl->sadb_x_policy_id = sp->id;
1633 p = (char *)xpl + sizeof(*xpl);
1634
1635 /* if is the policy for ipsec ? */
1636 if (sp->policy == IPSEC_POLICY_IPSEC) {
1637 struct sadb_x_ipsecrequest *xisr;
1638 struct ipsecrequest *isr;
1639
1640 for (isr = sp->req; isr != NULL; isr = isr->next) {
1641
1642 xisr = (struct sadb_x_ipsecrequest *)p;
1643
1644 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1645 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1646 xisr->sadb_x_ipsecrequest_level = isr->level;
1647 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1648
1649 p += sizeof(*xisr);
1650 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1651 p += isr->saidx.src.sa.sa_len;
1652 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1653 p += isr->saidx.src.sa.sa_len;
1654
1655 xisr->sadb_x_ipsecrequest_len =
1656 PFKEY_ALIGN8(sizeof(*xisr)
1657 + isr->saidx.src.sa.sa_len
1658 + isr->saidx.dst.sa.sa_len);
1659 }
1660 }
1661
1662 return m;
1663 }
1664
1665 /* m will not be freed nor modified */
1666 static struct mbuf *
1667 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1668 int ndeep, int nitem, ...)
1669 {
1670 va_list ap;
1671 int idx;
1672 int i;
1673 struct mbuf *result = NULL, *n;
1674 int len;
1675
1676 if (m == NULL || mhp == NULL)
1677 panic("null pointer passed to key_gather");
1678
1679 va_start(ap, nitem);
1680 for (i = 0; i < nitem; i++) {
1681 idx = va_arg(ap, int);
1682 if (idx < 0 || idx > SADB_EXT_MAX)
1683 goto fail;
1684 /* don't attempt to pull empty extension */
1685 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1686 continue;
1687 if (idx != SADB_EXT_RESERVED &&
1688 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1689 continue;
1690
1691 if (idx == SADB_EXT_RESERVED) {
1692 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1693 #ifdef DIAGNOSTIC
1694 if (len > MHLEN)
1695 panic("assumption failed");
1696 #endif
1697 MGETHDR(n, M_DONTWAIT, MT_DATA);
1698 if (!n)
1699 goto fail;
1700 n->m_len = len;
1701 n->m_next = NULL;
1702 m_copydata(m, 0, sizeof(struct sadb_msg),
1703 mtod(n, void *));
1704 } else if (i < ndeep) {
1705 len = mhp->extlen[idx];
1706 n = key_alloc_mbuf(len);
1707 if (!n || n->m_next) { /*XXX*/
1708 if (n)
1709 m_freem(n);
1710 goto fail;
1711 }
1712 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1713 mtod(n, void *));
1714 } else {
1715 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1716 M_DONTWAIT);
1717 }
1718 if (n == NULL)
1719 goto fail;
1720
1721 if (result)
1722 m_cat(result, n);
1723 else
1724 result = n;
1725 }
1726 va_end(ap);
1727
1728 if ((result->m_flags & M_PKTHDR) != 0) {
1729 result->m_pkthdr.len = 0;
1730 for (n = result; n; n = n->m_next)
1731 result->m_pkthdr.len += n->m_len;
1732 }
1733
1734 return result;
1735
1736 fail:
1737 va_end(ap);
1738 m_freem(result);
1739 return NULL;
1740 }
1741
1742 /*
1743 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1744 * add an entry to SP database, when received
1745 * <base, address(SD), (lifetime(H),) policy>
1746 * from the user(?).
1747 * Adding to SP database,
1748 * and send
1749 * <base, address(SD), (lifetime(H),) policy>
1750 * to the socket which was send.
1751 *
1752 * SPDADD set a unique policy entry.
1753 * SPDSETIDX like SPDADD without a part of policy requests.
1754 * SPDUPDATE replace a unique policy entry.
1755 *
1756 * m will always be freed.
1757 */
1758 static int
1759 key_spdadd(so, m, mhp)
1760 struct socket *so;
1761 struct mbuf *m;
1762 const struct sadb_msghdr *mhp;
1763 {
1764 struct sadb_address *src0, *dst0;
1765 struct sadb_x_policy *xpl0, *xpl;
1766 struct sadb_lifetime *lft = NULL;
1767 struct secpolicyindex spidx;
1768 struct secpolicy *newsp;
1769 int error;
1770
1771 /* sanity check */
1772 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1773 panic("key_spdadd: NULL pointer is passed");
1774
1775 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1776 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1777 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1778 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1779 return key_senderror(so, m, EINVAL);
1780 }
1781 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1782 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1783 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1784 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1785 return key_senderror(so, m, EINVAL);
1786 }
1787 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1788 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1789 < sizeof(struct sadb_lifetime)) {
1790 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1791 return key_senderror(so, m, EINVAL);
1792 }
1793 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1794 }
1795
1796 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1797 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1798 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1799
1800 /* make secindex */
1801 /* XXX boundary check against sa_len */
1802 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1803 src0 + 1,
1804 dst0 + 1,
1805 src0->sadb_address_prefixlen,
1806 dst0->sadb_address_prefixlen,
1807 src0->sadb_address_proto,
1808 &spidx);
1809
1810 /* checking the direciton. */
1811 switch (xpl0->sadb_x_policy_dir) {
1812 case IPSEC_DIR_INBOUND:
1813 case IPSEC_DIR_OUTBOUND:
1814 break;
1815 default:
1816 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1817 mhp->msg->sadb_msg_errno = EINVAL;
1818 return 0;
1819 }
1820
1821 /* check policy */
1822 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1823 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1824 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1825 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1826 return key_senderror(so, m, EINVAL);
1827 }
1828
1829 /* policy requests are mandatory when action is ipsec. */
1830 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1831 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1832 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1833 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1834 return key_senderror(so, m, EINVAL);
1835 }
1836
1837 /*
1838 * checking there is SP already or not.
1839 * SPDUPDATE doesn't depend on whether there is a SP or not.
1840 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1841 * then error.
1842 */
1843 newsp = key_getsp(&spidx);
1844 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1845 if (newsp) {
1846 key_sp_dead(newsp);
1847 key_sp_unlink(newsp); /* XXX jrs ordering */
1848 KEY_FREESP(&newsp);
1849 newsp = NULL;
1850 }
1851 } else {
1852 if (newsp != NULL) {
1853 KEY_FREESP(&newsp);
1854 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1855 return key_senderror(so, m, EEXIST);
1856 }
1857 }
1858
1859 /* allocation new SP entry */
1860 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1861 return key_senderror(so, m, error);
1862 }
1863
1864 if ((newsp->id = key_getnewspid()) == 0) {
1865 KFREE(newsp);
1866 return key_senderror(so, m, ENOBUFS);
1867 }
1868
1869 /* XXX boundary check against sa_len */
1870 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1871 src0 + 1,
1872 dst0 + 1,
1873 src0->sadb_address_prefixlen,
1874 dst0->sadb_address_prefixlen,
1875 src0->sadb_address_proto,
1876 &newsp->spidx);
1877
1878 /* sanity check on addr pair */
1879 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1880 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1881 KFREE(newsp);
1882 return key_senderror(so, m, EINVAL);
1883 }
1884 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1885 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1886 KFREE(newsp);
1887 return key_senderror(so, m, EINVAL);
1888 }
1889 #if 1
1890 if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1891 struct sockaddr *sa;
1892 sa = (struct sockaddr *)(src0 + 1);
1893 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1894 KFREE(newsp);
1895 return key_senderror(so, m, EINVAL);
1896 }
1897 }
1898 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1899 struct sockaddr *sa;
1900 sa = (struct sockaddr *)(dst0 + 1);
1901 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1902 KFREE(newsp);
1903 return key_senderror(so, m, EINVAL);
1904 }
1905 }
1906 #endif
1907
1908 newsp->created = time_second;
1909 newsp->lastused = newsp->created;
1910 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1911 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1912
1913 newsp->refcnt = 1; /* do not reclaim until I say I do */
1914 newsp->state = IPSEC_SPSTATE_ALIVE;
1915 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1916
1917 /* delete the entry in spacqtree */
1918 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1919 struct secspacq *spacq;
1920 if ((spacq = key_getspacq(&spidx)) != NULL) {
1921 /* reset counter in order to deletion by timehandler. */
1922 spacq->created = time_second;
1923 spacq->count = 0;
1924 }
1925 }
1926
1927 #if defined(__NetBSD__)
1928 /* Invalidate all cached SPD pointers in the PCBs. */
1929 ipsec_invalpcbcacheall();
1930
1931 #if defined(GATEWAY)
1932 /* Invalidate the ipflow cache, as well. */
1933 ipflow_invalidate_all();
1934 #ifdef INET6
1935 ip6flow_invalidate_all();
1936 #endif /* INET6 */
1937 #endif /* GATEWAY */
1938 #endif /* __NetBSD__ */
1939
1940 {
1941 struct mbuf *n, *mpolicy;
1942 struct sadb_msg *newmsg;
1943 int off;
1944
1945 /* create new sadb_msg to reply. */
1946 if (lft) {
1947 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1948 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1949 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1950 } else {
1951 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1952 SADB_X_EXT_POLICY,
1953 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1954 }
1955 if (!n)
1956 return key_senderror(so, m, ENOBUFS);
1957
1958 if (n->m_len < sizeof(*newmsg)) {
1959 n = m_pullup(n, sizeof(*newmsg));
1960 if (!n)
1961 return key_senderror(so, m, ENOBUFS);
1962 }
1963 newmsg = mtod(n, struct sadb_msg *);
1964 newmsg->sadb_msg_errno = 0;
1965 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1966
1967 off = 0;
1968 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1969 sizeof(*xpl), &off);
1970 if (mpolicy == NULL) {
1971 /* n is already freed */
1972 return key_senderror(so, m, ENOBUFS);
1973 }
1974 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
1975 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1976 m_freem(n);
1977 return key_senderror(so, m, EINVAL);
1978 }
1979 xpl->sadb_x_policy_id = newsp->id;
1980
1981 m_freem(m);
1982 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1983 }
1984 }
1985
1986 /*
1987 * get new policy id.
1988 * OUT:
1989 * 0: failure.
1990 * others: success.
1991 */
1992 static u_int32_t
1993 key_getnewspid()
1994 {
1995 u_int32_t newid = 0;
1996 int count = key_spi_trycnt; /* XXX */
1997 struct secpolicy *sp;
1998
1999 /* when requesting to allocate spi ranged */
2000 while (count--) {
2001 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2002
2003 if ((sp = key_getspbyid(newid)) == NULL)
2004 break;
2005
2006 KEY_FREESP(&sp);
2007 }
2008
2009 if (count == 0 || newid == 0) {
2010 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2011 return 0;
2012 }
2013
2014 return newid;
2015 }
2016
2017 /*
2018 * SADB_SPDDELETE processing
2019 * receive
2020 * <base, address(SD), policy(*)>
2021 * from the user(?), and set SADB_SASTATE_DEAD,
2022 * and send,
2023 * <base, address(SD), policy(*)>
2024 * to the ikmpd.
2025 * policy(*) including direction of policy.
2026 *
2027 * m will always be freed.
2028 */
2029 static int
2030 key_spddelete(so, m, mhp)
2031 struct socket *so;
2032 struct mbuf *m;
2033 const struct sadb_msghdr *mhp;
2034 {
2035 struct sadb_address *src0, *dst0;
2036 struct sadb_x_policy *xpl0;
2037 struct secpolicyindex spidx;
2038 struct secpolicy *sp;
2039
2040 /* sanity check */
2041 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2042 panic("key_spddelete: NULL pointer is passed");
2043
2044 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2045 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2046 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2047 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2048 return key_senderror(so, m, EINVAL);
2049 }
2050 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2051 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2052 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2053 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2054 return key_senderror(so, m, EINVAL);
2055 }
2056
2057 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2058 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2059 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2060
2061 /* make secindex */
2062 /* XXX boundary check against sa_len */
2063 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2064 src0 + 1,
2065 dst0 + 1,
2066 src0->sadb_address_prefixlen,
2067 dst0->sadb_address_prefixlen,
2068 src0->sadb_address_proto,
2069 &spidx);
2070
2071 /* checking the direciton. */
2072 switch (xpl0->sadb_x_policy_dir) {
2073 case IPSEC_DIR_INBOUND:
2074 case IPSEC_DIR_OUTBOUND:
2075 break;
2076 default:
2077 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2078 return key_senderror(so, m, EINVAL);
2079 }
2080
2081 /* Is there SP in SPD ? */
2082 if ((sp = key_getsp(&spidx)) == NULL) {
2083 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2084 return key_senderror(so, m, EINVAL);
2085 }
2086
2087 /* save policy id to buffer to be returned. */
2088 xpl0->sadb_x_policy_id = sp->id;
2089
2090 key_sp_dead(sp);
2091 key_sp_unlink(sp); /* XXX jrs ordering */
2092 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2093
2094 #if defined(__NetBSD__)
2095 /* Invalidate all cached SPD pointers in the PCBs. */
2096 ipsec_invalpcbcacheall();
2097
2098 /* We're deleting policy; no need to invalidate the ipflow cache. */
2099 #endif /* __NetBSD__ */
2100
2101 {
2102 struct mbuf *n;
2103 struct sadb_msg *newmsg;
2104
2105 /* create new sadb_msg to reply. */
2106 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2107 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2108 if (!n)
2109 return key_senderror(so, m, ENOBUFS);
2110
2111 newmsg = mtod(n, struct sadb_msg *);
2112 newmsg->sadb_msg_errno = 0;
2113 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2114
2115 m_freem(m);
2116 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2117 }
2118 }
2119
2120 /*
2121 * SADB_SPDDELETE2 processing
2122 * receive
2123 * <base, policy(*)>
2124 * from the user(?), and set SADB_SASTATE_DEAD,
2125 * and send,
2126 * <base, policy(*)>
2127 * to the ikmpd.
2128 * policy(*) including direction of policy.
2129 *
2130 * m will always be freed.
2131 */
2132 static int
2133 key_spddelete2(so, m, mhp)
2134 struct socket *so;
2135 struct mbuf *m;
2136 const struct sadb_msghdr *mhp;
2137 {
2138 u_int32_t id;
2139 struct secpolicy *sp;
2140
2141 /* sanity check */
2142 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2143 panic("key_spddelete2: NULL pointer is passed");
2144
2145 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2146 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2147 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2148 key_senderror(so, m, EINVAL);
2149 return 0;
2150 }
2151
2152 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2153
2154 /* Is there SP in SPD ? */
2155 if ((sp = key_getspbyid(id)) == NULL) {
2156 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2157 key_senderror(so, m, EINVAL);
2158 }
2159
2160 key_sp_dead(sp);
2161 key_sp_unlink(sp); /* XXX jrs ordering */
2162 KEY_FREESP(&sp); /* ref gained by key_getsp */
2163 sp = NULL;
2164
2165 #if defined(__NetBSD__)
2166 /* Invalidate all cached SPD pointers in the PCBs. */
2167 ipsec_invalpcbcacheall();
2168
2169 /* We're deleting policy; no need to invalidate the ipflow cache. */
2170 #endif /* __NetBSD__ */
2171
2172 {
2173 struct mbuf *n, *nn;
2174 struct sadb_msg *newmsg;
2175 int off, len;
2176
2177 /* create new sadb_msg to reply. */
2178 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2179
2180 if (len > MCLBYTES)
2181 return key_senderror(so, m, ENOBUFS);
2182 MGETHDR(n, M_DONTWAIT, MT_DATA);
2183 if (n && len > MHLEN) {
2184 MCLGET(n, M_DONTWAIT);
2185 if ((n->m_flags & M_EXT) == 0) {
2186 m_freem(n);
2187 n = NULL;
2188 }
2189 }
2190 if (!n)
2191 return key_senderror(so, m, ENOBUFS);
2192
2193 n->m_len = len;
2194 n->m_next = NULL;
2195 off = 0;
2196
2197 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2198 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2199
2200 #ifdef DIAGNOSTIC
2201 if (off != len)
2202 panic("length inconsistency in key_spddelete2");
2203 #endif
2204
2205 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2206 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2207 if (!n->m_next) {
2208 m_freem(n);
2209 return key_senderror(so, m, ENOBUFS);
2210 }
2211
2212 n->m_pkthdr.len = 0;
2213 for (nn = n; nn; nn = nn->m_next)
2214 n->m_pkthdr.len += nn->m_len;
2215
2216 newmsg = mtod(n, struct sadb_msg *);
2217 newmsg->sadb_msg_errno = 0;
2218 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2219
2220 m_freem(m);
2221 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2222 }
2223 }
2224
2225 /*
2226 * SADB_X_GET processing
2227 * receive
2228 * <base, policy(*)>
2229 * from the user(?),
2230 * and send,
2231 * <base, address(SD), policy>
2232 * to the ikmpd.
2233 * policy(*) including direction of policy.
2234 *
2235 * m will always be freed.
2236 */
2237 static int
2238 key_spdget(so, m, mhp)
2239 struct socket *so;
2240 struct mbuf *m;
2241 const struct sadb_msghdr *mhp;
2242 {
2243 u_int32_t id;
2244 struct secpolicy *sp;
2245 struct mbuf *n;
2246
2247 /* sanity check */
2248 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2249 panic("key_spdget: NULL pointer is passed");
2250
2251 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2252 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2253 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2254 return key_senderror(so, m, EINVAL);
2255 }
2256
2257 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2258
2259 /* Is there SP in SPD ? */
2260 if ((sp = key_getspbyid(id)) == NULL) {
2261 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2262 return key_senderror(so, m, ENOENT);
2263 }
2264
2265 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2266 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2267 if (n != NULL) {
2268 m_freem(m);
2269 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2270 } else
2271 return key_senderror(so, m, ENOBUFS);
2272 }
2273
2274 /*
2275 * SADB_X_SPDACQUIRE processing.
2276 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2277 * send
2278 * <base, policy(*)>
2279 * to KMD, and expect to receive
2280 * <base> with SADB_X_SPDACQUIRE if error occurred,
2281 * or
2282 * <base, policy>
2283 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2284 * policy(*) is without policy requests.
2285 *
2286 * 0 : succeed
2287 * others: error number
2288 */
2289 int
2290 key_spdacquire(sp)
2291 struct secpolicy *sp;
2292 {
2293 struct mbuf *result = NULL, *m;
2294 struct secspacq *newspacq;
2295 int error;
2296
2297 /* sanity check */
2298 if (sp == NULL)
2299 panic("key_spdacquire: NULL pointer is passed");
2300 if (sp->req != NULL)
2301 panic("key_spdacquire: called but there is request");
2302 if (sp->policy != IPSEC_POLICY_IPSEC)
2303 panic("key_spdacquire: policy mismathed. IPsec is expected");
2304
2305 /* Get an entry to check whether sent message or not. */
2306 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2307 if (key_blockacq_count < newspacq->count) {
2308 /* reset counter and do send message. */
2309 newspacq->count = 0;
2310 } else {
2311 /* increment counter and do nothing. */
2312 newspacq->count++;
2313 return 0;
2314 }
2315 } else {
2316 /* make new entry for blocking to send SADB_ACQUIRE. */
2317 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2318 return ENOBUFS;
2319
2320 /* add to acqtree */
2321 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2322 }
2323
2324 /* create new sadb_msg to reply. */
2325 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2326 if (!m) {
2327 error = ENOBUFS;
2328 goto fail;
2329 }
2330 result = m;
2331
2332 result->m_pkthdr.len = 0;
2333 for (m = result; m; m = m->m_next)
2334 result->m_pkthdr.len += m->m_len;
2335
2336 mtod(result, struct sadb_msg *)->sadb_msg_len =
2337 PFKEY_UNIT64(result->m_pkthdr.len);
2338
2339 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2340
2341 fail:
2342 if (result)
2343 m_freem(result);
2344 return error;
2345 }
2346
2347 /*
2348 * SADB_SPDFLUSH processing
2349 * receive
2350 * <base>
2351 * from the user, and free all entries in secpctree.
2352 * and send,
2353 * <base>
2354 * to the user.
2355 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2356 *
2357 * m will always be freed.
2358 */
2359 static int
2360 key_spdflush(so, m, mhp)
2361 struct socket *so;
2362 struct mbuf *m;
2363 const struct sadb_msghdr *mhp;
2364 {
2365 struct sadb_msg *newmsg;
2366 struct secpolicy *sp;
2367 u_int dir;
2368
2369 /* sanity check */
2370 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2371 panic("key_spdflush: NULL pointer is passed");
2372
2373 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2374 return key_senderror(so, m, EINVAL);
2375
2376 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2377 struct secpolicy * nextsp;
2378 for (sp = LIST_FIRST(&sptree[dir]);
2379 sp != NULL;
2380 sp = nextsp) {
2381
2382 nextsp = LIST_NEXT(sp, chain);
2383 if (sp->state == IPSEC_SPSTATE_DEAD)
2384 continue;
2385 key_sp_dead(sp);
2386 key_sp_unlink(sp);
2387 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2388 continue;
2389 }
2390 }
2391
2392 #if defined(__NetBSD__)
2393 /* Invalidate all cached SPD pointers in the PCBs. */
2394 ipsec_invalpcbcacheall();
2395
2396 /* We're deleting policy; no need to invalidate the ipflow cache. */
2397 #endif /* __NetBSD__ */
2398
2399 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2400 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2401 return key_senderror(so, m, ENOBUFS);
2402 }
2403
2404 if (m->m_next)
2405 m_freem(m->m_next);
2406 m->m_next = NULL;
2407 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2408 newmsg = mtod(m, struct sadb_msg *);
2409 newmsg->sadb_msg_errno = 0;
2410 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2411
2412 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2413 }
2414
2415 static struct sockaddr key_src = {
2416 .sa_len = 2,
2417 .sa_family = PF_KEY,
2418 };
2419
2420 static struct mbuf *
2421 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2422 {
2423 struct secpolicy *sp;
2424 int cnt;
2425 u_int dir;
2426 struct mbuf *m, *n, *prev;
2427 int totlen;
2428
2429 *lenp = 0;
2430
2431 /* search SPD entry and get buffer size. */
2432 cnt = 0;
2433 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2434 LIST_FOREACH(sp, &sptree[dir], chain) {
2435 cnt++;
2436 }
2437 }
2438
2439 if (cnt == 0) {
2440 *errorp = ENOENT;
2441 return (NULL);
2442 }
2443
2444 m = NULL;
2445 prev = m;
2446 totlen = 0;
2447 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2448 LIST_FOREACH(sp, &sptree[dir], chain) {
2449 --cnt;
2450 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2451
2452 if (!n) {
2453 *errorp = ENOBUFS;
2454 if (m) m_freem(m);
2455 return (NULL);
2456 }
2457
2458 totlen += n->m_pkthdr.len;
2459 if (!m) {
2460 m = n;
2461 } else {
2462 prev->m_nextpkt = n;
2463 }
2464 prev = n;
2465 }
2466 }
2467
2468 *lenp = totlen;
2469 *errorp = 0;
2470 return (m);
2471 }
2472
2473 /*
2474 * SADB_SPDDUMP processing
2475 * receive
2476 * <base>
2477 * from the user, and dump all SP leaves
2478 * and send,
2479 * <base> .....
2480 * to the ikmpd.
2481 *
2482 * m will always be freed.
2483 */
2484 static int
2485 key_spddump(so, m0, mhp)
2486 struct socket *so;
2487 struct mbuf *m0;
2488 const struct sadb_msghdr *mhp;
2489 {
2490 struct mbuf *n;
2491 int error, len;
2492 int ok, s;
2493 pid_t pid;
2494
2495 /* sanity check */
2496 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2497 panic("key_spddump: NULL pointer is passed");
2498
2499
2500 pid = mhp->msg->sadb_msg_pid;
2501 /*
2502 * If the requestor has insufficient socket-buffer space
2503 * for the entire chain, nobody gets any response to the DUMP.
2504 * XXX For now, only the requestor ever gets anything.
2505 * Moreover, if the requestor has any space at all, they receive
2506 * the entire chain, otherwise the request is refused with ENOBUFS.
2507 */
2508 if (sbspace(&so->so_rcv) <= 0) {
2509 return key_senderror(so, m0, ENOBUFS);
2510 }
2511
2512 s = splsoftnet();
2513 n = key_setspddump_chain(&error, &len, pid);
2514 splx(s);
2515
2516 if (n == NULL) {
2517 return key_senderror(so, m0, ENOENT);
2518 }
2519 pfkeystat.in_total++;
2520 pfkeystat.in_bytes += len;
2521
2522 /*
2523 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2524 * The requestor receives either the entire chain, or an
2525 * error message with ENOBUFS.
2526 */
2527
2528 /*
2529 * sbappendchainwith record takes the chain of entries, one
2530 * packet-record per SPD entry, prepends the key_src sockaddr
2531 * to each packet-record, links the sockaddr mbufs into a new
2532 * list of records, then appends the entire resulting
2533 * list to the requesting socket.
2534 */
2535 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2536 n, SB_PRIO_ONESHOT_OVERFLOW);
2537
2538 if (!ok) {
2539 pfkeystat.in_nomem++;
2540 m_freem(n);
2541 return key_senderror(so, m0, ENOBUFS);
2542 }
2543
2544 m_freem(m0);
2545 return error;
2546 }
2547
2548 static struct mbuf *
2549 key_setdumpsp(sp, type, seq, pid)
2550 struct secpolicy *sp;
2551 u_int8_t type;
2552 u_int32_t seq;
2553 pid_t pid;
2554 {
2555 struct mbuf *result = NULL, *m;
2556
2557 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2558 if (!m)
2559 goto fail;
2560 result = m;
2561
2562 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2563 &sp->spidx.src.sa, sp->spidx.prefs,
2564 sp->spidx.ul_proto);
2565 if (!m)
2566 goto fail;
2567 m_cat(result, m);
2568
2569 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2570 &sp->spidx.dst.sa, sp->spidx.prefd,
2571 sp->spidx.ul_proto);
2572 if (!m)
2573 goto fail;
2574 m_cat(result, m);
2575
2576 m = key_sp2msg(sp);
2577 if (!m)
2578 goto fail;
2579 m_cat(result, m);
2580
2581 if ((result->m_flags & M_PKTHDR) == 0)
2582 goto fail;
2583
2584 if (result->m_len < sizeof(struct sadb_msg)) {
2585 result = m_pullup(result, sizeof(struct sadb_msg));
2586 if (result == NULL)
2587 goto fail;
2588 }
2589
2590 result->m_pkthdr.len = 0;
2591 for (m = result; m; m = m->m_next)
2592 result->m_pkthdr.len += m->m_len;
2593
2594 mtod(result, struct sadb_msg *)->sadb_msg_len =
2595 PFKEY_UNIT64(result->m_pkthdr.len);
2596
2597 return result;
2598
2599 fail:
2600 m_freem(result);
2601 return NULL;
2602 }
2603
2604 /*
2605 * get PFKEY message length for security policy and request.
2606 */
2607 static u_int
2608 key_getspreqmsglen(sp)
2609 struct secpolicy *sp;
2610 {
2611 u_int tlen;
2612
2613 tlen = sizeof(struct sadb_x_policy);
2614
2615 /* if is the policy for ipsec ? */
2616 if (sp->policy != IPSEC_POLICY_IPSEC)
2617 return tlen;
2618
2619 /* get length of ipsec requests */
2620 {
2621 struct ipsecrequest *isr;
2622 int len;
2623
2624 for (isr = sp->req; isr != NULL; isr = isr->next) {
2625 len = sizeof(struct sadb_x_ipsecrequest)
2626 + isr->saidx.src.sa.sa_len
2627 + isr->saidx.dst.sa.sa_len;
2628
2629 tlen += PFKEY_ALIGN8(len);
2630 }
2631 }
2632
2633 return tlen;
2634 }
2635
2636 /*
2637 * SADB_SPDEXPIRE processing
2638 * send
2639 * <base, address(SD), lifetime(CH), policy>
2640 * to KMD by PF_KEY.
2641 *
2642 * OUT: 0 : succeed
2643 * others : error number
2644 */
2645 static int
2646 key_spdexpire(sp)
2647 struct secpolicy *sp;
2648 {
2649 int s;
2650 struct mbuf *result = NULL, *m;
2651 int len;
2652 int error = -1;
2653 struct sadb_lifetime *lt;
2654
2655 /* XXX: Why do we lock ? */
2656 s = splsoftnet(); /*called from softclock()*/
2657
2658 /* sanity check */
2659 if (sp == NULL)
2660 panic("key_spdexpire: NULL pointer is passed");
2661
2662 /* set msg header */
2663 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2664 if (!m) {
2665 error = ENOBUFS;
2666 goto fail;
2667 }
2668 result = m;
2669
2670 /* create lifetime extension (current and hard) */
2671 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2672 m = key_alloc_mbuf(len);
2673 if (!m || m->m_next) { /*XXX*/
2674 if (m)
2675 m_freem(m);
2676 error = ENOBUFS;
2677 goto fail;
2678 }
2679 bzero(mtod(m, void *), len);
2680 lt = mtod(m, struct sadb_lifetime *);
2681 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2682 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2683 lt->sadb_lifetime_allocations = 0;
2684 lt->sadb_lifetime_bytes = 0;
2685 lt->sadb_lifetime_addtime = sp->created;
2686 lt->sadb_lifetime_usetime = sp->lastused;
2687 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2688 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2689 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2690 lt->sadb_lifetime_allocations = 0;
2691 lt->sadb_lifetime_bytes = 0;
2692 lt->sadb_lifetime_addtime = sp->lifetime;
2693 lt->sadb_lifetime_usetime = sp->validtime;
2694 m_cat(result, m);
2695
2696 /* set sadb_address for source */
2697 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2698 &sp->spidx.src.sa,
2699 sp->spidx.prefs, sp->spidx.ul_proto);
2700 if (!m) {
2701 error = ENOBUFS;
2702 goto fail;
2703 }
2704 m_cat(result, m);
2705
2706 /* set sadb_address for destination */
2707 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2708 &sp->spidx.dst.sa,
2709 sp->spidx.prefd, sp->spidx.ul_proto);
2710 if (!m) {
2711 error = ENOBUFS;
2712 goto fail;
2713 }
2714 m_cat(result, m);
2715
2716 /* set secpolicy */
2717 m = key_sp2msg(sp);
2718 if (!m) {
2719 error = ENOBUFS;
2720 goto fail;
2721 }
2722 m_cat(result, m);
2723
2724 if ((result->m_flags & M_PKTHDR) == 0) {
2725 error = EINVAL;
2726 goto fail;
2727 }
2728
2729 if (result->m_len < sizeof(struct sadb_msg)) {
2730 result = m_pullup(result, sizeof(struct sadb_msg));
2731 if (result == NULL) {
2732 error = ENOBUFS;
2733 goto fail;
2734 }
2735 }
2736
2737 result->m_pkthdr.len = 0;
2738 for (m = result; m; m = m->m_next)
2739 result->m_pkthdr.len += m->m_len;
2740
2741 mtod(result, struct sadb_msg *)->sadb_msg_len =
2742 PFKEY_UNIT64(result->m_pkthdr.len);
2743
2744 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2745
2746 fail:
2747 if (result)
2748 m_freem(result);
2749 splx(s);
2750 return error;
2751 }
2752
2753 /* %%% SAD management */
2754 /*
2755 * allocating a memory for new SA head, and copy from the values of mhp.
2756 * OUT: NULL : failure due to the lack of memory.
2757 * others : pointer to new SA head.
2758 */
2759 static struct secashead *
2760 key_newsah(saidx)
2761 struct secasindex *saidx;
2762 {
2763 struct secashead *newsah;
2764
2765 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2766
2767 newsah = (struct secashead *)
2768 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2769 if (newsah != NULL) {
2770 int i;
2771 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2772 LIST_INIT(&newsah->savtree[i]);
2773 newsah->saidx = *saidx;
2774
2775 /* add to saidxtree */
2776 newsah->state = SADB_SASTATE_MATURE;
2777 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2778 }
2779 return(newsah);
2780 }
2781
2782 /*
2783 * delete SA index and all SA registerd.
2784 */
2785 static void
2786 key_delsah(sah)
2787 struct secashead *sah;
2788 {
2789 struct secasvar *sav, *nextsav;
2790 u_int stateidx, state;
2791 int s;
2792 int zombie = 0;
2793
2794 /* sanity check */
2795 if (sah == NULL)
2796 panic("key_delsah: NULL pointer is passed");
2797
2798 s = splsoftnet(); /*called from softclock()*/
2799
2800 /* searching all SA registerd in the secindex. */
2801 for (stateidx = 0;
2802 stateidx < _ARRAYLEN(saorder_state_any);
2803 stateidx++) {
2804
2805 state = saorder_state_any[stateidx];
2806 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2807 sav != NULL;
2808 sav = nextsav) {
2809
2810 nextsav = LIST_NEXT(sav, chain);
2811
2812 if (sav->refcnt == 0) {
2813 /* sanity check */
2814 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2815 KEY_FREESAV(&sav);
2816 } else {
2817 /* give up to delete this sa */
2818 zombie++;
2819 }
2820 }
2821 }
2822
2823 /* don't delete sah only if there are savs. */
2824 if (zombie) {
2825 splx(s);
2826 return;
2827 }
2828
2829 rtcache_free(&sah->sa_route);
2830
2831 /* remove from tree of SA index */
2832 if (__LIST_CHAINED(sah))
2833 LIST_REMOVE(sah, chain);
2834
2835 KFREE(sah);
2836
2837 splx(s);
2838 return;
2839 }
2840
2841 /*
2842 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2843 * and copy the values of mhp into new buffer.
2844 * When SAD message type is GETSPI:
2845 * to set sequence number from acq_seq++,
2846 * to set zero to SPI.
2847 * not to call key_setsava().
2848 * OUT: NULL : fail
2849 * others : pointer to new secasvar.
2850 *
2851 * does not modify mbuf. does not free mbuf on error.
2852 */
2853 static struct secasvar *
2854 key_newsav(m, mhp, sah, errp, where, tag)
2855 struct mbuf *m;
2856 const struct sadb_msghdr *mhp;
2857 struct secashead *sah;
2858 int *errp;
2859 const char* where;
2860 int tag;
2861 {
2862 struct secasvar *newsav;
2863 const struct sadb_sa *xsa;
2864
2865 /* sanity check */
2866 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2867 panic("key_newsa: NULL pointer is passed");
2868
2869 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2870 if (newsav == NULL) {
2871 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2872 *errp = ENOBUFS;
2873 goto done;
2874 }
2875 bzero(newsav, sizeof(struct secasvar));
2876
2877 switch (mhp->msg->sadb_msg_type) {
2878 case SADB_GETSPI:
2879 newsav->spi = 0;
2880
2881 #ifdef IPSEC_DOSEQCHECK
2882 /* sync sequence number */
2883 if (mhp->msg->sadb_msg_seq == 0)
2884 newsav->seq =
2885 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2886 else
2887 #endif
2888 newsav->seq = mhp->msg->sadb_msg_seq;
2889 break;
2890
2891 case SADB_ADD:
2892 /* sanity check */
2893 if (mhp->ext[SADB_EXT_SA] == NULL) {
2894 KFREE(newsav), newsav = NULL;
2895 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2896 *errp = EINVAL;
2897 goto done;
2898 }
2899 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2900 newsav->spi = xsa->sadb_sa_spi;
2901 newsav->seq = mhp->msg->sadb_msg_seq;
2902 break;
2903 default:
2904 KFREE(newsav), newsav = NULL;
2905 *errp = EINVAL;
2906 goto done;
2907 }
2908
2909 /* copy sav values */
2910 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2911 *errp = key_setsaval(newsav, m, mhp);
2912 if (*errp) {
2913 KFREE(newsav), newsav = NULL;
2914 goto done;
2915 }
2916 }
2917
2918 /* reset created */
2919 newsav->created = time_second;
2920 newsav->pid = mhp->msg->sadb_msg_pid;
2921
2922 /* add to satree */
2923 newsav->sah = sah;
2924 newsav->refcnt = 1;
2925 newsav->state = SADB_SASTATE_LARVAL;
2926 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2927 secasvar, chain);
2928 done:
2929 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2930 printf("DP key_newsav from %s:%u return SP:%p\n",
2931 where, tag, newsav));
2932
2933 return newsav;
2934 }
2935
2936 /*
2937 * free() SA variable entry.
2938 */
2939 static void
2940 key_delsav(sav)
2941 struct secasvar *sav;
2942 {
2943 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
2944 IPSEC_ASSERT(sav->refcnt == 0,
2945 ("key_delsav: reference count %u > 0", sav->refcnt));
2946
2947 /* remove from SA header */
2948 if (__LIST_CHAINED(sav))
2949 LIST_REMOVE(sav, chain);
2950
2951 /*
2952 * Cleanup xform state. Note that zeroize'ing causes the
2953 * keys to be cleared; otherwise we must do it ourself.
2954 */
2955 if (sav->tdb_xform != NULL) {
2956 sav->tdb_xform->xf_zeroize(sav);
2957 sav->tdb_xform = NULL;
2958 } else {
2959 if (sav->key_auth != NULL)
2960 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2961 if (sav->key_enc != NULL)
2962 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2963 }
2964 if (sav->key_auth != NULL) {
2965 KFREE(sav->key_auth);
2966 sav->key_auth = NULL;
2967 }
2968 if (sav->key_enc != NULL) {
2969 KFREE(sav->key_enc);
2970 sav->key_enc = NULL;
2971 }
2972 if (sav->sched) {
2973 bzero(sav->sched, sav->schedlen);
2974 KFREE(sav->sched);
2975 sav->sched = NULL;
2976 }
2977 if (sav->replay != NULL) {
2978 KFREE(sav->replay);
2979 sav->replay = NULL;
2980 }
2981 if (sav->lft_c != NULL) {
2982 KFREE(sav->lft_c);
2983 sav->lft_c = NULL;
2984 }
2985 if (sav->lft_h != NULL) {
2986 KFREE(sav->lft_h);
2987 sav->lft_h = NULL;
2988 }
2989 if (sav->lft_s != NULL) {
2990 KFREE(sav->lft_s);
2991 sav->lft_s = NULL;
2992 }
2993 if (sav->iv != NULL) {
2994 KFREE(sav->iv);
2995 sav->iv = NULL;
2996 }
2997
2998 KFREE(sav);
2999
3000 return;
3001 }
3002
3003 /*
3004 * search SAD.
3005 * OUT:
3006 * NULL : not found
3007 * others : found, pointer to a SA.
3008 */
3009 static struct secashead *
3010 key_getsah(saidx)
3011 struct secasindex *saidx;
3012 {
3013 struct secashead *sah;
3014
3015 LIST_FOREACH(sah, &sahtree, chain) {
3016 if (sah->state == SADB_SASTATE_DEAD)
3017 continue;
3018 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3019 return sah;
3020 }
3021
3022 return NULL;
3023 }
3024
3025 /*
3026 * check not to be duplicated SPI.
3027 * NOTE: this function is too slow due to searching all SAD.
3028 * OUT:
3029 * NULL : not found
3030 * others : found, pointer to a SA.
3031 */
3032 static struct secasvar *
3033 key_checkspidup(saidx, spi)
3034 struct secasindex *saidx;
3035 u_int32_t spi;
3036 {
3037 struct secashead *sah;
3038 struct secasvar *sav;
3039
3040 /* check address family */
3041 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3042 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3043 return NULL;
3044 }
3045
3046 /* check all SAD */
3047 LIST_FOREACH(sah, &sahtree, chain) {
3048 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3049 continue;
3050 sav = key_getsavbyspi(sah, spi);
3051 if (sav != NULL)
3052 return sav;
3053 }
3054
3055 return NULL;
3056 }
3057
3058 /*
3059 * search SAD litmited alive SA, protocol, SPI.
3060 * OUT:
3061 * NULL : not found
3062 * others : found, pointer to a SA.
3063 */
3064 static struct secasvar *
3065 key_getsavbyspi(sah, spi)
3066 struct secashead *sah;
3067 u_int32_t spi;
3068 {
3069 struct secasvar *sav;
3070 u_int stateidx, state;
3071
3072 /* search all status */
3073 for (stateidx = 0;
3074 stateidx < _ARRAYLEN(saorder_state_alive);
3075 stateidx++) {
3076
3077 state = saorder_state_alive[stateidx];
3078 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3079
3080 /* sanity check */
3081 if (sav->state != state) {
3082 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3083 "invalid sav->state (queue: %d SA: %d)\n",
3084 state, sav->state));
3085 continue;
3086 }
3087
3088 if (sav->spi == spi)
3089 return sav;
3090 }
3091 }
3092
3093 return NULL;
3094 }
3095
3096 /*
3097 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3098 * You must update these if need.
3099 * OUT: 0: success.
3100 * !0: failure.
3101 *
3102 * does not modify mbuf. does not free mbuf on error.
3103 */
3104 static int
3105 key_setsaval(sav, m, mhp)
3106 struct secasvar *sav;
3107 struct mbuf *m;
3108 const struct sadb_msghdr *mhp;
3109 {
3110 int error = 0;
3111
3112 /* sanity check */
3113 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3114 panic("key_setsaval: NULL pointer is passed");
3115
3116 /* initialization */
3117 sav->replay = NULL;
3118 sav->key_auth = NULL;
3119 sav->key_enc = NULL;
3120 sav->sched = NULL;
3121 sav->schedlen = 0;
3122 sav->iv = NULL;
3123 sav->lft_c = NULL;
3124 sav->lft_h = NULL;
3125 sav->lft_s = NULL;
3126 sav->tdb_xform = NULL; /* transform */
3127 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3128 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3129 sav->tdb_compalgxform = NULL; /* compression algorithm */
3130
3131 /* SA */
3132 if (mhp->ext[SADB_EXT_SA] != NULL) {
3133 const struct sadb_sa *sa0;
3134
3135 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3136 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3137 error = EINVAL;
3138 goto fail;
3139 }
3140
3141 sav->alg_auth = sa0->sadb_sa_auth;
3142 sav->alg_enc = sa0->sadb_sa_encrypt;
3143 sav->flags = sa0->sadb_sa_flags;
3144
3145 /* replay window */
3146 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3147 sav->replay = (struct secreplay *)
3148 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3149 if (sav->replay == NULL) {
3150 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3151 error = ENOBUFS;
3152 goto fail;
3153 }
3154 if (sa0->sadb_sa_replay != 0)
3155 sav->replay->bitmap = (char*)(sav->replay+1);
3156 sav->replay->wsize = sa0->sadb_sa_replay;
3157 }
3158 }
3159
3160 /* Authentication keys */
3161 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3162 const struct sadb_key *key0;
3163 int len;
3164
3165 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3166 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3167
3168 error = 0;
3169 if (len < sizeof(*key0)) {
3170 error = EINVAL;
3171 goto fail;
3172 }
3173 switch (mhp->msg->sadb_msg_satype) {
3174 case SADB_SATYPE_AH:
3175 case SADB_SATYPE_ESP:
3176 case SADB_X_SATYPE_TCPSIGNATURE:
3177 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3178 sav->alg_auth != SADB_X_AALG_NULL)
3179 error = EINVAL;
3180 break;
3181 case SADB_X_SATYPE_IPCOMP:
3182 default:
3183 error = EINVAL;
3184 break;
3185 }
3186 if (error) {
3187 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3188 goto fail;
3189 }
3190
3191 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3192 if (sav->key_auth == NULL) {
3193 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3194 error = ENOBUFS;
3195 goto fail;
3196 }
3197 }
3198
3199 /* Encryption key */
3200 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3201 const struct sadb_key *key0;
3202 int len;
3203
3204 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3205 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3206
3207 error = 0;
3208 if (len < sizeof(*key0)) {
3209 error = EINVAL;
3210 goto fail;
3211 }
3212 switch (mhp->msg->sadb_msg_satype) {
3213 case SADB_SATYPE_ESP:
3214 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3215 sav->alg_enc != SADB_EALG_NULL) {
3216 error = EINVAL;
3217 break;
3218 }
3219 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3220 if (sav->key_enc == NULL) {
3221 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3222 error = ENOBUFS;
3223 goto fail;
3224 }
3225 break;
3226 case SADB_X_SATYPE_IPCOMP:
3227 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3228 error = EINVAL;
3229 sav->key_enc = NULL; /*just in case*/
3230 break;
3231 case SADB_SATYPE_AH:
3232 case SADB_X_SATYPE_TCPSIGNATURE:
3233 default:
3234 error = EINVAL;
3235 break;
3236 }
3237 if (error) {
3238 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3239 goto fail;
3240 }
3241 }
3242
3243 /* set iv */
3244 sav->ivlen = 0;
3245
3246 switch (mhp->msg->sadb_msg_satype) {
3247 case SADB_SATYPE_AH:
3248 error = xform_init(sav, XF_AH);
3249 break;
3250 case SADB_SATYPE_ESP:
3251 error = xform_init(sav, XF_ESP);
3252 break;
3253 case SADB_X_SATYPE_IPCOMP:
3254 error = xform_init(sav, XF_IPCOMP);
3255 break;
3256 case SADB_X_SATYPE_TCPSIGNATURE:
3257 error = xform_init(sav, XF_TCPSIGNATURE);
3258 break;
3259 }
3260 if (error) {
3261 ipseclog((LOG_DEBUG,
3262 "key_setsaval: unable to initialize SA type %u.\n",
3263 mhp->msg->sadb_msg_satype));
3264 goto fail;
3265 }
3266
3267 /* reset created */
3268 sav->created = time_second;
3269
3270 /* make lifetime for CURRENT */
3271 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3272 sizeof(struct sadb_lifetime));
3273 if (sav->lft_c == NULL) {
3274 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3275 error = ENOBUFS;
3276 goto fail;
3277 }
3278
3279 sav->lft_c->sadb_lifetime_len =
3280 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3281 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3282 sav->lft_c->sadb_lifetime_allocations = 0;
3283 sav->lft_c->sadb_lifetime_bytes = 0;
3284 sav->lft_c->sadb_lifetime_addtime = time_second;
3285 sav->lft_c->sadb_lifetime_usetime = 0;
3286
3287 /* lifetimes for HARD and SOFT */
3288 {
3289 const struct sadb_lifetime *lft0;
3290
3291 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3292 if (lft0 != NULL) {
3293 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3294 error = EINVAL;
3295 goto fail;
3296 }
3297 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3298 sizeof(*lft0));
3299 if (sav->lft_h == NULL) {
3300 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3301 error = ENOBUFS;
3302 goto fail;
3303 }
3304 /* to be initialize ? */
3305 }
3306
3307 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3308 if (lft0 != NULL) {
3309 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3310 error = EINVAL;
3311 goto fail;
3312 }
3313 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3314 sizeof(*lft0));
3315 if (sav->lft_s == NULL) {
3316 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3317 error = ENOBUFS;
3318 goto fail;
3319 }
3320 /* to be initialize ? */
3321 }
3322 }
3323
3324 return 0;
3325
3326 fail:
3327 /* initialization */
3328 if (sav->replay != NULL) {
3329 KFREE(sav->replay);
3330 sav->replay = NULL;
3331 }
3332 if (sav->key_auth != NULL) {
3333 KFREE(sav->key_auth);
3334 sav->key_auth = NULL;
3335 }
3336 if (sav->key_enc != NULL) {
3337 KFREE(sav->key_enc);
3338 sav->key_enc = NULL;
3339 }
3340 if (sav->sched) {
3341 KFREE(sav->sched);
3342 sav->sched = NULL;
3343 }
3344 if (sav->iv != NULL) {
3345 KFREE(sav->iv);
3346 sav->iv = NULL;
3347 }
3348 if (sav->lft_c != NULL) {
3349 KFREE(sav->lft_c);
3350 sav->lft_c = NULL;
3351 }
3352 if (sav->lft_h != NULL) {
3353 KFREE(sav->lft_h);
3354 sav->lft_h = NULL;
3355 }
3356 if (sav->lft_s != NULL) {
3357 KFREE(sav->lft_s);
3358 sav->lft_s = NULL;
3359 }
3360
3361 return error;
3362 }
3363
3364 /*
3365 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3366 * OUT: 0: valid
3367 * other: errno
3368 */
3369 static int
3370 key_mature(sav)
3371 struct secasvar *sav;
3372 {
3373 int error;
3374
3375 /* check SPI value */
3376 switch (sav->sah->saidx.proto) {
3377 case IPPROTO_ESP:
3378 case IPPROTO_AH:
3379 if (ntohl(sav->spi) <= 255) {
3380 ipseclog((LOG_DEBUG,
3381 "key_mature: illegal range of SPI %u.\n",
3382 (u_int32_t)ntohl(sav->spi)));
3383 return EINVAL;
3384 }
3385 break;
3386 }
3387
3388 /* check satype */
3389 switch (sav->sah->saidx.proto) {
3390 case IPPROTO_ESP:
3391 /* check flags */
3392 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3393 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3394 ipseclog((LOG_DEBUG, "key_mature: "
3395 "invalid flag (derived) given to old-esp.\n"));
3396 return EINVAL;
3397 }
3398 error = xform_init(sav, XF_ESP);
3399 break;
3400 case IPPROTO_AH:
3401 /* check flags */
3402 if (sav->flags & SADB_X_EXT_DERIV) {
3403 ipseclog((LOG_DEBUG, "key_mature: "
3404 "invalid flag (derived) given to AH SA.\n"));
3405 return EINVAL;
3406 }
3407 if (sav->alg_enc != SADB_EALG_NONE) {
3408 ipseclog((LOG_DEBUG, "key_mature: "
3409 "protocol and algorithm mismated.\n"));
3410 return(EINVAL);
3411 }
3412 error = xform_init(sav, XF_AH);
3413 break;
3414 case IPPROTO_IPCOMP:
3415 if (sav->alg_auth != SADB_AALG_NONE) {
3416 ipseclog((LOG_DEBUG, "key_mature: "
3417 "protocol and algorithm mismated.\n"));
3418 return(EINVAL);
3419 }
3420 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3421 && ntohl(sav->spi) >= 0x10000) {
3422 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3423 return(EINVAL);
3424 }
3425 error = xform_init(sav, XF_IPCOMP);
3426 break;
3427 case IPPROTO_TCP:
3428 if (sav->alg_enc != SADB_EALG_NONE) {
3429 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3430 "mismated.\n", __func__));
3431 return(EINVAL);
3432 }
3433 error = xform_init(sav, XF_TCPSIGNATURE);
3434 break;
3435 default:
3436 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3437 error = EPROTONOSUPPORT;
3438 break;
3439 }
3440 if (error == 0)
3441 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3442 return (error);
3443 }
3444
3445 /*
3446 * subroutine for SADB_GET and SADB_DUMP.
3447 */
3448 static struct mbuf *
3449 key_setdumpsa(sav, type, satype, seq, pid)
3450 struct secasvar *sav;
3451 u_int8_t type, satype;
3452 u_int32_t seq, pid;
3453 {
3454 struct mbuf *result = NULL, *tres = NULL, *m;
3455 int l = 0;
3456 int i;
3457 void *p;
3458 int dumporder[] = {
3459 SADB_EXT_SA, SADB_X_EXT_SA2,
3460 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3461 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3462 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3463 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3464 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3465 };
3466
3467 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3468 if (m == NULL)
3469 goto fail;
3470 result = m;
3471
3472 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3473 m = NULL;
3474 p = NULL;
3475 switch (dumporder[i]) {
3476 case SADB_EXT_SA:
3477 m = key_setsadbsa(sav);
3478 if (!m)
3479 goto fail;
3480 break;
3481
3482 case SADB_X_EXT_SA2:
3483 m = key_setsadbxsa2(sav->sah->saidx.mode,
3484 sav->replay ? sav->replay->count : 0,
3485 sav->sah->saidx.reqid);
3486 if (!m)
3487 goto fail;
3488 break;
3489
3490 case SADB_EXT_ADDRESS_SRC:
3491 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3492 &sav->sah->saidx.src.sa,
3493 FULLMASK, IPSEC_ULPROTO_ANY);
3494 if (!m)
3495 goto fail;
3496 break;
3497
3498 case SADB_EXT_ADDRESS_DST:
3499 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3500 &sav->sah->saidx.dst.sa,
3501 FULLMASK, IPSEC_ULPROTO_ANY);
3502 if (!m)
3503 goto fail;
3504 break;
3505
3506 case SADB_EXT_KEY_AUTH:
3507 if (!sav->key_auth)
3508 continue;
3509 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3510 p = sav->key_auth;
3511 break;
3512
3513 case SADB_EXT_KEY_ENCRYPT:
3514 if (!sav->key_enc)
3515 continue;
3516 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3517 p = sav->key_enc;
3518 break;
3519
3520 case SADB_EXT_LIFETIME_CURRENT:
3521 if (!sav->lft_c)
3522 continue;
3523 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3524 p = sav->lft_c;
3525 break;
3526
3527 case SADB_EXT_LIFETIME_HARD:
3528 if (!sav->lft_h)
3529 continue;
3530 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3531 p = sav->lft_h;
3532 break;
3533
3534 case SADB_EXT_LIFETIME_SOFT:
3535 if (!sav->lft_s)
3536 continue;
3537 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3538 p = sav->lft_s;
3539 break;
3540
3541 case SADB_EXT_ADDRESS_PROXY:
3542 case SADB_EXT_IDENTITY_SRC:
3543 case SADB_EXT_IDENTITY_DST:
3544 /* XXX: should we brought from SPD ? */
3545 case SADB_EXT_SENSITIVITY:
3546 default:
3547 continue;
3548 }
3549
3550 if ((!m && !p) || (m && p))
3551 goto fail;
3552 if (p && tres) {
3553 M_PREPEND(tres, l, M_DONTWAIT);
3554 if (!tres)
3555 goto fail;
3556 bcopy(p, mtod(tres, void *), l);
3557 continue;
3558 }
3559 if (p) {
3560 m = key_alloc_mbuf(l);
3561 if (!m)
3562 goto fail;
3563 m_copyback(m, 0, l, p);
3564 }
3565
3566 if (tres)
3567 m_cat(m, tres);
3568 tres = m;
3569 }
3570
3571 m_cat(result, tres);
3572
3573 if (result->m_len < sizeof(struct sadb_msg)) {
3574 result = m_pullup(result, sizeof(struct sadb_msg));
3575 if (result == NULL)
3576 goto fail;
3577 }
3578
3579 result->m_pkthdr.len = 0;
3580 for (m = result; m; m = m->m_next)
3581 result->m_pkthdr.len += m->m_len;
3582
3583 mtod(result, struct sadb_msg *)->sadb_msg_len =
3584 PFKEY_UNIT64(result->m_pkthdr.len);
3585
3586 return result;
3587
3588 fail:
3589 m_freem(result);
3590 m_freem(tres);
3591 return NULL;
3592 }
3593
3594 /*
3595 * set data into sadb_msg.
3596 */
3597 static struct mbuf *
3598 key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3599 u_int8_t type, satype;
3600 u_int16_t tlen;
3601 u_int32_t seq;
3602 pid_t pid;
3603 u_int16_t reserved;
3604 {
3605 struct mbuf *m;
3606 struct sadb_msg *p;
3607 int len;
3608
3609 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3610 if (len > MCLBYTES)
3611 return NULL;
3612 MGETHDR(m, M_DONTWAIT, MT_DATA);
3613 if (m && len > MHLEN) {
3614 MCLGET(m, M_DONTWAIT);
3615 if ((m->m_flags & M_EXT) == 0) {
3616 m_freem(m);
3617 m = NULL;
3618 }
3619 }
3620 if (!m)
3621 return NULL;
3622 m->m_pkthdr.len = m->m_len = len;
3623 m->m_next = NULL;
3624
3625 p = mtod(m, struct sadb_msg *);
3626
3627 bzero(p, len);
3628 p->sadb_msg_version = PF_KEY_V2;
3629 p->sadb_msg_type = type;
3630 p->sadb_msg_errno = 0;
3631 p->sadb_msg_satype = satype;
3632 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3633 p->sadb_msg_reserved = reserved;
3634 p->sadb_msg_seq = seq;
3635 p->sadb_msg_pid = (u_int32_t)pid;
3636
3637 return m;
3638 }
3639
3640 /*
3641 * copy secasvar data into sadb_address.
3642 */
3643 static struct mbuf *
3644 key_setsadbsa(sav)
3645 struct secasvar *sav;
3646 {
3647 struct mbuf *m;
3648 struct sadb_sa *p;
3649 int len;
3650
3651 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3652 m = key_alloc_mbuf(len);
3653 if (!m || m->m_next) { /*XXX*/
3654 if (m)
3655 m_freem(m);
3656 return NULL;
3657 }
3658
3659 p = mtod(m, struct sadb_sa *);
3660
3661 bzero(p, len);
3662 p->sadb_sa_len = PFKEY_UNIT64(len);
3663 p->sadb_sa_exttype = SADB_EXT_SA;
3664 p->sadb_sa_spi = sav->spi;
3665 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3666 p->sadb_sa_state = sav->state;
3667 p->sadb_sa_auth = sav->alg_auth;
3668 p->sadb_sa_encrypt = sav->alg_enc;
3669 p->sadb_sa_flags = sav->flags;
3670
3671 return m;
3672 }
3673
3674 /*
3675 * set data into sadb_address.
3676 */
3677 static struct mbuf *
3678 key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3679 u_int16_t exttype;
3680 const struct sockaddr *saddr;
3681 u_int8_t prefixlen;
3682 u_int16_t ul_proto;
3683 {
3684 struct mbuf *m;
3685 struct sadb_address *p;
3686 size_t len;
3687
3688 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3689 PFKEY_ALIGN8(saddr->sa_len);
3690 m = key_alloc_mbuf(len);
3691 if (!m || m->m_next) { /*XXX*/
3692 if (m)
3693 m_freem(m);
3694 return NULL;
3695 }
3696
3697 p = mtod(m, struct sadb_address *);
3698
3699 bzero(p, len);
3700 p->sadb_address_len = PFKEY_UNIT64(len);
3701 p->sadb_address_exttype = exttype;
3702 p->sadb_address_proto = ul_proto;
3703 if (prefixlen == FULLMASK) {
3704 switch (saddr->sa_family) {
3705 case AF_INET:
3706 prefixlen = sizeof(struct in_addr) << 3;
3707 break;
3708 case AF_INET6:
3709 prefixlen = sizeof(struct in6_addr) << 3;
3710 break;
3711 default:
3712 ; /*XXX*/
3713 }
3714 }
3715 p->sadb_address_prefixlen = prefixlen;
3716 p->sadb_address_reserved = 0;
3717
3718 bcopy(saddr,
3719 mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3720 saddr->sa_len);
3721
3722 return m;
3723 }
3724
3725 #if 0
3726 /*
3727 * set data into sadb_ident.
3728 */
3729 static struct mbuf *
3730 key_setsadbident(exttype, idtype, string, stringlen, id)
3731 u_int16_t exttype, idtype;
3732 void *string;
3733 int stringlen;
3734 u_int64_t id;
3735 {
3736 struct mbuf *m;
3737 struct sadb_ident *p;
3738 size_t len;
3739
3740 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3741 m = key_alloc_mbuf(len);
3742 if (!m || m->m_next) { /*XXX*/
3743 if (m)
3744 m_freem(m);
3745 return NULL;
3746 }
3747
3748 p = mtod(m, struct sadb_ident *);
3749
3750 bzero(p, len);
3751 p->sadb_ident_len = PFKEY_UNIT64(len);
3752 p->sadb_ident_exttype = exttype;
3753 p->sadb_ident_type = idtype;
3754 p->sadb_ident_reserved = 0;
3755 p->sadb_ident_id = id;
3756
3757 bcopy(string,
3758 mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3759 stringlen);
3760
3761 return m;
3762 }
3763 #endif
3764
3765 /*
3766 * set data into sadb_x_sa2.
3767 */
3768 static struct mbuf *
3769 key_setsadbxsa2(mode, seq, reqid)
3770 u_int8_t mode;
3771 u_int32_t seq;
3772 u_int16_t reqid;
3773 {
3774 struct mbuf *m;
3775 struct sadb_x_sa2 *p;
3776 size_t len;
3777
3778 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3779 m = key_alloc_mbuf(len);
3780 if (!m || m->m_next) { /*XXX*/
3781 if (m)
3782 m_freem(m);
3783 return NULL;
3784 }
3785
3786 p = mtod(m, struct sadb_x_sa2 *);
3787
3788 bzero(p, len);
3789 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3790 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3791 p->sadb_x_sa2_mode = mode;
3792 p->sadb_x_sa2_reserved1 = 0;
3793 p->sadb_x_sa2_reserved2 = 0;
3794 p->sadb_x_sa2_sequence = seq;
3795 p->sadb_x_sa2_reqid = reqid;
3796
3797 return m;
3798 }
3799
3800 /*
3801 * set data into sadb_x_policy
3802 */
3803 static struct mbuf *
3804 key_setsadbxpolicy(type, dir, id)
3805 u_int16_t type;
3806 u_int8_t dir;
3807 u_int32_t id;
3808 {
3809 struct mbuf *m;
3810 struct sadb_x_policy *p;
3811 size_t len;
3812
3813 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3814 m = key_alloc_mbuf(len);
3815 if (!m || m->m_next) { /*XXX*/
3816 if (m)
3817 m_freem(m);
3818 return NULL;
3819 }
3820
3821 p = mtod(m, struct sadb_x_policy *);
3822
3823 bzero(p, len);
3824 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3825 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3826 p->sadb_x_policy_type = type;
3827 p->sadb_x_policy_dir = dir;
3828 p->sadb_x_policy_id = id;
3829
3830 return m;
3831 }
3832
3833 /* %%% utilities */
3834 /*
3835 * copy a buffer into the new buffer allocated.
3836 */
3837 static void *
3838 key_newbuf(src, len)
3839 const void *src;
3840 u_int len;
3841 {
3842 void *new;
3843
3844 KMALLOC(new, void *, len);
3845 if (new == NULL) {
3846 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
3847 return NULL;
3848 }
3849 bcopy(src, new, len);
3850
3851 return new;
3852 }
3853
3854 /* compare my own address
3855 * OUT: 1: true, i.e. my address.
3856 * 0: false
3857 */
3858 int
3859 key_ismyaddr(sa)
3860 struct sockaddr *sa;
3861 {
3862 #ifdef INET
3863 struct sockaddr_in *sin;
3864 struct in_ifaddr *ia;
3865 #endif
3866
3867 /* sanity check */
3868 if (sa == NULL)
3869 panic("key_ismyaddr: NULL pointer is passed");
3870
3871 switch (sa->sa_family) {
3872 #ifdef INET
3873 case AF_INET:
3874 sin = (struct sockaddr_in *)sa;
3875 for (ia = in_ifaddrhead.tqh_first; ia;
3876 ia = ia->ia_link.tqe_next)
3877 {
3878 if (sin->sin_family == ia->ia_addr.sin_family &&
3879 sin->sin_len == ia->ia_addr.sin_len &&
3880 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3881 {
3882 return 1;
3883 }
3884 }
3885 break;
3886 #endif
3887 #ifdef INET6
3888 case AF_INET6:
3889 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3890 #endif
3891 }
3892
3893 return 0;
3894 }
3895
3896 #ifdef INET6
3897 /*
3898 * compare my own address for IPv6.
3899 * 1: ours
3900 * 0: other
3901 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3902 */
3903 #include <netinet6/in6_var.h>
3904
3905 static int
3906 key_ismyaddr6(sin6)
3907 struct sockaddr_in6 *sin6;
3908 {
3909 struct in6_ifaddr *ia;
3910 struct in6_multi *in6m;
3911
3912 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3913 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3914 (struct sockaddr *)&ia->ia_addr, 0) == 0)
3915 return 1;
3916
3917 /*
3918 * XXX Multicast
3919 * XXX why do we care about multlicast here while we don't care
3920 * about IPv4 multicast??
3921 * XXX scope
3922 */
3923 in6m = NULL;
3924 #ifdef __FreeBSD__
3925 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3926 #else
3927 for ((in6m) = ia->ia6_multiaddrs.lh_first;
3928 (in6m) != NULL &&
3929 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
3930 (in6m) = in6m->in6m_entry.le_next)
3931 continue;
3932 #endif
3933 if (in6m)
3934 return 1;
3935 }
3936
3937 /* loopback, just for safety */
3938 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3939 return 1;
3940
3941 return 0;
3942 }
3943 #endif /*INET6*/
3944
3945 /*
3946 * compare two secasindex structure.
3947 * flag can specify to compare 2 saidxes.
3948 * compare two secasindex structure without both mode and reqid.
3949 * don't compare port.
3950 * IN:
3951 * saidx0: source, it can be in SAD.
3952 * saidx1: object.
3953 * OUT:
3954 * 1 : equal
3955 * 0 : not equal
3956 */
3957 static int
3958 key_cmpsaidx(
3959 const struct secasindex *saidx0,
3960 const struct secasindex *saidx1,
3961 int flag)
3962 {
3963 /* sanity */
3964 if (saidx0 == NULL && saidx1 == NULL)
3965 return 1;
3966
3967 if (saidx0 == NULL || saidx1 == NULL)
3968 return 0;
3969
3970 if (saidx0->proto != saidx1->proto)
3971 return 0;
3972
3973 if (flag == CMP_EXACTLY) {
3974 if (saidx0->mode != saidx1->mode)
3975 return 0;
3976 if (saidx0->reqid != saidx1->reqid)
3977 return 0;
3978 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3979 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3980 return 0;
3981 } else {
3982
3983 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3984 if (flag == CMP_MODE_REQID
3985 ||flag == CMP_REQID) {
3986 /*
3987 * If reqid of SPD is non-zero, unique SA is required.
3988 * The result must be of same reqid in this case.
3989 */
3990 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3991 return 0;
3992 }
3993
3994 if (flag == CMP_MODE_REQID) {
3995 if (saidx0->mode != IPSEC_MODE_ANY
3996 && saidx0->mode != saidx1->mode)
3997 return 0;
3998 }
3999
4000 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
4001 return 0;
4002 }
4003 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
4004 return 0;
4005 }
4006 }
4007
4008 return 1;
4009 }
4010
4011 /*
4012 * compare two secindex structure exactly.
4013 * IN:
4014 * spidx0: source, it is often in SPD.
4015 * spidx1: object, it is often from PFKEY message.
4016 * OUT:
4017 * 1 : equal
4018 * 0 : not equal
4019 */
4020 int
4021 key_cmpspidx_exactly(
4022 struct secpolicyindex *spidx0,
4023 struct secpolicyindex *spidx1)
4024 {
4025 /* sanity */
4026 if (spidx0 == NULL && spidx1 == NULL)
4027 return 1;
4028
4029 if (spidx0 == NULL || spidx1 == NULL)
4030 return 0;
4031
4032 if (spidx0->prefs != spidx1->prefs
4033 || spidx0->prefd != spidx1->prefd
4034 || spidx0->ul_proto != spidx1->ul_proto)
4035 return 0;
4036
4037 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4038 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4039 }
4040
4041 /*
4042 * compare two secindex structure with mask.
4043 * IN:
4044 * spidx0: source, it is often in SPD.
4045 * spidx1: object, it is often from IP header.
4046 * OUT:
4047 * 1 : equal
4048 * 0 : not equal
4049 */
4050 int
4051 key_cmpspidx_withmask(
4052 struct secpolicyindex *spidx0,
4053 struct secpolicyindex *spidx1)
4054 {
4055 /* sanity */
4056 if (spidx0 == NULL && spidx1 == NULL)
4057 return 1;
4058
4059 if (spidx0 == NULL || spidx1 == NULL)
4060 return 0;
4061
4062 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4063 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4064 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4065 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4066 return 0;
4067
4068 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4069 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4070 && spidx0->ul_proto != spidx1->ul_proto)
4071 return 0;
4072
4073 switch (spidx0->src.sa.sa_family) {
4074 case AF_INET:
4075 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4076 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4077 return 0;
4078 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4079 &spidx1->src.sin.sin_addr, spidx0->prefs))
4080 return 0;
4081 break;
4082 case AF_INET6:
4083 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4084 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4085 return 0;
4086 /*
4087 * scope_id check. if sin6_scope_id is 0, we regard it
4088 * as a wildcard scope, which matches any scope zone ID.
4089 */
4090 if (spidx0->src.sin6.sin6_scope_id &&
4091 spidx1->src.sin6.sin6_scope_id &&
4092 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4093 return 0;
4094 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4095 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4096 return 0;
4097 break;
4098 default:
4099 /* XXX */
4100 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4101 return 0;
4102 break;
4103 }
4104
4105 switch (spidx0->dst.sa.sa_family) {
4106 case AF_INET:
4107 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4108 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4109 return 0;
4110 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4111 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4112 return 0;
4113 break;
4114 case AF_INET6:
4115 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4116 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4117 return 0;
4118 /*
4119 * scope_id check. if sin6_scope_id is 0, we regard it
4120 * as a wildcard scope, which matches any scope zone ID.
4121 */
4122 if (spidx0->src.sin6.sin6_scope_id &&
4123 spidx1->src.sin6.sin6_scope_id &&
4124 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4125 return 0;
4126 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4127 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4128 return 0;
4129 break;
4130 default:
4131 /* XXX */
4132 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4133 return 0;
4134 break;
4135 }
4136
4137 /* XXX Do we check other field ? e.g. flowinfo */
4138
4139 return 1;
4140 }
4141
4142 /* returns 0 on match */
4143 static int
4144 key_sockaddrcmp(
4145 const struct sockaddr *sa1,
4146 const struct sockaddr *sa2,
4147 int port)
4148 {
4149 #ifdef satosin
4150 #undef satosin
4151 #endif
4152 #define satosin(s) ((const struct sockaddr_in *)s)
4153 #ifdef satosin6
4154 #undef satosin6
4155 #endif
4156 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4157 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4158 return 1;
4159
4160 switch (sa1->sa_family) {
4161 case AF_INET:
4162 if (sa1->sa_len != sizeof(struct sockaddr_in))
4163 return 1;
4164 if (satosin(sa1)->sin_addr.s_addr !=
4165 satosin(sa2)->sin_addr.s_addr) {
4166 return 1;
4167 }
4168 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4169 return 1;
4170 break;
4171 case AF_INET6:
4172 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4173 return 1; /*EINVAL*/
4174 if (satosin6(sa1)->sin6_scope_id !=
4175 satosin6(sa2)->sin6_scope_id) {
4176 return 1;
4177 }
4178 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4179 &satosin6(sa2)->sin6_addr)) {
4180 return 1;
4181 }
4182 if (port &&
4183 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4184 return 1;
4185 }
4186 break;
4187 default:
4188 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4189 return 1;
4190 break;
4191 }
4192
4193 return 0;
4194 #undef satosin
4195 #undef satosin6
4196 }
4197
4198 /*
4199 * compare two buffers with mask.
4200 * IN:
4201 * addr1: source
4202 * addr2: object
4203 * bits: Number of bits to compare
4204 * OUT:
4205 * 1 : equal
4206 * 0 : not equal
4207 */
4208 static int
4209 key_bbcmp(const void *a1, const void *a2, u_int bits)
4210 {
4211 const unsigned char *p1 = a1;
4212 const unsigned char *p2 = a2;
4213
4214 /* XXX: This could be considerably faster if we compare a word
4215 * at a time, but it is complicated on LSB Endian machines */
4216
4217 /* Handle null pointers */
4218 if (p1 == NULL || p2 == NULL)
4219 return (p1 == p2);
4220
4221 while (bits >= 8) {
4222 if (*p1++ != *p2++)
4223 return 0;
4224 bits -= 8;
4225 }
4226
4227 if (bits > 0) {
4228 u_int8_t mask = ~((1<<(8-bits))-1);
4229 if ((*p1 & mask) != (*p2 & mask))
4230 return 0;
4231 }
4232 return 1; /* Match! */
4233 }
4234
4235 /*
4236 * time handler.
4237 * scanning SPD and SAD to check status for each entries,
4238 * and do to remove or to expire.
4239 * XXX: year 2038 problem may remain.
4240 */
4241 void
4242 key_timehandler(void* arg)
4243 {
4244 u_int dir;
4245 int s;
4246 time_t now = time_second;
4247
4248 s = splsoftnet(); /*called from softclock()*/
4249
4250 /* SPD */
4251 {
4252 struct secpolicy *sp, *nextsp;
4253
4254 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4255 for (sp = LIST_FIRST(&sptree[dir]);
4256 sp != NULL;
4257 sp = nextsp) {
4258
4259 nextsp = LIST_NEXT(sp, chain);
4260
4261 if (sp->state == IPSEC_SPSTATE_DEAD) {
4262 key_sp_unlink(sp); /*XXX*/
4263
4264 /* 'sp' dead; continue transfers to
4265 * 'sp = nextsp'
4266 */
4267 continue;
4268 }
4269
4270 if (sp->lifetime == 0 && sp->validtime == 0)
4271 continue;
4272
4273 /* the deletion will occur next time */
4274 if ((sp->lifetime && now - sp->created > sp->lifetime)
4275 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4276 key_sp_dead(sp);
4277 key_spdexpire(sp);
4278 continue;
4279 }
4280 }
4281 }
4282 }
4283
4284 /* SAD */
4285 {
4286 struct secashead *sah, *nextsah;
4287 struct secasvar *sav, *nextsav;
4288
4289 for (sah = LIST_FIRST(&sahtree);
4290 sah != NULL;
4291 sah = nextsah) {
4292
4293 nextsah = LIST_NEXT(sah, chain);
4294
4295 /* if sah has been dead, then delete it and process next sah. */
4296 if (sah->state == SADB_SASTATE_DEAD) {
4297 key_delsah(sah);
4298 continue;
4299 }
4300
4301 /* if LARVAL entry doesn't become MATURE, delete it. */
4302 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4303 sav != NULL;
4304 sav = nextsav) {
4305
4306 nextsav = LIST_NEXT(sav, chain);
4307
4308 if (now - sav->created > key_larval_lifetime) {
4309 KEY_FREESAV(&sav);
4310 }
4311 }
4312
4313 /*
4314 * check MATURE entry to start to send expire message
4315 * whether or not.
4316 */
4317 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4318 sav != NULL;
4319 sav = nextsav) {
4320
4321 nextsav = LIST_NEXT(sav, chain);
4322
4323 /* we don't need to check. */
4324 if (sav->lft_s == NULL)
4325 continue;
4326
4327 /* sanity check */
4328 if (sav->lft_c == NULL) {
4329 ipseclog((LOG_DEBUG,"key_timehandler: "
4330 "There is no CURRENT time, why?\n"));
4331 continue;
4332 }
4333
4334 /* check SOFT lifetime */
4335 if (sav->lft_s->sadb_lifetime_addtime != 0
4336 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4337 /*
4338 * check SA to be used whether or not.
4339 * when SA hasn't been used, delete it.
4340 */
4341 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4342 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4343 KEY_FREESAV(&sav);
4344 } else {
4345 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4346 /*
4347 * XXX If we keep to send expire
4348 * message in the status of
4349 * DYING. Do remove below code.
4350 */
4351 key_expire(sav);
4352 }
4353 }
4354 /* check SOFT lifetime by bytes */
4355 /*
4356 * XXX I don't know the way to delete this SA
4357 * when new SA is installed. Caution when it's
4358 * installed too big lifetime by time.
4359 */
4360 else if (sav->lft_s->sadb_lifetime_bytes != 0
4361 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4362
4363 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4364 /*
4365 * XXX If we keep to send expire
4366 * message in the status of
4367 * DYING. Do remove below code.
4368 */
4369 key_expire(sav);
4370 }
4371 }
4372
4373 /* check DYING entry to change status to DEAD. */
4374 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4375 sav != NULL;
4376 sav = nextsav) {
4377
4378 nextsav = LIST_NEXT(sav, chain);
4379
4380 /* we don't need to check. */
4381 if (sav->lft_h == NULL)
4382 continue;
4383
4384 /* sanity check */
4385 if (sav->lft_c == NULL) {
4386 ipseclog((LOG_DEBUG, "key_timehandler: "
4387 "There is no CURRENT time, why?\n"));
4388 continue;
4389 }
4390
4391 if (sav->lft_h->sadb_lifetime_addtime != 0
4392 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4393 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4394 KEY_FREESAV(&sav);
4395 }
4396 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4397 else if (sav->lft_s != NULL
4398 && sav->lft_s->sadb_lifetime_addtime != 0
4399 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4400 /*
4401 * XXX: should be checked to be
4402 * installed the valid SA.
4403 */
4404
4405 /*
4406 * If there is no SA then sending
4407 * expire message.
4408 */
4409 key_expire(sav);
4410 }
4411 #endif
4412 /* check HARD lifetime by bytes */
4413 else if (sav->lft_h->sadb_lifetime_bytes != 0
4414 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4415 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4416 KEY_FREESAV(&sav);
4417 }
4418 }
4419
4420 /* delete entry in DEAD */
4421 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4422 sav != NULL;
4423 sav = nextsav) {
4424
4425 nextsav = LIST_NEXT(sav, chain);
4426
4427 /* sanity check */
4428 if (sav->state != SADB_SASTATE_DEAD) {
4429 ipseclog((LOG_DEBUG, "key_timehandler: "
4430 "invalid sav->state "
4431 "(queue: %d SA: %d): "
4432 "kill it anyway\n",
4433 SADB_SASTATE_DEAD, sav->state));
4434 }
4435
4436 /*
4437 * do not call key_freesav() here.
4438 * sav should already be freed, and sav->refcnt
4439 * shows other references to sav
4440 * (such as from SPD).
4441 */
4442 }
4443 }
4444 }
4445
4446 #ifndef IPSEC_NONBLOCK_ACQUIRE
4447 /* ACQ tree */
4448 {
4449 struct secacq *acq, *nextacq;
4450
4451 for (acq = LIST_FIRST(&acqtree);
4452 acq != NULL;
4453 acq = nextacq) {
4454
4455 nextacq = LIST_NEXT(acq, chain);
4456
4457 if (now - acq->created > key_blockacq_lifetime
4458 && __LIST_CHAINED(acq)) {
4459 LIST_REMOVE(acq, chain);
4460 KFREE(acq);
4461 }
4462 }
4463 }
4464 #endif
4465
4466 /* SP ACQ tree */
4467 {
4468 struct secspacq *acq, *nextacq;
4469
4470 for (acq = LIST_FIRST(&spacqtree);
4471 acq != NULL;
4472 acq = nextacq) {
4473
4474 nextacq = LIST_NEXT(acq, chain);
4475
4476 if (now - acq->created > key_blockacq_lifetime
4477 && __LIST_CHAINED(acq)) {
4478 LIST_REMOVE(acq, chain);
4479 KFREE(acq);
4480 }
4481 }
4482 }
4483
4484 /* initialize random seed */
4485 if (key_tick_init_random++ > key_int_random) {
4486 key_tick_init_random = 0;
4487 key_srandom();
4488 }
4489
4490 #ifndef IPSEC_DEBUG2
4491 /* do exchange to tick time !! */
4492 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4493 #endif /* IPSEC_DEBUG2 */
4494
4495 splx(s);
4496 return;
4497 }
4498
4499 #ifdef __NetBSD__
4500 void srandom(int);
4501 void srandom(int arg) {return;}
4502 #endif
4503
4504 /*
4505 * to initialize a seed for random()
4506 */
4507 static void
4508 key_srandom()
4509 {
4510 srandom(time_second);
4511 }
4512
4513 u_long
4514 key_random()
4515 {
4516 u_long value;
4517
4518 key_randomfill(&value, sizeof(value));
4519 return value;
4520 }
4521
4522 void
4523 key_randomfill(p, l)
4524 void *p;
4525 size_t l;
4526 {
4527 size_t n;
4528 u_long v;
4529 static int warn = 1;
4530
4531 n = 0;
4532 n = (size_t)read_random(p, (u_int)l);
4533 /* last resort */
4534 while (n < l) {
4535 v = random();
4536 bcopy(&v, (u_int8_t *)p + n,
4537 l - n < sizeof(v) ? l - n : sizeof(v));
4538 n += sizeof(v);
4539
4540 if (warn) {
4541 printf("WARNING: pseudo-random number generator "
4542 "used for IPsec processing\n");
4543 warn = 0;
4544 }
4545 }
4546 }
4547
4548 /*
4549 * map SADB_SATYPE_* to IPPROTO_*.
4550 * if satype == SADB_SATYPE then satype is mapped to ~0.
4551 * OUT:
4552 * 0: invalid satype.
4553 */
4554 static u_int16_t
4555 key_satype2proto(satype)
4556 u_int8_t satype;
4557 {
4558 switch (satype) {
4559 case SADB_SATYPE_UNSPEC:
4560 return IPSEC_PROTO_ANY;
4561 case SADB_SATYPE_AH:
4562 return IPPROTO_AH;
4563 case SADB_SATYPE_ESP:
4564 return IPPROTO_ESP;
4565 case SADB_X_SATYPE_IPCOMP:
4566 return IPPROTO_IPCOMP;
4567 case SADB_X_SATYPE_TCPSIGNATURE:
4568 return IPPROTO_TCP;
4569 default:
4570 return 0;
4571 }
4572 /* NOTREACHED */
4573 }
4574
4575 /*
4576 * map IPPROTO_* to SADB_SATYPE_*
4577 * OUT:
4578 * 0: invalid protocol type.
4579 */
4580 static u_int8_t
4581 key_proto2satype(proto)
4582 u_int16_t proto;
4583 {
4584 switch (proto) {
4585 case IPPROTO_AH:
4586 return SADB_SATYPE_AH;
4587 case IPPROTO_ESP:
4588 return SADB_SATYPE_ESP;
4589 case IPPROTO_IPCOMP:
4590 return SADB_X_SATYPE_IPCOMP;
4591 case IPPROTO_TCP:
4592 return SADB_X_SATYPE_TCPSIGNATURE;
4593 default:
4594 return 0;
4595 }
4596 /* NOTREACHED */
4597 }
4598
4599 /* %%% PF_KEY */
4600 /*
4601 * SADB_GETSPI processing is to receive
4602 * <base, (SA2), src address, dst address, (SPI range)>
4603 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4604 * tree with the status of LARVAL, and send
4605 * <base, SA(*), address(SD)>
4606 * to the IKMPd.
4607 *
4608 * IN: mhp: pointer to the pointer to each header.
4609 * OUT: NULL if fail.
4610 * other if success, return pointer to the message to send.
4611 */
4612 static int
4613 key_getspi(so, m, mhp)
4614 struct socket *so;
4615 struct mbuf *m;
4616 const struct sadb_msghdr *mhp;
4617 {
4618 struct sadb_address *src0, *dst0;
4619 struct secasindex saidx;
4620 struct secashead *newsah;
4621 struct secasvar *newsav;
4622 u_int8_t proto;
4623 u_int32_t spi;
4624 u_int8_t mode;
4625 u_int16_t reqid;
4626 int error;
4627
4628 /* sanity check */
4629 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4630 panic("key_getspi: NULL pointer is passed");
4631
4632 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4633 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4634 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4635 return key_senderror(so, m, EINVAL);
4636 }
4637 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4638 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4639 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4640 return key_senderror(so, m, EINVAL);
4641 }
4642 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4643 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4644 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4645 } else {
4646 mode = IPSEC_MODE_ANY;
4647 reqid = 0;
4648 }
4649
4650 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4651 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4652
4653 /* map satype to proto */
4654 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4655 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4656 return key_senderror(so, m, EINVAL);
4657 }
4658
4659 /* make sure if port number is zero. */
4660 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4661 case AF_INET:
4662 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4663 sizeof(struct sockaddr_in))
4664 return key_senderror(so, m, EINVAL);
4665 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4666 break;
4667 case AF_INET6:
4668 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4669 sizeof(struct sockaddr_in6))
4670 return key_senderror(so, m, EINVAL);
4671 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4672 break;
4673 default:
4674 ; /*???*/
4675 }
4676 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4677 case AF_INET:
4678 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4679 sizeof(struct sockaddr_in))
4680 return key_senderror(so, m, EINVAL);
4681 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4682 break;
4683 case AF_INET6:
4684 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4685 sizeof(struct sockaddr_in6))
4686 return key_senderror(so, m, EINVAL);
4687 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4688 break;
4689 default:
4690 ; /*???*/
4691 }
4692
4693 /* XXX boundary check against sa_len */
4694 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4695
4696 /* SPI allocation */
4697 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4698 &saidx);
4699 if (spi == 0)
4700 return key_senderror(so, m, EINVAL);
4701
4702 /* get a SA index */
4703 if ((newsah = key_getsah(&saidx)) == NULL) {
4704 /* create a new SA index */
4705 if ((newsah = key_newsah(&saidx)) == NULL) {
4706 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4707 return key_senderror(so, m, ENOBUFS);
4708 }
4709 }
4710
4711 /* get a new SA */
4712 /* XXX rewrite */
4713 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4714 if (newsav == NULL) {
4715 /* XXX don't free new SA index allocated in above. */
4716 return key_senderror(so, m, error);
4717 }
4718
4719 /* set spi */
4720 newsav->spi = htonl(spi);
4721
4722 #ifndef IPSEC_NONBLOCK_ACQUIRE
4723 /* delete the entry in acqtree */
4724 if (mhp->msg->sadb_msg_seq != 0) {
4725 struct secacq *acq;
4726 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4727 /* reset counter in order to deletion by timehandler. */
4728 acq->created = time_second;
4729 acq->count = 0;
4730 }
4731 }
4732 #endif
4733
4734 {
4735 struct mbuf *n, *nn;
4736 struct sadb_sa *m_sa;
4737 struct sadb_msg *newmsg;
4738 int off, len;
4739
4740 /* create new sadb_msg to reply. */
4741 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4742 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4743 if (len > MCLBYTES)
4744 return key_senderror(so, m, ENOBUFS);
4745
4746 MGETHDR(n, M_DONTWAIT, MT_DATA);
4747 if (len > MHLEN) {
4748 MCLGET(n, M_DONTWAIT);
4749 if ((n->m_flags & M_EXT) == 0) {
4750 m_freem(n);
4751 n = NULL;
4752 }
4753 }
4754 if (!n)
4755 return key_senderror(so, m, ENOBUFS);
4756
4757 n->m_len = len;
4758 n->m_next = NULL;
4759 off = 0;
4760
4761 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
4762 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4763
4764 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
4765 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4766 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4767 m_sa->sadb_sa_spi = htonl(spi);
4768 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4769
4770 #ifdef DIAGNOSTIC
4771 if (off != len)
4772 panic("length inconsistency in key_getspi");
4773 #endif
4774
4775 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4776 SADB_EXT_ADDRESS_DST);
4777 if (!n->m_next) {
4778 m_freem(n);
4779 return key_senderror(so, m, ENOBUFS);
4780 }
4781
4782 if (n->m_len < sizeof(struct sadb_msg)) {
4783 n = m_pullup(n, sizeof(struct sadb_msg));
4784 if (n == NULL)
4785 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4786 }
4787
4788 n->m_pkthdr.len = 0;
4789 for (nn = n; nn; nn = nn->m_next)
4790 n->m_pkthdr.len += nn->m_len;
4791
4792 newmsg = mtod(n, struct sadb_msg *);
4793 newmsg->sadb_msg_seq = newsav->seq;
4794 newmsg->sadb_msg_errno = 0;
4795 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4796
4797 m_freem(m);
4798 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4799 }
4800 }
4801
4802 /*
4803 * allocating new SPI
4804 * called by key_getspi().
4805 * OUT:
4806 * 0: failure.
4807 * others: success.
4808 */
4809 static u_int32_t
4810 key_do_getnewspi(spirange, saidx)
4811 struct sadb_spirange *spirange;
4812 struct secasindex *saidx;
4813 {
4814 u_int32_t newspi;
4815 u_int32_t spmin, spmax;
4816 int count = key_spi_trycnt;
4817
4818 /* set spi range to allocate */
4819 if (spirange != NULL) {
4820 spmin = spirange->sadb_spirange_min;
4821 spmax = spirange->sadb_spirange_max;
4822 } else {
4823 spmin = key_spi_minval;
4824 spmax = key_spi_maxval;
4825 }
4826 /* IPCOMP needs 2-byte SPI */
4827 if (saidx->proto == IPPROTO_IPCOMP) {
4828 u_int32_t t;
4829 if (spmin >= 0x10000)
4830 spmin = 0xffff;
4831 if (spmax >= 0x10000)
4832 spmax = 0xffff;
4833 if (spmin > spmax) {
4834 t = spmin; spmin = spmax; spmax = t;
4835 }
4836 }
4837
4838 if (spmin == spmax) {
4839 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
4840 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
4841 return 0;
4842 }
4843
4844 count--; /* taking one cost. */
4845 newspi = spmin;
4846
4847 } else {
4848
4849 /* init SPI */
4850 newspi = 0;
4851
4852 /* when requesting to allocate spi ranged */
4853 while (count--) {
4854 /* generate pseudo-random SPI value ranged. */
4855 newspi = spmin + (key_random() % (spmax - spmin + 1));
4856
4857 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
4858 break;
4859 }
4860
4861 if (count == 0 || newspi == 0) {
4862 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
4863 return 0;
4864 }
4865 }
4866
4867 /* statistics */
4868 keystat.getspi_count =
4869 (keystat.getspi_count + key_spi_trycnt - count) / 2;
4870
4871 return newspi;
4872 }
4873
4874 /*
4875 * SADB_UPDATE processing
4876 * receive
4877 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4878 * key(AE), (identity(SD),) (sensitivity)>
4879 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4880 * and send
4881 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4882 * (identity(SD),) (sensitivity)>
4883 * to the ikmpd.
4884 *
4885 * m will always be freed.
4886 */
4887 static int
4888 key_update(so, m, mhp)
4889 struct socket *so;
4890 struct mbuf *m;
4891 const struct sadb_msghdr *mhp;
4892 {
4893 struct sadb_sa *sa0;
4894 struct sadb_address *src0, *dst0;
4895 struct secasindex saidx;
4896 struct secashead *sah;
4897 struct secasvar *sav;
4898 u_int16_t proto;
4899 u_int8_t mode;
4900 u_int16_t reqid;
4901 int error;
4902
4903 /* sanity check */
4904 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4905 panic("key_update: NULL pointer is passed");
4906
4907 /* map satype to proto */
4908 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4909 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
4910 return key_senderror(so, m, EINVAL);
4911 }
4912
4913 if (mhp->ext[SADB_EXT_SA] == NULL ||
4914 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4915 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4916 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4917 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4918 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4919 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4920 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4921 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4922 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4923 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4924 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4925 return key_senderror(so, m, EINVAL);
4926 }
4927 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4928 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4929 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4930 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
4931 return key_senderror(so, m, EINVAL);
4932 }
4933 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4934 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4935 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4936 } else {
4937 mode = IPSEC_MODE_ANY;
4938 reqid = 0;
4939 }
4940 /* XXX boundary checking for other extensions */
4941
4942 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4943 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4944 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4945
4946 /* XXX boundary check against sa_len */
4947 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4948
4949 /* get a SA header */
4950 if ((sah = key_getsah(&saidx)) == NULL) {
4951 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
4952 return key_senderror(so, m, ENOENT);
4953 }
4954
4955 /* set spidx if there */
4956 /* XXX rewrite */
4957 error = key_setident(sah, m, mhp);
4958 if (error)
4959 return key_senderror(so, m, error);
4960
4961 /* find a SA with sequence number. */
4962 #ifdef IPSEC_DOSEQCHECK
4963 if (mhp->msg->sadb_msg_seq != 0
4964 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4965 ipseclog((LOG_DEBUG,
4966 "key_update: no larval SA with sequence %u exists.\n",
4967 mhp->msg->sadb_msg_seq));
4968 return key_senderror(so, m, ENOENT);
4969 }
4970 #else
4971 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
4972 ipseclog((LOG_DEBUG,
4973 "key_update: no such a SA found (spi:%u)\n",
4974 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4975 return key_senderror(so, m, EINVAL);
4976 }
4977 #endif
4978
4979 /* validity check */
4980 if (sav->sah->saidx.proto != proto) {
4981 ipseclog((LOG_DEBUG,
4982 "key_update: protocol mismatched (DB=%u param=%u)\n",
4983 sav->sah->saidx.proto, proto));
4984 return key_senderror(so, m, EINVAL);
4985 }
4986 #ifdef IPSEC_DOSEQCHECK
4987 if (sav->spi != sa0->sadb_sa_spi) {
4988 ipseclog((LOG_DEBUG,
4989 "key_update: SPI mismatched (DB:%u param:%u)\n",
4990 (u_int32_t)ntohl(sav->spi),
4991 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4992 return key_senderror(so, m, EINVAL);
4993 }
4994 #endif
4995 if (sav->pid != mhp->msg->sadb_msg_pid) {
4996 ipseclog((LOG_DEBUG,
4997 "key_update: pid mismatched (DB:%u param:%u)\n",
4998 sav->pid, mhp->msg->sadb_msg_pid));
4999 return key_senderror(so, m, EINVAL);
5000 }
5001
5002 /* copy sav values */
5003 error = key_setsaval(sav, m, mhp);
5004 if (error) {
5005 KEY_FREESAV(&sav);
5006 return key_senderror(so, m, error);
5007 }
5008
5009 /* check SA values to be mature. */
5010 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5011 KEY_FREESAV(&sav);
5012 return key_senderror(so, m, 0);
5013 }
5014
5015 {
5016 struct mbuf *n;
5017
5018 /* set msg buf from mhp */
5019 n = key_getmsgbuf_x1(m, mhp);
5020 if (n == NULL) {
5021 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5022 return key_senderror(so, m, ENOBUFS);
5023 }
5024
5025 m_freem(m);
5026 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5027 }
5028 }
5029
5030 /*
5031 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5032 * only called by key_update().
5033 * OUT:
5034 * NULL : not found
5035 * others : found, pointer to a SA.
5036 */
5037 #ifdef IPSEC_DOSEQCHECK
5038 static struct secasvar *
5039 key_getsavbyseq(sah, seq)
5040 struct secashead *sah;
5041 u_int32_t seq;
5042 {
5043 struct secasvar *sav;
5044 u_int state;
5045
5046 state = SADB_SASTATE_LARVAL;
5047
5048 /* search SAD with sequence number ? */
5049 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5050
5051 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5052
5053 if (sav->seq == seq) {
5054 SA_ADDREF(sav);
5055 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5056 printf("DP key_getsavbyseq cause "
5057 "refcnt++:%d SA:%p\n",
5058 sav->refcnt, sav));
5059 return sav;
5060 }
5061 }
5062
5063 return NULL;
5064 }
5065 #endif
5066
5067 /*
5068 * SADB_ADD processing
5069 * add an entry to SA database, when received
5070 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5071 * key(AE), (identity(SD),) (sensitivity)>
5072 * from the ikmpd,
5073 * and send
5074 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5075 * (identity(SD),) (sensitivity)>
5076 * to the ikmpd.
5077 *
5078 * IGNORE identity and sensitivity messages.
5079 *
5080 * m will always be freed.
5081 */
5082 static int
5083 key_add(so, m, mhp)
5084 struct socket *so;
5085 struct mbuf *m;
5086 const struct sadb_msghdr *mhp;
5087 {
5088 struct sadb_sa *sa0;
5089 struct sadb_address *src0, *dst0;
5090 struct secasindex saidx;
5091 struct secashead *newsah;
5092 struct secasvar *newsav;
5093 u_int16_t proto;
5094 u_int8_t mode;
5095 u_int16_t reqid;
5096 int error;
5097
5098 /* sanity check */
5099 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5100 panic("key_add: NULL pointer is passed");
5101
5102 /* map satype to proto */
5103 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5104 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5105 return key_senderror(so, m, EINVAL);
5106 }
5107
5108 if (mhp->ext[SADB_EXT_SA] == NULL ||
5109 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5110 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5111 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5112 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5113 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5114 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5115 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5116 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5117 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5118 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5119 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5120 return key_senderror(so, m, EINVAL);
5121 }
5122 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5123 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5124 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5125 /* XXX need more */
5126 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5127 return key_senderror(so, m, EINVAL);
5128 }
5129 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5130 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5131 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5132 } else {
5133 mode = IPSEC_MODE_ANY;
5134 reqid = 0;
5135 }
5136
5137 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5138 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5139 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5140
5141 /* XXX boundary check against sa_len */
5142 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5143
5144 /* get a SA header */
5145 if ((newsah = key_getsah(&saidx)) == NULL) {
5146 /* create a new SA header */
5147 if ((newsah = key_newsah(&saidx)) == NULL) {
5148 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5149 return key_senderror(so, m, ENOBUFS);
5150 }
5151 }
5152
5153 /* set spidx if there */
5154 /* XXX rewrite */
5155 error = key_setident(newsah, m, mhp);
5156 if (error) {
5157 return key_senderror(so, m, error);
5158 }
5159
5160 /* create new SA entry. */
5161 /* We can create new SA only if SPI is differenct. */
5162 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5163 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5164 return key_senderror(so, m, EEXIST);
5165 }
5166 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5167 if (newsav == NULL) {
5168 return key_senderror(so, m, error);
5169 }
5170
5171 /* check SA values to be mature. */
5172 if ((error = key_mature(newsav)) != 0) {
5173 KEY_FREESAV(&newsav);
5174 return key_senderror(so, m, error);
5175 }
5176
5177 /*
5178 * don't call key_freesav() here, as we would like to keep the SA
5179 * in the database on success.
5180 */
5181
5182 {
5183 struct mbuf *n;
5184
5185 /* set msg buf from mhp */
5186 n = key_getmsgbuf_x1(m, mhp);
5187 if (n == NULL) {
5188 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5189 return key_senderror(so, m, ENOBUFS);
5190 }
5191
5192 m_freem(m);
5193 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5194 }
5195 }
5196
5197 /* m is retained */
5198 static int
5199 key_setident(sah, m, mhp)
5200 struct secashead *sah;
5201 struct mbuf *m;
5202 const struct sadb_msghdr *mhp;
5203 {
5204 const struct sadb_ident *idsrc, *iddst;
5205 int idsrclen, iddstlen;
5206
5207 /* sanity check */
5208 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5209 panic("key_setident: NULL pointer is passed");
5210
5211 /* don't make buffer if not there */
5212 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5213 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5214 sah->idents = NULL;
5215 sah->identd = NULL;
5216 return 0;
5217 }
5218
5219 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5220 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5221 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5222 return EINVAL;
5223 }
5224
5225 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5226 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5227 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5228 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5229
5230 /* validity check */
5231 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5232 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5233 return EINVAL;
5234 }
5235
5236 switch (idsrc->sadb_ident_type) {
5237 case SADB_IDENTTYPE_PREFIX:
5238 case SADB_IDENTTYPE_FQDN:
5239 case SADB_IDENTTYPE_USERFQDN:
5240 default:
5241 /* XXX do nothing */
5242 sah->idents = NULL;
5243 sah->identd = NULL;
5244 return 0;
5245 }
5246
5247 /* make structure */
5248 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5249 if (sah->idents == NULL) {
5250 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5251 return ENOBUFS;
5252 }
5253 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5254 if (sah->identd == NULL) {
5255 KFREE(sah->idents);
5256 sah->idents = NULL;
5257 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5258 return ENOBUFS;
5259 }
5260 bcopy(idsrc, sah->idents, idsrclen);
5261 bcopy(iddst, sah->identd, iddstlen);
5262
5263 return 0;
5264 }
5265
5266 /*
5267 * m will not be freed on return.
5268 * it is caller's responsibility to free the result.
5269 */
5270 static struct mbuf *
5271 key_getmsgbuf_x1(m, mhp)
5272 struct mbuf *m;
5273 const struct sadb_msghdr *mhp;
5274 {
5275 struct mbuf *n;
5276
5277 /* sanity check */
5278 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5279 panic("key_getmsgbuf_x1: NULL pointer is passed");
5280
5281 /* create new sadb_msg to reply. */
5282 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5283 SADB_EXT_SA, SADB_X_EXT_SA2,
5284 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5285 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5286 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5287 if (!n)
5288 return NULL;
5289
5290 if (n->m_len < sizeof(struct sadb_msg)) {
5291 n = m_pullup(n, sizeof(struct sadb_msg));
5292 if (n == NULL)
5293 return NULL;
5294 }
5295 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5296 mtod(n, struct sadb_msg *)->sadb_msg_len =
5297 PFKEY_UNIT64(n->m_pkthdr.len);
5298
5299 return n;
5300 }
5301
5302 static int key_delete_all __P((struct socket *, struct mbuf *,
5303 const struct sadb_msghdr *, u_int16_t));
5304
5305 /*
5306 * SADB_DELETE processing
5307 * receive
5308 * <base, SA(*), address(SD)>
5309 * from the ikmpd, and set SADB_SASTATE_DEAD,
5310 * and send,
5311 * <base, SA(*), address(SD)>
5312 * to the ikmpd.
5313 *
5314 * m will always be freed.
5315 */
5316 static int
5317 key_delete(so, m, mhp)
5318 struct socket *so;
5319 struct mbuf *m;
5320 const struct sadb_msghdr *mhp;
5321 {
5322 struct sadb_sa *sa0;
5323 struct sadb_address *src0, *dst0;
5324 struct secasindex saidx;
5325 struct secashead *sah;
5326 struct secasvar *sav = NULL;
5327 u_int16_t proto;
5328
5329 /* sanity check */
5330 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5331 panic("key_delete: NULL pointer is passed");
5332
5333 /* map satype to proto */
5334 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5335 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5336 return key_senderror(so, m, EINVAL);
5337 }
5338
5339 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5340 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5341 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5342 return key_senderror(so, m, EINVAL);
5343 }
5344
5345 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5346 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5347 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5348 return key_senderror(so, m, EINVAL);
5349 }
5350
5351 if (mhp->ext[SADB_EXT_SA] == NULL) {
5352 /*
5353 * Caller wants us to delete all non-LARVAL SAs
5354 * that match the src/dst. This is used during
5355 * IKE INITIAL-CONTACT.
5356 */
5357 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5358 return key_delete_all(so, m, mhp, proto);
5359 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5360 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5361 return key_senderror(so, m, EINVAL);
5362 }
5363
5364 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5365 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5366 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5367
5368 /* XXX boundary check against sa_len */
5369 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5370
5371 /* get a SA header */
5372 LIST_FOREACH(sah, &sahtree, chain) {
5373 if (sah->state == SADB_SASTATE_DEAD)
5374 continue;
5375 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5376 continue;
5377
5378 /* get a SA with SPI. */
5379 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5380 if (sav)
5381 break;
5382 }
5383 if (sah == NULL) {
5384 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5385 return key_senderror(so, m, ENOENT);
5386 }
5387
5388 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5389 KEY_FREESAV(&sav);
5390
5391 {
5392 struct mbuf *n;
5393 struct sadb_msg *newmsg;
5394
5395 /* create new sadb_msg to reply. */
5396 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5397 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5398 if (!n)
5399 return key_senderror(so, m, ENOBUFS);
5400
5401 if (n->m_len < sizeof(struct sadb_msg)) {
5402 n = m_pullup(n, sizeof(struct sadb_msg));
5403 if (n == NULL)
5404 return key_senderror(so, m, ENOBUFS);
5405 }
5406 newmsg = mtod(n, struct sadb_msg *);
5407 newmsg->sadb_msg_errno = 0;
5408 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5409
5410 m_freem(m);
5411 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5412 }
5413 }
5414
5415 /*
5416 * delete all SAs for src/dst. Called from key_delete().
5417 */
5418 static int
5419 key_delete_all(so, m, mhp, proto)
5420 struct socket *so;
5421 struct mbuf *m;
5422 const struct sadb_msghdr *mhp;
5423 u_int16_t proto;
5424 {
5425 struct sadb_address *src0, *dst0;
5426 struct secasindex saidx;
5427 struct secashead *sah;
5428 struct secasvar *sav, *nextsav;
5429 u_int stateidx, state;
5430
5431 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5432 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5433
5434 /* XXX boundary check against sa_len */
5435 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5436
5437 LIST_FOREACH(sah, &sahtree, chain) {
5438 if (sah->state == SADB_SASTATE_DEAD)
5439 continue;
5440 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5441 continue;
5442
5443 /* Delete all non-LARVAL SAs. */
5444 for (stateidx = 0;
5445 stateidx < _ARRAYLEN(saorder_state_alive);
5446 stateidx++) {
5447 state = saorder_state_alive[stateidx];
5448 if (state == SADB_SASTATE_LARVAL)
5449 continue;
5450 for (sav = LIST_FIRST(&sah->savtree[state]);
5451 sav != NULL; sav = nextsav) {
5452 nextsav = LIST_NEXT(sav, chain);
5453 /* sanity check */
5454 if (sav->state != state) {
5455 ipseclog((LOG_DEBUG, "key_delete_all: "
5456 "invalid sav->state "
5457 "(queue: %d SA: %d)\n",
5458 state, sav->state));
5459 continue;
5460 }
5461
5462 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5463 KEY_FREESAV(&sav);
5464 }
5465 }
5466 }
5467 {
5468 struct mbuf *n;
5469 struct sadb_msg *newmsg;
5470
5471 /* create new sadb_msg to reply. */
5472 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5473 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5474 if (!n)
5475 return key_senderror(so, m, ENOBUFS);
5476
5477 if (n->m_len < sizeof(struct sadb_msg)) {
5478 n = m_pullup(n, sizeof(struct sadb_msg));
5479 if (n == NULL)
5480 return key_senderror(so, m, ENOBUFS);
5481 }
5482 newmsg = mtod(n, struct sadb_msg *);
5483 newmsg->sadb_msg_errno = 0;
5484 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5485
5486 m_freem(m);
5487 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5488 }
5489 }
5490
5491 /*
5492 * SADB_GET processing
5493 * receive
5494 * <base, SA(*), address(SD)>
5495 * from the ikmpd, and get a SP and a SA to respond,
5496 * and send,
5497 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5498 * (identity(SD),) (sensitivity)>
5499 * to the ikmpd.
5500 *
5501 * m will always be freed.
5502 */
5503 static int
5504 key_get(so, m, mhp)
5505 struct socket *so;
5506 struct mbuf *m;
5507 const struct sadb_msghdr *mhp;
5508 {
5509 struct sadb_sa *sa0;
5510 struct sadb_address *src0, *dst0;
5511 struct secasindex saidx;
5512 struct secashead *sah;
5513 struct secasvar *sav = NULL;
5514 u_int16_t proto;
5515
5516 /* sanity check */
5517 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5518 panic("key_get: NULL pointer is passed");
5519
5520 /* map satype to proto */
5521 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5522 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5523 return key_senderror(so, m, EINVAL);
5524 }
5525
5526 if (mhp->ext[SADB_EXT_SA] == NULL ||
5527 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5528 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5529 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5530 return key_senderror(so, m, EINVAL);
5531 }
5532 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5533 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5534 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5535 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5536 return key_senderror(so, m, EINVAL);
5537 }
5538
5539 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5540 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5541 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5542
5543 /* XXX boundary check against sa_len */
5544 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5545
5546 /* get a SA header */
5547 LIST_FOREACH(sah, &sahtree, chain) {
5548 if (sah->state == SADB_SASTATE_DEAD)
5549 continue;
5550 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5551 continue;
5552
5553 /* get a SA with SPI. */
5554 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5555 if (sav)
5556 break;
5557 }
5558 if (sah == NULL) {
5559 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5560 return key_senderror(so, m, ENOENT);
5561 }
5562
5563 {
5564 struct mbuf *n;
5565 u_int8_t satype;
5566
5567 /* map proto to satype */
5568 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5569 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5570 return key_senderror(so, m, EINVAL);
5571 }
5572
5573 /* create new sadb_msg to reply. */
5574 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5575 mhp->msg->sadb_msg_pid);
5576 if (!n)
5577 return key_senderror(so, m, ENOBUFS);
5578
5579 m_freem(m);
5580 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5581 }
5582 }
5583
5584 /* XXX make it sysctl-configurable? */
5585 static void
5586 key_getcomb_setlifetime(comb)
5587 struct sadb_comb *comb;
5588 {
5589
5590 comb->sadb_comb_soft_allocations = 1;
5591 comb->sadb_comb_hard_allocations = 1;
5592 comb->sadb_comb_soft_bytes = 0;
5593 comb->sadb_comb_hard_bytes = 0;
5594 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5595 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5596 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5597 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5598 }
5599
5600 /*
5601 * XXX reorder combinations by preference
5602 * XXX no idea if the user wants ESP authentication or not
5603 */
5604 static struct mbuf *
5605 key_getcomb_esp()
5606 {
5607 struct sadb_comb *comb;
5608 struct enc_xform *algo;
5609 struct mbuf *result = NULL, *m, *n;
5610 int encmin;
5611 int i, off, o;
5612 int totlen;
5613 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5614
5615 m = NULL;
5616 for (i = 1; i <= SADB_EALG_MAX; i++) {
5617 algo = esp_algorithm_lookup(i);
5618 if (algo == NULL)
5619 continue;
5620
5621 /* discard algorithms with key size smaller than system min */
5622 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5623 continue;
5624 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5625 encmin = ipsec_esp_keymin;
5626 else
5627 encmin = _BITS(algo->minkey);
5628
5629 if (ipsec_esp_auth)
5630 m = key_getcomb_ah();
5631 else {
5632 IPSEC_ASSERT(l <= MLEN,
5633 ("key_getcomb_esp: l=%u > MLEN=%lu",
5634 l, (u_long) MLEN));
5635 MGET(m, M_DONTWAIT, MT_DATA);
5636 if (m) {
5637 M_ALIGN(m, l);
5638 m->m_len = l;
5639 m->m_next = NULL;
5640 bzero(mtod(m, void *), m->m_len);
5641 }
5642 }
5643 if (!m)
5644 goto fail;
5645
5646 totlen = 0;
5647 for (n = m; n; n = n->m_next)
5648 totlen += n->m_len;
5649 IPSEC_ASSERT((totlen % l) == 0,
5650 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
5651
5652 for (off = 0; off < totlen; off += l) {
5653 n = m_pulldown(m, off, l, &o);
5654 if (!n) {
5655 /* m is already freed */
5656 goto fail;
5657 }
5658 comb = (struct sadb_comb *)(mtod(n, char *) + o);
5659 bzero(comb, sizeof(*comb));
5660 key_getcomb_setlifetime(comb);
5661 comb->sadb_comb_encrypt = i;
5662 comb->sadb_comb_encrypt_minbits = encmin;
5663 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5664 }
5665
5666 if (!result)
5667 result = m;
5668 else
5669 m_cat(result, m);
5670 }
5671
5672 return result;
5673
5674 fail:
5675 if (result)
5676 m_freem(result);
5677 return NULL;
5678 }
5679
5680 static void
5681 key_getsizes_ah(
5682 const struct auth_hash *ah,
5683 int alg,
5684 u_int16_t* ksmin,
5685 u_int16_t* ksmax)
5686 {
5687 *ksmin = *ksmax = ah->keysize;
5688 if (ah->keysize == 0) {
5689 /*
5690 * Transform takes arbitrary key size but algorithm
5691 * key size is restricted. Enforce this here.
5692 */
5693 switch (alg) {
5694 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
5695 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
5696 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break;
5697 default:
5698 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
5699 alg));
5700 break;
5701 }
5702 }
5703 }
5704
5705 /*
5706 * XXX reorder combinations by preference
5707 */
5708 static struct mbuf *
5709 key_getcomb_ah()
5710 {
5711 struct sadb_comb *comb;
5712 struct auth_hash *algo;
5713 struct mbuf *m;
5714 u_int16_t minkeysize, maxkeysize;
5715 int i;
5716 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5717
5718 m = NULL;
5719 for (i = 1; i <= SADB_AALG_MAX; i++) {
5720 #if 1
5721 /* we prefer HMAC algorithms, not old algorithms */
5722 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5723 continue;
5724 #endif
5725 algo = ah_algorithm_lookup(i);
5726 if (!algo)
5727 continue;
5728 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5729 /* discard algorithms with key size smaller than system min */
5730 if (_BITS(minkeysize) < ipsec_ah_keymin)
5731 continue;
5732
5733 if (!m) {
5734 IPSEC_ASSERT(l <= MLEN,
5735 ("key_getcomb_ah: l=%u > MLEN=%lu",
5736 l, (u_long) MLEN));
5737 MGET(m, M_DONTWAIT, MT_DATA);
5738 if (m) {
5739 M_ALIGN(m, l);
5740 m->m_len = l;
5741 m->m_next = NULL;
5742 }
5743 } else
5744 M_PREPEND(m, l, M_DONTWAIT);
5745 if (!m)
5746 return NULL;
5747
5748 comb = mtod(m, struct sadb_comb *);
5749 bzero(comb, sizeof(*comb));
5750 key_getcomb_setlifetime(comb);
5751 comb->sadb_comb_auth = i;
5752 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5753 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5754 }
5755
5756 return m;
5757 }
5758
5759 /*
5760 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
5761 * XXX reorder combinations by preference
5762 */
5763 static struct mbuf *
5764 key_getcomb_ipcomp()
5765 {
5766 struct sadb_comb *comb;
5767 struct comp_algo *algo;
5768 struct mbuf *m;
5769 int i;
5770 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5771
5772 m = NULL;
5773 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5774 algo = ipcomp_algorithm_lookup(i);
5775 if (!algo)
5776 continue;
5777
5778 if (!m) {
5779 IPSEC_ASSERT(l <= MLEN,
5780 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
5781 l, (u_long) MLEN));
5782 MGET(m, M_DONTWAIT, MT_DATA);
5783 if (m) {
5784 M_ALIGN(m, l);
5785 m->m_len = l;
5786 m->m_next = NULL;
5787 }
5788 } else
5789 M_PREPEND(m, l, M_DONTWAIT);
5790 if (!m)
5791 return NULL;
5792
5793 comb = mtod(m, struct sadb_comb *);
5794 bzero(comb, sizeof(*comb));
5795 key_getcomb_setlifetime(comb);
5796 comb->sadb_comb_encrypt = i;
5797 /* what should we set into sadb_comb_*_{min,max}bits? */
5798 }
5799
5800 return m;
5801 }
5802
5803 /*
5804 * XXX no way to pass mode (transport/tunnel) to userland
5805 * XXX replay checking?
5806 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5807 */
5808 static struct mbuf *
5809 key_getprop(saidx)
5810 const struct secasindex *saidx;
5811 {
5812 struct sadb_prop *prop;
5813 struct mbuf *m, *n;
5814 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5815 int totlen;
5816
5817 switch (saidx->proto) {
5818 case IPPROTO_ESP:
5819 m = key_getcomb_esp();
5820 break;
5821 case IPPROTO_AH:
5822 m = key_getcomb_ah();
5823 break;
5824 case IPPROTO_IPCOMP:
5825 m = key_getcomb_ipcomp();
5826 break;
5827 default:
5828 return NULL;
5829 }
5830
5831 if (!m)
5832 return NULL;
5833 M_PREPEND(m, l, M_DONTWAIT);
5834 if (!m)
5835 return NULL;
5836
5837 totlen = 0;
5838 for (n = m; n; n = n->m_next)
5839 totlen += n->m_len;
5840
5841 prop = mtod(m, struct sadb_prop *);
5842 bzero(prop, sizeof(*prop));
5843 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5844 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5845 prop->sadb_prop_replay = 32; /* XXX */
5846
5847 return m;
5848 }
5849
5850 /*
5851 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5852 * send
5853 * <base, SA, address(SD), (address(P)), x_policy,
5854 * (identity(SD),) (sensitivity,) proposal>
5855 * to KMD, and expect to receive
5856 * <base> with SADB_ACQUIRE if error occurred,
5857 * or
5858 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
5859 * from KMD by PF_KEY.
5860 *
5861 * XXX x_policy is outside of RFC2367 (KAME extension).
5862 * XXX sensitivity is not supported.
5863 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5864 * see comment for key_getcomb_ipcomp().
5865 *
5866 * OUT:
5867 * 0 : succeed
5868 * others: error number
5869 */
5870 static int
5871 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5872 {
5873 struct mbuf *result = NULL, *m;
5874 #ifndef IPSEC_NONBLOCK_ACQUIRE
5875 struct secacq *newacq;
5876 #endif
5877 u_int8_t satype;
5878 int error = -1;
5879 u_int32_t seq;
5880
5881 /* sanity check */
5882 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
5883 satype = key_proto2satype(saidx->proto);
5884 IPSEC_ASSERT(satype != 0,
5885 ("key_acquire: null satype, protocol %u", saidx->proto));
5886
5887 #ifndef IPSEC_NONBLOCK_ACQUIRE
5888 /*
5889 * We never do anything about acquirng SA. There is anather
5890 * solution that kernel blocks to send SADB_ACQUIRE message until
5891 * getting something message from IKEd. In later case, to be
5892 * managed with ACQUIRING list.
5893 */
5894 /* Get an entry to check whether sending message or not. */
5895 if ((newacq = key_getacq(saidx)) != NULL) {
5896 if (key_blockacq_count < newacq->count) {
5897 /* reset counter and do send message. */
5898 newacq->count = 0;
5899 } else {
5900 /* increment counter and do nothing. */
5901 newacq->count++;
5902 return 0;
5903 }
5904 } else {
5905 /* make new entry for blocking to send SADB_ACQUIRE. */
5906 if ((newacq = key_newacq(saidx)) == NULL)
5907 return ENOBUFS;
5908
5909 /* add to acqtree */
5910 LIST_INSERT_HEAD(&acqtree, newacq, chain);
5911 }
5912 #endif
5913
5914
5915 #ifndef IPSEC_NONBLOCK_ACQUIRE
5916 seq = newacq->seq;
5917 #else
5918 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
5919 #endif
5920 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5921 if (!m) {
5922 error = ENOBUFS;
5923 goto fail;
5924 }
5925 result = m;
5926
5927 /* set sadb_address for saidx's. */
5928 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5929 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5930 if (!m) {
5931 error = ENOBUFS;
5932 goto fail;
5933 }
5934 m_cat(result, m);
5935
5936 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5937 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5938 if (!m) {
5939 error = ENOBUFS;
5940 goto fail;
5941 }
5942 m_cat(result, m);
5943
5944 /* XXX proxy address (optional) */
5945
5946 /* set sadb_x_policy */
5947 if (sp) {
5948 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5949 if (!m) {
5950 error = ENOBUFS;
5951 goto fail;
5952 }
5953 m_cat(result, m);
5954 }
5955
5956 /* XXX identity (optional) */
5957 #if 0
5958 if (idexttype && fqdn) {
5959 /* create identity extension (FQDN) */
5960 struct sadb_ident *id;
5961 int fqdnlen;
5962
5963 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
5964 id = (struct sadb_ident *)p;
5965 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5966 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5967 id->sadb_ident_exttype = idexttype;
5968 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5969 bcopy(fqdn, id + 1, fqdnlen);
5970 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5971 }
5972
5973 if (idexttype) {
5974 /* create identity extension (USERFQDN) */
5975 struct sadb_ident *id;
5976 int userfqdnlen;
5977
5978 if (userfqdn) {
5979 /* +1 for terminating-NUL */
5980 userfqdnlen = strlen(userfqdn) + 1;
5981 } else
5982 userfqdnlen = 0;
5983 id = (struct sadb_ident *)p;
5984 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5985 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5986 id->sadb_ident_exttype = idexttype;
5987 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5988 /* XXX is it correct? */
5989 if (curlwp)
5990 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
5991 if (userfqdn && userfqdnlen)
5992 bcopy(userfqdn, id + 1, userfqdnlen);
5993 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5994 }
5995 #endif
5996
5997 /* XXX sensitivity (optional) */
5998
5999 /* create proposal/combination extension */
6000 m = key_getprop(saidx);
6001 #if 0
6002 /*
6003 * spec conformant: always attach proposal/combination extension,
6004 * the problem is that we have no way to attach it for ipcomp,
6005 * due to the way sadb_comb is declared in RFC2367.
6006 */
6007 if (!m) {
6008 error = ENOBUFS;
6009 goto fail;
6010 }
6011 m_cat(result, m);
6012 #else
6013 /*
6014 * outside of spec; make proposal/combination extension optional.
6015 */
6016 if (m)
6017 m_cat(result, m);
6018 #endif
6019
6020 if ((result->m_flags & M_PKTHDR) == 0) {
6021 error = EINVAL;
6022 goto fail;
6023 }
6024
6025 if (result->m_len < sizeof(struct sadb_msg)) {
6026 result = m_pullup(result, sizeof(struct sadb_msg));
6027 if (result == NULL) {
6028 error = ENOBUFS;
6029 goto fail;
6030 }
6031 }
6032
6033 result->m_pkthdr.len = 0;
6034 for (m = result; m; m = m->m_next)
6035 result->m_pkthdr.len += m->m_len;
6036
6037 mtod(result, struct sadb_msg *)->sadb_msg_len =
6038 PFKEY_UNIT64(result->m_pkthdr.len);
6039
6040 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6041
6042 fail:
6043 if (result)
6044 m_freem(result);
6045 return error;
6046 }
6047
6048 #ifndef IPSEC_NONBLOCK_ACQUIRE
6049 static struct secacq *
6050 key_newacq(const struct secasindex *saidx)
6051 {
6052 struct secacq *newacq;
6053
6054 /* get new entry */
6055 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6056 if (newacq == NULL) {
6057 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6058 return NULL;
6059 }
6060 bzero(newacq, sizeof(*newacq));
6061
6062 /* copy secindex */
6063 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6064 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6065 newacq->created = time_second;
6066 newacq->count = 0;
6067
6068 return newacq;
6069 }
6070
6071 static struct secacq *
6072 key_getacq(const struct secasindex *saidx)
6073 {
6074 struct secacq *acq;
6075
6076 LIST_FOREACH(acq, &acqtree, chain) {
6077 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6078 return acq;
6079 }
6080
6081 return NULL;
6082 }
6083
6084 static struct secacq *
6085 key_getacqbyseq(seq)
6086 u_int32_t seq;
6087 {
6088 struct secacq *acq;
6089
6090 LIST_FOREACH(acq, &acqtree, chain) {
6091 if (acq->seq == seq)
6092 return acq;
6093 }
6094
6095 return NULL;
6096 }
6097 #endif
6098
6099 static struct secspacq *
6100 key_newspacq(spidx)
6101 struct secpolicyindex *spidx;
6102 {
6103 struct secspacq *acq;
6104
6105 /* get new entry */
6106 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6107 if (acq == NULL) {
6108 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6109 return NULL;
6110 }
6111 bzero(acq, sizeof(*acq));
6112
6113 /* copy secindex */
6114 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6115 acq->created = time_second;
6116 acq->count = 0;
6117
6118 return acq;
6119 }
6120
6121 static struct secspacq *
6122 key_getspacq(spidx)
6123 struct secpolicyindex *spidx;
6124 {
6125 struct secspacq *acq;
6126
6127 LIST_FOREACH(acq, &spacqtree, chain) {
6128 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6129 return acq;
6130 }
6131
6132 return NULL;
6133 }
6134
6135 /*
6136 * SADB_ACQUIRE processing,
6137 * in first situation, is receiving
6138 * <base>
6139 * from the ikmpd, and clear sequence of its secasvar entry.
6140 *
6141 * In second situation, is receiving
6142 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6143 * from a user land process, and return
6144 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6145 * to the socket.
6146 *
6147 * m will always be freed.
6148 */
6149 static int
6150 key_acquire2(so, m, mhp)
6151 struct socket *so;
6152 struct mbuf *m;
6153 const struct sadb_msghdr *mhp;
6154 {
6155 const struct sadb_address *src0, *dst0;
6156 struct secasindex saidx;
6157 struct secashead *sah;
6158 u_int16_t proto;
6159 int error;
6160
6161 /* sanity check */
6162 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6163 panic("key_acquire2: NULL pointer is passed");
6164
6165 /*
6166 * Error message from KMd.
6167 * We assume that if error was occurred in IKEd, the length of PFKEY
6168 * message is equal to the size of sadb_msg structure.
6169 * We do not raise error even if error occurred in this function.
6170 */
6171 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6172 #ifndef IPSEC_NONBLOCK_ACQUIRE
6173 struct secacq *acq;
6174
6175 /* check sequence number */
6176 if (mhp->msg->sadb_msg_seq == 0) {
6177 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6178 m_freem(m);
6179 return 0;
6180 }
6181
6182 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6183 /*
6184 * the specified larval SA is already gone, or we got
6185 * a bogus sequence number. we can silently ignore it.
6186 */
6187 m_freem(m);
6188 return 0;
6189 }
6190
6191 /* reset acq counter in order to deletion by timehander. */
6192 acq->created = time_second;
6193 acq->count = 0;
6194 #endif
6195 m_freem(m);
6196 return 0;
6197 }
6198
6199 /*
6200 * This message is from user land.
6201 */
6202
6203 /* map satype to proto */
6204 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6205 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6206 return key_senderror(so, m, EINVAL);
6207 }
6208
6209 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6210 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6211 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6212 /* error */
6213 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6214 return key_senderror(so, m, EINVAL);
6215 }
6216 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6217 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6218 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6219 /* error */
6220 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6221 return key_senderror(so, m, EINVAL);
6222 }
6223
6224 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6225 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6226
6227 /* XXX boundary check against sa_len */
6228 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6229
6230 /* get a SA index */
6231 LIST_FOREACH(sah, &sahtree, chain) {
6232 if (sah->state == SADB_SASTATE_DEAD)
6233 continue;
6234 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6235 break;
6236 }
6237 if (sah != NULL) {
6238 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6239 return key_senderror(so, m, EEXIST);
6240 }
6241
6242 error = key_acquire(&saidx, NULL);
6243 if (error != 0) {
6244 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6245 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6246 return key_senderror(so, m, error);
6247 }
6248
6249 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6250 }
6251
6252 /*
6253 * SADB_REGISTER processing.
6254 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6255 * receive
6256 * <base>
6257 * from the ikmpd, and register a socket to send PF_KEY messages,
6258 * and send
6259 * <base, supported>
6260 * to KMD by PF_KEY.
6261 * If socket is detached, must free from regnode.
6262 *
6263 * m will always be freed.
6264 */
6265 static int
6266 key_register(so, m, mhp)
6267 struct socket *so;
6268 struct mbuf *m;
6269 const struct sadb_msghdr *mhp;
6270 {
6271 struct secreg *reg, *newreg = 0;
6272
6273 /* sanity check */
6274 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6275 panic("key_register: NULL pointer is passed");
6276
6277 /* check for invalid register message */
6278 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6279 return key_senderror(so, m, EINVAL);
6280
6281 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6282 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6283 goto setmsg;
6284
6285 /* check whether existing or not */
6286 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6287 if (reg->so == so) {
6288 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6289 return key_senderror(so, m, EEXIST);
6290 }
6291 }
6292
6293 /* create regnode */
6294 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6295 if (newreg == NULL) {
6296 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6297 return key_senderror(so, m, ENOBUFS);
6298 }
6299 bzero(newreg, sizeof(*newreg));
6300
6301 newreg->so = so;
6302 ((struct keycb *)sotorawcb(so))->kp_registered++;
6303
6304 /* add regnode to regtree. */
6305 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6306
6307 setmsg:
6308 {
6309 struct mbuf *n;
6310 struct sadb_msg *newmsg;
6311 struct sadb_supported *sup;
6312 u_int len, alen, elen;
6313 int off;
6314 int i;
6315 struct sadb_alg *alg;
6316
6317 /* create new sadb_msg to reply. */
6318 alen = 0;
6319 for (i = 1; i <= SADB_AALG_MAX; i++) {
6320 if (ah_algorithm_lookup(i))
6321 alen += sizeof(struct sadb_alg);
6322 }
6323 if (alen)
6324 alen += sizeof(struct sadb_supported);
6325 elen = 0;
6326 for (i = 1; i <= SADB_EALG_MAX; i++) {
6327 if (esp_algorithm_lookup(i))
6328 elen += sizeof(struct sadb_alg);
6329 }
6330 if (elen)
6331 elen += sizeof(struct sadb_supported);
6332
6333 len = sizeof(struct sadb_msg) + alen + elen;
6334
6335 if (len > MCLBYTES)
6336 return key_senderror(so, m, ENOBUFS);
6337
6338 MGETHDR(n, M_DONTWAIT, MT_DATA);
6339 if (len > MHLEN) {
6340 MCLGET(n, M_DONTWAIT);
6341 if ((n->m_flags & M_EXT) == 0) {
6342 m_freem(n);
6343 n = NULL;
6344 }
6345 }
6346 if (!n)
6347 return key_senderror(so, m, ENOBUFS);
6348
6349 n->m_pkthdr.len = n->m_len = len;
6350 n->m_next = NULL;
6351 off = 0;
6352
6353 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6354 newmsg = mtod(n, struct sadb_msg *);
6355 newmsg->sadb_msg_errno = 0;
6356 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6357 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6358
6359 /* for authentication algorithm */
6360 if (alen) {
6361 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6362 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6363 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6364 off += PFKEY_ALIGN8(sizeof(*sup));
6365
6366 for (i = 1; i <= SADB_AALG_MAX; i++) {
6367 struct auth_hash *aalgo;
6368 u_int16_t minkeysize, maxkeysize;
6369
6370 aalgo = ah_algorithm_lookup(i);
6371 if (!aalgo)
6372 continue;
6373 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6374 alg->sadb_alg_id = i;
6375 alg->sadb_alg_ivlen = 0;
6376 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6377 alg->sadb_alg_minbits = _BITS(minkeysize);
6378 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6379 off += PFKEY_ALIGN8(sizeof(*alg));
6380 }
6381 }
6382
6383 /* for encryption algorithm */
6384 if (elen) {
6385 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6386 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6387 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6388 off += PFKEY_ALIGN8(sizeof(*sup));
6389
6390 for (i = 1; i <= SADB_EALG_MAX; i++) {
6391 struct enc_xform *ealgo;
6392
6393 ealgo = esp_algorithm_lookup(i);
6394 if (!ealgo)
6395 continue;
6396 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6397 alg->sadb_alg_id = i;
6398 alg->sadb_alg_ivlen = ealgo->blocksize;
6399 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6400 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6401 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6402 }
6403 }
6404
6405 #ifdef DIAGNOSTIC
6406 if (off != len)
6407 panic("length assumption failed in key_register");
6408 #endif
6409
6410 m_freem(m);
6411 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6412 }
6413 }
6414
6415 /*
6416 * free secreg entry registered.
6417 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6418 */
6419 void
6420 key_freereg(so)
6421 struct socket *so;
6422 {
6423 struct secreg *reg;
6424 int i;
6425
6426 /* sanity check */
6427 if (so == NULL)
6428 panic("key_freereg: NULL pointer is passed");
6429
6430 /*
6431 * check whether existing or not.
6432 * check all type of SA, because there is a potential that
6433 * one socket is registered to multiple type of SA.
6434 */
6435 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6436 LIST_FOREACH(reg, ®tree[i], chain) {
6437 if (reg->so == so
6438 && __LIST_CHAINED(reg)) {
6439 LIST_REMOVE(reg, chain);
6440 KFREE(reg);
6441 break;
6442 }
6443 }
6444 }
6445
6446 return;
6447 }
6448
6449 /*
6450 * SADB_EXPIRE processing
6451 * send
6452 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6453 * to KMD by PF_KEY.
6454 * NOTE: We send only soft lifetime extension.
6455 *
6456 * OUT: 0 : succeed
6457 * others : error number
6458 */
6459 static int
6460 key_expire(sav)
6461 struct secasvar *sav;
6462 {
6463 int s;
6464 int satype;
6465 struct mbuf *result = NULL, *m;
6466 int len;
6467 int error = -1;
6468 struct sadb_lifetime *lt;
6469
6470 /* XXX: Why do we lock ? */
6471 s = splsoftnet(); /*called from softclock()*/
6472
6473 /* sanity check */
6474 if (sav == NULL)
6475 panic("key_expire: NULL pointer is passed");
6476 if (sav->sah == NULL)
6477 panic("key_expire: Why was SA index in SA NULL");
6478 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6479 panic("key_expire: invalid proto is passed");
6480
6481 /* set msg header */
6482 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6483 if (!m) {
6484 error = ENOBUFS;
6485 goto fail;
6486 }
6487 result = m;
6488
6489 /* create SA extension */
6490 m = key_setsadbsa(sav);
6491 if (!m) {
6492 error = ENOBUFS;
6493 goto fail;
6494 }
6495 m_cat(result, m);
6496
6497 /* create SA extension */
6498 m = key_setsadbxsa2(sav->sah->saidx.mode,
6499 sav->replay ? sav->replay->count : 0,
6500 sav->sah->saidx.reqid);
6501 if (!m) {
6502 error = ENOBUFS;
6503 goto fail;
6504 }
6505 m_cat(result, m);
6506
6507 /* create lifetime extension (current and soft) */
6508 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6509 m = key_alloc_mbuf(len);
6510 if (!m || m->m_next) { /*XXX*/
6511 if (m)
6512 m_freem(m);
6513 error = ENOBUFS;
6514 goto fail;
6515 }
6516 bzero(mtod(m, void *), len);
6517 lt = mtod(m, struct sadb_lifetime *);
6518 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6519 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6520 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6521 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6522 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6523 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6524 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6525 bcopy(sav->lft_s, lt, sizeof(*lt));
6526 m_cat(result, m);
6527
6528 /* set sadb_address for source */
6529 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6530 &sav->sah->saidx.src.sa,
6531 FULLMASK, IPSEC_ULPROTO_ANY);
6532 if (!m) {
6533 error = ENOBUFS;
6534 goto fail;
6535 }
6536 m_cat(result, m);
6537
6538 /* set sadb_address for destination */
6539 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6540 &sav->sah->saidx.dst.sa,
6541 FULLMASK, IPSEC_ULPROTO_ANY);
6542 if (!m) {
6543 error = ENOBUFS;
6544 goto fail;
6545 }
6546 m_cat(result, m);
6547
6548 if ((result->m_flags & M_PKTHDR) == 0) {
6549 error = EINVAL;
6550 goto fail;
6551 }
6552
6553 if (result->m_len < sizeof(struct sadb_msg)) {
6554 result = m_pullup(result, sizeof(struct sadb_msg));
6555 if (result == NULL) {
6556 error = ENOBUFS;
6557 goto fail;
6558 }
6559 }
6560
6561 result->m_pkthdr.len = 0;
6562 for (m = result; m; m = m->m_next)
6563 result->m_pkthdr.len += m->m_len;
6564
6565 mtod(result, struct sadb_msg *)->sadb_msg_len =
6566 PFKEY_UNIT64(result->m_pkthdr.len);
6567
6568 splx(s);
6569 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6570
6571 fail:
6572 if (result)
6573 m_freem(result);
6574 splx(s);
6575 return error;
6576 }
6577
6578 /*
6579 * SADB_FLUSH processing
6580 * receive
6581 * <base>
6582 * from the ikmpd, and free all entries in secastree.
6583 * and send,
6584 * <base>
6585 * to the ikmpd.
6586 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6587 *
6588 * m will always be freed.
6589 */
6590 static int
6591 key_flush(so, m, mhp)
6592 struct socket *so;
6593 struct mbuf *m;
6594 const struct sadb_msghdr *mhp;
6595 {
6596 struct sadb_msg *newmsg;
6597 struct secashead *sah, *nextsah;
6598 struct secasvar *sav, *nextsav;
6599 u_int16_t proto;
6600 u_int8_t state;
6601 u_int stateidx;
6602
6603 /* sanity check */
6604 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6605 panic("key_flush: NULL pointer is passed");
6606
6607 /* map satype to proto */
6608 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6609 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6610 return key_senderror(so, m, EINVAL);
6611 }
6612
6613 /* no SATYPE specified, i.e. flushing all SA. */
6614 for (sah = LIST_FIRST(&sahtree);
6615 sah != NULL;
6616 sah = nextsah) {
6617 nextsah = LIST_NEXT(sah, chain);
6618
6619 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6620 && proto != sah->saidx.proto)
6621 continue;
6622
6623 for (stateidx = 0;
6624 stateidx < _ARRAYLEN(saorder_state_alive);
6625 stateidx++) {
6626 state = saorder_state_any[stateidx];
6627 for (sav = LIST_FIRST(&sah->savtree[state]);
6628 sav != NULL;
6629 sav = nextsav) {
6630
6631 nextsav = LIST_NEXT(sav, chain);
6632
6633 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6634 KEY_FREESAV(&sav);
6635 }
6636 }
6637
6638 sah->state = SADB_SASTATE_DEAD;
6639 }
6640
6641 if (m->m_len < sizeof(struct sadb_msg) ||
6642 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6643 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
6644 return key_senderror(so, m, ENOBUFS);
6645 }
6646
6647 if (m->m_next)
6648 m_freem(m->m_next);
6649 m->m_next = NULL;
6650 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6651 newmsg = mtod(m, struct sadb_msg *);
6652 newmsg->sadb_msg_errno = 0;
6653 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6654
6655 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6656 }
6657
6658
6659 static struct mbuf *
6660 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
6661 {
6662 struct secashead *sah;
6663 struct secasvar *sav;
6664 u_int16_t proto;
6665 u_int stateidx;
6666 u_int8_t satype;
6667 u_int8_t state;
6668 int cnt;
6669 struct mbuf *m, *n, *prev;
6670 int totlen;
6671
6672 *lenp = 0;
6673
6674 /* map satype to proto */
6675 if ((proto = key_satype2proto(req_satype)) == 0) {
6676 *errorp = EINVAL;
6677 return (NULL);
6678 }
6679
6680 /* count sav entries to be sent to userland. */
6681 cnt = 0;
6682 LIST_FOREACH(sah, &sahtree, chain) {
6683 if (req_satype != SADB_SATYPE_UNSPEC &&
6684 proto != sah->saidx.proto)
6685 continue;
6686
6687 for (stateidx = 0;
6688 stateidx < _ARRAYLEN(saorder_state_any);
6689 stateidx++) {
6690 state = saorder_state_any[stateidx];
6691 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6692 cnt++;
6693 }
6694 }
6695 }
6696
6697 if (cnt == 0) {
6698 *errorp = ENOENT;
6699 return (NULL);
6700 }
6701
6702 /* send this to the userland, one at a time. */
6703 m = NULL;
6704 prev = m;
6705 LIST_FOREACH(sah, &sahtree, chain) {
6706 if (req_satype != SADB_SATYPE_UNSPEC &&
6707 proto != sah->saidx.proto)
6708 continue;
6709
6710 /* map proto to satype */
6711 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6712 m_freem(m);
6713 *errorp = EINVAL;
6714 return (NULL);
6715 }
6716
6717 for (stateidx = 0;
6718 stateidx < _ARRAYLEN(saorder_state_any);
6719 stateidx++) {
6720 state = saorder_state_any[stateidx];
6721 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6722 n = key_setdumpsa(sav, SADB_DUMP, satype,
6723 --cnt, pid);
6724 if (!n) {
6725 m_freem(m);
6726 *errorp = ENOBUFS;
6727 return (NULL);
6728 }
6729
6730 totlen += n->m_pkthdr.len;
6731 if (!m)
6732 m = n;
6733 else
6734 prev->m_nextpkt = n;
6735 prev = n;
6736 }
6737 }
6738 }
6739
6740 if (!m) {
6741 *errorp = EINVAL;
6742 return (NULL);
6743 }
6744
6745 if ((m->m_flags & M_PKTHDR) != 0) {
6746 m->m_pkthdr.len = 0;
6747 for (n = m; n; n = n->m_next)
6748 m->m_pkthdr.len += n->m_len;
6749 }
6750
6751 *errorp = 0;
6752 return (m);
6753 }
6754
6755 /*
6756 * SADB_DUMP processing
6757 * dump all entries including status of DEAD in SAD.
6758 * receive
6759 * <base>
6760 * from the ikmpd, and dump all secasvar leaves
6761 * and send,
6762 * <base> .....
6763 * to the ikmpd.
6764 *
6765 * m will always be freed.
6766 */
6767 static int
6768 key_dump(so, m0, mhp)
6769 struct socket *so;
6770 struct mbuf *m0;
6771 const struct sadb_msghdr *mhp;
6772 {
6773 u_int16_t proto;
6774 u_int8_t satype;
6775 struct mbuf *n;
6776 int s;
6777 int error, len, ok;
6778
6779 /* sanity check */
6780 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
6781 panic("key_dump: NULL pointer is passed");
6782
6783 /* map satype to proto */
6784 satype = mhp->msg->sadb_msg_satype;
6785 if ((proto = key_satype2proto(satype)) == 0) {
6786 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
6787 return key_senderror(so, m0, EINVAL);
6788 }
6789
6790 /*
6791 * If the requestor has insufficient socket-buffer space
6792 * for the entire chain, nobody gets any response to the DUMP.
6793 * XXX For now, only the requestor ever gets anything.
6794 * Moreover, if the requestor has any space at all, they receive
6795 * the entire chain, otherwise the request is refused with ENOBUFS.
6796 */
6797 if (sbspace(&so->so_rcv) <= 0) {
6798 return key_senderror(so, m0, ENOBUFS);
6799 }
6800
6801 s = splsoftnet();
6802 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
6803 splx(s);
6804
6805 if (n == NULL) {
6806 return key_senderror(so, m0, ENOENT);
6807 }
6808 pfkeystat.in_total++;
6809 pfkeystat.in_bytes += len;
6810
6811 /*
6812 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
6813 * The requestor receives either the entire chain, or an
6814 * error message with ENOBUFS.
6815 *
6816 * sbappendaddrchain() takes the chain of entries, one
6817 * packet-record per SPD entry, prepends the key_src sockaddr
6818 * to each packet-record, links the sockaddr mbufs into a new
6819 * list of records, then appends the entire resulting
6820 * list to the requesting socket.
6821 */
6822 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
6823 n, SB_PRIO_ONESHOT_OVERFLOW);
6824
6825 if (!ok) {
6826 pfkeystat.in_nomem++;
6827 m_freem(n);
6828 return key_senderror(so, m0, ENOBUFS);
6829 }
6830
6831 m_freem(m0);
6832 return 0;
6833 }
6834
6835 /*
6836 * SADB_X_PROMISC processing
6837 *
6838 * m will always be freed.
6839 */
6840 static int
6841 key_promisc(so, m, mhp)
6842 struct socket *so;
6843 struct mbuf *m;
6844 const struct sadb_msghdr *mhp;
6845 {
6846 int olen;
6847
6848 /* sanity check */
6849 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6850 panic("key_promisc: NULL pointer is passed");
6851
6852 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6853
6854 if (olen < sizeof(struct sadb_msg)) {
6855 #if 1
6856 return key_senderror(so, m, EINVAL);
6857 #else
6858 m_freem(m);
6859 return 0;
6860 #endif
6861 } else if (olen == sizeof(struct sadb_msg)) {
6862 /* enable/disable promisc mode */
6863 struct keycb *kp;
6864
6865 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6866 return key_senderror(so, m, EINVAL);
6867 mhp->msg->sadb_msg_errno = 0;
6868 switch (mhp->msg->sadb_msg_satype) {
6869 case 0:
6870 case 1:
6871 kp->kp_promisc = mhp->msg->sadb_msg_satype;
6872 break;
6873 default:
6874 return key_senderror(so, m, EINVAL);
6875 }
6876
6877 /* send the original message back to everyone */
6878 mhp->msg->sadb_msg_errno = 0;
6879 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6880 } else {
6881 /* send packet as is */
6882
6883 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6884
6885 /* TODO: if sadb_msg_seq is specified, send to specific pid */
6886 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6887 }
6888 }
6889
6890 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6891 const struct sadb_msghdr *)) = {
6892 NULL, /* SADB_RESERVED */
6893 key_getspi, /* SADB_GETSPI */
6894 key_update, /* SADB_UPDATE */
6895 key_add, /* SADB_ADD */
6896 key_delete, /* SADB_DELETE */
6897 key_get, /* SADB_GET */
6898 key_acquire2, /* SADB_ACQUIRE */
6899 key_register, /* SADB_REGISTER */
6900 NULL, /* SADB_EXPIRE */
6901 key_flush, /* SADB_FLUSH */
6902 key_dump, /* SADB_DUMP */
6903 key_promisc, /* SADB_X_PROMISC */
6904 NULL, /* SADB_X_PCHANGE */
6905 key_spdadd, /* SADB_X_SPDUPDATE */
6906 key_spdadd, /* SADB_X_SPDADD */
6907 key_spddelete, /* SADB_X_SPDDELETE */
6908 key_spdget, /* SADB_X_SPDGET */
6909 NULL, /* SADB_X_SPDACQUIRE */
6910 key_spddump, /* SADB_X_SPDDUMP */
6911 key_spdflush, /* SADB_X_SPDFLUSH */
6912 key_spdadd, /* SADB_X_SPDSETIDX */
6913 NULL, /* SADB_X_SPDEXPIRE */
6914 key_spddelete2, /* SADB_X_SPDDELETE2 */
6915 NULL, /* SADB_X_NAT_T_NEW_MAPPING */
6916 };
6917
6918 /*
6919 * parse sadb_msg buffer to process PFKEYv2,
6920 * and create a data to response if needed.
6921 * I think to be dealed with mbuf directly.
6922 * IN:
6923 * msgp : pointer to pointer to a received buffer pulluped.
6924 * This is rewrited to response.
6925 * so : pointer to socket.
6926 * OUT:
6927 * length for buffer to send to user process.
6928 */
6929 int
6930 key_parse(m, so)
6931 struct mbuf *m;
6932 struct socket *so;
6933 {
6934 struct sadb_msg *msg;
6935 struct sadb_msghdr mh;
6936 u_int orglen;
6937 int error;
6938 int target;
6939
6940 /* sanity check */
6941 if (m == NULL || so == NULL)
6942 panic("key_parse: NULL pointer is passed");
6943
6944 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
6945 KEYDEBUG(KEYDEBUG_KEY_DUMP,
6946 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
6947 kdebug_sadb(msg));
6948 #endif
6949
6950 if (m->m_len < sizeof(struct sadb_msg)) {
6951 m = m_pullup(m, sizeof(struct sadb_msg));
6952 if (!m)
6953 return ENOBUFS;
6954 }
6955 msg = mtod(m, struct sadb_msg *);
6956 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6957 target = KEY_SENDUP_ONE;
6958
6959 if ((m->m_flags & M_PKTHDR) == 0 ||
6960 m->m_pkthdr.len != m->m_pkthdr.len) {
6961 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
6962 pfkeystat.out_invlen++;
6963 error = EINVAL;
6964 goto senderror;
6965 }
6966
6967 if (msg->sadb_msg_version != PF_KEY_V2) {
6968 ipseclog((LOG_DEBUG,
6969 "key_parse: PF_KEY version %u is mismatched.\n",
6970 msg->sadb_msg_version));
6971 pfkeystat.out_invver++;
6972 error = EINVAL;
6973 goto senderror;
6974 }
6975
6976 if (msg->sadb_msg_type > SADB_MAX) {
6977 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
6978 msg->sadb_msg_type));
6979 pfkeystat.out_invmsgtype++;
6980 error = EINVAL;
6981 goto senderror;
6982 }
6983
6984 /* for old-fashioned code - should be nuked */
6985 if (m->m_pkthdr.len > MCLBYTES) {
6986 m_freem(m);
6987 return ENOBUFS;
6988 }
6989 if (m->m_next) {
6990 struct mbuf *n;
6991
6992 MGETHDR(n, M_DONTWAIT, MT_DATA);
6993 if (n && m->m_pkthdr.len > MHLEN) {
6994 MCLGET(n, M_DONTWAIT);
6995 if ((n->m_flags & M_EXT) == 0) {
6996 m_free(n);
6997 n = NULL;
6998 }
6999 }
7000 if (!n) {
7001 m_freem(m);
7002 return ENOBUFS;
7003 }
7004 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7005 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7006 n->m_next = NULL;
7007 m_freem(m);
7008 m = n;
7009 }
7010
7011 /* align the mbuf chain so that extensions are in contiguous region. */
7012 error = key_align(m, &mh);
7013 if (error)
7014 return error;
7015
7016 if (m->m_next) { /*XXX*/
7017 m_freem(m);
7018 return ENOBUFS;
7019 }
7020
7021 msg = mh.msg;
7022
7023 /* check SA type */
7024 switch (msg->sadb_msg_satype) {
7025 case SADB_SATYPE_UNSPEC:
7026 switch (msg->sadb_msg_type) {
7027 case SADB_GETSPI:
7028 case SADB_UPDATE:
7029 case SADB_ADD:
7030 case SADB_DELETE:
7031 case SADB_GET:
7032 case SADB_ACQUIRE:
7033 case SADB_EXPIRE:
7034 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7035 "when msg type=%u.\n", msg->sadb_msg_type));
7036 pfkeystat.out_invsatype++;
7037 error = EINVAL;
7038 goto senderror;
7039 }
7040 break;
7041 case SADB_SATYPE_AH:
7042 case SADB_SATYPE_ESP:
7043 case SADB_X_SATYPE_IPCOMP:
7044 case SADB_X_SATYPE_TCPSIGNATURE:
7045 switch (msg->sadb_msg_type) {
7046 case SADB_X_SPDADD:
7047 case SADB_X_SPDDELETE:
7048 case SADB_X_SPDGET:
7049 case SADB_X_SPDDUMP:
7050 case SADB_X_SPDFLUSH:
7051 case SADB_X_SPDSETIDX:
7052 case SADB_X_SPDUPDATE:
7053 case SADB_X_SPDDELETE2:
7054 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7055 msg->sadb_msg_type));
7056 pfkeystat.out_invsatype++;
7057 error = EINVAL;
7058 goto senderror;
7059 }
7060 break;
7061 case SADB_SATYPE_RSVP:
7062 case SADB_SATYPE_OSPFV2:
7063 case SADB_SATYPE_RIPV2:
7064 case SADB_SATYPE_MIP:
7065 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7066 msg->sadb_msg_satype));
7067 pfkeystat.out_invsatype++;
7068 error = EOPNOTSUPP;
7069 goto senderror;
7070 case 1: /* XXX: What does it do? */
7071 if (msg->sadb_msg_type == SADB_X_PROMISC)
7072 break;
7073 /*FALLTHROUGH*/
7074 default:
7075 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7076 msg->sadb_msg_satype));
7077 pfkeystat.out_invsatype++;
7078 error = EINVAL;
7079 goto senderror;
7080 }
7081
7082 /* check field of upper layer protocol and address family */
7083 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7084 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7085 struct sadb_address *src0, *dst0;
7086 u_int plen;
7087
7088 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7089 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7090
7091 /* check upper layer protocol */
7092 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7093 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7094 pfkeystat.out_invaddr++;
7095 error = EINVAL;
7096 goto senderror;
7097 }
7098
7099 /* check family */
7100 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7101 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7102 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7103 pfkeystat.out_invaddr++;
7104 error = EINVAL;
7105 goto senderror;
7106 }
7107 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7108 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7109 ipseclog((LOG_DEBUG,
7110 "key_parse: address struct size mismatched.\n"));
7111 pfkeystat.out_invaddr++;
7112 error = EINVAL;
7113 goto senderror;
7114 }
7115
7116 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7117 case AF_INET:
7118 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7119 sizeof(struct sockaddr_in)) {
7120 pfkeystat.out_invaddr++;
7121 error = EINVAL;
7122 goto senderror;
7123 }
7124 break;
7125 case AF_INET6:
7126 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7127 sizeof(struct sockaddr_in6)) {
7128 pfkeystat.out_invaddr++;
7129 error = EINVAL;
7130 goto senderror;
7131 }
7132 break;
7133 default:
7134 ipseclog((LOG_DEBUG,
7135 "key_parse: unsupported address family.\n"));
7136 pfkeystat.out_invaddr++;
7137 error = EAFNOSUPPORT;
7138 goto senderror;
7139 }
7140
7141 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7142 case AF_INET:
7143 plen = sizeof(struct in_addr) << 3;
7144 break;
7145 case AF_INET6:
7146 plen = sizeof(struct in6_addr) << 3;
7147 break;
7148 default:
7149 plen = 0; /*fool gcc*/
7150 break;
7151 }
7152
7153 /* check max prefix length */
7154 if (src0->sadb_address_prefixlen > plen ||
7155 dst0->sadb_address_prefixlen > plen) {
7156 ipseclog((LOG_DEBUG,
7157 "key_parse: illegal prefixlen.\n"));
7158 pfkeystat.out_invaddr++;
7159 error = EINVAL;
7160 goto senderror;
7161 }
7162
7163 /*
7164 * prefixlen == 0 is valid because there can be a case when
7165 * all addresses are matched.
7166 */
7167 }
7168
7169 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7170 key_typesw[msg->sadb_msg_type] == NULL) {
7171 pfkeystat.out_invmsgtype++;
7172 error = EINVAL;
7173 goto senderror;
7174 }
7175
7176 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7177
7178 senderror:
7179 msg->sadb_msg_errno = error;
7180 return key_sendup_mbuf(so, m, target);
7181 }
7182
7183 static int
7184 key_senderror(so, m, code)
7185 struct socket *so;
7186 struct mbuf *m;
7187 int code;
7188 {
7189 struct sadb_msg *msg;
7190
7191 if (m->m_len < sizeof(struct sadb_msg))
7192 panic("invalid mbuf passed to key_senderror");
7193
7194 msg = mtod(m, struct sadb_msg *);
7195 msg->sadb_msg_errno = code;
7196 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7197 }
7198
7199 /*
7200 * set the pointer to each header into message buffer.
7201 * m will be freed on error.
7202 * XXX larger-than-MCLBYTES extension?
7203 */
7204 static int
7205 key_align(m, mhp)
7206 struct mbuf *m;
7207 struct sadb_msghdr *mhp;
7208 {
7209 struct mbuf *n;
7210 struct sadb_ext *ext;
7211 size_t off, end;
7212 int extlen;
7213 int toff;
7214
7215 /* sanity check */
7216 if (m == NULL || mhp == NULL)
7217 panic("key_align: NULL pointer is passed");
7218 if (m->m_len < sizeof(struct sadb_msg))
7219 panic("invalid mbuf passed to key_align");
7220
7221 /* initialize */
7222 bzero(mhp, sizeof(*mhp));
7223
7224 mhp->msg = mtod(m, struct sadb_msg *);
7225 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7226
7227 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7228 extlen = end; /*just in case extlen is not updated*/
7229 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7230 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7231 if (!n) {
7232 /* m is already freed */
7233 return ENOBUFS;
7234 }
7235 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7236
7237 /* set pointer */
7238 switch (ext->sadb_ext_type) {
7239 case SADB_EXT_SA:
7240 case SADB_EXT_ADDRESS_SRC:
7241 case SADB_EXT_ADDRESS_DST:
7242 case SADB_EXT_ADDRESS_PROXY:
7243 case SADB_EXT_LIFETIME_CURRENT:
7244 case SADB_EXT_LIFETIME_HARD:
7245 case SADB_EXT_LIFETIME_SOFT:
7246 case SADB_EXT_KEY_AUTH:
7247 case SADB_EXT_KEY_ENCRYPT:
7248 case SADB_EXT_IDENTITY_SRC:
7249 case SADB_EXT_IDENTITY_DST:
7250 case SADB_EXT_SENSITIVITY:
7251 case SADB_EXT_PROPOSAL:
7252 case SADB_EXT_SUPPORTED_AUTH:
7253 case SADB_EXT_SUPPORTED_ENCRYPT:
7254 case SADB_EXT_SPIRANGE:
7255 case SADB_X_EXT_POLICY:
7256 case SADB_X_EXT_SA2:
7257 /* duplicate check */
7258 /*
7259 * XXX Are there duplication payloads of either
7260 * KEY_AUTH or KEY_ENCRYPT ?
7261 */
7262 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7263 ipseclog((LOG_DEBUG,
7264 "key_align: duplicate ext_type %u "
7265 "is passed.\n", ext->sadb_ext_type));
7266 m_freem(m);
7267 pfkeystat.out_dupext++;
7268 return EINVAL;
7269 }
7270 break;
7271 default:
7272 ipseclog((LOG_DEBUG,
7273 "key_align: invalid ext_type %u is passed.\n",
7274 ext->sadb_ext_type));
7275 m_freem(m);
7276 pfkeystat.out_invexttype++;
7277 return EINVAL;
7278 }
7279
7280 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7281
7282 if (key_validate_ext(ext, extlen)) {
7283 m_freem(m);
7284 pfkeystat.out_invlen++;
7285 return EINVAL;
7286 }
7287
7288 n = m_pulldown(m, off, extlen, &toff);
7289 if (!n) {
7290 /* m is already freed */
7291 return ENOBUFS;
7292 }
7293 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7294
7295 mhp->ext[ext->sadb_ext_type] = ext;
7296 mhp->extoff[ext->sadb_ext_type] = off;
7297 mhp->extlen[ext->sadb_ext_type] = extlen;
7298 }
7299
7300 if (off != end) {
7301 m_freem(m);
7302 pfkeystat.out_invlen++;
7303 return EINVAL;
7304 }
7305
7306 return 0;
7307 }
7308
7309 static int
7310 key_validate_ext(ext, len)
7311 const struct sadb_ext *ext;
7312 int len;
7313 {
7314 const struct sockaddr *sa;
7315 enum { NONE, ADDR } checktype = NONE;
7316 int baselen = 0;
7317 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7318
7319 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7320 return EINVAL;
7321
7322 /* if it does not match minimum/maximum length, bail */
7323 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7324 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7325 return EINVAL;
7326 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7327 return EINVAL;
7328 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7329 return EINVAL;
7330
7331 /* more checks based on sadb_ext_type XXX need more */
7332 switch (ext->sadb_ext_type) {
7333 case SADB_EXT_ADDRESS_SRC:
7334 case SADB_EXT_ADDRESS_DST:
7335 case SADB_EXT_ADDRESS_PROXY:
7336 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7337 checktype = ADDR;
7338 break;
7339 case SADB_EXT_IDENTITY_SRC:
7340 case SADB_EXT_IDENTITY_DST:
7341 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7342 SADB_X_IDENTTYPE_ADDR) {
7343 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7344 checktype = ADDR;
7345 } else
7346 checktype = NONE;
7347 break;
7348 default:
7349 checktype = NONE;
7350 break;
7351 }
7352
7353 switch (checktype) {
7354 case NONE:
7355 break;
7356 case ADDR:
7357 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7358 if (len < baselen + sal)
7359 return EINVAL;
7360 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7361 return EINVAL;
7362 break;
7363 }
7364
7365 return 0;
7366 }
7367
7368 void
7369 key_init()
7370 {
7371 int i;
7372
7373 callout_init(&key_timehandler_ch);
7374
7375 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7376 LIST_INIT(&sptree[i]);
7377 }
7378
7379 LIST_INIT(&sahtree);
7380
7381 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7382 LIST_INIT(®tree[i]);
7383 }
7384
7385 #ifndef IPSEC_NONBLOCK_ACQUIRE
7386 LIST_INIT(&acqtree);
7387 #endif
7388 LIST_INIT(&spacqtree);
7389
7390 /* system default */
7391 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7392 ip4_def_policy.refcnt++; /*never reclaim this*/
7393
7394
7395 #ifndef IPSEC_DEBUG2
7396 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7397 #endif /*IPSEC_DEBUG2*/
7398
7399 /* initialize key statistics */
7400 keystat.getspi_count = 1;
7401
7402 printf("IPsec: Initialized Security Association Processing.\n");
7403
7404 return;
7405 }
7406
7407 /*
7408 * XXX: maybe This function is called after INBOUND IPsec processing.
7409 *
7410 * Special check for tunnel-mode packets.
7411 * We must make some checks for consistency between inner and outer IP header.
7412 *
7413 * xxx more checks to be provided
7414 */
7415 int
7416 key_checktunnelsanity(
7417 struct secasvar *sav,
7418 u_int family,
7419 void *src,
7420 void *dst
7421 )
7422 {
7423 /* sanity check */
7424 if (sav->sah == NULL)
7425 panic("sav->sah == NULL at key_checktunnelsanity");
7426
7427 /* XXX: check inner IP header */
7428
7429 return 1;
7430 }
7431
7432 #if 0
7433 #define hostnamelen strlen(hostname)
7434
7435 /*
7436 * Get FQDN for the host.
7437 * If the administrator configured hostname (by hostname(1)) without
7438 * domain name, returns nothing.
7439 */
7440 static const char *
7441 key_getfqdn()
7442 {
7443 int i;
7444 int hasdot;
7445 static char fqdn[MAXHOSTNAMELEN + 1];
7446
7447 if (!hostnamelen)
7448 return NULL;
7449
7450 /* check if it comes with domain name. */
7451 hasdot = 0;
7452 for (i = 0; i < hostnamelen; i++) {
7453 if (hostname[i] == '.')
7454 hasdot++;
7455 }
7456 if (!hasdot)
7457 return NULL;
7458
7459 /* NOTE: hostname may not be NUL-terminated. */
7460 bzero(fqdn, sizeof(fqdn));
7461 bcopy(hostname, fqdn, hostnamelen);
7462 fqdn[hostnamelen] = '\0';
7463 return fqdn;
7464 }
7465
7466 /*
7467 * get username@FQDN for the host/user.
7468 */
7469 static const char *
7470 key_getuserfqdn()
7471 {
7472 const char *host;
7473 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7474 struct proc *p = curproc;
7475 char *q;
7476
7477 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7478 return NULL;
7479 if (!(host = key_getfqdn()))
7480 return NULL;
7481
7482 /* NOTE: s_login may not be-NUL terminated. */
7483 bzero(userfqdn, sizeof(userfqdn));
7484 bcopy(p->p_pgrp->pg_session->s_login, userfqdn, MAXLOGNAME);
7485 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7486 q = userfqdn + strlen(userfqdn);
7487 *q++ = '@';
7488 bcopy(host, q, strlen(host));
7489 q += strlen(host);
7490 *q++ = '\0';
7491
7492 return userfqdn;
7493 }
7494 #endif
7495
7496 /* record data transfer on SA, and update timestamps */
7497 void
7498 key_sa_recordxfer(sav, m)
7499 struct secasvar *sav;
7500 struct mbuf *m;
7501 {
7502 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7503 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7504 if (!sav->lft_c)
7505 return;
7506
7507 /*
7508 * XXX Currently, there is a difference of bytes size
7509 * between inbound and outbound processing.
7510 */
7511 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7512 /* to check bytes lifetime is done in key_timehandler(). */
7513
7514 /*
7515 * We use the number of packets as the unit of
7516 * sadb_lifetime_allocations. We increment the variable
7517 * whenever {esp,ah}_{in,out}put is called.
7518 */
7519 sav->lft_c->sadb_lifetime_allocations++;
7520 /* XXX check for expires? */
7521
7522 /*
7523 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7524 * in seconds. HARD and SOFT lifetime are measured by the time
7525 * difference (again in seconds) from sadb_lifetime_usetime.
7526 *
7527 * usetime
7528 * v expire expire
7529 * -----+-----+--------+---> t
7530 * <--------------> HARD
7531 * <-----> SOFT
7532 */
7533 sav->lft_c->sadb_lifetime_usetime = time_second;
7534 /* XXX check for expires? */
7535
7536 return;
7537 }
7538
7539 /* dumb version */
7540 void
7541 key_sa_routechange(dst)
7542 struct sockaddr *dst;
7543 {
7544 struct secashead *sah;
7545 struct route *ro;
7546
7547 LIST_FOREACH(sah, &sahtree, chain) {
7548 ro = &sah->sa_route;
7549 if (dst->sa_len == rtcache_getdst(ro)->sa_len &&
7550 memcmp(dst, rtcache_getdst(ro), dst->sa_len) == 0)
7551 rtcache_free(ro);
7552 }
7553
7554 return;
7555 }
7556
7557 static void
7558 key_sa_chgstate(sav, state)
7559 struct secasvar *sav;
7560 u_int8_t state;
7561 {
7562 if (sav == NULL)
7563 panic("key_sa_chgstate called with sav == NULL");
7564
7565 if (sav->state == state)
7566 return;
7567
7568 if (__LIST_CHAINED(sav))
7569 LIST_REMOVE(sav, chain);
7570
7571 sav->state = state;
7572 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7573 }
7574
7575 void
7576 key_sa_stir_iv(sav)
7577 struct secasvar *sav;
7578 {
7579
7580 if (!sav->iv)
7581 panic("key_sa_stir_iv called with sav == NULL");
7582 key_randomfill(sav->iv, sav->ivlen);
7583 }
7584
7585 /* XXX too much? */
7586 static struct mbuf *
7587 key_alloc_mbuf(l)
7588 int l;
7589 {
7590 struct mbuf *m = NULL, *n;
7591 int len, t;
7592
7593 len = l;
7594 while (len > 0) {
7595 MGET(n, M_DONTWAIT, MT_DATA);
7596 if (n && len > MLEN)
7597 MCLGET(n, M_DONTWAIT);
7598 if (!n) {
7599 m_freem(m);
7600 return NULL;
7601 }
7602
7603 n->m_next = NULL;
7604 n->m_len = 0;
7605 n->m_len = M_TRAILINGSPACE(n);
7606 /* use the bottom of mbuf, hoping we can prepend afterwards */
7607 if (n->m_len > len) {
7608 t = (n->m_len - len) & ~(sizeof(long) - 1);
7609 n->m_data += t;
7610 n->m_len = len;
7611 }
7612
7613 len -= n->m_len;
7614
7615 if (m)
7616 m_cat(m, n);
7617 else
7618 m = n;
7619 }
7620
7621 return m;
7622 }
7623
7624 static struct mbuf *
7625 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
7626 {
7627 struct secashead *sah;
7628 struct secasvar *sav;
7629 u_int16_t proto;
7630 u_int stateidx;
7631 u_int8_t satype;
7632 u_int8_t state;
7633 int cnt;
7634 struct mbuf *m, *n;
7635
7636 /* map satype to proto */
7637 if ((proto = key_satype2proto(req_satype)) == 0) {
7638 *errorp = EINVAL;
7639 return (NULL);
7640 }
7641
7642 /* count sav entries to be sent to the userland. */
7643 cnt = 0;
7644 LIST_FOREACH(sah, &sahtree, chain) {
7645 if (req_satype != SADB_SATYPE_UNSPEC &&
7646 proto != sah->saidx.proto)
7647 continue;
7648
7649 for (stateidx = 0;
7650 stateidx < _ARRAYLEN(saorder_state_any);
7651 stateidx++) {
7652 state = saorder_state_any[stateidx];
7653 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7654 cnt++;
7655 }
7656 }
7657 }
7658
7659 if (cnt == 0) {
7660 *errorp = ENOENT;
7661 return (NULL);
7662 }
7663
7664 /* send this to the userland, one at a time. */
7665 m = NULL;
7666 LIST_FOREACH(sah, &sahtree, chain) {
7667 if (req_satype != SADB_SATYPE_UNSPEC &&
7668 proto != sah->saidx.proto)
7669 continue;
7670
7671 /* map proto to satype */
7672 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7673 m_freem(m);
7674 *errorp = EINVAL;
7675 return (NULL);
7676 }
7677
7678 for (stateidx = 0;
7679 stateidx < _ARRAYLEN(saorder_state_any);
7680 stateidx++) {
7681 state = saorder_state_any[stateidx];
7682 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7683 n = key_setdumpsa(sav, SADB_DUMP, satype,
7684 --cnt, pid);
7685 if (!n) {
7686 m_freem(m);
7687 *errorp = ENOBUFS;
7688 return (NULL);
7689 }
7690
7691 if (!m)
7692 m = n;
7693 else
7694 m_cat(m, n);
7695 }
7696 }
7697 }
7698
7699 if (!m) {
7700 *errorp = EINVAL;
7701 return (NULL);
7702 }
7703
7704 if ((m->m_flags & M_PKTHDR) != 0) {
7705 m->m_pkthdr.len = 0;
7706 for (n = m; n; n = n->m_next)
7707 m->m_pkthdr.len += n->m_len;
7708 }
7709
7710 *errorp = 0;
7711 return (m);
7712 }
7713
7714 static struct mbuf *
7715 key_setspddump(int *errorp, pid_t pid)
7716 {
7717 struct secpolicy *sp;
7718 int cnt;
7719 u_int dir;
7720 struct mbuf *m, *n;
7721
7722 /* search SPD entry and get buffer size. */
7723 cnt = 0;
7724 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7725 LIST_FOREACH(sp, &sptree[dir], chain) {
7726 cnt++;
7727 }
7728 }
7729
7730 if (cnt == 0) {
7731 *errorp = ENOENT;
7732 return (NULL);
7733 }
7734
7735 m = NULL;
7736 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
7737 LIST_FOREACH(sp, &sptree[dir], chain) {
7738 --cnt;
7739 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
7740
7741 if (!n) {
7742 *errorp = ENOBUFS;
7743 m_freem(m);
7744 return (NULL);
7745 }
7746 if (!m)
7747 m = n;
7748 else {
7749 m->m_pkthdr.len += n->m_pkthdr.len;
7750 m_cat(m, n);
7751 }
7752 }
7753 }
7754
7755 *errorp = 0;
7756 return (m);
7757 }
7758
7759 static int
7760 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
7761 {
7762 struct mbuf *m, *n;
7763 int err2 = 0;
7764 char *p, *ep;
7765 size_t len;
7766 int s, error;
7767
7768 if (newp)
7769 return (EPERM);
7770 if (namelen != 1)
7771 return (EINVAL);
7772
7773 s = splsoftnet();
7774 m = key_setdump(name[0], &error, l->l_proc->p_pid);
7775 splx(s);
7776 if (!m)
7777 return (error);
7778 if (!oldp)
7779 *oldlenp = m->m_pkthdr.len;
7780 else {
7781 p = oldp;
7782 if (*oldlenp < m->m_pkthdr.len) {
7783 err2 = ENOMEM;
7784 ep = p + *oldlenp;
7785 } else {
7786 *oldlenp = m->m_pkthdr.len;
7787 ep = p + m->m_pkthdr.len;
7788 }
7789 for (n = m; n; n = n->m_next) {
7790 len = (ep - p < n->m_len) ?
7791 ep - p : n->m_len;
7792 error = copyout(mtod(n, const void *), p, len);
7793 p += len;
7794 if (error)
7795 break;
7796 }
7797 if (error == 0)
7798 error = err2;
7799 }
7800 m_freem(m);
7801
7802 return (error);
7803 }
7804
7805 static int
7806 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
7807 {
7808 struct mbuf *m, *n;
7809 int err2 = 0;
7810 char *p, *ep;
7811 size_t len;
7812 int s, error;
7813
7814 if (newp)
7815 return (EPERM);
7816 if (namelen != 0)
7817 return (EINVAL);
7818
7819 s = splsoftnet();
7820 m = key_setspddump(&error, l->l_proc->p_pid);
7821 splx(s);
7822 if (!m)
7823 return (error);
7824 if (!oldp)
7825 *oldlenp = m->m_pkthdr.len;
7826 else {
7827 p = oldp;
7828 if (*oldlenp < m->m_pkthdr.len) {
7829 err2 = ENOMEM;
7830 ep = p + *oldlenp;
7831 } else {
7832 *oldlenp = m->m_pkthdr.len;
7833 ep = p + m->m_pkthdr.len;
7834 }
7835 for (n = m; n; n = n->m_next) {
7836 len = (ep - p < n->m_len) ?
7837 ep - p : n->m_len;
7838 error = copyout(mtod(n, const void *), p, len);
7839 p += len;
7840 if (error)
7841 break;
7842 }
7843 if (error == 0)
7844 error = err2;
7845 }
7846 m_freem(m);
7847
7848 return (error);
7849 }
7850
7851 /*
7852 * Create sysctl tree for native FAST_IPSEC key knobs, originally
7853 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
7854 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
7855 * and in any case the part of our sysctl namespace used for dumping the
7856 * SPD and SA database *HAS* to be compatible with the KAME sysctl
7857 * namespace, for API reasons.
7858 *
7859 * Pending a consensus on the right way to fix this, add a level of
7860 * indirection in how we number the `native' FAST_IPSEC key nodes;
7861 * and (as requested by Andrew Brown) move registration of the
7862 * KAME-compatible names to a separate function.
7863 */
7864 #if 0
7865 # define FAST_IPSEC_PFKEY PF_KEY_V2
7866 # define FAST_IPSEC_PFKEY_NAME "keyv2"
7867 #else
7868 # define FAST_IPSEC_PFKEY PF_KEY
7869 # define FAST_IPSEC_PFKEY_NAME "key"
7870 #endif
7871
7872 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
7873 {
7874
7875 sysctl_createv(clog, 0, NULL, NULL,
7876 CTLFLAG_PERMANENT,
7877 CTLTYPE_NODE, "net", NULL,
7878 NULL, 0, NULL, 0,
7879 CTL_NET, CTL_EOL);
7880 sysctl_createv(clog, 0, NULL, NULL,
7881 CTLFLAG_PERMANENT,
7882 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL,
7883 NULL, 0, NULL, 0,
7884 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL);
7885
7886 sysctl_createv(clog, 0, NULL, NULL,
7887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7888 CTLTYPE_INT, "debug", NULL,
7889 NULL, 0, &key_debug_level, 0,
7890 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
7891 sysctl_createv(clog, 0, NULL, NULL,
7892 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7893 CTLTYPE_INT, "spi_try", NULL,
7894 NULL, 0, &key_spi_trycnt, 0,
7895 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
7896 sysctl_createv(clog, 0, NULL, NULL,
7897 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7898 CTLTYPE_INT, "spi_min_value", NULL,
7899 NULL, 0, &key_spi_minval, 0,
7900 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
7901 sysctl_createv(clog, 0, NULL, NULL,
7902 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7903 CTLTYPE_INT, "spi_max_value", NULL,
7904 NULL, 0, &key_spi_maxval, 0,
7905 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
7906 sysctl_createv(clog, 0, NULL, NULL,
7907 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7908 CTLTYPE_INT, "random_int", NULL,
7909 NULL, 0, &key_int_random, 0,
7910 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
7911 sysctl_createv(clog, 0, NULL, NULL,
7912 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7913 CTLTYPE_INT, "larval_lifetime", NULL,
7914 NULL, 0, &key_larval_lifetime, 0,
7915 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
7916 sysctl_createv(clog, 0, NULL, NULL,
7917 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7918 CTLTYPE_INT, "blockacq_count", NULL,
7919 NULL, 0, &key_blockacq_count, 0,
7920 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
7921 sysctl_createv(clog, 0, NULL, NULL,
7922 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7923 CTLTYPE_INT, "blockacq_lifetime", NULL,
7924 NULL, 0, &key_blockacq_lifetime, 0,
7925 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
7926 sysctl_createv(clog, 0, NULL, NULL,
7927 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7928 CTLTYPE_INT, "esp_keymin", NULL,
7929 NULL, 0, &ipsec_esp_keymin, 0,
7930 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
7931 sysctl_createv(clog, 0, NULL, NULL,
7932 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7933 CTLTYPE_INT, "prefered_oldsa", NULL,
7934 NULL, 0, &key_prefered_oldsa, 0,
7935 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
7936 sysctl_createv(clog, 0, NULL, NULL,
7937 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7938 CTLTYPE_INT, "esp_auth", NULL,
7939 NULL, 0, &ipsec_esp_auth, 0,
7940 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
7941 sysctl_createv(clog, 0, NULL, NULL,
7942 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
7943 CTLTYPE_INT, "ah_keymin", NULL,
7944 NULL, 0, &ipsec_ah_keymin, 0,
7945 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
7946 }
7947
7948 /*
7949 * Register sysctl names used by setkey(8). For historical reasons,
7950 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
7951 * for both FAST_IPSEC and KAME IPSEC.
7952 */
7953 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC")
7954 {
7955
7956 /* Make sure net.key exists before we register nodes underneath it. */
7957 sysctl_createv(clog, 0, NULL, NULL,
7958 CTLFLAG_PERMANENT,
7959 CTLTYPE_NODE, "net", NULL,
7960 NULL, 0, NULL, 0,
7961 CTL_NET, CTL_EOL);
7962 sysctl_createv(clog, 0, NULL, NULL,
7963 CTLFLAG_PERMANENT,
7964 CTLTYPE_NODE, "key", NULL,
7965 NULL, 0, NULL, 0,
7966 CTL_NET, PF_KEY, CTL_EOL);
7967
7968 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
7969 sysctl_createv(clog, 0, NULL, NULL,
7970 CTLFLAG_PERMANENT,
7971 CTLTYPE_STRUCT, "dumpsa", NULL,
7972 sysctl_net_key_dumpsa, 0, NULL, 0,
7973 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
7974 sysctl_createv(clog, 0, NULL, NULL,
7975 CTLFLAG_PERMANENT,
7976 CTLTYPE_STRUCT, "dumpsp", NULL,
7977 sysctl_net_key_dumpsp, 0, NULL, 0,
7978 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
7979 }
7980