key.c revision 1.76 1 /* $NetBSD: key.c,v 1.76 2012/01/09 15:42:08 drochner Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.76 2012/01/09 15:42:08 drochner Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66 #include <sys/once.h>
67 #include <sys/cprng.h>
68
69 #include <net/if.h>
70 #include <net/route.h>
71 #include <net/raw_cb.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipsec_osdep.h>
108 #include <netipsec/ipcomp.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 percpu_t *pfkeystat_percpu;
117
118 /*
119 * Note on SA reference counting:
120 * - SAs that are not in DEAD state will have (total external reference + 1)
121 * following value in reference count field. they cannot be freed and are
122 * referenced from SA header.
123 * - SAs that are in DEAD state will have (total external reference)
124 * in reference count field. they are ready to be freed. reference from
125 * SA header will be removed in key_delsav(), when the reference count
126 * field hits 0 (= no external reference other than from SA header.
127 */
128
129 u_int32_t key_debug_level = 0;
130 static u_int key_spi_trycnt = 1000;
131 static u_int32_t key_spi_minval = 0x100;
132 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
133 static u_int32_t policy_id = 0;
134 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
135 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
136 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
137 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
138 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
139
140 static u_int32_t acq_seq = 0;
141
142 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
143 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
144 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
145 /* registed list */
146 #ifndef IPSEC_NONBLOCK_ACQUIRE
147 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
148 #endif
149 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
150
151 /* search order for SAs */
152 /*
153 * This order is important because we must select the oldest SA
154 * for outbound processing. For inbound, This is not important.
155 */
156 static const u_int saorder_state_valid_prefer_old[] = {
157 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
158 };
159 static const u_int saorder_state_valid_prefer_new[] = {
160 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
161 };
162
163 static const u_int saorder_state_alive[] = {
164 /* except DEAD */
165 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
166 };
167 static const u_int saorder_state_any[] = {
168 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
169 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
170 };
171
172 static const int minsize[] = {
173 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
174 sizeof(struct sadb_sa), /* SADB_EXT_SA */
175 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
176 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
177 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
178 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
179 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
180 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
181 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
182 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
183 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
184 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
185 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
186 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
187 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
188 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
189 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
190 0, /* SADB_X_EXT_KMPRIVATE */
191 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
192 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
193 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
194 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
195 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
196 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
197 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
198 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
199 };
200 static const int maxsize[] = {
201 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
202 sizeof(struct sadb_sa), /* SADB_EXT_SA */
203 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
204 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
205 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
206 0, /* SADB_EXT_ADDRESS_SRC */
207 0, /* SADB_EXT_ADDRESS_DST */
208 0, /* SADB_EXT_ADDRESS_PROXY */
209 0, /* SADB_EXT_KEY_AUTH */
210 0, /* SADB_EXT_KEY_ENCRYPT */
211 0, /* SADB_EXT_IDENTITY_SRC */
212 0, /* SADB_EXT_IDENTITY_DST */
213 0, /* SADB_EXT_SENSITIVITY */
214 0, /* SADB_EXT_PROPOSAL */
215 0, /* SADB_EXT_SUPPORTED_AUTH */
216 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
217 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
218 0, /* SADB_X_EXT_KMPRIVATE */
219 0, /* SADB_X_EXT_POLICY */
220 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
221 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
222 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
223 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
224 0, /* SADB_X_EXT_NAT_T_OAI */
225 0, /* SADB_X_EXT_NAT_T_OAR */
226 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
227 };
228
229 static int ipsec_esp_keymin = 256;
230 static int ipsec_esp_auth = 0;
231 static int ipsec_ah_keymin = 128;
232
233 #ifdef SYSCTL_DECL
234 SYSCTL_DECL(_net_key);
235 #endif
236
237 #ifdef SYSCTL_INT
238 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
239 &key_debug_level, 0, "");
240
241 /* max count of trial for the decision of spi value */
242 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
243 &key_spi_trycnt, 0, "");
244
245 /* minimum spi value to allocate automatically. */
246 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
247 &key_spi_minval, 0, "");
248
249 /* maximun spi value to allocate automatically. */
250 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
251 &key_spi_maxval, 0, "");
252
253 /* interval to initialize randseed */
254 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
255 &key_int_random, 0, "");
256
257 /* lifetime for larval SA */
258 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
259 &key_larval_lifetime, 0, "");
260
261 /* counter for blocking to send SADB_ACQUIRE to IKEd */
262 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
263 &key_blockacq_count, 0, "");
264
265 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
266 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
267 &key_blockacq_lifetime, 0, "");
268
269 /* ESP auth */
270 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
271 &ipsec_esp_auth, 0, "");
272
273 /* minimum ESP key length */
274 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
275 &ipsec_esp_keymin, 0, "");
276
277 /* minimum AH key length */
278 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
279 &ipsec_ah_keymin, 0, "");
280
281 /* perfered old SA rather than new SA */
282 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
283 &key_prefered_oldsa, 0, "");
284 #endif /* SYSCTL_INT */
285
286 #ifndef LIST_FOREACH
287 #define LIST_FOREACH(elm, head, field) \
288 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
289 #endif
290 #define __LIST_CHAINED(elm) \
291 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
292 #define LIST_INSERT_TAIL(head, elm, type, field) \
293 do {\
294 struct type *curelm = LIST_FIRST(head); \
295 if (curelm == NULL) {\
296 LIST_INSERT_HEAD(head, elm, field); \
297 } else { \
298 while (LIST_NEXT(curelm, field)) \
299 curelm = LIST_NEXT(curelm, field);\
300 LIST_INSERT_AFTER(curelm, elm, field);\
301 }\
302 } while (0)
303
304 #define KEY_CHKSASTATE(head, sav, name) \
305 /* do */ { \
306 if ((head) != (sav)) { \
307 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
308 (name), (head), (sav))); \
309 continue; \
310 } \
311 } /* while (0) */
312
313 #define KEY_CHKSPDIR(head, sp, name) \
314 do { \
315 if ((head) != (sp)) { \
316 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
317 "anyway continue.\n", \
318 (name), (head), (sp))); \
319 } \
320 } while (0)
321
322 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
323
324 #if 1
325 #define KMALLOC(p, t, n) \
326 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
327 #define KFREE(p) \
328 free((p), M_SECA)
329 #else
330 #define KMALLOC(p, t, n) \
331 do { \
332 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
333 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
334 __FILE__, __LINE__, (p), #t, n); \
335 } while (0)
336
337 #define KFREE(p) \
338 do { \
339 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
340 free((p), M_SECA); \
341 } while (0)
342 #endif
343
344 /*
345 * set parameters into secpolicyindex buffer.
346 * Must allocate secpolicyindex buffer passed to this function.
347 */
348 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
349 do { \
350 memset((idx), 0, sizeof(struct secpolicyindex)); \
351 (idx)->dir = (_dir); \
352 (idx)->prefs = (ps); \
353 (idx)->prefd = (pd); \
354 (idx)->ul_proto = (ulp); \
355 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
356 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
357 } while (0)
358
359 /*
360 * set parameters into secasindex buffer.
361 * Must allocate secasindex buffer before calling this function.
362 */
363 static int
364 key_setsecasidx (int, int, int, const struct sadb_address *,
365 const struct sadb_address *, struct secasindex *);
366
367 /* key statistics */
368 struct _keystat {
369 u_long getspi_count; /* the avarage of count to try to get new SPI */
370 } keystat;
371
372 struct sadb_msghdr {
373 struct sadb_msg *msg;
374 struct sadb_ext *ext[SADB_EXT_MAX + 1];
375 int extoff[SADB_EXT_MAX + 1];
376 int extlen[SADB_EXT_MAX + 1];
377 };
378
379 static struct secasvar *key_allocsa_policy (const struct secasindex *);
380 static void key_freesp_so (struct secpolicy **);
381 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
382 static void key_delsp (struct secpolicy *);
383 static struct secpolicy *key_getsp (const struct secpolicyindex *);
384 static struct secpolicy *key_getspbyid (u_int32_t);
385 static u_int16_t key_newreqid (void);
386 static struct mbuf *key_gather_mbuf (struct mbuf *,
387 const struct sadb_msghdr *, int, int, ...);
388 static int key_spdadd (struct socket *, struct mbuf *,
389 const struct sadb_msghdr *);
390 static u_int32_t key_getnewspid (void);
391 static int key_spddelete (struct socket *, struct mbuf *,
392 const struct sadb_msghdr *);
393 static int key_spddelete2 (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spdget (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static int key_spdflush (struct socket *, struct mbuf *,
398 const struct sadb_msghdr *);
399 static int key_spddump (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static struct mbuf * key_setspddump (int *errorp, pid_t);
402 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
403 #ifdef IPSEC_NAT_T
404 static int key_nat_map (struct socket *, struct mbuf *,
405 const struct sadb_msghdr *);
406 #endif
407 static struct mbuf *key_setdumpsp (struct secpolicy *,
408 u_int8_t, u_int32_t, pid_t);
409 static u_int key_getspreqmsglen (const struct secpolicy *);
410 static int key_spdexpire (struct secpolicy *);
411 static struct secashead *key_newsah (const struct secasindex *);
412 static void key_delsah (struct secashead *);
413 static struct secasvar *key_newsav (struct mbuf *,
414 const struct sadb_msghdr *, struct secashead *, int *,
415 const char*, int);
416 #define KEY_NEWSAV(m, sadb, sah, e) \
417 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
418 static void key_delsav (struct secasvar *);
419 static struct secashead *key_getsah (const struct secasindex *);
420 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
421 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
422 static int key_setsaval (struct secasvar *, struct mbuf *,
423 const struct sadb_msghdr *);
424 static int key_mature (struct secasvar *);
425 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
426 u_int8_t, u_int32_t, u_int32_t);
427 #ifdef IPSEC_NAT_T
428 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
429 static struct mbuf *key_setsadbxtype (u_int16_t);
430 static struct mbuf *key_setsadbxfrag (u_int16_t);
431 #endif
432 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
433 static int key_checksalen (const union sockaddr_union *);
434 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
435 u_int32_t, pid_t, u_int16_t);
436 static struct mbuf *key_setsadbsa (struct secasvar *);
437 static struct mbuf *key_setsadbaddr (u_int16_t,
438 const struct sockaddr *, u_int8_t, u_int16_t);
439 #if 0
440 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
441 int, u_int64_t);
442 #endif
443 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
444 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
445 u_int32_t);
446 static void *key_newbuf (const void *, u_int);
447 #ifdef INET6
448 static int key_ismyaddr6 (const struct sockaddr_in6 *);
449 #endif
450
451 /* flags for key_cmpsaidx() */
452 #define CMP_HEAD 1 /* protocol, addresses. */
453 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
454 #define CMP_REQID 3 /* additionally HEAD, reaid. */
455 #define CMP_EXACTLY 4 /* all elements. */
456 static int key_cmpsaidx
457 (const struct secasindex *, const struct secasindex *, int);
458
459 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
460 static int key_bbcmp (const void *, const void *, u_int);
461 static u_int16_t key_satype2proto (u_int8_t);
462 static u_int8_t key_proto2satype (u_int16_t);
463
464 static int key_getspi (struct socket *, struct mbuf *,
465 const struct sadb_msghdr *);
466 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
467 const struct secasindex *);
468 #ifdef IPSEC_NAT_T
469 static int key_handle_natt_info (struct secasvar *,
470 const struct sadb_msghdr *);
471 static int key_set_natt_ports (union sockaddr_union *,
472 union sockaddr_union *,
473 const struct sadb_msghdr *);
474 #endif
475 static int key_update (struct socket *, struct mbuf *,
476 const struct sadb_msghdr *);
477 #ifdef IPSEC_DOSEQCHECK
478 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
479 #endif
480 static int key_add (struct socket *, struct mbuf *,
481 const struct sadb_msghdr *);
482 static int key_setident (struct secashead *, struct mbuf *,
483 const struct sadb_msghdr *);
484 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
485 const struct sadb_msghdr *);
486 static int key_delete (struct socket *, struct mbuf *,
487 const struct sadb_msghdr *);
488 static int key_get (struct socket *, struct mbuf *,
489 const struct sadb_msghdr *);
490
491 static void key_getcomb_setlifetime (struct sadb_comb *);
492 static struct mbuf *key_getcomb_esp (void);
493 static struct mbuf *key_getcomb_ah (void);
494 static struct mbuf *key_getcomb_ipcomp (void);
495 static struct mbuf *key_getprop (const struct secasindex *);
496
497 static int key_acquire (const struct secasindex *, struct secpolicy *);
498 #ifndef IPSEC_NONBLOCK_ACQUIRE
499 static struct secacq *key_newacq (const struct secasindex *);
500 static struct secacq *key_getacq (const struct secasindex *);
501 static struct secacq *key_getacqbyseq (u_int32_t);
502 #endif
503 static struct secspacq *key_newspacq (const struct secpolicyindex *);
504 static struct secspacq *key_getspacq (const struct secpolicyindex *);
505 static int key_acquire2 (struct socket *, struct mbuf *,
506 const struct sadb_msghdr *);
507 static int key_register (struct socket *, struct mbuf *,
508 const struct sadb_msghdr *);
509 static int key_expire (struct secasvar *);
510 static int key_flush (struct socket *, struct mbuf *,
511 const struct sadb_msghdr *);
512 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
513 int *lenp, pid_t pid);
514 static int key_dump (struct socket *, struct mbuf *,
515 const struct sadb_msghdr *);
516 static int key_promisc (struct socket *, struct mbuf *,
517 const struct sadb_msghdr *);
518 static int key_senderror (struct socket *, struct mbuf *, int);
519 static int key_validate_ext (const struct sadb_ext *, int);
520 static int key_align (struct mbuf *, struct sadb_msghdr *);
521 #if 0
522 static const char *key_getfqdn (void);
523 static const char *key_getuserfqdn (void);
524 #endif
525 static void key_sa_chgstate (struct secasvar *, u_int8_t);
526 static inline void key_sp_dead (struct secpolicy *);
527 static void key_sp_unlink (struct secpolicy *sp);
528
529 static struct mbuf *key_alloc_mbuf (int);
530 struct callout key_timehandler_ch;
531
532 #define SA_ADDREF(p) do { \
533 (p)->refcnt++; \
534 IPSEC_ASSERT((p)->refcnt != 0, \
535 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
536 } while (0)
537 #define SA_DELREF(p) do { \
538 IPSEC_ASSERT((p)->refcnt > 0, \
539 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
540 (p)->refcnt--; \
541 } while (0)
542
543 #define SP_ADDREF(p) do { \
544 (p)->refcnt++; \
545 IPSEC_ASSERT((p)->refcnt != 0, \
546 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
547 } while (0)
548 #define SP_DELREF(p) do { \
549 IPSEC_ASSERT((p)->refcnt > 0, \
550 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
551 (p)->refcnt--; \
552 } while (0)
553
554
555 static inline void
556 key_sp_dead(struct secpolicy *sp)
557 {
558
559 /* mark the SP dead */
560 sp->state = IPSEC_SPSTATE_DEAD;
561 }
562
563 static void
564 key_sp_unlink(struct secpolicy *sp)
565 {
566
567 /* remove from SP index */
568 if (__LIST_CHAINED(sp)) {
569 LIST_REMOVE(sp, chain);
570 /* Release refcount held just for being on chain */
571 KEY_FREESP(&sp);
572 }
573 }
574
575
576 /*
577 * Return 0 when there are known to be no SP's for the specified
578 * direction. Otherwise return 1. This is used by IPsec code
579 * to optimize performance.
580 */
581 int
582 key_havesp(u_int dir)
583 {
584 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
585 LIST_FIRST(&sptree[dir]) != NULL : 1);
586 }
587
588 /* %%% IPsec policy management */
589 /*
590 * allocating a SP for OUTBOUND or INBOUND packet.
591 * Must call key_freesp() later.
592 * OUT: NULL: not found
593 * others: found and return the pointer.
594 */
595 struct secpolicy *
596 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
597 {
598 struct secpolicy *sp;
599 int s;
600
601 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
602 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
603 ("key_allocsp: invalid direction %u", dir));
604
605 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
606 printf("DP key_allocsp from %s:%u\n", where, tag));
607
608 /* get a SP entry */
609 s = splsoftnet(); /*called from softclock()*/
610 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
611 printf("*** objects\n");
612 kdebug_secpolicyindex(spidx));
613
614 LIST_FOREACH(sp, &sptree[dir], chain) {
615 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
616 printf("*** in SPD\n");
617 kdebug_secpolicyindex(&sp->spidx));
618
619 if (sp->state == IPSEC_SPSTATE_DEAD)
620 continue;
621 if (key_cmpspidx_withmask(&sp->spidx, spidx))
622 goto found;
623 }
624 sp = NULL;
625 found:
626 if (sp) {
627 /* sanity check */
628 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
629
630 /* found a SPD entry */
631 sp->lastused = time_uptime;
632 SP_ADDREF(sp);
633 }
634 splx(s);
635
636 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
637 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n",
638 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
639 return sp;
640 }
641
642 /*
643 * allocating a SP for OUTBOUND or INBOUND packet.
644 * Must call key_freesp() later.
645 * OUT: NULL: not found
646 * others: found and return the pointer.
647 */
648 struct secpolicy *
649 key_allocsp2(u_int32_t spi,
650 const union sockaddr_union *dst,
651 u_int8_t proto,
652 u_int dir,
653 const char* where, int tag)
654 {
655 struct secpolicy *sp;
656 int s;
657
658 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
659 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
660 ("key_allocsp2: invalid direction %u", dir));
661
662 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
663 printf("DP key_allocsp2 from %s:%u\n", where, tag));
664
665 /* get a SP entry */
666 s = splsoftnet(); /*called from softclock()*/
667 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
668 printf("*** objects\n");
669 printf("spi %u proto %u dir %u\n", spi, proto, dir);
670 kdebug_sockaddr(&dst->sa));
671
672 LIST_FOREACH(sp, &sptree[dir], chain) {
673 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
674 printf("*** in SPD\n");
675 kdebug_secpolicyindex(&sp->spidx));
676
677 if (sp->state == IPSEC_SPSTATE_DEAD)
678 continue;
679 /* compare simple values, then dst address */
680 if (sp->spidx.ul_proto != proto)
681 continue;
682 /* NB: spi's must exist and match */
683 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
684 continue;
685 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
686 goto found;
687 }
688 sp = NULL;
689 found:
690 if (sp) {
691 /* sanity check */
692 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
693
694 /* found a SPD entry */
695 sp->lastused = time_uptime;
696 SP_ADDREF(sp);
697 }
698 splx(s);
699
700 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
701 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n",
702 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
703 return sp;
704 }
705
706 /*
707 * return a policy that matches this particular inbound packet.
708 * XXX slow
709 */
710 struct secpolicy *
711 key_gettunnel(const struct sockaddr *osrc,
712 const struct sockaddr *odst,
713 const struct sockaddr *isrc,
714 const struct sockaddr *idst,
715 const char* where, int tag)
716 {
717 struct secpolicy *sp;
718 const int dir = IPSEC_DIR_INBOUND;
719 int s;
720 struct ipsecrequest *r1, *r2, *p;
721 struct secpolicyindex spidx;
722
723 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
724 printf("DP key_gettunnel from %s:%u\n", where, tag));
725
726 if (isrc->sa_family != idst->sa_family) {
727 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
728 isrc->sa_family, idst->sa_family));
729 sp = NULL;
730 goto done;
731 }
732
733 s = splsoftnet(); /*called from softclock()*/
734 LIST_FOREACH(sp, &sptree[dir], chain) {
735 if (sp->state == IPSEC_SPSTATE_DEAD)
736 continue;
737
738 r1 = r2 = NULL;
739 for (p = sp->req; p; p = p->next) {
740 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
741 continue;
742
743 r1 = r2;
744 r2 = p;
745
746 if (!r1) {
747 /* here we look at address matches only */
748 spidx = sp->spidx;
749 if (isrc->sa_len > sizeof(spidx.src) ||
750 idst->sa_len > sizeof(spidx.dst))
751 continue;
752 memcpy(&spidx.src, isrc, isrc->sa_len);
753 memcpy(&spidx.dst, idst, idst->sa_len);
754 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
755 continue;
756 } else {
757 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
758 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
759 continue;
760 }
761
762 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
763 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
764 continue;
765
766 goto found;
767 }
768 }
769 sp = NULL;
770 found:
771 if (sp) {
772 sp->lastused = time_uptime;
773 SP_ADDREF(sp);
774 }
775 splx(s);
776 done:
777 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
778 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n",
779 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
780 return sp;
781 }
782
783 /*
784 * allocating an SA entry for an *OUTBOUND* packet.
785 * checking each request entries in SP, and acquire an SA if need.
786 * OUT: 0: there are valid requests.
787 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
788 */
789 int
790 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
791 {
792 u_int level;
793 int error;
794
795 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
796 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
797 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
798 saidx->mode == IPSEC_MODE_TUNNEL,
799 ("key_checkrequest: unexpected policy %u", saidx->mode));
800
801 /* get current level */
802 level = ipsec_get_reqlevel(isr);
803
804 /*
805 * XXX guard against protocol callbacks from the crypto
806 * thread as they reference ipsecrequest.sav which we
807 * temporarily null out below. Need to rethink how we
808 * handle bundled SA's in the callback thread.
809 */
810 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
811 #if 0
812 /*
813 * We do allocate new SA only if the state of SA in the holder is
814 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
815 */
816 if (isr->sav != NULL) {
817 if (isr->sav->sah == NULL)
818 panic("key_checkrequest: sah is null");
819 if (isr->sav == (struct secasvar *)LIST_FIRST(
820 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
821 KEY_FREESAV(&isr->sav);
822 isr->sav = NULL;
823 }
824 }
825 #else
826 /*
827 * we free any SA stashed in the IPsec request because a different
828 * SA may be involved each time this request is checked, either
829 * because new SAs are being configured, or this request is
830 * associated with an unconnected datagram socket, or this request
831 * is associated with a system default policy.
832 *
833 * The operation may have negative impact to performance. We may
834 * want to check cached SA carefully, rather than picking new SA
835 * every time.
836 */
837 if (isr->sav != NULL) {
838 KEY_FREESAV(&isr->sav);
839 isr->sav = NULL;
840 }
841 #endif
842
843 /*
844 * new SA allocation if no SA found.
845 * key_allocsa_policy should allocate the oldest SA available.
846 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
847 */
848 if (isr->sav == NULL)
849 isr->sav = key_allocsa_policy(saidx);
850
851 /* When there is SA. */
852 if (isr->sav != NULL) {
853 if (isr->sav->state != SADB_SASTATE_MATURE &&
854 isr->sav->state != SADB_SASTATE_DYING)
855 return EINVAL;
856 return 0;
857 }
858
859 /* there is no SA */
860 error = key_acquire(saidx, isr->sp);
861 if (error != 0) {
862 /* XXX What should I do ? */
863 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
864 "from key_acquire.\n", error));
865 return error;
866 }
867
868 if (level != IPSEC_LEVEL_REQUIRE) {
869 /* XXX sigh, the interface to this routine is botched */
870 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
871 return 0;
872 } else {
873 return ENOENT;
874 }
875 }
876
877 /*
878 * allocating a SA for policy entry from SAD.
879 * NOTE: searching SAD of aliving state.
880 * OUT: NULL: not found.
881 * others: found and return the pointer.
882 */
883 static struct secasvar *
884 key_allocsa_policy(const struct secasindex *saidx)
885 {
886 struct secashead *sah;
887 struct secasvar *sav;
888 u_int stateidx, state;
889 const u_int *saorder_state_valid;
890 int arraysize;
891
892 LIST_FOREACH(sah, &sahtree, chain) {
893 if (sah->state == SADB_SASTATE_DEAD)
894 continue;
895 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
896 goto found;
897 }
898
899 return NULL;
900
901 found:
902
903 /*
904 * search a valid state list for outbound packet.
905 * This search order is important.
906 */
907 if (key_prefered_oldsa) {
908 saorder_state_valid = saorder_state_valid_prefer_old;
909 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
910 } else {
911 saorder_state_valid = saorder_state_valid_prefer_new;
912 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
913 }
914
915 /* search valid state */
916 for (stateidx = 0;
917 stateidx < arraysize;
918 stateidx++) {
919
920 state = saorder_state_valid[stateidx];
921
922 sav = key_do_allocsa_policy(sah, state);
923 if (sav != NULL)
924 return sav;
925 }
926
927 return NULL;
928 }
929
930 /*
931 * searching SAD with direction, protocol, mode and state.
932 * called by key_allocsa_policy().
933 * OUT:
934 * NULL : not found
935 * others : found, pointer to a SA.
936 */
937 static struct secasvar *
938 key_do_allocsa_policy(struct secashead *sah, u_int state)
939 {
940 struct secasvar *sav, *nextsav, *candidate, *d;
941
942 /* initilize */
943 candidate = NULL;
944
945 for (sav = LIST_FIRST(&sah->savtree[state]);
946 sav != NULL;
947 sav = nextsav) {
948
949 nextsav = LIST_NEXT(sav, chain);
950
951 /* sanity check */
952 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
953
954 /* initialize */
955 if (candidate == NULL) {
956 candidate = sav;
957 continue;
958 }
959
960 /* Which SA is the better ? */
961
962 /* sanity check 2 */
963 if (candidate->lft_c == NULL || sav->lft_c == NULL)
964 panic("key_do_allocsa_policy: "
965 "lifetime_current is NULL");
966
967 /* What the best method is to compare ? */
968 if (key_prefered_oldsa) {
969 if (candidate->lft_c->sadb_lifetime_addtime >
970 sav->lft_c->sadb_lifetime_addtime) {
971 candidate = sav;
972 }
973 continue;
974 /*NOTREACHED*/
975 }
976
977 /* prefered new sa rather than old sa */
978 if (candidate->lft_c->sadb_lifetime_addtime <
979 sav->lft_c->sadb_lifetime_addtime) {
980 d = candidate;
981 candidate = sav;
982 } else
983 d = sav;
984
985 /*
986 * prepared to delete the SA when there is more
987 * suitable candidate and the lifetime of the SA is not
988 * permanent.
989 */
990 if (d->lft_c->sadb_lifetime_addtime != 0) {
991 struct mbuf *m, *result = 0;
992 uint8_t satype;
993
994 key_sa_chgstate(d, SADB_SASTATE_DEAD);
995
996 IPSEC_ASSERT(d->refcnt > 0,
997 ("key_do_allocsa_policy: bogus ref count"));
998
999 satype = key_proto2satype(d->sah->saidx.proto);
1000 if (satype == 0)
1001 goto msgfail;
1002
1003 m = key_setsadbmsg(SADB_DELETE, 0,
1004 satype, 0, 0, d->refcnt - 1);
1005 if (!m)
1006 goto msgfail;
1007 result = m;
1008
1009 /* set sadb_address for saidx's. */
1010 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1011 &d->sah->saidx.src.sa,
1012 d->sah->saidx.src.sa.sa_len << 3,
1013 IPSEC_ULPROTO_ANY);
1014 if (!m)
1015 goto msgfail;
1016 m_cat(result, m);
1017
1018 /* set sadb_address for saidx's. */
1019 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1020 &d->sah->saidx.src.sa,
1021 d->sah->saidx.src.sa.sa_len << 3,
1022 IPSEC_ULPROTO_ANY);
1023 if (!m)
1024 goto msgfail;
1025 m_cat(result, m);
1026
1027 /* create SA extension */
1028 m = key_setsadbsa(d);
1029 if (!m)
1030 goto msgfail;
1031 m_cat(result, m);
1032
1033 if (result->m_len < sizeof(struct sadb_msg)) {
1034 result = m_pullup(result,
1035 sizeof(struct sadb_msg));
1036 if (result == NULL)
1037 goto msgfail;
1038 }
1039
1040 result->m_pkthdr.len = 0;
1041 for (m = result; m; m = m->m_next)
1042 result->m_pkthdr.len += m->m_len;
1043 mtod(result, struct sadb_msg *)->sadb_msg_len =
1044 PFKEY_UNIT64(result->m_pkthdr.len);
1045
1046 key_sendup_mbuf(NULL, result,
1047 KEY_SENDUP_REGISTERED);
1048 result = 0;
1049 msgfail:
1050 if (result)
1051 m_freem(result);
1052 KEY_FREESAV(&d);
1053 }
1054 }
1055
1056 if (candidate) {
1057 SA_ADDREF(candidate);
1058 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1059 printf("DP allocsa_policy cause "
1060 "refcnt++:%d SA:%p\n",
1061 candidate->refcnt, candidate));
1062 }
1063 return candidate;
1064 }
1065
1066 /*
1067 * allocating a usable SA entry for a *INBOUND* packet.
1068 * Must call key_freesav() later.
1069 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1070 * NULL: not found, or error occurred.
1071 *
1072 * In the comparison, no source address is used--for RFC2401 conformance.
1073 * To quote, from section 4.1:
1074 * A security association is uniquely identified by a triple consisting
1075 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1076 * security protocol (AH or ESP) identifier.
1077 * Note that, however, we do need to keep source address in IPsec SA.
1078 * IKE specification and PF_KEY specification do assume that we
1079 * keep source address in IPsec SA. We see a tricky situation here.
1080 *
1081 * sport and dport are used for NAT-T. network order is always used.
1082 */
1083 struct secasvar *
1084 key_allocsa(
1085 const union sockaddr_union *dst,
1086 u_int proto,
1087 u_int32_t spi,
1088 u_int16_t sport,
1089 u_int16_t dport,
1090 const char* where, int tag)
1091 {
1092 struct secashead *sah;
1093 struct secasvar *sav;
1094 u_int stateidx, state;
1095 const u_int *saorder_state_valid;
1096 int arraysize;
1097 int s;
1098 int chkport = 0;
1099
1100 int must_check_spi = 1;
1101 int must_check_alg = 0;
1102 u_int16_t cpi = 0;
1103 u_int8_t algo = 0;
1104
1105 #ifdef IPSEC_NAT_T
1106 if ((sport != 0) && (dport != 0))
1107 chkport = 1;
1108 #endif
1109
1110 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1111
1112 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1113 printf("DP key_allocsa from %s:%u\n", where, tag));
1114
1115 /*
1116 * XXX IPCOMP case
1117 * We use cpi to define spi here. In the case where cpi <=
1118 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1119 * the real spi. In this case, don't check the spi but check the
1120 * algorithm
1121 */
1122
1123 if (proto == IPPROTO_IPCOMP) {
1124 u_int32_t tmp;
1125 tmp = ntohl(spi);
1126 cpi = (u_int16_t) tmp;
1127 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1128 algo = (u_int8_t) cpi;
1129 must_check_spi = 0;
1130 must_check_alg = 1;
1131 }
1132 }
1133
1134 /*
1135 * searching SAD.
1136 * XXX: to be checked internal IP header somewhere. Also when
1137 * IPsec tunnel packet is received. But ESP tunnel mode is
1138 * encrypted so we can't check internal IP header.
1139 */
1140 s = splsoftnet(); /*called from softclock()*/
1141 if (key_prefered_oldsa) {
1142 saorder_state_valid = saorder_state_valid_prefer_old;
1143 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1144 } else {
1145 saorder_state_valid = saorder_state_valid_prefer_new;
1146 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1147 }
1148 LIST_FOREACH(sah, &sahtree, chain) {
1149 /* search valid state */
1150 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1151 state = saorder_state_valid[stateidx];
1152 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1153 /* sanity check */
1154 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1155 /* do not return entries w/ unusable state */
1156 if (sav->state != SADB_SASTATE_MATURE &&
1157 sav->state != SADB_SASTATE_DYING)
1158 continue;
1159 if (proto != sav->sah->saidx.proto)
1160 continue;
1161 if (must_check_spi && spi != sav->spi)
1162 continue;
1163 /* XXX only on the ipcomp case */
1164 if (must_check_alg && algo != sav->alg_comp)
1165 continue;
1166
1167 #if 0 /* don't check src */
1168 /* Fix port in src->sa */
1169
1170 /* check src address */
1171 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1172 continue;
1173 #endif
1174 /* fix port of dst address XXX*/
1175 key_porttosaddr(__UNCONST(dst), dport);
1176 /* check dst address */
1177 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1178 continue;
1179 SA_ADDREF(sav);
1180 goto done;
1181 }
1182 }
1183 }
1184 sav = NULL;
1185 done:
1186 splx(s);
1187
1188 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1189 printf("DP key_allocsa return SA:%p; refcnt %u\n",
1190 sav, sav ? sav->refcnt : 0));
1191 return sav;
1192 }
1193
1194 /*
1195 * Must be called after calling key_allocsp().
1196 * For both the packet without socket and key_freeso().
1197 */
1198 void
1199 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1200 {
1201 struct secpolicy *sp = *spp;
1202
1203 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1204
1205 SP_DELREF(sp);
1206
1207 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1208 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1209 sp, sp->id, where, tag, sp->refcnt));
1210
1211 if (sp->refcnt == 0) {
1212 *spp = NULL;
1213 key_delsp(sp);
1214 }
1215 }
1216
1217 /*
1218 * Must be called after calling key_allocsp().
1219 * For the packet with socket.
1220 */
1221 void
1222 key_freeso(struct socket *so)
1223 {
1224 /* sanity check */
1225 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1226
1227 switch (so->so_proto->pr_domain->dom_family) {
1228 #ifdef INET
1229 case PF_INET:
1230 {
1231 struct inpcb *pcb = sotoinpcb(so);
1232
1233 /* Does it have a PCB ? */
1234 if (pcb == NULL)
1235 return;
1236 key_freesp_so(&pcb->inp_sp->sp_in);
1237 key_freesp_so(&pcb->inp_sp->sp_out);
1238 }
1239 break;
1240 #endif
1241 #ifdef INET6
1242 case PF_INET6:
1243 {
1244 #ifdef HAVE_NRL_INPCB
1245 struct inpcb *pcb = sotoinpcb(so);
1246
1247 /* Does it have a PCB ? */
1248 if (pcb == NULL)
1249 return;
1250 key_freesp_so(&pcb->inp_sp->sp_in);
1251 key_freesp_so(&pcb->inp_sp->sp_out);
1252 #else
1253 struct in6pcb *pcb = sotoin6pcb(so);
1254
1255 /* Does it have a PCB ? */
1256 if (pcb == NULL)
1257 return;
1258 key_freesp_so(&pcb->in6p_sp->sp_in);
1259 key_freesp_so(&pcb->in6p_sp->sp_out);
1260 #endif
1261 }
1262 break;
1263 #endif /* INET6 */
1264 default:
1265 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1266 so->so_proto->pr_domain->dom_family));
1267 return;
1268 }
1269 }
1270
1271 static void
1272 key_freesp_so(struct secpolicy **sp)
1273 {
1274 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1275
1276 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1277 (*sp)->policy == IPSEC_POLICY_BYPASS)
1278 return;
1279
1280 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1281 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1282 KEY_FREESP(sp);
1283 }
1284
1285 /*
1286 * Must be called after calling key_allocsa().
1287 * This function is called by key_freesp() to free some SA allocated
1288 * for a policy.
1289 */
1290 void
1291 key_freesav(struct secasvar **psav, const char* where, int tag)
1292 {
1293 struct secasvar *sav = *psav;
1294
1295 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1296
1297 SA_DELREF(sav);
1298
1299 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1300 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1301 sav, (u_long)ntohl(sav->spi),
1302 where, tag, sav->refcnt));
1303
1304 if (sav->refcnt == 0) {
1305 *psav = NULL;
1306 key_delsav(sav);
1307 }
1308 }
1309
1310 /* %%% SPD management */
1311 /*
1312 * free security policy entry.
1313 */
1314 static void
1315 key_delsp(struct secpolicy *sp)
1316 {
1317 int s;
1318
1319 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1320
1321 key_sp_dead(sp);
1322
1323 IPSEC_ASSERT(sp->refcnt == 0,
1324 ("key_delsp: SP with references deleted (refcnt %u)",
1325 sp->refcnt));
1326
1327 s = splsoftnet(); /*called from softclock()*/
1328
1329 {
1330 struct ipsecrequest *isr = sp->req, *nextisr;
1331
1332 while (isr != NULL) {
1333 if (isr->sav != NULL) {
1334 KEY_FREESAV(&isr->sav);
1335 isr->sav = NULL;
1336 }
1337
1338 nextisr = isr->next;
1339 KFREE(isr);
1340 isr = nextisr;
1341 }
1342 }
1343
1344 KFREE(sp);
1345
1346 splx(s);
1347 }
1348
1349 /*
1350 * search SPD
1351 * OUT: NULL : not found
1352 * others : found, pointer to a SP.
1353 */
1354 static struct secpolicy *
1355 key_getsp(const struct secpolicyindex *spidx)
1356 {
1357 struct secpolicy *sp;
1358
1359 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1360
1361 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1362 if (sp->state == IPSEC_SPSTATE_DEAD)
1363 continue;
1364 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1365 SP_ADDREF(sp);
1366 return sp;
1367 }
1368 }
1369
1370 return NULL;
1371 }
1372
1373 /*
1374 * get SP by index.
1375 * OUT: NULL : not found
1376 * others : found, pointer to a SP.
1377 */
1378 static struct secpolicy *
1379 key_getspbyid(u_int32_t id)
1380 {
1381 struct secpolicy *sp;
1382
1383 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1384 if (sp->state == IPSEC_SPSTATE_DEAD)
1385 continue;
1386 if (sp->id == id) {
1387 SP_ADDREF(sp);
1388 return sp;
1389 }
1390 }
1391
1392 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1393 if (sp->state == IPSEC_SPSTATE_DEAD)
1394 continue;
1395 if (sp->id == id) {
1396 SP_ADDREF(sp);
1397 return sp;
1398 }
1399 }
1400
1401 return NULL;
1402 }
1403
1404 struct secpolicy *
1405 key_newsp(const char* where, int tag)
1406 {
1407 struct secpolicy *newsp = NULL;
1408
1409 newsp = (struct secpolicy *)
1410 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1411 if (newsp) {
1412 newsp->refcnt = 1;
1413 newsp->req = NULL;
1414 }
1415
1416 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1417 printf("DP key_newsp from %s:%u return SP:%p\n",
1418 where, tag, newsp));
1419 return newsp;
1420 }
1421
1422 /*
1423 * create secpolicy structure from sadb_x_policy structure.
1424 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1425 * so must be set properly later.
1426 */
1427 struct secpolicy *
1428 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1429 {
1430 struct secpolicy *newsp;
1431
1432 /* sanity check */
1433 if (xpl0 == NULL)
1434 panic("key_msg2sp: NULL pointer was passed");
1435 if (len < sizeof(*xpl0))
1436 panic("key_msg2sp: invalid length");
1437 if (len != PFKEY_EXTLEN(xpl0)) {
1438 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1439 *error = EINVAL;
1440 return NULL;
1441 }
1442
1443 if ((newsp = KEY_NEWSP()) == NULL) {
1444 *error = ENOBUFS;
1445 return NULL;
1446 }
1447
1448 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1449 newsp->policy = xpl0->sadb_x_policy_type;
1450
1451 /* check policy */
1452 switch (xpl0->sadb_x_policy_type) {
1453 case IPSEC_POLICY_DISCARD:
1454 case IPSEC_POLICY_NONE:
1455 case IPSEC_POLICY_ENTRUST:
1456 case IPSEC_POLICY_BYPASS:
1457 newsp->req = NULL;
1458 break;
1459
1460 case IPSEC_POLICY_IPSEC:
1461 {
1462 int tlen;
1463 const struct sadb_x_ipsecrequest *xisr;
1464 uint16_t xisr_reqid;
1465 struct ipsecrequest **p_isr = &newsp->req;
1466
1467 /* validity check */
1468 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1469 ipseclog((LOG_DEBUG,
1470 "key_msg2sp: Invalid msg length.\n"));
1471 KEY_FREESP(&newsp);
1472 *error = EINVAL;
1473 return NULL;
1474 }
1475
1476 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1477 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1478
1479 while (tlen > 0) {
1480 /* length check */
1481 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1482 ipseclog((LOG_DEBUG, "key_msg2sp: "
1483 "invalid ipsecrequest length.\n"));
1484 KEY_FREESP(&newsp);
1485 *error = EINVAL;
1486 return NULL;
1487 }
1488
1489 /* allocate request buffer */
1490 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1491 if ((*p_isr) == NULL) {
1492 ipseclog((LOG_DEBUG,
1493 "key_msg2sp: No more memory.\n"));
1494 KEY_FREESP(&newsp);
1495 *error = ENOBUFS;
1496 return NULL;
1497 }
1498 memset(*p_isr, 0, sizeof(**p_isr));
1499
1500 /* set values */
1501 (*p_isr)->next = NULL;
1502
1503 switch (xisr->sadb_x_ipsecrequest_proto) {
1504 case IPPROTO_ESP:
1505 case IPPROTO_AH:
1506 case IPPROTO_IPCOMP:
1507 break;
1508 default:
1509 ipseclog((LOG_DEBUG,
1510 "key_msg2sp: invalid proto type=%u\n",
1511 xisr->sadb_x_ipsecrequest_proto));
1512 KEY_FREESP(&newsp);
1513 *error = EPROTONOSUPPORT;
1514 return NULL;
1515 }
1516 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1517
1518 switch (xisr->sadb_x_ipsecrequest_mode) {
1519 case IPSEC_MODE_TRANSPORT:
1520 case IPSEC_MODE_TUNNEL:
1521 break;
1522 case IPSEC_MODE_ANY:
1523 default:
1524 ipseclog((LOG_DEBUG,
1525 "key_msg2sp: invalid mode=%u\n",
1526 xisr->sadb_x_ipsecrequest_mode));
1527 KEY_FREESP(&newsp);
1528 *error = EINVAL;
1529 return NULL;
1530 }
1531 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1532
1533 switch (xisr->sadb_x_ipsecrequest_level) {
1534 case IPSEC_LEVEL_DEFAULT:
1535 case IPSEC_LEVEL_USE:
1536 case IPSEC_LEVEL_REQUIRE:
1537 break;
1538 case IPSEC_LEVEL_UNIQUE:
1539 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1540 /* validity check */
1541 /*
1542 * If range violation of reqid, kernel will
1543 * update it, don't refuse it.
1544 */
1545 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1546 ipseclog((LOG_DEBUG,
1547 "key_msg2sp: reqid=%d range "
1548 "violation, updated by kernel.\n",
1549 xisr_reqid));
1550 xisr_reqid = 0;
1551 }
1552
1553 /* allocate new reqid id if reqid is zero. */
1554 if (xisr_reqid == 0) {
1555 u_int16_t reqid;
1556 if ((reqid = key_newreqid()) == 0) {
1557 KEY_FREESP(&newsp);
1558 *error = ENOBUFS;
1559 return NULL;
1560 }
1561 (*p_isr)->saidx.reqid = reqid;
1562 } else {
1563 /* set it for manual keying. */
1564 (*p_isr)->saidx.reqid = xisr_reqid;
1565 }
1566 break;
1567
1568 default:
1569 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1570 xisr->sadb_x_ipsecrequest_level));
1571 KEY_FREESP(&newsp);
1572 *error = EINVAL;
1573 return NULL;
1574 }
1575 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1576
1577 /* set IP addresses if there */
1578 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1579 const struct sockaddr *paddr;
1580
1581 paddr = (const struct sockaddr *)(xisr + 1);
1582
1583 /* validity check */
1584 if (paddr->sa_len
1585 > sizeof((*p_isr)->saidx.src)) {
1586 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1587 "address length.\n"));
1588 KEY_FREESP(&newsp);
1589 *error = EINVAL;
1590 return NULL;
1591 }
1592 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1593
1594 paddr = (const struct sockaddr *)((const char *)paddr
1595 + paddr->sa_len);
1596
1597 /* validity check */
1598 if (paddr->sa_len
1599 > sizeof((*p_isr)->saidx.dst)) {
1600 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1601 "address length.\n"));
1602 KEY_FREESP(&newsp);
1603 *error = EINVAL;
1604 return NULL;
1605 }
1606 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1607 }
1608
1609 (*p_isr)->sav = NULL;
1610 (*p_isr)->sp = newsp;
1611
1612 /* initialization for the next. */
1613 p_isr = &(*p_isr)->next;
1614 tlen -= xisr->sadb_x_ipsecrequest_len;
1615
1616 /* validity check */
1617 if (tlen < 0) {
1618 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1619 KEY_FREESP(&newsp);
1620 *error = EINVAL;
1621 return NULL;
1622 }
1623
1624 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1625 + xisr->sadb_x_ipsecrequest_len);
1626 }
1627 }
1628 break;
1629 default:
1630 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1631 KEY_FREESP(&newsp);
1632 *error = EINVAL;
1633 return NULL;
1634 }
1635
1636 *error = 0;
1637 return newsp;
1638 }
1639
1640 static u_int16_t
1641 key_newreqid(void)
1642 {
1643 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1644
1645 auto_reqid = (auto_reqid == 0xffff
1646 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1647
1648 /* XXX should be unique check */
1649
1650 return auto_reqid;
1651 }
1652
1653 /*
1654 * copy secpolicy struct to sadb_x_policy structure indicated.
1655 */
1656 struct mbuf *
1657 key_sp2msg(const struct secpolicy *sp)
1658 {
1659 struct sadb_x_policy *xpl;
1660 int tlen;
1661 char *p;
1662 struct mbuf *m;
1663
1664 /* sanity check. */
1665 if (sp == NULL)
1666 panic("key_sp2msg: NULL pointer was passed");
1667
1668 tlen = key_getspreqmsglen(sp);
1669
1670 m = key_alloc_mbuf(tlen);
1671 if (!m || m->m_next) { /*XXX*/
1672 if (m)
1673 m_freem(m);
1674 return NULL;
1675 }
1676
1677 m->m_len = tlen;
1678 m->m_next = NULL;
1679 xpl = mtod(m, struct sadb_x_policy *);
1680 memset(xpl, 0, tlen);
1681
1682 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1683 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1684 xpl->sadb_x_policy_type = sp->policy;
1685 xpl->sadb_x_policy_dir = sp->spidx.dir;
1686 xpl->sadb_x_policy_id = sp->id;
1687 p = (char *)xpl + sizeof(*xpl);
1688
1689 /* if is the policy for ipsec ? */
1690 if (sp->policy == IPSEC_POLICY_IPSEC) {
1691 struct sadb_x_ipsecrequest *xisr;
1692 struct ipsecrequest *isr;
1693
1694 for (isr = sp->req; isr != NULL; isr = isr->next) {
1695
1696 xisr = (struct sadb_x_ipsecrequest *)p;
1697
1698 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1699 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1700 xisr->sadb_x_ipsecrequest_level = isr->level;
1701 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1702
1703 p += sizeof(*xisr);
1704 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1705 p += isr->saidx.src.sa.sa_len;
1706 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1707 p += isr->saidx.src.sa.sa_len;
1708
1709 xisr->sadb_x_ipsecrequest_len =
1710 PFKEY_ALIGN8(sizeof(*xisr)
1711 + isr->saidx.src.sa.sa_len
1712 + isr->saidx.dst.sa.sa_len);
1713 }
1714 }
1715
1716 return m;
1717 }
1718
1719 /* m will not be freed nor modified */
1720 static struct mbuf *
1721 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1722 int ndeep, int nitem, ...)
1723 {
1724 va_list ap;
1725 int idx;
1726 int i;
1727 struct mbuf *result = NULL, *n;
1728 int len;
1729
1730 if (m == NULL || mhp == NULL)
1731 panic("null pointer passed to key_gather");
1732
1733 va_start(ap, nitem);
1734 for (i = 0; i < nitem; i++) {
1735 idx = va_arg(ap, int);
1736 if (idx < 0 || idx > SADB_EXT_MAX)
1737 goto fail;
1738 /* don't attempt to pull empty extension */
1739 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1740 continue;
1741 if (idx != SADB_EXT_RESERVED &&
1742 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1743 continue;
1744
1745 if (idx == SADB_EXT_RESERVED) {
1746 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1747 #ifdef DIAGNOSTIC
1748 if (len > MHLEN)
1749 panic("assumption failed");
1750 #endif
1751 MGETHDR(n, M_DONTWAIT, MT_DATA);
1752 if (!n)
1753 goto fail;
1754 n->m_len = len;
1755 n->m_next = NULL;
1756 m_copydata(m, 0, sizeof(struct sadb_msg),
1757 mtod(n, void *));
1758 } else if (i < ndeep) {
1759 len = mhp->extlen[idx];
1760 n = key_alloc_mbuf(len);
1761 if (!n || n->m_next) { /*XXX*/
1762 if (n)
1763 m_freem(n);
1764 goto fail;
1765 }
1766 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1767 mtod(n, void *));
1768 } else {
1769 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1770 M_DONTWAIT);
1771 }
1772 if (n == NULL)
1773 goto fail;
1774
1775 if (result)
1776 m_cat(result, n);
1777 else
1778 result = n;
1779 }
1780 va_end(ap);
1781
1782 if ((result->m_flags & M_PKTHDR) != 0) {
1783 result->m_pkthdr.len = 0;
1784 for (n = result; n; n = n->m_next)
1785 result->m_pkthdr.len += n->m_len;
1786 }
1787
1788 return result;
1789
1790 fail:
1791 va_end(ap);
1792 m_freem(result);
1793 return NULL;
1794 }
1795
1796 /*
1797 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1798 * add an entry to SP database, when received
1799 * <base, address(SD), (lifetime(H),) policy>
1800 * from the user(?).
1801 * Adding to SP database,
1802 * and send
1803 * <base, address(SD), (lifetime(H),) policy>
1804 * to the socket which was send.
1805 *
1806 * SPDADD set a unique policy entry.
1807 * SPDSETIDX like SPDADD without a part of policy requests.
1808 * SPDUPDATE replace a unique policy entry.
1809 *
1810 * m will always be freed.
1811 */
1812 static int
1813 key_spdadd(struct socket *so, struct mbuf *m,
1814 const struct sadb_msghdr *mhp)
1815 {
1816 const struct sadb_address *src0, *dst0;
1817 const struct sadb_x_policy *xpl0;
1818 struct sadb_x_policy *xpl;
1819 const struct sadb_lifetime *lft = NULL;
1820 struct secpolicyindex spidx;
1821 struct secpolicy *newsp;
1822 int error;
1823
1824 /* sanity check */
1825 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1826 panic("key_spdadd: NULL pointer is passed");
1827
1828 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1829 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1830 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1831 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1832 return key_senderror(so, m, EINVAL);
1833 }
1834 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1835 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1836 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1837 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1838 return key_senderror(so, m, EINVAL);
1839 }
1840 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1841 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1842 < sizeof(struct sadb_lifetime)) {
1843 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1844 return key_senderror(so, m, EINVAL);
1845 }
1846 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1847 }
1848
1849 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1850 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1851 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1852
1853 /* make secindex */
1854 /* XXX boundary check against sa_len */
1855 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1856 src0 + 1,
1857 dst0 + 1,
1858 src0->sadb_address_prefixlen,
1859 dst0->sadb_address_prefixlen,
1860 src0->sadb_address_proto,
1861 &spidx);
1862
1863 /* checking the direciton. */
1864 switch (xpl0->sadb_x_policy_dir) {
1865 case IPSEC_DIR_INBOUND:
1866 case IPSEC_DIR_OUTBOUND:
1867 break;
1868 default:
1869 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1870 mhp->msg->sadb_msg_errno = EINVAL;
1871 return 0;
1872 }
1873
1874 /* check policy */
1875 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1876 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1877 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1878 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1879 return key_senderror(so, m, EINVAL);
1880 }
1881
1882 /* policy requests are mandatory when action is ipsec. */
1883 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1884 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1885 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1886 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1887 return key_senderror(so, m, EINVAL);
1888 }
1889
1890 /*
1891 * checking there is SP already or not.
1892 * SPDUPDATE doesn't depend on whether there is a SP or not.
1893 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1894 * then error.
1895 */
1896 newsp = key_getsp(&spidx);
1897 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1898 if (newsp) {
1899 key_sp_dead(newsp);
1900 key_sp_unlink(newsp); /* XXX jrs ordering */
1901 KEY_FREESP(&newsp);
1902 newsp = NULL;
1903 }
1904 } else {
1905 if (newsp != NULL) {
1906 KEY_FREESP(&newsp);
1907 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1908 return key_senderror(so, m, EEXIST);
1909 }
1910 }
1911
1912 /* allocation new SP entry */
1913 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1914 return key_senderror(so, m, error);
1915 }
1916
1917 if ((newsp->id = key_getnewspid()) == 0) {
1918 KFREE(newsp);
1919 return key_senderror(so, m, ENOBUFS);
1920 }
1921
1922 /* XXX boundary check against sa_len */
1923 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1924 src0 + 1,
1925 dst0 + 1,
1926 src0->sadb_address_prefixlen,
1927 dst0->sadb_address_prefixlen,
1928 src0->sadb_address_proto,
1929 &newsp->spidx);
1930
1931 /* sanity check on addr pair */
1932 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1933 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1934 KFREE(newsp);
1935 return key_senderror(so, m, EINVAL);
1936 }
1937 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1938 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1939 KFREE(newsp);
1940 return key_senderror(so, m, EINVAL);
1941 }
1942
1943 newsp->created = time_uptime;
1944 newsp->lastused = newsp->created;
1945 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1946 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1947
1948 newsp->refcnt = 1; /* do not reclaim until I say I do */
1949 newsp->state = IPSEC_SPSTATE_ALIVE;
1950 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1951
1952 /* delete the entry in spacqtree */
1953 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1954 struct secspacq *spacq;
1955 if ((spacq = key_getspacq(&spidx)) != NULL) {
1956 /* reset counter in order to deletion by timehandler. */
1957 spacq->created = time_uptime;
1958 spacq->count = 0;
1959 }
1960 }
1961
1962 #if defined(__NetBSD__)
1963 /* Invalidate all cached SPD pointers in the PCBs. */
1964 ipsec_invalpcbcacheall();
1965
1966 #if defined(GATEWAY)
1967 /* Invalidate the ipflow cache, as well. */
1968 ipflow_invalidate_all(0);
1969 #ifdef INET6
1970 ip6flow_invalidate_all(0);
1971 #endif /* INET6 */
1972 #endif /* GATEWAY */
1973 #endif /* __NetBSD__ */
1974
1975 {
1976 struct mbuf *n, *mpolicy;
1977 struct sadb_msg *newmsg;
1978 int off;
1979
1980 /* create new sadb_msg to reply. */
1981 if (lft) {
1982 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1983 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1984 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1985 } else {
1986 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1987 SADB_X_EXT_POLICY,
1988 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1989 }
1990 if (!n)
1991 return key_senderror(so, m, ENOBUFS);
1992
1993 if (n->m_len < sizeof(*newmsg)) {
1994 n = m_pullup(n, sizeof(*newmsg));
1995 if (!n)
1996 return key_senderror(so, m, ENOBUFS);
1997 }
1998 newmsg = mtod(n, struct sadb_msg *);
1999 newmsg->sadb_msg_errno = 0;
2000 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2001
2002 off = 0;
2003 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2004 sizeof(*xpl), &off);
2005 if (mpolicy == NULL) {
2006 /* n is already freed */
2007 return key_senderror(so, m, ENOBUFS);
2008 }
2009 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2010 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2011 m_freem(n);
2012 return key_senderror(so, m, EINVAL);
2013 }
2014 xpl->sadb_x_policy_id = newsp->id;
2015
2016 m_freem(m);
2017 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2018 }
2019 }
2020
2021 /*
2022 * get new policy id.
2023 * OUT:
2024 * 0: failure.
2025 * others: success.
2026 */
2027 static u_int32_t
2028 key_getnewspid(void)
2029 {
2030 u_int32_t newid = 0;
2031 int count = key_spi_trycnt; /* XXX */
2032 struct secpolicy *sp;
2033
2034 /* when requesting to allocate spi ranged */
2035 while (count--) {
2036 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2037
2038 if ((sp = key_getspbyid(newid)) == NULL)
2039 break;
2040
2041 KEY_FREESP(&sp);
2042 }
2043
2044 if (count == 0 || newid == 0) {
2045 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2046 return 0;
2047 }
2048
2049 return newid;
2050 }
2051
2052 /*
2053 * SADB_SPDDELETE processing
2054 * receive
2055 * <base, address(SD), policy(*)>
2056 * from the user(?), and set SADB_SASTATE_DEAD,
2057 * and send,
2058 * <base, address(SD), policy(*)>
2059 * to the ikmpd.
2060 * policy(*) including direction of policy.
2061 *
2062 * m will always be freed.
2063 */
2064 static int
2065 key_spddelete(struct socket *so, struct mbuf *m,
2066 const struct sadb_msghdr *mhp)
2067 {
2068 struct sadb_address *src0, *dst0;
2069 struct sadb_x_policy *xpl0;
2070 struct secpolicyindex spidx;
2071 struct secpolicy *sp;
2072
2073 /* sanity check */
2074 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2075 panic("key_spddelete: NULL pointer is passed");
2076
2077 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2078 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2079 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2080 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2081 return key_senderror(so, m, EINVAL);
2082 }
2083 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2084 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2085 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2086 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2087 return key_senderror(so, m, EINVAL);
2088 }
2089
2090 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2091 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2092 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2093
2094 /* make secindex */
2095 /* XXX boundary check against sa_len */
2096 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2097 src0 + 1,
2098 dst0 + 1,
2099 src0->sadb_address_prefixlen,
2100 dst0->sadb_address_prefixlen,
2101 src0->sadb_address_proto,
2102 &spidx);
2103
2104 /* checking the direciton. */
2105 switch (xpl0->sadb_x_policy_dir) {
2106 case IPSEC_DIR_INBOUND:
2107 case IPSEC_DIR_OUTBOUND:
2108 break;
2109 default:
2110 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2111 return key_senderror(so, m, EINVAL);
2112 }
2113
2114 /* Is there SP in SPD ? */
2115 if ((sp = key_getsp(&spidx)) == NULL) {
2116 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2117 return key_senderror(so, m, EINVAL);
2118 }
2119
2120 /* save policy id to buffer to be returned. */
2121 xpl0->sadb_x_policy_id = sp->id;
2122
2123 key_sp_dead(sp);
2124 key_sp_unlink(sp); /* XXX jrs ordering */
2125 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2126
2127 #if defined(__NetBSD__)
2128 /* Invalidate all cached SPD pointers in the PCBs. */
2129 ipsec_invalpcbcacheall();
2130
2131 /* We're deleting policy; no need to invalidate the ipflow cache. */
2132 #endif /* __NetBSD__ */
2133
2134 {
2135 struct mbuf *n;
2136 struct sadb_msg *newmsg;
2137
2138 /* create new sadb_msg to reply. */
2139 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2140 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2141 if (!n)
2142 return key_senderror(so, m, ENOBUFS);
2143
2144 newmsg = mtod(n, struct sadb_msg *);
2145 newmsg->sadb_msg_errno = 0;
2146 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2147
2148 m_freem(m);
2149 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2150 }
2151 }
2152
2153 /*
2154 * SADB_SPDDELETE2 processing
2155 * receive
2156 * <base, policy(*)>
2157 * from the user(?), and set SADB_SASTATE_DEAD,
2158 * and send,
2159 * <base, policy(*)>
2160 * to the ikmpd.
2161 * policy(*) including direction of policy.
2162 *
2163 * m will always be freed.
2164 */
2165 static int
2166 key_spddelete2(struct socket *so, struct mbuf *m,
2167 const struct sadb_msghdr *mhp)
2168 {
2169 u_int32_t id;
2170 struct secpolicy *sp;
2171
2172 /* sanity check */
2173 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2174 panic("key_spddelete2: NULL pointer is passed");
2175
2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2178 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2179 key_senderror(so, m, EINVAL);
2180 return 0;
2181 }
2182
2183 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2184
2185 /* Is there SP in SPD ? */
2186 if ((sp = key_getspbyid(id)) == NULL) {
2187 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2188 return key_senderror(so, m, EINVAL);
2189 }
2190
2191 key_sp_dead(sp);
2192 key_sp_unlink(sp); /* XXX jrs ordering */
2193 KEY_FREESP(&sp); /* ref gained by key_getsp */
2194 sp = NULL;
2195
2196 #if defined(__NetBSD__)
2197 /* Invalidate all cached SPD pointers in the PCBs. */
2198 ipsec_invalpcbcacheall();
2199
2200 /* We're deleting policy; no need to invalidate the ipflow cache. */
2201 #endif /* __NetBSD__ */
2202
2203 {
2204 struct mbuf *n, *nn;
2205 struct sadb_msg *newmsg;
2206 int off, len;
2207
2208 /* create new sadb_msg to reply. */
2209 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2210
2211 if (len > MCLBYTES)
2212 return key_senderror(so, m, ENOBUFS);
2213 MGETHDR(n, M_DONTWAIT, MT_DATA);
2214 if (n && len > MHLEN) {
2215 MCLGET(n, M_DONTWAIT);
2216 if ((n->m_flags & M_EXT) == 0) {
2217 m_freem(n);
2218 n = NULL;
2219 }
2220 }
2221 if (!n)
2222 return key_senderror(so, m, ENOBUFS);
2223
2224 n->m_len = len;
2225 n->m_next = NULL;
2226 off = 0;
2227
2228 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2229 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2230
2231 #ifdef DIAGNOSTIC
2232 if (off != len)
2233 panic("length inconsistency in key_spddelete2");
2234 #endif
2235
2236 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2237 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2238 if (!n->m_next) {
2239 m_freem(n);
2240 return key_senderror(so, m, ENOBUFS);
2241 }
2242
2243 n->m_pkthdr.len = 0;
2244 for (nn = n; nn; nn = nn->m_next)
2245 n->m_pkthdr.len += nn->m_len;
2246
2247 newmsg = mtod(n, struct sadb_msg *);
2248 newmsg->sadb_msg_errno = 0;
2249 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2250
2251 m_freem(m);
2252 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2253 }
2254 }
2255
2256 /*
2257 * SADB_X_GET processing
2258 * receive
2259 * <base, policy(*)>
2260 * from the user(?),
2261 * and send,
2262 * <base, address(SD), policy>
2263 * to the ikmpd.
2264 * policy(*) including direction of policy.
2265 *
2266 * m will always be freed.
2267 */
2268 static int
2269 key_spdget(struct socket *so, struct mbuf *m,
2270 const struct sadb_msghdr *mhp)
2271 {
2272 u_int32_t id;
2273 struct secpolicy *sp;
2274 struct mbuf *n;
2275
2276 /* sanity check */
2277 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2278 panic("key_spdget: NULL pointer is passed");
2279
2280 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2281 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2282 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2283 return key_senderror(so, m, EINVAL);
2284 }
2285
2286 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2287
2288 /* Is there SP in SPD ? */
2289 if ((sp = key_getspbyid(id)) == NULL) {
2290 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2291 return key_senderror(so, m, ENOENT);
2292 }
2293
2294 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2295 mhp->msg->sadb_msg_pid);
2296 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2297 if (n != NULL) {
2298 m_freem(m);
2299 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2300 } else
2301 return key_senderror(so, m, ENOBUFS);
2302 }
2303
2304 /*
2305 * SADB_X_SPDACQUIRE processing.
2306 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2307 * send
2308 * <base, policy(*)>
2309 * to KMD, and expect to receive
2310 * <base> with SADB_X_SPDACQUIRE if error occurred,
2311 * or
2312 * <base, policy>
2313 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2314 * policy(*) is without policy requests.
2315 *
2316 * 0 : succeed
2317 * others: error number
2318 */
2319 int
2320 key_spdacquire(const struct secpolicy *sp)
2321 {
2322 struct mbuf *result = NULL, *m;
2323 struct secspacq *newspacq;
2324 int error;
2325
2326 /* sanity check */
2327 if (sp == NULL)
2328 panic("key_spdacquire: NULL pointer is passed");
2329 if (sp->req != NULL)
2330 panic("key_spdacquire: called but there is request");
2331 if (sp->policy != IPSEC_POLICY_IPSEC)
2332 panic("key_spdacquire: policy mismathed. IPsec is expected");
2333
2334 /* Get an entry to check whether sent message or not. */
2335 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2336 if (key_blockacq_count < newspacq->count) {
2337 /* reset counter and do send message. */
2338 newspacq->count = 0;
2339 } else {
2340 /* increment counter and do nothing. */
2341 newspacq->count++;
2342 return 0;
2343 }
2344 } else {
2345 /* make new entry for blocking to send SADB_ACQUIRE. */
2346 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2347 return ENOBUFS;
2348
2349 /* add to acqtree */
2350 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2351 }
2352
2353 /* create new sadb_msg to reply. */
2354 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2355 if (!m) {
2356 error = ENOBUFS;
2357 goto fail;
2358 }
2359 result = m;
2360
2361 result->m_pkthdr.len = 0;
2362 for (m = result; m; m = m->m_next)
2363 result->m_pkthdr.len += m->m_len;
2364
2365 mtod(result, struct sadb_msg *)->sadb_msg_len =
2366 PFKEY_UNIT64(result->m_pkthdr.len);
2367
2368 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2369
2370 fail:
2371 if (result)
2372 m_freem(result);
2373 return error;
2374 }
2375
2376 /*
2377 * SADB_SPDFLUSH processing
2378 * receive
2379 * <base>
2380 * from the user, and free all entries in secpctree.
2381 * and send,
2382 * <base>
2383 * to the user.
2384 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2385 *
2386 * m will always be freed.
2387 */
2388 static int
2389 key_spdflush(struct socket *so, struct mbuf *m,
2390 const struct sadb_msghdr *mhp)
2391 {
2392 struct sadb_msg *newmsg;
2393 struct secpolicy *sp;
2394 u_int dir;
2395
2396 /* sanity check */
2397 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2398 panic("key_spdflush: NULL pointer is passed");
2399
2400 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2401 return key_senderror(so, m, EINVAL);
2402
2403 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2404 struct secpolicy * nextsp;
2405 for (sp = LIST_FIRST(&sptree[dir]);
2406 sp != NULL;
2407 sp = nextsp) {
2408
2409 nextsp = LIST_NEXT(sp, chain);
2410 if (sp->state == IPSEC_SPSTATE_DEAD)
2411 continue;
2412 key_sp_dead(sp);
2413 key_sp_unlink(sp);
2414 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2415 continue;
2416 }
2417 }
2418
2419 #if defined(__NetBSD__)
2420 /* Invalidate all cached SPD pointers in the PCBs. */
2421 ipsec_invalpcbcacheall();
2422
2423 /* We're deleting policy; no need to invalidate the ipflow cache. */
2424 #endif /* __NetBSD__ */
2425
2426 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2427 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2428 return key_senderror(so, m, ENOBUFS);
2429 }
2430
2431 if (m->m_next)
2432 m_freem(m->m_next);
2433 m->m_next = NULL;
2434 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2435 newmsg = mtod(m, struct sadb_msg *);
2436 newmsg->sadb_msg_errno = 0;
2437 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2438
2439 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2440 }
2441
2442 static struct sockaddr key_src = {
2443 .sa_len = 2,
2444 .sa_family = PF_KEY,
2445 };
2446
2447 static struct mbuf *
2448 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2449 {
2450 struct secpolicy *sp;
2451 int cnt;
2452 u_int dir;
2453 struct mbuf *m, *n, *prev;
2454 int totlen;
2455
2456 *lenp = 0;
2457
2458 /* search SPD entry and get buffer size. */
2459 cnt = 0;
2460 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2461 LIST_FOREACH(sp, &sptree[dir], chain) {
2462 cnt++;
2463 }
2464 }
2465
2466 if (cnt == 0) {
2467 *errorp = ENOENT;
2468 return (NULL);
2469 }
2470
2471 m = NULL;
2472 prev = m;
2473 totlen = 0;
2474 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2475 LIST_FOREACH(sp, &sptree[dir], chain) {
2476 --cnt;
2477 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2478
2479 if (!n) {
2480 *errorp = ENOBUFS;
2481 if (m) m_freem(m);
2482 return (NULL);
2483 }
2484
2485 totlen += n->m_pkthdr.len;
2486 if (!m) {
2487 m = n;
2488 } else {
2489 prev->m_nextpkt = n;
2490 }
2491 prev = n;
2492 }
2493 }
2494
2495 *lenp = totlen;
2496 *errorp = 0;
2497 return (m);
2498 }
2499
2500 /*
2501 * SADB_SPDDUMP processing
2502 * receive
2503 * <base>
2504 * from the user, and dump all SP leaves
2505 * and send,
2506 * <base> .....
2507 * to the ikmpd.
2508 *
2509 * m will always be freed.
2510 */
2511 static int
2512 key_spddump(struct socket *so, struct mbuf *m0,
2513 const struct sadb_msghdr *mhp)
2514 {
2515 struct mbuf *n;
2516 int error, len;
2517 int ok, s;
2518 pid_t pid;
2519
2520 /* sanity check */
2521 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2522 panic("key_spddump: NULL pointer is passed");
2523
2524
2525 pid = mhp->msg->sadb_msg_pid;
2526 /*
2527 * If the requestor has insufficient socket-buffer space
2528 * for the entire chain, nobody gets any response to the DUMP.
2529 * XXX For now, only the requestor ever gets anything.
2530 * Moreover, if the requestor has any space at all, they receive
2531 * the entire chain, otherwise the request is refused with ENOBUFS.
2532 */
2533 if (sbspace(&so->so_rcv) <= 0) {
2534 return key_senderror(so, m0, ENOBUFS);
2535 }
2536
2537 s = splsoftnet();
2538 n = key_setspddump_chain(&error, &len, pid);
2539 splx(s);
2540
2541 if (n == NULL) {
2542 return key_senderror(so, m0, ENOENT);
2543 }
2544 {
2545 uint64_t *ps = PFKEY_STAT_GETREF();
2546 ps[PFKEY_STAT_IN_TOTAL]++;
2547 ps[PFKEY_STAT_IN_BYTES] += len;
2548 PFKEY_STAT_PUTREF();
2549 }
2550
2551 /*
2552 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2553 * The requestor receives either the entire chain, or an
2554 * error message with ENOBUFS.
2555 */
2556
2557 /*
2558 * sbappendchainwith record takes the chain of entries, one
2559 * packet-record per SPD entry, prepends the key_src sockaddr
2560 * to each packet-record, links the sockaddr mbufs into a new
2561 * list of records, then appends the entire resulting
2562 * list to the requesting socket.
2563 */
2564 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2565 n, SB_PRIO_ONESHOT_OVERFLOW);
2566
2567 if (!ok) {
2568 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2569 m_freem(n);
2570 return key_senderror(so, m0, ENOBUFS);
2571 }
2572
2573 m_freem(m0);
2574 return error;
2575 }
2576
2577 #ifdef IPSEC_NAT_T
2578 /*
2579 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2580 */
2581 static int
2582 key_nat_map(struct socket *so, struct mbuf *m,
2583 const struct sadb_msghdr *mhp)
2584 {
2585 struct sadb_x_nat_t_type *type;
2586 struct sadb_x_nat_t_port *sport;
2587 struct sadb_x_nat_t_port *dport;
2588 struct sadb_address *iaddr, *raddr;
2589 struct sadb_x_nat_t_frag *frag;
2590
2591 /* sanity check */
2592 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2593 panic("key_nat_map: NULL pointer is passed.");
2594
2595 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2596 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2597 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2598 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2599 return key_senderror(so, m, EINVAL);
2600 }
2601 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2602 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2603 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2604 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2605 return key_senderror(so, m, EINVAL);
2606 }
2607
2608 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2609 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2610 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2611 return key_senderror(so, m, EINVAL);
2612 }
2613
2614 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2615 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2616 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2617 return key_senderror(so, m, EINVAL);
2618 }
2619
2620 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2621 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2622 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2623 return key_senderror(so, m, EINVAL);
2624 }
2625
2626 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2627 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2628 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2629 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2630 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2631 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2632
2633 printf("sadb_nat_map called\n");
2634
2635 /*
2636 * XXX handle that, it should also contain a SA, or anything
2637 * that enable to update the SA information.
2638 */
2639
2640 return 0;
2641 }
2642 #endif /* IPSEC_NAT_T */
2643
2644 static struct mbuf *
2645 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2646 {
2647 struct mbuf *result = NULL, *m;
2648
2649 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2650 if (!m)
2651 goto fail;
2652 result = m;
2653
2654 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2655 &sp->spidx.src.sa, sp->spidx.prefs,
2656 sp->spidx.ul_proto);
2657 if (!m)
2658 goto fail;
2659 m_cat(result, m);
2660
2661 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2662 &sp->spidx.dst.sa, sp->spidx.prefd,
2663 sp->spidx.ul_proto);
2664 if (!m)
2665 goto fail;
2666 m_cat(result, m);
2667
2668 m = key_sp2msg(sp);
2669 if (!m)
2670 goto fail;
2671 m_cat(result, m);
2672
2673 if ((result->m_flags & M_PKTHDR) == 0)
2674 goto fail;
2675
2676 if (result->m_len < sizeof(struct sadb_msg)) {
2677 result = m_pullup(result, sizeof(struct sadb_msg));
2678 if (result == NULL)
2679 goto fail;
2680 }
2681
2682 result->m_pkthdr.len = 0;
2683 for (m = result; m; m = m->m_next)
2684 result->m_pkthdr.len += m->m_len;
2685
2686 mtod(result, struct sadb_msg *)->sadb_msg_len =
2687 PFKEY_UNIT64(result->m_pkthdr.len);
2688
2689 return result;
2690
2691 fail:
2692 m_freem(result);
2693 return NULL;
2694 }
2695
2696 /*
2697 * get PFKEY message length for security policy and request.
2698 */
2699 static u_int
2700 key_getspreqmsglen(const struct secpolicy *sp)
2701 {
2702 u_int tlen;
2703
2704 tlen = sizeof(struct sadb_x_policy);
2705
2706 /* if is the policy for ipsec ? */
2707 if (sp->policy != IPSEC_POLICY_IPSEC)
2708 return tlen;
2709
2710 /* get length of ipsec requests */
2711 {
2712 const struct ipsecrequest *isr;
2713 int len;
2714
2715 for (isr = sp->req; isr != NULL; isr = isr->next) {
2716 len = sizeof(struct sadb_x_ipsecrequest)
2717 + isr->saidx.src.sa.sa_len
2718 + isr->saidx.dst.sa.sa_len;
2719
2720 tlen += PFKEY_ALIGN8(len);
2721 }
2722 }
2723
2724 return tlen;
2725 }
2726
2727 /*
2728 * SADB_SPDEXPIRE processing
2729 * send
2730 * <base, address(SD), lifetime(CH), policy>
2731 * to KMD by PF_KEY.
2732 *
2733 * OUT: 0 : succeed
2734 * others : error number
2735 */
2736 static int
2737 key_spdexpire(struct secpolicy *sp)
2738 {
2739 int s;
2740 struct mbuf *result = NULL, *m;
2741 int len;
2742 int error = -1;
2743 struct sadb_lifetime *lt;
2744
2745 /* XXX: Why do we lock ? */
2746 s = splsoftnet(); /*called from softclock()*/
2747
2748 /* sanity check */
2749 if (sp == NULL)
2750 panic("key_spdexpire: NULL pointer is passed");
2751
2752 /* set msg header */
2753 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2754 if (!m) {
2755 error = ENOBUFS;
2756 goto fail;
2757 }
2758 result = m;
2759
2760 /* create lifetime extension (current and hard) */
2761 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2762 m = key_alloc_mbuf(len);
2763 if (!m || m->m_next) { /*XXX*/
2764 if (m)
2765 m_freem(m);
2766 error = ENOBUFS;
2767 goto fail;
2768 }
2769 memset(mtod(m, void *), 0, len);
2770 lt = mtod(m, struct sadb_lifetime *);
2771 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2772 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2773 lt->sadb_lifetime_allocations = 0;
2774 lt->sadb_lifetime_bytes = 0;
2775 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2776 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2777 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2778 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2779 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2780 lt->sadb_lifetime_allocations = 0;
2781 lt->sadb_lifetime_bytes = 0;
2782 lt->sadb_lifetime_addtime = sp->lifetime;
2783 lt->sadb_lifetime_usetime = sp->validtime;
2784 m_cat(result, m);
2785
2786 /* set sadb_address for source */
2787 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2788 &sp->spidx.src.sa,
2789 sp->spidx.prefs, sp->spidx.ul_proto);
2790 if (!m) {
2791 error = ENOBUFS;
2792 goto fail;
2793 }
2794 m_cat(result, m);
2795
2796 /* set sadb_address for destination */
2797 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2798 &sp->spidx.dst.sa,
2799 sp->spidx.prefd, sp->spidx.ul_proto);
2800 if (!m) {
2801 error = ENOBUFS;
2802 goto fail;
2803 }
2804 m_cat(result, m);
2805
2806 /* set secpolicy */
2807 m = key_sp2msg(sp);
2808 if (!m) {
2809 error = ENOBUFS;
2810 goto fail;
2811 }
2812 m_cat(result, m);
2813
2814 if ((result->m_flags & M_PKTHDR) == 0) {
2815 error = EINVAL;
2816 goto fail;
2817 }
2818
2819 if (result->m_len < sizeof(struct sadb_msg)) {
2820 result = m_pullup(result, sizeof(struct sadb_msg));
2821 if (result == NULL) {
2822 error = ENOBUFS;
2823 goto fail;
2824 }
2825 }
2826
2827 result->m_pkthdr.len = 0;
2828 for (m = result; m; m = m->m_next)
2829 result->m_pkthdr.len += m->m_len;
2830
2831 mtod(result, struct sadb_msg *)->sadb_msg_len =
2832 PFKEY_UNIT64(result->m_pkthdr.len);
2833
2834 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2835
2836 fail:
2837 if (result)
2838 m_freem(result);
2839 splx(s);
2840 return error;
2841 }
2842
2843 /* %%% SAD management */
2844 /*
2845 * allocating a memory for new SA head, and copy from the values of mhp.
2846 * OUT: NULL : failure due to the lack of memory.
2847 * others : pointer to new SA head.
2848 */
2849 static struct secashead *
2850 key_newsah(const struct secasindex *saidx)
2851 {
2852 struct secashead *newsah;
2853
2854 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2855
2856 newsah = (struct secashead *)
2857 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2858 if (newsah != NULL) {
2859 int i;
2860 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2861 LIST_INIT(&newsah->savtree[i]);
2862 newsah->saidx = *saidx;
2863
2864 /* add to saidxtree */
2865 newsah->state = SADB_SASTATE_MATURE;
2866 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2867 }
2868 return(newsah);
2869 }
2870
2871 /*
2872 * delete SA index and all SA registerd.
2873 */
2874 static void
2875 key_delsah(struct secashead *sah)
2876 {
2877 struct secasvar *sav, *nextsav;
2878 u_int stateidx, state;
2879 int s;
2880 int zombie = 0;
2881
2882 /* sanity check */
2883 if (sah == NULL)
2884 panic("key_delsah: NULL pointer is passed");
2885
2886 s = splsoftnet(); /*called from softclock()*/
2887
2888 /* searching all SA registerd in the secindex. */
2889 for (stateidx = 0;
2890 stateidx < _ARRAYLEN(saorder_state_any);
2891 stateidx++) {
2892
2893 state = saorder_state_any[stateidx];
2894 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2895 sav != NULL;
2896 sav = nextsav) {
2897
2898 nextsav = LIST_NEXT(sav, chain);
2899
2900 if (sav->refcnt == 0) {
2901 /* sanity check */
2902 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2903 KEY_FREESAV(&sav);
2904 } else {
2905 /* give up to delete this sa */
2906 zombie++;
2907 }
2908 }
2909 }
2910
2911 /* don't delete sah only if there are savs. */
2912 if (zombie) {
2913 splx(s);
2914 return;
2915 }
2916
2917 rtcache_free(&sah->sa_route);
2918
2919 /* remove from tree of SA index */
2920 if (__LIST_CHAINED(sah))
2921 LIST_REMOVE(sah, chain);
2922
2923 KFREE(sah);
2924
2925 splx(s);
2926 return;
2927 }
2928
2929 /*
2930 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2931 * and copy the values of mhp into new buffer.
2932 * When SAD message type is GETSPI:
2933 * to set sequence number from acq_seq++,
2934 * to set zero to SPI.
2935 * not to call key_setsava().
2936 * OUT: NULL : fail
2937 * others : pointer to new secasvar.
2938 *
2939 * does not modify mbuf. does not free mbuf on error.
2940 */
2941 static struct secasvar *
2942 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2943 struct secashead *sah, int *errp,
2944 const char* where, int tag)
2945 {
2946 struct secasvar *newsav;
2947 const struct sadb_sa *xsa;
2948
2949 /* sanity check */
2950 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2951 panic("key_newsa: NULL pointer is passed");
2952
2953 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2954 if (newsav == NULL) {
2955 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2956 *errp = ENOBUFS;
2957 goto done;
2958 }
2959 memset(newsav, 0, sizeof(struct secasvar));
2960
2961 switch (mhp->msg->sadb_msg_type) {
2962 case SADB_GETSPI:
2963 newsav->spi = 0;
2964
2965 #ifdef IPSEC_DOSEQCHECK
2966 /* sync sequence number */
2967 if (mhp->msg->sadb_msg_seq == 0)
2968 newsav->seq =
2969 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2970 else
2971 #endif
2972 newsav->seq = mhp->msg->sadb_msg_seq;
2973 break;
2974
2975 case SADB_ADD:
2976 /* sanity check */
2977 if (mhp->ext[SADB_EXT_SA] == NULL) {
2978 KFREE(newsav), newsav = NULL;
2979 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2980 *errp = EINVAL;
2981 goto done;
2982 }
2983 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2984 newsav->spi = xsa->sadb_sa_spi;
2985 newsav->seq = mhp->msg->sadb_msg_seq;
2986 break;
2987 default:
2988 KFREE(newsav), newsav = NULL;
2989 *errp = EINVAL;
2990 goto done;
2991 }
2992
2993 /* copy sav values */
2994 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2995 *errp = key_setsaval(newsav, m, mhp);
2996 if (*errp) {
2997 KFREE(newsav), newsav = NULL;
2998 goto done;
2999 }
3000 }
3001
3002 /* reset created */
3003 newsav->created = time_uptime;
3004 newsav->pid = mhp->msg->sadb_msg_pid;
3005
3006 /* add to satree */
3007 newsav->sah = sah;
3008 newsav->refcnt = 1;
3009 newsav->state = SADB_SASTATE_LARVAL;
3010 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3011 secasvar, chain);
3012 done:
3013 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3014 printf("DP key_newsav from %s:%u return SP:%p\n",
3015 where, tag, newsav));
3016
3017 return newsav;
3018 }
3019
3020 /*
3021 * free() SA variable entry.
3022 */
3023 static void
3024 key_delsav(struct secasvar *sav)
3025 {
3026 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
3027 IPSEC_ASSERT(sav->refcnt == 0,
3028 ("key_delsav: reference count %u > 0", sav->refcnt));
3029
3030 /* remove from SA header */
3031 if (__LIST_CHAINED(sav))
3032 LIST_REMOVE(sav, chain);
3033
3034 /*
3035 * Cleanup xform state. Note that zeroize'ing causes the
3036 * keys to be cleared; otherwise we must do it ourself.
3037 */
3038 if (sav->tdb_xform != NULL) {
3039 sav->tdb_xform->xf_zeroize(sav);
3040 sav->tdb_xform = NULL;
3041 } else {
3042 if (sav->key_auth != NULL)
3043 memset(_KEYBUF(sav->key_auth), 0, _KEYLEN(sav->key_auth));
3044 if (sav->key_enc != NULL)
3045 memset(_KEYBUF(sav->key_enc), 0, _KEYLEN(sav->key_enc));
3046 }
3047 if (sav->key_auth != NULL) {
3048 KFREE(sav->key_auth);
3049 sav->key_auth = NULL;
3050 }
3051 if (sav->key_enc != NULL) {
3052 KFREE(sav->key_enc);
3053 sav->key_enc = NULL;
3054 }
3055 if (sav->sched) {
3056 memset(sav->sched, 0, sav->schedlen);
3057 KFREE(sav->sched);
3058 sav->sched = NULL;
3059 }
3060 if (sav->replay != NULL) {
3061 KFREE(sav->replay);
3062 sav->replay = NULL;
3063 }
3064 if (sav->lft_c != NULL) {
3065 KFREE(sav->lft_c);
3066 sav->lft_c = NULL;
3067 }
3068 if (sav->lft_h != NULL) {
3069 KFREE(sav->lft_h);
3070 sav->lft_h = NULL;
3071 }
3072 if (sav->lft_s != NULL) {
3073 KFREE(sav->lft_s);
3074 sav->lft_s = NULL;
3075 }
3076
3077 KFREE(sav);
3078
3079 return;
3080 }
3081
3082 /*
3083 * search SAD.
3084 * OUT:
3085 * NULL : not found
3086 * others : found, pointer to a SA.
3087 */
3088 static struct secashead *
3089 key_getsah(const struct secasindex *saidx)
3090 {
3091 struct secashead *sah;
3092
3093 LIST_FOREACH(sah, &sahtree, chain) {
3094 if (sah->state == SADB_SASTATE_DEAD)
3095 continue;
3096 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3097 return sah;
3098 }
3099
3100 return NULL;
3101 }
3102
3103 /*
3104 * check not to be duplicated SPI.
3105 * NOTE: this function is too slow due to searching all SAD.
3106 * OUT:
3107 * NULL : not found
3108 * others : found, pointer to a SA.
3109 */
3110 static struct secasvar *
3111 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3112 {
3113 struct secashead *sah;
3114 struct secasvar *sav;
3115
3116 /* check address family */
3117 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3118 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3119 return NULL;
3120 }
3121
3122 /* check all SAD */
3123 LIST_FOREACH(sah, &sahtree, chain) {
3124 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3125 continue;
3126 sav = key_getsavbyspi(sah, spi);
3127 if (sav != NULL)
3128 return sav;
3129 }
3130
3131 return NULL;
3132 }
3133
3134 /*
3135 * search SAD litmited alive SA, protocol, SPI.
3136 * OUT:
3137 * NULL : not found
3138 * others : found, pointer to a SA.
3139 */
3140 static struct secasvar *
3141 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3142 {
3143 struct secasvar *sav;
3144 u_int stateidx, state;
3145
3146 /* search all status */
3147 for (stateidx = 0;
3148 stateidx < _ARRAYLEN(saorder_state_alive);
3149 stateidx++) {
3150
3151 state = saorder_state_alive[stateidx];
3152 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3153
3154 /* sanity check */
3155 if (sav->state != state) {
3156 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3157 "invalid sav->state (queue: %d SA: %d)\n",
3158 state, sav->state));
3159 continue;
3160 }
3161
3162 if (sav->spi == spi)
3163 return sav;
3164 }
3165 }
3166
3167 return NULL;
3168 }
3169
3170 /*
3171 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3172 * You must update these if need.
3173 * OUT: 0: success.
3174 * !0: failure.
3175 *
3176 * does not modify mbuf. does not free mbuf on error.
3177 */
3178 static int
3179 key_setsaval(struct secasvar *sav, struct mbuf *m,
3180 const struct sadb_msghdr *mhp)
3181 {
3182 int error = 0;
3183
3184 /* sanity check */
3185 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3186 panic("key_setsaval: NULL pointer is passed");
3187
3188 /* initialization */
3189 sav->replay = NULL;
3190 sav->key_auth = NULL;
3191 sav->key_enc = NULL;
3192 sav->sched = NULL;
3193 sav->schedlen = 0;
3194 sav->lft_c = NULL;
3195 sav->lft_h = NULL;
3196 sav->lft_s = NULL;
3197 sav->tdb_xform = NULL; /* transform */
3198 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3199 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3200 sav->tdb_compalgxform = NULL; /* compression algorithm */
3201 #ifdef IPSEC_NAT_T
3202 sav->natt_type = 0;
3203 sav->esp_frag = 0;
3204 #endif
3205
3206 /* SA */
3207 if (mhp->ext[SADB_EXT_SA] != NULL) {
3208 const struct sadb_sa *sa0;
3209
3210 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3211 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3212 error = EINVAL;
3213 goto fail;
3214 }
3215
3216 sav->alg_auth = sa0->sadb_sa_auth;
3217 sav->alg_enc = sa0->sadb_sa_encrypt;
3218 sav->flags = sa0->sadb_sa_flags;
3219
3220 /* replay window */
3221 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3222 sav->replay = (struct secreplay *)
3223 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3224 if (sav->replay == NULL) {
3225 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3226 error = ENOBUFS;
3227 goto fail;
3228 }
3229 if (sa0->sadb_sa_replay != 0)
3230 sav->replay->bitmap = (char*)(sav->replay+1);
3231 sav->replay->wsize = sa0->sadb_sa_replay;
3232 }
3233 }
3234
3235 /* Authentication keys */
3236 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3237 const struct sadb_key *key0;
3238 int len;
3239
3240 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3241 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3242
3243 error = 0;
3244 if (len < sizeof(*key0)) {
3245 error = EINVAL;
3246 goto fail;
3247 }
3248 switch (mhp->msg->sadb_msg_satype) {
3249 case SADB_SATYPE_AH:
3250 case SADB_SATYPE_ESP:
3251 case SADB_X_SATYPE_TCPSIGNATURE:
3252 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3253 sav->alg_auth != SADB_X_AALG_NULL)
3254 error = EINVAL;
3255 break;
3256 case SADB_X_SATYPE_IPCOMP:
3257 default:
3258 error = EINVAL;
3259 break;
3260 }
3261 if (error) {
3262 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3263 goto fail;
3264 }
3265
3266 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3267 if (sav->key_auth == NULL) {
3268 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3269 error = ENOBUFS;
3270 goto fail;
3271 }
3272 }
3273
3274 /* Encryption key */
3275 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3276 const struct sadb_key *key0;
3277 int len;
3278
3279 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3280 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3281
3282 error = 0;
3283 if (len < sizeof(*key0)) {
3284 error = EINVAL;
3285 goto fail;
3286 }
3287 switch (mhp->msg->sadb_msg_satype) {
3288 case SADB_SATYPE_ESP:
3289 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3290 sav->alg_enc != SADB_EALG_NULL) {
3291 error = EINVAL;
3292 break;
3293 }
3294 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3295 if (sav->key_enc == NULL) {
3296 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3297 error = ENOBUFS;
3298 goto fail;
3299 }
3300 break;
3301 case SADB_X_SATYPE_IPCOMP:
3302 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3303 error = EINVAL;
3304 sav->key_enc = NULL; /*just in case*/
3305 break;
3306 case SADB_SATYPE_AH:
3307 case SADB_X_SATYPE_TCPSIGNATURE:
3308 default:
3309 error = EINVAL;
3310 break;
3311 }
3312 if (error) {
3313 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3314 goto fail;
3315 }
3316 }
3317
3318 /* set iv */
3319 sav->ivlen = 0;
3320
3321 switch (mhp->msg->sadb_msg_satype) {
3322 case SADB_SATYPE_AH:
3323 error = xform_init(sav, XF_AH);
3324 break;
3325 case SADB_SATYPE_ESP:
3326 error = xform_init(sav, XF_ESP);
3327 break;
3328 case SADB_X_SATYPE_IPCOMP:
3329 error = xform_init(sav, XF_IPCOMP);
3330 break;
3331 case SADB_X_SATYPE_TCPSIGNATURE:
3332 error = xform_init(sav, XF_TCPSIGNATURE);
3333 break;
3334 }
3335 if (error) {
3336 ipseclog((LOG_DEBUG,
3337 "key_setsaval: unable to initialize SA type %u.\n",
3338 mhp->msg->sadb_msg_satype));
3339 goto fail;
3340 }
3341
3342 /* reset created */
3343 sav->created = time_uptime;
3344
3345 /* make lifetime for CURRENT */
3346 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3347 sizeof(struct sadb_lifetime));
3348 if (sav->lft_c == NULL) {
3349 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3350 error = ENOBUFS;
3351 goto fail;
3352 }
3353
3354 sav->lft_c->sadb_lifetime_len =
3355 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3356 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3357 sav->lft_c->sadb_lifetime_allocations = 0;
3358 sav->lft_c->sadb_lifetime_bytes = 0;
3359 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3360 sav->lft_c->sadb_lifetime_usetime = 0;
3361
3362 /* lifetimes for HARD and SOFT */
3363 {
3364 const struct sadb_lifetime *lft0;
3365
3366 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3367 if (lft0 != NULL) {
3368 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3369 error = EINVAL;
3370 goto fail;
3371 }
3372 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3373 sizeof(*lft0));
3374 if (sav->lft_h == NULL) {
3375 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3376 error = ENOBUFS;
3377 goto fail;
3378 }
3379 /* to be initialize ? */
3380 }
3381
3382 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3383 if (lft0 != NULL) {
3384 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3385 error = EINVAL;
3386 goto fail;
3387 }
3388 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3389 sizeof(*lft0));
3390 if (sav->lft_s == NULL) {
3391 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3392 error = ENOBUFS;
3393 goto fail;
3394 }
3395 /* to be initialize ? */
3396 }
3397 }
3398
3399 return 0;
3400
3401 fail:
3402 /* initialization */
3403 if (sav->replay != NULL) {
3404 KFREE(sav->replay);
3405 sav->replay = NULL;
3406 }
3407 if (sav->key_auth != NULL) {
3408 KFREE(sav->key_auth);
3409 sav->key_auth = NULL;
3410 }
3411 if (sav->key_enc != NULL) {
3412 KFREE(sav->key_enc);
3413 sav->key_enc = NULL;
3414 }
3415 if (sav->sched) {
3416 KFREE(sav->sched);
3417 sav->sched = NULL;
3418 }
3419 if (sav->lft_c != NULL) {
3420 KFREE(sav->lft_c);
3421 sav->lft_c = NULL;
3422 }
3423 if (sav->lft_h != NULL) {
3424 KFREE(sav->lft_h);
3425 sav->lft_h = NULL;
3426 }
3427 if (sav->lft_s != NULL) {
3428 KFREE(sav->lft_s);
3429 sav->lft_s = NULL;
3430 }
3431
3432 return error;
3433 }
3434
3435 /*
3436 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3437 * OUT: 0: valid
3438 * other: errno
3439 */
3440 static int
3441 key_mature(struct secasvar *sav)
3442 {
3443 int error;
3444
3445 /* check SPI value */
3446 switch (sav->sah->saidx.proto) {
3447 case IPPROTO_ESP:
3448 case IPPROTO_AH:
3449 if (ntohl(sav->spi) <= 255) {
3450 ipseclog((LOG_DEBUG,
3451 "key_mature: illegal range of SPI %u.\n",
3452 (u_int32_t)ntohl(sav->spi)));
3453 return EINVAL;
3454 }
3455 break;
3456 }
3457
3458 /* check satype */
3459 switch (sav->sah->saidx.proto) {
3460 case IPPROTO_ESP:
3461 /* check flags */
3462 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3463 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3464 ipseclog((LOG_DEBUG, "key_mature: "
3465 "invalid flag (derived) given to old-esp.\n"));
3466 return EINVAL;
3467 }
3468 error = xform_init(sav, XF_ESP);
3469 break;
3470 case IPPROTO_AH:
3471 /* check flags */
3472 if (sav->flags & SADB_X_EXT_DERIV) {
3473 ipseclog((LOG_DEBUG, "key_mature: "
3474 "invalid flag (derived) given to AH SA.\n"));
3475 return EINVAL;
3476 }
3477 if (sav->alg_enc != SADB_EALG_NONE) {
3478 ipseclog((LOG_DEBUG, "key_mature: "
3479 "protocol and algorithm mismated.\n"));
3480 return(EINVAL);
3481 }
3482 error = xform_init(sav, XF_AH);
3483 break;
3484 case IPPROTO_IPCOMP:
3485 if (sav->alg_auth != SADB_AALG_NONE) {
3486 ipseclog((LOG_DEBUG, "key_mature: "
3487 "protocol and algorithm mismated.\n"));
3488 return(EINVAL);
3489 }
3490 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3491 && ntohl(sav->spi) >= 0x10000) {
3492 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3493 return(EINVAL);
3494 }
3495 error = xform_init(sav, XF_IPCOMP);
3496 break;
3497 case IPPROTO_TCP:
3498 if (sav->alg_enc != SADB_EALG_NONE) {
3499 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3500 "mismated.\n", __func__));
3501 return(EINVAL);
3502 }
3503 error = xform_init(sav, XF_TCPSIGNATURE);
3504 break;
3505 default:
3506 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3507 error = EPROTONOSUPPORT;
3508 break;
3509 }
3510 if (error == 0)
3511 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3512 return (error);
3513 }
3514
3515 /*
3516 * subroutine for SADB_GET and SADB_DUMP.
3517 */
3518 static struct mbuf *
3519 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3520 u_int32_t seq, u_int32_t pid)
3521 {
3522 struct mbuf *result = NULL, *tres = NULL, *m;
3523 int l = 0;
3524 int i;
3525 void *p;
3526 struct sadb_lifetime lt;
3527 int dumporder[] = {
3528 SADB_EXT_SA, SADB_X_EXT_SA2,
3529 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3530 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3531 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3532 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3533 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3534 #ifdef IPSEC_NAT_T
3535 SADB_X_EXT_NAT_T_TYPE,
3536 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3537 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3538 SADB_X_EXT_NAT_T_FRAG,
3539 #endif
3540
3541 };
3542
3543 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3544 if (m == NULL)
3545 goto fail;
3546 result = m;
3547
3548 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3549 m = NULL;
3550 p = NULL;
3551 switch (dumporder[i]) {
3552 case SADB_EXT_SA:
3553 m = key_setsadbsa(sav);
3554 break;
3555
3556 case SADB_X_EXT_SA2:
3557 m = key_setsadbxsa2(sav->sah->saidx.mode,
3558 sav->replay ? sav->replay->count : 0,
3559 sav->sah->saidx.reqid);
3560 break;
3561
3562 case SADB_EXT_ADDRESS_SRC:
3563 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3564 &sav->sah->saidx.src.sa,
3565 FULLMASK, IPSEC_ULPROTO_ANY);
3566 break;
3567
3568 case SADB_EXT_ADDRESS_DST:
3569 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3570 &sav->sah->saidx.dst.sa,
3571 FULLMASK, IPSEC_ULPROTO_ANY);
3572 break;
3573
3574 case SADB_EXT_KEY_AUTH:
3575 if (!sav->key_auth)
3576 continue;
3577 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3578 p = sav->key_auth;
3579 break;
3580
3581 case SADB_EXT_KEY_ENCRYPT:
3582 if (!sav->key_enc)
3583 continue;
3584 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3585 p = sav->key_enc;
3586 break;
3587
3588 case SADB_EXT_LIFETIME_CURRENT:
3589 if (!sav->lft_c)
3590 continue;
3591 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3592 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3593 lt.sadb_lifetime_addtime += time_second - time_uptime;
3594 lt.sadb_lifetime_usetime += time_second - time_uptime;
3595 p = <
3596 break;
3597
3598 case SADB_EXT_LIFETIME_HARD:
3599 if (!sav->lft_h)
3600 continue;
3601 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3602 p = sav->lft_h;
3603 break;
3604
3605 case SADB_EXT_LIFETIME_SOFT:
3606 if (!sav->lft_s)
3607 continue;
3608 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3609 p = sav->lft_s;
3610 break;
3611
3612 #ifdef IPSEC_NAT_T
3613 case SADB_X_EXT_NAT_T_TYPE:
3614 m = key_setsadbxtype(sav->natt_type);
3615 break;
3616
3617 case SADB_X_EXT_NAT_T_DPORT:
3618 if (sav->natt_type == 0)
3619 continue;
3620 m = key_setsadbxport(
3621 key_portfromsaddr(&sav->sah->saidx.dst),
3622 SADB_X_EXT_NAT_T_DPORT);
3623 break;
3624
3625 case SADB_X_EXT_NAT_T_SPORT:
3626 if (sav->natt_type == 0)
3627 continue;
3628 m = key_setsadbxport(
3629 key_portfromsaddr(&sav->sah->saidx.src),
3630 SADB_X_EXT_NAT_T_SPORT);
3631 break;
3632
3633 case SADB_X_EXT_NAT_T_FRAG:
3634 /* don't send frag info if not set */
3635 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3636 continue;
3637 m = key_setsadbxfrag(sav->esp_frag);
3638 break;
3639
3640 case SADB_X_EXT_NAT_T_OAI:
3641 case SADB_X_EXT_NAT_T_OAR:
3642 continue;
3643 #endif
3644
3645 case SADB_EXT_ADDRESS_PROXY:
3646 case SADB_EXT_IDENTITY_SRC:
3647 case SADB_EXT_IDENTITY_DST:
3648 /* XXX: should we brought from SPD ? */
3649 case SADB_EXT_SENSITIVITY:
3650 default:
3651 continue;
3652 }
3653
3654 KASSERT(!(m && p));
3655 if (!m && !p)
3656 goto fail;
3657 if (p && tres) {
3658 M_PREPEND(tres, l, M_DONTWAIT);
3659 if (!tres)
3660 goto fail;
3661 memcpy(mtod(tres, void *), p, l);
3662 continue;
3663 }
3664 if (p) {
3665 m = key_alloc_mbuf(l);
3666 if (!m)
3667 goto fail;
3668 m_copyback(m, 0, l, p);
3669 }
3670
3671 if (tres)
3672 m_cat(m, tres);
3673 tres = m;
3674 }
3675
3676 m_cat(result, tres);
3677 tres = NULL; /* avoid free on error below */
3678
3679 if (result->m_len < sizeof(struct sadb_msg)) {
3680 result = m_pullup(result, sizeof(struct sadb_msg));
3681 if (result == NULL)
3682 goto fail;
3683 }
3684
3685 result->m_pkthdr.len = 0;
3686 for (m = result; m; m = m->m_next)
3687 result->m_pkthdr.len += m->m_len;
3688
3689 mtod(result, struct sadb_msg *)->sadb_msg_len =
3690 PFKEY_UNIT64(result->m_pkthdr.len);
3691
3692 return result;
3693
3694 fail:
3695 m_freem(result);
3696 m_freem(tres);
3697 return NULL;
3698 }
3699
3700
3701 #ifdef IPSEC_NAT_T
3702 /*
3703 * set a type in sadb_x_nat_t_type
3704 */
3705 static struct mbuf *
3706 key_setsadbxtype(u_int16_t type)
3707 {
3708 struct mbuf *m;
3709 size_t len;
3710 struct sadb_x_nat_t_type *p;
3711
3712 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3713
3714 m = key_alloc_mbuf(len);
3715 if (!m || m->m_next) { /*XXX*/
3716 if (m)
3717 m_freem(m);
3718 return NULL;
3719 }
3720
3721 p = mtod(m, struct sadb_x_nat_t_type *);
3722
3723 memset(p, 0, len);
3724 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3725 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3726 p->sadb_x_nat_t_type_type = type;
3727
3728 return m;
3729 }
3730 /*
3731 * set a port in sadb_x_nat_t_port. port is in network order
3732 */
3733 static struct mbuf *
3734 key_setsadbxport(u_int16_t port, u_int16_t type)
3735 {
3736 struct mbuf *m;
3737 size_t len;
3738 struct sadb_x_nat_t_port *p;
3739
3740 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3741
3742 m = key_alloc_mbuf(len);
3743 if (!m || m->m_next) { /*XXX*/
3744 if (m)
3745 m_freem(m);
3746 return NULL;
3747 }
3748
3749 p = mtod(m, struct sadb_x_nat_t_port *);
3750
3751 memset(p, 0, len);
3752 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3753 p->sadb_x_nat_t_port_exttype = type;
3754 p->sadb_x_nat_t_port_port = port;
3755
3756 return m;
3757 }
3758
3759 /*
3760 * set fragmentation info in sadb_x_nat_t_frag
3761 */
3762 static struct mbuf *
3763 key_setsadbxfrag(u_int16_t flen)
3764 {
3765 struct mbuf *m;
3766 size_t len;
3767 struct sadb_x_nat_t_frag *p;
3768
3769 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3770
3771 m = key_alloc_mbuf(len);
3772 if (!m || m->m_next) { /*XXX*/
3773 if (m)
3774 m_freem(m);
3775 return NULL;
3776 }
3777
3778 p = mtod(m, struct sadb_x_nat_t_frag *);
3779
3780 memset(p, 0, len);
3781 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3782 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3783 p->sadb_x_nat_t_frag_fraglen = flen;
3784
3785 return m;
3786 }
3787
3788 /*
3789 * Get port from sockaddr, port is in network order
3790 */
3791 u_int16_t
3792 key_portfromsaddr(const union sockaddr_union *saddr)
3793 {
3794 u_int16_t port;
3795
3796 switch (saddr->sa.sa_family) {
3797 case AF_INET: {
3798 port = saddr->sin.sin_port;
3799 break;
3800 }
3801 #ifdef INET6
3802 case AF_INET6: {
3803 port = saddr->sin6.sin6_port;
3804 break;
3805 }
3806 #endif
3807 default:
3808 printf("key_portfromsaddr: unexpected address family\n");
3809 port = 0;
3810 break;
3811 }
3812
3813 return port;
3814 }
3815
3816 #endif /* IPSEC_NAT_T */
3817
3818 /*
3819 * Set port is struct sockaddr. port is in network order
3820 */
3821 static void
3822 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3823 {
3824 switch (saddr->sa.sa_family) {
3825 case AF_INET: {
3826 saddr->sin.sin_port = port;
3827 break;
3828 }
3829 #ifdef INET6
3830 case AF_INET6: {
3831 saddr->sin6.sin6_port = port;
3832 break;
3833 }
3834 #endif
3835 default:
3836 printf("key_porttosaddr: unexpected address family %d\n",
3837 saddr->sa.sa_family);
3838 break;
3839 }
3840
3841 return;
3842 }
3843
3844 /*
3845 * Safety check sa_len
3846 */
3847 static int
3848 key_checksalen(const union sockaddr_union *saddr)
3849 {
3850 switch (saddr->sa.sa_family) {
3851 case AF_INET:
3852 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3853 return -1;
3854 break;
3855 #ifdef INET6
3856 case AF_INET6:
3857 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3858 return -1;
3859 break;
3860 #endif
3861 default:
3862 printf("key_checksalen: unexpected sa_family %d\n",
3863 saddr->sa.sa_family);
3864 return -1;
3865 break;
3866 }
3867 return 0;
3868 }
3869
3870
3871 /*
3872 * set data into sadb_msg.
3873 */
3874 static struct mbuf *
3875 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3876 u_int32_t seq, pid_t pid, u_int16_t reserved)
3877 {
3878 struct mbuf *m;
3879 struct sadb_msg *p;
3880 int len;
3881
3882 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3883 if (len > MCLBYTES)
3884 return NULL;
3885 MGETHDR(m, M_DONTWAIT, MT_DATA);
3886 if (m && len > MHLEN) {
3887 MCLGET(m, M_DONTWAIT);
3888 if ((m->m_flags & M_EXT) == 0) {
3889 m_freem(m);
3890 m = NULL;
3891 }
3892 }
3893 if (!m)
3894 return NULL;
3895 m->m_pkthdr.len = m->m_len = len;
3896 m->m_next = NULL;
3897
3898 p = mtod(m, struct sadb_msg *);
3899
3900 memset(p, 0, len);
3901 p->sadb_msg_version = PF_KEY_V2;
3902 p->sadb_msg_type = type;
3903 p->sadb_msg_errno = 0;
3904 p->sadb_msg_satype = satype;
3905 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3906 p->sadb_msg_reserved = reserved;
3907 p->sadb_msg_seq = seq;
3908 p->sadb_msg_pid = (u_int32_t)pid;
3909
3910 return m;
3911 }
3912
3913 /*
3914 * copy secasvar data into sadb_address.
3915 */
3916 static struct mbuf *
3917 key_setsadbsa(struct secasvar *sav)
3918 {
3919 struct mbuf *m;
3920 struct sadb_sa *p;
3921 int len;
3922
3923 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3924 m = key_alloc_mbuf(len);
3925 if (!m || m->m_next) { /*XXX*/
3926 if (m)
3927 m_freem(m);
3928 return NULL;
3929 }
3930
3931 p = mtod(m, struct sadb_sa *);
3932
3933 memset(p, 0, len);
3934 p->sadb_sa_len = PFKEY_UNIT64(len);
3935 p->sadb_sa_exttype = SADB_EXT_SA;
3936 p->sadb_sa_spi = sav->spi;
3937 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3938 p->sadb_sa_state = sav->state;
3939 p->sadb_sa_auth = sav->alg_auth;
3940 p->sadb_sa_encrypt = sav->alg_enc;
3941 p->sadb_sa_flags = sav->flags;
3942
3943 return m;
3944 }
3945
3946 /*
3947 * set data into sadb_address.
3948 */
3949 static struct mbuf *
3950 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3951 u_int8_t prefixlen, u_int16_t ul_proto)
3952 {
3953 struct mbuf *m;
3954 struct sadb_address *p;
3955 size_t len;
3956
3957 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3958 PFKEY_ALIGN8(saddr->sa_len);
3959 m = key_alloc_mbuf(len);
3960 if (!m || m->m_next) { /*XXX*/
3961 if (m)
3962 m_freem(m);
3963 return NULL;
3964 }
3965
3966 p = mtod(m, struct sadb_address *);
3967
3968 memset(p, 0, len);
3969 p->sadb_address_len = PFKEY_UNIT64(len);
3970 p->sadb_address_exttype = exttype;
3971 p->sadb_address_proto = ul_proto;
3972 if (prefixlen == FULLMASK) {
3973 switch (saddr->sa_family) {
3974 case AF_INET:
3975 prefixlen = sizeof(struct in_addr) << 3;
3976 break;
3977 case AF_INET6:
3978 prefixlen = sizeof(struct in6_addr) << 3;
3979 break;
3980 default:
3981 ; /*XXX*/
3982 }
3983 }
3984 p->sadb_address_prefixlen = prefixlen;
3985 p->sadb_address_reserved = 0;
3986
3987 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3988 saddr, saddr->sa_len);
3989
3990 return m;
3991 }
3992
3993 #if 0
3994 /*
3995 * set data into sadb_ident.
3996 */
3997 static struct mbuf *
3998 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3999 void *string, int stringlen, u_int64_t id)
4000 {
4001 struct mbuf *m;
4002 struct sadb_ident *p;
4003 size_t len;
4004
4005 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4006 m = key_alloc_mbuf(len);
4007 if (!m || m->m_next) { /*XXX*/
4008 if (m)
4009 m_freem(m);
4010 return NULL;
4011 }
4012
4013 p = mtod(m, struct sadb_ident *);
4014
4015 memset(p, 0, len);
4016 p->sadb_ident_len = PFKEY_UNIT64(len);
4017 p->sadb_ident_exttype = exttype;
4018 p->sadb_ident_type = idtype;
4019 p->sadb_ident_reserved = 0;
4020 p->sadb_ident_id = id;
4021
4022 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4023 string, stringlen);
4024
4025 return m;
4026 }
4027 #endif
4028
4029 /*
4030 * set data into sadb_x_sa2.
4031 */
4032 static struct mbuf *
4033 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4034 {
4035 struct mbuf *m;
4036 struct sadb_x_sa2 *p;
4037 size_t len;
4038
4039 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4040 m = key_alloc_mbuf(len);
4041 if (!m || m->m_next) { /*XXX*/
4042 if (m)
4043 m_freem(m);
4044 return NULL;
4045 }
4046
4047 p = mtod(m, struct sadb_x_sa2 *);
4048
4049 memset(p, 0, len);
4050 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4051 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4052 p->sadb_x_sa2_mode = mode;
4053 p->sadb_x_sa2_reserved1 = 0;
4054 p->sadb_x_sa2_reserved2 = 0;
4055 p->sadb_x_sa2_sequence = seq;
4056 p->sadb_x_sa2_reqid = reqid;
4057
4058 return m;
4059 }
4060
4061 /*
4062 * set data into sadb_x_policy
4063 */
4064 static struct mbuf *
4065 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4066 {
4067 struct mbuf *m;
4068 struct sadb_x_policy *p;
4069 size_t len;
4070
4071 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4072 m = key_alloc_mbuf(len);
4073 if (!m || m->m_next) { /*XXX*/
4074 if (m)
4075 m_freem(m);
4076 return NULL;
4077 }
4078
4079 p = mtod(m, struct sadb_x_policy *);
4080
4081 memset(p, 0, len);
4082 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4083 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4084 p->sadb_x_policy_type = type;
4085 p->sadb_x_policy_dir = dir;
4086 p->sadb_x_policy_id = id;
4087
4088 return m;
4089 }
4090
4091 /* %%% utilities */
4092 /*
4093 * copy a buffer into the new buffer allocated.
4094 */
4095 static void *
4096 key_newbuf(const void *src, u_int len)
4097 {
4098 void *new;
4099
4100 KMALLOC(new, void *, len);
4101 if (new == NULL) {
4102 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4103 return NULL;
4104 }
4105 memcpy(new, src, len);
4106
4107 return new;
4108 }
4109
4110 /* compare my own address
4111 * OUT: 1: true, i.e. my address.
4112 * 0: false
4113 */
4114 int
4115 key_ismyaddr(const struct sockaddr *sa)
4116 {
4117 #ifdef INET
4118 const struct sockaddr_in *sin;
4119 const struct in_ifaddr *ia;
4120 #endif
4121
4122 /* sanity check */
4123 if (sa == NULL)
4124 panic("key_ismyaddr: NULL pointer is passed");
4125
4126 switch (sa->sa_family) {
4127 #ifdef INET
4128 case AF_INET:
4129 sin = (const struct sockaddr_in *)sa;
4130 for (ia = in_ifaddrhead.tqh_first; ia;
4131 ia = ia->ia_link.tqe_next)
4132 {
4133 if (sin->sin_family == ia->ia_addr.sin_family &&
4134 sin->sin_len == ia->ia_addr.sin_len &&
4135 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4136 {
4137 return 1;
4138 }
4139 }
4140 break;
4141 #endif
4142 #ifdef INET6
4143 case AF_INET6:
4144 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4145 #endif
4146 }
4147
4148 return 0;
4149 }
4150
4151 #ifdef INET6
4152 /*
4153 * compare my own address for IPv6.
4154 * 1: ours
4155 * 0: other
4156 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4157 */
4158 #include <netinet6/in6_var.h>
4159
4160 static int
4161 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4162 {
4163 const struct in6_ifaddr *ia;
4164 const struct in6_multi *in6m;
4165
4166 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
4167 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4168 (const struct sockaddr *)&ia->ia_addr, 0) == 0)
4169 return 1;
4170
4171 /*
4172 * XXX Multicast
4173 * XXX why do we care about multlicast here while we don't care
4174 * about IPv4 multicast??
4175 * XXX scope
4176 */
4177 in6m = NULL;
4178 #ifdef __FreeBSD__
4179 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
4180 #else
4181 for ((in6m) = ia->ia6_multiaddrs.lh_first;
4182 (in6m) != NULL &&
4183 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
4184 (in6m) = in6m->in6m_entry.le_next)
4185 continue;
4186 #endif
4187 if (in6m)
4188 return 1;
4189 }
4190
4191 /* loopback, just for safety */
4192 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4193 return 1;
4194
4195 return 0;
4196 }
4197 #endif /*INET6*/
4198
4199 /*
4200 * compare two secasindex structure.
4201 * flag can specify to compare 2 saidxes.
4202 * compare two secasindex structure without both mode and reqid.
4203 * don't compare port.
4204 * IN:
4205 * saidx0: source, it can be in SAD.
4206 * saidx1: object.
4207 * OUT:
4208 * 1 : equal
4209 * 0 : not equal
4210 */
4211 static int
4212 key_cmpsaidx(
4213 const struct secasindex *saidx0,
4214 const struct secasindex *saidx1,
4215 int flag)
4216 {
4217 int chkport = 0;
4218
4219 /* sanity */
4220 if (saidx0 == NULL && saidx1 == NULL)
4221 return 1;
4222
4223 if (saidx0 == NULL || saidx1 == NULL)
4224 return 0;
4225
4226 if (saidx0->proto != saidx1->proto)
4227 return 0;
4228
4229 if (flag == CMP_EXACTLY) {
4230 if (saidx0->mode != saidx1->mode)
4231 return 0;
4232 if (saidx0->reqid != saidx1->reqid)
4233 return 0;
4234 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4235 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4236 return 0;
4237 } else {
4238
4239 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4240 if (flag == CMP_MODE_REQID
4241 ||flag == CMP_REQID) {
4242 /*
4243 * If reqid of SPD is non-zero, unique SA is required.
4244 * The result must be of same reqid in this case.
4245 */
4246 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4247 return 0;
4248 }
4249
4250 if (flag == CMP_MODE_REQID) {
4251 if (saidx0->mode != IPSEC_MODE_ANY
4252 && saidx0->mode != saidx1->mode)
4253 return 0;
4254 }
4255
4256 /*
4257 * If NAT-T is enabled, check ports for tunnel mode.
4258 * Don't do it for transport mode, as there is no
4259 * port information available in the SP.
4260 * Also don't check ports if they are set to zero
4261 * in the SPD: This means we have a non-generated
4262 * SPD which can't know UDP ports.
4263 */
4264 #ifdef IPSEC_NAT_T
4265 if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4266 ((((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET &&
4267 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET &&
4268 ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4269 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) ||
4270 (((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET6 &&
4271 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET6 &&
4272 ((const struct sockaddr_in6 *)(&saidx1->src))->sin6_port &&
4273 ((const struct sockaddr_in6 *)(&saidx1->dst))->sin6_port)))
4274 chkport = 1;
4275 #endif
4276
4277 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4278 return 0;
4279 }
4280 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4281 return 0;
4282 }
4283 }
4284
4285 return 1;
4286 }
4287
4288 /*
4289 * compare two secindex structure exactly.
4290 * IN:
4291 * spidx0: source, it is often in SPD.
4292 * spidx1: object, it is often from PFKEY message.
4293 * OUT:
4294 * 1 : equal
4295 * 0 : not equal
4296 */
4297 int
4298 key_cmpspidx_exactly(
4299 const struct secpolicyindex *spidx0,
4300 const struct secpolicyindex *spidx1)
4301 {
4302 /* sanity */
4303 if (spidx0 == NULL && spidx1 == NULL)
4304 return 1;
4305
4306 if (spidx0 == NULL || spidx1 == NULL)
4307 return 0;
4308
4309 if (spidx0->prefs != spidx1->prefs
4310 || spidx0->prefd != spidx1->prefd
4311 || spidx0->ul_proto != spidx1->ul_proto)
4312 return 0;
4313
4314 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4315 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4316 }
4317
4318 /*
4319 * compare two secindex structure with mask.
4320 * IN:
4321 * spidx0: source, it is often in SPD.
4322 * spidx1: object, it is often from IP header.
4323 * OUT:
4324 * 1 : equal
4325 * 0 : not equal
4326 */
4327 int
4328 key_cmpspidx_withmask(
4329 const struct secpolicyindex *spidx0,
4330 const struct secpolicyindex *spidx1)
4331 {
4332 /* sanity */
4333 if (spidx0 == NULL && spidx1 == NULL)
4334 return 1;
4335
4336 if (spidx0 == NULL || spidx1 == NULL)
4337 return 0;
4338
4339 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4340 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4341 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4342 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4343 return 0;
4344
4345 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4346 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4347 && spidx0->ul_proto != spidx1->ul_proto)
4348 return 0;
4349
4350 switch (spidx0->src.sa.sa_family) {
4351 case AF_INET:
4352 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4353 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4354 return 0;
4355 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4356 &spidx1->src.sin.sin_addr, spidx0->prefs))
4357 return 0;
4358 break;
4359 case AF_INET6:
4360 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4361 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4362 return 0;
4363 /*
4364 * scope_id check. if sin6_scope_id is 0, we regard it
4365 * as a wildcard scope, which matches any scope zone ID.
4366 */
4367 if (spidx0->src.sin6.sin6_scope_id &&
4368 spidx1->src.sin6.sin6_scope_id &&
4369 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4370 return 0;
4371 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4372 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4373 return 0;
4374 break;
4375 default:
4376 /* XXX */
4377 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4378 return 0;
4379 break;
4380 }
4381
4382 switch (spidx0->dst.sa.sa_family) {
4383 case AF_INET:
4384 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4385 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4386 return 0;
4387 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4388 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4389 return 0;
4390 break;
4391 case AF_INET6:
4392 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4393 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4394 return 0;
4395 /*
4396 * scope_id check. if sin6_scope_id is 0, we regard it
4397 * as a wildcard scope, which matches any scope zone ID.
4398 */
4399 if (spidx0->src.sin6.sin6_scope_id &&
4400 spidx1->src.sin6.sin6_scope_id &&
4401 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4402 return 0;
4403 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4404 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4405 return 0;
4406 break;
4407 default:
4408 /* XXX */
4409 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4410 return 0;
4411 break;
4412 }
4413
4414 /* XXX Do we check other field ? e.g. flowinfo */
4415
4416 return 1;
4417 }
4418
4419 /* returns 0 on match */
4420 static int
4421 key_sockaddrcmp(
4422 const struct sockaddr *sa1,
4423 const struct sockaddr *sa2,
4424 int port)
4425 {
4426 #ifdef satosin
4427 #undef satosin
4428 #endif
4429 #define satosin(s) ((const struct sockaddr_in *)s)
4430 #ifdef satosin6
4431 #undef satosin6
4432 #endif
4433 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4434 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4435 return 1;
4436
4437 switch (sa1->sa_family) {
4438 case AF_INET:
4439 if (sa1->sa_len != sizeof(struct sockaddr_in))
4440 return 1;
4441 if (satosin(sa1)->sin_addr.s_addr !=
4442 satosin(sa2)->sin_addr.s_addr) {
4443 return 1;
4444 }
4445 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4446 return 1;
4447 break;
4448 case AF_INET6:
4449 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4450 return 1; /*EINVAL*/
4451 if (satosin6(sa1)->sin6_scope_id !=
4452 satosin6(sa2)->sin6_scope_id) {
4453 return 1;
4454 }
4455 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4456 &satosin6(sa2)->sin6_addr)) {
4457 return 1;
4458 }
4459 if (port &&
4460 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4461 return 1;
4462 }
4463 break;
4464 default:
4465 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4466 return 1;
4467 break;
4468 }
4469
4470 return 0;
4471 #undef satosin
4472 #undef satosin6
4473 }
4474
4475 /*
4476 * compare two buffers with mask.
4477 * IN:
4478 * addr1: source
4479 * addr2: object
4480 * bits: Number of bits to compare
4481 * OUT:
4482 * 1 : equal
4483 * 0 : not equal
4484 */
4485 static int
4486 key_bbcmp(const void *a1, const void *a2, u_int bits)
4487 {
4488 const unsigned char *p1 = a1;
4489 const unsigned char *p2 = a2;
4490
4491 /* XXX: This could be considerably faster if we compare a word
4492 * at a time, but it is complicated on LSB Endian machines */
4493
4494 /* Handle null pointers */
4495 if (p1 == NULL || p2 == NULL)
4496 return (p1 == p2);
4497
4498 while (bits >= 8) {
4499 if (*p1++ != *p2++)
4500 return 0;
4501 bits -= 8;
4502 }
4503
4504 if (bits > 0) {
4505 u_int8_t mask = ~((1<<(8-bits))-1);
4506 if ((*p1 & mask) != (*p2 & mask))
4507 return 0;
4508 }
4509 return 1; /* Match! */
4510 }
4511
4512 /*
4513 * time handler.
4514 * scanning SPD and SAD to check status for each entries,
4515 * and do to remove or to expire.
4516 */
4517 void
4518 key_timehandler(void* arg)
4519 {
4520 u_int dir;
4521 int s;
4522 time_t now = time_uptime;
4523
4524 s = splsoftnet(); /*called from softclock()*/
4525 mutex_enter(softnet_lock);
4526
4527 /* SPD */
4528 {
4529 struct secpolicy *sp, *nextsp;
4530
4531 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4532 for (sp = LIST_FIRST(&sptree[dir]);
4533 sp != NULL;
4534 sp = nextsp) {
4535
4536 nextsp = LIST_NEXT(sp, chain);
4537
4538 if (sp->state == IPSEC_SPSTATE_DEAD) {
4539 key_sp_unlink(sp); /*XXX*/
4540
4541 /* 'sp' dead; continue transfers to
4542 * 'sp = nextsp'
4543 */
4544 continue;
4545 }
4546
4547 if (sp->lifetime == 0 && sp->validtime == 0)
4548 continue;
4549
4550 /* the deletion will occur next time */
4551 if ((sp->lifetime && now - sp->created > sp->lifetime)
4552 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4553 key_sp_dead(sp);
4554 key_spdexpire(sp);
4555 continue;
4556 }
4557 }
4558 }
4559 }
4560
4561 /* SAD */
4562 {
4563 struct secashead *sah, *nextsah;
4564 struct secasvar *sav, *nextsav;
4565
4566 for (sah = LIST_FIRST(&sahtree);
4567 sah != NULL;
4568 sah = nextsah) {
4569
4570 nextsah = LIST_NEXT(sah, chain);
4571
4572 /* if sah has been dead, then delete it and process next sah. */
4573 if (sah->state == SADB_SASTATE_DEAD) {
4574 key_delsah(sah);
4575 continue;
4576 }
4577
4578 /* if LARVAL entry doesn't become MATURE, delete it. */
4579 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4580 sav != NULL;
4581 sav = nextsav) {
4582
4583 nextsav = LIST_NEXT(sav, chain);
4584
4585 if (now - sav->created > key_larval_lifetime) {
4586 KEY_FREESAV(&sav);
4587 }
4588 }
4589
4590 /*
4591 * check MATURE entry to start to send expire message
4592 * whether or not.
4593 */
4594 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4595 sav != NULL;
4596 sav = nextsav) {
4597
4598 nextsav = LIST_NEXT(sav, chain);
4599
4600 /* we don't need to check. */
4601 if (sav->lft_s == NULL)
4602 continue;
4603
4604 /* sanity check */
4605 if (sav->lft_c == NULL) {
4606 ipseclog((LOG_DEBUG,"key_timehandler: "
4607 "There is no CURRENT time, why?\n"));
4608 continue;
4609 }
4610
4611 /* check SOFT lifetime */
4612 if (sav->lft_s->sadb_lifetime_addtime != 0
4613 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4614 /*
4615 * check SA to be used whether or not.
4616 * when SA hasn't been used, delete it.
4617 */
4618 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4619 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4620 KEY_FREESAV(&sav);
4621 } else {
4622 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4623 /*
4624 * XXX If we keep to send expire
4625 * message in the status of
4626 * DYING. Do remove below code.
4627 */
4628 key_expire(sav);
4629 }
4630 }
4631 /* check SOFT lifetime by bytes */
4632 /*
4633 * XXX I don't know the way to delete this SA
4634 * when new SA is installed. Caution when it's
4635 * installed too big lifetime by time.
4636 */
4637 else if (sav->lft_s->sadb_lifetime_bytes != 0
4638 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4639
4640 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4641 /*
4642 * XXX If we keep to send expire
4643 * message in the status of
4644 * DYING. Do remove below code.
4645 */
4646 key_expire(sav);
4647 }
4648 }
4649
4650 /* check DYING entry to change status to DEAD. */
4651 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4652 sav != NULL;
4653 sav = nextsav) {
4654
4655 nextsav = LIST_NEXT(sav, chain);
4656
4657 /* we don't need to check. */
4658 if (sav->lft_h == NULL)
4659 continue;
4660
4661 /* sanity check */
4662 if (sav->lft_c == NULL) {
4663 ipseclog((LOG_DEBUG, "key_timehandler: "
4664 "There is no CURRENT time, why?\n"));
4665 continue;
4666 }
4667
4668 if (sav->lft_h->sadb_lifetime_addtime != 0
4669 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4670 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4671 KEY_FREESAV(&sav);
4672 }
4673 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4674 else if (sav->lft_s != NULL
4675 && sav->lft_s->sadb_lifetime_addtime != 0
4676 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4677 /*
4678 * XXX: should be checked to be
4679 * installed the valid SA.
4680 */
4681
4682 /*
4683 * If there is no SA then sending
4684 * expire message.
4685 */
4686 key_expire(sav);
4687 }
4688 #endif
4689 /* check HARD lifetime by bytes */
4690 else if (sav->lft_h->sadb_lifetime_bytes != 0
4691 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4692 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4693 KEY_FREESAV(&sav);
4694 }
4695 }
4696
4697 /* delete entry in DEAD */
4698 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4699 sav != NULL;
4700 sav = nextsav) {
4701
4702 nextsav = LIST_NEXT(sav, chain);
4703
4704 /* sanity check */
4705 if (sav->state != SADB_SASTATE_DEAD) {
4706 ipseclog((LOG_DEBUG, "key_timehandler: "
4707 "invalid sav->state "
4708 "(queue: %d SA: %d): "
4709 "kill it anyway\n",
4710 SADB_SASTATE_DEAD, sav->state));
4711 }
4712
4713 /*
4714 * do not call key_freesav() here.
4715 * sav should already be freed, and sav->refcnt
4716 * shows other references to sav
4717 * (such as from SPD).
4718 */
4719 }
4720 }
4721 }
4722
4723 #ifndef IPSEC_NONBLOCK_ACQUIRE
4724 /* ACQ tree */
4725 {
4726 struct secacq *acq, *nextacq;
4727
4728 for (acq = LIST_FIRST(&acqtree);
4729 acq != NULL;
4730 acq = nextacq) {
4731
4732 nextacq = LIST_NEXT(acq, chain);
4733
4734 if (now - acq->created > key_blockacq_lifetime
4735 && __LIST_CHAINED(acq)) {
4736 LIST_REMOVE(acq, chain);
4737 KFREE(acq);
4738 }
4739 }
4740 }
4741 #endif
4742
4743 /* SP ACQ tree */
4744 {
4745 struct secspacq *acq, *nextacq;
4746
4747 for (acq = LIST_FIRST(&spacqtree);
4748 acq != NULL;
4749 acq = nextacq) {
4750
4751 nextacq = LIST_NEXT(acq, chain);
4752
4753 if (now - acq->created > key_blockacq_lifetime
4754 && __LIST_CHAINED(acq)) {
4755 LIST_REMOVE(acq, chain);
4756 KFREE(acq);
4757 }
4758 }
4759 }
4760
4761 #ifndef IPSEC_DEBUG2
4762 /* do exchange to tick time !! */
4763 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4764 #endif /* IPSEC_DEBUG2 */
4765
4766 mutex_exit(softnet_lock);
4767 splx(s);
4768 return;
4769 }
4770
4771 u_long
4772 key_random(void)
4773 {
4774 u_long value;
4775
4776 key_randomfill(&value, sizeof(value));
4777 return value;
4778 }
4779
4780 void
4781 key_randomfill(void *p, size_t l)
4782 {
4783
4784 cprng_fast(p, l);
4785 }
4786
4787 /*
4788 * map SADB_SATYPE_* to IPPROTO_*.
4789 * if satype == SADB_SATYPE then satype is mapped to ~0.
4790 * OUT:
4791 * 0: invalid satype.
4792 */
4793 static u_int16_t
4794 key_satype2proto(u_int8_t satype)
4795 {
4796 switch (satype) {
4797 case SADB_SATYPE_UNSPEC:
4798 return IPSEC_PROTO_ANY;
4799 case SADB_SATYPE_AH:
4800 return IPPROTO_AH;
4801 case SADB_SATYPE_ESP:
4802 return IPPROTO_ESP;
4803 case SADB_X_SATYPE_IPCOMP:
4804 return IPPROTO_IPCOMP;
4805 case SADB_X_SATYPE_TCPSIGNATURE:
4806 return IPPROTO_TCP;
4807 default:
4808 return 0;
4809 }
4810 /* NOTREACHED */
4811 }
4812
4813 /*
4814 * map IPPROTO_* to SADB_SATYPE_*
4815 * OUT:
4816 * 0: invalid protocol type.
4817 */
4818 static u_int8_t
4819 key_proto2satype(u_int16_t proto)
4820 {
4821 switch (proto) {
4822 case IPPROTO_AH:
4823 return SADB_SATYPE_AH;
4824 case IPPROTO_ESP:
4825 return SADB_SATYPE_ESP;
4826 case IPPROTO_IPCOMP:
4827 return SADB_X_SATYPE_IPCOMP;
4828 case IPPROTO_TCP:
4829 return SADB_X_SATYPE_TCPSIGNATURE;
4830 default:
4831 return 0;
4832 }
4833 /* NOTREACHED */
4834 }
4835
4836 static int
4837 key_setsecasidx(int proto, int mode, int reqid,
4838 const struct sadb_address * src,
4839 const struct sadb_address * dst,
4840 struct secasindex * saidx)
4841 {
4842 const union sockaddr_union * src_u =
4843 (const union sockaddr_union *) src;
4844 const union sockaddr_union * dst_u =
4845 (const union sockaddr_union *) dst;
4846
4847 /* sa len safety check */
4848 if (key_checksalen(src_u) != 0)
4849 return -1;
4850 if (key_checksalen(dst_u) != 0)
4851 return -1;
4852
4853 memset(saidx, 0, sizeof(*saidx));
4854 saidx->proto = proto;
4855 saidx->mode = mode;
4856 saidx->reqid = reqid;
4857 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4858 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4859
4860 #ifndef IPSEC_NAT_T
4861 key_porttosaddr(&((saidx)->src),0);
4862 key_porttosaddr(&((saidx)->dst),0);
4863 #endif
4864 return 0;
4865 }
4866
4867 /* %%% PF_KEY */
4868 /*
4869 * SADB_GETSPI processing is to receive
4870 * <base, (SA2), src address, dst address, (SPI range)>
4871 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4872 * tree with the status of LARVAL, and send
4873 * <base, SA(*), address(SD)>
4874 * to the IKMPd.
4875 *
4876 * IN: mhp: pointer to the pointer to each header.
4877 * OUT: NULL if fail.
4878 * other if success, return pointer to the message to send.
4879 */
4880 static int
4881 key_getspi(struct socket *so, struct mbuf *m,
4882 const struct sadb_msghdr *mhp)
4883 {
4884 struct sadb_address *src0, *dst0;
4885 struct secasindex saidx;
4886 struct secashead *newsah;
4887 struct secasvar *newsav;
4888 u_int8_t proto;
4889 u_int32_t spi;
4890 u_int8_t mode;
4891 u_int16_t reqid;
4892 int error;
4893
4894 /* sanity check */
4895 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4896 panic("key_getspi: NULL pointer is passed");
4897
4898 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4899 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4900 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4901 return key_senderror(so, m, EINVAL);
4902 }
4903 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4904 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4905 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4906 return key_senderror(so, m, EINVAL);
4907 }
4908 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4909 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4910 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4911 } else {
4912 mode = IPSEC_MODE_ANY;
4913 reqid = 0;
4914 }
4915
4916 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4917 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4918
4919 /* map satype to proto */
4920 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4921 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4922 return key_senderror(so, m, EINVAL);
4923 }
4924
4925
4926 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4927 dst0 + 1, &saidx)) != 0)
4928 return key_senderror(so, m, EINVAL);
4929
4930 #ifdef IPSEC_NAT_T
4931 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4932 return key_senderror(so, m, EINVAL);
4933 #endif
4934
4935 /* SPI allocation */
4936 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4937 &saidx);
4938 if (spi == 0)
4939 return key_senderror(so, m, EINVAL);
4940
4941 /* get a SA index */
4942 if ((newsah = key_getsah(&saidx)) == NULL) {
4943 /* create a new SA index */
4944 if ((newsah = key_newsah(&saidx)) == NULL) {
4945 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4946 return key_senderror(so, m, ENOBUFS);
4947 }
4948 }
4949
4950 /* get a new SA */
4951 /* XXX rewrite */
4952 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4953 if (newsav == NULL) {
4954 /* XXX don't free new SA index allocated in above. */
4955 return key_senderror(so, m, error);
4956 }
4957
4958 /* set spi */
4959 newsav->spi = htonl(spi);
4960
4961 #ifndef IPSEC_NONBLOCK_ACQUIRE
4962 /* delete the entry in acqtree */
4963 if (mhp->msg->sadb_msg_seq != 0) {
4964 struct secacq *acq;
4965 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4966 /* reset counter in order to deletion by timehandler. */
4967 acq->created = time_uptime;
4968 acq->count = 0;
4969 }
4970 }
4971 #endif
4972
4973 {
4974 struct mbuf *n, *nn;
4975 struct sadb_sa *m_sa;
4976 struct sadb_msg *newmsg;
4977 int off, len;
4978
4979 /* create new sadb_msg to reply. */
4980 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4981 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4982 if (len > MCLBYTES)
4983 return key_senderror(so, m, ENOBUFS);
4984
4985 MGETHDR(n, M_DONTWAIT, MT_DATA);
4986 if (len > MHLEN) {
4987 MCLGET(n, M_DONTWAIT);
4988 if ((n->m_flags & M_EXT) == 0) {
4989 m_freem(n);
4990 n = NULL;
4991 }
4992 }
4993 if (!n)
4994 return key_senderror(so, m, ENOBUFS);
4995
4996 n->m_len = len;
4997 n->m_next = NULL;
4998 off = 0;
4999
5000 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5001 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5002
5003 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5004 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5005 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5006 m_sa->sadb_sa_spi = htonl(spi);
5007 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5008
5009 #ifdef DIAGNOSTIC
5010 if (off != len)
5011 panic("length inconsistency in key_getspi");
5012 #endif
5013
5014 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5015 SADB_EXT_ADDRESS_DST);
5016 if (!n->m_next) {
5017 m_freem(n);
5018 return key_senderror(so, m, ENOBUFS);
5019 }
5020
5021 if (n->m_len < sizeof(struct sadb_msg)) {
5022 n = m_pullup(n, sizeof(struct sadb_msg));
5023 if (n == NULL)
5024 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5025 }
5026
5027 n->m_pkthdr.len = 0;
5028 for (nn = n; nn; nn = nn->m_next)
5029 n->m_pkthdr.len += nn->m_len;
5030
5031 newmsg = mtod(n, struct sadb_msg *);
5032 newmsg->sadb_msg_seq = newsav->seq;
5033 newmsg->sadb_msg_errno = 0;
5034 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5035
5036 m_freem(m);
5037 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5038 }
5039 }
5040
5041 /*
5042 * allocating new SPI
5043 * called by key_getspi().
5044 * OUT:
5045 * 0: failure.
5046 * others: success.
5047 */
5048 static u_int32_t
5049 key_do_getnewspi(const struct sadb_spirange *spirange,
5050 const struct secasindex *saidx)
5051 {
5052 u_int32_t newspi;
5053 u_int32_t spmin, spmax;
5054 int count = key_spi_trycnt;
5055
5056 /* set spi range to allocate */
5057 if (spirange != NULL) {
5058 spmin = spirange->sadb_spirange_min;
5059 spmax = spirange->sadb_spirange_max;
5060 } else {
5061 spmin = key_spi_minval;
5062 spmax = key_spi_maxval;
5063 }
5064 /* IPCOMP needs 2-byte SPI */
5065 if (saidx->proto == IPPROTO_IPCOMP) {
5066 u_int32_t t;
5067 if (spmin >= 0x10000)
5068 spmin = 0xffff;
5069 if (spmax >= 0x10000)
5070 spmax = 0xffff;
5071 if (spmin > spmax) {
5072 t = spmin; spmin = spmax; spmax = t;
5073 }
5074 }
5075
5076 if (spmin == spmax) {
5077 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5078 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5079 return 0;
5080 }
5081
5082 count--; /* taking one cost. */
5083 newspi = spmin;
5084
5085 } else {
5086
5087 /* init SPI */
5088 newspi = 0;
5089
5090 /* when requesting to allocate spi ranged */
5091 while (count--) {
5092 /* generate pseudo-random SPI value ranged. */
5093 newspi = spmin + (key_random() % (spmax - spmin + 1));
5094
5095 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5096 break;
5097 }
5098
5099 if (count == 0 || newspi == 0) {
5100 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5101 return 0;
5102 }
5103 }
5104
5105 /* statistics */
5106 keystat.getspi_count =
5107 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5108
5109 return newspi;
5110 }
5111
5112 #ifdef IPSEC_NAT_T
5113 /* Handle IPSEC_NAT_T info if present */
5114 static int
5115 key_handle_natt_info(struct secasvar *sav,
5116 const struct sadb_msghdr *mhp)
5117 {
5118
5119 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5120 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n"));
5121 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5122 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n"));
5123
5124 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5125 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5126 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5127 struct sadb_x_nat_t_type *type;
5128 struct sadb_x_nat_t_port *sport;
5129 struct sadb_x_nat_t_port *dport;
5130 struct sadb_address *iaddr, *raddr;
5131 struct sadb_x_nat_t_frag *frag;
5132
5133 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5134 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5135 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5136 ipseclog((LOG_DEBUG, "key_update: "
5137 "invalid message.\n"));
5138 return -1;
5139 }
5140
5141 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
5142 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
5143 ipseclog((LOG_DEBUG, "key_update: invalid message\n"));
5144 return -1;
5145 }
5146
5147 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
5148 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
5149 ipseclog((LOG_DEBUG, "key_update: invalid message\n"));
5150 return -1;
5151 }
5152
5153 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
5154 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
5155 ipseclog((LOG_DEBUG, "key_update: invalid message\n"));
5156 return -1;
5157 }
5158
5159 type = (struct sadb_x_nat_t_type *)
5160 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5161 sport = (struct sadb_x_nat_t_port *)
5162 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5163 dport = (struct sadb_x_nat_t_port *)
5164 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5165 iaddr = (struct sadb_address *)
5166 mhp->ext[SADB_X_EXT_NAT_T_OAI];
5167 raddr = (struct sadb_address *)
5168 mhp->ext[SADB_X_EXT_NAT_T_OAR];
5169 frag = (struct sadb_x_nat_t_frag *)
5170 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5171
5172 ipseclog((LOG_DEBUG,
5173 "key_update: type %d, sport = %d, dport = %d\n",
5174 type->sadb_x_nat_t_type_type,
5175 sport->sadb_x_nat_t_port_port,
5176 dport->sadb_x_nat_t_port_port));
5177
5178 if (type)
5179 sav->natt_type = type->sadb_x_nat_t_type_type;
5180 if (sport)
5181 key_porttosaddr(&sav->sah->saidx.src,
5182 sport->sadb_x_nat_t_port_port);
5183 if (dport)
5184 key_porttosaddr(&sav->sah->saidx.dst,
5185 dport->sadb_x_nat_t_port_port);
5186 if (frag)
5187 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5188 else
5189 sav->esp_frag = IP_MAXPACKET;
5190 }
5191
5192 return 0;
5193 }
5194
5195 /* Just update the IPSEC_NAT_T ports if present */
5196 static int
5197 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5198 const struct sadb_msghdr *mhp)
5199 {
5200
5201 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5202 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n"));
5203 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5204 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n"));
5205
5206 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5207 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5208 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5209 struct sadb_x_nat_t_type *type;
5210 struct sadb_x_nat_t_port *sport;
5211 struct sadb_x_nat_t_port *dport;
5212
5213 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5214 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5215 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5216 ipseclog((LOG_DEBUG, "key_update: "
5217 "invalid message.\n"));
5218 return -1;
5219 }
5220
5221 sport = (struct sadb_x_nat_t_port *)
5222 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5223 dport = (struct sadb_x_nat_t_port *)
5224 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5225
5226 if (sport)
5227 key_porttosaddr(src,
5228 sport->sadb_x_nat_t_port_port);
5229 if (dport)
5230 key_porttosaddr(dst,
5231 dport->sadb_x_nat_t_port_port);
5232 }
5233
5234 return 0;
5235 }
5236 #endif
5237
5238
5239 /*
5240 * SADB_UPDATE processing
5241 * receive
5242 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5243 * key(AE), (identity(SD),) (sensitivity)>
5244 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5245 * and send
5246 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5247 * (identity(SD),) (sensitivity)>
5248 * to the ikmpd.
5249 *
5250 * m will always be freed.
5251 */
5252 static int
5253 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5254 {
5255 struct sadb_sa *sa0;
5256 struct sadb_address *src0, *dst0;
5257 struct secasindex saidx;
5258 struct secashead *sah;
5259 struct secasvar *sav;
5260 u_int16_t proto;
5261 u_int8_t mode;
5262 u_int16_t reqid;
5263 int error;
5264
5265 /* sanity check */
5266 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5267 panic("key_update: NULL pointer is passed");
5268
5269 /* map satype to proto */
5270 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5271 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5272 return key_senderror(so, m, EINVAL);
5273 }
5274
5275 if (mhp->ext[SADB_EXT_SA] == NULL ||
5276 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5277 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5278 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5279 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5280 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5281 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5282 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5283 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5284 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5285 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5286 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5287 return key_senderror(so, m, EINVAL);
5288 }
5289 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5290 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5291 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5292 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5293 return key_senderror(so, m, EINVAL);
5294 }
5295 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5296 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5297 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5298 } else {
5299 mode = IPSEC_MODE_ANY;
5300 reqid = 0;
5301 }
5302 /* XXX boundary checking for other extensions */
5303
5304 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5305 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5306 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5307
5308 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5309 dst0 + 1, &saidx)) != 0)
5310 return key_senderror(so, m, EINVAL);
5311
5312 #ifdef IPSEC_NAT_T
5313 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5314 return key_senderror(so, m, EINVAL);
5315 #endif
5316
5317 /* get a SA header */
5318 if ((sah = key_getsah(&saidx)) == NULL) {
5319 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5320 return key_senderror(so, m, ENOENT);
5321 }
5322
5323 /* set spidx if there */
5324 /* XXX rewrite */
5325 error = key_setident(sah, m, mhp);
5326 if (error)
5327 return key_senderror(so, m, error);
5328
5329 /* find a SA with sequence number. */
5330 #ifdef IPSEC_DOSEQCHECK
5331 if (mhp->msg->sadb_msg_seq != 0
5332 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5333 ipseclog((LOG_DEBUG,
5334 "key_update: no larval SA with sequence %u exists.\n",
5335 mhp->msg->sadb_msg_seq));
5336 return key_senderror(so, m, ENOENT);
5337 }
5338 #else
5339 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5340 ipseclog((LOG_DEBUG,
5341 "key_update: no such a SA found (spi:%u)\n",
5342 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5343 return key_senderror(so, m, EINVAL);
5344 }
5345 #endif
5346
5347 /* validity check */
5348 if (sav->sah->saidx.proto != proto) {
5349 ipseclog((LOG_DEBUG,
5350 "key_update: protocol mismatched (DB=%u param=%u)\n",
5351 sav->sah->saidx.proto, proto));
5352 return key_senderror(so, m, EINVAL);
5353 }
5354 #ifdef IPSEC_DOSEQCHECK
5355 if (sav->spi != sa0->sadb_sa_spi) {
5356 ipseclog((LOG_DEBUG,
5357 "key_update: SPI mismatched (DB:%u param:%u)\n",
5358 (u_int32_t)ntohl(sav->spi),
5359 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5360 return key_senderror(so, m, EINVAL);
5361 }
5362 #endif
5363 if (sav->pid != mhp->msg->sadb_msg_pid) {
5364 ipseclog((LOG_DEBUG,
5365 "key_update: pid mismatched (DB:%u param:%u)\n",
5366 sav->pid, mhp->msg->sadb_msg_pid));
5367 return key_senderror(so, m, EINVAL);
5368 }
5369
5370 /* copy sav values */
5371 error = key_setsaval(sav, m, mhp);
5372 if (error) {
5373 KEY_FREESAV(&sav);
5374 return key_senderror(so, m, error);
5375 }
5376
5377 #ifdef IPSEC_NAT_T
5378 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5379 return key_senderror(so, m, EINVAL);
5380 #endif /* IPSEC_NAT_T */
5381
5382 /* check SA values to be mature. */
5383 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5384 KEY_FREESAV(&sav);
5385 return key_senderror(so, m, 0);
5386 }
5387
5388 {
5389 struct mbuf *n;
5390
5391 /* set msg buf from mhp */
5392 n = key_getmsgbuf_x1(m, mhp);
5393 if (n == NULL) {
5394 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5395 return key_senderror(so, m, ENOBUFS);
5396 }
5397
5398 m_freem(m);
5399 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5400 }
5401 }
5402
5403 /*
5404 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5405 * only called by key_update().
5406 * OUT:
5407 * NULL : not found
5408 * others : found, pointer to a SA.
5409 */
5410 #ifdef IPSEC_DOSEQCHECK
5411 static struct secasvar *
5412 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5413 {
5414 struct secasvar *sav;
5415 u_int state;
5416
5417 state = SADB_SASTATE_LARVAL;
5418
5419 /* search SAD with sequence number ? */
5420 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5421
5422 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5423
5424 if (sav->seq == seq) {
5425 SA_ADDREF(sav);
5426 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5427 printf("DP key_getsavbyseq cause "
5428 "refcnt++:%d SA:%p\n",
5429 sav->refcnt, sav));
5430 return sav;
5431 }
5432 }
5433
5434 return NULL;
5435 }
5436 #endif
5437
5438 /*
5439 * SADB_ADD processing
5440 * add an entry to SA database, when received
5441 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5442 * key(AE), (identity(SD),) (sensitivity)>
5443 * from the ikmpd,
5444 * and send
5445 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5446 * (identity(SD),) (sensitivity)>
5447 * to the ikmpd.
5448 *
5449 * IGNORE identity and sensitivity messages.
5450 *
5451 * m will always be freed.
5452 */
5453 static int
5454 key_add(struct socket *so, struct mbuf *m,
5455 const struct sadb_msghdr *mhp)
5456 {
5457 struct sadb_sa *sa0;
5458 struct sadb_address *src0, *dst0;
5459 struct secasindex saidx;
5460 struct secashead *newsah;
5461 struct secasvar *newsav;
5462 u_int16_t proto;
5463 u_int8_t mode;
5464 u_int16_t reqid;
5465 int error;
5466
5467 /* sanity check */
5468 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5469 panic("key_add: NULL pointer is passed");
5470
5471 /* map satype to proto */
5472 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5473 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5474 return key_senderror(so, m, EINVAL);
5475 }
5476
5477 if (mhp->ext[SADB_EXT_SA] == NULL ||
5478 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5479 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5480 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5481 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5482 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5483 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5484 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5485 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5486 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5487 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5488 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5489 return key_senderror(so, m, EINVAL);
5490 }
5491 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5492 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5493 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5494 /* XXX need more */
5495 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5496 return key_senderror(so, m, EINVAL);
5497 }
5498 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5499 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5500 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5501 } else {
5502 mode = IPSEC_MODE_ANY;
5503 reqid = 0;
5504 }
5505
5506 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5507 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5508 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5509
5510 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5511 dst0 + 1, &saidx)) != 0)
5512 return key_senderror(so, m, EINVAL);
5513
5514 #ifdef IPSEC_NAT_T
5515 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5516 return key_senderror(so, m, EINVAL);
5517 #endif
5518
5519 /* get a SA header */
5520 if ((newsah = key_getsah(&saidx)) == NULL) {
5521 /* create a new SA header */
5522 if ((newsah = key_newsah(&saidx)) == NULL) {
5523 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5524 return key_senderror(so, m, ENOBUFS);
5525 }
5526 }
5527
5528 /* set spidx if there */
5529 /* XXX rewrite */
5530 error = key_setident(newsah, m, mhp);
5531 if (error) {
5532 return key_senderror(so, m, error);
5533 }
5534
5535 /* create new SA entry. */
5536 /* We can create new SA only if SPI is differenct. */
5537 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5538 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5539 return key_senderror(so, m, EEXIST);
5540 }
5541 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5542 if (newsav == NULL) {
5543 return key_senderror(so, m, error);
5544 }
5545
5546 #ifdef IPSEC_NAT_T
5547 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5548 return key_senderror(so, m, EINVAL);
5549 #endif /* IPSEC_NAT_T */
5550
5551 /* check SA values to be mature. */
5552 if ((error = key_mature(newsav)) != 0) {
5553 KEY_FREESAV(&newsav);
5554 return key_senderror(so, m, error);
5555 }
5556
5557 /*
5558 * don't call key_freesav() here, as we would like to keep the SA
5559 * in the database on success.
5560 */
5561
5562 {
5563 struct mbuf *n;
5564
5565 /* set msg buf from mhp */
5566 n = key_getmsgbuf_x1(m, mhp);
5567 if (n == NULL) {
5568 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5569 return key_senderror(so, m, ENOBUFS);
5570 }
5571
5572 m_freem(m);
5573 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5574 }
5575 }
5576
5577 /* m is retained */
5578 static int
5579 key_setident(struct secashead *sah, struct mbuf *m,
5580 const struct sadb_msghdr *mhp)
5581 {
5582 const struct sadb_ident *idsrc, *iddst;
5583 int idsrclen, iddstlen;
5584
5585 /* sanity check */
5586 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5587 panic("key_setident: NULL pointer is passed");
5588
5589 /* don't make buffer if not there */
5590 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5591 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5592 sah->idents = NULL;
5593 sah->identd = NULL;
5594 return 0;
5595 }
5596
5597 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5598 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5599 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5600 return EINVAL;
5601 }
5602
5603 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5604 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5605 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5606 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5607
5608 /* validity check */
5609 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5610 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5611 return EINVAL;
5612 }
5613
5614 switch (idsrc->sadb_ident_type) {
5615 case SADB_IDENTTYPE_PREFIX:
5616 case SADB_IDENTTYPE_FQDN:
5617 case SADB_IDENTTYPE_USERFQDN:
5618 default:
5619 /* XXX do nothing */
5620 sah->idents = NULL;
5621 sah->identd = NULL;
5622 return 0;
5623 }
5624
5625 /* make structure */
5626 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5627 if (sah->idents == NULL) {
5628 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5629 return ENOBUFS;
5630 }
5631 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5632 if (sah->identd == NULL) {
5633 KFREE(sah->idents);
5634 sah->idents = NULL;
5635 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5636 return ENOBUFS;
5637 }
5638 memcpy(sah->idents, idsrc, idsrclen);
5639 memcpy(sah->identd, iddst, iddstlen);
5640
5641 return 0;
5642 }
5643
5644 /*
5645 * m will not be freed on return.
5646 * it is caller's responsibility to free the result.
5647 */
5648 static struct mbuf *
5649 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5650 {
5651 struct mbuf *n;
5652
5653 /* sanity check */
5654 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5655 panic("key_getmsgbuf_x1: NULL pointer is passed");
5656
5657 /* create new sadb_msg to reply. */
5658 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5659 SADB_EXT_SA, SADB_X_EXT_SA2,
5660 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5661 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5662 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5663 if (!n)
5664 return NULL;
5665
5666 if (n->m_len < sizeof(struct sadb_msg)) {
5667 n = m_pullup(n, sizeof(struct sadb_msg));
5668 if (n == NULL)
5669 return NULL;
5670 }
5671 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5672 mtod(n, struct sadb_msg *)->sadb_msg_len =
5673 PFKEY_UNIT64(n->m_pkthdr.len);
5674
5675 return n;
5676 }
5677
5678 static int key_delete_all (struct socket *, struct mbuf *,
5679 const struct sadb_msghdr *, u_int16_t);
5680
5681 /*
5682 * SADB_DELETE processing
5683 * receive
5684 * <base, SA(*), address(SD)>
5685 * from the ikmpd, and set SADB_SASTATE_DEAD,
5686 * and send,
5687 * <base, SA(*), address(SD)>
5688 * to the ikmpd.
5689 *
5690 * m will always be freed.
5691 */
5692 static int
5693 key_delete(struct socket *so, struct mbuf *m,
5694 const struct sadb_msghdr *mhp)
5695 {
5696 struct sadb_sa *sa0;
5697 struct sadb_address *src0, *dst0;
5698 struct secasindex saidx;
5699 struct secashead *sah;
5700 struct secasvar *sav = NULL;
5701 u_int16_t proto;
5702 int error;
5703
5704 /* sanity check */
5705 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5706 panic("key_delete: NULL pointer is passed");
5707
5708 /* map satype to proto */
5709 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5710 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5711 return key_senderror(so, m, EINVAL);
5712 }
5713
5714 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5715 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5716 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5717 return key_senderror(so, m, EINVAL);
5718 }
5719
5720 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5721 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5722 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5723 return key_senderror(so, m, EINVAL);
5724 }
5725
5726 if (mhp->ext[SADB_EXT_SA] == NULL) {
5727 /*
5728 * Caller wants us to delete all non-LARVAL SAs
5729 * that match the src/dst. This is used during
5730 * IKE INITIAL-CONTACT.
5731 */
5732 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5733 return key_delete_all(so, m, mhp, proto);
5734 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5735 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5736 return key_senderror(so, m, EINVAL);
5737 }
5738
5739 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5740 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5741 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5742
5743 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5744 dst0 + 1, &saidx)) != 0)
5745 return key_senderror(so, m, EINVAL);
5746
5747 #ifdef IPSEC_NAT_T
5748 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5749 return key_senderror(so, m, EINVAL);
5750 #endif
5751
5752 /* get a SA header */
5753 LIST_FOREACH(sah, &sahtree, chain) {
5754 if (sah->state == SADB_SASTATE_DEAD)
5755 continue;
5756 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5757 continue;
5758
5759 /* get a SA with SPI. */
5760 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5761 if (sav)
5762 break;
5763 }
5764 if (sah == NULL) {
5765 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5766 return key_senderror(so, m, ENOENT);
5767 }
5768
5769 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5770 KEY_FREESAV(&sav);
5771
5772 {
5773 struct mbuf *n;
5774 struct sadb_msg *newmsg;
5775
5776 /* create new sadb_msg to reply. */
5777 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5778 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5779 if (!n)
5780 return key_senderror(so, m, ENOBUFS);
5781
5782 if (n->m_len < sizeof(struct sadb_msg)) {
5783 n = m_pullup(n, sizeof(struct sadb_msg));
5784 if (n == NULL)
5785 return key_senderror(so, m, ENOBUFS);
5786 }
5787 newmsg = mtod(n, struct sadb_msg *);
5788 newmsg->sadb_msg_errno = 0;
5789 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5790
5791 m_freem(m);
5792 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5793 }
5794 }
5795
5796 /*
5797 * delete all SAs for src/dst. Called from key_delete().
5798 */
5799 static int
5800 key_delete_all(struct socket *so, struct mbuf *m,
5801 const struct sadb_msghdr *mhp, u_int16_t proto)
5802 {
5803 struct sadb_address *src0, *dst0;
5804 struct secasindex saidx;
5805 struct secashead *sah;
5806 struct secasvar *sav, *nextsav;
5807 u_int stateidx, state;
5808 int error;
5809
5810 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5811 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5812
5813 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5814 dst0 + 1, &saidx)) != 0)
5815 return key_senderror(so, m, EINVAL);
5816
5817 #ifdef IPSEC_NAT_T
5818 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5819 return key_senderror(so, m, EINVAL);
5820 #endif
5821
5822 LIST_FOREACH(sah, &sahtree, chain) {
5823 if (sah->state == SADB_SASTATE_DEAD)
5824 continue;
5825 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5826 continue;
5827
5828 /* Delete all non-LARVAL SAs. */
5829 for (stateidx = 0;
5830 stateidx < _ARRAYLEN(saorder_state_alive);
5831 stateidx++) {
5832 state = saorder_state_alive[stateidx];
5833 if (state == SADB_SASTATE_LARVAL)
5834 continue;
5835 for (sav = LIST_FIRST(&sah->savtree[state]);
5836 sav != NULL; sav = nextsav) {
5837 nextsav = LIST_NEXT(sav, chain);
5838 /* sanity check */
5839 if (sav->state != state) {
5840 ipseclog((LOG_DEBUG, "key_delete_all: "
5841 "invalid sav->state "
5842 "(queue: %d SA: %d)\n",
5843 state, sav->state));
5844 continue;
5845 }
5846
5847 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5848 KEY_FREESAV(&sav);
5849 }
5850 }
5851 }
5852 {
5853 struct mbuf *n;
5854 struct sadb_msg *newmsg;
5855
5856 /* create new sadb_msg to reply. */
5857 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5858 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5859 if (!n)
5860 return key_senderror(so, m, ENOBUFS);
5861
5862 if (n->m_len < sizeof(struct sadb_msg)) {
5863 n = m_pullup(n, sizeof(struct sadb_msg));
5864 if (n == NULL)
5865 return key_senderror(so, m, ENOBUFS);
5866 }
5867 newmsg = mtod(n, struct sadb_msg *);
5868 newmsg->sadb_msg_errno = 0;
5869 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5870
5871 m_freem(m);
5872 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5873 }
5874 }
5875
5876 /*
5877 * SADB_GET processing
5878 * receive
5879 * <base, SA(*), address(SD)>
5880 * from the ikmpd, and get a SP and a SA to respond,
5881 * and send,
5882 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5883 * (identity(SD),) (sensitivity)>
5884 * to the ikmpd.
5885 *
5886 * m will always be freed.
5887 */
5888 static int
5889 key_get(struct socket *so, struct mbuf *m,
5890 const struct sadb_msghdr *mhp)
5891 {
5892 struct sadb_sa *sa0;
5893 struct sadb_address *src0, *dst0;
5894 struct secasindex saidx;
5895 struct secashead *sah;
5896 struct secasvar *sav = NULL;
5897 u_int16_t proto;
5898 int error;
5899
5900 /* sanity check */
5901 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5902 panic("key_get: NULL pointer is passed");
5903
5904 /* map satype to proto */
5905 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5906 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5907 return key_senderror(so, m, EINVAL);
5908 }
5909
5910 if (mhp->ext[SADB_EXT_SA] == NULL ||
5911 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5912 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5913 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5914 return key_senderror(so, m, EINVAL);
5915 }
5916 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5917 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5918 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5919 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5920 return key_senderror(so, m, EINVAL);
5921 }
5922
5923 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5924 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5925 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5926
5927
5928 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5929 dst0 + 1, &saidx)) != 0)
5930 return key_senderror(so, m, EINVAL);
5931
5932 #ifdef IPSEC_NAT_T
5933 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5934 return key_senderror(so, m, EINVAL);
5935 #endif
5936
5937 /* get a SA header */
5938 LIST_FOREACH(sah, &sahtree, chain) {
5939 if (sah->state == SADB_SASTATE_DEAD)
5940 continue;
5941 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5942 continue;
5943
5944 /* get a SA with SPI. */
5945 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5946 if (sav)
5947 break;
5948 }
5949 if (sah == NULL) {
5950 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5951 return key_senderror(so, m, ENOENT);
5952 }
5953
5954 {
5955 struct mbuf *n;
5956 u_int8_t satype;
5957
5958 /* map proto to satype */
5959 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5960 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5961 return key_senderror(so, m, EINVAL);
5962 }
5963
5964 /* create new sadb_msg to reply. */
5965 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5966 mhp->msg->sadb_msg_pid);
5967 if (!n)
5968 return key_senderror(so, m, ENOBUFS);
5969
5970 m_freem(m);
5971 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5972 }
5973 }
5974
5975 /* XXX make it sysctl-configurable? */
5976 static void
5977 key_getcomb_setlifetime(struct sadb_comb *comb)
5978 {
5979
5980 comb->sadb_comb_soft_allocations = 1;
5981 comb->sadb_comb_hard_allocations = 1;
5982 comb->sadb_comb_soft_bytes = 0;
5983 comb->sadb_comb_hard_bytes = 0;
5984 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5985 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5986 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5987 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5988 }
5989
5990 /*
5991 * XXX reorder combinations by preference
5992 * XXX no idea if the user wants ESP authentication or not
5993 */
5994 static struct mbuf *
5995 key_getcomb_esp(void)
5996 {
5997 struct sadb_comb *comb;
5998 const struct enc_xform *algo;
5999 struct mbuf *result = NULL, *m, *n;
6000 int encmin;
6001 int i, off, o;
6002 int totlen;
6003 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6004
6005 m = NULL;
6006 for (i = 1; i <= SADB_EALG_MAX; i++) {
6007 algo = esp_algorithm_lookup(i);
6008 if (algo == NULL)
6009 continue;
6010
6011 /* discard algorithms with key size smaller than system min */
6012 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6013 continue;
6014 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6015 encmin = ipsec_esp_keymin;
6016 else
6017 encmin = _BITS(algo->minkey);
6018
6019 if (ipsec_esp_auth)
6020 m = key_getcomb_ah();
6021 else {
6022 IPSEC_ASSERT(l <= MLEN,
6023 ("key_getcomb_esp: l=%u > MLEN=%lu",
6024 l, (u_long) MLEN));
6025 MGET(m, M_DONTWAIT, MT_DATA);
6026 if (m) {
6027 M_ALIGN(m, l);
6028 m->m_len = l;
6029 m->m_next = NULL;
6030 memset(mtod(m, void *), 0, m->m_len);
6031 }
6032 }
6033 if (!m)
6034 goto fail;
6035
6036 totlen = 0;
6037 for (n = m; n; n = n->m_next)
6038 totlen += n->m_len;
6039 IPSEC_ASSERT((totlen % l) == 0,
6040 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
6041
6042 for (off = 0; off < totlen; off += l) {
6043 n = m_pulldown(m, off, l, &o);
6044 if (!n) {
6045 /* m is already freed */
6046 goto fail;
6047 }
6048 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6049 memset(comb, 0, sizeof(*comb));
6050 key_getcomb_setlifetime(comb);
6051 comb->sadb_comb_encrypt = i;
6052 comb->sadb_comb_encrypt_minbits = encmin;
6053 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6054 }
6055
6056 if (!result)
6057 result = m;
6058 else
6059 m_cat(result, m);
6060 }
6061
6062 return result;
6063
6064 fail:
6065 if (result)
6066 m_freem(result);
6067 return NULL;
6068 }
6069
6070 static void
6071 key_getsizes_ah(const struct auth_hash *ah, int alg,
6072 u_int16_t* ksmin, u_int16_t* ksmax)
6073 {
6074 *ksmin = *ksmax = ah->keysize;
6075 if (ah->keysize == 0) {
6076 /*
6077 * Transform takes arbitrary key size but algorithm
6078 * key size is restricted. Enforce this here.
6079 */
6080 switch (alg) {
6081 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6082 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6083 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break;
6084 default:
6085 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6086 alg));
6087 break;
6088 }
6089 }
6090 }
6091
6092 /*
6093 * XXX reorder combinations by preference
6094 */
6095 static struct mbuf *
6096 key_getcomb_ah(void)
6097 {
6098 struct sadb_comb *comb;
6099 const struct auth_hash *algo;
6100 struct mbuf *m;
6101 u_int16_t minkeysize, maxkeysize;
6102 int i;
6103 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6104
6105 m = NULL;
6106 for (i = 1; i <= SADB_AALG_MAX; i++) {
6107 #if 1
6108 /* we prefer HMAC algorithms, not old algorithms */
6109 if (i != SADB_AALG_SHA1HMAC &&
6110 i != SADB_AALG_MD5HMAC &&
6111 i != SADB_X_AALG_SHA2_256 &&
6112 i != SADB_X_AALG_SHA2_384 &&
6113 i != SADB_X_AALG_SHA2_512)
6114 continue;
6115 #endif
6116 algo = ah_algorithm_lookup(i);
6117 if (!algo)
6118 continue;
6119 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6120 /* discard algorithms with key size smaller than system min */
6121 if (_BITS(minkeysize) < ipsec_ah_keymin)
6122 continue;
6123
6124 if (!m) {
6125 IPSEC_ASSERT(l <= MLEN,
6126 ("key_getcomb_ah: l=%u > MLEN=%lu",
6127 l, (u_long) MLEN));
6128 MGET(m, M_DONTWAIT, MT_DATA);
6129 if (m) {
6130 M_ALIGN(m, l);
6131 m->m_len = l;
6132 m->m_next = NULL;
6133 }
6134 } else
6135 M_PREPEND(m, l, M_DONTWAIT);
6136 if (!m)
6137 return NULL;
6138
6139 comb = mtod(m, struct sadb_comb *);
6140 memset(comb, 0, sizeof(*comb));
6141 key_getcomb_setlifetime(comb);
6142 comb->sadb_comb_auth = i;
6143 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6144 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6145 }
6146
6147 return m;
6148 }
6149
6150 /*
6151 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6152 * XXX reorder combinations by preference
6153 */
6154 static struct mbuf *
6155 key_getcomb_ipcomp(void)
6156 {
6157 struct sadb_comb *comb;
6158 const struct comp_algo *algo;
6159 struct mbuf *m;
6160 int i;
6161 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6162
6163 m = NULL;
6164 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6165 algo = ipcomp_algorithm_lookup(i);
6166 if (!algo)
6167 continue;
6168
6169 if (!m) {
6170 IPSEC_ASSERT(l <= MLEN,
6171 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
6172 l, (u_long) MLEN));
6173 MGET(m, M_DONTWAIT, MT_DATA);
6174 if (m) {
6175 M_ALIGN(m, l);
6176 m->m_len = l;
6177 m->m_next = NULL;
6178 }
6179 } else
6180 M_PREPEND(m, l, M_DONTWAIT);
6181 if (!m)
6182 return NULL;
6183
6184 comb = mtod(m, struct sadb_comb *);
6185 memset(comb, 0, sizeof(*comb));
6186 key_getcomb_setlifetime(comb);
6187 comb->sadb_comb_encrypt = i;
6188 /* what should we set into sadb_comb_*_{min,max}bits? */
6189 }
6190
6191 return m;
6192 }
6193
6194 /*
6195 * XXX no way to pass mode (transport/tunnel) to userland
6196 * XXX replay checking?
6197 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6198 */
6199 static struct mbuf *
6200 key_getprop(const struct secasindex *saidx)
6201 {
6202 struct sadb_prop *prop;
6203 struct mbuf *m, *n;
6204 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6205 int totlen;
6206
6207 switch (saidx->proto) {
6208 case IPPROTO_ESP:
6209 m = key_getcomb_esp();
6210 break;
6211 case IPPROTO_AH:
6212 m = key_getcomb_ah();
6213 break;
6214 case IPPROTO_IPCOMP:
6215 m = key_getcomb_ipcomp();
6216 break;
6217 default:
6218 return NULL;
6219 }
6220
6221 if (!m)
6222 return NULL;
6223 M_PREPEND(m, l, M_DONTWAIT);
6224 if (!m)
6225 return NULL;
6226
6227 totlen = 0;
6228 for (n = m; n; n = n->m_next)
6229 totlen += n->m_len;
6230
6231 prop = mtod(m, struct sadb_prop *);
6232 memset(prop, 0, sizeof(*prop));
6233 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6234 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6235 prop->sadb_prop_replay = 32; /* XXX */
6236
6237 return m;
6238 }
6239
6240 /*
6241 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6242 * send
6243 * <base, SA, address(SD), (address(P)), x_policy,
6244 * (identity(SD),) (sensitivity,) proposal>
6245 * to KMD, and expect to receive
6246 * <base> with SADB_ACQUIRE if error occurred,
6247 * or
6248 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6249 * from KMD by PF_KEY.
6250 *
6251 * XXX x_policy is outside of RFC2367 (KAME extension).
6252 * XXX sensitivity is not supported.
6253 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6254 * see comment for key_getcomb_ipcomp().
6255 *
6256 * OUT:
6257 * 0 : succeed
6258 * others: error number
6259 */
6260 static int
6261 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6262 {
6263 struct mbuf *result = NULL, *m;
6264 #ifndef IPSEC_NONBLOCK_ACQUIRE
6265 struct secacq *newacq;
6266 #endif
6267 u_int8_t satype;
6268 int error = -1;
6269 u_int32_t seq;
6270
6271 /* sanity check */
6272 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
6273 satype = key_proto2satype(saidx->proto);
6274 IPSEC_ASSERT(satype != 0,
6275 ("key_acquire: null satype, protocol %u", saidx->proto));
6276
6277 #ifndef IPSEC_NONBLOCK_ACQUIRE
6278 /*
6279 * We never do anything about acquirng SA. There is anather
6280 * solution that kernel blocks to send SADB_ACQUIRE message until
6281 * getting something message from IKEd. In later case, to be
6282 * managed with ACQUIRING list.
6283 */
6284 /* Get an entry to check whether sending message or not. */
6285 if ((newacq = key_getacq(saidx)) != NULL) {
6286 if (key_blockacq_count < newacq->count) {
6287 /* reset counter and do send message. */
6288 newacq->count = 0;
6289 } else {
6290 /* increment counter and do nothing. */
6291 newacq->count++;
6292 return 0;
6293 }
6294 } else {
6295 /* make new entry for blocking to send SADB_ACQUIRE. */
6296 if ((newacq = key_newacq(saidx)) == NULL)
6297 return ENOBUFS;
6298
6299 /* add to acqtree */
6300 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6301 }
6302 #endif
6303
6304
6305 #ifndef IPSEC_NONBLOCK_ACQUIRE
6306 seq = newacq->seq;
6307 #else
6308 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6309 #endif
6310 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6311 if (!m) {
6312 error = ENOBUFS;
6313 goto fail;
6314 }
6315 result = m;
6316
6317 /* set sadb_address for saidx's. */
6318 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6319 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6320 if (!m) {
6321 error = ENOBUFS;
6322 goto fail;
6323 }
6324 m_cat(result, m);
6325
6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6327 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6328 if (!m) {
6329 error = ENOBUFS;
6330 goto fail;
6331 }
6332 m_cat(result, m);
6333
6334 /* XXX proxy address (optional) */
6335
6336 /* set sadb_x_policy */
6337 if (sp) {
6338 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6339 if (!m) {
6340 error = ENOBUFS;
6341 goto fail;
6342 }
6343 m_cat(result, m);
6344 }
6345
6346 /* XXX identity (optional) */
6347 #if 0
6348 if (idexttype && fqdn) {
6349 /* create identity extension (FQDN) */
6350 struct sadb_ident *id;
6351 int fqdnlen;
6352
6353 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6354 id = (struct sadb_ident *)p;
6355 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6356 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6357 id->sadb_ident_exttype = idexttype;
6358 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6359 memcpy(id + 1, fqdn, fqdnlen);
6360 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6361 }
6362
6363 if (idexttype) {
6364 /* create identity extension (USERFQDN) */
6365 struct sadb_ident *id;
6366 int userfqdnlen;
6367
6368 if (userfqdn) {
6369 /* +1 for terminating-NUL */
6370 userfqdnlen = strlen(userfqdn) + 1;
6371 } else
6372 userfqdnlen = 0;
6373 id = (struct sadb_ident *)p;
6374 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6375 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6376 id->sadb_ident_exttype = idexttype;
6377 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6378 /* XXX is it correct? */
6379 if (curlwp)
6380 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6381 if (userfqdn && userfqdnlen)
6382 memcpy(id + 1, userfqdn, userfqdnlen);
6383 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6384 }
6385 #endif
6386
6387 /* XXX sensitivity (optional) */
6388
6389 /* create proposal/combination extension */
6390 m = key_getprop(saidx);
6391 #if 0
6392 /*
6393 * spec conformant: always attach proposal/combination extension,
6394 * the problem is that we have no way to attach it for ipcomp,
6395 * due to the way sadb_comb is declared in RFC2367.
6396 */
6397 if (!m) {
6398 error = ENOBUFS;
6399 goto fail;
6400 }
6401 m_cat(result, m);
6402 #else
6403 /*
6404 * outside of spec; make proposal/combination extension optional.
6405 */
6406 if (m)
6407 m_cat(result, m);
6408 #endif
6409
6410 if ((result->m_flags & M_PKTHDR) == 0) {
6411 error = EINVAL;
6412 goto fail;
6413 }
6414
6415 if (result->m_len < sizeof(struct sadb_msg)) {
6416 result = m_pullup(result, sizeof(struct sadb_msg));
6417 if (result == NULL) {
6418 error = ENOBUFS;
6419 goto fail;
6420 }
6421 }
6422
6423 result->m_pkthdr.len = 0;
6424 for (m = result; m; m = m->m_next)
6425 result->m_pkthdr.len += m->m_len;
6426
6427 mtod(result, struct sadb_msg *)->sadb_msg_len =
6428 PFKEY_UNIT64(result->m_pkthdr.len);
6429
6430 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6431
6432 fail:
6433 if (result)
6434 m_freem(result);
6435 return error;
6436 }
6437
6438 #ifndef IPSEC_NONBLOCK_ACQUIRE
6439 static struct secacq *
6440 key_newacq(const struct secasindex *saidx)
6441 {
6442 struct secacq *newacq;
6443
6444 /* get new entry */
6445 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6446 if (newacq == NULL) {
6447 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6448 return NULL;
6449 }
6450 memset(newacq, 0, sizeof(*newacq));
6451
6452 /* copy secindex */
6453 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6454 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6455 newacq->created = time_uptime;
6456 newacq->count = 0;
6457
6458 return newacq;
6459 }
6460
6461 static struct secacq *
6462 key_getacq(const struct secasindex *saidx)
6463 {
6464 struct secacq *acq;
6465
6466 LIST_FOREACH(acq, &acqtree, chain) {
6467 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6468 return acq;
6469 }
6470
6471 return NULL;
6472 }
6473
6474 static struct secacq *
6475 key_getacqbyseq(u_int32_t seq)
6476 {
6477 struct secacq *acq;
6478
6479 LIST_FOREACH(acq, &acqtree, chain) {
6480 if (acq->seq == seq)
6481 return acq;
6482 }
6483
6484 return NULL;
6485 }
6486 #endif
6487
6488 static struct secspacq *
6489 key_newspacq(const struct secpolicyindex *spidx)
6490 {
6491 struct secspacq *acq;
6492
6493 /* get new entry */
6494 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6495 if (acq == NULL) {
6496 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6497 return NULL;
6498 }
6499 memset(acq, 0, sizeof(*acq));
6500
6501 /* copy secindex */
6502 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6503 acq->created = time_uptime;
6504 acq->count = 0;
6505
6506 return acq;
6507 }
6508
6509 static struct secspacq *
6510 key_getspacq(const struct secpolicyindex *spidx)
6511 {
6512 struct secspacq *acq;
6513
6514 LIST_FOREACH(acq, &spacqtree, chain) {
6515 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6516 return acq;
6517 }
6518
6519 return NULL;
6520 }
6521
6522 /*
6523 * SADB_ACQUIRE processing,
6524 * in first situation, is receiving
6525 * <base>
6526 * from the ikmpd, and clear sequence of its secasvar entry.
6527 *
6528 * In second situation, is receiving
6529 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6530 * from a user land process, and return
6531 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6532 * to the socket.
6533 *
6534 * m will always be freed.
6535 */
6536 static int
6537 key_acquire2(struct socket *so, struct mbuf *m,
6538 const struct sadb_msghdr *mhp)
6539 {
6540 const struct sadb_address *src0, *dst0;
6541 struct secasindex saidx;
6542 struct secashead *sah;
6543 u_int16_t proto;
6544 int error;
6545
6546 /* sanity check */
6547 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6548 panic("key_acquire2: NULL pointer is passed");
6549
6550 /*
6551 * Error message from KMd.
6552 * We assume that if error was occurred in IKEd, the length of PFKEY
6553 * message is equal to the size of sadb_msg structure.
6554 * We do not raise error even if error occurred in this function.
6555 */
6556 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6557 #ifndef IPSEC_NONBLOCK_ACQUIRE
6558 struct secacq *acq;
6559
6560 /* check sequence number */
6561 if (mhp->msg->sadb_msg_seq == 0) {
6562 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6563 m_freem(m);
6564 return 0;
6565 }
6566
6567 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6568 /*
6569 * the specified larval SA is already gone, or we got
6570 * a bogus sequence number. we can silently ignore it.
6571 */
6572 m_freem(m);
6573 return 0;
6574 }
6575
6576 /* reset acq counter in order to deletion by timehander. */
6577 acq->created = time_uptime;
6578 acq->count = 0;
6579 #endif
6580 m_freem(m);
6581 return 0;
6582 }
6583
6584 /*
6585 * This message is from user land.
6586 */
6587
6588 /* map satype to proto */
6589 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6590 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6591 return key_senderror(so, m, EINVAL);
6592 }
6593
6594 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6595 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6596 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6597 /* error */
6598 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6599 return key_senderror(so, m, EINVAL);
6600 }
6601 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6602 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6603 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6604 /* error */
6605 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6606 return key_senderror(so, m, EINVAL);
6607 }
6608
6609 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6610 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6611
6612 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6613 dst0 + 1, &saidx)) != 0)
6614 return key_senderror(so, m, EINVAL);
6615
6616 #ifdef IPSEC_NAT_T
6617 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6618 return key_senderror(so, m, EINVAL);
6619 #endif
6620
6621 /* get a SA index */
6622 LIST_FOREACH(sah, &sahtree, chain) {
6623 if (sah->state == SADB_SASTATE_DEAD)
6624 continue;
6625 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6626 break;
6627 }
6628 if (sah != NULL) {
6629 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6630 return key_senderror(so, m, EEXIST);
6631 }
6632
6633 error = key_acquire(&saidx, NULL);
6634 if (error != 0) {
6635 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6636 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6637 return key_senderror(so, m, error);
6638 }
6639
6640 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6641 }
6642
6643 /*
6644 * SADB_REGISTER processing.
6645 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6646 * receive
6647 * <base>
6648 * from the ikmpd, and register a socket to send PF_KEY messages,
6649 * and send
6650 * <base, supported>
6651 * to KMD by PF_KEY.
6652 * If socket is detached, must free from regnode.
6653 *
6654 * m will always be freed.
6655 */
6656 static int
6657 key_register(struct socket *so, struct mbuf *m,
6658 const struct sadb_msghdr *mhp)
6659 {
6660 struct secreg *reg, *newreg = 0;
6661
6662 /* sanity check */
6663 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6664 panic("key_register: NULL pointer is passed");
6665
6666 /* check for invalid register message */
6667 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6668 return key_senderror(so, m, EINVAL);
6669
6670 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6671 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6672 goto setmsg;
6673
6674 /* check whether existing or not */
6675 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6676 if (reg->so == so) {
6677 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6678 return key_senderror(so, m, EEXIST);
6679 }
6680 }
6681
6682 /* create regnode */
6683 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6684 if (newreg == NULL) {
6685 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6686 return key_senderror(so, m, ENOBUFS);
6687 }
6688 memset(newreg, 0, sizeof(*newreg));
6689
6690 newreg->so = so;
6691 ((struct keycb *)sotorawcb(so))->kp_registered++;
6692
6693 /* add regnode to regtree. */
6694 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6695
6696 setmsg:
6697 {
6698 struct mbuf *n;
6699 struct sadb_msg *newmsg;
6700 struct sadb_supported *sup;
6701 u_int len, alen, elen;
6702 int off;
6703 int i;
6704 struct sadb_alg *alg;
6705
6706 /* create new sadb_msg to reply. */
6707 alen = 0;
6708 for (i = 1; i <= SADB_AALG_MAX; i++) {
6709 if (ah_algorithm_lookup(i))
6710 alen += sizeof(struct sadb_alg);
6711 }
6712 if (alen)
6713 alen += sizeof(struct sadb_supported);
6714 elen = 0;
6715 for (i = 1; i <= SADB_EALG_MAX; i++) {
6716 if (esp_algorithm_lookup(i))
6717 elen += sizeof(struct sadb_alg);
6718 }
6719 if (elen)
6720 elen += sizeof(struct sadb_supported);
6721
6722 len = sizeof(struct sadb_msg) + alen + elen;
6723
6724 if (len > MCLBYTES)
6725 return key_senderror(so, m, ENOBUFS);
6726
6727 MGETHDR(n, M_DONTWAIT, MT_DATA);
6728 if (len > MHLEN) {
6729 MCLGET(n, M_DONTWAIT);
6730 if ((n->m_flags & M_EXT) == 0) {
6731 m_freem(n);
6732 n = NULL;
6733 }
6734 }
6735 if (!n)
6736 return key_senderror(so, m, ENOBUFS);
6737
6738 n->m_pkthdr.len = n->m_len = len;
6739 n->m_next = NULL;
6740 off = 0;
6741
6742 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6743 newmsg = mtod(n, struct sadb_msg *);
6744 newmsg->sadb_msg_errno = 0;
6745 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6746 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6747
6748 /* for authentication algorithm */
6749 if (alen) {
6750 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6751 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6752 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6753 off += PFKEY_ALIGN8(sizeof(*sup));
6754
6755 for (i = 1; i <= SADB_AALG_MAX; i++) {
6756 const struct auth_hash *aalgo;
6757 u_int16_t minkeysize, maxkeysize;
6758
6759 aalgo = ah_algorithm_lookup(i);
6760 if (!aalgo)
6761 continue;
6762 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6763 alg->sadb_alg_id = i;
6764 alg->sadb_alg_ivlen = 0;
6765 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6766 alg->sadb_alg_minbits = _BITS(minkeysize);
6767 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6768 off += PFKEY_ALIGN8(sizeof(*alg));
6769 }
6770 }
6771
6772 /* for encryption algorithm */
6773 if (elen) {
6774 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6775 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6776 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6777 off += PFKEY_ALIGN8(sizeof(*sup));
6778
6779 for (i = 1; i <= SADB_EALG_MAX; i++) {
6780 const struct enc_xform *ealgo;
6781
6782 ealgo = esp_algorithm_lookup(i);
6783 if (!ealgo)
6784 continue;
6785 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6786 alg->sadb_alg_id = i;
6787 alg->sadb_alg_ivlen = ealgo->blocksize;
6788 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6789 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6790 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6791 }
6792 }
6793
6794 #ifdef DIAGNOSTIC
6795 if (off != len)
6796 panic("length assumption failed in key_register");
6797 #endif
6798
6799 m_freem(m);
6800 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6801 }
6802 }
6803
6804 /*
6805 * free secreg entry registered.
6806 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6807 */
6808 void
6809 key_freereg(struct socket *so)
6810 {
6811 struct secreg *reg;
6812 int i;
6813
6814 /* sanity check */
6815 if (so == NULL)
6816 panic("key_freereg: NULL pointer is passed");
6817
6818 /*
6819 * check whether existing or not.
6820 * check all type of SA, because there is a potential that
6821 * one socket is registered to multiple type of SA.
6822 */
6823 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6824 LIST_FOREACH(reg, ®tree[i], chain) {
6825 if (reg->so == so
6826 && __LIST_CHAINED(reg)) {
6827 LIST_REMOVE(reg, chain);
6828 KFREE(reg);
6829 break;
6830 }
6831 }
6832 }
6833
6834 return;
6835 }
6836
6837 /*
6838 * SADB_EXPIRE processing
6839 * send
6840 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6841 * to KMD by PF_KEY.
6842 * NOTE: We send only soft lifetime extension.
6843 *
6844 * OUT: 0 : succeed
6845 * others : error number
6846 */
6847 static int
6848 key_expire(struct secasvar *sav)
6849 {
6850 int s;
6851 int satype;
6852 struct mbuf *result = NULL, *m;
6853 int len;
6854 int error = -1;
6855 struct sadb_lifetime *lt;
6856
6857 /* XXX: Why do we lock ? */
6858 s = splsoftnet(); /*called from softclock()*/
6859
6860 /* sanity check */
6861 if (sav == NULL)
6862 panic("key_expire: NULL pointer is passed");
6863 if (sav->sah == NULL)
6864 panic("key_expire: Why was SA index in SA NULL");
6865 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6866 panic("key_expire: invalid proto is passed");
6867
6868 /* set msg header */
6869 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6870 if (!m) {
6871 error = ENOBUFS;
6872 goto fail;
6873 }
6874 result = m;
6875
6876 /* create SA extension */
6877 m = key_setsadbsa(sav);
6878 if (!m) {
6879 error = ENOBUFS;
6880 goto fail;
6881 }
6882 m_cat(result, m);
6883
6884 /* create SA extension */
6885 m = key_setsadbxsa2(sav->sah->saidx.mode,
6886 sav->replay ? sav->replay->count : 0,
6887 sav->sah->saidx.reqid);
6888 if (!m) {
6889 error = ENOBUFS;
6890 goto fail;
6891 }
6892 m_cat(result, m);
6893
6894 /* create lifetime extension (current and soft) */
6895 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6896 m = key_alloc_mbuf(len);
6897 if (!m || m->m_next) { /*XXX*/
6898 if (m)
6899 m_freem(m);
6900 error = ENOBUFS;
6901 goto fail;
6902 }
6903 memset(mtod(m, void *), 0, len);
6904 lt = mtod(m, struct sadb_lifetime *);
6905 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6906 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6907 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6908 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6909 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6910 + time_second - time_uptime;
6911 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6912 + time_second - time_uptime;
6913 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6914 memcpy(lt, sav->lft_s, sizeof(*lt));
6915 m_cat(result, m);
6916
6917 /* set sadb_address for source */
6918 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6919 &sav->sah->saidx.src.sa,
6920 FULLMASK, IPSEC_ULPROTO_ANY);
6921 if (!m) {
6922 error = ENOBUFS;
6923 goto fail;
6924 }
6925 m_cat(result, m);
6926
6927 /* set sadb_address for destination */
6928 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6929 &sav->sah->saidx.dst.sa,
6930 FULLMASK, IPSEC_ULPROTO_ANY);
6931 if (!m) {
6932 error = ENOBUFS;
6933 goto fail;
6934 }
6935 m_cat(result, m);
6936
6937 if ((result->m_flags & M_PKTHDR) == 0) {
6938 error = EINVAL;
6939 goto fail;
6940 }
6941
6942 if (result->m_len < sizeof(struct sadb_msg)) {
6943 result = m_pullup(result, sizeof(struct sadb_msg));
6944 if (result == NULL) {
6945 error = ENOBUFS;
6946 goto fail;
6947 }
6948 }
6949
6950 result->m_pkthdr.len = 0;
6951 for (m = result; m; m = m->m_next)
6952 result->m_pkthdr.len += m->m_len;
6953
6954 mtod(result, struct sadb_msg *)->sadb_msg_len =
6955 PFKEY_UNIT64(result->m_pkthdr.len);
6956
6957 splx(s);
6958 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6959
6960 fail:
6961 if (result)
6962 m_freem(result);
6963 splx(s);
6964 return error;
6965 }
6966
6967 /*
6968 * SADB_FLUSH processing
6969 * receive
6970 * <base>
6971 * from the ikmpd, and free all entries in secastree.
6972 * and send,
6973 * <base>
6974 * to the ikmpd.
6975 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6976 *
6977 * m will always be freed.
6978 */
6979 static int
6980 key_flush(struct socket *so, struct mbuf *m,
6981 const struct sadb_msghdr *mhp)
6982 {
6983 struct sadb_msg *newmsg;
6984 struct secashead *sah, *nextsah;
6985 struct secasvar *sav, *nextsav;
6986 u_int16_t proto;
6987 u_int8_t state;
6988 u_int stateidx;
6989
6990 /* sanity check */
6991 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6992 panic("key_flush: NULL pointer is passed");
6993
6994 /* map satype to proto */
6995 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6996 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6997 return key_senderror(so, m, EINVAL);
6998 }
6999
7000 /* no SATYPE specified, i.e. flushing all SA. */
7001 for (sah = LIST_FIRST(&sahtree);
7002 sah != NULL;
7003 sah = nextsah) {
7004 nextsah = LIST_NEXT(sah, chain);
7005
7006 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7007 && proto != sah->saidx.proto)
7008 continue;
7009
7010 for (stateidx = 0;
7011 stateidx < _ARRAYLEN(saorder_state_alive);
7012 stateidx++) {
7013 state = saorder_state_any[stateidx];
7014 for (sav = LIST_FIRST(&sah->savtree[state]);
7015 sav != NULL;
7016 sav = nextsav) {
7017
7018 nextsav = LIST_NEXT(sav, chain);
7019
7020 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7021 KEY_FREESAV(&sav);
7022 }
7023 }
7024
7025 sah->state = SADB_SASTATE_DEAD;
7026 }
7027
7028 if (m->m_len < sizeof(struct sadb_msg) ||
7029 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7030 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
7031 return key_senderror(so, m, ENOBUFS);
7032 }
7033
7034 if (m->m_next)
7035 m_freem(m->m_next);
7036 m->m_next = NULL;
7037 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7038 newmsg = mtod(m, struct sadb_msg *);
7039 newmsg->sadb_msg_errno = 0;
7040 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7041
7042 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7043 }
7044
7045
7046 static struct mbuf *
7047 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7048 {
7049 struct secashead *sah;
7050 struct secasvar *sav;
7051 u_int16_t proto;
7052 u_int stateidx;
7053 u_int8_t satype;
7054 u_int8_t state;
7055 int cnt;
7056 struct mbuf *m, *n, *prev;
7057 int totlen;
7058
7059 *lenp = 0;
7060
7061 /* map satype to proto */
7062 if ((proto = key_satype2proto(req_satype)) == 0) {
7063 *errorp = EINVAL;
7064 return (NULL);
7065 }
7066
7067 /* count sav entries to be sent to userland. */
7068 cnt = 0;
7069 LIST_FOREACH(sah, &sahtree, chain) {
7070 if (req_satype != SADB_SATYPE_UNSPEC &&
7071 proto != sah->saidx.proto)
7072 continue;
7073
7074 for (stateidx = 0;
7075 stateidx < _ARRAYLEN(saorder_state_any);
7076 stateidx++) {
7077 state = saorder_state_any[stateidx];
7078 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7079 cnt++;
7080 }
7081 }
7082 }
7083
7084 if (cnt == 0) {
7085 *errorp = ENOENT;
7086 return (NULL);
7087 }
7088
7089 /* send this to the userland, one at a time. */
7090 m = NULL;
7091 prev = m;
7092 LIST_FOREACH(sah, &sahtree, chain) {
7093 if (req_satype != SADB_SATYPE_UNSPEC &&
7094 proto != sah->saidx.proto)
7095 continue;
7096
7097 /* map proto to satype */
7098 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7099 m_freem(m);
7100 *errorp = EINVAL;
7101 return (NULL);
7102 }
7103
7104 for (stateidx = 0;
7105 stateidx < _ARRAYLEN(saorder_state_any);
7106 stateidx++) {
7107 state = saorder_state_any[stateidx];
7108 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7109 n = key_setdumpsa(sav, SADB_DUMP, satype,
7110 --cnt, pid);
7111 if (!n) {
7112 m_freem(m);
7113 *errorp = ENOBUFS;
7114 return (NULL);
7115 }
7116
7117 totlen += n->m_pkthdr.len;
7118 if (!m)
7119 m = n;
7120 else
7121 prev->m_nextpkt = n;
7122 prev = n;
7123 }
7124 }
7125 }
7126
7127 if (!m) {
7128 *errorp = EINVAL;
7129 return (NULL);
7130 }
7131
7132 if ((m->m_flags & M_PKTHDR) != 0) {
7133 m->m_pkthdr.len = 0;
7134 for (n = m; n; n = n->m_next)
7135 m->m_pkthdr.len += n->m_len;
7136 }
7137
7138 *errorp = 0;
7139 return (m);
7140 }
7141
7142 /*
7143 * SADB_DUMP processing
7144 * dump all entries including status of DEAD in SAD.
7145 * receive
7146 * <base>
7147 * from the ikmpd, and dump all secasvar leaves
7148 * and send,
7149 * <base> .....
7150 * to the ikmpd.
7151 *
7152 * m will always be freed.
7153 */
7154 static int
7155 key_dump(struct socket *so, struct mbuf *m0,
7156 const struct sadb_msghdr *mhp)
7157 {
7158 u_int16_t proto;
7159 u_int8_t satype;
7160 struct mbuf *n;
7161 int s;
7162 int error, len, ok;
7163
7164 /* sanity check */
7165 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
7166 panic("key_dump: NULL pointer is passed");
7167
7168 /* map satype to proto */
7169 satype = mhp->msg->sadb_msg_satype;
7170 if ((proto = key_satype2proto(satype)) == 0) {
7171 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7172 return key_senderror(so, m0, EINVAL);
7173 }
7174
7175 /*
7176 * If the requestor has insufficient socket-buffer space
7177 * for the entire chain, nobody gets any response to the DUMP.
7178 * XXX For now, only the requestor ever gets anything.
7179 * Moreover, if the requestor has any space at all, they receive
7180 * the entire chain, otherwise the request is refused with ENOBUFS.
7181 */
7182 if (sbspace(&so->so_rcv) <= 0) {
7183 return key_senderror(so, m0, ENOBUFS);
7184 }
7185
7186 s = splsoftnet();
7187 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7188 splx(s);
7189
7190 if (n == NULL) {
7191 return key_senderror(so, m0, ENOENT);
7192 }
7193 {
7194 uint64_t *ps = PFKEY_STAT_GETREF();
7195 ps[PFKEY_STAT_IN_TOTAL]++;
7196 ps[PFKEY_STAT_IN_BYTES] += len;
7197 PFKEY_STAT_PUTREF();
7198 }
7199
7200 /*
7201 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7202 * The requestor receives either the entire chain, or an
7203 * error message with ENOBUFS.
7204 *
7205 * sbappendaddrchain() takes the chain of entries, one
7206 * packet-record per SPD entry, prepends the key_src sockaddr
7207 * to each packet-record, links the sockaddr mbufs into a new
7208 * list of records, then appends the entire resulting
7209 * list to the requesting socket.
7210 */
7211 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7212 n, SB_PRIO_ONESHOT_OVERFLOW);
7213
7214 if (!ok) {
7215 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7216 m_freem(n);
7217 return key_senderror(so, m0, ENOBUFS);
7218 }
7219
7220 m_freem(m0);
7221 return 0;
7222 }
7223
7224 /*
7225 * SADB_X_PROMISC processing
7226 *
7227 * m will always be freed.
7228 */
7229 static int
7230 key_promisc(struct socket *so, struct mbuf *m,
7231 const struct sadb_msghdr *mhp)
7232 {
7233 int olen;
7234
7235 /* sanity check */
7236 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
7237 panic("key_promisc: NULL pointer is passed");
7238
7239 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7240
7241 if (olen < sizeof(struct sadb_msg)) {
7242 #if 1
7243 return key_senderror(so, m, EINVAL);
7244 #else
7245 m_freem(m);
7246 return 0;
7247 #endif
7248 } else if (olen == sizeof(struct sadb_msg)) {
7249 /* enable/disable promisc mode */
7250 struct keycb *kp;
7251
7252 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7253 return key_senderror(so, m, EINVAL);
7254 mhp->msg->sadb_msg_errno = 0;
7255 switch (mhp->msg->sadb_msg_satype) {
7256 case 0:
7257 case 1:
7258 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7259 break;
7260 default:
7261 return key_senderror(so, m, EINVAL);
7262 }
7263
7264 /* send the original message back to everyone */
7265 mhp->msg->sadb_msg_errno = 0;
7266 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7267 } else {
7268 /* send packet as is */
7269
7270 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7271
7272 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7273 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7274 }
7275 }
7276
7277 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7278 const struct sadb_msghdr *) = {
7279 NULL, /* SADB_RESERVED */
7280 key_getspi, /* SADB_GETSPI */
7281 key_update, /* SADB_UPDATE */
7282 key_add, /* SADB_ADD */
7283 key_delete, /* SADB_DELETE */
7284 key_get, /* SADB_GET */
7285 key_acquire2, /* SADB_ACQUIRE */
7286 key_register, /* SADB_REGISTER */
7287 NULL, /* SADB_EXPIRE */
7288 key_flush, /* SADB_FLUSH */
7289 key_dump, /* SADB_DUMP */
7290 key_promisc, /* SADB_X_PROMISC */
7291 NULL, /* SADB_X_PCHANGE */
7292 key_spdadd, /* SADB_X_SPDUPDATE */
7293 key_spdadd, /* SADB_X_SPDADD */
7294 key_spddelete, /* SADB_X_SPDDELETE */
7295 key_spdget, /* SADB_X_SPDGET */
7296 NULL, /* SADB_X_SPDACQUIRE */
7297 key_spddump, /* SADB_X_SPDDUMP */
7298 key_spdflush, /* SADB_X_SPDFLUSH */
7299 key_spdadd, /* SADB_X_SPDSETIDX */
7300 NULL, /* SADB_X_SPDEXPIRE */
7301 key_spddelete2, /* SADB_X_SPDDELETE2 */
7302 #ifdef IPSEC_NAT_T
7303 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7304 #endif
7305 };
7306
7307 /*
7308 * parse sadb_msg buffer to process PFKEYv2,
7309 * and create a data to response if needed.
7310 * I think to be dealed with mbuf directly.
7311 * IN:
7312 * msgp : pointer to pointer to a received buffer pulluped.
7313 * This is rewrited to response.
7314 * so : pointer to socket.
7315 * OUT:
7316 * length for buffer to send to user process.
7317 */
7318 int
7319 key_parse(struct mbuf *m, struct socket *so)
7320 {
7321 struct sadb_msg *msg;
7322 struct sadb_msghdr mh;
7323 u_int orglen;
7324 int error;
7325 int target;
7326
7327 /* sanity check */
7328 if (m == NULL || so == NULL)
7329 panic("key_parse: NULL pointer is passed");
7330
7331 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7332 KEYDEBUG(KEYDEBUG_KEY_DUMP,
7333 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7334 kdebug_sadb(msg));
7335 #endif
7336
7337 if (m->m_len < sizeof(struct sadb_msg)) {
7338 m = m_pullup(m, sizeof(struct sadb_msg));
7339 if (!m)
7340 return ENOBUFS;
7341 }
7342 msg = mtod(m, struct sadb_msg *);
7343 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7344 target = KEY_SENDUP_ONE;
7345
7346 if ((m->m_flags & M_PKTHDR) == 0 ||
7347 m->m_pkthdr.len != m->m_pkthdr.len) {
7348 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7349 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7350 error = EINVAL;
7351 goto senderror;
7352 }
7353
7354 if (msg->sadb_msg_version != PF_KEY_V2) {
7355 ipseclog((LOG_DEBUG,
7356 "key_parse: PF_KEY version %u is mismatched.\n",
7357 msg->sadb_msg_version));
7358 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7359 error = EINVAL;
7360 goto senderror;
7361 }
7362
7363 if (msg->sadb_msg_type > SADB_MAX) {
7364 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7365 msg->sadb_msg_type));
7366 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7367 error = EINVAL;
7368 goto senderror;
7369 }
7370
7371 /* for old-fashioned code - should be nuked */
7372 if (m->m_pkthdr.len > MCLBYTES) {
7373 m_freem(m);
7374 return ENOBUFS;
7375 }
7376 if (m->m_next) {
7377 struct mbuf *n;
7378
7379 MGETHDR(n, M_DONTWAIT, MT_DATA);
7380 if (n && m->m_pkthdr.len > MHLEN) {
7381 MCLGET(n, M_DONTWAIT);
7382 if ((n->m_flags & M_EXT) == 0) {
7383 m_free(n);
7384 n = NULL;
7385 }
7386 }
7387 if (!n) {
7388 m_freem(m);
7389 return ENOBUFS;
7390 }
7391 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7392 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7393 n->m_next = NULL;
7394 m_freem(m);
7395 m = n;
7396 }
7397
7398 /* align the mbuf chain so that extensions are in contiguous region. */
7399 error = key_align(m, &mh);
7400 if (error)
7401 return error;
7402
7403 if (m->m_next) { /*XXX*/
7404 m_freem(m);
7405 return ENOBUFS;
7406 }
7407
7408 msg = mh.msg;
7409
7410 /* check SA type */
7411 switch (msg->sadb_msg_satype) {
7412 case SADB_SATYPE_UNSPEC:
7413 switch (msg->sadb_msg_type) {
7414 case SADB_GETSPI:
7415 case SADB_UPDATE:
7416 case SADB_ADD:
7417 case SADB_DELETE:
7418 case SADB_GET:
7419 case SADB_ACQUIRE:
7420 case SADB_EXPIRE:
7421 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7422 "when msg type=%u.\n", msg->sadb_msg_type));
7423 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7424 error = EINVAL;
7425 goto senderror;
7426 }
7427 break;
7428 case SADB_SATYPE_AH:
7429 case SADB_SATYPE_ESP:
7430 case SADB_X_SATYPE_IPCOMP:
7431 case SADB_X_SATYPE_TCPSIGNATURE:
7432 switch (msg->sadb_msg_type) {
7433 case SADB_X_SPDADD:
7434 case SADB_X_SPDDELETE:
7435 case SADB_X_SPDGET:
7436 case SADB_X_SPDDUMP:
7437 case SADB_X_SPDFLUSH:
7438 case SADB_X_SPDSETIDX:
7439 case SADB_X_SPDUPDATE:
7440 case SADB_X_SPDDELETE2:
7441 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7442 msg->sadb_msg_type));
7443 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7444 error = EINVAL;
7445 goto senderror;
7446 }
7447 break;
7448 case SADB_SATYPE_RSVP:
7449 case SADB_SATYPE_OSPFV2:
7450 case SADB_SATYPE_RIPV2:
7451 case SADB_SATYPE_MIP:
7452 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7453 msg->sadb_msg_satype));
7454 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7455 error = EOPNOTSUPP;
7456 goto senderror;
7457 case 1: /* XXX: What does it do? */
7458 if (msg->sadb_msg_type == SADB_X_PROMISC)
7459 break;
7460 /*FALLTHROUGH*/
7461 default:
7462 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7463 msg->sadb_msg_satype));
7464 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7465 error = EINVAL;
7466 goto senderror;
7467 }
7468
7469 /* check field of upper layer protocol and address family */
7470 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7471 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7472 struct sadb_address *src0, *dst0;
7473 u_int plen;
7474
7475 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7476 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7477
7478 /* check upper layer protocol */
7479 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7480 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7481 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7482 error = EINVAL;
7483 goto senderror;
7484 }
7485
7486 /* check family */
7487 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7488 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7489 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7490 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7491 error = EINVAL;
7492 goto senderror;
7493 }
7494 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7495 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7496 ipseclog((LOG_DEBUG,
7497 "key_parse: address struct size mismatched.\n"));
7498 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7499 error = EINVAL;
7500 goto senderror;
7501 }
7502
7503 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7504 case AF_INET:
7505 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7506 sizeof(struct sockaddr_in)) {
7507 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7508 error = EINVAL;
7509 goto senderror;
7510 }
7511 break;
7512 case AF_INET6:
7513 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7514 sizeof(struct sockaddr_in6)) {
7515 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7516 error = EINVAL;
7517 goto senderror;
7518 }
7519 break;
7520 default:
7521 ipseclog((LOG_DEBUG,
7522 "key_parse: unsupported address family.\n"));
7523 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7524 error = EAFNOSUPPORT;
7525 goto senderror;
7526 }
7527
7528 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7529 case AF_INET:
7530 plen = sizeof(struct in_addr) << 3;
7531 break;
7532 case AF_INET6:
7533 plen = sizeof(struct in6_addr) << 3;
7534 break;
7535 default:
7536 plen = 0; /*fool gcc*/
7537 break;
7538 }
7539
7540 /* check max prefix length */
7541 if (src0->sadb_address_prefixlen > plen ||
7542 dst0->sadb_address_prefixlen > plen) {
7543 ipseclog((LOG_DEBUG,
7544 "key_parse: illegal prefixlen.\n"));
7545 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7546 error = EINVAL;
7547 goto senderror;
7548 }
7549
7550 /*
7551 * prefixlen == 0 is valid because there can be a case when
7552 * all addresses are matched.
7553 */
7554 }
7555
7556 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7557 key_typesw[msg->sadb_msg_type] == NULL) {
7558 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7559 error = EINVAL;
7560 goto senderror;
7561 }
7562
7563 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7564
7565 senderror:
7566 msg->sadb_msg_errno = error;
7567 return key_sendup_mbuf(so, m, target);
7568 }
7569
7570 static int
7571 key_senderror(struct socket *so, struct mbuf *m, int code)
7572 {
7573 struct sadb_msg *msg;
7574
7575 if (m->m_len < sizeof(struct sadb_msg))
7576 panic("invalid mbuf passed to key_senderror");
7577
7578 msg = mtod(m, struct sadb_msg *);
7579 msg->sadb_msg_errno = code;
7580 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7581 }
7582
7583 /*
7584 * set the pointer to each header into message buffer.
7585 * m will be freed on error.
7586 * XXX larger-than-MCLBYTES extension?
7587 */
7588 static int
7589 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7590 {
7591 struct mbuf *n;
7592 struct sadb_ext *ext;
7593 size_t off, end;
7594 int extlen;
7595 int toff;
7596
7597 /* sanity check */
7598 if (m == NULL || mhp == NULL)
7599 panic("key_align: NULL pointer is passed");
7600 if (m->m_len < sizeof(struct sadb_msg))
7601 panic("invalid mbuf passed to key_align");
7602
7603 /* initialize */
7604 memset(mhp, 0, sizeof(*mhp));
7605
7606 mhp->msg = mtod(m, struct sadb_msg *);
7607 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7608
7609 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7610 extlen = end; /*just in case extlen is not updated*/
7611 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7612 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7613 if (!n) {
7614 /* m is already freed */
7615 return ENOBUFS;
7616 }
7617 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7618
7619 /* set pointer */
7620 switch (ext->sadb_ext_type) {
7621 case SADB_EXT_SA:
7622 case SADB_EXT_ADDRESS_SRC:
7623 case SADB_EXT_ADDRESS_DST:
7624 case SADB_EXT_ADDRESS_PROXY:
7625 case SADB_EXT_LIFETIME_CURRENT:
7626 case SADB_EXT_LIFETIME_HARD:
7627 case SADB_EXT_LIFETIME_SOFT:
7628 case SADB_EXT_KEY_AUTH:
7629 case SADB_EXT_KEY_ENCRYPT:
7630 case SADB_EXT_IDENTITY_SRC:
7631 case SADB_EXT_IDENTITY_DST:
7632 case SADB_EXT_SENSITIVITY:
7633 case SADB_EXT_PROPOSAL:
7634 case SADB_EXT_SUPPORTED_AUTH:
7635 case SADB_EXT_SUPPORTED_ENCRYPT:
7636 case SADB_EXT_SPIRANGE:
7637 case SADB_X_EXT_POLICY:
7638 case SADB_X_EXT_SA2:
7639 #ifdef IPSEC_NAT_T
7640 case SADB_X_EXT_NAT_T_TYPE:
7641 case SADB_X_EXT_NAT_T_SPORT:
7642 case SADB_X_EXT_NAT_T_DPORT:
7643 case SADB_X_EXT_NAT_T_OAI:
7644 case SADB_X_EXT_NAT_T_OAR:
7645 case SADB_X_EXT_NAT_T_FRAG:
7646 #endif
7647 /* duplicate check */
7648 /*
7649 * XXX Are there duplication payloads of either
7650 * KEY_AUTH or KEY_ENCRYPT ?
7651 */
7652 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7653 ipseclog((LOG_DEBUG,
7654 "key_align: duplicate ext_type %u "
7655 "is passed.\n", ext->sadb_ext_type));
7656 m_freem(m);
7657 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7658 return EINVAL;
7659 }
7660 break;
7661 default:
7662 ipseclog((LOG_DEBUG,
7663 "key_align: invalid ext_type %u is passed.\n",
7664 ext->sadb_ext_type));
7665 m_freem(m);
7666 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7667 return EINVAL;
7668 }
7669
7670 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7671
7672 if (key_validate_ext(ext, extlen)) {
7673 m_freem(m);
7674 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7675 return EINVAL;
7676 }
7677
7678 n = m_pulldown(m, off, extlen, &toff);
7679 if (!n) {
7680 /* m is already freed */
7681 return ENOBUFS;
7682 }
7683 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7684
7685 mhp->ext[ext->sadb_ext_type] = ext;
7686 mhp->extoff[ext->sadb_ext_type] = off;
7687 mhp->extlen[ext->sadb_ext_type] = extlen;
7688 }
7689
7690 if (off != end) {
7691 m_freem(m);
7692 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7693 return EINVAL;
7694 }
7695
7696 return 0;
7697 }
7698
7699 static int
7700 key_validate_ext(const struct sadb_ext *ext, int len)
7701 {
7702 const struct sockaddr *sa;
7703 enum { NONE, ADDR } checktype = NONE;
7704 int baselen = 0;
7705 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7706
7707 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7708 return EINVAL;
7709
7710 /* if it does not match minimum/maximum length, bail */
7711 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7712 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7713 return EINVAL;
7714 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7715 return EINVAL;
7716 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7717 return EINVAL;
7718
7719 /* more checks based on sadb_ext_type XXX need more */
7720 switch (ext->sadb_ext_type) {
7721 case SADB_EXT_ADDRESS_SRC:
7722 case SADB_EXT_ADDRESS_DST:
7723 case SADB_EXT_ADDRESS_PROXY:
7724 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7725 checktype = ADDR;
7726 break;
7727 case SADB_EXT_IDENTITY_SRC:
7728 case SADB_EXT_IDENTITY_DST:
7729 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7730 SADB_X_IDENTTYPE_ADDR) {
7731 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7732 checktype = ADDR;
7733 } else
7734 checktype = NONE;
7735 break;
7736 default:
7737 checktype = NONE;
7738 break;
7739 }
7740
7741 switch (checktype) {
7742 case NONE:
7743 break;
7744 case ADDR:
7745 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7746 if (len < baselen + sal)
7747 return EINVAL;
7748 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7749 return EINVAL;
7750 break;
7751 }
7752
7753 return 0;
7754 }
7755
7756 static int
7757 key_do_init(void)
7758 {
7759 int i;
7760
7761 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7762
7763 callout_init(&key_timehandler_ch, 0);
7764
7765 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7766 LIST_INIT(&sptree[i]);
7767 }
7768
7769 LIST_INIT(&sahtree);
7770
7771 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7772 LIST_INIT(®tree[i]);
7773 }
7774
7775 #ifndef IPSEC_NONBLOCK_ACQUIRE
7776 LIST_INIT(&acqtree);
7777 #endif
7778 LIST_INIT(&spacqtree);
7779
7780 /* system default */
7781 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7782 ip4_def_policy.refcnt++; /*never reclaim this*/
7783
7784 #ifdef INET6
7785 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7786 ip6_def_policy.refcnt++; /*never reclaim this*/
7787 #endif
7788
7789
7790 #ifndef IPSEC_DEBUG2
7791 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7792 #endif /*IPSEC_DEBUG2*/
7793
7794 /* initialize key statistics */
7795 keystat.getspi_count = 1;
7796
7797 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7798
7799 return (0);
7800 }
7801
7802 void
7803 key_init(void)
7804 {
7805 static ONCE_DECL(key_init_once);
7806
7807 RUN_ONCE(&key_init_once, key_do_init);
7808 }
7809
7810 /*
7811 * XXX: maybe This function is called after INBOUND IPsec processing.
7812 *
7813 * Special check for tunnel-mode packets.
7814 * We must make some checks for consistency between inner and outer IP header.
7815 *
7816 * xxx more checks to be provided
7817 */
7818 int
7819 key_checktunnelsanity(
7820 struct secasvar *sav,
7821 u_int family,
7822 void *src,
7823 void *dst
7824 )
7825 {
7826 /* sanity check */
7827 if (sav->sah == NULL)
7828 panic("sav->sah == NULL at key_checktunnelsanity");
7829
7830 /* XXX: check inner IP header */
7831
7832 return 1;
7833 }
7834
7835 #if 0
7836 #define hostnamelen strlen(hostname)
7837
7838 /*
7839 * Get FQDN for the host.
7840 * If the administrator configured hostname (by hostname(1)) without
7841 * domain name, returns nothing.
7842 */
7843 static const char *
7844 key_getfqdn(void)
7845 {
7846 int i;
7847 int hasdot;
7848 static char fqdn[MAXHOSTNAMELEN + 1];
7849
7850 if (!hostnamelen)
7851 return NULL;
7852
7853 /* check if it comes with domain name. */
7854 hasdot = 0;
7855 for (i = 0; i < hostnamelen; i++) {
7856 if (hostname[i] == '.')
7857 hasdot++;
7858 }
7859 if (!hasdot)
7860 return NULL;
7861
7862 /* NOTE: hostname may not be NUL-terminated. */
7863 memset(fqdn, 0, sizeof(fqdn));
7864 memcpy(fqdn, hostname, hostnamelen);
7865 fqdn[hostnamelen] = '\0';
7866 return fqdn;
7867 }
7868
7869 /*
7870 * get username@FQDN for the host/user.
7871 */
7872 static const char *
7873 key_getuserfqdn(void)
7874 {
7875 const char *host;
7876 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7877 struct proc *p = curproc;
7878 char *q;
7879
7880 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7881 return NULL;
7882 if (!(host = key_getfqdn()))
7883 return NULL;
7884
7885 /* NOTE: s_login may not be-NUL terminated. */
7886 memset(userfqdn, 0, sizeof(userfqdn));
7887 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7888 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7889 q = userfqdn + strlen(userfqdn);
7890 *q++ = '@';
7891 memcpy(q, host, strlen(host));
7892 q += strlen(host);
7893 *q++ = '\0';
7894
7895 return userfqdn;
7896 }
7897 #endif
7898
7899 /* record data transfer on SA, and update timestamps */
7900 void
7901 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7902 {
7903 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7904 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7905 if (!sav->lft_c)
7906 return;
7907
7908 /*
7909 * XXX Currently, there is a difference of bytes size
7910 * between inbound and outbound processing.
7911 */
7912 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7913 /* to check bytes lifetime is done in key_timehandler(). */
7914
7915 /*
7916 * We use the number of packets as the unit of
7917 * sadb_lifetime_allocations. We increment the variable
7918 * whenever {esp,ah}_{in,out}put is called.
7919 */
7920 sav->lft_c->sadb_lifetime_allocations++;
7921 /* XXX check for expires? */
7922
7923 /*
7924 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7925 * in seconds. HARD and SOFT lifetime are measured by the time
7926 * difference (again in seconds) from sadb_lifetime_usetime.
7927 *
7928 * usetime
7929 * v expire expire
7930 * -----+-----+--------+---> t
7931 * <--------------> HARD
7932 * <-----> SOFT
7933 */
7934 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7935 /* XXX check for expires? */
7936
7937 return;
7938 }
7939
7940 /* dumb version */
7941 void
7942 key_sa_routechange(struct sockaddr *dst)
7943 {
7944 struct secashead *sah;
7945 struct route *ro;
7946 const struct sockaddr *sa;
7947
7948 LIST_FOREACH(sah, &sahtree, chain) {
7949 ro = &sah->sa_route;
7950 sa = rtcache_getdst(ro);
7951 if (sa != NULL && dst->sa_len == sa->sa_len &&
7952 memcmp(dst, sa, dst->sa_len) == 0)
7953 rtcache_free(ro);
7954 }
7955
7956 return;
7957 }
7958
7959 static void
7960 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7961 {
7962 if (sav == NULL)
7963 panic("key_sa_chgstate called with sav == NULL");
7964
7965 if (sav->state == state)
7966 return;
7967
7968 if (__LIST_CHAINED(sav))
7969 LIST_REMOVE(sav, chain);
7970
7971 sav->state = state;
7972 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7973 }
7974
7975 /* XXX too much? */
7976 static struct mbuf *
7977 key_alloc_mbuf(int l)
7978 {
7979 struct mbuf *m = NULL, *n;
7980 int len, t;
7981
7982 len = l;
7983 while (len > 0) {
7984 MGET(n, M_DONTWAIT, MT_DATA);
7985 if (n && len > MLEN)
7986 MCLGET(n, M_DONTWAIT);
7987 if (!n) {
7988 m_freem(m);
7989 return NULL;
7990 }
7991
7992 n->m_next = NULL;
7993 n->m_len = 0;
7994 n->m_len = M_TRAILINGSPACE(n);
7995 /* use the bottom of mbuf, hoping we can prepend afterwards */
7996 if (n->m_len > len) {
7997 t = (n->m_len - len) & ~(sizeof(long) - 1);
7998 n->m_data += t;
7999 n->m_len = len;
8000 }
8001
8002 len -= n->m_len;
8003
8004 if (m)
8005 m_cat(m, n);
8006 else
8007 m = n;
8008 }
8009
8010 return m;
8011 }
8012
8013 static struct mbuf *
8014 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8015 {
8016 struct secashead *sah;
8017 struct secasvar *sav;
8018 u_int16_t proto;
8019 u_int stateidx;
8020 u_int8_t satype;
8021 u_int8_t state;
8022 int cnt;
8023 struct mbuf *m, *n;
8024
8025 /* map satype to proto */
8026 if ((proto = key_satype2proto(req_satype)) == 0) {
8027 *errorp = EINVAL;
8028 return (NULL);
8029 }
8030
8031 /* count sav entries to be sent to the userland. */
8032 cnt = 0;
8033 LIST_FOREACH(sah, &sahtree, chain) {
8034 if (req_satype != SADB_SATYPE_UNSPEC &&
8035 proto != sah->saidx.proto)
8036 continue;
8037
8038 for (stateidx = 0;
8039 stateidx < _ARRAYLEN(saorder_state_any);
8040 stateidx++) {
8041 state = saorder_state_any[stateidx];
8042 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8043 cnt++;
8044 }
8045 }
8046 }
8047
8048 if (cnt == 0) {
8049 *errorp = ENOENT;
8050 return (NULL);
8051 }
8052
8053 /* send this to the userland, one at a time. */
8054 m = NULL;
8055 LIST_FOREACH(sah, &sahtree, chain) {
8056 if (req_satype != SADB_SATYPE_UNSPEC &&
8057 proto != sah->saidx.proto)
8058 continue;
8059
8060 /* map proto to satype */
8061 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8062 m_freem(m);
8063 *errorp = EINVAL;
8064 return (NULL);
8065 }
8066
8067 for (stateidx = 0;
8068 stateidx < _ARRAYLEN(saorder_state_any);
8069 stateidx++) {
8070 state = saorder_state_any[stateidx];
8071 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8072 n = key_setdumpsa(sav, SADB_DUMP, satype,
8073 --cnt, pid);
8074 if (!n) {
8075 m_freem(m);
8076 *errorp = ENOBUFS;
8077 return (NULL);
8078 }
8079
8080 if (!m)
8081 m = n;
8082 else
8083 m_cat(m, n);
8084 }
8085 }
8086 }
8087
8088 if (!m) {
8089 *errorp = EINVAL;
8090 return (NULL);
8091 }
8092
8093 if ((m->m_flags & M_PKTHDR) != 0) {
8094 m->m_pkthdr.len = 0;
8095 for (n = m; n; n = n->m_next)
8096 m->m_pkthdr.len += n->m_len;
8097 }
8098
8099 *errorp = 0;
8100 return (m);
8101 }
8102
8103 static struct mbuf *
8104 key_setspddump(int *errorp, pid_t pid)
8105 {
8106 struct secpolicy *sp;
8107 int cnt;
8108 u_int dir;
8109 struct mbuf *m, *n;
8110
8111 /* search SPD entry and get buffer size. */
8112 cnt = 0;
8113 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8114 LIST_FOREACH(sp, &sptree[dir], chain) {
8115 cnt++;
8116 }
8117 }
8118
8119 if (cnt == 0) {
8120 *errorp = ENOENT;
8121 return (NULL);
8122 }
8123
8124 m = NULL;
8125 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8126 LIST_FOREACH(sp, &sptree[dir], chain) {
8127 --cnt;
8128 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8129
8130 if (!n) {
8131 *errorp = ENOBUFS;
8132 m_freem(m);
8133 return (NULL);
8134 }
8135 if (!m)
8136 m = n;
8137 else {
8138 m->m_pkthdr.len += n->m_pkthdr.len;
8139 m_cat(m, n);
8140 }
8141 }
8142 }
8143
8144 *errorp = 0;
8145 return (m);
8146 }
8147
8148 static int
8149 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8150 {
8151 struct mbuf *m, *n;
8152 int err2 = 0;
8153 char *p, *ep;
8154 size_t len;
8155 int s, error;
8156
8157 if (newp)
8158 return (EPERM);
8159 if (namelen != 1)
8160 return (EINVAL);
8161
8162 s = splsoftnet();
8163 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8164 splx(s);
8165 if (!m)
8166 return (error);
8167 if (!oldp)
8168 *oldlenp = m->m_pkthdr.len;
8169 else {
8170 p = oldp;
8171 if (*oldlenp < m->m_pkthdr.len) {
8172 err2 = ENOMEM;
8173 ep = p + *oldlenp;
8174 } else {
8175 *oldlenp = m->m_pkthdr.len;
8176 ep = p + m->m_pkthdr.len;
8177 }
8178 for (n = m; n; n = n->m_next) {
8179 len = (ep - p < n->m_len) ?
8180 ep - p : n->m_len;
8181 error = copyout(mtod(n, const void *), p, len);
8182 p += len;
8183 if (error)
8184 break;
8185 }
8186 if (error == 0)
8187 error = err2;
8188 }
8189 m_freem(m);
8190
8191 return (error);
8192 }
8193
8194 static int
8195 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8196 {
8197 struct mbuf *m, *n;
8198 int err2 = 0;
8199 char *p, *ep;
8200 size_t len;
8201 int s, error;
8202
8203 if (newp)
8204 return (EPERM);
8205 if (namelen != 0)
8206 return (EINVAL);
8207
8208 s = splsoftnet();
8209 m = key_setspddump(&error, l->l_proc->p_pid);
8210 splx(s);
8211 if (!m)
8212 return (error);
8213 if (!oldp)
8214 *oldlenp = m->m_pkthdr.len;
8215 else {
8216 p = oldp;
8217 if (*oldlenp < m->m_pkthdr.len) {
8218 err2 = ENOMEM;
8219 ep = p + *oldlenp;
8220 } else {
8221 *oldlenp = m->m_pkthdr.len;
8222 ep = p + m->m_pkthdr.len;
8223 }
8224 for (n = m; n; n = n->m_next) {
8225 len = (ep - p < n->m_len) ?
8226 ep - p : n->m_len;
8227 error = copyout(mtod(n, const void *), p, len);
8228 p += len;
8229 if (error)
8230 break;
8231 }
8232 if (error == 0)
8233 error = err2;
8234 }
8235 m_freem(m);
8236
8237 return (error);
8238 }
8239
8240 /*
8241 * Create sysctl tree for native FAST_IPSEC key knobs, originally
8242 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8243 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8244 * and in any case the part of our sysctl namespace used for dumping the
8245 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8246 * namespace, for API reasons.
8247 *
8248 * Pending a consensus on the right way to fix this, add a level of
8249 * indirection in how we number the `native' FAST_IPSEC key nodes;
8250 * and (as requested by Andrew Brown) move registration of the
8251 * KAME-compatible names to a separate function.
8252 */
8253 #if 0
8254 # define FAST_IPSEC_PFKEY PF_KEY_V2
8255 # define FAST_IPSEC_PFKEY_NAME "keyv2"
8256 #else
8257 # define FAST_IPSEC_PFKEY PF_KEY
8258 # define FAST_IPSEC_PFKEY_NAME "key"
8259 #endif
8260
8261 static int
8262 sysctl_net_key_stats(SYSCTLFN_ARGS)
8263 {
8264
8265 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8266 }
8267
8268 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
8269 {
8270
8271 sysctl_createv(clog, 0, NULL, NULL,
8272 CTLFLAG_PERMANENT,
8273 CTLTYPE_NODE, "net", NULL,
8274 NULL, 0, NULL, 0,
8275 CTL_NET, CTL_EOL);
8276 sysctl_createv(clog, 0, NULL, NULL,
8277 CTLFLAG_PERMANENT,
8278 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL,
8279 NULL, 0, NULL, 0,
8280 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL);
8281
8282 sysctl_createv(clog, 0, NULL, NULL,
8283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8284 CTLTYPE_INT, "debug", NULL,
8285 NULL, 0, &key_debug_level, 0,
8286 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8287 sysctl_createv(clog, 0, NULL, NULL,
8288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8289 CTLTYPE_INT, "spi_try", NULL,
8290 NULL, 0, &key_spi_trycnt, 0,
8291 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8292 sysctl_createv(clog, 0, NULL, NULL,
8293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8294 CTLTYPE_INT, "spi_min_value", NULL,
8295 NULL, 0, &key_spi_minval, 0,
8296 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8297 sysctl_createv(clog, 0, NULL, NULL,
8298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8299 CTLTYPE_INT, "spi_max_value", NULL,
8300 NULL, 0, &key_spi_maxval, 0,
8301 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8302 sysctl_createv(clog, 0, NULL, NULL,
8303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8304 CTLTYPE_INT, "random_int", NULL,
8305 NULL, 0, &key_int_random, 0,
8306 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8307 sysctl_createv(clog, 0, NULL, NULL,
8308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8309 CTLTYPE_INT, "larval_lifetime", NULL,
8310 NULL, 0, &key_larval_lifetime, 0,
8311 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8312 sysctl_createv(clog, 0, NULL, NULL,
8313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8314 CTLTYPE_INT, "blockacq_count", NULL,
8315 NULL, 0, &key_blockacq_count, 0,
8316 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8317 sysctl_createv(clog, 0, NULL, NULL,
8318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8319 CTLTYPE_INT, "blockacq_lifetime", NULL,
8320 NULL, 0, &key_blockacq_lifetime, 0,
8321 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8322 sysctl_createv(clog, 0, NULL, NULL,
8323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8324 CTLTYPE_INT, "esp_keymin", NULL,
8325 NULL, 0, &ipsec_esp_keymin, 0,
8326 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8327 sysctl_createv(clog, 0, NULL, NULL,
8328 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8329 CTLTYPE_INT, "prefered_oldsa", NULL,
8330 NULL, 0, &key_prefered_oldsa, 0,
8331 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8332 sysctl_createv(clog, 0, NULL, NULL,
8333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8334 CTLTYPE_INT, "esp_auth", NULL,
8335 NULL, 0, &ipsec_esp_auth, 0,
8336 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8337 sysctl_createv(clog, 0, NULL, NULL,
8338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8339 CTLTYPE_INT, "ah_keymin", NULL,
8340 NULL, 0, &ipsec_ah_keymin, 0,
8341 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8342 sysctl_createv(clog, 0, NULL, NULL,
8343 CTLFLAG_PERMANENT,
8344 CTLTYPE_STRUCT, "stats",
8345 SYSCTL_DESCR("PF_KEY statistics"),
8346 sysctl_net_key_stats, 0, NULL, 0,
8347 CTL_NET, FAST_IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8348 }
8349
8350 /*
8351 * Register sysctl names used by setkey(8). For historical reasons,
8352 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8353 * for both FAST_IPSEC and KAME IPSEC.
8354 */
8355 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC")
8356 {
8357
8358 /* Make sure net.key exists before we register nodes underneath it. */
8359 sysctl_createv(clog, 0, NULL, NULL,
8360 CTLFLAG_PERMANENT,
8361 CTLTYPE_NODE, "net", NULL,
8362 NULL, 0, NULL, 0,
8363 CTL_NET, CTL_EOL);
8364 sysctl_createv(clog, 0, NULL, NULL,
8365 CTLFLAG_PERMANENT,
8366 CTLTYPE_NODE, "key", NULL,
8367 NULL, 0, NULL, 0,
8368 CTL_NET, PF_KEY, CTL_EOL);
8369
8370 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8371 sysctl_createv(clog, 0, NULL, NULL,
8372 CTLFLAG_PERMANENT,
8373 CTLTYPE_STRUCT, "dumpsa", NULL,
8374 sysctl_net_key_dumpsa, 0, NULL, 0,
8375 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8376 sysctl_createv(clog, 0, NULL, NULL,
8377 CTLFLAG_PERMANENT,
8378 CTLTYPE_STRUCT, "dumpsp", NULL,
8379 sysctl_net_key_dumpsp, 0, NULL, 0,
8380 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8381 }
8382