nfs_bio.c revision 1.123 1 /* $NetBSD: nfs_bio.c,v 1.123 2004/12/14 09:13:13 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.123 2004/12/14 09:13:13 yamt Exp $");
39
40 #include "opt_nfs.h"
41 #include "opt_ddb.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/namei.h>
53 #include <sys/dirent.h>
54 #include <sys/malloc.h>
55
56 #include <uvm/uvm_extern.h>
57 #include <uvm/uvm.h>
58
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nfsmount.h>
63 #include <nfs/nqnfs.h>
64 #include <nfs/nfsnode.h>
65 #include <nfs/nfs_var.h>
66
67 extern int nfs_numasync;
68 extern int nfs_commitsize;
69 extern struct nfsstats nfsstats;
70
71 static int nfs_doio_read __P((struct buf *, struct uio *));
72 static int nfs_doio_write __P((struct buf *, struct uio *));
73 static int nfs_doio_phys __P((struct buf *, struct uio *));
74
75 /*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 struct vnode *vp;
82 struct uio *uio;
83 int ioflag, cflag;
84 struct ucred *cred;
85 {
86 struct nfsnode *np = VTONFS(vp);
87 struct buf *bp = NULL, *rabp;
88 struct proc *p;
89 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
90 struct nfsdircache *ndp = NULL, *nndp = NULL;
91 caddr_t baddr, ep, edp;
92 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
93 int enough = 0;
94 struct dirent *dp, *pdp;
95 off_t curoff = 0;
96
97 #ifdef DIAGNOSTIC
98 if (uio->uio_rw != UIO_READ)
99 panic("nfs_read mode");
100 #endif
101 if (uio->uio_resid == 0)
102 return (0);
103 if (vp->v_type != VDIR && uio->uio_offset < 0)
104 return (EINVAL);
105 p = uio->uio_procp;
106 #ifndef NFS_V2_ONLY
107 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
108 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
109 (void)nfs_fsinfo(nmp, vp, cred, p);
110 #endif
111 if (vp->v_type != VDIR &&
112 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
113 return (EFBIG);
114
115 /*
116 * For nfs, cache consistency can only be maintained approximately.
117 * Although RFC1094 does not specify the criteria, the following is
118 * believed to be compatible with the reference port.
119 * For nqnfs, full cache consistency is maintained within the loop.
120 * For nfs:
121 * If the file's modify time on the server has changed since the
122 * last read rpc or you have written to the file,
123 * you may have lost data cache consistency with the
124 * server, so flush all of the file's data out of the cache.
125 * Then force a getattr rpc to ensure that you have up to date
126 * attributes.
127 * NB: This implies that cache data can be read when up to
128 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
129 * attributes this could be forced by setting n_attrstamp to 0 before
130 * the VOP_GETATTR() call.
131 */
132
133 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) {
134 error = nfs_flushstalebuf(vp, cred, p,
135 NFS_FLUSHSTALEBUF_MYWRITE);
136 if (error)
137 return error;
138 }
139
140 do {
141 #ifndef NFS_V2_ONLY
142 /*
143 * Get a valid lease. If cached data is stale, flush it.
144 */
145 if (nmp->nm_flag & NFSMNT_NQNFS) {
146 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
147 do {
148 error = nqnfs_getlease(vp, ND_READ, cred, p);
149 } while (error == NQNFS_EXPIRED);
150 if (error)
151 return (error);
152 if (np->n_lrev != np->n_brev ||
153 (np->n_flag & NQNFSNONCACHE) ||
154 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
155 if (vp->v_type == VDIR) {
156 nfs_invaldircache(vp, 0);
157 np->n_direofoffset = 0;
158 }
159 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
160 if (error)
161 return (error);
162 np->n_brev = np->n_lrev;
163 }
164 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
165 nfs_invaldircache(vp, 0);
166 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
167 np->n_direofoffset = 0;
168 if (error)
169 return (error);
170 }
171 }
172 #endif
173 /*
174 * Don't cache symlinks.
175 */
176 if (np->n_flag & NQNFSNONCACHE
177 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) {
178 switch (vp->v_type) {
179 case VREG:
180 return (nfs_readrpc(vp, uio));
181 case VLNK:
182 return (nfs_readlinkrpc(vp, uio, cred));
183 case VDIR:
184 break;
185 default:
186 printf(" NQNFSNONCACHE: type %x unexpected\n",
187 vp->v_type);
188 };
189 }
190 baddr = (caddr_t)0;
191 switch (vp->v_type) {
192 case VREG:
193 nfsstats.biocache_reads++;
194
195 error = 0;
196 if (uio->uio_offset >= np->n_size) {
197 break;
198 }
199 while (uio->uio_resid > 0) {
200 void *win;
201 vsize_t bytelen = MIN(np->n_size - uio->uio_offset,
202 uio->uio_resid);
203
204 if (bytelen == 0)
205 break;
206 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
207 &bytelen, UBC_READ);
208 error = uiomove(win, bytelen, uio);
209 ubc_release(win, 0);
210 if (error) {
211 break;
212 }
213 }
214 n = 0;
215 break;
216
217 case VLNK:
218 nfsstats.biocache_readlinks++;
219 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
220 if (!bp)
221 return (EINTR);
222 if ((bp->b_flags & B_DONE) == 0) {
223 bp->b_flags |= B_READ;
224 error = nfs_doio(bp, p);
225 if (error) {
226 brelse(bp);
227 return (error);
228 }
229 }
230 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
231 got_buf = 1;
232 on = 0;
233 break;
234 case VDIR:
235 diragain:
236 nfsstats.biocache_readdirs++;
237 ndp = nfs_searchdircache(vp, uio->uio_offset,
238 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
239 if (!ndp) {
240 /*
241 * We've been handed a cookie that is not
242 * in the cache. If we're not translating
243 * 32 <-> 64, it may be a value that was
244 * flushed out of the cache because it grew
245 * too big. Let the server judge if it's
246 * valid or not. In the translation case,
247 * we have no way of validating this value,
248 * so punt.
249 */
250 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
251 return (EINVAL);
252 ndp = nfs_enterdircache(vp, uio->uio_offset,
253 uio->uio_offset, 0, 0);
254 }
255
256 if (uio->uio_offset != 0 &&
257 ndp->dc_cookie == np->n_direofoffset) {
258 nfs_putdircache(np, ndp);
259 nfsstats.direofcache_hits++;
260 return (0);
261 }
262
263 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, p);
264 if (!bp)
265 return (EINTR);
266 if ((bp->b_flags & B_DONE) == 0) {
267 bp->b_flags |= B_READ;
268 bp->b_dcookie = ndp->dc_blkcookie;
269 error = nfs_doio(bp, p);
270 if (error) {
271 /*
272 * Yuck! The directory has been modified on the
273 * server. Punt and let the userland code
274 * deal with it.
275 */
276 nfs_putdircache(np, ndp);
277 brelse(bp);
278 if (error == NFSERR_BAD_COOKIE) {
279 nfs_invaldircache(vp, 0);
280 nfs_vinvalbuf(vp, 0, cred, p, 1);
281 error = EINVAL;
282 }
283 return (error);
284 }
285 }
286
287 /*
288 * Just return if we hit EOF right away with this
289 * block. Always check here, because direofoffset
290 * may have been set by an nfsiod since the last
291 * check.
292 */
293 if (np->n_direofoffset != 0 &&
294 ndp->dc_blkcookie == np->n_direofoffset) {
295 nfs_putdircache(np, ndp);
296 brelse(bp);
297 return (0);
298 }
299
300 /*
301 * Find the entry we were looking for in the block.
302 */
303
304 en = ndp->dc_entry;
305
306 pdp = dp = (struct dirent *)bp->b_data;
307 edp = bp->b_data + bp->b_bcount - bp->b_resid;
308 enn = 0;
309 while (enn < en && (caddr_t)dp < edp) {
310 pdp = dp;
311 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
312 enn++;
313 }
314
315 /*
316 * If the entry number was bigger than the number of
317 * entries in the block, or the cookie of the previous
318 * entry doesn't match, the directory cache is
319 * stale. Flush it and try again (i.e. go to
320 * the server).
321 */
322 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp ||
323 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
324 #ifdef DEBUG
325 printf("invalid cache: %p %p %p off %lx %lx\n",
326 pdp, dp, edp,
327 (unsigned long)uio->uio_offset,
328 (unsigned long)NFS_GETCOOKIE(pdp));
329 #endif
330 nfs_putdircache(np, ndp);
331 brelse(bp);
332 nfs_invaldircache(vp, 0);
333 nfs_vinvalbuf(vp, 0, cred, p, 0);
334 goto diragain;
335 }
336
337 on = (caddr_t)dp - bp->b_data;
338
339 /*
340 * Cache all entries that may be exported to the
341 * user, as they may be thrown back at us. The
342 * NFSBIO_CACHECOOKIES flag indicates that all
343 * entries are being 'exported', so cache them all.
344 */
345
346 if (en == 0 && pdp == dp) {
347 dp = (struct dirent *)
348 ((caddr_t)dp + dp->d_reclen);
349 enn++;
350 }
351
352 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
353 n = uio->uio_resid;
354 enough = 1;
355 } else
356 n = bp->b_bcount - bp->b_resid - on;
357
358 ep = bp->b_data + on + n;
359
360 /*
361 * Find last complete entry to copy, caching entries
362 * (if requested) as we go.
363 */
364
365 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) {
366 if (cflag & NFSBIO_CACHECOOKIES) {
367 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
368 ndp->dc_blkcookie, enn, bp->b_lblkno);
369 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
370 NFS_STASHCOOKIE32(pdp,
371 nndp->dc_cookie32);
372 }
373 nfs_putdircache(np, nndp);
374 }
375 pdp = dp;
376 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
377 enn++;
378 }
379 nfs_putdircache(np, ndp);
380
381 /*
382 * If the last requested entry was not the last in the
383 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
384 * cache the cookie of the last requested one, and
385 * set of the offset to it.
386 */
387
388 if ((on + n) < bp->b_bcount - bp->b_resid) {
389 curoff = NFS_GETCOOKIE(pdp);
390 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
391 enn, bp->b_lblkno);
392 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
393 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
394 curoff = nndp->dc_cookie32;
395 }
396 nfs_putdircache(np, nndp);
397 } else
398 curoff = bp->b_dcookie;
399
400 /*
401 * Always cache the entry for the next block,
402 * so that readaheads can use it.
403 */
404 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
405 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
406 if (curoff == bp->b_dcookie) {
407 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
408 curoff = nndp->dc_cookie32;
409 }
410 }
411
412 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on);
413
414 /*
415 * If not eof and read aheads are enabled, start one.
416 * (You need the current block first, so that you have the
417 * directory offset cookie of the next block.)
418 */
419 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
420 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) {
421 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
422 NFS_DIRBLKSIZ, p);
423 if (rabp) {
424 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
425 rabp->b_dcookie = nndp->dc_cookie;
426 rabp->b_flags |= (B_READ | B_ASYNC);
427 if (nfs_asyncio(rabp)) {
428 rabp->b_flags |= B_INVAL;
429 brelse(rabp);
430 }
431 } else
432 brelse(rabp);
433 }
434 }
435 nfs_putdircache(np, nndp);
436 got_buf = 1;
437 break;
438 default:
439 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
440 break;
441 }
442
443 if (n > 0) {
444 if (!baddr)
445 baddr = bp->b_data;
446 error = uiomove(baddr + on, (int)n, uio);
447 }
448 switch (vp->v_type) {
449 case VREG:
450 break;
451 case VLNK:
452 n = 0;
453 break;
454 case VDIR:
455 if (np->n_flag & NQNFSNONCACHE)
456 bp->b_flags |= B_INVAL;
457 uio->uio_offset = curoff;
458 if (enough)
459 n = 0;
460 break;
461 default:
462 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
463 }
464 if (got_buf)
465 brelse(bp);
466 } while (error == 0 && uio->uio_resid > 0 && n > 0);
467 return (error);
468 }
469
470 /*
471 * Vnode op for write using bio
472 */
473 int
474 nfs_write(v)
475 void *v;
476 {
477 struct vop_write_args /* {
478 struct vnode *a_vp;
479 struct uio *a_uio;
480 int a_ioflag;
481 struct ucred *a_cred;
482 } */ *ap = v;
483 struct uio *uio = ap->a_uio;
484 struct proc *p = uio->uio_procp;
485 struct vnode *vp = ap->a_vp;
486 struct nfsnode *np = VTONFS(vp);
487 struct ucred *cred = ap->a_cred;
488 int ioflag = ap->a_ioflag;
489 struct vattr vattr;
490 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
491 void *win;
492 voff_t oldoff, origoff;
493 vsize_t bytelen;
494 int error = 0;
495 int extended = 0, wrotedta = 0;
496
497 #ifdef DIAGNOSTIC
498 if (uio->uio_rw != UIO_WRITE)
499 panic("nfs_write mode");
500 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
501 panic("nfs_write proc");
502 #endif
503 if (vp->v_type != VREG)
504 return (EIO);
505 if (np->n_flag & NWRITEERR) {
506 np->n_flag &= ~NWRITEERR;
507 return (np->n_error);
508 }
509 #ifndef NFS_V2_ONLY
510 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
511 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
512 (void)nfs_fsinfo(nmp, vp, cred, p);
513 #endif
514 if (ioflag & (IO_APPEND | IO_SYNC)) {
515 if (np->n_flag & NMODIFIED) {
516 NFS_INVALIDATE_ATTRCACHE(np);
517 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
518 if (error)
519 return (error);
520 }
521 if (ioflag & IO_APPEND) {
522 NFS_INVALIDATE_ATTRCACHE(np);
523 error = VOP_GETATTR(vp, &vattr, cred, p);
524 if (error)
525 return (error);
526 uio->uio_offset = np->n_size;
527 }
528 }
529 if (uio->uio_offset < 0)
530 return (EINVAL);
531 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
532 return (EFBIG);
533 if (uio->uio_resid == 0)
534 return (0);
535 /*
536 * Maybe this should be above the vnode op call, but so long as
537 * file servers have no limits, i don't think it matters
538 */
539 if (p && uio->uio_offset + uio->uio_resid >
540 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
541 psignal(p, SIGXFSZ);
542 return (EFBIG);
543 }
544
545 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
546 int iomode = NFSV3WRITE_FILESYNC;
547 boolean_t stalewriteverf = FALSE;
548
549 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
550 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf);
551 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
552 if (stalewriteverf)
553 nfs_clearcommit(vp->v_mount);
554 return (error);
555 }
556
557 origoff = uio->uio_offset;
558 do {
559 boolean_t extending; /* if we are extending whole pages */
560 u_quad_t oldsize;
561 oldoff = uio->uio_offset;
562 bytelen = uio->uio_resid;
563
564 #ifndef NFS_V2_ONLY
565 /*
566 * Check for a valid write lease.
567 */
568 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
569 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
570 do {
571 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
572 } while (error == NQNFS_EXPIRED);
573 if (error)
574 return (error);
575 if (np->n_lrev != np->n_brev ||
576 (np->n_flag & NQNFSNONCACHE)) {
577 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
578 if (error)
579 return (error);
580 np->n_brev = np->n_lrev;
581 }
582 }
583 #endif
584 nfsstats.biocache_writes++;
585
586 oldsize = np->n_size;
587 np->n_flag |= NMODIFIED;
588 if (np->n_size < uio->uio_offset + bytelen) {
589 np->n_size = uio->uio_offset + bytelen;
590 }
591 extending = ((uio->uio_offset & PAGE_MASK) == 0 &&
592 (bytelen & PAGE_MASK) == 0 &&
593 uio->uio_offset >= vp->v_size);
594 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
595 UBC_WRITE | (extending ? UBC_FAULTBUSY : 0));
596 error = uiomove(win, bytelen, uio);
597 ubc_release(win, 0);
598 if (error) {
599 if (extending) {
600 /*
601 * backout size and free pages past eof.
602 */
603 np->n_size = oldsize;
604 simple_lock(&vp->v_interlock);
605 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
606 0, PGO_SYNCIO | PGO_FREE);
607 }
608 break;
609 }
610 wrotedta = 1;
611
612 /*
613 * update UVM's notion of the size now that we've
614 * copied the data into the vnode's pages.
615 */
616
617 if (vp->v_size < uio->uio_offset) {
618 uvm_vnp_setsize(vp, uio->uio_offset);
619 extended = 1;
620 }
621
622 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
623 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
624 simple_lock(&vp->v_interlock);
625 error = VOP_PUTPAGES(vp,
626 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
627 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
628 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
629 }
630 } while (uio->uio_resid > 0);
631 if (wrotedta)
632 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
633 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
634 simple_lock(&vp->v_interlock);
635 error = VOP_PUTPAGES(vp,
636 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
637 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
638 ~(nmp->nm_wsize - 1)),
639 PGO_CLEANIT | PGO_SYNCIO);
640 }
641 return error;
642 }
643
644 /*
645 * Get an nfs cache block.
646 * Allocate a new one if the block isn't currently in the cache
647 * and return the block marked busy. If the calling process is
648 * interrupted by a signal for an interruptible mount point, return
649 * NULL.
650 */
651 struct buf *
652 nfs_getcacheblk(vp, bn, size, p)
653 struct vnode *vp;
654 daddr_t bn;
655 int size;
656 struct proc *p;
657 {
658 struct buf *bp;
659 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
660
661 if (nmp->nm_flag & NFSMNT_INT) {
662 bp = getblk(vp, bn, size, PCATCH, 0);
663 while (bp == NULL) {
664 if (nfs_sigintr(nmp, NULL, p))
665 return (NULL);
666 bp = getblk(vp, bn, size, 0, 2 * hz);
667 }
668 } else
669 bp = getblk(vp, bn, size, 0, 0);
670 return (bp);
671 }
672
673 /*
674 * Flush and invalidate all dirty buffers. If another process is already
675 * doing the flush, just wait for completion.
676 */
677 int
678 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
679 struct vnode *vp;
680 int flags;
681 struct ucred *cred;
682 struct proc *p;
683 int intrflg;
684 {
685 struct nfsnode *np = VTONFS(vp);
686 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
687 int error = 0, slpflag, slptimeo;
688
689 if ((nmp->nm_flag & NFSMNT_INT) == 0)
690 intrflg = 0;
691 if (intrflg) {
692 slpflag = PCATCH;
693 slptimeo = 2 * hz;
694 } else {
695 slpflag = 0;
696 slptimeo = 0;
697 }
698 /*
699 * First wait for any other process doing a flush to complete.
700 */
701 simple_lock(&vp->v_interlock);
702 while (np->n_flag & NFLUSHINPROG) {
703 np->n_flag |= NFLUSHWANT;
704 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
705 slptimeo, &vp->v_interlock);
706 if (error && intrflg && nfs_sigintr(nmp, NULL, p)) {
707 simple_unlock(&vp->v_interlock);
708 return EINTR;
709 }
710 }
711
712 /*
713 * Now, flush as required.
714 */
715 np->n_flag |= NFLUSHINPROG;
716 simple_unlock(&vp->v_interlock);
717 error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
718 while (error) {
719 if (intrflg && nfs_sigintr(nmp, NULL, p)) {
720 error = EINTR;
721 break;
722 }
723 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
724 }
725 simple_lock(&vp->v_interlock);
726 if (error == 0)
727 np->n_flag &= ~NMODIFIED;
728 np->n_flag &= ~NFLUSHINPROG;
729 if (np->n_flag & NFLUSHWANT) {
730 np->n_flag &= ~NFLUSHWANT;
731 wakeup(&np->n_flag);
732 }
733 simple_unlock(&vp->v_interlock);
734 return error;
735 }
736
737 /*
738 * nfs_flushstalebuf: flush cache if it's stale.
739 *
740 * => caller shouldn't own any pages or buffers which belong to the vnode.
741 */
742
743 int
744 nfs_flushstalebuf(struct vnode *vp, struct ucred *cred, struct proc *p,
745 int flags)
746 {
747 struct nfsnode *np = VTONFS(vp);
748 struct vattr vattr;
749 int error;
750
751 if (np->n_flag & NMODIFIED) {
752 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
753 || vp->v_type != VREG) {
754 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
755 if (error)
756 return error;
757 if (vp->v_type == VDIR) {
758 nfs_invaldircache(vp, 0);
759 np->n_direofoffset = 0;
760 }
761 } else {
762 /*
763 * XXX assuming writes are ours.
764 */
765 }
766 NFS_INVALIDATE_ATTRCACHE(np);
767 error = VOP_GETATTR(vp, &vattr, cred, p);
768 if (error)
769 return error;
770 np->n_mtime = vattr.va_mtime;
771 } else {
772 error = VOP_GETATTR(vp, &vattr, cred, p);
773 if (error)
774 return error;
775 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
776 if (vp->v_type == VDIR) {
777 nfs_invaldircache(vp, 0);
778 np->n_direofoffset = 0;
779 }
780 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
781 if (error)
782 return error;
783 np->n_mtime = vattr.va_mtime;
784 }
785 }
786
787 return error;
788 }
789
790 /*
791 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
792 * This is mainly to avoid queueing async I/O requests when the nfsiods
793 * are all hung on a dead server.
794 */
795
796 int
797 nfs_asyncio(bp)
798 struct buf *bp;
799 {
800 int i;
801 struct nfsmount *nmp;
802 int gotiod, slpflag = 0, slptimeo = 0, error;
803
804 if (nfs_numasync == 0)
805 return (EIO);
806
807 nmp = VFSTONFS(bp->b_vp->v_mount);
808 again:
809 if (nmp->nm_flag & NFSMNT_INT)
810 slpflag = PCATCH;
811 gotiod = FALSE;
812
813 /*
814 * Find a free iod to process this request.
815 */
816
817 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
818 struct nfs_iod *iod = &nfs_asyncdaemon[i];
819
820 simple_lock(&iod->nid_slock);
821 if (iod->nid_want) {
822 /*
823 * Found one, so wake it up and tell it which
824 * mount to process.
825 */
826 iod->nid_want = NULL;
827 iod->nid_mount = nmp;
828 wakeup(&iod->nid_want);
829 simple_lock(&nmp->nm_slock);
830 simple_unlock(&iod->nid_slock);
831 nmp->nm_bufqiods++;
832 gotiod = TRUE;
833 break;
834 }
835 simple_unlock(&iod->nid_slock);
836 }
837
838 /*
839 * If none are free, we may already have an iod working on this mount
840 * point. If so, it will process our request.
841 */
842
843 if (!gotiod) {
844 simple_lock(&nmp->nm_slock);
845 if (nmp->nm_bufqiods > 0)
846 gotiod = TRUE;
847 }
848
849 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock));
850
851 /*
852 * If we have an iod which can process the request, then queue
853 * the buffer. However, even if we have an iod, do not initiate
854 * queue cleaning if curproc is the pageout daemon. if the NFS mount
855 * is via local loopback, we may put curproc (pagedaemon) to sleep
856 * waiting for the writes to complete. But the server (ourself)
857 * may block the write, waiting for its (ie., our) pagedaemon
858 * to produce clean pages to handle the write: deadlock.
859 * XXX: start non-loopback mounts straight away? If "lots free",
860 * let pagedaemon start loopback writes anyway?
861 */
862 if (gotiod) {
863
864 /*
865 * Ensure that the queue never grows too large.
866 */
867 if (curproc == uvm.pagedaemon_proc) {
868 /* Enque for later, to avoid free-page deadlock */
869 (void) 0;
870 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) {
871 nmp->nm_bufqwant = TRUE;
872 error = ltsleep(&nmp->nm_bufq,
873 slpflag | PRIBIO | PNORELOCK,
874 "nfsaio", slptimeo, &nmp->nm_slock);
875 if (error) {
876 if (nfs_sigintr(nmp, NULL, curproc))
877 return (EINTR);
878 if (slpflag == PCATCH) {
879 slpflag = 0;
880 slptimeo = 2 * hz;
881 }
882 }
883
884 /*
885 * We might have lost our iod while sleeping,
886 * so check and loop if nescessary.
887 */
888
889 if (nmp->nm_bufqiods == 0)
890 goto again;
891
892 simple_lock(&nmp->nm_slock);
893 }
894 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
895 nmp->nm_bufqlen++;
896 simple_unlock(&nmp->nm_slock);
897 return (0);
898 }
899 simple_unlock(&nmp->nm_slock);
900
901 /*
902 * All the iods are busy on other mounts, so return EIO to
903 * force the caller to process the i/o synchronously.
904 */
905
906 return (EIO);
907 }
908
909 /*
910 * nfs_doio for read.
911 */
912 static int
913 nfs_doio_read(bp, uiop)
914 struct buf *bp;
915 struct uio *uiop;
916 {
917 struct vnode *vp = bp->b_vp;
918 struct nfsnode *np = VTONFS(vp);
919 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
920 int error = 0;
921
922 uiop->uio_rw = UIO_READ;
923 switch (vp->v_type) {
924 case VREG:
925 nfsstats.read_bios++;
926 error = nfs_readrpc(vp, uiop);
927 if (!error && uiop->uio_resid) {
928 int diff, len;
929
930 /*
931 * If uio_resid > 0, there is a hole in the file and
932 * no writes after the hole have been pushed to
933 * the server yet or the file has been truncated
934 * on the server.
935 * Just zero fill the rest of the valid area.
936 */
937
938 KASSERT(vp->v_size >=
939 uiop->uio_offset + uiop->uio_resid);
940 diff = bp->b_bcount - uiop->uio_resid;
941 len = uiop->uio_resid;
942 memset((char *)bp->b_data + diff, 0, len);
943 }
944 if (uiop->uio_procp && (vp->v_flag & VTEXT) &&
945 (((nmp->nm_flag & NFSMNT_NQNFS) &&
946 NQNFS_CKINVALID(vp, np, ND_READ) &&
947 np->n_lrev != np->n_brev) ||
948 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
949 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)))) {
950 uprintf("Process killed due to "
951 "text file modification\n");
952 psignal(uiop->uio_procp, SIGKILL);
953 #if 0 /* XXX NJWLWP */
954 uiop->uio_procp->p_holdcnt++;
955 #endif
956 }
957 break;
958 case VLNK:
959 KASSERT(uiop->uio_offset == (off_t)0);
960 nfsstats.readlink_bios++;
961 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred);
962 break;
963 case VDIR:
964 nfsstats.readdir_bios++;
965 uiop->uio_offset = bp->b_dcookie;
966 #ifndef NFS_V2_ONLY
967 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
968 error = nfs_readdirplusrpc(vp, uiop, np->n_rcred);
969 if (error == NFSERR_NOTSUPP)
970 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
971 }
972 #else
973 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
974 #endif
975 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
976 error = nfs_readdirrpc(vp, uiop, np->n_rcred);
977 if (!error) {
978 bp->b_dcookie = uiop->uio_offset;
979 }
980 break;
981 default:
982 printf("nfs_doio: type %x unexpected\n", vp->v_type);
983 break;
984 }
985 if (error) {
986 bp->b_flags |= B_ERROR;
987 bp->b_error = error;
988 }
989 return error;
990 }
991
992 /*
993 * nfs_doio for write.
994 */
995 static int
996 nfs_doio_write(bp, uiop)
997 struct buf *bp;
998 struct uio *uiop;
999 {
1000 struct vnode *vp = bp->b_vp;
1001 struct nfsnode *np = VTONFS(vp);
1002 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1003 int iomode;
1004 boolean_t stalewriteverf = FALSE;
1005 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
1006 struct vm_page *pgs[npages];
1007 #ifndef NFS_V2_ONLY
1008 boolean_t needcommit = TRUE; /* need only COMMIT RPC */
1009 #else
1010 boolean_t needcommit = FALSE; /* need only COMMIT RPC */
1011 #endif
1012 boolean_t pageprotected;
1013 struct uvm_object *uobj = &vp->v_uobj;
1014 int error;
1015 off_t off, cnt;
1016
1017 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
1018 iomode = NFSV3WRITE_UNSTABLE;
1019 } else {
1020 iomode = NFSV3WRITE_FILESYNC;
1021 }
1022
1023 #ifndef NFS_V2_ONLY
1024 again:
1025 #endif
1026 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1027
1028 for (i = 0; i < npages; i++) {
1029 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
1030 if (pgs[i]->uobject == uobj &&
1031 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
1032 KASSERT(pgs[i]->flags & PG_BUSY);
1033 /*
1034 * this page belongs to our object.
1035 */
1036 simple_lock(&uobj->vmobjlock);
1037 /*
1038 * write out the page stably if it's about to
1039 * be released because we can't resend it
1040 * on the server crash.
1041 *
1042 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
1043 * changed until unbusy the page.
1044 */
1045 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
1046 iomode = NFSV3WRITE_FILESYNC;
1047 /*
1048 * if we met a page which hasn't been sent yet,
1049 * we need do WRITE RPC.
1050 */
1051 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1052 needcommit = FALSE;
1053 simple_unlock(&uobj->vmobjlock);
1054 } else {
1055 iomode = NFSV3WRITE_FILESYNC;
1056 needcommit = FALSE;
1057 }
1058 }
1059 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1060 simple_lock(&uobj->vmobjlock);
1061 for (i = 0; i < npages; i++) {
1062 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1063 pmap_page_protect(pgs[i], VM_PROT_READ);
1064 }
1065 simple_unlock(&uobj->vmobjlock);
1066 pageprotected = TRUE; /* pages can't be modified during i/o. */
1067 } else
1068 pageprotected = FALSE;
1069
1070 /*
1071 * Send the data to the server if necessary,
1072 * otherwise just send a commit rpc.
1073 */
1074 #ifndef NFS_V2_ONLY
1075 if (needcommit) {
1076
1077 /*
1078 * If the buffer is in the range that we already committed,
1079 * there's nothing to do.
1080 *
1081 * If it's in the range that we need to commit, push the
1082 * whole range at once, otherwise only push the buffer.
1083 * In both these cases, acquire the commit lock to avoid
1084 * other processes modifying the range.
1085 */
1086
1087 off = uiop->uio_offset;
1088 cnt = bp->b_bcount;
1089 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1090 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1091 boolean_t pushedrange;
1092 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1093 pushedrange = TRUE;
1094 off = np->n_pushlo;
1095 cnt = np->n_pushhi - np->n_pushlo;
1096 } else {
1097 pushedrange = FALSE;
1098 }
1099 error = nfs_commit(vp, off, cnt, curproc);
1100 if (error == 0) {
1101 if (pushedrange) {
1102 nfs_merge_commit_ranges(vp);
1103 } else {
1104 nfs_add_committed_range(vp, off, cnt);
1105 }
1106 }
1107 } else {
1108 error = 0;
1109 }
1110 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1111 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1112 if (!error) {
1113 /*
1114 * pages are now on stable storage.
1115 */
1116 uiop->uio_resid = 0;
1117 simple_lock(&uobj->vmobjlock);
1118 for (i = 0; i < npages; i++) {
1119 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1120 }
1121 simple_unlock(&uobj->vmobjlock);
1122 return 0;
1123 } else if (error == NFSERR_STALEWRITEVERF) {
1124 nfs_clearcommit(vp->v_mount);
1125 goto again;
1126 }
1127 if (error) {
1128 bp->b_flags |= B_ERROR;
1129 bp->b_error = np->n_error = error;
1130 np->n_flag |= NWRITEERR;
1131 }
1132 return error;
1133 }
1134 #endif
1135 off = uiop->uio_offset;
1136 cnt = bp->b_bcount;
1137 uiop->uio_rw = UIO_WRITE;
1138 nfsstats.write_bios++;
1139 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1140 #ifndef NFS_V2_ONLY
1141 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1142 /*
1143 * we need to commit pages later.
1144 */
1145 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1146 nfs_add_tobecommitted_range(vp, off, cnt);
1147 /*
1148 * if there can be too many uncommitted pages, commit them now.
1149 */
1150 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1151 off = np->n_pushlo;
1152 cnt = nfs_commitsize >> 1;
1153 error = nfs_commit(vp, off, cnt, curproc);
1154 if (!error) {
1155 nfs_add_committed_range(vp, off, cnt);
1156 nfs_del_tobecommitted_range(vp, off, cnt);
1157 }
1158 if (error == NFSERR_STALEWRITEVERF) {
1159 stalewriteverf = TRUE;
1160 error = 0; /* it isn't a real error */
1161 }
1162 } else {
1163 /*
1164 * re-dirty pages so that they will be passed
1165 * to us later again.
1166 */
1167 simple_lock(&uobj->vmobjlock);
1168 for (i = 0; i < npages; i++) {
1169 pgs[i]->flags &= ~PG_CLEAN;
1170 }
1171 simple_unlock(&uobj->vmobjlock);
1172 }
1173 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1174 } else
1175 #endif
1176 if (!error) {
1177 /*
1178 * pages are now on stable storage.
1179 */
1180 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1181 nfs_del_committed_range(vp, off, cnt);
1182 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1183 simple_lock(&uobj->vmobjlock);
1184 for (i = 0; i < npages; i++) {
1185 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1186 }
1187 simple_unlock(&uobj->vmobjlock);
1188 } else {
1189 /*
1190 * we got an error.
1191 */
1192 bp->b_flags |= B_ERROR;
1193 bp->b_error = np->n_error = error;
1194 np->n_flag |= NWRITEERR;
1195 }
1196
1197 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1198
1199 if (stalewriteverf) {
1200 nfs_clearcommit(vp->v_mount);
1201 }
1202 return error;
1203 }
1204
1205 /*
1206 * nfs_doio for B_PHYS.
1207 */
1208 static int
1209 nfs_doio_phys(bp, uiop)
1210 struct buf *bp;
1211 struct uio *uiop;
1212 {
1213 struct vnode *vp = bp->b_vp;
1214 int error;
1215
1216 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1217 if (bp->b_flags & B_READ) {
1218 uiop->uio_rw = UIO_READ;
1219 nfsstats.read_physios++;
1220 error = nfs_readrpc(vp, uiop);
1221 } else {
1222 int iomode = NFSV3WRITE_DATASYNC;
1223 boolean_t stalewriteverf;
1224 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1225
1226 uiop->uio_rw = UIO_WRITE;
1227 nfsstats.write_physios++;
1228 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1229 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf);
1230 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1231 if (stalewriteverf) {
1232 nfs_clearcommit(bp->b_vp->v_mount);
1233 }
1234 }
1235 if (error) {
1236 bp->b_flags |= B_ERROR;
1237 bp->b_error = error;
1238 }
1239 return error;
1240 }
1241
1242 /*
1243 * Do an I/O operation to/from a cache block. This may be called
1244 * synchronously or from an nfsiod.
1245 */
1246 int
1247 nfs_doio(bp, p)
1248 struct buf *bp;
1249 struct proc *p;
1250 {
1251 int error;
1252 struct uio uio;
1253 struct uio *uiop = &uio;
1254 struct iovec io;
1255 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1256
1257 uiop->uio_iov = &io;
1258 uiop->uio_iovcnt = 1;
1259 uiop->uio_segflg = UIO_SYSSPACE;
1260 uiop->uio_procp = NULL;
1261 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1262 io.iov_base = bp->b_data;
1263 io.iov_len = uiop->uio_resid = bp->b_bcount;
1264
1265 /*
1266 * Historically, paging was done with physio, but no more...
1267 */
1268 if (bp->b_flags & B_PHYS) {
1269 /*
1270 * ...though reading /dev/drum still gets us here.
1271 */
1272 error = nfs_doio_phys(bp, uiop);
1273 } else if (bp->b_flags & B_READ) {
1274 error = nfs_doio_read(bp, uiop);
1275 } else {
1276 error = nfs_doio_write(bp, uiop);
1277 }
1278 bp->b_resid = uiop->uio_resid;
1279 biodone(bp);
1280 return (error);
1281 }
1282
1283 /*
1284 * Vnode op for VM getpages.
1285 */
1286
1287 int
1288 nfs_getpages(v)
1289 void *v;
1290 {
1291 struct vop_getpages_args /* {
1292 struct vnode *a_vp;
1293 voff_t a_offset;
1294 struct vm_page **a_m;
1295 int *a_count;
1296 int a_centeridx;
1297 vm_prot_t a_access_type;
1298 int a_advice;
1299 int a_flags;
1300 } */ *ap = v;
1301
1302 struct vnode *vp = ap->a_vp;
1303 struct uvm_object *uobj = &vp->v_uobj;
1304 struct nfsnode *np = VTONFS(vp);
1305 const int npages = *ap->a_count;
1306 struct vm_page *pg, **pgs, *opgs[npages];
1307 off_t origoffset, len;
1308 int i, error;
1309 boolean_t v3 = NFS_ISV3(vp);
1310 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1311 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0;
1312
1313 /*
1314 * call the genfs code to get the pages. `pgs' may be NULL
1315 * when doing read-ahead.
1316 */
1317
1318 pgs = ap->a_m;
1319 if (write && locked && v3) {
1320 KASSERT(pgs != NULL);
1321 #ifdef DEBUG
1322
1323 /*
1324 * If PGO_LOCKED is set, real pages shouldn't exists
1325 * in the array.
1326 */
1327
1328 for (i = 0; i < npages; i++)
1329 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1330 #endif
1331 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1332 }
1333 error = genfs_getpages(v);
1334 if (error) {
1335 return (error);
1336 }
1337
1338 /*
1339 * for read faults where the nfs node is not yet marked NMODIFIED,
1340 * set PG_RDONLY on the pages so that we come back here if someone
1341 * tries to modify later via the mapping that will be entered for
1342 * this fault.
1343 */
1344
1345 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1346 if (!locked) {
1347 simple_lock(&uobj->vmobjlock);
1348 }
1349 for (i = 0; i < npages; i++) {
1350 pg = pgs[i];
1351 if (pg == NULL || pg == PGO_DONTCARE) {
1352 continue;
1353 }
1354 pg->flags |= PG_RDONLY;
1355 }
1356 if (!locked) {
1357 simple_unlock(&uobj->vmobjlock);
1358 }
1359 }
1360 if (!write) {
1361 return (0);
1362 }
1363
1364 /*
1365 * this is a write fault, update the commit info.
1366 */
1367
1368 origoffset = ap->a_offset;
1369 len = npages << PAGE_SHIFT;
1370
1371 if (v3) {
1372 error = lockmgr(&np->n_commitlock,
1373 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL);
1374 if (error) {
1375 KASSERT(locked != 0);
1376
1377 /*
1378 * Since PGO_LOCKED is set, we need to unbusy
1379 * all pages fetched by genfs_getpages() above,
1380 * tell the caller that there are no pages
1381 * available and put back original pgs array.
1382 */
1383
1384 uvm_lock_pageq();
1385 uvm_page_unbusy(pgs, npages);
1386 uvm_unlock_pageq();
1387 *ap->a_count = 0;
1388 memcpy(pgs, opgs,
1389 npages * sizeof(struct vm_pages *));
1390 return (error);
1391 }
1392 nfs_del_committed_range(vp, origoffset, len);
1393 nfs_del_tobecommitted_range(vp, origoffset, len);
1394 }
1395 np->n_flag |= NMODIFIED;
1396 if (!locked) {
1397 simple_lock(&uobj->vmobjlock);
1398 }
1399 for (i = 0; i < npages; i++) {
1400 pg = pgs[i];
1401 if (pg == NULL || pg == PGO_DONTCARE) {
1402 continue;
1403 }
1404 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1405 }
1406 if (!locked) {
1407 simple_unlock(&uobj->vmobjlock);
1408 }
1409 if (v3) {
1410 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1411 }
1412 return (0);
1413 }
1414