nfs_bio.c revision 1.151.2.5 1 /* $NetBSD: nfs_bio.c,v 1.151.2.5 2007/06/08 14:18:05 ad Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.151.2.5 2007/06/08 14:18:05 ad Exp $");
39
40 #include "opt_nfs.h"
41 #include "opt_ddb.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/namei.h>
53 #include <sys/dirent.h>
54 #include <sys/malloc.h>
55 #include <sys/kauth.h>
56
57 #include <uvm/uvm_extern.h>
58 #include <uvm/uvm.h>
59
60 #include <nfs/rpcv2.h>
61 #include <nfs/nfsproto.h>
62 #include <nfs/nfs.h>
63 #include <nfs/nfsmount.h>
64 #include <nfs/nfsnode.h>
65 #include <nfs/nfs_var.h>
66
67 extern int nfs_numasync;
68 extern int nfs_commitsize;
69 extern struct nfsstats nfsstats;
70
71 static int nfs_doio_read __P((struct buf *, struct uio *));
72 static int nfs_doio_write __P((struct buf *, struct uio *));
73 static int nfs_doio_phys __P((struct buf *, struct uio *));
74
75 /*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 struct vnode *vp;
82 struct uio *uio;
83 int ioflag, cflag;
84 kauth_cred_t cred;
85 {
86 struct nfsnode *np = VTONFS(vp);
87 struct buf *bp = NULL, *rabp;
88 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
89 struct nfsdircache *ndp = NULL, *nndp = NULL;
90 void *baddr;
91 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
92 int enough = 0;
93 struct dirent *dp, *pdp, *edp, *ep;
94 off_t curoff = 0;
95 int advice;
96 struct lwp *l = curlwp;
97
98 #ifdef DIAGNOSTIC
99 if (uio->uio_rw != UIO_READ)
100 panic("nfs_read mode");
101 #endif
102 if (uio->uio_resid == 0)
103 return (0);
104 if (vp->v_type != VDIR && uio->uio_offset < 0)
105 return (EINVAL);
106 #ifndef NFS_V2_ONLY
107 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
108 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
109 (void)nfs_fsinfo(nmp, vp, cred, l);
110 #endif
111 if (vp->v_type != VDIR &&
112 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
113 return (EFBIG);
114
115 /*
116 * For nfs, cache consistency can only be maintained approximately.
117 * Although RFC1094 does not specify the criteria, the following is
118 * believed to be compatible with the reference port.
119 *
120 * If the file's modify time on the server has changed since the
121 * last read rpc or you have written to the file,
122 * you may have lost data cache consistency with the
123 * server, so flush all of the file's data out of the cache.
124 * Then force a getattr rpc to ensure that you have up to date
125 * attributes.
126 * NB: This implies that cache data can be read when up to
127 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
128 * attributes this could be forced by setting n_attrstamp to 0 before
129 * the VOP_GETATTR() call.
130 */
131
132 if (vp->v_type != VLNK) {
133 error = nfs_flushstalebuf(vp, cred, l,
134 NFS_FLUSHSTALEBUF_MYWRITE);
135 if (error)
136 return error;
137 }
138
139 do {
140 /*
141 * Don't cache symlinks.
142 */
143 if ((vp->v_flag & VROOT) && vp->v_type == VLNK) {
144 return (nfs_readlinkrpc(vp, uio, cred));
145 }
146 baddr = (void *)0;
147 switch (vp->v_type) {
148 case VREG:
149 nfsstats.biocache_reads++;
150
151 advice = IO_ADV_DECODE(ioflag);
152 error = 0;
153 while (uio->uio_resid > 0) {
154 void *win;
155 int flags;
156 vsize_t bytelen;
157
158 nfs_delayedtruncate(vp);
159 if (np->n_size <= uio->uio_offset) {
160 break;
161 }
162 bytelen =
163 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
164 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
165 &bytelen, advice, UBC_READ);
166 error = uiomove(win, bytelen, uio);
167 flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
168 ubc_release(win, flags);
169 if (error) {
170 /*
171 * XXXkludge
172 * the file has been truncated on the server.
173 * there isn't much we can do.
174 */
175 if (uio->uio_offset >= np->n_size) {
176 /* end of file */
177 error = 0;
178 } else {
179 break;
180 }
181 }
182 }
183 break;
184
185 case VLNK:
186 nfsstats.biocache_readlinks++;
187 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
188 if (!bp)
189 return (EINTR);
190 if ((bp->b_flags & B_DONE) == 0) {
191 bp->b_flags |= B_READ;
192 error = nfs_doio(bp);
193 if (error) {
194 brelse(bp, 0);
195 return (error);
196 }
197 }
198 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
199 got_buf = 1;
200 on = 0;
201 break;
202 case VDIR:
203 diragain:
204 nfsstats.biocache_readdirs++;
205 ndp = nfs_searchdircache(vp, uio->uio_offset,
206 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
207 if (!ndp) {
208 /*
209 * We've been handed a cookie that is not
210 * in the cache. If we're not translating
211 * 32 <-> 64, it may be a value that was
212 * flushed out of the cache because it grew
213 * too big. Let the server judge if it's
214 * valid or not. In the translation case,
215 * we have no way of validating this value,
216 * so punt.
217 */
218 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
219 return (EINVAL);
220 ndp = nfs_enterdircache(vp, uio->uio_offset,
221 uio->uio_offset, 0, 0);
222 }
223
224 if (NFS_EOFVALID(np) &&
225 ndp->dc_cookie == np->n_direofoffset) {
226 nfs_putdircache(np, ndp);
227 nfsstats.direofcache_hits++;
228 return (0);
229 }
230
231 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
232 if (!bp)
233 return (EINTR);
234 if ((bp->b_flags & B_DONE) == 0) {
235 bp->b_flags |= B_READ;
236 bp->b_dcookie = ndp->dc_blkcookie;
237 error = nfs_doio(bp);
238 if (error) {
239 /*
240 * Yuck! The directory has been modified on the
241 * server. Punt and let the userland code
242 * deal with it.
243 */
244 nfs_putdircache(np, ndp);
245 brelse(bp, 0);
246 /*
247 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
248 */
249 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
250 nfs_invaldircache(vp, 0);
251 nfs_vinvalbuf(vp, 0, cred, l, 1);
252 }
253 return (error);
254 }
255 }
256
257 /*
258 * Just return if we hit EOF right away with this
259 * block. Always check here, because direofoffset
260 * may have been set by an nfsiod since the last
261 * check.
262 *
263 * also, empty block implies EOF.
264 */
265
266 if (bp->b_bcount == bp->b_resid ||
267 (NFS_EOFVALID(np) &&
268 ndp->dc_blkcookie == np->n_direofoffset)) {
269 KASSERT(bp->b_bcount != bp->b_resid ||
270 ndp->dc_blkcookie == bp->b_dcookie);
271 nfs_putdircache(np, ndp);
272 brelse(bp, B_NOCACHE);
273 return 0;
274 }
275
276 /*
277 * Find the entry we were looking for in the block.
278 */
279
280 en = ndp->dc_entry;
281
282 pdp = dp = (struct dirent *)bp->b_data;
283 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
284 bp->b_resid);
285 enn = 0;
286 while (enn < en && dp < edp) {
287 pdp = dp;
288 dp = _DIRENT_NEXT(dp);
289 enn++;
290 }
291
292 /*
293 * If the entry number was bigger than the number of
294 * entries in the block, or the cookie of the previous
295 * entry doesn't match, the directory cache is
296 * stale. Flush it and try again (i.e. go to
297 * the server).
298 */
299 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
300 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
301 #ifdef DEBUG
302 printf("invalid cache: %p %p %p off %lx %lx\n",
303 pdp, dp, edp,
304 (unsigned long)uio->uio_offset,
305 (unsigned long)NFS_GETCOOKIE(pdp));
306 #endif
307 nfs_putdircache(np, ndp);
308 brelse(bp, 0);
309 nfs_invaldircache(vp, 0);
310 nfs_vinvalbuf(vp, 0, cred, l, 0);
311 goto diragain;
312 }
313
314 on = (char *)dp - (char *)bp->b_data;
315
316 /*
317 * Cache all entries that may be exported to the
318 * user, as they may be thrown back at us. The
319 * NFSBIO_CACHECOOKIES flag indicates that all
320 * entries are being 'exported', so cache them all.
321 */
322
323 if (en == 0 && pdp == dp) {
324 dp = _DIRENT_NEXT(dp);
325 enn++;
326 }
327
328 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
329 n = uio->uio_resid;
330 enough = 1;
331 } else
332 n = bp->b_bcount - bp->b_resid - on;
333
334 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
335
336 /*
337 * Find last complete entry to copy, caching entries
338 * (if requested) as we go.
339 */
340
341 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
342 if (cflag & NFSBIO_CACHECOOKIES) {
343 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
344 ndp->dc_blkcookie, enn, bp->b_lblkno);
345 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
346 NFS_STASHCOOKIE32(pdp,
347 nndp->dc_cookie32);
348 }
349 nfs_putdircache(np, nndp);
350 }
351 pdp = dp;
352 dp = _DIRENT_NEXT(dp);
353 enn++;
354 }
355 nfs_putdircache(np, ndp);
356
357 /*
358 * If the last requested entry was not the last in the
359 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
360 * cache the cookie of the last requested one, and
361 * set of the offset to it.
362 */
363
364 if ((on + n) < bp->b_bcount - bp->b_resid) {
365 curoff = NFS_GETCOOKIE(pdp);
366 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
367 enn, bp->b_lblkno);
368 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
369 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
370 curoff = nndp->dc_cookie32;
371 }
372 nfs_putdircache(np, nndp);
373 } else
374 curoff = bp->b_dcookie;
375
376 /*
377 * Always cache the entry for the next block,
378 * so that readaheads can use it.
379 */
380 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
381 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
382 if (curoff == bp->b_dcookie) {
383 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
384 curoff = nndp->dc_cookie32;
385 }
386 }
387
388 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
389
390 /*
391 * If not eof and read aheads are enabled, start one.
392 * (You need the current block first, so that you have the
393 * directory offset cookie of the next block.)
394 */
395 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
396 !NFS_EOFVALID(np)) {
397 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
398 NFS_DIRBLKSIZ, l);
399 if (rabp) {
400 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
401 rabp->b_dcookie = nndp->dc_cookie;
402 rabp->b_flags |= (B_READ | B_ASYNC);
403 if (nfs_asyncio(rabp)) {
404 brelse(rabp, B_INVAL);
405 }
406 } else
407 brelse(rabp, 0);
408 }
409 }
410 nfs_putdircache(np, nndp);
411 got_buf = 1;
412 break;
413 default:
414 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
415 break;
416 }
417
418 if (n > 0) {
419 if (!baddr)
420 baddr = bp->b_data;
421 error = uiomove((char *)baddr + on, (int)n, uio);
422 }
423 switch (vp->v_type) {
424 case VREG:
425 break;
426 case VLNK:
427 n = 0;
428 break;
429 case VDIR:
430 uio->uio_offset = curoff;
431 if (enough)
432 n = 0;
433 break;
434 default:
435 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
436 }
437 if (got_buf)
438 brelse(bp, 0);
439 } while (error == 0 && uio->uio_resid > 0 && n > 0);
440 return (error);
441 }
442
443 /*
444 * Vnode op for write using bio
445 */
446 int
447 nfs_write(v)
448 void *v;
449 {
450 struct vop_write_args /* {
451 struct vnode *a_vp;
452 struct uio *a_uio;
453 int a_ioflag;
454 kauth_cred_t a_cred;
455 } */ *ap = v;
456 struct uio *uio = ap->a_uio;
457 struct lwp *l = curlwp;
458 struct vnode *vp = ap->a_vp;
459 struct nfsnode *np = VTONFS(vp);
460 kauth_cred_t cred = ap->a_cred;
461 struct vattr vattr;
462 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
463 void *win;
464 voff_t oldoff, origoff;
465 vsize_t bytelen;
466 int flags, error = 0;
467 int ioflag = ap->a_ioflag;
468 int extended = 0, wrotedata = 0;
469
470 #ifdef DIAGNOSTIC
471 if (uio->uio_rw != UIO_WRITE)
472 panic("nfs_write mode");
473 #endif
474 if (vp->v_type != VREG)
475 return (EIO);
476 if (np->n_flag & NWRITEERR) {
477 np->n_flag &= ~NWRITEERR;
478 return (np->n_error);
479 }
480 #ifndef NFS_V2_ONLY
481 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
482 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
483 (void)nfs_fsinfo(nmp, vp, cred, l);
484 #endif
485 if (ioflag & (IO_APPEND | IO_SYNC)) {
486 if (np->n_flag & NMODIFIED) {
487 NFS_INVALIDATE_ATTRCACHE(np);
488 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
489 if (error)
490 return (error);
491 }
492 if (ioflag & IO_APPEND) {
493 NFS_INVALIDATE_ATTRCACHE(np);
494 error = VOP_GETATTR(vp, &vattr, cred, l);
495 if (error)
496 return (error);
497 uio->uio_offset = np->n_size;
498 }
499 }
500 if (uio->uio_offset < 0)
501 return (EINVAL);
502 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
503 return (EFBIG);
504 if (uio->uio_resid == 0)
505 return (0);
506 /*
507 * Maybe this should be above the vnode op call, but so long as
508 * file servers have no limits, i don't think it matters
509 */
510 if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
511 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
512 mutex_enter(&proclist_mutex);
513 psignal(l->l_proc, SIGXFSZ);
514 mutex_exit(&proclist_mutex);
515 return (EFBIG);
516 }
517
518 origoff = uio->uio_offset;
519 do {
520 bool extending; /* if we are extending whole pages */
521 u_quad_t oldsize;
522 oldoff = uio->uio_offset;
523 bytelen = uio->uio_resid;
524
525 nfsstats.biocache_writes++;
526
527 oldsize = np->n_size;
528 np->n_flag |= NMODIFIED;
529 if (np->n_size < uio->uio_offset + bytelen) {
530 np->n_size = uio->uio_offset + bytelen;
531 }
532 extending = ((uio->uio_offset & PAGE_MASK) == 0 &&
533 (bytelen & PAGE_MASK) == 0 &&
534 uio->uio_offset >= vp->v_size);
535 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
536 UVM_ADV_NORMAL,
537 UBC_WRITE | (extending ? UBC_FAULTBUSY : 0));
538 error = uiomove(win, bytelen, uio);
539 flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
540 ubc_release(win, flags);
541 if (error) {
542 if (extending) {
543 /*
544 * backout size and free pages past eof.
545 */
546 np->n_size = oldsize;
547 mutex_enter(&vp->v_interlock);
548 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
549 0, PGO_SYNCIO | PGO_FREE);
550 }
551 break;
552 }
553 wrotedata = 1;
554
555 /*
556 * update UVM's notion of the size now that we've
557 * copied the data into the vnode's pages.
558 */
559
560 if (vp->v_size < uio->uio_offset) {
561 uvm_vnp_setsize(vp, uio->uio_offset);
562 extended = 1;
563 }
564
565 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
566 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
567 mutex_enter(&vp->v_interlock);
568 error = VOP_PUTPAGES(vp,
569 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
570 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
571 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
572 }
573 } while (uio->uio_resid > 0);
574 if (wrotedata)
575 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
576 if (ioflag & IO_SYNC) {
577 mutex_enter(&vp->v_interlock);
578 error = VOP_PUTPAGES(vp,
579 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
580 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
581 ~(nmp->nm_wsize - 1)),
582 PGO_CLEANIT | PGO_SYNCIO);
583 }
584 return error;
585 }
586
587 /*
588 * Get an nfs cache block.
589 * Allocate a new one if the block isn't currently in the cache
590 * and return the block marked busy. If the calling process is
591 * interrupted by a signal for an interruptible mount point, return
592 * NULL.
593 */
594 struct buf *
595 nfs_getcacheblk(vp, bn, size, l)
596 struct vnode *vp;
597 daddr_t bn;
598 int size;
599 struct lwp *l;
600 {
601 struct buf *bp;
602 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
603
604 if (nmp->nm_flag & NFSMNT_INT) {
605 bp = getblk(vp, bn, size, PCATCH, 0);
606 while (bp == NULL) {
607 if (nfs_sigintr(nmp, NULL, l))
608 return (NULL);
609 bp = getblk(vp, bn, size, 0, 2 * hz);
610 }
611 } else
612 bp = getblk(vp, bn, size, 0, 0);
613 return (bp);
614 }
615
616 /*
617 * Flush and invalidate all dirty buffers. If another process is already
618 * doing the flush, just wait for completion.
619 */
620 int
621 nfs_vinvalbuf(vp, flags, cred, l, intrflg)
622 struct vnode *vp;
623 int flags;
624 kauth_cred_t cred;
625 struct lwp *l;
626 int intrflg;
627 {
628 struct nfsnode *np = VTONFS(vp);
629 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
630 int error = 0, catch, slptimeo;
631
632 if ((nmp->nm_flag & NFSMNT_INT) == 0)
633 intrflg = 0;
634 if (intrflg) {
635 catch = true;
636 slptimeo = 2 * hz;
637 } else {
638 catch = false;
639 slptimeo = 0;
640 }
641 /*
642 * First wait for any other process doing a flush to complete.
643 */
644 mutex_enter(&vp->v_interlock);
645 while (np->n_flag & NFLUSHINPROG) {
646 np->n_flag |= NFLUSHWANT;
647 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
648 slptimeo, &vp->v_interlock);
649 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
650 mutex_exit(&vp->v_interlock);
651 return EINTR;
652 }
653 }
654
655 /*
656 * Now, flush as required.
657 */
658 np->n_flag |= NFLUSHINPROG;
659 mutex_exit(&vp->v_interlock);
660 error = vinvalbuf(vp, flags, cred, l, catch, 0);
661 while (error) {
662 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
663 error = EINTR;
664 break;
665 }
666 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
667 }
668 mutex_enter(&vp->v_interlock);
669 if (error == 0)
670 np->n_flag &= ~NMODIFIED;
671 np->n_flag &= ~NFLUSHINPROG;
672 if (np->n_flag & NFLUSHWANT) {
673 np->n_flag &= ~NFLUSHWANT;
674 wakeup(&np->n_flag);
675 }
676 mutex_exit(&vp->v_interlock);
677 return error;
678 }
679
680 /*
681 * nfs_flushstalebuf: flush cache if it's stale.
682 *
683 * => caller shouldn't own any pages or buffers which belong to the vnode.
684 */
685
686 int
687 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
688 int flags)
689 {
690 struct nfsnode *np = VTONFS(vp);
691 struct vattr vattr;
692 int error;
693
694 if (np->n_flag & NMODIFIED) {
695 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
696 || vp->v_type != VREG) {
697 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
698 if (error)
699 return error;
700 if (vp->v_type == VDIR) {
701 nfs_invaldircache(vp, 0);
702 }
703 } else {
704 /*
705 * XXX assuming writes are ours.
706 */
707 }
708 NFS_INVALIDATE_ATTRCACHE(np);
709 error = VOP_GETATTR(vp, &vattr, cred, l);
710 if (error)
711 return error;
712 np->n_mtime = vattr.va_mtime;
713 } else {
714 error = VOP_GETATTR(vp, &vattr, cred, l);
715 if (error)
716 return error;
717 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
718 if (vp->v_type == VDIR) {
719 nfs_invaldircache(vp, 0);
720 }
721 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
722 if (error)
723 return error;
724 np->n_mtime = vattr.va_mtime;
725 }
726 }
727
728 return error;
729 }
730
731 /*
732 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
733 * This is mainly to avoid queueing async I/O requests when the nfsiods
734 * are all hung on a dead server.
735 */
736
737 int
738 nfs_asyncio(bp)
739 struct buf *bp;
740 {
741 int i;
742 struct nfsmount *nmp;
743 int gotiod, slptimeo = 0, error;
744 bool catch = false;
745
746 if (nfs_numasync == 0)
747 return (EIO);
748
749 nmp = VFSTONFS(bp->b_vp->v_mount);
750 again:
751 if (nmp->nm_flag & NFSMNT_INT)
752 catch = true;
753 gotiod = false;
754
755 /*
756 * Find a free iod to process this request.
757 */
758
759 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
760 struct nfs_iod *iod = &nfs_asyncdaemon[i];
761
762 mutex_enter(&iod->nid_lock);
763 if (iod->nid_want) {
764 /*
765 * Found one, so wake it up and tell it which
766 * mount to process.
767 */
768 iod->nid_want = NULL;
769 iod->nid_mount = nmp;
770 wakeup(&iod->nid_want);
771 mutex_enter(&nmp->nm_lock);
772 mutex_exit(&iod->nid_lock);
773 nmp->nm_bufqiods++;
774 gotiod = true;
775 break;
776 }
777 mutex_exit(&iod->nid_lock);
778 }
779
780 /*
781 * If none are free, we may already have an iod working on this mount
782 * point. If so, it will process our request.
783 */
784
785 if (!gotiod) {
786 mutex_enter(&nmp->nm_lock);
787 if (nmp->nm_bufqiods > 0)
788 gotiod = true;
789 }
790
791 KASSERT(mutex_owned(&nmp->nm_lock));
792
793 /*
794 * If we have an iod which can process the request, then queue
795 * the buffer. However, even if we have an iod, do not initiate
796 * queue cleaning if curproc is the pageout daemon. if the NFS mount
797 * is via local loopback, we may put curproc (pagedaemon) to sleep
798 * waiting for the writes to complete. But the server (ourself)
799 * may block the write, waiting for its (ie., our) pagedaemon
800 * to produce clean pages to handle the write: deadlock.
801 * XXX: start non-loopback mounts straight away? If "lots free",
802 * let pagedaemon start loopback writes anyway?
803 */
804 if (gotiod) {
805
806 /*
807 * Ensure that the queue never grows too large.
808 */
809 if (curlwp == uvm.pagedaemon_lwp) {
810 /* Enque for later, to avoid free-page deadlock */
811 (void) 0;
812 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) {
813 if (catch) {
814 error = cv_timedwait_sig(&nmp->nm_aiocv,
815 &nmp->nm_lock, slptimeo);
816 } else {
817 error = cv_timedwait(&nmp->nm_aiocv,
818 &nmp->nm_lock, slptimeo);
819 }
820 if (error) {
821 mutex_exit(&nmp->nm_lock);
822 if (nfs_sigintr(nmp, NULL, curlwp))
823 return (EINTR);
824 if (catch) {
825 catch = false;
826 slptimeo = 2 * hz;
827 }
828 }
829
830 /*
831 * We might have lost our iod while sleeping,
832 * so check and loop if nescessary.
833 */
834
835 if (nmp->nm_bufqiods == 0)
836 goto again;
837
838 mutex_enter(&nmp->nm_lock);
839 }
840 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
841 nmp->nm_bufqlen++;
842 mutex_exit(&nmp->nm_lock);
843 return (0);
844 }
845 mutex_exit(&nmp->nm_lock);
846
847 /*
848 * All the iods are busy on other mounts, so return EIO to
849 * force the caller to process the i/o synchronously.
850 */
851
852 return (EIO);
853 }
854
855 /*
856 * nfs_doio for read.
857 */
858 static int
859 nfs_doio_read(bp, uiop)
860 struct buf *bp;
861 struct uio *uiop;
862 {
863 struct vnode *vp = bp->b_vp;
864 struct nfsnode *np = VTONFS(vp);
865 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
866 int error = 0;
867
868 uiop->uio_rw = UIO_READ;
869 switch (vp->v_type) {
870 case VREG:
871 nfsstats.read_bios++;
872 error = nfs_readrpc(vp, uiop);
873 if (!error && uiop->uio_resid) {
874 int diff, len;
875
876 /*
877 * If uio_resid > 0, there is a hole in the file and
878 * no writes after the hole have been pushed to
879 * the server yet or the file has been truncated
880 * on the server.
881 * Just zero fill the rest of the valid area.
882 */
883
884 KASSERT(vp->v_size >=
885 uiop->uio_offset + uiop->uio_resid);
886 diff = bp->b_bcount - uiop->uio_resid;
887 len = uiop->uio_resid;
888 memset((char *)bp->b_data + diff, 0, len);
889 uiop->uio_resid = 0;
890 }
891 #if 0
892 if (uiop->uio_lwp && (vp->v_flag & VTEXT) &&
893 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
894 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
895 #if 0 /* XXX NJWLWP */
896 uiop->uio_lwp->l_proc->p_holdcnt++;
897 #endif
898 }
899 #endif
900 break;
901 case VLNK:
902 KASSERT(uiop->uio_offset == (off_t)0);
903 nfsstats.readlink_bios++;
904 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
905 break;
906 case VDIR:
907 nfsstats.readdir_bios++;
908 uiop->uio_offset = bp->b_dcookie;
909 #ifndef NFS_V2_ONLY
910 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
911 error = nfs_readdirplusrpc(vp, uiop,
912 curlwp->l_cred);
913 /*
914 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
915 */
916 if (error == ENOTSUP)
917 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
918 }
919 #else
920 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
921 #endif
922 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
923 error = nfs_readdirrpc(vp, uiop,
924 curlwp->l_cred);
925 if (!error) {
926 bp->b_dcookie = uiop->uio_offset;
927 }
928 break;
929 default:
930 printf("nfs_doio: type %x unexpected\n", vp->v_type);
931 break;
932 }
933 if (error) {
934 bp->b_flags |= B_ERROR;
935 bp->b_error = error;
936 }
937 return error;
938 }
939
940 /*
941 * nfs_doio for write.
942 */
943 static int
944 nfs_doio_write(bp, uiop)
945 struct buf *bp;
946 struct uio *uiop;
947 {
948 struct vnode *vp = bp->b_vp;
949 struct nfsnode *np = VTONFS(vp);
950 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
951 int iomode;
952 bool stalewriteverf = false;
953 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
954 struct vm_page *pgs[npages];
955 #ifndef NFS_V2_ONLY
956 bool needcommit = true; /* need only COMMIT RPC */
957 #else
958 bool needcommit = false; /* need only COMMIT RPC */
959 #endif
960 bool pageprotected;
961 struct uvm_object *uobj = &vp->v_uobj;
962 int error;
963 off_t off, cnt;
964
965 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
966 iomode = NFSV3WRITE_UNSTABLE;
967 } else {
968 iomode = NFSV3WRITE_FILESYNC;
969 }
970
971 #ifndef NFS_V2_ONLY
972 again:
973 #endif
974 rw_enter(&nmp->nm_writeverflock, RW_READER);
975
976 for (i = 0; i < npages; i++) {
977 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
978 if (pgs[i]->uobject == uobj &&
979 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
980 KASSERT(pgs[i]->flags & PG_BUSY);
981 /*
982 * this page belongs to our object.
983 */
984 mutex_enter(&uobj->vmobjlock);
985 /*
986 * write out the page stably if it's about to
987 * be released because we can't resend it
988 * on the server crash.
989 *
990 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
991 * changed until unbusy the page.
992 */
993 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
994 iomode = NFSV3WRITE_FILESYNC;
995 /*
996 * if we met a page which hasn't been sent yet,
997 * we need do WRITE RPC.
998 */
999 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1000 needcommit = false;
1001 mutex_exit(&uobj->vmobjlock);
1002 } else {
1003 iomode = NFSV3WRITE_FILESYNC;
1004 needcommit = false;
1005 }
1006 }
1007 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1008 mutex_enter(&uobj->vmobjlock);
1009 for (i = 0; i < npages; i++) {
1010 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1011 pmap_page_protect(pgs[i], VM_PROT_READ);
1012 }
1013 mutex_exit(&uobj->vmobjlock);
1014 pageprotected = true; /* pages can't be modified during i/o. */
1015 } else
1016 pageprotected = false;
1017
1018 /*
1019 * Send the data to the server if necessary,
1020 * otherwise just send a commit rpc.
1021 */
1022 #ifndef NFS_V2_ONLY
1023 if (needcommit) {
1024
1025 /*
1026 * If the buffer is in the range that we already committed,
1027 * there's nothing to do.
1028 *
1029 * If it's in the range that we need to commit, push the
1030 * whole range at once, otherwise only push the buffer.
1031 * In both these cases, acquire the commit lock to avoid
1032 * other processes modifying the range.
1033 */
1034
1035 off = uiop->uio_offset;
1036 cnt = bp->b_bcount;
1037 mutex_enter(&np->n_commitlock);
1038 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1039 bool pushedrange;
1040 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1041 pushedrange = true;
1042 off = np->n_pushlo;
1043 cnt = np->n_pushhi - np->n_pushlo;
1044 } else {
1045 pushedrange = false;
1046 }
1047 error = nfs_commit(vp, off, cnt, curlwp);
1048 if (error == 0) {
1049 if (pushedrange) {
1050 nfs_merge_commit_ranges(vp);
1051 } else {
1052 nfs_add_committed_range(vp, off, cnt);
1053 }
1054 }
1055 } else {
1056 error = 0;
1057 }
1058 mutex_exit(&np->n_commitlock);
1059 rw_exit(&nmp->nm_writeverflock);
1060 if (!error) {
1061 /*
1062 * pages are now on stable storage.
1063 */
1064 uiop->uio_resid = 0;
1065 mutex_enter(&uobj->vmobjlock);
1066 for (i = 0; i < npages; i++) {
1067 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1068 }
1069 mutex_exit(&uobj->vmobjlock);
1070 return 0;
1071 } else if (error == NFSERR_STALEWRITEVERF) {
1072 nfs_clearcommit(vp->v_mount);
1073 goto again;
1074 }
1075 if (error) {
1076 bp->b_flags |= B_ERROR;
1077 bp->b_error = np->n_error = error;
1078 np->n_flag |= NWRITEERR;
1079 }
1080 return error;
1081 }
1082 #endif
1083 off = uiop->uio_offset;
1084 cnt = bp->b_bcount;
1085 uiop->uio_rw = UIO_WRITE;
1086 nfsstats.write_bios++;
1087 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1088 #ifndef NFS_V2_ONLY
1089 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1090 /*
1091 * we need to commit pages later.
1092 */
1093 mutex_enter(&np->n_commitlock);
1094 nfs_add_tobecommitted_range(vp, off, cnt);
1095 /*
1096 * if there can be too many uncommitted pages, commit them now.
1097 */
1098 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1099 off = np->n_pushlo;
1100 cnt = nfs_commitsize >> 1;
1101 error = nfs_commit(vp, off, cnt, curlwp);
1102 if (!error) {
1103 nfs_add_committed_range(vp, off, cnt);
1104 nfs_del_tobecommitted_range(vp, off, cnt);
1105 }
1106 if (error == NFSERR_STALEWRITEVERF) {
1107 stalewriteverf = true;
1108 error = 0; /* it isn't a real error */
1109 }
1110 } else {
1111 /*
1112 * re-dirty pages so that they will be passed
1113 * to us later again.
1114 */
1115 mutex_enter(&uobj->vmobjlock);
1116 for (i = 0; i < npages; i++) {
1117 pgs[i]->flags &= ~PG_CLEAN;
1118 }
1119 mutex_exit(&uobj->vmobjlock);
1120 }
1121 mutex_exit(&np->n_commitlock);
1122 } else
1123 #endif
1124 if (!error) {
1125 /*
1126 * pages are now on stable storage.
1127 */
1128 mutex_enter(&np->n_commitlock);
1129 nfs_del_committed_range(vp, off, cnt);
1130 mutex_exit(&np->n_commitlock);
1131 mutex_enter(&uobj->vmobjlock);
1132 for (i = 0; i < npages; i++) {
1133 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1134 }
1135 mutex_exit(&uobj->vmobjlock);
1136 } else {
1137 /*
1138 * we got an error.
1139 */
1140 bp->b_flags |= B_ERROR;
1141 bp->b_error = np->n_error = error;
1142 np->n_flag |= NWRITEERR;
1143 }
1144
1145 rw_exit(&nmp->nm_writeverflock);
1146
1147 if (stalewriteverf) {
1148 nfs_clearcommit(vp->v_mount);
1149 }
1150 return error;
1151 }
1152
1153 /*
1154 * nfs_doio for B_PHYS.
1155 */
1156 static int
1157 nfs_doio_phys(bp, uiop)
1158 struct buf *bp;
1159 struct uio *uiop;
1160 {
1161 struct vnode *vp = bp->b_vp;
1162 int error;
1163
1164 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1165 if (bp->b_flags & B_READ) {
1166 uiop->uio_rw = UIO_READ;
1167 nfsstats.read_physios++;
1168 error = nfs_readrpc(vp, uiop);
1169 } else {
1170 int iomode = NFSV3WRITE_DATASYNC;
1171 bool stalewriteverf;
1172 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1173
1174 uiop->uio_rw = UIO_WRITE;
1175 nfsstats.write_physios++;
1176 rw_enter(&nmp->nm_writeverflock, RW_READER);
1177 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1178 rw_exit(&nmp->nm_writeverflock);
1179 if (stalewriteverf) {
1180 nfs_clearcommit(bp->b_vp->v_mount);
1181 }
1182 }
1183 if (error) {
1184 bp->b_flags |= B_ERROR;
1185 bp->b_error = error;
1186 }
1187 return error;
1188 }
1189
1190 /*
1191 * Do an I/O operation to/from a cache block. This may be called
1192 * synchronously or from an nfsiod.
1193 */
1194 int
1195 nfs_doio(bp)
1196 struct buf *bp;
1197 {
1198 int error;
1199 struct uio uio;
1200 struct uio *uiop = &uio;
1201 struct iovec io;
1202 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1203
1204 uiop->uio_iov = &io;
1205 uiop->uio_iovcnt = 1;
1206 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1207 UIO_SETUP_SYSSPACE(uiop);
1208 io.iov_base = bp->b_data;
1209 io.iov_len = uiop->uio_resid = bp->b_bcount;
1210
1211 /*
1212 * Historically, paging was done with physio, but no more...
1213 */
1214 if (bp->b_flags & B_PHYS) {
1215 /*
1216 * ...though reading /dev/drum still gets us here.
1217 */
1218 error = nfs_doio_phys(bp, uiop);
1219 } else if (bp->b_flags & B_READ) {
1220 error = nfs_doio_read(bp, uiop);
1221 } else {
1222 error = nfs_doio_write(bp, uiop);
1223 }
1224 biodone(bp, error, uiop->uio_resid);
1225 return (error);
1226 }
1227
1228 /*
1229 * Vnode op for VM getpages.
1230 */
1231
1232 int
1233 nfs_getpages(v)
1234 void *v;
1235 {
1236 struct vop_getpages_args /* {
1237 struct vnode *a_vp;
1238 voff_t a_offset;
1239 struct vm_page **a_m;
1240 int *a_count;
1241 int a_centeridx;
1242 vm_prot_t a_access_type;
1243 int a_advice;
1244 int a_flags;
1245 } */ *ap = v;
1246
1247 struct vnode *vp = ap->a_vp;
1248 struct uvm_object *uobj = &vp->v_uobj;
1249 struct nfsnode *np = VTONFS(vp);
1250 const int npages = *ap->a_count;
1251 struct vm_page *pg, **pgs, *opgs[npages];
1252 off_t origoffset, len;
1253 int i, error;
1254 bool v3 = NFS_ISV3(vp);
1255 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1256 bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1257
1258 /*
1259 * call the genfs code to get the pages. `pgs' may be NULL
1260 * when doing read-ahead.
1261 */
1262
1263 pgs = ap->a_m;
1264 if (write && locked && v3) {
1265 KASSERT(pgs != NULL);
1266 #ifdef DEBUG
1267
1268 /*
1269 * If PGO_LOCKED is set, real pages shouldn't exists
1270 * in the array.
1271 */
1272
1273 for (i = 0; i < npages; i++)
1274 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1275 #endif
1276 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1277 }
1278 error = genfs_getpages(v);
1279 if (error) {
1280 return (error);
1281 }
1282
1283 /*
1284 * for read faults where the nfs node is not yet marked NMODIFIED,
1285 * set PG_RDONLY on the pages so that we come back here if someone
1286 * tries to modify later via the mapping that will be entered for
1287 * this fault.
1288 */
1289
1290 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1291 if (!locked) {
1292 mutex_enter(&uobj->vmobjlock);
1293 }
1294 for (i = 0; i < npages; i++) {
1295 pg = pgs[i];
1296 if (pg == NULL || pg == PGO_DONTCARE) {
1297 continue;
1298 }
1299 pg->flags |= PG_RDONLY;
1300 }
1301 if (!locked) {
1302 mutex_exit(&uobj->vmobjlock);
1303 }
1304 }
1305 if (!write) {
1306 return (0);
1307 }
1308
1309 /*
1310 * this is a write fault, update the commit info.
1311 */
1312
1313 origoffset = ap->a_offset;
1314 len = npages << PAGE_SHIFT;
1315
1316 if (v3) {
1317 if (!locked) {
1318 mutex_enter(&np->n_commitlock);
1319 } else {
1320 if (!mutex_tryenter(&np->n_commitlock)) {
1321
1322 /*
1323 * Since PGO_LOCKED is set, we need to unbusy
1324 * all pages fetched by genfs_getpages() above,
1325 * tell the caller that there are no pages
1326 * available and put back original pgs array.
1327 */
1328
1329 mutex_enter(&uvm_pageqlock);
1330 uvm_page_unbusy(pgs, npages);
1331 mutex_exit(&uvm_pageqlock);
1332 *ap->a_count = 0;
1333 memcpy(pgs, opgs,
1334 npages * sizeof(struct vm_pages *));
1335 return EBUSY;
1336 }
1337 }
1338 nfs_del_committed_range(vp, origoffset, len);
1339 nfs_del_tobecommitted_range(vp, origoffset, len);
1340 }
1341 np->n_flag |= NMODIFIED;
1342 if (!locked) {
1343 mutex_enter(&uobj->vmobjlock);
1344 }
1345 for (i = 0; i < npages; i++) {
1346 pg = pgs[i];
1347 if (pg == NULL || pg == PGO_DONTCARE) {
1348 continue;
1349 }
1350 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1351 }
1352 if (!locked) {
1353 mutex_exit(&uobj->vmobjlock);
1354 }
1355 if (v3) {
1356 mutex_exit(&np->n_commitlock);
1357 }
1358 return (0);
1359 }
1360