nfs_bio.c revision 1.151.2.7 1 /* $NetBSD: nfs_bio.c,v 1.151.2.7 2007/06/17 21:31:55 ad Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.151.2.7 2007/06/17 21:31:55 ad Exp $");
39
40 #include "opt_nfs.h"
41 #include "opt_ddb.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/namei.h>
53 #include <sys/dirent.h>
54 #include <sys/malloc.h>
55 #include <sys/kauth.h>
56
57 #include <uvm/uvm_extern.h>
58 #include <uvm/uvm.h>
59
60 #include <nfs/rpcv2.h>
61 #include <nfs/nfsproto.h>
62 #include <nfs/nfs.h>
63 #include <nfs/nfsmount.h>
64 #include <nfs/nfsnode.h>
65 #include <nfs/nfs_var.h>
66
67 extern int nfs_numasync;
68 extern int nfs_commitsize;
69 extern struct nfsstats nfsstats;
70
71 static int nfs_doio_read __P((struct buf *, struct uio *));
72 static int nfs_doio_write __P((struct buf *, struct uio *));
73 static int nfs_doio_phys __P((struct buf *, struct uio *));
74
75 /*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 struct vnode *vp;
82 struct uio *uio;
83 int ioflag, cflag;
84 kauth_cred_t cred;
85 {
86 struct nfsnode *np = VTONFS(vp);
87 struct buf *bp = NULL, *rabp;
88 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
89 struct nfsdircache *ndp = NULL, *nndp = NULL;
90 void *baddr;
91 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
92 int enough = 0;
93 struct dirent *dp, *pdp, *edp, *ep;
94 off_t curoff = 0;
95 int advice;
96 struct lwp *l = curlwp;
97
98 #ifdef DIAGNOSTIC
99 if (uio->uio_rw != UIO_READ)
100 panic("nfs_read mode");
101 #endif
102 if (uio->uio_resid == 0)
103 return (0);
104 if (vp->v_type != VDIR && uio->uio_offset < 0)
105 return (EINVAL);
106 #ifndef NFS_V2_ONLY
107 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
108 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
109 (void)nfs_fsinfo(nmp, vp, cred, l);
110 #endif
111 if (vp->v_type != VDIR &&
112 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
113 return (EFBIG);
114
115 /*
116 * For nfs, cache consistency can only be maintained approximately.
117 * Although RFC1094 does not specify the criteria, the following is
118 * believed to be compatible with the reference port.
119 *
120 * If the file's modify time on the server has changed since the
121 * last read rpc or you have written to the file,
122 * you may have lost data cache consistency with the
123 * server, so flush all of the file's data out of the cache.
124 * Then force a getattr rpc to ensure that you have up to date
125 * attributes.
126 * NB: This implies that cache data can be read when up to
127 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
128 * attributes this could be forced by setting n_attrstamp to 0 before
129 * the VOP_GETATTR() call.
130 */
131
132 if (vp->v_type != VLNK) {
133 error = nfs_flushstalebuf(vp, cred, l,
134 NFS_FLUSHSTALEBUF_MYWRITE);
135 if (error)
136 return error;
137 }
138
139 do {
140 /*
141 * Don't cache symlinks.
142 */
143 if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
144 return (nfs_readlinkrpc(vp, uio, cred));
145 }
146 baddr = (void *)0;
147 switch (vp->v_type) {
148 case VREG:
149 nfsstats.biocache_reads++;
150
151 advice = IO_ADV_DECODE(ioflag);
152 error = 0;
153 while (uio->uio_resid > 0) {
154 void *win;
155 int flags;
156 vsize_t bytelen;
157
158 nfs_delayedtruncate(vp);
159 if (np->n_size <= uio->uio_offset) {
160 break;
161 }
162 bytelen =
163 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
164 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
165 &bytelen, advice, UBC_READ);
166 error = uiomove(win, bytelen, uio);
167 flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
168 ubc_release(win, flags);
169 if (error) {
170 /*
171 * XXXkludge
172 * the file has been truncated on the server.
173 * there isn't much we can do.
174 */
175 if (uio->uio_offset >= np->n_size) {
176 /* end of file */
177 error = 0;
178 } else {
179 break;
180 }
181 }
182 }
183 break;
184
185 case VLNK:
186 nfsstats.biocache_readlinks++;
187 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
188 if (!bp)
189 return (EINTR);
190 if ((bp->b_flags & B_DONE) == 0) {
191 bp->b_flags |= B_READ;
192 error = nfs_doio(bp);
193 if (error) {
194 brelse(bp, 0);
195 return (error);
196 }
197 }
198 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
199 got_buf = 1;
200 on = 0;
201 break;
202 case VDIR:
203 diragain:
204 nfsstats.biocache_readdirs++;
205 ndp = nfs_searchdircache(vp, uio->uio_offset,
206 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
207 if (!ndp) {
208 /*
209 * We've been handed a cookie that is not
210 * in the cache. If we're not translating
211 * 32 <-> 64, it may be a value that was
212 * flushed out of the cache because it grew
213 * too big. Let the server judge if it's
214 * valid or not. In the translation case,
215 * we have no way of validating this value,
216 * so punt.
217 */
218 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
219 return (EINVAL);
220 ndp = nfs_enterdircache(vp, uio->uio_offset,
221 uio->uio_offset, 0, 0);
222 }
223
224 if (NFS_EOFVALID(np) &&
225 ndp->dc_cookie == np->n_direofoffset) {
226 nfs_putdircache(np, ndp);
227 nfsstats.direofcache_hits++;
228 return (0);
229 }
230
231 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
232 if (!bp)
233 return (EINTR);
234 if ((bp->b_flags & B_DONE) == 0) {
235 bp->b_flags |= B_READ;
236 bp->b_dcookie = ndp->dc_blkcookie;
237 error = nfs_doio(bp);
238 if (error) {
239 /*
240 * Yuck! The directory has been modified on the
241 * server. Punt and let the userland code
242 * deal with it.
243 */
244 nfs_putdircache(np, ndp);
245 brelse(bp, 0);
246 /*
247 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
248 */
249 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
250 nfs_invaldircache(vp, 0);
251 nfs_vinvalbuf(vp, 0, cred, l, 1);
252 }
253 return (error);
254 }
255 }
256
257 /*
258 * Just return if we hit EOF right away with this
259 * block. Always check here, because direofoffset
260 * may have been set by an nfsiod since the last
261 * check.
262 *
263 * also, empty block implies EOF.
264 */
265
266 if (bp->b_bcount == bp->b_resid ||
267 (NFS_EOFVALID(np) &&
268 ndp->dc_blkcookie == np->n_direofoffset)) {
269 KASSERT(bp->b_bcount != bp->b_resid ||
270 ndp->dc_blkcookie == bp->b_dcookie);
271 nfs_putdircache(np, ndp);
272 brelse(bp, B_NOCACHE);
273 return 0;
274 }
275
276 /*
277 * Find the entry we were looking for in the block.
278 */
279
280 en = ndp->dc_entry;
281
282 pdp = dp = (struct dirent *)bp->b_data;
283 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
284 bp->b_resid);
285 enn = 0;
286 while (enn < en && dp < edp) {
287 pdp = dp;
288 dp = _DIRENT_NEXT(dp);
289 enn++;
290 }
291
292 /*
293 * If the entry number was bigger than the number of
294 * entries in the block, or the cookie of the previous
295 * entry doesn't match, the directory cache is
296 * stale. Flush it and try again (i.e. go to
297 * the server).
298 */
299 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
300 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
301 #ifdef DEBUG
302 printf("invalid cache: %p %p %p off %lx %lx\n",
303 pdp, dp, edp,
304 (unsigned long)uio->uio_offset,
305 (unsigned long)NFS_GETCOOKIE(pdp));
306 #endif
307 nfs_putdircache(np, ndp);
308 brelse(bp, 0);
309 nfs_invaldircache(vp, 0);
310 nfs_vinvalbuf(vp, 0, cred, l, 0);
311 goto diragain;
312 }
313
314 on = (char *)dp - (char *)bp->b_data;
315
316 /*
317 * Cache all entries that may be exported to the
318 * user, as they may be thrown back at us. The
319 * NFSBIO_CACHECOOKIES flag indicates that all
320 * entries are being 'exported', so cache them all.
321 */
322
323 if (en == 0 && pdp == dp) {
324 dp = _DIRENT_NEXT(dp);
325 enn++;
326 }
327
328 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
329 n = uio->uio_resid;
330 enough = 1;
331 } else
332 n = bp->b_bcount - bp->b_resid - on;
333
334 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
335
336 /*
337 * Find last complete entry to copy, caching entries
338 * (if requested) as we go.
339 */
340
341 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
342 if (cflag & NFSBIO_CACHECOOKIES) {
343 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
344 ndp->dc_blkcookie, enn, bp->b_lblkno);
345 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
346 NFS_STASHCOOKIE32(pdp,
347 nndp->dc_cookie32);
348 }
349 nfs_putdircache(np, nndp);
350 }
351 pdp = dp;
352 dp = _DIRENT_NEXT(dp);
353 enn++;
354 }
355 nfs_putdircache(np, ndp);
356
357 /*
358 * If the last requested entry was not the last in the
359 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
360 * cache the cookie of the last requested one, and
361 * set of the offset to it.
362 */
363
364 if ((on + n) < bp->b_bcount - bp->b_resid) {
365 curoff = NFS_GETCOOKIE(pdp);
366 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
367 enn, bp->b_lblkno);
368 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
369 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
370 curoff = nndp->dc_cookie32;
371 }
372 nfs_putdircache(np, nndp);
373 } else
374 curoff = bp->b_dcookie;
375
376 /*
377 * Always cache the entry for the next block,
378 * so that readaheads can use it.
379 */
380 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
381 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
382 if (curoff == bp->b_dcookie) {
383 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
384 curoff = nndp->dc_cookie32;
385 }
386 }
387
388 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
389
390 /*
391 * If not eof and read aheads are enabled, start one.
392 * (You need the current block first, so that you have the
393 * directory offset cookie of the next block.)
394 */
395 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
396 !NFS_EOFVALID(np)) {
397 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
398 NFS_DIRBLKSIZ, l);
399 if (rabp) {
400 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
401 rabp->b_dcookie = nndp->dc_cookie;
402 rabp->b_flags |= (B_READ | B_ASYNC);
403 if (nfs_asyncio(rabp)) {
404 brelse(rabp, B_INVAL);
405 }
406 } else
407 brelse(rabp, 0);
408 }
409 }
410 nfs_putdircache(np, nndp);
411 got_buf = 1;
412 break;
413 default:
414 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
415 break;
416 }
417
418 if (n > 0) {
419 if (!baddr)
420 baddr = bp->b_data;
421 error = uiomove((char *)baddr + on, (int)n, uio);
422 }
423 switch (vp->v_type) {
424 case VREG:
425 break;
426 case VLNK:
427 n = 0;
428 break;
429 case VDIR:
430 uio->uio_offset = curoff;
431 if (enough)
432 n = 0;
433 break;
434 default:
435 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
436 }
437 if (got_buf)
438 brelse(bp, 0);
439 } while (error == 0 && uio->uio_resid > 0 && n > 0);
440 return (error);
441 }
442
443 /*
444 * Vnode op for write using bio
445 */
446 int
447 nfs_write(v)
448 void *v;
449 {
450 struct vop_write_args /* {
451 struct vnode *a_vp;
452 struct uio *a_uio;
453 int a_ioflag;
454 kauth_cred_t a_cred;
455 } */ *ap = v;
456 struct uio *uio = ap->a_uio;
457 struct lwp *l = curlwp;
458 struct vnode *vp = ap->a_vp;
459 struct nfsnode *np = VTONFS(vp);
460 kauth_cred_t cred = ap->a_cred;
461 struct vattr vattr;
462 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
463 voff_t oldoff, origoff;
464 vsize_t bytelen;
465 int error = 0;
466 int ioflag = ap->a_ioflag;
467 int extended = 0, wrotedata = 0;
468
469 #ifdef DIAGNOSTIC
470 if (uio->uio_rw != UIO_WRITE)
471 panic("nfs_write mode");
472 #endif
473 if (vp->v_type != VREG)
474 return (EIO);
475 if (np->n_flag & NWRITEERR) {
476 np->n_flag &= ~NWRITEERR;
477 return (np->n_error);
478 }
479 #ifndef NFS_V2_ONLY
480 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
481 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
482 (void)nfs_fsinfo(nmp, vp, cred, l);
483 #endif
484 if (ioflag & (IO_APPEND | IO_SYNC)) {
485 if (np->n_flag & NMODIFIED) {
486 NFS_INVALIDATE_ATTRCACHE(np);
487 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
488 if (error)
489 return (error);
490 }
491 if (ioflag & IO_APPEND) {
492 NFS_INVALIDATE_ATTRCACHE(np);
493 error = VOP_GETATTR(vp, &vattr, cred, l);
494 if (error)
495 return (error);
496 uio->uio_offset = np->n_size;
497 }
498 }
499 if (uio->uio_offset < 0)
500 return (EINVAL);
501 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
502 return (EFBIG);
503 if (uio->uio_resid == 0)
504 return (0);
505 /*
506 * Maybe this should be above the vnode op call, but so long as
507 * file servers have no limits, i don't think it matters
508 */
509 if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
510 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
511 mutex_enter(&proclist_mutex);
512 psignal(l->l_proc, SIGXFSZ);
513 mutex_exit(&proclist_mutex);
514 return (EFBIG);
515 }
516
517 origoff = uio->uio_offset;
518 do {
519 bool overwrite; /* if we are overwriting whole pages */
520 u_quad_t oldsize;
521 oldoff = uio->uio_offset;
522 bytelen = uio->uio_resid;
523
524 nfsstats.biocache_writes++;
525
526 oldsize = np->n_size;
527 np->n_flag |= NMODIFIED;
528 if (np->n_size < uio->uio_offset + bytelen) {
529 np->n_size = uio->uio_offset + bytelen;
530 }
531 overwrite = false;
532 if ((uio->uio_offset & PAGE_MASK) == 0) {
533 if ((vp->v_vflag & VV_MAPPED) == 0 &&
534 bytelen > PAGE_SIZE) {
535 bytelen = trunc_page(bytelen);
536 overwrite = true;
537 } else if ((bytelen & PAGE_MASK) == 0 &&
538 uio->uio_offset >= vp->v_size) {
539 overwrite = true;
540 }
541 }
542 if (vp->v_size < uio->uio_offset + bytelen) {
543 uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
544 }
545 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
546 UBC_WRITE | UBC_PARTIALOK |
547 (overwrite ? UBC_FAULTBUSY : 0) |
548 (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
549 if (error) {
550 uvm_vnp_setwritesize(vp, vp->v_size);
551 if (overwrite && np->n_size != oldsize) {
552 /*
553 * backout size and free pages past eof.
554 */
555 np->n_size = oldsize;
556 mutex_enter(&vp->v_interlock);
557 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
558 0, PGO_SYNCIO | PGO_FREE);
559 }
560 break;
561 }
562 wrotedata = 1;
563
564 /*
565 * update UVM's notion of the size now that we've
566 * copied the data into the vnode's pages.
567 */
568
569 if (vp->v_size < uio->uio_offset) {
570 uvm_vnp_setsize(vp, uio->uio_offset);
571 extended = 1;
572 }
573
574 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
575 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
576 mutex_enter(&vp->v_interlock);
577 error = VOP_PUTPAGES(vp,
578 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
579 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
580 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
581 }
582 } while (uio->uio_resid > 0);
583 if (wrotedata)
584 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
585 if (ioflag & IO_SYNC) {
586 mutex_enter(&vp->v_interlock);
587 error = VOP_PUTPAGES(vp,
588 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
589 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
590 ~(nmp->nm_wsize - 1)),
591 PGO_CLEANIT | PGO_SYNCIO);
592 }
593 return error;
594 }
595
596 /*
597 * Get an nfs cache block.
598 * Allocate a new one if the block isn't currently in the cache
599 * and return the block marked busy. If the calling process is
600 * interrupted by a signal for an interruptible mount point, return
601 * NULL.
602 */
603 struct buf *
604 nfs_getcacheblk(vp, bn, size, l)
605 struct vnode *vp;
606 daddr_t bn;
607 int size;
608 struct lwp *l;
609 {
610 struct buf *bp;
611 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
612
613 if (nmp->nm_flag & NFSMNT_INT) {
614 bp = getblk(vp, bn, size, PCATCH, 0);
615 while (bp == NULL) {
616 if (nfs_sigintr(nmp, NULL, l))
617 return (NULL);
618 bp = getblk(vp, bn, size, 0, 2 * hz);
619 }
620 } else
621 bp = getblk(vp, bn, size, 0, 0);
622 return (bp);
623 }
624
625 /*
626 * Flush and invalidate all dirty buffers. If another process is already
627 * doing the flush, just wait for completion.
628 */
629 int
630 nfs_vinvalbuf(vp, flags, cred, l, intrflg)
631 struct vnode *vp;
632 int flags;
633 kauth_cred_t cred;
634 struct lwp *l;
635 int intrflg;
636 {
637 struct nfsnode *np = VTONFS(vp);
638 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
639 int error = 0, catch, slptimeo;
640
641 if ((nmp->nm_flag & NFSMNT_INT) == 0)
642 intrflg = 0;
643 if (intrflg) {
644 catch = true;
645 slptimeo = 2 * hz;
646 } else {
647 catch = false;
648 slptimeo = 0;
649 }
650 /*
651 * First wait for any other process doing a flush to complete.
652 */
653 mutex_enter(&vp->v_interlock);
654 while (np->n_flag & NFLUSHINPROG) {
655 np->n_flag |= NFLUSHWANT;
656 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
657 slptimeo, &vp->v_interlock);
658 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
659 mutex_exit(&vp->v_interlock);
660 return EINTR;
661 }
662 }
663
664 /*
665 * Now, flush as required.
666 */
667 np->n_flag |= NFLUSHINPROG;
668 mutex_exit(&vp->v_interlock);
669 error = vinvalbuf(vp, flags, cred, l, catch, 0);
670 while (error) {
671 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
672 error = EINTR;
673 break;
674 }
675 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
676 }
677 mutex_enter(&vp->v_interlock);
678 if (error == 0)
679 np->n_flag &= ~NMODIFIED;
680 np->n_flag &= ~NFLUSHINPROG;
681 if (np->n_flag & NFLUSHWANT) {
682 np->n_flag &= ~NFLUSHWANT;
683 wakeup(&np->n_flag);
684 }
685 mutex_exit(&vp->v_interlock);
686 return error;
687 }
688
689 /*
690 * nfs_flushstalebuf: flush cache if it's stale.
691 *
692 * => caller shouldn't own any pages or buffers which belong to the vnode.
693 */
694
695 int
696 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
697 int flags)
698 {
699 struct nfsnode *np = VTONFS(vp);
700 struct vattr vattr;
701 int error;
702
703 if (np->n_flag & NMODIFIED) {
704 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
705 || vp->v_type != VREG) {
706 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
707 if (error)
708 return error;
709 if (vp->v_type == VDIR) {
710 nfs_invaldircache(vp, 0);
711 }
712 } else {
713 /*
714 * XXX assuming writes are ours.
715 */
716 }
717 NFS_INVALIDATE_ATTRCACHE(np);
718 error = VOP_GETATTR(vp, &vattr, cred, l);
719 if (error)
720 return error;
721 np->n_mtime = vattr.va_mtime;
722 } else {
723 error = VOP_GETATTR(vp, &vattr, cred, l);
724 if (error)
725 return error;
726 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
727 if (vp->v_type == VDIR) {
728 nfs_invaldircache(vp, 0);
729 }
730 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
731 if (error)
732 return error;
733 np->n_mtime = vattr.va_mtime;
734 }
735 }
736
737 return error;
738 }
739
740 /*
741 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
742 * This is mainly to avoid queueing async I/O requests when the nfsiods
743 * are all hung on a dead server.
744 */
745
746 int
747 nfs_asyncio(bp)
748 struct buf *bp;
749 {
750 int i;
751 struct nfsmount *nmp;
752 int gotiod, slptimeo = 0, error;
753 bool catch = false;
754
755 if (nfs_numasync == 0)
756 return (EIO);
757
758 nmp = VFSTONFS(bp->b_vp->v_mount);
759 again:
760 if (nmp->nm_flag & NFSMNT_INT)
761 catch = true;
762 gotiod = false;
763
764 /*
765 * Find a free iod to process this request.
766 */
767
768 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
769 struct nfs_iod *iod = &nfs_asyncdaemon[i];
770
771 mutex_enter(&iod->nid_lock);
772 if (iod->nid_want) {
773 /*
774 * Found one, so wake it up and tell it which
775 * mount to process.
776 */
777 iod->nid_want = NULL;
778 iod->nid_mount = nmp;
779 wakeup(&iod->nid_want);
780 mutex_enter(&nmp->nm_lock);
781 mutex_exit(&iod->nid_lock);
782 nmp->nm_bufqiods++;
783 gotiod = true;
784 break;
785 }
786 mutex_exit(&iod->nid_lock);
787 }
788
789 /*
790 * If none are free, we may already have an iod working on this mount
791 * point. If so, it will process our request.
792 */
793
794 if (!gotiod) {
795 mutex_enter(&nmp->nm_lock);
796 if (nmp->nm_bufqiods > 0)
797 gotiod = true;
798 }
799
800 KASSERT(mutex_owned(&nmp->nm_lock));
801
802 /*
803 * If we have an iod which can process the request, then queue
804 * the buffer. However, even if we have an iod, do not initiate
805 * queue cleaning if curproc is the pageout daemon. if the NFS mount
806 * is via local loopback, we may put curproc (pagedaemon) to sleep
807 * waiting for the writes to complete. But the server (ourself)
808 * may block the write, waiting for its (ie., our) pagedaemon
809 * to produce clean pages to handle the write: deadlock.
810 * XXX: start non-loopback mounts straight away? If "lots free",
811 * let pagedaemon start loopback writes anyway?
812 */
813 if (gotiod) {
814
815 /*
816 * Ensure that the queue never grows too large.
817 */
818 if (curlwp == uvm.pagedaemon_lwp) {
819 /* Enque for later, to avoid free-page deadlock */
820 (void) 0;
821 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) {
822 if (catch) {
823 error = cv_timedwait_sig(&nmp->nm_aiocv,
824 &nmp->nm_lock, slptimeo);
825 } else {
826 error = cv_timedwait(&nmp->nm_aiocv,
827 &nmp->nm_lock, slptimeo);
828 }
829 if (error) {
830 mutex_exit(&nmp->nm_lock);
831 if (nfs_sigintr(nmp, NULL, curlwp))
832 return (EINTR);
833 if (catch) {
834 catch = false;
835 slptimeo = 2 * hz;
836 }
837 }
838
839 /*
840 * We might have lost our iod while sleeping,
841 * so check and loop if nescessary.
842 */
843
844 if (nmp->nm_bufqiods == 0)
845 goto again;
846
847 mutex_enter(&nmp->nm_lock);
848 }
849 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
850 nmp->nm_bufqlen++;
851 mutex_exit(&nmp->nm_lock);
852 return (0);
853 }
854 mutex_exit(&nmp->nm_lock);
855
856 /*
857 * All the iods are busy on other mounts, so return EIO to
858 * force the caller to process the i/o synchronously.
859 */
860
861 return (EIO);
862 }
863
864 /*
865 * nfs_doio for read.
866 */
867 static int
868 nfs_doio_read(bp, uiop)
869 struct buf *bp;
870 struct uio *uiop;
871 {
872 struct vnode *vp = bp->b_vp;
873 struct nfsnode *np = VTONFS(vp);
874 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
875 int error = 0;
876
877 uiop->uio_rw = UIO_READ;
878 switch (vp->v_type) {
879 case VREG:
880 nfsstats.read_bios++;
881 error = nfs_readrpc(vp, uiop);
882 if (!error && uiop->uio_resid) {
883 int diff, len;
884
885 /*
886 * If uio_resid > 0, there is a hole in the file and
887 * no writes after the hole have been pushed to
888 * the server yet or the file has been truncated
889 * on the server.
890 * Just zero fill the rest of the valid area.
891 */
892
893 KASSERT(vp->v_size >=
894 uiop->uio_offset + uiop->uio_resid);
895 diff = bp->b_bcount - uiop->uio_resid;
896 len = uiop->uio_resid;
897 memset((char *)bp->b_data + diff, 0, len);
898 uiop->uio_resid = 0;
899 }
900 #if 0
901 if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
902 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
903 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
904 #if 0 /* XXX NJWLWP */
905 uiop->uio_lwp->l_proc->p_holdcnt++;
906 #endif
907 }
908 #endif
909 break;
910 case VLNK:
911 KASSERT(uiop->uio_offset == (off_t)0);
912 nfsstats.readlink_bios++;
913 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
914 break;
915 case VDIR:
916 nfsstats.readdir_bios++;
917 uiop->uio_offset = bp->b_dcookie;
918 #ifndef NFS_V2_ONLY
919 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
920 error = nfs_readdirplusrpc(vp, uiop,
921 curlwp->l_cred);
922 /*
923 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
924 */
925 if (error == ENOTSUP)
926 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
927 }
928 #else
929 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
930 #endif
931 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
932 error = nfs_readdirrpc(vp, uiop,
933 curlwp->l_cred);
934 if (!error) {
935 bp->b_dcookie = uiop->uio_offset;
936 }
937 break;
938 default:
939 printf("nfs_doio: type %x unexpected\n", vp->v_type);
940 break;
941 }
942 if (error) {
943 bp->b_flags |= B_ERROR;
944 bp->b_error = error;
945 }
946 return error;
947 }
948
949 /*
950 * nfs_doio for write.
951 */
952 static int
953 nfs_doio_write(bp, uiop)
954 struct buf *bp;
955 struct uio *uiop;
956 {
957 struct vnode *vp = bp->b_vp;
958 struct nfsnode *np = VTONFS(vp);
959 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
960 int iomode;
961 bool stalewriteverf = false;
962 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
963 struct vm_page *pgs[npages];
964 #ifndef NFS_V2_ONLY
965 bool needcommit = true; /* need only COMMIT RPC */
966 #else
967 bool needcommit = false; /* need only COMMIT RPC */
968 #endif
969 bool pageprotected;
970 struct uvm_object *uobj = &vp->v_uobj;
971 int error;
972 off_t off, cnt;
973
974 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
975 iomode = NFSV3WRITE_UNSTABLE;
976 } else {
977 iomode = NFSV3WRITE_FILESYNC;
978 }
979
980 #ifndef NFS_V2_ONLY
981 again:
982 #endif
983 rw_enter(&nmp->nm_writeverflock, RW_READER);
984
985 for (i = 0; i < npages; i++) {
986 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
987 if (pgs[i]->uobject == uobj &&
988 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
989 KASSERT(pgs[i]->flags & PG_BUSY);
990 /*
991 * this page belongs to our object.
992 */
993 mutex_enter(&uobj->vmobjlock);
994 /*
995 * write out the page stably if it's about to
996 * be released because we can't resend it
997 * on the server crash.
998 *
999 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
1000 * changed until unbusy the page.
1001 */
1002 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
1003 iomode = NFSV3WRITE_FILESYNC;
1004 /*
1005 * if we met a page which hasn't been sent yet,
1006 * we need do WRITE RPC.
1007 */
1008 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1009 needcommit = false;
1010 mutex_exit(&uobj->vmobjlock);
1011 } else {
1012 iomode = NFSV3WRITE_FILESYNC;
1013 needcommit = false;
1014 }
1015 }
1016 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1017 mutex_enter(&uobj->vmobjlock);
1018 for (i = 0; i < npages; i++) {
1019 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1020 pmap_page_protect(pgs[i], VM_PROT_READ);
1021 }
1022 mutex_exit(&uobj->vmobjlock);
1023 pageprotected = true; /* pages can't be modified during i/o. */
1024 } else
1025 pageprotected = false;
1026
1027 /*
1028 * Send the data to the server if necessary,
1029 * otherwise just send a commit rpc.
1030 */
1031 #ifndef NFS_V2_ONLY
1032 if (needcommit) {
1033
1034 /*
1035 * If the buffer is in the range that we already committed,
1036 * there's nothing to do.
1037 *
1038 * If it's in the range that we need to commit, push the
1039 * whole range at once, otherwise only push the buffer.
1040 * In both these cases, acquire the commit lock to avoid
1041 * other processes modifying the range.
1042 */
1043
1044 off = uiop->uio_offset;
1045 cnt = bp->b_bcount;
1046 mutex_enter(&np->n_commitlock);
1047 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1048 bool pushedrange;
1049 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1050 pushedrange = true;
1051 off = np->n_pushlo;
1052 cnt = np->n_pushhi - np->n_pushlo;
1053 } else {
1054 pushedrange = false;
1055 }
1056 error = nfs_commit(vp, off, cnt, curlwp);
1057 if (error == 0) {
1058 if (pushedrange) {
1059 nfs_merge_commit_ranges(vp);
1060 } else {
1061 nfs_add_committed_range(vp, off, cnt);
1062 }
1063 }
1064 } else {
1065 error = 0;
1066 }
1067 mutex_exit(&np->n_commitlock);
1068 rw_exit(&nmp->nm_writeverflock);
1069 if (!error) {
1070 /*
1071 * pages are now on stable storage.
1072 */
1073 uiop->uio_resid = 0;
1074 mutex_enter(&uobj->vmobjlock);
1075 for (i = 0; i < npages; i++) {
1076 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1077 }
1078 mutex_exit(&uobj->vmobjlock);
1079 return 0;
1080 } else if (error == NFSERR_STALEWRITEVERF) {
1081 nfs_clearcommit(vp->v_mount);
1082 goto again;
1083 }
1084 if (error) {
1085 bp->b_flags |= B_ERROR;
1086 bp->b_error = np->n_error = error;
1087 np->n_flag |= NWRITEERR;
1088 }
1089 return error;
1090 }
1091 #endif
1092 off = uiop->uio_offset;
1093 cnt = bp->b_bcount;
1094 uiop->uio_rw = UIO_WRITE;
1095 nfsstats.write_bios++;
1096 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1097 #ifndef NFS_V2_ONLY
1098 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1099 /*
1100 * we need to commit pages later.
1101 */
1102 mutex_enter(&np->n_commitlock);
1103 nfs_add_tobecommitted_range(vp, off, cnt);
1104 /*
1105 * if there can be too many uncommitted pages, commit them now.
1106 */
1107 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1108 off = np->n_pushlo;
1109 cnt = nfs_commitsize >> 1;
1110 error = nfs_commit(vp, off, cnt, curlwp);
1111 if (!error) {
1112 nfs_add_committed_range(vp, off, cnt);
1113 nfs_del_tobecommitted_range(vp, off, cnt);
1114 }
1115 if (error == NFSERR_STALEWRITEVERF) {
1116 stalewriteverf = true;
1117 error = 0; /* it isn't a real error */
1118 }
1119 } else {
1120 /*
1121 * re-dirty pages so that they will be passed
1122 * to us later again.
1123 */
1124 mutex_enter(&uobj->vmobjlock);
1125 for (i = 0; i < npages; i++) {
1126 pgs[i]->flags &= ~PG_CLEAN;
1127 }
1128 mutex_exit(&uobj->vmobjlock);
1129 }
1130 mutex_exit(&np->n_commitlock);
1131 } else
1132 #endif
1133 if (!error) {
1134 /*
1135 * pages are now on stable storage.
1136 */
1137 mutex_enter(&np->n_commitlock);
1138 nfs_del_committed_range(vp, off, cnt);
1139 mutex_exit(&np->n_commitlock);
1140 mutex_enter(&uobj->vmobjlock);
1141 for (i = 0; i < npages; i++) {
1142 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1143 }
1144 mutex_exit(&uobj->vmobjlock);
1145 } else {
1146 /*
1147 * we got an error.
1148 */
1149 bp->b_flags |= B_ERROR;
1150 bp->b_error = np->n_error = error;
1151 np->n_flag |= NWRITEERR;
1152 }
1153
1154 rw_exit(&nmp->nm_writeverflock);
1155
1156 if (stalewriteverf) {
1157 nfs_clearcommit(vp->v_mount);
1158 }
1159 return error;
1160 }
1161
1162 /*
1163 * nfs_doio for B_PHYS.
1164 */
1165 static int
1166 nfs_doio_phys(bp, uiop)
1167 struct buf *bp;
1168 struct uio *uiop;
1169 {
1170 struct vnode *vp = bp->b_vp;
1171 int error;
1172
1173 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1174 if (bp->b_flags & B_READ) {
1175 uiop->uio_rw = UIO_READ;
1176 nfsstats.read_physios++;
1177 error = nfs_readrpc(vp, uiop);
1178 } else {
1179 int iomode = NFSV3WRITE_DATASYNC;
1180 bool stalewriteverf;
1181 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1182
1183 uiop->uio_rw = UIO_WRITE;
1184 nfsstats.write_physios++;
1185 rw_enter(&nmp->nm_writeverflock, RW_READER);
1186 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1187 rw_exit(&nmp->nm_writeverflock);
1188 if (stalewriteverf) {
1189 nfs_clearcommit(bp->b_vp->v_mount);
1190 }
1191 }
1192 if (error) {
1193 bp->b_flags |= B_ERROR;
1194 bp->b_error = error;
1195 }
1196 return error;
1197 }
1198
1199 /*
1200 * Do an I/O operation to/from a cache block. This may be called
1201 * synchronously or from an nfsiod.
1202 */
1203 int
1204 nfs_doio(bp)
1205 struct buf *bp;
1206 {
1207 int error;
1208 struct uio uio;
1209 struct uio *uiop = &uio;
1210 struct iovec io;
1211 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1212
1213 uiop->uio_iov = &io;
1214 uiop->uio_iovcnt = 1;
1215 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1216 UIO_SETUP_SYSSPACE(uiop);
1217 io.iov_base = bp->b_data;
1218 io.iov_len = uiop->uio_resid = bp->b_bcount;
1219
1220 /*
1221 * Historically, paging was done with physio, but no more...
1222 */
1223 if (bp->b_flags & B_PHYS) {
1224 /*
1225 * ...though reading /dev/drum still gets us here.
1226 */
1227 error = nfs_doio_phys(bp, uiop);
1228 } else if (bp->b_flags & B_READ) {
1229 error = nfs_doio_read(bp, uiop);
1230 } else {
1231 error = nfs_doio_write(bp, uiop);
1232 }
1233 biodone(bp, error, uiop->uio_resid);
1234 return (error);
1235 }
1236
1237 /*
1238 * Vnode op for VM getpages.
1239 */
1240
1241 int
1242 nfs_getpages(v)
1243 void *v;
1244 {
1245 struct vop_getpages_args /* {
1246 struct vnode *a_vp;
1247 voff_t a_offset;
1248 struct vm_page **a_m;
1249 int *a_count;
1250 int a_centeridx;
1251 vm_prot_t a_access_type;
1252 int a_advice;
1253 int a_flags;
1254 } */ *ap = v;
1255
1256 struct vnode *vp = ap->a_vp;
1257 struct uvm_object *uobj = &vp->v_uobj;
1258 struct nfsnode *np = VTONFS(vp);
1259 const int npages = *ap->a_count;
1260 struct vm_page *pg, **pgs, *opgs[npages];
1261 off_t origoffset, len;
1262 int i, error;
1263 bool v3 = NFS_ISV3(vp);
1264 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1265 bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1266
1267 /*
1268 * call the genfs code to get the pages. `pgs' may be NULL
1269 * when doing read-ahead.
1270 */
1271
1272 pgs = ap->a_m;
1273 if (write && locked && v3) {
1274 KASSERT(pgs != NULL);
1275 #ifdef DEBUG
1276
1277 /*
1278 * If PGO_LOCKED is set, real pages shouldn't exists
1279 * in the array.
1280 */
1281
1282 for (i = 0; i < npages; i++)
1283 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1284 #endif
1285 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1286 }
1287 error = genfs_getpages(v);
1288 if (error) {
1289 return (error);
1290 }
1291
1292 /*
1293 * for read faults where the nfs node is not yet marked NMODIFIED,
1294 * set PG_RDONLY on the pages so that we come back here if someone
1295 * tries to modify later via the mapping that will be entered for
1296 * this fault.
1297 */
1298
1299 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1300 if (!locked) {
1301 mutex_enter(&uobj->vmobjlock);
1302 }
1303 for (i = 0; i < npages; i++) {
1304 pg = pgs[i];
1305 if (pg == NULL || pg == PGO_DONTCARE) {
1306 continue;
1307 }
1308 pg->flags |= PG_RDONLY;
1309 }
1310 if (!locked) {
1311 mutex_exit(&uobj->vmobjlock);
1312 }
1313 }
1314 if (!write) {
1315 return (0);
1316 }
1317
1318 /*
1319 * this is a write fault, update the commit info.
1320 */
1321
1322 origoffset = ap->a_offset;
1323 len = npages << PAGE_SHIFT;
1324
1325 if (v3) {
1326 if (!locked) {
1327 mutex_enter(&np->n_commitlock);
1328 } else {
1329 if (!mutex_tryenter(&np->n_commitlock)) {
1330
1331 /*
1332 * Since PGO_LOCKED is set, we need to unbusy
1333 * all pages fetched by genfs_getpages() above,
1334 * tell the caller that there are no pages
1335 * available and put back original pgs array.
1336 */
1337
1338 mutex_enter(&uvm_pageqlock);
1339 uvm_page_unbusy(pgs, npages);
1340 mutex_exit(&uvm_pageqlock);
1341 *ap->a_count = 0;
1342 memcpy(pgs, opgs,
1343 npages * sizeof(struct vm_pages *));
1344 return EBUSY;
1345 }
1346 }
1347 nfs_del_committed_range(vp, origoffset, len);
1348 nfs_del_tobecommitted_range(vp, origoffset, len);
1349 }
1350 np->n_flag |= NMODIFIED;
1351 if (!locked) {
1352 mutex_enter(&uobj->vmobjlock);
1353 }
1354 for (i = 0; i < npages; i++) {
1355 pg = pgs[i];
1356 if (pg == NULL || pg == PGO_DONTCARE) {
1357 continue;
1358 }
1359 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1360 }
1361 if (!locked) {
1362 mutex_exit(&uobj->vmobjlock);
1363 }
1364 if (v3) {
1365 mutex_exit(&np->n_commitlock);
1366 }
1367 return (0);
1368 }
1369