key.c revision 1.95 1 /* $NetBSD: key.c,v 1.95 2016/03/05 20:26:07 christos Exp $ */
2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.95 2016/03/05 20:26:07 christos Exp $");
36
37 /*
38 * This code is referd to RFC 2367
39 */
40
41 #include "opt_inet.h"
42 #ifdef __FreeBSD__
43 #include "opt_inet6.h"
44 #endif
45 #include "opt_ipsec.h"
46 #ifdef __NetBSD__
47 #include "opt_gateway.h"
48 #endif
49
50 #include <sys/types.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/malloc.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/errno.h>
63 #include <sys/proc.h>
64 #include <sys/queue.h>
65 #include <sys/syslog.h>
66 #include <sys/once.h>
67 #include <sys/cprng.h>
68
69 #include <net/if.h>
70 #include <net/route.h>
71 #include <net/raw_cb.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_var.h>
77 #ifdef INET
78 #include <netinet/ip_var.h>
79 #endif
80
81 #ifdef INET6
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_var.h>
84 #include <netinet6/ip6_var.h>
85 #endif /* INET6 */
86
87 #ifdef INET
88 #include <netinet/in_pcb.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/in6_pcb.h>
92 #endif /* INET6 */
93
94 #include <net/pfkeyv2.h>
95 #include <netipsec/keydb.h>
96 #include <netipsec/key.h>
97 #include <netipsec/keysock.h>
98 #include <netipsec/key_debug.h>
99
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/ipsec_private.h>
105
106 #include <netipsec/xform.h>
107 #include <netipsec/ipsec_osdep.h>
108 #include <netipsec/ipcomp.h>
109
110
111 #include <net/net_osdep.h>
112
113 #define FULLMASK 0xff
114 #define _BITS(bytes) ((bytes) << 3)
115
116 percpu_t *pfkeystat_percpu;
117
118 /*
119 * Note on SA reference counting:
120 * - SAs that are not in DEAD state will have (total external reference + 1)
121 * following value in reference count field. they cannot be freed and are
122 * referenced from SA header.
123 * - SAs that are in DEAD state will have (total external reference)
124 * in reference count field. they are ready to be freed. reference from
125 * SA header will be removed in key_delsav(), when the reference count
126 * field hits 0 (= no external reference other than from SA header.
127 */
128
129 u_int32_t key_debug_level = 0;
130 static u_int key_spi_trycnt = 1000;
131 static u_int32_t key_spi_minval = 0x100;
132 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
133 static u_int32_t policy_id = 0;
134 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
135 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
136 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
137 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
138 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
139
140 static u_int32_t acq_seq = 0;
141
142 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
143 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
144 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
145 /* registed list */
146 #ifndef IPSEC_NONBLOCK_ACQUIRE
147 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
148 #endif
149 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
150
151 /* search order for SAs */
152 /*
153 * This order is important because we must select the oldest SA
154 * for outbound processing. For inbound, This is not important.
155 */
156 static const u_int saorder_state_valid_prefer_old[] = {
157 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
158 };
159 static const u_int saorder_state_valid_prefer_new[] = {
160 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
161 };
162
163 static const u_int saorder_state_alive[] = {
164 /* except DEAD */
165 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
166 };
167 static const u_int saorder_state_any[] = {
168 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
169 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
170 };
171
172 static const int minsize[] = {
173 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
174 sizeof(struct sadb_sa), /* SADB_EXT_SA */
175 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
176 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
177 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
178 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
179 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
180 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
181 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
182 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
183 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
184 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
185 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
186 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
187 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
188 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
189 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
190 0, /* SADB_X_EXT_KMPRIVATE */
191 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
192 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
193 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
194 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
195 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
196 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
197 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
198 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
199 };
200 static const int maxsize[] = {
201 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
202 sizeof(struct sadb_sa), /* SADB_EXT_SA */
203 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
204 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
205 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
206 0, /* SADB_EXT_ADDRESS_SRC */
207 0, /* SADB_EXT_ADDRESS_DST */
208 0, /* SADB_EXT_ADDRESS_PROXY */
209 0, /* SADB_EXT_KEY_AUTH */
210 0, /* SADB_EXT_KEY_ENCRYPT */
211 0, /* SADB_EXT_IDENTITY_SRC */
212 0, /* SADB_EXT_IDENTITY_DST */
213 0, /* SADB_EXT_SENSITIVITY */
214 0, /* SADB_EXT_PROPOSAL */
215 0, /* SADB_EXT_SUPPORTED_AUTH */
216 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
217 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
218 0, /* SADB_X_EXT_KMPRIVATE */
219 0, /* SADB_X_EXT_POLICY */
220 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
221 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
222 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
223 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
224 0, /* SADB_X_EXT_NAT_T_OAI */
225 0, /* SADB_X_EXT_NAT_T_OAR */
226 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
227 };
228
229 static int ipsec_esp_keymin = 256;
230 static int ipsec_esp_auth = 0;
231 static int ipsec_ah_keymin = 128;
232
233 #ifdef SYSCTL_DECL
234 SYSCTL_DECL(_net_key);
235 #endif
236
237 #ifdef SYSCTL_INT
238 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
239 &key_debug_level, 0, "");
240
241 /* max count of trial for the decision of spi value */
242 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
243 &key_spi_trycnt, 0, "");
244
245 /* minimum spi value to allocate automatically. */
246 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
247 &key_spi_minval, 0, "");
248
249 /* maximun spi value to allocate automatically. */
250 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
251 &key_spi_maxval, 0, "");
252
253 /* interval to initialize randseed */
254 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
255 &key_int_random, 0, "");
256
257 /* lifetime for larval SA */
258 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
259 &key_larval_lifetime, 0, "");
260
261 /* counter for blocking to send SADB_ACQUIRE to IKEd */
262 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
263 &key_blockacq_count, 0, "");
264
265 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
266 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
267 &key_blockacq_lifetime, 0, "");
268
269 /* ESP auth */
270 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
271 &ipsec_esp_auth, 0, "");
272
273 /* minimum ESP key length */
274 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
275 &ipsec_esp_keymin, 0, "");
276
277 /* minimum AH key length */
278 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
279 &ipsec_ah_keymin, 0, "");
280
281 /* perfered old SA rather than new SA */
282 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
283 &key_prefered_oldsa, 0, "");
284 #endif /* SYSCTL_INT */
285
286 #ifndef LIST_FOREACH
287 #define LIST_FOREACH(elm, head, field) \
288 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
289 #endif
290 #define __LIST_CHAINED(elm) \
291 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
292 #define LIST_INSERT_TAIL(head, elm, type, field) \
293 do {\
294 struct type *curelm = LIST_FIRST(head); \
295 if (curelm == NULL) {\
296 LIST_INSERT_HEAD(head, elm, field); \
297 } else { \
298 while (LIST_NEXT(curelm, field)) \
299 curelm = LIST_NEXT(curelm, field);\
300 LIST_INSERT_AFTER(curelm, elm, field);\
301 }\
302 } while (0)
303
304 #define KEY_CHKSASTATE(head, sav, name) \
305 /* do */ { \
306 if ((head) != (sav)) { \
307 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
308 (name), (head), (sav))); \
309 continue; \
310 } \
311 } /* while (0) */
312
313 #define KEY_CHKSPDIR(head, sp, name) \
314 do { \
315 if ((head) != (sp)) { \
316 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
317 "anyway continue.\n", \
318 (name), (head), (sp))); \
319 } \
320 } while (0)
321
322 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management");
323
324 #if 1
325 #define KMALLOC(p, t, n) \
326 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT))
327 #define KFREE(p) \
328 free((p), M_SECA)
329 #else
330 #define KMALLOC(p, t, n) \
331 do { \
332 ((p) = malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \
333 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
334 __FILE__, __LINE__, (p), #t, n); \
335 } while (0)
336
337 #define KFREE(p) \
338 do { \
339 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
340 free((p), M_SECA); \
341 } while (0)
342 #endif
343
344 /*
345 * set parameters into secpolicyindex buffer.
346 * Must allocate secpolicyindex buffer passed to this function.
347 */
348 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
349 do { \
350 memset((idx), 0, sizeof(struct secpolicyindex)); \
351 (idx)->dir = (_dir); \
352 (idx)->prefs = (ps); \
353 (idx)->prefd = (pd); \
354 (idx)->ul_proto = (ulp); \
355 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \
356 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \
357 } while (0)
358
359 /*
360 * set parameters into secasindex buffer.
361 * Must allocate secasindex buffer before calling this function.
362 */
363 static int
364 key_setsecasidx (int, int, int, const struct sadb_address *,
365 const struct sadb_address *, struct secasindex *);
366
367 /* key statistics */
368 struct _keystat {
369 u_long getspi_count; /* the avarage of count to try to get new SPI */
370 } keystat;
371
372 struct sadb_msghdr {
373 struct sadb_msg *msg;
374 struct sadb_ext *ext[SADB_EXT_MAX + 1];
375 int extoff[SADB_EXT_MAX + 1];
376 int extlen[SADB_EXT_MAX + 1];
377 };
378
379 static struct secasvar *key_allocsa_policy (const struct secasindex *);
380 static void key_freesp_so (struct secpolicy **);
381 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
382 static void key_delsp (struct secpolicy *);
383 static struct secpolicy *key_getsp (const struct secpolicyindex *);
384 static struct secpolicy *key_getspbyid (u_int32_t);
385 static u_int16_t key_newreqid (void);
386 static struct mbuf *key_gather_mbuf (struct mbuf *,
387 const struct sadb_msghdr *, int, int, ...);
388 static int key_spdadd (struct socket *, struct mbuf *,
389 const struct sadb_msghdr *);
390 static u_int32_t key_getnewspid (void);
391 static int key_spddelete (struct socket *, struct mbuf *,
392 const struct sadb_msghdr *);
393 static int key_spddelete2 (struct socket *, struct mbuf *,
394 const struct sadb_msghdr *);
395 static int key_spdget (struct socket *, struct mbuf *,
396 const struct sadb_msghdr *);
397 static int key_spdflush (struct socket *, struct mbuf *,
398 const struct sadb_msghdr *);
399 static int key_spddump (struct socket *, struct mbuf *,
400 const struct sadb_msghdr *);
401 static struct mbuf * key_setspddump (int *errorp, pid_t);
402 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
403 static int key_nat_map (struct socket *, struct mbuf *,
404 const struct sadb_msghdr *);
405 static struct mbuf *key_setdumpsp (struct secpolicy *,
406 u_int8_t, u_int32_t, pid_t);
407 static u_int key_getspreqmsglen (const struct secpolicy *);
408 static int key_spdexpire (struct secpolicy *);
409 static struct secashead *key_newsah (const struct secasindex *);
410 static void key_delsah (struct secashead *);
411 static struct secasvar *key_newsav (struct mbuf *,
412 const struct sadb_msghdr *, struct secashead *, int *,
413 const char*, int);
414 #define KEY_NEWSAV(m, sadb, sah, e) \
415 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
416 static void key_delsav (struct secasvar *);
417 static struct secashead *key_getsah (const struct secasindex *);
418 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t);
419 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
420 static int key_setsaval (struct secasvar *, struct mbuf *,
421 const struct sadb_msghdr *);
422 static int key_mature (struct secasvar *);
423 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
424 u_int8_t, u_int32_t, u_int32_t);
425 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
426 static struct mbuf *key_setsadbxtype (u_int16_t);
427 static struct mbuf *key_setsadbxfrag (u_int16_t);
428 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
429 static int key_checksalen (const union sockaddr_union *);
430 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
431 u_int32_t, pid_t, u_int16_t);
432 static struct mbuf *key_setsadbsa (struct secasvar *);
433 static struct mbuf *key_setsadbaddr (u_int16_t,
434 const struct sockaddr *, u_int8_t, u_int16_t);
435 #if 0
436 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
437 int, u_int64_t);
438 #endif
439 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
440 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
441 u_int32_t);
442 static void *key_newbuf (const void *, u_int);
443 #ifdef INET6
444 static int key_ismyaddr6 (const struct sockaddr_in6 *);
445 #endif
446
447 /* flags for key_cmpsaidx() */
448 #define CMP_HEAD 1 /* protocol, addresses. */
449 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
450 #define CMP_REQID 3 /* additionally HEAD, reaid. */
451 #define CMP_EXACTLY 4 /* all elements. */
452 static int key_cmpsaidx
453 (const struct secasindex *, const struct secasindex *, int);
454
455 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int);
456 static int key_bbcmp (const void *, const void *, u_int);
457 static u_int16_t key_satype2proto (u_int8_t);
458 static u_int8_t key_proto2satype (u_int16_t);
459
460 static int key_getspi (struct socket *, struct mbuf *,
461 const struct sadb_msghdr *);
462 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
463 const struct secasindex *);
464 static int key_handle_natt_info (struct secasvar *,
465 const struct sadb_msghdr *);
466 static int key_set_natt_ports (union sockaddr_union *,
467 union sockaddr_union *,
468 const struct sadb_msghdr *);
469 static int key_update (struct socket *, struct mbuf *,
470 const struct sadb_msghdr *);
471 #ifdef IPSEC_DOSEQCHECK
472 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
473 #endif
474 static int key_add (struct socket *, struct mbuf *,
475 const struct sadb_msghdr *);
476 static int key_setident (struct secashead *, struct mbuf *,
477 const struct sadb_msghdr *);
478 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
479 const struct sadb_msghdr *);
480 static int key_delete (struct socket *, struct mbuf *,
481 const struct sadb_msghdr *);
482 static int key_get (struct socket *, struct mbuf *,
483 const struct sadb_msghdr *);
484
485 static void key_getcomb_setlifetime (struct sadb_comb *);
486 static struct mbuf *key_getcomb_esp (void);
487 static struct mbuf *key_getcomb_ah (void);
488 static struct mbuf *key_getcomb_ipcomp (void);
489 static struct mbuf *key_getprop (const struct secasindex *);
490
491 static int key_acquire (const struct secasindex *, struct secpolicy *);
492 #ifndef IPSEC_NONBLOCK_ACQUIRE
493 static struct secacq *key_newacq (const struct secasindex *);
494 static struct secacq *key_getacq (const struct secasindex *);
495 static struct secacq *key_getacqbyseq (u_int32_t);
496 #endif
497 static struct secspacq *key_newspacq (const struct secpolicyindex *);
498 static struct secspacq *key_getspacq (const struct secpolicyindex *);
499 static int key_acquire2 (struct socket *, struct mbuf *,
500 const struct sadb_msghdr *);
501 static int key_register (struct socket *, struct mbuf *,
502 const struct sadb_msghdr *);
503 static int key_expire (struct secasvar *);
504 static int key_flush (struct socket *, struct mbuf *,
505 const struct sadb_msghdr *);
506 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
507 int *lenp, pid_t pid);
508 static int key_dump (struct socket *, struct mbuf *,
509 const struct sadb_msghdr *);
510 static int key_promisc (struct socket *, struct mbuf *,
511 const struct sadb_msghdr *);
512 static int key_senderror (struct socket *, struct mbuf *, int);
513 static int key_validate_ext (const struct sadb_ext *, int);
514 static int key_align (struct mbuf *, struct sadb_msghdr *);
515 #if 0
516 static const char *key_getfqdn (void);
517 static const char *key_getuserfqdn (void);
518 #endif
519 static void key_sa_chgstate (struct secasvar *, u_int8_t);
520 static inline void key_sp_dead (struct secpolicy *);
521 static void key_sp_unlink (struct secpolicy *sp);
522
523 static struct mbuf *key_alloc_mbuf (int);
524 struct callout key_timehandler_ch;
525
526 #define SA_ADDREF(p) do { \
527 (p)->refcnt++; \
528 IPSEC_ASSERT((p)->refcnt != 0, \
529 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \
530 } while (0)
531 #define SA_DELREF(p) do { \
532 IPSEC_ASSERT((p)->refcnt > 0, \
533 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \
534 (p)->refcnt--; \
535 } while (0)
536
537 #define SP_ADDREF(p) do { \
538 (p)->refcnt++; \
539 IPSEC_ASSERT((p)->refcnt != 0, \
540 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \
541 } while (0)
542 #define SP_DELREF(p) do { \
543 IPSEC_ASSERT((p)->refcnt > 0, \
544 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \
545 (p)->refcnt--; \
546 } while (0)
547
548
549 static inline void
550 key_sp_dead(struct secpolicy *sp)
551 {
552
553 /* mark the SP dead */
554 sp->state = IPSEC_SPSTATE_DEAD;
555 }
556
557 static void
558 key_sp_unlink(struct secpolicy *sp)
559 {
560
561 /* remove from SP index */
562 if (__LIST_CHAINED(sp)) {
563 LIST_REMOVE(sp, chain);
564 /* Release refcount held just for being on chain */
565 KEY_FREESP(&sp);
566 }
567 }
568
569
570 /*
571 * Return 0 when there are known to be no SP's for the specified
572 * direction. Otherwise return 1. This is used by IPsec code
573 * to optimize performance.
574 */
575 int
576 key_havesp(u_int dir)
577 {
578 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
579 LIST_FIRST(&sptree[dir]) != NULL : 1);
580 }
581
582 /* %%% IPsec policy management */
583 /*
584 * allocating a SP for OUTBOUND or INBOUND packet.
585 * Must call key_freesp() later.
586 * OUT: NULL: not found
587 * others: found and return the pointer.
588 */
589 struct secpolicy *
590 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
591 {
592 struct secpolicy *sp;
593 int s;
594
595 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx"));
596 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
597 ("key_allocsp: invalid direction %u", dir));
598
599 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
600 printf("DP %s from %s:%u\n", __func__, where, tag));
601
602 /* get a SP entry */
603 s = splsoftnet(); /*called from softclock()*/
604 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
605 printf("*** objects\n");
606 kdebug_secpolicyindex(spidx));
607
608 LIST_FOREACH(sp, &sptree[dir], chain) {
609 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
610 printf("*** in SPD\n");
611 kdebug_secpolicyindex(&sp->spidx));
612
613 if (sp->state == IPSEC_SPSTATE_DEAD)
614 continue;
615 if (key_cmpspidx_withmask(&sp->spidx, spidx))
616 goto found;
617 }
618 sp = NULL;
619 found:
620 if (sp) {
621 /* sanity check */
622 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
623
624 /* found a SPD entry */
625 sp->lastused = time_uptime;
626 SP_ADDREF(sp);
627 }
628 splx(s);
629
630 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
631 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
632 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
633 return sp;
634 }
635
636 /*
637 * allocating a SP for OUTBOUND or INBOUND packet.
638 * Must call key_freesp() later.
639 * OUT: NULL: not found
640 * others: found and return the pointer.
641 */
642 struct secpolicy *
643 key_allocsp2(u_int32_t spi,
644 const union sockaddr_union *dst,
645 u_int8_t proto,
646 u_int dir,
647 const char* where, int tag)
648 {
649 struct secpolicy *sp;
650 int s;
651
652 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst"));
653 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
654 ("key_allocsp2: invalid direction %u", dir));
655
656 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
657 printf("DP %s from %s:%u\n", __func__, where, tag));
658
659 /* get a SP entry */
660 s = splsoftnet(); /*called from softclock()*/
661 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
662 printf("*** objects\n");
663 printf("spi %u proto %u dir %u\n", spi, proto, dir);
664 kdebug_sockaddr(&dst->sa));
665
666 LIST_FOREACH(sp, &sptree[dir], chain) {
667 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
668 printf("*** in SPD\n");
669 kdebug_secpolicyindex(&sp->spidx));
670
671 if (sp->state == IPSEC_SPSTATE_DEAD)
672 continue;
673 /* compare simple values, then dst address */
674 if (sp->spidx.ul_proto != proto)
675 continue;
676 /* NB: spi's must exist and match */
677 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
678 continue;
679 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
680 goto found;
681 }
682 sp = NULL;
683 found:
684 if (sp) {
685 /* sanity check */
686 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2");
687
688 /* found a SPD entry */
689 sp->lastused = time_uptime;
690 SP_ADDREF(sp);
691 }
692 splx(s);
693
694 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
695 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
696 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
697 return sp;
698 }
699
700 /*
701 * return a policy that matches this particular inbound packet.
702 * XXX slow
703 */
704 struct secpolicy *
705 key_gettunnel(const struct sockaddr *osrc,
706 const struct sockaddr *odst,
707 const struct sockaddr *isrc,
708 const struct sockaddr *idst,
709 const char* where, int tag)
710 {
711 struct secpolicy *sp;
712 const int dir = IPSEC_DIR_INBOUND;
713 int s;
714 struct ipsecrequest *r1, *r2, *p;
715 struct secpolicyindex spidx;
716
717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
718 printf("DP %s from %s:%u\n", __func__, where, tag));
719
720 if (isrc->sa_family != idst->sa_family) {
721 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
722 isrc->sa_family, idst->sa_family));
723 sp = NULL;
724 goto done;
725 }
726
727 s = splsoftnet(); /*called from softclock()*/
728 LIST_FOREACH(sp, &sptree[dir], chain) {
729 if (sp->state == IPSEC_SPSTATE_DEAD)
730 continue;
731
732 r1 = r2 = NULL;
733 for (p = sp->req; p; p = p->next) {
734 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
735 continue;
736
737 r1 = r2;
738 r2 = p;
739
740 if (!r1) {
741 /* here we look at address matches only */
742 spidx = sp->spidx;
743 if (isrc->sa_len > sizeof(spidx.src) ||
744 idst->sa_len > sizeof(spidx.dst))
745 continue;
746 memcpy(&spidx.src, isrc, isrc->sa_len);
747 memcpy(&spidx.dst, idst, idst->sa_len);
748 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
749 continue;
750 } else {
751 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
752 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
753 continue;
754 }
755
756 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
757 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
758 continue;
759
760 goto found;
761 }
762 }
763 sp = NULL;
764 found:
765 if (sp) {
766 sp->lastused = time_uptime;
767 SP_ADDREF(sp);
768 }
769 splx(s);
770 done:
771 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
772 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
773 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
774 return sp;
775 }
776
777 /*
778 * allocating an SA entry for an *OUTBOUND* packet.
779 * checking each request entries in SP, and acquire an SA if need.
780 * OUT: 0: there are valid requests.
781 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
782 */
783 int
784 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
785 {
786 u_int level;
787 int error;
788
789 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr"));
790 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx"));
791 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
792 saidx->mode == IPSEC_MODE_TUNNEL,
793 ("key_checkrequest: unexpected policy %u", saidx->mode));
794
795 /* get current level */
796 level = ipsec_get_reqlevel(isr);
797
798 /*
799 * XXX guard against protocol callbacks from the crypto
800 * thread as they reference ipsecrequest.sav which we
801 * temporarily null out below. Need to rethink how we
802 * handle bundled SA's in the callback thread.
803 */
804 IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
805 #if 0
806 /*
807 * We do allocate new SA only if the state of SA in the holder is
808 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
809 */
810 if (isr->sav != NULL) {
811 if (isr->sav->sah == NULL)
812 panic("key_checkrequest: sah is null");
813 if (isr->sav == (struct secasvar *)LIST_FIRST(
814 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
815 KEY_FREESAV(&isr->sav);
816 isr->sav = NULL;
817 }
818 }
819 #else
820 /*
821 * we free any SA stashed in the IPsec request because a different
822 * SA may be involved each time this request is checked, either
823 * because new SAs are being configured, or this request is
824 * associated with an unconnected datagram socket, or this request
825 * is associated with a system default policy.
826 *
827 * The operation may have negative impact to performance. We may
828 * want to check cached SA carefully, rather than picking new SA
829 * every time.
830 */
831 if (isr->sav != NULL) {
832 KEY_FREESAV(&isr->sav);
833 isr->sav = NULL;
834 }
835 #endif
836
837 /*
838 * new SA allocation if no SA found.
839 * key_allocsa_policy should allocate the oldest SA available.
840 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
841 */
842 if (isr->sav == NULL)
843 isr->sav = key_allocsa_policy(saidx);
844
845 /* When there is SA. */
846 if (isr->sav != NULL) {
847 if (isr->sav->state != SADB_SASTATE_MATURE &&
848 isr->sav->state != SADB_SASTATE_DYING)
849 return EINVAL;
850 return 0;
851 }
852
853 /* there is no SA */
854 error = key_acquire(saidx, isr->sp);
855 if (error != 0) {
856 /* XXX What should I do ? */
857 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
858 "from key_acquire.\n", error));
859 return error;
860 }
861
862 if (level != IPSEC_LEVEL_REQUIRE) {
863 /* XXX sigh, the interface to this routine is botched */
864 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA"));
865 return 0;
866 } else {
867 return ENOENT;
868 }
869 }
870
871 /*
872 * allocating a SA for policy entry from SAD.
873 * NOTE: searching SAD of aliving state.
874 * OUT: NULL: not found.
875 * others: found and return the pointer.
876 */
877 static struct secasvar *
878 key_allocsa_policy(const struct secasindex *saidx)
879 {
880 struct secashead *sah;
881 struct secasvar *sav;
882 u_int stateidx, state;
883 const u_int *saorder_state_valid;
884 int arraysize;
885
886 LIST_FOREACH(sah, &sahtree, chain) {
887 if (sah->state == SADB_SASTATE_DEAD)
888 continue;
889 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
890 goto found;
891 }
892
893 return NULL;
894
895 found:
896
897 /*
898 * search a valid state list for outbound packet.
899 * This search order is important.
900 */
901 if (key_prefered_oldsa) {
902 saorder_state_valid = saorder_state_valid_prefer_old;
903 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
904 } else {
905 saorder_state_valid = saorder_state_valid_prefer_new;
906 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
907 }
908
909 /* search valid state */
910 for (stateidx = 0;
911 stateidx < arraysize;
912 stateidx++) {
913
914 state = saorder_state_valid[stateidx];
915
916 sav = key_do_allocsa_policy(sah, state);
917 if (sav != NULL)
918 return sav;
919 }
920
921 return NULL;
922 }
923
924 /*
925 * searching SAD with direction, protocol, mode and state.
926 * called by key_allocsa_policy().
927 * OUT:
928 * NULL : not found
929 * others : found, pointer to a SA.
930 */
931 static struct secasvar *
932 key_do_allocsa_policy(struct secashead *sah, u_int state)
933 {
934 struct secasvar *sav, *nextsav, *candidate, *d;
935
936 /* initilize */
937 candidate = NULL;
938
939 for (sav = LIST_FIRST(&sah->savtree[state]);
940 sav != NULL;
941 sav = nextsav) {
942
943 nextsav = LIST_NEXT(sav, chain);
944
945 /* sanity check */
946 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
947
948 /* initialize */
949 if (candidate == NULL) {
950 candidate = sav;
951 continue;
952 }
953
954 /* Which SA is the better ? */
955
956 /* sanity check 2 */
957 if (candidate->lft_c == NULL || sav->lft_c == NULL)
958 panic("key_do_allocsa_policy: "
959 "lifetime_current is NULL");
960
961 /* What the best method is to compare ? */
962 if (key_prefered_oldsa) {
963 if (candidate->lft_c->sadb_lifetime_addtime >
964 sav->lft_c->sadb_lifetime_addtime) {
965 candidate = sav;
966 }
967 continue;
968 /*NOTREACHED*/
969 }
970
971 /* prefered new sa rather than old sa */
972 if (candidate->lft_c->sadb_lifetime_addtime <
973 sav->lft_c->sadb_lifetime_addtime) {
974 d = candidate;
975 candidate = sav;
976 } else
977 d = sav;
978
979 /*
980 * prepared to delete the SA when there is more
981 * suitable candidate and the lifetime of the SA is not
982 * permanent.
983 */
984 if (d->lft_c->sadb_lifetime_addtime != 0) {
985 struct mbuf *m, *result = 0;
986 uint8_t satype;
987
988 key_sa_chgstate(d, SADB_SASTATE_DEAD);
989
990 IPSEC_ASSERT(d->refcnt > 0,
991 ("key_do_allocsa_policy: bogus ref count"));
992
993 satype = key_proto2satype(d->sah->saidx.proto);
994 if (satype == 0)
995 goto msgfail;
996
997 m = key_setsadbmsg(SADB_DELETE, 0,
998 satype, 0, 0, d->refcnt - 1);
999 if (!m)
1000 goto msgfail;
1001 result = m;
1002
1003 /* set sadb_address for saidx's. */
1004 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1005 &d->sah->saidx.src.sa,
1006 d->sah->saidx.src.sa.sa_len << 3,
1007 IPSEC_ULPROTO_ANY);
1008 if (!m)
1009 goto msgfail;
1010 m_cat(result, m);
1011
1012 /* set sadb_address for saidx's. */
1013 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1014 &d->sah->saidx.src.sa,
1015 d->sah->saidx.src.sa.sa_len << 3,
1016 IPSEC_ULPROTO_ANY);
1017 if (!m)
1018 goto msgfail;
1019 m_cat(result, m);
1020
1021 /* create SA extension */
1022 m = key_setsadbsa(d);
1023 if (!m)
1024 goto msgfail;
1025 m_cat(result, m);
1026
1027 if (result->m_len < sizeof(struct sadb_msg)) {
1028 result = m_pullup(result,
1029 sizeof(struct sadb_msg));
1030 if (result == NULL)
1031 goto msgfail;
1032 }
1033
1034 result->m_pkthdr.len = 0;
1035 for (m = result; m; m = m->m_next)
1036 result->m_pkthdr.len += m->m_len;
1037 mtod(result, struct sadb_msg *)->sadb_msg_len =
1038 PFKEY_UNIT64(result->m_pkthdr.len);
1039
1040 key_sendup_mbuf(NULL, result,
1041 KEY_SENDUP_REGISTERED);
1042 result = 0;
1043 msgfail:
1044 if (result)
1045 m_freem(result);
1046 KEY_FREESAV(&d);
1047 }
1048 }
1049
1050 if (candidate) {
1051 SA_ADDREF(candidate);
1052 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1053 printf("DP %s cause refcnt++:%d SA:%p\n", __func__,
1054 candidate->refcnt, candidate));
1055 }
1056 return candidate;
1057 }
1058
1059 /*
1060 * allocating a usable SA entry for a *INBOUND* packet.
1061 * Must call key_freesav() later.
1062 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1063 * NULL: not found, or error occurred.
1064 *
1065 * In the comparison, no source address is used--for RFC2401 conformance.
1066 * To quote, from section 4.1:
1067 * A security association is uniquely identified by a triple consisting
1068 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1069 * security protocol (AH or ESP) identifier.
1070 * Note that, however, we do need to keep source address in IPsec SA.
1071 * IKE specification and PF_KEY specification do assume that we
1072 * keep source address in IPsec SA. We see a tricky situation here.
1073 *
1074 * sport and dport are used for NAT-T. network order is always used.
1075 */
1076 struct secasvar *
1077 key_allocsa(
1078 const union sockaddr_union *dst,
1079 u_int proto,
1080 u_int32_t spi,
1081 u_int16_t sport,
1082 u_int16_t dport,
1083 const char* where, int tag)
1084 {
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, state;
1088 const u_int *saorder_state_valid;
1089 int arraysize;
1090 int s;
1091 int chkport = 0;
1092
1093 int must_check_spi = 1;
1094 int must_check_alg = 0;
1095 u_int16_t cpi = 0;
1096 u_int8_t algo = 0;
1097
1098 if ((sport != 0) && (dport != 0))
1099 chkport = 1;
1100
1101 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address"));
1102
1103 /*
1104 * XXX IPCOMP case
1105 * We use cpi to define spi here. In the case where cpi <=
1106 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1107 * the real spi. In this case, don't check the spi but check the
1108 * algorithm
1109 */
1110
1111 if (proto == IPPROTO_IPCOMP) {
1112 u_int32_t tmp;
1113 tmp = ntohl(spi);
1114 cpi = (u_int16_t) tmp;
1115 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1116 algo = (u_int8_t) cpi;
1117 must_check_spi = 0;
1118 must_check_alg = 1;
1119 }
1120 }
1121 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1122 printf("DP %s from %s:%u check_spi=%d, check_alg=%d\n",
1123 __func__, where, tag, must_check_spi, must_check_alg));
1124
1125
1126 /*
1127 * searching SAD.
1128 * XXX: to be checked internal IP header somewhere. Also when
1129 * IPsec tunnel packet is received. But ESP tunnel mode is
1130 * encrypted so we can't check internal IP header.
1131 */
1132 s = splsoftnet(); /*called from softclock()*/
1133 if (key_prefered_oldsa) {
1134 saorder_state_valid = saorder_state_valid_prefer_old;
1135 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1136 } else {
1137 saorder_state_valid = saorder_state_valid_prefer_new;
1138 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1139 }
1140 LIST_FOREACH(sah, &sahtree, chain) {
1141 /* search valid state */
1142 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1143 state = saorder_state_valid[stateidx];
1144 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1145 KEYDEBUG(KEYDEBUG_MATCH,
1146 printf("try match spi %#x, %#x\n",
1147 ntohl(spi), ntohl(sav->spi)));
1148 /* sanity check */
1149 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
1150 /* do not return entries w/ unusable state */
1151 if (sav->state != SADB_SASTATE_MATURE &&
1152 sav->state != SADB_SASTATE_DYING) {
1153 KEYDEBUG(KEYDEBUG_MATCH,
1154 printf("bad state %d\n",
1155 sav->state));
1156 continue;
1157 }
1158 if (proto != sav->sah->saidx.proto) {
1159 KEYDEBUG(KEYDEBUG_MATCH,
1160 printf("proto fail %d != %d\n",
1161 proto, sav->sah->saidx.proto));
1162 continue;
1163 }
1164 if (must_check_spi && spi != sav->spi) {
1165 KEYDEBUG(KEYDEBUG_MATCH,
1166 printf("spi fail %#x != %#x\n",
1167 ntohl(spi), ntohl(sav->spi)));
1168 continue;
1169 }
1170 /* XXX only on the ipcomp case */
1171 if (must_check_alg && algo != sav->alg_comp) {
1172 KEYDEBUG(KEYDEBUG_MATCH,
1173 printf("algo fail %d != %d\n",
1174 algo, sav->alg_comp));
1175 continue;
1176 }
1177
1178 #if 0 /* don't check src */
1179 /* Fix port in src->sa */
1180
1181 /* check src address */
1182 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1183 continue;
1184 #endif
1185 /* fix port of dst address XXX*/
1186 key_porttosaddr(__UNCONST(dst), dport);
1187 /* check dst address */
1188 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1189 continue;
1190 SA_ADDREF(sav);
1191 goto done;
1192 }
1193 }
1194 }
1195 sav = NULL;
1196 done:
1197 splx(s);
1198
1199 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1200 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1201 sav, sav ? sav->refcnt : 0));
1202 return sav;
1203 }
1204
1205 /*
1206 * Must be called after calling key_allocsp().
1207 * For both the packet without socket and key_freeso().
1208 */
1209 void
1210 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1211 {
1212 struct secpolicy *sp = *spp;
1213
1214 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp"));
1215
1216 SP_DELREF(sp);
1217
1218 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1219 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1220 __func__, sp, sp->id, where, tag, sp->refcnt));
1221
1222 if (sp->refcnt == 0) {
1223 *spp = NULL;
1224 key_delsp(sp);
1225 }
1226 }
1227
1228 /*
1229 * Must be called after calling key_allocsp().
1230 * For the packet with socket.
1231 */
1232 void
1233 key_freeso(struct socket *so)
1234 {
1235 /* sanity check */
1236 IPSEC_ASSERT(so != NULL, ("key_freeso: null so"));
1237
1238 switch (so->so_proto->pr_domain->dom_family) {
1239 #ifdef INET
1240 case PF_INET:
1241 {
1242 struct inpcb *pcb = sotoinpcb(so);
1243
1244 /* Does it have a PCB ? */
1245 if (pcb == NULL)
1246 return;
1247
1248 struct inpcbpolicy *sp = pcb->inp_sp;
1249 key_freesp_so(&sp->sp_in);
1250 key_freesp_so(&sp->sp_out);
1251 }
1252 break;
1253 #endif
1254 #ifdef INET6
1255 case PF_INET6:
1256 {
1257 #ifdef HAVE_NRL_INPCB
1258 struct inpcb *pcb = sotoinpcb(so);
1259 struct inpcbpolicy *sp = pcb->inp_sp;
1260
1261 /* Does it have a PCB ? */
1262 if (pcb == NULL)
1263 return;
1264 key_freesp_so(&sp->sp_in);
1265 key_freesp_so(&sp->sp_out);
1266 #else
1267 struct in6pcb *pcb = sotoin6pcb(so);
1268
1269 /* Does it have a PCB ? */
1270 if (pcb == NULL)
1271 return;
1272 key_freesp_so(&pcb->in6p_sp->sp_in);
1273 key_freesp_so(&pcb->in6p_sp->sp_out);
1274 #endif
1275 }
1276 break;
1277 #endif /* INET6 */
1278 default:
1279 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1280 so->so_proto->pr_domain->dom_family));
1281 return;
1282 }
1283 }
1284
1285 static void
1286 key_freesp_so(struct secpolicy **sp)
1287 {
1288 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp"));
1289
1290 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1291 (*sp)->policy == IPSEC_POLICY_BYPASS)
1292 return;
1293
1294 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1295 ("key_freesp_so: invalid policy %u", (*sp)->policy));
1296 KEY_FREESP(sp);
1297 }
1298
1299 /*
1300 * Must be called after calling key_allocsa().
1301 * This function is called by key_freesp() to free some SA allocated
1302 * for a policy.
1303 */
1304 void
1305 key_freesav(struct secasvar **psav, const char* where, int tag)
1306 {
1307 struct secasvar *sav = *psav;
1308
1309 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav"));
1310
1311 SA_DELREF(sav);
1312
1313 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1314 printf("DP %s SA:%p (SPI %lu) from %s:%u; refcnt now %u\n",
1315 __func__, sav, (u_long)ntohl(sav->spi), where, tag,
1316 sav->refcnt));
1317
1318 if (sav->refcnt == 0) {
1319 *psav = NULL;
1320 key_delsav(sav);
1321 }
1322 }
1323
1324 /* %%% SPD management */
1325 /*
1326 * free security policy entry.
1327 */
1328 static void
1329 key_delsp(struct secpolicy *sp)
1330 {
1331 int s;
1332
1333 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp"));
1334
1335 key_sp_dead(sp);
1336
1337 IPSEC_ASSERT(sp->refcnt == 0,
1338 ("key_delsp: SP with references deleted (refcnt %u)",
1339 sp->refcnt));
1340
1341 s = splsoftnet(); /*called from softclock()*/
1342
1343 {
1344 struct ipsecrequest *isr = sp->req, *nextisr;
1345
1346 while (isr != NULL) {
1347 if (isr->sav != NULL) {
1348 KEY_FREESAV(&isr->sav);
1349 isr->sav = NULL;
1350 }
1351
1352 nextisr = isr->next;
1353 KFREE(isr);
1354 isr = nextisr;
1355 }
1356 }
1357
1358 KFREE(sp);
1359
1360 splx(s);
1361 }
1362
1363 /*
1364 * search SPD
1365 * OUT: NULL : not found
1366 * others : found, pointer to a SP.
1367 */
1368 static struct secpolicy *
1369 key_getsp(const struct secpolicyindex *spidx)
1370 {
1371 struct secpolicy *sp;
1372
1373 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx"));
1374
1375 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1376 if (sp->state == IPSEC_SPSTATE_DEAD)
1377 continue;
1378 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1379 SP_ADDREF(sp);
1380 return sp;
1381 }
1382 }
1383
1384 return NULL;
1385 }
1386
1387 /*
1388 * get SP by index.
1389 * OUT: NULL : not found
1390 * others : found, pointer to a SP.
1391 */
1392 static struct secpolicy *
1393 key_getspbyid(u_int32_t id)
1394 {
1395 struct secpolicy *sp;
1396
1397 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1398 if (sp->state == IPSEC_SPSTATE_DEAD)
1399 continue;
1400 if (sp->id == id) {
1401 SP_ADDREF(sp);
1402 return sp;
1403 }
1404 }
1405
1406 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1407 if (sp->state == IPSEC_SPSTATE_DEAD)
1408 continue;
1409 if (sp->id == id) {
1410 SP_ADDREF(sp);
1411 return sp;
1412 }
1413 }
1414
1415 return NULL;
1416 }
1417
1418 struct secpolicy *
1419 key_newsp(const char* where, int tag)
1420 {
1421 struct secpolicy *newsp = NULL;
1422
1423 newsp = (struct secpolicy *)
1424 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO);
1425 if (newsp) {
1426 newsp->refcnt = 1;
1427 newsp->req = NULL;
1428 }
1429
1430 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1431 printf("DP %s from %s:%u return SP:%p\n", __func__,
1432 where, tag, newsp));
1433 return newsp;
1434 }
1435
1436 /*
1437 * create secpolicy structure from sadb_x_policy structure.
1438 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1439 * so must be set properly later.
1440 */
1441 struct secpolicy *
1442 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1443 {
1444 struct secpolicy *newsp;
1445
1446 /* sanity check */
1447 if (xpl0 == NULL)
1448 panic("key_msg2sp: NULL pointer was passed");
1449 if (len < sizeof(*xpl0))
1450 panic("key_msg2sp: invalid length");
1451 if (len != PFKEY_EXTLEN(xpl0)) {
1452 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1453 *error = EINVAL;
1454 return NULL;
1455 }
1456
1457 if ((newsp = KEY_NEWSP()) == NULL) {
1458 *error = ENOBUFS;
1459 return NULL;
1460 }
1461
1462 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1463 newsp->policy = xpl0->sadb_x_policy_type;
1464
1465 /* check policy */
1466 switch (xpl0->sadb_x_policy_type) {
1467 case IPSEC_POLICY_DISCARD:
1468 case IPSEC_POLICY_NONE:
1469 case IPSEC_POLICY_ENTRUST:
1470 case IPSEC_POLICY_BYPASS:
1471 newsp->req = NULL;
1472 break;
1473
1474 case IPSEC_POLICY_IPSEC:
1475 {
1476 int tlen;
1477 const struct sadb_x_ipsecrequest *xisr;
1478 uint16_t xisr_reqid;
1479 struct ipsecrequest **p_isr = &newsp->req;
1480
1481 /* validity check */
1482 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1483 ipseclog((LOG_DEBUG,
1484 "key_msg2sp: Invalid msg length.\n"));
1485 KEY_FREESP(&newsp);
1486 *error = EINVAL;
1487 return NULL;
1488 }
1489
1490 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1491 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1492
1493 while (tlen > 0) {
1494 /* length check */
1495 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1496 ipseclog((LOG_DEBUG, "key_msg2sp: "
1497 "invalid ipsecrequest length.\n"));
1498 KEY_FREESP(&newsp);
1499 *error = EINVAL;
1500 return NULL;
1501 }
1502
1503 /* allocate request buffer */
1504 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1505 if ((*p_isr) == NULL) {
1506 ipseclog((LOG_DEBUG,
1507 "key_msg2sp: No more memory.\n"));
1508 KEY_FREESP(&newsp);
1509 *error = ENOBUFS;
1510 return NULL;
1511 }
1512 memset(*p_isr, 0, sizeof(**p_isr));
1513
1514 /* set values */
1515 (*p_isr)->next = NULL;
1516
1517 switch (xisr->sadb_x_ipsecrequest_proto) {
1518 case IPPROTO_ESP:
1519 case IPPROTO_AH:
1520 case IPPROTO_IPCOMP:
1521 break;
1522 default:
1523 ipseclog((LOG_DEBUG,
1524 "key_msg2sp: invalid proto type=%u\n",
1525 xisr->sadb_x_ipsecrequest_proto));
1526 KEY_FREESP(&newsp);
1527 *error = EPROTONOSUPPORT;
1528 return NULL;
1529 }
1530 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1531
1532 switch (xisr->sadb_x_ipsecrequest_mode) {
1533 case IPSEC_MODE_TRANSPORT:
1534 case IPSEC_MODE_TUNNEL:
1535 break;
1536 case IPSEC_MODE_ANY:
1537 default:
1538 ipseclog((LOG_DEBUG,
1539 "key_msg2sp: invalid mode=%u\n",
1540 xisr->sadb_x_ipsecrequest_mode));
1541 KEY_FREESP(&newsp);
1542 *error = EINVAL;
1543 return NULL;
1544 }
1545 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1546
1547 switch (xisr->sadb_x_ipsecrequest_level) {
1548 case IPSEC_LEVEL_DEFAULT:
1549 case IPSEC_LEVEL_USE:
1550 case IPSEC_LEVEL_REQUIRE:
1551 break;
1552 case IPSEC_LEVEL_UNIQUE:
1553 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1554 /* validity check */
1555 /*
1556 * If range violation of reqid, kernel will
1557 * update it, don't refuse it.
1558 */
1559 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1560 ipseclog((LOG_DEBUG,
1561 "key_msg2sp: reqid=%d range "
1562 "violation, updated by kernel.\n",
1563 xisr_reqid));
1564 xisr_reqid = 0;
1565 }
1566
1567 /* allocate new reqid id if reqid is zero. */
1568 if (xisr_reqid == 0) {
1569 u_int16_t reqid;
1570 if ((reqid = key_newreqid()) == 0) {
1571 KEY_FREESP(&newsp);
1572 *error = ENOBUFS;
1573 return NULL;
1574 }
1575 (*p_isr)->saidx.reqid = reqid;
1576 } else {
1577 /* set it for manual keying. */
1578 (*p_isr)->saidx.reqid = xisr_reqid;
1579 }
1580 break;
1581
1582 default:
1583 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1584 xisr->sadb_x_ipsecrequest_level));
1585 KEY_FREESP(&newsp);
1586 *error = EINVAL;
1587 return NULL;
1588 }
1589 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1590
1591 /* set IP addresses if there */
1592 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1593 const struct sockaddr *paddr;
1594
1595 paddr = (const struct sockaddr *)(xisr + 1);
1596
1597 /* validity check */
1598 if (paddr->sa_len
1599 > sizeof((*p_isr)->saidx.src)) {
1600 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1601 "address length.\n"));
1602 KEY_FREESP(&newsp);
1603 *error = EINVAL;
1604 return NULL;
1605 }
1606 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1607
1608 paddr = (const struct sockaddr *)((const char *)paddr
1609 + paddr->sa_len);
1610
1611 /* validity check */
1612 if (paddr->sa_len
1613 > sizeof((*p_isr)->saidx.dst)) {
1614 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1615 "address length.\n"));
1616 KEY_FREESP(&newsp);
1617 *error = EINVAL;
1618 return NULL;
1619 }
1620 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1621 }
1622
1623 (*p_isr)->sav = NULL;
1624 (*p_isr)->sp = newsp;
1625
1626 /* initialization for the next. */
1627 p_isr = &(*p_isr)->next;
1628 tlen -= xisr->sadb_x_ipsecrequest_len;
1629
1630 /* validity check */
1631 if (tlen < 0) {
1632 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1633 KEY_FREESP(&newsp);
1634 *error = EINVAL;
1635 return NULL;
1636 }
1637
1638 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr
1639 + xisr->sadb_x_ipsecrequest_len);
1640 }
1641 }
1642 break;
1643 default:
1644 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1645 KEY_FREESP(&newsp);
1646 *error = EINVAL;
1647 return NULL;
1648 }
1649
1650 *error = 0;
1651 return newsp;
1652 }
1653
1654 static u_int16_t
1655 key_newreqid(void)
1656 {
1657 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1658
1659 auto_reqid = (auto_reqid == 0xffff
1660 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1661
1662 /* XXX should be unique check */
1663
1664 return auto_reqid;
1665 }
1666
1667 /*
1668 * copy secpolicy struct to sadb_x_policy structure indicated.
1669 */
1670 struct mbuf *
1671 key_sp2msg(const struct secpolicy *sp)
1672 {
1673 struct sadb_x_policy *xpl;
1674 int tlen;
1675 char *p;
1676 struct mbuf *m;
1677
1678 /* sanity check. */
1679 if (sp == NULL)
1680 panic("key_sp2msg: NULL pointer was passed");
1681
1682 tlen = key_getspreqmsglen(sp);
1683
1684 m = key_alloc_mbuf(tlen);
1685 if (!m || m->m_next) { /*XXX*/
1686 if (m)
1687 m_freem(m);
1688 return NULL;
1689 }
1690
1691 m->m_len = tlen;
1692 m->m_next = NULL;
1693 xpl = mtod(m, struct sadb_x_policy *);
1694 memset(xpl, 0, tlen);
1695
1696 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1697 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1698 xpl->sadb_x_policy_type = sp->policy;
1699 xpl->sadb_x_policy_dir = sp->spidx.dir;
1700 xpl->sadb_x_policy_id = sp->id;
1701 p = (char *)xpl + sizeof(*xpl);
1702
1703 /* if is the policy for ipsec ? */
1704 if (sp->policy == IPSEC_POLICY_IPSEC) {
1705 struct sadb_x_ipsecrequest *xisr;
1706 struct ipsecrequest *isr;
1707
1708 for (isr = sp->req; isr != NULL; isr = isr->next) {
1709
1710 xisr = (struct sadb_x_ipsecrequest *)p;
1711
1712 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1713 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1714 xisr->sadb_x_ipsecrequest_level = isr->level;
1715 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1716
1717 p += sizeof(*xisr);
1718 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
1719 p += isr->saidx.src.sa.sa_len;
1720 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
1721 p += isr->saidx.src.sa.sa_len;
1722
1723 xisr->sadb_x_ipsecrequest_len =
1724 PFKEY_ALIGN8(sizeof(*xisr)
1725 + isr->saidx.src.sa.sa_len
1726 + isr->saidx.dst.sa.sa_len);
1727 }
1728 }
1729
1730 return m;
1731 }
1732
1733 /* m will not be freed nor modified */
1734 static struct mbuf *
1735 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1736 int ndeep, int nitem, ...)
1737 {
1738 va_list ap;
1739 int idx;
1740 int i;
1741 struct mbuf *result = NULL, *n;
1742 int len;
1743
1744 if (m == NULL || mhp == NULL)
1745 panic("null pointer passed to key_gather");
1746
1747 va_start(ap, nitem);
1748 for (i = 0; i < nitem; i++) {
1749 idx = va_arg(ap, int);
1750 if (idx < 0 || idx > SADB_EXT_MAX)
1751 goto fail;
1752 /* don't attempt to pull empty extension */
1753 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1754 continue;
1755 if (idx != SADB_EXT_RESERVED &&
1756 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1757 continue;
1758
1759 if (idx == SADB_EXT_RESERVED) {
1760 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1761 #ifdef DIAGNOSTIC
1762 if (len > MHLEN)
1763 panic("assumption failed");
1764 #endif
1765 MGETHDR(n, M_DONTWAIT, MT_DATA);
1766 if (!n)
1767 goto fail;
1768 n->m_len = len;
1769 n->m_next = NULL;
1770 m_copydata(m, 0, sizeof(struct sadb_msg),
1771 mtod(n, void *));
1772 } else if (i < ndeep) {
1773 len = mhp->extlen[idx];
1774 n = key_alloc_mbuf(len);
1775 if (!n || n->m_next) { /*XXX*/
1776 if (n)
1777 m_freem(n);
1778 goto fail;
1779 }
1780 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1781 mtod(n, void *));
1782 } else {
1783 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1784 M_DONTWAIT);
1785 }
1786 if (n == NULL)
1787 goto fail;
1788
1789 if (result)
1790 m_cat(result, n);
1791 else
1792 result = n;
1793 }
1794 va_end(ap);
1795
1796 if (result && (result->m_flags & M_PKTHDR) != 0) {
1797 result->m_pkthdr.len = 0;
1798 for (n = result; n; n = n->m_next)
1799 result->m_pkthdr.len += n->m_len;
1800 }
1801
1802 return result;
1803
1804 fail:
1805 va_end(ap);
1806 m_freem(result);
1807 return NULL;
1808 }
1809
1810 /*
1811 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1812 * add an entry to SP database, when received
1813 * <base, address(SD), (lifetime(H),) policy>
1814 * from the user(?).
1815 * Adding to SP database,
1816 * and send
1817 * <base, address(SD), (lifetime(H),) policy>
1818 * to the socket which was send.
1819 *
1820 * SPDADD set a unique policy entry.
1821 * SPDSETIDX like SPDADD without a part of policy requests.
1822 * SPDUPDATE replace a unique policy entry.
1823 *
1824 * m will always be freed.
1825 */
1826 static int
1827 key_spdadd(struct socket *so, struct mbuf *m,
1828 const struct sadb_msghdr *mhp)
1829 {
1830 const struct sadb_address *src0, *dst0;
1831 const struct sadb_x_policy *xpl0;
1832 struct sadb_x_policy *xpl;
1833 const struct sadb_lifetime *lft = NULL;
1834 struct secpolicyindex spidx;
1835 struct secpolicy *newsp;
1836 int error;
1837
1838 /* sanity check */
1839 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1840 panic("key_spdadd: NULL pointer is passed");
1841
1842 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1843 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1844 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1845 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1846 return key_senderror(so, m, EINVAL);
1847 }
1848 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1849 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1850 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1851 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1852 return key_senderror(so, m, EINVAL);
1853 }
1854 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1855 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1856 < sizeof(struct sadb_lifetime)) {
1857 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1858 return key_senderror(so, m, EINVAL);
1859 }
1860 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1861 }
1862
1863 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1864 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1865 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1866
1867 /* make secindex */
1868 /* XXX boundary check against sa_len */
1869 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1870 src0 + 1,
1871 dst0 + 1,
1872 src0->sadb_address_prefixlen,
1873 dst0->sadb_address_prefixlen,
1874 src0->sadb_address_proto,
1875 &spidx);
1876
1877 /* checking the direciton. */
1878 switch (xpl0->sadb_x_policy_dir) {
1879 case IPSEC_DIR_INBOUND:
1880 case IPSEC_DIR_OUTBOUND:
1881 break;
1882 default:
1883 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1884 mhp->msg->sadb_msg_errno = EINVAL;
1885 return 0;
1886 }
1887
1888 /* check policy */
1889 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1890 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1891 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1892 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1893 return key_senderror(so, m, EINVAL);
1894 }
1895
1896 /* policy requests are mandatory when action is ipsec. */
1897 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1898 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1899 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1900 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1901 return key_senderror(so, m, EINVAL);
1902 }
1903
1904 /*
1905 * checking there is SP already or not.
1906 * SPDUPDATE doesn't depend on whether there is a SP or not.
1907 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1908 * then error.
1909 */
1910 newsp = key_getsp(&spidx);
1911 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1912 if (newsp) {
1913 key_sp_dead(newsp);
1914 key_sp_unlink(newsp); /* XXX jrs ordering */
1915 KEY_FREESP(&newsp);
1916 newsp = NULL;
1917 }
1918 } else {
1919 if (newsp != NULL) {
1920 KEY_FREESP(&newsp);
1921 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1922 return key_senderror(so, m, EEXIST);
1923 }
1924 }
1925
1926 /* allocation new SP entry */
1927 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1928 return key_senderror(so, m, error);
1929 }
1930
1931 if ((newsp->id = key_getnewspid()) == 0) {
1932 KFREE(newsp);
1933 return key_senderror(so, m, ENOBUFS);
1934 }
1935
1936 /* XXX boundary check against sa_len */
1937 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1938 src0 + 1,
1939 dst0 + 1,
1940 src0->sadb_address_prefixlen,
1941 dst0->sadb_address_prefixlen,
1942 src0->sadb_address_proto,
1943 &newsp->spidx);
1944
1945 /* sanity check on addr pair */
1946 if (((const struct sockaddr *)(src0 + 1))->sa_family !=
1947 ((const struct sockaddr *)(dst0+ 1))->sa_family) {
1948 KFREE(newsp);
1949 return key_senderror(so, m, EINVAL);
1950 }
1951 if (((const struct sockaddr *)(src0 + 1))->sa_len !=
1952 ((const struct sockaddr *)(dst0+ 1))->sa_len) {
1953 KFREE(newsp);
1954 return key_senderror(so, m, EINVAL);
1955 }
1956
1957 newsp->created = time_uptime;
1958 newsp->lastused = newsp->created;
1959 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1960 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1961
1962 newsp->refcnt = 1; /* do not reclaim until I say I do */
1963 newsp->state = IPSEC_SPSTATE_ALIVE;
1964 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1965
1966 /* delete the entry in spacqtree */
1967 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1968 struct secspacq *spacq;
1969 if ((spacq = key_getspacq(&spidx)) != NULL) {
1970 /* reset counter in order to deletion by timehandler. */
1971 spacq->created = time_uptime;
1972 spacq->count = 0;
1973 }
1974 }
1975
1976 #if defined(__NetBSD__)
1977 /* Invalidate all cached SPD pointers in the PCBs. */
1978 ipsec_invalpcbcacheall();
1979
1980 #if defined(GATEWAY)
1981 /* Invalidate the ipflow cache, as well. */
1982 ipflow_invalidate_all(0);
1983 #ifdef INET6
1984 ip6flow_invalidate_all(0);
1985 #endif /* INET6 */
1986 #endif /* GATEWAY */
1987 #endif /* __NetBSD__ */
1988
1989 {
1990 struct mbuf *n, *mpolicy;
1991 struct sadb_msg *newmsg;
1992 int off;
1993
1994 /* create new sadb_msg to reply. */
1995 if (lft) {
1996 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1997 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1998 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1999 } else {
2000 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2001 SADB_X_EXT_POLICY,
2002 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2003 }
2004 if (!n)
2005 return key_senderror(so, m, ENOBUFS);
2006
2007 if (n->m_len < sizeof(*newmsg)) {
2008 n = m_pullup(n, sizeof(*newmsg));
2009 if (!n)
2010 return key_senderror(so, m, ENOBUFS);
2011 }
2012 newmsg = mtod(n, struct sadb_msg *);
2013 newmsg->sadb_msg_errno = 0;
2014 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2015
2016 off = 0;
2017 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2018 sizeof(*xpl), &off);
2019 if (mpolicy == NULL) {
2020 /* n is already freed */
2021 return key_senderror(so, m, ENOBUFS);
2022 }
2023 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2024 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2025 m_freem(n);
2026 return key_senderror(so, m, EINVAL);
2027 }
2028 xpl->sadb_x_policy_id = newsp->id;
2029
2030 m_freem(m);
2031 key_update_used();
2032 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2033 }
2034 }
2035
2036 /*
2037 * get new policy id.
2038 * OUT:
2039 * 0: failure.
2040 * others: success.
2041 */
2042 static u_int32_t
2043 key_getnewspid(void)
2044 {
2045 u_int32_t newid = 0;
2046 int count = key_spi_trycnt; /* XXX */
2047 struct secpolicy *sp;
2048
2049 /* when requesting to allocate spi ranged */
2050 while (count--) {
2051 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2052
2053 if ((sp = key_getspbyid(newid)) == NULL)
2054 break;
2055
2056 KEY_FREESP(&sp);
2057 }
2058
2059 if (count == 0 || newid == 0) {
2060 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
2061 return 0;
2062 }
2063
2064 return newid;
2065 }
2066
2067 /*
2068 * SADB_SPDDELETE processing
2069 * receive
2070 * <base, address(SD), policy(*)>
2071 * from the user(?), and set SADB_SASTATE_DEAD,
2072 * and send,
2073 * <base, address(SD), policy(*)>
2074 * to the ikmpd.
2075 * policy(*) including direction of policy.
2076 *
2077 * m will always be freed.
2078 */
2079 static int
2080 key_spddelete(struct socket *so, struct mbuf *m,
2081 const struct sadb_msghdr *mhp)
2082 {
2083 struct sadb_address *src0, *dst0;
2084 struct sadb_x_policy *xpl0;
2085 struct secpolicyindex spidx;
2086 struct secpolicy *sp;
2087
2088 /* sanity check */
2089 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2090 panic("key_spddelete: NULL pointer is passed");
2091
2092 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2093 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2094 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2095 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2096 return key_senderror(so, m, EINVAL);
2097 }
2098 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2099 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2100 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2101 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2102 return key_senderror(so, m, EINVAL);
2103 }
2104
2105 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2106 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2107 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2108
2109 /* make secindex */
2110 /* XXX boundary check against sa_len */
2111 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2112 src0 + 1,
2113 dst0 + 1,
2114 src0->sadb_address_prefixlen,
2115 dst0->sadb_address_prefixlen,
2116 src0->sadb_address_proto,
2117 &spidx);
2118
2119 /* checking the direciton. */
2120 switch (xpl0->sadb_x_policy_dir) {
2121 case IPSEC_DIR_INBOUND:
2122 case IPSEC_DIR_OUTBOUND:
2123 break;
2124 default:
2125 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2126 return key_senderror(so, m, EINVAL);
2127 }
2128
2129 /* Is there SP in SPD ? */
2130 if ((sp = key_getsp(&spidx)) == NULL) {
2131 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2132 return key_senderror(so, m, EINVAL);
2133 }
2134
2135 /* save policy id to buffer to be returned. */
2136 xpl0->sadb_x_policy_id = sp->id;
2137
2138 key_sp_dead(sp);
2139 key_sp_unlink(sp); /* XXX jrs ordering */
2140 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2141
2142 #if defined(__NetBSD__)
2143 /* Invalidate all cached SPD pointers in the PCBs. */
2144 ipsec_invalpcbcacheall();
2145
2146 /* We're deleting policy; no need to invalidate the ipflow cache. */
2147 #endif /* __NetBSD__ */
2148
2149 {
2150 struct mbuf *n;
2151 struct sadb_msg *newmsg;
2152
2153 /* create new sadb_msg to reply. */
2154 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2155 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2156 if (!n)
2157 return key_senderror(so, m, ENOBUFS);
2158
2159 newmsg = mtod(n, struct sadb_msg *);
2160 newmsg->sadb_msg_errno = 0;
2161 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2162
2163 m_freem(m);
2164 key_update_used();
2165 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2166 }
2167 }
2168
2169 /*
2170 * SADB_SPDDELETE2 processing
2171 * receive
2172 * <base, policy(*)>
2173 * from the user(?), and set SADB_SASTATE_DEAD,
2174 * and send,
2175 * <base, policy(*)>
2176 * to the ikmpd.
2177 * policy(*) including direction of policy.
2178 *
2179 * m will always be freed.
2180 */
2181 static int
2182 key_spddelete2(struct socket *so, struct mbuf *m,
2183 const struct sadb_msghdr *mhp)
2184 {
2185 u_int32_t id;
2186 struct secpolicy *sp;
2187
2188 /* sanity check */
2189 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2190 panic("key_spddelete2: NULL pointer is passed");
2191
2192 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2193 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2194 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2195 key_senderror(so, m, EINVAL);
2196 return 0;
2197 }
2198
2199 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2200
2201 /* Is there SP in SPD ? */
2202 if ((sp = key_getspbyid(id)) == NULL) {
2203 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2204 return key_senderror(so, m, EINVAL);
2205 }
2206
2207 key_sp_dead(sp);
2208 key_sp_unlink(sp); /* XXX jrs ordering */
2209 KEY_FREESP(&sp); /* ref gained by key_getsp */
2210 sp = NULL;
2211
2212 #if defined(__NetBSD__)
2213 /* Invalidate all cached SPD pointers in the PCBs. */
2214 ipsec_invalpcbcacheall();
2215
2216 /* We're deleting policy; no need to invalidate the ipflow cache. */
2217 #endif /* __NetBSD__ */
2218
2219 {
2220 struct mbuf *n, *nn;
2221 struct sadb_msg *newmsg;
2222 int off, len;
2223
2224 /* create new sadb_msg to reply. */
2225 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2226
2227 if (len > MCLBYTES)
2228 return key_senderror(so, m, ENOBUFS);
2229 MGETHDR(n, M_DONTWAIT, MT_DATA);
2230 if (n && len > MHLEN) {
2231 MCLGET(n, M_DONTWAIT);
2232 if ((n->m_flags & M_EXT) == 0) {
2233 m_freem(n);
2234 n = NULL;
2235 }
2236 }
2237 if (!n)
2238 return key_senderror(so, m, ENOBUFS);
2239
2240 n->m_len = len;
2241 n->m_next = NULL;
2242 off = 0;
2243
2244 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2245 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2246
2247 #ifdef DIAGNOSTIC
2248 if (off != len)
2249 panic("length inconsistency in key_spddelete2");
2250 #endif
2251
2252 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2253 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2254 if (!n->m_next) {
2255 m_freem(n);
2256 return key_senderror(so, m, ENOBUFS);
2257 }
2258
2259 n->m_pkthdr.len = 0;
2260 for (nn = n; nn; nn = nn->m_next)
2261 n->m_pkthdr.len += nn->m_len;
2262
2263 newmsg = mtod(n, struct sadb_msg *);
2264 newmsg->sadb_msg_errno = 0;
2265 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2266
2267 m_freem(m);
2268 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2269 }
2270 }
2271
2272 /*
2273 * SADB_X_GET processing
2274 * receive
2275 * <base, policy(*)>
2276 * from the user(?),
2277 * and send,
2278 * <base, address(SD), policy>
2279 * to the ikmpd.
2280 * policy(*) including direction of policy.
2281 *
2282 * m will always be freed.
2283 */
2284 static int
2285 key_spdget(struct socket *so, struct mbuf *m,
2286 const struct sadb_msghdr *mhp)
2287 {
2288 u_int32_t id;
2289 struct secpolicy *sp;
2290 struct mbuf *n;
2291
2292 /* sanity check */
2293 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2294 panic("key_spdget: NULL pointer is passed");
2295
2296 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2297 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2298 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2299 return key_senderror(so, m, EINVAL);
2300 }
2301
2302 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2303
2304 /* Is there SP in SPD ? */
2305 if ((sp = key_getspbyid(id)) == NULL) {
2306 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2307 return key_senderror(so, m, ENOENT);
2308 }
2309
2310 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2311 mhp->msg->sadb_msg_pid);
2312 KEY_FREESP(&sp); /* ref gained by key_getspbyid */
2313 if (n != NULL) {
2314 m_freem(m);
2315 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2316 } else
2317 return key_senderror(so, m, ENOBUFS);
2318 }
2319
2320 /*
2321 * SADB_X_SPDACQUIRE processing.
2322 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2323 * send
2324 * <base, policy(*)>
2325 * to KMD, and expect to receive
2326 * <base> with SADB_X_SPDACQUIRE if error occurred,
2327 * or
2328 * <base, policy>
2329 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2330 * policy(*) is without policy requests.
2331 *
2332 * 0 : succeed
2333 * others: error number
2334 */
2335 int
2336 key_spdacquire(const struct secpolicy *sp)
2337 {
2338 struct mbuf *result = NULL, *m;
2339 struct secspacq *newspacq;
2340 int error;
2341
2342 /* sanity check */
2343 if (sp == NULL)
2344 panic("key_spdacquire: NULL pointer is passed");
2345 if (sp->req != NULL)
2346 panic("key_spdacquire: called but there is request");
2347 if (sp->policy != IPSEC_POLICY_IPSEC)
2348 panic("key_spdacquire: policy mismathed. IPsec is expected");
2349
2350 /* Get an entry to check whether sent message or not. */
2351 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2352 if (key_blockacq_count < newspacq->count) {
2353 /* reset counter and do send message. */
2354 newspacq->count = 0;
2355 } else {
2356 /* increment counter and do nothing. */
2357 newspacq->count++;
2358 return 0;
2359 }
2360 } else {
2361 /* make new entry for blocking to send SADB_ACQUIRE. */
2362 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2363 return ENOBUFS;
2364
2365 /* add to acqtree */
2366 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2367 }
2368
2369 /* create new sadb_msg to reply. */
2370 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2371 if (!m) {
2372 error = ENOBUFS;
2373 goto fail;
2374 }
2375 result = m;
2376
2377 result->m_pkthdr.len = 0;
2378 for (m = result; m; m = m->m_next)
2379 result->m_pkthdr.len += m->m_len;
2380
2381 mtod(result, struct sadb_msg *)->sadb_msg_len =
2382 PFKEY_UNIT64(result->m_pkthdr.len);
2383
2384 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2385
2386 fail:
2387 if (result)
2388 m_freem(result);
2389 return error;
2390 }
2391
2392 /*
2393 * SADB_SPDFLUSH processing
2394 * receive
2395 * <base>
2396 * from the user, and free all entries in secpctree.
2397 * and send,
2398 * <base>
2399 * to the user.
2400 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2401 *
2402 * m will always be freed.
2403 */
2404 static int
2405 key_spdflush(struct socket *so, struct mbuf *m,
2406 const struct sadb_msghdr *mhp)
2407 {
2408 struct sadb_msg *newmsg;
2409 struct secpolicy *sp;
2410 u_int dir;
2411
2412 /* sanity check */
2413 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2414 panic("key_spdflush: NULL pointer is passed");
2415
2416 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2417 return key_senderror(so, m, EINVAL);
2418
2419 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2420 struct secpolicy * nextsp;
2421 for (sp = LIST_FIRST(&sptree[dir]);
2422 sp != NULL;
2423 sp = nextsp) {
2424
2425 nextsp = LIST_NEXT(sp, chain);
2426 if (sp->state == IPSEC_SPSTATE_DEAD)
2427 continue;
2428 key_sp_dead(sp);
2429 key_sp_unlink(sp);
2430 /* 'sp' dead; continue transfers to 'sp = nextsp' */
2431 continue;
2432 }
2433 }
2434
2435 #if defined(__NetBSD__)
2436 /* Invalidate all cached SPD pointers in the PCBs. */
2437 ipsec_invalpcbcacheall();
2438
2439 /* We're deleting policy; no need to invalidate the ipflow cache. */
2440 #endif /* __NetBSD__ */
2441
2442 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2443 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2444 return key_senderror(so, m, ENOBUFS);
2445 }
2446
2447 if (m->m_next)
2448 m_freem(m->m_next);
2449 m->m_next = NULL;
2450 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2451 newmsg = mtod(m, struct sadb_msg *);
2452 newmsg->sadb_msg_errno = 0;
2453 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2454
2455 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2456 }
2457
2458 static struct sockaddr key_src = {
2459 .sa_len = 2,
2460 .sa_family = PF_KEY,
2461 };
2462
2463 static struct mbuf *
2464 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2465 {
2466 struct secpolicy *sp;
2467 int cnt;
2468 u_int dir;
2469 struct mbuf *m, *n, *prev;
2470 int totlen;
2471
2472 *lenp = 0;
2473
2474 /* search SPD entry and get buffer size. */
2475 cnt = 0;
2476 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2477 LIST_FOREACH(sp, &sptree[dir], chain) {
2478 cnt++;
2479 }
2480 }
2481
2482 if (cnt == 0) {
2483 *errorp = ENOENT;
2484 return (NULL);
2485 }
2486
2487 m = NULL;
2488 prev = m;
2489 totlen = 0;
2490 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2491 LIST_FOREACH(sp, &sptree[dir], chain) {
2492 --cnt;
2493 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2494
2495 if (!n) {
2496 *errorp = ENOBUFS;
2497 if (m) m_freem(m);
2498 return (NULL);
2499 }
2500
2501 totlen += n->m_pkthdr.len;
2502 if (!m) {
2503 m = n;
2504 } else {
2505 prev->m_nextpkt = n;
2506 }
2507 prev = n;
2508 }
2509 }
2510
2511 *lenp = totlen;
2512 *errorp = 0;
2513 return (m);
2514 }
2515
2516 /*
2517 * SADB_SPDDUMP processing
2518 * receive
2519 * <base>
2520 * from the user, and dump all SP leaves
2521 * and send,
2522 * <base> .....
2523 * to the ikmpd.
2524 *
2525 * m will always be freed.
2526 */
2527 static int
2528 key_spddump(struct socket *so, struct mbuf *m0,
2529 const struct sadb_msghdr *mhp)
2530 {
2531 struct mbuf *n;
2532 int error, len;
2533 int ok, s;
2534 pid_t pid;
2535
2536 /* sanity check */
2537 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
2538 panic("key_spddump: NULL pointer is passed");
2539
2540
2541 pid = mhp->msg->sadb_msg_pid;
2542 /*
2543 * If the requestor has insufficient socket-buffer space
2544 * for the entire chain, nobody gets any response to the DUMP.
2545 * XXX For now, only the requestor ever gets anything.
2546 * Moreover, if the requestor has any space at all, they receive
2547 * the entire chain, otherwise the request is refused with ENOBUFS.
2548 */
2549 if (sbspace(&so->so_rcv) <= 0) {
2550 return key_senderror(so, m0, ENOBUFS);
2551 }
2552
2553 s = splsoftnet();
2554 n = key_setspddump_chain(&error, &len, pid);
2555 splx(s);
2556
2557 if (n == NULL) {
2558 return key_senderror(so, m0, ENOENT);
2559 }
2560 {
2561 uint64_t *ps = PFKEY_STAT_GETREF();
2562 ps[PFKEY_STAT_IN_TOTAL]++;
2563 ps[PFKEY_STAT_IN_BYTES] += len;
2564 PFKEY_STAT_PUTREF();
2565 }
2566
2567 /*
2568 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2569 * The requestor receives either the entire chain, or an
2570 * error message with ENOBUFS.
2571 */
2572
2573 /*
2574 * sbappendchainwith record takes the chain of entries, one
2575 * packet-record per SPD entry, prepends the key_src sockaddr
2576 * to each packet-record, links the sockaddr mbufs into a new
2577 * list of records, then appends the entire resulting
2578 * list to the requesting socket.
2579 */
2580 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
2581 n, SB_PRIO_ONESHOT_OVERFLOW);
2582
2583 if (!ok) {
2584 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2585 m_freem(n);
2586 return key_senderror(so, m0, ENOBUFS);
2587 }
2588
2589 m_freem(m0);
2590 return error;
2591 }
2592
2593 /*
2594 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2595 */
2596 static int
2597 key_nat_map(struct socket *so, struct mbuf *m,
2598 const struct sadb_msghdr *mhp)
2599 {
2600 struct sadb_x_nat_t_type *type;
2601 struct sadb_x_nat_t_port *sport;
2602 struct sadb_x_nat_t_port *dport;
2603 struct sadb_address *iaddr, *raddr;
2604 struct sadb_x_nat_t_frag *frag;
2605
2606 /* sanity check */
2607 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2608 panic("key_nat_map: NULL pointer is passed.");
2609
2610 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2611 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2612 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2613 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2614 return key_senderror(so, m, EINVAL);
2615 }
2616 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2617 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2618 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2619 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n"));
2620 return key_senderror(so, m, EINVAL);
2621 }
2622
2623 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2624 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2625 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2626 return key_senderror(so, m, EINVAL);
2627 }
2628
2629 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2630 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2631 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2632 return key_senderror(so, m, EINVAL);
2633 }
2634
2635 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2636 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2637 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n"));
2638 return key_senderror(so, m, EINVAL);
2639 }
2640
2641 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2642 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2643 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2644 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
2645 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
2646 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2647
2648 /*
2649 * XXX handle that, it should also contain a SA, or anything
2650 * that enable to update the SA information.
2651 */
2652
2653 return 0;
2654 }
2655
2656 static struct mbuf *
2657 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2658 {
2659 struct mbuf *result = NULL, *m;
2660
2661 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2662 if (!m)
2663 goto fail;
2664 result = m;
2665
2666 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2667 &sp->spidx.src.sa, sp->spidx.prefs,
2668 sp->spidx.ul_proto);
2669 if (!m)
2670 goto fail;
2671 m_cat(result, m);
2672
2673 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2674 &sp->spidx.dst.sa, sp->spidx.prefd,
2675 sp->spidx.ul_proto);
2676 if (!m)
2677 goto fail;
2678 m_cat(result, m);
2679
2680 m = key_sp2msg(sp);
2681 if (!m)
2682 goto fail;
2683 m_cat(result, m);
2684
2685 if ((result->m_flags & M_PKTHDR) == 0)
2686 goto fail;
2687
2688 if (result->m_len < sizeof(struct sadb_msg)) {
2689 result = m_pullup(result, sizeof(struct sadb_msg));
2690 if (result == NULL)
2691 goto fail;
2692 }
2693
2694 result->m_pkthdr.len = 0;
2695 for (m = result; m; m = m->m_next)
2696 result->m_pkthdr.len += m->m_len;
2697
2698 mtod(result, struct sadb_msg *)->sadb_msg_len =
2699 PFKEY_UNIT64(result->m_pkthdr.len);
2700
2701 return result;
2702
2703 fail:
2704 m_freem(result);
2705 return NULL;
2706 }
2707
2708 /*
2709 * get PFKEY message length for security policy and request.
2710 */
2711 static u_int
2712 key_getspreqmsglen(const struct secpolicy *sp)
2713 {
2714 u_int tlen;
2715
2716 tlen = sizeof(struct sadb_x_policy);
2717
2718 /* if is the policy for ipsec ? */
2719 if (sp->policy != IPSEC_POLICY_IPSEC)
2720 return tlen;
2721
2722 /* get length of ipsec requests */
2723 {
2724 const struct ipsecrequest *isr;
2725 int len;
2726
2727 for (isr = sp->req; isr != NULL; isr = isr->next) {
2728 len = sizeof(struct sadb_x_ipsecrequest)
2729 + isr->saidx.src.sa.sa_len
2730 + isr->saidx.dst.sa.sa_len;
2731
2732 tlen += PFKEY_ALIGN8(len);
2733 }
2734 }
2735
2736 return tlen;
2737 }
2738
2739 /*
2740 * SADB_SPDEXPIRE processing
2741 * send
2742 * <base, address(SD), lifetime(CH), policy>
2743 * to KMD by PF_KEY.
2744 *
2745 * OUT: 0 : succeed
2746 * others : error number
2747 */
2748 static int
2749 key_spdexpire(struct secpolicy *sp)
2750 {
2751 int s;
2752 struct mbuf *result = NULL, *m;
2753 int len;
2754 int error = -1;
2755 struct sadb_lifetime *lt;
2756
2757 /* XXX: Why do we lock ? */
2758 s = splsoftnet(); /*called from softclock()*/
2759
2760 /* sanity check */
2761 if (sp == NULL)
2762 panic("key_spdexpire: NULL pointer is passed");
2763
2764 /* set msg header */
2765 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2766 if (!m) {
2767 error = ENOBUFS;
2768 goto fail;
2769 }
2770 result = m;
2771
2772 /* create lifetime extension (current and hard) */
2773 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2774 m = key_alloc_mbuf(len);
2775 if (!m || m->m_next) { /*XXX*/
2776 if (m)
2777 m_freem(m);
2778 error = ENOBUFS;
2779 goto fail;
2780 }
2781 memset(mtod(m, void *), 0, len);
2782 lt = mtod(m, struct sadb_lifetime *);
2783 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2784 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2785 lt->sadb_lifetime_allocations = 0;
2786 lt->sadb_lifetime_bytes = 0;
2787 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime;
2788 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime;
2789 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
2790 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2791 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2792 lt->sadb_lifetime_allocations = 0;
2793 lt->sadb_lifetime_bytes = 0;
2794 lt->sadb_lifetime_addtime = sp->lifetime;
2795 lt->sadb_lifetime_usetime = sp->validtime;
2796 m_cat(result, m);
2797
2798 /* set sadb_address for source */
2799 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2800 &sp->spidx.src.sa,
2801 sp->spidx.prefs, sp->spidx.ul_proto);
2802 if (!m) {
2803 error = ENOBUFS;
2804 goto fail;
2805 }
2806 m_cat(result, m);
2807
2808 /* set sadb_address for destination */
2809 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2810 &sp->spidx.dst.sa,
2811 sp->spidx.prefd, sp->spidx.ul_proto);
2812 if (!m) {
2813 error = ENOBUFS;
2814 goto fail;
2815 }
2816 m_cat(result, m);
2817
2818 /* set secpolicy */
2819 m = key_sp2msg(sp);
2820 if (!m) {
2821 error = ENOBUFS;
2822 goto fail;
2823 }
2824 m_cat(result, m);
2825
2826 if ((result->m_flags & M_PKTHDR) == 0) {
2827 error = EINVAL;
2828 goto fail;
2829 }
2830
2831 if (result->m_len < sizeof(struct sadb_msg)) {
2832 result = m_pullup(result, sizeof(struct sadb_msg));
2833 if (result == NULL) {
2834 error = ENOBUFS;
2835 goto fail;
2836 }
2837 }
2838
2839 result->m_pkthdr.len = 0;
2840 for (m = result; m; m = m->m_next)
2841 result->m_pkthdr.len += m->m_len;
2842
2843 mtod(result, struct sadb_msg *)->sadb_msg_len =
2844 PFKEY_UNIT64(result->m_pkthdr.len);
2845
2846 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2847
2848 fail:
2849 if (result)
2850 m_freem(result);
2851 splx(s);
2852 return error;
2853 }
2854
2855 /* %%% SAD management */
2856 /*
2857 * allocating a memory for new SA head, and copy from the values of mhp.
2858 * OUT: NULL : failure due to the lack of memory.
2859 * others : pointer to new SA head.
2860 */
2861 static struct secashead *
2862 key_newsah(const struct secasindex *saidx)
2863 {
2864 struct secashead *newsah;
2865
2866 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx"));
2867
2868 newsah = (struct secashead *)
2869 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO);
2870 if (newsah != NULL) {
2871 int i;
2872 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2873 LIST_INIT(&newsah->savtree[i]);
2874 newsah->saidx = *saidx;
2875
2876 /* add to saidxtree */
2877 newsah->state = SADB_SASTATE_MATURE;
2878 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2879 }
2880 return(newsah);
2881 }
2882
2883 /*
2884 * delete SA index and all SA registerd.
2885 */
2886 static void
2887 key_delsah(struct secashead *sah)
2888 {
2889 struct secasvar *sav, *nextsav;
2890 u_int stateidx, state;
2891 int s;
2892 int zombie = 0;
2893
2894 /* sanity check */
2895 if (sah == NULL)
2896 panic("key_delsah: NULL pointer is passed");
2897
2898 s = splsoftnet(); /*called from softclock()*/
2899
2900 /* searching all SA registerd in the secindex. */
2901 for (stateidx = 0;
2902 stateidx < _ARRAYLEN(saorder_state_any);
2903 stateidx++) {
2904
2905 state = saorder_state_any[stateidx];
2906 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2907 sav != NULL;
2908 sav = nextsav) {
2909
2910 nextsav = LIST_NEXT(sav, chain);
2911
2912 if (sav->refcnt == 0) {
2913 /* sanity check */
2914 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2915 KEY_FREESAV(&sav);
2916 } else {
2917 /* give up to delete this sa */
2918 zombie++;
2919 }
2920 }
2921 }
2922
2923 /* don't delete sah only if there are savs. */
2924 if (zombie) {
2925 splx(s);
2926 return;
2927 }
2928
2929 rtcache_free(&sah->sa_route);
2930
2931 /* remove from tree of SA index */
2932 if (__LIST_CHAINED(sah))
2933 LIST_REMOVE(sah, chain);
2934
2935 KFREE(sah);
2936
2937 splx(s);
2938 return;
2939 }
2940
2941 /*
2942 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2943 * and copy the values of mhp into new buffer.
2944 * When SAD message type is GETSPI:
2945 * to set sequence number from acq_seq++,
2946 * to set zero to SPI.
2947 * not to call key_setsava().
2948 * OUT: NULL : fail
2949 * others : pointer to new secasvar.
2950 *
2951 * does not modify mbuf. does not free mbuf on error.
2952 */
2953 static struct secasvar *
2954 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2955 struct secashead *sah, int *errp,
2956 const char* where, int tag)
2957 {
2958 struct secasvar *newsav;
2959 const struct sadb_sa *xsa;
2960
2961 /* sanity check */
2962 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2963 panic("key_newsa: NULL pointer is passed");
2964
2965 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2966 if (newsav == NULL) {
2967 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2968 *errp = ENOBUFS;
2969 goto done;
2970 }
2971 memset(newsav, 0, sizeof(struct secasvar));
2972
2973 switch (mhp->msg->sadb_msg_type) {
2974 case SADB_GETSPI:
2975 newsav->spi = 0;
2976
2977 #ifdef IPSEC_DOSEQCHECK
2978 /* sync sequence number */
2979 if (mhp->msg->sadb_msg_seq == 0)
2980 newsav->seq =
2981 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2982 else
2983 #endif
2984 newsav->seq = mhp->msg->sadb_msg_seq;
2985 break;
2986
2987 case SADB_ADD:
2988 /* sanity check */
2989 if (mhp->ext[SADB_EXT_SA] == NULL) {
2990 KFREE(newsav), newsav = NULL;
2991 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2992 *errp = EINVAL;
2993 goto done;
2994 }
2995 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2996 newsav->spi = xsa->sadb_sa_spi;
2997 newsav->seq = mhp->msg->sadb_msg_seq;
2998 break;
2999 default:
3000 KFREE(newsav), newsav = NULL;
3001 *errp = EINVAL;
3002 goto done;
3003 }
3004
3005 /* copy sav values */
3006 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3007 *errp = key_setsaval(newsav, m, mhp);
3008 if (*errp) {
3009 KFREE(newsav), newsav = NULL;
3010 goto done;
3011 }
3012 }
3013
3014 /* reset created */
3015 newsav->created = time_uptime;
3016 newsav->pid = mhp->msg->sadb_msg_pid;
3017
3018 /* add to satree */
3019 newsav->sah = sah;
3020 newsav->refcnt = 1;
3021 newsav->state = SADB_SASTATE_LARVAL;
3022 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
3023 secasvar, chain);
3024 done:
3025 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3026 printf("DP %s from %s:%u return SP:%p\n", __func__,
3027 where, tag, newsav));
3028
3029 return newsav;
3030 }
3031
3032 /*
3033 * free() SA variable entry.
3034 */
3035 static void
3036 key_delsav(struct secasvar *sav)
3037 {
3038 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav"));
3039 IPSEC_ASSERT(sav->refcnt == 0,
3040 ("key_delsav: reference count %u > 0", sav->refcnt));
3041
3042 /* remove from SA header */
3043 if (__LIST_CHAINED(sav))
3044 LIST_REMOVE(sav, chain);
3045
3046 /*
3047 * Cleanup xform state. Note that zeroize'ing causes the
3048 * keys to be cleared; otherwise we must do it ourself.
3049 */
3050 if (sav->tdb_xform != NULL) {
3051 sav->tdb_xform->xf_zeroize(sav);
3052 sav->tdb_xform = NULL;
3053 } else {
3054 if (sav->key_auth != NULL)
3055 explicit_memset(_KEYBUF(sav->key_auth), 0,
3056 _KEYLEN(sav->key_auth));
3057 if (sav->key_enc != NULL)
3058 explicit_memset(_KEYBUF(sav->key_enc), 0,
3059 _KEYLEN(sav->key_enc));
3060 }
3061 if (sav->key_auth != NULL) {
3062 KFREE(sav->key_auth);
3063 sav->key_auth = NULL;
3064 }
3065 if (sav->key_enc != NULL) {
3066 KFREE(sav->key_enc);
3067 sav->key_enc = NULL;
3068 }
3069 if (sav->replay != NULL) {
3070 KFREE(sav->replay);
3071 sav->replay = NULL;
3072 }
3073 if (sav->lft_c != NULL) {
3074 KFREE(sav->lft_c);
3075 sav->lft_c = NULL;
3076 }
3077 if (sav->lft_h != NULL) {
3078 KFREE(sav->lft_h);
3079 sav->lft_h = NULL;
3080 }
3081 if (sav->lft_s != NULL) {
3082 KFREE(sav->lft_s);
3083 sav->lft_s = NULL;
3084 }
3085
3086 KFREE(sav);
3087
3088 return;
3089 }
3090
3091 /*
3092 * search SAD.
3093 * OUT:
3094 * NULL : not found
3095 * others : found, pointer to a SA.
3096 */
3097 static struct secashead *
3098 key_getsah(const struct secasindex *saidx)
3099 {
3100 struct secashead *sah;
3101
3102 LIST_FOREACH(sah, &sahtree, chain) {
3103 if (sah->state == SADB_SASTATE_DEAD)
3104 continue;
3105 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
3106 return sah;
3107 }
3108
3109 return NULL;
3110 }
3111
3112 /*
3113 * check not to be duplicated SPI.
3114 * NOTE: this function is too slow due to searching all SAD.
3115 * OUT:
3116 * NULL : not found
3117 * others : found, pointer to a SA.
3118 */
3119 static struct secasvar *
3120 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3121 {
3122 struct secashead *sah;
3123 struct secasvar *sav;
3124
3125 /* check address family */
3126 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3127 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
3128 return NULL;
3129 }
3130
3131 /* check all SAD */
3132 LIST_FOREACH(sah, &sahtree, chain) {
3133 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3134 continue;
3135 sav = key_getsavbyspi(sah, spi);
3136 if (sav != NULL)
3137 return sav;
3138 }
3139
3140 return NULL;
3141 }
3142
3143 /*
3144 * search SAD litmited alive SA, protocol, SPI.
3145 * OUT:
3146 * NULL : not found
3147 * others : found, pointer to a SA.
3148 */
3149 static struct secasvar *
3150 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3151 {
3152 struct secasvar *sav;
3153 u_int stateidx, state;
3154
3155 /* search all status */
3156 for (stateidx = 0;
3157 stateidx < _ARRAYLEN(saorder_state_alive);
3158 stateidx++) {
3159
3160 state = saorder_state_alive[stateidx];
3161 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3162
3163 /* sanity check */
3164 if (sav->state != state) {
3165 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
3166 "invalid sav->state (queue: %d SA: %d)\n",
3167 state, sav->state));
3168 continue;
3169 }
3170
3171 if (sav->spi == spi)
3172 return sav;
3173 }
3174 }
3175
3176 return NULL;
3177 }
3178
3179 /*
3180 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3181 * You must update these if need.
3182 * OUT: 0: success.
3183 * !0: failure.
3184 *
3185 * does not modify mbuf. does not free mbuf on error.
3186 */
3187 static int
3188 key_setsaval(struct secasvar *sav, struct mbuf *m,
3189 const struct sadb_msghdr *mhp)
3190 {
3191 int error = 0;
3192
3193 /* sanity check */
3194 if (m == NULL || mhp == NULL || mhp->msg == NULL)
3195 panic("key_setsaval: NULL pointer is passed");
3196
3197 /* initialization */
3198 sav->replay = NULL;
3199 sav->key_auth = NULL;
3200 sav->key_enc = NULL;
3201 sav->lft_c = NULL;
3202 sav->lft_h = NULL;
3203 sav->lft_s = NULL;
3204 sav->tdb_xform = NULL; /* transform */
3205 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3206 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3207 sav->tdb_compalgxform = NULL; /* compression algorithm */
3208 sav->natt_type = 0;
3209 sav->esp_frag = 0;
3210
3211 /* SA */
3212 if (mhp->ext[SADB_EXT_SA] != NULL) {
3213 const struct sadb_sa *sa0;
3214
3215 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3216 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3217 error = EINVAL;
3218 goto fail;
3219 }
3220
3221 sav->alg_auth = sa0->sadb_sa_auth;
3222 sav->alg_enc = sa0->sadb_sa_encrypt;
3223 sav->flags = sa0->sadb_sa_flags;
3224
3225 /* replay window */
3226 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3227 sav->replay = (struct secreplay *)
3228 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO);
3229 if (sav->replay == NULL) {
3230 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3231 error = ENOBUFS;
3232 goto fail;
3233 }
3234 if (sa0->sadb_sa_replay != 0)
3235 sav->replay->bitmap = (char*)(sav->replay+1);
3236 sav->replay->wsize = sa0->sadb_sa_replay;
3237 }
3238 }
3239
3240 /* Authentication keys */
3241 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3242 const struct sadb_key *key0;
3243 int len;
3244
3245 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3246 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3247
3248 error = 0;
3249 if (len < sizeof(*key0)) {
3250 error = EINVAL;
3251 goto fail;
3252 }
3253 switch (mhp->msg->sadb_msg_satype) {
3254 case SADB_SATYPE_AH:
3255 case SADB_SATYPE_ESP:
3256 case SADB_X_SATYPE_TCPSIGNATURE:
3257 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3258 sav->alg_auth != SADB_X_AALG_NULL)
3259 error = EINVAL;
3260 break;
3261 case SADB_X_SATYPE_IPCOMP:
3262 default:
3263 error = EINVAL;
3264 break;
3265 }
3266 if (error) {
3267 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3268 goto fail;
3269 }
3270
3271 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3272 if (sav->key_auth == NULL) {
3273 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3274 error = ENOBUFS;
3275 goto fail;
3276 }
3277 }
3278
3279 /* Encryption key */
3280 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3281 const struct sadb_key *key0;
3282 int len;
3283
3284 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3285 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3286
3287 error = 0;
3288 if (len < sizeof(*key0)) {
3289 error = EINVAL;
3290 goto fail;
3291 }
3292 switch (mhp->msg->sadb_msg_satype) {
3293 case SADB_SATYPE_ESP:
3294 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3295 sav->alg_enc != SADB_EALG_NULL) {
3296 error = EINVAL;
3297 break;
3298 }
3299 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3300 if (sav->key_enc == NULL) {
3301 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3302 error = ENOBUFS;
3303 goto fail;
3304 }
3305 break;
3306 case SADB_X_SATYPE_IPCOMP:
3307 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3308 error = EINVAL;
3309 sav->key_enc = NULL; /*just in case*/
3310 break;
3311 case SADB_SATYPE_AH:
3312 case SADB_X_SATYPE_TCPSIGNATURE:
3313 default:
3314 error = EINVAL;
3315 break;
3316 }
3317 if (error) {
3318 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3319 goto fail;
3320 }
3321 }
3322
3323 /* set iv */
3324 sav->ivlen = 0;
3325
3326 switch (mhp->msg->sadb_msg_satype) {
3327 case SADB_SATYPE_AH:
3328 error = xform_init(sav, XF_AH);
3329 break;
3330 case SADB_SATYPE_ESP:
3331 error = xform_init(sav, XF_ESP);
3332 break;
3333 case SADB_X_SATYPE_IPCOMP:
3334 error = xform_init(sav, XF_IPCOMP);
3335 break;
3336 case SADB_X_SATYPE_TCPSIGNATURE:
3337 error = xform_init(sav, XF_TCPSIGNATURE);
3338 break;
3339 }
3340 if (error) {
3341 ipseclog((LOG_DEBUG,
3342 "key_setsaval: unable to initialize SA type %u.\n",
3343 mhp->msg->sadb_msg_satype));
3344 goto fail;
3345 }
3346
3347 /* reset created */
3348 sav->created = time_uptime;
3349
3350 /* make lifetime for CURRENT */
3351 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3352 sizeof(struct sadb_lifetime));
3353 if (sav->lft_c == NULL) {
3354 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3355 error = ENOBUFS;
3356 goto fail;
3357 }
3358
3359 sav->lft_c->sadb_lifetime_len =
3360 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3361 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3362 sav->lft_c->sadb_lifetime_allocations = 0;
3363 sav->lft_c->sadb_lifetime_bytes = 0;
3364 sav->lft_c->sadb_lifetime_addtime = time_uptime;
3365 sav->lft_c->sadb_lifetime_usetime = 0;
3366
3367 /* lifetimes for HARD and SOFT */
3368 {
3369 const struct sadb_lifetime *lft0;
3370
3371 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3372 if (lft0 != NULL) {
3373 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3374 error = EINVAL;
3375 goto fail;
3376 }
3377 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3378 sizeof(*lft0));
3379 if (sav->lft_h == NULL) {
3380 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3381 error = ENOBUFS;
3382 goto fail;
3383 }
3384 /* to be initialize ? */
3385 }
3386
3387 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3388 if (lft0 != NULL) {
3389 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3390 error = EINVAL;
3391 goto fail;
3392 }
3393 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3394 sizeof(*lft0));
3395 if (sav->lft_s == NULL) {
3396 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3397 error = ENOBUFS;
3398 goto fail;
3399 }
3400 /* to be initialize ? */
3401 }
3402 }
3403
3404 return 0;
3405
3406 fail:
3407 /* initialization */
3408 if (sav->replay != NULL) {
3409 KFREE(sav->replay);
3410 sav->replay = NULL;
3411 }
3412 if (sav->key_auth != NULL) {
3413 KFREE(sav->key_auth);
3414 sav->key_auth = NULL;
3415 }
3416 if (sav->key_enc != NULL) {
3417 KFREE(sav->key_enc);
3418 sav->key_enc = NULL;
3419 }
3420 if (sav->lft_c != NULL) {
3421 KFREE(sav->lft_c);
3422 sav->lft_c = NULL;
3423 }
3424 if (sav->lft_h != NULL) {
3425 KFREE(sav->lft_h);
3426 sav->lft_h = NULL;
3427 }
3428 if (sav->lft_s != NULL) {
3429 KFREE(sav->lft_s);
3430 sav->lft_s = NULL;
3431 }
3432
3433 return error;
3434 }
3435
3436 /*
3437 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3438 * OUT: 0: valid
3439 * other: errno
3440 */
3441 static int
3442 key_mature(struct secasvar *sav)
3443 {
3444 int error;
3445
3446 /* check SPI value */
3447 switch (sav->sah->saidx.proto) {
3448 case IPPROTO_ESP:
3449 case IPPROTO_AH:
3450 if (ntohl(sav->spi) <= 255) {
3451 ipseclog((LOG_DEBUG,
3452 "key_mature: illegal range of SPI %u.\n",
3453 (u_int32_t)ntohl(sav->spi)));
3454 return EINVAL;
3455 }
3456 break;
3457 }
3458
3459 /* check satype */
3460 switch (sav->sah->saidx.proto) {
3461 case IPPROTO_ESP:
3462 /* check flags */
3463 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3464 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3465 ipseclog((LOG_DEBUG, "key_mature: "
3466 "invalid flag (derived) given to old-esp.\n"));
3467 return EINVAL;
3468 }
3469 error = xform_init(sav, XF_ESP);
3470 break;
3471 case IPPROTO_AH:
3472 /* check flags */
3473 if (sav->flags & SADB_X_EXT_DERIV) {
3474 ipseclog((LOG_DEBUG, "key_mature: "
3475 "invalid flag (derived) given to AH SA.\n"));
3476 return EINVAL;
3477 }
3478 if (sav->alg_enc != SADB_EALG_NONE) {
3479 ipseclog((LOG_DEBUG, "key_mature: "
3480 "protocol and algorithm mismated.\n"));
3481 return(EINVAL);
3482 }
3483 error = xform_init(sav, XF_AH);
3484 break;
3485 case IPPROTO_IPCOMP:
3486 if (sav->alg_auth != SADB_AALG_NONE) {
3487 ipseclog((LOG_DEBUG, "key_mature: "
3488 "protocol and algorithm mismated.\n"));
3489 return(EINVAL);
3490 }
3491 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3492 && ntohl(sav->spi) >= 0x10000) {
3493 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3494 return(EINVAL);
3495 }
3496 error = xform_init(sav, XF_IPCOMP);
3497 break;
3498 case IPPROTO_TCP:
3499 if (sav->alg_enc != SADB_EALG_NONE) {
3500 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3501 "mismated.\n", __func__));
3502 return(EINVAL);
3503 }
3504 error = xform_init(sav, XF_TCPSIGNATURE);
3505 break;
3506 default:
3507 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3508 error = EPROTONOSUPPORT;
3509 break;
3510 }
3511 if (error == 0)
3512 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3513 return (error);
3514 }
3515
3516 /*
3517 * subroutine for SADB_GET and SADB_DUMP.
3518 */
3519 static struct mbuf *
3520 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3521 u_int32_t seq, u_int32_t pid)
3522 {
3523 struct mbuf *result = NULL, *tres = NULL, *m;
3524 int l = 0;
3525 int i;
3526 void *p;
3527 struct sadb_lifetime lt;
3528 int dumporder[] = {
3529 SADB_EXT_SA, SADB_X_EXT_SA2,
3530 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3531 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3532 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3533 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3534 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3535 SADB_X_EXT_NAT_T_TYPE,
3536 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3537 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3538 SADB_X_EXT_NAT_T_FRAG,
3539
3540 };
3541
3542 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3543 if (m == NULL)
3544 goto fail;
3545 result = m;
3546
3547 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3548 m = NULL;
3549 p = NULL;
3550 switch (dumporder[i]) {
3551 case SADB_EXT_SA:
3552 m = key_setsadbsa(sav);
3553 break;
3554
3555 case SADB_X_EXT_SA2:
3556 m = key_setsadbxsa2(sav->sah->saidx.mode,
3557 sav->replay ? sav->replay->count : 0,
3558 sav->sah->saidx.reqid);
3559 break;
3560
3561 case SADB_EXT_ADDRESS_SRC:
3562 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3563 &sav->sah->saidx.src.sa,
3564 FULLMASK, IPSEC_ULPROTO_ANY);
3565 break;
3566
3567 case SADB_EXT_ADDRESS_DST:
3568 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3569 &sav->sah->saidx.dst.sa,
3570 FULLMASK, IPSEC_ULPROTO_ANY);
3571 break;
3572
3573 case SADB_EXT_KEY_AUTH:
3574 if (!sav->key_auth)
3575 continue;
3576 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3577 p = sav->key_auth;
3578 break;
3579
3580 case SADB_EXT_KEY_ENCRYPT:
3581 if (!sav->key_enc)
3582 continue;
3583 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3584 p = sav->key_enc;
3585 break;
3586
3587 case SADB_EXT_LIFETIME_CURRENT:
3588 if (!sav->lft_c)
3589 continue;
3590 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3591 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime));
3592 lt.sadb_lifetime_addtime += time_second - time_uptime;
3593 lt.sadb_lifetime_usetime += time_second - time_uptime;
3594 p = <
3595 break;
3596
3597 case SADB_EXT_LIFETIME_HARD:
3598 if (!sav->lft_h)
3599 continue;
3600 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3601 p = sav->lft_h;
3602 break;
3603
3604 case SADB_EXT_LIFETIME_SOFT:
3605 if (!sav->lft_s)
3606 continue;
3607 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3608 p = sav->lft_s;
3609 break;
3610
3611 case SADB_X_EXT_NAT_T_TYPE:
3612 m = key_setsadbxtype(sav->natt_type);
3613 break;
3614
3615 case SADB_X_EXT_NAT_T_DPORT:
3616 if (sav->natt_type == 0)
3617 continue;
3618 m = key_setsadbxport(
3619 key_portfromsaddr(&sav->sah->saidx.dst),
3620 SADB_X_EXT_NAT_T_DPORT);
3621 break;
3622
3623 case SADB_X_EXT_NAT_T_SPORT:
3624 if (sav->natt_type == 0)
3625 continue;
3626 m = key_setsadbxport(
3627 key_portfromsaddr(&sav->sah->saidx.src),
3628 SADB_X_EXT_NAT_T_SPORT);
3629 break;
3630
3631 case SADB_X_EXT_NAT_T_FRAG:
3632 /* don't send frag info if not set */
3633 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3634 continue;
3635 m = key_setsadbxfrag(sav->esp_frag);
3636 break;
3637
3638 case SADB_X_EXT_NAT_T_OAI:
3639 case SADB_X_EXT_NAT_T_OAR:
3640 continue;
3641
3642 case SADB_EXT_ADDRESS_PROXY:
3643 case SADB_EXT_IDENTITY_SRC:
3644 case SADB_EXT_IDENTITY_DST:
3645 /* XXX: should we brought from SPD ? */
3646 case SADB_EXT_SENSITIVITY:
3647 default:
3648 continue;
3649 }
3650
3651 KASSERT(!(m && p));
3652 if (!m && !p)
3653 goto fail;
3654 if (p && tres) {
3655 M_PREPEND(tres, l, M_DONTWAIT);
3656 if (!tres)
3657 goto fail;
3658 memcpy(mtod(tres, void *), p, l);
3659 continue;
3660 }
3661 if (p) {
3662 m = key_alloc_mbuf(l);
3663 if (!m)
3664 goto fail;
3665 m_copyback(m, 0, l, p);
3666 }
3667
3668 if (tres)
3669 m_cat(m, tres);
3670 tres = m;
3671 }
3672
3673 m_cat(result, tres);
3674 tres = NULL; /* avoid free on error below */
3675
3676 if (result->m_len < sizeof(struct sadb_msg)) {
3677 result = m_pullup(result, sizeof(struct sadb_msg));
3678 if (result == NULL)
3679 goto fail;
3680 }
3681
3682 result->m_pkthdr.len = 0;
3683 for (m = result; m; m = m->m_next)
3684 result->m_pkthdr.len += m->m_len;
3685
3686 mtod(result, struct sadb_msg *)->sadb_msg_len =
3687 PFKEY_UNIT64(result->m_pkthdr.len);
3688
3689 return result;
3690
3691 fail:
3692 m_freem(result);
3693 m_freem(tres);
3694 return NULL;
3695 }
3696
3697
3698 /*
3699 * set a type in sadb_x_nat_t_type
3700 */
3701 static struct mbuf *
3702 key_setsadbxtype(u_int16_t type)
3703 {
3704 struct mbuf *m;
3705 size_t len;
3706 struct sadb_x_nat_t_type *p;
3707
3708 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3709
3710 m = key_alloc_mbuf(len);
3711 if (!m || m->m_next) { /*XXX*/
3712 if (m)
3713 m_freem(m);
3714 return NULL;
3715 }
3716
3717 p = mtod(m, struct sadb_x_nat_t_type *);
3718
3719 memset(p, 0, len);
3720 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3721 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3722 p->sadb_x_nat_t_type_type = type;
3723
3724 return m;
3725 }
3726 /*
3727 * set a port in sadb_x_nat_t_port. port is in network order
3728 */
3729 static struct mbuf *
3730 key_setsadbxport(u_int16_t port, u_int16_t type)
3731 {
3732 struct mbuf *m;
3733 size_t len;
3734 struct sadb_x_nat_t_port *p;
3735
3736 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3737
3738 m = key_alloc_mbuf(len);
3739 if (!m || m->m_next) { /*XXX*/
3740 if (m)
3741 m_freem(m);
3742 return NULL;
3743 }
3744
3745 p = mtod(m, struct sadb_x_nat_t_port *);
3746
3747 memset(p, 0, len);
3748 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3749 p->sadb_x_nat_t_port_exttype = type;
3750 p->sadb_x_nat_t_port_port = port;
3751
3752 return m;
3753 }
3754
3755 /*
3756 * set fragmentation info in sadb_x_nat_t_frag
3757 */
3758 static struct mbuf *
3759 key_setsadbxfrag(u_int16_t flen)
3760 {
3761 struct mbuf *m;
3762 size_t len;
3763 struct sadb_x_nat_t_frag *p;
3764
3765 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3766
3767 m = key_alloc_mbuf(len);
3768 if (!m || m->m_next) { /*XXX*/
3769 if (m)
3770 m_freem(m);
3771 return NULL;
3772 }
3773
3774 p = mtod(m, struct sadb_x_nat_t_frag *);
3775
3776 memset(p, 0, len);
3777 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3778 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3779 p->sadb_x_nat_t_frag_fraglen = flen;
3780
3781 return m;
3782 }
3783
3784 /*
3785 * Get port from sockaddr, port is in network order
3786 */
3787 u_int16_t
3788 key_portfromsaddr(const union sockaddr_union *saddr)
3789 {
3790 u_int16_t port;
3791
3792 switch (saddr->sa.sa_family) {
3793 case AF_INET: {
3794 port = saddr->sin.sin_port;
3795 break;
3796 }
3797 #ifdef INET6
3798 case AF_INET6: {
3799 port = saddr->sin6.sin6_port;
3800 break;
3801 }
3802 #endif
3803 default:
3804 printf("%s: unexpected address family\n", __func__);
3805 port = 0;
3806 break;
3807 }
3808
3809 return port;
3810 }
3811
3812
3813 /*
3814 * Set port is struct sockaddr. port is in network order
3815 */
3816 static void
3817 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
3818 {
3819 switch (saddr->sa.sa_family) {
3820 case AF_INET: {
3821 saddr->sin.sin_port = port;
3822 break;
3823 }
3824 #ifdef INET6
3825 case AF_INET6: {
3826 saddr->sin6.sin6_port = port;
3827 break;
3828 }
3829 #endif
3830 default:
3831 printf("%s: unexpected address family %d\n", __func__,
3832 saddr->sa.sa_family);
3833 break;
3834 }
3835
3836 return;
3837 }
3838
3839 /*
3840 * Safety check sa_len
3841 */
3842 static int
3843 key_checksalen(const union sockaddr_union *saddr)
3844 {
3845 switch (saddr->sa.sa_family) {
3846 case AF_INET:
3847 if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
3848 return -1;
3849 break;
3850 #ifdef INET6
3851 case AF_INET6:
3852 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
3853 return -1;
3854 break;
3855 #endif
3856 default:
3857 printf("%s: unexpected sa_family %d\n", __func__,
3858 saddr->sa.sa_family);
3859 return -1;
3860 break;
3861 }
3862 return 0;
3863 }
3864
3865
3866 /*
3867 * set data into sadb_msg.
3868 */
3869 static struct mbuf *
3870 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
3871 u_int32_t seq, pid_t pid, u_int16_t reserved)
3872 {
3873 struct mbuf *m;
3874 struct sadb_msg *p;
3875 int len;
3876
3877 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3878 if (len > MCLBYTES)
3879 return NULL;
3880 MGETHDR(m, M_DONTWAIT, MT_DATA);
3881 if (m && len > MHLEN) {
3882 MCLGET(m, M_DONTWAIT);
3883 if ((m->m_flags & M_EXT) == 0) {
3884 m_freem(m);
3885 m = NULL;
3886 }
3887 }
3888 if (!m)
3889 return NULL;
3890 m->m_pkthdr.len = m->m_len = len;
3891 m->m_next = NULL;
3892
3893 p = mtod(m, struct sadb_msg *);
3894
3895 memset(p, 0, len);
3896 p->sadb_msg_version = PF_KEY_V2;
3897 p->sadb_msg_type = type;
3898 p->sadb_msg_errno = 0;
3899 p->sadb_msg_satype = satype;
3900 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3901 p->sadb_msg_reserved = reserved;
3902 p->sadb_msg_seq = seq;
3903 p->sadb_msg_pid = (u_int32_t)pid;
3904
3905 return m;
3906 }
3907
3908 /*
3909 * copy secasvar data into sadb_address.
3910 */
3911 static struct mbuf *
3912 key_setsadbsa(struct secasvar *sav)
3913 {
3914 struct mbuf *m;
3915 struct sadb_sa *p;
3916 int len;
3917
3918 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3919 m = key_alloc_mbuf(len);
3920 if (!m || m->m_next) { /*XXX*/
3921 if (m)
3922 m_freem(m);
3923 return NULL;
3924 }
3925
3926 p = mtod(m, struct sadb_sa *);
3927
3928 memset(p, 0, len);
3929 p->sadb_sa_len = PFKEY_UNIT64(len);
3930 p->sadb_sa_exttype = SADB_EXT_SA;
3931 p->sadb_sa_spi = sav->spi;
3932 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3933 p->sadb_sa_state = sav->state;
3934 p->sadb_sa_auth = sav->alg_auth;
3935 p->sadb_sa_encrypt = sav->alg_enc;
3936 p->sadb_sa_flags = sav->flags;
3937
3938 return m;
3939 }
3940
3941 /*
3942 * set data into sadb_address.
3943 */
3944 static struct mbuf *
3945 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3946 u_int8_t prefixlen, u_int16_t ul_proto)
3947 {
3948 struct mbuf *m;
3949 struct sadb_address *p;
3950 size_t len;
3951
3952 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3953 PFKEY_ALIGN8(saddr->sa_len);
3954 m = key_alloc_mbuf(len);
3955 if (!m || m->m_next) { /*XXX*/
3956 if (m)
3957 m_freem(m);
3958 return NULL;
3959 }
3960
3961 p = mtod(m, struct sadb_address *);
3962
3963 memset(p, 0, len);
3964 p->sadb_address_len = PFKEY_UNIT64(len);
3965 p->sadb_address_exttype = exttype;
3966 p->sadb_address_proto = ul_proto;
3967 if (prefixlen == FULLMASK) {
3968 switch (saddr->sa_family) {
3969 case AF_INET:
3970 prefixlen = sizeof(struct in_addr) << 3;
3971 break;
3972 case AF_INET6:
3973 prefixlen = sizeof(struct in6_addr) << 3;
3974 break;
3975 default:
3976 ; /*XXX*/
3977 }
3978 }
3979 p->sadb_address_prefixlen = prefixlen;
3980 p->sadb_address_reserved = 0;
3981
3982 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3983 saddr, saddr->sa_len);
3984
3985 return m;
3986 }
3987
3988 #if 0
3989 /*
3990 * set data into sadb_ident.
3991 */
3992 static struct mbuf *
3993 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
3994 void *string, int stringlen, u_int64_t id)
3995 {
3996 struct mbuf *m;
3997 struct sadb_ident *p;
3998 size_t len;
3999
4000 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4001 m = key_alloc_mbuf(len);
4002 if (!m || m->m_next) { /*XXX*/
4003 if (m)
4004 m_freem(m);
4005 return NULL;
4006 }
4007
4008 p = mtod(m, struct sadb_ident *);
4009
4010 memset(p, 0, len);
4011 p->sadb_ident_len = PFKEY_UNIT64(len);
4012 p->sadb_ident_exttype = exttype;
4013 p->sadb_ident_type = idtype;
4014 p->sadb_ident_reserved = 0;
4015 p->sadb_ident_id = id;
4016
4017 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4018 string, stringlen);
4019
4020 return m;
4021 }
4022 #endif
4023
4024 /*
4025 * set data into sadb_x_sa2.
4026 */
4027 static struct mbuf *
4028 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4029 {
4030 struct mbuf *m;
4031 struct sadb_x_sa2 *p;
4032 size_t len;
4033
4034 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4035 m = key_alloc_mbuf(len);
4036 if (!m || m->m_next) { /*XXX*/
4037 if (m)
4038 m_freem(m);
4039 return NULL;
4040 }
4041
4042 p = mtod(m, struct sadb_x_sa2 *);
4043
4044 memset(p, 0, len);
4045 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4046 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4047 p->sadb_x_sa2_mode = mode;
4048 p->sadb_x_sa2_reserved1 = 0;
4049 p->sadb_x_sa2_reserved2 = 0;
4050 p->sadb_x_sa2_sequence = seq;
4051 p->sadb_x_sa2_reqid = reqid;
4052
4053 return m;
4054 }
4055
4056 /*
4057 * set data into sadb_x_policy
4058 */
4059 static struct mbuf *
4060 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
4061 {
4062 struct mbuf *m;
4063 struct sadb_x_policy *p;
4064 size_t len;
4065
4066 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4067 m = key_alloc_mbuf(len);
4068 if (!m || m->m_next) { /*XXX*/
4069 if (m)
4070 m_freem(m);
4071 return NULL;
4072 }
4073
4074 p = mtod(m, struct sadb_x_policy *);
4075
4076 memset(p, 0, len);
4077 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4078 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4079 p->sadb_x_policy_type = type;
4080 p->sadb_x_policy_dir = dir;
4081 p->sadb_x_policy_id = id;
4082
4083 return m;
4084 }
4085
4086 /* %%% utilities */
4087 /*
4088 * copy a buffer into the new buffer allocated.
4089 */
4090 static void *
4091 key_newbuf(const void *src, u_int len)
4092 {
4093 void *new;
4094
4095 KMALLOC(new, void *, len);
4096 if (new == NULL) {
4097 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
4098 return NULL;
4099 }
4100 memcpy(new, src, len);
4101
4102 return new;
4103 }
4104
4105 /* compare my own address
4106 * OUT: 1: true, i.e. my address.
4107 * 0: false
4108 */
4109 int
4110 key_ismyaddr(const struct sockaddr *sa)
4111 {
4112 #ifdef INET
4113 const struct sockaddr_in *sin;
4114 const struct in_ifaddr *ia;
4115 #endif
4116
4117 /* sanity check */
4118 if (sa == NULL)
4119 panic("key_ismyaddr: NULL pointer is passed");
4120
4121 switch (sa->sa_family) {
4122 #ifdef INET
4123 case AF_INET:
4124 sin = (const struct sockaddr_in *)sa;
4125 for (ia = in_ifaddrhead.tqh_first; ia;
4126 ia = ia->ia_link.tqe_next)
4127 {
4128 if (sin->sin_family == ia->ia_addr.sin_family &&
4129 sin->sin_len == ia->ia_addr.sin_len &&
4130 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4131 {
4132 return 1;
4133 }
4134 }
4135 break;
4136 #endif
4137 #ifdef INET6
4138 case AF_INET6:
4139 return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4140 #endif
4141 }
4142
4143 return 0;
4144 }
4145
4146 #ifdef INET6
4147 /*
4148 * compare my own address for IPv6.
4149 * 1: ours
4150 * 0: other
4151 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4152 */
4153 #include <netinet6/in6_var.h>
4154
4155 static int
4156 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4157 {
4158 const struct in6_ifaddr *ia;
4159 const struct in6_multi *in6m;
4160
4161 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
4162 if (key_sockaddrcmp((const struct sockaddr *)&sin6,
4163 (const struct sockaddr *)&ia->ia_addr, 0) == 0)
4164 return 1;
4165
4166 /*
4167 * XXX Multicast
4168 * XXX why do we care about multlicast here while we don't care
4169 * about IPv4 multicast??
4170 * XXX scope
4171 */
4172 in6m = NULL;
4173 #ifdef __FreeBSD__
4174 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
4175 #else
4176 for ((in6m) = ia->ia6_multiaddrs.lh_first;
4177 (in6m) != NULL &&
4178 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr);
4179 (in6m) = in6m->in6m_entry.le_next)
4180 continue;
4181 #endif
4182 if (in6m)
4183 return 1;
4184 }
4185
4186 /* loopback, just for safety */
4187 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4188 return 1;
4189
4190 return 0;
4191 }
4192 #endif /*INET6*/
4193
4194 static in_port_t
4195 key_getport(const void *v)
4196 {
4197 const struct sockaddr *sa = v;
4198 switch (sa->sa_family) {
4199 case AF_INET:
4200 return ((const struct sockaddr_in *)v)->sin_port;
4201 case AF_INET6:
4202 return ((const struct sockaddr_in6 *)v)->sin6_port;
4203 default:
4204 return 0;
4205 }
4206 }
4207 /*
4208 * compare two secasindex structure.
4209 * flag can specify to compare 2 saidxes.
4210 * compare two secasindex structure without both mode and reqid.
4211 * don't compare port.
4212 * IN:
4213 * saidx0: source, it can be in SAD.
4214 * saidx1: object.
4215 * OUT:
4216 * 1 : equal
4217 * 0 : not equal
4218 */
4219 static int
4220 key_cmpsaidx(
4221 const struct secasindex *saidx0,
4222 const struct secasindex *saidx1,
4223 int flag)
4224 {
4225 int chkport = 0;
4226 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4227
4228 /* sanity */
4229 if (saidx0 == NULL && saidx1 == NULL)
4230 return 1;
4231
4232 if (saidx0 == NULL || saidx1 == NULL)
4233 return 0;
4234
4235 if (saidx0->proto != saidx1->proto)
4236 return 0;
4237
4238 if (flag == CMP_EXACTLY) {
4239 if (saidx0->mode != saidx1->mode)
4240 return 0;
4241 if (saidx0->reqid != saidx1->reqid)
4242 return 0;
4243 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4244 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4245 return 0;
4246 } else {
4247
4248 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4249 if (flag == CMP_MODE_REQID
4250 ||flag == CMP_REQID) {
4251 /*
4252 * If reqid of SPD is non-zero, unique SA is required.
4253 * The result must be of same reqid in this case.
4254 */
4255 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4256 return 0;
4257 }
4258
4259 if (flag == CMP_MODE_REQID) {
4260 if (saidx0->mode != IPSEC_MODE_ANY
4261 && saidx0->mode != saidx1->mode)
4262 return 0;
4263 }
4264
4265
4266 sa0src = &saidx0->src.sa;
4267 sa0dst = &saidx0->dst.sa;
4268 sa1src = &saidx1->src.sa;
4269 sa1dst = &saidx1->dst.sa;
4270 /*
4271 * If NAT-T is enabled, check ports for tunnel mode.
4272 * Don't do it for transport mode, as there is no
4273 * port information available in the SP.
4274 * Also don't check ports if they are set to zero
4275 * in the SPD: This means we have a non-generated
4276 * SPD which can't know UDP ports.
4277 */
4278 if (saidx1->mode == IPSEC_MODE_TUNNEL) {
4279 chkport = key_getport(sa0src) && key_getport(sa0dst) &&
4280 key_getport(sa1src) && key_getport(sa1dst);
4281 }
4282
4283 if (key_sockaddrcmp(sa0src, sa1src, chkport) != 0) {
4284 return 0;
4285 }
4286 if (key_sockaddrcmp(sa0dst, sa1dst, chkport) != 0) {
4287 return 0;
4288 }
4289 }
4290
4291 return 1;
4292 }
4293
4294 /*
4295 * compare two secindex structure exactly.
4296 * IN:
4297 * spidx0: source, it is often in SPD.
4298 * spidx1: object, it is often from PFKEY message.
4299 * OUT:
4300 * 1 : equal
4301 * 0 : not equal
4302 */
4303 int
4304 key_cmpspidx_exactly(
4305 const struct secpolicyindex *spidx0,
4306 const struct secpolicyindex *spidx1)
4307 {
4308 /* sanity */
4309 if (spidx0 == NULL && spidx1 == NULL)
4310 return 1;
4311
4312 if (spidx0 == NULL || spidx1 == NULL)
4313 return 0;
4314
4315 if (spidx0->prefs != spidx1->prefs
4316 || spidx0->prefd != spidx1->prefd
4317 || spidx0->ul_proto != spidx1->ul_proto)
4318 return 0;
4319
4320 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4321 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4322 }
4323
4324 /*
4325 * compare two secindex structure with mask.
4326 * IN:
4327 * spidx0: source, it is often in SPD.
4328 * spidx1: object, it is often from IP header.
4329 * OUT:
4330 * 1 : equal
4331 * 0 : not equal
4332 */
4333 int
4334 key_cmpspidx_withmask(
4335 const struct secpolicyindex *spidx0,
4336 const struct secpolicyindex *spidx1)
4337 {
4338 /* sanity */
4339 if (spidx0 == NULL && spidx1 == NULL)
4340 return 1;
4341
4342 if (spidx0 == NULL || spidx1 == NULL)
4343 return 0;
4344
4345 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4346 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4347 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4348 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4349 return 0;
4350
4351 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4352 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4353 && spidx0->ul_proto != spidx1->ul_proto)
4354 return 0;
4355
4356 switch (spidx0->src.sa.sa_family) {
4357 case AF_INET:
4358 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4359 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4360 return 0;
4361 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4362 &spidx1->src.sin.sin_addr, spidx0->prefs))
4363 return 0;
4364 break;
4365 case AF_INET6:
4366 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4367 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4368 return 0;
4369 /*
4370 * scope_id check. if sin6_scope_id is 0, we regard it
4371 * as a wildcard scope, which matches any scope zone ID.
4372 */
4373 if (spidx0->src.sin6.sin6_scope_id &&
4374 spidx1->src.sin6.sin6_scope_id &&
4375 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4376 return 0;
4377 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4378 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4379 return 0;
4380 break;
4381 default:
4382 /* XXX */
4383 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4384 return 0;
4385 break;
4386 }
4387
4388 switch (spidx0->dst.sa.sa_family) {
4389 case AF_INET:
4390 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4391 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4392 return 0;
4393 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4394 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4395 return 0;
4396 break;
4397 case AF_INET6:
4398 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4399 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4400 return 0;
4401 /*
4402 * scope_id check. if sin6_scope_id is 0, we regard it
4403 * as a wildcard scope, which matches any scope zone ID.
4404 */
4405 if (spidx0->src.sin6.sin6_scope_id &&
4406 spidx1->src.sin6.sin6_scope_id &&
4407 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4408 return 0;
4409 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4410 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4411 return 0;
4412 break;
4413 default:
4414 /* XXX */
4415 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4416 return 0;
4417 break;
4418 }
4419
4420 /* XXX Do we check other field ? e.g. flowinfo */
4421
4422 return 1;
4423 }
4424
4425 /* returns 0 on match */
4426 static int
4427 key_sockaddrcmp(
4428 const struct sockaddr *sa1,
4429 const struct sockaddr *sa2,
4430 int port)
4431 {
4432 #ifdef satosin
4433 #undef satosin
4434 #endif
4435 #define satosin(s) ((const struct sockaddr_in *)s)
4436 #ifdef satosin6
4437 #undef satosin6
4438 #endif
4439 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4440 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4441 KEYDEBUG(KEYDEBUG_MATCH,
4442 printf("fam/len fail %d != %d || %d != %d\n",
4443 sa1->sa_family, sa2->sa_family, sa1->sa_len,
4444 sa2->sa_len));
4445 return 1;
4446 }
4447
4448 switch (sa1->sa_family) {
4449 case AF_INET:
4450 if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4451 KEYDEBUG(KEYDEBUG_MATCH,
4452 printf("len fail %d != %zu\n",
4453 sa1->sa_len, sizeof(struct sockaddr_in)));
4454 return 1;
4455 }
4456 if (satosin(sa1)->sin_addr.s_addr !=
4457 satosin(sa2)->sin_addr.s_addr) {
4458 KEYDEBUG(KEYDEBUG_MATCH,
4459 printf("addr fail %#x != %#x\n",
4460 satosin(sa1)->sin_addr.s_addr,
4461 satosin(sa2)->sin_addr.s_addr));
4462 return 1;
4463 }
4464 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) {
4465 KEYDEBUG(KEYDEBUG_MATCH,
4466 printf("port fail %d != %d\n",
4467 satosin(sa1)->sin_port,
4468 satosin(sa2)->sin_port));
4469 return 1;
4470 }
4471 KEYDEBUG(KEYDEBUG_MATCH,
4472 printf("addr success %#x[%d] == %#x[%d]\n",
4473 satosin(sa1)->sin_addr.s_addr,
4474 satosin(sa1)->sin_port,
4475 satosin(sa2)->sin_addr.s_addr,
4476 satosin(sa2)->sin_port));
4477 break;
4478 case AF_INET6:
4479 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4480 return 1; /*EINVAL*/
4481 if (satosin6(sa1)->sin6_scope_id !=
4482 satosin6(sa2)->sin6_scope_id) {
4483 return 1;
4484 }
4485 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4486 &satosin6(sa2)->sin6_addr)) {
4487 return 1;
4488 }
4489 if (port &&
4490 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4491 return 1;
4492 }
4493 break;
4494 default:
4495 if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4496 return 1;
4497 break;
4498 }
4499
4500 return 0;
4501 #undef satosin
4502 #undef satosin6
4503 }
4504
4505 /*
4506 * compare two buffers with mask.
4507 * IN:
4508 * addr1: source
4509 * addr2: object
4510 * bits: Number of bits to compare
4511 * OUT:
4512 * 1 : equal
4513 * 0 : not equal
4514 */
4515 static int
4516 key_bbcmp(const void *a1, const void *a2, u_int bits)
4517 {
4518 const unsigned char *p1 = a1;
4519 const unsigned char *p2 = a2;
4520
4521 /* XXX: This could be considerably faster if we compare a word
4522 * at a time, but it is complicated on LSB Endian machines */
4523
4524 /* Handle null pointers */
4525 if (p1 == NULL || p2 == NULL)
4526 return (p1 == p2);
4527
4528 while (bits >= 8) {
4529 if (*p1++ != *p2++)
4530 return 0;
4531 bits -= 8;
4532 }
4533
4534 if (bits > 0) {
4535 u_int8_t mask = ~((1<<(8-bits))-1);
4536 if ((*p1 & mask) != (*p2 & mask))
4537 return 0;
4538 }
4539 return 1; /* Match! */
4540 }
4541
4542 /*
4543 * time handler.
4544 * scanning SPD and SAD to check status for each entries,
4545 * and do to remove or to expire.
4546 */
4547 void
4548 key_timehandler(void* arg)
4549 {
4550 u_int dir;
4551 int s;
4552 time_t now = time_uptime;
4553
4554 s = splsoftnet(); /*called from softclock()*/
4555 mutex_enter(softnet_lock);
4556
4557 /* SPD */
4558 {
4559 struct secpolicy *sp, *nextsp;
4560
4561 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4562 for (sp = LIST_FIRST(&sptree[dir]);
4563 sp != NULL;
4564 sp = nextsp) {
4565
4566 nextsp = LIST_NEXT(sp, chain);
4567
4568 if (sp->state == IPSEC_SPSTATE_DEAD) {
4569 key_sp_unlink(sp); /*XXX*/
4570
4571 /* 'sp' dead; continue transfers to
4572 * 'sp = nextsp'
4573 */
4574 continue;
4575 }
4576
4577 if (sp->lifetime == 0 && sp->validtime == 0)
4578 continue;
4579
4580 /* the deletion will occur next time */
4581 if ((sp->lifetime && now - sp->created > sp->lifetime)
4582 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4583 key_sp_dead(sp);
4584 key_spdexpire(sp);
4585 continue;
4586 }
4587 }
4588 }
4589 }
4590
4591 /* SAD */
4592 {
4593 struct secashead *sah, *nextsah;
4594 struct secasvar *sav, *nextsav;
4595
4596 for (sah = LIST_FIRST(&sahtree);
4597 sah != NULL;
4598 sah = nextsah) {
4599
4600 nextsah = LIST_NEXT(sah, chain);
4601
4602 /* if sah has been dead, then delete it and process next sah. */
4603 if (sah->state == SADB_SASTATE_DEAD) {
4604 key_delsah(sah);
4605 continue;
4606 }
4607
4608 /* if LARVAL entry doesn't become MATURE, delete it. */
4609 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
4610 sav != NULL;
4611 sav = nextsav) {
4612
4613 nextsav = LIST_NEXT(sav, chain);
4614
4615 if (now - sav->created > key_larval_lifetime) {
4616 KEY_FREESAV(&sav);
4617 }
4618 }
4619
4620 /*
4621 * check MATURE entry to start to send expire message
4622 * whether or not.
4623 */
4624 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
4625 sav != NULL;
4626 sav = nextsav) {
4627
4628 nextsav = LIST_NEXT(sav, chain);
4629
4630 /* we don't need to check. */
4631 if (sav->lft_s == NULL)
4632 continue;
4633
4634 /* sanity check */
4635 if (sav->lft_c == NULL) {
4636 ipseclog((LOG_DEBUG,"key_timehandler: "
4637 "There is no CURRENT time, why?\n"));
4638 continue;
4639 }
4640
4641 /* check SOFT lifetime */
4642 if (sav->lft_s->sadb_lifetime_addtime != 0
4643 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4644 /*
4645 * check SA to be used whether or not.
4646 * when SA hasn't been used, delete it.
4647 */
4648 if (sav->lft_c->sadb_lifetime_usetime == 0) {
4649 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4650 KEY_FREESAV(&sav);
4651 } else {
4652 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4653 /*
4654 * XXX If we keep to send expire
4655 * message in the status of
4656 * DYING. Do remove below code.
4657 */
4658 key_expire(sav);
4659 }
4660 }
4661 /* check SOFT lifetime by bytes */
4662 /*
4663 * XXX I don't know the way to delete this SA
4664 * when new SA is installed. Caution when it's
4665 * installed too big lifetime by time.
4666 */
4667 else if (sav->lft_s->sadb_lifetime_bytes != 0
4668 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4669
4670 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4671 /*
4672 * XXX If we keep to send expire
4673 * message in the status of
4674 * DYING. Do remove below code.
4675 */
4676 key_expire(sav);
4677 }
4678 }
4679
4680 /* check DYING entry to change status to DEAD. */
4681 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
4682 sav != NULL;
4683 sav = nextsav) {
4684
4685 nextsav = LIST_NEXT(sav, chain);
4686
4687 /* we don't need to check. */
4688 if (sav->lft_h == NULL)
4689 continue;
4690
4691 /* sanity check */
4692 if (sav->lft_c == NULL) {
4693 ipseclog((LOG_DEBUG, "key_timehandler: "
4694 "There is no CURRENT time, why?\n"));
4695 continue;
4696 }
4697
4698 if (sav->lft_h->sadb_lifetime_addtime != 0
4699 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4700 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4701 KEY_FREESAV(&sav);
4702 }
4703 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4704 else if (sav->lft_s != NULL
4705 && sav->lft_s->sadb_lifetime_addtime != 0
4706 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4707 /*
4708 * XXX: should be checked to be
4709 * installed the valid SA.
4710 */
4711
4712 /*
4713 * If there is no SA then sending
4714 * expire message.
4715 */
4716 key_expire(sav);
4717 }
4718 #endif
4719 /* check HARD lifetime by bytes */
4720 else if (sav->lft_h->sadb_lifetime_bytes != 0
4721 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
4722 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4723 KEY_FREESAV(&sav);
4724 }
4725 }
4726
4727 /* delete entry in DEAD */
4728 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
4729 sav != NULL;
4730 sav = nextsav) {
4731
4732 nextsav = LIST_NEXT(sav, chain);
4733
4734 /* sanity check */
4735 if (sav->state != SADB_SASTATE_DEAD) {
4736 ipseclog((LOG_DEBUG, "key_timehandler: "
4737 "invalid sav->state "
4738 "(queue: %d SA: %d): "
4739 "kill it anyway\n",
4740 SADB_SASTATE_DEAD, sav->state));
4741 }
4742
4743 /*
4744 * do not call key_freesav() here.
4745 * sav should already be freed, and sav->refcnt
4746 * shows other references to sav
4747 * (such as from SPD).
4748 */
4749 }
4750 }
4751 }
4752
4753 #ifndef IPSEC_NONBLOCK_ACQUIRE
4754 /* ACQ tree */
4755 {
4756 struct secacq *acq, *nextacq;
4757
4758 for (acq = LIST_FIRST(&acqtree);
4759 acq != NULL;
4760 acq = nextacq) {
4761
4762 nextacq = LIST_NEXT(acq, chain);
4763
4764 if (now - acq->created > key_blockacq_lifetime
4765 && __LIST_CHAINED(acq)) {
4766 LIST_REMOVE(acq, chain);
4767 KFREE(acq);
4768 }
4769 }
4770 }
4771 #endif
4772
4773 /* SP ACQ tree */
4774 {
4775 struct secspacq *acq, *nextacq;
4776
4777 for (acq = LIST_FIRST(&spacqtree);
4778 acq != NULL;
4779 acq = nextacq) {
4780
4781 nextacq = LIST_NEXT(acq, chain);
4782
4783 if (now - acq->created > key_blockacq_lifetime
4784 && __LIST_CHAINED(acq)) {
4785 LIST_REMOVE(acq, chain);
4786 KFREE(acq);
4787 }
4788 }
4789 }
4790
4791 #ifndef IPSEC_DEBUG2
4792 /* do exchange to tick time !! */
4793 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4794 #endif /* IPSEC_DEBUG2 */
4795
4796 mutex_exit(softnet_lock);
4797 splx(s);
4798 return;
4799 }
4800
4801 u_long
4802 key_random(void)
4803 {
4804 u_long value;
4805
4806 key_randomfill(&value, sizeof(value));
4807 return value;
4808 }
4809
4810 void
4811 key_randomfill(void *p, size_t l)
4812 {
4813
4814 cprng_fast(p, l);
4815 }
4816
4817 /*
4818 * map SADB_SATYPE_* to IPPROTO_*.
4819 * if satype == SADB_SATYPE then satype is mapped to ~0.
4820 * OUT:
4821 * 0: invalid satype.
4822 */
4823 static u_int16_t
4824 key_satype2proto(u_int8_t satype)
4825 {
4826 switch (satype) {
4827 case SADB_SATYPE_UNSPEC:
4828 return IPSEC_PROTO_ANY;
4829 case SADB_SATYPE_AH:
4830 return IPPROTO_AH;
4831 case SADB_SATYPE_ESP:
4832 return IPPROTO_ESP;
4833 case SADB_X_SATYPE_IPCOMP:
4834 return IPPROTO_IPCOMP;
4835 case SADB_X_SATYPE_TCPSIGNATURE:
4836 return IPPROTO_TCP;
4837 default:
4838 return 0;
4839 }
4840 /* NOTREACHED */
4841 }
4842
4843 /*
4844 * map IPPROTO_* to SADB_SATYPE_*
4845 * OUT:
4846 * 0: invalid protocol type.
4847 */
4848 static u_int8_t
4849 key_proto2satype(u_int16_t proto)
4850 {
4851 switch (proto) {
4852 case IPPROTO_AH:
4853 return SADB_SATYPE_AH;
4854 case IPPROTO_ESP:
4855 return SADB_SATYPE_ESP;
4856 case IPPROTO_IPCOMP:
4857 return SADB_X_SATYPE_IPCOMP;
4858 case IPPROTO_TCP:
4859 return SADB_X_SATYPE_TCPSIGNATURE;
4860 default:
4861 return 0;
4862 }
4863 /* NOTREACHED */
4864 }
4865
4866 static int
4867 key_setsecasidx(int proto, int mode, int reqid,
4868 const struct sadb_address * src,
4869 const struct sadb_address * dst,
4870 struct secasindex * saidx)
4871 {
4872 const union sockaddr_union * src_u =
4873 (const union sockaddr_union *) src;
4874 const union sockaddr_union * dst_u =
4875 (const union sockaddr_union *) dst;
4876
4877 /* sa len safety check */
4878 if (key_checksalen(src_u) != 0)
4879 return -1;
4880 if (key_checksalen(dst_u) != 0)
4881 return -1;
4882
4883 memset(saidx, 0, sizeof(*saidx));
4884 saidx->proto = proto;
4885 saidx->mode = mode;
4886 saidx->reqid = reqid;
4887 memcpy(&saidx->src, src_u, src_u->sa.sa_len);
4888 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
4889
4890 key_porttosaddr(&((saidx)->src),0);
4891 key_porttosaddr(&((saidx)->dst),0);
4892 return 0;
4893 }
4894
4895 /* %%% PF_KEY */
4896 /*
4897 * SADB_GETSPI processing is to receive
4898 * <base, (SA2), src address, dst address, (SPI range)>
4899 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4900 * tree with the status of LARVAL, and send
4901 * <base, SA(*), address(SD)>
4902 * to the IKMPd.
4903 *
4904 * IN: mhp: pointer to the pointer to each header.
4905 * OUT: NULL if fail.
4906 * other if success, return pointer to the message to send.
4907 */
4908 static int
4909 key_getspi(struct socket *so, struct mbuf *m,
4910 const struct sadb_msghdr *mhp)
4911 {
4912 struct sadb_address *src0, *dst0;
4913 struct secasindex saidx;
4914 struct secashead *newsah;
4915 struct secasvar *newsav;
4916 u_int8_t proto;
4917 u_int32_t spi;
4918 u_int8_t mode;
4919 u_int16_t reqid;
4920 int error;
4921
4922 /* sanity check */
4923 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
4924 panic("key_getspi: NULL pointer is passed");
4925
4926 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4927 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4928 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4929 return key_senderror(so, m, EINVAL);
4930 }
4931 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4932 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4933 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
4934 return key_senderror(so, m, EINVAL);
4935 }
4936 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4937 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4938 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4939 } else {
4940 mode = IPSEC_MODE_ANY;
4941 reqid = 0;
4942 }
4943
4944 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4945 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4946
4947 /* map satype to proto */
4948 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4949 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
4950 return key_senderror(so, m, EINVAL);
4951 }
4952
4953
4954 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
4955 dst0 + 1, &saidx)) != 0)
4956 return key_senderror(so, m, EINVAL);
4957
4958 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
4959 return key_senderror(so, m, EINVAL);
4960
4961 /* SPI allocation */
4962 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4963 &saidx);
4964 if (spi == 0)
4965 return key_senderror(so, m, EINVAL);
4966
4967 /* get a SA index */
4968 if ((newsah = key_getsah(&saidx)) == NULL) {
4969 /* create a new SA index */
4970 if ((newsah = key_newsah(&saidx)) == NULL) {
4971 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
4972 return key_senderror(so, m, ENOBUFS);
4973 }
4974 }
4975
4976 /* get a new SA */
4977 /* XXX rewrite */
4978 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4979 if (newsav == NULL) {
4980 /* XXX don't free new SA index allocated in above. */
4981 return key_senderror(so, m, error);
4982 }
4983
4984 /* set spi */
4985 newsav->spi = htonl(spi);
4986
4987 #ifndef IPSEC_NONBLOCK_ACQUIRE
4988 /* delete the entry in acqtree */
4989 if (mhp->msg->sadb_msg_seq != 0) {
4990 struct secacq *acq;
4991 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4992 /* reset counter in order to deletion by timehandler. */
4993 acq->created = time_uptime;
4994 acq->count = 0;
4995 }
4996 }
4997 #endif
4998
4999 {
5000 struct mbuf *n, *nn;
5001 struct sadb_sa *m_sa;
5002 struct sadb_msg *newmsg;
5003 int off, len;
5004
5005 /* create new sadb_msg to reply. */
5006 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5007 PFKEY_ALIGN8(sizeof(struct sadb_sa));
5008 if (len > MCLBYTES)
5009 return key_senderror(so, m, ENOBUFS);
5010
5011 MGETHDR(n, M_DONTWAIT, MT_DATA);
5012 if (len > MHLEN) {
5013 MCLGET(n, M_DONTWAIT);
5014 if ((n->m_flags & M_EXT) == 0) {
5015 m_freem(n);
5016 n = NULL;
5017 }
5018 }
5019 if (!n)
5020 return key_senderror(so, m, ENOBUFS);
5021
5022 n->m_len = len;
5023 n->m_next = NULL;
5024 off = 0;
5025
5026 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5027 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5028
5029 m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5030 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5031 m_sa->sadb_sa_exttype = SADB_EXT_SA;
5032 m_sa->sadb_sa_spi = htonl(spi);
5033 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5034
5035 #ifdef DIAGNOSTIC
5036 if (off != len)
5037 panic("length inconsistency in key_getspi");
5038 #endif
5039
5040 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5041 SADB_EXT_ADDRESS_DST);
5042 if (!n->m_next) {
5043 m_freem(n);
5044 return key_senderror(so, m, ENOBUFS);
5045 }
5046
5047 if (n->m_len < sizeof(struct sadb_msg)) {
5048 n = m_pullup(n, sizeof(struct sadb_msg));
5049 if (n == NULL)
5050 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5051 }
5052
5053 n->m_pkthdr.len = 0;
5054 for (nn = n; nn; nn = nn->m_next)
5055 n->m_pkthdr.len += nn->m_len;
5056
5057 newmsg = mtod(n, struct sadb_msg *);
5058 newmsg->sadb_msg_seq = newsav->seq;
5059 newmsg->sadb_msg_errno = 0;
5060 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5061
5062 m_freem(m);
5063 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5064 }
5065 }
5066
5067 /*
5068 * allocating new SPI
5069 * called by key_getspi().
5070 * OUT:
5071 * 0: failure.
5072 * others: success.
5073 */
5074 static u_int32_t
5075 key_do_getnewspi(const struct sadb_spirange *spirange,
5076 const struct secasindex *saidx)
5077 {
5078 u_int32_t newspi;
5079 u_int32_t spmin, spmax;
5080 int count = key_spi_trycnt;
5081
5082 /* set spi range to allocate */
5083 if (spirange != NULL) {
5084 spmin = spirange->sadb_spirange_min;
5085 spmax = spirange->sadb_spirange_max;
5086 } else {
5087 spmin = key_spi_minval;
5088 spmax = key_spi_maxval;
5089 }
5090 /* IPCOMP needs 2-byte SPI */
5091 if (saidx->proto == IPPROTO_IPCOMP) {
5092 u_int32_t t;
5093 if (spmin >= 0x10000)
5094 spmin = 0xffff;
5095 if (spmax >= 0x10000)
5096 spmax = 0xffff;
5097 if (spmin > spmax) {
5098 t = spmin; spmin = spmax; spmax = t;
5099 }
5100 }
5101
5102 if (spmin == spmax) {
5103 if (key_checkspidup(saidx, htonl(spmin)) != NULL) {
5104 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin));
5105 return 0;
5106 }
5107
5108 count--; /* taking one cost. */
5109 newspi = spmin;
5110
5111 } else {
5112
5113 /* init SPI */
5114 newspi = 0;
5115
5116 /* when requesting to allocate spi ranged */
5117 while (count--) {
5118 /* generate pseudo-random SPI value ranged. */
5119 newspi = spmin + (key_random() % (spmax - spmin + 1));
5120
5121 if (key_checkspidup(saidx, htonl(newspi)) == NULL)
5122 break;
5123 }
5124
5125 if (count == 0 || newspi == 0) {
5126 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
5127 return 0;
5128 }
5129 }
5130
5131 /* statistics */
5132 keystat.getspi_count =
5133 (keystat.getspi_count + key_spi_trycnt - count) / 2;
5134
5135 return newspi;
5136 }
5137
5138 static int
5139 key_handle_natt_info(struct secasvar *sav,
5140 const struct sadb_msghdr *mhp)
5141 {
5142 const char *msg = "?" ;
5143 struct sadb_x_nat_t_type *type;
5144 struct sadb_x_nat_t_port *sport, *dport;
5145 struct sadb_address *iaddr, *raddr;
5146 struct sadb_x_nat_t_frag *frag;
5147
5148 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5149 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5150 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5151 return 0;
5152
5153 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5154 msg = "TYPE";
5155 goto bad;
5156 }
5157
5158 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5159 msg = "SPORT";
5160 goto bad;
5161 }
5162
5163 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5164 msg = "DPORT";
5165 goto bad;
5166 }
5167
5168 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5169 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5170 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5171 msg = "OAI";
5172 goto bad;
5173 }
5174 }
5175
5176 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5177 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5178 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5179 msg = "OAR";
5180 goto bad;
5181 }
5182 }
5183
5184 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5185 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5186 msg = "FRAG";
5187 goto bad;
5188 }
5189 }
5190
5191 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5192 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5193 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5194 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5195 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5196 frag = (struct sadb_x_nat_t_frag *)mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5197
5198 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5199 __func__, type->sadb_x_nat_t_type_type,
5200 ntohs(sport->sadb_x_nat_t_port_port),
5201 ntohs(dport->sadb_x_nat_t_port_port)));
5202
5203 sav->natt_type = type->sadb_x_nat_t_type_type;
5204 key_porttosaddr(&sav->sah->saidx.src,
5205 sport->sadb_x_nat_t_port_port);
5206 key_porttosaddr(&sav->sah->saidx.dst,
5207 dport->sadb_x_nat_t_port_port);
5208 if (frag)
5209 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5210 else
5211 sav->esp_frag = IP_MAXPACKET;
5212
5213 return 0;
5214 bad:
5215 ipseclog((LOG_DEBUG, "%s: invalid message %s\n", __func__, msg));
5216 __USE(msg);
5217 return -1;
5218 }
5219
5220 /* Just update the IPSEC_NAT_T ports if present */
5221 static int
5222 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5223 const struct sadb_msghdr *mhp)
5224 {
5225 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5226 ipseclog((LOG_DEBUG,"%s: NAT-T OAi present\n", __func__));
5227 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5228 ipseclog((LOG_DEBUG,"%s: NAT-T OAr present\n", __func__));
5229
5230 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5231 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5232 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5233 struct sadb_x_nat_t_type *type;
5234 struct sadb_x_nat_t_port *sport;
5235 struct sadb_x_nat_t_port *dport;
5236
5237 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5238 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5239 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5240 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5241 __func__));
5242 return -1;
5243 }
5244
5245 type = (struct sadb_x_nat_t_type *)
5246 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5247 sport = (struct sadb_x_nat_t_port *)
5248 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5249 dport = (struct sadb_x_nat_t_port *)
5250 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5251
5252 key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5253 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5254
5255 ipseclog((LOG_DEBUG, "%s: type %d, sport = %d, dport = %d\n",
5256 __func__, type->sadb_x_nat_t_type_type,
5257 ntohs(sport->sadb_x_nat_t_port_port),
5258 ntohs(dport->sadb_x_nat_t_port_port)));
5259 }
5260
5261 return 0;
5262 }
5263
5264
5265 /*
5266 * SADB_UPDATE processing
5267 * receive
5268 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5269 * key(AE), (identity(SD),) (sensitivity)>
5270 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5271 * and send
5272 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5273 * (identity(SD),) (sensitivity)>
5274 * to the ikmpd.
5275 *
5276 * m will always be freed.
5277 */
5278 static int
5279 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5280 {
5281 struct sadb_sa *sa0;
5282 struct sadb_address *src0, *dst0;
5283 struct secasindex saidx;
5284 struct secashead *sah;
5285 struct secasvar *sav;
5286 u_int16_t proto;
5287 u_int8_t mode;
5288 u_int16_t reqid;
5289 int error;
5290
5291 /* sanity check */
5292 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5293 panic("key_update: NULL pointer is passed");
5294
5295 /* map satype to proto */
5296 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5297 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
5298 return key_senderror(so, m, EINVAL);
5299 }
5300
5301 if (mhp->ext[SADB_EXT_SA] == NULL ||
5302 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5303 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5304 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5305 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5306 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5307 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5308 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5309 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5310 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5311 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5312 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5313 return key_senderror(so, m, EINVAL);
5314 }
5315 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5316 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5317 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5318 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
5319 return key_senderror(so, m, EINVAL);
5320 }
5321 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5322 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5323 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5324 } else {
5325 mode = IPSEC_MODE_ANY;
5326 reqid = 0;
5327 }
5328 /* XXX boundary checking for other extensions */
5329
5330 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5331 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5332 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5333
5334 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5335 dst0 + 1, &saidx)) != 0)
5336 return key_senderror(so, m, EINVAL);
5337
5338 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5339 return key_senderror(so, m, EINVAL);
5340
5341 /* get a SA header */
5342 if ((sah = key_getsah(&saidx)) == NULL) {
5343 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
5344 return key_senderror(so, m, ENOENT);
5345 }
5346
5347 /* set spidx if there */
5348 /* XXX rewrite */
5349 error = key_setident(sah, m, mhp);
5350 if (error)
5351 return key_senderror(so, m, error);
5352
5353 /* find a SA with sequence number. */
5354 #ifdef IPSEC_DOSEQCHECK
5355 if (mhp->msg->sadb_msg_seq != 0
5356 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5357 ipseclog((LOG_DEBUG,
5358 "key_update: no larval SA with sequence %u exists.\n",
5359 mhp->msg->sadb_msg_seq));
5360 return key_senderror(so, m, ENOENT);
5361 }
5362 #else
5363 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
5364 ipseclog((LOG_DEBUG,
5365 "key_update: no such a SA found (spi:%u)\n",
5366 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5367 return key_senderror(so, m, EINVAL);
5368 }
5369 #endif
5370
5371 /* validity check */
5372 if (sav->sah->saidx.proto != proto) {
5373 ipseclog((LOG_DEBUG,
5374 "key_update: protocol mismatched (DB=%u param=%u)\n",
5375 sav->sah->saidx.proto, proto));
5376 return key_senderror(so, m, EINVAL);
5377 }
5378 #ifdef IPSEC_DOSEQCHECK
5379 if (sav->spi != sa0->sadb_sa_spi) {
5380 ipseclog((LOG_DEBUG,
5381 "key_update: SPI mismatched (DB:%u param:%u)\n",
5382 (u_int32_t)ntohl(sav->spi),
5383 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5384 return key_senderror(so, m, EINVAL);
5385 }
5386 #endif
5387 if (sav->pid != mhp->msg->sadb_msg_pid) {
5388 ipseclog((LOG_DEBUG,
5389 "key_update: pid mismatched (DB:%u param:%u)\n",
5390 sav->pid, mhp->msg->sadb_msg_pid));
5391 return key_senderror(so, m, EINVAL);
5392 }
5393
5394 /* copy sav values */
5395 error = key_setsaval(sav, m, mhp);
5396 if (error) {
5397 KEY_FREESAV(&sav);
5398 return key_senderror(so, m, error);
5399 }
5400
5401 if ((error = key_handle_natt_info(sav,mhp)) != 0)
5402 return key_senderror(so, m, EINVAL);
5403
5404 /* check SA values to be mature. */
5405 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5406 KEY_FREESAV(&sav);
5407 return key_senderror(so, m, 0);
5408 }
5409
5410 {
5411 struct mbuf *n;
5412
5413 /* set msg buf from mhp */
5414 n = key_getmsgbuf_x1(m, mhp);
5415 if (n == NULL) {
5416 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5417 return key_senderror(so, m, ENOBUFS);
5418 }
5419
5420 m_freem(m);
5421 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5422 }
5423 }
5424
5425 /*
5426 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5427 * only called by key_update().
5428 * OUT:
5429 * NULL : not found
5430 * others : found, pointer to a SA.
5431 */
5432 #ifdef IPSEC_DOSEQCHECK
5433 static struct secasvar *
5434 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5435 {
5436 struct secasvar *sav;
5437 u_int state;
5438
5439 state = SADB_SASTATE_LARVAL;
5440
5441 /* search SAD with sequence number ? */
5442 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5443
5444 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq");
5445
5446 if (sav->seq == seq) {
5447 SA_ADDREF(sav);
5448 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5449 printf("DP %s cause refcnt++:%d SA:%p\n",
5450 __func__, sav->refcnt, sav));
5451 return sav;
5452 }
5453 }
5454
5455 return NULL;
5456 }
5457 #endif
5458
5459 /*
5460 * SADB_ADD processing
5461 * add an entry to SA database, when received
5462 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5463 * key(AE), (identity(SD),) (sensitivity)>
5464 * from the ikmpd,
5465 * and send
5466 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5467 * (identity(SD),) (sensitivity)>
5468 * to the ikmpd.
5469 *
5470 * IGNORE identity and sensitivity messages.
5471 *
5472 * m will always be freed.
5473 */
5474 static int
5475 key_add(struct socket *so, struct mbuf *m,
5476 const struct sadb_msghdr *mhp)
5477 {
5478 struct sadb_sa *sa0;
5479 struct sadb_address *src0, *dst0;
5480 struct secasindex saidx;
5481 struct secashead *newsah;
5482 struct secasvar *newsav;
5483 u_int16_t proto;
5484 u_int8_t mode;
5485 u_int16_t reqid;
5486 int error;
5487
5488 /* sanity check */
5489 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5490 panic("key_add: NULL pointer is passed");
5491
5492 /* map satype to proto */
5493 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5494 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
5495 return key_senderror(so, m, EINVAL);
5496 }
5497
5498 if (mhp->ext[SADB_EXT_SA] == NULL ||
5499 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5500 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5501 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5502 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5503 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5504 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5505 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5506 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5507 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5508 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5509 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5510 return key_senderror(so, m, EINVAL);
5511 }
5512 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5513 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5514 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5515 /* XXX need more */
5516 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
5517 return key_senderror(so, m, EINVAL);
5518 }
5519 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5520 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5521 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5522 } else {
5523 mode = IPSEC_MODE_ANY;
5524 reqid = 0;
5525 }
5526
5527 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5528 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5529 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5530
5531 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1,
5532 dst0 + 1, &saidx)) != 0)
5533 return key_senderror(so, m, EINVAL);
5534
5535 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5536 return key_senderror(so, m, EINVAL);
5537
5538 /* get a SA header */
5539 if ((newsah = key_getsah(&saidx)) == NULL) {
5540 /* create a new SA header */
5541 if ((newsah = key_newsah(&saidx)) == NULL) {
5542 ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
5543 return key_senderror(so, m, ENOBUFS);
5544 }
5545 }
5546
5547 /* set spidx if there */
5548 /* XXX rewrite */
5549 error = key_setident(newsah, m, mhp);
5550 if (error) {
5551 return key_senderror(so, m, error);
5552 }
5553
5554 /* create new SA entry. */
5555 /* We can create new SA only if SPI is differenct. */
5556 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
5557 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
5558 return key_senderror(so, m, EEXIST);
5559 }
5560 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5561 if (newsav == NULL) {
5562 return key_senderror(so, m, error);
5563 }
5564
5565 if ((error = key_handle_natt_info(newsav, mhp)) != 0)
5566 return key_senderror(so, m, EINVAL);
5567
5568 /* check SA values to be mature. */
5569 if ((error = key_mature(newsav)) != 0) {
5570 KEY_FREESAV(&newsav);
5571 return key_senderror(so, m, error);
5572 }
5573
5574 /*
5575 * don't call key_freesav() here, as we would like to keep the SA
5576 * in the database on success.
5577 */
5578
5579 {
5580 struct mbuf *n;
5581
5582 /* set msg buf from mhp */
5583 n = key_getmsgbuf_x1(m, mhp);
5584 if (n == NULL) {
5585 ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
5586 return key_senderror(so, m, ENOBUFS);
5587 }
5588
5589 m_freem(m);
5590 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5591 }
5592 }
5593
5594 /* m is retained */
5595 static int
5596 key_setident(struct secashead *sah, struct mbuf *m,
5597 const struct sadb_msghdr *mhp)
5598 {
5599 const struct sadb_ident *idsrc, *iddst;
5600 int idsrclen, iddstlen;
5601
5602 /* sanity check */
5603 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5604 panic("key_setident: NULL pointer is passed");
5605
5606 /* don't make buffer if not there */
5607 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5608 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5609 sah->idents = NULL;
5610 sah->identd = NULL;
5611 return 0;
5612 }
5613
5614 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5615 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5616 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n"));
5617 return EINVAL;
5618 }
5619
5620 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5621 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5622 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5623 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5624
5625 /* validity check */
5626 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5627 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n"));
5628 return EINVAL;
5629 }
5630
5631 switch (idsrc->sadb_ident_type) {
5632 case SADB_IDENTTYPE_PREFIX:
5633 case SADB_IDENTTYPE_FQDN:
5634 case SADB_IDENTTYPE_USERFQDN:
5635 default:
5636 /* XXX do nothing */
5637 sah->idents = NULL;
5638 sah->identd = NULL;
5639 return 0;
5640 }
5641
5642 /* make structure */
5643 KMALLOC(sah->idents, struct sadb_ident *, idsrclen);
5644 if (sah->idents == NULL) {
5645 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5646 return ENOBUFS;
5647 }
5648 KMALLOC(sah->identd, struct sadb_ident *, iddstlen);
5649 if (sah->identd == NULL) {
5650 KFREE(sah->idents);
5651 sah->idents = NULL;
5652 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n"));
5653 return ENOBUFS;
5654 }
5655 memcpy(sah->idents, idsrc, idsrclen);
5656 memcpy(sah->identd, iddst, iddstlen);
5657
5658 return 0;
5659 }
5660
5661 /*
5662 * m will not be freed on return.
5663 * it is caller's responsibility to free the result.
5664 */
5665 static struct mbuf *
5666 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5667 {
5668 struct mbuf *n;
5669
5670 /* sanity check */
5671 if (m == NULL || mhp == NULL || mhp->msg == NULL)
5672 panic("key_getmsgbuf_x1: NULL pointer is passed");
5673
5674 /* create new sadb_msg to reply. */
5675 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5676 SADB_EXT_SA, SADB_X_EXT_SA2,
5677 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5678 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5679 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5680 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5681 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5682 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5683 if (!n)
5684 return NULL;
5685
5686 if (n->m_len < sizeof(struct sadb_msg)) {
5687 n = m_pullup(n, sizeof(struct sadb_msg));
5688 if (n == NULL)
5689 return NULL;
5690 }
5691 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5692 mtod(n, struct sadb_msg *)->sadb_msg_len =
5693 PFKEY_UNIT64(n->m_pkthdr.len);
5694
5695 return n;
5696 }
5697
5698 static int key_delete_all (struct socket *, struct mbuf *,
5699 const struct sadb_msghdr *, u_int16_t);
5700
5701 /*
5702 * SADB_DELETE processing
5703 * receive
5704 * <base, SA(*), address(SD)>
5705 * from the ikmpd, and set SADB_SASTATE_DEAD,
5706 * and send,
5707 * <base, SA(*), address(SD)>
5708 * to the ikmpd.
5709 *
5710 * m will always be freed.
5711 */
5712 static int
5713 key_delete(struct socket *so, struct mbuf *m,
5714 const struct sadb_msghdr *mhp)
5715 {
5716 struct sadb_sa *sa0;
5717 struct sadb_address *src0, *dst0;
5718 struct secasindex saidx;
5719 struct secashead *sah;
5720 struct secasvar *sav = NULL;
5721 u_int16_t proto;
5722 int error;
5723
5724 /* sanity check */
5725 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5726 panic("key_delete: NULL pointer is passed");
5727
5728 /* map satype to proto */
5729 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5730 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
5731 return key_senderror(so, m, EINVAL);
5732 }
5733
5734 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5735 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5736 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5737 return key_senderror(so, m, EINVAL);
5738 }
5739
5740 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5741 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5742 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5743 return key_senderror(so, m, EINVAL);
5744 }
5745
5746 if (mhp->ext[SADB_EXT_SA] == NULL) {
5747 /*
5748 * Caller wants us to delete all non-LARVAL SAs
5749 * that match the src/dst. This is used during
5750 * IKE INITIAL-CONTACT.
5751 */
5752 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
5753 return key_delete_all(so, m, mhp, proto);
5754 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5755 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
5756 return key_senderror(so, m, EINVAL);
5757 }
5758
5759 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5760 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5761 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5762
5763 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5764 dst0 + 1, &saidx)) != 0)
5765 return key_senderror(so, m, EINVAL);
5766
5767 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5768 return key_senderror(so, m, EINVAL);
5769
5770 /* get a SA header */
5771 LIST_FOREACH(sah, &sahtree, chain) {
5772 if (sah->state == SADB_SASTATE_DEAD)
5773 continue;
5774 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5775 continue;
5776
5777 /* get a SA with SPI. */
5778 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5779 if (sav)
5780 break;
5781 }
5782 if (sah == NULL) {
5783 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
5784 return key_senderror(so, m, ENOENT);
5785 }
5786
5787 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5788 KEY_FREESAV(&sav);
5789
5790 {
5791 struct mbuf *n;
5792 struct sadb_msg *newmsg;
5793
5794 /* create new sadb_msg to reply. */
5795 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5796 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5797 if (!n)
5798 return key_senderror(so, m, ENOBUFS);
5799
5800 if (n->m_len < sizeof(struct sadb_msg)) {
5801 n = m_pullup(n, sizeof(struct sadb_msg));
5802 if (n == NULL)
5803 return key_senderror(so, m, ENOBUFS);
5804 }
5805 newmsg = mtod(n, struct sadb_msg *);
5806 newmsg->sadb_msg_errno = 0;
5807 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5808
5809 m_freem(m);
5810 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5811 }
5812 }
5813
5814 /*
5815 * delete all SAs for src/dst. Called from key_delete().
5816 */
5817 static int
5818 key_delete_all(struct socket *so, struct mbuf *m,
5819 const struct sadb_msghdr *mhp, u_int16_t proto)
5820 {
5821 struct sadb_address *src0, *dst0;
5822 struct secasindex saidx;
5823 struct secashead *sah;
5824 struct secasvar *sav, *nextsav;
5825 u_int stateidx, state;
5826 int error;
5827
5828 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5829 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5830
5831 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5832 dst0 + 1, &saidx)) != 0)
5833 return key_senderror(so, m, EINVAL);
5834
5835 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5836 return key_senderror(so, m, EINVAL);
5837
5838 LIST_FOREACH(sah, &sahtree, chain) {
5839 if (sah->state == SADB_SASTATE_DEAD)
5840 continue;
5841 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5842 continue;
5843
5844 /* Delete all non-LARVAL SAs. */
5845 for (stateidx = 0;
5846 stateidx < _ARRAYLEN(saorder_state_alive);
5847 stateidx++) {
5848 state = saorder_state_alive[stateidx];
5849 if (state == SADB_SASTATE_LARVAL)
5850 continue;
5851 for (sav = LIST_FIRST(&sah->savtree[state]);
5852 sav != NULL; sav = nextsav) {
5853 nextsav = LIST_NEXT(sav, chain);
5854 /* sanity check */
5855 if (sav->state != state) {
5856 ipseclog((LOG_DEBUG, "key_delete_all: "
5857 "invalid sav->state "
5858 "(queue: %d SA: %d)\n",
5859 state, sav->state));
5860 continue;
5861 }
5862
5863 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5864 KEY_FREESAV(&sav);
5865 }
5866 }
5867 }
5868 {
5869 struct mbuf *n;
5870 struct sadb_msg *newmsg;
5871
5872 /* create new sadb_msg to reply. */
5873 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5874 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5875 if (!n)
5876 return key_senderror(so, m, ENOBUFS);
5877
5878 if (n->m_len < sizeof(struct sadb_msg)) {
5879 n = m_pullup(n, sizeof(struct sadb_msg));
5880 if (n == NULL)
5881 return key_senderror(so, m, ENOBUFS);
5882 }
5883 newmsg = mtod(n, struct sadb_msg *);
5884 newmsg->sadb_msg_errno = 0;
5885 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5886
5887 m_freem(m);
5888 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5889 }
5890 }
5891
5892 /*
5893 * SADB_GET processing
5894 * receive
5895 * <base, SA(*), address(SD)>
5896 * from the ikmpd, and get a SP and a SA to respond,
5897 * and send,
5898 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5899 * (identity(SD),) (sensitivity)>
5900 * to the ikmpd.
5901 *
5902 * m will always be freed.
5903 */
5904 static int
5905 key_get(struct socket *so, struct mbuf *m,
5906 const struct sadb_msghdr *mhp)
5907 {
5908 struct sadb_sa *sa0;
5909 struct sadb_address *src0, *dst0;
5910 struct secasindex saidx;
5911 struct secashead *sah;
5912 struct secasvar *sav = NULL;
5913 u_int16_t proto;
5914 int error;
5915
5916 /* sanity check */
5917 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
5918 panic("key_get: NULL pointer is passed");
5919
5920 /* map satype to proto */
5921 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5922 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
5923 return key_senderror(so, m, EINVAL);
5924 }
5925
5926 if (mhp->ext[SADB_EXT_SA] == NULL ||
5927 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5928 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5929 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5930 return key_senderror(so, m, EINVAL);
5931 }
5932 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5933 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5934 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5935 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
5936 return key_senderror(so, m, EINVAL);
5937 }
5938
5939 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5940 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5941 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5942
5943 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
5944 dst0 + 1, &saidx)) != 0)
5945 return key_senderror(so, m, EINVAL);
5946
5947 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
5948 return key_senderror(so, m, EINVAL);
5949
5950 /* get a SA header */
5951 LIST_FOREACH(sah, &sahtree, chain) {
5952 if (sah->state == SADB_SASTATE_DEAD)
5953 continue;
5954 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5955 continue;
5956
5957 /* get a SA with SPI. */
5958 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5959 if (sav)
5960 break;
5961 }
5962 if (sah == NULL) {
5963 ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
5964 return key_senderror(so, m, ENOENT);
5965 }
5966
5967 {
5968 struct mbuf *n;
5969 u_int8_t satype;
5970
5971 /* map proto to satype */
5972 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5973 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
5974 return key_senderror(so, m, EINVAL);
5975 }
5976
5977 /* create new sadb_msg to reply. */
5978 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5979 mhp->msg->sadb_msg_pid);
5980 if (!n)
5981 return key_senderror(so, m, ENOBUFS);
5982
5983 m_freem(m);
5984 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5985 }
5986 }
5987
5988 /* XXX make it sysctl-configurable? */
5989 static void
5990 key_getcomb_setlifetime(struct sadb_comb *comb)
5991 {
5992
5993 comb->sadb_comb_soft_allocations = 1;
5994 comb->sadb_comb_hard_allocations = 1;
5995 comb->sadb_comb_soft_bytes = 0;
5996 comb->sadb_comb_hard_bytes = 0;
5997 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5998 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5999 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
6000 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6001 }
6002
6003 /*
6004 * XXX reorder combinations by preference
6005 * XXX no idea if the user wants ESP authentication or not
6006 */
6007 static struct mbuf *
6008 key_getcomb_esp(void)
6009 {
6010 struct sadb_comb *comb;
6011 const struct enc_xform *algo;
6012 struct mbuf *result = NULL, *m, *n;
6013 int encmin;
6014 int i, off, o;
6015 int totlen;
6016 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6017
6018 m = NULL;
6019 for (i = 1; i <= SADB_EALG_MAX; i++) {
6020 algo = esp_algorithm_lookup(i);
6021 if (algo == NULL)
6022 continue;
6023
6024 /* discard algorithms with key size smaller than system min */
6025 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6026 continue;
6027 if (_BITS(algo->minkey) < ipsec_esp_keymin)
6028 encmin = ipsec_esp_keymin;
6029 else
6030 encmin = _BITS(algo->minkey);
6031
6032 if (ipsec_esp_auth)
6033 m = key_getcomb_ah();
6034 else {
6035 IPSEC_ASSERT(l <= MLEN,
6036 ("key_getcomb_esp: l=%u > MLEN=%lu",
6037 l, (u_long) MLEN));
6038 MGET(m, M_DONTWAIT, MT_DATA);
6039 if (m) {
6040 M_ALIGN(m, l);
6041 m->m_len = l;
6042 m->m_next = NULL;
6043 memset(mtod(m, void *), 0, m->m_len);
6044 }
6045 }
6046 if (!m)
6047 goto fail;
6048
6049 totlen = 0;
6050 for (n = m; n; n = n->m_next)
6051 totlen += n->m_len;
6052 IPSEC_ASSERT((totlen % l) == 0,
6053 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l));
6054
6055 for (off = 0; off < totlen; off += l) {
6056 n = m_pulldown(m, off, l, &o);
6057 if (!n) {
6058 /* m is already freed */
6059 goto fail;
6060 }
6061 comb = (struct sadb_comb *)(mtod(n, char *) + o);
6062 memset(comb, 0, sizeof(*comb));
6063 key_getcomb_setlifetime(comb);
6064 comb->sadb_comb_encrypt = i;
6065 comb->sadb_comb_encrypt_minbits = encmin;
6066 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6067 }
6068
6069 if (!result)
6070 result = m;
6071 else
6072 m_cat(result, m);
6073 }
6074
6075 return result;
6076
6077 fail:
6078 if (result)
6079 m_freem(result);
6080 return NULL;
6081 }
6082
6083 static void
6084 key_getsizes_ah(const struct auth_hash *ah, int alg,
6085 u_int16_t* ksmin, u_int16_t* ksmax)
6086 {
6087 *ksmin = *ksmax = ah->keysize;
6088 if (ah->keysize == 0) {
6089 /*
6090 * Transform takes arbitrary key size but algorithm
6091 * key size is restricted. Enforce this here.
6092 */
6093 switch (alg) {
6094 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
6095 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
6096 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break;
6097 default:
6098 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n",
6099 alg));
6100 break;
6101 }
6102 }
6103 }
6104
6105 /*
6106 * XXX reorder combinations by preference
6107 */
6108 static struct mbuf *
6109 key_getcomb_ah(void)
6110 {
6111 struct sadb_comb *comb;
6112 const struct auth_hash *algo;
6113 struct mbuf *m;
6114 u_int16_t minkeysize, maxkeysize;
6115 int i;
6116 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6117
6118 m = NULL;
6119 for (i = 1; i <= SADB_AALG_MAX; i++) {
6120 #if 1
6121 /* we prefer HMAC algorithms, not old algorithms */
6122 if (i != SADB_AALG_SHA1HMAC &&
6123 i != SADB_AALG_MD5HMAC &&
6124 i != SADB_X_AALG_SHA2_256 &&
6125 i != SADB_X_AALG_SHA2_384 &&
6126 i != SADB_X_AALG_SHA2_512)
6127 continue;
6128 #endif
6129 algo = ah_algorithm_lookup(i);
6130 if (!algo)
6131 continue;
6132 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6133 /* discard algorithms with key size smaller than system min */
6134 if (_BITS(minkeysize) < ipsec_ah_keymin)
6135 continue;
6136
6137 if (!m) {
6138 IPSEC_ASSERT(l <= MLEN,
6139 ("key_getcomb_ah: l=%u > MLEN=%lu",
6140 l, (u_long) MLEN));
6141 MGET(m, M_DONTWAIT, MT_DATA);
6142 if (m) {
6143 M_ALIGN(m, l);
6144 m->m_len = l;
6145 m->m_next = NULL;
6146 }
6147 } else
6148 M_PREPEND(m, l, M_DONTWAIT);
6149 if (!m)
6150 return NULL;
6151
6152 comb = mtod(m, struct sadb_comb *);
6153 memset(comb, 0, sizeof(*comb));
6154 key_getcomb_setlifetime(comb);
6155 comb->sadb_comb_auth = i;
6156 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6157 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6158 }
6159
6160 return m;
6161 }
6162
6163 /*
6164 * not really an official behavior. discussed in pf_key (at) inner.net in Sep2000.
6165 * XXX reorder combinations by preference
6166 */
6167 static struct mbuf *
6168 key_getcomb_ipcomp(void)
6169 {
6170 struct sadb_comb *comb;
6171 const struct comp_algo *algo;
6172 struct mbuf *m;
6173 int i;
6174 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6175
6176 m = NULL;
6177 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6178 algo = ipcomp_algorithm_lookup(i);
6179 if (!algo)
6180 continue;
6181
6182 if (!m) {
6183 IPSEC_ASSERT(l <= MLEN,
6184 ("key_getcomb_ipcomp: l=%u > MLEN=%lu",
6185 l, (u_long) MLEN));
6186 MGET(m, M_DONTWAIT, MT_DATA);
6187 if (m) {
6188 M_ALIGN(m, l);
6189 m->m_len = l;
6190 m->m_next = NULL;
6191 }
6192 } else
6193 M_PREPEND(m, l, M_DONTWAIT);
6194 if (!m)
6195 return NULL;
6196
6197 comb = mtod(m, struct sadb_comb *);
6198 memset(comb, 0, sizeof(*comb));
6199 key_getcomb_setlifetime(comb);
6200 comb->sadb_comb_encrypt = i;
6201 /* what should we set into sadb_comb_*_{min,max}bits? */
6202 }
6203
6204 return m;
6205 }
6206
6207 /*
6208 * XXX no way to pass mode (transport/tunnel) to userland
6209 * XXX replay checking?
6210 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6211 */
6212 static struct mbuf *
6213 key_getprop(const struct secasindex *saidx)
6214 {
6215 struct sadb_prop *prop;
6216 struct mbuf *m, *n;
6217 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6218 int totlen;
6219
6220 switch (saidx->proto) {
6221 case IPPROTO_ESP:
6222 m = key_getcomb_esp();
6223 break;
6224 case IPPROTO_AH:
6225 m = key_getcomb_ah();
6226 break;
6227 case IPPROTO_IPCOMP:
6228 m = key_getcomb_ipcomp();
6229 break;
6230 default:
6231 return NULL;
6232 }
6233
6234 if (!m)
6235 return NULL;
6236 M_PREPEND(m, l, M_DONTWAIT);
6237 if (!m)
6238 return NULL;
6239
6240 totlen = 0;
6241 for (n = m; n; n = n->m_next)
6242 totlen += n->m_len;
6243
6244 prop = mtod(m, struct sadb_prop *);
6245 memset(prop, 0, sizeof(*prop));
6246 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6247 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6248 prop->sadb_prop_replay = 32; /* XXX */
6249
6250 return m;
6251 }
6252
6253 /*
6254 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6255 * send
6256 * <base, SA, address(SD), (address(P)), x_policy,
6257 * (identity(SD),) (sensitivity,) proposal>
6258 * to KMD, and expect to receive
6259 * <base> with SADB_ACQUIRE if error occurred,
6260 * or
6261 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6262 * from KMD by PF_KEY.
6263 *
6264 * XXX x_policy is outside of RFC2367 (KAME extension).
6265 * XXX sensitivity is not supported.
6266 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6267 * see comment for key_getcomb_ipcomp().
6268 *
6269 * OUT:
6270 * 0 : succeed
6271 * others: error number
6272 */
6273 static int
6274 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6275 {
6276 struct mbuf *result = NULL, *m;
6277 #ifndef IPSEC_NONBLOCK_ACQUIRE
6278 struct secacq *newacq;
6279 #endif
6280 u_int8_t satype;
6281 int error = -1;
6282 u_int32_t seq;
6283
6284 /* sanity check */
6285 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx"));
6286 satype = key_proto2satype(saidx->proto);
6287 IPSEC_ASSERT(satype != 0,
6288 ("key_acquire: null satype, protocol %u", saidx->proto));
6289
6290 #ifndef IPSEC_NONBLOCK_ACQUIRE
6291 /*
6292 * We never do anything about acquirng SA. There is anather
6293 * solution that kernel blocks to send SADB_ACQUIRE message until
6294 * getting something message from IKEd. In later case, to be
6295 * managed with ACQUIRING list.
6296 */
6297 /* Get an entry to check whether sending message or not. */
6298 if ((newacq = key_getacq(saidx)) != NULL) {
6299 if (key_blockacq_count < newacq->count) {
6300 /* reset counter and do send message. */
6301 newacq->count = 0;
6302 } else {
6303 /* increment counter and do nothing. */
6304 newacq->count++;
6305 return 0;
6306 }
6307 } else {
6308 /* make new entry for blocking to send SADB_ACQUIRE. */
6309 if ((newacq = key_newacq(saidx)) == NULL)
6310 return ENOBUFS;
6311
6312 /* add to acqtree */
6313 LIST_INSERT_HEAD(&acqtree, newacq, chain);
6314 }
6315 #endif
6316
6317
6318 #ifndef IPSEC_NONBLOCK_ACQUIRE
6319 seq = newacq->seq;
6320 #else
6321 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6322 #endif
6323 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6324 if (!m) {
6325 error = ENOBUFS;
6326 goto fail;
6327 }
6328 result = m;
6329
6330 /* set sadb_address for saidx's. */
6331 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6332 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6333 if (!m) {
6334 error = ENOBUFS;
6335 goto fail;
6336 }
6337 m_cat(result, m);
6338
6339 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6340 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6341 if (!m) {
6342 error = ENOBUFS;
6343 goto fail;
6344 }
6345 m_cat(result, m);
6346
6347 /* XXX proxy address (optional) */
6348
6349 /* set sadb_x_policy */
6350 if (sp) {
6351 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6352 if (!m) {
6353 error = ENOBUFS;
6354 goto fail;
6355 }
6356 m_cat(result, m);
6357 }
6358
6359 /* XXX identity (optional) */
6360 #if 0
6361 if (idexttype && fqdn) {
6362 /* create identity extension (FQDN) */
6363 struct sadb_ident *id;
6364 int fqdnlen;
6365
6366 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6367 id = (struct sadb_ident *)p;
6368 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6369 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6370 id->sadb_ident_exttype = idexttype;
6371 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6372 memcpy(id + 1, fqdn, fqdnlen);
6373 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6374 }
6375
6376 if (idexttype) {
6377 /* create identity extension (USERFQDN) */
6378 struct sadb_ident *id;
6379 int userfqdnlen;
6380
6381 if (userfqdn) {
6382 /* +1 for terminating-NUL */
6383 userfqdnlen = strlen(userfqdn) + 1;
6384 } else
6385 userfqdnlen = 0;
6386 id = (struct sadb_ident *)p;
6387 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6388 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6389 id->sadb_ident_exttype = idexttype;
6390 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6391 /* XXX is it correct? */
6392 if (curlwp)
6393 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6394 if (userfqdn && userfqdnlen)
6395 memcpy(id + 1, userfqdn, userfqdnlen);
6396 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6397 }
6398 #endif
6399
6400 /* XXX sensitivity (optional) */
6401
6402 /* create proposal/combination extension */
6403 m = key_getprop(saidx);
6404 #if 0
6405 /*
6406 * spec conformant: always attach proposal/combination extension,
6407 * the problem is that we have no way to attach it for ipcomp,
6408 * due to the way sadb_comb is declared in RFC2367.
6409 */
6410 if (!m) {
6411 error = ENOBUFS;
6412 goto fail;
6413 }
6414 m_cat(result, m);
6415 #else
6416 /*
6417 * outside of spec; make proposal/combination extension optional.
6418 */
6419 if (m)
6420 m_cat(result, m);
6421 #endif
6422
6423 if ((result->m_flags & M_PKTHDR) == 0) {
6424 error = EINVAL;
6425 goto fail;
6426 }
6427
6428 if (result->m_len < sizeof(struct sadb_msg)) {
6429 result = m_pullup(result, sizeof(struct sadb_msg));
6430 if (result == NULL) {
6431 error = ENOBUFS;
6432 goto fail;
6433 }
6434 }
6435
6436 result->m_pkthdr.len = 0;
6437 for (m = result; m; m = m->m_next)
6438 result->m_pkthdr.len += m->m_len;
6439
6440 mtod(result, struct sadb_msg *)->sadb_msg_len =
6441 PFKEY_UNIT64(result->m_pkthdr.len);
6442
6443 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6444
6445 fail:
6446 if (result)
6447 m_freem(result);
6448 return error;
6449 }
6450
6451 #ifndef IPSEC_NONBLOCK_ACQUIRE
6452 static struct secacq *
6453 key_newacq(const struct secasindex *saidx)
6454 {
6455 struct secacq *newacq;
6456
6457 /* get new entry */
6458 KMALLOC(newacq, struct secacq *, sizeof(struct secacq));
6459 if (newacq == NULL) {
6460 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n"));
6461 return NULL;
6462 }
6463 memset(newacq, 0, sizeof(*newacq));
6464
6465 /* copy secindex */
6466 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6467 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6468 newacq->created = time_uptime;
6469 newacq->count = 0;
6470
6471 return newacq;
6472 }
6473
6474 static struct secacq *
6475 key_getacq(const struct secasindex *saidx)
6476 {
6477 struct secacq *acq;
6478
6479 LIST_FOREACH(acq, &acqtree, chain) {
6480 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6481 return acq;
6482 }
6483
6484 return NULL;
6485 }
6486
6487 static struct secacq *
6488 key_getacqbyseq(u_int32_t seq)
6489 {
6490 struct secacq *acq;
6491
6492 LIST_FOREACH(acq, &acqtree, chain) {
6493 if (acq->seq == seq)
6494 return acq;
6495 }
6496
6497 return NULL;
6498 }
6499 #endif
6500
6501 static struct secspacq *
6502 key_newspacq(const struct secpolicyindex *spidx)
6503 {
6504 struct secspacq *acq;
6505
6506 /* get new entry */
6507 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq));
6508 if (acq == NULL) {
6509 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n"));
6510 return NULL;
6511 }
6512 memset(acq, 0, sizeof(*acq));
6513
6514 /* copy secindex */
6515 memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6516 acq->created = time_uptime;
6517 acq->count = 0;
6518
6519 return acq;
6520 }
6521
6522 static struct secspacq *
6523 key_getspacq(const struct secpolicyindex *spidx)
6524 {
6525 struct secspacq *acq;
6526
6527 LIST_FOREACH(acq, &spacqtree, chain) {
6528 if (key_cmpspidx_exactly(spidx, &acq->spidx))
6529 return acq;
6530 }
6531
6532 return NULL;
6533 }
6534
6535 /*
6536 * SADB_ACQUIRE processing,
6537 * in first situation, is receiving
6538 * <base>
6539 * from the ikmpd, and clear sequence of its secasvar entry.
6540 *
6541 * In second situation, is receiving
6542 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6543 * from a user land process, and return
6544 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6545 * to the socket.
6546 *
6547 * m will always be freed.
6548 */
6549 static int
6550 key_acquire2(struct socket *so, struct mbuf *m,
6551 const struct sadb_msghdr *mhp)
6552 {
6553 const struct sadb_address *src0, *dst0;
6554 struct secasindex saidx;
6555 struct secashead *sah;
6556 u_int16_t proto;
6557 int error;
6558
6559 /* sanity check */
6560 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6561 panic("key_acquire2: NULL pointer is passed");
6562
6563 /*
6564 * Error message from KMd.
6565 * We assume that if error was occurred in IKEd, the length of PFKEY
6566 * message is equal to the size of sadb_msg structure.
6567 * We do not raise error even if error occurred in this function.
6568 */
6569 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6570 #ifndef IPSEC_NONBLOCK_ACQUIRE
6571 struct secacq *acq;
6572
6573 /* check sequence number */
6574 if (mhp->msg->sadb_msg_seq == 0) {
6575 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
6576 m_freem(m);
6577 return 0;
6578 }
6579
6580 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6581 /*
6582 * the specified larval SA is already gone, or we got
6583 * a bogus sequence number. we can silently ignore it.
6584 */
6585 m_freem(m);
6586 return 0;
6587 }
6588
6589 /* reset acq counter in order to deletion by timehander. */
6590 acq->created = time_uptime;
6591 acq->count = 0;
6592 #endif
6593 m_freem(m);
6594 return 0;
6595 }
6596
6597 /*
6598 * This message is from user land.
6599 */
6600
6601 /* map satype to proto */
6602 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6603 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
6604 return key_senderror(so, m, EINVAL);
6605 }
6606
6607 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6608 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6609 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6610 /* error */
6611 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6612 return key_senderror(so, m, EINVAL);
6613 }
6614 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6615 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6616 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6617 /* error */
6618 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
6619 return key_senderror(so, m, EINVAL);
6620 }
6621
6622 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6623 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6624
6625 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1,
6626 dst0 + 1, &saidx)) != 0)
6627 return key_senderror(so, m, EINVAL);
6628
6629 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0)
6630 return key_senderror(so, m, EINVAL);
6631
6632 /* get a SA index */
6633 LIST_FOREACH(sah, &sahtree, chain) {
6634 if (sah->state == SADB_SASTATE_DEAD)
6635 continue;
6636 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6637 break;
6638 }
6639 if (sah != NULL) {
6640 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
6641 return key_senderror(so, m, EEXIST);
6642 }
6643
6644 error = key_acquire(&saidx, NULL);
6645 if (error != 0) {
6646 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
6647 "from key_acquire.\n", mhp->msg->sadb_msg_errno));
6648 return key_senderror(so, m, error);
6649 }
6650
6651 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6652 }
6653
6654 /*
6655 * SADB_REGISTER processing.
6656 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6657 * receive
6658 * <base>
6659 * from the ikmpd, and register a socket to send PF_KEY messages,
6660 * and send
6661 * <base, supported>
6662 * to KMD by PF_KEY.
6663 * If socket is detached, must free from regnode.
6664 *
6665 * m will always be freed.
6666 */
6667 static int
6668 key_register(struct socket *so, struct mbuf *m,
6669 const struct sadb_msghdr *mhp)
6670 {
6671 struct secreg *reg, *newreg = 0;
6672
6673 /* sanity check */
6674 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
6675 panic("key_register: NULL pointer is passed");
6676
6677 /* check for invalid register message */
6678 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6679 return key_senderror(so, m, EINVAL);
6680
6681 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6682 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6683 goto setmsg;
6684
6685 /* check whether existing or not */
6686 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) {
6687 if (reg->so == so) {
6688 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
6689 return key_senderror(so, m, EEXIST);
6690 }
6691 }
6692
6693 /* create regnode */
6694 KMALLOC(newreg, struct secreg *, sizeof(*newreg));
6695 if (newreg == NULL) {
6696 ipseclog((LOG_DEBUG, "key_register: No more memory.\n"));
6697 return key_senderror(so, m, ENOBUFS);
6698 }
6699 memset(newreg, 0, sizeof(*newreg));
6700
6701 newreg->so = so;
6702 ((struct keycb *)sotorawcb(so))->kp_registered++;
6703
6704 /* add regnode to regtree. */
6705 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain);
6706
6707 setmsg:
6708 {
6709 struct mbuf *n;
6710 struct sadb_msg *newmsg;
6711 struct sadb_supported *sup;
6712 u_int len, alen, elen;
6713 int off;
6714 int i;
6715 struct sadb_alg *alg;
6716
6717 /* create new sadb_msg to reply. */
6718 alen = 0;
6719 for (i = 1; i <= SADB_AALG_MAX; i++) {
6720 if (ah_algorithm_lookup(i))
6721 alen += sizeof(struct sadb_alg);
6722 }
6723 if (alen)
6724 alen += sizeof(struct sadb_supported);
6725 elen = 0;
6726 for (i = 1; i <= SADB_EALG_MAX; i++) {
6727 if (esp_algorithm_lookup(i))
6728 elen += sizeof(struct sadb_alg);
6729 }
6730 if (elen)
6731 elen += sizeof(struct sadb_supported);
6732
6733 len = sizeof(struct sadb_msg) + alen + elen;
6734
6735 if (len > MCLBYTES)
6736 return key_senderror(so, m, ENOBUFS);
6737
6738 MGETHDR(n, M_DONTWAIT, MT_DATA);
6739 if (len > MHLEN) {
6740 MCLGET(n, M_DONTWAIT);
6741 if ((n->m_flags & M_EXT) == 0) {
6742 m_freem(n);
6743 n = NULL;
6744 }
6745 }
6746 if (!n)
6747 return key_senderror(so, m, ENOBUFS);
6748
6749 n->m_pkthdr.len = n->m_len = len;
6750 n->m_next = NULL;
6751 off = 0;
6752
6753 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
6754 newmsg = mtod(n, struct sadb_msg *);
6755 newmsg->sadb_msg_errno = 0;
6756 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6757 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6758
6759 /* for authentication algorithm */
6760 if (alen) {
6761 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6762 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6763 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6764 off += PFKEY_ALIGN8(sizeof(*sup));
6765
6766 for (i = 1; i <= SADB_AALG_MAX; i++) {
6767 const struct auth_hash *aalgo;
6768 u_int16_t minkeysize, maxkeysize;
6769
6770 aalgo = ah_algorithm_lookup(i);
6771 if (!aalgo)
6772 continue;
6773 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6774 alg->sadb_alg_id = i;
6775 alg->sadb_alg_ivlen = 0;
6776 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6777 alg->sadb_alg_minbits = _BITS(minkeysize);
6778 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6779 off += PFKEY_ALIGN8(sizeof(*alg));
6780 }
6781 }
6782
6783 /* for encryption algorithm */
6784 if (elen) {
6785 sup = (struct sadb_supported *)(mtod(n, char *) + off);
6786 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6787 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6788 off += PFKEY_ALIGN8(sizeof(*sup));
6789
6790 for (i = 1; i <= SADB_EALG_MAX; i++) {
6791 const struct enc_xform *ealgo;
6792
6793 ealgo = esp_algorithm_lookup(i);
6794 if (!ealgo)
6795 continue;
6796 alg = (struct sadb_alg *)(mtod(n, char *) + off);
6797 alg->sadb_alg_id = i;
6798 alg->sadb_alg_ivlen = ealgo->blocksize;
6799 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6800 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6801 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6802 }
6803 }
6804
6805 #ifdef DIAGNOSTIC
6806 if (off != len)
6807 panic("length assumption failed in key_register");
6808 #endif
6809
6810 m_freem(m);
6811 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6812 }
6813 }
6814
6815 /*
6816 * free secreg entry registered.
6817 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6818 */
6819 void
6820 key_freereg(struct socket *so)
6821 {
6822 struct secreg *reg;
6823 int i;
6824
6825 /* sanity check */
6826 if (so == NULL)
6827 panic("key_freereg: NULL pointer is passed");
6828
6829 /*
6830 * check whether existing or not.
6831 * check all type of SA, because there is a potential that
6832 * one socket is registered to multiple type of SA.
6833 */
6834 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6835 LIST_FOREACH(reg, ®tree[i], chain) {
6836 if (reg->so == so
6837 && __LIST_CHAINED(reg)) {
6838 LIST_REMOVE(reg, chain);
6839 KFREE(reg);
6840 break;
6841 }
6842 }
6843 }
6844
6845 return;
6846 }
6847
6848 /*
6849 * SADB_EXPIRE processing
6850 * send
6851 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6852 * to KMD by PF_KEY.
6853 * NOTE: We send only soft lifetime extension.
6854 *
6855 * OUT: 0 : succeed
6856 * others : error number
6857 */
6858 static int
6859 key_expire(struct secasvar *sav)
6860 {
6861 int s;
6862 int satype;
6863 struct mbuf *result = NULL, *m;
6864 int len;
6865 int error = -1;
6866 struct sadb_lifetime *lt;
6867
6868 /* XXX: Why do we lock ? */
6869 s = splsoftnet(); /*called from softclock()*/
6870
6871 /* sanity check */
6872 if (sav == NULL)
6873 panic("key_expire: NULL pointer is passed");
6874 if (sav->sah == NULL)
6875 panic("key_expire: Why was SA index in SA NULL");
6876 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0)
6877 panic("key_expire: invalid proto is passed");
6878
6879 /* set msg header */
6880 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6881 if (!m) {
6882 error = ENOBUFS;
6883 goto fail;
6884 }
6885 result = m;
6886
6887 /* create SA extension */
6888 m = key_setsadbsa(sav);
6889 if (!m) {
6890 error = ENOBUFS;
6891 goto fail;
6892 }
6893 m_cat(result, m);
6894
6895 /* create SA extension */
6896 m = key_setsadbxsa2(sav->sah->saidx.mode,
6897 sav->replay ? sav->replay->count : 0,
6898 sav->sah->saidx.reqid);
6899 if (!m) {
6900 error = ENOBUFS;
6901 goto fail;
6902 }
6903 m_cat(result, m);
6904
6905 /* create lifetime extension (current and soft) */
6906 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6907 m = key_alloc_mbuf(len);
6908 if (!m || m->m_next) { /*XXX*/
6909 if (m)
6910 m_freem(m);
6911 error = ENOBUFS;
6912 goto fail;
6913 }
6914 memset(mtod(m, void *), 0, len);
6915 lt = mtod(m, struct sadb_lifetime *);
6916 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6917 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6918 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
6919 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
6920 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime
6921 + time_second - time_uptime;
6922 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime
6923 + time_second - time_uptime;
6924 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
6925 memcpy(lt, sav->lft_s, sizeof(*lt));
6926 m_cat(result, m);
6927
6928 /* set sadb_address for source */
6929 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6930 &sav->sah->saidx.src.sa,
6931 FULLMASK, IPSEC_ULPROTO_ANY);
6932 if (!m) {
6933 error = ENOBUFS;
6934 goto fail;
6935 }
6936 m_cat(result, m);
6937
6938 /* set sadb_address for destination */
6939 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6940 &sav->sah->saidx.dst.sa,
6941 FULLMASK, IPSEC_ULPROTO_ANY);
6942 if (!m) {
6943 error = ENOBUFS;
6944 goto fail;
6945 }
6946 m_cat(result, m);
6947
6948 if ((result->m_flags & M_PKTHDR) == 0) {
6949 error = EINVAL;
6950 goto fail;
6951 }
6952
6953 if (result->m_len < sizeof(struct sadb_msg)) {
6954 result = m_pullup(result, sizeof(struct sadb_msg));
6955 if (result == NULL) {
6956 error = ENOBUFS;
6957 goto fail;
6958 }
6959 }
6960
6961 result->m_pkthdr.len = 0;
6962 for (m = result; m; m = m->m_next)
6963 result->m_pkthdr.len += m->m_len;
6964
6965 mtod(result, struct sadb_msg *)->sadb_msg_len =
6966 PFKEY_UNIT64(result->m_pkthdr.len);
6967
6968 splx(s);
6969 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6970
6971 fail:
6972 if (result)
6973 m_freem(result);
6974 splx(s);
6975 return error;
6976 }
6977
6978 /*
6979 * SADB_FLUSH processing
6980 * receive
6981 * <base>
6982 * from the ikmpd, and free all entries in secastree.
6983 * and send,
6984 * <base>
6985 * to the ikmpd.
6986 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6987 *
6988 * m will always be freed.
6989 */
6990 static int
6991 key_flush(struct socket *so, struct mbuf *m,
6992 const struct sadb_msghdr *mhp)
6993 {
6994 struct sadb_msg *newmsg;
6995 struct secashead *sah, *nextsah;
6996 struct secasvar *sav, *nextsav;
6997 u_int16_t proto;
6998 u_int8_t state;
6999 u_int stateidx;
7000
7001 /* sanity check */
7002 if (so == NULL || mhp == NULL || mhp->msg == NULL)
7003 panic("key_flush: NULL pointer is passed");
7004
7005 /* map satype to proto */
7006 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7007 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
7008 return key_senderror(so, m, EINVAL);
7009 }
7010
7011 /* no SATYPE specified, i.e. flushing all SA. */
7012 for (sah = LIST_FIRST(&sahtree);
7013 sah != NULL;
7014 sah = nextsah) {
7015 nextsah = LIST_NEXT(sah, chain);
7016
7017 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7018 && proto != sah->saidx.proto)
7019 continue;
7020
7021 for (stateidx = 0;
7022 stateidx < _ARRAYLEN(saorder_state_alive);
7023 stateidx++) {
7024 state = saorder_state_any[stateidx];
7025 for (sav = LIST_FIRST(&sah->savtree[state]);
7026 sav != NULL;
7027 sav = nextsav) {
7028
7029 nextsav = LIST_NEXT(sav, chain);
7030
7031 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7032 KEY_FREESAV(&sav);
7033 }
7034 }
7035
7036 sah->state = SADB_SASTATE_DEAD;
7037 }
7038
7039 if (m->m_len < sizeof(struct sadb_msg) ||
7040 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7041 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
7042 return key_senderror(so, m, ENOBUFS);
7043 }
7044
7045 if (m->m_next)
7046 m_freem(m->m_next);
7047 m->m_next = NULL;
7048 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7049 newmsg = mtod(m, struct sadb_msg *);
7050 newmsg->sadb_msg_errno = 0;
7051 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7052
7053 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7054 }
7055
7056
7057 static struct mbuf *
7058 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7059 {
7060 struct secashead *sah;
7061 struct secasvar *sav;
7062 u_int16_t proto;
7063 u_int stateidx;
7064 u_int8_t satype;
7065 u_int8_t state;
7066 int cnt;
7067 struct mbuf *m, *n, *prev;
7068
7069 *lenp = 0;
7070
7071 /* map satype to proto */
7072 if ((proto = key_satype2proto(req_satype)) == 0) {
7073 *errorp = EINVAL;
7074 return (NULL);
7075 }
7076
7077 /* count sav entries to be sent to userland. */
7078 cnt = 0;
7079 LIST_FOREACH(sah, &sahtree, chain) {
7080 if (req_satype != SADB_SATYPE_UNSPEC &&
7081 proto != sah->saidx.proto)
7082 continue;
7083
7084 for (stateidx = 0;
7085 stateidx < _ARRAYLEN(saorder_state_any);
7086 stateidx++) {
7087 state = saorder_state_any[stateidx];
7088 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7089 cnt++;
7090 }
7091 }
7092 }
7093
7094 if (cnt == 0) {
7095 *errorp = ENOENT;
7096 return (NULL);
7097 }
7098
7099 /* send this to the userland, one at a time. */
7100 m = NULL;
7101 prev = m;
7102 LIST_FOREACH(sah, &sahtree, chain) {
7103 if (req_satype != SADB_SATYPE_UNSPEC &&
7104 proto != sah->saidx.proto)
7105 continue;
7106
7107 /* map proto to satype */
7108 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7109 m_freem(m);
7110 *errorp = EINVAL;
7111 return (NULL);
7112 }
7113
7114 for (stateidx = 0;
7115 stateidx < _ARRAYLEN(saorder_state_any);
7116 stateidx++) {
7117 state = saorder_state_any[stateidx];
7118 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7119 n = key_setdumpsa(sav, SADB_DUMP, satype,
7120 --cnt, pid);
7121 if (!n) {
7122 m_freem(m);
7123 *errorp = ENOBUFS;
7124 return (NULL);
7125 }
7126
7127 if (!m)
7128 m = n;
7129 else
7130 prev->m_nextpkt = n;
7131 prev = n;
7132 }
7133 }
7134 }
7135
7136 if (!m) {
7137 *errorp = EINVAL;
7138 return (NULL);
7139 }
7140
7141 if ((m->m_flags & M_PKTHDR) != 0) {
7142 m->m_pkthdr.len = 0;
7143 for (n = m; n; n = n->m_next)
7144 m->m_pkthdr.len += n->m_len;
7145 }
7146
7147 *errorp = 0;
7148 return (m);
7149 }
7150
7151 /*
7152 * SADB_DUMP processing
7153 * dump all entries including status of DEAD in SAD.
7154 * receive
7155 * <base>
7156 * from the ikmpd, and dump all secasvar leaves
7157 * and send,
7158 * <base> .....
7159 * to the ikmpd.
7160 *
7161 * m will always be freed.
7162 */
7163 static int
7164 key_dump(struct socket *so, struct mbuf *m0,
7165 const struct sadb_msghdr *mhp)
7166 {
7167 u_int16_t proto;
7168 u_int8_t satype;
7169 struct mbuf *n;
7170 int s;
7171 int error, len, ok;
7172
7173 /* sanity check */
7174 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL)
7175 panic("key_dump: NULL pointer is passed");
7176
7177 /* map satype to proto */
7178 satype = mhp->msg->sadb_msg_satype;
7179 if ((proto = key_satype2proto(satype)) == 0) {
7180 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
7181 return key_senderror(so, m0, EINVAL);
7182 }
7183
7184 /*
7185 * If the requestor has insufficient socket-buffer space
7186 * for the entire chain, nobody gets any response to the DUMP.
7187 * XXX For now, only the requestor ever gets anything.
7188 * Moreover, if the requestor has any space at all, they receive
7189 * the entire chain, otherwise the request is refused with ENOBUFS.
7190 */
7191 if (sbspace(&so->so_rcv) <= 0) {
7192 return key_senderror(so, m0, ENOBUFS);
7193 }
7194
7195 s = splsoftnet();
7196 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7197 splx(s);
7198
7199 if (n == NULL) {
7200 return key_senderror(so, m0, ENOENT);
7201 }
7202 {
7203 uint64_t *ps = PFKEY_STAT_GETREF();
7204 ps[PFKEY_STAT_IN_TOTAL]++;
7205 ps[PFKEY_STAT_IN_BYTES] += len;
7206 PFKEY_STAT_PUTREF();
7207 }
7208
7209 /*
7210 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7211 * The requestor receives either the entire chain, or an
7212 * error message with ENOBUFS.
7213 *
7214 * sbappendaddrchain() takes the chain of entries, one
7215 * packet-record per SPD entry, prepends the key_src sockaddr
7216 * to each packet-record, links the sockaddr mbufs into a new
7217 * list of records, then appends the entire resulting
7218 * list to the requesting socket.
7219 */
7220 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src,
7221 n, SB_PRIO_ONESHOT_OVERFLOW);
7222
7223 if (!ok) {
7224 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7225 m_freem(n);
7226 return key_senderror(so, m0, ENOBUFS);
7227 }
7228
7229 m_freem(m0);
7230 return 0;
7231 }
7232
7233 /*
7234 * SADB_X_PROMISC processing
7235 *
7236 * m will always be freed.
7237 */
7238 static int
7239 key_promisc(struct socket *so, struct mbuf *m,
7240 const struct sadb_msghdr *mhp)
7241 {
7242 int olen;
7243
7244 /* sanity check */
7245 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
7246 panic("key_promisc: NULL pointer is passed");
7247
7248 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7249
7250 if (olen < sizeof(struct sadb_msg)) {
7251 #if 1
7252 return key_senderror(so, m, EINVAL);
7253 #else
7254 m_freem(m);
7255 return 0;
7256 #endif
7257 } else if (olen == sizeof(struct sadb_msg)) {
7258 /* enable/disable promisc mode */
7259 struct keycb *kp;
7260
7261 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7262 return key_senderror(so, m, EINVAL);
7263 mhp->msg->sadb_msg_errno = 0;
7264 switch (mhp->msg->sadb_msg_satype) {
7265 case 0:
7266 case 1:
7267 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7268 break;
7269 default:
7270 return key_senderror(so, m, EINVAL);
7271 }
7272
7273 /* send the original message back to everyone */
7274 mhp->msg->sadb_msg_errno = 0;
7275 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7276 } else {
7277 /* send packet as is */
7278
7279 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7280
7281 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7282 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7283 }
7284 }
7285
7286 static int (*key_typesw[]) (struct socket *, struct mbuf *,
7287 const struct sadb_msghdr *) = {
7288 NULL, /* SADB_RESERVED */
7289 key_getspi, /* SADB_GETSPI */
7290 key_update, /* SADB_UPDATE */
7291 key_add, /* SADB_ADD */
7292 key_delete, /* SADB_DELETE */
7293 key_get, /* SADB_GET */
7294 key_acquire2, /* SADB_ACQUIRE */
7295 key_register, /* SADB_REGISTER */
7296 NULL, /* SADB_EXPIRE */
7297 key_flush, /* SADB_FLUSH */
7298 key_dump, /* SADB_DUMP */
7299 key_promisc, /* SADB_X_PROMISC */
7300 NULL, /* SADB_X_PCHANGE */
7301 key_spdadd, /* SADB_X_SPDUPDATE */
7302 key_spdadd, /* SADB_X_SPDADD */
7303 key_spddelete, /* SADB_X_SPDDELETE */
7304 key_spdget, /* SADB_X_SPDGET */
7305 NULL, /* SADB_X_SPDACQUIRE */
7306 key_spddump, /* SADB_X_SPDDUMP */
7307 key_spdflush, /* SADB_X_SPDFLUSH */
7308 key_spdadd, /* SADB_X_SPDSETIDX */
7309 NULL, /* SADB_X_SPDEXPIRE */
7310 key_spddelete2, /* SADB_X_SPDDELETE2 */
7311 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
7312 };
7313
7314 /*
7315 * parse sadb_msg buffer to process PFKEYv2,
7316 * and create a data to response if needed.
7317 * I think to be dealed with mbuf directly.
7318 * IN:
7319 * msgp : pointer to pointer to a received buffer pulluped.
7320 * This is rewrited to response.
7321 * so : pointer to socket.
7322 * OUT:
7323 * length for buffer to send to user process.
7324 */
7325 int
7326 key_parse(struct mbuf *m, struct socket *so)
7327 {
7328 struct sadb_msg *msg;
7329 struct sadb_msghdr mh;
7330 int error;
7331 int target;
7332
7333 /* sanity check */
7334 if (m == NULL || so == NULL)
7335 panic("key_parse: NULL pointer is passed");
7336
7337 #if 0 /*kdebug_sadb assumes msg in linear buffer*/
7338 KEYDEBUG(KEYDEBUG_KEY_DUMP,
7339 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
7340 kdebug_sadb(msg));
7341 #endif
7342
7343 if (m->m_len < sizeof(struct sadb_msg)) {
7344 m = m_pullup(m, sizeof(struct sadb_msg));
7345 if (!m)
7346 return ENOBUFS;
7347 }
7348 msg = mtod(m, struct sadb_msg *);
7349 target = KEY_SENDUP_ONE;
7350
7351 if ((m->m_flags & M_PKTHDR) == 0 ||
7352 m->m_pkthdr.len != m->m_pkthdr.len) {
7353 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
7354 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7355 error = EINVAL;
7356 goto senderror;
7357 }
7358
7359 if (msg->sadb_msg_version != PF_KEY_V2) {
7360 ipseclog((LOG_DEBUG,
7361 "key_parse: PF_KEY version %u is mismatched.\n",
7362 msg->sadb_msg_version));
7363 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7364 error = EINVAL;
7365 goto senderror;
7366 }
7367
7368 if (msg->sadb_msg_type > SADB_MAX) {
7369 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7370 msg->sadb_msg_type));
7371 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7372 error = EINVAL;
7373 goto senderror;
7374 }
7375
7376 /* for old-fashioned code - should be nuked */
7377 if (m->m_pkthdr.len > MCLBYTES) {
7378 m_freem(m);
7379 return ENOBUFS;
7380 }
7381 if (m->m_next) {
7382 struct mbuf *n;
7383
7384 MGETHDR(n, M_DONTWAIT, MT_DATA);
7385 if (n && m->m_pkthdr.len > MHLEN) {
7386 MCLGET(n, M_DONTWAIT);
7387 if ((n->m_flags & M_EXT) == 0) {
7388 m_free(n);
7389 n = NULL;
7390 }
7391 }
7392 if (!n) {
7393 m_freem(m);
7394 return ENOBUFS;
7395 }
7396 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7397 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7398 n->m_next = NULL;
7399 m_freem(m);
7400 m = n;
7401 }
7402
7403 /* align the mbuf chain so that extensions are in contiguous region. */
7404 error = key_align(m, &mh);
7405 if (error)
7406 return error;
7407
7408 if (m->m_next) { /*XXX*/
7409 m_freem(m);
7410 return ENOBUFS;
7411 }
7412
7413 msg = mh.msg;
7414
7415 /* check SA type */
7416 switch (msg->sadb_msg_satype) {
7417 case SADB_SATYPE_UNSPEC:
7418 switch (msg->sadb_msg_type) {
7419 case SADB_GETSPI:
7420 case SADB_UPDATE:
7421 case SADB_ADD:
7422 case SADB_DELETE:
7423 case SADB_GET:
7424 case SADB_ACQUIRE:
7425 case SADB_EXPIRE:
7426 ipseclog((LOG_DEBUG, "key_parse: must specify satype "
7427 "when msg type=%u.\n", msg->sadb_msg_type));
7428 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7429 error = EINVAL;
7430 goto senderror;
7431 }
7432 break;
7433 case SADB_SATYPE_AH:
7434 case SADB_SATYPE_ESP:
7435 case SADB_X_SATYPE_IPCOMP:
7436 case SADB_X_SATYPE_TCPSIGNATURE:
7437 switch (msg->sadb_msg_type) {
7438 case SADB_X_SPDADD:
7439 case SADB_X_SPDDELETE:
7440 case SADB_X_SPDGET:
7441 case SADB_X_SPDDUMP:
7442 case SADB_X_SPDFLUSH:
7443 case SADB_X_SPDSETIDX:
7444 case SADB_X_SPDUPDATE:
7445 case SADB_X_SPDDELETE2:
7446 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
7447 msg->sadb_msg_type));
7448 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7449 error = EINVAL;
7450 goto senderror;
7451 }
7452 break;
7453 case SADB_SATYPE_RSVP:
7454 case SADB_SATYPE_OSPFV2:
7455 case SADB_SATYPE_RIPV2:
7456 case SADB_SATYPE_MIP:
7457 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
7458 msg->sadb_msg_satype));
7459 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7460 error = EOPNOTSUPP;
7461 goto senderror;
7462 case 1: /* XXX: What does it do? */
7463 if (msg->sadb_msg_type == SADB_X_PROMISC)
7464 break;
7465 /*FALLTHROUGH*/
7466 default:
7467 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
7468 msg->sadb_msg_satype));
7469 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7470 error = EINVAL;
7471 goto senderror;
7472 }
7473
7474 /* check field of upper layer protocol and address family */
7475 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7476 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7477 struct sadb_address *src0, *dst0;
7478 u_int plen;
7479
7480 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7481 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7482
7483 /* check upper layer protocol */
7484 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7485 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
7486 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7487 error = EINVAL;
7488 goto senderror;
7489 }
7490
7491 /* check family */
7492 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7493 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7494 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
7495 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7496 error = EINVAL;
7497 goto senderror;
7498 }
7499 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7500 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7501 ipseclog((LOG_DEBUG,
7502 "key_parse: address struct size mismatched.\n"));
7503 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7504 error = EINVAL;
7505 goto senderror;
7506 }
7507
7508 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7509 case AF_INET:
7510 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7511 sizeof(struct sockaddr_in)) {
7512 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7513 error = EINVAL;
7514 goto senderror;
7515 }
7516 break;
7517 case AF_INET6:
7518 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7519 sizeof(struct sockaddr_in6)) {
7520 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7521 error = EINVAL;
7522 goto senderror;
7523 }
7524 break;
7525 default:
7526 ipseclog((LOG_DEBUG,
7527 "key_parse: unsupported address family.\n"));
7528 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7529 error = EAFNOSUPPORT;
7530 goto senderror;
7531 }
7532
7533 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7534 case AF_INET:
7535 plen = sizeof(struct in_addr) << 3;
7536 break;
7537 case AF_INET6:
7538 plen = sizeof(struct in6_addr) << 3;
7539 break;
7540 default:
7541 plen = 0; /*fool gcc*/
7542 break;
7543 }
7544
7545 /* check max prefix length */
7546 if (src0->sadb_address_prefixlen > plen ||
7547 dst0->sadb_address_prefixlen > plen) {
7548 ipseclog((LOG_DEBUG,
7549 "key_parse: illegal prefixlen.\n"));
7550 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7551 error = EINVAL;
7552 goto senderror;
7553 }
7554
7555 /*
7556 * prefixlen == 0 is valid because there can be a case when
7557 * all addresses are matched.
7558 */
7559 }
7560
7561 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7562 key_typesw[msg->sadb_msg_type] == NULL) {
7563 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7564 error = EINVAL;
7565 goto senderror;
7566 }
7567
7568 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7569
7570 senderror:
7571 msg->sadb_msg_errno = error;
7572 return key_sendup_mbuf(so, m, target);
7573 }
7574
7575 static int
7576 key_senderror(struct socket *so, struct mbuf *m, int code)
7577 {
7578 struct sadb_msg *msg;
7579
7580 if (m->m_len < sizeof(struct sadb_msg))
7581 panic("invalid mbuf passed to key_senderror");
7582
7583 msg = mtod(m, struct sadb_msg *);
7584 msg->sadb_msg_errno = code;
7585 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7586 }
7587
7588 /*
7589 * set the pointer to each header into message buffer.
7590 * m will be freed on error.
7591 * XXX larger-than-MCLBYTES extension?
7592 */
7593 static int
7594 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7595 {
7596 struct mbuf *n;
7597 struct sadb_ext *ext;
7598 size_t off, end;
7599 int extlen;
7600 int toff;
7601
7602 /* sanity check */
7603 if (m == NULL || mhp == NULL)
7604 panic("key_align: NULL pointer is passed");
7605 if (m->m_len < sizeof(struct sadb_msg))
7606 panic("invalid mbuf passed to key_align");
7607
7608 /* initialize */
7609 memset(mhp, 0, sizeof(*mhp));
7610
7611 mhp->msg = mtod(m, struct sadb_msg *);
7612 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7613
7614 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7615 extlen = end; /*just in case extlen is not updated*/
7616 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7617 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7618 if (!n) {
7619 /* m is already freed */
7620 return ENOBUFS;
7621 }
7622 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7623
7624 /* set pointer */
7625 switch (ext->sadb_ext_type) {
7626 case SADB_EXT_SA:
7627 case SADB_EXT_ADDRESS_SRC:
7628 case SADB_EXT_ADDRESS_DST:
7629 case SADB_EXT_ADDRESS_PROXY:
7630 case SADB_EXT_LIFETIME_CURRENT:
7631 case SADB_EXT_LIFETIME_HARD:
7632 case SADB_EXT_LIFETIME_SOFT:
7633 case SADB_EXT_KEY_AUTH:
7634 case SADB_EXT_KEY_ENCRYPT:
7635 case SADB_EXT_IDENTITY_SRC:
7636 case SADB_EXT_IDENTITY_DST:
7637 case SADB_EXT_SENSITIVITY:
7638 case SADB_EXT_PROPOSAL:
7639 case SADB_EXT_SUPPORTED_AUTH:
7640 case SADB_EXT_SUPPORTED_ENCRYPT:
7641 case SADB_EXT_SPIRANGE:
7642 case SADB_X_EXT_POLICY:
7643 case SADB_X_EXT_SA2:
7644 case SADB_X_EXT_NAT_T_TYPE:
7645 case SADB_X_EXT_NAT_T_SPORT:
7646 case SADB_X_EXT_NAT_T_DPORT:
7647 case SADB_X_EXT_NAT_T_OAI:
7648 case SADB_X_EXT_NAT_T_OAR:
7649 case SADB_X_EXT_NAT_T_FRAG:
7650 /* duplicate check */
7651 /*
7652 * XXX Are there duplication payloads of either
7653 * KEY_AUTH or KEY_ENCRYPT ?
7654 */
7655 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7656 ipseclog((LOG_DEBUG,
7657 "key_align: duplicate ext_type %u "
7658 "is passed.\n", ext->sadb_ext_type));
7659 m_freem(m);
7660 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7661 return EINVAL;
7662 }
7663 break;
7664 default:
7665 ipseclog((LOG_DEBUG,
7666 "key_align: invalid ext_type %u is passed.\n",
7667 ext->sadb_ext_type));
7668 m_freem(m);
7669 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7670 return EINVAL;
7671 }
7672
7673 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7674
7675 if (key_validate_ext(ext, extlen)) {
7676 m_freem(m);
7677 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7678 return EINVAL;
7679 }
7680
7681 n = m_pulldown(m, off, extlen, &toff);
7682 if (!n) {
7683 /* m is already freed */
7684 return ENOBUFS;
7685 }
7686 ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7687
7688 mhp->ext[ext->sadb_ext_type] = ext;
7689 mhp->extoff[ext->sadb_ext_type] = off;
7690 mhp->extlen[ext->sadb_ext_type] = extlen;
7691 }
7692
7693 if (off != end) {
7694 m_freem(m);
7695 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7696 return EINVAL;
7697 }
7698
7699 return 0;
7700 }
7701
7702 static int
7703 key_validate_ext(const struct sadb_ext *ext, int len)
7704 {
7705 const struct sockaddr *sa;
7706 enum { NONE, ADDR } checktype = NONE;
7707 int baselen = 0;
7708 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7709
7710 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7711 return EINVAL;
7712
7713 /* if it does not match minimum/maximum length, bail */
7714 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7715 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7716 return EINVAL;
7717 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7718 return EINVAL;
7719 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7720 return EINVAL;
7721
7722 /* more checks based on sadb_ext_type XXX need more */
7723 switch (ext->sadb_ext_type) {
7724 case SADB_EXT_ADDRESS_SRC:
7725 case SADB_EXT_ADDRESS_DST:
7726 case SADB_EXT_ADDRESS_PROXY:
7727 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7728 checktype = ADDR;
7729 break;
7730 case SADB_EXT_IDENTITY_SRC:
7731 case SADB_EXT_IDENTITY_DST:
7732 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7733 SADB_X_IDENTTYPE_ADDR) {
7734 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7735 checktype = ADDR;
7736 } else
7737 checktype = NONE;
7738 break;
7739 default:
7740 checktype = NONE;
7741 break;
7742 }
7743
7744 switch (checktype) {
7745 case NONE:
7746 break;
7747 case ADDR:
7748 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7749 if (len < baselen + sal)
7750 return EINVAL;
7751 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7752 return EINVAL;
7753 break;
7754 }
7755
7756 return 0;
7757 }
7758
7759 static int
7760 key_do_init(void)
7761 {
7762 int i;
7763
7764 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
7765
7766 callout_init(&key_timehandler_ch, 0);
7767
7768 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7769 LIST_INIT(&sptree[i]);
7770 }
7771
7772 LIST_INIT(&sahtree);
7773
7774 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7775 LIST_INIT(®tree[i]);
7776 }
7777
7778 #ifndef IPSEC_NONBLOCK_ACQUIRE
7779 LIST_INIT(&acqtree);
7780 #endif
7781 LIST_INIT(&spacqtree);
7782
7783 /* system default */
7784 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7785 ip4_def_policy.refcnt++; /*never reclaim this*/
7786
7787 #ifdef INET6
7788 ip6_def_policy.policy = IPSEC_POLICY_NONE;
7789 ip6_def_policy.refcnt++; /*never reclaim this*/
7790 #endif
7791
7792
7793 #ifndef IPSEC_DEBUG2
7794 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
7795 #endif /*IPSEC_DEBUG2*/
7796
7797 /* initialize key statistics */
7798 keystat.getspi_count = 1;
7799
7800 aprint_verbose("IPsec: Initialized Security Association Processing.\n");
7801
7802 return (0);
7803 }
7804
7805 void
7806 key_init(void)
7807 {
7808 static ONCE_DECL(key_init_once);
7809
7810 RUN_ONCE(&key_init_once, key_do_init);
7811 }
7812
7813 /*
7814 * XXX: maybe This function is called after INBOUND IPsec processing.
7815 *
7816 * Special check for tunnel-mode packets.
7817 * We must make some checks for consistency between inner and outer IP header.
7818 *
7819 * xxx more checks to be provided
7820 */
7821 int
7822 key_checktunnelsanity(
7823 struct secasvar *sav,
7824 u_int family,
7825 void *src,
7826 void *dst
7827 )
7828 {
7829 /* sanity check */
7830 if (sav->sah == NULL)
7831 panic("sav->sah == NULL at key_checktunnelsanity");
7832
7833 /* XXX: check inner IP header */
7834
7835 return 1;
7836 }
7837
7838 #if 0
7839 #define hostnamelen strlen(hostname)
7840
7841 /*
7842 * Get FQDN for the host.
7843 * If the administrator configured hostname (by hostname(1)) without
7844 * domain name, returns nothing.
7845 */
7846 static const char *
7847 key_getfqdn(void)
7848 {
7849 int i;
7850 int hasdot;
7851 static char fqdn[MAXHOSTNAMELEN + 1];
7852
7853 if (!hostnamelen)
7854 return NULL;
7855
7856 /* check if it comes with domain name. */
7857 hasdot = 0;
7858 for (i = 0; i < hostnamelen; i++) {
7859 if (hostname[i] == '.')
7860 hasdot++;
7861 }
7862 if (!hasdot)
7863 return NULL;
7864
7865 /* NOTE: hostname may not be NUL-terminated. */
7866 memset(fqdn, 0, sizeof(fqdn));
7867 memcpy(fqdn, hostname, hostnamelen);
7868 fqdn[hostnamelen] = '\0';
7869 return fqdn;
7870 }
7871
7872 /*
7873 * get username@FQDN for the host/user.
7874 */
7875 static const char *
7876 key_getuserfqdn(void)
7877 {
7878 const char *host;
7879 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
7880 struct proc *p = curproc;
7881 char *q;
7882
7883 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
7884 return NULL;
7885 if (!(host = key_getfqdn()))
7886 return NULL;
7887
7888 /* NOTE: s_login may not be-NUL terminated. */
7889 memset(userfqdn, 0, sizeof(userfqdn));
7890 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
7891 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
7892 q = userfqdn + strlen(userfqdn);
7893 *q++ = '@';
7894 memcpy(q, host, strlen(host));
7895 q += strlen(host);
7896 *q++ = '\0';
7897
7898 return userfqdn;
7899 }
7900 #endif
7901
7902 /* record data transfer on SA, and update timestamps */
7903 void
7904 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7905 {
7906 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar"));
7907 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf"));
7908 if (!sav->lft_c)
7909 return;
7910
7911 /*
7912 * XXX Currently, there is a difference of bytes size
7913 * between inbound and outbound processing.
7914 */
7915 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
7916 /* to check bytes lifetime is done in key_timehandler(). */
7917
7918 /*
7919 * We use the number of packets as the unit of
7920 * sadb_lifetime_allocations. We increment the variable
7921 * whenever {esp,ah}_{in,out}put is called.
7922 */
7923 sav->lft_c->sadb_lifetime_allocations++;
7924 /* XXX check for expires? */
7925
7926 /*
7927 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
7928 * in seconds. HARD and SOFT lifetime are measured by the time
7929 * difference (again in seconds) from sadb_lifetime_usetime.
7930 *
7931 * usetime
7932 * v expire expire
7933 * -----+-----+--------+---> t
7934 * <--------------> HARD
7935 * <-----> SOFT
7936 */
7937 sav->lft_c->sadb_lifetime_usetime = time_uptime;
7938 /* XXX check for expires? */
7939
7940 return;
7941 }
7942
7943 /* dumb version */
7944 void
7945 key_sa_routechange(struct sockaddr *dst)
7946 {
7947 struct secashead *sah;
7948 struct route *ro;
7949 const struct sockaddr *sa;
7950
7951 LIST_FOREACH(sah, &sahtree, chain) {
7952 ro = &sah->sa_route;
7953 sa = rtcache_getdst(ro);
7954 if (sa != NULL && dst->sa_len == sa->sa_len &&
7955 memcmp(dst, sa, dst->sa_len) == 0)
7956 rtcache_free(ro);
7957 }
7958
7959 return;
7960 }
7961
7962 static void
7963 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7964 {
7965 if (sav == NULL)
7966 panic("key_sa_chgstate called with sav == NULL");
7967
7968 if (sav->state == state)
7969 return;
7970
7971 if (__LIST_CHAINED(sav))
7972 LIST_REMOVE(sav, chain);
7973
7974 sav->state = state;
7975 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7976 }
7977
7978 /* XXX too much? */
7979 static struct mbuf *
7980 key_alloc_mbuf(int l)
7981 {
7982 struct mbuf *m = NULL, *n;
7983 int len, t;
7984
7985 len = l;
7986 while (len > 0) {
7987 MGET(n, M_DONTWAIT, MT_DATA);
7988 if (n && len > MLEN)
7989 MCLGET(n, M_DONTWAIT);
7990 if (!n) {
7991 m_freem(m);
7992 return NULL;
7993 }
7994
7995 n->m_next = NULL;
7996 n->m_len = 0;
7997 n->m_len = M_TRAILINGSPACE(n);
7998 /* use the bottom of mbuf, hoping we can prepend afterwards */
7999 if (n->m_len > len) {
8000 t = (n->m_len - len) & ~(sizeof(long) - 1);
8001 n->m_data += t;
8002 n->m_len = len;
8003 }
8004
8005 len -= n->m_len;
8006
8007 if (m)
8008 m_cat(m, n);
8009 else
8010 m = n;
8011 }
8012
8013 return m;
8014 }
8015
8016 static struct mbuf *
8017 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8018 {
8019 struct secashead *sah;
8020 struct secasvar *sav;
8021 u_int16_t proto;
8022 u_int stateidx;
8023 u_int8_t satype;
8024 u_int8_t state;
8025 int cnt;
8026 struct mbuf *m, *n;
8027
8028 /* map satype to proto */
8029 if ((proto = key_satype2proto(req_satype)) == 0) {
8030 *errorp = EINVAL;
8031 return (NULL);
8032 }
8033
8034 /* count sav entries to be sent to the userland. */
8035 cnt = 0;
8036 LIST_FOREACH(sah, &sahtree, chain) {
8037 if (req_satype != SADB_SATYPE_UNSPEC &&
8038 proto != sah->saidx.proto)
8039 continue;
8040
8041 for (stateidx = 0;
8042 stateidx < _ARRAYLEN(saorder_state_any);
8043 stateidx++) {
8044 state = saorder_state_any[stateidx];
8045 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8046 cnt++;
8047 }
8048 }
8049 }
8050
8051 if (cnt == 0) {
8052 *errorp = ENOENT;
8053 return (NULL);
8054 }
8055
8056 /* send this to the userland, one at a time. */
8057 m = NULL;
8058 LIST_FOREACH(sah, &sahtree, chain) {
8059 if (req_satype != SADB_SATYPE_UNSPEC &&
8060 proto != sah->saidx.proto)
8061 continue;
8062
8063 /* map proto to satype */
8064 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
8065 m_freem(m);
8066 *errorp = EINVAL;
8067 return (NULL);
8068 }
8069
8070 for (stateidx = 0;
8071 stateidx < _ARRAYLEN(saorder_state_any);
8072 stateidx++) {
8073 state = saorder_state_any[stateidx];
8074 LIST_FOREACH(sav, &sah->savtree[state], chain) {
8075 n = key_setdumpsa(sav, SADB_DUMP, satype,
8076 --cnt, pid);
8077 if (!n) {
8078 m_freem(m);
8079 *errorp = ENOBUFS;
8080 return (NULL);
8081 }
8082
8083 if (!m)
8084 m = n;
8085 else
8086 m_cat(m, n);
8087 }
8088 }
8089 }
8090
8091 if (!m) {
8092 *errorp = EINVAL;
8093 return (NULL);
8094 }
8095
8096 if ((m->m_flags & M_PKTHDR) != 0) {
8097 m->m_pkthdr.len = 0;
8098 for (n = m; n; n = n->m_next)
8099 m->m_pkthdr.len += n->m_len;
8100 }
8101
8102 *errorp = 0;
8103 return (m);
8104 }
8105
8106 static struct mbuf *
8107 key_setspddump(int *errorp, pid_t pid)
8108 {
8109 struct secpolicy *sp;
8110 int cnt;
8111 u_int dir;
8112 struct mbuf *m, *n;
8113
8114 /* search SPD entry and get buffer size. */
8115 cnt = 0;
8116 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8117 LIST_FOREACH(sp, &sptree[dir], chain) {
8118 cnt++;
8119 }
8120 }
8121
8122 if (cnt == 0) {
8123 *errorp = ENOENT;
8124 return (NULL);
8125 }
8126
8127 m = NULL;
8128 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8129 LIST_FOREACH(sp, &sptree[dir], chain) {
8130 --cnt;
8131 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8132
8133 if (!n) {
8134 *errorp = ENOBUFS;
8135 m_freem(m);
8136 return (NULL);
8137 }
8138 if (!m)
8139 m = n;
8140 else {
8141 m->m_pkthdr.len += n->m_pkthdr.len;
8142 m_cat(m, n);
8143 }
8144 }
8145 }
8146
8147 *errorp = 0;
8148 return (m);
8149 }
8150
8151 int
8152 key_get_used(void) {
8153 return !LIST_EMPTY(&sptree[IPSEC_DIR_INBOUND]) ||
8154 !LIST_EMPTY(&sptree[IPSEC_DIR_OUTBOUND]);
8155 }
8156
8157 void
8158 key_update_used(void)
8159 {
8160 switch (ipsec_enabled) {
8161 default:
8162 case 0:
8163 #ifdef notyet
8164 /* XXX: racy */
8165 ipsec_used = 0;
8166 #endif
8167 break;
8168 case 1:
8169 #ifndef notyet
8170 /* XXX: racy */
8171 if (!ipsec_used)
8172 #endif
8173 ipsec_used = key_get_used();
8174 break;
8175 case 2:
8176 ipsec_used = 1;
8177 break;
8178 }
8179 }
8180
8181 static int
8182 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8183 {
8184 struct mbuf *m, *n;
8185 int err2 = 0;
8186 char *p, *ep;
8187 size_t len;
8188 int s, error;
8189
8190 if (newp)
8191 return (EPERM);
8192 if (namelen != 1)
8193 return (EINVAL);
8194
8195 s = splsoftnet();
8196 m = key_setdump(name[0], &error, l->l_proc->p_pid);
8197 splx(s);
8198 if (!m)
8199 return (error);
8200 if (!oldp)
8201 *oldlenp = m->m_pkthdr.len;
8202 else {
8203 p = oldp;
8204 if (*oldlenp < m->m_pkthdr.len) {
8205 err2 = ENOMEM;
8206 ep = p + *oldlenp;
8207 } else {
8208 *oldlenp = m->m_pkthdr.len;
8209 ep = p + m->m_pkthdr.len;
8210 }
8211 for (n = m; n; n = n->m_next) {
8212 len = (ep - p < n->m_len) ?
8213 ep - p : n->m_len;
8214 error = copyout(mtod(n, const void *), p, len);
8215 p += len;
8216 if (error)
8217 break;
8218 }
8219 if (error == 0)
8220 error = err2;
8221 }
8222 m_freem(m);
8223
8224 return (error);
8225 }
8226
8227 static int
8228 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8229 {
8230 struct mbuf *m, *n;
8231 int err2 = 0;
8232 char *p, *ep;
8233 size_t len;
8234 int s, error;
8235
8236 if (newp)
8237 return (EPERM);
8238 if (namelen != 0)
8239 return (EINVAL);
8240
8241 s = splsoftnet();
8242 m = key_setspddump(&error, l->l_proc->p_pid);
8243 splx(s);
8244 if (!m)
8245 return (error);
8246 if (!oldp)
8247 *oldlenp = m->m_pkthdr.len;
8248 else {
8249 p = oldp;
8250 if (*oldlenp < m->m_pkthdr.len) {
8251 err2 = ENOMEM;
8252 ep = p + *oldlenp;
8253 } else {
8254 *oldlenp = m->m_pkthdr.len;
8255 ep = p + m->m_pkthdr.len;
8256 }
8257 for (n = m; n; n = n->m_next) {
8258 len = (ep - p < n->m_len) ?
8259 ep - p : n->m_len;
8260 error = copyout(mtod(n, const void *), p, len);
8261 p += len;
8262 if (error)
8263 break;
8264 }
8265 if (error == 0)
8266 error = err2;
8267 }
8268 m_freem(m);
8269
8270 return (error);
8271 }
8272
8273 /*
8274 * Create sysctl tree for native IPSEC key knobs, originally
8275 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
8276 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8277 * and in any case the part of our sysctl namespace used for dumping the
8278 * SPD and SA database *HAS* to be compatible with the KAME sysctl
8279 * namespace, for API reasons.
8280 *
8281 * Pending a consensus on the right way to fix this, add a level of
8282 * indirection in how we number the `native' IPSEC key nodes;
8283 * and (as requested by Andrew Brown) move registration of the
8284 * KAME-compatible names to a separate function.
8285 */
8286 #if 0
8287 # define IPSEC_PFKEY PF_KEY_V2
8288 # define IPSEC_PFKEY_NAME "keyv2"
8289 #else
8290 # define IPSEC_PFKEY PF_KEY
8291 # define IPSEC_PFKEY_NAME "key"
8292 #endif
8293
8294 static int
8295 sysctl_net_key_stats(SYSCTLFN_ARGS)
8296 {
8297
8298 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8299 }
8300
8301 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup")
8302 {
8303
8304 sysctl_createv(clog, 0, NULL, NULL,
8305 CTLFLAG_PERMANENT,
8306 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8307 NULL, 0, NULL, 0,
8308 CTL_NET, IPSEC_PFKEY, CTL_EOL);
8309
8310 sysctl_createv(clog, 0, NULL, NULL,
8311 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8312 CTLTYPE_INT, "debug", NULL,
8313 NULL, 0, &key_debug_level, 0,
8314 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8315 sysctl_createv(clog, 0, NULL, NULL,
8316 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8317 CTLTYPE_INT, "spi_try", NULL,
8318 NULL, 0, &key_spi_trycnt, 0,
8319 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8320 sysctl_createv(clog, 0, NULL, NULL,
8321 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8322 CTLTYPE_INT, "spi_min_value", NULL,
8323 NULL, 0, &key_spi_minval, 0,
8324 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8325 sysctl_createv(clog, 0, NULL, NULL,
8326 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8327 CTLTYPE_INT, "spi_max_value", NULL,
8328 NULL, 0, &key_spi_maxval, 0,
8329 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8330 sysctl_createv(clog, 0, NULL, NULL,
8331 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8332 CTLTYPE_INT, "random_int", NULL,
8333 NULL, 0, &key_int_random, 0,
8334 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8335 sysctl_createv(clog, 0, NULL, NULL,
8336 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8337 CTLTYPE_INT, "larval_lifetime", NULL,
8338 NULL, 0, &key_larval_lifetime, 0,
8339 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8340 sysctl_createv(clog, 0, NULL, NULL,
8341 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8342 CTLTYPE_INT, "blockacq_count", NULL,
8343 NULL, 0, &key_blockacq_count, 0,
8344 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8345 sysctl_createv(clog, 0, NULL, NULL,
8346 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8347 CTLTYPE_INT, "blockacq_lifetime", NULL,
8348 NULL, 0, &key_blockacq_lifetime, 0,
8349 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8350 sysctl_createv(clog, 0, NULL, NULL,
8351 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8352 CTLTYPE_INT, "esp_keymin", NULL,
8353 NULL, 0, &ipsec_esp_keymin, 0,
8354 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8355 sysctl_createv(clog, 0, NULL, NULL,
8356 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8357 CTLTYPE_INT, "prefered_oldsa", NULL,
8358 NULL, 0, &key_prefered_oldsa, 0,
8359 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8360 sysctl_createv(clog, 0, NULL, NULL,
8361 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8362 CTLTYPE_INT, "esp_auth", NULL,
8363 NULL, 0, &ipsec_esp_auth, 0,
8364 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8365 sysctl_createv(clog, 0, NULL, NULL,
8366 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8367 CTLTYPE_INT, "ah_keymin", NULL,
8368 NULL, 0, &ipsec_ah_keymin, 0,
8369 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8370 sysctl_createv(clog, 0, NULL, NULL,
8371 CTLFLAG_PERMANENT,
8372 CTLTYPE_STRUCT, "stats",
8373 SYSCTL_DESCR("PF_KEY statistics"),
8374 sysctl_net_key_stats, 0, NULL, 0,
8375 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8376 }
8377
8378 /*
8379 * Register sysctl names used by setkey(8). For historical reasons,
8380 * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8381 * for both IPSEC and KAME IPSEC.
8382 */
8383 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for IPSEC")
8384 {
8385
8386 sysctl_createv(clog, 0, NULL, NULL,
8387 CTLFLAG_PERMANENT,
8388 CTLTYPE_NODE, "key", NULL,
8389 NULL, 0, NULL, 0,
8390 CTL_NET, PF_KEY, CTL_EOL);
8391
8392 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8393 sysctl_createv(clog, 0, NULL, NULL,
8394 CTLFLAG_PERMANENT,
8395 CTLTYPE_STRUCT, "dumpsa", NULL,
8396 sysctl_net_key_dumpsa, 0, NULL, 0,
8397 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8398 sysctl_createv(clog, 0, NULL, NULL,
8399 CTLFLAG_PERMANENT,
8400 CTLTYPE_STRUCT, "dumpsp", NULL,
8401 sysctl_net_key_dumpsp, 0, NULL, 0,
8402 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8403 }
8404