nfs_bio.c revision 1.142.4.1 1 /* $NetBSD: nfs_bio.c,v 1.142.4.1 2006/03/08 01:06:28 elad Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.142.4.1 2006/03/08 01:06:28 elad Exp $");
39
40 #include "opt_nfs.h"
41 #include "opt_ddb.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/namei.h>
53 #include <sys/dirent.h>
54 #include <sys/malloc.h>
55
56 #include <uvm/uvm_extern.h>
57 #include <uvm/uvm.h>
58
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nfsmount.h>
63 #include <nfs/nqnfs.h>
64 #include <nfs/nfsnode.h>
65 #include <nfs/nfs_var.h>
66
67 extern int nfs_numasync;
68 extern int nfs_commitsize;
69 extern struct nfsstats nfsstats;
70
71 static int nfs_doio_read __P((struct buf *, struct uio *));
72 static int nfs_doio_write __P((struct buf *, struct uio *));
73 static int nfs_doio_phys __P((struct buf *, struct uio *));
74
75 /*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 struct vnode *vp;
82 struct uio *uio;
83 int ioflag, cflag;
84 kauth_cred_t cred;
85 {
86 struct nfsnode *np = VTONFS(vp);
87 struct buf *bp = NULL, *rabp;
88 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
89 struct nfsdircache *ndp = NULL, *nndp = NULL;
90 caddr_t baddr;
91 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
92 int enough = 0;
93 struct dirent *dp, *pdp, *edp, *ep;
94 off_t curoff = 0;
95 int advice;
96 struct lwp *l = curlwp;
97
98 #ifdef DIAGNOSTIC
99 if (uio->uio_rw != UIO_READ)
100 panic("nfs_read mode");
101 #endif
102 if (uio->uio_resid == 0)
103 return (0);
104 if (vp->v_type != VDIR && uio->uio_offset < 0)
105 return (EINVAL);
106 #ifndef NFS_V2_ONLY
107 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
108 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
109 (void)nfs_fsinfo(nmp, vp, cred, l);
110 #endif
111 if (vp->v_type != VDIR &&
112 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
113 return (EFBIG);
114
115 /*
116 * For nfs, cache consistency can only be maintained approximately.
117 * Although RFC1094 does not specify the criteria, the following is
118 * believed to be compatible with the reference port.
119 * For nqnfs, full cache consistency is maintained within the loop.
120 * For nfs:
121 * If the file's modify time on the server has changed since the
122 * last read rpc or you have written to the file,
123 * you may have lost data cache consistency with the
124 * server, so flush all of the file's data out of the cache.
125 * Then force a getattr rpc to ensure that you have up to date
126 * attributes.
127 * NB: This implies that cache data can be read when up to
128 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
129 * attributes this could be forced by setting n_attrstamp to 0 before
130 * the VOP_GETATTR() call.
131 */
132
133 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) {
134 error = nfs_flushstalebuf(vp, cred, l,
135 NFS_FLUSHSTALEBUF_MYWRITE);
136 if (error)
137 return error;
138 }
139
140 do {
141 #ifndef NFS_V2_ONLY
142 /*
143 * Get a valid lease. If cached data is stale, flush it.
144 */
145 if (nmp->nm_flag & NFSMNT_NQNFS) {
146 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
147 do {
148 error = nqnfs_getlease(vp, ND_READ, cred, l);
149 } while (error == NQNFS_EXPIRED);
150 if (error)
151 return (error);
152 if (np->n_lrev != np->n_brev ||
153 (np->n_flag & NQNFSNONCACHE) ||
154 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
155 if (vp->v_type == VDIR) {
156 nfs_invaldircache(vp, 0);
157 }
158 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
159 if (error)
160 return (error);
161 np->n_brev = np->n_lrev;
162 }
163 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
164 nfs_invaldircache(vp, 0);
165 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
166 if (error)
167 return (error);
168 }
169 }
170 #endif
171 /*
172 * Don't cache symlinks.
173 */
174 if (np->n_flag & NQNFSNONCACHE
175 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) {
176 switch (vp->v_type) {
177 case VREG:
178 return (nfs_readrpc(vp, uio));
179 case VLNK:
180 return (nfs_readlinkrpc(vp, uio, cred));
181 case VDIR:
182 break;
183 default:
184 printf(" NQNFSNONCACHE: type %x unexpected\n",
185 vp->v_type);
186 };
187 }
188 baddr = (caddr_t)0;
189 switch (vp->v_type) {
190 case VREG:
191 nfsstats.biocache_reads++;
192
193 advice = IO_ADV_DECODE(ioflag);
194 error = 0;
195 while (uio->uio_resid > 0) {
196 void *win;
197 int flags;
198 vsize_t bytelen;
199
200 nfs_delayedtruncate(vp);
201 if (np->n_size <= uio->uio_offset) {
202 break;
203 }
204 bytelen =
205 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
206 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
207 &bytelen, advice, UBC_READ);
208 error = uiomove(win, bytelen, uio);
209 flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
210 ubc_release(win, flags);
211 if (error) {
212 /*
213 * XXXkludge
214 * the file has been truncated on the server.
215 * there isn't much we can do.
216 */
217 if (uio->uio_offset >= np->n_size) {
218 /* end of file */
219 error = 0;
220 } else {
221 break;
222 }
223 }
224 }
225 break;
226
227 case VLNK:
228 nfsstats.biocache_readlinks++;
229 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
230 if (!bp)
231 return (EINTR);
232 if ((bp->b_flags & B_DONE) == 0) {
233 bp->b_flags |= B_READ;
234 error = nfs_doio(bp);
235 if (error) {
236 brelse(bp);
237 return (error);
238 }
239 }
240 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
241 got_buf = 1;
242 on = 0;
243 break;
244 case VDIR:
245 diragain:
246 nfsstats.biocache_readdirs++;
247 ndp = nfs_searchdircache(vp, uio->uio_offset,
248 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
249 if (!ndp) {
250 /*
251 * We've been handed a cookie that is not
252 * in the cache. If we're not translating
253 * 32 <-> 64, it may be a value that was
254 * flushed out of the cache because it grew
255 * too big. Let the server judge if it's
256 * valid or not. In the translation case,
257 * we have no way of validating this value,
258 * so punt.
259 */
260 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
261 return (EINVAL);
262 ndp = nfs_enterdircache(vp, uio->uio_offset,
263 uio->uio_offset, 0, 0);
264 }
265
266 if (NFS_EOFVALID(np) &&
267 ndp->dc_cookie == np->n_direofoffset) {
268 nfs_putdircache(np, ndp);
269 nfsstats.direofcache_hits++;
270 return (0);
271 }
272
273 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
274 if (!bp)
275 return (EINTR);
276 if ((bp->b_flags & B_DONE) == 0) {
277 bp->b_flags |= B_READ;
278 bp->b_dcookie = ndp->dc_blkcookie;
279 error = nfs_doio(bp);
280 if (error) {
281 /*
282 * Yuck! The directory has been modified on the
283 * server. Punt and let the userland code
284 * deal with it.
285 */
286 nfs_putdircache(np, ndp);
287 brelse(bp);
288 if (error == NFSERR_BAD_COOKIE) {
289 nfs_invaldircache(vp, 0);
290 nfs_vinvalbuf(vp, 0, cred, l, 1);
291 error = EINVAL;
292 }
293 return (error);
294 }
295 }
296
297 /*
298 * Just return if we hit EOF right away with this
299 * block. Always check here, because direofoffset
300 * may have been set by an nfsiod since the last
301 * check.
302 *
303 * also, empty block implies EOF.
304 */
305
306 if (bp->b_bcount == bp->b_resid ||
307 (NFS_EOFVALID(np) &&
308 ndp->dc_blkcookie == np->n_direofoffset)) {
309 KASSERT(bp->b_bcount != bp->b_resid ||
310 ndp->dc_blkcookie == bp->b_dcookie);
311 nfs_putdircache(np, ndp);
312 bp->b_flags |= B_NOCACHE;
313 brelse(bp);
314 return 0;
315 }
316
317 /*
318 * Find the entry we were looking for in the block.
319 */
320
321 en = ndp->dc_entry;
322
323 pdp = dp = (struct dirent *)bp->b_data;
324 edp = (struct dirent *)(void *)(bp->b_data + bp->b_bcount -
325 bp->b_resid);
326 enn = 0;
327 while (enn < en && dp < edp) {
328 pdp = dp;
329 dp = _DIRENT_NEXT(dp);
330 enn++;
331 }
332
333 /*
334 * If the entry number was bigger than the number of
335 * entries in the block, or the cookie of the previous
336 * entry doesn't match, the directory cache is
337 * stale. Flush it and try again (i.e. go to
338 * the server).
339 */
340 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
341 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
342 #ifdef DEBUG
343 printf("invalid cache: %p %p %p off %lx %lx\n",
344 pdp, dp, edp,
345 (unsigned long)uio->uio_offset,
346 (unsigned long)NFS_GETCOOKIE(pdp));
347 #endif
348 nfs_putdircache(np, ndp);
349 brelse(bp);
350 nfs_invaldircache(vp, 0);
351 nfs_vinvalbuf(vp, 0, cred, l, 0);
352 goto diragain;
353 }
354
355 on = (caddr_t)dp - bp->b_data;
356
357 /*
358 * Cache all entries that may be exported to the
359 * user, as they may be thrown back at us. The
360 * NFSBIO_CACHECOOKIES flag indicates that all
361 * entries are being 'exported', so cache them all.
362 */
363
364 if (en == 0 && pdp == dp) {
365 dp = _DIRENT_NEXT(dp);
366 enn++;
367 }
368
369 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
370 n = uio->uio_resid;
371 enough = 1;
372 } else
373 n = bp->b_bcount - bp->b_resid - on;
374
375 ep = (struct dirent *)(void *)(bp->b_data + on + n);
376
377 /*
378 * Find last complete entry to copy, caching entries
379 * (if requested) as we go.
380 */
381
382 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
383 if (cflag & NFSBIO_CACHECOOKIES) {
384 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
385 ndp->dc_blkcookie, enn, bp->b_lblkno);
386 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
387 NFS_STASHCOOKIE32(pdp,
388 nndp->dc_cookie32);
389 }
390 nfs_putdircache(np, nndp);
391 }
392 pdp = dp;
393 dp = _DIRENT_NEXT(dp);
394 enn++;
395 }
396 nfs_putdircache(np, ndp);
397
398 /*
399 * If the last requested entry was not the last in the
400 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
401 * cache the cookie of the last requested one, and
402 * set of the offset to it.
403 */
404
405 if ((on + n) < bp->b_bcount - bp->b_resid) {
406 curoff = NFS_GETCOOKIE(pdp);
407 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
408 enn, bp->b_lblkno);
409 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
410 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
411 curoff = nndp->dc_cookie32;
412 }
413 nfs_putdircache(np, nndp);
414 } else
415 curoff = bp->b_dcookie;
416
417 /*
418 * Always cache the entry for the next block,
419 * so that readaheads can use it.
420 */
421 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
422 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
423 if (curoff == bp->b_dcookie) {
424 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
425 curoff = nndp->dc_cookie32;
426 }
427 }
428
429 n = (char *)_DIRENT_NEXT(pdp) - (bp->b_data + on);
430
431 /*
432 * If not eof and read aheads are enabled, start one.
433 * (You need the current block first, so that you have the
434 * directory offset cookie of the next block.)
435 */
436 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
437 !NFS_EOFVALID(np) && !(np->n_flag & NQNFSNONCACHE)) {
438 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
439 NFS_DIRBLKSIZ, l);
440 if (rabp) {
441 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
442 rabp->b_dcookie = nndp->dc_cookie;
443 rabp->b_flags |= (B_READ | B_ASYNC);
444 if (nfs_asyncio(rabp)) {
445 rabp->b_flags |= B_INVAL;
446 brelse(rabp);
447 }
448 } else
449 brelse(rabp);
450 }
451 }
452 nfs_putdircache(np, nndp);
453 got_buf = 1;
454 break;
455 default:
456 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
457 break;
458 }
459
460 if (n > 0) {
461 if (!baddr)
462 baddr = bp->b_data;
463 error = uiomove(baddr + on, (int)n, uio);
464 }
465 switch (vp->v_type) {
466 case VREG:
467 break;
468 case VLNK:
469 n = 0;
470 break;
471 case VDIR:
472 if (np->n_flag & NQNFSNONCACHE)
473 bp->b_flags |= B_INVAL;
474 uio->uio_offset = curoff;
475 if (enough)
476 n = 0;
477 break;
478 default:
479 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
480 }
481 if (got_buf)
482 brelse(bp);
483 } while (error == 0 && uio->uio_resid > 0 && n > 0);
484 return (error);
485 }
486
487 /*
488 * Vnode op for write using bio
489 */
490 int
491 nfs_write(v)
492 void *v;
493 {
494 struct vop_write_args /* {
495 struct vnode *a_vp;
496 struct uio *a_uio;
497 int a_ioflag;
498 kauth_cred_t a_cred;
499 } */ *ap = v;
500 struct uio *uio = ap->a_uio;
501 struct lwp *l = curlwp;
502 struct vnode *vp = ap->a_vp;
503 struct nfsnode *np = VTONFS(vp);
504 kauth_cred_t cred = ap->a_cred;
505 struct vattr vattr;
506 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
507 void *win;
508 voff_t oldoff, origoff;
509 vsize_t bytelen;
510 int flags, error = 0;
511 int ioflag = ap->a_ioflag;
512 int extended = 0, wrotedata = 0;
513
514 #ifdef DIAGNOSTIC
515 if (uio->uio_rw != UIO_WRITE)
516 panic("nfs_write mode");
517 #endif
518 if (vp->v_type != VREG)
519 return (EIO);
520 if (np->n_flag & NWRITEERR) {
521 np->n_flag &= ~NWRITEERR;
522 return (np->n_error);
523 }
524 #ifndef NFS_V2_ONLY
525 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
526 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
527 (void)nfs_fsinfo(nmp, vp, cred, l);
528 #endif
529 if (ioflag & (IO_APPEND | IO_SYNC)) {
530 if (np->n_flag & NMODIFIED) {
531 NFS_INVALIDATE_ATTRCACHE(np);
532 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
533 if (error)
534 return (error);
535 }
536 if (ioflag & IO_APPEND) {
537 NFS_INVALIDATE_ATTRCACHE(np);
538 error = VOP_GETATTR(vp, &vattr, cred, l);
539 if (error)
540 return (error);
541 uio->uio_offset = np->n_size;
542 }
543 }
544 if (uio->uio_offset < 0)
545 return (EINVAL);
546 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
547 return (EFBIG);
548 if (uio->uio_resid == 0)
549 return (0);
550 /*
551 * Maybe this should be above the vnode op call, but so long as
552 * file servers have no limits, i don't think it matters
553 */
554 if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
555 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
556 psignal(l->l_proc, SIGXFSZ);
557 return (EFBIG);
558 }
559
560 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
561 int iomode = NFSV3WRITE_FILESYNC;
562 boolean_t stalewriteverf = FALSE;
563
564 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
565 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf);
566 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
567 if (stalewriteverf)
568 nfs_clearcommit(vp->v_mount);
569 return (error);
570 }
571
572 origoff = uio->uio_offset;
573 do {
574 boolean_t extending; /* if we are extending whole pages */
575 u_quad_t oldsize;
576 oldoff = uio->uio_offset;
577 bytelen = uio->uio_resid;
578
579 #ifndef NFS_V2_ONLY
580 /*
581 * Check for a valid write lease.
582 */
583 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
584 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
585 do {
586 error = nqnfs_getlease(vp, ND_WRITE, cred, l);
587 } while (error == NQNFS_EXPIRED);
588 if (error)
589 return (error);
590 if (np->n_lrev != np->n_brev ||
591 (np->n_flag & NQNFSNONCACHE)) {
592 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
593 if (error)
594 return (error);
595 np->n_brev = np->n_lrev;
596 }
597 }
598 #endif
599 nfsstats.biocache_writes++;
600
601 oldsize = np->n_size;
602 np->n_flag |= NMODIFIED;
603 if (np->n_size < uio->uio_offset + bytelen) {
604 np->n_size = uio->uio_offset + bytelen;
605 }
606 extending = ((uio->uio_offset & PAGE_MASK) == 0 &&
607 (bytelen & PAGE_MASK) == 0 &&
608 uio->uio_offset >= vp->v_size);
609 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
610 UVM_ADV_NORMAL,
611 UBC_WRITE | (extending ? UBC_FAULTBUSY : 0));
612 error = uiomove(win, bytelen, uio);
613 flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
614 ubc_release(win, flags);
615 if (error) {
616 if (extending) {
617 /*
618 * backout size and free pages past eof.
619 */
620 np->n_size = oldsize;
621 simple_lock(&vp->v_interlock);
622 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
623 0, PGO_SYNCIO | PGO_FREE);
624 }
625 break;
626 }
627 wrotedata = 1;
628
629 /*
630 * update UVM's notion of the size now that we've
631 * copied the data into the vnode's pages.
632 */
633
634 if (vp->v_size < uio->uio_offset) {
635 uvm_vnp_setsize(vp, uio->uio_offset);
636 extended = 1;
637 }
638
639 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
640 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
641 simple_lock(&vp->v_interlock);
642 error = VOP_PUTPAGES(vp,
643 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
644 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
645 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
646 }
647 } while (uio->uio_resid > 0);
648 if (wrotedata)
649 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
650 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
651 simple_lock(&vp->v_interlock);
652 error = VOP_PUTPAGES(vp,
653 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
654 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
655 ~(nmp->nm_wsize - 1)),
656 PGO_CLEANIT | PGO_SYNCIO);
657 }
658 return error;
659 }
660
661 /*
662 * Get an nfs cache block.
663 * Allocate a new one if the block isn't currently in the cache
664 * and return the block marked busy. If the calling process is
665 * interrupted by a signal for an interruptible mount point, return
666 * NULL.
667 */
668 struct buf *
669 nfs_getcacheblk(vp, bn, size, l)
670 struct vnode *vp;
671 daddr_t bn;
672 int size;
673 struct lwp *l;
674 {
675 struct buf *bp;
676 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
677
678 if (nmp->nm_flag & NFSMNT_INT) {
679 bp = getblk(vp, bn, size, PCATCH, 0);
680 while (bp == NULL) {
681 if (nfs_sigintr(nmp, NULL, l))
682 return (NULL);
683 bp = getblk(vp, bn, size, 0, 2 * hz);
684 }
685 } else
686 bp = getblk(vp, bn, size, 0, 0);
687 return (bp);
688 }
689
690 /*
691 * Flush and invalidate all dirty buffers. If another process is already
692 * doing the flush, just wait for completion.
693 */
694 int
695 nfs_vinvalbuf(vp, flags, cred, l, intrflg)
696 struct vnode *vp;
697 int flags;
698 kauth_cred_t cred;
699 struct lwp *l;
700 int intrflg;
701 {
702 struct nfsnode *np = VTONFS(vp);
703 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
704 int error = 0, slpflag, slptimeo;
705
706 if ((nmp->nm_flag & NFSMNT_INT) == 0)
707 intrflg = 0;
708 if (intrflg) {
709 slpflag = PCATCH;
710 slptimeo = 2 * hz;
711 } else {
712 slpflag = 0;
713 slptimeo = 0;
714 }
715 /*
716 * First wait for any other process doing a flush to complete.
717 */
718 simple_lock(&vp->v_interlock);
719 while (np->n_flag & NFLUSHINPROG) {
720 np->n_flag |= NFLUSHWANT;
721 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
722 slptimeo, &vp->v_interlock);
723 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
724 simple_unlock(&vp->v_interlock);
725 return EINTR;
726 }
727 }
728
729 /*
730 * Now, flush as required.
731 */
732 np->n_flag |= NFLUSHINPROG;
733 simple_unlock(&vp->v_interlock);
734 error = vinvalbuf(vp, flags, cred, l, slpflag, 0);
735 while (error) {
736 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
737 error = EINTR;
738 break;
739 }
740 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
741 }
742 simple_lock(&vp->v_interlock);
743 if (error == 0)
744 np->n_flag &= ~NMODIFIED;
745 np->n_flag &= ~NFLUSHINPROG;
746 if (np->n_flag & NFLUSHWANT) {
747 np->n_flag &= ~NFLUSHWANT;
748 wakeup(&np->n_flag);
749 }
750 simple_unlock(&vp->v_interlock);
751 return error;
752 }
753
754 /*
755 * nfs_flushstalebuf: flush cache if it's stale.
756 *
757 * => caller shouldn't own any pages or buffers which belong to the vnode.
758 */
759
760 int
761 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
762 int flags)
763 {
764 struct nfsnode *np = VTONFS(vp);
765 struct vattr vattr;
766 int error;
767
768 if (np->n_flag & NMODIFIED) {
769 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
770 || vp->v_type != VREG) {
771 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
772 if (error)
773 return error;
774 if (vp->v_type == VDIR) {
775 nfs_invaldircache(vp, 0);
776 }
777 } else {
778 /*
779 * XXX assuming writes are ours.
780 */
781 }
782 NFS_INVALIDATE_ATTRCACHE(np);
783 error = VOP_GETATTR(vp, &vattr, cred, l);
784 if (error)
785 return error;
786 np->n_mtime = vattr.va_mtime;
787 } else {
788 error = VOP_GETATTR(vp, &vattr, cred, l);
789 if (error)
790 return error;
791 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
792 if (vp->v_type == VDIR) {
793 nfs_invaldircache(vp, 0);
794 }
795 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
796 if (error)
797 return error;
798 np->n_mtime = vattr.va_mtime;
799 }
800 }
801
802 return error;
803 }
804
805 /*
806 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
807 * This is mainly to avoid queueing async I/O requests when the nfsiods
808 * are all hung on a dead server.
809 */
810
811 int
812 nfs_asyncio(bp)
813 struct buf *bp;
814 {
815 int i;
816 struct nfsmount *nmp;
817 int gotiod, slpflag = 0, slptimeo = 0, error;
818
819 if (nfs_numasync == 0)
820 return (EIO);
821
822 nmp = VFSTONFS(bp->b_vp->v_mount);
823 again:
824 if (nmp->nm_flag & NFSMNT_INT)
825 slpflag = PCATCH;
826 gotiod = FALSE;
827
828 /*
829 * Find a free iod to process this request.
830 */
831
832 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
833 struct nfs_iod *iod = &nfs_asyncdaemon[i];
834
835 simple_lock(&iod->nid_slock);
836 if (iod->nid_want) {
837 /*
838 * Found one, so wake it up and tell it which
839 * mount to process.
840 */
841 iod->nid_want = NULL;
842 iod->nid_mount = nmp;
843 wakeup(&iod->nid_want);
844 simple_lock(&nmp->nm_slock);
845 simple_unlock(&iod->nid_slock);
846 nmp->nm_bufqiods++;
847 gotiod = TRUE;
848 break;
849 }
850 simple_unlock(&iod->nid_slock);
851 }
852
853 /*
854 * If none are free, we may already have an iod working on this mount
855 * point. If so, it will process our request.
856 */
857
858 if (!gotiod) {
859 simple_lock(&nmp->nm_slock);
860 if (nmp->nm_bufqiods > 0)
861 gotiod = TRUE;
862 }
863
864 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock));
865
866 /*
867 * If we have an iod which can process the request, then queue
868 * the buffer. However, even if we have an iod, do not initiate
869 * queue cleaning if curproc is the pageout daemon. if the NFS mount
870 * is via local loopback, we may put curproc (pagedaemon) to sleep
871 * waiting for the writes to complete. But the server (ourself)
872 * may block the write, waiting for its (ie., our) pagedaemon
873 * to produce clean pages to handle the write: deadlock.
874 * XXX: start non-loopback mounts straight away? If "lots free",
875 * let pagedaemon start loopback writes anyway?
876 */
877 if (gotiod) {
878
879 /*
880 * Ensure that the queue never grows too large.
881 */
882 if (curproc == uvm.pagedaemon_proc) {
883 /* Enque for later, to avoid free-page deadlock */
884 (void) 0;
885 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) {
886 nmp->nm_bufqwant = TRUE;
887 error = ltsleep(&nmp->nm_bufq,
888 slpflag | PRIBIO | PNORELOCK,
889 "nfsaio", slptimeo, &nmp->nm_slock);
890 if (error) {
891 if (nfs_sigintr(nmp, NULL, curlwp))
892 return (EINTR);
893 if (slpflag == PCATCH) {
894 slpflag = 0;
895 slptimeo = 2 * hz;
896 }
897 }
898
899 /*
900 * We might have lost our iod while sleeping,
901 * so check and loop if nescessary.
902 */
903
904 if (nmp->nm_bufqiods == 0)
905 goto again;
906
907 simple_lock(&nmp->nm_slock);
908 }
909 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
910 nmp->nm_bufqlen++;
911 simple_unlock(&nmp->nm_slock);
912 return (0);
913 }
914 simple_unlock(&nmp->nm_slock);
915
916 /*
917 * All the iods are busy on other mounts, so return EIO to
918 * force the caller to process the i/o synchronously.
919 */
920
921 return (EIO);
922 }
923
924 /*
925 * nfs_doio for read.
926 */
927 static int
928 nfs_doio_read(bp, uiop)
929 struct buf *bp;
930 struct uio *uiop;
931 {
932 struct vnode *vp = bp->b_vp;
933 struct nfsnode *np = VTONFS(vp);
934 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
935 int error = 0;
936
937 uiop->uio_rw = UIO_READ;
938 switch (vp->v_type) {
939 case VREG:
940 nfsstats.read_bios++;
941 error = nfs_readrpc(vp, uiop);
942 if (!error && uiop->uio_resid) {
943 int diff, len;
944
945 /*
946 * If uio_resid > 0, there is a hole in the file and
947 * no writes after the hole have been pushed to
948 * the server yet or the file has been truncated
949 * on the server.
950 * Just zero fill the rest of the valid area.
951 */
952
953 KASSERT(vp->v_size >=
954 uiop->uio_offset + uiop->uio_resid);
955 diff = bp->b_bcount - uiop->uio_resid;
956 len = uiop->uio_resid;
957 memset((char *)bp->b_data + diff, 0, len);
958 uiop->uio_resid = 0;
959 }
960 #if 0
961 if (uiop->uio_lwp && (vp->v_flag & VTEXT) &&
962 (((nmp->nm_flag & NFSMNT_NQNFS) &&
963 NQNFS_CKINVALID(vp, np, ND_READ) &&
964 np->n_lrev != np->n_brev) ||
965 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
966 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)))) {
967 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
968 #if 0 /* XXX NJWLWP */
969 uiop->uio_lwp->l_proc->p_holdcnt++;
970 #endif
971 }
972 #endif
973 break;
974 case VLNK:
975 KASSERT(uiop->uio_offset == (off_t)0);
976 nfsstats.readlink_bios++;
977 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
978 break;
979 case VDIR:
980 nfsstats.readdir_bios++;
981 uiop->uio_offset = bp->b_dcookie;
982 #ifndef NFS_V2_ONLY
983 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
984 error = nfs_readdirplusrpc(vp, uiop,
985 curlwp->l_proc->p_cred);
986 if (error == NFSERR_NOTSUPP)
987 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
988 }
989 #else
990 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
991 #endif
992 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
993 error = nfs_readdirrpc(vp, uiop,
994 curlwp->l_proc->p_cred);
995 if (!error) {
996 bp->b_dcookie = uiop->uio_offset;
997 }
998 break;
999 default:
1000 printf("nfs_doio: type %x unexpected\n", vp->v_type);
1001 break;
1002 }
1003 if (error) {
1004 bp->b_flags |= B_ERROR;
1005 bp->b_error = error;
1006 }
1007 return error;
1008 }
1009
1010 /*
1011 * nfs_doio for write.
1012 */
1013 static int
1014 nfs_doio_write(bp, uiop)
1015 struct buf *bp;
1016 struct uio *uiop;
1017 {
1018 struct vnode *vp = bp->b_vp;
1019 struct nfsnode *np = VTONFS(vp);
1020 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1021 int iomode;
1022 boolean_t stalewriteverf = FALSE;
1023 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
1024 struct vm_page *pgs[npages];
1025 #ifndef NFS_V2_ONLY
1026 boolean_t needcommit = TRUE; /* need only COMMIT RPC */
1027 #else
1028 boolean_t needcommit = FALSE; /* need only COMMIT RPC */
1029 #endif
1030 boolean_t pageprotected;
1031 struct uvm_object *uobj = &vp->v_uobj;
1032 int error;
1033 off_t off, cnt;
1034
1035 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
1036 iomode = NFSV3WRITE_UNSTABLE;
1037 } else {
1038 iomode = NFSV3WRITE_FILESYNC;
1039 }
1040
1041 #ifndef NFS_V2_ONLY
1042 again:
1043 #endif
1044 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1045
1046 for (i = 0; i < npages; i++) {
1047 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
1048 if (pgs[i]->uobject == uobj &&
1049 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
1050 KASSERT(pgs[i]->flags & PG_BUSY);
1051 /*
1052 * this page belongs to our object.
1053 */
1054 simple_lock(&uobj->vmobjlock);
1055 /*
1056 * write out the page stably if it's about to
1057 * be released because we can't resend it
1058 * on the server crash.
1059 *
1060 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
1061 * changed until unbusy the page.
1062 */
1063 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
1064 iomode = NFSV3WRITE_FILESYNC;
1065 /*
1066 * if we met a page which hasn't been sent yet,
1067 * we need do WRITE RPC.
1068 */
1069 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1070 needcommit = FALSE;
1071 simple_unlock(&uobj->vmobjlock);
1072 } else {
1073 iomode = NFSV3WRITE_FILESYNC;
1074 needcommit = FALSE;
1075 }
1076 }
1077 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1078 simple_lock(&uobj->vmobjlock);
1079 for (i = 0; i < npages; i++) {
1080 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1081 pmap_page_protect(pgs[i], VM_PROT_READ);
1082 }
1083 simple_unlock(&uobj->vmobjlock);
1084 pageprotected = TRUE; /* pages can't be modified during i/o. */
1085 } else
1086 pageprotected = FALSE;
1087
1088 /*
1089 * Send the data to the server if necessary,
1090 * otherwise just send a commit rpc.
1091 */
1092 #ifndef NFS_V2_ONLY
1093 if (needcommit) {
1094
1095 /*
1096 * If the buffer is in the range that we already committed,
1097 * there's nothing to do.
1098 *
1099 * If it's in the range that we need to commit, push the
1100 * whole range at once, otherwise only push the buffer.
1101 * In both these cases, acquire the commit lock to avoid
1102 * other processes modifying the range.
1103 */
1104
1105 off = uiop->uio_offset;
1106 cnt = bp->b_bcount;
1107 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1108 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1109 boolean_t pushedrange;
1110 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1111 pushedrange = TRUE;
1112 off = np->n_pushlo;
1113 cnt = np->n_pushhi - np->n_pushlo;
1114 } else {
1115 pushedrange = FALSE;
1116 }
1117 error = nfs_commit(vp, off, cnt, curlwp);
1118 if (error == 0) {
1119 if (pushedrange) {
1120 nfs_merge_commit_ranges(vp);
1121 } else {
1122 nfs_add_committed_range(vp, off, cnt);
1123 }
1124 }
1125 } else {
1126 error = 0;
1127 }
1128 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1129 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1130 if (!error) {
1131 /*
1132 * pages are now on stable storage.
1133 */
1134 uiop->uio_resid = 0;
1135 simple_lock(&uobj->vmobjlock);
1136 for (i = 0; i < npages; i++) {
1137 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1138 }
1139 simple_unlock(&uobj->vmobjlock);
1140 return 0;
1141 } else if (error == NFSERR_STALEWRITEVERF) {
1142 nfs_clearcommit(vp->v_mount);
1143 goto again;
1144 }
1145 if (error) {
1146 bp->b_flags |= B_ERROR;
1147 bp->b_error = np->n_error = error;
1148 np->n_flag |= NWRITEERR;
1149 }
1150 return error;
1151 }
1152 #endif
1153 off = uiop->uio_offset;
1154 cnt = bp->b_bcount;
1155 uiop->uio_rw = UIO_WRITE;
1156 nfsstats.write_bios++;
1157 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1158 #ifndef NFS_V2_ONLY
1159 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1160 /*
1161 * we need to commit pages later.
1162 */
1163 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1164 nfs_add_tobecommitted_range(vp, off, cnt);
1165 /*
1166 * if there can be too many uncommitted pages, commit them now.
1167 */
1168 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1169 off = np->n_pushlo;
1170 cnt = nfs_commitsize >> 1;
1171 error = nfs_commit(vp, off, cnt, curlwp);
1172 if (!error) {
1173 nfs_add_committed_range(vp, off, cnt);
1174 nfs_del_tobecommitted_range(vp, off, cnt);
1175 }
1176 if (error == NFSERR_STALEWRITEVERF) {
1177 stalewriteverf = TRUE;
1178 error = 0; /* it isn't a real error */
1179 }
1180 } else {
1181 /*
1182 * re-dirty pages so that they will be passed
1183 * to us later again.
1184 */
1185 simple_lock(&uobj->vmobjlock);
1186 for (i = 0; i < npages; i++) {
1187 pgs[i]->flags &= ~PG_CLEAN;
1188 }
1189 simple_unlock(&uobj->vmobjlock);
1190 }
1191 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1192 } else
1193 #endif
1194 if (!error) {
1195 /*
1196 * pages are now on stable storage.
1197 */
1198 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1199 nfs_del_committed_range(vp, off, cnt);
1200 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1201 simple_lock(&uobj->vmobjlock);
1202 for (i = 0; i < npages; i++) {
1203 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1204 }
1205 simple_unlock(&uobj->vmobjlock);
1206 } else {
1207 /*
1208 * we got an error.
1209 */
1210 bp->b_flags |= B_ERROR;
1211 bp->b_error = np->n_error = error;
1212 np->n_flag |= NWRITEERR;
1213 }
1214
1215 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1216
1217 if (stalewriteverf) {
1218 nfs_clearcommit(vp->v_mount);
1219 }
1220 return error;
1221 }
1222
1223 /*
1224 * nfs_doio for B_PHYS.
1225 */
1226 static int
1227 nfs_doio_phys(bp, uiop)
1228 struct buf *bp;
1229 struct uio *uiop;
1230 {
1231 struct vnode *vp = bp->b_vp;
1232 int error;
1233
1234 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1235 if (bp->b_flags & B_READ) {
1236 uiop->uio_rw = UIO_READ;
1237 nfsstats.read_physios++;
1238 error = nfs_readrpc(vp, uiop);
1239 } else {
1240 int iomode = NFSV3WRITE_DATASYNC;
1241 boolean_t stalewriteverf;
1242 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1243
1244 uiop->uio_rw = UIO_WRITE;
1245 nfsstats.write_physios++;
1246 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL);
1247 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf);
1248 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
1249 if (stalewriteverf) {
1250 nfs_clearcommit(bp->b_vp->v_mount);
1251 }
1252 }
1253 if (error) {
1254 bp->b_flags |= B_ERROR;
1255 bp->b_error = error;
1256 }
1257 return error;
1258 }
1259
1260 /*
1261 * Do an I/O operation to/from a cache block. This may be called
1262 * synchronously or from an nfsiod.
1263 */
1264 int
1265 nfs_doio(bp)
1266 struct buf *bp;
1267 {
1268 int error;
1269 struct uio uio;
1270 struct uio *uiop = &uio;
1271 struct iovec io;
1272 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1273
1274 uiop->uio_iov = &io;
1275 uiop->uio_iovcnt = 1;
1276 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1277 UIO_SETUP_SYSSPACE(uiop);
1278 io.iov_base = bp->b_data;
1279 io.iov_len = uiop->uio_resid = bp->b_bcount;
1280
1281 /*
1282 * Historically, paging was done with physio, but no more...
1283 */
1284 if (bp->b_flags & B_PHYS) {
1285 /*
1286 * ...though reading /dev/drum still gets us here.
1287 */
1288 error = nfs_doio_phys(bp, uiop);
1289 } else if (bp->b_flags & B_READ) {
1290 error = nfs_doio_read(bp, uiop);
1291 } else {
1292 error = nfs_doio_write(bp, uiop);
1293 }
1294 bp->b_resid = uiop->uio_resid;
1295 biodone(bp);
1296 return (error);
1297 }
1298
1299 /*
1300 * Vnode op for VM getpages.
1301 */
1302
1303 int
1304 nfs_getpages(v)
1305 void *v;
1306 {
1307 struct vop_getpages_args /* {
1308 struct vnode *a_vp;
1309 voff_t a_offset;
1310 struct vm_page **a_m;
1311 int *a_count;
1312 int a_centeridx;
1313 vm_prot_t a_access_type;
1314 int a_advice;
1315 int a_flags;
1316 } */ *ap = v;
1317
1318 struct vnode *vp = ap->a_vp;
1319 struct uvm_object *uobj = &vp->v_uobj;
1320 struct nfsnode *np = VTONFS(vp);
1321 const int npages = *ap->a_count;
1322 struct vm_page *pg, **pgs, *opgs[npages];
1323 off_t origoffset, len;
1324 int i, error;
1325 boolean_t v3 = NFS_ISV3(vp);
1326 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1327 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0;
1328
1329 /*
1330 * call the genfs code to get the pages. `pgs' may be NULL
1331 * when doing read-ahead.
1332 */
1333
1334 pgs = ap->a_m;
1335 if (write && locked && v3) {
1336 KASSERT(pgs != NULL);
1337 #ifdef DEBUG
1338
1339 /*
1340 * If PGO_LOCKED is set, real pages shouldn't exists
1341 * in the array.
1342 */
1343
1344 for (i = 0; i < npages; i++)
1345 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1346 #endif
1347 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1348 }
1349 error = genfs_getpages(v);
1350 if (error) {
1351 return (error);
1352 }
1353
1354 /*
1355 * for read faults where the nfs node is not yet marked NMODIFIED,
1356 * set PG_RDONLY on the pages so that we come back here if someone
1357 * tries to modify later via the mapping that will be entered for
1358 * this fault.
1359 */
1360
1361 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1362 if (!locked) {
1363 simple_lock(&uobj->vmobjlock);
1364 }
1365 for (i = 0; i < npages; i++) {
1366 pg = pgs[i];
1367 if (pg == NULL || pg == PGO_DONTCARE) {
1368 continue;
1369 }
1370 pg->flags |= PG_RDONLY;
1371 }
1372 if (!locked) {
1373 simple_unlock(&uobj->vmobjlock);
1374 }
1375 }
1376 if (!write) {
1377 return (0);
1378 }
1379
1380 /*
1381 * this is a write fault, update the commit info.
1382 */
1383
1384 origoffset = ap->a_offset;
1385 len = npages << PAGE_SHIFT;
1386
1387 if (v3) {
1388 error = lockmgr(&np->n_commitlock,
1389 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL);
1390 if (error) {
1391 KASSERT(locked != 0);
1392
1393 /*
1394 * Since PGO_LOCKED is set, we need to unbusy
1395 * all pages fetched by genfs_getpages() above,
1396 * tell the caller that there are no pages
1397 * available and put back original pgs array.
1398 */
1399
1400 uvm_lock_pageq();
1401 uvm_page_unbusy(pgs, npages);
1402 uvm_unlock_pageq();
1403 *ap->a_count = 0;
1404 memcpy(pgs, opgs,
1405 npages * sizeof(struct vm_pages *));
1406 return (error);
1407 }
1408 nfs_del_committed_range(vp, origoffset, len);
1409 nfs_del_tobecommitted_range(vp, origoffset, len);
1410 }
1411 np->n_flag |= NMODIFIED;
1412 if (!locked) {
1413 simple_lock(&uobj->vmobjlock);
1414 }
1415 for (i = 0; i < npages; i++) {
1416 pg = pgs[i];
1417 if (pg == NULL || pg == PGO_DONTCARE) {
1418 continue;
1419 }
1420 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1421 }
1422 if (!locked) {
1423 simple_unlock(&uobj->vmobjlock);
1424 }
1425 if (v3) {
1426 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1427 }
1428 return (0);
1429 }
1430