key.c revision 1.65 1 /* $NetBSD: key.c,v 1.65 2011/02/18 20:40:58 drochner Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.65 2011/02/18 20:40:58 drochner Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66 #include <sys/once.h>
67
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <net/raw_cb.h>
71
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #ifdef INET
77 #include <netinet/ip_var.h>
78 #endif
79
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_var.h>
83 #include <netinet6/ip6_var.h>
84 #endif /* INET6 */
85
86 #ifdef INET
87 #include <netinet/in_pcb.h>
88 #endif
89 #ifdef INET6
90 #include <netinet6/in6_pcb.h>
91 #endif /* INET6 */
92
93 #include <net/pfkeyv2.h>
94 #include <netipsec/keydb.h>
95 #include <netipsec/key.h>
96 #include <netipsec/keysock.h>
97 #include <netipsec/key_debug.h>
98
99 #include <netipsec/ipsec.h>
100 #ifdef INET6
101 #include <netipsec/ipsec6.h>
102 #endif
103 #include <netipsec/ipsec_private.h>
104
105 #include <netipsec/xform.h>
106 #include <netipsec/ipsec_osdep.h>
107 #include <netipsec/ipcomp.h>
108
109
110 #include <machine/stdarg.h>
111
112
113 #include <net/net_osdep.h>
114
115 #define FULLMASK 0xff
116 #define _BITS(bytes) ((bytes) << 3)
117
118 percpu_t *pfkeystat_percpu;
119
120 /*
121 * Note on SA reference counting:
122 * - SAs that are not in DEAD state will have (total external reference + 1)
123 * following value in reference count field. they cannot be freed and are
124 * referenced from SA header.
125 * - SAs that are in DEAD state will have (total external reference)
126 * in reference count field. they are ready to be freed. reference from
127 * SA header will be removed in key_delsav(), when the reference count
128 * field hits 0 (= no external reference other than from SA header.
129 */
130
131 u_int32_t key_debug_level = 0;
132 static u_int key_spi_trycnt = 1000;
133 static u_int32_t key_spi_minval = 0x100;
134 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
135 static u_int32_t policy_id = 0;
136 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
137 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
138 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
139 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
140 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
141
142 static u_int32_t acq_seq = 0;
143 static int key_tick_init_random = 0;
144
145 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
146 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
148 /* registed list */
149 #ifndef IPSEC_NONBLOCK_ACQUIRE
150 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
151 #endif
152 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
153
154 /* search order for SAs */
155 static u_int saorder_state_valid[] = {
156 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
157 /*
158 * This order is important because we must select the oldest SA
159 * for outbound processing. For inbound, This is not important.
160 */
161 };
162 static u_int saorder_state_alive[] = {
163 /* except DEAD */
164 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
165 };
166 static u_int saorder_state_any[] = {
167 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
168 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
169 };
170
171 static const int minsize[] = {
172 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
173 sizeof(struct sadb_sa), /* SADB_EXT_SA */
174 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
175 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
176 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
177 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
178 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
179 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
180 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
181 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
182 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
183 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
184 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
185 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
186 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
187 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
188 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
189 0, /* SADB_X_EXT_KMPRIVATE */
190 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
191 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
192 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
193 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
194 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
195 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
196 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
197 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
198 };
199 static const int maxsize[] = {
200 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
201 sizeof(struct sadb_sa), /* SADB_EXT_SA */
202 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
203 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
204 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
205 0, /* SADB_EXT_ADDRESS_SRC */
206 0, /* SADB_EXT_ADDRESS_DST */
207 0, /* SADB_EXT_ADDRESS_PROXY */
208 0, /* SADB_EXT_KEY_AUTH */
209 0, /* SADB_EXT_KEY_ENCRYPT */
210 0, /* SADB_EXT_IDENTITY_SRC */
211 0, /* SADB_EXT_IDENTITY_DST */
212 0, /* SADB_EXT_SENSITIVITY */
213 0, /* SADB_EXT_PROPOSAL */
214 0, /* SADB_EXT_SUPPORTED_AUTH */
215 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
216 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
217 0, /* SADB_X_EXT_KMPRIVATE */
218 0, /* SADB_X_EXT_POLICY */
219 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
220 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
221 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
222 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
223 0, /* SADB_X_EXT_NAT_T_OAI */
224 0, /* SADB_X_EXT_NAT_T_OAR */
225 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
226 };
227
228 static int ipsec_esp_keymin = 256;
229 static int ipsec_esp_auth = 0;
230 static int ipsec_ah_keymin = 128;
231
232 #ifdef SYSCTL_DECL
233 SYSCTL_DECL(_net_key);
234 #endif
235
236 #ifdef SYSCTL_INT
237 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
238 &key_debug_level, 0, "");
239
240 /* max count of trial for the decision of spi value */
241 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
242 &key_spi_trycnt, 0, "");
243
244 /* minimum spi value to allocate automatically. */
245 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
246 &key_spi_minval, 0, "");
247
248 /* maximun spi value to allocate automatically. */
249 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
250 &key_spi_maxval, 0, "");
251
252 /* interval to initialize randseed */
253 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
254 &key_int_random, 0, "");
255
256 /* lifetime for larval SA */
257 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
258 &key_larval_lifetime, 0, "");
259
260 /* counter for blocking to send SADB_ACQUIRE to IKEd */
261 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
262 &key_blockacq_count, 0, "");
263
264 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
265 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
266 &key_blockacq_lifetime, 0, "");
267
268 /* ESP auth */
269 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
270 &ipsec_esp_auth, 0, "");
271
272 /* minimum ESP key length */
273 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
274 &ipsec_esp_keymin, 0, "");
275
276 /* minimum AH key length */
277 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
278 &ipsec_ah_keymin, 0, "");
279
280 /* perfered old SA rather than new SA */
281 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
282 &key_prefered_oldsa, 0, "");
283 #endif /* SYSCTL_INT */
284
285 #ifndef LIST_FOREACH
286 #define LIST_FOREACH(elm, head, field) \
287 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
288 #endif
289 #define __LIST_CHAINED(elm) \
290 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
291 #define LIST_INSERT_TAIL(head, elm, type, field) \
292 do {\
293 struct type *curelm = LIST_FIRST(head); \
294 if (curelm == NULL) {\
295 LIST_INSERT_HEAD(head, elm, field); \
296 } else { \
297 while (LIST_NEXT(curelm, field)) \
298 curelm = LIST_NEXT(curelm, field);\
299 LIST_INSERT_AFTER(curelm, elm, field);\
300 }\
301 } while (0)
302
303 #define KEY_CHKSASTATE(head, sav, name) \
304 /* do */ { \
305 if ((head) != (sav)) { \
306 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
307 (name), (head), (sav))); \
308 continue; \
309 } \
310 } /* while (0) */
311
312 #define KEY_CHKSPDIR(head, sp, name) \
313 do { \
314 if ((head) != (sp)) { \
315 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
316 "anyway continue.\n", \
317 (name), (head), (sp))); \
318 } \
319 } while (0)
320
321 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
322
323 #if 1
324 #define KMALLOC(p, t, n) \
325 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
326 #define KFREE(p) \
327 free((p), M_SECA)
328 #else
329 #define KMALLOC(p, t, n) \
330 do { \
331 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
332 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
333 __FILE__, __LINE__, (p), #t, n); \
334 } while (0)
335
336 #define KFREE(p) \
337 do { \
338 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
339 free((p), M_SECA); \
340 } while (0)
341 #endif
342
343 /*
344 * set parameters into secpolicyindex buffer.
345 * Must allocate secpolicyindex buffer passed to this function.
346 */
347 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
348 do { \
349 memset((idx), 0, sizeof(struct secpolicyindex)); \
350 (idx)->dir = (_dir); \
351 (idx)->prefs = (ps); \
352 (idx)->prefd = (pd); \
353 (idx)->ul_proto = (ulp); \
354 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
355 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
356 } while (0)
357
358 /*
359 * set parameters into secasindex buffer.
360 * Must allocate secasindex buffer before calling this function.
361 */
362 static int
363 key_setsecasidx (int, int, int, const struct sadb_address *,
364 const struct sadb_address *, struct secasindex *);
365
366 /* key statistics */
367 struct _keystat {
368 u_long getspi_count; /* the avarage of count to try to get new SPI */
369 } keystat;
370
371 struct sadb_msghdr {
372 struct sadb_msg *msg;
373 struct sadb_ext *ext[SADB_EXT_MAX + 1];
374 int extoff[SADB_EXT_MAX + 1];
375 int extlen[SADB_EXT_MAX + 1];
376 };
377
378 static struct secasvar *key_allocsa_policy (const struct secasindex *);
379 static void key_freesp_so (struct secpolicy **);
380 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
381 static void key_delsp (struct secpolicy *);
382 static struct secpolicy *key_getsp (struct secpolicyindex *);
383 static struct secpolicy *key_getspbyid (u_int32_t);
384 static u_int16_t key_newreqid (void);
385 static struct mbuf *key_gather_mbuf (struct mbuf *,
386 const struct sadb_msghdr *, int, int, ...);
387 static int key_spdadd (struct socket *, struct mbuf *,
388 const struct sadb_msghdr *);
389 static u_int32_t key_getnewspid (void);
390 static int key_spddelete (struct socket *, struct mbuf *,
391 const struct sadb_msghdr *);
392 static int key_spddelete2 (struct socket *, struct mbuf *,
393 const struct sadb_msghdr *);
394 static int key_spdget (struct socket *, struct mbuf *,
395 const struct sadb_msghdr *);
396 static int key_spdflush (struct socket *, struct mbuf *,
397 const struct sadb_msghdr *);
398 static int key_spddump (struct socket *, struct mbuf *,
399 const struct sadb_msghdr *);
400 static struct mbuf * key_setspddump (int *errorp, pid_t);
401 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
402 #ifdef IPSEC_NAT_T
403 static int key_nat_map (struct socket *, struct mbuf *,
404 const struct sadb_msghdr *);
405 #endif
406 static struct mbuf *key_setdumpsp (struct secpolicy *,
407 u_int8_t, u_int32_t, pid_t);
408 static u_int key_getspreqmsglen (struct secpolicy *);
409 static int key_spdexpire (struct secpolicy *);
410 static struct secashead *key_newsah (struct secasindex *);
411 static void key_delsah (struct secashead *);
412 static struct secasvar *key_newsav (struct mbuf *,
413 const struct sadb_msghdr *, struct secashead *, int *,
414 const char*, int);
415 #define KEY_NEWSAV(m, sadb, sah, e) \
416 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
417 static void key_delsav (struct secasvar *);
418 static struct secashead *key_getsah (struct secasindex *);
419 static struct secasvar *key_checkspidup (struct secasindex *, u_int32_t);
420 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
421 static int key_setsaval (struct secasvar *, struct mbuf *,
422 const struct sadb_msghdr *);
423 static int key_mature (struct secasvar *);
424 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
425 u_int8_t, u_int32_t, u_int32_t);
426 #ifdef IPSEC_NAT_T
427 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
428 static struct mbuf *key_setsadbxtype (u_int16_t);
429 #endif
430 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
431 static int key_checksalen (const union sockaddr_union *);
432 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
433 u_int32_t, pid_t, u_int16_t);
434 static struct mbuf *key_setsadbsa (struct secasvar *);
435 static struct mbuf *key_setsadbaddr (u_int16_t,
436 const struct sockaddr *, u_int8_t, u_int16_t);
437 #if 0
438 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
439 int, u_int64_t);
440 #endif
441 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
442 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
443 u_int32_t);
444 static void *key_newbuf (const void *, u_int);
445 #ifdef INET6
446 static int key_ismyaddr6 (struct sockaddr_in6 *);
447 #endif
448
449 /* flags for key_cmpsaidx() */
450 #define CMP_HEAD 1 /* protocol, addresses. */
451 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
452 #define CMP_REQID 3 /* additionally HEAD, reaid. */
453 #define CMP_EXACTLY 4 /* all elements. */
454 static int key_cmpsaidx
455 (const struct secasindex *, const struct secasindex *, int);
456
457 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
458 static int key_bbcmp (const void *, const void *, u_int);
459 static void key_srandom (void);
460 static u_int16_t key_satype2proto (u_int8_t);
461 static u_int8_t key_proto2satype (u_int16_t);
462
463 static int key_getspi (struct socket *, struct mbuf *,
464 const struct sadb_msghdr *);
465 static u_int32_t key_do_getnewspi (struct sadb_spirange *,
466 struct secasindex *);
467 #ifdef IPSEC_NAT_T
468 static int key_handle_natt_info (struct secasvar *,
469 const struct sadb_msghdr *);
470 static int key_set_natt_ports (union sockaddr_union *,
471 union sockaddr_union *,
472 const struct sadb_msghdr *);
473 #endif
474 static int key_update (struct socket *, struct mbuf *,
475 const struct sadb_msghdr *);
476 #ifdef IPSEC_DOSEQCHECK
477 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
478 #endif
479 static int key_add (struct socket *, struct mbuf *,
480 const struct sadb_msghdr *);
481 static int key_setident (struct secashead *, struct mbuf *,
482 const struct sadb_msghdr *);
483 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
484 const struct sadb_msghdr *);
485 static int key_delete (struct socket *, struct mbuf *,
486 const struct sadb_msghdr *);
487 static int key_get (struct socket *, struct mbuf *,
488 const struct sadb_msghdr *);
489
490 static void key_getcomb_setlifetime (struct sadb_comb *);
491 static struct mbuf *key_getcomb_esp (void);
492 static struct mbuf *key_getcomb_ah (void);
493 static struct mbuf *key_getcomb_ipcomp (void);
494 static struct mbuf *key_getprop (const struct secasindex *);
495
496 static int key_acquire (const struct secasindex *, struct secpolicy *);
497 #ifndef IPSEC_NONBLOCK_ACQUIRE
498 static struct secacq *key_newacq (const struct secasindex *);
499 static struct secacq *key_getacq (const struct secasindex *);
500 static struct secacq *key_getacqbyseq (u_int32_t);
501 #endif
502 static struct secspacq *key_newspacq (struct secpolicyindex *);
503 static struct secspacq *key_getspacq (struct secpolicyindex *);
504 static int key_acquire2 (struct socket *, struct mbuf *,
505 const struct sadb_msghdr *);
506 static int key_register (struct socket *, struct mbuf *,
507 const struct sadb_msghdr *);
508 static int key_expire (struct secasvar *);
509 static int key_flush (struct socket *, struct mbuf *,
510 const struct sadb_msghdr *);
511 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
512 int *lenp, pid_t pid);
513 static int key_dump (struct socket *, struct mbuf *,
514 const struct sadb_msghdr *);
515 static int key_promisc (struct socket *, struct mbuf *,
516 const struct sadb_msghdr *);
517 static int key_senderror (struct socket *, struct mbuf *, int);
518 static int key_validate_ext (const struct sadb_ext *, int);
519 static int key_align (struct mbuf *, struct sadb_msghdr *);
520 #if 0
521 static const char *key_getfqdn (void);
522 static const char *key_getuserfqdn (void);
523 #endif
524 static void key_sa_chgstate (struct secasvar *, u_int8_t);
525 static inline void key_sp_dead (struct secpolicy *);
526 static void key_sp_unlink (struct secpolicy *sp);
527
528 static struct mbuf *key_alloc_mbuf (int);
529 struct callout key_timehandler_ch;
530
531 #define SA_ADDREF(p) do { \
532 (p)->refcnt++; \
533 IPSEC_ASSERT((p)->refcnt != 0, \
534 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
535 } while (0)
536 #define SA_DELREF(p) do { \
537 IPSEC_ASSERT((p)->refcnt > 0, \
538 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
539 (p)->refcnt--; \
540 } while (0)
541
542 #define SP_ADDREF(p) do { \
543 (p)->refcnt++; \
544 IPSEC_ASSERT((p)->refcnt != 0, \
545 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
546 } while (0)
547 #define SP_DELREF(p) do { \
548 IPSEC_ASSERT((p)->refcnt > 0, \
549 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
550 (p)->refcnt--; \
551 } while (0)
552
553
554 static inline void
555 key_sp_dead(struct secpolicy *sp)
556 {
557
558 /* mark the SP dead */
559 sp->state = IPSEC_SPSTATE_DEAD;
560 }
561
562 static void
563 key_sp_unlink(struct secpolicy *sp)
564 {
565
566 /* remove from SP index */
567 if (__LIST_CHAINED(sp)) {
568 LIST_REMOVE(sp, chain);
569 /* Release refcount held just for being on chain */
570 KEY_FREESP(&sp);
571 }
572 }
573
574
575 /*
576 * Return 0 when there are known to be no SP's for the specified
577 * direction. Otherwise return 1. This is used by IPsec code
578 * to optimize performance.
579 */
580 int
581 key_havesp(u_int dir)
582 {
583 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
584 LIST_FIRST(&sptree[dir]) != NULL : 1);
585 }
586
587 /* %%% IPsec policy management */
588 /*
589 * allocating a SP for OUTBOUND or INBOUND packet.
590 * Must call key_freesp() later.
591 * OUT: NULL: not found
592 * others: found and return the pointer.
593 */
594 struct secpolicy *
595 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
596 {
597 struct secpolicy *sp;
598 int s;
599
600 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
601 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
602 ("key_allocsp: invalid direction %u", dir));
603
604 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
605 printf("DP key_allocsp from %s:%u\n", where, tag));
606
607 /* get a SP entry */
608 s = splsoftnet(); /*called from softclock()*/
609 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
610 printf("*** objects\n");
611 kdebug_secpolicyindex(spidx));
612
613 LIST_FOREACH(sp, &sptree[dir], chain) {
614 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
615 printf("*** in SPD\n");
616 kdebug_secpolicyindex(&sp->spidx));
617
618 if (sp->state == IPSEC_SPSTATE_DEAD)
619 continue;
620 if (key_cmpspidx_withmask(&sp->spidx, spidx))
621 goto found;
622 }
623 sp = NULL;
624 found:
625 if (sp) {
626 /* sanity check */
627 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
628
629 /* found a SPD entry */
630 sp->lastused = time_second;
631 SP_ADDREF(sp);
632 }
633 splx(s);
634
635 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
636 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n",
637 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
638 return sp;
639 }
640
641 /*
642 * allocating a SP for OUTBOUND or INBOUND packet.
643 * Must call key_freesp() later.
644 * OUT: NULL: not found
645 * others: found and return the pointer.
646 */
647 struct secpolicy *
648 key_allocsp2(u_int32_t spi,
649 union sockaddr_union *dst,
650 u_int8_t proto,
651 u_int dir,
652 const char* where, int tag)
653 {
654 struct secpolicy *sp;
655 int s;
656
657 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
658 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
659 ("key_allocsp2: invalid direction %u", dir));
660
661 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
662 printf("DP key_allocsp2 from %s:%u\n", where, tag));
663
664 /* get a SP entry */
665 s = splsoftnet(); /*called from softclock()*/
666 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
667 printf("*** objects\n");
668 printf("spi %u proto %u dir %u\n", spi, proto, dir);
669 kdebug_sockaddr(&dst->sa));
670
671 LIST_FOREACH(sp, &sptree[dir], chain) {
672 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
673 printf("*** in SPD\n");
674 kdebug_secpolicyindex(&sp->spidx));
675
676 if (sp->state == IPSEC_SPSTATE_DEAD)
677 continue;
678 /* compare simple values, then dst address */
679 if (sp->spidx.ul_proto != proto)
680 continue;
681 /* NB: spi's must exist and match */
682 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
683 continue;
684 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
685 goto found;
686 }
687 sp = NULL;
688 found:
689 if (sp) {
690 /* sanity check */
691 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
692
693 /* found a SPD entry */
694 sp->lastused = time_second;
695 SP_ADDREF(sp);
696 }
697 splx(s);
698
699 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
700 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n",
701 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
702 return sp;
703 }
704
705 /*
706 * return a policy that matches this particular inbound packet.
707 * XXX slow
708 */
709 struct secpolicy *
710 key_gettunnel(const struct sockaddr *osrc,
711 const struct sockaddr *odst,
712 const struct sockaddr *isrc,
713 const struct sockaddr *idst,
714 const char* where, int tag)
715 {
716 struct secpolicy *sp;
717 const int dir = IPSEC_DIR_INBOUND;
718 int s;
719 struct ipsecrequest *r1, *r2, *p;
720 struct secpolicyindex spidx;
721
722 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
723 printf("DP key_gettunnel from %s:%u\n", where, tag));
724
725 if (isrc->sa_family != idst->sa_family) {
726 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
727 isrc->sa_family, idst->sa_family));
728 sp = NULL;
729 goto done;
730 }
731
732 s = splsoftnet(); /*called from softclock()*/
733 LIST_FOREACH(sp, &sptree[dir], chain) {
734 if (sp->state == IPSEC_SPSTATE_DEAD)
735 continue;
736
737 r1 = r2 = NULL;
738 for (p = sp->req; p; p = p->next) {
739 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
740 continue;
741
742 r1 = r2;
743 r2 = p;
744
745 if (!r1) {
746 /* here we look at address matches only */
747 spidx = sp->spidx;
748 if (isrc->sa_len > sizeof(spidx.src) ||
749 idst->sa_len > sizeof(spidx.dst))
750 continue;
751 memcpy(&spidx.src, isrc, isrc->sa_len);
752 memcpy(&spidx.dst, idst, idst->sa_len);
753 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
754 continue;
755 } else {
756 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
757 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
758 continue;
759 }
760
761 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
762 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
763 continue;
764
765 goto found;
766 }
767 }
768 sp = NULL;
769 found:
770 if (sp) {
771 sp->lastused = time_second;
772 SP_ADDREF(sp);
773 }
774 splx(s);
775 done:
776 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
777 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n",
778 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
779 return sp;
780 }
781
782 /*
783 * allocating an SA entry for an *OUTBOUND* packet.
784 * checking each request entries in SP, and acquire an SA if need.
785 * OUT: 0: there are valid requests.
786 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
787 */
788 int
789 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
790 {
791 u_int level;
792 int error;
793
794 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
795 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
796 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
797 saidx->mode == IPSEC_MODE_TUNNEL,
798 ("key_checkrequest: unexpected policy %u", saidx->mode));
799
800 /* get current level */
801 level = ipsec_get_reqlevel(isr);
802
803 /*
804 * XXX guard against protocol callbacks from the crypto
805 * thread as they reference ipsecrequest.sav which we
806 * temporarily null out below. Need to rethink how we
807 * handle bundled SA's in the callback thread.
808 */
809 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
810 #if 0
811 /*
812 * We do allocate new SA only if the state of SA in the holder is
813 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
814 */
815 if (isr->sav != NULL) {
816 if (isr->sav->sah == NULL)
817 panic("key_checkrequest: sah is null");
818 if (isr->sav == (struct secasvar *)LIST_FIRST(
819 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
820 KEY_FREESAV(&isr->sav);
821 isr->sav = NULL;
822 }
823 }
824 #else
825 /*
826 * we free any SA stashed in the IPsec request because a different
827 * SA may be involved each time this request is checked, either
828 * because new SAs are being configured, or this request is
829 * associated with an unconnected datagram socket, or this request
830 * is associated with a system default policy.
831 *
832 * The operation may have negative impact to performance. We may
833 * want to check cached SA carefully, rather than picking new SA
834 * every time.
835 */
836 if (isr->sav != NULL) {
837 KEY_FREESAV(&isr->sav);
838 isr->sav = NULL;
839 }
840 #endif
841
842 /*
843 * new SA allocation if no SA found.
844 * key_allocsa_policy should allocate the oldest SA available.
845 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
846 */
847 if (isr->sav == NULL)
848 isr->sav = key_allocsa_policy(saidx);
849
850 /* When there is SA. */
851 if (isr->sav != NULL) {
852 if (isr->sav->state != SADB_SASTATE_MATURE &&
853 isr->sav->state != SADB_SASTATE_DYING)
854 return EINVAL;
855 return 0;
856 }
857
858 /* there is no SA */
859 error = key_acquire(saidx, isr->sp);
860 if (error != 0) {
861 /* XXX What should I do ? */
862 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
863 "from key_acquire.\n", error));
864 return error;
865 }
866
867 if (level != IPSEC_LEVEL_REQUIRE) {
868 /* XXX sigh, the interface to this routine is botched */
869 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
870 return 0;
871 } else {
872 return ENOENT;
873 }
874 }
875
876 /*
877 * allocating a SA for policy entry from SAD.
878 * NOTE: searching SAD of aliving state.
879 * OUT: NULL: not found.
880 * others: found and return the pointer.
881 */
882 static struct secasvar *
883 key_allocsa_policy(const struct secasindex *saidx)
884 {
885 struct secashead *sah;
886 struct secasvar *sav;
887 u_int stateidx, state;
888
889 LIST_FOREACH(sah, &sahtree, chain) {
890 if (sah->state == SADB_SASTATE_DEAD)
891 continue;
892 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
893 goto found;
894 }
895
896 return NULL;
897
898 found:
899
900 /* search valid state */
901 for (stateidx = 0;
902 stateidx < _ARRAYLEN(saorder_state_valid);
903 stateidx++) {
904
905 state = saorder_state_valid[stateidx];
906
907 sav = key_do_allocsa_policy(sah, state);
908 if (sav != NULL)
909 return sav;
910 }
911
912 return NULL;
913 }
914
915 /*
916 * searching SAD with direction, protocol, mode and state.
917 * called by key_allocsa_policy().
918 * OUT:
919 * NULL : not found
920 * others : found, pointer to a SA.
921 */
922 static struct secasvar *
923 key_do_allocsa_policy(struct secashead *sah, u_int state)
924 {
925 struct secasvar *sav, *nextsav, *candidate, *d;
926
927 /* initilize */
928 candidate = NULL;
929
930 for (sav = LIST_FIRST(&sah->savtree[state]);
931 sav != NULL;
932 sav = nextsav) {
933
934 nextsav = LIST_NEXT(sav, chain);
935
936 /* sanity check */
937 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
938
939 /* initialize */
940 if (candidate == NULL) {
941 candidate = sav;
942 continue;
943 }
944
945 /* Which SA is the better ? */
946
947 /* sanity check 2 */
948 if (candidate->lft_c == NULL || sav->lft_c == NULL)
949 panic("key_do_allocsa_policy: "
950 "lifetime_current is NULL");
951
952 /* What the best method is to compare ? */
953 if (key_prefered_oldsa) {
954 if (candidate->lft_c->sadb_lifetime_addtime >
955 sav->lft_c->sadb_lifetime_addtime) {
956 candidate = sav;
957 }
958 continue;
959 /*NOTREACHED*/
960 }
961
962 /* prefered new sa rather than old sa */
963 if (candidate->lft_c->sadb_lifetime_addtime <
964 sav->lft_c->sadb_lifetime_addtime) {
965 d = candidate;
966 candidate = sav;
967 } else
968 d = sav;
969
970 /*
971 * prepared to delete the SA when there is more
972 * suitable candidate and the lifetime of the SA is not
973 * permanent.
974 */
975 if (d->lft_c->sadb_lifetime_addtime != 0) {
976 struct mbuf *m, *result;
977 uint8_t satype;
978
979 key_sa_chgstate(d, SADB_SASTATE_DEAD);
980
981 IPSEC_ASSERT(d->refcnt > 0,
982 ("key_do_allocsa_policy: bogus ref count"));
983
984 satype = key_proto2satype(d->sah->saidx.proto);
985 if (satype == 0)
986 goto msgfail;
987
988 m = key_setsadbmsg(SADB_DELETE, 0,
989 satype, 0, 0, d->refcnt - 1);
990 if (!m)
991 goto msgfail;
992 result = m;
993
994 /* set sadb_address for saidx's. */
995 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
996 &d->sah->saidx.src.sa,
997 d->sah->saidx.src.sa.sa_len << 3,
998 IPSEC_ULPROTO_ANY);
999 if (!m)
1000 goto msgfail;
1001 m_cat(result, m);
1002
1003 /* set sadb_address for saidx's. */
1004 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1005 &d->sah->saidx.src.sa,
1006 d->sah->saidx.src.sa.sa_len << 3,
1007 IPSEC_ULPROTO_ANY);
1008 if (!m)
1009 goto msgfail;
1010 m_cat(result, m);
1011
1012 /* create SA extension */
1013 m = key_setsadbsa(d);
1014 if (!m)
1015 goto msgfail;
1016 m_cat(result, m);
1017
1018 if (result->m_len < sizeof(struct sadb_msg)) {
1019 result = m_pullup(result,
1020 sizeof(struct sadb_msg));
1021 if (result == NULL)
1022 goto msgfail;
1023 }
1024
1025 result->m_pkthdr.len = 0;
1026 for (m = result; m; m = m->m_next)
1027 result->m_pkthdr.len += m->m_len;
1028 mtod(result, struct sadb_msg *)->sadb_msg_len =
1029 PFKEY_UNIT64(result->m_pkthdr.len);
1030
1031 if (key_sendup_mbuf(NULL, result,
1032 KEY_SENDUP_REGISTERED))
1033 goto msgfail;
1034 msgfail:
1035 KEY_FREESAV(&d);
1036 }
1037 }
1038
1039 if (candidate) {
1040 SA_ADDREF(candidate);
1041 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1042 printf("DP allocsa_policy cause "
1043 "refcnt++:%d SA:%p\n",
1044 candidate->refcnt, candidate));
1045 }
1046 return candidate;
1047 }
1048
1049 /*
1050 * allocating a usable SA entry for a *INBOUND* packet.
1051 * Must call key_freesav() later.
1052 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1053 * NULL: not found, or error occurred.
1054 *
1055 * In the comparison, no source address is used--for RFC2401 conformance.
1056 * To quote, from section 4.1:
1057 * A security association is uniquely identified by a triple consisting
1058 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1059 * security protocol (AH or ESP) identifier.
1060 * Note that, however, we do need to keep source address in IPsec SA.
1061 * IKE specification and PF_KEY specification do assume that we
1062 * keep source address in IPsec SA. We see a tricky situation here.
1063 *
1064 * sport and dport are used for NAT-T. network order is always used.
1065 */
1066 struct secasvar *
1067 key_allocsa(
1068 const union sockaddr_union *dst,
1069 u_int proto,
1070 u_int32_t spi,
1071 u_int16_t sport,
1072 u_int16_t dport,
1073 const char* where, int tag)
1074 {
1075 struct secashead *sah;
1076 struct secasvar *sav;
1077 u_int stateidx, state;
1078 int s;
1079 int chkport = 0;
1080
1081 int must_check_spi = 1;
1082 int must_check_alg = 0;
1083 u_int16_t cpi = 0;
1084 u_int8_t algo = 0;
1085
1086 #ifdef IPSEC_NAT_T
1087 if ((sport != 0) && (dport != 0))
1088 chkport = 1;
1089 #endif
1090
1091 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1092
1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1094 printf("DP key_allocsa from %s:%u\n", where, tag));
1095
1096 /*
1097 * XXX IPCOMP case
1098 * We use cpi to define spi here. In the case where cpi <=
1099 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1100 * the real spi. In this case, don't check the spi but check the
1101 * algorithm
1102 */
1103
1104 if (proto == IPPROTO_IPCOMP) {
1105 u_int32_t tmp;
1106 tmp = ntohl(spi);
1107 cpi = (u_int16_t) tmp;
1108 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1109 algo = (u_int8_t) cpi;
1110 must_check_spi = 0;
1111 must_check_alg = 1;
1112 }
1113 }
1114
1115 /*
1116 * searching SAD.
1117 * XXX: to be checked internal IP header somewhere. Also when
1118 * IPsec tunnel packet is received. But ESP tunnel mode is
1119 * encrypted so we can't check internal IP header.
1120 */
1121 s = splsoftnet(); /*called from softclock()*/
1122 LIST_FOREACH(sah, &sahtree, chain) {
1123 /* search valid state */
1124 for (stateidx = 0;
1125 stateidx < _ARRAYLEN(saorder_state_valid);
1126 stateidx++) {
1127 state = saorder_state_valid[stateidx];
1128 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1129 /* sanity check */
1130 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1131 /* do not return entries w/ unusable state */
1132 if (sav->state != SADB_SASTATE_MATURE &&
1133 sav->state != SADB_SASTATE_DYING)
1134 continue;
1135 if (proto != sav->sah->saidx.proto)
1136 continue;
1137 if (must_check_spi && spi != sav->spi)
1138 continue;
1139 /* XXX only on the ipcomp case */
1140 if (must_check_alg && algo != sav->alg_comp)
1141 continue;
1142
1143 #if 0 /* don't check src */
1144 /* Fix port in src->sa */
1145
1146 /* check src address */
1147 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1148 continue;
1149 #endif
1150 /* fix port of dst address XXX*/
1151 key_porttosaddr(__UNCONST(dst), dport);
1152 /* check dst address */
1153 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1154 continue;
1155 SA_ADDREF(sav);
1156 goto done;
1157 }
1158 }
1159 }
1160 sav = NULL;
1161 done:
1162 splx(s);
1163
1164 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1165 printf("DP key_allocsa return SA:%p; refcnt %u\n",
1166 sav, sav ? sav->refcnt : 0));
1167 return sav;
1168 }
1169
1170 /*
1171 * Must be called after calling key_allocsp().
1172 * For both the packet without socket and key_freeso().
1173 */
1174 void
1175 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1176 {
1177 struct secpolicy *sp = *spp;
1178
1179 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1180
1181 SP_DELREF(sp);
1182
1183 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1184 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1185 sp, sp->id, where, tag, sp->refcnt));
1186
1187 if (sp->refcnt == 0) {
1188 *spp = NULL;
1189 key_delsp(sp);
1190 }
1191 }
1192
1193 /*
1194 * Must be called after calling key_allocsp().
1195 * For the packet with socket.
1196 */
1197 void
1198 key_freeso(struct socket *so)
1199 {
1200 /* sanity check */
1201 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1202
1203 switch (so->so_proto->pr_domain->dom_family) {
1204 #ifdef INET
1205 case PF_INET:
1206 {
1207 struct inpcb *pcb = sotoinpcb(so);
1208
1209 /* Does it have a PCB ? */
1210 if (pcb == NULL)
1211 return;
1212 key_freesp_so(&pcb->inp_sp->sp_in);
1213 key_freesp_so(&pcb->inp_sp->sp_out);
1214 }
1215 break;
1216 #endif
1217 #ifdef INET6
1218 case PF_INET6:
1219 {
1220 #ifdef HAVE_NRL_INPCB
1221 struct inpcb *pcb = sotoinpcb(so);
1222
1223 /* Does it have a PCB ? */
1224 if (pcb == NULL)
1225 return;
1226 key_freesp_so(&pcb->inp_sp->sp_in);
1227 key_freesp_so(&pcb->inp_sp->sp_out);
1228 #else
1229 struct in6pcb *pcb = sotoin6pcb(so);
1230
1231 /* Does it have a PCB ? */
1232 if (pcb == NULL)
1233 return;
1234 key_freesp_so(&pcb->in6p_sp->sp_in);
1235 key_freesp_so(&pcb->in6p_sp->sp_out);
1236 #endif
1237 }
1238 break;
1239 #endif /* INET6 */
1240 default:
1241 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1242 so->so_proto->pr_domain->dom_family));
1243 return;
1244 }
1245 }
1246
1247 static void
1248 key_freesp_so(struct secpolicy **sp)
1249 {
1250 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1251
1252 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1253 (*sp)->policy == IPSEC_POLICY_BYPASS)
1254 return;
1255
1256 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1257 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1258 KEY_FREESP(sp);
1259 }
1260
1261 /*
1262 * Must be called after calling key_allocsa().
1263 * This function is called by key_freesp() to free some SA allocated
1264 * for a policy.
1265 */
1266 void
1267 key_freesav(struct secasvar **psav, const char* where, int tag)
1268 {
1269 struct secasvar *sav = *psav;
1270
1271 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1272
1273 SA_DELREF(sav);
1274
1275 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1276 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1277 sav, (u_long)ntohl(sav->spi),
1278 where, tag, sav->refcnt));
1279
1280 if (sav->refcnt == 0) {
1281 *psav = NULL;
1282 key_delsav(sav);
1283 }
1284 }
1285
1286 /* %%% SPD management */
1287 /*
1288 * free security policy entry.
1289 */
1290 static void
1291 key_delsp(struct secpolicy *sp)
1292 {
1293 int s;
1294
1295 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1296
1297 key_sp_dead(sp);
1298
1299 IPSEC_ASSERT(sp->refcnt == 0,
1300 ("key_delsp: SP with references deleted (refcnt %u)",
1301 sp->refcnt));
1302
1303 s = splsoftnet(); /*called from softclock()*/
1304
1305 {
1306 struct ipsecrequest *isr = sp->req, *nextisr;
1307
1308 while (isr != NULL) {
1309 if (isr->sav != NULL) {
1310 KEY_FREESAV(&isr->sav);
1311 isr->sav = NULL;
1312 }
1313
1314 nextisr = isr->next;
1315 KFREE(isr);
1316 isr = nextisr;
1317 }
1318 }
1319
1320 KFREE(sp);
1321
1322 splx(s);
1323 }
1324
1325 /*
1326 * search SPD
1327 * OUT: NULL : not found
1328 * others : found, pointer to a SP.
1329 */
1330 static struct secpolicy *
1331 key_getsp(struct secpolicyindex *spidx)
1332 {
1333 struct secpolicy *sp;
1334
1335 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1336
1337 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1338 if (sp->state == IPSEC_SPSTATE_DEAD)
1339 continue;
1340 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1341 SP_ADDREF(sp);
1342 return sp;
1343 }
1344 }
1345
1346 return NULL;
1347 }
1348
1349 /*
1350 * get SP by index.
1351 * OUT: NULL : not found
1352 * others : found, pointer to a SP.
1353 */
1354 static struct secpolicy *
1355 key_getspbyid(u_int32_t id)
1356 {
1357 struct secpolicy *sp;
1358
1359 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1360 if (sp->state == IPSEC_SPSTATE_DEAD)
1361 continue;
1362 if (sp->id == id) {
1363 SP_ADDREF(sp);
1364 return sp;
1365 }
1366 }
1367
1368 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1369 if (sp->state == IPSEC_SPSTATE_DEAD)
1370 continue;
1371 if (sp->id == id) {
1372 SP_ADDREF(sp);
1373 return sp;
1374 }
1375 }
1376
1377 return NULL;
1378 }
1379
1380 struct secpolicy *
1381 key_newsp(const char* where, int tag)
1382 {
1383 struct secpolicy *newsp = NULL;
1384
1385 newsp = (struct secpolicy *)
1386 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1387 if (newsp) {
1388 newsp->refcnt = 1;
1389 newsp->req = NULL;
1390 }
1391
1392 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1393 printf("DP key_newsp from %s:%u return SP:%p\n",
1394 where, tag, newsp));
1395 return newsp;
1396 }
1397
1398 /*
1399 * create secpolicy structure from sadb_x_policy structure.
1400 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1401 * so must be set properly later.
1402 */
1403 struct secpolicy *
1404 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1405 {
1406 struct secpolicy *newsp;
1407
1408 /* sanity check */
1409 if (xpl0 == NULL)
1410 panic("key_msg2sp: NULL pointer was passed");
1411 if (len < sizeof(*xpl0))
1412 panic("key_msg2sp: invalid length");
1413 if (len != PFKEY_EXTLEN(xpl0)) {
1414 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1415 *error = EINVAL;
1416 return NULL;
1417 }
1418
1419 if ((newsp = KEY_NEWSP()) == NULL) {
1420 *error = ENOBUFS;
1421 return NULL;
1422 }
1423
1424 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1425 newsp->policy = xpl0->sadb_x_policy_type;
1426
1427 /* check policy */
1428 switch (xpl0->sadb_x_policy_type) {
1429 case IPSEC_POLICY_DISCARD:
1430 case IPSEC_POLICY_NONE:
1431 case IPSEC_POLICY_ENTRUST:
1432 case IPSEC_POLICY_BYPASS:
1433 newsp->req = NULL;
1434 break;
1435
1436 case IPSEC_POLICY_IPSEC:
1437 {
1438 int tlen;
1439 struct sadb_x_ipsecrequest *xisr;
1440 struct ipsecrequest **p_isr = &newsp->req;
1441
1442 /* validity check */
1443 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1444 ipseclog((LOG_DEBUG,
1445 "key_msg2sp: Invalid msg length.\n"));
1446 KEY_FREESP(&newsp);
1447 *error = EINVAL;
1448 return NULL;
1449 }
1450
1451 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1452 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1453
1454 while (tlen > 0) {
1455 /* length check */
1456 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1457 ipseclog((LOG_DEBUG, "key_msg2sp: "
1458 "invalid ipsecrequest length.\n"));
1459 KEY_FREESP(&newsp);
1460 *error = EINVAL;
1461 return NULL;
1462 }
1463
1464 /* allocate request buffer */
1465 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1466 if ((*p_isr) == NULL) {
1467 ipseclog((LOG_DEBUG,
1468 "key_msg2sp: No more memory.\n"));
1469 KEY_FREESP(&newsp);
1470 *error = ENOBUFS;
1471 return NULL;
1472 }
1473 memset(*p_isr, 0, sizeof(**p_isr));
1474
1475 /* set values */
1476 (*p_isr)->next = NULL;
1477
1478 switch (xisr->sadb_x_ipsecrequest_proto) {
1479 case IPPROTO_ESP:
1480 case IPPROTO_AH:
1481 case IPPROTO_IPCOMP:
1482 break;
1483 default:
1484 ipseclog((LOG_DEBUG,
1485 "key_msg2sp: invalid proto type=%u\n",
1486 xisr->sadb_x_ipsecrequest_proto));
1487 KEY_FREESP(&newsp);
1488 *error = EPROTONOSUPPORT;
1489 return NULL;
1490 }
1491 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1492
1493 switch (xisr->sadb_x_ipsecrequest_mode) {
1494 case IPSEC_MODE_TRANSPORT:
1495 case IPSEC_MODE_TUNNEL:
1496 break;
1497 case IPSEC_MODE_ANY:
1498 default:
1499 ipseclog((LOG_DEBUG,
1500 "key_msg2sp: invalid mode=%u\n",
1501 xisr->sadb_x_ipsecrequest_mode));
1502 KEY_FREESP(&newsp);
1503 *error = EINVAL;
1504 return NULL;
1505 }
1506 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1507
1508 switch (xisr->sadb_x_ipsecrequest_level) {
1509 case IPSEC_LEVEL_DEFAULT:
1510 case IPSEC_LEVEL_USE:
1511 case IPSEC_LEVEL_REQUIRE:
1512 break;
1513 case IPSEC_LEVEL_UNIQUE:
1514 /* validity check */
1515 /*
1516 * If range violation of reqid, kernel will
1517 * update it, don't refuse it.
1518 */
1519 if (xisr->sadb_x_ipsecrequest_reqid
1520 > IPSEC_MANUAL_REQID_MAX) {
1521 ipseclog((LOG_DEBUG,
1522 "key_msg2sp: reqid=%d range "
1523 "violation, updated by kernel.\n",
1524 xisr->sadb_x_ipsecrequest_reqid));
1525 xisr->sadb_x_ipsecrequest_reqid = 0;
1526 }
1527
1528 /* allocate new reqid id if reqid is zero. */
1529 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1530 u_int16_t reqid;
1531 if ((reqid = key_newreqid()) == 0) {
1532 KEY_FREESP(&newsp);
1533 *error = ENOBUFS;
1534 return NULL;
1535 }
1536 (*p_isr)->saidx.reqid = reqid;
1537 xisr->sadb_x_ipsecrequest_reqid = reqid;
1538 } else {
1539 /* set it for manual keying. */
1540 (*p_isr)->saidx.reqid =
1541 xisr->sadb_x_ipsecrequest_reqid;
1542 }
1543 break;
1544
1545 default:
1546 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1547 xisr->sadb_x_ipsecrequest_level));
1548 KEY_FREESP(&newsp);
1549 *error = EINVAL;
1550 return NULL;
1551 }
1552 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1553
1554 /* set IP addresses if there */
1555 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1556 struct sockaddr *paddr;
1557
1558 paddr = (struct sockaddr *)(xisr + 1);
1559
1560 /* validity check */
1561 if (paddr->sa_len
1562 > sizeof((*p_isr)->saidx.src)) {
1563 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1564 "address length.\n"));
1565 KEY_FREESP(&newsp);
1566 *error = EINVAL;
1567 return NULL;
1568 }
1569 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1570
1571 paddr = (struct sockaddr *)((char *)paddr
1572 + paddr->sa_len);
1573
1574 /* validity check */
1575 if (paddr->sa_len
1576 > sizeof((*p_isr)->saidx.dst)) {
1577 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1578 "address length.\n"));
1579 KEY_FREESP(&newsp);
1580 *error = EINVAL;
1581 return NULL;
1582 }
1583 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1584 }
1585
1586 (*p_isr)->sav = NULL;
1587 (*p_isr)->sp = newsp;
1588
1589 /* initialization for the next. */
1590 p_isr = &(*p_isr)->next;
1591 tlen -= xisr->sadb_x_ipsecrequest_len;
1592
1593 /* validity check */
1594 if (tlen < 0) {
1595 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1596 KEY_FREESP(&newsp);
1597 *error = EINVAL;
1598 return NULL;
1599 }
1600
1601 xisr = (struct sadb_x_ipsecrequest *)((char *)xisr
1602 + xisr->sadb_x_ipsecrequest_len);
1603 }
1604 }
1605 break;
1606 default:
1607 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1608 KEY_FREESP(&newsp);
1609 *error = EINVAL;
1610 return NULL;
1611 }
1612
1613 *error = 0;
1614 return newsp;
1615 }
1616
1617 static u_int16_t
1618 key_newreqid(void)
1619 {
1620 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1621
1622 auto_reqid = (auto_reqid == 0xffff
1623 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1624
1625 /* XXX should be unique check */
1626
1627 return auto_reqid;
1628 }
1629
1630 /*
1631 * copy secpolicy struct to sadb_x_policy structure indicated.
1632 */
1633 struct mbuf *
1634 key_sp2msg(struct secpolicy *sp)
1635 {
1636 struct sadb_x_policy *xpl;
1637 int tlen;
1638 char *p;
1639 struct mbuf *m;
1640
1641 /* sanity check. */
1642 if (sp == NULL)
1643 panic("key_sp2msg: NULL pointer was passed");
1644
1645 tlen = key_getspreqmsglen(sp);
1646
1647 m = key_alloc_mbuf(tlen);
1648 if (!m || m->m_next) { /*XXX*/
1649 if (m)
1650 m_freem(m);
1651 return NULL;
1652 }
1653
1654 m->m_len = tlen;
1655 m->m_next = NULL;
1656 xpl = mtod(m, struct sadb_x_policy *);
1657 memset(xpl, 0, tlen);
1658
1659 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1660 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1661 xpl->sadb_x_policy_type = sp->policy;
1662 xpl->sadb_x_policy_dir = sp->spidx.dir;
1663 xpl->sadb_x_policy_id = sp->id;
1664 p = (char *)xpl + sizeof(*xpl);
1665
1666 /* if is the policy for ipsec ? */
1667 if (sp->policy == IPSEC_POLICY_IPSEC) {
1668 struct sadb_x_ipsecrequest *xisr;
1669 struct ipsecrequest *isr;
1670
1671 for (isr = sp->req; isr != NULL; isr = isr->next) {
1672
1673 xisr = (struct sadb_x_ipsecrequest *)p;
1674
1675 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1676 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1677 xisr->sadb_x_ipsecrequest_level = isr->level;
1678 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1679
1680 p += sizeof(*xisr);
1681 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1682 p += isr->saidx.src.sa.sa_len;
1683 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1684 p += isr->saidx.src.sa.sa_len;
1685
1686 xisr->sadb_x_ipsecrequest_len =
1687 PFKEY_ALIGN8(sizeof(*xisr)
1688 + isr->saidx.src.sa.sa_len
1689 + isr->saidx.dst.sa.sa_len);
1690 }
1691 }
1692
1693 return m;
1694 }
1695
1696 /* m will not be freed nor modified */
1697 static struct mbuf *
1698 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1699 int ndeep, int nitem, ...)
1700 {
1701 va_list ap;
1702 int idx;
1703 int i;
1704 struct mbuf *result = NULL, *n;
1705 int len;
1706
1707 if (m == NULL || mhp == NULL)
1708 panic("null pointer passed to key_gather");
1709
1710 va_start(ap, nitem);
1711 for (i = 0; i < nitem; i++) {
1712 idx = va_arg(ap, int);
1713 if (idx < 0 || idx > SADB_EXT_MAX)
1714 goto fail;
1715 /* don't attempt to pull empty extension */
1716 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1717 continue;
1718 if (idx != SADB_EXT_RESERVED &&
1719 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1720 continue;
1721
1722 if (idx == SADB_EXT_RESERVED) {
1723 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1724 #ifdef DIAGNOSTIC
1725 if (len > MHLEN)
1726 panic("assumption failed");
1727 #endif
1728 MGETHDR(n, M_DONTWAIT, MT_DATA);
1729 if (!n)
1730 goto fail;
1731 n->m_len = len;
1732 n->m_next = NULL;
1733 m_copydata(m, 0, sizeof(struct sadb_msg),
1734 mtod(n, void *));
1735 } else if (i < ndeep) {
1736 len = mhp->extlen[idx];
1737 n = key_alloc_mbuf(len);
1738 if (!n || n->m_next) { /*XXX*/
1739 if (n)
1740 m_freem(n);
1741 goto fail;
1742 }
1743 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1744 mtod(n, void *));
1745 } else {
1746 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1747 M_DONTWAIT);
1748 }
1749 if (n == NULL)
1750 goto fail;
1751
1752 if (result)
1753 m_cat(result, n);
1754 else
1755 result = n;
1756 }
1757 va_end(ap);
1758
1759 if ((result->m_flags & M_PKTHDR) != 0) {
1760 result->m_pkthdr.len = 0;
1761 for (n = result; n; n = n->m_next)
1762 result->m_pkthdr.len += n->m_len;
1763 }
1764
1765 return result;
1766
1767 fail:
1768 va_end(ap);
1769 m_freem(result);
1770 return NULL;
1771 }
1772
1773 /*
1774 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1775 * add an entry to SP database, when received
1776 * <base, address(SD), (lifetime(H),) policy>
1777 * from the user(?).
1778 * Adding to SP database,
1779 * and send
1780 * <base, address(SD), (lifetime(H),) policy>
1781 * to the socket which was send.
1782 *
1783 * SPDADD set a unique policy entry.
1784 * SPDSETIDX like SPDADD without a part of policy requests.
1785 * SPDUPDATE replace a unique policy entry.
1786 *
1787 * m will always be freed.
1788 */
1789 static int
1790 key_spdadd(struct socket *so, struct mbuf *m,
1791 const struct sadb_msghdr *mhp)
1792 {
1793 struct sadb_address *src0, *dst0;
1794 struct sadb_x_policy *xpl0, *xpl;
1795 struct sadb_lifetime *lft = NULL;
1796 struct secpolicyindex spidx;
1797 struct secpolicy *newsp;
1798 int error;
1799
1800 /* sanity check */
1801 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1802 panic("key_spdadd: NULL pointer is passed");
1803
1804 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1805 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1806 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1807 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1808 return key_senderror(so, m, EINVAL);
1809 }
1810 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1811 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1812 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1813 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1814 return key_senderror(so, m, EINVAL);
1815 }
1816 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1817 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1818 < sizeof(struct sadb_lifetime)) {
1819 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1820 return key_senderror(so, m, EINVAL);
1821 }
1822 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1823 }
1824
1825 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1826 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1827 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1828
1829 /* make secindex */
1830 /* XXX boundary check against sa_len */
1831 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1832 src0 + 1,
1833 dst0 + 1,
1834 src0->sadb_address_prefixlen,
1835 dst0->sadb_address_prefixlen,
1836 src0->sadb_address_proto,
1837 &spidx);
1838
1839 /* checking the direciton. */
1840 switch (xpl0->sadb_x_policy_dir) {
1841 case IPSEC_DIR_INBOUND:
1842 case IPSEC_DIR_OUTBOUND:
1843 break;
1844 default:
1845 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1846 mhp->msg->sadb_msg_errno = EINVAL;
1847 return 0;
1848 }
1849
1850 /* check policy */
1851 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1852 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1853 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1854 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1855 return key_senderror(so, m, EINVAL);
1856 }
1857
1858 /* policy requests are mandatory when action is ipsec. */
1859 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1860 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1861 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1862 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1863 return key_senderror(so, m, EINVAL);
1864 }
1865
1866 /*
1867 * checking there is SP already or not.
1868 * SPDUPDATE doesn't depend on whether there is a SP or not.
1869 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1870 * then error.
1871 */
1872 newsp = key_getsp(&spidx);
1873 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1874 if (newsp) {
1875 key_sp_dead(newsp);
1876 key_sp_unlink(newsp); /* XXX jrs ordering */
1877 KEY_FREESP(&newsp);
1878 newsp = NULL;
1879 }
1880 } else {
1881 if (newsp != NULL) {
1882 KEY_FREESP(&newsp);
1883 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1884 return key_senderror(so, m, EEXIST);
1885 }
1886 }
1887
1888 /* allocation new SP entry */
1889 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1890 return key_senderror(so, m, error);
1891 }
1892
1893 if ((newsp->id = key_getnewspid()) == 0) {
1894 KFREE(newsp);
1895 return key_senderror(so, m, ENOBUFS);
1896 }
1897
1898 /* XXX boundary check against sa_len */
1899 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1900 src0 + 1,
1901 dst0 + 1,
1902 src0->sadb_address_prefixlen,
1903 dst0->sadb_address_prefixlen,
1904 src0->sadb_address_proto,
1905 &newsp->spidx);
1906
1907 /* sanity check on addr pair */
1908 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1909 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1910 KFREE(newsp);
1911 return key_senderror(so, m, EINVAL);
1912 }
1913 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1914 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1915 KFREE(newsp);
1916 return key_senderror(so, m, EINVAL);
1917 }
1918 #if 1
1919 if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1920 struct sockaddr *sa;
1921 sa = (struct sockaddr *)(src0 + 1);
1922 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1923 KFREE(newsp);
1924 return key_senderror(so, m, EINVAL);
1925 }
1926 }
1927 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1928 struct sockaddr *sa;
1929 sa = (struct sockaddr *)(dst0 + 1);
1930 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1931 KFREE(newsp);
1932 return key_senderror(so, m, EINVAL);
1933 }
1934 }
1935 #endif
1936
1937 newsp->created = time_second;
1938 newsp->lastused = newsp->created;
1939 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1940 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1941
1942 newsp->refcnt = 1; /* do not reclaim until I say I do */
1943 newsp->state = IPSEC_SPSTATE_ALIVE;
1944 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1945
1946 /* delete the entry in spacqtree */
1947 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1948 struct secspacq *spacq;
1949 if ((spacq = key_getspacq(&spidx)) != NULL) {
1950 /* reset counter in order to deletion by timehandler. */
1951 spacq->created = time_second;
1952 spacq->count = 0;
1953 }
1954 }
1955
1956 #if defined(__NetBSD__)
1957 /* Invalidate all cached SPD pointers in the PCBs. */
1958 ipsec_invalpcbcacheall();
1959
1960 #if defined(GATEWAY)
1961 /* Invalidate the ipflow cache, as well. */
1962 ipflow_invalidate_all(0);
1963 #ifdef INET6
1964 ip6flow_invalidate_all(0);
1965 #endif /* INET6 */
1966 #endif /* GATEWAY */
1967 #endif /* __NetBSD__ */
1968
1969 {
1970 struct mbuf *n, *mpolicy;
1971 struct sadb_msg *newmsg;
1972 int off;
1973
1974 /* create new sadb_msg to reply. */
1975 if (lft) {
1976 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1977 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1978 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1979 } else {
1980 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1981 SADB_X_EXT_POLICY,
1982 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1983 }
1984 if (!n)
1985 return key_senderror(so, m, ENOBUFS);
1986
1987 if (n->m_len < sizeof(*newmsg)) {
1988 n = m_pullup(n, sizeof(*newmsg));
1989 if (!n)
1990 return key_senderror(so, m, ENOBUFS);
1991 }
1992 newmsg = mtod(n, struct sadb_msg *);
1993 newmsg->sadb_msg_errno = 0;
1994 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1995
1996 off = 0;
1997 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1998 sizeof(*xpl), &off);
1999 if (mpolicy == NULL) {
2000 /* n is already freed */
2001 return key_senderror(so, m, ENOBUFS);
2002 }
2003 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2004 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2005 m_freem(n);
2006 return key_senderror(so, m, EINVAL);
2007 }
2008 xpl->sadb_x_policy_id = newsp->id;
2009
2010 m_freem(m);
2011 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2012 }
2013 }
2014
2015 /*
2016 * get new policy id.
2017 * OUT:
2018 * 0: failure.
2019 * others: success.
2020 */
2021 static u_int32_t
2022 key_getnewspid(void)
2023 {
2024 u_int32_t newid = 0;
2025 int count = key_spi_trycnt; /* XXX */
2026 struct secpolicy *sp;
2027
2028 /* when requesting to allocate spi ranged */
2029 while (count--) {
2030 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2031
2032 if ((sp = key_getspbyid(newid)) == NULL)
2033 break;
2034
2035 KEY_FREESP(&sp);
2036 }
2037
2038 if (count == 0 || newid == 0) {
2039 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2040 return 0;
2041 }
2042
2043 return newid;
2044 }
2045
2046 /*
2047 * SADB_SPDDELETE processing
2048 * receive
2049 * <base, address(SD), policy(*)>
2050 * from the user(?), and set SADB_SASTATE_DEAD,
2051 * and send,
2052 * <base, address(SD), policy(*)>
2053 * to the ikmpd.
2054 * policy(*) including direction of policy.
2055 *
2056 * m will always be freed.
2057 */
2058 static int
2059 key_spddelete(struct socket *so, struct mbuf *m,
2060 const struct sadb_msghdr *mhp)
2061 {
2062 struct sadb_address *src0, *dst0;
2063 struct sadb_x_policy *xpl0;
2064 struct secpolicyindex spidx;
2065 struct secpolicy *sp;
2066
2067 /* sanity check */
2068 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2069 panic("key_spddelete: NULL pointer is passed");
2070
2071 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2072 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2073 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2074 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2075 return key_senderror(so, m, EINVAL);
2076 }
2077 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2078 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2079 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2080 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2081 return key_senderror(so, m, EINVAL);
2082 }
2083
2084 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2085 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2086 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2087
2088 /* make secindex */
2089 /* XXX boundary check against sa_len */
2090 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2091 src0 + 1,
2092 dst0 + 1,
2093 src0->sadb_address_prefixlen,
2094 dst0->sadb_address_prefixlen,
2095 src0->sadb_address_proto,
2096 &spidx);
2097
2098 /* checking the direciton. */
2099 switch (xpl0->sadb_x_policy_dir) {
2100 case IPSEC_DIR_INBOUND:
2101 case IPSEC_DIR_OUTBOUND:
2102 break;
2103 default:
2104 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2105 return key_senderror(so, m, EINVAL);
2106 }
2107
2108 /* Is there SP in SPD ? */
2109 if ((sp = key_getsp(&spidx)) == NULL) {
2110 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2111 return key_senderror(so, m, EINVAL);
2112 }
2113
2114 /* save policy id to buffer to be returned. */
2115 xpl0->sadb_x_policy_id = sp->id;
2116
2117 key_sp_dead(sp);
2118 key_sp_unlink(sp); /* XXX jrs ordering */
2119 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2120
2121 #if defined(__NetBSD__)
2122 /* Invalidate all cached SPD pointers in the PCBs. */
2123 ipsec_invalpcbcacheall();
2124
2125 /* We're deleting policy; no need to invalidate the ipflow cache. */
2126 #endif /* __NetBSD__ */
2127
2128 {
2129 struct mbuf *n;
2130 struct sadb_msg *newmsg;
2131
2132 /* create new sadb_msg to reply. */
2133 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2134 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2135 if (!n)
2136 return key_senderror(so, m, ENOBUFS);
2137
2138 newmsg = mtod(n, struct sadb_msg *);
2139 newmsg->sadb_msg_errno = 0;
2140 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2141
2142 m_freem(m);
2143 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2144 }
2145 }
2146
2147 /*
2148 * SADB_SPDDELETE2 processing
2149 * receive
2150 * <base, policy(*)>
2151 * from the user(?), and set SADB_SASTATE_DEAD,
2152 * and send,
2153 * <base, policy(*)>
2154 * to the ikmpd.
2155 * policy(*) including direction of policy.
2156 *
2157 * m will always be freed.
2158 */
2159 static int
2160 key_spddelete2(struct socket *so, struct mbuf *m,
2161 const struct sadb_msghdr *mhp)
2162 {
2163 u_int32_t id;
2164 struct secpolicy *sp;
2165
2166 /* sanity check */
2167 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2168 panic("key_spddelete2: NULL pointer is passed");
2169
2170 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2171 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2172 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2173 key_senderror(so, m, EINVAL);
2174 return 0;
2175 }
2176
2177 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2178
2179 /* Is there SP in SPD ? */
2180 if ((sp = key_getspbyid(id)) == NULL) {
2181 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2182 return key_senderror(so, m, EINVAL);
2183 }
2184
2185 key_sp_dead(sp);
2186 key_sp_unlink(sp); /* XXX jrs ordering */
2187 KEY_FREESP(&sp); /* ref gained by key_getsp */
2188 sp = NULL;
2189
2190 #if defined(__NetBSD__)
2191 /* Invalidate all cached SPD pointers in the PCBs. */
2192 ipsec_invalpcbcacheall();
2193
2194 /* We're deleting policy; no need to invalidate the ipflow cache. */
2195 #endif /* __NetBSD__ */
2196
2197 {
2198 struct mbuf *n, *nn;
2199 struct sadb_msg *newmsg;
2200 int off, len;
2201
2202 /* create new sadb_msg to reply. */
2203 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2204
2205 if (len > MCLBYTES)
2206 return key_senderror(so, m, ENOBUFS);
2207 MGETHDR(n, M_DONTWAIT, MT_DATA);
2208 if (n && len > MHLEN) {
2209 MCLGET(n, M_DONTWAIT);
2210 if ((n->m_flags & M_EXT) == 0) {
2211 m_freem(n);
2212 n = NULL;
2213 }
2214 }
2215 if (!n)
2216 return key_senderror(so, m, ENOBUFS);
2217
2218 n->m_len = len;
2219 n->m_next = NULL;
2220 off = 0;
2221
2222 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2223 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2224
2225 #ifdef DIAGNOSTIC
2226 if (off != len)
2227 panic("length inconsistency in key_spddelete2");
2228 #endif
2229
2230 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2231 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2232 if (!n->m_next) {
2233 m_freem(n);
2234 return key_senderror(so, m, ENOBUFS);
2235 }
2236
2237 n->m_pkthdr.len = 0;
2238 for (nn = n; nn; nn = nn->m_next)
2239 n->m_pkthdr.len += nn->m_len;
2240
2241 newmsg = mtod(n, struct sadb_msg *);
2242 newmsg->sadb_msg_errno = 0;
2243 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2244
2245 m_freem(m);
2246 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2247 }
2248 }
2249
2250 /*
2251 * SADB_X_GET processing
2252 * receive
2253 * <base, policy(*)>
2254 * from the user(?),
2255 * and send,
2256 * <base, address(SD), policy>
2257 * to the ikmpd.
2258 * policy(*) including direction of policy.
2259 *
2260 * m will always be freed.
2261 */
2262 static int
2263 key_spdget(struct socket *so, struct mbuf *m,
2264 const struct sadb_msghdr *mhp)
2265 {
2266 u_int32_t id;
2267 struct secpolicy *sp;
2268 struct mbuf *n;
2269
2270 /* sanity check */
2271 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2272 panic("key_spdget: NULL pointer is passed");
2273
2274 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2275 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2276 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2277 return key_senderror(so, m, EINVAL);
2278 }
2279
2280 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2281
2282 /* Is there SP in SPD ? */
2283 if ((sp = key_getspbyid(id)) == NULL) {
2284 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2285 return key_senderror(so, m, ENOENT);
2286 }
2287
2288 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2289 mhp->msg->sadb_msg_pid);
2290 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2291 if (n != NULL) {
2292 m_freem(m);
2293 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2294 } else
2295 return key_senderror(so, m, ENOBUFS);
2296 }
2297
2298 /*
2299 * SADB_X_SPDACQUIRE processing.
2300 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2301 * send
2302 * <base, policy(*)>
2303 * to KMD, and expect to receive
2304 * <base> with SADB_X_SPDACQUIRE if error occurred,
2305 * or
2306 * <base, policy>
2307 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2308 * policy(*) is without policy requests.
2309 *
2310 * 0 : succeed
2311 * others: error number
2312 */
2313 int
2314 key_spdacquire(struct secpolicy *sp)
2315 {
2316 struct mbuf *result = NULL, *m;
2317 struct secspacq *newspacq;
2318 int error;
2319
2320 /* sanity check */
2321 if (sp == NULL)
2322 panic("key_spdacquire: NULL pointer is passed");
2323 if (sp->req != NULL)
2324 panic("key_spdacquire: called but there is request");
2325 if (sp->policy != IPSEC_POLICY_IPSEC)
2326 panic("key_spdacquire: policy mismathed. IPsec is expected");
2327
2328 /* Get an entry to check whether sent message or not. */
2329 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2330 if (key_blockacq_count < newspacq->count) {
2331 /* reset counter and do send message. */
2332 newspacq->count = 0;
2333 } else {
2334 /* increment counter and do nothing. */
2335 newspacq->count++;
2336 return 0;
2337 }
2338 } else {
2339 /* make new entry for blocking to send SADB_ACQUIRE. */
2340 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2341 return ENOBUFS;
2342
2343 /* add to acqtree */
2344 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2345 }
2346
2347 /* create new sadb_msg to reply. */
2348 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2349 if (!m) {
2350 error = ENOBUFS;
2351 goto fail;
2352 }
2353 result = m;
2354
2355 result->m_pkthdr.len = 0;
2356 for (m = result; m; m = m->m_next)
2357 result->m_pkthdr.len += m->m_len;
2358
2359 mtod(result, struct sadb_msg *)->sadb_msg_len =
2360 PFKEY_UNIT64(result->m_pkthdr.len);
2361
2362 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2363
2364 fail:
2365 if (result)
2366 m_freem(result);
2367 return error;
2368 }
2369
2370 /*
2371 * SADB_SPDFLUSH processing
2372 * receive
2373 * <base>
2374 * from the user, and free all entries in secpctree.
2375 * and send,
2376 * <base>
2377 * to the user.
2378 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2379 *
2380 * m will always be freed.
2381 */
2382 static int
2383 key_spdflush(struct socket *so, struct mbuf *m,
2384 const struct sadb_msghdr *mhp)
2385 {
2386 struct sadb_msg *newmsg;
2387 struct secpolicy *sp;
2388 u_int dir;
2389
2390 /* sanity check */
2391 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2392 panic("key_spdflush: NULL pointer is passed");
2393
2394 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2395 return key_senderror(so, m, EINVAL);
2396
2397 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2398 struct secpolicy * nextsp;
2399 for (sp = LIST_FIRST(&sptree[dir]);
2400 sp != NULL;
2401 sp = nextsp) {
2402
2403 nextsp = LIST_NEXT(sp, chain);
2404 if (sp->state == IPSEC_SPSTATE_DEAD)
2405 continue;
2406 key_sp_dead(sp);
2407 key_sp_unlink(sp);
2408 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2409 continue;
2410 }
2411 }
2412
2413 #if defined(__NetBSD__)
2414 /* Invalidate all cached SPD pointers in the PCBs. */
2415 ipsec_invalpcbcacheall();
2416
2417 /* We're deleting policy; no need to invalidate the ipflow cache. */
2418 #endif /* __NetBSD__ */
2419
2420 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2421 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2422 return key_senderror(so, m, ENOBUFS);
2423 }
2424
2425 if (m->m_next)
2426 m_freem(m->m_next);
2427 m->m_next = NULL;
2428 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2429 newmsg = mtod(m, struct sadb_msg *);
2430 newmsg->sadb_msg_errno = 0;
2431 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2432
2433 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2434 }
2435
2436 static struct sockaddr key_src = {
2437 .sa_len = 2,
2438 .sa_family = PF_KEY,
2439 };
2440
2441 static struct mbuf *
2442 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2443 {
2444 struct secpolicy *sp;
2445 int cnt;
2446 u_int dir;
2447 struct mbuf *m, *n, *prev;
2448 int totlen;
2449
2450 *lenp = 0;
2451
2452 /* search SPD entry and get buffer size. */
2453 cnt = 0;
2454 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2455 LIST_FOREACH(sp, &sptree[dir], chain) {
2456 cnt++;
2457 }
2458 }
2459
2460 if (cnt == 0) {
2461 *errorp = ENOENT;
2462 return (NULL);
2463 }
2464
2465 m = NULL;
2466 prev = m;
2467 totlen = 0;
2468 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2469 LIST_FOREACH(sp, &sptree[dir], chain) {
2470 --cnt;
2471 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2472
2473 if (!n) {
2474 *errorp = ENOBUFS;
2475 if (m) m_freem(m);
2476 return (NULL);
2477 }
2478
2479 totlen += n->m_pkthdr.len;
2480 if (!m) {
2481 m = n;
2482 } else {
2483 prev->m_nextpkt = n;
2484 }
2485 prev = n;
2486 }
2487 }
2488
2489 *lenp = totlen;
2490 *errorp = 0;
2491 return (m);
2492 }
2493
2494 /*
2495 * SADB_SPDDUMP processing
2496 * receive
2497 * <base>
2498 * from the user, and dump all SP leaves
2499 * and send,
2500 * <base> .....
2501 * to the ikmpd.
2502 *
2503 * m will always be freed.
2504 */
2505 static int
2506 key_spddump(struct socket *so, struct mbuf *m0,
2507 const struct sadb_msghdr *mhp)
2508 {
2509 struct mbuf *n;
2510 int error, len;
2511 int ok, s;
2512 pid_t pid;
2513
2514 /* sanity check */
2515 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2516 panic("key_spddump: NULL pointer is passed");
2517
2518
2519 pid = mhp->msg->sadb_msg_pid;
2520 /*
2521 * If the requestor has insufficient socket-buffer space
2522 * for the entire chain, nobody gets any response to the DUMP.
2523 * XXX For now, only the requestor ever gets anything.
2524 * Moreover, if the requestor has any space at all, they receive
2525 * the entire chain, otherwise the request is refused with ENOBUFS.
2526 */
2527 if (sbspace(&so->so_rcv) <= 0) {
2528 return key_senderror(so, m0, ENOBUFS);
2529 }
2530
2531 s = splsoftnet();
2532 n = key_setspddump_chain(&error, &len, pid);
2533 splx(s);
2534
2535 if (n == NULL) {
2536 return key_senderror(so, m0, ENOENT);
2537 }
2538 {
2539 uint64_t *ps = PFKEY_STAT_GETREF();
2540 ps[PFKEY_STAT_IN_TOTAL]++;
2541 ps[PFKEY_STAT_IN_BYTES] += len;
2542 PFKEY_STAT_PUTREF();
2543 }
2544
2545 /*
2546 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2547 * The requestor receives either the entire chain, or an
2548 * error message with ENOBUFS.
2549 */
2550
2551 /*
2552 * sbappendchainwith record takes the chain of entries, one
2553 * packet-record per SPD entry, prepends the key_src sockaddr
2554 * to each packet-record, links the sockaddr mbufs into a new
2555 * list of records, then appends the entire resulting
2556 * list to the requesting socket.
2557 */
2558 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2559 n, SB_PRIO_ONESHOT_OVERFLOW);
2560
2561 if (!ok) {
2562 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2563 m_freem(n);
2564 return key_senderror(so, m0, ENOBUFS);
2565 }
2566
2567 m_freem(m0);
2568 return error;
2569 }
2570
2571 #ifdef IPSEC_NAT_T
2572 /*
2573 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2574 */
2575 static int
2576 key_nat_map(struct socket *so, struct mbuf *m,
2577 const struct sadb_msghdr *mhp)
2578 {
2579 struct sadb_x_nat_t_type *type;
2580 struct sadb_x_nat_t_port *sport;
2581 struct sadb_x_nat_t_port *dport;
2582 struct sadb_address *iaddr, *raddr;
2583 struct sadb_x_nat_t_frag *frag;
2584
2585 /* sanity check */
2586 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2587 panic("key_nat_map: NULL pointer is passed.");
2588
2589 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2590 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2591 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2592 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2593 return key_senderror(so, m, EINVAL);
2594 }
2595 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2596 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2597 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2598 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2599 return key_senderror(so, m, EINVAL);
2600 }
2601
2602 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2603 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2604 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2605 return key_senderror(so, m, EINVAL);
2606 }
2607
2608 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2609 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2610 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2611 return key_senderror(so, m, EINVAL);
2612 }
2613
2614 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2615 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2616 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2617 return key_senderror(so, m, EINVAL);
2618 }
2619
2620 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2621 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2622 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2623 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2624 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2625 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2626
2627 printf("sadb_nat_map called\n");
2628
2629 /*
2630 * XXX handle that, it should also contain a SA, or anything
2631 * that enable to update the SA information.
2632 */
2633
2634 return 0;
2635 }
2636 #endif /* IPSEC_NAT_T */
2637
2638 static struct mbuf *
2639 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2640 {
2641 struct mbuf *result = NULL, *m;
2642
2643 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2644 if (!m)
2645 goto fail;
2646 result = m;
2647
2648 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2649 &sp->spidx.src.sa, sp->spidx.prefs,
2650 sp->spidx.ul_proto);
2651 if (!m)
2652 goto fail;
2653 m_cat(result, m);
2654
2655 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2656 &sp->spidx.dst.sa, sp->spidx.prefd,
2657 sp->spidx.ul_proto);
2658 if (!m)
2659 goto fail;
2660 m_cat(result, m);
2661
2662 m = key_sp2msg(sp);
2663 if (!m)
2664 goto fail;
2665 m_cat(result, m);
2666
2667 if ((result->m_flags & M_PKTHDR) == 0)
2668 goto fail;
2669
2670 if (result->m_len < sizeof(struct sadb_msg)) {
2671 result = m_pullup(result, sizeof(struct sadb_msg));
2672 if (result == NULL)
2673 goto fail;
2674 }
2675
2676 result->m_pkthdr.len = 0;
2677 for (m = result; m; m = m->m_next)
2678 result->m_pkthdr.len += m->m_len;
2679
2680 mtod(result, struct sadb_msg *)->sadb_msg_len =
2681 PFKEY_UNIT64(result->m_pkthdr.len);
2682
2683 return result;
2684
2685 fail:
2686 m_freem(result);
2687 return NULL;
2688 }
2689
2690 /*
2691 * get PFKEY message length for security policy and request.
2692 */
2693 static u_int
2694 key_getspreqmsglen(struct secpolicy *sp)
2695 {
2696 u_int tlen;
2697
2698 tlen = sizeof(struct sadb_x_policy);
2699
2700 /* if is the policy for ipsec ? */
2701 if (sp->policy != IPSEC_POLICY_IPSEC)
2702 return tlen;
2703
2704 /* get length of ipsec requests */
2705 {
2706 struct ipsecrequest *isr;
2707 int len;
2708
2709 for (isr = sp->req; isr != NULL; isr = isr->next) {
2710 len = sizeof(struct sadb_x_ipsecrequest)
2711 + isr->saidx.src.sa.sa_len
2712 + isr->saidx.dst.sa.sa_len;
2713
2714 tlen += PFKEY_ALIGN8(len);
2715 }
2716 }
2717
2718 return tlen;
2719 }
2720
2721 /*
2722 * SADB_SPDEXPIRE processing
2723 * send
2724 * <base, address(SD), lifetime(CH), policy>
2725 * to KMD by PF_KEY.
2726 *
2727 * OUT: 0 : succeed
2728 * others : error number
2729 */
2730 static int
2731 key_spdexpire(struct secpolicy *sp)
2732 {
2733 int s;
2734 struct mbuf *result = NULL, *m;
2735 int len;
2736 int error = -1;
2737 struct sadb_lifetime *lt;
2738
2739 /* XXX: Why do we lock ? */
2740 s = splsoftnet(); /*called from softclock()*/
2741
2742 /* sanity check */
2743 if (sp == NULL)
2744 panic("key_spdexpire: NULL pointer is passed");
2745
2746 /* set msg header */
2747 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2748 if (!m) {
2749 error = ENOBUFS;
2750 goto fail;
2751 }
2752 result = m;
2753
2754 /* create lifetime extension (current and hard) */
2755 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2756 m = key_alloc_mbuf(len);
2757 if (!m || m->m_next) { /*XXX*/
2758 if (m)
2759 m_freem(m);
2760 error = ENOBUFS;
2761 goto fail;
2762 }
2763 memset(mtod(m, void *), 0, len);
2764 lt = mtod(m, struct sadb_lifetime *);
2765 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2766 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2767 lt->sadb_lifetime_allocations = 0;
2768 lt->sadb_lifetime_bytes = 0;
2769 lt->sadb_lifetime_addtime = sp->created;
2770 lt->sadb_lifetime_usetime = sp->lastused;
2771 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2772 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2773 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2774 lt->sadb_lifetime_allocations = 0;
2775 lt->sadb_lifetime_bytes = 0;
2776 lt->sadb_lifetime_addtime = sp->lifetime;
2777 lt->sadb_lifetime_usetime = sp->validtime;
2778 m_cat(result, m);
2779
2780 /* set sadb_address for source */
2781 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2782 &sp->spidx.src.sa,
2783 sp->spidx.prefs, sp->spidx.ul_proto);
2784 if (!m) {
2785 error = ENOBUFS;
2786 goto fail;
2787 }
2788 m_cat(result, m);
2789
2790 /* set sadb_address for destination */
2791 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2792 &sp->spidx.dst.sa,
2793 sp->spidx.prefd, sp->spidx.ul_proto);
2794 if (!m) {
2795 error = ENOBUFS;
2796 goto fail;
2797 }
2798 m_cat(result, m);
2799
2800 /* set secpolicy */
2801 m = key_sp2msg(sp);
2802 if (!m) {
2803 error = ENOBUFS;
2804 goto fail;
2805 }
2806 m_cat(result, m);
2807
2808 if ((result->m_flags & M_PKTHDR) == 0) {
2809 error = EINVAL;
2810 goto fail;
2811 }
2812
2813 if (result->m_len < sizeof(struct sadb_msg)) {
2814 result = m_pullup(result, sizeof(struct sadb_msg));
2815 if (result == NULL) {
2816 error = ENOBUFS;
2817 goto fail;
2818 }
2819 }
2820
2821 result->m_pkthdr.len = 0;
2822 for (m = result; m; m = m->m_next)
2823 result->m_pkthdr.len += m->m_len;
2824
2825 mtod(result, struct sadb_msg *)->sadb_msg_len =
2826 PFKEY_UNIT64(result->m_pkthdr.len);
2827
2828 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2829
2830 fail:
2831 if (result)
2832 m_freem(result);
2833 splx(s);
2834 return error;
2835 }
2836
2837 /* %%% SAD management */
2838 /*
2839 * allocating a memory for new SA head, and copy from the values of mhp.
2840 * OUT: NULL : failure due to the lack of memory.
2841 * others : pointer to new SA head.
2842 */
2843 static struct secashead *
2844 key_newsah(struct secasindex *saidx)
2845 {
2846 struct secashead *newsah;
2847
2848 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2849
2850 newsah = (struct secashead *)
2851 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2852 if (newsah != NULL) {
2853 int i;
2854 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2855 LIST_INIT(&newsah->savtree[i]);
2856 newsah->saidx = *saidx;
2857
2858 /* add to saidxtree */
2859 newsah->state = SADB_SASTATE_MATURE;
2860 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2861 }
2862 return(newsah);
2863 }
2864
2865 /*
2866 * delete SA index and all SA registerd.
2867 */
2868 static void
2869 key_delsah(struct secashead *sah)
2870 {
2871 struct secasvar *sav, *nextsav;
2872 u_int stateidx, state;
2873 int s;
2874 int zombie = 0;
2875
2876 /* sanity check */
2877 if (sah == NULL)
2878 panic("key_delsah: NULL pointer is passed");
2879
2880 s = splsoftnet(); /*called from softclock()*/
2881
2882 /* searching all SA registerd in the secindex. */
2883 for (stateidx = 0;
2884 stateidx < _ARRAYLEN(saorder_state_any);
2885 stateidx++) {
2886
2887 state = saorder_state_any[stateidx];
2888 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2889 sav != NULL;
2890 sav = nextsav) {
2891
2892 nextsav = LIST_NEXT(sav, chain);
2893
2894 if (sav->refcnt == 0) {
2895 /* sanity check */
2896 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2897 KEY_FREESAV(&sav);
2898 } else {
2899 /* give up to delete this sa */
2900 zombie++;
2901 }
2902 }
2903 }
2904
2905 /* don't delete sah only if there are savs. */
2906 if (zombie) {
2907 splx(s);
2908 return;
2909 }
2910
2911 rtcache_free(&sah->sa_route);
2912
2913 /* remove from tree of SA index */
2914 if (__LIST_CHAINED(sah))
2915 LIST_REMOVE(sah, chain);
2916
2917 KFREE(sah);
2918
2919 splx(s);
2920 return;
2921 }
2922
2923 /*
2924 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2925 * and copy the values of mhp into new buffer.
2926 * When SAD message type is GETSPI:
2927 * to set sequence number from acq_seq++,
2928 * to set zero to SPI.
2929 * not to call key_setsava().
2930 * OUT: NULL : fail
2931 * others : pointer to new secasvar.
2932 *
2933 * does not modify mbuf. does not free mbuf on error.
2934 */
2935 static struct secasvar *
2936 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2937 struct secashead *sah, int *errp,
2938 const char* where, int tag)
2939 {
2940 struct secasvar *newsav;
2941 const struct sadb_sa *xsa;
2942
2943 /* sanity check */
2944 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2945 panic("key_newsa: NULL pointer is passed");
2946
2947 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2948 if (newsav == NULL) {
2949 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2950 *errp = ENOBUFS;
2951 goto done;
2952 }
2953 memset(newsav, 0, sizeof(struct secasvar));
2954
2955 switch (mhp->msg->sadb_msg_type) {
2956 case SADB_GETSPI:
2957 newsav->spi = 0;
2958
2959 #ifdef IPSEC_DOSEQCHECK
2960 /* sync sequence number */
2961 if (mhp->msg->sadb_msg_seq == 0)
2962 newsav->seq =
2963 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2964 else
2965 #endif
2966 newsav->seq = mhp->msg->sadb_msg_seq;
2967 break;
2968
2969 case SADB_ADD:
2970 /* sanity check */
2971 if (mhp->ext[SADB_EXT_SA] == NULL) {
2972 KFREE(newsav), newsav = NULL;
2973 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2974 *errp = EINVAL;
2975 goto done;
2976 }
2977 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2978 newsav->spi = xsa->sadb_sa_spi;
2979 newsav->seq = mhp->msg->sadb_msg_seq;
2980 break;
2981 default:
2982 KFREE(newsav), newsav = NULL;
2983 *errp = EINVAL;
2984 goto done;
2985 }
2986
2987 /* copy sav values */
2988 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2989 *errp = key_setsaval(newsav, m, mhp);
2990 if (*errp) {
2991 KFREE(newsav), newsav = NULL;
2992 goto done;
2993 }
2994 }
2995
2996 /* reset created */
2997 newsav->created = time_second;
2998 newsav->pid = mhp->msg->sadb_msg_pid;
2999
3000 /* add to satree */
3001 newsav->sah = sah;
3002 newsav->refcnt = 1;
3003 newsav->state = SADB_SASTATE_LARVAL;
3004 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3005 secasvar, chain);
3006 done:
3007 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3008 printf("DP key_newsav from %s:%u return SP:%p\n",
3009 where, tag, newsav));
3010
3011 return newsav;
3012 }
3013
3014 /*
3015 * free() SA variable entry.
3016 */
3017 static void
3018 key_delsav(struct secasvar *sav)
3019 {
3020 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
3021 IPSEC_ASSERT(sav->refcnt == 0,
3022 ("key_delsav: reference count %u > 0", sav->refcnt));
3023
3024 /* remove from SA header */
3025 if (__LIST_CHAINED(sav))
3026 LIST_REMOVE(sav, chain);
3027
3028 /*
3029 * Cleanup xform state. Note that zeroize'ing causes the
3030 * keys to be cleared; otherwise we must do it ourself.
3031 */
3032 if (sav->tdb_xform != NULL) {
3033 sav->tdb_xform->xf_zeroize(sav);
3034 sav->tdb_xform = NULL;
3035 } else {
3036 if (sav->key_auth != NULL)
3037 memset(_KEYBUF(sav->key_auth), 0, _KEYLEN(sav->key_auth));
3038 if (sav->key_enc != NULL)
3039 memset(_KEYBUF(sav->key_enc), 0, _KEYLEN(sav->key_enc));
3040 }
3041 if (sav->key_auth != NULL) {
3042 KFREE(sav->key_auth);
3043 sav->key_auth = NULL;
3044 }
3045 if (sav->key_enc != NULL) {
3046 KFREE(sav->key_enc);
3047 sav->key_enc = NULL;
3048 }
3049 if (sav->sched) {
3050 memset(sav->sched, 0, sav->schedlen);
3051 KFREE(sav->sched);
3052 sav->sched = NULL;
3053 }
3054 if (sav->replay != NULL) {
3055 KFREE(sav->replay);
3056 sav->replay = NULL;
3057 }
3058 if (sav->lft_c != NULL) {
3059 KFREE(sav->lft_c);
3060 sav->lft_c = NULL;
3061 }
3062 if (sav->lft_h != NULL) {
3063 KFREE(sav->lft_h);
3064 sav->lft_h = NULL;
3065 }
3066 if (sav->lft_s != NULL) {
3067 KFREE(sav->lft_s);
3068 sav->lft_s = NULL;
3069 }
3070 if (sav->iv != NULL) {
3071 KFREE(sav->iv);
3072 sav->iv = NULL;
3073 }
3074
3075 KFREE(sav);
3076
3077 return;
3078 }
3079
3080 /*
3081 * search SAD.
3082 * OUT:
3083 * NULL : not found
3084 * others : found, pointer to a SA.
3085 */
3086 static struct secashead *
3087 key_getsah(struct secasindex *saidx)
3088 {
3089 struct secashead *sah;
3090
3091 LIST_FOREACH(sah, &sahtree, chain) {
3092 if (sah->state == SADB_SASTATE_DEAD)
3093 continue;
3094 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3095 return sah;
3096 }
3097
3098 return NULL;
3099 }
3100
3101 /*
3102 * check not to be duplicated SPI.
3103 * NOTE: this function is too slow due to searching all SAD.
3104 * OUT:
3105 * NULL : not found
3106 * others : found, pointer to a SA.
3107 */
3108 static struct secasvar *
3109 key_checkspidup(struct secasindex *saidx, u_int32_t spi)
3110 {
3111 struct secashead *sah;
3112 struct secasvar *sav;
3113
3114 /* check address family */
3115 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3116 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3117 return NULL;
3118 }
3119
3120 /* check all SAD */
3121 LIST_FOREACH(sah, &sahtree, chain) {
3122 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3123 continue;
3124 sav = key_getsavbyspi(sah, spi);
3125 if (sav != NULL)
3126 return sav;
3127 }
3128
3129 return NULL;
3130 }
3131
3132 /*
3133 * search SAD litmited alive SA, protocol, SPI.
3134 * OUT:
3135 * NULL : not found
3136 * others : found, pointer to a SA.
3137 */
3138 static struct secasvar *
3139 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3140 {
3141 struct secasvar *sav;
3142 u_int stateidx, state;
3143
3144 /* search all status */
3145 for (stateidx = 0;
3146 stateidx < _ARRAYLEN(saorder_state_alive);
3147 stateidx++) {
3148
3149 state = saorder_state_alive[stateidx];
3150 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3151
3152 /* sanity check */
3153 if (sav->state != state) {
3154 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3155 "invalid sav->state (queue: %d SA: %d)\n",
3156 state, sav->state));
3157 continue;
3158 }
3159
3160 if (sav->spi == spi)
3161 return sav;
3162 }
3163 }
3164
3165 return NULL;
3166 }
3167
3168 /*
3169 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3170 * You must update these if need.
3171 * OUT: 0: success.
3172 * !0: failure.
3173 *
3174 * does not modify mbuf. does not free mbuf on error.
3175 */
3176 static int
3177 key_setsaval(struct secasvar *sav, struct mbuf *m,
3178 const struct sadb_msghdr *mhp)
3179 {
3180 int error = 0;
3181
3182 /* sanity check */
3183 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3184 panic("key_setsaval: NULL pointer is passed");
3185
3186 /* initialization */
3187 sav->replay = NULL;
3188 sav->key_auth = NULL;
3189 sav->key_enc = NULL;
3190 sav->sched = NULL;
3191 sav->schedlen = 0;
3192 sav->iv = NULL;
3193 sav->lft_c = NULL;
3194 sav->lft_h = NULL;
3195 sav->lft_s = NULL;
3196 sav->tdb_xform = NULL; /* transform */
3197 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3198 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3199 sav->tdb_compalgxform = NULL; /* compression algorithm */
3200 #ifdef IPSEC_NAT_T
3201 sav->natt_type = 0;
3202 sav->esp_frag = 0;
3203 #endif
3204
3205 /* SA */
3206 if (mhp->ext[SADB_EXT_SA] != NULL) {
3207 const struct sadb_sa *sa0;
3208
3209 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3210 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3211 error = EINVAL;
3212 goto fail;
3213 }
3214
3215 sav->alg_auth = sa0->sadb_sa_auth;
3216 sav->alg_enc = sa0->sadb_sa_encrypt;
3217 sav->flags = sa0->sadb_sa_flags;
3218
3219 /* replay window */
3220 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3221 sav->replay = (struct secreplay *)
3222 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3223 if (sav->replay == NULL) {
3224 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3225 error = ENOBUFS;
3226 goto fail;
3227 }
3228 if (sa0->sadb_sa_replay != 0)
3229 sav->replay->bitmap = (char*)(sav->replay+1);
3230 sav->replay->wsize = sa0->sadb_sa_replay;
3231 }
3232 }
3233
3234 /* Authentication keys */
3235 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3236 const struct sadb_key *key0;
3237 int len;
3238
3239 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3240 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3241
3242 error = 0;
3243 if (len < sizeof(*key0)) {
3244 error = EINVAL;
3245 goto fail;
3246 }
3247 switch (mhp->msg->sadb_msg_satype) {
3248 case SADB_SATYPE_AH:
3249 case SADB_SATYPE_ESP:
3250 case SADB_X_SATYPE_TCPSIGNATURE:
3251 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3252 sav->alg_auth != SADB_X_AALG_NULL)
3253 error = EINVAL;
3254 break;
3255 case SADB_X_SATYPE_IPCOMP:
3256 default:
3257 error = EINVAL;
3258 break;
3259 }
3260 if (error) {
3261 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3262 goto fail;
3263 }
3264
3265 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3266 if (sav->key_auth == NULL) {
3267 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3268 error = ENOBUFS;
3269 goto fail;
3270 }
3271 }
3272
3273 /* Encryption key */
3274 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3275 const struct sadb_key *key0;
3276 int len;
3277
3278 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3279 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3280
3281 error = 0;
3282 if (len < sizeof(*key0)) {
3283 error = EINVAL;
3284 goto fail;
3285 }
3286 switch (mhp->msg->sadb_msg_satype) {
3287 case SADB_SATYPE_ESP:
3288 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3289 sav->alg_enc != SADB_EALG_NULL) {
3290 error = EINVAL;
3291 break;
3292 }
3293 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3294 if (sav->key_enc == NULL) {
3295 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3296 error = ENOBUFS;
3297 goto fail;
3298 }
3299 break;
3300 case SADB_X_SATYPE_IPCOMP:
3301 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3302 error = EINVAL;
3303 sav->key_enc = NULL; /*just in case*/
3304 break;
3305 case SADB_SATYPE_AH:
3306 case SADB_X_SATYPE_TCPSIGNATURE:
3307 default:
3308 error = EINVAL;
3309 break;
3310 }
3311 if (error) {
3312 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3313 goto fail;
3314 }
3315 }
3316
3317 /* set iv */
3318 sav->ivlen = 0;
3319
3320 switch (mhp->msg->sadb_msg_satype) {
3321 case SADB_SATYPE_AH:
3322 error = xform_init(sav, XF_AH);
3323 break;
3324 case SADB_SATYPE_ESP:
3325 error = xform_init(sav, XF_ESP);
3326 break;
3327 case SADB_X_SATYPE_IPCOMP:
3328 error = xform_init(sav, XF_IPCOMP);
3329 break;
3330 case SADB_X_SATYPE_TCPSIGNATURE:
3331 error = xform_init(sav, XF_TCPSIGNATURE);
3332 break;
3333 }
3334 if (error) {
3335 ipseclog((LOG_DEBUG,
3336 "key_setsaval: unable to initialize SA type %u.\n",
3337 mhp->msg->sadb_msg_satype));
3338 goto fail;
3339 }
3340
3341 /* reset created */
3342 sav->created = time_second;
3343
3344 /* make lifetime for CURRENT */
3345 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3346 sizeof(struct sadb_lifetime));
3347 if (sav->lft_c == NULL) {
3348 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3349 error = ENOBUFS;
3350 goto fail;
3351 }
3352
3353 sav->lft_c->sadb_lifetime_len =
3354 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3355 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3356 sav->lft_c->sadb_lifetime_allocations = 0;
3357 sav->lft_c->sadb_lifetime_bytes = 0;
3358 sav->lft_c->sadb_lifetime_addtime = time_second;
3359 sav->lft_c->sadb_lifetime_usetime = 0;
3360
3361 /* lifetimes for HARD and SOFT */
3362 {
3363 const struct sadb_lifetime *lft0;
3364
3365 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3366 if (lft0 != NULL) {
3367 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3368 error = EINVAL;
3369 goto fail;
3370 }
3371 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3372 sizeof(*lft0));
3373 if (sav->lft_h == NULL) {
3374 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3375 error = ENOBUFS;
3376 goto fail;
3377 }
3378 /* to be initialize ? */
3379 }
3380
3381 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3382 if (lft0 != NULL) {
3383 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3384 error = EINVAL;
3385 goto fail;
3386 }
3387 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3388 sizeof(*lft0));
3389 if (sav->lft_s == NULL) {
3390 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3391 error = ENOBUFS;
3392 goto fail;
3393 }
3394 /* to be initialize ? */
3395 }
3396 }
3397
3398 return 0;
3399
3400 fail:
3401 /* initialization */
3402 if (sav->replay != NULL) {
3403 KFREE(sav->replay);
3404 sav->replay = NULL;
3405 }
3406 if (sav->key_auth != NULL) {
3407 KFREE(sav->key_auth);
3408 sav->key_auth = NULL;
3409 }
3410 if (sav->key_enc != NULL) {
3411 KFREE(sav->key_enc);
3412 sav->key_enc = NULL;
3413 }
3414 if (sav->sched) {
3415 KFREE(sav->sched);
3416 sav->sched = NULL;
3417 }
3418 if (sav->iv != NULL) {
3419 KFREE(sav->iv);
3420 sav->iv = NULL;
3421 }
3422 if (sav->lft_c != NULL) {
3423 KFREE(sav->lft_c);
3424 sav->lft_c = NULL;
3425 }
3426 if (sav->lft_h != NULL) {
3427 KFREE(sav->lft_h);
3428 sav->lft_h = NULL;
3429 }
3430 if (sav->lft_s != NULL) {
3431 KFREE(sav->lft_s);
3432 sav->lft_s = NULL;
3433 }
3434
3435 return error;
3436 }
3437
3438 /*
3439 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3440 * OUT: 0: valid
3441 * other: errno
3442 */
3443 static int
3444 key_mature(struct secasvar *sav)
3445 {
3446 int error;
3447
3448 /* check SPI value */
3449 switch (sav->sah->saidx.proto) {
3450 case IPPROTO_ESP:
3451 case IPPROTO_AH:
3452 if (ntohl(sav->spi) <= 255) {
3453 ipseclog((LOG_DEBUG,
3454 "key_mature: illegal range of SPI %u.\n",
3455 (u_int32_t)ntohl(sav->spi)));
3456 return EINVAL;
3457 }
3458 break;
3459 }
3460
3461 /* check satype */
3462 switch (sav->sah->saidx.proto) {
3463 case IPPROTO_ESP:
3464 /* check flags */
3465 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3466 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3467 ipseclog((LOG_DEBUG, "key_mature: "
3468 "invalid flag (derived) given to old-esp.\n"));
3469 return EINVAL;
3470 }
3471 error = xform_init(sav, XF_ESP);
3472 break;
3473 case IPPROTO_AH:
3474 /* check flags */
3475 if (sav->flags & SADB_X_EXT_DERIV) {
3476 ipseclog((LOG_DEBUG, "key_mature: "
3477 "invalid flag (derived) given to AH SA.\n"));
3478 return EINVAL;
3479 }
3480 if (sav->alg_enc != SADB_EALG_NONE) {
3481 ipseclog((LOG_DEBUG, "key_mature: "
3482 "protocol and algorithm mismated.\n"));
3483 return(EINVAL);
3484 }
3485 error = xform_init(sav, XF_AH);
3486 break;
3487 case IPPROTO_IPCOMP:
3488 if (sav->alg_auth != SADB_AALG_NONE) {
3489 ipseclog((LOG_DEBUG, "key_mature: "
3490 "protocol and algorithm mismated.\n"));
3491 return(EINVAL);
3492 }
3493 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3494 && ntohl(sav->spi) >= 0x10000) {
3495 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3496 return(EINVAL);
3497 }
3498 error = xform_init(sav, XF_IPCOMP);
3499 break;
3500 case IPPROTO_TCP:
3501 if (sav->alg_enc != SADB_EALG_NONE) {
3502 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3503 "mismated.\n", __func__));
3504 return(EINVAL);
3505 }
3506 error = xform_init(sav, XF_TCPSIGNATURE);
3507 break;
3508 default:
3509 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3510 error = EPROTONOSUPPORT;
3511 break;
3512 }
3513 if (error == 0)
3514 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3515 return (error);
3516 }
3517
3518 /*
3519 * subroutine for SADB_GET and SADB_DUMP.
3520 */
3521 static struct mbuf *
3522 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3523 u_int32_t seq, u_int32_t pid)
3524 {
3525 struct mbuf *result = NULL, *tres = NULL, *m;
3526 int l = 0;
3527 int i;
3528 void *p;
3529 int dumporder[] = {
3530 SADB_EXT_SA, SADB_X_EXT_SA2,
3531 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3532 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3533 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3534 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3535 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3536 #ifdef IPSEC_NAT_T
3537 SADB_X_EXT_NAT_T_TYPE,
3538 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3539 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3540 SADB_X_EXT_NAT_T_FRAG,
3541 #endif
3542
3543 };
3544
3545 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3546 if (m == NULL)
3547 goto fail;
3548 result = m;
3549
3550 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3551 m = NULL;
3552 p = NULL;
3553 switch (dumporder[i]) {
3554 case SADB_EXT_SA:
3555 m = key_setsadbsa(sav);
3556 if (!m)
3557 goto fail;
3558 break;
3559
3560 case SADB_X_EXT_SA2:
3561 m = key_setsadbxsa2(sav->sah->saidx.mode,
3562 sav->replay ? sav->replay->count : 0,
3563 sav->sah->saidx.reqid);
3564 if (!m)
3565 goto fail;
3566 break;
3567
3568 case SADB_EXT_ADDRESS_SRC:
3569 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3570 &sav->sah->saidx.src.sa,
3571 FULLMASK, IPSEC_ULPROTO_ANY);
3572 if (!m)
3573 goto fail;
3574 break;
3575
3576 case SADB_EXT_ADDRESS_DST:
3577 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3578 &sav->sah->saidx.dst.sa,
3579 FULLMASK, IPSEC_ULPROTO_ANY);
3580 if (!m)
3581 goto fail;
3582 break;
3583
3584 case SADB_EXT_KEY_AUTH:
3585 if (!sav->key_auth)
3586 continue;
3587 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3588 p = sav->key_auth;
3589 break;
3590
3591 case SADB_EXT_KEY_ENCRYPT:
3592 if (!sav->key_enc)
3593 continue;
3594 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3595 p = sav->key_enc;
3596 break;
3597
3598 case SADB_EXT_LIFETIME_CURRENT:
3599 if (!sav->lft_c)
3600 continue;
3601 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3602 p = sav->lft_c;
3603 break;
3604
3605 case SADB_EXT_LIFETIME_HARD:
3606 if (!sav->lft_h)
3607 continue;
3608 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3609 p = sav->lft_h;
3610 break;
3611
3612 case SADB_EXT_LIFETIME_SOFT:
3613 if (!sav->lft_s)
3614 continue;
3615 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3616 p = sav->lft_s;
3617 break;
3618
3619 #ifdef IPSEC_NAT_T
3620 case SADB_X_EXT_NAT_T_TYPE:
3621 if ((m = key_setsadbxtype(sav->natt_type)) == NULL)
3622 goto fail;
3623 break;
3624
3625 case SADB_X_EXT_NAT_T_DPORT:
3626 if ((m = key_setsadbxport(
3627 key_portfromsaddr(&sav->sah->saidx.dst),
3628 SADB_X_EXT_NAT_T_DPORT)) == NULL)
3629 goto fail;
3630 break;
3631
3632 case SADB_X_EXT_NAT_T_SPORT:
3633 if ((m = key_setsadbxport(
3634 key_portfromsaddr(&sav->sah->saidx.src),
3635 SADB_X_EXT_NAT_T_SPORT)) == NULL)
3636 goto fail;
3637 break;
3638
3639 case SADB_X_EXT_NAT_T_OAI:
3640 case SADB_X_EXT_NAT_T_OAR:
3641 case SADB_X_EXT_NAT_T_FRAG:
3642 continue;
3643 #endif
3644
3645 case SADB_EXT_ADDRESS_PROXY:
3646 case SADB_EXT_IDENTITY_SRC:
3647 case SADB_EXT_IDENTITY_DST:
3648 /* XXX: should we brought from SPD ? */
3649 case SADB_EXT_SENSITIVITY:
3650 default:
3651 continue;
3652 }
3653
3654 if ((!m && !p) || (m && p))
3655 goto fail;
3656 if (p && tres) {
3657 M_PREPEND(tres, l, M_DONTWAIT);
3658 if (!tres)
3659 goto fail;
3660 memcpy(mtod(tres, void *), p, l);
3661 continue;
3662 }
3663 if (p) {
3664 m = key_alloc_mbuf(l);
3665 if (!m)
3666 goto fail;
3667 m_copyback(m, 0, l, p);
3668 }
3669
3670 if (tres)
3671 m_cat(m, tres);
3672 tres = m;
3673 }
3674
3675 m_cat(result, tres);
3676
3677 if (result->m_len < sizeof(struct sadb_msg)) {
3678 result = m_pullup(result, sizeof(struct sadb_msg));
3679 if (result == NULL)
3680 goto fail;
3681 }
3682
3683 result->m_pkthdr.len = 0;
3684 for (m = result; m; m = m->m_next)
3685 result->m_pkthdr.len += m->m_len;
3686
3687 mtod(result, struct sadb_msg *)->sadb_msg_len =
3688 PFKEY_UNIT64(result->m_pkthdr.len);
3689
3690 return result;
3691
3692 fail:
3693 m_freem(result);
3694 m_freem(tres);
3695 return NULL;
3696 }
3697
3698
3699 #ifdef IPSEC_NAT_T
3700 /*
3701 * set a type in sadb_x_nat_t_type
3702 */
3703 static struct mbuf *
3704 key_setsadbxtype(u_int16_t type)
3705 {
3706 struct mbuf *m;
3707 size_t len;
3708 struct sadb_x_nat_t_type *p;
3709
3710 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3711
3712 m = key_alloc_mbuf(len);
3713 if (!m || m->m_next) { /*XXX*/
3714 if (m)
3715 m_freem(m);
3716 return NULL;
3717 }
3718
3719 p = mtod(m, struct sadb_x_nat_t_type *);
3720
3721 memset(p, 0, len);
3722 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3723 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3724 p->sadb_x_nat_t_type_type = type;
3725
3726 return m;
3727 }
3728 /*
3729 * set a port in sadb_x_nat_t_port. port is in network order
3730 */
3731 static struct mbuf *
3732 key_setsadbxport(u_int16_t port, u_int16_t type)
3733 {
3734 struct mbuf *m;
3735 size_t len;
3736 struct sadb_x_nat_t_port *p;
3737
3738 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3739
3740 m = key_alloc_mbuf(len);
3741 if (!m || m->m_next) { /*XXX*/
3742 if (m)
3743 m_freem(m);
3744 return NULL;
3745 }
3746
3747 p = mtod(m, struct sadb_x_nat_t_port *);
3748
3749 memset(p, 0, len);
3750 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3751 p->sadb_x_nat_t_port_exttype = type;
3752 p->sadb_x_nat_t_port_port = port;
3753
3754 return m;
3755 }
3756
3757 /*
3758 * Get port from sockaddr, port is in network order
3759 */
3760 u_int16_t
3761 key_portfromsaddr(const union sockaddr_union *saddr)
3762 {
3763 u_int16_t port;
3764
3765 switch (saddr->sa.sa_family) {
3766 case AF_INET: {
3767 port = saddr->sin.sin_port;
3768 break;
3769 }
3770 #ifdef INET6
3771 case AF_INET6: {
3772 port = saddr->sin6.sin6_port;
3773 break;
3774 }
3775 #endif
3776 default:
3777 printf("key_portfromsaddr: unexpected address family\n");
3778 port = 0;
3779 break;
3780 }
3781
3782 return port;
3783 }
3784
3785 #endif /* IPSEC_NAT_T */
3786
3787 /*
3788 * Set port is struct sockaddr. port is in network order
3789 */
3790 static void
3791 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3792 {
3793 switch (saddr->sa.sa_family) {
3794 case AF_INET: {
3795 saddr->sin.sin_port = port;
3796 break;
3797 }
3798 #ifdef INET6
3799 case AF_INET6: {
3800 saddr->sin6.sin6_port = port;
3801 break;
3802 }
3803 #endif
3804 default:
3805 printf("key_porttosaddr: unexpected address family %d\n",
3806 saddr->sa.sa_family);
3807 break;
3808 }
3809
3810 return;
3811 }
3812
3813 /*
3814 * Safety check sa_len
3815 */
3816 static int
3817 key_checksalen(const union sockaddr_union *saddr)
3818 {
3819 switch (saddr->sa.sa_family) {
3820 case AF_INET:
3821 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3822 return -1;
3823 break;
3824 #ifdef INET6
3825 case AF_INET6:
3826 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3827 return -1;
3828 break;
3829 #endif
3830 default:
3831 printf("key_checksalen: unexpected sa_family %d\n",
3832 saddr->sa.sa_family);
3833 return -1;
3834 break;
3835 }
3836 return 0;
3837 }
3838
3839
3840 /*
3841 * set data into sadb_msg.
3842 */
3843 static struct mbuf *
3844 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3845 u_int32_t seq, pid_t pid, u_int16_t reserved)
3846 {
3847 struct mbuf *m;
3848 struct sadb_msg *p;
3849 int len;
3850
3851 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3852 if (len > MCLBYTES)
3853 return NULL;
3854 MGETHDR(m, M_DONTWAIT, MT_DATA);
3855 if (m && len > MHLEN) {
3856 MCLGET(m, M_DONTWAIT);
3857 if ((m->m_flags & M_EXT) == 0) {
3858 m_freem(m);
3859 m = NULL;
3860 }
3861 }
3862 if (!m)
3863 return NULL;
3864 m->m_pkthdr.len = m->m_len = len;
3865 m->m_next = NULL;
3866
3867 p = mtod(m, struct sadb_msg *);
3868
3869 memset(p, 0, len);
3870 p->sadb_msg_version = PF_KEY_V2;
3871 p->sadb_msg_type = type;
3872 p->sadb_msg_errno = 0;
3873 p->sadb_msg_satype = satype;
3874 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3875 p->sadb_msg_reserved = reserved;
3876 p->sadb_msg_seq = seq;
3877 p->sadb_msg_pid = (u_int32_t)pid;
3878
3879 return m;
3880 }
3881
3882 /*
3883 * copy secasvar data into sadb_address.
3884 */
3885 static struct mbuf *
3886 key_setsadbsa(struct secasvar *sav)
3887 {
3888 struct mbuf *m;
3889 struct sadb_sa *p;
3890 int len;
3891
3892 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3893 m = key_alloc_mbuf(len);
3894 if (!m || m->m_next) { /*XXX*/
3895 if (m)
3896 m_freem(m);
3897 return NULL;
3898 }
3899
3900 p = mtod(m, struct sadb_sa *);
3901
3902 memset(p, 0, len);
3903 p->sadb_sa_len = PFKEY_UNIT64(len);
3904 p->sadb_sa_exttype = SADB_EXT_SA;
3905 p->sadb_sa_spi = sav->spi;
3906 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3907 p->sadb_sa_state = sav->state;
3908 p->sadb_sa_auth = sav->alg_auth;
3909 p->sadb_sa_encrypt = sav->alg_enc;
3910 p->sadb_sa_flags = sav->flags;
3911
3912 return m;
3913 }
3914
3915 /*
3916 * set data into sadb_address.
3917 */
3918 static struct mbuf *
3919 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3920 u_int8_t prefixlen, u_int16_t ul_proto)
3921 {
3922 struct mbuf *m;
3923 struct sadb_address *p;
3924 size_t len;
3925
3926 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3927 PFKEY_ALIGN8(saddr->sa_len);
3928 m = key_alloc_mbuf(len);
3929 if (!m || m->m_next) { /*XXX*/
3930 if (m)
3931 m_freem(m);
3932 return NULL;
3933 }
3934
3935 p = mtod(m, struct sadb_address *);
3936
3937 memset(p, 0, len);
3938 p->sadb_address_len = PFKEY_UNIT64(len);
3939 p->sadb_address_exttype = exttype;
3940 p->sadb_address_proto = ul_proto;
3941 if (prefixlen == FULLMASK) {
3942 switch (saddr->sa_family) {
3943 case AF_INET:
3944 prefixlen = sizeof(struct in_addr) << 3;
3945 break;
3946 case AF_INET6:
3947 prefixlen = sizeof(struct in6_addr) << 3;
3948 break;
3949 default:
3950 ; /*XXX*/
3951 }
3952 }
3953 p->sadb_address_prefixlen = prefixlen;
3954 p->sadb_address_reserved = 0;
3955
3956 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3957 saddr, saddr->sa_len);
3958
3959 return m;
3960 }
3961
3962 #if 0
3963 /*
3964 * set data into sadb_ident.
3965 */
3966 static struct mbuf *
3967 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3968 void *string, int stringlen, u_int64_t id)
3969 {
3970 struct mbuf *m;
3971 struct sadb_ident *p;
3972 size_t len;
3973
3974 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3975 m = key_alloc_mbuf(len);
3976 if (!m || m->m_next) { /*XXX*/
3977 if (m)
3978 m_freem(m);
3979 return NULL;
3980 }
3981
3982 p = mtod(m, struct sadb_ident *);
3983
3984 memset(p, 0, len);
3985 p->sadb_ident_len = PFKEY_UNIT64(len);
3986 p->sadb_ident_exttype = exttype;
3987 p->sadb_ident_type = idtype;
3988 p->sadb_ident_reserved = 0;
3989 p->sadb_ident_id = id;
3990
3991 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3992 string, stringlen);
3993
3994 return m;
3995 }
3996 #endif
3997
3998 /*
3999 * set data into sadb_x_sa2.
4000 */
4001 static struct mbuf *
4002 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4003 {
4004 struct mbuf *m;
4005 struct sadb_x_sa2 *p;
4006 size_t len;
4007
4008 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4009 m = key_alloc_mbuf(len);
4010 if (!m || m->m_next) { /*XXX*/
4011 if (m)
4012 m_freem(m);
4013 return NULL;
4014 }
4015
4016 p = mtod(m, struct sadb_x_sa2 *);
4017
4018 memset(p, 0, len);
4019 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4020 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4021 p->sadb_x_sa2_mode = mode;
4022 p->sadb_x_sa2_reserved1 = 0;
4023 p->sadb_x_sa2_reserved2 = 0;
4024 p->sadb_x_sa2_sequence = seq;
4025 p->sadb_x_sa2_reqid = reqid;
4026
4027 return m;
4028 }
4029
4030 /*
4031 * set data into sadb_x_policy
4032 */
4033 static struct mbuf *
4034 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4035 {
4036 struct mbuf *m;
4037 struct sadb_x_policy *p;
4038 size_t len;
4039
4040 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4041 m = key_alloc_mbuf(len);
4042 if (!m || m->m_next) { /*XXX*/
4043 if (m)
4044 m_freem(m);
4045 return NULL;
4046 }
4047
4048 p = mtod(m, struct sadb_x_policy *);
4049
4050 memset(p, 0, len);
4051 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4052 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4053 p->sadb_x_policy_type = type;
4054 p->sadb_x_policy_dir = dir;
4055 p->sadb_x_policy_id = id;
4056
4057 return m;
4058 }
4059
4060 /* %%% utilities */
4061 /*
4062 * copy a buffer into the new buffer allocated.
4063 */
4064 static void *
4065 key_newbuf(const void *src, u_int len)
4066 {
4067 void *new;
4068
4069 KMALLOC(new, void *, len);
4070 if (new == NULL) {
4071 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4072 return NULL;
4073 }
4074 memcpy(new, src, len);
4075
4076 return new;
4077 }
4078
4079 /* compare my own address
4080 * OUT: 1: true, i.e. my address.
4081 * 0: false
4082 */
4083 int
4084 key_ismyaddr(struct sockaddr *sa)
4085 {
4086 #ifdef INET
4087 struct sockaddr_in *sin;
4088 struct in_ifaddr *ia;
4089 #endif
4090
4091 /* sanity check */
4092 if (sa == NULL)
4093 panic("key_ismyaddr: NULL pointer is passed");
4094
4095 switch (sa->sa_family) {
4096 #ifdef INET
4097 case AF_INET:
4098 sin = (struct sockaddr_in *)sa;
4099 for (ia = in_ifaddrhead.tqh_first; ia;
4100 ia = ia->ia_link.tqe_next)
4101 {
4102 if (sin->sin_family == ia->ia_addr.sin_family &&
4103 sin->sin_len == ia->ia_addr.sin_len &&
4104 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4105 {
4106 return 1;
4107 }
4108 }
4109 break;
4110 #endif
4111 #ifdef INET6
4112 case AF_INET6:
4113 return key_ismyaddr6((struct sockaddr_in6 *)sa);
4114 #endif
4115 }
4116
4117 return 0;
4118 }
4119
4120 #ifdef INET6
4121 /*
4122 * compare my own address for IPv6.
4123 * 1: ours
4124 * 0: other
4125 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4126 */
4127 #include <netinet6/in6_var.h>
4128
4129 static int
4130 key_ismyaddr6(struct sockaddr_in6 *sin6)
4131 {
4132 struct in6_ifaddr *ia;
4133 struct in6_multi *in6m;
4134
4135 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
4136 if (key_sockaddrcmp((struct sockaddr *)&sin6,
4137 (struct sockaddr *)&ia->ia_addr, 0) == 0)
4138 return 1;
4139
4140 /*
4141 * XXX Multicast
4142 * XXX why do we care about multlicast here while we don't care
4143 * about IPv4 multicast??
4144 * XXX scope
4145 */
4146 in6m = NULL;
4147 #ifdef __FreeBSD__
4148 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
4149 #else
4150 for ((in6m) = ia->ia6_multiaddrs.lh_first;
4151 (in6m) != NULL &&
4152 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
4153 (in6m) = in6m->in6m_entry.le_next)
4154 continue;
4155 #endif
4156 if (in6m)
4157 return 1;
4158 }
4159
4160 /* loopback, just for safety */
4161 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4162 return 1;
4163
4164 return 0;
4165 }
4166 #endif /*INET6*/
4167
4168 /*
4169 * compare two secasindex structure.
4170 * flag can specify to compare 2 saidxes.
4171 * compare two secasindex structure without both mode and reqid.
4172 * don't compare port.
4173 * IN:
4174 * saidx0: source, it can be in SAD.
4175 * saidx1: object.
4176 * OUT:
4177 * 1 : equal
4178 * 0 : not equal
4179 */
4180 static int
4181 key_cmpsaidx(
4182 const struct secasindex *saidx0,
4183 const struct secasindex *saidx1,
4184 int flag)
4185 {
4186 int chkport = 0;
4187
4188 /* sanity */
4189 if (saidx0 == NULL && saidx1 == NULL)
4190 return 1;
4191
4192 if (saidx0 == NULL || saidx1 == NULL)
4193 return 0;
4194
4195 if (saidx0->proto != saidx1->proto)
4196 return 0;
4197
4198 if (flag == CMP_EXACTLY) {
4199 if (saidx0->mode != saidx1->mode)
4200 return 0;
4201 if (saidx0->reqid != saidx1->reqid)
4202 return 0;
4203 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4204 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4205 return 0;
4206 } else {
4207
4208 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4209 if (flag == CMP_MODE_REQID
4210 ||flag == CMP_REQID) {
4211 /*
4212 * If reqid of SPD is non-zero, unique SA is required.
4213 * The result must be of same reqid in this case.
4214 */
4215 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4216 return 0;
4217 }
4218
4219 if (flag == CMP_MODE_REQID) {
4220 if (saidx0->mode != IPSEC_MODE_ANY
4221 && saidx0->mode != saidx1->mode)
4222 return 0;
4223 }
4224
4225 /*
4226 * If NAT-T is enabled, check ports for tunnel mode.
4227 * Don't do it for transport mode, as there is no
4228 * port information available in the SP.
4229 * Also don't check ports if they are set to zero
4230 * in the SPD: This means we have a non-generated
4231 * SPD which can't know UDP ports.
4232 */
4233 #ifdef IPSEC_NAT_T
4234 if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4235 ((((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET &&
4236 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET &&
4237 ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4238 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) ||
4239 (((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET6 &&
4240 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET6 &&
4241 ((const struct sockaddr_in6 *)(&saidx1->src))->sin6_port &&
4242 ((const struct sockaddr_in6 *)(&saidx1->dst))->sin6_port)))
4243 chkport = 1;
4244 #endif
4245
4246 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4247 return 0;
4248 }
4249 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4250 return 0;
4251 }
4252 }
4253
4254 return 1;
4255 }
4256
4257 /*
4258 * compare two secindex structure exactly.
4259 * IN:
4260 * spidx0: source, it is often in SPD.
4261 * spidx1: object, it is often from PFKEY message.
4262 * OUT:
4263 * 1 : equal
4264 * 0 : not equal
4265 */
4266 int
4267 key_cmpspidx_exactly(
4268 struct secpolicyindex *spidx0,
4269 struct secpolicyindex *spidx1)
4270 {
4271 /* sanity */
4272 if (spidx0 == NULL && spidx1 == NULL)
4273 return 1;
4274
4275 if (spidx0 == NULL || spidx1 == NULL)
4276 return 0;
4277
4278 if (spidx0->prefs != spidx1->prefs
4279 || spidx0->prefd != spidx1->prefd
4280 || spidx0->ul_proto != spidx1->ul_proto)
4281 return 0;
4282
4283 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4284 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4285 }
4286
4287 /*
4288 * compare two secindex structure with mask.
4289 * IN:
4290 * spidx0: source, it is often in SPD.
4291 * spidx1: object, it is often from IP header.
4292 * OUT:
4293 * 1 : equal
4294 * 0 : not equal
4295 */
4296 int
4297 key_cmpspidx_withmask(
4298 struct secpolicyindex *spidx0,
4299 struct secpolicyindex *spidx1)
4300 {
4301 /* sanity */
4302 if (spidx0 == NULL && spidx1 == NULL)
4303 return 1;
4304
4305 if (spidx0 == NULL || spidx1 == NULL)
4306 return 0;
4307
4308 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4309 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4310 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4311 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4312 return 0;
4313
4314 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4315 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4316 && spidx0->ul_proto != spidx1->ul_proto)
4317 return 0;
4318
4319 switch (spidx0->src.sa.sa_family) {
4320 case AF_INET:
4321 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4322 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4323 return 0;
4324 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4325 &spidx1->src.sin.sin_addr, spidx0->prefs))
4326 return 0;
4327 break;
4328 case AF_INET6:
4329 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4330 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4331 return 0;
4332 /*
4333 * scope_id check. if sin6_scope_id is 0, we regard it
4334 * as a wildcard scope, which matches any scope zone ID.
4335 */
4336 if (spidx0->src.sin6.sin6_scope_id &&
4337 spidx1->src.sin6.sin6_scope_id &&
4338 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4339 return 0;
4340 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4341 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4342 return 0;
4343 break;
4344 default:
4345 /* XXX */
4346 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4347 return 0;
4348 break;
4349 }
4350
4351 switch (spidx0->dst.sa.sa_family) {
4352 case AF_INET:
4353 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4354 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4355 return 0;
4356 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4357 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4358 return 0;
4359 break;
4360 case AF_INET6:
4361 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4362 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4363 return 0;
4364 /*
4365 * scope_id check. if sin6_scope_id is 0, we regard it
4366 * as a wildcard scope, which matches any scope zone ID.
4367 */
4368 if (spidx0->src.sin6.sin6_scope_id &&
4369 spidx1->src.sin6.sin6_scope_id &&
4370 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4371 return 0;
4372 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4373 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4374 return 0;
4375 break;
4376 default:
4377 /* XXX */
4378 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4379 return 0;
4380 break;
4381 }
4382
4383 /* XXX Do we check other field ? e.g. flowinfo */
4384
4385 return 1;
4386 }
4387
4388 /* returns 0 on match */
4389 static int
4390 key_sockaddrcmp(
4391 const struct sockaddr *sa1,
4392 const struct sockaddr *sa2,
4393 int port)
4394 {
4395 #ifdef satosin
4396 #undef satosin
4397 #endif
4398 #define satosin(s) ((const struct sockaddr_in *)s)
4399 #ifdef satosin6
4400 #undef satosin6
4401 #endif
4402 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4403 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4404 return 1;
4405
4406 switch (sa1->sa_family) {
4407 case AF_INET:
4408 if (sa1->sa_len != sizeof(struct sockaddr_in))
4409 return 1;
4410 if (satosin(sa1)->sin_addr.s_addr !=
4411 satosin(sa2)->sin_addr.s_addr) {
4412 return 1;
4413 }
4414 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4415 return 1;
4416 break;
4417 case AF_INET6:
4418 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4419 return 1; /*EINVAL*/
4420 if (satosin6(sa1)->sin6_scope_id !=
4421 satosin6(sa2)->sin6_scope_id) {
4422 return 1;
4423 }
4424 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4425 &satosin6(sa2)->sin6_addr)) {
4426 return 1;
4427 }
4428 if (port &&
4429 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4430 return 1;
4431 }
4432 break;
4433 default:
4434 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4435 return 1;
4436 break;
4437 }
4438
4439 return 0;
4440 #undef satosin
4441 #undef satosin6
4442 }
4443
4444 /*
4445 * compare two buffers with mask.
4446 * IN:
4447 * addr1: source
4448 * addr2: object
4449 * bits: Number of bits to compare
4450 * OUT:
4451 * 1 : equal
4452 * 0 : not equal
4453 */
4454 static int
4455 key_bbcmp(const void *a1, const void *a2, u_int bits)
4456 {
4457 const unsigned char *p1 = a1;
4458 const unsigned char *p2 = a2;
4459
4460 /* XXX: This could be considerably faster if we compare a word
4461 * at a time, but it is complicated on LSB Endian machines */
4462
4463 /* Handle null pointers */
4464 if (p1 == NULL || p2 == NULL)
4465 return (p1 == p2);
4466
4467 while (bits >= 8) {
4468 if (*p1++ != *p2++)
4469 return 0;
4470 bits -= 8;
4471 }
4472
4473 if (bits > 0) {
4474 u_int8_t mask = ~((1<<(8-bits))-1);
4475 if ((*p1 & mask) != (*p2 & mask))
4476 return 0;
4477 }
4478 return 1; /* Match! */
4479 }
4480
4481 /*
4482 * time handler.
4483 * scanning SPD and SAD to check status for each entries,
4484 * and do to remove or to expire.
4485 */
4486 void
4487 key_timehandler(void* arg)
4488 {
4489 u_int dir;
4490 int s;
4491 time_t now = time_second;
4492
4493 s = splsoftnet(); /*called from softclock()*/
4494 mutex_enter(softnet_lock);
4495
4496 /* SPD */
4497 {
4498 struct secpolicy *sp, *nextsp;
4499
4500 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4501 for (sp = LIST_FIRST(&sptree[dir]);
4502 sp != NULL;
4503 sp = nextsp) {
4504
4505 nextsp = LIST_NEXT(sp, chain);
4506
4507 if (sp->state == IPSEC_SPSTATE_DEAD) {
4508 key_sp_unlink(sp); /*XXX*/
4509
4510 /* 'sp' dead; continue transfers to
4511 * 'sp = nextsp'
4512 */
4513 continue;
4514 }
4515
4516 if (sp->lifetime == 0 && sp->validtime == 0)
4517 continue;
4518
4519 /* the deletion will occur next time */
4520 if ((sp->lifetime && now - sp->created > sp->lifetime)
4521 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4522 key_sp_dead(sp);
4523 key_spdexpire(sp);
4524 continue;
4525 }
4526 }
4527 }
4528 }
4529
4530 /* SAD */
4531 {
4532 struct secashead *sah, *nextsah;
4533 struct secasvar *sav, *nextsav;
4534
4535 for (sah = LIST_FIRST(&sahtree);
4536 sah != NULL;
4537 sah = nextsah) {
4538
4539 nextsah = LIST_NEXT(sah, chain);
4540
4541 /* if sah has been dead, then delete it and process next sah. */
4542 if (sah->state == SADB_SASTATE_DEAD) {
4543 key_delsah(sah);
4544 continue;
4545 }
4546
4547 /* if LARVAL entry doesn't become MATURE, delete it. */
4548 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4549 sav != NULL;
4550 sav = nextsav) {
4551
4552 nextsav = LIST_NEXT(sav, chain);
4553
4554 if (now - sav->created > key_larval_lifetime) {
4555 KEY_FREESAV(&sav);
4556 }
4557 }
4558
4559 /*
4560 * check MATURE entry to start to send expire message
4561 * whether or not.
4562 */
4563 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4564 sav != NULL;
4565 sav = nextsav) {
4566
4567 nextsav = LIST_NEXT(sav, chain);
4568
4569 /* we don't need to check. */
4570 if (sav->lft_s == NULL)
4571 continue;
4572
4573 /* sanity check */
4574 if (sav->lft_c == NULL) {
4575 ipseclog((LOG_DEBUG,"key_timehandler: "
4576 "There is no CURRENT time, why?\n"));
4577 continue;
4578 }
4579
4580 /* check SOFT lifetime */
4581 if (sav->lft_s->sadb_lifetime_addtime != 0
4582 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4583 /*
4584 * check SA to be used whether or not.
4585 * when SA hasn't been used, delete it.
4586 */
4587 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4588 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4589 KEY_FREESAV(&sav);
4590 } else {
4591 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4592 /*
4593 * XXX If we keep to send expire
4594 * message in the status of
4595 * DYING. Do remove below code.
4596 */
4597 key_expire(sav);
4598 }
4599 }
4600 /* check SOFT lifetime by bytes */
4601 /*
4602 * XXX I don't know the way to delete this SA
4603 * when new SA is installed. Caution when it's
4604 * installed too big lifetime by time.
4605 */
4606 else if (sav->lft_s->sadb_lifetime_bytes != 0
4607 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4608
4609 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4610 /*
4611 * XXX If we keep to send expire
4612 * message in the status of
4613 * DYING. Do remove below code.
4614 */
4615 key_expire(sav);
4616 }
4617 }
4618
4619 /* check DYING entry to change status to DEAD. */
4620 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4621 sav != NULL;
4622 sav = nextsav) {
4623
4624 nextsav = LIST_NEXT(sav, chain);
4625
4626 /* we don't need to check. */
4627 if (sav->lft_h == NULL)
4628 continue;
4629
4630 /* sanity check */
4631 if (sav->lft_c == NULL) {
4632 ipseclog((LOG_DEBUG, "key_timehandler: "
4633 "There is no CURRENT time, why?\n"));
4634 continue;
4635 }
4636
4637 if (sav->lft_h->sadb_lifetime_addtime != 0
4638 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4639 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4640 KEY_FREESAV(&sav);
4641 }
4642 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4643 else if (sav->lft_s != NULL
4644 && sav->lft_s->sadb_lifetime_addtime != 0
4645 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4646 /*
4647 * XXX: should be checked to be
4648 * installed the valid SA.
4649 */
4650
4651 /*
4652 * If there is no SA then sending
4653 * expire message.
4654 */
4655 key_expire(sav);
4656 }
4657 #endif
4658 /* check HARD lifetime by bytes */
4659 else if (sav->lft_h->sadb_lifetime_bytes != 0
4660 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4661 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4662 KEY_FREESAV(&sav);
4663 }
4664 }
4665
4666 /* delete entry in DEAD */
4667 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4668 sav != NULL;
4669 sav = nextsav) {
4670
4671 nextsav = LIST_NEXT(sav, chain);
4672
4673 /* sanity check */
4674 if (sav->state != SADB_SASTATE_DEAD) {
4675 ipseclog((LOG_DEBUG, "key_timehandler: "
4676 "invalid sav->state "
4677 "(queue: %d SA: %d): "
4678 "kill it anyway\n",
4679 SADB_SASTATE_DEAD, sav->state));
4680 }
4681
4682 /*
4683 * do not call key_freesav() here.
4684 * sav should already be freed, and sav->refcnt
4685 * shows other references to sav
4686 * (such as from SPD).
4687 */
4688 }
4689 }
4690 }
4691
4692 #ifndef IPSEC_NONBLOCK_ACQUIRE
4693 /* ACQ tree */
4694 {
4695 struct secacq *acq, *nextacq;
4696
4697 for (acq = LIST_FIRST(&acqtree);
4698 acq != NULL;
4699 acq = nextacq) {
4700
4701 nextacq = LIST_NEXT(acq, chain);
4702
4703 if (now - acq->created > key_blockacq_lifetime
4704 && __LIST_CHAINED(acq)) {
4705 LIST_REMOVE(acq, chain);
4706 KFREE(acq);
4707 }
4708 }
4709 }
4710 #endif
4711
4712 /* SP ACQ tree */
4713 {
4714 struct secspacq *acq, *nextacq;
4715
4716 for (acq = LIST_FIRST(&spacqtree);
4717 acq != NULL;
4718 acq = nextacq) {
4719
4720 nextacq = LIST_NEXT(acq, chain);
4721
4722 if (now - acq->created > key_blockacq_lifetime
4723 && __LIST_CHAINED(acq)) {
4724 LIST_REMOVE(acq, chain);
4725 KFREE(acq);
4726 }
4727 }
4728 }
4729
4730 /* initialize random seed */
4731 if (key_tick_init_random++ > key_int_random) {
4732 key_tick_init_random = 0;
4733 key_srandom();
4734 }
4735
4736 #ifndef IPSEC_DEBUG2
4737 /* do exchange to tick time !! */
4738 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4739 #endif /* IPSEC_DEBUG2 */
4740
4741 mutex_exit(softnet_lock);
4742 splx(s);
4743 return;
4744 }
4745
4746 #ifdef __NetBSD__
4747 void srandom(int);
4748 void srandom(int arg) {return;}
4749 #endif
4750
4751 /*
4752 * to initialize a seed for random()
4753 */
4754 static void
4755 key_srandom(void)
4756 {
4757 srandom(time_second);
4758 }
4759
4760 u_long
4761 key_random(void)
4762 {
4763 u_long value;
4764
4765 key_randomfill(&value, sizeof(value));
4766 return value;
4767 }
4768
4769 void
4770 key_randomfill(void *p, size_t l)
4771 {
4772 size_t n;
4773 u_long v;
4774 static int warn = 1;
4775
4776 n = 0;
4777 n = (size_t)read_random(p, (u_int)l);
4778 /* last resort */
4779 while (n < l) {
4780 v = random();
4781 memcpy((u_int8_t *)p + n, &v,
4782 l - n < sizeof(v) ? l - n : sizeof(v));
4783 n += sizeof(v);
4784
4785 if (warn) {
4786 printf("WARNING: pseudo-random number generator "
4787 "used for IPsec processing\n");
4788 warn = 0;
4789 }
4790 }
4791 }
4792
4793 /*
4794 * map SADB_SATYPE_* to IPPROTO_*.
4795 * if satype == SADB_SATYPE then satype is mapped to ~0.
4796 * OUT:
4797 * 0: invalid satype.
4798 */
4799 static u_int16_t
4800 key_satype2proto(u_int8_t satype)
4801 {
4802 switch (satype) {
4803 case SADB_SATYPE_UNSPEC:
4804 return IPSEC_PROTO_ANY;
4805 case SADB_SATYPE_AH:
4806 return IPPROTO_AH;
4807 case SADB_SATYPE_ESP:
4808 return IPPROTO_ESP;
4809 case SADB_X_SATYPE_IPCOMP:
4810 return IPPROTO_IPCOMP;
4811 case SADB_X_SATYPE_TCPSIGNATURE:
4812 return IPPROTO_TCP;
4813 default:
4814 return 0;
4815 }
4816 /* NOTREACHED */
4817 }
4818
4819 /*
4820 * map IPPROTO_* to SADB_SATYPE_*
4821 * OUT:
4822 * 0: invalid protocol type.
4823 */
4824 static u_int8_t
4825 key_proto2satype(u_int16_t proto)
4826 {
4827 switch (proto) {
4828 case IPPROTO_AH:
4829 return SADB_SATYPE_AH;
4830 case IPPROTO_ESP:
4831 return SADB_SATYPE_ESP;
4832 case IPPROTO_IPCOMP:
4833 return SADB_X_SATYPE_IPCOMP;
4834 case IPPROTO_TCP:
4835 return SADB_X_SATYPE_TCPSIGNATURE;
4836 default:
4837 return 0;
4838 }
4839 /* NOTREACHED */
4840 }
4841
4842 static int
4843 key_setsecasidx(int proto, int mode, int reqid,
4844 const struct sadb_address * src,
4845 const struct sadb_address * dst,
4846 struct secasindex * saidx)
4847 {
4848 const union sockaddr_union * src_u =
4849 (const union sockaddr_union *) src;
4850 const union sockaddr_union * dst_u =
4851 (const union sockaddr_union *) dst;
4852
4853 /* sa len safety check */
4854 if (key_checksalen(src_u) != 0)
4855 return -1;
4856 if (key_checksalen(dst_u) != 0)
4857 return -1;
4858
4859 memset(saidx, 0, sizeof(*saidx));
4860 saidx->proto = proto;
4861 saidx->mode = mode;
4862 saidx->reqid = reqid;
4863 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4864 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4865
4866 #ifndef IPSEC_NAT_T
4867 key_porttosaddr(&((saidx)->src),0);
4868 key_porttosaddr(&((saidx)->dst),0);
4869 #endif
4870 return 0;
4871 }
4872
4873 /* %%% PF_KEY */
4874 /*
4875 * SADB_GETSPI processing is to receive
4876 * <base, (SA2), src address, dst address, (SPI range)>
4877 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4878 * tree with the status of LARVAL, and send
4879 * <base, SA(*), address(SD)>
4880 * to the IKMPd.
4881 *
4882 * IN: mhp: pointer to the pointer to each header.
4883 * OUT: NULL if fail.
4884 * other if success, return pointer to the message to send.
4885 */
4886 static int
4887 key_getspi(struct socket *so, struct mbuf *m,
4888 const struct sadb_msghdr *mhp)
4889 {
4890 struct sadb_address *src0, *dst0;
4891 struct secasindex saidx;
4892 struct secashead *newsah;
4893 struct secasvar *newsav;
4894 u_int8_t proto;
4895 u_int32_t spi;
4896 u_int8_t mode;
4897 u_int16_t reqid;
4898 int error;
4899
4900 /* sanity check */
4901 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4902 panic("key_getspi: NULL pointer is passed");
4903
4904 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4905 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4906 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4907 return key_senderror(so, m, EINVAL);
4908 }
4909 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4910 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4911 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4912 return key_senderror(so, m, EINVAL);
4913 }
4914 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4915 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4916 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4917 } else {
4918 mode = IPSEC_MODE_ANY;
4919 reqid = 0;
4920 }
4921
4922 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4923 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4924
4925 /* map satype to proto */
4926 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4927 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4928 return key_senderror(so, m, EINVAL);
4929 }
4930
4931
4932 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4933 dst0 + 1, &saidx)) != 0)
4934 return key_senderror(so, m, EINVAL);
4935
4936 #ifdef IPSEC_NAT_T
4937 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4938 return key_senderror(so, m, EINVAL);
4939 #endif
4940
4941 /* SPI allocation */
4942 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4943 &saidx);
4944 if (spi == 0)
4945 return key_senderror(so, m, EINVAL);
4946
4947 /* get a SA index */
4948 if ((newsah = key_getsah(&saidx)) == NULL) {
4949 /* create a new SA index */
4950 if ((newsah = key_newsah(&saidx)) == NULL) {
4951 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4952 return key_senderror(so, m, ENOBUFS);
4953 }
4954 }
4955
4956 /* get a new SA */
4957 /* XXX rewrite */
4958 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4959 if (newsav == NULL) {
4960 /* XXX don't free new SA index allocated in above. */
4961 return key_senderror(so, m, error);
4962 }
4963
4964 /* set spi */
4965 newsav->spi = htonl(spi);
4966
4967 #ifndef IPSEC_NONBLOCK_ACQUIRE
4968 /* delete the entry in acqtree */
4969 if (mhp->msg->sadb_msg_seq != 0) {
4970 struct secacq *acq;
4971 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4972 /* reset counter in order to deletion by timehandler. */
4973 acq->created = time_second;
4974 acq->count = 0;
4975 }
4976 }
4977 #endif
4978
4979 {
4980 struct mbuf *n, *nn;
4981 struct sadb_sa *m_sa;
4982 struct sadb_msg *newmsg;
4983 int off, len;
4984
4985 /* create new sadb_msg to reply. */
4986 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4987 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4988 if (len > MCLBYTES)
4989 return key_senderror(so, m, ENOBUFS);
4990
4991 MGETHDR(n, M_DONTWAIT, MT_DATA);
4992 if (len > MHLEN) {
4993 MCLGET(n, M_DONTWAIT);
4994 if ((n->m_flags & M_EXT) == 0) {
4995 m_freem(n);
4996 n = NULL;
4997 }
4998 }
4999 if (!n)
5000 return key_senderror(so, m, ENOBUFS);
5001
5002 n->m_len = len;
5003 n->m_next = NULL;
5004 off = 0;
5005
5006 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5007 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5008
5009 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5010 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5011 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5012 m_sa->sadb_sa_spi = htonl(spi);
5013 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5014
5015 #ifdef DIAGNOSTIC
5016 if (off != len)
5017 panic("length inconsistency in key_getspi");
5018 #endif
5019
5020 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5021 SADB_EXT_ADDRESS_DST);
5022 if (!n->m_next) {
5023 m_freem(n);
5024 return key_senderror(so, m, ENOBUFS);
5025 }
5026
5027 if (n->m_len < sizeof(struct sadb_msg)) {
5028 n = m_pullup(n, sizeof(struct sadb_msg));
5029 if (n == NULL)
5030 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5031 }
5032
5033 n->m_pkthdr.len = 0;
5034 for (nn = n; nn; nn = nn->m_next)
5035 n->m_pkthdr.len += nn->m_len;
5036
5037 newmsg = mtod(n, struct sadb_msg *);
5038 newmsg->sadb_msg_seq = newsav->seq;
5039 newmsg->sadb_msg_errno = 0;
5040 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5041
5042 m_freem(m);
5043 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5044 }
5045 }
5046
5047 /*
5048 * allocating new SPI
5049 * called by key_getspi().
5050 * OUT:
5051 * 0: failure.
5052 * others: success.
5053 */
5054 static u_int32_t
5055 key_do_getnewspi(struct sadb_spirange *spirange,
5056 struct secasindex *saidx)
5057 {
5058 u_int32_t newspi;
5059 u_int32_t spmin, spmax;
5060 int count = key_spi_trycnt;
5061
5062 /* set spi range to allocate */
5063 if (spirange != NULL) {
5064 spmin = spirange->sadb_spirange_min;
5065 spmax = spirange->sadb_spirange_max;
5066 } else {
5067 spmin = key_spi_minval;
5068 spmax = key_spi_maxval;
5069 }
5070 /* IPCOMP needs 2-byte SPI */
5071 if (saidx->proto == IPPROTO_IPCOMP) {
5072 u_int32_t t;
5073 if (spmin >= 0x10000)
5074 spmin = 0xffff;
5075 if (spmax >= 0x10000)
5076 spmax = 0xffff;
5077 if (spmin > spmax) {
5078 t = spmin; spmin = spmax; spmax = t;
5079 }
5080 }
5081
5082 if (spmin == spmax) {
5083 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5084 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5085 return 0;
5086 }
5087
5088 count--; /* taking one cost. */
5089 newspi = spmin;
5090
5091 } else {
5092
5093 /* init SPI */
5094 newspi = 0;
5095
5096 /* when requesting to allocate spi ranged */
5097 while (count--) {
5098 /* generate pseudo-random SPI value ranged. */
5099 newspi = spmin + (key_random() % (spmax - spmin + 1));
5100
5101 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5102 break;
5103 }
5104
5105 if (count == 0 || newspi == 0) {
5106 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5107 return 0;
5108 }
5109 }
5110
5111 /* statistics */
5112 keystat.getspi_count =
5113 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5114
5115 return newspi;
5116 }
5117
5118 #ifdef IPSEC_NAT_T
5119 /* Handle IPSEC_NAT_T info if present */
5120 static int
5121 key_handle_natt_info(struct secasvar *sav,
5122 const struct sadb_msghdr *mhp)
5123 {
5124
5125 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5126 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n"));
5127 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5128 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n"));
5129
5130 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5131 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5132 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5133 struct sadb_x_nat_t_type *type;
5134 struct sadb_x_nat_t_port *sport;
5135 struct sadb_x_nat_t_port *dport;
5136 struct sadb_address *iaddr, *raddr;
5137 struct sadb_x_nat_t_frag *frag;
5138
5139 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5140 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5141 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5142 ipseclog((LOG_DEBUG, "key_update: "
5143 "invalid message.\n"));
5144 return -1;
5145 }
5146
5147 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
5148 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
5149 ipseclog((LOG_DEBUG, "key_update: invalid message\n"));
5150 return -1;
5151 }
5152
5153 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
5154 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
5155 ipseclog((LOG_DEBUG, "key_update: invalid message\n"));
5156 return -1;
5157 }
5158
5159 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
5160 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
5161 ipseclog((LOG_DEBUG, "key_update: invalid message\n"));
5162 return -1;
5163 }
5164
5165 type = (struct sadb_x_nat_t_type *)
5166 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5167 sport = (struct sadb_x_nat_t_port *)
5168 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5169 dport = (struct sadb_x_nat_t_port *)
5170 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5171 iaddr = (struct sadb_address *)
5172 mhp->ext[SADB_X_EXT_NAT_T_OAI];
5173 raddr = (struct sadb_address *)
5174 mhp->ext[SADB_X_EXT_NAT_T_OAR];
5175 frag = (struct sadb_x_nat_t_frag *)
5176 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5177
5178 ipseclog((LOG_DEBUG,
5179 "key_update: type %d, sport = %d, dport = %d\n",
5180 type->sadb_x_nat_t_type_type,
5181 sport->sadb_x_nat_t_port_port,
5182 dport->sadb_x_nat_t_port_port));
5183
5184 if (type)
5185 sav->natt_type = type->sadb_x_nat_t_type_type;
5186 if (sport)
5187 key_porttosaddr(&sav->sah->saidx.src,
5188 sport->sadb_x_nat_t_port_port);
5189 if (dport)
5190 key_porttosaddr(&sav->sah->saidx.dst,
5191 dport->sadb_x_nat_t_port_port);
5192 if (frag)
5193 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5194 else
5195 sav->esp_frag = IP_MAXPACKET;
5196 }
5197
5198 return 0;
5199 }
5200
5201 /* Just update the IPSEC_NAT_T ports if present */
5202 static int
5203 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5204 const struct sadb_msghdr *mhp)
5205 {
5206
5207 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5208 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n"));
5209 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5210 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n"));
5211
5212 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5213 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5214 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5215 struct sadb_x_nat_t_type *type;
5216 struct sadb_x_nat_t_port *sport;
5217 struct sadb_x_nat_t_port *dport;
5218
5219 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5220 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5221 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5222 ipseclog((LOG_DEBUG, "key_update: "
5223 "invalid message.\n"));
5224 return -1;
5225 }
5226
5227 sport = (struct sadb_x_nat_t_port *)
5228 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5229 dport = (struct sadb_x_nat_t_port *)
5230 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5231
5232 if (sport)
5233 key_porttosaddr(src,
5234 sport->sadb_x_nat_t_port_port);
5235 if (dport)
5236 key_porttosaddr(dst,
5237 dport->sadb_x_nat_t_port_port);
5238 }
5239
5240 return 0;
5241 }
5242 #endif
5243
5244
5245 /*
5246 * SADB_UPDATE processing
5247 * receive
5248 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5249 * key(AE), (identity(SD),) (sensitivity)>
5250 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5251 * and send
5252 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5253 * (identity(SD),) (sensitivity)>
5254 * to the ikmpd.
5255 *
5256 * m will always be freed.
5257 */
5258 static int
5259 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5260 {
5261 struct sadb_sa *sa0;
5262 struct sadb_address *src0, *dst0;
5263 struct secasindex saidx;
5264 struct secashead *sah;
5265 struct secasvar *sav;
5266 u_int16_t proto;
5267 u_int8_t mode;
5268 u_int16_t reqid;
5269 int error;
5270
5271 /* sanity check */
5272 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5273 panic("key_update: NULL pointer is passed");
5274
5275 /* map satype to proto */
5276 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5277 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5278 return key_senderror(so, m, EINVAL);
5279 }
5280
5281 if (mhp->ext[SADB_EXT_SA] == NULL ||
5282 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5283 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5284 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5285 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5286 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5287 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5288 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5289 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5290 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5291 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5292 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5293 return key_senderror(so, m, EINVAL);
5294 }
5295 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5296 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5297 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5298 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5299 return key_senderror(so, m, EINVAL);
5300 }
5301 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5302 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5303 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5304 } else {
5305 mode = IPSEC_MODE_ANY;
5306 reqid = 0;
5307 }
5308 /* XXX boundary checking for other extensions */
5309
5310 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5311 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5312 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5313
5314 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5315 dst0 + 1, &saidx)) != 0)
5316 return key_senderror(so, m, EINVAL);
5317
5318 #ifdef IPSEC_NAT_T
5319 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5320 return key_senderror(so, m, EINVAL);
5321 #endif
5322
5323 /* get a SA header */
5324 if ((sah = key_getsah(&saidx)) == NULL) {
5325 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5326 return key_senderror(so, m, ENOENT);
5327 }
5328
5329 /* set spidx if there */
5330 /* XXX rewrite */
5331 error = key_setident(sah, m, mhp);
5332 if (error)
5333 return key_senderror(so, m, error);
5334
5335 /* find a SA with sequence number. */
5336 #ifdef IPSEC_DOSEQCHECK
5337 if (mhp->msg->sadb_msg_seq != 0
5338 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5339 ipseclog((LOG_DEBUG,
5340 "key_update: no larval SA with sequence %u exists.\n",
5341 mhp->msg->sadb_msg_seq));
5342 return key_senderror(so, m, ENOENT);
5343 }
5344 #else
5345 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5346 ipseclog((LOG_DEBUG,
5347 "key_update: no such a SA found (spi:%u)\n",
5348 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5349 return key_senderror(so, m, EINVAL);
5350 }
5351 #endif
5352
5353 /* validity check */
5354 if (sav->sah->saidx.proto != proto) {
5355 ipseclog((LOG_DEBUG,
5356 "key_update: protocol mismatched (DB=%u param=%u)\n",
5357 sav->sah->saidx.proto, proto));
5358 return key_senderror(so, m, EINVAL);
5359 }
5360 #ifdef IPSEC_DOSEQCHECK
5361 if (sav->spi != sa0->sadb_sa_spi) {
5362 ipseclog((LOG_DEBUG,
5363 "key_update: SPI mismatched (DB:%u param:%u)\n",
5364 (u_int32_t)ntohl(sav->spi),
5365 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5366 return key_senderror(so, m, EINVAL);
5367 }
5368 #endif
5369 if (sav->pid != mhp->msg->sadb_msg_pid) {
5370 ipseclog((LOG_DEBUG,
5371 "key_update: pid mismatched (DB:%u param:%u)\n",
5372 sav->pid, mhp->msg->sadb_msg_pid));
5373 return key_senderror(so, m, EINVAL);
5374 }
5375
5376 /* copy sav values */
5377 error = key_setsaval(sav, m, mhp);
5378 if (error) {
5379 KEY_FREESAV(&sav);
5380 return key_senderror(so, m, error);
5381 }
5382
5383 #ifdef IPSEC_NAT_T
5384 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5385 return key_senderror(so, m, EINVAL);
5386 #endif /* IPSEC_NAT_T */
5387
5388 /* check SA values to be mature. */
5389 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5390 KEY_FREESAV(&sav);
5391 return key_senderror(so, m, 0);
5392 }
5393
5394 {
5395 struct mbuf *n;
5396
5397 /* set msg buf from mhp */
5398 n = key_getmsgbuf_x1(m, mhp);
5399 if (n == NULL) {
5400 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5401 return key_senderror(so, m, ENOBUFS);
5402 }
5403
5404 m_freem(m);
5405 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5406 }
5407 }
5408
5409 /*
5410 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5411 * only called by key_update().
5412 * OUT:
5413 * NULL : not found
5414 * others : found, pointer to a SA.
5415 */
5416 #ifdef IPSEC_DOSEQCHECK
5417 static struct secasvar *
5418 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5419 {
5420 struct secasvar *sav;
5421 u_int state;
5422
5423 state = SADB_SASTATE_LARVAL;
5424
5425 /* search SAD with sequence number ? */
5426 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5427
5428 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5429
5430 if (sav->seq == seq) {
5431 SA_ADDREF(sav);
5432 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5433 printf("DP key_getsavbyseq cause "
5434 "refcnt++:%d SA:%p\n",
5435 sav->refcnt, sav));
5436 return sav;
5437 }
5438 }
5439
5440 return NULL;
5441 }
5442 #endif
5443
5444 /*
5445 * SADB_ADD processing
5446 * add an entry to SA database, when received
5447 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5448 * key(AE), (identity(SD),) (sensitivity)>
5449 * from the ikmpd,
5450 * and send
5451 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5452 * (identity(SD),) (sensitivity)>
5453 * to the ikmpd.
5454 *
5455 * IGNORE identity and sensitivity messages.
5456 *
5457 * m will always be freed.
5458 */
5459 static int
5460 key_add(struct socket *so, struct mbuf *m,
5461 const struct sadb_msghdr *mhp)
5462 {
5463 struct sadb_sa *sa0;
5464 struct sadb_address *src0, *dst0;
5465 struct secasindex saidx;
5466 struct secashead *newsah;
5467 struct secasvar *newsav;
5468 u_int16_t proto;
5469 u_int8_t mode;
5470 u_int16_t reqid;
5471 int error;
5472
5473 /* sanity check */
5474 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5475 panic("key_add: NULL pointer is passed");
5476
5477 /* map satype to proto */
5478 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5479 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5480 return key_senderror(so, m, EINVAL);
5481 }
5482
5483 if (mhp->ext[SADB_EXT_SA] == NULL ||
5484 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5485 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5486 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5487 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5488 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5489 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5490 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5491 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5492 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5493 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5494 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5495 return key_senderror(so, m, EINVAL);
5496 }
5497 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5498 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5499 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5500 /* XXX need more */
5501 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5502 return key_senderror(so, m, EINVAL);
5503 }
5504 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5505 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5506 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5507 } else {
5508 mode = IPSEC_MODE_ANY;
5509 reqid = 0;
5510 }
5511
5512 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5513 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5514 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5515
5516 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5517 dst0 + 1, &saidx)) != 0)
5518 return key_senderror(so, m, EINVAL);
5519
5520 #ifdef IPSEC_NAT_T
5521 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5522 return key_senderror(so, m, EINVAL);
5523 #endif
5524
5525 /* get a SA header */
5526 if ((newsah = key_getsah(&saidx)) == NULL) {
5527 /* create a new SA header */
5528 if ((newsah = key_newsah(&saidx)) == NULL) {
5529 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5530 return key_senderror(so, m, ENOBUFS);
5531 }
5532 }
5533
5534 /* set spidx if there */
5535 /* XXX rewrite */
5536 error = key_setident(newsah, m, mhp);
5537 if (error) {
5538 return key_senderror(so, m, error);
5539 }
5540
5541 /* create new SA entry. */
5542 /* We can create new SA only if SPI is differenct. */
5543 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5544 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5545 return key_senderror(so, m, EEXIST);
5546 }
5547 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5548 if (newsav == NULL) {
5549 return key_senderror(so, m, error);
5550 }
5551
5552 #ifdef IPSEC_NAT_T
5553 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5554 return key_senderror(so, m, EINVAL);
5555 #endif /* IPSEC_NAT_T */
5556
5557 /* check SA values to be mature. */
5558 if ((error = key_mature(newsav)) != 0) {
5559 KEY_FREESAV(&newsav);
5560 return key_senderror(so, m, error);
5561 }
5562
5563 /*
5564 * don't call key_freesav() here, as we would like to keep the SA
5565 * in the database on success.
5566 */
5567
5568 {
5569 struct mbuf *n;
5570
5571 /* set msg buf from mhp */
5572 n = key_getmsgbuf_x1(m, mhp);
5573 if (n == NULL) {
5574 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5575 return key_senderror(so, m, ENOBUFS);
5576 }
5577
5578 m_freem(m);
5579 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5580 }
5581 }
5582
5583 /* m is retained */
5584 static int
5585 key_setident(struct secashead *sah, struct mbuf *m,
5586 const struct sadb_msghdr *mhp)
5587 {
5588 const struct sadb_ident *idsrc, *iddst;
5589 int idsrclen, iddstlen;
5590
5591 /* sanity check */
5592 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5593 panic("key_setident: NULL pointer is passed");
5594
5595 /* don't make buffer if not there */
5596 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5597 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5598 sah->idents = NULL;
5599 sah->identd = NULL;
5600 return 0;
5601 }
5602
5603 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5604 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5605 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5606 return EINVAL;
5607 }
5608
5609 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5610 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5611 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5612 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5613
5614 /* validity check */
5615 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5616 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5617 return EINVAL;
5618 }
5619
5620 switch (idsrc->sadb_ident_type) {
5621 case SADB_IDENTTYPE_PREFIX:
5622 case SADB_IDENTTYPE_FQDN:
5623 case SADB_IDENTTYPE_USERFQDN:
5624 default:
5625 /* XXX do nothing */
5626 sah->idents = NULL;
5627 sah->identd = NULL;
5628 return 0;
5629 }
5630
5631 /* make structure */
5632 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5633 if (sah->idents == NULL) {
5634 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5635 return ENOBUFS;
5636 }
5637 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5638 if (sah->identd == NULL) {
5639 KFREE(sah->idents);
5640 sah->idents = NULL;
5641 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5642 return ENOBUFS;
5643 }
5644 memcpy(sah->idents, idsrc, idsrclen);
5645 memcpy(sah->identd, iddst, iddstlen);
5646
5647 return 0;
5648 }
5649
5650 /*
5651 * m will not be freed on return.
5652 * it is caller's responsibility to free the result.
5653 */
5654 static struct mbuf *
5655 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5656 {
5657 struct mbuf *n;
5658
5659 /* sanity check */
5660 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5661 panic("key_getmsgbuf_x1: NULL pointer is passed");
5662
5663 /* create new sadb_msg to reply. */
5664 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5665 SADB_EXT_SA, SADB_X_EXT_SA2,
5666 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5667 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5668 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5669 if (!n)
5670 return NULL;
5671
5672 if (n->m_len < sizeof(struct sadb_msg)) {
5673 n = m_pullup(n, sizeof(struct sadb_msg));
5674 if (n == NULL)
5675 return NULL;
5676 }
5677 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5678 mtod(n, struct sadb_msg *)->sadb_msg_len =
5679 PFKEY_UNIT64(n->m_pkthdr.len);
5680
5681 return n;
5682 }
5683
5684 static int key_delete_all (struct socket *, struct mbuf *,
5685 const struct sadb_msghdr *, u_int16_t);
5686
5687 /*
5688 * SADB_DELETE processing
5689 * receive
5690 * <base, SA(*), address(SD)>
5691 * from the ikmpd, and set SADB_SASTATE_DEAD,
5692 * and send,
5693 * <base, SA(*), address(SD)>
5694 * to the ikmpd.
5695 *
5696 * m will always be freed.
5697 */
5698 static int
5699 key_delete(struct socket *so, struct mbuf *m,
5700 const struct sadb_msghdr *mhp)
5701 {
5702 struct sadb_sa *sa0;
5703 struct sadb_address *src0, *dst0;
5704 struct secasindex saidx;
5705 struct secashead *sah;
5706 struct secasvar *sav = NULL;
5707 u_int16_t proto;
5708 int error;
5709
5710 /* sanity check */
5711 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5712 panic("key_delete: NULL pointer is passed");
5713
5714 /* map satype to proto */
5715 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5716 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5717 return key_senderror(so, m, EINVAL);
5718 }
5719
5720 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5721 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5722 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5723 return key_senderror(so, m, EINVAL);
5724 }
5725
5726 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5727 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5728 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5729 return key_senderror(so, m, EINVAL);
5730 }
5731
5732 if (mhp->ext[SADB_EXT_SA] == NULL) {
5733 /*
5734 * Caller wants us to delete all non-LARVAL SAs
5735 * that match the src/dst. This is used during
5736 * IKE INITIAL-CONTACT.
5737 */
5738 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5739 return key_delete_all(so, m, mhp, proto);
5740 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5741 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5742 return key_senderror(so, m, EINVAL);
5743 }
5744
5745 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5746 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5747 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5748
5749 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5750 dst0 + 1, &saidx)) != 0)
5751 return key_senderror(so, m, EINVAL);
5752
5753 #ifdef IPSEC_NAT_T
5754 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5755 return key_senderror(so, m, EINVAL);
5756 #endif
5757
5758 /* get a SA header */
5759 LIST_FOREACH(sah, &sahtree, chain) {
5760 if (sah->state == SADB_SASTATE_DEAD)
5761 continue;
5762 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5763 continue;
5764
5765 /* get a SA with SPI. */
5766 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5767 if (sav)
5768 break;
5769 }
5770 if (sah == NULL) {
5771 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5772 return key_senderror(so, m, ENOENT);
5773 }
5774
5775 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5776 KEY_FREESAV(&sav);
5777
5778 {
5779 struct mbuf *n;
5780 struct sadb_msg *newmsg;
5781
5782 /* create new sadb_msg to reply. */
5783 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5784 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5785 if (!n)
5786 return key_senderror(so, m, ENOBUFS);
5787
5788 if (n->m_len < sizeof(struct sadb_msg)) {
5789 n = m_pullup(n, sizeof(struct sadb_msg));
5790 if (n == NULL)
5791 return key_senderror(so, m, ENOBUFS);
5792 }
5793 newmsg = mtod(n, struct sadb_msg *);
5794 newmsg->sadb_msg_errno = 0;
5795 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5796
5797 m_freem(m);
5798 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5799 }
5800 }
5801
5802 /*
5803 * delete all SAs for src/dst. Called from key_delete().
5804 */
5805 static int
5806 key_delete_all(struct socket *so, struct mbuf *m,
5807 const struct sadb_msghdr *mhp, u_int16_t proto)
5808 {
5809 struct sadb_address *src0, *dst0;
5810 struct secasindex saidx;
5811 struct secashead *sah;
5812 struct secasvar *sav, *nextsav;
5813 u_int stateidx, state;
5814 int error;
5815
5816 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5817 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5818
5819 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5820 dst0 + 1, &saidx)) != 0)
5821 return key_senderror(so, m, EINVAL);
5822
5823 #ifdef IPSEC_NAT_T
5824 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5825 return key_senderror(so, m, EINVAL);
5826 #endif
5827
5828 LIST_FOREACH(sah, &sahtree, chain) {
5829 if (sah->state == SADB_SASTATE_DEAD)
5830 continue;
5831 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5832 continue;
5833
5834 /* Delete all non-LARVAL SAs. */
5835 for (stateidx = 0;
5836 stateidx < _ARRAYLEN(saorder_state_alive);
5837 stateidx++) {
5838 state = saorder_state_alive[stateidx];
5839 if (state == SADB_SASTATE_LARVAL)
5840 continue;
5841 for (sav = LIST_FIRST(&sah->savtree[state]);
5842 sav != NULL; sav = nextsav) {
5843 nextsav = LIST_NEXT(sav, chain);
5844 /* sanity check */
5845 if (sav->state != state) {
5846 ipseclog((LOG_DEBUG, "key_delete_all: "
5847 "invalid sav->state "
5848 "(queue: %d SA: %d)\n",
5849 state, sav->state));
5850 continue;
5851 }
5852
5853 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5854 KEY_FREESAV(&sav);
5855 }
5856 }
5857 }
5858 {
5859 struct mbuf *n;
5860 struct sadb_msg *newmsg;
5861
5862 /* create new sadb_msg to reply. */
5863 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5864 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5865 if (!n)
5866 return key_senderror(so, m, ENOBUFS);
5867
5868 if (n->m_len < sizeof(struct sadb_msg)) {
5869 n = m_pullup(n, sizeof(struct sadb_msg));
5870 if (n == NULL)
5871 return key_senderror(so, m, ENOBUFS);
5872 }
5873 newmsg = mtod(n, struct sadb_msg *);
5874 newmsg->sadb_msg_errno = 0;
5875 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5876
5877 m_freem(m);
5878 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5879 }
5880 }
5881
5882 /*
5883 * SADB_GET processing
5884 * receive
5885 * <base, SA(*), address(SD)>
5886 * from the ikmpd, and get a SP and a SA to respond,
5887 * and send,
5888 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5889 * (identity(SD),) (sensitivity)>
5890 * to the ikmpd.
5891 *
5892 * m will always be freed.
5893 */
5894 static int
5895 key_get(struct socket *so, struct mbuf *m,
5896 const struct sadb_msghdr *mhp)
5897 {
5898 struct sadb_sa *sa0;
5899 struct sadb_address *src0, *dst0;
5900 struct secasindex saidx;
5901 struct secashead *sah;
5902 struct secasvar *sav = NULL;
5903 u_int16_t proto;
5904 int error;
5905
5906 /* sanity check */
5907 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5908 panic("key_get: NULL pointer is passed");
5909
5910 /* map satype to proto */
5911 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5912 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5913 return key_senderror(so, m, EINVAL);
5914 }
5915
5916 if (mhp->ext[SADB_EXT_SA] == NULL ||
5917 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5918 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5919 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5920 return key_senderror(so, m, EINVAL);
5921 }
5922 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5923 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5924 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5925 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5926 return key_senderror(so, m, EINVAL);
5927 }
5928
5929 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5930 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5931 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5932
5933
5934 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5935 dst0 + 1, &saidx)) != 0)
5936 return key_senderror(so, m, EINVAL);
5937
5938 #ifdef IPSEC_NAT_T
5939 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5940 return key_senderror(so, m, EINVAL);
5941 #endif
5942
5943 /* get a SA header */
5944 LIST_FOREACH(sah, &sahtree, chain) {
5945 if (sah->state == SADB_SASTATE_DEAD)
5946 continue;
5947 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5948 continue;
5949
5950 /* get a SA with SPI. */
5951 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5952 if (sav)
5953 break;
5954 }
5955 if (sah == NULL) {
5956 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5957 return key_senderror(so, m, ENOENT);
5958 }
5959
5960 {
5961 struct mbuf *n;
5962 u_int8_t satype;
5963
5964 /* map proto to satype */
5965 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5966 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5967 return key_senderror(so, m, EINVAL);
5968 }
5969
5970 /* create new sadb_msg to reply. */
5971 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5972 mhp->msg->sadb_msg_pid);
5973 if (!n)
5974 return key_senderror(so, m, ENOBUFS);
5975
5976 m_freem(m);
5977 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5978 }
5979 }
5980
5981 /* XXX make it sysctl-configurable? */
5982 static void
5983 key_getcomb_setlifetime(struct sadb_comb *comb)
5984 {
5985
5986 comb->sadb_comb_soft_allocations = 1;
5987 comb->sadb_comb_hard_allocations = 1;
5988 comb->sadb_comb_soft_bytes = 0;
5989 comb->sadb_comb_hard_bytes = 0;
5990 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5991 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5992 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5993 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5994 }
5995
5996 /*
5997 * XXX reorder combinations by preference
5998 * XXX no idea if the user wants ESP authentication or not
5999 */
6000 static struct mbuf *
6001 key_getcomb_esp(void)
6002 {
6003 struct sadb_comb *comb;
6004 const struct enc_xform *algo;
6005 struct mbuf *result = NULL, *m, *n;
6006 int encmin;
6007 int i, off, o;
6008 int totlen;
6009 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6010
6011 m = NULL;
6012 for (i = 1; i <= SADB_EALG_MAX; i++) {
6013 algo = esp_algorithm_lookup(i);
6014 if (algo == NULL)
6015 continue;
6016
6017 /* discard algorithms with key size smaller than system min */
6018 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6019 continue;
6020 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6021 encmin = ipsec_esp_keymin;
6022 else
6023 encmin = _BITS(algo->minkey);
6024
6025 if (ipsec_esp_auth)
6026 m = key_getcomb_ah();
6027 else {
6028 IPSEC_ASSERT(l <= MLEN,
6029 ("key_getcomb_esp: l=%u > MLEN=%lu",
6030 l, (u_long) MLEN));
6031 MGET(m, M_DONTWAIT, MT_DATA);
6032 if (m) {
6033 M_ALIGN(m, l);
6034 m->m_len = l;
6035 m->m_next = NULL;
6036 memset(mtod(m, void *), 0, m->m_len);
6037 }
6038 }
6039 if (!m)
6040 goto fail;
6041
6042 totlen = 0;
6043 for (n = m; n; n = n->m_next)
6044 totlen += n->m_len;
6045 IPSEC_ASSERT((totlen % l) == 0,
6046 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
6047
6048 for (off = 0; off < totlen; off += l) {
6049 n = m_pulldown(m, off, l, &o);
6050 if (!n) {
6051 /* m is already freed */
6052 goto fail;
6053 }
6054 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6055 memset(comb, 0, sizeof(*comb));
6056 key_getcomb_setlifetime(comb);
6057 comb->sadb_comb_encrypt = i;
6058 comb->sadb_comb_encrypt_minbits = encmin;
6059 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6060 }
6061
6062 if (!result)
6063 result = m;
6064 else
6065 m_cat(result, m);
6066 }
6067
6068 return result;
6069
6070 fail:
6071 if (result)
6072 m_freem(result);
6073 return NULL;
6074 }
6075
6076 static void
6077 key_getsizes_ah(const struct auth_hash *ah, int alg,
6078 u_int16_t* ksmin, u_int16_t* ksmax)
6079 {
6080 *ksmin = *ksmax = ah->keysize;
6081 if (ah->keysize == 0) {
6082 /*
6083 * Transform takes arbitrary key size but algorithm
6084 * key size is restricted. Enforce this here.
6085 */
6086 switch (alg) {
6087 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6088 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6089 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break;
6090 default:
6091 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6092 alg));
6093 break;
6094 }
6095 }
6096 }
6097
6098 /*
6099 * XXX reorder combinations by preference
6100 */
6101 static struct mbuf *
6102 key_getcomb_ah(void)
6103 {
6104 struct sadb_comb *comb;
6105 const struct auth_hash *algo;
6106 struct mbuf *m;
6107 u_int16_t minkeysize, maxkeysize;
6108 int i;
6109 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6110
6111 m = NULL;
6112 for (i = 1; i <= SADB_AALG_MAX; i++) {
6113 #if 1
6114 /* we prefer HMAC algorithms, not old algorithms */
6115 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
6116 continue;
6117 #endif
6118 algo = ah_algorithm_lookup(i);
6119 if (!algo)
6120 continue;
6121 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6122 /* discard algorithms with key size smaller than system min */
6123 if (_BITS(minkeysize) < ipsec_ah_keymin)
6124 continue;
6125
6126 if (!m) {
6127 IPSEC_ASSERT(l <= MLEN,
6128 ("key_getcomb_ah: l=%u > MLEN=%lu",
6129 l, (u_long) MLEN));
6130 MGET(m, M_DONTWAIT, MT_DATA);
6131 if (m) {
6132 M_ALIGN(m, l);
6133 m->m_len = l;
6134 m->m_next = NULL;
6135 }
6136 } else
6137 M_PREPEND(m, l, M_DONTWAIT);
6138 if (!m)
6139 return NULL;
6140
6141 comb = mtod(m, struct sadb_comb *);
6142 memset(comb, 0, sizeof(*comb));
6143 key_getcomb_setlifetime(comb);
6144 comb->sadb_comb_auth = i;
6145 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6146 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6147 }
6148
6149 return m;
6150 }
6151
6152 /*
6153 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6154 * XXX reorder combinations by preference
6155 */
6156 static struct mbuf *
6157 key_getcomb_ipcomp(void)
6158 {
6159 struct sadb_comb *comb;
6160 const struct comp_algo *algo;
6161 struct mbuf *m;
6162 int i;
6163 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6164
6165 m = NULL;
6166 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6167 algo = ipcomp_algorithm_lookup(i);
6168 if (!algo)
6169 continue;
6170
6171 if (!m) {
6172 IPSEC_ASSERT(l <= MLEN,
6173 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
6174 l, (u_long) MLEN));
6175 MGET(m, M_DONTWAIT, MT_DATA);
6176 if (m) {
6177 M_ALIGN(m, l);
6178 m->m_len = l;
6179 m->m_next = NULL;
6180 }
6181 } else
6182 M_PREPEND(m, l, M_DONTWAIT);
6183 if (!m)
6184 return NULL;
6185
6186 comb = mtod(m, struct sadb_comb *);
6187 memset(comb, 0, sizeof(*comb));
6188 key_getcomb_setlifetime(comb);
6189 comb->sadb_comb_encrypt = i;
6190 /* what should we set into sadb_comb_*_{min,max}bits? */
6191 }
6192
6193 return m;
6194 }
6195
6196 /*
6197 * XXX no way to pass mode (transport/tunnel) to userland
6198 * XXX replay checking?
6199 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6200 */
6201 static struct mbuf *
6202 key_getprop(const struct secasindex *saidx)
6203 {
6204 struct sadb_prop *prop;
6205 struct mbuf *m, *n;
6206 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6207 int totlen;
6208
6209 switch (saidx->proto) {
6210 case IPPROTO_ESP:
6211 m = key_getcomb_esp();
6212 break;
6213 case IPPROTO_AH:
6214 m = key_getcomb_ah();
6215 break;
6216 case IPPROTO_IPCOMP:
6217 m = key_getcomb_ipcomp();
6218 break;
6219 default:
6220 return NULL;
6221 }
6222
6223 if (!m)
6224 return NULL;
6225 M_PREPEND(m, l, M_DONTWAIT);
6226 if (!m)
6227 return NULL;
6228
6229 totlen = 0;
6230 for (n = m; n; n = n->m_next)
6231 totlen += n->m_len;
6232
6233 prop = mtod(m, struct sadb_prop *);
6234 memset(prop, 0, sizeof(*prop));
6235 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6236 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6237 prop->sadb_prop_replay = 32; /* XXX */
6238
6239 return m;
6240 }
6241
6242 /*
6243 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6244 * send
6245 * <base, SA, address(SD), (address(P)), x_policy,
6246 * (identity(SD),) (sensitivity,) proposal>
6247 * to KMD, and expect to receive
6248 * <base> with SADB_ACQUIRE if error occurred,
6249 * or
6250 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6251 * from KMD by PF_KEY.
6252 *
6253 * XXX x_policy is outside of RFC2367 (KAME extension).
6254 * XXX sensitivity is not supported.
6255 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6256 * see comment for key_getcomb_ipcomp().
6257 *
6258 * OUT:
6259 * 0 : succeed
6260 * others: error number
6261 */
6262 static int
6263 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6264 {
6265 struct mbuf *result = NULL, *m;
6266 #ifndef IPSEC_NONBLOCK_ACQUIRE
6267 struct secacq *newacq;
6268 #endif
6269 u_int8_t satype;
6270 int error = -1;
6271 u_int32_t seq;
6272
6273 /* sanity check */
6274 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
6275 satype = key_proto2satype(saidx->proto);
6276 IPSEC_ASSERT(satype != 0,
6277 ("key_acquire: null satype, protocol %u", saidx->proto));
6278
6279 #ifndef IPSEC_NONBLOCK_ACQUIRE
6280 /*
6281 * We never do anything about acquirng SA. There is anather
6282 * solution that kernel blocks to send SADB_ACQUIRE message until
6283 * getting something message from IKEd. In later case, to be
6284 * managed with ACQUIRING list.
6285 */
6286 /* Get an entry to check whether sending message or not. */
6287 if ((newacq = key_getacq(saidx)) != NULL) {
6288 if (key_blockacq_count < newacq->count) {
6289 /* reset counter and do send message. */
6290 newacq->count = 0;
6291 } else {
6292 /* increment counter and do nothing. */
6293 newacq->count++;
6294 return 0;
6295 }
6296 } else {
6297 /* make new entry for blocking to send SADB_ACQUIRE. */
6298 if ((newacq = key_newacq(saidx)) == NULL)
6299 return ENOBUFS;
6300
6301 /* add to acqtree */
6302 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6303 }
6304 #endif
6305
6306
6307 #ifndef IPSEC_NONBLOCK_ACQUIRE
6308 seq = newacq->seq;
6309 #else
6310 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6311 #endif
6312 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6313 if (!m) {
6314 error = ENOBUFS;
6315 goto fail;
6316 }
6317 result = m;
6318
6319 /* set sadb_address for saidx's. */
6320 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6321 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6322 if (!m) {
6323 error = ENOBUFS;
6324 goto fail;
6325 }
6326 m_cat(result, m);
6327
6328 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6329 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6330 if (!m) {
6331 error = ENOBUFS;
6332 goto fail;
6333 }
6334 m_cat(result, m);
6335
6336 /* XXX proxy address (optional) */
6337
6338 /* set sadb_x_policy */
6339 if (sp) {
6340 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6341 if (!m) {
6342 error = ENOBUFS;
6343 goto fail;
6344 }
6345 m_cat(result, m);
6346 }
6347
6348 /* XXX identity (optional) */
6349 #if 0
6350 if (idexttype && fqdn) {
6351 /* create identity extension (FQDN) */
6352 struct sadb_ident *id;
6353 int fqdnlen;
6354
6355 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6356 id = (struct sadb_ident *)p;
6357 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6358 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6359 id->sadb_ident_exttype = idexttype;
6360 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6361 memcpy(id + 1, fqdn, fqdnlen);
6362 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6363 }
6364
6365 if (idexttype) {
6366 /* create identity extension (USERFQDN) */
6367 struct sadb_ident *id;
6368 int userfqdnlen;
6369
6370 if (userfqdn) {
6371 /* +1 for terminating-NUL */
6372 userfqdnlen = strlen(userfqdn) + 1;
6373 } else
6374 userfqdnlen = 0;
6375 id = (struct sadb_ident *)p;
6376 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6377 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6378 id->sadb_ident_exttype = idexttype;
6379 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6380 /* XXX is it correct? */
6381 if (curlwp)
6382 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6383 if (userfqdn && userfqdnlen)
6384 memcpy(id + 1, userfqdn, userfqdnlen);
6385 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6386 }
6387 #endif
6388
6389 /* XXX sensitivity (optional) */
6390
6391 /* create proposal/combination extension */
6392 m = key_getprop(saidx);
6393 #if 0
6394 /*
6395 * spec conformant: always attach proposal/combination extension,
6396 * the problem is that we have no way to attach it for ipcomp,
6397 * due to the way sadb_comb is declared in RFC2367.
6398 */
6399 if (!m) {
6400 error = ENOBUFS;
6401 goto fail;
6402 }
6403 m_cat(result, m);
6404 #else
6405 /*
6406 * outside of spec; make proposal/combination extension optional.
6407 */
6408 if (m)
6409 m_cat(result, m);
6410 #endif
6411
6412 if ((result->m_flags & M_PKTHDR) == 0) {
6413 error = EINVAL;
6414 goto fail;
6415 }
6416
6417 if (result->m_len < sizeof(struct sadb_msg)) {
6418 result = m_pullup(result, sizeof(struct sadb_msg));
6419 if (result == NULL) {
6420 error = ENOBUFS;
6421 goto fail;
6422 }
6423 }
6424
6425 result->m_pkthdr.len = 0;
6426 for (m = result; m; m = m->m_next)
6427 result->m_pkthdr.len += m->m_len;
6428
6429 mtod(result, struct sadb_msg *)->sadb_msg_len =
6430 PFKEY_UNIT64(result->m_pkthdr.len);
6431
6432 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6433
6434 fail:
6435 if (result)
6436 m_freem(result);
6437 return error;
6438 }
6439
6440 #ifndef IPSEC_NONBLOCK_ACQUIRE
6441 static struct secacq *
6442 key_newacq(const struct secasindex *saidx)
6443 {
6444 struct secacq *newacq;
6445
6446 /* get new entry */
6447 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6448 if (newacq == NULL) {
6449 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6450 return NULL;
6451 }
6452 memset(newacq, 0, sizeof(*newacq));
6453
6454 /* copy secindex */
6455 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6456 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6457 newacq->created = time_second;
6458 newacq->count = 0;
6459
6460 return newacq;
6461 }
6462
6463 static struct secacq *
6464 key_getacq(const struct secasindex *saidx)
6465 {
6466 struct secacq *acq;
6467
6468 LIST_FOREACH(acq, &acqtree, chain) {
6469 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6470 return acq;
6471 }
6472
6473 return NULL;
6474 }
6475
6476 static struct secacq *
6477 key_getacqbyseq(u_int32_t seq)
6478 {
6479 struct secacq *acq;
6480
6481 LIST_FOREACH(acq, &acqtree, chain) {
6482 if (acq->seq == seq)
6483 return acq;
6484 }
6485
6486 return NULL;
6487 }
6488 #endif
6489
6490 static struct secspacq *
6491 key_newspacq(struct secpolicyindex *spidx)
6492 {
6493 struct secspacq *acq;
6494
6495 /* get new entry */
6496 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6497 if (acq == NULL) {
6498 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6499 return NULL;
6500 }
6501 memset(acq, 0, sizeof(*acq));
6502
6503 /* copy secindex */
6504 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6505 acq->created = time_second;
6506 acq->count = 0;
6507
6508 return acq;
6509 }
6510
6511 static struct secspacq *
6512 key_getspacq(struct secpolicyindex *spidx)
6513 {
6514 struct secspacq *acq;
6515
6516 LIST_FOREACH(acq, &spacqtree, chain) {
6517 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6518 return acq;
6519 }
6520
6521 return NULL;
6522 }
6523
6524 /*
6525 * SADB_ACQUIRE processing,
6526 * in first situation, is receiving
6527 * <base>
6528 * from the ikmpd, and clear sequence of its secasvar entry.
6529 *
6530 * In second situation, is receiving
6531 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6532 * from a user land process, and return
6533 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6534 * to the socket.
6535 *
6536 * m will always be freed.
6537 */
6538 static int
6539 key_acquire2(struct socket *so, struct mbuf *m,
6540 const struct sadb_msghdr *mhp)
6541 {
6542 const struct sadb_address *src0, *dst0;
6543 struct secasindex saidx;
6544 struct secashead *sah;
6545 u_int16_t proto;
6546 int error;
6547
6548 /* sanity check */
6549 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6550 panic("key_acquire2: NULL pointer is passed");
6551
6552 /*
6553 * Error message from KMd.
6554 * We assume that if error was occurred in IKEd, the length of PFKEY
6555 * message is equal to the size of sadb_msg structure.
6556 * We do not raise error even if error occurred in this function.
6557 */
6558 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6559 #ifndef IPSEC_NONBLOCK_ACQUIRE
6560 struct secacq *acq;
6561
6562 /* check sequence number */
6563 if (mhp->msg->sadb_msg_seq == 0) {
6564 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6565 m_freem(m);
6566 return 0;
6567 }
6568
6569 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6570 /*
6571 * the specified larval SA is already gone, or we got
6572 * a bogus sequence number. we can silently ignore it.
6573 */
6574 m_freem(m);
6575 return 0;
6576 }
6577
6578 /* reset acq counter in order to deletion by timehander. */
6579 acq->created = time_second;
6580 acq->count = 0;
6581 #endif
6582 m_freem(m);
6583 return 0;
6584 }
6585
6586 /*
6587 * This message is from user land.
6588 */
6589
6590 /* map satype to proto */
6591 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6592 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6593 return key_senderror(so, m, EINVAL);
6594 }
6595
6596 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6597 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6598 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6599 /* error */
6600 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6601 return key_senderror(so, m, EINVAL);
6602 }
6603 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6604 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6605 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6606 /* error */
6607 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6608 return key_senderror(so, m, EINVAL);
6609 }
6610
6611 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6612 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6613
6614 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6615 dst0 + 1, &saidx)) != 0)
6616 return key_senderror(so, m, EINVAL);
6617
6618 #ifdef IPSEC_NAT_T
6619 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6620 return key_senderror(so, m, EINVAL);
6621 #endif
6622
6623 /* get a SA index */
6624 LIST_FOREACH(sah, &sahtree, chain) {
6625 if (sah->state == SADB_SASTATE_DEAD)
6626 continue;
6627 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6628 break;
6629 }
6630 if (sah != NULL) {
6631 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6632 return key_senderror(so, m, EEXIST);
6633 }
6634
6635 error = key_acquire(&saidx, NULL);
6636 if (error != 0) {
6637 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6638 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6639 return key_senderror(so, m, error);
6640 }
6641
6642 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6643 }
6644
6645 /*
6646 * SADB_REGISTER processing.
6647 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6648 * receive
6649 * <base>
6650 * from the ikmpd, and register a socket to send PF_KEY messages,
6651 * and send
6652 * <base, supported>
6653 * to KMD by PF_KEY.
6654 * If socket is detached, must free from regnode.
6655 *
6656 * m will always be freed.
6657 */
6658 static int
6659 key_register(struct socket *so, struct mbuf *m,
6660 const struct sadb_msghdr *mhp)
6661 {
6662 struct secreg *reg, *newreg = 0;
6663
6664 /* sanity check */
6665 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6666 panic("key_register: NULL pointer is passed");
6667
6668 /* check for invalid register message */
6669 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6670 return key_senderror(so, m, EINVAL);
6671
6672 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6673 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6674 goto setmsg;
6675
6676 /* check whether existing or not */
6677 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6678 if (reg->so == so) {
6679 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6680 return key_senderror(so, m, EEXIST);
6681 }
6682 }
6683
6684 /* create regnode */
6685 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6686 if (newreg == NULL) {
6687 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6688 return key_senderror(so, m, ENOBUFS);
6689 }
6690 memset(newreg, 0, sizeof(*newreg));
6691
6692 newreg->so = so;
6693 ((struct keycb *)sotorawcb(so))->kp_registered++;
6694
6695 /* add regnode to regtree. */
6696 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6697
6698 setmsg:
6699 {
6700 struct mbuf *n;
6701 struct sadb_msg *newmsg;
6702 struct sadb_supported *sup;
6703 u_int len, alen, elen;
6704 int off;
6705 int i;
6706 struct sadb_alg *alg;
6707
6708 /* create new sadb_msg to reply. */
6709 alen = 0;
6710 for (i = 1; i <= SADB_AALG_MAX; i++) {
6711 if (ah_algorithm_lookup(i))
6712 alen += sizeof(struct sadb_alg);
6713 }
6714 if (alen)
6715 alen += sizeof(struct sadb_supported);
6716 elen = 0;
6717 for (i = 1; i <= SADB_EALG_MAX; i++) {
6718 if (esp_algorithm_lookup(i))
6719 elen += sizeof(struct sadb_alg);
6720 }
6721 if (elen)
6722 elen += sizeof(struct sadb_supported);
6723
6724 len = sizeof(struct sadb_msg) + alen + elen;
6725
6726 if (len > MCLBYTES)
6727 return key_senderror(so, m, ENOBUFS);
6728
6729 MGETHDR(n, M_DONTWAIT, MT_DATA);
6730 if (len > MHLEN) {
6731 MCLGET(n, M_DONTWAIT);
6732 if ((n->m_flags & M_EXT) == 0) {
6733 m_freem(n);
6734 n = NULL;
6735 }
6736 }
6737 if (!n)
6738 return key_senderror(so, m, ENOBUFS);
6739
6740 n->m_pkthdr.len = n->m_len = len;
6741 n->m_next = NULL;
6742 off = 0;
6743
6744 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6745 newmsg = mtod(n, struct sadb_msg *);
6746 newmsg->sadb_msg_errno = 0;
6747 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6748 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6749
6750 /* for authentication algorithm */
6751 if (alen) {
6752 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6753 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6754 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6755 off += PFKEY_ALIGN8(sizeof(*sup));
6756
6757 for (i = 1; i <= SADB_AALG_MAX; i++) {
6758 const struct auth_hash *aalgo;
6759 u_int16_t minkeysize, maxkeysize;
6760
6761 aalgo = ah_algorithm_lookup(i);
6762 if (!aalgo)
6763 continue;
6764 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6765 alg->sadb_alg_id = i;
6766 alg->sadb_alg_ivlen = 0;
6767 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6768 alg->sadb_alg_minbits = _BITS(minkeysize);
6769 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6770 off += PFKEY_ALIGN8(sizeof(*alg));
6771 }
6772 }
6773
6774 /* for encryption algorithm */
6775 if (elen) {
6776 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6777 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6778 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6779 off += PFKEY_ALIGN8(sizeof(*sup));
6780
6781 for (i = 1; i <= SADB_EALG_MAX; i++) {
6782 const struct enc_xform *ealgo;
6783
6784 ealgo = esp_algorithm_lookup(i);
6785 if (!ealgo)
6786 continue;
6787 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6788 alg->sadb_alg_id = i;
6789 alg->sadb_alg_ivlen = ealgo->blocksize;
6790 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6791 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6792 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6793 }
6794 }
6795
6796 #ifdef DIAGNOSTIC
6797 if (off != len)
6798 panic("length assumption failed in key_register");
6799 #endif
6800
6801 m_freem(m);
6802 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6803 }
6804 }
6805
6806 /*
6807 * free secreg entry registered.
6808 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6809 */
6810 void
6811 key_freereg(struct socket *so)
6812 {
6813 struct secreg *reg;
6814 int i;
6815
6816 /* sanity check */
6817 if (so == NULL)
6818 panic("key_freereg: NULL pointer is passed");
6819
6820 /*
6821 * check whether existing or not.
6822 * check all type of SA, because there is a potential that
6823 * one socket is registered to multiple type of SA.
6824 */
6825 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6826 LIST_FOREACH(reg, ®tree[i], chain) {
6827 if (reg->so == so
6828 && __LIST_CHAINED(reg)) {
6829 LIST_REMOVE(reg, chain);
6830 KFREE(reg);
6831 break;
6832 }
6833 }
6834 }
6835
6836 return;
6837 }
6838
6839 /*
6840 * SADB_EXPIRE processing
6841 * send
6842 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6843 * to KMD by PF_KEY.
6844 * NOTE: We send only soft lifetime extension.
6845 *
6846 * OUT: 0 : succeed
6847 * others : error number
6848 */
6849 static int
6850 key_expire(struct secasvar *sav)
6851 {
6852 int s;
6853 int satype;
6854 struct mbuf *result = NULL, *m;
6855 int len;
6856 int error = -1;
6857 struct sadb_lifetime *lt;
6858
6859 /* XXX: Why do we lock ? */
6860 s = splsoftnet(); /*called from softclock()*/
6861
6862 /* sanity check */
6863 if (sav == NULL)
6864 panic("key_expire: NULL pointer is passed");
6865 if (sav->sah == NULL)
6866 panic("key_expire: Why was SA index in SA NULL");
6867 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6868 panic("key_expire: invalid proto is passed");
6869
6870 /* set msg header */
6871 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6872 if (!m) {
6873 error = ENOBUFS;
6874 goto fail;
6875 }
6876 result = m;
6877
6878 /* create SA extension */
6879 m = key_setsadbsa(sav);
6880 if (!m) {
6881 error = ENOBUFS;
6882 goto fail;
6883 }
6884 m_cat(result, m);
6885
6886 /* create SA extension */
6887 m = key_setsadbxsa2(sav->sah->saidx.mode,
6888 sav->replay ? sav->replay->count : 0,
6889 sav->sah->saidx.reqid);
6890 if (!m) {
6891 error = ENOBUFS;
6892 goto fail;
6893 }
6894 m_cat(result, m);
6895
6896 /* create lifetime extension (current and soft) */
6897 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6898 m = key_alloc_mbuf(len);
6899 if (!m || m->m_next) { /*XXX*/
6900 if (m)
6901 m_freem(m);
6902 error = ENOBUFS;
6903 goto fail;
6904 }
6905 memset(mtod(m, void *), 0, len);
6906 lt = mtod(m, struct sadb_lifetime *);
6907 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6908 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6909 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6910 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6911 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime;
6912 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime;
6913 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6914 memcpy(lt, sav->lft_s, sizeof(*lt));
6915 m_cat(result, m);
6916
6917 /* set sadb_address for source */
6918 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6919 &sav->sah->saidx.src.sa,
6920 FULLMASK, IPSEC_ULPROTO_ANY);
6921 if (!m) {
6922 error = ENOBUFS;
6923 goto fail;
6924 }
6925 m_cat(result, m);
6926
6927 /* set sadb_address for destination */
6928 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6929 &sav->sah->saidx.dst.sa,
6930 FULLMASK, IPSEC_ULPROTO_ANY);
6931 if (!m) {
6932 error = ENOBUFS;
6933 goto fail;
6934 }
6935 m_cat(result, m);
6936
6937 if ((result->m_flags & M_PKTHDR) == 0) {
6938 error = EINVAL;
6939 goto fail;
6940 }
6941
6942 if (result->m_len < sizeof(struct sadb_msg)) {
6943 result = m_pullup(result, sizeof(struct sadb_msg));
6944 if (result == NULL) {
6945 error = ENOBUFS;
6946 goto fail;
6947 }
6948 }
6949
6950 result->m_pkthdr.len = 0;
6951 for (m = result; m; m = m->m_next)
6952 result->m_pkthdr.len += m->m_len;
6953
6954 mtod(result, struct sadb_msg *)->sadb_msg_len =
6955 PFKEY_UNIT64(result->m_pkthdr.len);
6956
6957 splx(s);
6958 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6959
6960 fail:
6961 if (result)
6962 m_freem(result);
6963 splx(s);
6964 return error;
6965 }
6966
6967 /*
6968 * SADB_FLUSH processing
6969 * receive
6970 * <base>
6971 * from the ikmpd, and free all entries in secastree.
6972 * and send,
6973 * <base>
6974 * to the ikmpd.
6975 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6976 *
6977 * m will always be freed.
6978 */
6979 static int
6980 key_flush(struct socket *so, struct mbuf *m,
6981 const struct sadb_msghdr *mhp)
6982 {
6983 struct sadb_msg *newmsg;
6984 struct secashead *sah, *nextsah;
6985 struct secasvar *sav, *nextsav;
6986 u_int16_t proto;
6987 u_int8_t state;
6988 u_int stateidx;
6989
6990 /* sanity check */
6991 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6992 panic("key_flush: NULL pointer is passed");
6993
6994 /* map satype to proto */
6995 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6996 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6997 return key_senderror(so, m, EINVAL);
6998 }
6999
7000 /* no SATYPE specified, i.e. flushing all SA. */
7001 for (sah = LIST_FIRST(&sahtree);
7002 sah != NULL;
7003 sah = nextsah) {
7004 nextsah = LIST_NEXT(sah, chain);
7005
7006 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7007 && proto != sah->saidx.proto)
7008 continue;
7009
7010 for (stateidx = 0;
7011 stateidx < _ARRAYLEN(saorder_state_alive);
7012 stateidx++) {
7013 state = saorder_state_any[stateidx];
7014 for (sav = LIST_FIRST(&sah->savtree[state]);
7015 sav != NULL;
7016 sav = nextsav) {
7017
7018 nextsav = LIST_NEXT(sav, chain);
7019
7020 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7021 KEY_FREESAV(&sav);
7022 }
7023 }
7024
7025 sah->state = SADB_SASTATE_DEAD;
7026 }
7027
7028 if (m->m_len < sizeof(struct sadb_msg) ||
7029 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7030 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
7031 return key_senderror(so, m, ENOBUFS);
7032 }
7033
7034 if (m->m_next)
7035 m_freem(m->m_next);
7036 m->m_next = NULL;
7037 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7038 newmsg = mtod(m, struct sadb_msg *);
7039 newmsg->sadb_msg_errno = 0;
7040 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7041
7042 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7043 }
7044
7045
7046 static struct mbuf *
7047 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7048 {
7049 struct secashead *sah;
7050 struct secasvar *sav;
7051 u_int16_t proto;
7052 u_int stateidx;
7053 u_int8_t satype;
7054 u_int8_t state;
7055 int cnt;
7056 struct mbuf *m, *n, *prev;
7057 int totlen;
7058
7059 *lenp = 0;
7060
7061 /* map satype to proto */
7062 if ((proto = key_satype2proto(req_satype)) == 0) {
7063 *errorp = EINVAL;
7064 return (NULL);
7065 }
7066
7067 /* count sav entries to be sent to userland. */
7068 cnt = 0;
7069 LIST_FOREACH(sah, &sahtree, chain) {
7070 if (req_satype != SADB_SATYPE_UNSPEC &&
7071 proto != sah->saidx.proto)
7072 continue;
7073
7074 for (stateidx = 0;
7075 stateidx < _ARRAYLEN(saorder_state_any);
7076 stateidx++) {
7077 state = saorder_state_any[stateidx];
7078 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7079 cnt++;
7080 }
7081 }
7082 }
7083
7084 if (cnt == 0) {
7085 *errorp = ENOENT;
7086 return (NULL);
7087 }
7088
7089 /* send this to the userland, one at a time. */
7090 m = NULL;
7091 prev = m;
7092 LIST_FOREACH(sah, &sahtree, chain) {
7093 if (req_satype != SADB_SATYPE_UNSPEC &&
7094 proto != sah->saidx.proto)
7095 continue;
7096
7097 /* map proto to satype */
7098 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7099 m_freem(m);
7100 *errorp = EINVAL;
7101 return (NULL);
7102 }
7103
7104 for (stateidx = 0;
7105 stateidx < _ARRAYLEN(saorder_state_any);
7106 stateidx++) {
7107 state = saorder_state_any[stateidx];
7108 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7109 n = key_setdumpsa(sav, SADB_DUMP, satype,
7110 --cnt, pid);
7111 if (!n) {
7112 m_freem(m);
7113 *errorp = ENOBUFS;
7114 return (NULL);
7115 }
7116
7117 totlen += n->m_pkthdr.len;
7118 if (!m)
7119 m = n;
7120 else
7121 prev->m_nextpkt = n;
7122 prev = n;
7123 }
7124 }
7125 }
7126
7127 if (!m) {
7128 *errorp = EINVAL;
7129 return (NULL);
7130 }
7131
7132 if ((m->m_flags & M_PKTHDR) != 0) {
7133 m->m_pkthdr.len = 0;
7134 for (n = m; n; n = n->m_next)
7135 m->m_pkthdr.len += n->m_len;
7136 }
7137
7138 *errorp = 0;
7139 return (m);
7140 }
7141
7142 /*
7143 * SADB_DUMP processing
7144 * dump all entries including status of DEAD in SAD.
7145 * receive
7146 * <base>
7147 * from the ikmpd, and dump all secasvar leaves
7148 * and send,
7149 * <base> .....
7150 * to the ikmpd.
7151 *
7152 * m will always be freed.
7153 */
7154 static int
7155 key_dump(struct socket *so, struct mbuf *m0,
7156 const struct sadb_msghdr *mhp)
7157 {
7158 u_int16_t proto;
7159 u_int8_t satype;
7160 struct mbuf *n;
7161 int s;
7162 int error, len, ok;
7163
7164 /* sanity check */
7165 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
7166 panic("key_dump: NULL pointer is passed");
7167
7168 /* map satype to proto */
7169 satype = mhp->msg->sadb_msg_satype;
7170 if ((proto = key_satype2proto(satype)) == 0) {
7171 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7172 return key_senderror(so, m0, EINVAL);
7173 }
7174
7175 /*
7176 * If the requestor has insufficient socket-buffer space
7177 * for the entire chain, nobody gets any response to the DUMP.
7178 * XXX For now, only the requestor ever gets anything.
7179 * Moreover, if the requestor has any space at all, they receive
7180 * the entire chain, otherwise the request is refused with ENOBUFS.
7181 */
7182 if (sbspace(&so->so_rcv) <= 0) {
7183 return key_senderror(so, m0, ENOBUFS);
7184 }
7185
7186 s = splsoftnet();
7187 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7188 splx(s);
7189
7190 if (n == NULL) {
7191 return key_senderror(so, m0, ENOENT);
7192 }
7193 {
7194 uint64_t *ps = PFKEY_STAT_GETREF();
7195 ps[PFKEY_STAT_IN_TOTAL]++;
7196 ps[PFKEY_STAT_IN_BYTES] += len;
7197 PFKEY_STAT_PUTREF();
7198 }
7199
7200 /*
7201 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7202 * The requestor receives either the entire chain, or an
7203 * error message with ENOBUFS.
7204 *
7205 * sbappendaddrchain() takes the chain of entries, one
7206 * packet-record per SPD entry, prepends the key_src sockaddr
7207 * to each packet-record, links the sockaddr mbufs into a new
7208 * list of records, then appends the entire resulting
7209 * list to the requesting socket.
7210 */
7211 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7212 n, SB_PRIO_ONESHOT_OVERFLOW);
7213
7214 if (!ok) {
7215 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7216 m_freem(n);
7217 return key_senderror(so, m0, ENOBUFS);
7218 }
7219
7220 m_freem(m0);
7221 return 0;
7222 }
7223
7224 /*
7225 * SADB_X_PROMISC processing
7226 *
7227 * m will always be freed.
7228 */
7229 static int
7230 key_promisc(struct socket *so, struct mbuf *m,
7231 const struct sadb_msghdr *mhp)
7232 {
7233 int olen;
7234
7235 /* sanity check */
7236 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
7237 panic("key_promisc: NULL pointer is passed");
7238
7239 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7240
7241 if (olen < sizeof(struct sadb_msg)) {
7242 #if 1
7243 return key_senderror(so, m, EINVAL);
7244 #else
7245 m_freem(m);
7246 return 0;
7247 #endif
7248 } else if (olen == sizeof(struct sadb_msg)) {
7249 /* enable/disable promisc mode */
7250 struct keycb *kp;
7251
7252 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7253 return key_senderror(so, m, EINVAL);
7254 mhp->msg->sadb_msg_errno = 0;
7255 switch (mhp->msg->sadb_msg_satype) {
7256 case 0:
7257 case 1:
7258 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7259 break;
7260 default:
7261 return key_senderror(so, m, EINVAL);
7262 }
7263
7264 /* send the original message back to everyone */
7265 mhp->msg->sadb_msg_errno = 0;
7266 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7267 } else {
7268 /* send packet as is */
7269
7270 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7271
7272 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7273 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7274 }
7275 }
7276
7277 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7278 const struct sadb_msghdr *) = {
7279 NULL, /* SADB_RESERVED */
7280 key_getspi, /* SADB_GETSPI */
7281 key_update, /* SADB_UPDATE */
7282 key_add, /* SADB_ADD */
7283 key_delete, /* SADB_DELETE */
7284 key_get, /* SADB_GET */
7285 key_acquire2, /* SADB_ACQUIRE */
7286 key_register, /* SADB_REGISTER */
7287 NULL, /* SADB_EXPIRE */
7288 key_flush, /* SADB_FLUSH */
7289 key_dump, /* SADB_DUMP */
7290 key_promisc, /* SADB_X_PROMISC */
7291 NULL, /* SADB_X_PCHANGE */
7292 key_spdadd, /* SADB_X_SPDUPDATE */
7293 key_spdadd, /* SADB_X_SPDADD */
7294 key_spddelete, /* SADB_X_SPDDELETE */
7295 key_spdget, /* SADB_X_SPDGET */
7296 NULL, /* SADB_X_SPDACQUIRE */
7297 key_spddump, /* SADB_X_SPDDUMP */
7298 key_spdflush, /* SADB_X_SPDFLUSH */
7299 key_spdadd, /* SADB_X_SPDSETIDX */
7300 NULL, /* SADB_X_SPDEXPIRE */
7301 key_spddelete2, /* SADB_X_SPDDELETE2 */
7302 #ifdef IPSEC_NAT_T
7303 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7304 #endif
7305 };
7306
7307 /*
7308 * parse sadb_msg buffer to process PFKEYv2,
7309 * and create a data to response if needed.
7310 * I think to be dealed with mbuf directly.
7311 * IN:
7312 * msgp : pointer to pointer to a received buffer pulluped.
7313 * This is rewrited to response.
7314 * so : pointer to socket.
7315 * OUT:
7316 * length for buffer to send to user process.
7317 */
7318 int
7319 key_parse(struct mbuf *m, struct socket *so)
7320 {
7321 struct sadb_msg *msg;
7322 struct sadb_msghdr mh;
7323 u_int orglen;
7324 int error;
7325 int target;
7326
7327 /* sanity check */
7328 if (m == NULL || so == NULL)
7329 panic("key_parse: NULL pointer is passed");
7330
7331 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7332 KEYDEBUG(KEYDEBUG_KEY_DUMP,
7333 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7334 kdebug_sadb(msg));
7335 #endif
7336
7337 if (m->m_len < sizeof(struct sadb_msg)) {
7338 m = m_pullup(m, sizeof(struct sadb_msg));
7339 if (!m)
7340 return ENOBUFS;
7341 }
7342 msg = mtod(m, struct sadb_msg *);
7343 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7344 target = KEY_SENDUP_ONE;
7345
7346 if ((m->m_flags & M_PKTHDR) == 0 ||
7347 m->m_pkthdr.len != m->m_pkthdr.len) {
7348 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7349 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7350 error = EINVAL;
7351 goto senderror;
7352 }
7353
7354 if (msg->sadb_msg_version != PF_KEY_V2) {
7355 ipseclog((LOG_DEBUG,
7356 "key_parse: PF_KEY version %u is mismatched.\n",
7357 msg->sadb_msg_version));
7358 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7359 error = EINVAL;
7360 goto senderror;
7361 }
7362
7363 if (msg->sadb_msg_type > SADB_MAX) {
7364 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7365 msg->sadb_msg_type));
7366 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7367 error = EINVAL;
7368 goto senderror;
7369 }
7370
7371 /* for old-fashioned code - should be nuked */
7372 if (m->m_pkthdr.len > MCLBYTES) {
7373 m_freem(m);
7374 return ENOBUFS;
7375 }
7376 if (m->m_next) {
7377 struct mbuf *n;
7378
7379 MGETHDR(n, M_DONTWAIT, MT_DATA);
7380 if (n && m->m_pkthdr.len > MHLEN) {
7381 MCLGET(n, M_DONTWAIT);
7382 if ((n->m_flags & M_EXT) == 0) {
7383 m_free(n);
7384 n = NULL;
7385 }
7386 }
7387 if (!n) {
7388 m_freem(m);
7389 return ENOBUFS;
7390 }
7391 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7392 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7393 n->m_next = NULL;
7394 m_freem(m);
7395 m = n;
7396 }
7397
7398 /* align the mbuf chain so that extensions are in contiguous region. */
7399 error = key_align(m, &mh);
7400 if (error)
7401 return error;
7402
7403 if (m->m_next) { /*XXX*/
7404 m_freem(m);
7405 return ENOBUFS;
7406 }
7407
7408 msg = mh.msg;
7409
7410 /* check SA type */
7411 switch (msg->sadb_msg_satype) {
7412 case SADB_SATYPE_UNSPEC:
7413 switch (msg->sadb_msg_type) {
7414 case SADB_GETSPI:
7415 case SADB_UPDATE:
7416 case SADB_ADD:
7417 case SADB_DELETE:
7418 case SADB_GET:
7419 case SADB_ACQUIRE:
7420 case SADB_EXPIRE:
7421 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7422 "when msg type=%u.\n", msg->sadb_msg_type));
7423 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7424 error = EINVAL;
7425 goto senderror;
7426 }
7427 break;
7428 case SADB_SATYPE_AH:
7429 case SADB_SATYPE_ESP:
7430 case SADB_X_SATYPE_IPCOMP:
7431 case SADB_X_SATYPE_TCPSIGNATURE:
7432 switch (msg->sadb_msg_type) {
7433 case SADB_X_SPDADD:
7434 case SADB_X_SPDDELETE:
7435 case SADB_X_SPDGET:
7436 case SADB_X_SPDDUMP:
7437 case SADB_X_SPDFLUSH:
7438 case SADB_X_SPDSETIDX:
7439 case SADB_X_SPDUPDATE:
7440 case SADB_X_SPDDELETE2:
7441 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7442 msg->sadb_msg_type));
7443 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7444 error = EINVAL;
7445 goto senderror;
7446 }
7447 break;
7448 case SADB_SATYPE_RSVP:
7449 case SADB_SATYPE_OSPFV2:
7450 case SADB_SATYPE_RIPV2:
7451 case SADB_SATYPE_MIP:
7452 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7453 msg->sadb_msg_satype));
7454 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7455 error = EOPNOTSUPP;
7456 goto senderror;
7457 case 1: /* XXX: What does it do? */
7458 if (msg->sadb_msg_type == SADB_X_PROMISC)
7459 break;
7460 /*FALLTHROUGH*/
7461 default:
7462 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7463 msg->sadb_msg_satype));
7464 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7465 error = EINVAL;
7466 goto senderror;
7467 }
7468
7469 /* check field of upper layer protocol and address family */
7470 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7471 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7472 struct sadb_address *src0, *dst0;
7473 u_int plen;
7474
7475 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7476 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7477
7478 /* check upper layer protocol */
7479 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7480 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7481 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7482 error = EINVAL;
7483 goto senderror;
7484 }
7485
7486 /* check family */
7487 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7488 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7489 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7490 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7491 error = EINVAL;
7492 goto senderror;
7493 }
7494 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7495 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7496 ipseclog((LOG_DEBUG,
7497 "key_parse: address struct size mismatched.\n"));
7498 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7499 error = EINVAL;
7500 goto senderror;
7501 }
7502
7503 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7504 case AF_INET:
7505 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7506 sizeof(struct sockaddr_in)) {
7507 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7508 error = EINVAL;
7509 goto senderror;
7510 }
7511 break;
7512 case AF_INET6:
7513 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7514 sizeof(struct sockaddr_in6)) {
7515 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7516 error = EINVAL;
7517 goto senderror;
7518 }
7519 break;
7520 default:
7521 ipseclog((LOG_DEBUG,
7522 "key_parse: unsupported address family.\n"));
7523 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7524 error = EAFNOSUPPORT;
7525 goto senderror;
7526 }
7527
7528 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7529 case AF_INET:
7530 plen = sizeof(struct in_addr) << 3;
7531 break;
7532 case AF_INET6:
7533 plen = sizeof(struct in6_addr) << 3;
7534 break;
7535 default:
7536 plen = 0; /*fool gcc*/
7537 break;
7538 }
7539
7540 /* check max prefix length */
7541 if (src0->sadb_address_prefixlen > plen ||
7542 dst0->sadb_address_prefixlen > plen) {
7543 ipseclog((LOG_DEBUG,
7544 "key_parse: illegal prefixlen.\n"));
7545 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7546 error = EINVAL;
7547 goto senderror;
7548 }
7549
7550 /*
7551 * prefixlen == 0 is valid because there can be a case when
7552 * all addresses are matched.
7553 */
7554 }
7555
7556 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7557 key_typesw[msg->sadb_msg_type] == NULL) {
7558 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7559 error = EINVAL;
7560 goto senderror;
7561 }
7562
7563 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7564
7565 senderror:
7566 msg->sadb_msg_errno = error;
7567 return key_sendup_mbuf(so, m, target);
7568 }
7569
7570 static int
7571 key_senderror(struct socket *so, struct mbuf *m, int code)
7572 {
7573 struct sadb_msg *msg;
7574
7575 if (m->m_len < sizeof(struct sadb_msg))
7576 panic("invalid mbuf passed to key_senderror");
7577
7578 msg = mtod(m, struct sadb_msg *);
7579 msg->sadb_msg_errno = code;
7580 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7581 }
7582
7583 /*
7584 * set the pointer to each header into message buffer.
7585 * m will be freed on error.
7586 * XXX larger-than-MCLBYTES extension?
7587 */
7588 static int
7589 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7590 {
7591 struct mbuf *n;
7592 struct sadb_ext *ext;
7593 size_t off, end;
7594 int extlen;
7595 int toff;
7596
7597 /* sanity check */
7598 if (m == NULL || mhp == NULL)
7599 panic("key_align: NULL pointer is passed");
7600 if (m->m_len < sizeof(struct sadb_msg))
7601 panic("invalid mbuf passed to key_align");
7602
7603 /* initialize */
7604 memset(mhp, 0, sizeof(*mhp));
7605
7606 mhp->msg = mtod(m, struct sadb_msg *);
7607 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7608
7609 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7610 extlen = end; /*just in case extlen is not updated*/
7611 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7612 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7613 if (!n) {
7614 /* m is already freed */
7615 return ENOBUFS;
7616 }
7617 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7618
7619 /* set pointer */
7620 switch (ext->sadb_ext_type) {
7621 case SADB_EXT_SA:
7622 case SADB_EXT_ADDRESS_SRC:
7623 case SADB_EXT_ADDRESS_DST:
7624 case SADB_EXT_ADDRESS_PROXY:
7625 case SADB_EXT_LIFETIME_CURRENT:
7626 case SADB_EXT_LIFETIME_HARD:
7627 case SADB_EXT_LIFETIME_SOFT:
7628 case SADB_EXT_KEY_AUTH:
7629 case SADB_EXT_KEY_ENCRYPT:
7630 case SADB_EXT_IDENTITY_SRC:
7631 case SADB_EXT_IDENTITY_DST:
7632 case SADB_EXT_SENSITIVITY:
7633 case SADB_EXT_PROPOSAL:
7634 case SADB_EXT_SUPPORTED_AUTH:
7635 case SADB_EXT_SUPPORTED_ENCRYPT:
7636 case SADB_EXT_SPIRANGE:
7637 case SADB_X_EXT_POLICY:
7638 case SADB_X_EXT_SA2:
7639 #ifdef IPSEC_NAT_T
7640 case SADB_X_EXT_NAT_T_TYPE:
7641 case SADB_X_EXT_NAT_T_SPORT:
7642 case SADB_X_EXT_NAT_T_DPORT:
7643 case SADB_X_EXT_NAT_T_OAI:
7644 case SADB_X_EXT_NAT_T_OAR:
7645 case SADB_X_EXT_NAT_T_FRAG:
7646 #endif
7647 /* duplicate check */
7648 /*
7649 * XXX Are there duplication payloads of either
7650 * KEY_AUTH or KEY_ENCRYPT ?
7651 */
7652 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7653 ipseclog((LOG_DEBUG,
7654 "key_align: duplicate ext_type %u "
7655 "is passed.\n", ext->sadb_ext_type));
7656 m_freem(m);
7657 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7658 return EINVAL;
7659 }
7660 break;
7661 default:
7662 ipseclog((LOG_DEBUG,
7663 "key_align: invalid ext_type %u is passed.\n",
7664 ext->sadb_ext_type));
7665 m_freem(m);
7666 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7667 return EINVAL;
7668 }
7669
7670 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7671
7672 if (key_validate_ext(ext, extlen)) {
7673 m_freem(m);
7674 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7675 return EINVAL;
7676 }
7677
7678 n = m_pulldown(m, off, extlen, &toff);
7679 if (!n) {
7680 /* m is already freed */
7681 return ENOBUFS;
7682 }
7683 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7684
7685 mhp->ext[ext->sadb_ext_type] = ext;
7686 mhp->extoff[ext->sadb_ext_type] = off;
7687 mhp->extlen[ext->sadb_ext_type] = extlen;
7688 }
7689
7690 if (off != end) {
7691 m_freem(m);
7692 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7693 return EINVAL;
7694 }
7695
7696 return 0;
7697 }
7698
7699 static int
7700 key_validate_ext(const struct sadb_ext *ext, int len)
7701 {
7702 const struct sockaddr *sa;
7703 enum { NONE, ADDR } checktype = NONE;
7704 int baselen = 0;
7705 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7706
7707 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7708 return EINVAL;
7709
7710 /* if it does not match minimum/maximum length, bail */
7711 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7712 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7713 return EINVAL;
7714 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7715 return EINVAL;
7716 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7717 return EINVAL;
7718
7719 /* more checks based on sadb_ext_type XXX need more */
7720 switch (ext->sadb_ext_type) {
7721 case SADB_EXT_ADDRESS_SRC:
7722 case SADB_EXT_ADDRESS_DST:
7723 case SADB_EXT_ADDRESS_PROXY:
7724 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7725 checktype = ADDR;
7726 break;
7727 case SADB_EXT_IDENTITY_SRC:
7728 case SADB_EXT_IDENTITY_DST:
7729 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7730 SADB_X_IDENTTYPE_ADDR) {
7731 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7732 checktype = ADDR;
7733 } else
7734 checktype = NONE;
7735 break;
7736 default:
7737 checktype = NONE;
7738 break;
7739 }
7740
7741 switch (checktype) {
7742 case NONE:
7743 break;
7744 case ADDR:
7745 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7746 if (len < baselen + sal)
7747 return EINVAL;
7748 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7749 return EINVAL;
7750 break;
7751 }
7752
7753 return 0;
7754 }
7755
7756 static int
7757 key_do_init(void)
7758 {
7759 int i;
7760
7761 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7762
7763 callout_init(&key_timehandler_ch, 0);
7764
7765 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7766 LIST_INIT(&sptree[i]);
7767 }
7768
7769 LIST_INIT(&sahtree);
7770
7771 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7772 LIST_INIT(®tree[i]);
7773 }
7774
7775 #ifndef IPSEC_NONBLOCK_ACQUIRE
7776 LIST_INIT(&acqtree);
7777 #endif
7778 LIST_INIT(&spacqtree);
7779
7780 /* system default */
7781 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7782 ip4_def_policy.refcnt++; /*never reclaim this*/
7783
7784 #ifdef INET6
7785 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7786 ip6_def_policy.refcnt++; /*never reclaim this*/
7787 #endif
7788
7789
7790 #ifndef IPSEC_DEBUG2
7791 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7792 #endif /*IPSEC_DEBUG2*/
7793
7794 /* initialize key statistics */
7795 keystat.getspi_count = 1;
7796
7797 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7798
7799 return (0);
7800 }
7801
7802 void
7803 key_init(void)
7804 {
7805 static ONCE_DECL(key_init_once);
7806
7807 RUN_ONCE(&key_init_once, key_do_init);
7808 }
7809
7810 /*
7811 * XXX: maybe This function is called after INBOUND IPsec processing.
7812 *
7813 * Special check for tunnel-mode packets.
7814 * We must make some checks for consistency between inner and outer IP header.
7815 *
7816 * xxx more checks to be provided
7817 */
7818 int
7819 key_checktunnelsanity(
7820 struct secasvar *sav,
7821 u_int family,
7822 void *src,
7823 void *dst
7824 )
7825 {
7826 /* sanity check */
7827 if (sav->sah == NULL)
7828 panic("sav->sah == NULL at key_checktunnelsanity");
7829
7830 /* XXX: check inner IP header */
7831
7832 return 1;
7833 }
7834
7835 #if 0
7836 #define hostnamelen strlen(hostname)
7837
7838 /*
7839 * Get FQDN for the host.
7840 * If the administrator configured hostname (by hostname(1)) without
7841 * domain name, returns nothing.
7842 */
7843 static const char *
7844 key_getfqdn(void)
7845 {
7846 int i;
7847 int hasdot;
7848 static char fqdn[MAXHOSTNAMELEN + 1];
7849
7850 if (!hostnamelen)
7851 return NULL;
7852
7853 /* check if it comes with domain name. */
7854 hasdot = 0;
7855 for (i = 0; i < hostnamelen; i++) {
7856 if (hostname[i] == '.')
7857 hasdot++;
7858 }
7859 if (!hasdot)
7860 return NULL;
7861
7862 /* NOTE: hostname may not be NUL-terminated. */
7863 memset(fqdn, 0, sizeof(fqdn));
7864 memcpy(fqdn, hostname, hostnamelen);
7865 fqdn[hostnamelen] = '\0';
7866 return fqdn;
7867 }
7868
7869 /*
7870 * get username@FQDN for the host/user.
7871 */
7872 static const char *
7873 key_getuserfqdn(void)
7874 {
7875 const char *host;
7876 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7877 struct proc *p = curproc;
7878 char *q;
7879
7880 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7881 return NULL;
7882 if (!(host = key_getfqdn()))
7883 return NULL;
7884
7885 /* NOTE: s_login may not be-NUL terminated. */
7886 memset(userfqdn, 0, sizeof(userfqdn));
7887 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7888 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7889 q = userfqdn + strlen(userfqdn);
7890 *q++ = '@';
7891 memcpy(q, host, strlen(host));
7892 q += strlen(host);
7893 *q++ = '\0';
7894
7895 return userfqdn;
7896 }
7897 #endif
7898
7899 /* record data transfer on SA, and update timestamps */
7900 void
7901 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7902 {
7903 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7904 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7905 if (!sav->lft_c)
7906 return;
7907
7908 /*
7909 * XXX Currently, there is a difference of bytes size
7910 * between inbound and outbound processing.
7911 */
7912 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7913 /* to check bytes lifetime is done in key_timehandler(). */
7914
7915 /*
7916 * We use the number of packets as the unit of
7917 * sadb_lifetime_allocations. We increment the variable
7918 * whenever {esp,ah}_{in,out}put is called.
7919 */
7920 sav->lft_c->sadb_lifetime_allocations++;
7921 /* XXX check for expires? */
7922
7923 /*
7924 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7925 * in seconds. HARD and SOFT lifetime are measured by the time
7926 * difference (again in seconds) from sadb_lifetime_usetime.
7927 *
7928 * usetime
7929 * v expire expire
7930 * -----+-----+--------+---> t
7931 * <--------------> HARD
7932 * <-----> SOFT
7933 */
7934 sav->lft_c->sadb_lifetime_usetime = time_second;
7935 /* XXX check for expires? */
7936
7937 return;
7938 }
7939
7940 /* dumb version */
7941 void
7942 key_sa_routechange(struct sockaddr *dst)
7943 {
7944 struct secashead *sah;
7945 struct route *ro;
7946 const struct sockaddr *sa;
7947
7948 LIST_FOREACH(sah, &sahtree, chain) {
7949 ro = &sah->sa_route;
7950 sa = rtcache_getdst(ro);
7951 if (sa != NULL && dst->sa_len == sa->sa_len &&
7952 memcmp(dst, sa, dst->sa_len) == 0)
7953 rtcache_free(ro);
7954 }
7955
7956 return;
7957 }
7958
7959 static void
7960 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7961 {
7962 if (sav == NULL)
7963 panic("key_sa_chgstate called with sav == NULL");
7964
7965 if (sav->state == state)
7966 return;
7967
7968 if (__LIST_CHAINED(sav))
7969 LIST_REMOVE(sav, chain);
7970
7971 sav->state = state;
7972 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7973 }
7974
7975 void
7976 key_sa_stir_iv(struct secasvar *sav)
7977 {
7978
7979 if (!sav->iv)
7980 panic("key_sa_stir_iv called with sav == NULL");
7981 key_randomfill(sav->iv, sav->ivlen);
7982 }
7983
7984 /* XXX too much? */
7985 static struct mbuf *
7986 key_alloc_mbuf(int l)
7987 {
7988 struct mbuf *m = NULL, *n;
7989 int len, t;
7990
7991 len = l;
7992 while (len > 0) {
7993 MGET(n, M_DONTWAIT, MT_DATA);
7994 if (n && len > MLEN)
7995 MCLGET(n, M_DONTWAIT);
7996 if (!n) {
7997 m_freem(m);
7998 return NULL;
7999 }
8000
8001 n->m_next = NULL;
8002 n->m_len = 0;
8003 n->m_len = M_TRAILINGSPACE(n);
8004 /* use the bottom of mbuf, hoping we can prepend afterwards */
8005 if (n->m_len > len) {
8006 t = (n->m_len - len) & ~(sizeof(long) - 1);
8007 n->m_data += t;
8008 n->m_len = len;
8009 }
8010
8011 len -= n->m_len;
8012
8013 if (m)
8014 m_cat(m, n);
8015 else
8016 m = n;
8017 }
8018
8019 return m;
8020 }
8021
8022 static struct mbuf *
8023 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8024 {
8025 struct secashead *sah;
8026 struct secasvar *sav;
8027 u_int16_t proto;
8028 u_int stateidx;
8029 u_int8_t satype;
8030 u_int8_t state;
8031 int cnt;
8032 struct mbuf *m, *n;
8033
8034 /* map satype to proto */
8035 if ((proto = key_satype2proto(req_satype)) == 0) {
8036 *errorp = EINVAL;
8037 return (NULL);
8038 }
8039
8040 /* count sav entries to be sent to the userland. */
8041 cnt = 0;
8042 LIST_FOREACH(sah, &sahtree, chain) {
8043 if (req_satype != SADB_SATYPE_UNSPEC &&
8044 proto != sah->saidx.proto)
8045 continue;
8046
8047 for (stateidx = 0;
8048 stateidx < _ARRAYLEN(saorder_state_any);
8049 stateidx++) {
8050 state = saorder_state_any[stateidx];
8051 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8052 cnt++;
8053 }
8054 }
8055 }
8056
8057 if (cnt == 0) {
8058 *errorp = ENOENT;
8059 return (NULL);
8060 }
8061
8062 /* send this to the userland, one at a time. */
8063 m = NULL;
8064 LIST_FOREACH(sah, &sahtree, chain) {
8065 if (req_satype != SADB_SATYPE_UNSPEC &&
8066 proto != sah->saidx.proto)
8067 continue;
8068
8069 /* map proto to satype */
8070 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8071 m_freem(m);
8072 *errorp = EINVAL;
8073 return (NULL);
8074 }
8075
8076 for (stateidx = 0;
8077 stateidx < _ARRAYLEN(saorder_state_any);
8078 stateidx++) {
8079 state = saorder_state_any[stateidx];
8080 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8081 n = key_setdumpsa(sav, SADB_DUMP, satype,
8082 --cnt, pid);
8083 if (!n) {
8084 m_freem(m);
8085 *errorp = ENOBUFS;
8086 return (NULL);
8087 }
8088
8089 if (!m)
8090 m = n;
8091 else
8092 m_cat(m, n);
8093 }
8094 }
8095 }
8096
8097 if (!m) {
8098 *errorp = EINVAL;
8099 return (NULL);
8100 }
8101
8102 if ((m->m_flags & M_PKTHDR) != 0) {
8103 m->m_pkthdr.len = 0;
8104 for (n = m; n; n = n->m_next)
8105 m->m_pkthdr.len += n->m_len;
8106 }
8107
8108 *errorp = 0;
8109 return (m);
8110 }
8111
8112 static struct mbuf *
8113 key_setspddump(int *errorp, pid_t pid)
8114 {
8115 struct secpolicy *sp;
8116 int cnt;
8117 u_int dir;
8118 struct mbuf *m, *n;
8119
8120 /* search SPD entry and get buffer size. */
8121 cnt = 0;
8122 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8123 LIST_FOREACH(sp, &sptree[dir], chain) {
8124 cnt++;
8125 }
8126 }
8127
8128 if (cnt == 0) {
8129 *errorp = ENOENT;
8130 return (NULL);
8131 }
8132
8133 m = NULL;
8134 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8135 LIST_FOREACH(sp, &sptree[dir], chain) {
8136 --cnt;
8137 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8138
8139 if (!n) {
8140 *errorp = ENOBUFS;
8141 m_freem(m);
8142 return (NULL);
8143 }
8144 if (!m)
8145 m = n;
8146 else {
8147 m->m_pkthdr.len += n->m_pkthdr.len;
8148 m_cat(m, n);
8149 }
8150 }
8151 }
8152
8153 *errorp = 0;
8154 return (m);
8155 }
8156
8157 static int
8158 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8159 {
8160 struct mbuf *m, *n;
8161 int err2 = 0;
8162 char *p, *ep;
8163 size_t len;
8164 int s, error;
8165
8166 if (newp)
8167 return (EPERM);
8168 if (namelen != 1)
8169 return (EINVAL);
8170
8171 s = splsoftnet();
8172 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8173 splx(s);
8174 if (!m)
8175 return (error);
8176 if (!oldp)
8177 *oldlenp = m->m_pkthdr.len;
8178 else {
8179 p = oldp;
8180 if (*oldlenp < m->m_pkthdr.len) {
8181 err2 = ENOMEM;
8182 ep = p + *oldlenp;
8183 } else {
8184 *oldlenp = m->m_pkthdr.len;
8185 ep = p + m->m_pkthdr.len;
8186 }
8187 for (n = m; n; n = n->m_next) {
8188 len = (ep - p < n->m_len) ?
8189 ep - p : n->m_len;
8190 error = copyout(mtod(n, const void *), p, len);
8191 p += len;
8192 if (error)
8193 break;
8194 }
8195 if (error == 0)
8196 error = err2;
8197 }
8198 m_freem(m);
8199
8200 return (error);
8201 }
8202
8203 static int
8204 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8205 {
8206 struct mbuf *m, *n;
8207 int err2 = 0;
8208 char *p, *ep;
8209 size_t len;
8210 int s, error;
8211
8212 if (newp)
8213 return (EPERM);
8214 if (namelen != 0)
8215 return (EINVAL);
8216
8217 s = splsoftnet();
8218 m = key_setspddump(&error, l->l_proc->p_pid);
8219 splx(s);
8220 if (!m)
8221 return (error);
8222 if (!oldp)
8223 *oldlenp = m->m_pkthdr.len;
8224 else {
8225 p = oldp;
8226 if (*oldlenp < m->m_pkthdr.len) {
8227 err2 = ENOMEM;
8228 ep = p + *oldlenp;
8229 } else {
8230 *oldlenp = m->m_pkthdr.len;
8231 ep = p + m->m_pkthdr.len;
8232 }
8233 for (n = m; n; n = n->m_next) {
8234 len = (ep - p < n->m_len) ?
8235 ep - p : n->m_len;
8236 error = copyout(mtod(n, const void *), p, len);
8237 p += len;
8238 if (error)
8239 break;
8240 }
8241 if (error == 0)
8242 error = err2;
8243 }
8244 m_freem(m);
8245
8246 return (error);
8247 }
8248
8249 /*
8250 * Create sysctl tree for native FAST_IPSEC key knobs, originally
8251 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8252 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8253 * and in any case the part of our sysctl namespace used for dumping the
8254 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8255 * namespace, for API reasons.
8256 *
8257 * Pending a consensus on the right way to fix this, add a level of
8258 * indirection in how we number the `native' FAST_IPSEC key nodes;
8259 * and (as requested by Andrew Brown) move registration of the
8260 * KAME-compatible names to a separate function.
8261 */
8262 #if 0
8263 # define FAST_IPSEC_PFKEY PF_KEY_V2
8264 # define FAST_IPSEC_PFKEY_NAME "keyv2"
8265 #else
8266 # define FAST_IPSEC_PFKEY PF_KEY
8267 # define FAST_IPSEC_PFKEY_NAME "key"
8268 #endif
8269
8270 static int
8271 sysctl_net_key_stats(SYSCTLFN_ARGS)
8272 {
8273
8274 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8275 }
8276
8277 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
8278 {
8279
8280 sysctl_createv(clog, 0, NULL, NULL,
8281 CTLFLAG_PERMANENT,
8282 CTLTYPE_NODE, "net", NULL,
8283 NULL, 0, NULL, 0,
8284 CTL_NET, CTL_EOL);
8285 sysctl_createv(clog, 0, NULL, NULL,
8286 CTLFLAG_PERMANENT,
8287 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL,
8288 NULL, 0, NULL, 0,
8289 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL);
8290
8291 sysctl_createv(clog, 0, NULL, NULL,
8292 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8293 CTLTYPE_INT, "debug", NULL,
8294 NULL, 0, &key_debug_level, 0,
8295 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8296 sysctl_createv(clog, 0, NULL, NULL,
8297 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8298 CTLTYPE_INT, "spi_try", NULL,
8299 NULL, 0, &key_spi_trycnt, 0,
8300 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8301 sysctl_createv(clog, 0, NULL, NULL,
8302 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8303 CTLTYPE_INT, "spi_min_value", NULL,
8304 NULL, 0, &key_spi_minval, 0,
8305 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8306 sysctl_createv(clog, 0, NULL, NULL,
8307 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8308 CTLTYPE_INT, "spi_max_value", NULL,
8309 NULL, 0, &key_spi_maxval, 0,
8310 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8311 sysctl_createv(clog, 0, NULL, NULL,
8312 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8313 CTLTYPE_INT, "random_int", NULL,
8314 NULL, 0, &key_int_random, 0,
8315 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8316 sysctl_createv(clog, 0, NULL, NULL,
8317 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8318 CTLTYPE_INT, "larval_lifetime", NULL,
8319 NULL, 0, &key_larval_lifetime, 0,
8320 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8321 sysctl_createv(clog, 0, NULL, NULL,
8322 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8323 CTLTYPE_INT, "blockacq_count", NULL,
8324 NULL, 0, &key_blockacq_count, 0,
8325 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8326 sysctl_createv(clog, 0, NULL, NULL,
8327 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8328 CTLTYPE_INT, "blockacq_lifetime", NULL,
8329 NULL, 0, &key_blockacq_lifetime, 0,
8330 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8331 sysctl_createv(clog, 0, NULL, NULL,
8332 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8333 CTLTYPE_INT, "esp_keymin", NULL,
8334 NULL, 0, &ipsec_esp_keymin, 0,
8335 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8336 sysctl_createv(clog, 0, NULL, NULL,
8337 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8338 CTLTYPE_INT, "prefered_oldsa", NULL,
8339 NULL, 0, &key_prefered_oldsa, 0,
8340 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8341 sysctl_createv(clog, 0, NULL, NULL,
8342 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8343 CTLTYPE_INT, "esp_auth", NULL,
8344 NULL, 0, &ipsec_esp_auth, 0,
8345 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8346 sysctl_createv(clog, 0, NULL, NULL,
8347 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8348 CTLTYPE_INT, "ah_keymin", NULL,
8349 NULL, 0, &ipsec_ah_keymin, 0,
8350 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8351 sysctl_createv(clog, 0, NULL, NULL,
8352 CTLFLAG_PERMANENT,
8353 CTLTYPE_STRUCT, "stats",
8354 SYSCTL_DESCR("PF_KEY statistics"),
8355 sysctl_net_key_stats, 0, NULL, 0,
8356 CTL_NET, FAST_IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8357 }
8358
8359 /*
8360 * Register sysctl names used by setkey(8). For historical reasons,
8361 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8362 * for both FAST_IPSEC and KAME IPSEC.
8363 */
8364 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC")
8365 {
8366
8367 /* Make sure net.key exists before we register nodes underneath it. */
8368 sysctl_createv(clog, 0, NULL, NULL,
8369 CTLFLAG_PERMANENT,
8370 CTLTYPE_NODE, "net", NULL,
8371 NULL, 0, NULL, 0,
8372 CTL_NET, CTL_EOL);
8373 sysctl_createv(clog, 0, NULL, NULL,
8374 CTLFLAG_PERMANENT,
8375 CTLTYPE_NODE, "key", NULL,
8376 NULL, 0, NULL, 0,
8377 CTL_NET, PF_KEY, CTL_EOL);
8378
8379 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8380 sysctl_createv(clog, 0, NULL, NULL,
8381 CTLFLAG_PERMANENT,
8382 CTLTYPE_STRUCT, "dumpsa", NULL,
8383 sysctl_net_key_dumpsa, 0, NULL, 0,
8384 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8385 sysctl_createv(clog, 0, NULL, NULL,
8386 CTLFLAG_PERMANENT,
8387 CTLTYPE_STRUCT, "dumpsp", NULL,
8388 sysctl_net_key_dumpsp, 0, NULL, 0,
8389 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8390 }
8391