key.c revision 1.93 1 /* $NetBSD: key.c,v 1.93 2016/03/05 20:12:23 christos Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.93 2016/03/05 20:12:23 christos Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66 #include <sys/once.h>
67 #include <sys/cprng.h>
68
69 #include <net/if.h>
70 #include <net/route.h>
71 #include <net/raw_cb.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipsec_osdep.h>
108 #include <netipsec/ipcomp.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 percpu_t *pfkeystat_percpu;
117
118 /*
119 * Note on SA reference counting:
120 * - SAs that are not in DEAD state will have (total external reference + 1)
121 * following value in reference count field. they cannot be freed and are
122 * referenced from SA header.
123 * - SAs that are in DEAD state will have (total external reference)
124 * in reference count field. they are ready to be freed. reference from
125 * SA header will be removed in key_delsav(), when the reference count
126 * field hits 0 (= no external reference other than from SA header.
127 */
128
129 u_int32_t key_debug_level = 0;
130 static u_int key_spi_trycnt = 1000;
131 static u_int32_t key_spi_minval = 0x100;
132 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
133 static u_int32_t policy_id = 0;
134 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
135 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
136 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
137 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
138 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
139
140 static u_int32_t acq_seq = 0;
141
142 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
143 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
144 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
145 /* registed list */
146 #ifndef IPSEC_NONBLOCK_ACQUIRE
147 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
148 #endif
149 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
150
151 /* search order for SAs */
152 /*
153 * This order is important because we must select the oldest SA
154 * for outbound processing. For inbound, This is not important.
155 */
156 static const u_int saorder_state_valid_prefer_old[] = {
157 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
158 };
159 static const u_int saorder_state_valid_prefer_new[] = {
160 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
161 };
162
163 static const u_int saorder_state_alive[] = {
164 /* except DEAD */
165 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
166 };
167 static const u_int saorder_state_any[] = {
168 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
169 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
170 };
171
172 static const int minsize[] = {
173 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
174 sizeof(struct sadb_sa), /* SADB_EXT_SA */
175 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
176 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
177 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
178 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
179 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
180 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
181 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
182 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
183 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
184 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
185 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
186 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
187 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
188 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
189 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
190 0, /* SADB_X_EXT_KMPRIVATE */
191 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
192 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
193 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
194 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
195 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
196 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
197 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
198 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
199 };
200 static const int maxsize[] = {
201 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
202 sizeof(struct sadb_sa), /* SADB_EXT_SA */
203 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
204 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
205 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
206 0, /* SADB_EXT_ADDRESS_SRC */
207 0, /* SADB_EXT_ADDRESS_DST */
208 0, /* SADB_EXT_ADDRESS_PROXY */
209 0, /* SADB_EXT_KEY_AUTH */
210 0, /* SADB_EXT_KEY_ENCRYPT */
211 0, /* SADB_EXT_IDENTITY_SRC */
212 0, /* SADB_EXT_IDENTITY_DST */
213 0, /* SADB_EXT_SENSITIVITY */
214 0, /* SADB_EXT_PROPOSAL */
215 0, /* SADB_EXT_SUPPORTED_AUTH */
216 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
217 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
218 0, /* SADB_X_EXT_KMPRIVATE */
219 0, /* SADB_X_EXT_POLICY */
220 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
221 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
222 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
223 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
224 0, /* SADB_X_EXT_NAT_T_OAI */
225 0, /* SADB_X_EXT_NAT_T_OAR */
226 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
227 };
228
229 static int ipsec_esp_keymin = 256;
230 static int ipsec_esp_auth = 0;
231 static int ipsec_ah_keymin = 128;
232
233 #ifdef SYSCTL_DECL
234 SYSCTL_DECL(_net_key);
235 #endif
236
237 #ifdef SYSCTL_INT
238 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
239 &key_debug_level, 0, "");
240
241 /* max count of trial for the decision of spi value */
242 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
243 &key_spi_trycnt, 0, "");
244
245 /* minimum spi value to allocate automatically. */
246 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
247 &key_spi_minval, 0, "");
248
249 /* maximun spi value to allocate automatically. */
250 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
251 &key_spi_maxval, 0, "");
252
253 /* interval to initialize randseed */
254 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
255 &key_int_random, 0, "");
256
257 /* lifetime for larval SA */
258 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
259 &key_larval_lifetime, 0, "");
260
261 /* counter for blocking to send SADB_ACQUIRE to IKEd */
262 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
263 &key_blockacq_count, 0, "");
264
265 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
266 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
267 &key_blockacq_lifetime, 0, "");
268
269 /* ESP auth */
270 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
271 &ipsec_esp_auth, 0, "");
272
273 /* minimum ESP key length */
274 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
275 &ipsec_esp_keymin, 0, "");
276
277 /* minimum AH key length */
278 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
279 &ipsec_ah_keymin, 0, "");
280
281 /* perfered old SA rather than new SA */
282 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
283 &key_prefered_oldsa, 0, "");
284 #endif /* SYSCTL_INT */
285
286 #ifndef LIST_FOREACH
287 #define LIST_FOREACH(elm, head, field) \
288 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
289 #endif
290 #define __LIST_CHAINED(elm) \
291 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
292 #define LIST_INSERT_TAIL(head, elm, type, field) \
293 do {\
294 struct type *curelm = LIST_FIRST(head); \
295 if (curelm == NULL) {\
296 LIST_INSERT_HEAD(head, elm, field); \
297 } else { \
298 while (LIST_NEXT(curelm, field)) \
299 curelm = LIST_NEXT(curelm, field);\
300 LIST_INSERT_AFTER(curelm, elm, field);\
301 }\
302 } while (0)
303
304 #define KEY_CHKSASTATE(head, sav, name) \
305 /* do */ { \
306 if ((head) != (sav)) { \
307 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
308 (name), (head), (sav))); \
309 continue; \
310 } \
311 } /* while (0) */
312
313 #define KEY_CHKSPDIR(head, sp, name) \
314 do { \
315 if ((head) != (sp)) { \
316 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
317 "anyway continue.\n", \
318 (name), (head), (sp))); \
319 } \
320 } while (0)
321
322 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
323
324 #if 1
325 #define KMALLOC(p, t, n) \
326 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
327 #define KFREE(p) \
328 free((p), M_SECA)
329 #else
330 #define KMALLOC(p, t, n) \
331 do { \
332 ((p) = malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
333 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
334 __FILE__, __LINE__, (p), #t, n); \
335 } while (0)
336
337 #define KFREE(p) \
338 do { \
339 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
340 free((p), M_SECA); \
341 } while (0)
342 #endif
343
344 /*
345 * set parameters into secpolicyindex buffer.
346 * Must allocate secpolicyindex buffer passed to this function.
347 */
348 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
349 do { \
350 memset((idx), 0, sizeof(struct secpolicyindex)); \
351 (idx)->dir = (_dir); \
352 (idx)->prefs = (ps); \
353 (idx)->prefd = (pd); \
354 (idx)->ul_proto = (ulp); \
355 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
356 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
357 } while (0)
358
359 /*
360 * set parameters into secasindex buffer.
361 * Must allocate secasindex buffer before calling this function.
362 */
363 static int
364 key_setsecasidx (int, int, int, const struct sadb_address *,
365 const struct sadb_address *, struct secasindex *);
366
367 /* key statistics */
368 struct _keystat {
369 u_long getspi_count; /* the avarage of count to try to get new SPI */
370 } keystat;
371
372 struct sadb_msghdr {
373 struct sadb_msg *msg;
374 struct sadb_ext *ext[SADB_EXT_MAX + 1];
375 int extoff[SADB_EXT_MAX + 1];
376 int extlen[SADB_EXT_MAX + 1];
377 };
378
379 static struct secasvar *key_allocsa_policy (const struct secasindex *);
380 static void key_freesp_so (struct secpolicy **);
381 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
382 static void key_delsp (struct secpolicy *);
383 static struct secpolicy *key_getsp (const struct secpolicyindex *);
384 static struct secpolicy *key_getspbyid (u_int32_t);
385 static u_int16_t key_newreqid (void);
386 static struct mbuf *key_gather_mbuf (struct mbuf *,
387 const struct sadb_msghdr *, int, int, ...);
388 static int key_spdadd (struct socket *, struct mbuf *,
389 const struct sadb_msghdr *);
390 static u_int32_t key_getnewspid (void);
391 static int key_spddelete (struct socket *, struct mbuf *,
392 const struct sadb_msghdr *);
393 static int key_spddelete2 (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spdget (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static int key_spdflush (struct socket *, struct mbuf *,
398 const struct sadb_msghdr *);
399 static int key_spddump (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static struct mbuf * key_setspddump (int *errorp, pid_t);
402 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
403 static int key_nat_map (struct socket *, struct mbuf *,
404 const struct sadb_msghdr *);
405 static struct mbuf *key_setdumpsp (struct secpolicy *,
406 u_int8_t, u_int32_t, pid_t);
407 static u_int key_getspreqmsglen (const struct secpolicy *);
408 static int key_spdexpire (struct secpolicy *);
409 static struct secashead *key_newsah (const struct secasindex *);
410 static void key_delsah (struct secashead *);
411 static struct secasvar *key_newsav (struct mbuf *,
412 const struct sadb_msghdr *, struct secashead *, int *,
413 const char*, int);
414 #define KEY_NEWSAV(m, sadb, sah, e) \
415 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
416 static void key_delsav (struct secasvar *);
417 static struct secashead *key_getsah (const struct secasindex *);
418 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
419 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
420 static int key_setsaval (struct secasvar *, struct mbuf *,
421 const struct sadb_msghdr *);
422 static int key_mature (struct secasvar *);
423 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
424 u_int8_t, u_int32_t, u_int32_t);
425 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
426 static struct mbuf *key_setsadbxtype (u_int16_t);
427 static struct mbuf *key_setsadbxfrag (u_int16_t);
428 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
429 static int key_checksalen (const union sockaddr_union *);
430 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
431 u_int32_t, pid_t, u_int16_t);
432 static struct mbuf *key_setsadbsa (struct secasvar *);
433 static struct mbuf *key_setsadbaddr (u_int16_t,
434 const struct sockaddr *, u_int8_t, u_int16_t);
435 #if 0
436 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
437 int, u_int64_t);
438 #endif
439 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
440 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
441 u_int32_t);
442 static void *key_newbuf (const void *, u_int);
443 #ifdef INET6
444 static int key_ismyaddr6 (const struct sockaddr_in6 *);
445 #endif
446
447 /* flags for key_cmpsaidx() */
448 #define CMP_HEAD 1 /* protocol, addresses. */
449 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
450 #define CMP_REQID 3 /* additionally HEAD, reaid. */
451 #define CMP_EXACTLY 4 /* all elements. */
452 static int key_cmpsaidx
453 (const struct secasindex *, const struct secasindex *, int);
454
455 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
456 static int key_bbcmp (const void *, const void *, u_int);
457 static u_int16_t key_satype2proto (u_int8_t);
458 static u_int8_t key_proto2satype (u_int16_t);
459
460 static int key_getspi (struct socket *, struct mbuf *,
461 const struct sadb_msghdr *);
462 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
463 const struct secasindex *);
464 static int key_handle_natt_info (struct secasvar *,
465 const struct sadb_msghdr *);
466 static int key_set_natt_ports (union sockaddr_union *,
467 union sockaddr_union *,
468 const struct sadb_msghdr *);
469 static int key_update (struct socket *, struct mbuf *,
470 const struct sadb_msghdr *);
471 #ifdef IPSEC_DOSEQCHECK
472 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
473 #endif
474 static int key_add (struct socket *, struct mbuf *,
475 const struct sadb_msghdr *);
476 static int key_setident (struct secashead *, struct mbuf *,
477 const struct sadb_msghdr *);
478 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
479 const struct sadb_msghdr *);
480 static int key_delete (struct socket *, struct mbuf *,
481 const struct sadb_msghdr *);
482 static int key_get (struct socket *, struct mbuf *,
483 const struct sadb_msghdr *);
484
485 static void key_getcomb_setlifetime (struct sadb_comb *);
486 static struct mbuf *key_getcomb_esp (void);
487 static struct mbuf *key_getcomb_ah (void);
488 static struct mbuf *key_getcomb_ipcomp (void);
489 static struct mbuf *key_getprop (const struct secasindex *);
490
491 static int key_acquire (const struct secasindex *, struct secpolicy *);
492 #ifndef IPSEC_NONBLOCK_ACQUIRE
493 static struct secacq *key_newacq (const struct secasindex *);
494 static struct secacq *key_getacq (const struct secasindex *);
495 static struct secacq *key_getacqbyseq (u_int32_t);
496 #endif
497 static struct secspacq *key_newspacq (const struct secpolicyindex *);
498 static struct secspacq *key_getspacq (const struct secpolicyindex *);
499 static int key_acquire2 (struct socket *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static int key_register (struct socket *, struct mbuf *,
502 const struct sadb_msghdr *);
503 static int key_expire (struct secasvar *);
504 static int key_flush (struct socket *, struct mbuf *,
505 const struct sadb_msghdr *);
506 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
507 int *lenp, pid_t pid);
508 static int key_dump (struct socket *, struct mbuf *,
509 const struct sadb_msghdr *);
510 static int key_promisc (struct socket *, struct mbuf *,
511 const struct sadb_msghdr *);
512 static int key_senderror (struct socket *, struct mbuf *, int);
513 static int key_validate_ext (const struct sadb_ext *, int);
514 static int key_align (struct mbuf *, struct sadb_msghdr *);
515 #if 0
516 static const char *key_getfqdn (void);
517 static const char *key_getuserfqdn (void);
518 #endif
519 static void key_sa_chgstate (struct secasvar *, u_int8_t);
520 static inline void key_sp_dead (struct secpolicy *);
521 static void key_sp_unlink (struct secpolicy *sp);
522
523 static struct mbuf *key_alloc_mbuf (int);
524 struct callout key_timehandler_ch;
525
526 #define SA_ADDREF(p) do { \
527 (p)->refcnt++; \
528 IPSEC_ASSERT((p)->refcnt != 0, \
529 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
530 } while (0)
531 #define SA_DELREF(p) do { \
532 IPSEC_ASSERT((p)->refcnt > 0, \
533 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
534 (p)->refcnt--; \
535 } while (0)
536
537 #define SP_ADDREF(p) do { \
538 (p)->refcnt++; \
539 IPSEC_ASSERT((p)->refcnt != 0, \
540 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
541 } while (0)
542 #define SP_DELREF(p) do { \
543 IPSEC_ASSERT((p)->refcnt > 0, \
544 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
545 (p)->refcnt--; \
546 } while (0)
547
548
549 static inline void
550 key_sp_dead(struct secpolicy *sp)
551 {
552
553 /* mark the SP dead */
554 sp->state = IPSEC_SPSTATE_DEAD;
555 }
556
557 static void
558 key_sp_unlink(struct secpolicy *sp)
559 {
560
561 /* remove from SP index */
562 if (__LIST_CHAINED(sp)) {
563 LIST_REMOVE(sp, chain);
564 /* Release refcount held just for being on chain */
565 KEY_FREESP(&sp);
566 }
567 }
568
569
570 /*
571 * Return 0 when there are known to be no SP's for the specified
572 * direction. Otherwise return 1. This is used by IPsec code
573 * to optimize performance.
574 */
575 int
576 key_havesp(u_int dir)
577 {
578 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
579 LIST_FIRST(&sptree[dir]) != NULL : 1);
580 }
581
582 /* %%% IPsec policy management */
583 /*
584 * allocating a SP for OUTBOUND or INBOUND packet.
585 * Must call key_freesp() later.
586 * OUT: NULL: not found
587 * others: found and return the pointer.
588 */
589 struct secpolicy *
590 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
591 {
592 struct secpolicy *sp;
593 int s;
594
595 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
596 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
597 ("key_allocsp: invalid direction %u", dir));
598
599 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
600 printf("DP %s from %s:%u\n", __func__, where, tag));
601
602 /* get a SP entry */
603 s = splsoftnet(); /*called from softclock()*/
604 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
605 printf("*** objects\n");
606 kdebug_secpolicyindex(spidx));
607
608 LIST_FOREACH(sp, &sptree[dir], chain) {
609 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
610 printf("*** in SPD\n");
611 kdebug_secpolicyindex(&sp->spidx));
612
613 if (sp->state == IPSEC_SPSTATE_DEAD)
614 continue;
615 if (key_cmpspidx_withmask(&sp->spidx, spidx))
616 goto found;
617 }
618 sp = NULL;
619 found:
620 if (sp) {
621 /* sanity check */
622 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
623
624 /* found a SPD entry */
625 sp->lastused = time_uptime;
626 SP_ADDREF(sp);
627 }
628 splx(s);
629
630 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
631 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
632 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
633 return sp;
634 }
635
636 /*
637 * allocating a SP for OUTBOUND or INBOUND packet.
638 * Must call key_freesp() later.
639 * OUT: NULL: not found
640 * others: found and return the pointer.
641 */
642 struct secpolicy *
643 key_allocsp2(u_int32_t spi,
644 const union sockaddr_union *dst,
645 u_int8_t proto,
646 u_int dir,
647 const char* where, int tag)
648 {
649 struct secpolicy *sp;
650 int s;
651
652 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
653 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
654 ("key_allocsp2: invalid direction %u", dir));
655
656 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
657 printf("DP %s from %s:%u\n", __func__, where, tag));
658
659 /* get a SP entry */
660 s = splsoftnet(); /*called from softclock()*/
661 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
662 printf("*** objects\n");
663 printf("spi %u proto %u dir %u\n", spi, proto, dir);
664 kdebug_sockaddr(&dst->sa));
665
666 LIST_FOREACH(sp, &sptree[dir], chain) {
667 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
668 printf("*** in SPD\n");
669 kdebug_secpolicyindex(&sp->spidx));
670
671 if (sp->state == IPSEC_SPSTATE_DEAD)
672 continue;
673 /* compare simple values, then dst address */
674 if (sp->spidx.ul_proto != proto)
675 continue;
676 /* NB: spi's must exist and match */
677 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
678 continue;
679 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
680 goto found;
681 }
682 sp = NULL;
683 found:
684 if (sp) {
685 /* sanity check */
686 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
687
688 /* found a SPD entry */
689 sp->lastused = time_uptime;
690 SP_ADDREF(sp);
691 }
692 splx(s);
693
694 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
695 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
696 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
697 return sp;
698 }
699
700 /*
701 * return a policy that matches this particular inbound packet.
702 * XXX slow
703 */
704 struct secpolicy *
705 key_gettunnel(const struct sockaddr *osrc,
706 const struct sockaddr *odst,
707 const struct sockaddr *isrc,
708 const struct sockaddr *idst,
709 const char* where, int tag)
710 {
711 struct secpolicy *sp;
712 const int dir = IPSEC_DIR_INBOUND;
713 int s;
714 struct ipsecrequest *r1, *r2, *p;
715 struct secpolicyindex spidx;
716
717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
718 printf("DP %s from %s:%u\n", __func__, where, tag));
719
720 if (isrc->sa_family != idst->sa_family) {
721 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
722 isrc->sa_family, idst->sa_family));
723 sp = NULL;
724 goto done;
725 }
726
727 s = splsoftnet(); /*called from softclock()*/
728 LIST_FOREACH(sp, &sptree[dir], chain) {
729 if (sp->state == IPSEC_SPSTATE_DEAD)
730 continue;
731
732 r1 = r2 = NULL;
733 for (p = sp->req; p; p = p->next) {
734 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
735 continue;
736
737 r1 = r2;
738 r2 = p;
739
740 if (!r1) {
741 /* here we look at address matches only */
742 spidx = sp->spidx;
743 if (isrc->sa_len > sizeof(spidx.src) ||
744 idst->sa_len > sizeof(spidx.dst))
745 continue;
746 memcpy(&spidx.src, isrc, isrc->sa_len);
747 memcpy(&spidx.dst, idst, idst->sa_len);
748 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
749 continue;
750 } else {
751 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
752 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
753 continue;
754 }
755
756 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
757 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
758 continue;
759
760 goto found;
761 }
762 }
763 sp = NULL;
764 found:
765 if (sp) {
766 sp->lastused = time_uptime;
767 SP_ADDREF(sp);
768 }
769 splx(s);
770 done:
771 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
772 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
773 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
774 return sp;
775 }
776
777 /*
778 * allocating an SA entry for an *OUTBOUND* packet.
779 * checking each request entries in SP, and acquire an SA if need.
780 * OUT: 0: there are valid requests.
781 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
782 */
783 int
784 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
785 {
786 u_int level;
787 int error;
788
789 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
790 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
791 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
792 saidx->mode == IPSEC_MODE_TUNNEL,
793 ("key_checkrequest: unexpected policy %u", saidx->mode));
794
795 /* get current level */
796 level = ipsec_get_reqlevel(isr);
797
798 /*
799 * XXX guard against protocol callbacks from the crypto
800 * thread as they reference ipsecrequest.sav which we
801 * temporarily null out below. Need to rethink how we
802 * handle bundled SA's in the callback thread.
803 */
804 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
805 #if 0
806 /*
807 * We do allocate new SA only if the state of SA in the holder is
808 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
809 */
810 if (isr->sav != NULL) {
811 if (isr->sav->sah == NULL)
812 panic("key_checkrequest: sah is null");
813 if (isr->sav == (struct secasvar *)LIST_FIRST(
814 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
815 KEY_FREESAV(&isr->sav);
816 isr->sav = NULL;
817 }
818 }
819 #else
820 /*
821 * we free any SA stashed in the IPsec request because a different
822 * SA may be involved each time this request is checked, either
823 * because new SAs are being configured, or this request is
824 * associated with an unconnected datagram socket, or this request
825 * is associated with a system default policy.
826 *
827 * The operation may have negative impact to performance. We may
828 * want to check cached SA carefully, rather than picking new SA
829 * every time.
830 */
831 if (isr->sav != NULL) {
832 KEY_FREESAV(&isr->sav);
833 isr->sav = NULL;
834 }
835 #endif
836
837 /*
838 * new SA allocation if no SA found.
839 * key_allocsa_policy should allocate the oldest SA available.
840 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
841 */
842 if (isr->sav == NULL)
843 isr->sav = key_allocsa_policy(saidx);
844
845 /* When there is SA. */
846 if (isr->sav != NULL) {
847 if (isr->sav->state != SADB_SASTATE_MATURE &&
848 isr->sav->state != SADB_SASTATE_DYING)
849 return EINVAL;
850 return 0;
851 }
852
853 /* there is no SA */
854 error = key_acquire(saidx, isr->sp);
855 if (error != 0) {
856 /* XXX What should I do ? */
857 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
858 "from key_acquire.\n", error));
859 return error;
860 }
861
862 if (level != IPSEC_LEVEL_REQUIRE) {
863 /* XXX sigh, the interface to this routine is botched */
864 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
865 return 0;
866 } else {
867 return ENOENT;
868 }
869 }
870
871 /*
872 * allocating a SA for policy entry from SAD.
873 * NOTE: searching SAD of aliving state.
874 * OUT: NULL: not found.
875 * others: found and return the pointer.
876 */
877 static struct secasvar *
878 key_allocsa_policy(const struct secasindex *saidx)
879 {
880 struct secashead *sah;
881 struct secasvar *sav;
882 u_int stateidx, state;
883 const u_int *saorder_state_valid;
884 int arraysize;
885
886 LIST_FOREACH(sah, &sahtree, chain) {
887 if (sah->state == SADB_SASTATE_DEAD)
888 continue;
889 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
890 goto found;
891 }
892
893 return NULL;
894
895 found:
896
897 /*
898 * search a valid state list for outbound packet.
899 * This search order is important.
900 */
901 if (key_prefered_oldsa) {
902 saorder_state_valid = saorder_state_valid_prefer_old;
903 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
904 } else {
905 saorder_state_valid = saorder_state_valid_prefer_new;
906 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
907 }
908
909 /* search valid state */
910 for (stateidx = 0;
911 stateidx < arraysize;
912 stateidx++) {
913
914 state = saorder_state_valid[stateidx];
915
916 sav = key_do_allocsa_policy(sah, state);
917 if (sav != NULL)
918 return sav;
919 }
920
921 return NULL;
922 }
923
924 /*
925 * searching SAD with direction, protocol, mode and state.
926 * called by key_allocsa_policy().
927 * OUT:
928 * NULL : not found
929 * others : found, pointer to a SA.
930 */
931 static struct secasvar *
932 key_do_allocsa_policy(struct secashead *sah, u_int state)
933 {
934 struct secasvar *sav, *nextsav, *candidate, *d;
935
936 /* initilize */
937 candidate = NULL;
938
939 for (sav = LIST_FIRST(&sah->savtree[state]);
940 sav != NULL;
941 sav = nextsav) {
942
943 nextsav = LIST_NEXT(sav, chain);
944
945 /* sanity check */
946 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
947
948 /* initialize */
949 if (candidate == NULL) {
950 candidate = sav;
951 continue;
952 }
953
954 /* Which SA is the better ? */
955
956 /* sanity check 2 */
957 if (candidate->lft_c == NULL || sav->lft_c == NULL)
958 panic("key_do_allocsa_policy: "
959 "lifetime_current is NULL");
960
961 /* What the best method is to compare ? */
962 if (key_prefered_oldsa) {
963 if (candidate->lft_c->sadb_lifetime_addtime >
964 sav->lft_c->sadb_lifetime_addtime) {
965 candidate = sav;
966 }
967 continue;
968 /*NOTREACHED*/
969 }
970
971 /* prefered new sa rather than old sa */
972 if (candidate->lft_c->sadb_lifetime_addtime <
973 sav->lft_c->sadb_lifetime_addtime) {
974 d = candidate;
975 candidate = sav;
976 } else
977 d = sav;
978
979 /*
980 * prepared to delete the SA when there is more
981 * suitable candidate and the lifetime of the SA is not
982 * permanent.
983 */
984 if (d->lft_c->sadb_lifetime_addtime != 0) {
985 struct mbuf *m, *result = 0;
986 uint8_t satype;
987
988 key_sa_chgstate(d, SADB_SASTATE_DEAD);
989
990 IPSEC_ASSERT(d->refcnt > 0,
991 ("key_do_allocsa_policy: bogus ref count"));
992
993 satype = key_proto2satype(d->sah->saidx.proto);
994 if (satype == 0)
995 goto msgfail;
996
997 m = key_setsadbmsg(SADB_DELETE, 0,
998 satype, 0, 0, d->refcnt - 1);
999 if (!m)
1000 goto msgfail;
1001 result = m;
1002
1003 /* set sadb_address for saidx's. */
1004 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1005 &d->sah->saidx.src.sa,
1006 d->sah->saidx.src.sa.sa_len << 3,
1007 IPSEC_ULPROTO_ANY);
1008 if (!m)
1009 goto msgfail;
1010 m_cat(result, m);
1011
1012 /* set sadb_address for saidx's. */
1013 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1014 &d->sah->saidx.src.sa,
1015 d->sah->saidx.src.sa.sa_len << 3,
1016 IPSEC_ULPROTO_ANY);
1017 if (!m)
1018 goto msgfail;
1019 m_cat(result, m);
1020
1021 /* create SA extension */
1022 m = key_setsadbsa(d);
1023 if (!m)
1024 goto msgfail;
1025 m_cat(result, m);
1026
1027 if (result->m_len < sizeof(struct sadb_msg)) {
1028 result = m_pullup(result,
1029 sizeof(struct sadb_msg));
1030 if (result == NULL)
1031 goto msgfail;
1032 }
1033
1034 result->m_pkthdr.len = 0;
1035 for (m = result; m; m = m->m_next)
1036 result->m_pkthdr.len += m->m_len;
1037 mtod(result, struct sadb_msg *)->sadb_msg_len =
1038 PFKEY_UNIT64(result->m_pkthdr.len);
1039
1040 key_sendup_mbuf(NULL, result,
1041 KEY_SENDUP_REGISTERED);
1042 result = 0;
1043 msgfail:
1044 if (result)
1045 m_freem(result);
1046 KEY_FREESAV(&d);
1047 }
1048 }
1049
1050 if (candidate) {
1051 SA_ADDREF(candidate);
1052 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1053 printf("DP %s cause refcnt++:%d SA:%p\n", __func__,
1054 candidate->refcnt, candidate));
1055 }
1056 return candidate;
1057 }
1058
1059 /*
1060 * allocating a usable SA entry for a *INBOUND* packet.
1061 * Must call key_freesav() later.
1062 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1063 * NULL: not found, or error occurred.
1064 *
1065 * In the comparison, no source address is used--for RFC2401 conformance.
1066 * To quote, from section 4.1:
1067 * A security association is uniquely identified by a triple consisting
1068 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1069 * security protocol (AH or ESP) identifier.
1070 * Note that, however, we do need to keep source address in IPsec SA.
1071 * IKE specification and PF_KEY specification do assume that we
1072 * keep source address in IPsec SA. We see a tricky situation here.
1073 *
1074 * sport and dport are used for NAT-T. network order is always used.
1075 */
1076 struct secasvar *
1077 key_allocsa(
1078 const union sockaddr_union *dst,
1079 u_int proto,
1080 u_int32_t spi,
1081 u_int16_t sport,
1082 u_int16_t dport,
1083 const char* where, int tag)
1084 {
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, state;
1088 const u_int *saorder_state_valid;
1089 int arraysize;
1090 int s;
1091 int chkport = 0;
1092
1093 int must_check_spi = 1;
1094 int must_check_alg = 0;
1095 u_int16_t cpi = 0;
1096 u_int8_t algo = 0;
1097
1098 if ((sport != 0) && (dport != 0))
1099 chkport = 1;
1100
1101 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1102
1103 /*
1104 * XXX IPCOMP case
1105 * We use cpi to define spi here. In the case where cpi <=
1106 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1107 * the real spi. In this case, don't check the spi but check the
1108 * algorithm
1109 */
1110
1111 if (proto == IPPROTO_IPCOMP) {
1112 u_int32_t tmp;
1113 tmp = ntohl(spi);
1114 cpi = (u_int16_t) tmp;
1115 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1116 algo = (u_int8_t) cpi;
1117 must_check_spi = 0;
1118 must_check_alg = 1;
1119 }
1120 }
1121 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1122 printf("DP %s from %s:%u check_spi=%d, check_alg=%d\n",
1123 __func__, where, tag, must_check_spi, must_check_alg));
1124
1125
1126 /*
1127 * searching SAD.
1128 * XXX: to be checked internal IP header somewhere. Also when
1129 * IPsec tunnel packet is received. But ESP tunnel mode is
1130 * encrypted so we can't check internal IP header.
1131 */
1132 s = splsoftnet(); /*called from softclock()*/
1133 if (key_prefered_oldsa) {
1134 saorder_state_valid = saorder_state_valid_prefer_old;
1135 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1136 } else {
1137 saorder_state_valid = saorder_state_valid_prefer_new;
1138 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1139 }
1140 LIST_FOREACH(sah, &sahtree, chain) {
1141 /* search valid state */
1142 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1143 state = saorder_state_valid[stateidx];
1144 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1145 KEYDEBUG(KEYDEBUG_MATCH,
1146 printf("try match spi %#x, %#x\n",
1147 ntohl(spi), ntohl(sav->spi)));
1148 /* sanity check */
1149 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1150 /* do not return entries w/ unusable state */
1151 if (sav->state != SADB_SASTATE_MATURE &&
1152 sav->state != SADB_SASTATE_DYING) {
1153 KEYDEBUG(KEYDEBUG_MATCH,
1154 printf("bad state %d\n",
1155 sav->state));
1156 continue;
1157 }
1158 if (proto != sav->sah->saidx.proto) {
1159 KEYDEBUG(KEYDEBUG_MATCH,
1160 printf("proto fail %d != %d\n",
1161 proto, sav->sah->saidx.proto));
1162 continue;
1163 }
1164 if (must_check_spi && spi != sav->spi) {
1165 KEYDEBUG(KEYDEBUG_MATCH,
1166 printf("spi fail %#x != %#x\n",
1167 ntohl(spi), ntohl(sav->spi)));
1168 continue;
1169 }
1170 /* XXX only on the ipcomp case */
1171 if (must_check_alg && algo != sav->alg_comp) {
1172 KEYDEBUG(KEYDEBUG_MATCH,
1173 printf("algo fail %d != %d\n",
1174 algo, sav->alg_comp));
1175 continue;
1176 }
1177
1178 #if 0 /* don't check src */
1179 /* Fix port in src->sa */
1180
1181 /* check src address */
1182 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1183 continue;
1184 #endif
1185 /* fix port of dst address XXX*/
1186 key_porttosaddr(__UNCONST(dst), dport);
1187 /* check dst address */
1188 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1189 continue;
1190 SA_ADDREF(sav);
1191 goto done;
1192 }
1193 }
1194 }
1195 sav = NULL;
1196 done:
1197 splx(s);
1198
1199 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1200 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1201 sav, sav ? sav->refcnt : 0));
1202 return sav;
1203 }
1204
1205 /*
1206 * Must be called after calling key_allocsp().
1207 * For both the packet without socket and key_freeso().
1208 */
1209 void
1210 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1211 {
1212 struct secpolicy *sp = *spp;
1213
1214 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1215
1216 SP_DELREF(sp);
1217
1218 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1219 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1220 __func__, sp, sp->id, where, tag, sp->refcnt));
1221
1222 if (sp->refcnt == 0) {
1223 *spp = NULL;
1224 key_delsp(sp);
1225 }
1226 }
1227
1228 /*
1229 * Must be called after calling key_allocsp().
1230 * For the packet with socket.
1231 */
1232 void
1233 key_freeso(struct socket *so)
1234 {
1235 /* sanity check */
1236 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1237
1238 switch (so->so_proto->pr_domain->dom_family) {
1239 #ifdef INET
1240 case PF_INET:
1241 {
1242 struct inpcb *pcb = sotoinpcb(so);
1243
1244 /* Does it have a PCB ? */
1245 if (pcb == NULL)
1246 return;
1247
1248 struct inpcbpolicy *sp = pcb->inp_sp;
1249 key_freesp_so(&sp->sp_in);
1250 key_freesp_so(&sp->sp_out);
1251 }
1252 break;
1253 #endif
1254 #ifdef INET6
1255 case PF_INET6:
1256 {
1257 #ifdef HAVE_NRL_INPCB
1258 struct inpcb *pcb = sotoinpcb(so);
1259 struct inpcbpolicy *sp = pcb->inp_sp;
1260
1261 /* Does it have a PCB ? */
1262 if (pcb == NULL)
1263 return;
1264 key_freesp_so(&sp->sp_in);
1265 key_freesp_so(&sp->sp_out);
1266 #else
1267 struct in6pcb *pcb = sotoin6pcb(so);
1268
1269 /* Does it have a PCB ? */
1270 if (pcb == NULL)
1271 return;
1272 key_freesp_so(&pcb->in6p_sp->sp_in);
1273 key_freesp_so(&pcb->in6p_sp->sp_out);
1274 #endif
1275 }
1276 break;
1277 #endif /* INET6 */
1278 default:
1279 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1280 so->so_proto->pr_domain->dom_family));
1281 return;
1282 }
1283 }
1284
1285 static void
1286 key_freesp_so(struct secpolicy **sp)
1287 {
1288 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1289
1290 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1291 (*sp)->policy == IPSEC_POLICY_BYPASS)
1292 return;
1293
1294 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1295 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1296 KEY_FREESP(sp);
1297 }
1298
1299 /*
1300 * Must be called after calling key_allocsa().
1301 * This function is called by key_freesp() to free some SA allocated
1302 * for a policy.
1303 */
1304 void
1305 key_freesav(struct secasvar **psav, const char* where, int tag)
1306 {
1307 struct secasvar *sav = *psav;
1308
1309 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1310
1311 SA_DELREF(sav);
1312
1313 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1314 printf("DP %s SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1315 __func__, sav, (u_long)ntohl(sav->spi), where, tag,
1316 sav->refcnt));
1317
1318 if (sav->refcnt == 0) {
1319 *psav = NULL;
1320 key_delsav(sav);
1321 }
1322 }
1323
1324 /* %%% SPD management */
1325 /*
1326 * free security policy entry.
1327 */
1328 static void
1329 key_delsp(struct secpolicy *sp)
1330 {
1331 int s;
1332
1333 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1334
1335 key_sp_dead(sp);
1336
1337 IPSEC_ASSERT(sp->refcnt == 0,
1338 ("key_delsp: SP with references deleted (refcnt %u)",
1339 sp->refcnt));
1340
1341 s = splsoftnet(); /*called from softclock()*/
1342
1343 {
1344 struct ipsecrequest *isr = sp->req, *nextisr;
1345
1346 while (isr != NULL) {
1347 if (isr->sav != NULL) {
1348 KEY_FREESAV(&isr->sav);
1349 isr->sav = NULL;
1350 }
1351
1352 nextisr = isr->next;
1353 KFREE(isr);
1354 isr = nextisr;
1355 }
1356 }
1357
1358 KFREE(sp);
1359
1360 splx(s);
1361 }
1362
1363 /*
1364 * search SPD
1365 * OUT: NULL : not found
1366 * others : found, pointer to a SP.
1367 */
1368 static struct secpolicy *
1369 key_getsp(const struct secpolicyindex *spidx)
1370 {
1371 struct secpolicy *sp;
1372
1373 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1374
1375 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1376 if (sp->state == IPSEC_SPSTATE_DEAD)
1377 continue;
1378 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1379 SP_ADDREF(sp);
1380 return sp;
1381 }
1382 }
1383
1384 return NULL;
1385 }
1386
1387 /*
1388 * get SP by index.
1389 * OUT: NULL : not found
1390 * others : found, pointer to a SP.
1391 */
1392 static struct secpolicy *
1393 key_getspbyid(u_int32_t id)
1394 {
1395 struct secpolicy *sp;
1396
1397 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1398 if (sp->state == IPSEC_SPSTATE_DEAD)
1399 continue;
1400 if (sp->id == id) {
1401 SP_ADDREF(sp);
1402 return sp;
1403 }
1404 }
1405
1406 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1407 if (sp->state == IPSEC_SPSTATE_DEAD)
1408 continue;
1409 if (sp->id == id) {
1410 SP_ADDREF(sp);
1411 return sp;
1412 }
1413 }
1414
1415 return NULL;
1416 }
1417
1418 struct secpolicy *
1419 key_newsp(const char* where, int tag)
1420 {
1421 struct secpolicy *newsp = NULL;
1422
1423 newsp = (struct secpolicy *)
1424 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1425 if (newsp) {
1426 newsp->refcnt = 1;
1427 newsp->req = NULL;
1428 }
1429
1430 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1431 printf("DP %s from %s:%u return SP:%p\n", __func__,
1432 where, tag, newsp));
1433 return newsp;
1434 }
1435
1436 /*
1437 * create secpolicy structure from sadb_x_policy structure.
1438 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1439 * so must be set properly later.
1440 */
1441 struct secpolicy *
1442 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1443 {
1444 struct secpolicy *newsp;
1445
1446 /* sanity check */
1447 if (xpl0 == NULL)
1448 panic("key_msg2sp: NULL pointer was passed");
1449 if (len < sizeof(*xpl0))
1450 panic("key_msg2sp: invalid length");
1451 if (len != PFKEY_EXTLEN(xpl0)) {
1452 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1453 *error = EINVAL;
1454 return NULL;
1455 }
1456
1457 if ((newsp = KEY_NEWSP()) == NULL) {
1458 *error = ENOBUFS;
1459 return NULL;
1460 }
1461
1462 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1463 newsp->policy = xpl0->sadb_x_policy_type;
1464
1465 /* check policy */
1466 switch (xpl0->sadb_x_policy_type) {
1467 case IPSEC_POLICY_DISCARD:
1468 case IPSEC_POLICY_NONE:
1469 case IPSEC_POLICY_ENTRUST:
1470 case IPSEC_POLICY_BYPASS:
1471 newsp->req = NULL;
1472 break;
1473
1474 case IPSEC_POLICY_IPSEC:
1475 {
1476 int tlen;
1477 const struct sadb_x_ipsecrequest *xisr;
1478 uint16_t xisr_reqid;
1479 struct ipsecrequest **p_isr = &newsp->req;
1480
1481 /* validity check */
1482 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1483 ipseclog((LOG_DEBUG,
1484 "key_msg2sp: Invalid msg length.\n"));
1485 KEY_FREESP(&newsp);
1486 *error = EINVAL;
1487 return NULL;
1488 }
1489
1490 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1491 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1492
1493 while (tlen > 0) {
1494 /* length check */
1495 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1496 ipseclog((LOG_DEBUG, "key_msg2sp: "
1497 "invalid ipsecrequest length.\n"));
1498 KEY_FREESP(&newsp);
1499 *error = EINVAL;
1500 return NULL;
1501 }
1502
1503 /* allocate request buffer */
1504 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1505 if ((*p_isr) == NULL) {
1506 ipseclog((LOG_DEBUG,
1507 "key_msg2sp: No more memory.\n"));
1508 KEY_FREESP(&newsp);
1509 *error = ENOBUFS;
1510 return NULL;
1511 }
1512 memset(*p_isr, 0, sizeof(**p_isr));
1513
1514 /* set values */
1515 (*p_isr)->next = NULL;
1516
1517 switch (xisr->sadb_x_ipsecrequest_proto) {
1518 case IPPROTO_ESP:
1519 case IPPROTO_AH:
1520 case IPPROTO_IPCOMP:
1521 break;
1522 default:
1523 ipseclog((LOG_DEBUG,
1524 "key_msg2sp: invalid proto type=%u\n",
1525 xisr->sadb_x_ipsecrequest_proto));
1526 KEY_FREESP(&newsp);
1527 *error = EPROTONOSUPPORT;
1528 return NULL;
1529 }
1530 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1531
1532 switch (xisr->sadb_x_ipsecrequest_mode) {
1533 case IPSEC_MODE_TRANSPORT:
1534 case IPSEC_MODE_TUNNEL:
1535 break;
1536 case IPSEC_MODE_ANY:
1537 default:
1538 ipseclog((LOG_DEBUG,
1539 "key_msg2sp: invalid mode=%u\n",
1540 xisr->sadb_x_ipsecrequest_mode));
1541 KEY_FREESP(&newsp);
1542 *error = EINVAL;
1543 return NULL;
1544 }
1545 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1546
1547 switch (xisr->sadb_x_ipsecrequest_level) {
1548 case IPSEC_LEVEL_DEFAULT:
1549 case IPSEC_LEVEL_USE:
1550 case IPSEC_LEVEL_REQUIRE:
1551 break;
1552 case IPSEC_LEVEL_UNIQUE:
1553 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1554 /* validity check */
1555 /*
1556 * If range violation of reqid, kernel will
1557 * update it, don't refuse it.
1558 */
1559 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1560 ipseclog((LOG_DEBUG,
1561 "key_msg2sp: reqid=%d range "
1562 "violation, updated by kernel.\n",
1563 xisr_reqid));
1564 xisr_reqid = 0;
1565 }
1566
1567 /* allocate new reqid id if reqid is zero. */
1568 if (xisr_reqid == 0) {
1569 u_int16_t reqid;
1570 if ((reqid = key_newreqid()) == 0) {
1571 KEY_FREESP(&newsp);
1572 *error = ENOBUFS;
1573 return NULL;
1574 }
1575 (*p_isr)->saidx.reqid = reqid;
1576 } else {
1577 /* set it for manual keying. */
1578 (*p_isr)->saidx.reqid = xisr_reqid;
1579 }
1580 break;
1581
1582 default:
1583 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1584 xisr->sadb_x_ipsecrequest_level));
1585 KEY_FREESP(&newsp);
1586 *error = EINVAL;
1587 return NULL;
1588 }
1589 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1590
1591 /* set IP addresses if there */
1592 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1593 const struct sockaddr *paddr;
1594
1595 paddr = (const struct sockaddr *)(xisr + 1);
1596
1597 /* validity check */
1598 if (paddr->sa_len
1599 > sizeof((*p_isr)->saidx.src)) {
1600 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1601 "address length.\n"));
1602 KEY_FREESP(&newsp);
1603 *error = EINVAL;
1604 return NULL;
1605 }
1606 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1607
1608 paddr = (const struct sockaddr *)((const char *)paddr
1609 + paddr->sa_len);
1610
1611 /* validity check */
1612 if (paddr->sa_len
1613 > sizeof((*p_isr)->saidx.dst)) {
1614 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1615 "address length.\n"));
1616 KEY_FREESP(&newsp);
1617 *error = EINVAL;
1618 return NULL;
1619 }
1620 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1621 }
1622
1623 (*p_isr)->sav = NULL;
1624 (*p_isr)->sp = newsp;
1625
1626 /* initialization for the next. */
1627 p_isr = &(*p_isr)->next;
1628 tlen -= xisr->sadb_x_ipsecrequest_len;
1629
1630 /* validity check */
1631 if (tlen < 0) {
1632 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1633 KEY_FREESP(&newsp);
1634 *error = EINVAL;
1635 return NULL;
1636 }
1637
1638 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1639 + xisr->sadb_x_ipsecrequest_len);
1640 }
1641 }
1642 break;
1643 default:
1644 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1645 KEY_FREESP(&newsp);
1646 *error = EINVAL;
1647 return NULL;
1648 }
1649
1650 *error = 0;
1651 return newsp;
1652 }
1653
1654 static u_int16_t
1655 key_newreqid(void)
1656 {
1657 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1658
1659 auto_reqid = (auto_reqid == 0xffff
1660 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1661
1662 /* XXX should be unique check */
1663
1664 return auto_reqid;
1665 }
1666
1667 /*
1668 * copy secpolicy struct to sadb_x_policy structure indicated.
1669 */
1670 struct mbuf *
1671 key_sp2msg(const struct secpolicy *sp)
1672 {
1673 struct sadb_x_policy *xpl;
1674 int tlen;
1675 char *p;
1676 struct mbuf *m;
1677
1678 /* sanity check. */
1679 if (sp == NULL)
1680 panic("key_sp2msg: NULL pointer was passed");
1681
1682 tlen = key_getspreqmsglen(sp);
1683
1684 m = key_alloc_mbuf(tlen);
1685 if (!m || m->m_next) { /*XXX*/
1686 if (m)
1687 m_freem(m);
1688 return NULL;
1689 }
1690
1691 m->m_len = tlen;
1692 m->m_next = NULL;
1693 xpl = mtod(m, struct sadb_x_policy *);
1694 memset(xpl, 0, tlen);
1695
1696 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1697 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1698 xpl->sadb_x_policy_type = sp->policy;
1699 xpl->sadb_x_policy_dir = sp->spidx.dir;
1700 xpl->sadb_x_policy_id = sp->id;
1701 p = (char *)xpl + sizeof(*xpl);
1702
1703 /* if is the policy for ipsec ? */
1704 if (sp->policy == IPSEC_POLICY_IPSEC) {
1705 struct sadb_x_ipsecrequest *xisr;
1706 struct ipsecrequest *isr;
1707
1708 for (isr = sp->req; isr != NULL; isr = isr->next) {
1709
1710 xisr = (struct sadb_x_ipsecrequest *)p;
1711
1712 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1713 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1714 xisr->sadb_x_ipsecrequest_level = isr->level;
1715 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1716
1717 p += sizeof(*xisr);
1718 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1719 p += isr->saidx.src.sa.sa_len;
1720 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1721 p += isr->saidx.src.sa.sa_len;
1722
1723 xisr->sadb_x_ipsecrequest_len =
1724 PFKEY_ALIGN8(sizeof(*xisr)
1725 + isr->saidx.src.sa.sa_len
1726 + isr->saidx.dst.sa.sa_len);
1727 }
1728 }
1729
1730 return m;
1731 }
1732
1733 /* m will not be freed nor modified */
1734 static struct mbuf *
1735 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1736 int ndeep, int nitem, ...)
1737 {
1738 va_list ap;
1739 int idx;
1740 int i;
1741 struct mbuf *result = NULL, *n;
1742 int len;
1743
1744 if (m == NULL || mhp == NULL)
1745 panic("null pointer passed to key_gather");
1746
1747 va_start(ap, nitem);
1748 for (i = 0; i < nitem; i++) {
1749 idx = va_arg(ap, int);
1750 if (idx < 0 || idx > SADB_EXT_MAX)
1751 goto fail;
1752 /* don't attempt to pull empty extension */
1753 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1754 continue;
1755 if (idx != SADB_EXT_RESERVED &&
1756 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1757 continue;
1758
1759 if (idx == SADB_EXT_RESERVED) {
1760 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1761 #ifdef DIAGNOSTIC
1762 if (len > MHLEN)
1763 panic("assumption failed");
1764 #endif
1765 MGETHDR(n, M_DONTWAIT, MT_DATA);
1766 if (!n)
1767 goto fail;
1768 n->m_len = len;
1769 n->m_next = NULL;
1770 m_copydata(m, 0, sizeof(struct sadb_msg),
1771 mtod(n, void *));
1772 } else if (i < ndeep) {
1773 len = mhp->extlen[idx];
1774 n = key_alloc_mbuf(len);
1775 if (!n || n->m_next) { /*XXX*/
1776 if (n)
1777 m_freem(n);
1778 goto fail;
1779 }
1780 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1781 mtod(n, void *));
1782 } else {
1783 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1784 M_DONTWAIT);
1785 }
1786 if (n == NULL)
1787 goto fail;
1788
1789 if (result)
1790 m_cat(result, n);
1791 else
1792 result = n;
1793 }
1794 va_end(ap);
1795
1796 if (result && (result->m_flags & M_PKTHDR) != 0) {
1797 result->m_pkthdr.len = 0;
1798 for (n = result; n; n = n->m_next)
1799 result->m_pkthdr.len += n->m_len;
1800 }
1801
1802 return result;
1803
1804 fail:
1805 va_end(ap);
1806 m_freem(result);
1807 return NULL;
1808 }
1809
1810 /*
1811 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1812 * add an entry to SP database, when received
1813 * <base, address(SD), (lifetime(H),) policy>
1814 * from the user(?).
1815 * Adding to SP database,
1816 * and send
1817 * <base, address(SD), (lifetime(H),) policy>
1818 * to the socket which was send.
1819 *
1820 * SPDADD set a unique policy entry.
1821 * SPDSETIDX like SPDADD without a part of policy requests.
1822 * SPDUPDATE replace a unique policy entry.
1823 *
1824 * m will always be freed.
1825 */
1826 static int
1827 key_spdadd(struct socket *so, struct mbuf *m,
1828 const struct sadb_msghdr *mhp)
1829 {
1830 const struct sadb_address *src0, *dst0;
1831 const struct sadb_x_policy *xpl0;
1832 struct sadb_x_policy *xpl;
1833 const struct sadb_lifetime *lft = NULL;
1834 struct secpolicyindex spidx;
1835 struct secpolicy *newsp;
1836 int error;
1837
1838 /* sanity check */
1839 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1840 panic("key_spdadd: NULL pointer is passed");
1841
1842 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1843 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1844 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1845 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1846 return key_senderror(so, m, EINVAL);
1847 }
1848 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1849 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1850 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1851 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1852 return key_senderror(so, m, EINVAL);
1853 }
1854 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1855 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1856 < sizeof(struct sadb_lifetime)) {
1857 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1858 return key_senderror(so, m, EINVAL);
1859 }
1860 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1861 }
1862
1863 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1864 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1865 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1866
1867 /* make secindex */
1868 /* XXX boundary check against sa_len */
1869 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1870 src0 + 1,
1871 dst0 + 1,
1872 src0->sadb_address_prefixlen,
1873 dst0->sadb_address_prefixlen,
1874 src0->sadb_address_proto,
1875 &spidx);
1876
1877 /* checking the direciton. */
1878 switch (xpl0->sadb_x_policy_dir) {
1879 case IPSEC_DIR_INBOUND:
1880 case IPSEC_DIR_OUTBOUND:
1881 break;
1882 default:
1883 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1884 mhp->msg->sadb_msg_errno = EINVAL;
1885 return 0;
1886 }
1887
1888 /* check policy */
1889 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1890 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1891 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1892 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1893 return key_senderror(so, m, EINVAL);
1894 }
1895
1896 /* policy requests are mandatory when action is ipsec. */
1897 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1898 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1899 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1900 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1901 return key_senderror(so, m, EINVAL);
1902 }
1903
1904 /*
1905 * checking there is SP already or not.
1906 * SPDUPDATE doesn't depend on whether there is a SP or not.
1907 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1908 * then error.
1909 */
1910 newsp = key_getsp(&spidx);
1911 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1912 if (newsp) {
1913 key_sp_dead(newsp);
1914 key_sp_unlink(newsp); /* XXX jrs ordering */
1915 KEY_FREESP(&newsp);
1916 newsp = NULL;
1917 }
1918 } else {
1919 if (newsp != NULL) {
1920 KEY_FREESP(&newsp);
1921 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1922 return key_senderror(so, m, EEXIST);
1923 }
1924 }
1925
1926 /* allocation new SP entry */
1927 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1928 return key_senderror(so, m, error);
1929 }
1930
1931 if ((newsp->id = key_getnewspid()) == 0) {
1932 KFREE(newsp);
1933 return key_senderror(so, m, ENOBUFS);
1934 }
1935
1936 /* XXX boundary check against sa_len */
1937 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1938 src0 + 1,
1939 dst0 + 1,
1940 src0->sadb_address_prefixlen,
1941 dst0->sadb_address_prefixlen,
1942 src0->sadb_address_proto,
1943 &newsp->spidx);
1944
1945 /* sanity check on addr pair */
1946 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1947 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1948 KFREE(newsp);
1949 return key_senderror(so, m, EINVAL);
1950 }
1951 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1952 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1953 KFREE(newsp);
1954 return key_senderror(so, m, EINVAL);
1955 }
1956
1957 newsp->created = time_uptime;
1958 newsp->lastused = newsp->created;
1959 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1960 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1961
1962 newsp->refcnt = 1; /* do not reclaim until I say I do */
1963 newsp->state = IPSEC_SPSTATE_ALIVE;
1964 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1965
1966 /* delete the entry in spacqtree */
1967 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1968 struct secspacq *spacq;
1969 if ((spacq = key_getspacq(&spidx)) != NULL) {
1970 /* reset counter in order to deletion by timehandler. */
1971 spacq->created = time_uptime;
1972 spacq->count = 0;
1973 }
1974 }
1975
1976 #if defined(__NetBSD__)
1977 /* Invalidate all cached SPD pointers in the PCBs. */
1978 ipsec_invalpcbcacheall();
1979
1980 #if defined(GATEWAY)
1981 /* Invalidate the ipflow cache, as well. */
1982 ipflow_invalidate_all(0);
1983 #ifdef INET6
1984 ip6flow_invalidate_all(0);
1985 #endif /* INET6 */
1986 #endif /* GATEWAY */
1987 #endif /* __NetBSD__ */
1988
1989 {
1990 struct mbuf *n, *mpolicy;
1991 struct sadb_msg *newmsg;
1992 int off;
1993
1994 /* create new sadb_msg to reply. */
1995 if (lft) {
1996 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1997 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1998 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1999 } else {
2000 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2001 SADB_X_EXT_POLICY,
2002 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2003 }
2004 if (!n)
2005 return key_senderror(so, m, ENOBUFS);
2006
2007 if (n->m_len < sizeof(*newmsg)) {
2008 n = m_pullup(n, sizeof(*newmsg));
2009 if (!n)
2010 return key_senderror(so, m, ENOBUFS);
2011 }
2012 newmsg = mtod(n, struct sadb_msg *);
2013 newmsg->sadb_msg_errno = 0;
2014 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2015
2016 off = 0;
2017 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2018 sizeof(*xpl), &off);
2019 if (mpolicy == NULL) {
2020 /* n is already freed */
2021 return key_senderror(so, m, ENOBUFS);
2022 }
2023 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2024 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2025 m_freem(n);
2026 return key_senderror(so, m, EINVAL);
2027 }
2028 xpl->sadb_x_policy_id = newsp->id;
2029
2030 m_freem(m);
2031 key_update_used();
2032 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2033 }
2034 }
2035
2036 /*
2037 * get new policy id.
2038 * OUT:
2039 * 0: failure.
2040 * others: success.
2041 */
2042 static u_int32_t
2043 key_getnewspid(void)
2044 {
2045 u_int32_t newid = 0;
2046 int count = key_spi_trycnt; /* XXX */
2047 struct secpolicy *sp;
2048
2049 /* when requesting to allocate spi ranged */
2050 while (count--) {
2051 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2052
2053 if ((sp = key_getspbyid(newid)) == NULL)
2054 break;
2055
2056 KEY_FREESP(&sp);
2057 }
2058
2059 if (count == 0 || newid == 0) {
2060 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2061 return 0;
2062 }
2063
2064 return newid;
2065 }
2066
2067 /*
2068 * SADB_SPDDELETE processing
2069 * receive
2070 * <base, address(SD), policy(*)>
2071 * from the user(?), and set SADB_SASTATE_DEAD,
2072 * and send,
2073 * <base, address(SD), policy(*)>
2074 * to the ikmpd.
2075 * policy(*) including direction of policy.
2076 *
2077 * m will always be freed.
2078 */
2079 static int
2080 key_spddelete(struct socket *so, struct mbuf *m,
2081 const struct sadb_msghdr *mhp)
2082 {
2083 struct sadb_address *src0, *dst0;
2084 struct sadb_x_policy *xpl0;
2085 struct secpolicyindex spidx;
2086 struct secpolicy *sp;
2087
2088 /* sanity check */
2089 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2090 panic("key_spddelete: NULL pointer is passed");
2091
2092 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2093 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2094 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2095 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2096 return key_senderror(so, m, EINVAL);
2097 }
2098 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2099 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2100 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2101 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2102 return key_senderror(so, m, EINVAL);
2103 }
2104
2105 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2106 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2107 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2108
2109 /* make secindex */
2110 /* XXX boundary check against sa_len */
2111 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2112 src0 + 1,
2113 dst0 + 1,
2114 src0->sadb_address_prefixlen,
2115 dst0->sadb_address_prefixlen,
2116 src0->sadb_address_proto,
2117 &spidx);
2118
2119 /* checking the direciton. */
2120 switch (xpl0->sadb_x_policy_dir) {
2121 case IPSEC_DIR_INBOUND:
2122 case IPSEC_DIR_OUTBOUND:
2123 break;
2124 default:
2125 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2126 return key_senderror(so, m, EINVAL);
2127 }
2128
2129 /* Is there SP in SPD ? */
2130 if ((sp = key_getsp(&spidx)) == NULL) {
2131 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2132 return key_senderror(so, m, EINVAL);
2133 }
2134
2135 /* save policy id to buffer to be returned. */
2136 xpl0->sadb_x_policy_id = sp->id;
2137
2138 key_sp_dead(sp);
2139 key_sp_unlink(sp); /* XXX jrs ordering */
2140 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2141
2142 #if defined(__NetBSD__)
2143 /* Invalidate all cached SPD pointers in the PCBs. */
2144 ipsec_invalpcbcacheall();
2145
2146 /* We're deleting policy; no need to invalidate the ipflow cache. */
2147 #endif /* __NetBSD__ */
2148
2149 {
2150 struct mbuf *n;
2151 struct sadb_msg *newmsg;
2152
2153 /* create new sadb_msg to reply. */
2154 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2155 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2156 if (!n)
2157 return key_senderror(so, m, ENOBUFS);
2158
2159 newmsg = mtod(n, struct sadb_msg *);
2160 newmsg->sadb_msg_errno = 0;
2161 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2162
2163 m_freem(m);
2164 key_update_used();
2165 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2166 }
2167 }
2168
2169 /*
2170 * SADB_SPDDELETE2 processing
2171 * receive
2172 * <base, policy(*)>
2173 * from the user(?), and set SADB_SASTATE_DEAD,
2174 * and send,
2175 * <base, policy(*)>
2176 * to the ikmpd.
2177 * policy(*) including direction of policy.
2178 *
2179 * m will always be freed.
2180 */
2181 static int
2182 key_spddelete2(struct socket *so, struct mbuf *m,
2183 const struct sadb_msghdr *mhp)
2184 {
2185 u_int32_t id;
2186 struct secpolicy *sp;
2187
2188 /* sanity check */
2189 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2190 panic("key_spddelete2: NULL pointer is passed");
2191
2192 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2193 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2194 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2195 key_senderror(so, m, EINVAL);
2196 return 0;
2197 }
2198
2199 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2200
2201 /* Is there SP in SPD ? */
2202 if ((sp = key_getspbyid(id)) == NULL) {
2203 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2204 return key_senderror(so, m, EINVAL);
2205 }
2206
2207 key_sp_dead(sp);
2208 key_sp_unlink(sp); /* XXX jrs ordering */
2209 KEY_FREESP(&sp); /* ref gained by key_getsp */
2210 sp = NULL;
2211
2212 #if defined(__NetBSD__)
2213 /* Invalidate all cached SPD pointers in the PCBs. */
2214 ipsec_invalpcbcacheall();
2215
2216 /* We're deleting policy; no need to invalidate the ipflow cache. */
2217 #endif /* __NetBSD__ */
2218
2219 {
2220 struct mbuf *n, *nn;
2221 struct sadb_msg *newmsg;
2222 int off, len;
2223
2224 /* create new sadb_msg to reply. */
2225 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2226
2227 if (len > MCLBYTES)
2228 return key_senderror(so, m, ENOBUFS);
2229 MGETHDR(n, M_DONTWAIT, MT_DATA);
2230 if (n && len > MHLEN) {
2231 MCLGET(n, M_DONTWAIT);
2232 if ((n->m_flags & M_EXT) == 0) {
2233 m_freem(n);
2234 n = NULL;
2235 }
2236 }
2237 if (!n)
2238 return key_senderror(so, m, ENOBUFS);
2239
2240 n->m_len = len;
2241 n->m_next = NULL;
2242 off = 0;
2243
2244 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2245 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2246
2247 #ifdef DIAGNOSTIC
2248 if (off != len)
2249 panic("length inconsistency in key_spddelete2");
2250 #endif
2251
2252 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2253 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2254 if (!n->m_next) {
2255 m_freem(n);
2256 return key_senderror(so, m, ENOBUFS);
2257 }
2258
2259 n->m_pkthdr.len = 0;
2260 for (nn = n; nn; nn = nn->m_next)
2261 n->m_pkthdr.len += nn->m_len;
2262
2263 newmsg = mtod(n, struct sadb_msg *);
2264 newmsg->sadb_msg_errno = 0;
2265 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2266
2267 m_freem(m);
2268 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2269 }
2270 }
2271
2272 /*
2273 * SADB_X_GET processing
2274 * receive
2275 * <base, policy(*)>
2276 * from the user(?),
2277 * and send,
2278 * <base, address(SD), policy>
2279 * to the ikmpd.
2280 * policy(*) including direction of policy.
2281 *
2282 * m will always be freed.
2283 */
2284 static int
2285 key_spdget(struct socket *so, struct mbuf *m,
2286 const struct sadb_msghdr *mhp)
2287 {
2288 u_int32_t id;
2289 struct secpolicy *sp;
2290 struct mbuf *n;
2291
2292 /* sanity check */
2293 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2294 panic("key_spdget: NULL pointer is passed");
2295
2296 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2297 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2298 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2299 return key_senderror(so, m, EINVAL);
2300 }
2301
2302 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2303
2304 /* Is there SP in SPD ? */
2305 if ((sp = key_getspbyid(id)) == NULL) {
2306 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2307 return key_senderror(so, m, ENOENT);
2308 }
2309
2310 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2311 mhp->msg->sadb_msg_pid);
2312 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2313 if (n != NULL) {
2314 m_freem(m);
2315 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2316 } else
2317 return key_senderror(so, m, ENOBUFS);
2318 }
2319
2320 /*
2321 * SADB_X_SPDACQUIRE processing.
2322 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2323 * send
2324 * <base, policy(*)>
2325 * to KMD, and expect to receive
2326 * <base> with SADB_X_SPDACQUIRE if error occurred,
2327 * or
2328 * <base, policy>
2329 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2330 * policy(*) is without policy requests.
2331 *
2332 * 0 : succeed
2333 * others: error number
2334 */
2335 int
2336 key_spdacquire(const struct secpolicy *sp)
2337 {
2338 struct mbuf *result = NULL, *m;
2339 struct secspacq *newspacq;
2340 int error;
2341
2342 /* sanity check */
2343 if (sp == NULL)
2344 panic("key_spdacquire: NULL pointer is passed");
2345 if (sp->req != NULL)
2346 panic("key_spdacquire: called but there is request");
2347 if (sp->policy != IPSEC_POLICY_IPSEC)
2348 panic("key_spdacquire: policy mismathed. IPsec is expected");
2349
2350 /* Get an entry to check whether sent message or not. */
2351 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2352 if (key_blockacq_count < newspacq->count) {
2353 /* reset counter and do send message. */
2354 newspacq->count = 0;
2355 } else {
2356 /* increment counter and do nothing. */
2357 newspacq->count++;
2358 return 0;
2359 }
2360 } else {
2361 /* make new entry for blocking to send SADB_ACQUIRE. */
2362 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2363 return ENOBUFS;
2364
2365 /* add to acqtree */
2366 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2367 }
2368
2369 /* create new sadb_msg to reply. */
2370 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2371 if (!m) {
2372 error = ENOBUFS;
2373 goto fail;
2374 }
2375 result = m;
2376
2377 result->m_pkthdr.len = 0;
2378 for (m = result; m; m = m->m_next)
2379 result->m_pkthdr.len += m->m_len;
2380
2381 mtod(result, struct sadb_msg *)->sadb_msg_len =
2382 PFKEY_UNIT64(result->m_pkthdr.len);
2383
2384 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2385
2386 fail:
2387 if (result)
2388 m_freem(result);
2389 return error;
2390 }
2391
2392 /*
2393 * SADB_SPDFLUSH processing
2394 * receive
2395 * <base>
2396 * from the user, and free all entries in secpctree.
2397 * and send,
2398 * <base>
2399 * to the user.
2400 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2401 *
2402 * m will always be freed.
2403 */
2404 static int
2405 key_spdflush(struct socket *so, struct mbuf *m,
2406 const struct sadb_msghdr *mhp)
2407 {
2408 struct sadb_msg *newmsg;
2409 struct secpolicy *sp;
2410 u_int dir;
2411
2412 /* sanity check */
2413 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2414 panic("key_spdflush: NULL pointer is passed");
2415
2416 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2417 return key_senderror(so, m, EINVAL);
2418
2419 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2420 struct secpolicy * nextsp;
2421 for (sp = LIST_FIRST(&sptree[dir]);
2422 sp != NULL;
2423 sp = nextsp) {
2424
2425 nextsp = LIST_NEXT(sp, chain);
2426 if (sp->state == IPSEC_SPSTATE_DEAD)
2427 continue;
2428 key_sp_dead(sp);
2429 key_sp_unlink(sp);
2430 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2431 continue;
2432 }
2433 }
2434
2435 #if defined(__NetBSD__)
2436 /* Invalidate all cached SPD pointers in the PCBs. */
2437 ipsec_invalpcbcacheall();
2438
2439 /* We're deleting policy; no need to invalidate the ipflow cache. */
2440 #endif /* __NetBSD__ */
2441
2442 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2443 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2444 return key_senderror(so, m, ENOBUFS);
2445 }
2446
2447 if (m->m_next)
2448 m_freem(m->m_next);
2449 m->m_next = NULL;
2450 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2451 newmsg = mtod(m, struct sadb_msg *);
2452 newmsg->sadb_msg_errno = 0;
2453 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2454
2455 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2456 }
2457
2458 static struct sockaddr key_src = {
2459 .sa_len = 2,
2460 .sa_family = PF_KEY,
2461 };
2462
2463 static struct mbuf *
2464 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2465 {
2466 struct secpolicy *sp;
2467 int cnt;
2468 u_int dir;
2469 struct mbuf *m, *n, *prev;
2470 int totlen;
2471
2472 *lenp = 0;
2473
2474 /* search SPD entry and get buffer size. */
2475 cnt = 0;
2476 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2477 LIST_FOREACH(sp, &sptree[dir], chain) {
2478 cnt++;
2479 }
2480 }
2481
2482 if (cnt == 0) {
2483 *errorp = ENOENT;
2484 return (NULL);
2485 }
2486
2487 m = NULL;
2488 prev = m;
2489 totlen = 0;
2490 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2491 LIST_FOREACH(sp, &sptree[dir], chain) {
2492 --cnt;
2493 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2494
2495 if (!n) {
2496 *errorp = ENOBUFS;
2497 if (m) m_freem(m);
2498 return (NULL);
2499 }
2500
2501 totlen += n->m_pkthdr.len;
2502 if (!m) {
2503 m = n;
2504 } else {
2505 prev->m_nextpkt = n;
2506 }
2507 prev = n;
2508 }
2509 }
2510
2511 *lenp = totlen;
2512 *errorp = 0;
2513 return (m);
2514 }
2515
2516 /*
2517 * SADB_SPDDUMP processing
2518 * receive
2519 * <base>
2520 * from the user, and dump all SP leaves
2521 * and send,
2522 * <base> .....
2523 * to the ikmpd.
2524 *
2525 * m will always be freed.
2526 */
2527 static int
2528 key_spddump(struct socket *so, struct mbuf *m0,
2529 const struct sadb_msghdr *mhp)
2530 {
2531 struct mbuf *n;
2532 int error, len;
2533 int ok, s;
2534 pid_t pid;
2535
2536 /* sanity check */
2537 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2538 panic("key_spddump: NULL pointer is passed");
2539
2540
2541 pid = mhp->msg->sadb_msg_pid;
2542 /*
2543 * If the requestor has insufficient socket-buffer space
2544 * for the entire chain, nobody gets any response to the DUMP.
2545 * XXX For now, only the requestor ever gets anything.
2546 * Moreover, if the requestor has any space at all, they receive
2547 * the entire chain, otherwise the request is refused with ENOBUFS.
2548 */
2549 if (sbspace(&so->so_rcv) <= 0) {
2550 return key_senderror(so, m0, ENOBUFS);
2551 }
2552
2553 s = splsoftnet();
2554 n = key_setspddump_chain(&error, &len, pid);
2555 splx(s);
2556
2557 if (n == NULL) {
2558 return key_senderror(so, m0, ENOENT);
2559 }
2560 {
2561 uint64_t *ps = PFKEY_STAT_GETREF();
2562 ps[PFKEY_STAT_IN_TOTAL]++;
2563 ps[PFKEY_STAT_IN_BYTES] += len;
2564 PFKEY_STAT_PUTREF();
2565 }
2566
2567 /*
2568 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2569 * The requestor receives either the entire chain, or an
2570 * error message with ENOBUFS.
2571 */
2572
2573 /*
2574 * sbappendchainwith record takes the chain of entries, one
2575 * packet-record per SPD entry, prepends the key_src sockaddr
2576 * to each packet-record, links the sockaddr mbufs into a new
2577 * list of records, then appends the entire resulting
2578 * list to the requesting socket.
2579 */
2580 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2581 n, SB_PRIO_ONESHOT_OVERFLOW);
2582
2583 if (!ok) {
2584 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2585 m_freem(n);
2586 return key_senderror(so, m0, ENOBUFS);
2587 }
2588
2589 m_freem(m0);
2590 return error;
2591 }
2592
2593 /*
2594 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2595 */
2596 static int
2597 key_nat_map(struct socket *so, struct mbuf *m,
2598 const struct sadb_msghdr *mhp)
2599 {
2600 struct sadb_x_nat_t_type *type;
2601 struct sadb_x_nat_t_port *sport;
2602 struct sadb_x_nat_t_port *dport;
2603 struct sadb_address *iaddr, *raddr;
2604 struct sadb_x_nat_t_frag *frag;
2605
2606 /* sanity check */
2607 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2608 panic("key_nat_map: NULL pointer is passed.");
2609
2610 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2611 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2612 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2613 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2614 return key_senderror(so, m, EINVAL);
2615 }
2616 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2617 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2618 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2619 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2620 return key_senderror(so, m, EINVAL);
2621 }
2622
2623 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2624 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2625 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2626 return key_senderror(so, m, EINVAL);
2627 }
2628
2629 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2630 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2631 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2632 return key_senderror(so, m, EINVAL);
2633 }
2634
2635 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2636 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2637 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2638 return key_senderror(so, m, EINVAL);
2639 }
2640
2641 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2642 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2643 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2644 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2645 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2646 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2647
2648 /*
2649 * XXX handle that, it should also contain a SA, or anything
2650 * that enable to update the SA information.
2651 */
2652
2653 return 0;
2654 }
2655
2656 static struct mbuf *
2657 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2658 {
2659 struct mbuf *result = NULL, *m;
2660
2661 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2662 if (!m)
2663 goto fail;
2664 result = m;
2665
2666 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2667 &sp->spidx.src.sa, sp->spidx.prefs,
2668 sp->spidx.ul_proto);
2669 if (!m)
2670 goto fail;
2671 m_cat(result, m);
2672
2673 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2674 &sp->spidx.dst.sa, sp->spidx.prefd,
2675 sp->spidx.ul_proto);
2676 if (!m)
2677 goto fail;
2678 m_cat(result, m);
2679
2680 m = key_sp2msg(sp);
2681 if (!m)
2682 goto fail;
2683 m_cat(result, m);
2684
2685 if ((result->m_flags & M_PKTHDR) == 0)
2686 goto fail;
2687
2688 if (result->m_len < sizeof(struct sadb_msg)) {
2689 result = m_pullup(result, sizeof(struct sadb_msg));
2690 if (result == NULL)
2691 goto fail;
2692 }
2693
2694 result->m_pkthdr.len = 0;
2695 for (m = result; m; m = m->m_next)
2696 result->m_pkthdr.len += m->m_len;
2697
2698 mtod(result, struct sadb_msg *)->sadb_msg_len =
2699 PFKEY_UNIT64(result->m_pkthdr.len);
2700
2701 return result;
2702
2703 fail:
2704 m_freem(result);
2705 return NULL;
2706 }
2707
2708 /*
2709 * get PFKEY message length for security policy and request.
2710 */
2711 static u_int
2712 key_getspreqmsglen(const struct secpolicy *sp)
2713 {
2714 u_int tlen;
2715
2716 tlen = sizeof(struct sadb_x_policy);
2717
2718 /* if is the policy for ipsec ? */
2719 if (sp->policy != IPSEC_POLICY_IPSEC)
2720 return tlen;
2721
2722 /* get length of ipsec requests */
2723 {
2724 const struct ipsecrequest *isr;
2725 int len;
2726
2727 for (isr = sp->req; isr != NULL; isr = isr->next) {
2728 len = sizeof(struct sadb_x_ipsecrequest)
2729 + isr->saidx.src.sa.sa_len
2730 + isr->saidx.dst.sa.sa_len;
2731
2732 tlen += PFKEY_ALIGN8(len);
2733 }
2734 }
2735
2736 return tlen;
2737 }
2738
2739 /*
2740 * SADB_SPDEXPIRE processing
2741 * send
2742 * <base, address(SD), lifetime(CH), policy>
2743 * to KMD by PF_KEY.
2744 *
2745 * OUT: 0 : succeed
2746 * others : error number
2747 */
2748 static int
2749 key_spdexpire(struct secpolicy *sp)
2750 {
2751 int s;
2752 struct mbuf *result = NULL, *m;
2753 int len;
2754 int error = -1;
2755 struct sadb_lifetime *lt;
2756
2757 /* XXX: Why do we lock ? */
2758 s = splsoftnet(); /*called from softclock()*/
2759
2760 /* sanity check */
2761 if (sp == NULL)
2762 panic("key_spdexpire: NULL pointer is passed");
2763
2764 /* set msg header */
2765 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2766 if (!m) {
2767 error = ENOBUFS;
2768 goto fail;
2769 }
2770 result = m;
2771
2772 /* create lifetime extension (current and hard) */
2773 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2774 m = key_alloc_mbuf(len);
2775 if (!m || m->m_next) { /*XXX*/
2776 if (m)
2777 m_freem(m);
2778 error = ENOBUFS;
2779 goto fail;
2780 }
2781 memset(mtod(m, void *), 0, len);
2782 lt = mtod(m, struct sadb_lifetime *);
2783 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2784 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2785 lt->sadb_lifetime_allocations = 0;
2786 lt->sadb_lifetime_bytes = 0;
2787 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2788 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2789 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2790 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2791 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2792 lt->sadb_lifetime_allocations = 0;
2793 lt->sadb_lifetime_bytes = 0;
2794 lt->sadb_lifetime_addtime = sp->lifetime;
2795 lt->sadb_lifetime_usetime = sp->validtime;
2796 m_cat(result, m);
2797
2798 /* set sadb_address for source */
2799 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2800 &sp->spidx.src.sa,
2801 sp->spidx.prefs, sp->spidx.ul_proto);
2802 if (!m) {
2803 error = ENOBUFS;
2804 goto fail;
2805 }
2806 m_cat(result, m);
2807
2808 /* set sadb_address for destination */
2809 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2810 &sp->spidx.dst.sa,
2811 sp->spidx.prefd, sp->spidx.ul_proto);
2812 if (!m) {
2813 error = ENOBUFS;
2814 goto fail;
2815 }
2816 m_cat(result, m);
2817
2818 /* set secpolicy */
2819 m = key_sp2msg(sp);
2820 if (!m) {
2821 error = ENOBUFS;
2822 goto fail;
2823 }
2824 m_cat(result, m);
2825
2826 if ((result->m_flags & M_PKTHDR) == 0) {
2827 error = EINVAL;
2828 goto fail;
2829 }
2830
2831 if (result->m_len < sizeof(struct sadb_msg)) {
2832 result = m_pullup(result, sizeof(struct sadb_msg));
2833 if (result == NULL) {
2834 error = ENOBUFS;
2835 goto fail;
2836 }
2837 }
2838
2839 result->m_pkthdr.len = 0;
2840 for (m = result; m; m = m->m_next)
2841 result->m_pkthdr.len += m->m_len;
2842
2843 mtod(result, struct sadb_msg *)->sadb_msg_len =
2844 PFKEY_UNIT64(result->m_pkthdr.len);
2845
2846 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2847
2848 fail:
2849 if (result)
2850 m_freem(result);
2851 splx(s);
2852 return error;
2853 }
2854
2855 /* %%% SAD management */
2856 /*
2857 * allocating a memory for new SA head, and copy from the values of mhp.
2858 * OUT: NULL : failure due to the lack of memory.
2859 * others : pointer to new SA head.
2860 */
2861 static struct secashead *
2862 key_newsah(const struct secasindex *saidx)
2863 {
2864 struct secashead *newsah;
2865
2866 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2867
2868 newsah = (struct secashead *)
2869 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2870 if (newsah != NULL) {
2871 int i;
2872 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2873 LIST_INIT(&newsah->savtree[i]);
2874 newsah->saidx = *saidx;
2875
2876 /* add to saidxtree */
2877 newsah->state = SADB_SASTATE_MATURE;
2878 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2879 }
2880 return(newsah);
2881 }
2882
2883 /*
2884 * delete SA index and all SA registerd.
2885 */
2886 static void
2887 key_delsah(struct secashead *sah)
2888 {
2889 struct secasvar *sav, *nextsav;
2890 u_int stateidx, state;
2891 int s;
2892 int zombie = 0;
2893
2894 /* sanity check */
2895 if (sah == NULL)
2896 panic("key_delsah: NULL pointer is passed");
2897
2898 s = splsoftnet(); /*called from softclock()*/
2899
2900 /* searching all SA registerd in the secindex. */
2901 for (stateidx = 0;
2902 stateidx < _ARRAYLEN(saorder_state_any);
2903 stateidx++) {
2904
2905 state = saorder_state_any[stateidx];
2906 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2907 sav != NULL;
2908 sav = nextsav) {
2909
2910 nextsav = LIST_NEXT(sav, chain);
2911
2912 if (sav->refcnt == 0) {
2913 /* sanity check */
2914 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2915 KEY_FREESAV(&sav);
2916 } else {
2917 /* give up to delete this sa */
2918 zombie++;
2919 }
2920 }
2921 }
2922
2923 /* don't delete sah only if there are savs. */
2924 if (zombie) {
2925 splx(s);
2926 return;
2927 }
2928
2929 rtcache_free(&sah->sa_route);
2930
2931 /* remove from tree of SA index */
2932 if (__LIST_CHAINED(sah))
2933 LIST_REMOVE(sah, chain);
2934
2935 KFREE(sah);
2936
2937 splx(s);
2938 return;
2939 }
2940
2941 /*
2942 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2943 * and copy the values of mhp into new buffer.
2944 * When SAD message type is GETSPI:
2945 * to set sequence number from acq_seq++,
2946 * to set zero to SPI.
2947 * not to call key_setsava().
2948 * OUT: NULL : fail
2949 * others : pointer to new secasvar.
2950 *
2951 * does not modify mbuf. does not free mbuf on error.
2952 */
2953 static struct secasvar *
2954 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2955 struct secashead *sah, int *errp,
2956 const char* where, int tag)
2957 {
2958 struct secasvar *newsav;
2959 const struct sadb_sa *xsa;
2960
2961 /* sanity check */
2962 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2963 panic("key_newsa: NULL pointer is passed");
2964
2965 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2966 if (newsav == NULL) {
2967 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2968 *errp = ENOBUFS;
2969 goto done;
2970 }
2971 memset(newsav, 0, sizeof(struct secasvar));
2972
2973 switch (mhp->msg->sadb_msg_type) {
2974 case SADB_GETSPI:
2975 newsav->spi = 0;
2976
2977 #ifdef IPSEC_DOSEQCHECK
2978 /* sync sequence number */
2979 if (mhp->msg->sadb_msg_seq == 0)
2980 newsav->seq =
2981 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2982 else
2983 #endif
2984 newsav->seq = mhp->msg->sadb_msg_seq;
2985 break;
2986
2987 case SADB_ADD:
2988 /* sanity check */
2989 if (mhp->ext[SADB_EXT_SA] == NULL) {
2990 KFREE(newsav), newsav = NULL;
2991 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2992 *errp = EINVAL;
2993 goto done;
2994 }
2995 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2996 newsav->spi = xsa->sadb_sa_spi;
2997 newsav->seq = mhp->msg->sadb_msg_seq;
2998 break;
2999 default:
3000 KFREE(newsav), newsav = NULL;
3001 *errp = EINVAL;
3002 goto done;
3003 }
3004
3005 /* copy sav values */
3006 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3007 *errp = key_setsaval(newsav, m, mhp);
3008 if (*errp) {
3009 KFREE(newsav), newsav = NULL;
3010 goto done;
3011 }
3012 }
3013
3014 /* reset created */
3015 newsav->created = time_uptime;
3016 newsav->pid = mhp->msg->sadb_msg_pid;
3017
3018 /* add to satree */
3019 newsav->sah = sah;
3020 newsav->refcnt = 1;
3021 newsav->state = SADB_SASTATE_LARVAL;
3022 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3023 secasvar, chain);
3024 done:
3025 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3026 printf("DP %s from %s:%u return SP:%p\n", __func__,
3027 where, tag, newsav));
3028
3029 return newsav;
3030 }
3031
3032 /*
3033 * free() SA variable entry.
3034 */
3035 static void
3036 key_delsav(struct secasvar *sav)
3037 {
3038 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
3039 IPSEC_ASSERT(sav->refcnt == 0,
3040 ("key_delsav: reference count %u > 0", sav->refcnt));
3041
3042 /* remove from SA header */
3043 if (__LIST_CHAINED(sav))
3044 LIST_REMOVE(sav, chain);
3045
3046 /*
3047 * Cleanup xform state. Note that zeroize'ing causes the
3048 * keys to be cleared; otherwise we must do it ourself.
3049 */
3050 if (sav->tdb_xform != NULL) {
3051 sav->tdb_xform->xf_zeroize(sav);
3052 sav->tdb_xform = NULL;
3053 } else {
3054 if (sav->key_auth != NULL)
3055 explicit_memset(_KEYBUF(sav->key_auth), 0,
3056 _KEYLEN(sav->key_auth));
3057 if (sav->key_enc != NULL)
3058 explicit_memset(_KEYBUF(sav->key_enc), 0,
3059 _KEYLEN(sav->key_enc));
3060 }
3061 if (sav->key_auth != NULL) {
3062 KFREE(sav->key_auth);
3063 sav->key_auth = NULL;
3064 }
3065 if (sav->key_enc != NULL) {
3066 KFREE(sav->key_enc);
3067 sav->key_enc = NULL;
3068 }
3069 if (sav->replay != NULL) {
3070 KFREE(sav->replay);
3071 sav->replay = NULL;
3072 }
3073 if (sav->lft_c != NULL) {
3074 KFREE(sav->lft_c);
3075 sav->lft_c = NULL;
3076 }
3077 if (sav->lft_h != NULL) {
3078 KFREE(sav->lft_h);
3079 sav->lft_h = NULL;
3080 }
3081 if (sav->lft_s != NULL) {
3082 KFREE(sav->lft_s);
3083 sav->lft_s = NULL;
3084 }
3085
3086 KFREE(sav);
3087
3088 return;
3089 }
3090
3091 /*
3092 * search SAD.
3093 * OUT:
3094 * NULL : not found
3095 * others : found, pointer to a SA.
3096 */
3097 static struct secashead *
3098 key_getsah(const struct secasindex *saidx)
3099 {
3100 struct secashead *sah;
3101
3102 LIST_FOREACH(sah, &sahtree, chain) {
3103 if (sah->state == SADB_SASTATE_DEAD)
3104 continue;
3105 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3106 return sah;
3107 }
3108
3109 return NULL;
3110 }
3111
3112 /*
3113 * check not to be duplicated SPI.
3114 * NOTE: this function is too slow due to searching all SAD.
3115 * OUT:
3116 * NULL : not found
3117 * others : found, pointer to a SA.
3118 */
3119 static struct secasvar *
3120 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3121 {
3122 struct secashead *sah;
3123 struct secasvar *sav;
3124
3125 /* check address family */
3126 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3127 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3128 return NULL;
3129 }
3130
3131 /* check all SAD */
3132 LIST_FOREACH(sah, &sahtree, chain) {
3133 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3134 continue;
3135 sav = key_getsavbyspi(sah, spi);
3136 if (sav != NULL)
3137 return sav;
3138 }
3139
3140 return NULL;
3141 }
3142
3143 /*
3144 * search SAD litmited alive SA, protocol, SPI.
3145 * OUT:
3146 * NULL : not found
3147 * others : found, pointer to a SA.
3148 */
3149 static struct secasvar *
3150 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3151 {
3152 struct secasvar *sav;
3153 u_int stateidx, state;
3154
3155 /* search all status */
3156 for (stateidx = 0;
3157 stateidx < _ARRAYLEN(saorder_state_alive);
3158 stateidx++) {
3159
3160 state = saorder_state_alive[stateidx];
3161 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3162
3163 /* sanity check */
3164 if (sav->state != state) {
3165 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3166 "invalid sav->state (queue: %d SA: %d)\n",
3167 state, sav->state));
3168 continue;
3169 }
3170
3171 if (sav->spi == spi)
3172 return sav;
3173 }
3174 }
3175
3176 return NULL;
3177 }
3178
3179 /*
3180 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3181 * You must update these if need.
3182 * OUT: 0: success.
3183 * !0: failure.
3184 *
3185 * does not modify mbuf. does not free mbuf on error.
3186 */
3187 static int
3188 key_setsaval(struct secasvar *sav, struct mbuf *m,
3189 const struct sadb_msghdr *mhp)
3190 {
3191 int error = 0;
3192
3193 /* sanity check */
3194 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3195 panic("key_setsaval: NULL pointer is passed");
3196
3197 /* initialization */
3198 sav->replay = NULL;
3199 sav->key_auth = NULL;
3200 sav->key_enc = NULL;
3201 sav->lft_c = NULL;
3202 sav->lft_h = NULL;
3203 sav->lft_s = NULL;
3204 sav->tdb_xform = NULL; /* transform */
3205 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3206 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3207 sav->tdb_compalgxform = NULL; /* compression algorithm */
3208 sav->natt_type = 0;
3209 sav->esp_frag = 0;
3210
3211 /* SA */
3212 if (mhp->ext[SADB_EXT_SA] != NULL) {
3213 const struct sadb_sa *sa0;
3214
3215 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3216 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3217 error = EINVAL;
3218 goto fail;
3219 }
3220
3221 sav->alg_auth = sa0->sadb_sa_auth;
3222 sav->alg_enc = sa0->sadb_sa_encrypt;
3223 sav->flags = sa0->sadb_sa_flags;
3224
3225 /* replay window */
3226 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3227 sav->replay = (struct secreplay *)
3228 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3229 if (sav->replay == NULL) {
3230 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3231 error = ENOBUFS;
3232 goto fail;
3233 }
3234 if (sa0->sadb_sa_replay != 0)
3235 sav->replay->bitmap = (char*)(sav->replay+1);
3236 sav->replay->wsize = sa0->sadb_sa_replay;
3237 }
3238 }
3239
3240 /* Authentication keys */
3241 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3242 const struct sadb_key *key0;
3243 int len;
3244
3245 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3246 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3247
3248 error = 0;
3249 if (len < sizeof(*key0)) {
3250 error = EINVAL;
3251 goto fail;
3252 }
3253 switch (mhp->msg->sadb_msg_satype) {
3254 case SADB_SATYPE_AH:
3255 case SADB_SATYPE_ESP:
3256 case SADB_X_SATYPE_TCPSIGNATURE:
3257 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3258 sav->alg_auth != SADB_X_AALG_NULL)
3259 error = EINVAL;
3260 break;
3261 case SADB_X_SATYPE_IPCOMP:
3262 default:
3263 error = EINVAL;
3264 break;
3265 }
3266 if (error) {
3267 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3268 goto fail;
3269 }
3270
3271 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3272 if (sav->key_auth == NULL) {
3273 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3274 error = ENOBUFS;
3275 goto fail;
3276 }
3277 }
3278
3279 /* Encryption key */
3280 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3281 const struct sadb_key *key0;
3282 int len;
3283
3284 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3285 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3286
3287 error = 0;
3288 if (len < sizeof(*key0)) {
3289 error = EINVAL;
3290 goto fail;
3291 }
3292 switch (mhp->msg->sadb_msg_satype) {
3293 case SADB_SATYPE_ESP:
3294 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3295 sav->alg_enc != SADB_EALG_NULL) {
3296 error = EINVAL;
3297 break;
3298 }
3299 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3300 if (sav->key_enc == NULL) {
3301 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3302 error = ENOBUFS;
3303 goto fail;
3304 }
3305 break;
3306 case SADB_X_SATYPE_IPCOMP:
3307 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3308 error = EINVAL;
3309 sav->key_enc = NULL; /*just in case*/
3310 break;
3311 case SADB_SATYPE_AH:
3312 case SADB_X_SATYPE_TCPSIGNATURE:
3313 default:
3314 error = EINVAL;
3315 break;
3316 }
3317 if (error) {
3318 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3319 goto fail;
3320 }
3321 }
3322
3323 /* set iv */
3324 sav->ivlen = 0;
3325
3326 switch (mhp->msg->sadb_msg_satype) {
3327 case SADB_SATYPE_AH:
3328 error = xform_init(sav, XF_AH);
3329 break;
3330 case SADB_SATYPE_ESP:
3331 error = xform_init(sav, XF_ESP);
3332 break;
3333 case SADB_X_SATYPE_IPCOMP:
3334 error = xform_init(sav, XF_IPCOMP);
3335 break;
3336 case SADB_X_SATYPE_TCPSIGNATURE:
3337 error = xform_init(sav, XF_TCPSIGNATURE);
3338 break;
3339 }
3340 if (error) {
3341 ipseclog((LOG_DEBUG,
3342 "key_setsaval: unable to initialize SA type %u.\n",
3343 mhp->msg->sadb_msg_satype));
3344 goto fail;
3345 }
3346
3347 /* reset created */
3348 sav->created = time_uptime;
3349
3350 /* make lifetime for CURRENT */
3351 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3352 sizeof(struct sadb_lifetime));
3353 if (sav->lft_c == NULL) {
3354 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3355 error = ENOBUFS;
3356 goto fail;
3357 }
3358
3359 sav->lft_c->sadb_lifetime_len =
3360 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3361 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3362 sav->lft_c->sadb_lifetime_allocations = 0;
3363 sav->lft_c->sadb_lifetime_bytes = 0;
3364 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3365 sav->lft_c->sadb_lifetime_usetime = 0;
3366
3367 /* lifetimes for HARD and SOFT */
3368 {
3369 const struct sadb_lifetime *lft0;
3370
3371 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3372 if (lft0 != NULL) {
3373 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3374 error = EINVAL;
3375 goto fail;
3376 }
3377 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3378 sizeof(*lft0));
3379 if (sav->lft_h == NULL) {
3380 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3381 error = ENOBUFS;
3382 goto fail;
3383 }
3384 /* to be initialize ? */
3385 }
3386
3387 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3388 if (lft0 != NULL) {
3389 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3390 error = EINVAL;
3391 goto fail;
3392 }
3393 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3394 sizeof(*lft0));
3395 if (sav->lft_s == NULL) {
3396 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3397 error = ENOBUFS;
3398 goto fail;
3399 }
3400 /* to be initialize ? */
3401 }
3402 }
3403
3404 return 0;
3405
3406 fail:
3407 /* initialization */
3408 if (sav->replay != NULL) {
3409 KFREE(sav->replay);
3410 sav->replay = NULL;
3411 }
3412 if (sav->key_auth != NULL) {
3413 KFREE(sav->key_auth);
3414 sav->key_auth = NULL;
3415 }
3416 if (sav->key_enc != NULL) {
3417 KFREE(sav->key_enc);
3418 sav->key_enc = NULL;
3419 }
3420 if (sav->lft_c != NULL) {
3421 KFREE(sav->lft_c);
3422 sav->lft_c = NULL;
3423 }
3424 if (sav->lft_h != NULL) {
3425 KFREE(sav->lft_h);
3426 sav->lft_h = NULL;
3427 }
3428 if (sav->lft_s != NULL) {
3429 KFREE(sav->lft_s);
3430 sav->lft_s = NULL;
3431 }
3432
3433 return error;
3434 }
3435
3436 /*
3437 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3438 * OUT: 0: valid
3439 * other: errno
3440 */
3441 static int
3442 key_mature(struct secasvar *sav)
3443 {
3444 int error;
3445
3446 /* check SPI value */
3447 switch (sav->sah->saidx.proto) {
3448 case IPPROTO_ESP:
3449 case IPPROTO_AH:
3450 if (ntohl(sav->spi) <= 255) {
3451 ipseclog((LOG_DEBUG,
3452 "key_mature: illegal range of SPI %u.\n",
3453 (u_int32_t)ntohl(sav->spi)));
3454 return EINVAL;
3455 }
3456 break;
3457 }
3458
3459 /* check satype */
3460 switch (sav->sah->saidx.proto) {
3461 case IPPROTO_ESP:
3462 /* check flags */
3463 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3464 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3465 ipseclog((LOG_DEBUG, "key_mature: "
3466 "invalid flag (derived) given to old-esp.\n"));
3467 return EINVAL;
3468 }
3469 error = xform_init(sav, XF_ESP);
3470 break;
3471 case IPPROTO_AH:
3472 /* check flags */
3473 if (sav->flags & SADB_X_EXT_DERIV) {
3474 ipseclog((LOG_DEBUG, "key_mature: "
3475 "invalid flag (derived) given to AH SA.\n"));
3476 return EINVAL;
3477 }
3478 if (sav->alg_enc != SADB_EALG_NONE) {
3479 ipseclog((LOG_DEBUG, "key_mature: "
3480 "protocol and algorithm mismated.\n"));
3481 return(EINVAL);
3482 }
3483 error = xform_init(sav, XF_AH);
3484 break;
3485 case IPPROTO_IPCOMP:
3486 if (sav->alg_auth != SADB_AALG_NONE) {
3487 ipseclog((LOG_DEBUG, "key_mature: "
3488 "protocol and algorithm mismated.\n"));
3489 return(EINVAL);
3490 }
3491 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3492 && ntohl(sav->spi) >= 0x10000) {
3493 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3494 return(EINVAL);
3495 }
3496 error = xform_init(sav, XF_IPCOMP);
3497 break;
3498 case IPPROTO_TCP:
3499 if (sav->alg_enc != SADB_EALG_NONE) {
3500 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3501 "mismated.\n", __func__));
3502 return(EINVAL);
3503 }
3504 error = xform_init(sav, XF_TCPSIGNATURE);
3505 break;
3506 default:
3507 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3508 error = EPROTONOSUPPORT;
3509 break;
3510 }
3511 if (error == 0)
3512 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3513 return (error);
3514 }
3515
3516 /*
3517 * subroutine for SADB_GET and SADB_DUMP.
3518 */
3519 static struct mbuf *
3520 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3521 u_int32_t seq, u_int32_t pid)
3522 {
3523 struct mbuf *result = NULL, *tres = NULL, *m;
3524 int l = 0;
3525 int i;
3526 void *p;
3527 struct sadb_lifetime lt;
3528 int dumporder[] = {
3529 SADB_EXT_SA, SADB_X_EXT_SA2,
3530 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3531 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3532 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3533 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3534 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3535 SADB_X_EXT_NAT_T_TYPE,
3536 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3537 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3538 SADB_X_EXT_NAT_T_FRAG,
3539
3540 };
3541
3542 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3543 if (m == NULL)
3544 goto fail;
3545 result = m;
3546
3547 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3548 m = NULL;
3549 p = NULL;
3550 switch (dumporder[i]) {
3551 case SADB_EXT_SA:
3552 m = key_setsadbsa(sav);
3553 break;
3554
3555 case SADB_X_EXT_SA2:
3556 m = key_setsadbxsa2(sav->sah->saidx.mode,
3557 sav->replay ? sav->replay->count : 0,
3558 sav->sah->saidx.reqid);
3559 break;
3560
3561 case SADB_EXT_ADDRESS_SRC:
3562 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3563 &sav->sah->saidx.src.sa,
3564 FULLMASK, IPSEC_ULPROTO_ANY);
3565 break;
3566
3567 case SADB_EXT_ADDRESS_DST:
3568 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3569 &sav->sah->saidx.dst.sa,
3570 FULLMASK, IPSEC_ULPROTO_ANY);
3571 break;
3572
3573 case SADB_EXT_KEY_AUTH:
3574 if (!sav->key_auth)
3575 continue;
3576 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3577 p = sav->key_auth;
3578 break;
3579
3580 case SADB_EXT_KEY_ENCRYPT:
3581 if (!sav->key_enc)
3582 continue;
3583 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3584 p = sav->key_enc;
3585 break;
3586
3587 case SADB_EXT_LIFETIME_CURRENT:
3588 if (!sav->lft_c)
3589 continue;
3590 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3591 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3592 lt.sadb_lifetime_addtime += time_second - time_uptime;
3593 lt.sadb_lifetime_usetime += time_second - time_uptime;
3594 p = <
3595 break;
3596
3597 case SADB_EXT_LIFETIME_HARD:
3598 if (!sav->lft_h)
3599 continue;
3600 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3601 p = sav->lft_h;
3602 break;
3603
3604 case SADB_EXT_LIFETIME_SOFT:
3605 if (!sav->lft_s)
3606 continue;
3607 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3608 p = sav->lft_s;
3609 break;
3610
3611 case SADB_X_EXT_NAT_T_TYPE:
3612 m = key_setsadbxtype(sav->natt_type);
3613 break;
3614
3615 case SADB_X_EXT_NAT_T_DPORT:
3616 if (sav->natt_type == 0)
3617 continue;
3618 m = key_setsadbxport(
3619 key_portfromsaddr(&sav->sah->saidx.dst),
3620 SADB_X_EXT_NAT_T_DPORT);
3621 break;
3622
3623 case SADB_X_EXT_NAT_T_SPORT:
3624 if (sav->natt_type == 0)
3625 continue;
3626 m = key_setsadbxport(
3627 key_portfromsaddr(&sav->sah->saidx.src),
3628 SADB_X_EXT_NAT_T_SPORT);
3629 break;
3630
3631 case SADB_X_EXT_NAT_T_FRAG:
3632 /* don't send frag info if not set */
3633 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3634 continue;
3635 m = key_setsadbxfrag(sav->esp_frag);
3636 break;
3637
3638 case SADB_X_EXT_NAT_T_OAI:
3639 case SADB_X_EXT_NAT_T_OAR:
3640 continue;
3641
3642 case SADB_EXT_ADDRESS_PROXY:
3643 case SADB_EXT_IDENTITY_SRC:
3644 case SADB_EXT_IDENTITY_DST:
3645 /* XXX: should we brought from SPD ? */
3646 case SADB_EXT_SENSITIVITY:
3647 default:
3648 continue;
3649 }
3650
3651 KASSERT(!(m && p));
3652 if (!m && !p)
3653 goto fail;
3654 if (p && tres) {
3655 M_PREPEND(tres, l, M_DONTWAIT);
3656 if (!tres)
3657 goto fail;
3658 memcpy(mtod(tres, void *), p, l);
3659 continue;
3660 }
3661 if (p) {
3662 m = key_alloc_mbuf(l);
3663 if (!m)
3664 goto fail;
3665 m_copyback(m, 0, l, p);
3666 }
3667
3668 if (tres)
3669 m_cat(m, tres);
3670 tres = m;
3671 }
3672
3673 m_cat(result, tres);
3674 tres = NULL; /* avoid free on error below */
3675
3676 if (result->m_len < sizeof(struct sadb_msg)) {
3677 result = m_pullup(result, sizeof(struct sadb_msg));
3678 if (result == NULL)
3679 goto fail;
3680 }
3681
3682 result->m_pkthdr.len = 0;
3683 for (m = result; m; m = m->m_next)
3684 result->m_pkthdr.len += m->m_len;
3685
3686 mtod(result, struct sadb_msg *)->sadb_msg_len =
3687 PFKEY_UNIT64(result->m_pkthdr.len);
3688
3689 return result;
3690
3691 fail:
3692 m_freem(result);
3693 m_freem(tres);
3694 return NULL;
3695 }
3696
3697
3698 /*
3699 * set a type in sadb_x_nat_t_type
3700 */
3701 static struct mbuf *
3702 key_setsadbxtype(u_int16_t type)
3703 {
3704 struct mbuf *m;
3705 size_t len;
3706 struct sadb_x_nat_t_type *p;
3707
3708 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3709
3710 m = key_alloc_mbuf(len);
3711 if (!m || m->m_next) { /*XXX*/
3712 if (m)
3713 m_freem(m);
3714 return NULL;
3715 }
3716
3717 p = mtod(m, struct sadb_x_nat_t_type *);
3718
3719 memset(p, 0, len);
3720 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3721 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3722 p->sadb_x_nat_t_type_type = type;
3723
3724 return m;
3725 }
3726 /*
3727 * set a port in sadb_x_nat_t_port. port is in network order
3728 */
3729 static struct mbuf *
3730 key_setsadbxport(u_int16_t port, u_int16_t type)
3731 {
3732 struct mbuf *m;
3733 size_t len;
3734 struct sadb_x_nat_t_port *p;
3735
3736 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3737
3738 m = key_alloc_mbuf(len);
3739 if (!m || m->m_next) { /*XXX*/
3740 if (m)
3741 m_freem(m);
3742 return NULL;
3743 }
3744
3745 p = mtod(m, struct sadb_x_nat_t_port *);
3746
3747 memset(p, 0, len);
3748 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3749 p->sadb_x_nat_t_port_exttype = type;
3750 p->sadb_x_nat_t_port_port = port;
3751
3752 return m;
3753 }
3754
3755 /*
3756 * set fragmentation info in sadb_x_nat_t_frag
3757 */
3758 static struct mbuf *
3759 key_setsadbxfrag(u_int16_t flen)
3760 {
3761 struct mbuf *m;
3762 size_t len;
3763 struct sadb_x_nat_t_frag *p;
3764
3765 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3766
3767 m = key_alloc_mbuf(len);
3768 if (!m || m->m_next) { /*XXX*/
3769 if (m)
3770 m_freem(m);
3771 return NULL;
3772 }
3773
3774 p = mtod(m, struct sadb_x_nat_t_frag *);
3775
3776 memset(p, 0, len);
3777 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3778 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3779 p->sadb_x_nat_t_frag_fraglen = flen;
3780
3781 return m;
3782 }
3783
3784 /*
3785 * Get port from sockaddr, port is in network order
3786 */
3787 u_int16_t
3788 key_portfromsaddr(const union sockaddr_union *saddr)
3789 {
3790 u_int16_t port;
3791
3792 switch (saddr->sa.sa_family) {
3793 case AF_INET: {
3794 port = saddr->sin.sin_port;
3795 break;
3796 }
3797 #ifdef INET6
3798 case AF_INET6: {
3799 port = saddr->sin6.sin6_port;
3800 break;
3801 }
3802 #endif
3803 default:
3804 printf("%s: unexpected address family\n", __func__);
3805 port = 0;
3806 break;
3807 }
3808
3809 return port;
3810 }
3811
3812
3813 /*
3814 * Set port is struct sockaddr. port is in network order
3815 */
3816 static void
3817 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3818 {
3819 switch (saddr->sa.sa_family) {
3820 case AF_INET: {
3821 saddr->sin.sin_port = port;
3822 break;
3823 }
3824 #ifdef INET6
3825 case AF_INET6: {
3826 saddr->sin6.sin6_port = port;
3827 break;
3828 }
3829 #endif
3830 default:
3831 printf("%s: unexpected address family %d\n", __func__,
3832 saddr->sa.sa_family);
3833 break;
3834 }
3835
3836 return;
3837 }
3838
3839 /*
3840 * Safety check sa_len
3841 */
3842 static int
3843 key_checksalen(const union sockaddr_union *saddr)
3844 {
3845 switch (saddr->sa.sa_family) {
3846 case AF_INET:
3847 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3848 return -1;
3849 break;
3850 #ifdef INET6
3851 case AF_INET6:
3852 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3853 return -1;
3854 break;
3855 #endif
3856 default:
3857 printf("%s: unexpected sa_family %d\n", __func__,
3858 saddr->sa.sa_family);
3859 return -1;
3860 break;
3861 }
3862 return 0;
3863 }
3864
3865
3866 /*
3867 * set data into sadb_msg.
3868 */
3869 static struct mbuf *
3870 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3871 u_int32_t seq, pid_t pid, u_int16_t reserved)
3872 {
3873 struct mbuf *m;
3874 struct sadb_msg *p;
3875 int len;
3876
3877 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3878 if (len > MCLBYTES)
3879 return NULL;
3880 MGETHDR(m, M_DONTWAIT, MT_DATA);
3881 if (m && len > MHLEN) {
3882 MCLGET(m, M_DONTWAIT);
3883 if ((m->m_flags & M_EXT) == 0) {
3884 m_freem(m);
3885 m = NULL;
3886 }
3887 }
3888 if (!m)
3889 return NULL;
3890 m->m_pkthdr.len = m->m_len = len;
3891 m->m_next = NULL;
3892
3893 p = mtod(m, struct sadb_msg *);
3894
3895 memset(p, 0, len);
3896 p->sadb_msg_version = PF_KEY_V2;
3897 p->sadb_msg_type = type;
3898 p->sadb_msg_errno = 0;
3899 p->sadb_msg_satype = satype;
3900 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3901 p->sadb_msg_reserved = reserved;
3902 p->sadb_msg_seq = seq;
3903 p->sadb_msg_pid = (u_int32_t)pid;
3904
3905 return m;
3906 }
3907
3908 /*
3909 * copy secasvar data into sadb_address.
3910 */
3911 static struct mbuf *
3912 key_setsadbsa(struct secasvar *sav)
3913 {
3914 struct mbuf *m;
3915 struct sadb_sa *p;
3916 int len;
3917
3918 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3919 m = key_alloc_mbuf(len);
3920 if (!m || m->m_next) { /*XXX*/
3921 if (m)
3922 m_freem(m);
3923 return NULL;
3924 }
3925
3926 p = mtod(m, struct sadb_sa *);
3927
3928 memset(p, 0, len);
3929 p->sadb_sa_len = PFKEY_UNIT64(len);
3930 p->sadb_sa_exttype = SADB_EXT_SA;
3931 p->sadb_sa_spi = sav->spi;
3932 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3933 p->sadb_sa_state = sav->state;
3934 p->sadb_sa_auth = sav->alg_auth;
3935 p->sadb_sa_encrypt = sav->alg_enc;
3936 p->sadb_sa_flags = sav->flags;
3937
3938 return m;
3939 }
3940
3941 /*
3942 * set data into sadb_address.
3943 */
3944 static struct mbuf *
3945 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3946 u_int8_t prefixlen, u_int16_t ul_proto)
3947 {
3948 struct mbuf *m;
3949 struct sadb_address *p;
3950 size_t len;
3951
3952 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3953 PFKEY_ALIGN8(saddr->sa_len);
3954 m = key_alloc_mbuf(len);
3955 if (!m || m->m_next) { /*XXX*/
3956 if (m)
3957 m_freem(m);
3958 return NULL;
3959 }
3960
3961 p = mtod(m, struct sadb_address *);
3962
3963 memset(p, 0, len);
3964 p->sadb_address_len = PFKEY_UNIT64(len);
3965 p->sadb_address_exttype = exttype;
3966 p->sadb_address_proto = ul_proto;
3967 if (prefixlen == FULLMASK) {
3968 switch (saddr->sa_family) {
3969 case AF_INET:
3970 prefixlen = sizeof(struct in_addr) << 3;
3971 break;
3972 case AF_INET6:
3973 prefixlen = sizeof(struct in6_addr) << 3;
3974 break;
3975 default:
3976 ; /*XXX*/
3977 }
3978 }
3979 p->sadb_address_prefixlen = prefixlen;
3980 p->sadb_address_reserved = 0;
3981
3982 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3983 saddr, saddr->sa_len);
3984
3985 return m;
3986 }
3987
3988 #if 0
3989 /*
3990 * set data into sadb_ident.
3991 */
3992 static struct mbuf *
3993 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3994 void *string, int stringlen, u_int64_t id)
3995 {
3996 struct mbuf *m;
3997 struct sadb_ident *p;
3998 size_t len;
3999
4000 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4001 m = key_alloc_mbuf(len);
4002 if (!m || m->m_next) { /*XXX*/
4003 if (m)
4004 m_freem(m);
4005 return NULL;
4006 }
4007
4008 p = mtod(m, struct sadb_ident *);
4009
4010 memset(p, 0, len);
4011 p->sadb_ident_len = PFKEY_UNIT64(len);
4012 p->sadb_ident_exttype = exttype;
4013 p->sadb_ident_type = idtype;
4014 p->sadb_ident_reserved = 0;
4015 p->sadb_ident_id = id;
4016
4017 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4018 string, stringlen);
4019
4020 return m;
4021 }
4022 #endif
4023
4024 /*
4025 * set data into sadb_x_sa2.
4026 */
4027 static struct mbuf *
4028 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4029 {
4030 struct mbuf *m;
4031 struct sadb_x_sa2 *p;
4032 size_t len;
4033
4034 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4035 m = key_alloc_mbuf(len);
4036 if (!m || m->m_next) { /*XXX*/
4037 if (m)
4038 m_freem(m);
4039 return NULL;
4040 }
4041
4042 p = mtod(m, struct sadb_x_sa2 *);
4043
4044 memset(p, 0, len);
4045 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4046 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4047 p->sadb_x_sa2_mode = mode;
4048 p->sadb_x_sa2_reserved1 = 0;
4049 p->sadb_x_sa2_reserved2 = 0;
4050 p->sadb_x_sa2_sequence = seq;
4051 p->sadb_x_sa2_reqid = reqid;
4052
4053 return m;
4054 }
4055
4056 /*
4057 * set data into sadb_x_policy
4058 */
4059 static struct mbuf *
4060 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4061 {
4062 struct mbuf *m;
4063 struct sadb_x_policy *p;
4064 size_t len;
4065
4066 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4067 m = key_alloc_mbuf(len);
4068 if (!m || m->m_next) { /*XXX*/
4069 if (m)
4070 m_freem(m);
4071 return NULL;
4072 }
4073
4074 p = mtod(m, struct sadb_x_policy *);
4075
4076 memset(p, 0, len);
4077 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4078 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4079 p->sadb_x_policy_type = type;
4080 p->sadb_x_policy_dir = dir;
4081 p->sadb_x_policy_id = id;
4082
4083 return m;
4084 }
4085
4086 /* %%% utilities */
4087 /*
4088 * copy a buffer into the new buffer allocated.
4089 */
4090 static void *
4091 key_newbuf(const void *src, u_int len)
4092 {
4093 void *new;
4094
4095 KMALLOC(new, void *, len);
4096 if (new == NULL) {
4097 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4098 return NULL;
4099 }
4100 memcpy(new, src, len);
4101
4102 return new;
4103 }
4104
4105 /* compare my own address
4106 * OUT: 1: true, i.e. my address.
4107 * 0: false
4108 */
4109 int
4110 key_ismyaddr(const struct sockaddr *sa)
4111 {
4112 #ifdef INET
4113 const struct sockaddr_in *sin;
4114 const struct in_ifaddr *ia;
4115 #endif
4116
4117 /* sanity check */
4118 if (sa == NULL)
4119 panic("key_ismyaddr: NULL pointer is passed");
4120
4121 switch (sa->sa_family) {
4122 #ifdef INET
4123 case AF_INET:
4124 sin = (const struct sockaddr_in *)sa;
4125 for (ia = in_ifaddrhead.tqh_first; ia;
4126 ia = ia->ia_link.tqe_next)
4127 {
4128 if (sin->sin_family == ia->ia_addr.sin_family &&
4129 sin->sin_len == ia->ia_addr.sin_len &&
4130 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4131 {
4132 return 1;
4133 }
4134 }
4135 break;
4136 #endif
4137 #ifdef INET6
4138 case AF_INET6:
4139 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4140 #endif
4141 }
4142
4143 return 0;
4144 }
4145
4146 #ifdef INET6
4147 /*
4148 * compare my own address for IPv6.
4149 * 1: ours
4150 * 0: other
4151 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4152 */
4153 #include <netinet6/in6_var.h>
4154
4155 static int
4156 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4157 {
4158 const struct in6_ifaddr *ia;
4159 const struct in6_multi *in6m;
4160
4161 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
4162 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4163 (const struct sockaddr *)&ia->ia_addr, 0) == 0)
4164 return 1;
4165
4166 /*
4167 * XXX Multicast
4168 * XXX why do we care about multlicast here while we don't care
4169 * about IPv4 multicast??
4170 * XXX scope
4171 */
4172 in6m = NULL;
4173 #ifdef __FreeBSD__
4174 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
4175 #else
4176 for ((in6m) = ia->ia6_multiaddrs.lh_first;
4177 (in6m) != NULL &&
4178 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
4179 (in6m) = in6m->in6m_entry.le_next)
4180 continue;
4181 #endif
4182 if (in6m)
4183 return 1;
4184 }
4185
4186 /* loopback, just for safety */
4187 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4188 return 1;
4189
4190 return 0;
4191 }
4192 #endif /*INET6*/
4193
4194 /*
4195 * compare two secasindex structure.
4196 * flag can specify to compare 2 saidxes.
4197 * compare two secasindex structure without both mode and reqid.
4198 * don't compare port.
4199 * IN:
4200 * saidx0: source, it can be in SAD.
4201 * saidx1: object.
4202 * OUT:
4203 * 1 : equal
4204 * 0 : not equal
4205 */
4206 static int
4207 key_cmpsaidx(
4208 const struct secasindex *saidx0,
4209 const struct secasindex *saidx1,
4210 int flag)
4211 {
4212 int chkport = 0;
4213
4214 /* sanity */
4215 if (saidx0 == NULL && saidx1 == NULL)
4216 return 1;
4217
4218 if (saidx0 == NULL || saidx1 == NULL)
4219 return 0;
4220
4221 if (saidx0->proto != saidx1->proto)
4222 return 0;
4223
4224 if (flag == CMP_EXACTLY) {
4225 if (saidx0->mode != saidx1->mode)
4226 return 0;
4227 if (saidx0->reqid != saidx1->reqid)
4228 return 0;
4229 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4230 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4231 return 0;
4232 } else {
4233
4234 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4235 if (flag == CMP_MODE_REQID
4236 ||flag == CMP_REQID) {
4237 /*
4238 * If reqid of SPD is non-zero, unique SA is required.
4239 * The result must be of same reqid in this case.
4240 */
4241 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4242 return 0;
4243 }
4244
4245 if (flag == CMP_MODE_REQID) {
4246 if (saidx0->mode != IPSEC_MODE_ANY
4247 && saidx0->mode != saidx1->mode)
4248 return 0;
4249 }
4250
4251 /*
4252 * If NAT-T is enabled, check ports for tunnel mode.
4253 * Don't do it for transport mode, as there is no
4254 * port information available in the SP.
4255 * Also don't check ports if they are set to zero
4256 * in the SPD: This means we have a non-generated
4257 * SPD which can't know UDP ports.
4258 */
4259 if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4260 ((((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET &&
4261 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET &&
4262 ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4263 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) ||
4264 (((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET6 &&
4265 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET6 &&
4266 ((const struct sockaddr_in6 *)(&saidx1->src))->sin6_port &&
4267 ((const struct sockaddr_in6 *)(&saidx1->dst))->sin6_port)))
4268 chkport = 1;
4269
4270 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4271 return 0;
4272 }
4273 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4274 return 0;
4275 }
4276 }
4277
4278 return 1;
4279 }
4280
4281 /*
4282 * compare two secindex structure exactly.
4283 * IN:
4284 * spidx0: source, it is often in SPD.
4285 * spidx1: object, it is often from PFKEY message.
4286 * OUT:
4287 * 1 : equal
4288 * 0 : not equal
4289 */
4290 int
4291 key_cmpspidx_exactly(
4292 const struct secpolicyindex *spidx0,
4293 const struct secpolicyindex *spidx1)
4294 {
4295 /* sanity */
4296 if (spidx0 == NULL && spidx1 == NULL)
4297 return 1;
4298
4299 if (spidx0 == NULL || spidx1 == NULL)
4300 return 0;
4301
4302 if (spidx0->prefs != spidx1->prefs
4303 || spidx0->prefd != spidx1->prefd
4304 || spidx0->ul_proto != spidx1->ul_proto)
4305 return 0;
4306
4307 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4308 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4309 }
4310
4311 /*
4312 * compare two secindex structure with mask.
4313 * IN:
4314 * spidx0: source, it is often in SPD.
4315 * spidx1: object, it is often from IP header.
4316 * OUT:
4317 * 1 : equal
4318 * 0 : not equal
4319 */
4320 int
4321 key_cmpspidx_withmask(
4322 const struct secpolicyindex *spidx0,
4323 const struct secpolicyindex *spidx1)
4324 {
4325 /* sanity */
4326 if (spidx0 == NULL && spidx1 == NULL)
4327 return 1;
4328
4329 if (spidx0 == NULL || spidx1 == NULL)
4330 return 0;
4331
4332 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4333 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4334 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4335 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4336 return 0;
4337
4338 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4339 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4340 && spidx0->ul_proto != spidx1->ul_proto)
4341 return 0;
4342
4343 switch (spidx0->src.sa.sa_family) {
4344 case AF_INET:
4345 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4346 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4347 return 0;
4348 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4349 &spidx1->src.sin.sin_addr, spidx0->prefs))
4350 return 0;
4351 break;
4352 case AF_INET6:
4353 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4354 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4355 return 0;
4356 /*
4357 * scope_id check. if sin6_scope_id is 0, we regard it
4358 * as a wildcard scope, which matches any scope zone ID.
4359 */
4360 if (spidx0->src.sin6.sin6_scope_id &&
4361 spidx1->src.sin6.sin6_scope_id &&
4362 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4363 return 0;
4364 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4365 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4366 return 0;
4367 break;
4368 default:
4369 /* XXX */
4370 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4371 return 0;
4372 break;
4373 }
4374
4375 switch (spidx0->dst.sa.sa_family) {
4376 case AF_INET:
4377 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4378 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4379 return 0;
4380 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4381 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4382 return 0;
4383 break;
4384 case AF_INET6:
4385 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4386 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4387 return 0;
4388 /*
4389 * scope_id check. if sin6_scope_id is 0, we regard it
4390 * as a wildcard scope, which matches any scope zone ID.
4391 */
4392 if (spidx0->src.sin6.sin6_scope_id &&
4393 spidx1->src.sin6.sin6_scope_id &&
4394 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4395 return 0;
4396 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4397 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4398 return 0;
4399 break;
4400 default:
4401 /* XXX */
4402 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4403 return 0;
4404 break;
4405 }
4406
4407 /* XXX Do we check other field ? e.g. flowinfo */
4408
4409 return 1;
4410 }
4411
4412 /* returns 0 on match */
4413 static int
4414 key_sockaddrcmp(
4415 const struct sockaddr *sa1,
4416 const struct sockaddr *sa2,
4417 int port)
4418 {
4419 #ifdef satosin
4420 #undef satosin
4421 #endif
4422 #define satosin(s) ((const struct sockaddr_in *)s)
4423 #ifdef satosin6
4424 #undef satosin6
4425 #endif
4426 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4427 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4428 KEYDEBUG(KEYDEBUG_MATCH,
4429 printf("fam/len fail %d != %d || %d != %d\n",
4430 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4431 sa2->sa_len));
4432 return 1;
4433 }
4434
4435 switch (sa1->sa_family) {
4436 case AF_INET:
4437 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4438 KEYDEBUG(KEYDEBUG_MATCH,
4439 printf("len fail %d != %zu\n",
4440 sa1->sa_len, sizeof(struct sockaddr_in)));
4441 return 1;
4442 }
4443 if (satosin(sa1)->sin_addr.s_addr !=
4444 satosin(sa2)->sin_addr.s_addr) {
4445 KEYDEBUG(KEYDEBUG_MATCH,
4446 printf("addr fail %#x != %#x\n",
4447 satosin(sa1)->sin_addr.s_addr,
4448 satosin(sa2)->sin_addr.s_addr));
4449 return 1;
4450 }
4451 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) {
4452 KEYDEBUG(KEYDEBUG_MATCH,
4453 printf("port fail %d != %d\n",
4454 satosin(sa1)->sin_port,
4455 satosin(sa2)->sin_port));
4456 return 1;
4457 }
4458 KEYDEBUG(KEYDEBUG_MATCH,
4459 printf("addr success %#x[%d] == %#x[%d]\n",
4460 satosin(sa1)->sin_addr.s_addr,
4461 satosin(sa1)->sin_port,
4462 satosin(sa2)->sin_addr.s_addr,
4463 satosin(sa2)->sin_port));
4464 break;
4465 case AF_INET6:
4466 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4467 return 1; /*EINVAL*/
4468 if (satosin6(sa1)->sin6_scope_id !=
4469 satosin6(sa2)->sin6_scope_id) {
4470 return 1;
4471 }
4472 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4473 &satosin6(sa2)->sin6_addr)) {
4474 return 1;
4475 }
4476 if (port &&
4477 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4478 return 1;
4479 }
4480 break;
4481 default:
4482 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4483 return 1;
4484 break;
4485 }
4486
4487 return 0;
4488 #undef satosin
4489 #undef satosin6
4490 }
4491
4492 /*
4493 * compare two buffers with mask.
4494 * IN:
4495 * addr1: source
4496 * addr2: object
4497 * bits: Number of bits to compare
4498 * OUT:
4499 * 1 : equal
4500 * 0 : not equal
4501 */
4502 static int
4503 key_bbcmp(const void *a1, const void *a2, u_int bits)
4504 {
4505 const unsigned char *p1 = a1;
4506 const unsigned char *p2 = a2;
4507
4508 /* XXX: This could be considerably faster if we compare a word
4509 * at a time, but it is complicated on LSB Endian machines */
4510
4511 /* Handle null pointers */
4512 if (p1 == NULL || p2 == NULL)
4513 return (p1 == p2);
4514
4515 while (bits >= 8) {
4516 if (*p1++ != *p2++)
4517 return 0;
4518 bits -= 8;
4519 }
4520
4521 if (bits > 0) {
4522 u_int8_t mask = ~((1<<(8-bits))-1);
4523 if ((*p1 & mask) != (*p2 & mask))
4524 return 0;
4525 }
4526 return 1; /* Match! */
4527 }
4528
4529 /*
4530 * time handler.
4531 * scanning SPD and SAD to check status for each entries,
4532 * and do to remove or to expire.
4533 */
4534 void
4535 key_timehandler(void* arg)
4536 {
4537 u_int dir;
4538 int s;
4539 time_t now = time_uptime;
4540
4541 s = splsoftnet(); /*called from softclock()*/
4542 mutex_enter(softnet_lock);
4543
4544 /* SPD */
4545 {
4546 struct secpolicy *sp, *nextsp;
4547
4548 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4549 for (sp = LIST_FIRST(&sptree[dir]);
4550 sp != NULL;
4551 sp = nextsp) {
4552
4553 nextsp = LIST_NEXT(sp, chain);
4554
4555 if (sp->state == IPSEC_SPSTATE_DEAD) {
4556 key_sp_unlink(sp); /*XXX*/
4557
4558 /* 'sp' dead; continue transfers to
4559 * 'sp = nextsp'
4560 */
4561 continue;
4562 }
4563
4564 if (sp->lifetime == 0 && sp->validtime == 0)
4565 continue;
4566
4567 /* the deletion will occur next time */
4568 if ((sp->lifetime && now - sp->created > sp->lifetime)
4569 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4570 key_sp_dead(sp);
4571 key_spdexpire(sp);
4572 continue;
4573 }
4574 }
4575 }
4576 }
4577
4578 /* SAD */
4579 {
4580 struct secashead *sah, *nextsah;
4581 struct secasvar *sav, *nextsav;
4582
4583 for (sah = LIST_FIRST(&sahtree);
4584 sah != NULL;
4585 sah = nextsah) {
4586
4587 nextsah = LIST_NEXT(sah, chain);
4588
4589 /* if sah has been dead, then delete it and process next sah. */
4590 if (sah->state == SADB_SASTATE_DEAD) {
4591 key_delsah(sah);
4592 continue;
4593 }
4594
4595 /* if LARVAL entry doesn't become MATURE, delete it. */
4596 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4597 sav != NULL;
4598 sav = nextsav) {
4599
4600 nextsav = LIST_NEXT(sav, chain);
4601
4602 if (now - sav->created > key_larval_lifetime) {
4603 KEY_FREESAV(&sav);
4604 }
4605 }
4606
4607 /*
4608 * check MATURE entry to start to send expire message
4609 * whether or not.
4610 */
4611 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4612 sav != NULL;
4613 sav = nextsav) {
4614
4615 nextsav = LIST_NEXT(sav, chain);
4616
4617 /* we don't need to check. */
4618 if (sav->lft_s == NULL)
4619 continue;
4620
4621 /* sanity check */
4622 if (sav->lft_c == NULL) {
4623 ipseclog((LOG_DEBUG,"key_timehandler: "
4624 "There is no CURRENT time, why?\n"));
4625 continue;
4626 }
4627
4628 /* check SOFT lifetime */
4629 if (sav->lft_s->sadb_lifetime_addtime != 0
4630 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4631 /*
4632 * check SA to be used whether or not.
4633 * when SA hasn't been used, delete it.
4634 */
4635 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4636 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4637 KEY_FREESAV(&sav);
4638 } else {
4639 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4640 /*
4641 * XXX If we keep to send expire
4642 * message in the status of
4643 * DYING. Do remove below code.
4644 */
4645 key_expire(sav);
4646 }
4647 }
4648 /* check SOFT lifetime by bytes */
4649 /*
4650 * XXX I don't know the way to delete this SA
4651 * when new SA is installed. Caution when it's
4652 * installed too big lifetime by time.
4653 */
4654 else if (sav->lft_s->sadb_lifetime_bytes != 0
4655 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4656
4657 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4658 /*
4659 * XXX If we keep to send expire
4660 * message in the status of
4661 * DYING. Do remove below code.
4662 */
4663 key_expire(sav);
4664 }
4665 }
4666
4667 /* check DYING entry to change status to DEAD. */
4668 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4669 sav != NULL;
4670 sav = nextsav) {
4671
4672 nextsav = LIST_NEXT(sav, chain);
4673
4674 /* we don't need to check. */
4675 if (sav->lft_h == NULL)
4676 continue;
4677
4678 /* sanity check */
4679 if (sav->lft_c == NULL) {
4680 ipseclog((LOG_DEBUG, "key_timehandler: "
4681 "There is no CURRENT time, why?\n"));
4682 continue;
4683 }
4684
4685 if (sav->lft_h->sadb_lifetime_addtime != 0
4686 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4687 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4688 KEY_FREESAV(&sav);
4689 }
4690 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4691 else if (sav->lft_s != NULL
4692 && sav->lft_s->sadb_lifetime_addtime != 0
4693 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4694 /*
4695 * XXX: should be checked to be
4696 * installed the valid SA.
4697 */
4698
4699 /*
4700 * If there is no SA then sending
4701 * expire message.
4702 */
4703 key_expire(sav);
4704 }
4705 #endif
4706 /* check HARD lifetime by bytes */
4707 else if (sav->lft_h->sadb_lifetime_bytes != 0
4708 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4709 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4710 KEY_FREESAV(&sav);
4711 }
4712 }
4713
4714 /* delete entry in DEAD */
4715 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4716 sav != NULL;
4717 sav = nextsav) {
4718
4719 nextsav = LIST_NEXT(sav, chain);
4720
4721 /* sanity check */
4722 if (sav->state != SADB_SASTATE_DEAD) {
4723 ipseclog((LOG_DEBUG, "key_timehandler: "
4724 "invalid sav->state "
4725 "(queue: %d SA: %d): "
4726 "kill it anyway\n",
4727 SADB_SASTATE_DEAD, sav->state));
4728 }
4729
4730 /*
4731 * do not call key_freesav() here.
4732 * sav should already be freed, and sav->refcnt
4733 * shows other references to sav
4734 * (such as from SPD).
4735 */
4736 }
4737 }
4738 }
4739
4740 #ifndef IPSEC_NONBLOCK_ACQUIRE
4741 /* ACQ tree */
4742 {
4743 struct secacq *acq, *nextacq;
4744
4745 for (acq = LIST_FIRST(&acqtree);
4746 acq != NULL;
4747 acq = nextacq) {
4748
4749 nextacq = LIST_NEXT(acq, chain);
4750
4751 if (now - acq->created > key_blockacq_lifetime
4752 && __LIST_CHAINED(acq)) {
4753 LIST_REMOVE(acq, chain);
4754 KFREE(acq);
4755 }
4756 }
4757 }
4758 #endif
4759
4760 /* SP ACQ tree */
4761 {
4762 struct secspacq *acq, *nextacq;
4763
4764 for (acq = LIST_FIRST(&spacqtree);
4765 acq != NULL;
4766 acq = nextacq) {
4767
4768 nextacq = LIST_NEXT(acq, chain);
4769
4770 if (now - acq->created > key_blockacq_lifetime
4771 && __LIST_CHAINED(acq)) {
4772 LIST_REMOVE(acq, chain);
4773 KFREE(acq);
4774 }
4775 }
4776 }
4777
4778 #ifndef IPSEC_DEBUG2
4779 /* do exchange to tick time !! */
4780 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4781 #endif /* IPSEC_DEBUG2 */
4782
4783 mutex_exit(softnet_lock);
4784 splx(s);
4785 return;
4786 }
4787
4788 u_long
4789 key_random(void)
4790 {
4791 u_long value;
4792
4793 key_randomfill(&value, sizeof(value));
4794 return value;
4795 }
4796
4797 void
4798 key_randomfill(void *p, size_t l)
4799 {
4800
4801 cprng_fast(p, l);
4802 }
4803
4804 /*
4805 * map SADB_SATYPE_* to IPPROTO_*.
4806 * if satype == SADB_SATYPE then satype is mapped to ~0.
4807 * OUT:
4808 * 0: invalid satype.
4809 */
4810 static u_int16_t
4811 key_satype2proto(u_int8_t satype)
4812 {
4813 switch (satype) {
4814 case SADB_SATYPE_UNSPEC:
4815 return IPSEC_PROTO_ANY;
4816 case SADB_SATYPE_AH:
4817 return IPPROTO_AH;
4818 case SADB_SATYPE_ESP:
4819 return IPPROTO_ESP;
4820 case SADB_X_SATYPE_IPCOMP:
4821 return IPPROTO_IPCOMP;
4822 case SADB_X_SATYPE_TCPSIGNATURE:
4823 return IPPROTO_TCP;
4824 default:
4825 return 0;
4826 }
4827 /* NOTREACHED */
4828 }
4829
4830 /*
4831 * map IPPROTO_* to SADB_SATYPE_*
4832 * OUT:
4833 * 0: invalid protocol type.
4834 */
4835 static u_int8_t
4836 key_proto2satype(u_int16_t proto)
4837 {
4838 switch (proto) {
4839 case IPPROTO_AH:
4840 return SADB_SATYPE_AH;
4841 case IPPROTO_ESP:
4842 return SADB_SATYPE_ESP;
4843 case IPPROTO_IPCOMP:
4844 return SADB_X_SATYPE_IPCOMP;
4845 case IPPROTO_TCP:
4846 return SADB_X_SATYPE_TCPSIGNATURE;
4847 default:
4848 return 0;
4849 }
4850 /* NOTREACHED */
4851 }
4852
4853 static int
4854 key_setsecasidx(int proto, int mode, int reqid,
4855 const struct sadb_address * src,
4856 const struct sadb_address * dst,
4857 struct secasindex * saidx)
4858 {
4859 const union sockaddr_union * src_u =
4860 (const union sockaddr_union *) src;
4861 const union sockaddr_union * dst_u =
4862 (const union sockaddr_union *) dst;
4863
4864 /* sa len safety check */
4865 if (key_checksalen(src_u) != 0)
4866 return -1;
4867 if (key_checksalen(dst_u) != 0)
4868 return -1;
4869
4870 memset(saidx, 0, sizeof(*saidx));
4871 saidx->proto = proto;
4872 saidx->mode = mode;
4873 saidx->reqid = reqid;
4874 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4875 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4876
4877 key_porttosaddr(&((saidx)->src),0);
4878 key_porttosaddr(&((saidx)->dst),0);
4879 return 0;
4880 }
4881
4882 /* %%% PF_KEY */
4883 /*
4884 * SADB_GETSPI processing is to receive
4885 * <base, (SA2), src address, dst address, (SPI range)>
4886 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4887 * tree with the status of LARVAL, and send
4888 * <base, SA(*), address(SD)>
4889 * to the IKMPd.
4890 *
4891 * IN: mhp: pointer to the pointer to each header.
4892 * OUT: NULL if fail.
4893 * other if success, return pointer to the message to send.
4894 */
4895 static int
4896 key_getspi(struct socket *so, struct mbuf *m,
4897 const struct sadb_msghdr *mhp)
4898 {
4899 struct sadb_address *src0, *dst0;
4900 struct secasindex saidx;
4901 struct secashead *newsah;
4902 struct secasvar *newsav;
4903 u_int8_t proto;
4904 u_int32_t spi;
4905 u_int8_t mode;
4906 u_int16_t reqid;
4907 int error;
4908
4909 /* sanity check */
4910 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4911 panic("key_getspi: NULL pointer is passed");
4912
4913 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4914 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4915 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4916 return key_senderror(so, m, EINVAL);
4917 }
4918 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4919 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4920 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4921 return key_senderror(so, m, EINVAL);
4922 }
4923 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4924 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4925 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4926 } else {
4927 mode = IPSEC_MODE_ANY;
4928 reqid = 0;
4929 }
4930
4931 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4932 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4933
4934 /* map satype to proto */
4935 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4936 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4937 return key_senderror(so, m, EINVAL);
4938 }
4939
4940
4941 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4942 dst0 + 1, &saidx)) != 0)
4943 return key_senderror(so, m, EINVAL);
4944
4945 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4946 return key_senderror(so, m, EINVAL);
4947
4948 /* SPI allocation */
4949 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4950 &saidx);
4951 if (spi == 0)
4952 return key_senderror(so, m, EINVAL);
4953
4954 /* get a SA index */
4955 if ((newsah = key_getsah(&saidx)) == NULL) {
4956 /* create a new SA index */
4957 if ((newsah = key_newsah(&saidx)) == NULL) {
4958 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4959 return key_senderror(so, m, ENOBUFS);
4960 }
4961 }
4962
4963 /* get a new SA */
4964 /* XXX rewrite */
4965 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4966 if (newsav == NULL) {
4967 /* XXX don't free new SA index allocated in above. */
4968 return key_senderror(so, m, error);
4969 }
4970
4971 /* set spi */
4972 newsav->spi = htonl(spi);
4973
4974 #ifndef IPSEC_NONBLOCK_ACQUIRE
4975 /* delete the entry in acqtree */
4976 if (mhp->msg->sadb_msg_seq != 0) {
4977 struct secacq *acq;
4978 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4979 /* reset counter in order to deletion by timehandler. */
4980 acq->created = time_uptime;
4981 acq->count = 0;
4982 }
4983 }
4984 #endif
4985
4986 {
4987 struct mbuf *n, *nn;
4988 struct sadb_sa *m_sa;
4989 struct sadb_msg *newmsg;
4990 int off, len;
4991
4992 /* create new sadb_msg to reply. */
4993 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4994 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4995 if (len > MCLBYTES)
4996 return key_senderror(so, m, ENOBUFS);
4997
4998 MGETHDR(n, M_DONTWAIT, MT_DATA);
4999 if (len > MHLEN) {
5000 MCLGET(n, M_DONTWAIT);
5001 if ((n->m_flags & M_EXT) == 0) {
5002 m_freem(n);
5003 n = NULL;
5004 }
5005 }
5006 if (!n)
5007 return key_senderror(so, m, ENOBUFS);
5008
5009 n->m_len = len;
5010 n->m_next = NULL;
5011 off = 0;
5012
5013 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5014 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5015
5016 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5017 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5018 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5019 m_sa->sadb_sa_spi = htonl(spi);
5020 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5021
5022 #ifdef DIAGNOSTIC
5023 if (off != len)
5024 panic("length inconsistency in key_getspi");
5025 #endif
5026
5027 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5028 SADB_EXT_ADDRESS_DST);
5029 if (!n->m_next) {
5030 m_freem(n);
5031 return key_senderror(so, m, ENOBUFS);
5032 }
5033
5034 if (n->m_len < sizeof(struct sadb_msg)) {
5035 n = m_pullup(n, sizeof(struct sadb_msg));
5036 if (n == NULL)
5037 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5038 }
5039
5040 n->m_pkthdr.len = 0;
5041 for (nn = n; nn; nn = nn->m_next)
5042 n->m_pkthdr.len += nn->m_len;
5043
5044 newmsg = mtod(n, struct sadb_msg *);
5045 newmsg->sadb_msg_seq = newsav->seq;
5046 newmsg->sadb_msg_errno = 0;
5047 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5048
5049 m_freem(m);
5050 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5051 }
5052 }
5053
5054 /*
5055 * allocating new SPI
5056 * called by key_getspi().
5057 * OUT:
5058 * 0: failure.
5059 * others: success.
5060 */
5061 static u_int32_t
5062 key_do_getnewspi(const struct sadb_spirange *spirange,
5063 const struct secasindex *saidx)
5064 {
5065 u_int32_t newspi;
5066 u_int32_t spmin, spmax;
5067 int count = key_spi_trycnt;
5068
5069 /* set spi range to allocate */
5070 if (spirange != NULL) {
5071 spmin = spirange->sadb_spirange_min;
5072 spmax = spirange->sadb_spirange_max;
5073 } else {
5074 spmin = key_spi_minval;
5075 spmax = key_spi_maxval;
5076 }
5077 /* IPCOMP needs 2-byte SPI */
5078 if (saidx->proto == IPPROTO_IPCOMP) {
5079 u_int32_t t;
5080 if (spmin >= 0x10000)
5081 spmin = 0xffff;
5082 if (spmax >= 0x10000)
5083 spmax = 0xffff;
5084 if (spmin > spmax) {
5085 t = spmin; spmin = spmax; spmax = t;
5086 }
5087 }
5088
5089 if (spmin == spmax) {
5090 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5091 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5092 return 0;
5093 }
5094
5095 count--; /* taking one cost. */
5096 newspi = spmin;
5097
5098 } else {
5099
5100 /* init SPI */
5101 newspi = 0;
5102
5103 /* when requesting to allocate spi ranged */
5104 while (count--) {
5105 /* generate pseudo-random SPI value ranged. */
5106 newspi = spmin + (key_random() % (spmax - spmin + 1));
5107
5108 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5109 break;
5110 }
5111
5112 if (count == 0 || newspi == 0) {
5113 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5114 return 0;
5115 }
5116 }
5117
5118 /* statistics */
5119 keystat.getspi_count =
5120 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5121
5122 return newspi;
5123 }
5124
5125 static int
5126 key_handle_natt_info(struct secasvar *sav,
5127 const struct sadb_msghdr *mhp)
5128 {
5129 const char *msg = "?" ;
5130 struct sadb_x_nat_t_type *type;
5131 struct sadb_x_nat_t_port *sport, *dport;
5132 struct sadb_address *iaddr, *raddr;
5133 struct sadb_x_nat_t_frag *frag;
5134
5135 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5136 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5137 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5138 return 0;
5139
5140 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5141 msg = "TYPE";
5142 goto bad;
5143 }
5144
5145 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5146 msg = "SPORT";
5147 goto bad;
5148 }
5149
5150 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5151 msg = "DPORT";
5152 goto bad;
5153 }
5154
5155 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5156 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5157 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5158 msg = "OAI";
5159 goto bad;
5160 }
5161 }
5162
5163 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5164 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5165 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5166 msg = "OAR";
5167 goto bad;
5168 }
5169 }
5170
5171 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5172 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5173 msg = "FRAG";
5174 goto bad;
5175 }
5176 }
5177
5178 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5179 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5180 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5181 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5182 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5183 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5184
5185 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5186 __func__, type->sadb_x_nat_t_type_type,
5187 ntohs(sport->sadb_x_nat_t_port_port),
5188 ntohs(dport->sadb_x_nat_t_port_port)));
5189
5190 sav->natt_type = type->sadb_x_nat_t_type_type;
5191 key_porttosaddr(&sav->sah->saidx.src,
5192 sport->sadb_x_nat_t_port_port);
5193 key_porttosaddr(&sav->sah->saidx.dst,
5194 dport->sadb_x_nat_t_port_port);
5195 if (frag)
5196 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5197 else
5198 sav->esp_frag = IP_MAXPACKET;
5199
5200 return 0;
5201 bad:
5202 ipseclog((LOG_DEBUG, "%s: invalid message %s\n", __func__, msg));
5203 __USE(msg);
5204 return -1;
5205 }
5206
5207 /* Just update the IPSEC_NAT_T ports if present */
5208 static int
5209 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5210 const struct sadb_msghdr *mhp)
5211 {
5212 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5213 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5214 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5215 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5216
5217 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5218 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5219 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5220 struct sadb_x_nat_t_type *type;
5221 struct sadb_x_nat_t_port *sport;
5222 struct sadb_x_nat_t_port *dport;
5223
5224 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5225 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5226 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5227 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5228 __func__));
5229 return -1;
5230 }
5231
5232 type = (struct sadb_x_nat_t_type *)
5233 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5234 sport = (struct sadb_x_nat_t_port *)
5235 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5236 dport = (struct sadb_x_nat_t_port *)
5237 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5238
5239 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5240 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5241
5242 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5243 __func__, type->sadb_x_nat_t_type_type,
5244 ntohs(sport->sadb_x_nat_t_port_port),
5245 ntohs(dport->sadb_x_nat_t_port_port)));
5246 }
5247
5248 return 0;
5249 }
5250
5251
5252 /*
5253 * SADB_UPDATE processing
5254 * receive
5255 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5256 * key(AE), (identity(SD),) (sensitivity)>
5257 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5258 * and send
5259 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5260 * (identity(SD),) (sensitivity)>
5261 * to the ikmpd.
5262 *
5263 * m will always be freed.
5264 */
5265 static int
5266 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5267 {
5268 struct sadb_sa *sa0;
5269 struct sadb_address *src0, *dst0;
5270 struct secasindex saidx;
5271 struct secashead *sah;
5272 struct secasvar *sav;
5273 u_int16_t proto;
5274 u_int8_t mode;
5275 u_int16_t reqid;
5276 int error;
5277
5278 /* sanity check */
5279 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5280 panic("key_update: NULL pointer is passed");
5281
5282 /* map satype to proto */
5283 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5284 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5285 return key_senderror(so, m, EINVAL);
5286 }
5287
5288 if (mhp->ext[SADB_EXT_SA] == NULL ||
5289 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5290 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5291 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5292 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5293 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5294 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5295 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5296 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5297 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5298 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5299 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5300 return key_senderror(so, m, EINVAL);
5301 }
5302 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5303 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5304 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5305 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5306 return key_senderror(so, m, EINVAL);
5307 }
5308 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5309 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5310 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5311 } else {
5312 mode = IPSEC_MODE_ANY;
5313 reqid = 0;
5314 }
5315 /* XXX boundary checking for other extensions */
5316
5317 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5318 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5319 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5320
5321 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5322 dst0 + 1, &saidx)) != 0)
5323 return key_senderror(so, m, EINVAL);
5324
5325 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5326 return key_senderror(so, m, EINVAL);
5327
5328 /* get a SA header */
5329 if ((sah = key_getsah(&saidx)) == NULL) {
5330 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5331 return key_senderror(so, m, ENOENT);
5332 }
5333
5334 /* set spidx if there */
5335 /* XXX rewrite */
5336 error = key_setident(sah, m, mhp);
5337 if (error)
5338 return key_senderror(so, m, error);
5339
5340 /* find a SA with sequence number. */
5341 #ifdef IPSEC_DOSEQCHECK
5342 if (mhp->msg->sadb_msg_seq != 0
5343 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5344 ipseclog((LOG_DEBUG,
5345 "key_update: no larval SA with sequence %u exists.\n",
5346 mhp->msg->sadb_msg_seq));
5347 return key_senderror(so, m, ENOENT);
5348 }
5349 #else
5350 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5351 ipseclog((LOG_DEBUG,
5352 "key_update: no such a SA found (spi:%u)\n",
5353 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5354 return key_senderror(so, m, EINVAL);
5355 }
5356 #endif
5357
5358 /* validity check */
5359 if (sav->sah->saidx.proto != proto) {
5360 ipseclog((LOG_DEBUG,
5361 "key_update: protocol mismatched (DB=%u param=%u)\n",
5362 sav->sah->saidx.proto, proto));
5363 return key_senderror(so, m, EINVAL);
5364 }
5365 #ifdef IPSEC_DOSEQCHECK
5366 if (sav->spi != sa0->sadb_sa_spi) {
5367 ipseclog((LOG_DEBUG,
5368 "key_update: SPI mismatched (DB:%u param:%u)\n",
5369 (u_int32_t)ntohl(sav->spi),
5370 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5371 return key_senderror(so, m, EINVAL);
5372 }
5373 #endif
5374 if (sav->pid != mhp->msg->sadb_msg_pid) {
5375 ipseclog((LOG_DEBUG,
5376 "key_update: pid mismatched (DB:%u param:%u)\n",
5377 sav->pid, mhp->msg->sadb_msg_pid));
5378 return key_senderror(so, m, EINVAL);
5379 }
5380
5381 /* copy sav values */
5382 error = key_setsaval(sav, m, mhp);
5383 if (error) {
5384 KEY_FREESAV(&sav);
5385 return key_senderror(so, m, error);
5386 }
5387
5388 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5389 return key_senderror(so, m, EINVAL);
5390
5391 /* check SA values to be mature. */
5392 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5393 KEY_FREESAV(&sav);
5394 return key_senderror(so, m, 0);
5395 }
5396
5397 {
5398 struct mbuf *n;
5399
5400 /* set msg buf from mhp */
5401 n = key_getmsgbuf_x1(m, mhp);
5402 if (n == NULL) {
5403 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5404 return key_senderror(so, m, ENOBUFS);
5405 }
5406
5407 m_freem(m);
5408 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5409 }
5410 }
5411
5412 /*
5413 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5414 * only called by key_update().
5415 * OUT:
5416 * NULL : not found
5417 * others : found, pointer to a SA.
5418 */
5419 #ifdef IPSEC_DOSEQCHECK
5420 static struct secasvar *
5421 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5422 {
5423 struct secasvar *sav;
5424 u_int state;
5425
5426 state = SADB_SASTATE_LARVAL;
5427
5428 /* search SAD with sequence number ? */
5429 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5430
5431 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5432
5433 if (sav->seq == seq) {
5434 SA_ADDREF(sav);
5435 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5436 printf("DP %s cause refcnt++:%d SA:%p\n",
5437 __func__, sav->refcnt, sav));
5438 return sav;
5439 }
5440 }
5441
5442 return NULL;
5443 }
5444 #endif
5445
5446 /*
5447 * SADB_ADD processing
5448 * add an entry to SA database, when received
5449 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5450 * key(AE), (identity(SD),) (sensitivity)>
5451 * from the ikmpd,
5452 * and send
5453 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5454 * (identity(SD),) (sensitivity)>
5455 * to the ikmpd.
5456 *
5457 * IGNORE identity and sensitivity messages.
5458 *
5459 * m will always be freed.
5460 */
5461 static int
5462 key_add(struct socket *so, struct mbuf *m,
5463 const struct sadb_msghdr *mhp)
5464 {
5465 struct sadb_sa *sa0;
5466 struct sadb_address *src0, *dst0;
5467 struct secasindex saidx;
5468 struct secashead *newsah;
5469 struct secasvar *newsav;
5470 u_int16_t proto;
5471 u_int8_t mode;
5472 u_int16_t reqid;
5473 int error;
5474
5475 /* sanity check */
5476 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5477 panic("key_add: NULL pointer is passed");
5478
5479 /* map satype to proto */
5480 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5481 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5482 return key_senderror(so, m, EINVAL);
5483 }
5484
5485 if (mhp->ext[SADB_EXT_SA] == NULL ||
5486 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5487 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5488 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5489 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5490 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5491 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5492 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5493 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5494 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5495 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5496 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5497 return key_senderror(so, m, EINVAL);
5498 }
5499 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5500 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5501 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5502 /* XXX need more */
5503 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5504 return key_senderror(so, m, EINVAL);
5505 }
5506 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5507 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5508 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5509 } else {
5510 mode = IPSEC_MODE_ANY;
5511 reqid = 0;
5512 }
5513
5514 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5515 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5516 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5517
5518 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5519 dst0 + 1, &saidx)) != 0)
5520 return key_senderror(so, m, EINVAL);
5521
5522 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5523 return key_senderror(so, m, EINVAL);
5524
5525 /* get a SA header */
5526 if ((newsah = key_getsah(&saidx)) == NULL) {
5527 /* create a new SA header */
5528 if ((newsah = key_newsah(&saidx)) == NULL) {
5529 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5530 return key_senderror(so, m, ENOBUFS);
5531 }
5532 }
5533
5534 /* set spidx if there */
5535 /* XXX rewrite */
5536 error = key_setident(newsah, m, mhp);
5537 if (error) {
5538 return key_senderror(so, m, error);
5539 }
5540
5541 /* create new SA entry. */
5542 /* We can create new SA only if SPI is differenct. */
5543 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5544 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5545 return key_senderror(so, m, EEXIST);
5546 }
5547 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5548 if (newsav == NULL) {
5549 return key_senderror(so, m, error);
5550 }
5551
5552 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5553 return key_senderror(so, m, EINVAL);
5554
5555 /* check SA values to be mature. */
5556 if ((error = key_mature(newsav)) != 0) {
5557 KEY_FREESAV(&newsav);
5558 return key_senderror(so, m, error);
5559 }
5560
5561 /*
5562 * don't call key_freesav() here, as we would like to keep the SA
5563 * in the database on success.
5564 */
5565
5566 {
5567 struct mbuf *n;
5568
5569 /* set msg buf from mhp */
5570 n = key_getmsgbuf_x1(m, mhp);
5571 if (n == NULL) {
5572 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5573 return key_senderror(so, m, ENOBUFS);
5574 }
5575
5576 m_freem(m);
5577 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5578 }
5579 }
5580
5581 /* m is retained */
5582 static int
5583 key_setident(struct secashead *sah, struct mbuf *m,
5584 const struct sadb_msghdr *mhp)
5585 {
5586 const struct sadb_ident *idsrc, *iddst;
5587 int idsrclen, iddstlen;
5588
5589 /* sanity check */
5590 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5591 panic("key_setident: NULL pointer is passed");
5592
5593 /* don't make buffer if not there */
5594 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5595 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5596 sah->idents = NULL;
5597 sah->identd = NULL;
5598 return 0;
5599 }
5600
5601 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5602 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5603 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5604 return EINVAL;
5605 }
5606
5607 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5608 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5609 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5610 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5611
5612 /* validity check */
5613 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5614 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5615 return EINVAL;
5616 }
5617
5618 switch (idsrc->sadb_ident_type) {
5619 case SADB_IDENTTYPE_PREFIX:
5620 case SADB_IDENTTYPE_FQDN:
5621 case SADB_IDENTTYPE_USERFQDN:
5622 default:
5623 /* XXX do nothing */
5624 sah->idents = NULL;
5625 sah->identd = NULL;
5626 return 0;
5627 }
5628
5629 /* make structure */
5630 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5631 if (sah->idents == NULL) {
5632 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5633 return ENOBUFS;
5634 }
5635 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5636 if (sah->identd == NULL) {
5637 KFREE(sah->idents);
5638 sah->idents = NULL;
5639 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5640 return ENOBUFS;
5641 }
5642 memcpy(sah->idents, idsrc, idsrclen);
5643 memcpy(sah->identd, iddst, iddstlen);
5644
5645 return 0;
5646 }
5647
5648 /*
5649 * m will not be freed on return.
5650 * it is caller's responsibility to free the result.
5651 */
5652 static struct mbuf *
5653 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5654 {
5655 struct mbuf *n;
5656
5657 /* sanity check */
5658 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5659 panic("key_getmsgbuf_x1: NULL pointer is passed");
5660
5661 /* create new sadb_msg to reply. */
5662 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5663 SADB_EXT_SA, SADB_X_EXT_SA2,
5664 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5665 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5666 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5667 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5668 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5669 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5670 if (!n)
5671 return NULL;
5672
5673 if (n->m_len < sizeof(struct sadb_msg)) {
5674 n = m_pullup(n, sizeof(struct sadb_msg));
5675 if (n == NULL)
5676 return NULL;
5677 }
5678 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5679 mtod(n, struct sadb_msg *)->sadb_msg_len =
5680 PFKEY_UNIT64(n->m_pkthdr.len);
5681
5682 return n;
5683 }
5684
5685 static int key_delete_all (struct socket *, struct mbuf *,
5686 const struct sadb_msghdr *, u_int16_t);
5687
5688 /*
5689 * SADB_DELETE processing
5690 * receive
5691 * <base, SA(*), address(SD)>
5692 * from the ikmpd, and set SADB_SASTATE_DEAD,
5693 * and send,
5694 * <base, SA(*), address(SD)>
5695 * to the ikmpd.
5696 *
5697 * m will always be freed.
5698 */
5699 static int
5700 key_delete(struct socket *so, struct mbuf *m,
5701 const struct sadb_msghdr *mhp)
5702 {
5703 struct sadb_sa *sa0;
5704 struct sadb_address *src0, *dst0;
5705 struct secasindex saidx;
5706 struct secashead *sah;
5707 struct secasvar *sav = NULL;
5708 u_int16_t proto;
5709 int error;
5710
5711 /* sanity check */
5712 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5713 panic("key_delete: NULL pointer is passed");
5714
5715 /* map satype to proto */
5716 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5717 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5718 return key_senderror(so, m, EINVAL);
5719 }
5720
5721 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5722 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5723 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5724 return key_senderror(so, m, EINVAL);
5725 }
5726
5727 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5728 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5729 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5730 return key_senderror(so, m, EINVAL);
5731 }
5732
5733 if (mhp->ext[SADB_EXT_SA] == NULL) {
5734 /*
5735 * Caller wants us to delete all non-LARVAL SAs
5736 * that match the src/dst. This is used during
5737 * IKE INITIAL-CONTACT.
5738 */
5739 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5740 return key_delete_all(so, m, mhp, proto);
5741 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5742 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5743 return key_senderror(so, m, EINVAL);
5744 }
5745
5746 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5747 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5748 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5749
5750 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5751 dst0 + 1, &saidx)) != 0)
5752 return key_senderror(so, m, EINVAL);
5753
5754 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5755 return key_senderror(so, m, EINVAL);
5756
5757 /* get a SA header */
5758 LIST_FOREACH(sah, &sahtree, chain) {
5759 if (sah->state == SADB_SASTATE_DEAD)
5760 continue;
5761 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5762 continue;
5763
5764 /* get a SA with SPI. */
5765 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5766 if (sav)
5767 break;
5768 }
5769 if (sah == NULL) {
5770 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5771 return key_senderror(so, m, ENOENT);
5772 }
5773
5774 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5775 KEY_FREESAV(&sav);
5776
5777 {
5778 struct mbuf *n;
5779 struct sadb_msg *newmsg;
5780
5781 /* create new sadb_msg to reply. */
5782 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5783 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5784 if (!n)
5785 return key_senderror(so, m, ENOBUFS);
5786
5787 if (n->m_len < sizeof(struct sadb_msg)) {
5788 n = m_pullup(n, sizeof(struct sadb_msg));
5789 if (n == NULL)
5790 return key_senderror(so, m, ENOBUFS);
5791 }
5792 newmsg = mtod(n, struct sadb_msg *);
5793 newmsg->sadb_msg_errno = 0;
5794 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5795
5796 m_freem(m);
5797 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5798 }
5799 }
5800
5801 /*
5802 * delete all SAs for src/dst. Called from key_delete().
5803 */
5804 static int
5805 key_delete_all(struct socket *so, struct mbuf *m,
5806 const struct sadb_msghdr *mhp, u_int16_t proto)
5807 {
5808 struct sadb_address *src0, *dst0;
5809 struct secasindex saidx;
5810 struct secashead *sah;
5811 struct secasvar *sav, *nextsav;
5812 u_int stateidx, state;
5813 int error;
5814
5815 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5816 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5817
5818 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5819 dst0 + 1, &saidx)) != 0)
5820 return key_senderror(so, m, EINVAL);
5821
5822 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5823 return key_senderror(so, m, EINVAL);
5824
5825 LIST_FOREACH(sah, &sahtree, chain) {
5826 if (sah->state == SADB_SASTATE_DEAD)
5827 continue;
5828 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5829 continue;
5830
5831 /* Delete all non-LARVAL SAs. */
5832 for (stateidx = 0;
5833 stateidx < _ARRAYLEN(saorder_state_alive);
5834 stateidx++) {
5835 state = saorder_state_alive[stateidx];
5836 if (state == SADB_SASTATE_LARVAL)
5837 continue;
5838 for (sav = LIST_FIRST(&sah->savtree[state]);
5839 sav != NULL; sav = nextsav) {
5840 nextsav = LIST_NEXT(sav, chain);
5841 /* sanity check */
5842 if (sav->state != state) {
5843 ipseclog((LOG_DEBUG, "key_delete_all: "
5844 "invalid sav->state "
5845 "(queue: %d SA: %d)\n",
5846 state, sav->state));
5847 continue;
5848 }
5849
5850 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5851 KEY_FREESAV(&sav);
5852 }
5853 }
5854 }
5855 {
5856 struct mbuf *n;
5857 struct sadb_msg *newmsg;
5858
5859 /* create new sadb_msg to reply. */
5860 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5861 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5862 if (!n)
5863 return key_senderror(so, m, ENOBUFS);
5864
5865 if (n->m_len < sizeof(struct sadb_msg)) {
5866 n = m_pullup(n, sizeof(struct sadb_msg));
5867 if (n == NULL)
5868 return key_senderror(so, m, ENOBUFS);
5869 }
5870 newmsg = mtod(n, struct sadb_msg *);
5871 newmsg->sadb_msg_errno = 0;
5872 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5873
5874 m_freem(m);
5875 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5876 }
5877 }
5878
5879 /*
5880 * SADB_GET processing
5881 * receive
5882 * <base, SA(*), address(SD)>
5883 * from the ikmpd, and get a SP and a SA to respond,
5884 * and send,
5885 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5886 * (identity(SD),) (sensitivity)>
5887 * to the ikmpd.
5888 *
5889 * m will always be freed.
5890 */
5891 static int
5892 key_get(struct socket *so, struct mbuf *m,
5893 const struct sadb_msghdr *mhp)
5894 {
5895 struct sadb_sa *sa0;
5896 struct sadb_address *src0, *dst0;
5897 struct secasindex saidx;
5898 struct secashead *sah;
5899 struct secasvar *sav = NULL;
5900 u_int16_t proto;
5901 int error;
5902
5903 /* sanity check */
5904 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5905 panic("key_get: NULL pointer is passed");
5906
5907 /* map satype to proto */
5908 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5909 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5910 return key_senderror(so, m, EINVAL);
5911 }
5912
5913 if (mhp->ext[SADB_EXT_SA] == NULL ||
5914 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5915 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5916 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5917 return key_senderror(so, m, EINVAL);
5918 }
5919 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5920 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5921 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5922 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5923 return key_senderror(so, m, EINVAL);
5924 }
5925
5926 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5927 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5928 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5929
5930 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5931 dst0 + 1, &saidx)) != 0)
5932 return key_senderror(so, m, EINVAL);
5933
5934 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5935 return key_senderror(so, m, EINVAL);
5936
5937 /* get a SA header */
5938 LIST_FOREACH(sah, &sahtree, chain) {
5939 if (sah->state == SADB_SASTATE_DEAD)
5940 continue;
5941 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5942 continue;
5943
5944 /* get a SA with SPI. */
5945 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5946 if (sav)
5947 break;
5948 }
5949 if (sah == NULL) {
5950 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5951 return key_senderror(so, m, ENOENT);
5952 }
5953
5954 {
5955 struct mbuf *n;
5956 u_int8_t satype;
5957
5958 /* map proto to satype */
5959 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5960 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5961 return key_senderror(so, m, EINVAL);
5962 }
5963
5964 /* create new sadb_msg to reply. */
5965 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5966 mhp->msg->sadb_msg_pid);
5967 if (!n)
5968 return key_senderror(so, m, ENOBUFS);
5969
5970 m_freem(m);
5971 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5972 }
5973 }
5974
5975 /* XXX make it sysctl-configurable? */
5976 static void
5977 key_getcomb_setlifetime(struct sadb_comb *comb)
5978 {
5979
5980 comb->sadb_comb_soft_allocations = 1;
5981 comb->sadb_comb_hard_allocations = 1;
5982 comb->sadb_comb_soft_bytes = 0;
5983 comb->sadb_comb_hard_bytes = 0;
5984 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5985 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5986 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5987 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5988 }
5989
5990 /*
5991 * XXX reorder combinations by preference
5992 * XXX no idea if the user wants ESP authentication or not
5993 */
5994 static struct mbuf *
5995 key_getcomb_esp(void)
5996 {
5997 struct sadb_comb *comb;
5998 const struct enc_xform *algo;
5999 struct mbuf *result = NULL, *m, *n;
6000 int encmin;
6001 int i, off, o;
6002 int totlen;
6003 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6004
6005 m = NULL;
6006 for (i = 1; i <= SADB_EALG_MAX; i++) {
6007 algo = esp_algorithm_lookup(i);
6008 if (algo == NULL)
6009 continue;
6010
6011 /* discard algorithms with key size smaller than system min */
6012 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6013 continue;
6014 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6015 encmin = ipsec_esp_keymin;
6016 else
6017 encmin = _BITS(algo->minkey);
6018
6019 if (ipsec_esp_auth)
6020 m = key_getcomb_ah();
6021 else {
6022 IPSEC_ASSERT(l <= MLEN,
6023 ("key_getcomb_esp: l=%u > MLEN=%lu",
6024 l, (u_long) MLEN));
6025 MGET(m, M_DONTWAIT, MT_DATA);
6026 if (m) {
6027 M_ALIGN(m, l);
6028 m->m_len = l;
6029 m->m_next = NULL;
6030 memset(mtod(m, void *), 0, m->m_len);
6031 }
6032 }
6033 if (!m)
6034 goto fail;
6035
6036 totlen = 0;
6037 for (n = m; n; n = n->m_next)
6038 totlen += n->m_len;
6039 IPSEC_ASSERT((totlen % l) == 0,
6040 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
6041
6042 for (off = 0; off < totlen; off += l) {
6043 n = m_pulldown(m, off, l, &o);
6044 if (!n) {
6045 /* m is already freed */
6046 goto fail;
6047 }
6048 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6049 memset(comb, 0, sizeof(*comb));
6050 key_getcomb_setlifetime(comb);
6051 comb->sadb_comb_encrypt = i;
6052 comb->sadb_comb_encrypt_minbits = encmin;
6053 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6054 }
6055
6056 if (!result)
6057 result = m;
6058 else
6059 m_cat(result, m);
6060 }
6061
6062 return result;
6063
6064 fail:
6065 if (result)
6066 m_freem(result);
6067 return NULL;
6068 }
6069
6070 static void
6071 key_getsizes_ah(const struct auth_hash *ah, int alg,
6072 u_int16_t* ksmin, u_int16_t* ksmax)
6073 {
6074 *ksmin = *ksmax = ah->keysize;
6075 if (ah->keysize == 0) {
6076 /*
6077 * Transform takes arbitrary key size but algorithm
6078 * key size is restricted. Enforce this here.
6079 */
6080 switch (alg) {
6081 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6082 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6083 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break;
6084 default:
6085 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6086 alg));
6087 break;
6088 }
6089 }
6090 }
6091
6092 /*
6093 * XXX reorder combinations by preference
6094 */
6095 static struct mbuf *
6096 key_getcomb_ah(void)
6097 {
6098 struct sadb_comb *comb;
6099 const struct auth_hash *algo;
6100 struct mbuf *m;
6101 u_int16_t minkeysize, maxkeysize;
6102 int i;
6103 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6104
6105 m = NULL;
6106 for (i = 1; i <= SADB_AALG_MAX; i++) {
6107 #if 1
6108 /* we prefer HMAC algorithms, not old algorithms */
6109 if (i != SADB_AALG_SHA1HMAC &&
6110 i != SADB_AALG_MD5HMAC &&
6111 i != SADB_X_AALG_SHA2_256 &&
6112 i != SADB_X_AALG_SHA2_384 &&
6113 i != SADB_X_AALG_SHA2_512)
6114 continue;
6115 #endif
6116 algo = ah_algorithm_lookup(i);
6117 if (!algo)
6118 continue;
6119 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6120 /* discard algorithms with key size smaller than system min */
6121 if (_BITS(minkeysize) < ipsec_ah_keymin)
6122 continue;
6123
6124 if (!m) {
6125 IPSEC_ASSERT(l <= MLEN,
6126 ("key_getcomb_ah: l=%u > MLEN=%lu",
6127 l, (u_long) MLEN));
6128 MGET(m, M_DONTWAIT, MT_DATA);
6129 if (m) {
6130 M_ALIGN(m, l);
6131 m->m_len = l;
6132 m->m_next = NULL;
6133 }
6134 } else
6135 M_PREPEND(m, l, M_DONTWAIT);
6136 if (!m)
6137 return NULL;
6138
6139 comb = mtod(m, struct sadb_comb *);
6140 memset(comb, 0, sizeof(*comb));
6141 key_getcomb_setlifetime(comb);
6142 comb->sadb_comb_auth = i;
6143 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6144 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6145 }
6146
6147 return m;
6148 }
6149
6150 /*
6151 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6152 * XXX reorder combinations by preference
6153 */
6154 static struct mbuf *
6155 key_getcomb_ipcomp(void)
6156 {
6157 struct sadb_comb *comb;
6158 const struct comp_algo *algo;
6159 struct mbuf *m;
6160 int i;
6161 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6162
6163 m = NULL;
6164 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6165 algo = ipcomp_algorithm_lookup(i);
6166 if (!algo)
6167 continue;
6168
6169 if (!m) {
6170 IPSEC_ASSERT(l <= MLEN,
6171 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
6172 l, (u_long) MLEN));
6173 MGET(m, M_DONTWAIT, MT_DATA);
6174 if (m) {
6175 M_ALIGN(m, l);
6176 m->m_len = l;
6177 m->m_next = NULL;
6178 }
6179 } else
6180 M_PREPEND(m, l, M_DONTWAIT);
6181 if (!m)
6182 return NULL;
6183
6184 comb = mtod(m, struct sadb_comb *);
6185 memset(comb, 0, sizeof(*comb));
6186 key_getcomb_setlifetime(comb);
6187 comb->sadb_comb_encrypt = i;
6188 /* what should we set into sadb_comb_*_{min,max}bits? */
6189 }
6190
6191 return m;
6192 }
6193
6194 /*
6195 * XXX no way to pass mode (transport/tunnel) to userland
6196 * XXX replay checking?
6197 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6198 */
6199 static struct mbuf *
6200 key_getprop(const struct secasindex *saidx)
6201 {
6202 struct sadb_prop *prop;
6203 struct mbuf *m, *n;
6204 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6205 int totlen;
6206
6207 switch (saidx->proto) {
6208 case IPPROTO_ESP:
6209 m = key_getcomb_esp();
6210 break;
6211 case IPPROTO_AH:
6212 m = key_getcomb_ah();
6213 break;
6214 case IPPROTO_IPCOMP:
6215 m = key_getcomb_ipcomp();
6216 break;
6217 default:
6218 return NULL;
6219 }
6220
6221 if (!m)
6222 return NULL;
6223 M_PREPEND(m, l, M_DONTWAIT);
6224 if (!m)
6225 return NULL;
6226
6227 totlen = 0;
6228 for (n = m; n; n = n->m_next)
6229 totlen += n->m_len;
6230
6231 prop = mtod(m, struct sadb_prop *);
6232 memset(prop, 0, sizeof(*prop));
6233 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6234 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6235 prop->sadb_prop_replay = 32; /* XXX */
6236
6237 return m;
6238 }
6239
6240 /*
6241 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6242 * send
6243 * <base, SA, address(SD), (address(P)), x_policy,
6244 * (identity(SD),) (sensitivity,) proposal>
6245 * to KMD, and expect to receive
6246 * <base> with SADB_ACQUIRE if error occurred,
6247 * or
6248 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6249 * from KMD by PF_KEY.
6250 *
6251 * XXX x_policy is outside of RFC2367 (KAME extension).
6252 * XXX sensitivity is not supported.
6253 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6254 * see comment for key_getcomb_ipcomp().
6255 *
6256 * OUT:
6257 * 0 : succeed
6258 * others: error number
6259 */
6260 static int
6261 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6262 {
6263 struct mbuf *result = NULL, *m;
6264 #ifndef IPSEC_NONBLOCK_ACQUIRE
6265 struct secacq *newacq;
6266 #endif
6267 u_int8_t satype;
6268 int error = -1;
6269 u_int32_t seq;
6270
6271 /* sanity check */
6272 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
6273 satype = key_proto2satype(saidx->proto);
6274 IPSEC_ASSERT(satype != 0,
6275 ("key_acquire: null satype, protocol %u", saidx->proto));
6276
6277 #ifndef IPSEC_NONBLOCK_ACQUIRE
6278 /*
6279 * We never do anything about acquirng SA. There is anather
6280 * solution that kernel blocks to send SADB_ACQUIRE message until
6281 * getting something message from IKEd. In later case, to be
6282 * managed with ACQUIRING list.
6283 */
6284 /* Get an entry to check whether sending message or not. */
6285 if ((newacq = key_getacq(saidx)) != NULL) {
6286 if (key_blockacq_count < newacq->count) {
6287 /* reset counter and do send message. */
6288 newacq->count = 0;
6289 } else {
6290 /* increment counter and do nothing. */
6291 newacq->count++;
6292 return 0;
6293 }
6294 } else {
6295 /* make new entry for blocking to send SADB_ACQUIRE. */
6296 if ((newacq = key_newacq(saidx)) == NULL)
6297 return ENOBUFS;
6298
6299 /* add to acqtree */
6300 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6301 }
6302 #endif
6303
6304
6305 #ifndef IPSEC_NONBLOCK_ACQUIRE
6306 seq = newacq->seq;
6307 #else
6308 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6309 #endif
6310 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6311 if (!m) {
6312 error = ENOBUFS;
6313 goto fail;
6314 }
6315 result = m;
6316
6317 /* set sadb_address for saidx's. */
6318 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6319 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6320 if (!m) {
6321 error = ENOBUFS;
6322 goto fail;
6323 }
6324 m_cat(result, m);
6325
6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6327 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6328 if (!m) {
6329 error = ENOBUFS;
6330 goto fail;
6331 }
6332 m_cat(result, m);
6333
6334 /* XXX proxy address (optional) */
6335
6336 /* set sadb_x_policy */
6337 if (sp) {
6338 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6339 if (!m) {
6340 error = ENOBUFS;
6341 goto fail;
6342 }
6343 m_cat(result, m);
6344 }
6345
6346 /* XXX identity (optional) */
6347 #if 0
6348 if (idexttype && fqdn) {
6349 /* create identity extension (FQDN) */
6350 struct sadb_ident *id;
6351 int fqdnlen;
6352
6353 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6354 id = (struct sadb_ident *)p;
6355 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6356 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6357 id->sadb_ident_exttype = idexttype;
6358 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6359 memcpy(id + 1, fqdn, fqdnlen);
6360 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6361 }
6362
6363 if (idexttype) {
6364 /* create identity extension (USERFQDN) */
6365 struct sadb_ident *id;
6366 int userfqdnlen;
6367
6368 if (userfqdn) {
6369 /* +1 for terminating-NUL */
6370 userfqdnlen = strlen(userfqdn) + 1;
6371 } else
6372 userfqdnlen = 0;
6373 id = (struct sadb_ident *)p;
6374 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6375 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6376 id->sadb_ident_exttype = idexttype;
6377 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6378 /* XXX is it correct? */
6379 if (curlwp)
6380 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6381 if (userfqdn && userfqdnlen)
6382 memcpy(id + 1, userfqdn, userfqdnlen);
6383 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6384 }
6385 #endif
6386
6387 /* XXX sensitivity (optional) */
6388
6389 /* create proposal/combination extension */
6390 m = key_getprop(saidx);
6391 #if 0
6392 /*
6393 * spec conformant: always attach proposal/combination extension,
6394 * the problem is that we have no way to attach it for ipcomp,
6395 * due to the way sadb_comb is declared in RFC2367.
6396 */
6397 if (!m) {
6398 error = ENOBUFS;
6399 goto fail;
6400 }
6401 m_cat(result, m);
6402 #else
6403 /*
6404 * outside of spec; make proposal/combination extension optional.
6405 */
6406 if (m)
6407 m_cat(result, m);
6408 #endif
6409
6410 if ((result->m_flags & M_PKTHDR) == 0) {
6411 error = EINVAL;
6412 goto fail;
6413 }
6414
6415 if (result->m_len < sizeof(struct sadb_msg)) {
6416 result = m_pullup(result, sizeof(struct sadb_msg));
6417 if (result == NULL) {
6418 error = ENOBUFS;
6419 goto fail;
6420 }
6421 }
6422
6423 result->m_pkthdr.len = 0;
6424 for (m = result; m; m = m->m_next)
6425 result->m_pkthdr.len += m->m_len;
6426
6427 mtod(result, struct sadb_msg *)->sadb_msg_len =
6428 PFKEY_UNIT64(result->m_pkthdr.len);
6429
6430 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6431
6432 fail:
6433 if (result)
6434 m_freem(result);
6435 return error;
6436 }
6437
6438 #ifndef IPSEC_NONBLOCK_ACQUIRE
6439 static struct secacq *
6440 key_newacq(const struct secasindex *saidx)
6441 {
6442 struct secacq *newacq;
6443
6444 /* get new entry */
6445 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6446 if (newacq == NULL) {
6447 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6448 return NULL;
6449 }
6450 memset(newacq, 0, sizeof(*newacq));
6451
6452 /* copy secindex */
6453 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6454 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6455 newacq->created = time_uptime;
6456 newacq->count = 0;
6457
6458 return newacq;
6459 }
6460
6461 static struct secacq *
6462 key_getacq(const struct secasindex *saidx)
6463 {
6464 struct secacq *acq;
6465
6466 LIST_FOREACH(acq, &acqtree, chain) {
6467 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6468 return acq;
6469 }
6470
6471 return NULL;
6472 }
6473
6474 static struct secacq *
6475 key_getacqbyseq(u_int32_t seq)
6476 {
6477 struct secacq *acq;
6478
6479 LIST_FOREACH(acq, &acqtree, chain) {
6480 if (acq->seq == seq)
6481 return acq;
6482 }
6483
6484 return NULL;
6485 }
6486 #endif
6487
6488 static struct secspacq *
6489 key_newspacq(const struct secpolicyindex *spidx)
6490 {
6491 struct secspacq *acq;
6492
6493 /* get new entry */
6494 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6495 if (acq == NULL) {
6496 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6497 return NULL;
6498 }
6499 memset(acq, 0, sizeof(*acq));
6500
6501 /* copy secindex */
6502 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6503 acq->created = time_uptime;
6504 acq->count = 0;
6505
6506 return acq;
6507 }
6508
6509 static struct secspacq *
6510 key_getspacq(const struct secpolicyindex *spidx)
6511 {
6512 struct secspacq *acq;
6513
6514 LIST_FOREACH(acq, &spacqtree, chain) {
6515 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6516 return acq;
6517 }
6518
6519 return NULL;
6520 }
6521
6522 /*
6523 * SADB_ACQUIRE processing,
6524 * in first situation, is receiving
6525 * <base>
6526 * from the ikmpd, and clear sequence of its secasvar entry.
6527 *
6528 * In second situation, is receiving
6529 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6530 * from a user land process, and return
6531 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6532 * to the socket.
6533 *
6534 * m will always be freed.
6535 */
6536 static int
6537 key_acquire2(struct socket *so, struct mbuf *m,
6538 const struct sadb_msghdr *mhp)
6539 {
6540 const struct sadb_address *src0, *dst0;
6541 struct secasindex saidx;
6542 struct secashead *sah;
6543 u_int16_t proto;
6544 int error;
6545
6546 /* sanity check */
6547 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6548 panic("key_acquire2: NULL pointer is passed");
6549
6550 /*
6551 * Error message from KMd.
6552 * We assume that if error was occurred in IKEd, the length of PFKEY
6553 * message is equal to the size of sadb_msg structure.
6554 * We do not raise error even if error occurred in this function.
6555 */
6556 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6557 #ifndef IPSEC_NONBLOCK_ACQUIRE
6558 struct secacq *acq;
6559
6560 /* check sequence number */
6561 if (mhp->msg->sadb_msg_seq == 0) {
6562 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6563 m_freem(m);
6564 return 0;
6565 }
6566
6567 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6568 /*
6569 * the specified larval SA is already gone, or we got
6570 * a bogus sequence number. we can silently ignore it.
6571 */
6572 m_freem(m);
6573 return 0;
6574 }
6575
6576 /* reset acq counter in order to deletion by timehander. */
6577 acq->created = time_uptime;
6578 acq->count = 0;
6579 #endif
6580 m_freem(m);
6581 return 0;
6582 }
6583
6584 /*
6585 * This message is from user land.
6586 */
6587
6588 /* map satype to proto */
6589 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6590 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6591 return key_senderror(so, m, EINVAL);
6592 }
6593
6594 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6595 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6596 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6597 /* error */
6598 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6599 return key_senderror(so, m, EINVAL);
6600 }
6601 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6602 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6603 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6604 /* error */
6605 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6606 return key_senderror(so, m, EINVAL);
6607 }
6608
6609 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6610 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6611
6612 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6613 dst0 + 1, &saidx)) != 0)
6614 return key_senderror(so, m, EINVAL);
6615
6616 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6617 return key_senderror(so, m, EINVAL);
6618
6619 /* get a SA index */
6620 LIST_FOREACH(sah, &sahtree, chain) {
6621 if (sah->state == SADB_SASTATE_DEAD)
6622 continue;
6623 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6624 break;
6625 }
6626 if (sah != NULL) {
6627 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6628 return key_senderror(so, m, EEXIST);
6629 }
6630
6631 error = key_acquire(&saidx, NULL);
6632 if (error != 0) {
6633 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6634 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6635 return key_senderror(so, m, error);
6636 }
6637
6638 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6639 }
6640
6641 /*
6642 * SADB_REGISTER processing.
6643 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6644 * receive
6645 * <base>
6646 * from the ikmpd, and register a socket to send PF_KEY messages,
6647 * and send
6648 * <base, supported>
6649 * to KMD by PF_KEY.
6650 * If socket is detached, must free from regnode.
6651 *
6652 * m will always be freed.
6653 */
6654 static int
6655 key_register(struct socket *so, struct mbuf *m,
6656 const struct sadb_msghdr *mhp)
6657 {
6658 struct secreg *reg, *newreg = 0;
6659
6660 /* sanity check */
6661 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6662 panic("key_register: NULL pointer is passed");
6663
6664 /* check for invalid register message */
6665 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6666 return key_senderror(so, m, EINVAL);
6667
6668 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6669 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6670 goto setmsg;
6671
6672 /* check whether existing or not */
6673 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6674 if (reg->so == so) {
6675 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6676 return key_senderror(so, m, EEXIST);
6677 }
6678 }
6679
6680 /* create regnode */
6681 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6682 if (newreg == NULL) {
6683 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6684 return key_senderror(so, m, ENOBUFS);
6685 }
6686 memset(newreg, 0, sizeof(*newreg));
6687
6688 newreg->so = so;
6689 ((struct keycb *)sotorawcb(so))->kp_registered++;
6690
6691 /* add regnode to regtree. */
6692 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6693
6694 setmsg:
6695 {
6696 struct mbuf *n;
6697 struct sadb_msg *newmsg;
6698 struct sadb_supported *sup;
6699 u_int len, alen, elen;
6700 int off;
6701 int i;
6702 struct sadb_alg *alg;
6703
6704 /* create new sadb_msg to reply. */
6705 alen = 0;
6706 for (i = 1; i <= SADB_AALG_MAX; i++) {
6707 if (ah_algorithm_lookup(i))
6708 alen += sizeof(struct sadb_alg);
6709 }
6710 if (alen)
6711 alen += sizeof(struct sadb_supported);
6712 elen = 0;
6713 for (i = 1; i <= SADB_EALG_MAX; i++) {
6714 if (esp_algorithm_lookup(i))
6715 elen += sizeof(struct sadb_alg);
6716 }
6717 if (elen)
6718 elen += sizeof(struct sadb_supported);
6719
6720 len = sizeof(struct sadb_msg) + alen + elen;
6721
6722 if (len > MCLBYTES)
6723 return key_senderror(so, m, ENOBUFS);
6724
6725 MGETHDR(n, M_DONTWAIT, MT_DATA);
6726 if (len > MHLEN) {
6727 MCLGET(n, M_DONTWAIT);
6728 if ((n->m_flags & M_EXT) == 0) {
6729 m_freem(n);
6730 n = NULL;
6731 }
6732 }
6733 if (!n)
6734 return key_senderror(so, m, ENOBUFS);
6735
6736 n->m_pkthdr.len = n->m_len = len;
6737 n->m_next = NULL;
6738 off = 0;
6739
6740 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6741 newmsg = mtod(n, struct sadb_msg *);
6742 newmsg->sadb_msg_errno = 0;
6743 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6744 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6745
6746 /* for authentication algorithm */
6747 if (alen) {
6748 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6749 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6750 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6751 off += PFKEY_ALIGN8(sizeof(*sup));
6752
6753 for (i = 1; i <= SADB_AALG_MAX; i++) {
6754 const struct auth_hash *aalgo;
6755 u_int16_t minkeysize, maxkeysize;
6756
6757 aalgo = ah_algorithm_lookup(i);
6758 if (!aalgo)
6759 continue;
6760 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6761 alg->sadb_alg_id = i;
6762 alg->sadb_alg_ivlen = 0;
6763 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6764 alg->sadb_alg_minbits = _BITS(minkeysize);
6765 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6766 off += PFKEY_ALIGN8(sizeof(*alg));
6767 }
6768 }
6769
6770 /* for encryption algorithm */
6771 if (elen) {
6772 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6773 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6774 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6775 off += PFKEY_ALIGN8(sizeof(*sup));
6776
6777 for (i = 1; i <= SADB_EALG_MAX; i++) {
6778 const struct enc_xform *ealgo;
6779
6780 ealgo = esp_algorithm_lookup(i);
6781 if (!ealgo)
6782 continue;
6783 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6784 alg->sadb_alg_id = i;
6785 alg->sadb_alg_ivlen = ealgo->blocksize;
6786 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6787 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6788 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6789 }
6790 }
6791
6792 #ifdef DIAGNOSTIC
6793 if (off != len)
6794 panic("length assumption failed in key_register");
6795 #endif
6796
6797 m_freem(m);
6798 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6799 }
6800 }
6801
6802 /*
6803 * free secreg entry registered.
6804 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6805 */
6806 void
6807 key_freereg(struct socket *so)
6808 {
6809 struct secreg *reg;
6810 int i;
6811
6812 /* sanity check */
6813 if (so == NULL)
6814 panic("key_freereg: NULL pointer is passed");
6815
6816 /*
6817 * check whether existing or not.
6818 * check all type of SA, because there is a potential that
6819 * one socket is registered to multiple type of SA.
6820 */
6821 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6822 LIST_FOREACH(reg, ®tree[i], chain) {
6823 if (reg->so == so
6824 && __LIST_CHAINED(reg)) {
6825 LIST_REMOVE(reg, chain);
6826 KFREE(reg);
6827 break;
6828 }
6829 }
6830 }
6831
6832 return;
6833 }
6834
6835 /*
6836 * SADB_EXPIRE processing
6837 * send
6838 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6839 * to KMD by PF_KEY.
6840 * NOTE: We send only soft lifetime extension.
6841 *
6842 * OUT: 0 : succeed
6843 * others : error number
6844 */
6845 static int
6846 key_expire(struct secasvar *sav)
6847 {
6848 int s;
6849 int satype;
6850 struct mbuf *result = NULL, *m;
6851 int len;
6852 int error = -1;
6853 struct sadb_lifetime *lt;
6854
6855 /* XXX: Why do we lock ? */
6856 s = splsoftnet(); /*called from softclock()*/
6857
6858 /* sanity check */
6859 if (sav == NULL)
6860 panic("key_expire: NULL pointer is passed");
6861 if (sav->sah == NULL)
6862 panic("key_expire: Why was SA index in SA NULL");
6863 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6864 panic("key_expire: invalid proto is passed");
6865
6866 /* set msg header */
6867 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6868 if (!m) {
6869 error = ENOBUFS;
6870 goto fail;
6871 }
6872 result = m;
6873
6874 /* create SA extension */
6875 m = key_setsadbsa(sav);
6876 if (!m) {
6877 error = ENOBUFS;
6878 goto fail;
6879 }
6880 m_cat(result, m);
6881
6882 /* create SA extension */
6883 m = key_setsadbxsa2(sav->sah->saidx.mode,
6884 sav->replay ? sav->replay->count : 0,
6885 sav->sah->saidx.reqid);
6886 if (!m) {
6887 error = ENOBUFS;
6888 goto fail;
6889 }
6890 m_cat(result, m);
6891
6892 /* create lifetime extension (current and soft) */
6893 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6894 m = key_alloc_mbuf(len);
6895 if (!m || m->m_next) { /*XXX*/
6896 if (m)
6897 m_freem(m);
6898 error = ENOBUFS;
6899 goto fail;
6900 }
6901 memset(mtod(m, void *), 0, len);
6902 lt = mtod(m, struct sadb_lifetime *);
6903 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6904 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6905 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6906 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6907 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6908 + time_second - time_uptime;
6909 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6910 + time_second - time_uptime;
6911 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6912 memcpy(lt, sav->lft_s, sizeof(*lt));
6913 m_cat(result, m);
6914
6915 /* set sadb_address for source */
6916 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6917 &sav->sah->saidx.src.sa,
6918 FULLMASK, IPSEC_ULPROTO_ANY);
6919 if (!m) {
6920 error = ENOBUFS;
6921 goto fail;
6922 }
6923 m_cat(result, m);
6924
6925 /* set sadb_address for destination */
6926 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6927 &sav->sah->saidx.dst.sa,
6928 FULLMASK, IPSEC_ULPROTO_ANY);
6929 if (!m) {
6930 error = ENOBUFS;
6931 goto fail;
6932 }
6933 m_cat(result, m);
6934
6935 if ((result->m_flags & M_PKTHDR) == 0) {
6936 error = EINVAL;
6937 goto fail;
6938 }
6939
6940 if (result->m_len < sizeof(struct sadb_msg)) {
6941 result = m_pullup(result, sizeof(struct sadb_msg));
6942 if (result == NULL) {
6943 error = ENOBUFS;
6944 goto fail;
6945 }
6946 }
6947
6948 result->m_pkthdr.len = 0;
6949 for (m = result; m; m = m->m_next)
6950 result->m_pkthdr.len += m->m_len;
6951
6952 mtod(result, struct sadb_msg *)->sadb_msg_len =
6953 PFKEY_UNIT64(result->m_pkthdr.len);
6954
6955 splx(s);
6956 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6957
6958 fail:
6959 if (result)
6960 m_freem(result);
6961 splx(s);
6962 return error;
6963 }
6964
6965 /*
6966 * SADB_FLUSH processing
6967 * receive
6968 * <base>
6969 * from the ikmpd, and free all entries in secastree.
6970 * and send,
6971 * <base>
6972 * to the ikmpd.
6973 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6974 *
6975 * m will always be freed.
6976 */
6977 static int
6978 key_flush(struct socket *so, struct mbuf *m,
6979 const struct sadb_msghdr *mhp)
6980 {
6981 struct sadb_msg *newmsg;
6982 struct secashead *sah, *nextsah;
6983 struct secasvar *sav, *nextsav;
6984 u_int16_t proto;
6985 u_int8_t state;
6986 u_int stateidx;
6987
6988 /* sanity check */
6989 if (so == NULL || mhp == NULL || mhp->msg == NULL)
6990 panic("key_flush: NULL pointer is passed");
6991
6992 /* map satype to proto */
6993 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6994 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
6995 return key_senderror(so, m, EINVAL);
6996 }
6997
6998 /* no SATYPE specified, i.e. flushing all SA. */
6999 for (sah = LIST_FIRST(&sahtree);
7000 sah != NULL;
7001 sah = nextsah) {
7002 nextsah = LIST_NEXT(sah, chain);
7003
7004 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7005 && proto != sah->saidx.proto)
7006 continue;
7007
7008 for (stateidx = 0;
7009 stateidx < _ARRAYLEN(saorder_state_alive);
7010 stateidx++) {
7011 state = saorder_state_any[stateidx];
7012 for (sav = LIST_FIRST(&sah->savtree[state]);
7013 sav != NULL;
7014 sav = nextsav) {
7015
7016 nextsav = LIST_NEXT(sav, chain);
7017
7018 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7019 KEY_FREESAV(&sav);
7020 }
7021 }
7022
7023 sah->state = SADB_SASTATE_DEAD;
7024 }
7025
7026 if (m->m_len < sizeof(struct sadb_msg) ||
7027 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7028 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
7029 return key_senderror(so, m, ENOBUFS);
7030 }
7031
7032 if (m->m_next)
7033 m_freem(m->m_next);
7034 m->m_next = NULL;
7035 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7036 newmsg = mtod(m, struct sadb_msg *);
7037 newmsg->sadb_msg_errno = 0;
7038 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7039
7040 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7041 }
7042
7043
7044 static struct mbuf *
7045 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7046 {
7047 struct secashead *sah;
7048 struct secasvar *sav;
7049 u_int16_t proto;
7050 u_int stateidx;
7051 u_int8_t satype;
7052 u_int8_t state;
7053 int cnt;
7054 struct mbuf *m, *n, *prev;
7055
7056 *lenp = 0;
7057
7058 /* map satype to proto */
7059 if ((proto = key_satype2proto(req_satype)) == 0) {
7060 *errorp = EINVAL;
7061 return (NULL);
7062 }
7063
7064 /* count sav entries to be sent to userland. */
7065 cnt = 0;
7066 LIST_FOREACH(sah, &sahtree, chain) {
7067 if (req_satype != SADB_SATYPE_UNSPEC &&
7068 proto != sah->saidx.proto)
7069 continue;
7070
7071 for (stateidx = 0;
7072 stateidx < _ARRAYLEN(saorder_state_any);
7073 stateidx++) {
7074 state = saorder_state_any[stateidx];
7075 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7076 cnt++;
7077 }
7078 }
7079 }
7080
7081 if (cnt == 0) {
7082 *errorp = ENOENT;
7083 return (NULL);
7084 }
7085
7086 /* send this to the userland, one at a time. */
7087 m = NULL;
7088 prev = m;
7089 LIST_FOREACH(sah, &sahtree, chain) {
7090 if (req_satype != SADB_SATYPE_UNSPEC &&
7091 proto != sah->saidx.proto)
7092 continue;
7093
7094 /* map proto to satype */
7095 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7096 m_freem(m);
7097 *errorp = EINVAL;
7098 return (NULL);
7099 }
7100
7101 for (stateidx = 0;
7102 stateidx < _ARRAYLEN(saorder_state_any);
7103 stateidx++) {
7104 state = saorder_state_any[stateidx];
7105 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7106 n = key_setdumpsa(sav, SADB_DUMP, satype,
7107 --cnt, pid);
7108 if (!n) {
7109 m_freem(m);
7110 *errorp = ENOBUFS;
7111 return (NULL);
7112 }
7113
7114 if (!m)
7115 m = n;
7116 else
7117 prev->m_nextpkt = n;
7118 prev = n;
7119 }
7120 }
7121 }
7122
7123 if (!m) {
7124 *errorp = EINVAL;
7125 return (NULL);
7126 }
7127
7128 if ((m->m_flags & M_PKTHDR) != 0) {
7129 m->m_pkthdr.len = 0;
7130 for (n = m; n; n = n->m_next)
7131 m->m_pkthdr.len += n->m_len;
7132 }
7133
7134 *errorp = 0;
7135 return (m);
7136 }
7137
7138 /*
7139 * SADB_DUMP processing
7140 * dump all entries including status of DEAD in SAD.
7141 * receive
7142 * <base>
7143 * from the ikmpd, and dump all secasvar leaves
7144 * and send,
7145 * <base> .....
7146 * to the ikmpd.
7147 *
7148 * m will always be freed.
7149 */
7150 static int
7151 key_dump(struct socket *so, struct mbuf *m0,
7152 const struct sadb_msghdr *mhp)
7153 {
7154 u_int16_t proto;
7155 u_int8_t satype;
7156 struct mbuf *n;
7157 int s;
7158 int error, len, ok;
7159
7160 /* sanity check */
7161 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
7162 panic("key_dump: NULL pointer is passed");
7163
7164 /* map satype to proto */
7165 satype = mhp->msg->sadb_msg_satype;
7166 if ((proto = key_satype2proto(satype)) == 0) {
7167 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7168 return key_senderror(so, m0, EINVAL);
7169 }
7170
7171 /*
7172 * If the requestor has insufficient socket-buffer space
7173 * for the entire chain, nobody gets any response to the DUMP.
7174 * XXX For now, only the requestor ever gets anything.
7175 * Moreover, if the requestor has any space at all, they receive
7176 * the entire chain, otherwise the request is refused with ENOBUFS.
7177 */
7178 if (sbspace(&so->so_rcv) <= 0) {
7179 return key_senderror(so, m0, ENOBUFS);
7180 }
7181
7182 s = splsoftnet();
7183 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7184 splx(s);
7185
7186 if (n == NULL) {
7187 return key_senderror(so, m0, ENOENT);
7188 }
7189 {
7190 uint64_t *ps = PFKEY_STAT_GETREF();
7191 ps[PFKEY_STAT_IN_TOTAL]++;
7192 ps[PFKEY_STAT_IN_BYTES] += len;
7193 PFKEY_STAT_PUTREF();
7194 }
7195
7196 /*
7197 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7198 * The requestor receives either the entire chain, or an
7199 * error message with ENOBUFS.
7200 *
7201 * sbappendaddrchain() takes the chain of entries, one
7202 * packet-record per SPD entry, prepends the key_src sockaddr
7203 * to each packet-record, links the sockaddr mbufs into a new
7204 * list of records, then appends the entire resulting
7205 * list to the requesting socket.
7206 */
7207 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7208 n, SB_PRIO_ONESHOT_OVERFLOW);
7209
7210 if (!ok) {
7211 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7212 m_freem(n);
7213 return key_senderror(so, m0, ENOBUFS);
7214 }
7215
7216 m_freem(m0);
7217 return 0;
7218 }
7219
7220 /*
7221 * SADB_X_PROMISC processing
7222 *
7223 * m will always be freed.
7224 */
7225 static int
7226 key_promisc(struct socket *so, struct mbuf *m,
7227 const struct sadb_msghdr *mhp)
7228 {
7229 int olen;
7230
7231 /* sanity check */
7232 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
7233 panic("key_promisc: NULL pointer is passed");
7234
7235 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7236
7237 if (olen < sizeof(struct sadb_msg)) {
7238 #if 1
7239 return key_senderror(so, m, EINVAL);
7240 #else
7241 m_freem(m);
7242 return 0;
7243 #endif
7244 } else if (olen == sizeof(struct sadb_msg)) {
7245 /* enable/disable promisc mode */
7246 struct keycb *kp;
7247
7248 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7249 return key_senderror(so, m, EINVAL);
7250 mhp->msg->sadb_msg_errno = 0;
7251 switch (mhp->msg->sadb_msg_satype) {
7252 case 0:
7253 case 1:
7254 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7255 break;
7256 default:
7257 return key_senderror(so, m, EINVAL);
7258 }
7259
7260 /* send the original message back to everyone */
7261 mhp->msg->sadb_msg_errno = 0;
7262 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7263 } else {
7264 /* send packet as is */
7265
7266 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7267
7268 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7269 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7270 }
7271 }
7272
7273 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7274 const struct sadb_msghdr *) = {
7275 NULL, /* SADB_RESERVED */
7276 key_getspi, /* SADB_GETSPI */
7277 key_update, /* SADB_UPDATE */
7278 key_add, /* SADB_ADD */
7279 key_delete, /* SADB_DELETE */
7280 key_get, /* SADB_GET */
7281 key_acquire2, /* SADB_ACQUIRE */
7282 key_register, /* SADB_REGISTER */
7283 NULL, /* SADB_EXPIRE */
7284 key_flush, /* SADB_FLUSH */
7285 key_dump, /* SADB_DUMP */
7286 key_promisc, /* SADB_X_PROMISC */
7287 NULL, /* SADB_X_PCHANGE */
7288 key_spdadd, /* SADB_X_SPDUPDATE */
7289 key_spdadd, /* SADB_X_SPDADD */
7290 key_spddelete, /* SADB_X_SPDDELETE */
7291 key_spdget, /* SADB_X_SPDGET */
7292 NULL, /* SADB_X_SPDACQUIRE */
7293 key_spddump, /* SADB_X_SPDDUMP */
7294 key_spdflush, /* SADB_X_SPDFLUSH */
7295 key_spdadd, /* SADB_X_SPDSETIDX */
7296 NULL, /* SADB_X_SPDEXPIRE */
7297 key_spddelete2, /* SADB_X_SPDDELETE2 */
7298 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7299 };
7300
7301 /*
7302 * parse sadb_msg buffer to process PFKEYv2,
7303 * and create a data to response if needed.
7304 * I think to be dealed with mbuf directly.
7305 * IN:
7306 * msgp : pointer to pointer to a received buffer pulluped.
7307 * This is rewrited to response.
7308 * so : pointer to socket.
7309 * OUT:
7310 * length for buffer to send to user process.
7311 */
7312 int
7313 key_parse(struct mbuf *m, struct socket *so)
7314 {
7315 struct sadb_msg *msg;
7316 struct sadb_msghdr mh;
7317 int error;
7318 int target;
7319
7320 /* sanity check */
7321 if (m == NULL || so == NULL)
7322 panic("key_parse: NULL pointer is passed");
7323
7324 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7325 KEYDEBUG(KEYDEBUG_KEY_DUMP,
7326 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7327 kdebug_sadb(msg));
7328 #endif
7329
7330 if (m->m_len < sizeof(struct sadb_msg)) {
7331 m = m_pullup(m, sizeof(struct sadb_msg));
7332 if (!m)
7333 return ENOBUFS;
7334 }
7335 msg = mtod(m, struct sadb_msg *);
7336 target = KEY_SENDUP_ONE;
7337
7338 if ((m->m_flags & M_PKTHDR) == 0 ||
7339 m->m_pkthdr.len != m->m_pkthdr.len) {
7340 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7341 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7342 error = EINVAL;
7343 goto senderror;
7344 }
7345
7346 if (msg->sadb_msg_version != PF_KEY_V2) {
7347 ipseclog((LOG_DEBUG,
7348 "key_parse: PF_KEY version %u is mismatched.\n",
7349 msg->sadb_msg_version));
7350 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7351 error = EINVAL;
7352 goto senderror;
7353 }
7354
7355 if (msg->sadb_msg_type > SADB_MAX) {
7356 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7357 msg->sadb_msg_type));
7358 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7359 error = EINVAL;
7360 goto senderror;
7361 }
7362
7363 /* for old-fashioned code - should be nuked */
7364 if (m->m_pkthdr.len > MCLBYTES) {
7365 m_freem(m);
7366 return ENOBUFS;
7367 }
7368 if (m->m_next) {
7369 struct mbuf *n;
7370
7371 MGETHDR(n, M_DONTWAIT, MT_DATA);
7372 if (n && m->m_pkthdr.len > MHLEN) {
7373 MCLGET(n, M_DONTWAIT);
7374 if ((n->m_flags & M_EXT) == 0) {
7375 m_free(n);
7376 n = NULL;
7377 }
7378 }
7379 if (!n) {
7380 m_freem(m);
7381 return ENOBUFS;
7382 }
7383 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7384 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7385 n->m_next = NULL;
7386 m_freem(m);
7387 m = n;
7388 }
7389
7390 /* align the mbuf chain so that extensions are in contiguous region. */
7391 error = key_align(m, &mh);
7392 if (error)
7393 return error;
7394
7395 if (m->m_next) { /*XXX*/
7396 m_freem(m);
7397 return ENOBUFS;
7398 }
7399
7400 msg = mh.msg;
7401
7402 /* check SA type */
7403 switch (msg->sadb_msg_satype) {
7404 case SADB_SATYPE_UNSPEC:
7405 switch (msg->sadb_msg_type) {
7406 case SADB_GETSPI:
7407 case SADB_UPDATE:
7408 case SADB_ADD:
7409 case SADB_DELETE:
7410 case SADB_GET:
7411 case SADB_ACQUIRE:
7412 case SADB_EXPIRE:
7413 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7414 "when msg type=%u.\n", msg->sadb_msg_type));
7415 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7416 error = EINVAL;
7417 goto senderror;
7418 }
7419 break;
7420 case SADB_SATYPE_AH:
7421 case SADB_SATYPE_ESP:
7422 case SADB_X_SATYPE_IPCOMP:
7423 case SADB_X_SATYPE_TCPSIGNATURE:
7424 switch (msg->sadb_msg_type) {
7425 case SADB_X_SPDADD:
7426 case SADB_X_SPDDELETE:
7427 case SADB_X_SPDGET:
7428 case SADB_X_SPDDUMP:
7429 case SADB_X_SPDFLUSH:
7430 case SADB_X_SPDSETIDX:
7431 case SADB_X_SPDUPDATE:
7432 case SADB_X_SPDDELETE2:
7433 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7434 msg->sadb_msg_type));
7435 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7436 error = EINVAL;
7437 goto senderror;
7438 }
7439 break;
7440 case SADB_SATYPE_RSVP:
7441 case SADB_SATYPE_OSPFV2:
7442 case SADB_SATYPE_RIPV2:
7443 case SADB_SATYPE_MIP:
7444 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7445 msg->sadb_msg_satype));
7446 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7447 error = EOPNOTSUPP;
7448 goto senderror;
7449 case 1: /* XXX: What does it do? */
7450 if (msg->sadb_msg_type == SADB_X_PROMISC)
7451 break;
7452 /*FALLTHROUGH*/
7453 default:
7454 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7455 msg->sadb_msg_satype));
7456 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7457 error = EINVAL;
7458 goto senderror;
7459 }
7460
7461 /* check field of upper layer protocol and address family */
7462 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7463 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7464 struct sadb_address *src0, *dst0;
7465 u_int plen;
7466
7467 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7468 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7469
7470 /* check upper layer protocol */
7471 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7472 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7473 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7474 error = EINVAL;
7475 goto senderror;
7476 }
7477
7478 /* check family */
7479 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7480 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7481 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7482 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7483 error = EINVAL;
7484 goto senderror;
7485 }
7486 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7487 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7488 ipseclog((LOG_DEBUG,
7489 "key_parse: address struct size mismatched.\n"));
7490 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7491 error = EINVAL;
7492 goto senderror;
7493 }
7494
7495 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7496 case AF_INET:
7497 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7498 sizeof(struct sockaddr_in)) {
7499 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7500 error = EINVAL;
7501 goto senderror;
7502 }
7503 break;
7504 case AF_INET6:
7505 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7506 sizeof(struct sockaddr_in6)) {
7507 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7508 error = EINVAL;
7509 goto senderror;
7510 }
7511 break;
7512 default:
7513 ipseclog((LOG_DEBUG,
7514 "key_parse: unsupported address family.\n"));
7515 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7516 error = EAFNOSUPPORT;
7517 goto senderror;
7518 }
7519
7520 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7521 case AF_INET:
7522 plen = sizeof(struct in_addr) << 3;
7523 break;
7524 case AF_INET6:
7525 plen = sizeof(struct in6_addr) << 3;
7526 break;
7527 default:
7528 plen = 0; /*fool gcc*/
7529 break;
7530 }
7531
7532 /* check max prefix length */
7533 if (src0->sadb_address_prefixlen > plen ||
7534 dst0->sadb_address_prefixlen > plen) {
7535 ipseclog((LOG_DEBUG,
7536 "key_parse: illegal prefixlen.\n"));
7537 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7538 error = EINVAL;
7539 goto senderror;
7540 }
7541
7542 /*
7543 * prefixlen == 0 is valid because there can be a case when
7544 * all addresses are matched.
7545 */
7546 }
7547
7548 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7549 key_typesw[msg->sadb_msg_type] == NULL) {
7550 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7551 error = EINVAL;
7552 goto senderror;
7553 }
7554
7555 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7556
7557 senderror:
7558 msg->sadb_msg_errno = error;
7559 return key_sendup_mbuf(so, m, target);
7560 }
7561
7562 static int
7563 key_senderror(struct socket *so, struct mbuf *m, int code)
7564 {
7565 struct sadb_msg *msg;
7566
7567 if (m->m_len < sizeof(struct sadb_msg))
7568 panic("invalid mbuf passed to key_senderror");
7569
7570 msg = mtod(m, struct sadb_msg *);
7571 msg->sadb_msg_errno = code;
7572 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7573 }
7574
7575 /*
7576 * set the pointer to each header into message buffer.
7577 * m will be freed on error.
7578 * XXX larger-than-MCLBYTES extension?
7579 */
7580 static int
7581 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7582 {
7583 struct mbuf *n;
7584 struct sadb_ext *ext;
7585 size_t off, end;
7586 int extlen;
7587 int toff;
7588
7589 /* sanity check */
7590 if (m == NULL || mhp == NULL)
7591 panic("key_align: NULL pointer is passed");
7592 if (m->m_len < sizeof(struct sadb_msg))
7593 panic("invalid mbuf passed to key_align");
7594
7595 /* initialize */
7596 memset(mhp, 0, sizeof(*mhp));
7597
7598 mhp->msg = mtod(m, struct sadb_msg *);
7599 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7600
7601 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7602 extlen = end; /*just in case extlen is not updated*/
7603 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7604 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7605 if (!n) {
7606 /* m is already freed */
7607 return ENOBUFS;
7608 }
7609 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7610
7611 /* set pointer */
7612 switch (ext->sadb_ext_type) {
7613 case SADB_EXT_SA:
7614 case SADB_EXT_ADDRESS_SRC:
7615 case SADB_EXT_ADDRESS_DST:
7616 case SADB_EXT_ADDRESS_PROXY:
7617 case SADB_EXT_LIFETIME_CURRENT:
7618 case SADB_EXT_LIFETIME_HARD:
7619 case SADB_EXT_LIFETIME_SOFT:
7620 case SADB_EXT_KEY_AUTH:
7621 case SADB_EXT_KEY_ENCRYPT:
7622 case SADB_EXT_IDENTITY_SRC:
7623 case SADB_EXT_IDENTITY_DST:
7624 case SADB_EXT_SENSITIVITY:
7625 case SADB_EXT_PROPOSAL:
7626 case SADB_EXT_SUPPORTED_AUTH:
7627 case SADB_EXT_SUPPORTED_ENCRYPT:
7628 case SADB_EXT_SPIRANGE:
7629 case SADB_X_EXT_POLICY:
7630 case SADB_X_EXT_SA2:
7631 case SADB_X_EXT_NAT_T_TYPE:
7632 case SADB_X_EXT_NAT_T_SPORT:
7633 case SADB_X_EXT_NAT_T_DPORT:
7634 case SADB_X_EXT_NAT_T_OAI:
7635 case SADB_X_EXT_NAT_T_OAR:
7636 case SADB_X_EXT_NAT_T_FRAG:
7637 /* duplicate check */
7638 /*
7639 * XXX Are there duplication payloads of either
7640 * KEY_AUTH or KEY_ENCRYPT ?
7641 */
7642 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7643 ipseclog((LOG_DEBUG,
7644 "key_align: duplicate ext_type %u "
7645 "is passed.\n", ext->sadb_ext_type));
7646 m_freem(m);
7647 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7648 return EINVAL;
7649 }
7650 break;
7651 default:
7652 ipseclog((LOG_DEBUG,
7653 "key_align: invalid ext_type %u is passed.\n",
7654 ext->sadb_ext_type));
7655 m_freem(m);
7656 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7657 return EINVAL;
7658 }
7659
7660 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7661
7662 if (key_validate_ext(ext, extlen)) {
7663 m_freem(m);
7664 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7665 return EINVAL;
7666 }
7667
7668 n = m_pulldown(m, off, extlen, &toff);
7669 if (!n) {
7670 /* m is already freed */
7671 return ENOBUFS;
7672 }
7673 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7674
7675 mhp->ext[ext->sadb_ext_type] = ext;
7676 mhp->extoff[ext->sadb_ext_type] = off;
7677 mhp->extlen[ext->sadb_ext_type] = extlen;
7678 }
7679
7680 if (off != end) {
7681 m_freem(m);
7682 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7683 return EINVAL;
7684 }
7685
7686 return 0;
7687 }
7688
7689 static int
7690 key_validate_ext(const struct sadb_ext *ext, int len)
7691 {
7692 const struct sockaddr *sa;
7693 enum { NONE, ADDR } checktype = NONE;
7694 int baselen = 0;
7695 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7696
7697 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7698 return EINVAL;
7699
7700 /* if it does not match minimum/maximum length, bail */
7701 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7702 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7703 return EINVAL;
7704 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7705 return EINVAL;
7706 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7707 return EINVAL;
7708
7709 /* more checks based on sadb_ext_type XXX need more */
7710 switch (ext->sadb_ext_type) {
7711 case SADB_EXT_ADDRESS_SRC:
7712 case SADB_EXT_ADDRESS_DST:
7713 case SADB_EXT_ADDRESS_PROXY:
7714 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7715 checktype = ADDR;
7716 break;
7717 case SADB_EXT_IDENTITY_SRC:
7718 case SADB_EXT_IDENTITY_DST:
7719 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7720 SADB_X_IDENTTYPE_ADDR) {
7721 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7722 checktype = ADDR;
7723 } else
7724 checktype = NONE;
7725 break;
7726 default:
7727 checktype = NONE;
7728 break;
7729 }
7730
7731 switch (checktype) {
7732 case NONE:
7733 break;
7734 case ADDR:
7735 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7736 if (len < baselen + sal)
7737 return EINVAL;
7738 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7739 return EINVAL;
7740 break;
7741 }
7742
7743 return 0;
7744 }
7745
7746 static int
7747 key_do_init(void)
7748 {
7749 int i;
7750
7751 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7752
7753 callout_init(&key_timehandler_ch, 0);
7754
7755 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7756 LIST_INIT(&sptree[i]);
7757 }
7758
7759 LIST_INIT(&sahtree);
7760
7761 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7762 LIST_INIT(®tree[i]);
7763 }
7764
7765 #ifndef IPSEC_NONBLOCK_ACQUIRE
7766 LIST_INIT(&acqtree);
7767 #endif
7768 LIST_INIT(&spacqtree);
7769
7770 /* system default */
7771 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7772 ip4_def_policy.refcnt++; /*never reclaim this*/
7773
7774 #ifdef INET6
7775 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7776 ip6_def_policy.refcnt++; /*never reclaim this*/
7777 #endif
7778
7779
7780 #ifndef IPSEC_DEBUG2
7781 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7782 #endif /*IPSEC_DEBUG2*/
7783
7784 /* initialize key statistics */
7785 keystat.getspi_count = 1;
7786
7787 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7788
7789 return (0);
7790 }
7791
7792 void
7793 key_init(void)
7794 {
7795 static ONCE_DECL(key_init_once);
7796
7797 RUN_ONCE(&key_init_once, key_do_init);
7798 }
7799
7800 /*
7801 * XXX: maybe This function is called after INBOUND IPsec processing.
7802 *
7803 * Special check for tunnel-mode packets.
7804 * We must make some checks for consistency between inner and outer IP header.
7805 *
7806 * xxx more checks to be provided
7807 */
7808 int
7809 key_checktunnelsanity(
7810 struct secasvar *sav,
7811 u_int family,
7812 void *src,
7813 void *dst
7814 )
7815 {
7816 /* sanity check */
7817 if (sav->sah == NULL)
7818 panic("sav->sah == NULL at key_checktunnelsanity");
7819
7820 /* XXX: check inner IP header */
7821
7822 return 1;
7823 }
7824
7825 #if 0
7826 #define hostnamelen strlen(hostname)
7827
7828 /*
7829 * Get FQDN for the host.
7830 * If the administrator configured hostname (by hostname(1)) without
7831 * domain name, returns nothing.
7832 */
7833 static const char *
7834 key_getfqdn(void)
7835 {
7836 int i;
7837 int hasdot;
7838 static char fqdn[MAXHOSTNAMELEN + 1];
7839
7840 if (!hostnamelen)
7841 return NULL;
7842
7843 /* check if it comes with domain name. */
7844 hasdot = 0;
7845 for (i = 0; i < hostnamelen; i++) {
7846 if (hostname[i] == '.')
7847 hasdot++;
7848 }
7849 if (!hasdot)
7850 return NULL;
7851
7852 /* NOTE: hostname may not be NUL-terminated. */
7853 memset(fqdn, 0, sizeof(fqdn));
7854 memcpy(fqdn, hostname, hostnamelen);
7855 fqdn[hostnamelen] = '\0';
7856 return fqdn;
7857 }
7858
7859 /*
7860 * get username@FQDN for the host/user.
7861 */
7862 static const char *
7863 key_getuserfqdn(void)
7864 {
7865 const char *host;
7866 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7867 struct proc *p = curproc;
7868 char *q;
7869
7870 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7871 return NULL;
7872 if (!(host = key_getfqdn()))
7873 return NULL;
7874
7875 /* NOTE: s_login may not be-NUL terminated. */
7876 memset(userfqdn, 0, sizeof(userfqdn));
7877 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7878 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7879 q = userfqdn + strlen(userfqdn);
7880 *q++ = '@';
7881 memcpy(q, host, strlen(host));
7882 q += strlen(host);
7883 *q++ = '\0';
7884
7885 return userfqdn;
7886 }
7887 #endif
7888
7889 /* record data transfer on SA, and update timestamps */
7890 void
7891 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7892 {
7893 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7894 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7895 if (!sav->lft_c)
7896 return;
7897
7898 /*
7899 * XXX Currently, there is a difference of bytes size
7900 * between inbound and outbound processing.
7901 */
7902 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7903 /* to check bytes lifetime is done in key_timehandler(). */
7904
7905 /*
7906 * We use the number of packets as the unit of
7907 * sadb_lifetime_allocations. We increment the variable
7908 * whenever {esp,ah}_{in,out}put is called.
7909 */
7910 sav->lft_c->sadb_lifetime_allocations++;
7911 /* XXX check for expires? */
7912
7913 /*
7914 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7915 * in seconds. HARD and SOFT lifetime are measured by the time
7916 * difference (again in seconds) from sadb_lifetime_usetime.
7917 *
7918 * usetime
7919 * v expire expire
7920 * -----+-----+--------+---> t
7921 * <--------------> HARD
7922 * <-----> SOFT
7923 */
7924 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7925 /* XXX check for expires? */
7926
7927 return;
7928 }
7929
7930 /* dumb version */
7931 void
7932 key_sa_routechange(struct sockaddr *dst)
7933 {
7934 struct secashead *sah;
7935 struct route *ro;
7936 const struct sockaddr *sa;
7937
7938 LIST_FOREACH(sah, &sahtree, chain) {
7939 ro = &sah->sa_route;
7940 sa = rtcache_getdst(ro);
7941 if (sa != NULL && dst->sa_len == sa->sa_len &&
7942 memcmp(dst, sa, dst->sa_len) == 0)
7943 rtcache_free(ro);
7944 }
7945
7946 return;
7947 }
7948
7949 static void
7950 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7951 {
7952 if (sav == NULL)
7953 panic("key_sa_chgstate called with sav == NULL");
7954
7955 if (sav->state == state)
7956 return;
7957
7958 if (__LIST_CHAINED(sav))
7959 LIST_REMOVE(sav, chain);
7960
7961 sav->state = state;
7962 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7963 }
7964
7965 /* XXX too much? */
7966 static struct mbuf *
7967 key_alloc_mbuf(int l)
7968 {
7969 struct mbuf *m = NULL, *n;
7970 int len, t;
7971
7972 len = l;
7973 while (len > 0) {
7974 MGET(n, M_DONTWAIT, MT_DATA);
7975 if (n && len > MLEN)
7976 MCLGET(n, M_DONTWAIT);
7977 if (!n) {
7978 m_freem(m);
7979 return NULL;
7980 }
7981
7982 n->m_next = NULL;
7983 n->m_len = 0;
7984 n->m_len = M_TRAILINGSPACE(n);
7985 /* use the bottom of mbuf, hoping we can prepend afterwards */
7986 if (n->m_len > len) {
7987 t = (n->m_len - len) & ~(sizeof(long) - 1);
7988 n->m_data += t;
7989 n->m_len = len;
7990 }
7991
7992 len -= n->m_len;
7993
7994 if (m)
7995 m_cat(m, n);
7996 else
7997 m = n;
7998 }
7999
8000 return m;
8001 }
8002
8003 static struct mbuf *
8004 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8005 {
8006 struct secashead *sah;
8007 struct secasvar *sav;
8008 u_int16_t proto;
8009 u_int stateidx;
8010 u_int8_t satype;
8011 u_int8_t state;
8012 int cnt;
8013 struct mbuf *m, *n;
8014
8015 /* map satype to proto */
8016 if ((proto = key_satype2proto(req_satype)) == 0) {
8017 *errorp = EINVAL;
8018 return (NULL);
8019 }
8020
8021 /* count sav entries to be sent to the userland. */
8022 cnt = 0;
8023 LIST_FOREACH(sah, &sahtree, chain) {
8024 if (req_satype != SADB_SATYPE_UNSPEC &&
8025 proto != sah->saidx.proto)
8026 continue;
8027
8028 for (stateidx = 0;
8029 stateidx < _ARRAYLEN(saorder_state_any);
8030 stateidx++) {
8031 state = saorder_state_any[stateidx];
8032 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8033 cnt++;
8034 }
8035 }
8036 }
8037
8038 if (cnt == 0) {
8039 *errorp = ENOENT;
8040 return (NULL);
8041 }
8042
8043 /* send this to the userland, one at a time. */
8044 m = NULL;
8045 LIST_FOREACH(sah, &sahtree, chain) {
8046 if (req_satype != SADB_SATYPE_UNSPEC &&
8047 proto != sah->saidx.proto)
8048 continue;
8049
8050 /* map proto to satype */
8051 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8052 m_freem(m);
8053 *errorp = EINVAL;
8054 return (NULL);
8055 }
8056
8057 for (stateidx = 0;
8058 stateidx < _ARRAYLEN(saorder_state_any);
8059 stateidx++) {
8060 state = saorder_state_any[stateidx];
8061 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8062 n = key_setdumpsa(sav, SADB_DUMP, satype,
8063 --cnt, pid);
8064 if (!n) {
8065 m_freem(m);
8066 *errorp = ENOBUFS;
8067 return (NULL);
8068 }
8069
8070 if (!m)
8071 m = n;
8072 else
8073 m_cat(m, n);
8074 }
8075 }
8076 }
8077
8078 if (!m) {
8079 *errorp = EINVAL;
8080 return (NULL);
8081 }
8082
8083 if ((m->m_flags & M_PKTHDR) != 0) {
8084 m->m_pkthdr.len = 0;
8085 for (n = m; n; n = n->m_next)
8086 m->m_pkthdr.len += n->m_len;
8087 }
8088
8089 *errorp = 0;
8090 return (m);
8091 }
8092
8093 static struct mbuf *
8094 key_setspddump(int *errorp, pid_t pid)
8095 {
8096 struct secpolicy *sp;
8097 int cnt;
8098 u_int dir;
8099 struct mbuf *m, *n;
8100
8101 /* search SPD entry and get buffer size. */
8102 cnt = 0;
8103 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8104 LIST_FOREACH(sp, &sptree[dir], chain) {
8105 cnt++;
8106 }
8107 }
8108
8109 if (cnt == 0) {
8110 *errorp = ENOENT;
8111 return (NULL);
8112 }
8113
8114 m = NULL;
8115 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8116 LIST_FOREACH(sp, &sptree[dir], chain) {
8117 --cnt;
8118 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8119
8120 if (!n) {
8121 *errorp = ENOBUFS;
8122 m_freem(m);
8123 return (NULL);
8124 }
8125 if (!m)
8126 m = n;
8127 else {
8128 m->m_pkthdr.len += n->m_pkthdr.len;
8129 m_cat(m, n);
8130 }
8131 }
8132 }
8133
8134 *errorp = 0;
8135 return (m);
8136 }
8137
8138 int
8139 key_get_used(void) {
8140 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8141 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8142 }
8143
8144 void
8145 key_update_used(void)
8146 {
8147 switch (ipsec_enabled) {
8148 default:
8149 case 0:
8150 #ifdef notyet
8151 /* XXX: racy */
8152 ipsec_used = 0;
8153 #endif
8154 break;
8155 case 1:
8156 #ifndef notyet
8157 /* XXX: racy */
8158 if (!ipsec_used)
8159 #endif
8160 ipsec_used = key_get_used();
8161 break;
8162 case 2:
8163 ipsec_used = 1;
8164 break;
8165 }
8166 }
8167
8168 static int
8169 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8170 {
8171 struct mbuf *m, *n;
8172 int err2 = 0;
8173 char *p, *ep;
8174 size_t len;
8175 int s, error;
8176
8177 if (newp)
8178 return (EPERM);
8179 if (namelen != 1)
8180 return (EINVAL);
8181
8182 s = splsoftnet();
8183 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8184 splx(s);
8185 if (!m)
8186 return (error);
8187 if (!oldp)
8188 *oldlenp = m->m_pkthdr.len;
8189 else {
8190 p = oldp;
8191 if (*oldlenp < m->m_pkthdr.len) {
8192 err2 = ENOMEM;
8193 ep = p + *oldlenp;
8194 } else {
8195 *oldlenp = m->m_pkthdr.len;
8196 ep = p + m->m_pkthdr.len;
8197 }
8198 for (n = m; n; n = n->m_next) {
8199 len = (ep - p < n->m_len) ?
8200 ep - p : n->m_len;
8201 error = copyout(mtod(n, const void *), p, len);
8202 p += len;
8203 if (error)
8204 break;
8205 }
8206 if (error == 0)
8207 error = err2;
8208 }
8209 m_freem(m);
8210
8211 return (error);
8212 }
8213
8214 static int
8215 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8216 {
8217 struct mbuf *m, *n;
8218 int err2 = 0;
8219 char *p, *ep;
8220 size_t len;
8221 int s, error;
8222
8223 if (newp)
8224 return (EPERM);
8225 if (namelen != 0)
8226 return (EINVAL);
8227
8228 s = splsoftnet();
8229 m = key_setspddump(&error, l->l_proc->p_pid);
8230 splx(s);
8231 if (!m)
8232 return (error);
8233 if (!oldp)
8234 *oldlenp = m->m_pkthdr.len;
8235 else {
8236 p = oldp;
8237 if (*oldlenp < m->m_pkthdr.len) {
8238 err2 = ENOMEM;
8239 ep = p + *oldlenp;
8240 } else {
8241 *oldlenp = m->m_pkthdr.len;
8242 ep = p + m->m_pkthdr.len;
8243 }
8244 for (n = m; n; n = n->m_next) {
8245 len = (ep - p < n->m_len) ?
8246 ep - p : n->m_len;
8247 error = copyout(mtod(n, const void *), p, len);
8248 p += len;
8249 if (error)
8250 break;
8251 }
8252 if (error == 0)
8253 error = err2;
8254 }
8255 m_freem(m);
8256
8257 return (error);
8258 }
8259
8260 /*
8261 * Create sysctl tree for native IPSEC key knobs, originally
8262 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8263 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8264 * and in any case the part of our sysctl namespace used for dumping the
8265 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8266 * namespace, for API reasons.
8267 *
8268 * Pending a consensus on the right way to fix this, add a level of
8269 * indirection in how we number the `native' IPSEC key nodes;
8270 * and (as requested by Andrew Brown) move registration of the
8271 * KAME-compatible names to a separate function.
8272 */
8273 #if 0
8274 # define IPSEC_PFKEY PF_KEY_V2
8275 # define IPSEC_PFKEY_NAME "keyv2"
8276 #else
8277 # define IPSEC_PFKEY PF_KEY
8278 # define IPSEC_PFKEY_NAME "key"
8279 #endif
8280
8281 static int
8282 sysctl_net_key_stats(SYSCTLFN_ARGS)
8283 {
8284
8285 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8286 }
8287
8288 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
8289 {
8290
8291 sysctl_createv(clog, 0, NULL, NULL,
8292 CTLFLAG_PERMANENT,
8293 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8294 NULL, 0, NULL, 0,
8295 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8296
8297 sysctl_createv(clog, 0, NULL, NULL,
8298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8299 CTLTYPE_INT, "debug", NULL,
8300 NULL, 0, &key_debug_level, 0,
8301 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8302 sysctl_createv(clog, 0, NULL, NULL,
8303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8304 CTLTYPE_INT, "spi_try", NULL,
8305 NULL, 0, &key_spi_trycnt, 0,
8306 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8307 sysctl_createv(clog, 0, NULL, NULL,
8308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8309 CTLTYPE_INT, "spi_min_value", NULL,
8310 NULL, 0, &key_spi_minval, 0,
8311 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8312 sysctl_createv(clog, 0, NULL, NULL,
8313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8314 CTLTYPE_INT, "spi_max_value", NULL,
8315 NULL, 0, &key_spi_maxval, 0,
8316 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8317 sysctl_createv(clog, 0, NULL, NULL,
8318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8319 CTLTYPE_INT, "random_int", NULL,
8320 NULL, 0, &key_int_random, 0,
8321 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8322 sysctl_createv(clog, 0, NULL, NULL,
8323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8324 CTLTYPE_INT, "larval_lifetime", NULL,
8325 NULL, 0, &key_larval_lifetime, 0,
8326 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8327 sysctl_createv(clog, 0, NULL, NULL,
8328 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8329 CTLTYPE_INT, "blockacq_count", NULL,
8330 NULL, 0, &key_blockacq_count, 0,
8331 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8332 sysctl_createv(clog, 0, NULL, NULL,
8333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8334 CTLTYPE_INT, "blockacq_lifetime", NULL,
8335 NULL, 0, &key_blockacq_lifetime, 0,
8336 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8337 sysctl_createv(clog, 0, NULL, NULL,
8338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8339 CTLTYPE_INT, "esp_keymin", NULL,
8340 NULL, 0, &ipsec_esp_keymin, 0,
8341 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8342 sysctl_createv(clog, 0, NULL, NULL,
8343 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8344 CTLTYPE_INT, "prefered_oldsa", NULL,
8345 NULL, 0, &key_prefered_oldsa, 0,
8346 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8347 sysctl_createv(clog, 0, NULL, NULL,
8348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8349 CTLTYPE_INT, "esp_auth", NULL,
8350 NULL, 0, &ipsec_esp_auth, 0,
8351 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8352 sysctl_createv(clog, 0, NULL, NULL,
8353 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8354 CTLTYPE_INT, "ah_keymin", NULL,
8355 NULL, 0, &ipsec_ah_keymin, 0,
8356 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8357 sysctl_createv(clog, 0, NULL, NULL,
8358 CTLFLAG_PERMANENT,
8359 CTLTYPE_STRUCT, "stats",
8360 SYSCTL_DESCR("PF_KEY statistics"),
8361 sysctl_net_key_stats, 0, NULL, 0,
8362 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8363 }
8364
8365 /*
8366 * Register sysctl names used by setkey(8). For historical reasons,
8367 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8368 * for both IPSEC and KAME IPSEC.
8369 */
8370 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for IPSEC")
8371 {
8372
8373 sysctl_createv(clog, 0, NULL, NULL,
8374 CTLFLAG_PERMANENT,
8375 CTLTYPE_NODE, "key", NULL,
8376 NULL, 0, NULL, 0,
8377 CTL_NET, PF_KEY, CTL_EOL);
8378
8379 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8380 sysctl_createv(clog, 0, NULL, NULL,
8381 CTLFLAG_PERMANENT,
8382 CTLTYPE_STRUCT, "dumpsa", NULL,
8383 sysctl_net_key_dumpsa, 0, NULL, 0,
8384 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8385 sysctl_createv(clog, 0, NULL, NULL,
8386 CTLFLAG_PERMANENT,
8387 CTLTYPE_STRUCT, "dumpsp", NULL,
8388 sysctl_net_key_dumpsp, 0, NULL, 0,
8389 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8390 }
8391