nfs_bio.c revision 1.175.2.3 1 /* $NetBSD: nfs_bio.c,v 1.175.2.3 2010/09/26 03:58:54 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.175.2.3 2010/09/26 03:58:54 yamt Exp $");
39
40 #ifdef _KERNEL_OPT
41 #include "opt_nfs.h"
42 #include "opt_ddb.h"
43 #endif
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <sys/vnode.h>
52 #include <sys/mount.h>
53 #include <sys/kernel.h>
54 #include <sys/namei.h>
55 #include <sys/dirent.h>
56 #include <sys/kauth.h>
57
58 #include <uvm/uvm_extern.h>
59 #include <uvm/uvm.h>
60
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nfsmount.h>
65 #include <nfs/nfsnode.h>
66 #include <nfs/nfs_var.h>
67
68 extern int nfs_numasync;
69 extern int nfs_commitsize;
70 extern struct nfsstats nfsstats;
71
72 static int nfs_doio_read(struct buf *, struct uio *);
73 static int nfs_doio_write(struct buf *, struct uio *);
74 static int nfs_doio_phys(struct buf *, struct uio *);
75
76 /*
77 * Vnode op for read using bio
78 * Any similarity to readip() is purely coincidental
79 */
80 int
81 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag,
82 kauth_cred_t cred, int cflag)
83 {
84 struct nfsnode *np = VTONFS(vp);
85 struct buf *bp = NULL, *rabp;
86 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
87 struct nfsdircache *ndp = NULL, *nndp = NULL;
88 void *baddr;
89 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
90 int enough = 0;
91 struct dirent *dp, *pdp, *edp, *ep;
92 off_t curoff = 0;
93 int advice;
94 struct lwp *l = curlwp;
95
96 #ifdef DIAGNOSTIC
97 if (uio->uio_rw != UIO_READ)
98 panic("nfs_read mode");
99 #endif
100 if (uio->uio_resid == 0)
101 return (0);
102 if (vp->v_type != VDIR && uio->uio_offset < 0)
103 return (EINVAL);
104 #ifndef NFS_V2_ONLY
105 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
106 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
107 (void)nfs_fsinfo(nmp, vp, cred, l);
108 #endif
109 if (vp->v_type != VDIR &&
110 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
111 return (EFBIG);
112
113 /*
114 * For nfs, cache consistency can only be maintained approximately.
115 * Although RFC1094 does not specify the criteria, the following is
116 * believed to be compatible with the reference port.
117 *
118 * If the file's modify time on the server has changed since the
119 * last read rpc or you have written to the file,
120 * you may have lost data cache consistency with the
121 * server, so flush all of the file's data out of the cache.
122 * Then force a getattr rpc to ensure that you have up to date
123 * attributes.
124 * NB: This implies that cache data can be read when up to
125 * nfs_attrtimeo seconds out of date. If you find that you need current
126 * attributes this could be forced by setting n_attrstamp to 0 before
127 * the VOP_GETATTR() call.
128 */
129
130 if (vp->v_type != VLNK) {
131 error = nfs_flushstalebuf(vp, cred, l,
132 NFS_FLUSHSTALEBUF_MYWRITE);
133 if (error)
134 return error;
135 }
136
137 do {
138 /*
139 * Don't cache symlinks.
140 */
141 if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
142 return (nfs_readlinkrpc(vp, uio, cred));
143 }
144 baddr = (void *)0;
145 switch (vp->v_type) {
146 case VREG:
147 nfsstats.biocache_reads++;
148
149 advice = IO_ADV_DECODE(ioflag);
150 error = 0;
151 while (uio->uio_resid > 0) {
152 vsize_t bytelen;
153
154 nfs_delayedtruncate(vp);
155 if (np->n_size <= uio->uio_offset) {
156 break;
157 }
158 bytelen =
159 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
160 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
161 advice, UBC_READ | UBC_PARTIALOK |
162 (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
163 if (error) {
164 /*
165 * XXXkludge
166 * the file has been truncated on the server.
167 * there isn't much we can do.
168 */
169 if (uio->uio_offset >= np->n_size) {
170 /* end of file */
171 error = 0;
172 } else {
173 break;
174 }
175 }
176 }
177 break;
178
179 case VLNK:
180 nfsstats.biocache_readlinks++;
181 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
182 if (!bp)
183 return (EINTR);
184 if ((bp->b_oflags & BO_DONE) == 0) {
185 bp->b_flags |= B_READ;
186 error = nfs_doio(bp);
187 if (error) {
188 brelse(bp, 0);
189 return (error);
190 }
191 }
192 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
193 got_buf = 1;
194 on = 0;
195 break;
196 case VDIR:
197 diragain:
198 nfsstats.biocache_readdirs++;
199 ndp = nfs_searchdircache(vp, uio->uio_offset,
200 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
201 if (!ndp) {
202 /*
203 * We've been handed a cookie that is not
204 * in the cache. If we're not translating
205 * 32 <-> 64, it may be a value that was
206 * flushed out of the cache because it grew
207 * too big. Let the server judge if it's
208 * valid or not. In the translation case,
209 * we have no way of validating this value,
210 * so punt.
211 */
212 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
213 return (EINVAL);
214 ndp = nfs_enterdircache(vp, uio->uio_offset,
215 uio->uio_offset, 0, 0);
216 }
217
218 if (NFS_EOFVALID(np) &&
219 ndp->dc_cookie == np->n_direofoffset) {
220 nfs_putdircache(np, ndp);
221 nfsstats.direofcache_hits++;
222 return (0);
223 }
224
225 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
226 if (!bp)
227 return (EINTR);
228 if ((bp->b_oflags & BO_DONE) == 0) {
229 bp->b_flags |= B_READ;
230 bp->b_dcookie = ndp->dc_blkcookie;
231 error = nfs_doio(bp);
232 if (error) {
233 /*
234 * Yuck! The directory has been modified on the
235 * server. Punt and let the userland code
236 * deal with it.
237 */
238 nfs_putdircache(np, ndp);
239 brelse(bp, 0);
240 /*
241 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
242 */
243 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
244 nfs_invaldircache(vp, 0);
245 nfs_vinvalbuf(vp, 0, cred, l, 1);
246 }
247 return (error);
248 }
249 }
250
251 /*
252 * Just return if we hit EOF right away with this
253 * block. Always check here, because direofoffset
254 * may have been set by an nfsiod since the last
255 * check.
256 *
257 * also, empty block implies EOF.
258 */
259
260 if (bp->b_bcount == bp->b_resid ||
261 (NFS_EOFVALID(np) &&
262 ndp->dc_blkcookie == np->n_direofoffset)) {
263 KASSERT(bp->b_bcount != bp->b_resid ||
264 ndp->dc_blkcookie == bp->b_dcookie);
265 nfs_putdircache(np, ndp);
266 brelse(bp, BC_NOCACHE);
267 return 0;
268 }
269
270 /*
271 * Find the entry we were looking for in the block.
272 */
273
274 en = ndp->dc_entry;
275
276 pdp = dp = (struct dirent *)bp->b_data;
277 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
278 bp->b_resid);
279 enn = 0;
280 while (enn < en && dp < edp) {
281 pdp = dp;
282 dp = _DIRENT_NEXT(dp);
283 enn++;
284 }
285
286 /*
287 * If the entry number was bigger than the number of
288 * entries in the block, or the cookie of the previous
289 * entry doesn't match, the directory cache is
290 * stale. Flush it and try again (i.e. go to
291 * the server).
292 */
293 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
294 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
295 #ifdef DEBUG
296 printf("invalid cache: %p %p %p off %jx %jx\n",
297 pdp, dp, edp,
298 (uintmax_t)uio->uio_offset,
299 (uintmax_t)NFS_GETCOOKIE(pdp));
300 #endif
301 nfs_putdircache(np, ndp);
302 brelse(bp, 0);
303 nfs_invaldircache(vp, 0);
304 nfs_vinvalbuf(vp, 0, cred, l, 0);
305 goto diragain;
306 }
307
308 on = (char *)dp - (char *)bp->b_data;
309
310 /*
311 * Cache all entries that may be exported to the
312 * user, as they may be thrown back at us. The
313 * NFSBIO_CACHECOOKIES flag indicates that all
314 * entries are being 'exported', so cache them all.
315 */
316
317 if (en == 0 && pdp == dp) {
318 dp = _DIRENT_NEXT(dp);
319 enn++;
320 }
321
322 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
323 n = uio->uio_resid;
324 enough = 1;
325 } else
326 n = bp->b_bcount - bp->b_resid - on;
327
328 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
329
330 /*
331 * Find last complete entry to copy, caching entries
332 * (if requested) as we go.
333 */
334
335 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
336 if (cflag & NFSBIO_CACHECOOKIES) {
337 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
338 ndp->dc_blkcookie, enn, bp->b_lblkno);
339 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
340 NFS_STASHCOOKIE32(pdp,
341 nndp->dc_cookie32);
342 }
343 nfs_putdircache(np, nndp);
344 }
345 pdp = dp;
346 dp = _DIRENT_NEXT(dp);
347 enn++;
348 }
349 nfs_putdircache(np, ndp);
350
351 /*
352 * If the last requested entry was not the last in the
353 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
354 * cache the cookie of the last requested one, and
355 * set of the offset to it.
356 */
357
358 if ((on + n) < bp->b_bcount - bp->b_resid) {
359 curoff = NFS_GETCOOKIE(pdp);
360 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
361 enn, bp->b_lblkno);
362 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
363 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
364 curoff = nndp->dc_cookie32;
365 }
366 nfs_putdircache(np, nndp);
367 } else
368 curoff = bp->b_dcookie;
369
370 /*
371 * Always cache the entry for the next block,
372 * so that readaheads can use it.
373 */
374 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
375 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
376 if (curoff == bp->b_dcookie) {
377 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
378 curoff = nndp->dc_cookie32;
379 }
380 }
381
382 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
383
384 /*
385 * If not eof and read aheads are enabled, start one.
386 * (You need the current block first, so that you have the
387 * directory offset cookie of the next block.)
388 */
389 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
390 !NFS_EOFVALID(np)) {
391 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
392 NFS_DIRBLKSIZ, l);
393 if (rabp) {
394 if ((rabp->b_oflags & (BO_DONE | BO_DELWRI)) == 0) {
395 rabp->b_dcookie = nndp->dc_cookie;
396 rabp->b_flags |= (B_READ | B_ASYNC);
397 if (nfs_asyncio(rabp)) {
398 brelse(rabp, BC_INVAL);
399 }
400 } else
401 brelse(rabp, 0);
402 }
403 }
404 nfs_putdircache(np, nndp);
405 got_buf = 1;
406 break;
407 default:
408 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
409 break;
410 }
411
412 if (n > 0) {
413 if (!baddr)
414 baddr = bp->b_data;
415 error = uiomove((char *)baddr + on, (int)n, uio);
416 }
417 switch (vp->v_type) {
418 case VREG:
419 break;
420 case VLNK:
421 n = 0;
422 break;
423 case VDIR:
424 uio->uio_offset = curoff;
425 if (enough)
426 n = 0;
427 break;
428 default:
429 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
430 }
431 if (got_buf)
432 brelse(bp, 0);
433 } while (error == 0 && uio->uio_resid > 0 && n > 0);
434 return (error);
435 }
436
437 /*
438 * Vnode op for write using bio
439 */
440 int
441 nfs_write(void *v)
442 {
443 struct vop_write_args /* {
444 struct vnode *a_vp;
445 struct uio *a_uio;
446 int a_ioflag;
447 kauth_cred_t a_cred;
448 } */ *ap = v;
449 struct uio *uio = ap->a_uio;
450 struct lwp *l = curlwp;
451 struct vnode *vp = ap->a_vp;
452 struct nfsnode *np = VTONFS(vp);
453 kauth_cred_t cred = ap->a_cred;
454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
455 voff_t oldoff, origoff;
456 vsize_t bytelen;
457 int error = 0;
458 int ioflag = ap->a_ioflag;
459 int extended = 0, wrotedata = 0;
460
461 KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
462 #ifdef DIAGNOSTIC
463 if (uio->uio_rw != UIO_WRITE)
464 panic("nfs_write mode");
465 #endif
466 if (vp->v_type != VREG)
467 return (EIO);
468 error = atomic_swap_uint((unsigned int *)&np->n_error, 0);
469 if (error != 0) {
470 return error;
471 }
472 #ifndef NFS_V2_ONLY
473 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
474 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
475 (void)nfs_fsinfo(nmp, vp, cred, l);
476 #endif
477 if (ioflag & IO_APPEND) {
478 NFS_INVALIDATE_ATTRCACHE(np);
479 error = nfs_flushstalebuf(vp, cred, l,
480 NFS_FLUSHSTALEBUF_MYWRITE);
481 if (error)
482 return (error);
483 uio->uio_offset = np->n_size;
484
485 /*
486 * This is already checked above VOP_WRITE, but recheck
487 * the append case here to make sure our idea of the
488 * file size is as fresh as possible.
489 */
490 if (uio->uio_offset + uio->uio_resid >
491 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
492 mutex_enter(proc_lock);
493 psignal(l->l_proc, SIGXFSZ);
494 mutex_exit(proc_lock);
495 return (EFBIG);
496 }
497 }
498 if (uio->uio_offset < 0)
499 return (EINVAL);
500 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
501 return (EFBIG);
502 if (uio->uio_resid == 0)
503 return (0);
504
505 origoff = uio->uio_offset;
506 do {
507 bool overwrite; /* if we are overwriting whole pages */
508 u_quad_t oldsize;
509 oldoff = uio->uio_offset;
510 bytelen = uio->uio_resid;
511
512 nfsstats.biocache_writes++;
513
514 oldsize = np->n_size;
515 np->n_flag |= NMODIFIED;
516 if (np->n_size < uio->uio_offset + bytelen) {
517 np->n_size = uio->uio_offset + bytelen;
518 }
519 overwrite = false;
520 if ((uio->uio_offset & PAGE_MASK) == 0) {
521 if ((vp->v_vflag & VV_MAPPED) == 0 &&
522 bytelen > PAGE_SIZE) {
523 bytelen = trunc_page(bytelen);
524 overwrite = true;
525 } else if ((bytelen & PAGE_MASK) == 0 &&
526 uio->uio_offset >= vp->v_size) {
527 overwrite = true;
528 }
529 }
530 if (vp->v_size < uio->uio_offset + bytelen) {
531 uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
532 }
533 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
534 UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
535 (overwrite ? UBC_FAULTBUSY : 0) |
536 (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
537 if (error) {
538 uvm_vnp_setwritesize(vp, vp->v_size);
539 if (overwrite && np->n_size != oldsize) {
540 /*
541 * backout size and free pages past eof.
542 */
543 np->n_size = oldsize;
544 mutex_enter(&vp->v_interlock);
545 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
546 0, PGO_SYNCIO | PGO_FREE);
547 }
548 break;
549 }
550 wrotedata = 1;
551
552 /*
553 * update UVM's notion of the size now that we've
554 * copied the data into the vnode's pages.
555 */
556
557 if (vp->v_size < uio->uio_offset) {
558 uvm_vnp_setsize(vp, uio->uio_offset);
559 extended = 1;
560 }
561
562 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
563 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
564 mutex_enter(&vp->v_interlock);
565 error = VOP_PUTPAGES(vp,
566 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
567 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
568 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
569 }
570 } while (uio->uio_resid > 0);
571 if (wrotedata)
572 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
573 if (error == 0 && (ioflag & IO_SYNC) != 0) {
574 mutex_enter(&vp->v_interlock);
575 error = VOP_PUTPAGES(vp,
576 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
577 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
578 ~(nmp->nm_wsize - 1)),
579 PGO_CLEANIT | PGO_SYNCIO);
580 }
581 return error;
582 }
583
584 /*
585 * Get an nfs cache block.
586 * Allocate a new one if the block isn't currently in the cache
587 * and return the block marked busy. If the calling process is
588 * interrupted by a signal for an interruptible mount point, return
589 * NULL.
590 */
591 struct buf *
592 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct lwp *l)
593 {
594 struct buf *bp;
595 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
596
597 if (nmp->nm_flag & NFSMNT_INT) {
598 bp = getblk(vp, bn, size, PCATCH, 0);
599 while (bp == NULL) {
600 if (nfs_sigintr(nmp, NULL, l))
601 return (NULL);
602 bp = getblk(vp, bn, size, 0, 2 * hz);
603 }
604 } else
605 bp = getblk(vp, bn, size, 0, 0);
606 return (bp);
607 }
608
609 /*
610 * Flush and invalidate all dirty buffers. If another process is already
611 * doing the flush, just wait for completion.
612 */
613 int
614 nfs_vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred,
615 struct lwp *l, int intrflg)
616 {
617 struct nfsnode *np = VTONFS(vp);
618 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
619 int error = 0, slptimeo;
620 bool catch;
621
622 if ((nmp->nm_flag & NFSMNT_INT) == 0)
623 intrflg = 0;
624 if (intrflg) {
625 catch = true;
626 slptimeo = 2 * hz;
627 } else {
628 catch = false;
629 slptimeo = 0;
630 }
631 /*
632 * First wait for any other process doing a flush to complete.
633 */
634 mutex_enter(&vp->v_interlock);
635 while (np->n_flag & NFLUSHINPROG) {
636 np->n_flag |= NFLUSHWANT;
637 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
638 slptimeo, &vp->v_interlock);
639 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
640 mutex_exit(&vp->v_interlock);
641 return EINTR;
642 }
643 }
644
645 /*
646 * Now, flush as required.
647 */
648 np->n_flag |= NFLUSHINPROG;
649 mutex_exit(&vp->v_interlock);
650 error = vinvalbuf(vp, flags, cred, l, catch, 0);
651 while (error) {
652 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
653 error = EINTR;
654 break;
655 }
656 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
657 }
658 mutex_enter(&vp->v_interlock);
659 if (error == 0)
660 np->n_flag &= ~NMODIFIED;
661 np->n_flag &= ~NFLUSHINPROG;
662 if (np->n_flag & NFLUSHWANT) {
663 np->n_flag &= ~NFLUSHWANT;
664 wakeup(&np->n_flag);
665 }
666 mutex_exit(&vp->v_interlock);
667 return error;
668 }
669
670 /*
671 * nfs_flushstalebuf: flush cache if it's stale.
672 *
673 * => caller shouldn't own any pages or buffers which belong to the vnode.
674 */
675
676 int
677 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
678 int flags)
679 {
680 struct nfsnode *np = VTONFS(vp);
681 struct vattr vattr;
682 int error;
683
684 if (np->n_flag & NMODIFIED) {
685 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
686 || vp->v_type != VREG) {
687 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
688 if (error)
689 return error;
690 if (vp->v_type == VDIR) {
691 nfs_invaldircache(vp, 0);
692 }
693 } else {
694 /*
695 * XXX assuming writes are ours.
696 */
697 }
698 NFS_INVALIDATE_ATTRCACHE(np);
699 error = VOP_GETATTR(vp, &vattr, cred);
700 if (error)
701 return error;
702 np->n_mtime = vattr.va_mtime;
703 } else {
704 error = VOP_GETATTR(vp, &vattr, cred);
705 if (error)
706 return error;
707 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
708 if (vp->v_type == VDIR) {
709 nfs_invaldircache(vp, 0);
710 }
711 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
712 if (error)
713 return error;
714 np->n_mtime = vattr.va_mtime;
715 }
716 }
717
718 return error;
719 }
720
721 /*
722 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
723 * This is mainly to avoid queueing async I/O requests when the nfsiods
724 * are all hung on a dead server.
725 */
726
727 int
728 nfs_asyncio(struct buf *bp)
729 {
730 struct nfs_iod *iod;
731 struct nfsmount *nmp;
732 int slptimeo = 0, error;
733 bool catch = false;
734
735 if (nfs_numasync == 0)
736 return (EIO);
737
738 nmp = VFSTONFS(bp->b_vp->v_mount);
739 again:
740 if (nmp->nm_flag & NFSMNT_INT)
741 catch = true;
742
743 /*
744 * Find a free iod to process this request.
745 */
746
747 mutex_enter(&nfs_iodlist_lock);
748 iod = LIST_FIRST(&nfs_iodlist_idle);
749 if (iod) {
750 /*
751 * Found one, so wake it up and tell it which
752 * mount to process.
753 */
754 LIST_REMOVE(iod, nid_idle);
755 mutex_enter(&iod->nid_lock);
756 mutex_exit(&nfs_iodlist_lock);
757 KASSERT(iod->nid_mount == NULL);
758 iod->nid_mount = nmp;
759 cv_signal(&iod->nid_cv);
760 mutex_enter(&nmp->nm_lock);
761 mutex_exit(&iod->nid_lock);
762 nmp->nm_bufqiods++;
763 if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
764 cv_broadcast(&nmp->nm_aiocv);
765 }
766 } else {
767 mutex_exit(&nfs_iodlist_lock);
768 mutex_enter(&nmp->nm_lock);
769 }
770
771 KASSERT(mutex_owned(&nmp->nm_lock));
772
773 /*
774 * If we have an iod which can process the request, then queue
775 * the buffer. However, even if we have an iod, do not initiate
776 * queue cleaning if curproc is the pageout daemon. if the NFS mount
777 * is via local loopback, we may put curproc (pagedaemon) to sleep
778 * waiting for the writes to complete. But the server (ourself)
779 * may block the write, waiting for its (ie., our) pagedaemon
780 * to produce clean pages to handle the write: deadlock.
781 * XXX: start non-loopback mounts straight away? If "lots free",
782 * let pagedaemon start loopback writes anyway?
783 */
784 if (nmp->nm_bufqiods > 0) {
785
786 /*
787 * Ensure that the queue never grows too large.
788 */
789 if (curlwp == uvm.pagedaemon_lwp) {
790 /* Enque for later, to avoid free-page deadlock */
791 } else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
792 if (catch) {
793 error = cv_timedwait_sig(&nmp->nm_aiocv,
794 &nmp->nm_lock, slptimeo);
795 } else {
796 error = cv_timedwait(&nmp->nm_aiocv,
797 &nmp->nm_lock, slptimeo);
798 }
799 if (error) {
800 if (nfs_sigintr(nmp, NULL, curlwp)) {
801 mutex_exit(&nmp->nm_lock);
802 return (EINTR);
803 }
804 if (catch) {
805 catch = false;
806 slptimeo = 2 * hz;
807 }
808 }
809
810 /*
811 * We might have lost our iod while sleeping,
812 * so check and loop if necessary.
813 */
814
815 if (nmp->nm_bufqiods == 0) {
816 mutex_exit(&nmp->nm_lock);
817 goto again;
818 }
819 }
820 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
821 nmp->nm_bufqlen++;
822 mutex_exit(&nmp->nm_lock);
823 return (0);
824 }
825 mutex_exit(&nmp->nm_lock);
826
827 /*
828 * All the iods are busy on other mounts, so return EIO to
829 * force the caller to process the i/o synchronously.
830 */
831
832 return (EIO);
833 }
834
835 /*
836 * nfs_doio for read.
837 */
838 static int
839 nfs_doio_read(struct buf *bp, struct uio *uiop)
840 {
841 struct vnode *vp = bp->b_vp;
842 struct nfsnode *np = VTONFS(vp);
843 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
844 int error = 0;
845
846 uiop->uio_rw = UIO_READ;
847 switch (vp->v_type) {
848 case VREG:
849 nfsstats.read_bios++;
850 error = nfs_readrpc(vp, uiop);
851 if (!error && uiop->uio_resid) {
852 int diff, len;
853
854 /*
855 * If uio_resid > 0, there is a hole in the file and
856 * no writes after the hole have been pushed to
857 * the server yet or the file has been truncated
858 * on the server.
859 * Just zero fill the rest of the valid area.
860 */
861
862 KASSERT(vp->v_size >=
863 uiop->uio_offset + uiop->uio_resid);
864 diff = bp->b_bcount - uiop->uio_resid;
865 len = uiop->uio_resid;
866 memset((char *)bp->b_data + diff, 0, len);
867 uiop->uio_resid = 0;
868 }
869 #if 0
870 if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
871 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
872 mutex_enter(proc_lock);
873 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
874 mutex_exit(proc_lock);
875 #if 0 /* XXX NJWLWP */
876 uiop->uio_lwp->l_proc->p_holdcnt++;
877 #endif
878 }
879 #endif
880 break;
881 case VLNK:
882 KASSERT(uiop->uio_offset == (off_t)0);
883 nfsstats.readlink_bios++;
884 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
885 break;
886 case VDIR:
887 nfsstats.readdir_bios++;
888 uiop->uio_offset = bp->b_dcookie;
889 #ifndef NFS_V2_ONLY
890 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
891 error = nfs_readdirplusrpc(vp, uiop,
892 curlwp->l_cred);
893 /*
894 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
895 */
896 if (error == ENOTSUP)
897 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
898 }
899 #else
900 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
901 #endif
902 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
903 error = nfs_readdirrpc(vp, uiop,
904 curlwp->l_cred);
905 if (!error) {
906 bp->b_dcookie = uiop->uio_offset;
907 }
908 break;
909 default:
910 printf("nfs_doio: type %x unexpected\n", vp->v_type);
911 break;
912 }
913 bp->b_error = error;
914 return error;
915 }
916
917 /*
918 * nfs_doio for write.
919 */
920 static int
921 nfs_doio_write(struct buf *bp, struct uio *uiop)
922 {
923 struct vnode *vp = bp->b_vp;
924 struct nfsnode *np = VTONFS(vp);
925 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
926 int iomode;
927 bool stalewriteverf = false;
928 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
929 struct vm_page **pgs, *spgs[UBC_MAX_PAGES];
930 #ifndef NFS_V2_ONLY
931 bool needcommit = true; /* need only COMMIT RPC */
932 #else
933 bool needcommit = false; /* need only COMMIT RPC */
934 #endif
935 bool pageprotected;
936 struct uvm_object *uobj = &vp->v_uobj;
937 int error;
938 off_t off, cnt;
939
940 if (npages < __arraycount(spgs))
941 pgs = spgs;
942 else {
943 if ((pgs = kmem_alloc(sizeof(*pgs) * npages, KM_NOSLEEP)) ==
944 NULL)
945 return ENOMEM;
946 }
947
948 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
949 iomode = NFSV3WRITE_UNSTABLE;
950 } else {
951 iomode = NFSV3WRITE_FILESYNC;
952 }
953
954 #ifndef NFS_V2_ONLY
955 again:
956 #endif
957 rw_enter(&nmp->nm_writeverflock, RW_READER);
958
959 for (i = 0; i < npages; i++) {
960 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
961 if (pgs[i]->uobject == uobj &&
962 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
963 KASSERT(pgs[i]->flags & PG_BUSY);
964 /*
965 * this page belongs to our object.
966 */
967 mutex_enter(&uobj->vmobjlock);
968 /*
969 * write out the page stably if it's about to
970 * be released because we can't resend it
971 * on the server crash.
972 *
973 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
974 * changed until unbusy the page.
975 */
976 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
977 iomode = NFSV3WRITE_FILESYNC;
978 /*
979 * if we met a page which hasn't been sent yet,
980 * we need do WRITE RPC.
981 */
982 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
983 needcommit = false;
984 mutex_exit(&uobj->vmobjlock);
985 } else {
986 iomode = NFSV3WRITE_FILESYNC;
987 needcommit = false;
988 }
989 }
990 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
991 mutex_enter(&uobj->vmobjlock);
992 for (i = 0; i < npages; i++) {
993 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
994 pmap_page_protect(pgs[i], VM_PROT_READ);
995 }
996 mutex_exit(&uobj->vmobjlock);
997 pageprotected = true; /* pages can't be modified during i/o. */
998 } else
999 pageprotected = false;
1000
1001 /*
1002 * Send the data to the server if necessary,
1003 * otherwise just send a commit rpc.
1004 */
1005 #ifndef NFS_V2_ONLY
1006 if (needcommit) {
1007
1008 /*
1009 * If the buffer is in the range that we already committed,
1010 * there's nothing to do.
1011 *
1012 * If it's in the range that we need to commit, push the
1013 * whole range at once, otherwise only push the buffer.
1014 * In both these cases, acquire the commit lock to avoid
1015 * other processes modifying the range.
1016 */
1017
1018 off = uiop->uio_offset;
1019 cnt = bp->b_bcount;
1020 mutex_enter(&np->n_commitlock);
1021 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1022 bool pushedrange;
1023 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1024 pushedrange = true;
1025 off = np->n_pushlo;
1026 cnt = np->n_pushhi - np->n_pushlo;
1027 } else {
1028 pushedrange = false;
1029 }
1030 error = nfs_commit(vp, off, cnt, curlwp);
1031 if (error == 0) {
1032 if (pushedrange) {
1033 nfs_merge_commit_ranges(vp);
1034 } else {
1035 nfs_add_committed_range(vp, off, cnt);
1036 }
1037 }
1038 } else {
1039 error = 0;
1040 }
1041 mutex_exit(&np->n_commitlock);
1042 rw_exit(&nmp->nm_writeverflock);
1043 if (!error) {
1044 /*
1045 * pages are now on stable storage.
1046 */
1047 uiop->uio_resid = 0;
1048 mutex_enter(&uobj->vmobjlock);
1049 for (i = 0; i < npages; i++) {
1050 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1051 }
1052 mutex_exit(&uobj->vmobjlock);
1053 goto out;
1054 } else if (error == NFSERR_STALEWRITEVERF || (random() % 10) == 0) {
1055 nfs_clearcommit(vp->v_mount);
1056 goto again;
1057 }
1058 if (error) {
1059 bp->b_error = np->n_error = error;
1060 }
1061 goto out;
1062 }
1063 #endif
1064 off = uiop->uio_offset;
1065 cnt = bp->b_bcount;
1066 uiop->uio_rw = UIO_WRITE;
1067 nfsstats.write_bios++;
1068 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1069 #ifndef NFS_V2_ONLY
1070 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1071 /*
1072 * we need to commit pages later.
1073 */
1074 mutex_enter(&np->n_commitlock);
1075 nfs_add_tobecommitted_range(vp, off, cnt);
1076 /*
1077 * if there can be too many uncommitted pages, commit them now.
1078 */
1079 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1080 off = np->n_pushlo;
1081 cnt = nfs_commitsize >> 1;
1082 error = nfs_commit(vp, off, cnt, curlwp);
1083 if (!error) {
1084 nfs_add_committed_range(vp, off, cnt);
1085 nfs_del_tobecommitted_range(vp, off, cnt);
1086 }
1087 if (error == NFSERR_STALEWRITEVERF) {
1088 stalewriteverf = true;
1089 error = 0; /* it isn't a real error */
1090 }
1091 } else {
1092 /*
1093 * re-dirty pages so that they will be passed
1094 * to us later again.
1095 */
1096 mutex_enter(&uobj->vmobjlock);
1097 for (i = 0; i < npages; i++) {
1098 pgs[i]->flags &= ~PG_CLEAN;
1099 }
1100 mutex_exit(&uobj->vmobjlock);
1101 }
1102 mutex_exit(&np->n_commitlock);
1103 } else
1104 #endif
1105 if (!error) {
1106 /*
1107 * pages are now on stable storage.
1108 */
1109 mutex_enter(&np->n_commitlock);
1110 nfs_del_committed_range(vp, off, cnt);
1111 mutex_exit(&np->n_commitlock);
1112 mutex_enter(&uobj->vmobjlock);
1113 for (i = 0; i < npages; i++) {
1114 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1115 }
1116 mutex_exit(&uobj->vmobjlock);
1117 } else {
1118 /*
1119 * we got an error.
1120 */
1121 bp->b_error = np->n_error = error;
1122 }
1123
1124 rw_exit(&nmp->nm_writeverflock);
1125
1126
1127 if (stalewriteverf || (random() % 10) == 0) {
1128 nfs_clearcommit(vp->v_mount);
1129 }
1130 #ifndef NFS_V2_ONLY
1131 out:
1132 #endif
1133 if (pgs != spgs)
1134 kmem_free(pgs, sizeof(*pgs) * npages);
1135 return error;
1136 }
1137
1138 /*
1139 * nfs_doio for B_PHYS.
1140 */
1141 static int
1142 nfs_doio_phys(struct buf *bp, struct uio *uiop)
1143 {
1144 struct vnode *vp = bp->b_vp;
1145 int error;
1146
1147 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1148 if (bp->b_flags & B_READ) {
1149 uiop->uio_rw = UIO_READ;
1150 nfsstats.read_physios++;
1151 error = nfs_readrpc(vp, uiop);
1152 } else {
1153 int iomode = NFSV3WRITE_DATASYNC;
1154 bool stalewriteverf;
1155 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1156
1157 uiop->uio_rw = UIO_WRITE;
1158 nfsstats.write_physios++;
1159 rw_enter(&nmp->nm_writeverflock, RW_READER);
1160 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1161 rw_exit(&nmp->nm_writeverflock);
1162 if (stalewriteverf || (random() % 10) == 0) {
1163 nfs_clearcommit(bp->b_vp->v_mount);
1164 }
1165 }
1166 bp->b_error = error;
1167 return error;
1168 }
1169
1170 /*
1171 * Do an I/O operation to/from a cache block. This may be called
1172 * synchronously or from an nfsiod.
1173 */
1174 int
1175 nfs_doio(struct buf *bp)
1176 {
1177 int error;
1178 struct uio uio;
1179 struct uio *uiop = &uio;
1180 struct iovec io;
1181 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1182
1183 uiop->uio_iov = &io;
1184 uiop->uio_iovcnt = 1;
1185 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1186 UIO_SETUP_SYSSPACE(uiop);
1187 io.iov_base = bp->b_data;
1188 io.iov_len = uiop->uio_resid = bp->b_bcount;
1189
1190 /*
1191 * Historically, paging was done with physio, but no more...
1192 */
1193 if (bp->b_flags & B_PHYS) {
1194 /*
1195 * ...though reading /dev/drum still gets us here.
1196 */
1197 error = nfs_doio_phys(bp, uiop);
1198 } else if (bp->b_flags & B_READ) {
1199 error = nfs_doio_read(bp, uiop);
1200 } else {
1201 error = nfs_doio_write(bp, uiop);
1202 }
1203 bp->b_resid = uiop->uio_resid;
1204 biodone(bp);
1205 return (error);
1206 }
1207
1208 /*
1209 * Vnode op for VM getpages.
1210 */
1211
1212 int
1213 nfs_getpages(void *v)
1214 {
1215 struct vop_getpages_args /* {
1216 struct vnode *a_vp;
1217 voff_t a_offset;
1218 struct vm_page **a_m;
1219 int *a_count;
1220 int a_centeridx;
1221 vm_prot_t a_access_type;
1222 int a_advice;
1223 int a_flags;
1224 } */ *ap = v;
1225
1226 struct vnode *vp = ap->a_vp;
1227 struct uvm_object *uobj = &vp->v_uobj;
1228 struct nfsnode *np = VTONFS(vp);
1229 const int npages = *ap->a_count;
1230 struct vm_page *pg, **pgs, **opgs, *spgs[UBC_MAX_PAGES];
1231 off_t origoffset, len;
1232 int i, error;
1233 bool v3 = NFS_ISV3(vp);
1234 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1235 bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1236
1237 /*
1238 * If we are not locked we are not really using opgs,
1239 * so just initialize it
1240 */
1241 if (!locked || npages < __arraycount(spgs))
1242 opgs = spgs;
1243 else {
1244 if ((opgs = kmem_alloc(npages * sizeof(*opgs), KM_NOSLEEP)) ==
1245 NULL)
1246 return ENOMEM;
1247 }
1248
1249 /*
1250 * call the genfs code to get the pages. `pgs' may be NULL
1251 * when doing read-ahead.
1252 */
1253 pgs = ap->a_m;
1254 if (write && locked && v3) {
1255 KASSERT(pgs != NULL);
1256 #ifdef DEBUG
1257
1258 /*
1259 * If PGO_LOCKED is set, real pages shouldn't exists
1260 * in the array.
1261 */
1262
1263 for (i = 0; i < npages; i++)
1264 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1265 #endif
1266 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1267 }
1268 error = genfs_getpages(v);
1269 if (error)
1270 goto out;
1271
1272 /*
1273 * for read faults where the nfs node is not yet marked NMODIFIED,
1274 * set PG_RDONLY on the pages so that we come back here if someone
1275 * tries to modify later via the mapping that will be entered for
1276 * this fault.
1277 */
1278
1279 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1280 if (!locked) {
1281 mutex_enter(&uobj->vmobjlock);
1282 }
1283 for (i = 0; i < npages; i++) {
1284 pg = pgs[i];
1285 if (pg == NULL || pg == PGO_DONTCARE) {
1286 continue;
1287 }
1288 pg->flags |= PG_RDONLY;
1289 }
1290 if (!locked) {
1291 mutex_exit(&uobj->vmobjlock);
1292 }
1293 }
1294 if (!write)
1295 goto out;
1296
1297 /*
1298 * this is a write fault, update the commit info.
1299 */
1300
1301 origoffset = ap->a_offset;
1302 len = npages << PAGE_SHIFT;
1303
1304 if (v3) {
1305 if (!locked) {
1306 mutex_enter(&np->n_commitlock);
1307 } else {
1308 if (!mutex_tryenter(&np->n_commitlock)) {
1309
1310 /*
1311 * Since PGO_LOCKED is set, we need to unbusy
1312 * all pages fetched by genfs_getpages() above,
1313 * tell the caller that there are no pages
1314 * available and put back original pgs array.
1315 */
1316
1317 mutex_enter(&uvm_pageqlock);
1318 uvm_page_unbusy(pgs, npages);
1319 mutex_exit(&uvm_pageqlock);
1320 *ap->a_count = 0;
1321 memcpy(pgs, opgs,
1322 npages * sizeof(struct vm_pages *));
1323 error = EBUSY;
1324 goto out;
1325 }
1326 }
1327 nfs_del_committed_range(vp, origoffset, len);
1328 nfs_del_tobecommitted_range(vp, origoffset, len);
1329 }
1330 np->n_flag |= NMODIFIED;
1331 if (!locked) {
1332 mutex_enter(&uobj->vmobjlock);
1333 }
1334 for (i = 0; i < npages; i++) {
1335 pg = pgs[i];
1336 if (pg == NULL || pg == PGO_DONTCARE) {
1337 continue;
1338 }
1339 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1340 }
1341 if (!locked) {
1342 mutex_exit(&uobj->vmobjlock);
1343 }
1344 if (v3) {
1345 mutex_exit(&np->n_commitlock);
1346 }
1347 out:
1348 if (opgs != spgs)
1349 kmem_free(opgs, sizeof(*opgs) * npages);
1350 return error;
1351 }
1352