nfs_bio.c revision 1.151.2.1
1/*	$NetBSD: nfs_bio.c,v 1.151.2.1 2007/03/13 17:51:12 ad Exp $	*/
2
3/*
4 * Copyright (c) 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.151.2.1 2007/03/13 17:51:12 ad Exp $");
39
40#include "opt_nfs.h"
41#include "opt_ddb.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/resourcevar.h>
46#include <sys/signalvar.h>
47#include <sys/proc.h>
48#include <sys/buf.h>
49#include <sys/vnode.h>
50#include <sys/mount.h>
51#include <sys/kernel.h>
52#include <sys/namei.h>
53#include <sys/dirent.h>
54#include <sys/malloc.h>
55#include <sys/kauth.h>
56
57#include <uvm/uvm_extern.h>
58#include <uvm/uvm.h>
59
60#include <nfs/rpcv2.h>
61#include <nfs/nfsproto.h>
62#include <nfs/nfs.h>
63#include <nfs/nfsmount.h>
64#include <nfs/nfsnode.h>
65#include <nfs/nfs_var.h>
66
67extern int nfs_numasync;
68extern int nfs_commitsize;
69extern struct nfsstats nfsstats;
70
71static int nfs_doio_read __P((struct buf *, struct uio *));
72static int nfs_doio_write __P((struct buf *, struct uio *));
73static int nfs_doio_phys __P((struct buf *, struct uio *));
74
75/*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79int
80nfs_bioread(vp, uio, ioflag, cred, cflag)
81	struct vnode *vp;
82	struct uio *uio;
83	int ioflag, cflag;
84	kauth_cred_t cred;
85{
86	struct nfsnode *np = VTONFS(vp);
87	struct buf *bp = NULL, *rabp;
88	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
89	struct nfsdircache *ndp = NULL, *nndp = NULL;
90	void *baddr;
91	int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
92	int enough = 0;
93	struct dirent *dp, *pdp, *edp, *ep;
94	off_t curoff = 0;
95	int advice;
96	struct lwp *l = curlwp;
97
98#ifdef DIAGNOSTIC
99	if (uio->uio_rw != UIO_READ)
100		panic("nfs_read mode");
101#endif
102	if (uio->uio_resid == 0)
103		return (0);
104	if (vp->v_type != VDIR && uio->uio_offset < 0)
105		return (EINVAL);
106#ifndef NFS_V2_ONLY
107	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
108	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
109		(void)nfs_fsinfo(nmp, vp, cred, l);
110#endif
111	if (vp->v_type != VDIR &&
112	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
113		return (EFBIG);
114
115	/*
116	 * For nfs, cache consistency can only be maintained approximately.
117	 * Although RFC1094 does not specify the criteria, the following is
118	 * believed to be compatible with the reference port.
119	 *
120	 * If the file's modify time on the server has changed since the
121	 * last read rpc or you have written to the file,
122	 * you may have lost data cache consistency with the
123	 * server, so flush all of the file's data out of the cache.
124	 * Then force a getattr rpc to ensure that you have up to date
125	 * attributes.
126	 * NB: This implies that cache data can be read when up to
127	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
128	 * attributes this could be forced by setting n_attrstamp to 0 before
129	 * the VOP_GETATTR() call.
130	 */
131
132	if (vp->v_type != VLNK) {
133		error = nfs_flushstalebuf(vp, cred, l,
134		    NFS_FLUSHSTALEBUF_MYWRITE);
135		if (error)
136			return error;
137	}
138
139	do {
140	    /*
141	     * Don't cache symlinks.
142	     */
143	    if ((vp->v_flag & VROOT) && vp->v_type == VLNK) {
144		return (nfs_readlinkrpc(vp, uio, cred));
145	    }
146	    baddr = (void *)0;
147	    switch (vp->v_type) {
148	    case VREG:
149		nfsstats.biocache_reads++;
150
151		advice = IO_ADV_DECODE(ioflag);
152		error = 0;
153		while (uio->uio_resid > 0) {
154			void *win;
155			int flags;
156			vsize_t bytelen;
157
158			nfs_delayedtruncate(vp);
159			if (np->n_size <= uio->uio_offset) {
160				break;
161			}
162			bytelen =
163			    MIN(np->n_size - uio->uio_offset, uio->uio_resid);
164			win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
165					&bytelen, advice, UBC_READ);
166			error = uiomove(win, bytelen, uio);
167			flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
168			ubc_release(win, flags);
169			if (error) {
170				/*
171				 * XXXkludge
172				 * the file has been truncated on the server.
173				 * there isn't much we can do.
174				 */
175				if (uio->uio_offset >= np->n_size) {
176					/* end of file */
177					error = 0;
178				} else {
179					break;
180				}
181			}
182		}
183		break;
184
185	    case VLNK:
186		nfsstats.biocache_readlinks++;
187		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
188		if (!bp)
189			return (EINTR);
190		if ((bp->b_flags & B_DONE) == 0) {
191			bp->b_flags |= B_READ;
192			error = nfs_doio(bp);
193			if (error) {
194				brelse(bp);
195				return (error);
196			}
197		}
198		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
199		got_buf = 1;
200		on = 0;
201		break;
202	    case VDIR:
203diragain:
204		nfsstats.biocache_readdirs++;
205		ndp = nfs_searchdircache(vp, uio->uio_offset,
206			(nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
207		if (!ndp) {
208			/*
209			 * We've been handed a cookie that is not
210			 * in the cache. If we're not translating
211			 * 32 <-> 64, it may be a value that was
212			 * flushed out of the cache because it grew
213			 * too big. Let the server judge if it's
214			 * valid or not. In the translation case,
215			 * we have no way of validating this value,
216			 * so punt.
217			 */
218			if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
219				return (EINVAL);
220			ndp = nfs_enterdircache(vp, uio->uio_offset,
221				uio->uio_offset, 0, 0);
222		}
223
224		if (NFS_EOFVALID(np) &&
225		    ndp->dc_cookie == np->n_direofoffset) {
226			nfs_putdircache(np, ndp);
227			nfsstats.direofcache_hits++;
228			return (0);
229		}
230
231		bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
232		if (!bp)
233		    return (EINTR);
234		if ((bp->b_flags & B_DONE) == 0) {
235		    bp->b_flags |= B_READ;
236		    bp->b_dcookie = ndp->dc_blkcookie;
237		    error = nfs_doio(bp);
238		    if (error) {
239			/*
240			 * Yuck! The directory has been modified on the
241			 * server. Punt and let the userland code
242			 * deal with it.
243			 */
244			nfs_putdircache(np, ndp);
245			brelse(bp);
246			/*
247			 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
248			 */
249			if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
250			    nfs_invaldircache(vp, 0);
251			    nfs_vinvalbuf(vp, 0, cred, l, 1);
252			}
253			return (error);
254		    }
255		}
256
257		/*
258		 * Just return if we hit EOF right away with this
259		 * block. Always check here, because direofoffset
260		 * may have been set by an nfsiod since the last
261		 * check.
262		 *
263		 * also, empty block implies EOF.
264		 */
265
266		if (bp->b_bcount == bp->b_resid ||
267		    (NFS_EOFVALID(np) &&
268		    ndp->dc_blkcookie == np->n_direofoffset)) {
269			KASSERT(bp->b_bcount != bp->b_resid ||
270			    ndp->dc_blkcookie == bp->b_dcookie);
271			nfs_putdircache(np, ndp);
272			bp->b_flags |= B_NOCACHE;
273			brelse(bp);
274			return 0;
275		}
276
277		/*
278		 * Find the entry we were looking for in the block.
279		 */
280
281		en = ndp->dc_entry;
282
283		pdp = dp = (struct dirent *)bp->b_data;
284		edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
285		    bp->b_resid);
286		enn = 0;
287		while (enn < en && dp < edp) {
288			pdp = dp;
289			dp = _DIRENT_NEXT(dp);
290			enn++;
291		}
292
293		/*
294		 * If the entry number was bigger than the number of
295		 * entries in the block, or the cookie of the previous
296		 * entry doesn't match, the directory cache is
297		 * stale. Flush it and try again (i.e. go to
298		 * the server).
299		 */
300		if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
301		    (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
302#ifdef DEBUG
303		    	printf("invalid cache: %p %p %p off %lx %lx\n",
304				pdp, dp, edp,
305				(unsigned long)uio->uio_offset,
306				(unsigned long)NFS_GETCOOKIE(pdp));
307#endif
308			nfs_putdircache(np, ndp);
309			brelse(bp);
310			nfs_invaldircache(vp, 0);
311			nfs_vinvalbuf(vp, 0, cred, l, 0);
312			goto diragain;
313		}
314
315		on = (char *)dp - (char *)bp->b_data;
316
317		/*
318		 * Cache all entries that may be exported to the
319		 * user, as they may be thrown back at us. The
320		 * NFSBIO_CACHECOOKIES flag indicates that all
321		 * entries are being 'exported', so cache them all.
322		 */
323
324		if (en == 0 && pdp == dp) {
325			dp = _DIRENT_NEXT(dp);
326			enn++;
327		}
328
329		if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
330			n = uio->uio_resid;
331			enough = 1;
332		} else
333			n = bp->b_bcount - bp->b_resid - on;
334
335		ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
336
337		/*
338		 * Find last complete entry to copy, caching entries
339		 * (if requested) as we go.
340		 */
341
342		while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
343			if (cflag & NFSBIO_CACHECOOKIES) {
344				nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
345				    ndp->dc_blkcookie, enn, bp->b_lblkno);
346				if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
347					NFS_STASHCOOKIE32(pdp,
348					    nndp->dc_cookie32);
349				}
350				nfs_putdircache(np, nndp);
351			}
352			pdp = dp;
353			dp = _DIRENT_NEXT(dp);
354			enn++;
355		}
356		nfs_putdircache(np, ndp);
357
358		/*
359		 * If the last requested entry was not the last in the
360		 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
361		 * cache the cookie of the last requested one, and
362		 * set of the offset to it.
363		 */
364
365		if ((on + n) < bp->b_bcount - bp->b_resid) {
366			curoff = NFS_GETCOOKIE(pdp);
367			nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
368			    enn, bp->b_lblkno);
369			if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
370				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
371				curoff = nndp->dc_cookie32;
372			}
373			nfs_putdircache(np, nndp);
374		} else
375			curoff = bp->b_dcookie;
376
377		/*
378		 * Always cache the entry for the next block,
379		 * so that readaheads can use it.
380		 */
381		nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
382		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
383			if (curoff == bp->b_dcookie) {
384				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
385				curoff = nndp->dc_cookie32;
386			}
387		}
388
389		n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
390
391		/*
392		 * If not eof and read aheads are enabled, start one.
393		 * (You need the current block first, so that you have the
394		 *  directory offset cookie of the next block.)
395		 */
396		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
397		    !NFS_EOFVALID(np)) {
398			rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
399						NFS_DIRBLKSIZ, l);
400			if (rabp) {
401			    if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
402				rabp->b_dcookie = nndp->dc_cookie;
403				rabp->b_flags |= (B_READ | B_ASYNC);
404				if (nfs_asyncio(rabp)) {
405				    rabp->b_flags |= B_INVAL;
406				    brelse(rabp);
407				}
408			    } else
409				brelse(rabp);
410			}
411		}
412		nfs_putdircache(np, nndp);
413		got_buf = 1;
414		break;
415	    default:
416		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
417		break;
418	    }
419
420	    if (n > 0) {
421		if (!baddr)
422			baddr = bp->b_data;
423		error = uiomove((char *)baddr + on, (int)n, uio);
424	    }
425	    switch (vp->v_type) {
426	    case VREG:
427		break;
428	    case VLNK:
429		n = 0;
430		break;
431	    case VDIR:
432		uio->uio_offset = curoff;
433		if (enough)
434			n = 0;
435		break;
436	    default:
437		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
438	    }
439	    if (got_buf)
440		brelse(bp);
441	} while (error == 0 && uio->uio_resid > 0 && n > 0);
442	return (error);
443}
444
445/*
446 * Vnode op for write using bio
447 */
448int
449nfs_write(v)
450	void *v;
451{
452	struct vop_write_args /* {
453		struct vnode *a_vp;
454		struct uio *a_uio;
455		int  a_ioflag;
456		kauth_cred_t a_cred;
457	} */ *ap = v;
458	struct uio *uio = ap->a_uio;
459	struct lwp *l = curlwp;
460	struct vnode *vp = ap->a_vp;
461	struct nfsnode *np = VTONFS(vp);
462	kauth_cred_t cred = ap->a_cred;
463	struct vattr vattr;
464	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
465	void *win;
466	voff_t oldoff, origoff;
467	vsize_t bytelen;
468	int flags, error = 0;
469	int ioflag = ap->a_ioflag;
470	int extended = 0, wrotedata = 0;
471
472#ifdef DIAGNOSTIC
473	if (uio->uio_rw != UIO_WRITE)
474		panic("nfs_write mode");
475#endif
476	if (vp->v_type != VREG)
477		return (EIO);
478	if (np->n_flag & NWRITEERR) {
479		np->n_flag &= ~NWRITEERR;
480		return (np->n_error);
481	}
482#ifndef NFS_V2_ONLY
483	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
484	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
485		(void)nfs_fsinfo(nmp, vp, cred, l);
486#endif
487	if (ioflag & (IO_APPEND | IO_SYNC)) {
488		if (np->n_flag & NMODIFIED) {
489			NFS_INVALIDATE_ATTRCACHE(np);
490			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
491			if (error)
492				return (error);
493		}
494		if (ioflag & IO_APPEND) {
495			NFS_INVALIDATE_ATTRCACHE(np);
496			error = VOP_GETATTR(vp, &vattr, cred, l);
497			if (error)
498				return (error);
499			uio->uio_offset = np->n_size;
500		}
501	}
502	if (uio->uio_offset < 0)
503		return (EINVAL);
504	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
505		return (EFBIG);
506	if (uio->uio_resid == 0)
507		return (0);
508	/*
509	 * Maybe this should be above the vnode op call, but so long as
510	 * file servers have no limits, i don't think it matters
511	 */
512	if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
513	      l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
514		psignal(l->l_proc, SIGXFSZ);
515		return (EFBIG);
516	}
517
518	origoff = uio->uio_offset;
519	do {
520		bool extending; /* if we are extending whole pages */
521		u_quad_t oldsize;
522		oldoff = uio->uio_offset;
523		bytelen = uio->uio_resid;
524
525		nfsstats.biocache_writes++;
526
527		oldsize = np->n_size;
528		np->n_flag |= NMODIFIED;
529		if (np->n_size < uio->uio_offset + bytelen) {
530			np->n_size = uio->uio_offset + bytelen;
531		}
532		extending = ((uio->uio_offset & PAGE_MASK) == 0 &&
533		    (bytelen & PAGE_MASK) == 0 &&
534		    uio->uio_offset >= vp->v_size);
535		win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
536		    UVM_ADV_NORMAL,
537		    UBC_WRITE | (extending ? UBC_FAULTBUSY : 0));
538		error = uiomove(win, bytelen, uio);
539		flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
540		ubc_release(win, flags);
541		if (error) {
542			if (extending) {
543				/*
544				 * backout size and free pages past eof.
545				 */
546				np->n_size = oldsize;
547				mutex_enter(&vp->v_interlock);
548				(void)VOP_PUTPAGES(vp, round_page(vp->v_size),
549				    0, PGO_SYNCIO | PGO_FREE);
550			}
551			break;
552		}
553		wrotedata = 1;
554
555		/*
556		 * update UVM's notion of the size now that we've
557		 * copied the data into the vnode's pages.
558		 */
559
560		if (vp->v_size < uio->uio_offset) {
561			uvm_vnp_setsize(vp, uio->uio_offset);
562			extended = 1;
563		}
564
565		if ((oldoff & ~(nmp->nm_wsize - 1)) !=
566		    (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
567			mutex_enter(&vp->v_interlock);
568			error = VOP_PUTPAGES(vp,
569			    trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
570			    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
571				       ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
572		}
573	} while (uio->uio_resid > 0);
574	if (wrotedata)
575		VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
576	if (ioflag & IO_SYNC) {
577		mutex_enter(&vp->v_interlock);
578		error = VOP_PUTPAGES(vp,
579		    trunc_page(origoff & ~(nmp->nm_wsize - 1)),
580		    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
581			       ~(nmp->nm_wsize - 1)),
582		    PGO_CLEANIT | PGO_SYNCIO);
583	}
584	return error;
585}
586
587/*
588 * Get an nfs cache block.
589 * Allocate a new one if the block isn't currently in the cache
590 * and return the block marked busy. If the calling process is
591 * interrupted by a signal for an interruptible mount point, return
592 * NULL.
593 */
594struct buf *
595nfs_getcacheblk(vp, bn, size, l)
596	struct vnode *vp;
597	daddr_t bn;
598	int size;
599	struct lwp *l;
600{
601	struct buf *bp;
602	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
603
604	if (nmp->nm_flag & NFSMNT_INT) {
605		bp = getblk(vp, bn, size, PCATCH, 0);
606		while (bp == NULL) {
607			if (nfs_sigintr(nmp, NULL, l))
608				return (NULL);
609			bp = getblk(vp, bn, size, 0, 2 * hz);
610		}
611	} else
612		bp = getblk(vp, bn, size, 0, 0);
613	return (bp);
614}
615
616/*
617 * Flush and invalidate all dirty buffers. If another process is already
618 * doing the flush, just wait for completion.
619 */
620int
621nfs_vinvalbuf(vp, flags, cred, l, intrflg)
622	struct vnode *vp;
623	int flags;
624	kauth_cred_t cred;
625	struct lwp *l;
626	int intrflg;
627{
628	struct nfsnode *np = VTONFS(vp);
629	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
630	int error = 0, slpflag, slptimeo;
631
632	if ((nmp->nm_flag & NFSMNT_INT) == 0)
633		intrflg = 0;
634	if (intrflg) {
635		slpflag = PCATCH;
636		slptimeo = 2 * hz;
637	} else {
638		slpflag = 0;
639		slptimeo = 0;
640	}
641	/*
642	 * First wait for any other process doing a flush to complete.
643	 */
644	mutex_enter(&vp->v_interlock);
645	while (np->n_flag & NFLUSHINPROG) {
646		np->n_flag |= NFLUSHWANT;
647		error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
648			slptimeo, &vp->v_interlock);
649		if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
650			mutex_exit(&vp->v_interlock);
651			return EINTR;
652		}
653	}
654
655	/*
656	 * Now, flush as required.
657	 */
658	np->n_flag |= NFLUSHINPROG;
659	mutex_exit(&vp->v_interlock);
660	error = vinvalbuf(vp, flags, cred, l, slpflag, 0);
661	while (error) {
662		if (intrflg && nfs_sigintr(nmp, NULL, l)) {
663			error = EINTR;
664			break;
665		}
666		error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
667	}
668	mutex_enter(&vp->v_interlock);
669	if (error == 0)
670		np->n_flag &= ~NMODIFIED;
671	np->n_flag &= ~NFLUSHINPROG;
672	if (np->n_flag & NFLUSHWANT) {
673		np->n_flag &= ~NFLUSHWANT;
674		wakeup(&np->n_flag);
675	}
676	mutex_exit(&vp->v_interlock);
677	return error;
678}
679
680/*
681 * nfs_flushstalebuf: flush cache if it's stale.
682 *
683 * => caller shouldn't own any pages or buffers which belong to the vnode.
684 */
685
686int
687nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
688    int flags)
689{
690	struct nfsnode *np = VTONFS(vp);
691	struct vattr vattr;
692	int error;
693
694	if (np->n_flag & NMODIFIED) {
695		if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
696		    || vp->v_type != VREG) {
697			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
698			if (error)
699				return error;
700			if (vp->v_type == VDIR) {
701				nfs_invaldircache(vp, 0);
702			}
703		} else {
704			/*
705			 * XXX assuming writes are ours.
706			 */
707		}
708		NFS_INVALIDATE_ATTRCACHE(np);
709		error = VOP_GETATTR(vp, &vattr, cred, l);
710		if (error)
711			return error;
712		np->n_mtime = vattr.va_mtime;
713	} else {
714		error = VOP_GETATTR(vp, &vattr, cred, l);
715		if (error)
716			return error;
717		if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
718			if (vp->v_type == VDIR) {
719				nfs_invaldircache(vp, 0);
720			}
721			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
722			if (error)
723				return error;
724			np->n_mtime = vattr.va_mtime;
725		}
726	}
727
728	return error;
729}
730
731/*
732 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
733 * This is mainly to avoid queueing async I/O requests when the nfsiods
734 * are all hung on a dead server.
735 */
736
737int
738nfs_asyncio(bp)
739	struct buf *bp;
740{
741	int i;
742	struct nfsmount *nmp;
743	int gotiod, slpflag = 0, slptimeo = 0, error;
744
745	if (nfs_numasync == 0)
746		return (EIO);
747
748	nmp = VFSTONFS(bp->b_vp->v_mount);
749again:
750	if (nmp->nm_flag & NFSMNT_INT)
751		slpflag = PCATCH;
752	gotiod = false;
753
754	/*
755	 * Find a free iod to process this request.
756	 */
757
758	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
759		struct nfs_iod *iod = &nfs_asyncdaemon[i];
760
761		mutex_enter(&iod->nid_lock);
762		if (iod->nid_want) {
763			/*
764			 * Found one, so wake it up and tell it which
765			 * mount to process.
766			 */
767			iod->nid_want = NULL;
768			iod->nid_mount = nmp;
769			wakeup(&iod->nid_want);
770			mutex_enter(&nmp->nm_lock);
771			mutex_exit(&iod->nid_lock);
772			nmp->nm_bufqiods++;
773			gotiod = true;
774			break;
775		}
776		mutex_exit(&iod->nid_lock);
777	}
778
779	/*
780	 * If none are free, we may already have an iod working on this mount
781	 * point.  If so, it will process our request.
782	 */
783
784	if (!gotiod) {
785		mutex_enter(&nmp->nm_lock);
786		if (nmp->nm_bufqiods > 0)
787			gotiod = true;
788	}
789
790	KASSERT(mutex_owned(&nmp->nm_lock));
791
792	/*
793	 * If we have an iod which can process the request, then queue
794	 * the buffer.  However, even if we have an iod, do not initiate
795	 * queue cleaning if curproc is the pageout daemon. if the NFS mount
796	 * is via local loopback, we may put curproc (pagedaemon) to sleep
797	 * waiting for the writes to complete. But the server (ourself)
798	 * may block the write, waiting for its (ie., our) pagedaemon
799	 * to produce clean pages to handle the write: deadlock.
800	 * XXX: start non-loopback mounts straight away?  If "lots free",
801	 * let pagedaemon start loopback writes anyway?
802	 */
803	if (gotiod) {
804
805		/*
806		 * Ensure that the queue never grows too large.
807		 */
808		if (curproc == uvm.pagedaemon_proc) {
809	  		/* Enque for later, to avoid free-page deadlock */
810			  (void) 0;
811		} else while (nmp->nm_bufqlen >= 2*nfs_numasync) {
812			nmp->nm_bufqwant = true;
813			error = mtsleep(&nmp->nm_bufq,
814			    slpflag | PRIBIO | PNORELOCK,
815			    "nfsaio", slptimeo, &nmp->nm_lock);
816			if (error) {
817				if (nfs_sigintr(nmp, NULL, curlwp))
818					return (EINTR);
819				if (slpflag == PCATCH) {
820					slpflag = 0;
821					slptimeo = 2 * hz;
822				}
823			}
824
825			/*
826			 * We might have lost our iod while sleeping,
827			 * so check and loop if nescessary.
828			 */
829
830			if (nmp->nm_bufqiods == 0)
831				goto again;
832
833			mutex_enter(&nmp->nm_lock);
834		}
835		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
836		nmp->nm_bufqlen++;
837		mutex_exit(&nmp->nm_lock);
838		return (0);
839	}
840	mutex_exit(&nmp->nm_lock);
841
842	/*
843	 * All the iods are busy on other mounts, so return EIO to
844	 * force the caller to process the i/o synchronously.
845	 */
846
847	return (EIO);
848}
849
850/*
851 * nfs_doio for read.
852 */
853static int
854nfs_doio_read(bp, uiop)
855	struct buf *bp;
856	struct uio *uiop;
857{
858	struct vnode *vp = bp->b_vp;
859	struct nfsnode *np = VTONFS(vp);
860	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
861	int error = 0;
862
863	uiop->uio_rw = UIO_READ;
864	switch (vp->v_type) {
865	case VREG:
866		nfsstats.read_bios++;
867		error = nfs_readrpc(vp, uiop);
868		if (!error && uiop->uio_resid) {
869			int diff, len;
870
871			/*
872			 * If uio_resid > 0, there is a hole in the file and
873			 * no writes after the hole have been pushed to
874			 * the server yet or the file has been truncated
875			 * on the server.
876			 * Just zero fill the rest of the valid area.
877			 */
878
879			KASSERT(vp->v_size >=
880			    uiop->uio_offset + uiop->uio_resid);
881			diff = bp->b_bcount - uiop->uio_resid;
882			len = uiop->uio_resid;
883			memset((char *)bp->b_data + diff, 0, len);
884			uiop->uio_resid = 0;
885		}
886#if 0
887		if (uiop->uio_lwp && (vp->v_flag & VTEXT) &&
888		    timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
889			killproc(uiop->uio_lwp->l_proc, "process text file was modified");
890#if 0 /* XXX NJWLWP */
891			uiop->uio_lwp->l_proc->p_holdcnt++;
892#endif
893		}
894#endif
895		break;
896	case VLNK:
897		KASSERT(uiop->uio_offset == (off_t)0);
898		nfsstats.readlink_bios++;
899		error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
900		break;
901	case VDIR:
902		nfsstats.readdir_bios++;
903		uiop->uio_offset = bp->b_dcookie;
904#ifndef NFS_V2_ONLY
905		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
906			error = nfs_readdirplusrpc(vp, uiop,
907			    curlwp->l_cred);
908			/*
909			 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
910			 */
911			if (error == ENOTSUP)
912				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
913		}
914#else
915		nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
916#endif
917		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
918			error = nfs_readdirrpc(vp, uiop,
919			    curlwp->l_cred);
920		if (!error) {
921			bp->b_dcookie = uiop->uio_offset;
922		}
923		break;
924	default:
925		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
926		break;
927	}
928	if (error) {
929		bp->b_flags |= B_ERROR;
930		bp->b_error = error;
931	}
932	return error;
933}
934
935/*
936 * nfs_doio for write.
937 */
938static int
939nfs_doio_write(bp, uiop)
940	struct buf *bp;
941	struct uio *uiop;
942{
943	struct vnode *vp = bp->b_vp;
944	struct nfsnode *np = VTONFS(vp);
945	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
946	int iomode;
947	bool stalewriteverf = false;
948	int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
949	struct vm_page *pgs[npages];
950#ifndef NFS_V2_ONLY
951	bool needcommit = true; /* need only COMMIT RPC */
952#else
953	bool needcommit = false; /* need only COMMIT RPC */
954#endif
955	bool pageprotected;
956	struct uvm_object *uobj = &vp->v_uobj;
957	int error;
958	off_t off, cnt;
959
960	if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
961		iomode = NFSV3WRITE_UNSTABLE;
962	} else {
963		iomode = NFSV3WRITE_FILESYNC;
964	}
965
966#ifndef NFS_V2_ONLY
967again:
968#endif
969	rw_enter(&nmp->nm_writeverflock, RW_READER);
970
971	for (i = 0; i < npages; i++) {
972		pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
973		if (pgs[i]->uobject == uobj &&
974		    pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
975			KASSERT(pgs[i]->flags & PG_BUSY);
976			/*
977			 * this page belongs to our object.
978			 */
979			mutex_enter(&uobj->vmobjlock);
980			/*
981			 * write out the page stably if it's about to
982			 * be released because we can't resend it
983			 * on the server crash.
984			 *
985			 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
986			 * changed until unbusy the page.
987			 */
988			if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
989				iomode = NFSV3WRITE_FILESYNC;
990			/*
991			 * if we met a page which hasn't been sent yet,
992			 * we need do WRITE RPC.
993			 */
994			if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
995				needcommit = false;
996			mutex_exit(&uobj->vmobjlock);
997		} else {
998			iomode = NFSV3WRITE_FILESYNC;
999			needcommit = false;
1000		}
1001	}
1002	if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1003		mutex_enter(&uobj->vmobjlock);
1004		for (i = 0; i < npages; i++) {
1005			pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1006			pmap_page_protect(pgs[i], VM_PROT_READ);
1007		}
1008		mutex_exit(&uobj->vmobjlock);
1009		pageprotected = true; /* pages can't be modified during i/o. */
1010	} else
1011		pageprotected = false;
1012
1013	/*
1014	 * Send the data to the server if necessary,
1015	 * otherwise just send a commit rpc.
1016	 */
1017#ifndef NFS_V2_ONLY
1018	if (needcommit) {
1019
1020		/*
1021		 * If the buffer is in the range that we already committed,
1022		 * there's nothing to do.
1023		 *
1024		 * If it's in the range that we need to commit, push the
1025		 * whole range at once, otherwise only push the buffer.
1026		 * In both these cases, acquire the commit lock to avoid
1027		 * other processes modifying the range.
1028		 */
1029
1030		off = uiop->uio_offset;
1031		cnt = bp->b_bcount;
1032		mutex_enter(&np->n_commitlock);
1033		if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1034			bool pushedrange;
1035			if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1036				pushedrange = true;
1037				off = np->n_pushlo;
1038				cnt = np->n_pushhi - np->n_pushlo;
1039			} else {
1040				pushedrange = false;
1041			}
1042			error = nfs_commit(vp, off, cnt, curlwp);
1043			if (error == 0) {
1044				if (pushedrange) {
1045					nfs_merge_commit_ranges(vp);
1046				} else {
1047					nfs_add_committed_range(vp, off, cnt);
1048				}
1049			}
1050		} else {
1051			error = 0;
1052		}
1053		mutex_exit(&np->n_commitlock);
1054		rw_exit(&nmp->nm_writeverflock);
1055		if (!error) {
1056			/*
1057			 * pages are now on stable storage.
1058			 */
1059			uiop->uio_resid = 0;
1060			mutex_enter(&uobj->vmobjlock);
1061			for (i = 0; i < npages; i++) {
1062				pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1063			}
1064			mutex_exit(&uobj->vmobjlock);
1065			return 0;
1066		} else if (error == NFSERR_STALEWRITEVERF) {
1067			nfs_clearcommit(vp->v_mount);
1068			goto again;
1069		}
1070		if (error) {
1071			bp->b_flags |= B_ERROR;
1072			bp->b_error = np->n_error = error;
1073			np->n_flag |= NWRITEERR;
1074		}
1075		return error;
1076	}
1077#endif
1078	off = uiop->uio_offset;
1079	cnt = bp->b_bcount;
1080	uiop->uio_rw = UIO_WRITE;
1081	nfsstats.write_bios++;
1082	error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1083#ifndef NFS_V2_ONLY
1084	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1085		/*
1086		 * we need to commit pages later.
1087		 */
1088		mutex_enter(&np->n_commitlock);
1089		nfs_add_tobecommitted_range(vp, off, cnt);
1090		/*
1091		 * if there can be too many uncommitted pages, commit them now.
1092		 */
1093		if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1094			off = np->n_pushlo;
1095			cnt = nfs_commitsize >> 1;
1096			error = nfs_commit(vp, off, cnt, curlwp);
1097			if (!error) {
1098				nfs_add_committed_range(vp, off, cnt);
1099				nfs_del_tobecommitted_range(vp, off, cnt);
1100			}
1101			if (error == NFSERR_STALEWRITEVERF) {
1102				stalewriteverf = true;
1103				error = 0; /* it isn't a real error */
1104			}
1105		} else {
1106			/*
1107			 * re-dirty pages so that they will be passed
1108			 * to us later again.
1109			 */
1110			mutex_enter(&uobj->vmobjlock);
1111			for (i = 0; i < npages; i++) {
1112				pgs[i]->flags &= ~PG_CLEAN;
1113			}
1114			mutex_exit(&uobj->vmobjlock);
1115		}
1116		mutex_exit(&np->n_commitlock);
1117	} else
1118#endif
1119	if (!error) {
1120		/*
1121		 * pages are now on stable storage.
1122		 */
1123		mutex_enter(&np->n_commitlock);
1124		nfs_del_committed_range(vp, off, cnt);
1125		mutex_exit(&np->n_commitlock);
1126		mutex_enter(&uobj->vmobjlock);
1127		for (i = 0; i < npages; i++) {
1128			pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1129		}
1130		mutex_exit(&uobj->vmobjlock);
1131	} else {
1132		/*
1133		 * we got an error.
1134		 */
1135		bp->b_flags |= B_ERROR;
1136		bp->b_error = np->n_error = error;
1137		np->n_flag |= NWRITEERR;
1138	}
1139
1140	rw_exit(&nmp->nm_writeverflock);
1141
1142	if (stalewriteverf) {
1143		nfs_clearcommit(vp->v_mount);
1144	}
1145	return error;
1146}
1147
1148/*
1149 * nfs_doio for B_PHYS.
1150 */
1151static int
1152nfs_doio_phys(bp, uiop)
1153	struct buf *bp;
1154	struct uio *uiop;
1155{
1156	struct vnode *vp = bp->b_vp;
1157	int error;
1158
1159	uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1160	if (bp->b_flags & B_READ) {
1161		uiop->uio_rw = UIO_READ;
1162		nfsstats.read_physios++;
1163		error = nfs_readrpc(vp, uiop);
1164	} else {
1165		int iomode = NFSV3WRITE_DATASYNC;
1166		bool stalewriteverf;
1167		struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1168
1169		uiop->uio_rw = UIO_WRITE;
1170		nfsstats.write_physios++;
1171		rw_enter(&nmp->nm_writeverflock, RW_READER);
1172		error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1173		rw_exit(&nmp->nm_writeverflock);
1174		if (stalewriteverf) {
1175			nfs_clearcommit(bp->b_vp->v_mount);
1176		}
1177	}
1178	if (error) {
1179		bp->b_flags |= B_ERROR;
1180		bp->b_error = error;
1181	}
1182	return error;
1183}
1184
1185/*
1186 * Do an I/O operation to/from a cache block. This may be called
1187 * synchronously or from an nfsiod.
1188 */
1189int
1190nfs_doio(bp)
1191	struct buf *bp;
1192{
1193	int error;
1194	struct uio uio;
1195	struct uio *uiop = &uio;
1196	struct iovec io;
1197	UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1198
1199	uiop->uio_iov = &io;
1200	uiop->uio_iovcnt = 1;
1201	uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1202	UIO_SETUP_SYSSPACE(uiop);
1203	io.iov_base = bp->b_data;
1204	io.iov_len = uiop->uio_resid = bp->b_bcount;
1205
1206	/*
1207	 * Historically, paging was done with physio, but no more...
1208	 */
1209	if (bp->b_flags & B_PHYS) {
1210		/*
1211		 * ...though reading /dev/drum still gets us here.
1212		 */
1213		error = nfs_doio_phys(bp, uiop);
1214	} else if (bp->b_flags & B_READ) {
1215		error = nfs_doio_read(bp, uiop);
1216	} else {
1217		error = nfs_doio_write(bp, uiop);
1218	}
1219	bp->b_resid = uiop->uio_resid;
1220	biodone(bp);
1221	return (error);
1222}
1223
1224/*
1225 * Vnode op for VM getpages.
1226 */
1227
1228int
1229nfs_getpages(v)
1230	void *v;
1231{
1232	struct vop_getpages_args /* {
1233		struct vnode *a_vp;
1234		voff_t a_offset;
1235		struct vm_page **a_m;
1236		int *a_count;
1237		int a_centeridx;
1238		vm_prot_t a_access_type;
1239		int a_advice;
1240		int a_flags;
1241	} */ *ap = v;
1242
1243	struct vnode *vp = ap->a_vp;
1244	struct uvm_object *uobj = &vp->v_uobj;
1245	struct nfsnode *np = VTONFS(vp);
1246	const int npages = *ap->a_count;
1247	struct vm_page *pg, **pgs, *opgs[npages];
1248	off_t origoffset, len;
1249	int i, error;
1250	bool v3 = NFS_ISV3(vp);
1251	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1252	bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1253
1254	/*
1255	 * call the genfs code to get the pages.  `pgs' may be NULL
1256	 * when doing read-ahead.
1257	 */
1258
1259	pgs = ap->a_m;
1260	if (write && locked && v3) {
1261		KASSERT(pgs != NULL);
1262#ifdef DEBUG
1263
1264		/*
1265		 * If PGO_LOCKED is set, real pages shouldn't exists
1266		 * in the array.
1267		 */
1268
1269		for (i = 0; i < npages; i++)
1270			KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1271#endif
1272		memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1273	}
1274	error = genfs_getpages(v);
1275	if (error) {
1276		return (error);
1277	}
1278
1279	/*
1280	 * for read faults where the nfs node is not yet marked NMODIFIED,
1281	 * set PG_RDONLY on the pages so that we come back here if someone
1282	 * tries to modify later via the mapping that will be entered for
1283	 * this fault.
1284	 */
1285
1286	if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1287		if (!locked) {
1288			mutex_enter(&uobj->vmobjlock);
1289		}
1290		for (i = 0; i < npages; i++) {
1291			pg = pgs[i];
1292			if (pg == NULL || pg == PGO_DONTCARE) {
1293				continue;
1294			}
1295			pg->flags |= PG_RDONLY;
1296		}
1297		if (!locked) {
1298			mutex_exit(&uobj->vmobjlock);
1299		}
1300	}
1301	if (!write) {
1302		return (0);
1303	}
1304
1305	/*
1306	 * this is a write fault, update the commit info.
1307	 */
1308
1309	origoffset = ap->a_offset;
1310	len = npages << PAGE_SHIFT;
1311
1312	if (v3) {
1313		if (!locked) {
1314			mutex_enter(&np->n_commitlock);
1315		} else {
1316			if (!mutex_tryenter(&np->n_commitlock)) {
1317
1318				/*
1319				 * Since PGO_LOCKED is set, we need to unbusy
1320				 * all pages fetched by genfs_getpages() above,
1321				 * tell the caller that there are no pages
1322				 * available and put back original pgs array.
1323				 */
1324
1325				mutex_enter(&uvm_pageqlock);
1326				uvm_page_unbusy(pgs, npages);
1327				mutex_exit(&uvm_pageqlock);
1328				*ap->a_count = 0;
1329				memcpy(pgs, opgs,
1330				    npages * sizeof(struct vm_pages *));
1331				return EBUSY;
1332			}
1333		}
1334		nfs_del_committed_range(vp, origoffset, len);
1335		nfs_del_tobecommitted_range(vp, origoffset, len);
1336	}
1337	np->n_flag |= NMODIFIED;
1338	if (!locked) {
1339		mutex_enter(&uobj->vmobjlock);
1340	}
1341	for (i = 0; i < npages; i++) {
1342		pg = pgs[i];
1343		if (pg == NULL || pg == PGO_DONTCARE) {
1344			continue;
1345		}
1346		pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1347	}
1348	if (!locked) {
1349		mutex_exit(&uobj->vmobjlock);
1350	}
1351	if (v3) {
1352		mutex_exit(&np->n_commitlock);
1353	}
1354	return (0);
1355}
1356