Home | History | Annotate | Line # | Download | only in nfs
nfs_bio.c revision 1.168.2.1
      1 /*	$NetBSD: nfs_bio.c,v 1.168.2.1 2007/11/13 16:03:08 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.168.2.1 2007/11/13 16:03:08 bouyer Exp $");
     39 
     40 #include "opt_nfs.h"
     41 #include "opt_ddb.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/resourcevar.h>
     46 #include <sys/signalvar.h>
     47 #include <sys/proc.h>
     48 #include <sys/buf.h>
     49 #include <sys/vnode.h>
     50 #include <sys/mount.h>
     51 #include <sys/kernel.h>
     52 #include <sys/namei.h>
     53 #include <sys/dirent.h>
     54 #include <sys/malloc.h>
     55 #include <sys/kauth.h>
     56 
     57 #include <uvm/uvm_extern.h>
     58 #include <uvm/uvm.h>
     59 
     60 #include <nfs/rpcv2.h>
     61 #include <nfs/nfsproto.h>
     62 #include <nfs/nfs.h>
     63 #include <nfs/nfsmount.h>
     64 #include <nfs/nfsnode.h>
     65 #include <nfs/nfs_var.h>
     66 
     67 extern int nfs_numasync;
     68 extern int nfs_commitsize;
     69 extern struct nfsstats nfsstats;
     70 
     71 static int nfs_doio_read __P((struct buf *, struct uio *));
     72 static int nfs_doio_write __P((struct buf *, struct uio *));
     73 static int nfs_doio_phys __P((struct buf *, struct uio *));
     74 
     75 /*
     76  * Vnode op for read using bio
     77  * Any similarity to readip() is purely coincidental
     78  */
     79 int
     80 nfs_bioread(vp, uio, ioflag, cred, cflag)
     81 	struct vnode *vp;
     82 	struct uio *uio;
     83 	int ioflag, cflag;
     84 	kauth_cred_t cred;
     85 {
     86 	struct nfsnode *np = VTONFS(vp);
     87 	struct buf *bp = NULL, *rabp;
     88 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
     89 	struct nfsdircache *ndp = NULL, *nndp = NULL;
     90 	void *baddr;
     91 	int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
     92 	int enough = 0;
     93 	struct dirent *dp, *pdp, *edp, *ep;
     94 	off_t curoff = 0;
     95 	int advice;
     96 	struct lwp *l = curlwp;
     97 
     98 #ifdef DIAGNOSTIC
     99 	if (uio->uio_rw != UIO_READ)
    100 		panic("nfs_read mode");
    101 #endif
    102 	if (uio->uio_resid == 0)
    103 		return (0);
    104 	if (vp->v_type != VDIR && uio->uio_offset < 0)
    105 		return (EINVAL);
    106 #ifndef NFS_V2_ONLY
    107 	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
    108 	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
    109 		(void)nfs_fsinfo(nmp, vp, cred, l);
    110 #endif
    111 	if (vp->v_type != VDIR &&
    112 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
    113 		return (EFBIG);
    114 
    115 	/*
    116 	 * For nfs, cache consistency can only be maintained approximately.
    117 	 * Although RFC1094 does not specify the criteria, the following is
    118 	 * believed to be compatible with the reference port.
    119 	 *
    120 	 * If the file's modify time on the server has changed since the
    121 	 * last read rpc or you have written to the file,
    122 	 * you may have lost data cache consistency with the
    123 	 * server, so flush all of the file's data out of the cache.
    124 	 * Then force a getattr rpc to ensure that you have up to date
    125 	 * attributes.
    126 	 * NB: This implies that cache data can be read when up to
    127 	 * nfs_attrtimeo seconds out of date. If you find that you need current
    128 	 * attributes this could be forced by setting n_attrstamp to 0 before
    129 	 * the VOP_GETATTR() call.
    130 	 */
    131 
    132 	if (vp->v_type != VLNK) {
    133 		error = nfs_flushstalebuf(vp, cred, l,
    134 		    NFS_FLUSHSTALEBUF_MYWRITE);
    135 		if (error)
    136 			return error;
    137 	}
    138 
    139 	do {
    140 	    /*
    141 	     * Don't cache symlinks.
    142 	     */
    143 	    if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
    144 		return (nfs_readlinkrpc(vp, uio, cred));
    145 	    }
    146 	    baddr = (void *)0;
    147 	    switch (vp->v_type) {
    148 	    case VREG:
    149 		nfsstats.biocache_reads++;
    150 
    151 		advice = IO_ADV_DECODE(ioflag);
    152 		error = 0;
    153 		while (uio->uio_resid > 0) {
    154 			vsize_t bytelen;
    155 
    156 			nfs_delayedtruncate(vp);
    157 			if (np->n_size <= uio->uio_offset) {
    158 				break;
    159 			}
    160 			bytelen =
    161 			    MIN(np->n_size - uio->uio_offset, uio->uio_resid);
    162 			error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
    163 			    advice, UBC_READ | UBC_PARTIALOK |
    164 			    (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
    165 			if (error) {
    166 				/*
    167 				 * XXXkludge
    168 				 * the file has been truncated on the server.
    169 				 * there isn't much we can do.
    170 				 */
    171 				if (uio->uio_offset >= np->n_size) {
    172 					/* end of file */
    173 					error = 0;
    174 				} else {
    175 					break;
    176 				}
    177 			}
    178 		}
    179 		break;
    180 
    181 	    case VLNK:
    182 		nfsstats.biocache_readlinks++;
    183 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
    184 		if (!bp)
    185 			return (EINTR);
    186 		if ((bp->b_flags & B_DONE) == 0) {
    187 			bp->b_flags |= B_READ;
    188 			error = nfs_doio(bp);
    189 			if (error) {
    190 				brelse(bp, 0);
    191 				return (error);
    192 			}
    193 		}
    194 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
    195 		got_buf = 1;
    196 		on = 0;
    197 		break;
    198 	    case VDIR:
    199 diragain:
    200 		nfsstats.biocache_readdirs++;
    201 		ndp = nfs_searchdircache(vp, uio->uio_offset,
    202 			(nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
    203 		if (!ndp) {
    204 			/*
    205 			 * We've been handed a cookie that is not
    206 			 * in the cache. If we're not translating
    207 			 * 32 <-> 64, it may be a value that was
    208 			 * flushed out of the cache because it grew
    209 			 * too big. Let the server judge if it's
    210 			 * valid or not. In the translation case,
    211 			 * we have no way of validating this value,
    212 			 * so punt.
    213 			 */
    214 			if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
    215 				return (EINVAL);
    216 			ndp = nfs_enterdircache(vp, uio->uio_offset,
    217 				uio->uio_offset, 0, 0);
    218 		}
    219 
    220 		if (NFS_EOFVALID(np) &&
    221 		    ndp->dc_cookie == np->n_direofoffset) {
    222 			nfs_putdircache(np, ndp);
    223 			nfsstats.direofcache_hits++;
    224 			return (0);
    225 		}
    226 
    227 		bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
    228 		if (!bp)
    229 		    return (EINTR);
    230 		if ((bp->b_flags & B_DONE) == 0) {
    231 		    bp->b_flags |= B_READ;
    232 		    bp->b_dcookie = ndp->dc_blkcookie;
    233 		    error = nfs_doio(bp);
    234 		    if (error) {
    235 			/*
    236 			 * Yuck! The directory has been modified on the
    237 			 * server. Punt and let the userland code
    238 			 * deal with it.
    239 			 */
    240 			nfs_putdircache(np, ndp);
    241 			brelse(bp, 0);
    242 			/*
    243 			 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
    244 			 */
    245 			if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
    246 			    nfs_invaldircache(vp, 0);
    247 			    nfs_vinvalbuf(vp, 0, cred, l, 1);
    248 			}
    249 			return (error);
    250 		    }
    251 		}
    252 
    253 		/*
    254 		 * Just return if we hit EOF right away with this
    255 		 * block. Always check here, because direofoffset
    256 		 * may have been set by an nfsiod since the last
    257 		 * check.
    258 		 *
    259 		 * also, empty block implies EOF.
    260 		 */
    261 
    262 		if (bp->b_bcount == bp->b_resid ||
    263 		    (NFS_EOFVALID(np) &&
    264 		    ndp->dc_blkcookie == np->n_direofoffset)) {
    265 			KASSERT(bp->b_bcount != bp->b_resid ||
    266 			    ndp->dc_blkcookie == bp->b_dcookie);
    267 			nfs_putdircache(np, ndp);
    268 			brelse(bp, BC_NOCACHE);
    269 			return 0;
    270 		}
    271 
    272 		/*
    273 		 * Find the entry we were looking for in the block.
    274 		 */
    275 
    276 		en = ndp->dc_entry;
    277 
    278 		pdp = dp = (struct dirent *)bp->b_data;
    279 		edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
    280 		    bp->b_resid);
    281 		enn = 0;
    282 		while (enn < en && dp < edp) {
    283 			pdp = dp;
    284 			dp = _DIRENT_NEXT(dp);
    285 			enn++;
    286 		}
    287 
    288 		/*
    289 		 * If the entry number was bigger than the number of
    290 		 * entries in the block, or the cookie of the previous
    291 		 * entry doesn't match, the directory cache is
    292 		 * stale. Flush it and try again (i.e. go to
    293 		 * the server).
    294 		 */
    295 		if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
    296 		    (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
    297 #ifdef DEBUG
    298 		    	printf("invalid cache: %p %p %p off %lx %lx\n",
    299 				pdp, dp, edp,
    300 				(unsigned long)uio->uio_offset,
    301 				(unsigned long)NFS_GETCOOKIE(pdp));
    302 #endif
    303 			nfs_putdircache(np, ndp);
    304 			brelse(bp, 0);
    305 			nfs_invaldircache(vp, 0);
    306 			nfs_vinvalbuf(vp, 0, cred, l, 0);
    307 			goto diragain;
    308 		}
    309 
    310 		on = (char *)dp - (char *)bp->b_data;
    311 
    312 		/*
    313 		 * Cache all entries that may be exported to the
    314 		 * user, as they may be thrown back at us. The
    315 		 * NFSBIO_CACHECOOKIES flag indicates that all
    316 		 * entries are being 'exported', so cache them all.
    317 		 */
    318 
    319 		if (en == 0 && pdp == dp) {
    320 			dp = _DIRENT_NEXT(dp);
    321 			enn++;
    322 		}
    323 
    324 		if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
    325 			n = uio->uio_resid;
    326 			enough = 1;
    327 		} else
    328 			n = bp->b_bcount - bp->b_resid - on;
    329 
    330 		ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
    331 
    332 		/*
    333 		 * Find last complete entry to copy, caching entries
    334 		 * (if requested) as we go.
    335 		 */
    336 
    337 		while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
    338 			if (cflag & NFSBIO_CACHECOOKIES) {
    339 				nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
    340 				    ndp->dc_blkcookie, enn, bp->b_lblkno);
    341 				if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
    342 					NFS_STASHCOOKIE32(pdp,
    343 					    nndp->dc_cookie32);
    344 				}
    345 				nfs_putdircache(np, nndp);
    346 			}
    347 			pdp = dp;
    348 			dp = _DIRENT_NEXT(dp);
    349 			enn++;
    350 		}
    351 		nfs_putdircache(np, ndp);
    352 
    353 		/*
    354 		 * If the last requested entry was not the last in the
    355 		 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
    356 		 * cache the cookie of the last requested one, and
    357 		 * set of the offset to it.
    358 		 */
    359 
    360 		if ((on + n) < bp->b_bcount - bp->b_resid) {
    361 			curoff = NFS_GETCOOKIE(pdp);
    362 			nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
    363 			    enn, bp->b_lblkno);
    364 			if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
    365 				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
    366 				curoff = nndp->dc_cookie32;
    367 			}
    368 			nfs_putdircache(np, nndp);
    369 		} else
    370 			curoff = bp->b_dcookie;
    371 
    372 		/*
    373 		 * Always cache the entry for the next block,
    374 		 * so that readaheads can use it.
    375 		 */
    376 		nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
    377 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
    378 			if (curoff == bp->b_dcookie) {
    379 				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
    380 				curoff = nndp->dc_cookie32;
    381 			}
    382 		}
    383 
    384 		n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
    385 
    386 		/*
    387 		 * If not eof and read aheads are enabled, start one.
    388 		 * (You need the current block first, so that you have the
    389 		 *  directory offset cookie of the next block.)
    390 		 */
    391 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
    392 		    !NFS_EOFVALID(np)) {
    393 			rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
    394 						NFS_DIRBLKSIZ, l);
    395 			if (rabp) {
    396 			    if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
    397 				rabp->b_dcookie = nndp->dc_cookie;
    398 				rabp->b_flags |= (B_READ | B_ASYNC);
    399 				if (nfs_asyncio(rabp)) {
    400 				    brelse(rabp, BC_INVAL);
    401 				}
    402 			    } else
    403 				brelse(rabp, 0);
    404 			}
    405 		}
    406 		nfs_putdircache(np, nndp);
    407 		got_buf = 1;
    408 		break;
    409 	    default:
    410 		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
    411 		break;
    412 	    }
    413 
    414 	    if (n > 0) {
    415 		if (!baddr)
    416 			baddr = bp->b_data;
    417 		error = uiomove((char *)baddr + on, (int)n, uio);
    418 	    }
    419 	    switch (vp->v_type) {
    420 	    case VREG:
    421 		break;
    422 	    case VLNK:
    423 		n = 0;
    424 		break;
    425 	    case VDIR:
    426 		uio->uio_offset = curoff;
    427 		if (enough)
    428 			n = 0;
    429 		break;
    430 	    default:
    431 		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
    432 	    }
    433 	    if (got_buf)
    434 		brelse(bp, 0);
    435 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
    436 	return (error);
    437 }
    438 
    439 /*
    440  * Vnode op for write using bio
    441  */
    442 int
    443 nfs_write(v)
    444 	void *v;
    445 {
    446 	struct vop_write_args /* {
    447 		struct vnode *a_vp;
    448 		struct uio *a_uio;
    449 		int  a_ioflag;
    450 		kauth_cred_t a_cred;
    451 	} */ *ap = v;
    452 	struct uio *uio = ap->a_uio;
    453 	struct lwp *l = curlwp;
    454 	struct vnode *vp = ap->a_vp;
    455 	struct nfsnode *np = VTONFS(vp);
    456 	kauth_cred_t cred = ap->a_cred;
    457 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    458 	voff_t oldoff, origoff;
    459 	vsize_t bytelen;
    460 	int error = 0;
    461 	int ioflag = ap->a_ioflag;
    462 	int extended = 0, wrotedata = 0;
    463 
    464 #ifdef DIAGNOSTIC
    465 	if (uio->uio_rw != UIO_WRITE)
    466 		panic("nfs_write mode");
    467 #endif
    468 	if (vp->v_type != VREG)
    469 		return (EIO);
    470 	if (np->n_flag & NWRITEERR) {
    471 		np->n_flag &= ~NWRITEERR;
    472 		return (np->n_error);
    473 	}
    474 #ifndef NFS_V2_ONLY
    475 	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
    476 	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
    477 		(void)nfs_fsinfo(nmp, vp, cred, l);
    478 #endif
    479 	if (ioflag & IO_APPEND) {
    480 		NFS_INVALIDATE_ATTRCACHE(np);
    481 		error = nfs_flushstalebuf(vp, cred, l,
    482 		    NFS_FLUSHSTALEBUF_MYWRITE);
    483 		if (error)
    484 			return (error);
    485 		uio->uio_offset = np->n_size;
    486 	}
    487 	if (uio->uio_offset < 0)
    488 		return (EINVAL);
    489 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
    490 		return (EFBIG);
    491 	if (uio->uio_resid == 0)
    492 		return (0);
    493 	/*
    494 	 * Maybe this should be above the vnode op call, but so long as
    495 	 * file servers have no limits, i don't think it matters
    496 	 */
    497 	if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
    498 	      l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
    499 		mutex_enter(&proclist_mutex);
    500 		psignal(l->l_proc, SIGXFSZ);
    501 		mutex_exit(&proclist_mutex);
    502 		return (EFBIG);
    503 	}
    504 
    505 	origoff = uio->uio_offset;
    506 	do {
    507 		bool overwrite; /* if we are overwriting whole pages */
    508 		u_quad_t oldsize;
    509 		oldoff = uio->uio_offset;
    510 		bytelen = uio->uio_resid;
    511 
    512 		nfsstats.biocache_writes++;
    513 
    514 		oldsize = np->n_size;
    515 		np->n_flag |= NMODIFIED;
    516 		if (np->n_size < uio->uio_offset + bytelen) {
    517 			np->n_size = uio->uio_offset + bytelen;
    518 		}
    519 		overwrite = false;
    520 		if ((uio->uio_offset & PAGE_MASK) == 0) {
    521 			if ((vp->v_vflag & VV_MAPPED) == 0 &&
    522 			    bytelen > PAGE_SIZE) {
    523 				bytelen = trunc_page(bytelen);
    524 				overwrite = true;
    525 			} else if ((bytelen & PAGE_MASK) == 0 &&
    526 			    uio->uio_offset >= vp->v_size) {
    527 				overwrite = true;
    528 			}
    529 		}
    530 		if (vp->v_size < uio->uio_offset + bytelen) {
    531 			uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
    532 		}
    533 		error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
    534 		    UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
    535 		    (overwrite ? UBC_FAULTBUSY : 0) |
    536 		    (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
    537 		if (error) {
    538 			uvm_vnp_setwritesize(vp, vp->v_size);
    539 			if (overwrite && np->n_size != oldsize) {
    540 				/*
    541 				 * backout size and free pages past eof.
    542 				 */
    543 				np->n_size = oldsize;
    544 				simple_lock(&vp->v_interlock);
    545 				(void)VOP_PUTPAGES(vp, round_page(vp->v_size),
    546 				    0, PGO_SYNCIO | PGO_FREE);
    547 			}
    548 			break;
    549 		}
    550 		wrotedata = 1;
    551 
    552 		/*
    553 		 * update UVM's notion of the size now that we've
    554 		 * copied the data into the vnode's pages.
    555 		 */
    556 
    557 		if (vp->v_size < uio->uio_offset) {
    558 			uvm_vnp_setsize(vp, uio->uio_offset);
    559 			extended = 1;
    560 		}
    561 
    562 		if ((oldoff & ~(nmp->nm_wsize - 1)) !=
    563 		    (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
    564 			simple_lock(&vp->v_interlock);
    565 			error = VOP_PUTPAGES(vp,
    566 			    trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
    567 			    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
    568 				       ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
    569 		}
    570 	} while (uio->uio_resid > 0);
    571 	if (wrotedata)
    572 		VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
    573 	if (error == 0 && (ioflag & IO_SYNC) != 0) {
    574 		simple_lock(&vp->v_interlock);
    575 		error = VOP_PUTPAGES(vp,
    576 		    trunc_page(origoff & ~(nmp->nm_wsize - 1)),
    577 		    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
    578 			       ~(nmp->nm_wsize - 1)),
    579 		    PGO_CLEANIT | PGO_SYNCIO);
    580 	}
    581 	return error;
    582 }
    583 
    584 /*
    585  * Get an nfs cache block.
    586  * Allocate a new one if the block isn't currently in the cache
    587  * and return the block marked busy. If the calling process is
    588  * interrupted by a signal for an interruptible mount point, return
    589  * NULL.
    590  */
    591 struct buf *
    592 nfs_getcacheblk(vp, bn, size, l)
    593 	struct vnode *vp;
    594 	daddr_t bn;
    595 	int size;
    596 	struct lwp *l;
    597 {
    598 	struct buf *bp;
    599 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    600 
    601 	if (nmp->nm_flag & NFSMNT_INT) {
    602 		bp = getblk(vp, bn, size, PCATCH, 0);
    603 		while (bp == NULL) {
    604 			if (nfs_sigintr(nmp, NULL, l))
    605 				return (NULL);
    606 			bp = getblk(vp, bn, size, 0, 2 * hz);
    607 		}
    608 	} else
    609 		bp = getblk(vp, bn, size, 0, 0);
    610 	return (bp);
    611 }
    612 
    613 /*
    614  * Flush and invalidate all dirty buffers. If another process is already
    615  * doing the flush, just wait for completion.
    616  */
    617 int
    618 nfs_vinvalbuf(vp, flags, cred, l, intrflg)
    619 	struct vnode *vp;
    620 	int flags;
    621 	kauth_cred_t cred;
    622 	struct lwp *l;
    623 	int intrflg;
    624 {
    625 	struct nfsnode *np = VTONFS(vp);
    626 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    627 	int error = 0, slpflag, slptimeo;
    628 
    629 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
    630 		intrflg = 0;
    631 	if (intrflg) {
    632 		slpflag = PCATCH;
    633 		slptimeo = 2 * hz;
    634 	} else {
    635 		slpflag = 0;
    636 		slptimeo = 0;
    637 	}
    638 	/*
    639 	 * First wait for any other process doing a flush to complete.
    640 	 */
    641 	simple_lock(&vp->v_interlock);
    642 	while (np->n_flag & NFLUSHINPROG) {
    643 		np->n_flag |= NFLUSHWANT;
    644 		error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
    645 			slptimeo, &vp->v_interlock);
    646 		if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
    647 			simple_unlock(&vp->v_interlock);
    648 			return EINTR;
    649 		}
    650 	}
    651 
    652 	/*
    653 	 * Now, flush as required.
    654 	 */
    655 	np->n_flag |= NFLUSHINPROG;
    656 	simple_unlock(&vp->v_interlock);
    657 	error = vinvalbuf(vp, flags, cred, l, slpflag, 0);
    658 	while (error) {
    659 		if (intrflg && nfs_sigintr(nmp, NULL, l)) {
    660 			error = EINTR;
    661 			break;
    662 		}
    663 		error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
    664 	}
    665 	simple_lock(&vp->v_interlock);
    666 	if (error == 0)
    667 		np->n_flag &= ~NMODIFIED;
    668 	np->n_flag &= ~NFLUSHINPROG;
    669 	if (np->n_flag & NFLUSHWANT) {
    670 		np->n_flag &= ~NFLUSHWANT;
    671 		wakeup(&np->n_flag);
    672 	}
    673 	simple_unlock(&vp->v_interlock);
    674 	return error;
    675 }
    676 
    677 /*
    678  * nfs_flushstalebuf: flush cache if it's stale.
    679  *
    680  * => caller shouldn't own any pages or buffers which belong to the vnode.
    681  */
    682 
    683 int
    684 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
    685     int flags)
    686 {
    687 	struct nfsnode *np = VTONFS(vp);
    688 	struct vattr vattr;
    689 	int error;
    690 
    691 	if (np->n_flag & NMODIFIED) {
    692 		if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
    693 		    || vp->v_type != VREG) {
    694 			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
    695 			if (error)
    696 				return error;
    697 			if (vp->v_type == VDIR) {
    698 				nfs_invaldircache(vp, 0);
    699 			}
    700 		} else {
    701 			/*
    702 			 * XXX assuming writes are ours.
    703 			 */
    704 		}
    705 		NFS_INVALIDATE_ATTRCACHE(np);
    706 		error = VOP_GETATTR(vp, &vattr, cred, l);
    707 		if (error)
    708 			return error;
    709 		np->n_mtime = vattr.va_mtime;
    710 	} else {
    711 		error = VOP_GETATTR(vp, &vattr, cred, l);
    712 		if (error)
    713 			return error;
    714 		if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
    715 			if (vp->v_type == VDIR) {
    716 				nfs_invaldircache(vp, 0);
    717 			}
    718 			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
    719 			if (error)
    720 				return error;
    721 			np->n_mtime = vattr.va_mtime;
    722 		}
    723 	}
    724 
    725 	return error;
    726 }
    727 
    728 /*
    729  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
    730  * This is mainly to avoid queueing async I/O requests when the nfsiods
    731  * are all hung on a dead server.
    732  */
    733 
    734 int
    735 nfs_asyncio(bp)
    736 	struct buf *bp;
    737 {
    738 	struct nfs_iod *iod;
    739 	struct nfsmount *nmp;
    740 	int slptimeo = 0, error;
    741 	bool catch = false;
    742 
    743 	if (nfs_numasync == 0)
    744 		return (EIO);
    745 
    746 	nmp = VFSTONFS(bp->b_vp->v_mount);
    747 again:
    748 	if (nmp->nm_flag & NFSMNT_INT)
    749 		catch = true;
    750 
    751 	/*
    752 	 * Find a free iod to process this request.
    753 	 */
    754 
    755 	mutex_enter(&nfs_iodlist_lock);
    756 	iod = LIST_FIRST(&nfs_iodlist_idle);
    757 	if (iod) {
    758 		/*
    759 		 * Found one, so wake it up and tell it which
    760 		 * mount to process.
    761 		 */
    762 		LIST_REMOVE(iod, nid_idle);
    763 		mutex_enter(&iod->nid_lock);
    764 		mutex_exit(&nfs_iodlist_lock);
    765 		KASSERT(iod->nid_mount == NULL);
    766 		iod->nid_mount = nmp;
    767 		cv_signal(&iod->nid_cv);
    768 		mutex_enter(&nmp->nm_lock);
    769 		mutex_exit(&iod->nid_lock);
    770 		nmp->nm_bufqiods++;
    771 		if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
    772 			cv_broadcast(&nmp->nm_aiocv);
    773 		}
    774 	} else {
    775 		mutex_exit(&nfs_iodlist_lock);
    776 		mutex_enter(&nmp->nm_lock);
    777 	}
    778 
    779 	KASSERT(mutex_owned(&nmp->nm_lock));
    780 
    781 	/*
    782 	 * If we have an iod which can process the request, then queue
    783 	 * the buffer.  However, even if we have an iod, do not initiate
    784 	 * queue cleaning if curproc is the pageout daemon. if the NFS mount
    785 	 * is via local loopback, we may put curproc (pagedaemon) to sleep
    786 	 * waiting for the writes to complete. But the server (ourself)
    787 	 * may block the write, waiting for its (ie., our) pagedaemon
    788 	 * to produce clean pages to handle the write: deadlock.
    789 	 * XXX: start non-loopback mounts straight away?  If "lots free",
    790 	 * let pagedaemon start loopback writes anyway?
    791 	 */
    792 	if (nmp->nm_bufqiods > 0) {
    793 
    794 		/*
    795 		 * Ensure that the queue never grows too large.
    796 		 */
    797 		if (curlwp == uvm.pagedaemon_lwp) {
    798 	  		/* Enque for later, to avoid free-page deadlock */
    799 		} else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
    800 			if (catch) {
    801 				error = cv_timedwait_sig(&nmp->nm_aiocv,
    802 				    &nmp->nm_lock, slptimeo);
    803 			} else {
    804 				error = cv_timedwait(&nmp->nm_aiocv,
    805 				    &nmp->nm_lock, slptimeo);
    806 			}
    807 			if (error) {
    808 				if (nfs_sigintr(nmp, NULL, curlwp)) {
    809 					mutex_exit(&nmp->nm_lock);
    810 					return (EINTR);
    811 				}
    812 				if (catch) {
    813 					catch = false;
    814 					slptimeo = 2 * hz;
    815 				}
    816 			}
    817 
    818 			/*
    819 			 * We might have lost our iod while sleeping,
    820 			 * so check and loop if necessary.
    821 			 */
    822 
    823 			if (nmp->nm_bufqiods == 0) {
    824 				mutex_exit(&nmp->nm_lock);
    825 				goto again;
    826 			}
    827 		}
    828 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
    829 		nmp->nm_bufqlen++;
    830 		mutex_exit(&nmp->nm_lock);
    831 		return (0);
    832 	}
    833 	mutex_exit(&nmp->nm_lock);
    834 
    835 	/*
    836 	 * All the iods are busy on other mounts, so return EIO to
    837 	 * force the caller to process the i/o synchronously.
    838 	 */
    839 
    840 	return (EIO);
    841 }
    842 
    843 /*
    844  * nfs_doio for read.
    845  */
    846 static int
    847 nfs_doio_read(bp, uiop)
    848 	struct buf *bp;
    849 	struct uio *uiop;
    850 {
    851 	struct vnode *vp = bp->b_vp;
    852 	struct nfsnode *np = VTONFS(vp);
    853 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    854 	int error = 0;
    855 
    856 	uiop->uio_rw = UIO_READ;
    857 	switch (vp->v_type) {
    858 	case VREG:
    859 		nfsstats.read_bios++;
    860 		error = nfs_readrpc(vp, uiop);
    861 		if (!error && uiop->uio_resid) {
    862 			int diff, len;
    863 
    864 			/*
    865 			 * If uio_resid > 0, there is a hole in the file and
    866 			 * no writes after the hole have been pushed to
    867 			 * the server yet or the file has been truncated
    868 			 * on the server.
    869 			 * Just zero fill the rest of the valid area.
    870 			 */
    871 
    872 			KASSERT(vp->v_size >=
    873 			    uiop->uio_offset + uiop->uio_resid);
    874 			diff = bp->b_bcount - uiop->uio_resid;
    875 			len = uiop->uio_resid;
    876 			memset((char *)bp->b_data + diff, 0, len);
    877 			uiop->uio_resid = 0;
    878 		}
    879 #if 0
    880 		if (uiop->uio_lwp && (vp->v_flag & VTEXT) &&
    881 		    timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
    882 			killproc(uiop->uio_lwp->l_proc, "process text file was modified");
    883 #if 0 /* XXX NJWLWP */
    884 			uiop->uio_lwp->l_proc->p_holdcnt++;
    885 #endif
    886 		}
    887 #endif
    888 		break;
    889 	case VLNK:
    890 		KASSERT(uiop->uio_offset == (off_t)0);
    891 		nfsstats.readlink_bios++;
    892 		error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
    893 		break;
    894 	case VDIR:
    895 		nfsstats.readdir_bios++;
    896 		uiop->uio_offset = bp->b_dcookie;
    897 #ifndef NFS_V2_ONLY
    898 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
    899 			error = nfs_readdirplusrpc(vp, uiop,
    900 			    curlwp->l_cred);
    901 			/*
    902 			 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
    903 			 */
    904 			if (error == ENOTSUP)
    905 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
    906 		}
    907 #else
    908 		nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
    909 #endif
    910 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
    911 			error = nfs_readdirrpc(vp, uiop,
    912 			    curlwp->l_cred);
    913 		if (!error) {
    914 			bp->b_dcookie = uiop->uio_offset;
    915 		}
    916 		break;
    917 	default:
    918 		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
    919 		break;
    920 	}
    921 	if (error) {
    922 		bp->b_error = error;
    923 	}
    924 	return error;
    925 }
    926 
    927 /*
    928  * nfs_doio for write.
    929  */
    930 static int
    931 nfs_doio_write(bp, uiop)
    932 	struct buf *bp;
    933 	struct uio *uiop;
    934 {
    935 	struct vnode *vp = bp->b_vp;
    936 	struct nfsnode *np = VTONFS(vp);
    937 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    938 	int iomode;
    939 	bool stalewriteverf = false;
    940 	int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
    941 	struct vm_page *pgs[npages];
    942 #ifndef NFS_V2_ONLY
    943 	bool needcommit = true; /* need only COMMIT RPC */
    944 #else
    945 	bool needcommit = false; /* need only COMMIT RPC */
    946 #endif
    947 	bool pageprotected;
    948 	struct uvm_object *uobj = &vp->v_uobj;
    949 	int error;
    950 	off_t off, cnt;
    951 
    952 	if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
    953 		iomode = NFSV3WRITE_UNSTABLE;
    954 	} else {
    955 		iomode = NFSV3WRITE_FILESYNC;
    956 	}
    957 
    958 #ifndef NFS_V2_ONLY
    959 again:
    960 #endif
    961 	rw_enter(&nmp->nm_writeverflock, RW_READER);
    962 
    963 	for (i = 0; i < npages; i++) {
    964 		pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
    965 		if (pgs[i]->uobject == uobj &&
    966 		    pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
    967 			KASSERT(pgs[i]->flags & PG_BUSY);
    968 			/*
    969 			 * this page belongs to our object.
    970 			 */
    971 			simple_lock(&uobj->vmobjlock);
    972 			/*
    973 			 * write out the page stably if it's about to
    974 			 * be released because we can't resend it
    975 			 * on the server crash.
    976 			 *
    977 			 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
    978 			 * changed until unbusy the page.
    979 			 */
    980 			if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
    981 				iomode = NFSV3WRITE_FILESYNC;
    982 			/*
    983 			 * if we met a page which hasn't been sent yet,
    984 			 * we need do WRITE RPC.
    985 			 */
    986 			if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
    987 				needcommit = false;
    988 			simple_unlock(&uobj->vmobjlock);
    989 		} else {
    990 			iomode = NFSV3WRITE_FILESYNC;
    991 			needcommit = false;
    992 		}
    993 	}
    994 	if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
    995 		simple_lock(&uobj->vmobjlock);
    996 		for (i = 0; i < npages; i++) {
    997 			pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
    998 			pmap_page_protect(pgs[i], VM_PROT_READ);
    999 		}
   1000 		simple_unlock(&uobj->vmobjlock);
   1001 		pageprotected = true; /* pages can't be modified during i/o. */
   1002 	} else
   1003 		pageprotected = false;
   1004 
   1005 	/*
   1006 	 * Send the data to the server if necessary,
   1007 	 * otherwise just send a commit rpc.
   1008 	 */
   1009 #ifndef NFS_V2_ONLY
   1010 	if (needcommit) {
   1011 
   1012 		/*
   1013 		 * If the buffer is in the range that we already committed,
   1014 		 * there's nothing to do.
   1015 		 *
   1016 		 * If it's in the range that we need to commit, push the
   1017 		 * whole range at once, otherwise only push the buffer.
   1018 		 * In both these cases, acquire the commit lock to avoid
   1019 		 * other processes modifying the range.
   1020 		 */
   1021 
   1022 		off = uiop->uio_offset;
   1023 		cnt = bp->b_bcount;
   1024 		mutex_enter(&np->n_commitlock);
   1025 		if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
   1026 			bool pushedrange;
   1027 			if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
   1028 				pushedrange = true;
   1029 				off = np->n_pushlo;
   1030 				cnt = np->n_pushhi - np->n_pushlo;
   1031 			} else {
   1032 				pushedrange = false;
   1033 			}
   1034 			error = nfs_commit(vp, off, cnt, curlwp);
   1035 			if (error == 0) {
   1036 				if (pushedrange) {
   1037 					nfs_merge_commit_ranges(vp);
   1038 				} else {
   1039 					nfs_add_committed_range(vp, off, cnt);
   1040 				}
   1041 			}
   1042 		} else {
   1043 			error = 0;
   1044 		}
   1045 		mutex_exit(&np->n_commitlock);
   1046 		rw_exit(&nmp->nm_writeverflock);
   1047 		if (!error) {
   1048 			/*
   1049 			 * pages are now on stable storage.
   1050 			 */
   1051 			uiop->uio_resid = 0;
   1052 			simple_lock(&uobj->vmobjlock);
   1053 			for (i = 0; i < npages; i++) {
   1054 				pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
   1055 			}
   1056 			simple_unlock(&uobj->vmobjlock);
   1057 			return 0;
   1058 		} else if (error == NFSERR_STALEWRITEVERF) {
   1059 			nfs_clearcommit(vp->v_mount);
   1060 			goto again;
   1061 		}
   1062 		if (error) {
   1063 			bp->b_error = np->n_error = error;
   1064 			np->n_flag |= NWRITEERR;
   1065 		}
   1066 		return error;
   1067 	}
   1068 #endif
   1069 	off = uiop->uio_offset;
   1070 	cnt = bp->b_bcount;
   1071 	uiop->uio_rw = UIO_WRITE;
   1072 	nfsstats.write_bios++;
   1073 	error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
   1074 #ifndef NFS_V2_ONLY
   1075 	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
   1076 		/*
   1077 		 * we need to commit pages later.
   1078 		 */
   1079 		mutex_enter(&np->n_commitlock);
   1080 		nfs_add_tobecommitted_range(vp, off, cnt);
   1081 		/*
   1082 		 * if there can be too many uncommitted pages, commit them now.
   1083 		 */
   1084 		if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
   1085 			off = np->n_pushlo;
   1086 			cnt = nfs_commitsize >> 1;
   1087 			error = nfs_commit(vp, off, cnt, curlwp);
   1088 			if (!error) {
   1089 				nfs_add_committed_range(vp, off, cnt);
   1090 				nfs_del_tobecommitted_range(vp, off, cnt);
   1091 			}
   1092 			if (error == NFSERR_STALEWRITEVERF) {
   1093 				stalewriteverf = true;
   1094 				error = 0; /* it isn't a real error */
   1095 			}
   1096 		} else {
   1097 			/*
   1098 			 * re-dirty pages so that they will be passed
   1099 			 * to us later again.
   1100 			 */
   1101 			simple_lock(&uobj->vmobjlock);
   1102 			for (i = 0; i < npages; i++) {
   1103 				pgs[i]->flags &= ~PG_CLEAN;
   1104 			}
   1105 			simple_unlock(&uobj->vmobjlock);
   1106 		}
   1107 		mutex_exit(&np->n_commitlock);
   1108 	} else
   1109 #endif
   1110 	if (!error) {
   1111 		/*
   1112 		 * pages are now on stable storage.
   1113 		 */
   1114 		mutex_enter(&np->n_commitlock);
   1115 		nfs_del_committed_range(vp, off, cnt);
   1116 		mutex_exit(&np->n_commitlock);
   1117 		simple_lock(&uobj->vmobjlock);
   1118 		for (i = 0; i < npages; i++) {
   1119 			pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
   1120 		}
   1121 		simple_unlock(&uobj->vmobjlock);
   1122 	} else {
   1123 		/*
   1124 		 * we got an error.
   1125 		 */
   1126 		bp->b_error = np->n_error = error;
   1127 		np->n_flag |= NWRITEERR;
   1128 	}
   1129 
   1130 	rw_exit(&nmp->nm_writeverflock);
   1131 
   1132 	if (stalewriteverf) {
   1133 		nfs_clearcommit(vp->v_mount);
   1134 	}
   1135 	return error;
   1136 }
   1137 
   1138 /*
   1139  * nfs_doio for B_PHYS.
   1140  */
   1141 static int
   1142 nfs_doio_phys(bp, uiop)
   1143 	struct buf *bp;
   1144 	struct uio *uiop;
   1145 {
   1146 	struct vnode *vp = bp->b_vp;
   1147 	int error;
   1148 
   1149 	uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
   1150 	if (bp->b_flags & B_READ) {
   1151 		uiop->uio_rw = UIO_READ;
   1152 		nfsstats.read_physios++;
   1153 		error = nfs_readrpc(vp, uiop);
   1154 	} else {
   1155 		int iomode = NFSV3WRITE_DATASYNC;
   1156 		bool stalewriteverf;
   1157 		struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1158 
   1159 		uiop->uio_rw = UIO_WRITE;
   1160 		nfsstats.write_physios++;
   1161 		rw_enter(&nmp->nm_writeverflock, RW_READER);
   1162 		error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
   1163 		rw_exit(&nmp->nm_writeverflock);
   1164 		if (stalewriteverf) {
   1165 			nfs_clearcommit(bp->b_vp->v_mount);
   1166 		}
   1167 	}
   1168 	if (error) {
   1169 		bp->b_error = error;
   1170 	}
   1171 	return error;
   1172 }
   1173 
   1174 /*
   1175  * Do an I/O operation to/from a cache block. This may be called
   1176  * synchronously or from an nfsiod.
   1177  */
   1178 int
   1179 nfs_doio(bp)
   1180 	struct buf *bp;
   1181 {
   1182 	int error;
   1183 	struct uio uio;
   1184 	struct uio *uiop = &uio;
   1185 	struct iovec io;
   1186 	UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
   1187 
   1188 	uiop->uio_iov = &io;
   1189 	uiop->uio_iovcnt = 1;
   1190 	uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
   1191 	UIO_SETUP_SYSSPACE(uiop);
   1192 	io.iov_base = bp->b_data;
   1193 	io.iov_len = uiop->uio_resid = bp->b_bcount;
   1194 
   1195 	/*
   1196 	 * Historically, paging was done with physio, but no more...
   1197 	 */
   1198 	if (bp->b_flags & B_PHYS) {
   1199 		/*
   1200 		 * ...though reading /dev/drum still gets us here.
   1201 		 */
   1202 		error = nfs_doio_phys(bp, uiop);
   1203 	} else if (bp->b_flags & B_READ) {
   1204 		error = nfs_doio_read(bp, uiop);
   1205 	} else {
   1206 		error = nfs_doio_write(bp, uiop);
   1207 	}
   1208 	bp->b_resid = uiop->uio_resid;
   1209 	biodone(bp);
   1210 	return (error);
   1211 }
   1212 
   1213 /*
   1214  * Vnode op for VM getpages.
   1215  */
   1216 
   1217 int
   1218 nfs_getpages(v)
   1219 	void *v;
   1220 {
   1221 	struct vop_getpages_args /* {
   1222 		struct vnode *a_vp;
   1223 		voff_t a_offset;
   1224 		struct vm_page **a_m;
   1225 		int *a_count;
   1226 		int a_centeridx;
   1227 		vm_prot_t a_access_type;
   1228 		int a_advice;
   1229 		int a_flags;
   1230 	} */ *ap = v;
   1231 
   1232 	struct vnode *vp = ap->a_vp;
   1233 	struct uvm_object *uobj = &vp->v_uobj;
   1234 	struct nfsnode *np = VTONFS(vp);
   1235 	const int npages = *ap->a_count;
   1236 	struct vm_page *pg, **pgs, *opgs[npages];
   1237 	off_t origoffset, len;
   1238 	int i, error;
   1239 	bool v3 = NFS_ISV3(vp);
   1240 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1241 	bool locked = (ap->a_flags & PGO_LOCKED) != 0;
   1242 
   1243 	/*
   1244 	 * call the genfs code to get the pages.  `pgs' may be NULL
   1245 	 * when doing read-ahead.
   1246 	 */
   1247 
   1248 	pgs = ap->a_m;
   1249 	if (write && locked && v3) {
   1250 		KASSERT(pgs != NULL);
   1251 #ifdef DEBUG
   1252 
   1253 		/*
   1254 		 * If PGO_LOCKED is set, real pages shouldn't exists
   1255 		 * in the array.
   1256 		 */
   1257 
   1258 		for (i = 0; i < npages; i++)
   1259 			KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
   1260 #endif
   1261 		memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
   1262 	}
   1263 	error = genfs_getpages(v);
   1264 	if (error) {
   1265 		return (error);
   1266 	}
   1267 
   1268 	/*
   1269 	 * for read faults where the nfs node is not yet marked NMODIFIED,
   1270 	 * set PG_RDONLY on the pages so that we come back here if someone
   1271 	 * tries to modify later via the mapping that will be entered for
   1272 	 * this fault.
   1273 	 */
   1274 
   1275 	if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
   1276 		if (!locked) {
   1277 			simple_lock(&uobj->vmobjlock);
   1278 		}
   1279 		for (i = 0; i < npages; i++) {
   1280 			pg = pgs[i];
   1281 			if (pg == NULL || pg == PGO_DONTCARE) {
   1282 				continue;
   1283 			}
   1284 			pg->flags |= PG_RDONLY;
   1285 		}
   1286 		if (!locked) {
   1287 			simple_unlock(&uobj->vmobjlock);
   1288 		}
   1289 	}
   1290 	if (!write) {
   1291 		return (0);
   1292 	}
   1293 
   1294 	/*
   1295 	 * this is a write fault, update the commit info.
   1296 	 */
   1297 
   1298 	origoffset = ap->a_offset;
   1299 	len = npages << PAGE_SHIFT;
   1300 
   1301 	if (v3) {
   1302 		if (!locked) {
   1303 			mutex_enter(&np->n_commitlock);
   1304 		} else {
   1305 			if (!mutex_tryenter(&np->n_commitlock)) {
   1306 
   1307 				/*
   1308 				 * Since PGO_LOCKED is set, we need to unbusy
   1309 				 * all pages fetched by genfs_getpages() above,
   1310 				 * tell the caller that there are no pages
   1311 				 * available and put back original pgs array.
   1312 				 */
   1313 
   1314 				uvm_lock_pageq();
   1315 				uvm_page_unbusy(pgs, npages);
   1316 				uvm_unlock_pageq();
   1317 				*ap->a_count = 0;
   1318 				memcpy(pgs, opgs,
   1319 				    npages * sizeof(struct vm_pages *));
   1320 				return EBUSY;
   1321 			}
   1322 		}
   1323 		nfs_del_committed_range(vp, origoffset, len);
   1324 		nfs_del_tobecommitted_range(vp, origoffset, len);
   1325 	}
   1326 	np->n_flag |= NMODIFIED;
   1327 	if (!locked) {
   1328 		simple_lock(&uobj->vmobjlock);
   1329 	}
   1330 	for (i = 0; i < npages; i++) {
   1331 		pg = pgs[i];
   1332 		if (pg == NULL || pg == PGO_DONTCARE) {
   1333 			continue;
   1334 		}
   1335 		pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
   1336 	}
   1337 	if (!locked) {
   1338 		simple_unlock(&uobj->vmobjlock);
   1339 	}
   1340 	if (v3) {
   1341 		mutex_exit(&np->n_commitlock);
   1342 	}
   1343 	return (0);
   1344 }
   1345