Home | History | Annotate | Line # | Download | only in nfs
nfs_bio.c revision 1.179.4.1.4.1
      1 /*	$NetBSD: nfs_bio.c,v 1.179.4.1.4.1 2011/05/20 08:11:31 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.179.4.1.4.1 2011/05/20 08:11:31 matt Exp $");
     39 
     40 #include "opt_nfs.h"
     41 #include "opt_ddb.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/resourcevar.h>
     46 #include <sys/signalvar.h>
     47 #include <sys/proc.h>
     48 #include <sys/buf.h>
     49 #include <sys/vnode.h>
     50 #include <sys/mount.h>
     51 #include <sys/kernel.h>
     52 #include <sys/namei.h>
     53 #include <sys/dirent.h>
     54 #include <sys/kauth.h>
     55 
     56 #include <uvm/uvm_extern.h>
     57 #include <uvm/uvm.h>
     58 
     59 #include <nfs/rpcv2.h>
     60 #include <nfs/nfsproto.h>
     61 #include <nfs/nfs.h>
     62 #include <nfs/nfsmount.h>
     63 #include <nfs/nfsnode.h>
     64 #include <nfs/nfs_var.h>
     65 
     66 extern int nfs_numasync;
     67 extern int nfs_commitsize;
     68 extern struct nfsstats nfsstats;
     69 
     70 static int nfs_doio_read __P((struct buf *, struct uio *));
     71 static int nfs_doio_write __P((struct buf *, struct uio *));
     72 static int nfs_doio_phys __P((struct buf *, struct uio *));
     73 
     74 /*
     75  * Vnode op for read using bio
     76  * Any similarity to readip() is purely coincidental
     77  */
     78 int
     79 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag,
     80 	    kauth_cred_t cred, int cflag)
     81 {
     82 	struct nfsnode *np = VTONFS(vp);
     83 	struct buf *bp = NULL, *rabp;
     84 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
     85 	struct nfsdircache *ndp = NULL, *nndp = NULL;
     86 	void *baddr;
     87 	int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
     88 	int enough = 0;
     89 	struct dirent *dp, *pdp, *edp, *ep;
     90 	off_t curoff = 0;
     91 	int advice;
     92 	struct lwp *l = curlwp;
     93 
     94 #ifdef DIAGNOSTIC
     95 	if (uio->uio_rw != UIO_READ)
     96 		panic("nfs_read mode");
     97 #endif
     98 	if (uio->uio_resid == 0)
     99 		return (0);
    100 	if (vp->v_type != VDIR && uio->uio_offset < 0)
    101 		return (EINVAL);
    102 #ifndef NFS_V2_ONLY
    103 	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
    104 	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
    105 		(void)nfs_fsinfo(nmp, vp, cred, l);
    106 #endif
    107 	if (vp->v_type != VDIR &&
    108 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
    109 		return (EFBIG);
    110 
    111 	/*
    112 	 * For nfs, cache consistency can only be maintained approximately.
    113 	 * Although RFC1094 does not specify the criteria, the following is
    114 	 * believed to be compatible with the reference port.
    115 	 *
    116 	 * If the file's modify time on the server has changed since the
    117 	 * last read rpc or you have written to the file,
    118 	 * you may have lost data cache consistency with the
    119 	 * server, so flush all of the file's data out of the cache.
    120 	 * Then force a getattr rpc to ensure that you have up to date
    121 	 * attributes.
    122 	 * NB: This implies that cache data can be read when up to
    123 	 * nfs_attrtimeo seconds out of date. If you find that you need current
    124 	 * attributes this could be forced by setting n_attrstamp to 0 before
    125 	 * the VOP_GETATTR() call.
    126 	 */
    127 
    128 	if (vp->v_type != VLNK) {
    129 		error = nfs_flushstalebuf(vp, cred, l,
    130 		    NFS_FLUSHSTALEBUF_MYWRITE);
    131 		if (error)
    132 			return error;
    133 	}
    134 
    135 	do {
    136 	    /*
    137 	     * Don't cache symlinks.
    138 	     */
    139 	    if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
    140 		return (nfs_readlinkrpc(vp, uio, cred));
    141 	    }
    142 	    baddr = (void *)0;
    143 	    switch (vp->v_type) {
    144 	    case VREG:
    145 		nfsstats.biocache_reads++;
    146 
    147 		advice = IO_ADV_DECODE(ioflag);
    148 		error = 0;
    149 		while (uio->uio_resid > 0) {
    150 			vsize_t bytelen;
    151 
    152 			nfs_delayedtruncate(vp);
    153 			if (np->n_size <= uio->uio_offset) {
    154 				break;
    155 			}
    156 			bytelen =
    157 			    MIN(np->n_size - uio->uio_offset, uio->uio_resid);
    158 			error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
    159 			    advice, UBC_READ | UBC_PARTIALOK |
    160 			    (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
    161 			if (error) {
    162 				/*
    163 				 * XXXkludge
    164 				 * the file has been truncated on the server.
    165 				 * there isn't much we can do.
    166 				 */
    167 				if (uio->uio_offset >= np->n_size) {
    168 					/* end of file */
    169 					error = 0;
    170 				} else {
    171 					break;
    172 				}
    173 			}
    174 		}
    175 		break;
    176 
    177 	    case VLNK:
    178 		nfsstats.biocache_readlinks++;
    179 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
    180 		if (!bp)
    181 			return (EINTR);
    182 		if ((bp->b_oflags & BO_DONE) == 0) {
    183 			bp->b_flags |= B_READ;
    184 			error = nfs_doio(bp);
    185 			if (error) {
    186 				brelse(bp, 0);
    187 				return (error);
    188 			}
    189 		}
    190 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
    191 		got_buf = 1;
    192 		on = 0;
    193 		break;
    194 	    case VDIR:
    195 diragain:
    196 		nfsstats.biocache_readdirs++;
    197 		ndp = nfs_searchdircache(vp, uio->uio_offset,
    198 			(nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
    199 		if (!ndp) {
    200 			/*
    201 			 * We've been handed a cookie that is not
    202 			 * in the cache. If we're not translating
    203 			 * 32 <-> 64, it may be a value that was
    204 			 * flushed out of the cache because it grew
    205 			 * too big. Let the server judge if it's
    206 			 * valid or not. In the translation case,
    207 			 * we have no way of validating this value,
    208 			 * so punt.
    209 			 */
    210 			if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
    211 				return (EINVAL);
    212 			ndp = nfs_enterdircache(vp, uio->uio_offset,
    213 				uio->uio_offset, 0, 0);
    214 		}
    215 
    216 		if (NFS_EOFVALID(np) &&
    217 		    ndp->dc_cookie == np->n_direofoffset) {
    218 			nfs_putdircache(np, ndp);
    219 			nfsstats.direofcache_hits++;
    220 			return (0);
    221 		}
    222 
    223 		bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
    224 		if (!bp)
    225 		    return (EINTR);
    226 		if ((bp->b_oflags & BO_DONE) == 0) {
    227 		    bp->b_flags |= B_READ;
    228 		    bp->b_dcookie = ndp->dc_blkcookie;
    229 		    error = nfs_doio(bp);
    230 		    if (error) {
    231 			/*
    232 			 * Yuck! The directory has been modified on the
    233 			 * server. Punt and let the userland code
    234 			 * deal with it.
    235 			 */
    236 			nfs_putdircache(np, ndp);
    237 			brelse(bp, 0);
    238 			/*
    239 			 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
    240 			 */
    241 			if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
    242 			    nfs_invaldircache(vp, 0);
    243 			    nfs_vinvalbuf(vp, 0, cred, l, 1);
    244 			}
    245 			return (error);
    246 		    }
    247 		}
    248 
    249 		/*
    250 		 * Just return if we hit EOF right away with this
    251 		 * block. Always check here, because direofoffset
    252 		 * may have been set by an nfsiod since the last
    253 		 * check.
    254 		 *
    255 		 * also, empty block implies EOF.
    256 		 */
    257 
    258 		if (bp->b_bcount == bp->b_resid ||
    259 		    (NFS_EOFVALID(np) &&
    260 		    ndp->dc_blkcookie == np->n_direofoffset)) {
    261 			KASSERT(bp->b_bcount != bp->b_resid ||
    262 			    ndp->dc_blkcookie == bp->b_dcookie);
    263 			nfs_putdircache(np, ndp);
    264 			brelse(bp, BC_NOCACHE);
    265 			return 0;
    266 		}
    267 
    268 		/*
    269 		 * Find the entry we were looking for in the block.
    270 		 */
    271 
    272 		en = ndp->dc_entry;
    273 
    274 		pdp = dp = (struct dirent *)bp->b_data;
    275 		edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
    276 		    bp->b_resid);
    277 		enn = 0;
    278 		while (enn < en && dp < edp) {
    279 			pdp = dp;
    280 			dp = _DIRENT_NEXT(dp);
    281 			enn++;
    282 		}
    283 
    284 		/*
    285 		 * If the entry number was bigger than the number of
    286 		 * entries in the block, or the cookie of the previous
    287 		 * entry doesn't match, the directory cache is
    288 		 * stale. Flush it and try again (i.e. go to
    289 		 * the server).
    290 		 */
    291 		if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
    292 		    (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
    293 #ifdef DEBUG
    294 		    	printf("invalid cache: %p %p %p off %lx %lx\n",
    295 				pdp, dp, edp,
    296 				(unsigned long)uio->uio_offset,
    297 				(unsigned long)NFS_GETCOOKIE(pdp));
    298 #endif
    299 			nfs_putdircache(np, ndp);
    300 			brelse(bp, 0);
    301 			nfs_invaldircache(vp, 0);
    302 			nfs_vinvalbuf(vp, 0, cred, l, 0);
    303 			goto diragain;
    304 		}
    305 
    306 		on = (char *)dp - (char *)bp->b_data;
    307 
    308 		/*
    309 		 * Cache all entries that may be exported to the
    310 		 * user, as they may be thrown back at us. The
    311 		 * NFSBIO_CACHECOOKIES flag indicates that all
    312 		 * entries are being 'exported', so cache them all.
    313 		 */
    314 
    315 		if (en == 0 && pdp == dp) {
    316 			dp = _DIRENT_NEXT(dp);
    317 			enn++;
    318 		}
    319 
    320 		if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
    321 			n = uio->uio_resid;
    322 			enough = 1;
    323 		} else
    324 			n = bp->b_bcount - bp->b_resid - on;
    325 
    326 		ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
    327 
    328 		/*
    329 		 * Find last complete entry to copy, caching entries
    330 		 * (if requested) as we go.
    331 		 */
    332 
    333 		while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
    334 			if (cflag & NFSBIO_CACHECOOKIES) {
    335 				nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
    336 				    ndp->dc_blkcookie, enn, bp->b_lblkno);
    337 				if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
    338 					NFS_STASHCOOKIE32(pdp,
    339 					    nndp->dc_cookie32);
    340 				}
    341 				nfs_putdircache(np, nndp);
    342 			}
    343 			pdp = dp;
    344 			dp = _DIRENT_NEXT(dp);
    345 			enn++;
    346 		}
    347 		nfs_putdircache(np, ndp);
    348 
    349 		/*
    350 		 * If the last requested entry was not the last in the
    351 		 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
    352 		 * cache the cookie of the last requested one, and
    353 		 * set of the offset to it.
    354 		 */
    355 
    356 		if ((on + n) < bp->b_bcount - bp->b_resid) {
    357 			curoff = NFS_GETCOOKIE(pdp);
    358 			nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
    359 			    enn, bp->b_lblkno);
    360 			if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
    361 				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
    362 				curoff = nndp->dc_cookie32;
    363 			}
    364 			nfs_putdircache(np, nndp);
    365 		} else
    366 			curoff = bp->b_dcookie;
    367 
    368 		/*
    369 		 * Always cache the entry for the next block,
    370 		 * so that readaheads can use it.
    371 		 */
    372 		nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
    373 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
    374 			if (curoff == bp->b_dcookie) {
    375 				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
    376 				curoff = nndp->dc_cookie32;
    377 			}
    378 		}
    379 
    380 		n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
    381 
    382 		/*
    383 		 * If not eof and read aheads are enabled, start one.
    384 		 * (You need the current block first, so that you have the
    385 		 *  directory offset cookie of the next block.)
    386 		 */
    387 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
    388 		    !NFS_EOFVALID(np)) {
    389 			rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
    390 						NFS_DIRBLKSIZ, l);
    391 			if (rabp) {
    392 			    if ((rabp->b_oflags & (BO_DONE | BO_DELWRI)) == 0) {
    393 				rabp->b_dcookie = nndp->dc_cookie;
    394 				rabp->b_flags |= (B_READ | B_ASYNC);
    395 				if (nfs_asyncio(rabp)) {
    396 				    brelse(rabp, BC_INVAL);
    397 				}
    398 			    } else
    399 				brelse(rabp, 0);
    400 			}
    401 		}
    402 		nfs_putdircache(np, nndp);
    403 		got_buf = 1;
    404 		break;
    405 	    default:
    406 		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
    407 		break;
    408 	    }
    409 
    410 	    if (n > 0) {
    411 		if (!baddr)
    412 			baddr = bp->b_data;
    413 		error = uiomove((char *)baddr + on, (int)n, uio);
    414 	    }
    415 	    switch (vp->v_type) {
    416 	    case VREG:
    417 		break;
    418 	    case VLNK:
    419 		n = 0;
    420 		break;
    421 	    case VDIR:
    422 		uio->uio_offset = curoff;
    423 		if (enough)
    424 			n = 0;
    425 		break;
    426 	    default:
    427 		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
    428 	    }
    429 	    if (got_buf)
    430 		brelse(bp, 0);
    431 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
    432 	return (error);
    433 }
    434 
    435 /*
    436  * Vnode op for write using bio
    437  */
    438 int
    439 nfs_write(void *v)
    440 {
    441 	struct vop_write_args /* {
    442 		struct vnode *a_vp;
    443 		struct uio *a_uio;
    444 		int  a_ioflag;
    445 		kauth_cred_t a_cred;
    446 	} */ *ap = v;
    447 	struct uio *uio = ap->a_uio;
    448 	struct lwp *l = curlwp;
    449 	struct vnode *vp = ap->a_vp;
    450 	struct nfsnode *np = VTONFS(vp);
    451 	kauth_cred_t cred = ap->a_cred;
    452 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    453 	voff_t oldoff, origoff;
    454 	vsize_t bytelen;
    455 	int error = 0;
    456 	int ioflag = ap->a_ioflag;
    457 	int extended = 0, wrotedata = 0;
    458 
    459 #ifdef DIAGNOSTIC
    460 	if (uio->uio_rw != UIO_WRITE)
    461 		panic("nfs_write mode");
    462 #endif
    463 	if (vp->v_type != VREG)
    464 		return (EIO);
    465 	if (np->n_flag & NWRITEERR) {
    466 		np->n_flag &= ~NWRITEERR;
    467 		return (np->n_error);
    468 	}
    469 #ifndef NFS_V2_ONLY
    470 	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
    471 	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
    472 		(void)nfs_fsinfo(nmp, vp, cred, l);
    473 #endif
    474 	if (ioflag & IO_APPEND) {
    475 		NFS_INVALIDATE_ATTRCACHE(np);
    476 		error = nfs_flushstalebuf(vp, cred, l,
    477 		    NFS_FLUSHSTALEBUF_MYWRITE);
    478 		if (error)
    479 			return (error);
    480 		uio->uio_offset = np->n_size;
    481 	}
    482 	if (uio->uio_offset < 0)
    483 		return (EINVAL);
    484 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
    485 		return (EFBIG);
    486 	if (uio->uio_resid == 0)
    487 		return (0);
    488 	/*
    489 	 * Maybe this should be above the vnode op call, but so long as
    490 	 * file servers have no limits, i don't think it matters
    491 	 */
    492 	if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
    493 	      l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
    494 		mutex_enter(proc_lock);
    495 		psignal(l->l_proc, SIGXFSZ);
    496 		mutex_exit(proc_lock);
    497 		return (EFBIG);
    498 	}
    499 
    500 	origoff = uio->uio_offset;
    501 	do {
    502 		bool overwrite; /* if we are overwriting whole pages */
    503 		u_quad_t oldsize;
    504 		oldoff = uio->uio_offset;
    505 		bytelen = uio->uio_resid;
    506 
    507 		nfsstats.biocache_writes++;
    508 
    509 		oldsize = np->n_size;
    510 		np->n_flag |= NMODIFIED;
    511 		if (np->n_size < uio->uio_offset + bytelen) {
    512 			np->n_size = uio->uio_offset + bytelen;
    513 		}
    514 		overwrite = false;
    515 		if ((uio->uio_offset & PAGE_MASK) == 0) {
    516 			if ((vp->v_vflag & VV_MAPPED) == 0 &&
    517 			    bytelen > PAGE_SIZE) {
    518 				bytelen = trunc_page(bytelen);
    519 				overwrite = true;
    520 			} else if ((bytelen & PAGE_MASK) == 0 &&
    521 			    uio->uio_offset >= vp->v_size) {
    522 				overwrite = true;
    523 			}
    524 		}
    525 		if (vp->v_size < uio->uio_offset + bytelen) {
    526 			uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
    527 		}
    528 		error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
    529 		    UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
    530 		    (overwrite ? UBC_FAULTBUSY : 0) |
    531 		    (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
    532 		if (error) {
    533 			uvm_vnp_setwritesize(vp, vp->v_size);
    534 			if (overwrite && np->n_size != oldsize) {
    535 				/*
    536 				 * backout size and free pages past eof.
    537 				 */
    538 				np->n_size = oldsize;
    539 				mutex_enter(&vp->v_interlock);
    540 				(void)VOP_PUTPAGES(vp, round_page(vp->v_size),
    541 				    0, PGO_SYNCIO | PGO_FREE);
    542 			}
    543 			break;
    544 		}
    545 		wrotedata = 1;
    546 
    547 		/*
    548 		 * update UVM's notion of the size now that we've
    549 		 * copied the data into the vnode's pages.
    550 		 */
    551 
    552 		if (vp->v_size < uio->uio_offset) {
    553 			uvm_vnp_setsize(vp, uio->uio_offset);
    554 			extended = 1;
    555 		}
    556 
    557 		if ((oldoff & ~(nmp->nm_wsize - 1)) !=
    558 		    (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
    559 			mutex_enter(&vp->v_interlock);
    560 			error = VOP_PUTPAGES(vp,
    561 			    trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
    562 			    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
    563 				       ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
    564 		}
    565 	} while (uio->uio_resid > 0);
    566 	if (wrotedata)
    567 		VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
    568 	if (error == 0 && (ioflag & IO_SYNC) != 0) {
    569 		mutex_enter(&vp->v_interlock);
    570 		error = VOP_PUTPAGES(vp,
    571 		    trunc_page(origoff & ~(nmp->nm_wsize - 1)),
    572 		    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
    573 			       ~(nmp->nm_wsize - 1)),
    574 		    PGO_CLEANIT | PGO_SYNCIO);
    575 	}
    576 	return error;
    577 }
    578 
    579 /*
    580  * Get an nfs cache block.
    581  * Allocate a new one if the block isn't currently in the cache
    582  * and return the block marked busy. If the calling process is
    583  * interrupted by a signal for an interruptible mount point, return
    584  * NULL.
    585  */
    586 struct buf *
    587 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct lwp *l)
    588 {
    589 	struct buf *bp;
    590 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    591 
    592 	if (nmp->nm_flag & NFSMNT_INT) {
    593 		bp = getblk(vp, bn, size, PCATCH, 0);
    594 		while (bp == NULL) {
    595 			if (nfs_sigintr(nmp, NULL, l))
    596 				return (NULL);
    597 			bp = getblk(vp, bn, size, 0, 2 * hz);
    598 		}
    599 	} else
    600 		bp = getblk(vp, bn, size, 0, 0);
    601 	return (bp);
    602 }
    603 
    604 /*
    605  * Flush and invalidate all dirty buffers. If another process is already
    606  * doing the flush, just wait for completion.
    607  */
    608 int
    609 nfs_vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred,
    610 		struct lwp *l, int intrflg)
    611 {
    612 	struct nfsnode *np = VTONFS(vp);
    613 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    614 	int error = 0, slptimeo;
    615 	bool catch;
    616 
    617 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
    618 		intrflg = 0;
    619 	if (intrflg) {
    620 		catch = true;
    621 		slptimeo = 2 * hz;
    622 	} else {
    623 		catch = false;
    624 		slptimeo = 0;
    625 	}
    626 	/*
    627 	 * First wait for any other process doing a flush to complete.
    628 	 */
    629 	mutex_enter(&vp->v_interlock);
    630 	while (np->n_flag & NFLUSHINPROG) {
    631 		np->n_flag |= NFLUSHWANT;
    632 		error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
    633 			slptimeo, &vp->v_interlock);
    634 		if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
    635 			mutex_exit(&vp->v_interlock);
    636 			return EINTR;
    637 		}
    638 	}
    639 
    640 	/*
    641 	 * Now, flush as required.
    642 	 */
    643 	np->n_flag |= NFLUSHINPROG;
    644 	mutex_exit(&vp->v_interlock);
    645 	error = vinvalbuf(vp, flags, cred, l, catch, 0);
    646 	while (error) {
    647 		if (intrflg && nfs_sigintr(nmp, NULL, l)) {
    648 			error = EINTR;
    649 			break;
    650 		}
    651 		error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
    652 	}
    653 	mutex_enter(&vp->v_interlock);
    654 	if (error == 0)
    655 		np->n_flag &= ~NMODIFIED;
    656 	np->n_flag &= ~NFLUSHINPROG;
    657 	if (np->n_flag & NFLUSHWANT) {
    658 		np->n_flag &= ~NFLUSHWANT;
    659 		wakeup(&np->n_flag);
    660 	}
    661 	mutex_exit(&vp->v_interlock);
    662 	return error;
    663 }
    664 
    665 /*
    666  * nfs_flushstalebuf: flush cache if it's stale.
    667  *
    668  * => caller shouldn't own any pages or buffers which belong to the vnode.
    669  */
    670 
    671 int
    672 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
    673     int flags)
    674 {
    675 	struct nfsnode *np = VTONFS(vp);
    676 	struct vattr vattr;
    677 	int error;
    678 
    679 	if (np->n_flag & NMODIFIED) {
    680 		if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
    681 		    || vp->v_type != VREG) {
    682 			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
    683 			if (error)
    684 				return error;
    685 			if (vp->v_type == VDIR) {
    686 				nfs_invaldircache(vp, 0);
    687 			}
    688 		} else {
    689 			/*
    690 			 * XXX assuming writes are ours.
    691 			 */
    692 		}
    693 		NFS_INVALIDATE_ATTRCACHE(np);
    694 		error = VOP_GETATTR(vp, &vattr, cred);
    695 		if (error)
    696 			return error;
    697 		np->n_mtime = vattr.va_mtime;
    698 	} else {
    699 		error = VOP_GETATTR(vp, &vattr, cred);
    700 		if (error)
    701 			return error;
    702 		if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
    703 			if (vp->v_type == VDIR) {
    704 				nfs_invaldircache(vp, 0);
    705 			}
    706 			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
    707 			if (error)
    708 				return error;
    709 			np->n_mtime = vattr.va_mtime;
    710 		}
    711 	}
    712 
    713 	return error;
    714 }
    715 
    716 /*
    717  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
    718  * This is mainly to avoid queueing async I/O requests when the nfsiods
    719  * are all hung on a dead server.
    720  */
    721 
    722 int
    723 nfs_asyncio(struct buf *bp)
    724 {
    725 	struct nfs_iod *iod;
    726 	struct nfsmount *nmp;
    727 	int slptimeo = 0, error;
    728 	bool catch = false;
    729 
    730 	if (nfs_numasync == 0)
    731 		return (EIO);
    732 
    733 	nmp = VFSTONFS(bp->b_vp->v_mount);
    734 again:
    735 	if (nmp->nm_flag & NFSMNT_INT)
    736 		catch = true;
    737 
    738 	/*
    739 	 * Find a free iod to process this request.
    740 	 */
    741 
    742 	mutex_enter(&nfs_iodlist_lock);
    743 	iod = LIST_FIRST(&nfs_iodlist_idle);
    744 	if (iod) {
    745 		/*
    746 		 * Found one, so wake it up and tell it which
    747 		 * mount to process.
    748 		 */
    749 		LIST_REMOVE(iod, nid_idle);
    750 		mutex_enter(&iod->nid_lock);
    751 		mutex_exit(&nfs_iodlist_lock);
    752 		KASSERT(iod->nid_mount == NULL);
    753 		iod->nid_mount = nmp;
    754 		cv_signal(&iod->nid_cv);
    755 		mutex_enter(&nmp->nm_lock);
    756 		mutex_exit(&iod->nid_lock);
    757 		nmp->nm_bufqiods++;
    758 		if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
    759 			cv_broadcast(&nmp->nm_aiocv);
    760 		}
    761 	} else {
    762 		mutex_exit(&nfs_iodlist_lock);
    763 		mutex_enter(&nmp->nm_lock);
    764 	}
    765 
    766 	KASSERT(mutex_owned(&nmp->nm_lock));
    767 
    768 	/*
    769 	 * If we have an iod which can process the request, then queue
    770 	 * the buffer.  However, even if we have an iod, do not initiate
    771 	 * queue cleaning if curproc is the pageout daemon. if the NFS mount
    772 	 * is via local loopback, we may put curproc (pagedaemon) to sleep
    773 	 * waiting for the writes to complete. But the server (ourself)
    774 	 * may block the write, waiting for its (ie., our) pagedaemon
    775 	 * to produce clean pages to handle the write: deadlock.
    776 	 * XXX: start non-loopback mounts straight away?  If "lots free",
    777 	 * let pagedaemon start loopback writes anyway?
    778 	 */
    779 	if (nmp->nm_bufqiods > 0) {
    780 
    781 		/*
    782 		 * Ensure that the queue never grows too large.
    783 		 */
    784 		if (curlwp == uvm.pagedaemon_lwp) {
    785 	  		/* Enque for later, to avoid free-page deadlock */
    786 		} else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
    787 			if (catch) {
    788 				error = cv_timedwait_sig(&nmp->nm_aiocv,
    789 				    &nmp->nm_lock, slptimeo);
    790 			} else {
    791 				error = cv_timedwait(&nmp->nm_aiocv,
    792 				    &nmp->nm_lock, slptimeo);
    793 			}
    794 			if (error) {
    795 				if (nfs_sigintr(nmp, NULL, curlwp)) {
    796 					mutex_exit(&nmp->nm_lock);
    797 					return (EINTR);
    798 				}
    799 				if (catch) {
    800 					catch = false;
    801 					slptimeo = 2 * hz;
    802 				}
    803 			}
    804 
    805 			/*
    806 			 * We might have lost our iod while sleeping,
    807 			 * so check and loop if necessary.
    808 			 */
    809 
    810 			if (nmp->nm_bufqiods == 0) {
    811 				mutex_exit(&nmp->nm_lock);
    812 				goto again;
    813 			}
    814 		}
    815 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
    816 		nmp->nm_bufqlen++;
    817 		mutex_exit(&nmp->nm_lock);
    818 		return (0);
    819 	}
    820 	mutex_exit(&nmp->nm_lock);
    821 
    822 	/*
    823 	 * All the iods are busy on other mounts, so return EIO to
    824 	 * force the caller to process the i/o synchronously.
    825 	 */
    826 
    827 	return (EIO);
    828 }
    829 
    830 /*
    831  * nfs_doio for read.
    832  */
    833 static int
    834 nfs_doio_read(struct buf *bp, struct uio *uiop)
    835 {
    836 	struct vnode *vp = bp->b_vp;
    837 	struct nfsnode *np = VTONFS(vp);
    838 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    839 	int error = 0;
    840 
    841 	uiop->uio_rw = UIO_READ;
    842 	switch (vp->v_type) {
    843 	case VREG:
    844 		nfsstats.read_bios++;
    845 		error = nfs_readrpc(vp, uiop);
    846 		if (!error && uiop->uio_resid) {
    847 			int diff, len;
    848 
    849 			/*
    850 			 * If uio_resid > 0, there is a hole in the file and
    851 			 * no writes after the hole have been pushed to
    852 			 * the server yet or the file has been truncated
    853 			 * on the server.
    854 			 * Just zero fill the rest of the valid area.
    855 			 */
    856 
    857 			KASSERT(vp->v_size >=
    858 			    uiop->uio_offset + uiop->uio_resid);
    859 			diff = bp->b_bcount - uiop->uio_resid;
    860 			len = uiop->uio_resid;
    861 			memset((char *)bp->b_data + diff, 0, len);
    862 			uiop->uio_resid = 0;
    863 		}
    864 #if 0
    865 		if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
    866 		    timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
    867 		    	mutex_enter(proc_lock);
    868 			killproc(uiop->uio_lwp->l_proc, "process text file was modified");
    869 		    	mutex_exit(proc_lock);
    870 #if 0 /* XXX NJWLWP */
    871 			uiop->uio_lwp->l_proc->p_holdcnt++;
    872 #endif
    873 		}
    874 #endif
    875 		break;
    876 	case VLNK:
    877 		KASSERT(uiop->uio_offset == (off_t)0);
    878 		nfsstats.readlink_bios++;
    879 		error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
    880 		break;
    881 	case VDIR:
    882 		nfsstats.readdir_bios++;
    883 		uiop->uio_offset = bp->b_dcookie;
    884 #ifndef NFS_V2_ONLY
    885 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
    886 			error = nfs_readdirplusrpc(vp, uiop,
    887 			    curlwp->l_cred);
    888 			/*
    889 			 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
    890 			 */
    891 			if (error == ENOTSUP)
    892 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
    893 		}
    894 #else
    895 		nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
    896 #endif
    897 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
    898 			error = nfs_readdirrpc(vp, uiop,
    899 			    curlwp->l_cred);
    900 		if (!error) {
    901 			bp->b_dcookie = uiop->uio_offset;
    902 		}
    903 		break;
    904 	default:
    905 		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
    906 		break;
    907 	}
    908 	bp->b_error = error;
    909 	return error;
    910 }
    911 
    912 /*
    913  * nfs_doio for write.
    914  */
    915 static int
    916 nfs_doio_write(struct buf *bp, struct uio *uiop)
    917 {
    918 	struct vnode *vp = bp->b_vp;
    919 	struct nfsnode *np = VTONFS(vp);
    920 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    921 	int iomode;
    922 	bool stalewriteverf = false;
    923 	int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
    924 	struct vm_page **pgs, *spgs[UBC_MAX_PAGES];
    925 #ifndef NFS_V2_ONLY
    926 	bool needcommit = true; /* need only COMMIT RPC */
    927 #else
    928 	bool needcommit = false; /* need only COMMIT RPC */
    929 #endif
    930 	bool pageprotected;
    931 	struct uvm_object *uobj = &vp->v_uobj;
    932 	int error;
    933 	off_t off, cnt;
    934 
    935 	if (npages < __arraycount(spgs))
    936 		pgs = spgs;
    937 	else {
    938 		if ((pgs = kmem_alloc(sizeof(*pgs) * npages, KM_NOSLEEP)) ==
    939 		    NULL)
    940 			return ENOMEM;
    941 	}
    942 
    943 	if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
    944 		iomode = NFSV3WRITE_UNSTABLE;
    945 	} else {
    946 		iomode = NFSV3WRITE_FILESYNC;
    947 	}
    948 
    949 #ifndef NFS_V2_ONLY
    950 again:
    951 #endif
    952 	rw_enter(&nmp->nm_writeverflock, RW_READER);
    953 
    954 	for (i = 0; i < npages; i++) {
    955 		pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
    956 		if (pgs[i]->uobject == uobj &&
    957 		    pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
    958 			KASSERT(pgs[i]->flags & PG_BUSY);
    959 			/*
    960 			 * this page belongs to our object.
    961 			 */
    962 			mutex_enter(&uobj->vmobjlock);
    963 			/*
    964 			 * write out the page stably if it's about to
    965 			 * be released because we can't resend it
    966 			 * on the server crash.
    967 			 *
    968 			 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
    969 			 * changed until unbusy the page.
    970 			 */
    971 			if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
    972 				iomode = NFSV3WRITE_FILESYNC;
    973 			/*
    974 			 * if we met a page which hasn't been sent yet,
    975 			 * we need do WRITE RPC.
    976 			 */
    977 			if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
    978 				needcommit = false;
    979 			mutex_exit(&uobj->vmobjlock);
    980 		} else {
    981 			iomode = NFSV3WRITE_FILESYNC;
    982 			needcommit = false;
    983 		}
    984 	}
    985 	if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
    986 		mutex_enter(&uobj->vmobjlock);
    987 		for (i = 0; i < npages; i++) {
    988 			pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
    989 			pmap_page_protect(pgs[i], VM_PROT_READ);
    990 		}
    991 		mutex_exit(&uobj->vmobjlock);
    992 		pageprotected = true; /* pages can't be modified during i/o. */
    993 	} else
    994 		pageprotected = false;
    995 
    996 	/*
    997 	 * Send the data to the server if necessary,
    998 	 * otherwise just send a commit rpc.
    999 	 */
   1000 #ifndef NFS_V2_ONLY
   1001 	if (needcommit) {
   1002 
   1003 		/*
   1004 		 * If the buffer is in the range that we already committed,
   1005 		 * there's nothing to do.
   1006 		 *
   1007 		 * If it's in the range that we need to commit, push the
   1008 		 * whole range at once, otherwise only push the buffer.
   1009 		 * In both these cases, acquire the commit lock to avoid
   1010 		 * other processes modifying the range.
   1011 		 */
   1012 
   1013 		off = uiop->uio_offset;
   1014 		cnt = bp->b_bcount;
   1015 		mutex_enter(&np->n_commitlock);
   1016 		if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
   1017 			bool pushedrange;
   1018 			if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
   1019 				pushedrange = true;
   1020 				off = np->n_pushlo;
   1021 				cnt = np->n_pushhi - np->n_pushlo;
   1022 			} else {
   1023 				pushedrange = false;
   1024 			}
   1025 			error = nfs_commit(vp, off, cnt, curlwp);
   1026 			if (error == 0) {
   1027 				if (pushedrange) {
   1028 					nfs_merge_commit_ranges(vp);
   1029 				} else {
   1030 					nfs_add_committed_range(vp, off, cnt);
   1031 				}
   1032 			}
   1033 		} else {
   1034 			error = 0;
   1035 		}
   1036 		mutex_exit(&np->n_commitlock);
   1037 		rw_exit(&nmp->nm_writeverflock);
   1038 		if (!error) {
   1039 			/*
   1040 			 * pages are now on stable storage.
   1041 			 */
   1042 			uiop->uio_resid = 0;
   1043 			mutex_enter(&uobj->vmobjlock);
   1044 			for (i = 0; i < npages; i++) {
   1045 				pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
   1046 			}
   1047 			mutex_exit(&uobj->vmobjlock);
   1048 			goto out;
   1049 		} else if (error == NFSERR_STALEWRITEVERF) {
   1050 			nfs_clearcommit(vp->v_mount);
   1051 			goto again;
   1052 		}
   1053 		if (error) {
   1054 			bp->b_error = np->n_error = error;
   1055 			np->n_flag |= NWRITEERR;
   1056 		}
   1057 		goto out;
   1058 	}
   1059 #endif
   1060 	off = uiop->uio_offset;
   1061 	cnt = bp->b_bcount;
   1062 	uiop->uio_rw = UIO_WRITE;
   1063 	nfsstats.write_bios++;
   1064 	error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
   1065 #ifndef NFS_V2_ONLY
   1066 	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
   1067 		/*
   1068 		 * we need to commit pages later.
   1069 		 */
   1070 		mutex_enter(&np->n_commitlock);
   1071 		nfs_add_tobecommitted_range(vp, off, cnt);
   1072 		/*
   1073 		 * if there can be too many uncommitted pages, commit them now.
   1074 		 */
   1075 		if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
   1076 			off = np->n_pushlo;
   1077 			cnt = nfs_commitsize >> 1;
   1078 			error = nfs_commit(vp, off, cnt, curlwp);
   1079 			if (!error) {
   1080 				nfs_add_committed_range(vp, off, cnt);
   1081 				nfs_del_tobecommitted_range(vp, off, cnt);
   1082 			}
   1083 			if (error == NFSERR_STALEWRITEVERF) {
   1084 				stalewriteverf = true;
   1085 				error = 0; /* it isn't a real error */
   1086 			}
   1087 		} else {
   1088 			/*
   1089 			 * re-dirty pages so that they will be passed
   1090 			 * to us later again.
   1091 			 */
   1092 			mutex_enter(&uobj->vmobjlock);
   1093 			for (i = 0; i < npages; i++) {
   1094 				pgs[i]->flags &= ~PG_CLEAN;
   1095 			}
   1096 			mutex_exit(&uobj->vmobjlock);
   1097 		}
   1098 		mutex_exit(&np->n_commitlock);
   1099 	} else
   1100 #endif
   1101 	if (!error) {
   1102 		/*
   1103 		 * pages are now on stable storage.
   1104 		 */
   1105 		mutex_enter(&np->n_commitlock);
   1106 		nfs_del_committed_range(vp, off, cnt);
   1107 		mutex_exit(&np->n_commitlock);
   1108 		mutex_enter(&uobj->vmobjlock);
   1109 		for (i = 0; i < npages; i++) {
   1110 			pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
   1111 		}
   1112 		mutex_exit(&uobj->vmobjlock);
   1113 	} else {
   1114 		/*
   1115 		 * we got an error.
   1116 		 */
   1117 		bp->b_error = np->n_error = error;
   1118 		np->n_flag |= NWRITEERR;
   1119 	}
   1120 
   1121 	rw_exit(&nmp->nm_writeverflock);
   1122 
   1123 
   1124 	if (stalewriteverf) {
   1125 		nfs_clearcommit(vp->v_mount);
   1126 	}
   1127 #ifndef NFS_V2_ONLY
   1128 out:
   1129 #endif
   1130 	if (pgs != spgs)
   1131 		kmem_free(pgs, sizeof(*pgs) * npages);
   1132 	return error;
   1133 }
   1134 
   1135 /*
   1136  * nfs_doio for B_PHYS.
   1137  */
   1138 static int
   1139 nfs_doio_phys(struct buf *bp, struct uio *uiop)
   1140 {
   1141 	struct vnode *vp = bp->b_vp;
   1142 	int error;
   1143 
   1144 	uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
   1145 	if (bp->b_flags & B_READ) {
   1146 		uiop->uio_rw = UIO_READ;
   1147 		nfsstats.read_physios++;
   1148 		error = nfs_readrpc(vp, uiop);
   1149 	} else {
   1150 		int iomode = NFSV3WRITE_DATASYNC;
   1151 		bool stalewriteverf;
   1152 		struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1153 
   1154 		uiop->uio_rw = UIO_WRITE;
   1155 		nfsstats.write_physios++;
   1156 		rw_enter(&nmp->nm_writeverflock, RW_READER);
   1157 		error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
   1158 		rw_exit(&nmp->nm_writeverflock);
   1159 		if (stalewriteverf) {
   1160 			nfs_clearcommit(bp->b_vp->v_mount);
   1161 		}
   1162 	}
   1163 	bp->b_error = error;
   1164 	return error;
   1165 }
   1166 
   1167 /*
   1168  * Do an I/O operation to/from a cache block. This may be called
   1169  * synchronously or from an nfsiod.
   1170  */
   1171 int
   1172 nfs_doio(struct buf *bp)
   1173 {
   1174 	int error;
   1175 	struct uio uio;
   1176 	struct uio *uiop = &uio;
   1177 	struct iovec io;
   1178 	UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
   1179 
   1180 	uiop->uio_iov = &io;
   1181 	uiop->uio_iovcnt = 1;
   1182 	uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
   1183 	UIO_SETUP_SYSSPACE(uiop);
   1184 	io.iov_base = bp->b_data;
   1185 	io.iov_len = uiop->uio_resid = bp->b_bcount;
   1186 
   1187 	/*
   1188 	 * Historically, paging was done with physio, but no more...
   1189 	 */
   1190 	if (bp->b_flags & B_PHYS) {
   1191 		/*
   1192 		 * ...though reading /dev/drum still gets us here.
   1193 		 */
   1194 		error = nfs_doio_phys(bp, uiop);
   1195 	} else if (bp->b_flags & B_READ) {
   1196 		error = nfs_doio_read(bp, uiop);
   1197 	} else {
   1198 		error = nfs_doio_write(bp, uiop);
   1199 	}
   1200 	bp->b_resid = uiop->uio_resid;
   1201 	biodone(bp);
   1202 	return (error);
   1203 }
   1204 
   1205 /*
   1206  * Vnode op for VM getpages.
   1207  */
   1208 
   1209 int
   1210 nfs_getpages(void *v)
   1211 {
   1212 	struct vop_getpages_args /* {
   1213 		struct vnode *a_vp;
   1214 		voff_t a_offset;
   1215 		struct vm_page **a_m;
   1216 		int *a_count;
   1217 		int a_centeridx;
   1218 		vm_prot_t a_access_type;
   1219 		int a_advice;
   1220 		int a_flags;
   1221 	} */ *ap = v;
   1222 
   1223 	struct vnode *vp = ap->a_vp;
   1224 	struct uvm_object *uobj = &vp->v_uobj;
   1225 	struct nfsnode *np = VTONFS(vp);
   1226 	const int npages = *ap->a_count;
   1227 	struct vm_page *pg, **pgs, **opgs, *spgs[UBC_MAX_PAGES];
   1228 	off_t origoffset, len;
   1229 	int i, error;
   1230 	bool v3 = NFS_ISV3(vp);
   1231 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1232 	bool locked = (ap->a_flags & PGO_LOCKED) != 0;
   1233 
   1234 	/*
   1235 	 * If we are not locked we are not really using opgs,
   1236 	 * so just initialize it
   1237 	 */
   1238 	if (!locked || npages < __arraycount(spgs))
   1239 		opgs = spgs;
   1240 	else {
   1241 		if ((opgs = kmem_alloc(npages * sizeof(*opgs), KM_NOSLEEP)) ==
   1242 		    NULL)
   1243 			return ENOMEM;
   1244 	}
   1245 
   1246 	/*
   1247 	 * call the genfs code to get the pages.  `pgs' may be NULL
   1248 	 * when doing read-ahead.
   1249 	 */
   1250 	pgs = ap->a_m;
   1251 	if (write && locked && v3) {
   1252 		KASSERT(pgs != NULL);
   1253 #ifdef DEBUG
   1254 
   1255 		/*
   1256 		 * If PGO_LOCKED is set, real pages shouldn't exists
   1257 		 * in the array.
   1258 		 */
   1259 
   1260 		for (i = 0; i < npages; i++)
   1261 			KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
   1262 #endif
   1263 		memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
   1264 	}
   1265 	error = genfs_getpages(v);
   1266 	if (error)
   1267 		goto out;
   1268 
   1269 	/*
   1270 	 * for read faults where the nfs node is not yet marked NMODIFIED,
   1271 	 * set PG_RDONLY on the pages so that we come back here if someone
   1272 	 * tries to modify later via the mapping that will be entered for
   1273 	 * this fault.
   1274 	 */
   1275 
   1276 	if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
   1277 		if (!locked) {
   1278 			mutex_enter(&uobj->vmobjlock);
   1279 		}
   1280 		for (i = 0; i < npages; i++) {
   1281 			pg = pgs[i];
   1282 			if (pg == NULL || pg == PGO_DONTCARE) {
   1283 				continue;
   1284 			}
   1285 			pg->flags |= PG_RDONLY;
   1286 		}
   1287 		if (!locked) {
   1288 			mutex_exit(&uobj->vmobjlock);
   1289 		}
   1290 	}
   1291 	if (!write)
   1292 		goto out;
   1293 
   1294 	/*
   1295 	 * this is a write fault, update the commit info.
   1296 	 */
   1297 
   1298 	origoffset = ap->a_offset;
   1299 	len = npages << PAGE_SHIFT;
   1300 
   1301 	if (v3) {
   1302 		if (!locked) {
   1303 			mutex_enter(&np->n_commitlock);
   1304 		} else {
   1305 			if (!mutex_tryenter(&np->n_commitlock)) {
   1306 
   1307 				/*
   1308 				 * Since PGO_LOCKED is set, we need to unbusy
   1309 				 * all pages fetched by genfs_getpages() above,
   1310 				 * tell the caller that there are no pages
   1311 				 * available and put back original pgs array.
   1312 				 */
   1313 
   1314 				mutex_enter(&uvm_pageqlock);
   1315 				uvm_page_unbusy(pgs, npages);
   1316 				mutex_exit(&uvm_pageqlock);
   1317 				*ap->a_count = 0;
   1318 				memcpy(pgs, opgs,
   1319 				    npages * sizeof(struct vm_pages *));
   1320 				error = EBUSY;
   1321 				goto out;
   1322 			}
   1323 		}
   1324 		nfs_del_committed_range(vp, origoffset, len);
   1325 		nfs_del_tobecommitted_range(vp, origoffset, len);
   1326 	}
   1327 	np->n_flag |= NMODIFIED;
   1328 	if (!locked) {
   1329 		mutex_enter(&uobj->vmobjlock);
   1330 	}
   1331 	for (i = 0; i < npages; i++) {
   1332 		pg = pgs[i];
   1333 		if (pg == NULL || pg == PGO_DONTCARE) {
   1334 			continue;
   1335 		}
   1336 		pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
   1337 	}
   1338 	if (!locked) {
   1339 		mutex_exit(&uobj->vmobjlock);
   1340 	}
   1341 	if (v3) {
   1342 		mutex_exit(&np->n_commitlock);
   1343 	}
   1344 out:
   1345 	if (opgs != spgs)
   1346 		kmem_free(opgs, sizeof(*opgs) * npages);
   1347 	return error;
   1348 }
   1349