nfs_bio.c revision 1.112 1 /* $NetBSD: nfs_bio.c,v 1.112 2003/11/17 01:44:49 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.112 2003/11/17 01:44:49 jonathan Exp $");
39
40 #include "opt_nfs.h"
41 #include "opt_ddb.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/namei.h>
53 #include <sys/dirent.h>
54 #include <sys/malloc.h>
55
56 #include <uvm/uvm_extern.h>
57 #include <uvm/uvm.h>
58
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nfsmount.h>
63 #include <nfs/nqnfs.h>
64 #include <nfs/nfsnode.h>
65 #include <nfs/nfs_var.h>
66
67 extern int nfs_numasync;
68 extern int nfs_commitsize;
69 extern struct nfsstats nfsstats;
70
71 static int nfs_doio_read __P((struct buf *, struct uio *));
72 static int nfs_doio_write __P((struct buf *, struct uio *));
73 static int nfs_doio_phys __P((struct buf *, struct uio *));
74
75 /*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 struct vnode *vp;
82 struct uio *uio;
83 int ioflag, cflag;
84 struct ucred *cred;
85 {
86 struct nfsnode *np = VTONFS(vp);
87 struct buf *bp = NULL, *rabp;
88 struct vattr vattr;
89 struct proc *p;
90 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
91 struct nfsdircache *ndp = NULL, *nndp = NULL;
92 caddr_t baddr, ep, edp;
93 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
94 int enough = 0;
95 struct dirent *dp, *pdp;
96 off_t curoff = 0;
97
98 #ifdef DIAGNOSTIC
99 if (uio->uio_rw != UIO_READ)
100 panic("nfs_read mode");
101 #endif
102 if (uio->uio_resid == 0)
103 return (0);
104 if (vp->v_type != VDIR && uio->uio_offset < 0)
105 return (EINVAL);
106 p = uio->uio_procp;
107 #ifndef NFS_V2_ONLY
108 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
109 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
110 (void)nfs_fsinfo(nmp, vp, cred, p);
111 #endif
112 if (vp->v_type != VDIR &&
113 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
114 return (EFBIG);
115
116 /*
117 * For nfs, cache consistency can only be maintained approximately.
118 * Although RFC1094 does not specify the criteria, the following is
119 * believed to be compatible with the reference port.
120 * For nqnfs, full cache consistency is maintained within the loop.
121 * For nfs:
122 * If the file's modify time on the server has changed since the
123 * last read rpc or you have written to the file,
124 * you may have lost data cache consistency with the
125 * server, so flush all of the file's data out of the cache.
126 * Then force a getattr rpc to ensure that you have up to date
127 * attributes.
128 * NB: This implies that cache data can be read when up to
129 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
130 * attributes this could be forced by setting n_attrstamp to 0 before
131 * the VOP_GETATTR() call.
132 */
133
134 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) {
135 if (np->n_flag & NMODIFIED) {
136 if (vp->v_type != VREG) {
137 if (vp->v_type != VDIR)
138 panic("nfs: bioread, not dir");
139 nfs_invaldircache(vp, 0);
140 np->n_direofoffset = 0;
141 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
142 if (error)
143 return (error);
144 }
145 np->n_attrstamp = 0;
146 error = VOP_GETATTR(vp, &vattr, cred, p);
147 if (error)
148 return (error);
149 np->n_mtime = vattr.va_mtime;
150 } else {
151 error = VOP_GETATTR(vp, &vattr, cred, p);
152 if (error)
153 return (error);
154 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
155 if (vp->v_type == VDIR) {
156 nfs_invaldircache(vp, 0);
157 np->n_direofoffset = 0;
158 }
159 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
160 if (error)
161 return (error);
162 np->n_mtime = vattr.va_mtime;
163 }
164 }
165 }
166
167 /*
168 * update the cached read creds for this node.
169 */
170
171 if (np->n_rcred) {
172 crfree(np->n_rcred);
173 }
174 np->n_rcred = cred;
175 crhold(cred);
176
177 do {
178 #ifndef NFS_V2_ONLY
179 /*
180 * Get a valid lease. If cached data is stale, flush it.
181 */
182 if (nmp->nm_flag & NFSMNT_NQNFS) {
183 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
184 do {
185 error = nqnfs_getlease(vp, ND_READ, cred, p);
186 } while (error == NQNFS_EXPIRED);
187 if (error)
188 return (error);
189 if (np->n_lrev != np->n_brev ||
190 (np->n_flag & NQNFSNONCACHE) ||
191 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
192 if (vp->v_type == VDIR) {
193 nfs_invaldircache(vp, 0);
194 np->n_direofoffset = 0;
195 }
196 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
197 if (error)
198 return (error);
199 np->n_brev = np->n_lrev;
200 }
201 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
202 nfs_invaldircache(vp, 0);
203 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
204 np->n_direofoffset = 0;
205 if (error)
206 return (error);
207 }
208 }
209 #endif
210 /*
211 * Don't cache symlinks.
212 */
213 if (np->n_flag & NQNFSNONCACHE
214 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) {
215 switch (vp->v_type) {
216 case VREG:
217 return (nfs_readrpc(vp, uio));
218 case VLNK:
219 return (nfs_readlinkrpc(vp, uio, cred));
220 case VDIR:
221 break;
222 default:
223 printf(" NQNFSNONCACHE: type %x unexpected\n",
224 vp->v_type);
225 };
226 }
227 baddr = (caddr_t)0;
228 switch (vp->v_type) {
229 case VREG:
230 nfsstats.biocache_reads++;
231
232 error = 0;
233 if (uio->uio_offset >= np->n_size) {
234 break;
235 }
236 while (uio->uio_resid > 0) {
237 void *win;
238 vsize_t bytelen = MIN(np->n_size - uio->uio_offset,
239 uio->uio_resid);
240
241 if (bytelen == 0)
242 break;
243 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
244 &bytelen, UBC_READ);
245 error = uiomove(win, bytelen, uio);
246 ubc_release(win, 0);
247 if (error) {
248 break;
249 }
250 }
251 n = 0;
252 break;
253
254 case VLNK:
255 nfsstats.biocache_readlinks++;
256 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
257 if (!bp)
258 return (EINTR);
259 if ((bp->b_flags & B_DONE) == 0) {
260 bp->b_flags |= B_READ;
261 error = nfs_doio(bp, p);
262 if (error) {
263 brelse(bp);
264 return (error);
265 }
266 }
267 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
268 got_buf = 1;
269 on = 0;
270 break;
271 case VDIR:
272 diragain:
273 nfsstats.biocache_readdirs++;
274 ndp = nfs_searchdircache(vp, uio->uio_offset,
275 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
276 if (!ndp) {
277 /*
278 * We've been handed a cookie that is not
279 * in the cache. If we're not translating
280 * 32 <-> 64, it may be a value that was
281 * flushed out of the cache because it grew
282 * too big. Let the server judge if it's
283 * valid or not. In the translation case,
284 * we have no way of validating this value,
285 * so punt.
286 */
287 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
288 return (EINVAL);
289 ndp = nfs_enterdircache(vp, uio->uio_offset,
290 uio->uio_offset, 0, 0);
291 }
292
293 if (uio->uio_offset != 0 &&
294 ndp->dc_cookie == np->n_direofoffset) {
295 nfsstats.direofcache_hits++;
296 return (0);
297 }
298
299 bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p);
300 if (!bp)
301 return (EINTR);
302 if ((bp->b_flags & B_DONE) == 0) {
303 bp->b_flags |= B_READ;
304 bp->b_dcookie = ndp->dc_blkcookie;
305 error = nfs_doio(bp, p);
306 if (error) {
307 /*
308 * Yuck! The directory has been modified on the
309 * server. Punt and let the userland code
310 * deal with it.
311 */
312 brelse(bp);
313 if (error == NFSERR_BAD_COOKIE) {
314 nfs_invaldircache(vp, 0);
315 nfs_vinvalbuf(vp, 0, cred, p, 1);
316 error = EINVAL;
317 }
318 return (error);
319 }
320 }
321
322 /*
323 * Just return if we hit EOF right away with this
324 * block. Always check here, because direofoffset
325 * may have been set by an nfsiod since the last
326 * check.
327 */
328 if (np->n_direofoffset != 0 &&
329 ndp->dc_blkcookie == np->n_direofoffset) {
330 brelse(bp);
331 return (0);
332 }
333
334 /*
335 * Find the entry we were looking for in the block.
336 */
337
338 en = ndp->dc_entry;
339
340 pdp = dp = (struct dirent *)bp->b_data;
341 edp = bp->b_data + bp->b_bcount - bp->b_resid;
342 enn = 0;
343 while (enn < en && (caddr_t)dp < edp) {
344 pdp = dp;
345 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
346 enn++;
347 }
348
349 /*
350 * If the entry number was bigger than the number of
351 * entries in the block, or the cookie of the previous
352 * entry doesn't match, the directory cache is
353 * stale. Flush it and try again (i.e. go to
354 * the server).
355 */
356 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp ||
357 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
358 #ifdef DEBUG
359 printf("invalid cache: %p %p %p off %lx %lx\n",
360 pdp, dp, edp,
361 (unsigned long)uio->uio_offset,
362 (unsigned long)NFS_GETCOOKIE(pdp));
363 #endif
364 brelse(bp);
365 nfs_invaldircache(vp, 0);
366 nfs_vinvalbuf(vp, 0, cred, p, 0);
367 goto diragain;
368 }
369
370 on = (caddr_t)dp - bp->b_data;
371
372 /*
373 * Cache all entries that may be exported to the
374 * user, as they may be thrown back at us. The
375 * NFSBIO_CACHECOOKIES flag indicates that all
376 * entries are being 'exported', so cache them all.
377 */
378
379 if (en == 0 && pdp == dp) {
380 dp = (struct dirent *)
381 ((caddr_t)dp + dp->d_reclen);
382 enn++;
383 }
384
385 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
386 n = uio->uio_resid;
387 enough = 1;
388 } else
389 n = bp->b_bcount - bp->b_resid - on;
390
391 ep = bp->b_data + on + n;
392
393 /*
394 * Find last complete entry to copy, caching entries
395 * (if requested) as we go.
396 */
397
398 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) {
399 if (cflag & NFSBIO_CACHECOOKIES) {
400 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
401 ndp->dc_blkcookie, enn, bp->b_lblkno);
402 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
403 NFS_STASHCOOKIE32(pdp,
404 nndp->dc_cookie32);
405 }
406 }
407 pdp = dp;
408 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
409 enn++;
410 }
411
412 /*
413 * If the last requested entry was not the last in the
414 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
415 * cache the cookie of the last requested one, and
416 * set of the offset to it.
417 */
418
419 if ((on + n) < bp->b_bcount - bp->b_resid) {
420 curoff = NFS_GETCOOKIE(pdp);
421 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
422 enn, bp->b_lblkno);
423 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
424 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
425 curoff = nndp->dc_cookie32;
426 }
427 } else
428 curoff = bp->b_dcookie;
429
430 /*
431 * Always cache the entry for the next block,
432 * so that readaheads can use it.
433 */
434 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
435 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
436 if (curoff == bp->b_dcookie) {
437 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
438 curoff = nndp->dc_cookie32;
439 }
440 }
441
442 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on);
443
444 /*
445 * If not eof and read aheads are enabled, start one.
446 * (You need the current block first, so that you have the
447 * directory offset cookie of the next block.)
448 */
449 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
450 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) {
451 rabp = nfs_getcacheblk(vp, nndp->dc_blkno,
452 NFS_DIRBLKSIZ, p);
453 if (rabp) {
454 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
455 rabp->b_dcookie = nndp->dc_cookie;
456 rabp->b_flags |= (B_READ | B_ASYNC);
457 if (nfs_asyncio(rabp)) {
458 rabp->b_flags |= B_INVAL;
459 brelse(rabp);
460 }
461 } else
462 brelse(rabp);
463 }
464 }
465 got_buf = 1;
466 break;
467 default:
468 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
469 break;
470 }
471
472 if (n > 0) {
473 if (!baddr)
474 baddr = bp->b_data;
475 error = uiomove(baddr + on, (int)n, uio);
476 }
477 switch (vp->v_type) {
478 case VREG:
479 break;
480 case VLNK:
481 n = 0;
482 break;
483 case VDIR:
484 if (np->n_flag & NQNFSNONCACHE)
485 bp->b_flags |= B_INVAL;
486 uio->uio_offset = curoff;
487 if (enough)
488 n = 0;
489 break;
490 default:
491 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
492 }
493 if (got_buf)
494 brelse(bp);
495 } while (error == 0 && uio->uio_resid > 0 && n > 0);
496 return (error);
497 }
498
499 /*
500 * Vnode op for write using bio
501 */
502 int
503 nfs_write(v)
504 void *v;
505 {
506 struct vop_write_args /* {
507 struct vnode *a_vp;
508 struct uio *a_uio;
509 int a_ioflag;
510 struct ucred *a_cred;
511 } */ *ap = v;
512 struct uio *uio = ap->a_uio;
513 struct proc *p = uio->uio_procp;
514 struct vnode *vp = ap->a_vp;
515 struct nfsnode *np = VTONFS(vp);
516 struct ucred *cred = ap->a_cred;
517 int ioflag = ap->a_ioflag;
518 struct vattr vattr;
519 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
520 void *win;
521 voff_t oldoff, origoff;
522 vsize_t bytelen;
523 int error = 0;
524 int extended = 0, wrotedta = 0;
525
526 #ifdef DIAGNOSTIC
527 if (uio->uio_rw != UIO_WRITE)
528 panic("nfs_write mode");
529 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
530 panic("nfs_write proc");
531 #endif
532 if (vp->v_type != VREG)
533 return (EIO);
534 if (np->n_flag & NWRITEERR) {
535 np->n_flag &= ~NWRITEERR;
536 return (np->n_error);
537 }
538 #ifndef NFS_V2_ONLY
539 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
540 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
541 (void)nfs_fsinfo(nmp, vp, cred, p);
542 #endif
543 if (ioflag & (IO_APPEND | IO_SYNC)) {
544 if (np->n_flag & NMODIFIED) {
545 np->n_attrstamp = 0;
546 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
547 if (error)
548 return (error);
549 }
550 if (ioflag & IO_APPEND) {
551 np->n_attrstamp = 0;
552 error = VOP_GETATTR(vp, &vattr, cred, p);
553 if (error)
554 return (error);
555 uio->uio_offset = np->n_size;
556 }
557 }
558 if (uio->uio_offset < 0)
559 return (EINVAL);
560 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
561 return (EFBIG);
562 if (uio->uio_resid == 0)
563 return (0);
564 /*
565 * Maybe this should be above the vnode op call, but so long as
566 * file servers have no limits, i don't think it matters
567 */
568 if (p && uio->uio_offset + uio->uio_resid >
569 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
570 psignal(p, SIGXFSZ);
571 return (EFBIG);
572 }
573
574 /*
575 * update the cached write creds for this node.
576 */
577
578 if (np->n_wcred) {
579 crfree(np->n_wcred);
580 }
581 np->n_wcred = cred;
582 crhold(cred);
583
584 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
585 int iomode = NFSV3WRITE_FILESYNC;
586 boolean_t stalewriteverf = FALSE;
587
588 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
589 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf);
590 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
591 if (stalewriteverf)
592 nfs_clearcommit(vp->v_mount);
593 return (error);
594 }
595
596 origoff = uio->uio_offset;
597 do {
598 boolean_t extending; /* if we are extending whole pages */
599 u_quad_t oldsize;
600 oldoff = uio->uio_offset;
601 bytelen = uio->uio_resid;
602
603 #ifndef NFS_V2_ONLY
604 /*
605 * Check for a valid write lease.
606 */
607 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
608 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
609 do {
610 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
611 } while (error == NQNFS_EXPIRED);
612 if (error)
613 return (error);
614 if (np->n_lrev != np->n_brev ||
615 (np->n_flag & NQNFSNONCACHE)) {
616 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
617 if (error)
618 return (error);
619 np->n_brev = np->n_lrev;
620 }
621 }
622 #endif
623 nfsstats.biocache_writes++;
624
625 oldsize = np->n_size;
626 np->n_flag |= NMODIFIED;
627 if (np->n_size < uio->uio_offset + bytelen) {
628 np->n_size = uio->uio_offset + bytelen;
629 }
630 extending = ((uio->uio_offset & PAGE_MASK) == 0 &&
631 (bytelen & PAGE_MASK) == 0 &&
632 uio->uio_offset >= vp->v_size);
633 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
634 UBC_WRITE | (extending ? UBC_FAULTBUSY : 0));
635 error = uiomove(win, bytelen, uio);
636 ubc_release(win, 0);
637 if (error) {
638 if (extending) {
639 /*
640 * backout size and free pages past eof.
641 */
642 np->n_size = oldsize;
643 simple_lock(&vp->v_interlock);
644 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
645 0, PGO_SYNCIO | PGO_FREE);
646 }
647 break;
648 }
649 wrotedta = 1;
650
651 /*
652 * update UVM's notion of the size now that we've
653 * copied the data into the vnode's pages.
654 */
655
656 if (vp->v_size < uio->uio_offset) {
657 uvm_vnp_setsize(vp, uio->uio_offset);
658 extended = 1;
659 }
660
661 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
662 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
663 simple_lock(&vp->v_interlock);
664 error = VOP_PUTPAGES(vp,
665 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
666 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
667 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
668 }
669 } while (uio->uio_resid > 0);
670 if (wrotedta)
671 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
672 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
673 simple_lock(&vp->v_interlock);
674 error = VOP_PUTPAGES(vp,
675 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
676 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
677 ~(nmp->nm_wsize - 1)),
678 PGO_CLEANIT | PGO_SYNCIO);
679 }
680 return error;
681 }
682
683 /*
684 * Get an nfs cache block.
685 * Allocate a new one if the block isn't currently in the cache
686 * and return the block marked busy. If the calling process is
687 * interrupted by a signal for an interruptible mount point, return
688 * NULL.
689 */
690 struct buf *
691 nfs_getcacheblk(vp, bn, size, p)
692 struct vnode *vp;
693 daddr_t bn;
694 int size;
695 struct proc *p;
696 {
697 struct buf *bp;
698 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
699
700 if (nmp->nm_flag & NFSMNT_INT) {
701 bp = getblk(vp, bn, size, PCATCH, 0);
702 while (bp == NULL) {
703 if (nfs_sigintr(nmp, NULL, p))
704 return (NULL);
705 bp = getblk(vp, bn, size, 0, 2 * hz);
706 }
707 } else
708 bp = getblk(vp, bn, size, 0, 0);
709 return (bp);
710 }
711
712 /*
713 * Flush and invalidate all dirty buffers. If another process is already
714 * doing the flush, just wait for completion.
715 */
716 int
717 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
718 struct vnode *vp;
719 int flags;
720 struct ucred *cred;
721 struct proc *p;
722 int intrflg;
723 {
724 struct nfsnode *np = VTONFS(vp);
725 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
726 int error = 0, slpflag, slptimeo;
727
728 if ((nmp->nm_flag & NFSMNT_INT) == 0)
729 intrflg = 0;
730 if (intrflg) {
731 slpflag = PCATCH;
732 slptimeo = 2 * hz;
733 } else {
734 slpflag = 0;
735 slptimeo = 0;
736 }
737 /*
738 * First wait for any other process doing a flush to complete.
739 */
740 simple_lock(&vp->v_interlock);
741 while (np->n_flag & NFLUSHINPROG) {
742 np->n_flag |= NFLUSHWANT;
743 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
744 slptimeo, &vp->v_interlock);
745 if (error && intrflg && nfs_sigintr(nmp, NULL, p)) {
746 simple_unlock(&vp->v_interlock);
747 return EINTR;
748 }
749 }
750
751 /*
752 * Now, flush as required.
753 */
754 np->n_flag |= NFLUSHINPROG;
755 simple_unlock(&vp->v_interlock);
756 error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
757 while (error) {
758 if (intrflg && nfs_sigintr(nmp, NULL, p)) {
759 error = EINTR;
760 break;
761 }
762 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
763 }
764 simple_lock(&vp->v_interlock);
765 if (error == 0)
766 np->n_flag &= ~NMODIFIED;
767 np->n_flag &= ~NFLUSHINPROG;
768 if (np->n_flag & NFLUSHWANT) {
769 np->n_flag &= ~NFLUSHWANT;
770 wakeup(&np->n_flag);
771 }
772 simple_unlock(&vp->v_interlock);
773 return error;
774 }
775
776 /*
777 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
778 * This is mainly to avoid queueing async I/O requests when the nfsiods
779 * are all hung on a dead server.
780 */
781
782 int
783 nfs_asyncio(bp)
784 struct buf *bp;
785 {
786 int i;
787 struct nfsmount *nmp;
788 int gotiod, slpflag = 0, slptimeo = 0, error;
789
790 if (nfs_numasync == 0)
791 return (EIO);
792
793 nmp = VFSTONFS(bp->b_vp->v_mount);
794 again:
795 if (nmp->nm_flag & NFSMNT_INT)
796 slpflag = PCATCH;
797 gotiod = FALSE;
798
799 /*
800 * Find a free iod to process this request.
801 */
802
803 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
804 struct nfs_iod *iod = &nfs_asyncdaemon[i];
805
806 simple_lock(&iod->nid_slock);
807 if (iod->nid_want) {
808 /*
809 * Found one, so wake it up and tell it which
810 * mount to process.
811 */
812 iod->nid_want = NULL;
813 iod->nid_mount = nmp;
814 wakeup(&iod->nid_want);
815 simple_lock(&nmp->nm_slock);
816 simple_unlock(&iod->nid_slock);
817 nmp->nm_bufqiods++;
818 gotiod = TRUE;
819 break;
820 }
821 simple_unlock(&iod->nid_slock);
822 }
823
824 /*
825 * If none are free, we may already have an iod working on this mount
826 * point. If so, it will process our request.
827 */
828
829 if (!gotiod) {
830 simple_lock(&nmp->nm_slock);
831 if (nmp->nm_bufqiods > 0)
832 gotiod = TRUE;
833 }
834
835 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock));
836
837 /*
838 * If we have an iod which can process the request, then queue
839 * the buffer. However, even if we have an iod, do not initiate
840 * queue cleaning if curproc is the pageout daemon. if the NFS mount
841 * is via local loopback, we may put curproc (pagedaemon) to sleep
842 * waiting for the writes to complete. But the server (ourself)
843 * may block the write, waiting for its (ie., our) pagedaemon
844 * to produce clean pages to handle the write: deadlock.
845 * XXX: start non-loopback mounts straight away? If "lots free",
846 * let pagedaemon start loopback writes anyway?
847 */
848 if (gotiod) {
849
850 /*
851 * Ensure that the queue never grows too large.
852 */
853 if (curproc == uvm.pagedaemon_proc)) {
854 /* Enque for later, to avoid free-page deadlock */
855 (void) 0;
856 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) {
857 nmp->nm_bufqwant = TRUE;
858 error = ltsleep(&nmp->nm_bufq,
859 slpflag | PRIBIO | PNORELOCK,
860 "nfsaio", slptimeo, &nmp->nm_slock);
861 if (error) {
862 if (nfs_sigintr(nmp, NULL, curproc))
863 return (EINTR);
864 if (slpflag == PCATCH) {
865 slpflag = 0;
866 slptimeo = 2 * hz;
867 }
868 }
869
870 /*
871 * We might have lost our iod while sleeping,
872 * so check and loop if nescessary.
873 */
874
875 if (nmp->nm_bufqiods == 0)
876 goto again;
877
878 simple_lock(&nmp->nm_slock);
879 }
880 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
881 nmp->nm_bufqlen++;
882 simple_unlock(&nmp->nm_slock);
883 return (0);
884 }
885 simple_unlock(&nmp->nm_slock);
886
887 /*
888 * All the iods are busy on other mounts, so return EIO to
889 * force the caller to process the i/o synchronously.
890 */
891
892 return (EIO);
893 }
894
895 /*
896 * nfs_doio for read.
897 */
898 static int
899 nfs_doio_read(bp, uiop)
900 struct buf *bp;
901 struct uio *uiop;
902 {
903 struct vnode *vp = bp->b_vp;
904 struct nfsnode *np = VTONFS(vp);
905 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
906 int error = 0;
907
908 uiop->uio_rw = UIO_READ;
909 switch (vp->v_type) {
910 case VREG:
911 nfsstats.read_bios++;
912 error = nfs_readrpc(vp, uiop);
913 if (!error && uiop->uio_resid) {
914 int diff, len;
915
916 /*
917 * If len > 0, there is a hole in the file and
918 * no writes after the hole have been pushed to
919 * the server yet.
920 * Just zero fill the rest of the valid area.
921 */
922
923 diff = bp->b_bcount - uiop->uio_resid;
924 len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT)
925 + diff);
926 if (len > 0) {
927 len = MIN(len, uiop->uio_resid);
928 memset((char *)bp->b_data + diff, 0, len);
929 }
930 }
931 if (uiop->uio_procp && (vp->v_flag & VTEXT) &&
932 (((nmp->nm_flag & NFSMNT_NQNFS) &&
933 NQNFS_CKINVALID(vp, np, ND_READ) &&
934 np->n_lrev != np->n_brev) ||
935 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
936 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)))) {
937 uprintf("Process killed due to "
938 "text file modification\n");
939 psignal(uiop->uio_procp, SIGKILL);
940 #if 0 /* XXX NJWLWP */
941 uiop->uio_procp->p_holdcnt++;
942 #endif
943 }
944 break;
945 case VLNK:
946 KASSERT(uiop->uio_offset == (off_t)0);
947 nfsstats.readlink_bios++;
948 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred);
949 break;
950 case VDIR:
951 nfsstats.readdir_bios++;
952 uiop->uio_offset = bp->b_dcookie;
953 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
954 error = nfs_readdirplusrpc(vp, uiop, curproc->p_ucred);
955 if (error == NFSERR_NOTSUPP)
956 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
957 }
958 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
959 error = nfs_readdirrpc(vp, uiop, curproc->p_ucred);
960 if (!error) {
961 bp->b_dcookie = uiop->uio_offset;
962 }
963 break;
964 default:
965 printf("nfs_doio: type %x unexpected\n", vp->v_type);
966 break;
967 }
968 if (error) {
969 bp->b_flags |= B_ERROR;
970 bp->b_error = error;
971 }
972 return error;
973 }
974
975 /*
976 * nfs_doio for write.
977 */
978 static int
979 nfs_doio_write(bp, uiop)
980 struct buf *bp;
981 struct uio *uiop;
982 {
983 struct vnode *vp = bp->b_vp;
984 struct nfsnode *np = VTONFS(vp);
985 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
986 int iomode;
987 boolean_t stalewriteverf = FALSE;
988 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
989 struct vm_page *pgs[npages];
990 boolean_t needcommit = TRUE;
991 boolean_t pageprotected;
992 struct uvm_object *uobj = &vp->v_uobj;
993 int error;
994 off_t off, cnt;
995
996 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
997 iomode = NFSV3WRITE_UNSTABLE;
998 } else {
999 iomode = NFSV3WRITE_FILESYNC;
1000 }
1001
1002 again:
1003 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1004
1005 for (i = 0; i < npages; i++) {
1006 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
1007 if (pgs[i]->uobject == uobj &&
1008 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
1009 KASSERT(pgs[i]->flags & PG_BUSY);
1010 /*
1011 * this page belongs to our object.
1012 */
1013 simple_lock(&uobj->vmobjlock);
1014 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
1015 iomode = NFSV3WRITE_FILESYNC;
1016 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1017 needcommit = FALSE;
1018 simple_unlock(&uobj->vmobjlock);
1019 } else {
1020 iomode = NFSV3WRITE_FILESYNC;
1021 needcommit = FALSE;
1022 }
1023 }
1024 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1025 simple_lock(&uobj->vmobjlock);
1026 for (i = 0; i < npages; i++) {
1027 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1028 pmap_page_protect(pgs[i], VM_PROT_READ);
1029 }
1030 simple_unlock(&uobj->vmobjlock);
1031 pageprotected = TRUE; /* pages can't be modified during i/o. */
1032 } else
1033 pageprotected = FALSE;
1034
1035 /*
1036 * Send the data to the server if necessary,
1037 * otherwise just send a commit rpc.
1038 */
1039
1040 if (needcommit) {
1041
1042 /*
1043 * If the buffer is in the range that we already committed,
1044 * there's nothing to do.
1045 *
1046 * If it's in the range that we need to commit, push the
1047 * whole range at once, otherwise only push the buffer.
1048 * In both these cases, acquire the commit lock to avoid
1049 * other processes modifying the range.
1050 */
1051
1052 off = uiop->uio_offset;
1053 cnt = bp->b_bcount;
1054 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1055 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1056 boolean_t pushedrange;
1057 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1058 pushedrange = TRUE;
1059 off = np->n_pushlo;
1060 cnt = np->n_pushhi - np->n_pushlo;
1061 } else {
1062 pushedrange = FALSE;
1063 }
1064 error = nfs_commit(vp, off, cnt, curproc);
1065 if (error == 0) {
1066 if (pushedrange) {
1067 nfs_merge_commit_ranges(vp);
1068 } else {
1069 nfs_add_committed_range(vp, off, cnt);
1070 }
1071 }
1072 } else {
1073 error = 0;
1074 }
1075 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1076 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1077 if (!error) {
1078 /*
1079 * pages are now on stable storage.
1080 */
1081 uiop->uio_resid = 0;
1082 simple_lock(&uobj->vmobjlock);
1083 for (i = 0; i < npages; i++) {
1084 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1085 }
1086 simple_unlock(&uobj->vmobjlock);
1087 return 0;
1088 } else if (error == NFSERR_STALEWRITEVERF) {
1089 nfs_clearcommit(vp->v_mount);
1090 goto again;
1091 }
1092 if (error) {
1093 bp->b_flags |= B_ERROR;
1094 bp->b_error = np->n_error = error;
1095 np->n_flag |= NWRITEERR;
1096 }
1097 return error;
1098 }
1099 off = uiop->uio_offset;
1100 cnt = bp->b_bcount;
1101 uiop->uio_rw = UIO_WRITE;
1102 nfsstats.write_bios++;
1103 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1104 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1105 /*
1106 * we need to commit pages later.
1107 */
1108 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1109 nfs_add_tobecommitted_range(vp, off, cnt);
1110 /*
1111 * if there can be too many uncommitted pages, commit them now.
1112 */
1113 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1114 off = np->n_pushlo;
1115 cnt = nfs_commitsize >> 1;
1116 error = nfs_commit(vp, off, cnt, curproc);
1117 if (!error) {
1118 nfs_add_committed_range(vp, off, cnt);
1119 nfs_del_tobecommitted_range(vp, off, cnt);
1120 }
1121 if (error == NFSERR_STALEWRITEVERF) {
1122 stalewriteverf = TRUE;
1123 error = 0; /* it isn't a real error */
1124 }
1125 } else {
1126 /*
1127 * re-dirty pages so that they will be passed
1128 * to us later again.
1129 */
1130 simple_lock(&uobj->vmobjlock);
1131 for (i = 0; i < npages; i++) {
1132 pgs[i]->flags &= ~PG_CLEAN;
1133 }
1134 simple_unlock(&uobj->vmobjlock);
1135 }
1136 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1137 } else if (!error) {
1138 /*
1139 * pages are now on stable storage.
1140 */
1141 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1142 nfs_del_committed_range(vp, off, cnt);
1143 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1144 simple_lock(&uobj->vmobjlock);
1145 for (i = 0; i < npages; i++) {
1146 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1147 }
1148 simple_unlock(&uobj->vmobjlock);
1149 } else {
1150 /*
1151 * we got an error.
1152 */
1153 bp->b_flags |= B_ERROR;
1154 bp->b_error = np->n_error = error;
1155 np->n_flag |= NWRITEERR;
1156 }
1157
1158 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1159
1160 if (stalewriteverf) {
1161 nfs_clearcommit(vp->v_mount);
1162 }
1163 return error;
1164 }
1165
1166 /*
1167 * nfs_doio for B_PHYS.
1168 */
1169 static int
1170 nfs_doio_phys(bp, uiop)
1171 struct buf *bp;
1172 struct uio *uiop;
1173 {
1174 struct vnode *vp = bp->b_vp;
1175 int error;
1176
1177 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1178 if (bp->b_flags & B_READ) {
1179 uiop->uio_rw = UIO_READ;
1180 nfsstats.read_physios++;
1181 error = nfs_readrpc(vp, uiop);
1182 } else {
1183 int iomode = NFSV3WRITE_DATASYNC;
1184 boolean_t stalewriteverf;
1185 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1186
1187 uiop->uio_rw = UIO_WRITE;
1188 nfsstats.write_physios++;
1189 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1190 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf);
1191 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1192 if (stalewriteverf) {
1193 nfs_clearcommit(bp->b_vp->v_mount);
1194 }
1195 }
1196 if (error) {
1197 bp->b_flags |= B_ERROR;
1198 bp->b_error = error;
1199 }
1200 return error;
1201 }
1202
1203 /*
1204 * Do an I/O operation to/from a cache block. This may be called
1205 * synchronously or from an nfsiod.
1206 */
1207 int
1208 nfs_doio(bp, p)
1209 struct buf *bp;
1210 struct proc *p;
1211 {
1212 int error;
1213 struct uio uio;
1214 struct uio *uiop = &uio;
1215 struct iovec io;
1216 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1217
1218 uiop->uio_iov = &io;
1219 uiop->uio_iovcnt = 1;
1220 uiop->uio_segflg = UIO_SYSSPACE;
1221 uiop->uio_procp = p;
1222 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1223 io.iov_base = bp->b_data;
1224 io.iov_len = uiop->uio_resid = bp->b_bcount;
1225
1226 /*
1227 * Historically, paging was done with physio, but no more...
1228 */
1229 if (bp->b_flags & B_PHYS) {
1230 /*
1231 * ...though reading /dev/drum still gets us here.
1232 */
1233 error = nfs_doio_phys(bp, uiop);
1234 } else if (bp->b_flags & B_READ) {
1235 error = nfs_doio_read(bp, uiop);
1236 } else {
1237 error = nfs_doio_write(bp, uiop);
1238 }
1239 bp->b_resid = uiop->uio_resid;
1240 biodone(bp);
1241 return (error);
1242 }
1243
1244 /*
1245 * Vnode op for VM getpages.
1246 */
1247
1248 int
1249 nfs_getpages(v)
1250 void *v;
1251 {
1252 struct vop_getpages_args /* {
1253 struct vnode *a_vp;
1254 voff_t a_offset;
1255 struct vm_page **a_m;
1256 int *a_count;
1257 int a_centeridx;
1258 vm_prot_t a_access_type;
1259 int a_advice;
1260 int a_flags;
1261 } */ *ap = v;
1262
1263 struct vnode *vp = ap->a_vp;
1264 struct uvm_object *uobj = &vp->v_uobj;
1265 struct nfsnode *np = VTONFS(vp);
1266 const int npages = *ap->a_count;
1267 struct vm_page *pg, **pgs, *opgs[npages];
1268 off_t origoffset, len;
1269 int i, error;
1270 boolean_t v3 = NFS_ISV3(vp);
1271 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1272 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0;
1273
1274 /*
1275 * update the cached read creds for this node.
1276 */
1277
1278 if (np->n_rcred) {
1279 crfree(np->n_rcred);
1280 }
1281 np->n_rcred = curproc->p_ucred;
1282 crhold(np->n_rcred);
1283
1284 /*
1285 * call the genfs code to get the pages. `pgs' may be NULL
1286 * when doing read-ahead.
1287 */
1288
1289 pgs = ap->a_m;
1290 if (write && locked && v3) {
1291 KASSERT(pgs != NULL);
1292 #ifdef DEBUG
1293
1294 /*
1295 * If PGO_LOCKED is set, real pages shouldn't exists
1296 * in the array.
1297 */
1298
1299 for (i = 0; i < npages; i++)
1300 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1301 #endif
1302 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1303 }
1304 error = genfs_getpages(v);
1305 if (error) {
1306 return (error);
1307 }
1308
1309 /*
1310 * for read faults where the nfs node is not yet marked NMODIFIED,
1311 * set PG_RDONLY on the pages so that we come back here if someone
1312 * tries to modify later via the mapping that will be entered for
1313 * this fault.
1314 */
1315
1316 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1317 if (!locked) {
1318 simple_lock(&uobj->vmobjlock);
1319 }
1320 for (i = 0; i < npages; i++) {
1321 pg = pgs[i];
1322 if (pg == NULL || pg == PGO_DONTCARE) {
1323 continue;
1324 }
1325 pg->flags |= PG_RDONLY;
1326 }
1327 if (!locked) {
1328 simple_unlock(&uobj->vmobjlock);
1329 }
1330 }
1331 if (!write) {
1332 return (0);
1333 }
1334
1335 /*
1336 * this is a write fault, update the commit info.
1337 */
1338
1339 origoffset = ap->a_offset;
1340 len = npages << PAGE_SHIFT;
1341
1342 if (v3) {
1343 error = lockmgr(&np->n_commitlock,
1344 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL);
1345 if (error) {
1346 KASSERT(locked != 0);
1347
1348 /*
1349 * Since PGO_LOCKED is set, we need to unbusy
1350 * all pages fetched by genfs_getpages() above,
1351 * tell the caller that there are no pages
1352 * available and put back original pgs array.
1353 */
1354
1355 uvm_lock_pageq();
1356 uvm_page_unbusy(pgs, npages);
1357 uvm_unlock_pageq();
1358 *ap->a_count = 0;
1359 memcpy(pgs, opgs,
1360 npages * sizeof(struct vm_pages *));
1361 return (error);
1362 }
1363 nfs_del_committed_range(vp, origoffset, len);
1364 nfs_del_tobecommitted_range(vp, origoffset, len);
1365 }
1366 np->n_flag |= NMODIFIED;
1367 if (!locked) {
1368 simple_lock(&uobj->vmobjlock);
1369 }
1370 for (i = 0; i < npages; i++) {
1371 pg = pgs[i];
1372 if (pg == NULL || pg == PGO_DONTCARE) {
1373 continue;
1374 }
1375 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1376 }
1377 if (!locked) {
1378 simple_unlock(&uobj->vmobjlock);
1379 }
1380 if (v3) {
1381 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1382 }
1383 return (0);
1384 }
1385