nfs_bio.c revision 1.105 1 /* $NetBSD: nfs_bio.c,v 1.105 2003/06/29 22:32:12 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.105 2003/06/29 22:32:12 fvdl Exp $");
43
44 #include "opt_nfs.h"
45 #include "opt_ddb.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <sys/proc.h>
52 #include <sys/buf.h>
53 #include <sys/vnode.h>
54 #include <sys/mount.h>
55 #include <sys/kernel.h>
56 #include <sys/namei.h>
57 #include <sys/dirent.h>
58 #include <sys/malloc.h>
59
60 #include <uvm/uvm_extern.h>
61 #include <uvm/uvm.h>
62
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nfsmount.h>
67 #include <nfs/nqnfs.h>
68 #include <nfs/nfsnode.h>
69 #include <nfs/nfs_var.h>
70
71 extern int nfs_numasync;
72 extern int nfs_commitsize;
73 extern struct nfsstats nfsstats;
74
75 static int nfs_doio_read __P((struct buf *, struct uio *));
76 static int nfs_doio_write __P((struct buf *, struct uio *));
77 static int nfs_doio_phys __P((struct buf *, struct uio *));
78
79 /*
80 * Vnode op for read using bio
81 * Any similarity to readip() is purely coincidental
82 */
83 int
84 nfs_bioread(vp, uio, ioflag, cred, cflag)
85 struct vnode *vp;
86 struct uio *uio;
87 int ioflag, cflag;
88 struct ucred *cred;
89 {
90 struct nfsnode *np = VTONFS(vp);
91 struct buf *bp = NULL, *rabp;
92 struct vattr vattr;
93 struct proc *p;
94 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
95 struct nfsdircache *ndp = NULL, *nndp = NULL;
96 caddr_t baddr, ep, edp;
97 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
98 int enough = 0;
99 struct dirent *dp, *pdp;
100 off_t curoff = 0;
101
102 #ifdef DIAGNOSTIC
103 if (uio->uio_rw != UIO_READ)
104 panic("nfs_read mode");
105 #endif
106 if (uio->uio_resid == 0)
107 return (0);
108 if (vp->v_type != VDIR && uio->uio_offset < 0)
109 return (EINVAL);
110 p = uio->uio_procp;
111 #ifndef NFS_V2_ONLY
112 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
113 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
114 (void)nfs_fsinfo(nmp, vp, cred, p);
115 #endif
116 if (vp->v_type != VDIR &&
117 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
118 return (EFBIG);
119
120 /*
121 * For nfs, cache consistency can only be maintained approximately.
122 * Although RFC1094 does not specify the criteria, the following is
123 * believed to be compatible with the reference port.
124 * For nqnfs, full cache consistency is maintained within the loop.
125 * For nfs:
126 * If the file's modify time on the server has changed since the
127 * last read rpc or you have written to the file,
128 * you may have lost data cache consistency with the
129 * server, so flush all of the file's data out of the cache.
130 * Then force a getattr rpc to ensure that you have up to date
131 * attributes.
132 * NB: This implies that cache data can be read when up to
133 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
134 * attributes this could be forced by setting n_attrstamp to 0 before
135 * the VOP_GETATTR() call.
136 */
137
138 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) {
139 if (np->n_flag & NMODIFIED) {
140 if (vp->v_type != VREG) {
141 if (vp->v_type != VDIR)
142 panic("nfs: bioread, not dir");
143 nfs_invaldircache(vp, 0);
144 np->n_direofoffset = 0;
145 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
146 if (error)
147 return (error);
148 }
149 np->n_attrstamp = 0;
150 error = VOP_GETATTR(vp, &vattr, cred, p);
151 if (error)
152 return (error);
153 np->n_mtime = vattr.va_mtime.tv_sec;
154 } else {
155 error = VOP_GETATTR(vp, &vattr, cred, p);
156 if (error)
157 return (error);
158 if (np->n_mtime != vattr.va_mtime.tv_sec) {
159 if (vp->v_type == VDIR) {
160 nfs_invaldircache(vp, 0);
161 np->n_direofoffset = 0;
162 }
163 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
164 if (error)
165 return (error);
166 np->n_mtime = vattr.va_mtime.tv_sec;
167 }
168 }
169 }
170
171 /*
172 * update the cached read creds for this node.
173 */
174
175 if (np->n_rcred) {
176 crfree(np->n_rcred);
177 }
178 np->n_rcred = cred;
179 crhold(cred);
180
181 do {
182 #ifndef NFS_V2_ONLY
183 /*
184 * Get a valid lease. If cached data is stale, flush it.
185 */
186 if (nmp->nm_flag & NFSMNT_NQNFS) {
187 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
188 do {
189 error = nqnfs_getlease(vp, ND_READ, cred, p);
190 } while (error == NQNFS_EXPIRED);
191 if (error)
192 return (error);
193 if (np->n_lrev != np->n_brev ||
194 (np->n_flag & NQNFSNONCACHE) ||
195 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
196 if (vp->v_type == VDIR) {
197 nfs_invaldircache(vp, 0);
198 np->n_direofoffset = 0;
199 }
200 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
201 if (error)
202 return (error);
203 np->n_brev = np->n_lrev;
204 }
205 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
206 nfs_invaldircache(vp, 0);
207 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
208 np->n_direofoffset = 0;
209 if (error)
210 return (error);
211 }
212 }
213 #endif
214 /*
215 * Don't cache symlinks.
216 */
217 if (np->n_flag & NQNFSNONCACHE
218 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) {
219 switch (vp->v_type) {
220 case VREG:
221 return (nfs_readrpc(vp, uio));
222 case VLNK:
223 return (nfs_readlinkrpc(vp, uio, cred));
224 case VDIR:
225 break;
226 default:
227 printf(" NQNFSNONCACHE: type %x unexpected\n",
228 vp->v_type);
229 };
230 }
231 baddr = (caddr_t)0;
232 switch (vp->v_type) {
233 case VREG:
234 nfsstats.biocache_reads++;
235
236 error = 0;
237 if (uio->uio_offset >= np->n_size) {
238 break;
239 }
240 while (uio->uio_resid > 0) {
241 void *win;
242 vsize_t bytelen = MIN(np->n_size - uio->uio_offset,
243 uio->uio_resid);
244
245 if (bytelen == 0)
246 break;
247 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
248 &bytelen, UBC_READ);
249 error = uiomove(win, bytelen, uio);
250 ubc_release(win, 0);
251 if (error) {
252 break;
253 }
254 }
255 n = 0;
256 break;
257
258 case VLNK:
259 nfsstats.biocache_readlinks++;
260 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
261 if (!bp)
262 return (EINTR);
263 if ((bp->b_flags & B_DONE) == 0) {
264 bp->b_flags |= B_READ;
265 error = nfs_doio(bp, p);
266 if (error) {
267 brelse(bp);
268 return (error);
269 }
270 }
271 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
272 got_buf = 1;
273 on = 0;
274 break;
275 case VDIR:
276 diragain:
277 nfsstats.biocache_readdirs++;
278 ndp = nfs_searchdircache(vp, uio->uio_offset,
279 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
280 if (!ndp) {
281 /*
282 * We've been handed a cookie that is not
283 * in the cache. If we're not translating
284 * 32 <-> 64, it may be a value that was
285 * flushed out of the cache because it grew
286 * too big. Let the server judge if it's
287 * valid or not. In the translation case,
288 * we have no way of validating this value,
289 * so punt.
290 */
291 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
292 return (EINVAL);
293 ndp = nfs_enterdircache(vp, uio->uio_offset,
294 uio->uio_offset, 0, 0);
295 }
296
297 if (uio->uio_offset != 0 &&
298 ndp->dc_cookie == np->n_direofoffset) {
299 nfsstats.direofcache_hits++;
300 return (0);
301 }
302
303 bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p);
304 if (!bp)
305 return (EINTR);
306 if ((bp->b_flags & B_DONE) == 0) {
307 bp->b_flags |= B_READ;
308 bp->b_dcookie = ndp->dc_blkcookie;
309 error = nfs_doio(bp, p);
310 if (error) {
311 /*
312 * Yuck! The directory has been modified on the
313 * server. Punt and let the userland code
314 * deal with it.
315 */
316 brelse(bp);
317 if (error == NFSERR_BAD_COOKIE) {
318 nfs_invaldircache(vp, 0);
319 nfs_vinvalbuf(vp, 0, cred, p, 1);
320 error = EINVAL;
321 }
322 return (error);
323 }
324 }
325
326 /*
327 * Just return if we hit EOF right away with this
328 * block. Always check here, because direofoffset
329 * may have been set by an nfsiod since the last
330 * check.
331 */
332 if (np->n_direofoffset != 0 &&
333 ndp->dc_blkcookie == np->n_direofoffset) {
334 brelse(bp);
335 return (0);
336 }
337
338 /*
339 * Find the entry we were looking for in the block.
340 */
341
342 en = ndp->dc_entry;
343
344 pdp = dp = (struct dirent *)bp->b_data;
345 edp = bp->b_data + bp->b_bcount - bp->b_resid;
346 enn = 0;
347 while (enn < en && (caddr_t)dp < edp) {
348 pdp = dp;
349 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
350 enn++;
351 }
352
353 /*
354 * If the entry number was bigger than the number of
355 * entries in the block, or the cookie of the previous
356 * entry doesn't match, the directory cache is
357 * stale. Flush it and try again (i.e. go to
358 * the server).
359 */
360 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp ||
361 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
362 #ifdef DEBUG
363 printf("invalid cache: %p %p %p off %lx %lx\n",
364 pdp, dp, edp,
365 (unsigned long)uio->uio_offset,
366 (unsigned long)NFS_GETCOOKIE(pdp));
367 #endif
368 brelse(bp);
369 nfs_invaldircache(vp, 0);
370 nfs_vinvalbuf(vp, 0, cred, p, 0);
371 goto diragain;
372 }
373
374 on = (caddr_t)dp - bp->b_data;
375
376 /*
377 * Cache all entries that may be exported to the
378 * user, as they may be thrown back at us. The
379 * NFSBIO_CACHECOOKIES flag indicates that all
380 * entries are being 'exported', so cache them all.
381 */
382
383 if (en == 0 && pdp == dp) {
384 dp = (struct dirent *)
385 ((caddr_t)dp + dp->d_reclen);
386 enn++;
387 }
388
389 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
390 n = uio->uio_resid;
391 enough = 1;
392 } else
393 n = bp->b_bcount - bp->b_resid - on;
394
395 ep = bp->b_data + on + n;
396
397 /*
398 * Find last complete entry to copy, caching entries
399 * (if requested) as we go.
400 */
401
402 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) {
403 if (cflag & NFSBIO_CACHECOOKIES) {
404 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
405 ndp->dc_blkcookie, enn, bp->b_lblkno);
406 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
407 NFS_STASHCOOKIE32(pdp,
408 nndp->dc_cookie32);
409 }
410 }
411 pdp = dp;
412 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
413 enn++;
414 }
415
416 /*
417 * If the last requested entry was not the last in the
418 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
419 * cache the cookie of the last requested one, and
420 * set of the offset to it.
421 */
422
423 if ((on + n) < bp->b_bcount - bp->b_resid) {
424 curoff = NFS_GETCOOKIE(pdp);
425 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
426 enn, bp->b_lblkno);
427 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
428 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
429 curoff = nndp->dc_cookie32;
430 }
431 } else
432 curoff = bp->b_dcookie;
433
434 /*
435 * Always cache the entry for the next block,
436 * so that readaheads can use it.
437 */
438 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
439 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
440 if (curoff == bp->b_dcookie) {
441 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
442 curoff = nndp->dc_cookie32;
443 }
444 }
445
446 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on);
447
448 /*
449 * If not eof and read aheads are enabled, start one.
450 * (You need the current block first, so that you have the
451 * directory offset cookie of the next block.)
452 */
453 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
454 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) {
455 rabp = nfs_getcacheblk(vp, nndp->dc_blkno,
456 NFS_DIRBLKSIZ, p);
457 if (rabp) {
458 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
459 rabp->b_dcookie = nndp->dc_cookie;
460 rabp->b_flags |= (B_READ | B_ASYNC);
461 if (nfs_asyncio(rabp)) {
462 rabp->b_flags |= B_INVAL;
463 brelse(rabp);
464 }
465 } else
466 brelse(rabp);
467 }
468 }
469 got_buf = 1;
470 break;
471 default:
472 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
473 break;
474 }
475
476 if (n > 0) {
477 if (!baddr)
478 baddr = bp->b_data;
479 error = uiomove(baddr + on, (int)n, uio);
480 }
481 switch (vp->v_type) {
482 case VREG:
483 break;
484 case VLNK:
485 n = 0;
486 break;
487 case VDIR:
488 if (np->n_flag & NQNFSNONCACHE)
489 bp->b_flags |= B_INVAL;
490 uio->uio_offset = curoff;
491 if (enough)
492 n = 0;
493 break;
494 default:
495 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
496 }
497 if (got_buf)
498 brelse(bp);
499 } while (error == 0 && uio->uio_resid > 0 && n > 0);
500 return (error);
501 }
502
503 /*
504 * Vnode op for write using bio
505 */
506 int
507 nfs_write(v)
508 void *v;
509 {
510 struct vop_write_args /* {
511 struct vnode *a_vp;
512 struct uio *a_uio;
513 int a_ioflag;
514 struct ucred *a_cred;
515 } */ *ap = v;
516 struct uio *uio = ap->a_uio;
517 struct proc *p = uio->uio_procp;
518 struct vnode *vp = ap->a_vp;
519 struct nfsnode *np = VTONFS(vp);
520 struct ucred *cred = ap->a_cred;
521 int ioflag = ap->a_ioflag;
522 struct vattr vattr;
523 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
524 void *win;
525 voff_t oldoff, origoff;
526 vsize_t bytelen;
527 int error = 0;
528 int extended = 0, wrotedta = 0;
529
530 #ifdef DIAGNOSTIC
531 if (uio->uio_rw != UIO_WRITE)
532 panic("nfs_write mode");
533 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
534 panic("nfs_write proc");
535 #endif
536 if (vp->v_type != VREG)
537 return (EIO);
538 if (np->n_flag & NWRITEERR) {
539 np->n_flag &= ~NWRITEERR;
540 return (np->n_error);
541 }
542 #ifndef NFS_V2_ONLY
543 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
544 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
545 (void)nfs_fsinfo(nmp, vp, cred, p);
546 #endif
547 if (ioflag & (IO_APPEND | IO_SYNC)) {
548 if (np->n_flag & NMODIFIED) {
549 np->n_attrstamp = 0;
550 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
551 if (error)
552 return (error);
553 }
554 if (ioflag & IO_APPEND) {
555 np->n_attrstamp = 0;
556 error = VOP_GETATTR(vp, &vattr, cred, p);
557 if (error)
558 return (error);
559 uio->uio_offset = np->n_size;
560 }
561 }
562 if (uio->uio_offset < 0)
563 return (EINVAL);
564 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
565 return (EFBIG);
566 if (uio->uio_resid == 0)
567 return (0);
568 /*
569 * Maybe this should be above the vnode op call, but so long as
570 * file servers have no limits, i don't think it matters
571 */
572 if (p && uio->uio_offset + uio->uio_resid >
573 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
574 psignal(p, SIGXFSZ);
575 return (EFBIG);
576 }
577
578 /*
579 * update the cached write creds for this node.
580 */
581
582 if (np->n_wcred) {
583 crfree(np->n_wcred);
584 }
585 np->n_wcred = cred;
586 crhold(cred);
587
588 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
589 int iomode = NFSV3WRITE_FILESYNC;
590 boolean_t stalewriteverf = FALSE;
591
592 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
593 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf);
594 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
595 if (stalewriteverf)
596 nfs_clearcommit(vp->v_mount);
597 return (error);
598 }
599
600 origoff = uio->uio_offset;
601 do {
602 boolean_t extending; /* if we are extending whole pages */
603 u_quad_t oldsize;
604 oldoff = uio->uio_offset;
605 bytelen = uio->uio_resid;
606
607 #ifndef NFS_V2_ONLY
608 /*
609 * Check for a valid write lease.
610 */
611 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
612 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
613 do {
614 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
615 } while (error == NQNFS_EXPIRED);
616 if (error)
617 return (error);
618 if (np->n_lrev != np->n_brev ||
619 (np->n_flag & NQNFSNONCACHE)) {
620 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
621 if (error)
622 return (error);
623 np->n_brev = np->n_lrev;
624 }
625 }
626 #endif
627 nfsstats.biocache_writes++;
628
629 oldsize = np->n_size;
630 np->n_flag |= NMODIFIED;
631 if (np->n_size < uio->uio_offset + bytelen) {
632 np->n_size = uio->uio_offset + bytelen;
633 }
634 extending = ((uio->uio_offset & PAGE_MASK) == 0 &&
635 (bytelen & PAGE_MASK) == 0 &&
636 uio->uio_offset >= vp->v_size);
637 if (extending) {
638 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
639 UBC_WRITE | UBC_FAULTBUSY);
640 } else {
641 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
642 UBC_WRITE);
643 }
644 error = uiomove(win, bytelen, uio);
645 ubc_release(win, 0);
646 if (error) {
647 if (extending) {
648 /*
649 * backout size and free pages past eof.
650 */
651 np->n_size = oldsize;
652 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
653 0, PGO_SYNCIO | PGO_FREE);
654 }
655 break;
656 }
657 wrotedta = 1;
658
659 /*
660 * update UVM's notion of the size now that we've
661 * copied the data into the vnode's pages.
662 */
663
664 if (vp->v_size < uio->uio_offset) {
665 uvm_vnp_setsize(vp, uio->uio_offset);
666 extended = 1;
667 }
668
669 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
670 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
671 simple_lock(&vp->v_interlock);
672 error = VOP_PUTPAGES(vp,
673 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
674 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
675 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
676 }
677 } while (uio->uio_resid > 0);
678 if (wrotedta)
679 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
680 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
681 simple_lock(&vp->v_interlock);
682 error = VOP_PUTPAGES(vp,
683 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
684 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
685 ~(nmp->nm_wsize - 1)),
686 PGO_CLEANIT | PGO_SYNCIO);
687 }
688 return error;
689 }
690
691 /*
692 * Get an nfs cache block.
693 * Allocate a new one if the block isn't currently in the cache
694 * and return the block marked busy. If the calling process is
695 * interrupted by a signal for an interruptible mount point, return
696 * NULL.
697 */
698 struct buf *
699 nfs_getcacheblk(vp, bn, size, p)
700 struct vnode *vp;
701 daddr_t bn;
702 int size;
703 struct proc *p;
704 {
705 struct buf *bp;
706 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
707
708 if (nmp->nm_flag & NFSMNT_INT) {
709 bp = getblk(vp, bn, size, PCATCH, 0);
710 while (bp == NULL) {
711 if (nfs_sigintr(nmp, NULL, p))
712 return (NULL);
713 bp = getblk(vp, bn, size, 0, 2 * hz);
714 }
715 } else
716 bp = getblk(vp, bn, size, 0, 0);
717 return (bp);
718 }
719
720 /*
721 * Flush and invalidate all dirty buffers. If another process is already
722 * doing the flush, just wait for completion.
723 */
724 int
725 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
726 struct vnode *vp;
727 int flags;
728 struct ucred *cred;
729 struct proc *p;
730 int intrflg;
731 {
732 struct nfsnode *np = VTONFS(vp);
733 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
734 int error = 0, slpflag, slptimeo;
735
736 if ((nmp->nm_flag & NFSMNT_INT) == 0)
737 intrflg = 0;
738 if (intrflg) {
739 slpflag = PCATCH;
740 slptimeo = 2 * hz;
741 } else {
742 slpflag = 0;
743 slptimeo = 0;
744 }
745 /*
746 * First wait for any other process doing a flush to complete.
747 */
748 simple_lock(&vp->v_interlock);
749 while (np->n_flag & NFLUSHINPROG) {
750 np->n_flag |= NFLUSHWANT;
751 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
752 slptimeo, &vp->v_interlock);
753 if (error && intrflg && nfs_sigintr(nmp, NULL, p)) {
754 simple_unlock(&vp->v_interlock);
755 return EINTR;
756 }
757 }
758
759 /*
760 * Now, flush as required.
761 */
762 np->n_flag |= NFLUSHINPROG;
763 simple_unlock(&vp->v_interlock);
764 error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
765 while (error) {
766 if (intrflg && nfs_sigintr(nmp, NULL, p)) {
767 error = EINTR;
768 break;
769 }
770 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
771 }
772 simple_lock(&vp->v_interlock);
773 if (error == 0)
774 np->n_flag &= ~NMODIFIED;
775 np->n_flag &= ~NFLUSHINPROG;
776 if (np->n_flag & NFLUSHWANT) {
777 np->n_flag &= ~NFLUSHWANT;
778 wakeup(&np->n_flag);
779 }
780 simple_unlock(&vp->v_interlock);
781 return error;
782 }
783
784 /*
785 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
786 * This is mainly to avoid queueing async I/O requests when the nfsiods
787 * are all hung on a dead server.
788 */
789
790 int
791 nfs_asyncio(bp)
792 struct buf *bp;
793 {
794 int i;
795 struct nfsmount *nmp;
796 int gotiod, slpflag = 0, slptimeo = 0, error;
797
798 if (nfs_numasync == 0)
799 return (EIO);
800
801 nmp = VFSTONFS(bp->b_vp->v_mount);
802 again:
803 if (nmp->nm_flag & NFSMNT_INT)
804 slpflag = PCATCH;
805 gotiod = FALSE;
806
807 /*
808 * Find a free iod to process this request.
809 */
810
811 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
812 struct nfs_iod *iod = &nfs_asyncdaemon[i];
813
814 simple_lock(&iod->nid_slock);
815 if (iod->nid_want) {
816 /*
817 * Found one, so wake it up and tell it which
818 * mount to process.
819 */
820 iod->nid_want = NULL;
821 iod->nid_mount = nmp;
822 wakeup(&iod->nid_want);
823 simple_lock(&nmp->nm_slock);
824 simple_unlock(&iod->nid_slock);
825 nmp->nm_bufqiods++;
826 gotiod = TRUE;
827 break;
828 }
829 simple_unlock(&iod->nid_slock);
830 }
831
832 /*
833 * If none are free, we may already have an iod working on this mount
834 * point. If so, it will process our request.
835 */
836
837 if (!gotiod) {
838 simple_lock(&nmp->nm_slock);
839 if (nmp->nm_bufqiods > 0)
840 gotiod = TRUE;
841 }
842
843 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock));
844
845 /*
846 * If we have an iod which can process the request, then queue
847 * the buffer.
848 */
849
850 if (gotiod) {
851
852 /*
853 * Ensure that the queue never grows too large.
854 */
855
856 while (nmp->nm_bufqlen >= 2*nfs_numasync) {
857 nmp->nm_bufqwant = TRUE;
858 error = ltsleep(&nmp->nm_bufq,
859 slpflag | PRIBIO | PNORELOCK,
860 "nfsaio", slptimeo, &nmp->nm_slock);
861 if (error) {
862 if (nfs_sigintr(nmp, NULL, curproc))
863 return (EINTR);
864 if (slpflag == PCATCH) {
865 slpflag = 0;
866 slptimeo = 2 * hz;
867 }
868 }
869
870 /*
871 * We might have lost our iod while sleeping,
872 * so check and loop if nescessary.
873 */
874
875 if (nmp->nm_bufqiods == 0)
876 goto again;
877
878 simple_lock(&nmp->nm_slock);
879 }
880 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
881 nmp->nm_bufqlen++;
882 simple_unlock(&nmp->nm_slock);
883 return (0);
884 }
885 simple_unlock(&nmp->nm_slock);
886
887 /*
888 * All the iods are busy on other mounts, so return EIO to
889 * force the caller to process the i/o synchronously.
890 */
891
892 return (EIO);
893 }
894
895 /*
896 * nfs_doio for read.
897 */
898 static int
899 nfs_doio_read(bp, uiop)
900 struct buf *bp;
901 struct uio *uiop;
902 {
903 struct vnode *vp = bp->b_vp;
904 struct nfsnode *np = VTONFS(vp);
905 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
906 int error = 0;
907
908 uiop->uio_rw = UIO_READ;
909 switch (vp->v_type) {
910 case VREG:
911 nfsstats.read_bios++;
912 error = nfs_readrpc(vp, uiop);
913 if (!error && uiop->uio_resid) {
914 int diff, len;
915
916 /*
917 * If len > 0, there is a hole in the file and
918 * no writes after the hole have been pushed to
919 * the server yet.
920 * Just zero fill the rest of the valid area.
921 */
922
923 diff = bp->b_bcount - uiop->uio_resid;
924 len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT)
925 + diff);
926 if (len > 0) {
927 len = MIN(len, uiop->uio_resid);
928 memset((char *)bp->b_data + diff, 0, len);
929 }
930 }
931 if (uiop->uio_procp && (vp->v_flag & VTEXT) &&
932 (((nmp->nm_flag & NFSMNT_NQNFS) &&
933 NQNFS_CKINVALID(vp, np, ND_READ) &&
934 np->n_lrev != np->n_brev) ||
935 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
936 np->n_mtime != np->n_vattr->va_mtime.tv_sec))) {
937 uprintf("Process killed due to "
938 "text file modification\n");
939 psignal(uiop->uio_procp, SIGKILL);
940 #if 0 /* XXX NJWLWP */
941 uiop->uio_procp->p_holdcnt++;
942 #endif
943 }
944 break;
945 case VLNK:
946 KASSERT(uiop->uio_offset == (off_t)0);
947 nfsstats.readlink_bios++;
948 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred);
949 break;
950 case VDIR:
951 nfsstats.readdir_bios++;
952 uiop->uio_offset = bp->b_dcookie;
953 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
954 error = nfs_readdirplusrpc(vp, uiop, curproc->p_ucred);
955 if (error == NFSERR_NOTSUPP)
956 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
957 }
958 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
959 error = nfs_readdirrpc(vp, uiop, curproc->p_ucred);
960 if (!error) {
961 bp->b_dcookie = uiop->uio_offset;
962 }
963 break;
964 default:
965 printf("nfs_doio: type %x unexpected\n", vp->v_type);
966 break;
967 }
968 if (error) {
969 bp->b_flags |= B_ERROR;
970 bp->b_error = error;
971 }
972 return error;
973 }
974
975 /*
976 * nfs_doio for write.
977 */
978 static int
979 nfs_doio_write(bp, uiop)
980 struct buf *bp;
981 struct uio *uiop;
982 {
983 struct vnode *vp = bp->b_vp;
984 struct nfsnode *np = VTONFS(vp);
985 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
986 int iomode;
987 boolean_t stalewriteverf = FALSE;
988 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
989 struct vm_page *pgs[npages];
990 boolean_t needcommit = TRUE;
991 boolean_t pageprotected;
992 struct uvm_object *uobj = &vp->v_uobj;
993 int error;
994 off_t off, cnt;
995
996 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
997 iomode = NFSV3WRITE_UNSTABLE;
998 } else {
999 iomode = NFSV3WRITE_FILESYNC;
1000 }
1001
1002 again:
1003 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1004
1005 for (i = 0; i < npages; i++) {
1006 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
1007 if (pgs[i]->uobject == uobj &&
1008 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
1009 KASSERT(pgs[i]->flags & PG_BUSY);
1010 /*
1011 * this page belongs to our object.
1012 */
1013 simple_lock(&uobj->vmobjlock);
1014 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
1015 iomode = NFSV3WRITE_FILESYNC;
1016 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1017 needcommit = FALSE;
1018 simple_unlock(&uobj->vmobjlock);
1019 } else {
1020 iomode = NFSV3WRITE_FILESYNC;
1021 needcommit = FALSE;
1022 }
1023 }
1024 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1025 simple_lock(&uobj->vmobjlock);
1026 for (i = 0; i < npages; i++) {
1027 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1028 pmap_page_protect(pgs[i], VM_PROT_READ);
1029 }
1030 simple_unlock(&uobj->vmobjlock);
1031 pageprotected = TRUE; /* pages can't be modified during i/o. */
1032 } else
1033 pageprotected = FALSE;
1034
1035 /*
1036 * Send the data to the server if necessary,
1037 * otherwise just send a commit rpc.
1038 */
1039
1040 if (needcommit) {
1041
1042 /*
1043 * If the buffer is in the range that we already committed,
1044 * there's nothing to do.
1045 *
1046 * If it's in the range that we need to commit, push the
1047 * whole range at once, otherwise only push the buffer.
1048 * In both these cases, acquire the commit lock to avoid
1049 * other processes modifying the range.
1050 */
1051
1052 off = uiop->uio_offset;
1053 cnt = bp->b_bcount;
1054 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1055 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1056 boolean_t pushedrange;
1057 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1058 pushedrange = TRUE;
1059 off = np->n_pushlo;
1060 cnt = np->n_pushhi - np->n_pushlo;
1061 } else {
1062 pushedrange = FALSE;
1063 }
1064 error = nfs_commit(vp, off, cnt, curproc);
1065 if (error == 0) {
1066 if (pushedrange) {
1067 nfs_merge_commit_ranges(vp);
1068 } else {
1069 nfs_add_committed_range(vp, off, cnt);
1070 }
1071 }
1072 } else {
1073 error = 0;
1074 }
1075 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1076 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1077 if (!error) {
1078 /*
1079 * pages are now on stable storage.
1080 */
1081 uiop->uio_resid = 0;
1082 simple_lock(&uobj->vmobjlock);
1083 for (i = 0; i < npages; i++) {
1084 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1085 }
1086 simple_unlock(&uobj->vmobjlock);
1087 return 0;
1088 } else if (error == NFSERR_STALEWRITEVERF) {
1089 nfs_clearcommit(vp->v_mount);
1090 goto again;
1091 }
1092 if (error) {
1093 bp->b_flags |= B_ERROR;
1094 bp->b_error = np->n_error = error;
1095 np->n_flag |= NWRITEERR;
1096 }
1097 return error;
1098 }
1099 off = uiop->uio_offset;
1100 cnt = bp->b_bcount;
1101 uiop->uio_rw = UIO_WRITE;
1102 nfsstats.write_bios++;
1103 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1104 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1105 /*
1106 * we need to commit pages later.
1107 */
1108 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1109 nfs_add_tobecommitted_range(vp, off, cnt);
1110 /*
1111 * if there can be too many uncommitted pages, commit them now.
1112 */
1113 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1114 off = np->n_pushlo;
1115 cnt = nfs_commitsize >> 1;
1116 error = nfs_commit(vp, off, cnt, curproc);
1117 if (!error) {
1118 nfs_add_committed_range(vp, off, cnt);
1119 nfs_del_tobecommitted_range(vp, off, cnt);
1120 }
1121 if (error == NFSERR_STALEWRITEVERF) {
1122 stalewriteverf = TRUE;
1123 error = 0; /* it isn't a real error */
1124 }
1125 } else {
1126 /*
1127 * re-dirty pages so that they will be passed
1128 * to us later again.
1129 */
1130 simple_lock(&uobj->vmobjlock);
1131 for (i = 0; i < npages; i++) {
1132 pgs[i]->flags &= ~PG_CLEAN;
1133 }
1134 simple_unlock(&uobj->vmobjlock);
1135 }
1136 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1137 } else if (!error) {
1138 /*
1139 * pages are now on stable storage.
1140 */
1141 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1142 nfs_del_committed_range(vp, off, cnt);
1143 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1144 simple_lock(&uobj->vmobjlock);
1145 for (i = 0; i < npages; i++) {
1146 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1147 }
1148 simple_unlock(&uobj->vmobjlock);
1149 } else {
1150 /*
1151 * we got an error.
1152 */
1153 bp->b_flags |= B_ERROR;
1154 bp->b_error = np->n_error = error;
1155 np->n_flag |= NWRITEERR;
1156 }
1157
1158 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1159
1160 if (stalewriteverf) {
1161 nfs_clearcommit(vp->v_mount);
1162 }
1163 return error;
1164 }
1165
1166 /*
1167 * nfs_doio for B_PHYS.
1168 */
1169 static int
1170 nfs_doio_phys(bp, uiop)
1171 struct buf *bp;
1172 struct uio *uiop;
1173 {
1174 struct vnode *vp = bp->b_vp;
1175 int error;
1176
1177 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1178 if (bp->b_flags & B_READ) {
1179 uiop->uio_rw = UIO_READ;
1180 nfsstats.read_physios++;
1181 error = nfs_readrpc(vp, uiop);
1182 } else {
1183 int iomode = NFSV3WRITE_DATASYNC;
1184 boolean_t stalewriteverf;
1185 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1186
1187 uiop->uio_rw = UIO_WRITE;
1188 nfsstats.write_physios++;
1189 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1190 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf);
1191 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1192 if (stalewriteverf) {
1193 nfs_clearcommit(bp->b_vp->v_mount);
1194 }
1195 }
1196 if (error) {
1197 bp->b_flags |= B_ERROR;
1198 bp->b_error = error;
1199 }
1200 return error;
1201 }
1202
1203 /*
1204 * Do an I/O operation to/from a cache block. This may be called
1205 * synchronously or from an nfsiod.
1206 */
1207 int
1208 nfs_doio(bp, p)
1209 struct buf *bp;
1210 struct proc *p;
1211 {
1212 int error;
1213 struct uio uio;
1214 struct uio *uiop = &uio;
1215 struct iovec io;
1216 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1217
1218 uiop->uio_iov = &io;
1219 uiop->uio_iovcnt = 1;
1220 uiop->uio_segflg = UIO_SYSSPACE;
1221 uiop->uio_procp = p;
1222 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1223 io.iov_base = bp->b_data;
1224 io.iov_len = uiop->uio_resid = bp->b_bcount;
1225
1226 /*
1227 * Historically, paging was done with physio, but no more...
1228 */
1229 if (bp->b_flags & B_PHYS) {
1230 /*
1231 * ...though reading /dev/drum still gets us here.
1232 */
1233 error = nfs_doio_phys(bp, uiop);
1234 } else if (bp->b_flags & B_READ) {
1235 error = nfs_doio_read(bp, uiop);
1236 } else {
1237 error = nfs_doio_write(bp, uiop);
1238 }
1239 bp->b_resid = uiop->uio_resid;
1240 biodone(bp);
1241 return (error);
1242 }
1243
1244 /*
1245 * Vnode op for VM getpages.
1246 */
1247
1248 int
1249 nfs_getpages(v)
1250 void *v;
1251 {
1252 struct vop_getpages_args /* {
1253 struct vnode *a_vp;
1254 voff_t a_offset;
1255 struct vm_page **a_m;
1256 int *a_count;
1257 int a_centeridx;
1258 vm_prot_t a_access_type;
1259 int a_advice;
1260 int a_flags;
1261 } */ *ap = v;
1262
1263 struct vnode *vp = ap->a_vp;
1264 struct uvm_object *uobj = &vp->v_uobj;
1265 struct nfsnode *np = VTONFS(vp);
1266 const int npages = *ap->a_count;
1267 struct vm_page *pg, **pgs, *opgs[npages];
1268 off_t origoffset, len;
1269 int i, error;
1270 boolean_t v3 = NFS_ISV3(vp);
1271 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1272 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0;
1273
1274 /*
1275 * update the cached read creds for this node.
1276 */
1277
1278 if (np->n_rcred) {
1279 crfree(np->n_rcred);
1280 }
1281 np->n_rcred = curproc->p_ucred;
1282 crhold(np->n_rcred);
1283
1284 /*
1285 * if we have delayed truncation and it's safe, do it now.
1286 */
1287
1288 if (ap->a_flags & PGO_SYNCIO) {
1289 nfs_delayedtruncate(vp);
1290 }
1291
1292 /*
1293 * call the genfs code to get the pages. `pgs' may be NULL
1294 * when doing read-ahead.
1295 */
1296
1297 pgs = ap->a_m;
1298 if (write && locked && v3) {
1299 KASSERT(pgs != NULL);
1300 #ifdef DEBUG
1301
1302 /*
1303 * If PGO_LOCKED is set, real pages shouldn't exists
1304 * in the array.
1305 */
1306
1307 for (i = 0; i < npages; i++)
1308 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1309 #endif
1310 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1311 }
1312 error = genfs_getpages(v);
1313 if (error) {
1314 return (error);
1315 }
1316
1317 /*
1318 * for read faults where the nfs node is not yet marked NMODIFIED,
1319 * set PG_RDONLY on the pages so that we come back here if someone
1320 * tries to modify later via the mapping that will be entered for
1321 * this fault.
1322 */
1323
1324 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1325 if (!locked) {
1326 simple_lock(&uobj->vmobjlock);
1327 }
1328 for (i = 0; i < npages; i++) {
1329 pg = pgs[i];
1330 if (pg == NULL || pg == PGO_DONTCARE) {
1331 continue;
1332 }
1333 pg->flags |= PG_RDONLY;
1334 }
1335 if (!locked) {
1336 simple_unlock(&uobj->vmobjlock);
1337 }
1338 }
1339 if (!write) {
1340 return (0);
1341 }
1342
1343 /*
1344 * this is a write fault, update the commit info.
1345 */
1346
1347 origoffset = ap->a_offset;
1348 len = npages << PAGE_SHIFT;
1349
1350 if (v3) {
1351 error = lockmgr(&np->n_commitlock,
1352 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL);
1353 if (error) {
1354 KASSERT(locked != 0);
1355
1356 /*
1357 * Since PGO_LOCKED is set, we need to unbusy
1358 * all pages fetched by genfs_getpages() above,
1359 * tell the caller that there are no pages
1360 * available and put back original pgs array.
1361 */
1362
1363 uvm_lock_pageq();
1364 uvm_page_unbusy(pgs, npages);
1365 uvm_unlock_pageq();
1366 *ap->a_count = 0;
1367 memcpy(pgs, opgs,
1368 npages * sizeof(struct vm_pages *));
1369 return (error);
1370 }
1371 nfs_del_committed_range(vp, origoffset, len);
1372 nfs_del_tobecommitted_range(vp, origoffset, len);
1373 }
1374 np->n_flag |= NMODIFIED;
1375 if (!locked) {
1376 simple_lock(&uobj->vmobjlock);
1377 }
1378 for (i = 0; i < npages; i++) {
1379 pg = pgs[i];
1380 if (pg == NULL || pg == PGO_DONTCARE) {
1381 continue;
1382 }
1383 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1384 }
1385 if (!locked) {
1386 simple_unlock(&uobj->vmobjlock);
1387 }
1388 if (v3) {
1389 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1390 }
1391 return (0);
1392 }
1393