nfs_bio.c revision 1.184 1 /* $NetBSD: nfs_bio.c,v 1.184 2010/04/23 15:38:47 pooka Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.184 2010/04/23 15:38:47 pooka Exp $");
39
40 #ifdef _KERNEL_OPT
41 #include "opt_nfs.h"
42 #include "opt_ddb.h"
43 #endif
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <sys/vnode.h>
52 #include <sys/mount.h>
53 #include <sys/kernel.h>
54 #include <sys/namei.h>
55 #include <sys/dirent.h>
56 #include <sys/kauth.h>
57
58 #include <uvm/uvm_extern.h>
59 #include <uvm/uvm.h>
60
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nfsmount.h>
65 #include <nfs/nfsnode.h>
66 #include <nfs/nfs_var.h>
67
68 extern int nfs_numasync;
69 extern int nfs_commitsize;
70 extern struct nfsstats nfsstats;
71
72 static int nfs_doio_read(struct buf *, struct uio *);
73 static int nfs_doio_write(struct buf *, struct uio *);
74 static int nfs_doio_phys(struct buf *, struct uio *);
75
76 /*
77 * Vnode op for read using bio
78 * Any similarity to readip() is purely coincidental
79 */
80 int
81 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag,
82 kauth_cred_t cred, int cflag)
83 {
84 struct nfsnode *np = VTONFS(vp);
85 struct buf *bp = NULL, *rabp;
86 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
87 struct nfsdircache *ndp = NULL, *nndp = NULL;
88 void *baddr;
89 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
90 int enough = 0;
91 struct dirent *dp, *pdp, *edp, *ep;
92 off_t curoff = 0;
93 int advice;
94 struct lwp *l = curlwp;
95
96 #ifdef DIAGNOSTIC
97 if (uio->uio_rw != UIO_READ)
98 panic("nfs_read mode");
99 #endif
100 if (uio->uio_resid == 0)
101 return (0);
102 if (vp->v_type != VDIR && uio->uio_offset < 0)
103 return (EINVAL);
104 #ifndef NFS_V2_ONLY
105 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
106 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
107 (void)nfs_fsinfo(nmp, vp, cred, l);
108 #endif
109 if (vp->v_type != VDIR &&
110 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
111 return (EFBIG);
112
113 /*
114 * For nfs, cache consistency can only be maintained approximately.
115 * Although RFC1094 does not specify the criteria, the following is
116 * believed to be compatible with the reference port.
117 *
118 * If the file's modify time on the server has changed since the
119 * last read rpc or you have written to the file,
120 * you may have lost data cache consistency with the
121 * server, so flush all of the file's data out of the cache.
122 * Then force a getattr rpc to ensure that you have up to date
123 * attributes.
124 * NB: This implies that cache data can be read when up to
125 * nfs_attrtimeo seconds out of date. If you find that you need current
126 * attributes this could be forced by setting n_attrstamp to 0 before
127 * the VOP_GETATTR() call.
128 */
129
130 if (vp->v_type != VLNK) {
131 error = nfs_flushstalebuf(vp, cred, l,
132 NFS_FLUSHSTALEBUF_MYWRITE);
133 if (error)
134 return error;
135 }
136
137 do {
138 /*
139 * Don't cache symlinks.
140 */
141 if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
142 return (nfs_readlinkrpc(vp, uio, cred));
143 }
144 baddr = (void *)0;
145 switch (vp->v_type) {
146 case VREG:
147 nfsstats.biocache_reads++;
148
149 advice = IO_ADV_DECODE(ioflag);
150 error = 0;
151 while (uio->uio_resid > 0) {
152 vsize_t bytelen;
153
154 nfs_delayedtruncate(vp);
155 if (np->n_size <= uio->uio_offset) {
156 break;
157 }
158 bytelen =
159 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
160 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
161 advice, UBC_READ | UBC_PARTIALOK |
162 (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
163 if (error) {
164 /*
165 * XXXkludge
166 * the file has been truncated on the server.
167 * there isn't much we can do.
168 */
169 if (uio->uio_offset >= np->n_size) {
170 /* end of file */
171 error = 0;
172 } else {
173 break;
174 }
175 }
176 }
177 break;
178
179 case VLNK:
180 nfsstats.biocache_readlinks++;
181 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
182 if (!bp)
183 return (EINTR);
184 if ((bp->b_oflags & BO_DONE) == 0) {
185 bp->b_flags |= B_READ;
186 error = nfs_doio(bp);
187 if (error) {
188 brelse(bp, 0);
189 return (error);
190 }
191 }
192 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
193 got_buf = 1;
194 on = 0;
195 break;
196 case VDIR:
197 diragain:
198 nfsstats.biocache_readdirs++;
199 ndp = nfs_searchdircache(vp, uio->uio_offset,
200 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
201 if (!ndp) {
202 /*
203 * We've been handed a cookie that is not
204 * in the cache. If we're not translating
205 * 32 <-> 64, it may be a value that was
206 * flushed out of the cache because it grew
207 * too big. Let the server judge if it's
208 * valid or not. In the translation case,
209 * we have no way of validating this value,
210 * so punt.
211 */
212 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
213 return (EINVAL);
214 ndp = nfs_enterdircache(vp, uio->uio_offset,
215 uio->uio_offset, 0, 0);
216 }
217
218 if (NFS_EOFVALID(np) &&
219 ndp->dc_cookie == np->n_direofoffset) {
220 nfs_putdircache(np, ndp);
221 nfsstats.direofcache_hits++;
222 return (0);
223 }
224
225 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
226 if (!bp)
227 return (EINTR);
228 if ((bp->b_oflags & BO_DONE) == 0) {
229 bp->b_flags |= B_READ;
230 bp->b_dcookie = ndp->dc_blkcookie;
231 error = nfs_doio(bp);
232 if (error) {
233 /*
234 * Yuck! The directory has been modified on the
235 * server. Punt and let the userland code
236 * deal with it.
237 */
238 nfs_putdircache(np, ndp);
239 brelse(bp, 0);
240 /*
241 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
242 */
243 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
244 nfs_invaldircache(vp, 0);
245 nfs_vinvalbuf(vp, 0, cred, l, 1);
246 }
247 return (error);
248 }
249 }
250
251 /*
252 * Just return if we hit EOF right away with this
253 * block. Always check here, because direofoffset
254 * may have been set by an nfsiod since the last
255 * check.
256 *
257 * also, empty block implies EOF.
258 */
259
260 if (bp->b_bcount == bp->b_resid ||
261 (NFS_EOFVALID(np) &&
262 ndp->dc_blkcookie == np->n_direofoffset)) {
263 KASSERT(bp->b_bcount != bp->b_resid ||
264 ndp->dc_blkcookie == bp->b_dcookie);
265 nfs_putdircache(np, ndp);
266 brelse(bp, BC_NOCACHE);
267 return 0;
268 }
269
270 /*
271 * Find the entry we were looking for in the block.
272 */
273
274 en = ndp->dc_entry;
275
276 pdp = dp = (struct dirent *)bp->b_data;
277 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
278 bp->b_resid);
279 enn = 0;
280 while (enn < en && dp < edp) {
281 pdp = dp;
282 dp = _DIRENT_NEXT(dp);
283 enn++;
284 }
285
286 /*
287 * If the entry number was bigger than the number of
288 * entries in the block, or the cookie of the previous
289 * entry doesn't match, the directory cache is
290 * stale. Flush it and try again (i.e. go to
291 * the server).
292 */
293 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
294 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
295 #ifdef DEBUG
296 printf("invalid cache: %p %p %p off %jx %jx\n",
297 pdp, dp, edp,
298 (uintmax_t)uio->uio_offset,
299 (uintmax_t)NFS_GETCOOKIE(pdp));
300 #endif
301 nfs_putdircache(np, ndp);
302 brelse(bp, 0);
303 nfs_invaldircache(vp, 0);
304 nfs_vinvalbuf(vp, 0, cred, l, 0);
305 goto diragain;
306 }
307
308 on = (char *)dp - (char *)bp->b_data;
309
310 /*
311 * Cache all entries that may be exported to the
312 * user, as they may be thrown back at us. The
313 * NFSBIO_CACHECOOKIES flag indicates that all
314 * entries are being 'exported', so cache them all.
315 */
316
317 if (en == 0 && pdp == dp) {
318 dp = _DIRENT_NEXT(dp);
319 enn++;
320 }
321
322 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
323 n = uio->uio_resid;
324 enough = 1;
325 } else
326 n = bp->b_bcount - bp->b_resid - on;
327
328 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
329
330 /*
331 * Find last complete entry to copy, caching entries
332 * (if requested) as we go.
333 */
334
335 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
336 if (cflag & NFSBIO_CACHECOOKIES) {
337 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
338 ndp->dc_blkcookie, enn, bp->b_lblkno);
339 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
340 NFS_STASHCOOKIE32(pdp,
341 nndp->dc_cookie32);
342 }
343 nfs_putdircache(np, nndp);
344 }
345 pdp = dp;
346 dp = _DIRENT_NEXT(dp);
347 enn++;
348 }
349 nfs_putdircache(np, ndp);
350
351 /*
352 * If the last requested entry was not the last in the
353 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
354 * cache the cookie of the last requested one, and
355 * set of the offset to it.
356 */
357
358 if ((on + n) < bp->b_bcount - bp->b_resid) {
359 curoff = NFS_GETCOOKIE(pdp);
360 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
361 enn, bp->b_lblkno);
362 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
363 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
364 curoff = nndp->dc_cookie32;
365 }
366 nfs_putdircache(np, nndp);
367 } else
368 curoff = bp->b_dcookie;
369
370 /*
371 * Always cache the entry for the next block,
372 * so that readaheads can use it.
373 */
374 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
375 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
376 if (curoff == bp->b_dcookie) {
377 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
378 curoff = nndp->dc_cookie32;
379 }
380 }
381
382 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
383
384 /*
385 * If not eof and read aheads are enabled, start one.
386 * (You need the current block first, so that you have the
387 * directory offset cookie of the next block.)
388 */
389 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
390 !NFS_EOFVALID(np)) {
391 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
392 NFS_DIRBLKSIZ, l);
393 if (rabp) {
394 if ((rabp->b_oflags & (BO_DONE | BO_DELWRI)) == 0) {
395 rabp->b_dcookie = nndp->dc_cookie;
396 rabp->b_flags |= (B_READ | B_ASYNC);
397 if (nfs_asyncio(rabp)) {
398 brelse(rabp, BC_INVAL);
399 }
400 } else
401 brelse(rabp, 0);
402 }
403 }
404 nfs_putdircache(np, nndp);
405 got_buf = 1;
406 break;
407 default:
408 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
409 break;
410 }
411
412 if (n > 0) {
413 if (!baddr)
414 baddr = bp->b_data;
415 error = uiomove((char *)baddr + on, (int)n, uio);
416 }
417 switch (vp->v_type) {
418 case VREG:
419 break;
420 case VLNK:
421 n = 0;
422 break;
423 case VDIR:
424 uio->uio_offset = curoff;
425 if (enough)
426 n = 0;
427 break;
428 default:
429 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
430 }
431 if (got_buf)
432 brelse(bp, 0);
433 } while (error == 0 && uio->uio_resid > 0 && n > 0);
434 return (error);
435 }
436
437 /*
438 * Vnode op for write using bio
439 */
440 int
441 nfs_write(void *v)
442 {
443 struct vop_write_args /* {
444 struct vnode *a_vp;
445 struct uio *a_uio;
446 int a_ioflag;
447 kauth_cred_t a_cred;
448 } */ *ap = v;
449 struct uio *uio = ap->a_uio;
450 struct lwp *l = curlwp;
451 struct vnode *vp = ap->a_vp;
452 struct nfsnode *np = VTONFS(vp);
453 kauth_cred_t cred = ap->a_cred;
454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
455 voff_t oldoff, origoff;
456 vsize_t bytelen;
457 int error = 0;
458 int ioflag = ap->a_ioflag;
459 int extended = 0, wrotedata = 0;
460
461 #ifdef DIAGNOSTIC
462 if (uio->uio_rw != UIO_WRITE)
463 panic("nfs_write mode");
464 #endif
465 if (vp->v_type != VREG)
466 return (EIO);
467 if (np->n_flag & NWRITEERR) {
468 np->n_flag &= ~NWRITEERR;
469 return (np->n_error);
470 }
471 #ifndef NFS_V2_ONLY
472 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
473 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
474 (void)nfs_fsinfo(nmp, vp, cred, l);
475 #endif
476 if (ioflag & IO_APPEND) {
477 NFS_INVALIDATE_ATTRCACHE(np);
478 error = nfs_flushstalebuf(vp, cred, l,
479 NFS_FLUSHSTALEBUF_MYWRITE);
480 if (error)
481 return (error);
482 uio->uio_offset = np->n_size;
483
484 /*
485 * This is already checked above VOP_WRITE, but recheck
486 * the append case here to make sure our idea of the
487 * file size is as fresh as possible.
488 */
489 if (uio->uio_offset + uio->uio_resid >
490 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
491 mutex_enter(proc_lock);
492 psignal(l->l_proc, SIGXFSZ);
493 mutex_exit(proc_lock);
494 return (EFBIG);
495 }
496 }
497 if (uio->uio_offset < 0)
498 return (EINVAL);
499 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
500 return (EFBIG);
501 if (uio->uio_resid == 0)
502 return (0);
503
504 origoff = uio->uio_offset;
505 do {
506 bool overwrite; /* if we are overwriting whole pages */
507 u_quad_t oldsize;
508 oldoff = uio->uio_offset;
509 bytelen = uio->uio_resid;
510
511 nfsstats.biocache_writes++;
512
513 oldsize = np->n_size;
514 np->n_flag |= NMODIFIED;
515 if (np->n_size < uio->uio_offset + bytelen) {
516 np->n_size = uio->uio_offset + bytelen;
517 }
518 overwrite = false;
519 if ((uio->uio_offset & PAGE_MASK) == 0) {
520 if ((vp->v_vflag & VV_MAPPED) == 0 &&
521 bytelen > PAGE_SIZE) {
522 bytelen = trunc_page(bytelen);
523 overwrite = true;
524 } else if ((bytelen & PAGE_MASK) == 0 &&
525 uio->uio_offset >= vp->v_size) {
526 overwrite = true;
527 }
528 }
529 if (vp->v_size < uio->uio_offset + bytelen) {
530 uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
531 }
532 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
533 UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
534 (overwrite ? UBC_FAULTBUSY : 0) |
535 (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
536 if (error) {
537 uvm_vnp_setwritesize(vp, vp->v_size);
538 if (overwrite && np->n_size != oldsize) {
539 /*
540 * backout size and free pages past eof.
541 */
542 np->n_size = oldsize;
543 mutex_enter(&vp->v_interlock);
544 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
545 0, PGO_SYNCIO | PGO_FREE);
546 }
547 break;
548 }
549 wrotedata = 1;
550
551 /*
552 * update UVM's notion of the size now that we've
553 * copied the data into the vnode's pages.
554 */
555
556 if (vp->v_size < uio->uio_offset) {
557 uvm_vnp_setsize(vp, uio->uio_offset);
558 extended = 1;
559 }
560
561 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
562 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
563 mutex_enter(&vp->v_interlock);
564 error = VOP_PUTPAGES(vp,
565 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
566 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
567 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
568 }
569 } while (uio->uio_resid > 0);
570 if (wrotedata)
571 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
572 if (error == 0 && (ioflag & IO_SYNC) != 0) {
573 mutex_enter(&vp->v_interlock);
574 error = VOP_PUTPAGES(vp,
575 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
576 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
577 ~(nmp->nm_wsize - 1)),
578 PGO_CLEANIT | PGO_SYNCIO);
579 }
580 return error;
581 }
582
583 /*
584 * Get an nfs cache block.
585 * Allocate a new one if the block isn't currently in the cache
586 * and return the block marked busy. If the calling process is
587 * interrupted by a signal for an interruptible mount point, return
588 * NULL.
589 */
590 struct buf *
591 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct lwp *l)
592 {
593 struct buf *bp;
594 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
595
596 if (nmp->nm_flag & NFSMNT_INT) {
597 bp = getblk(vp, bn, size, PCATCH, 0);
598 while (bp == NULL) {
599 if (nfs_sigintr(nmp, NULL, l))
600 return (NULL);
601 bp = getblk(vp, bn, size, 0, 2 * hz);
602 }
603 } else
604 bp = getblk(vp, bn, size, 0, 0);
605 return (bp);
606 }
607
608 /*
609 * Flush and invalidate all dirty buffers. If another process is already
610 * doing the flush, just wait for completion.
611 */
612 int
613 nfs_vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred,
614 struct lwp *l, int intrflg)
615 {
616 struct nfsnode *np = VTONFS(vp);
617 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
618 int error = 0, slptimeo;
619 bool catch;
620
621 if ((nmp->nm_flag & NFSMNT_INT) == 0)
622 intrflg = 0;
623 if (intrflg) {
624 catch = true;
625 slptimeo = 2 * hz;
626 } else {
627 catch = false;
628 slptimeo = 0;
629 }
630 /*
631 * First wait for any other process doing a flush to complete.
632 */
633 mutex_enter(&vp->v_interlock);
634 while (np->n_flag & NFLUSHINPROG) {
635 np->n_flag |= NFLUSHWANT;
636 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
637 slptimeo, &vp->v_interlock);
638 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
639 mutex_exit(&vp->v_interlock);
640 return EINTR;
641 }
642 }
643
644 /*
645 * Now, flush as required.
646 */
647 np->n_flag |= NFLUSHINPROG;
648 mutex_exit(&vp->v_interlock);
649 error = vinvalbuf(vp, flags, cred, l, catch, 0);
650 while (error) {
651 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
652 error = EINTR;
653 break;
654 }
655 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
656 }
657 mutex_enter(&vp->v_interlock);
658 if (error == 0)
659 np->n_flag &= ~NMODIFIED;
660 np->n_flag &= ~NFLUSHINPROG;
661 if (np->n_flag & NFLUSHWANT) {
662 np->n_flag &= ~NFLUSHWANT;
663 wakeup(&np->n_flag);
664 }
665 mutex_exit(&vp->v_interlock);
666 return error;
667 }
668
669 /*
670 * nfs_flushstalebuf: flush cache if it's stale.
671 *
672 * => caller shouldn't own any pages or buffers which belong to the vnode.
673 */
674
675 int
676 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
677 int flags)
678 {
679 struct nfsnode *np = VTONFS(vp);
680 struct vattr vattr;
681 int error;
682
683 if (np->n_flag & NMODIFIED) {
684 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
685 || vp->v_type != VREG) {
686 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
687 if (error)
688 return error;
689 if (vp->v_type == VDIR) {
690 nfs_invaldircache(vp, 0);
691 }
692 } else {
693 /*
694 * XXX assuming writes are ours.
695 */
696 }
697 NFS_INVALIDATE_ATTRCACHE(np);
698 error = VOP_GETATTR(vp, &vattr, cred);
699 if (error)
700 return error;
701 np->n_mtime = vattr.va_mtime;
702 } else {
703 error = VOP_GETATTR(vp, &vattr, cred);
704 if (error)
705 return error;
706 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
707 if (vp->v_type == VDIR) {
708 nfs_invaldircache(vp, 0);
709 }
710 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
711 if (error)
712 return error;
713 np->n_mtime = vattr.va_mtime;
714 }
715 }
716
717 return error;
718 }
719
720 /*
721 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
722 * This is mainly to avoid queueing async I/O requests when the nfsiods
723 * are all hung on a dead server.
724 */
725
726 int
727 nfs_asyncio(struct buf *bp)
728 {
729 struct nfs_iod *iod;
730 struct nfsmount *nmp;
731 int slptimeo = 0, error;
732 bool catch = false;
733
734 if (nfs_numasync == 0)
735 return (EIO);
736
737 nmp = VFSTONFS(bp->b_vp->v_mount);
738 again:
739 if (nmp->nm_flag & NFSMNT_INT)
740 catch = true;
741
742 /*
743 * Find a free iod to process this request.
744 */
745
746 mutex_enter(&nfs_iodlist_lock);
747 iod = LIST_FIRST(&nfs_iodlist_idle);
748 if (iod) {
749 /*
750 * Found one, so wake it up and tell it which
751 * mount to process.
752 */
753 LIST_REMOVE(iod, nid_idle);
754 mutex_enter(&iod->nid_lock);
755 mutex_exit(&nfs_iodlist_lock);
756 KASSERT(iod->nid_mount == NULL);
757 iod->nid_mount = nmp;
758 cv_signal(&iod->nid_cv);
759 mutex_enter(&nmp->nm_lock);
760 mutex_exit(&iod->nid_lock);
761 nmp->nm_bufqiods++;
762 if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
763 cv_broadcast(&nmp->nm_aiocv);
764 }
765 } else {
766 mutex_exit(&nfs_iodlist_lock);
767 mutex_enter(&nmp->nm_lock);
768 }
769
770 KASSERT(mutex_owned(&nmp->nm_lock));
771
772 /*
773 * If we have an iod which can process the request, then queue
774 * the buffer. However, even if we have an iod, do not initiate
775 * queue cleaning if curproc is the pageout daemon. if the NFS mount
776 * is via local loopback, we may put curproc (pagedaemon) to sleep
777 * waiting for the writes to complete. But the server (ourself)
778 * may block the write, waiting for its (ie., our) pagedaemon
779 * to produce clean pages to handle the write: deadlock.
780 * XXX: start non-loopback mounts straight away? If "lots free",
781 * let pagedaemon start loopback writes anyway?
782 */
783 if (nmp->nm_bufqiods > 0) {
784
785 /*
786 * Ensure that the queue never grows too large.
787 */
788 if (curlwp == uvm.pagedaemon_lwp) {
789 /* Enque for later, to avoid free-page deadlock */
790 } else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
791 if (catch) {
792 error = cv_timedwait_sig(&nmp->nm_aiocv,
793 &nmp->nm_lock, slptimeo);
794 } else {
795 error = cv_timedwait(&nmp->nm_aiocv,
796 &nmp->nm_lock, slptimeo);
797 }
798 if (error) {
799 if (nfs_sigintr(nmp, NULL, curlwp)) {
800 mutex_exit(&nmp->nm_lock);
801 return (EINTR);
802 }
803 if (catch) {
804 catch = false;
805 slptimeo = 2 * hz;
806 }
807 }
808
809 /*
810 * We might have lost our iod while sleeping,
811 * so check and loop if necessary.
812 */
813
814 if (nmp->nm_bufqiods == 0) {
815 mutex_exit(&nmp->nm_lock);
816 goto again;
817 }
818 }
819 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
820 nmp->nm_bufqlen++;
821 mutex_exit(&nmp->nm_lock);
822 return (0);
823 }
824 mutex_exit(&nmp->nm_lock);
825
826 /*
827 * All the iods are busy on other mounts, so return EIO to
828 * force the caller to process the i/o synchronously.
829 */
830
831 return (EIO);
832 }
833
834 /*
835 * nfs_doio for read.
836 */
837 static int
838 nfs_doio_read(struct buf *bp, struct uio *uiop)
839 {
840 struct vnode *vp = bp->b_vp;
841 struct nfsnode *np = VTONFS(vp);
842 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
843 int error = 0;
844
845 uiop->uio_rw = UIO_READ;
846 switch (vp->v_type) {
847 case VREG:
848 nfsstats.read_bios++;
849 error = nfs_readrpc(vp, uiop);
850 if (!error && uiop->uio_resid) {
851 int diff, len;
852
853 /*
854 * If uio_resid > 0, there is a hole in the file and
855 * no writes after the hole have been pushed to
856 * the server yet or the file has been truncated
857 * on the server.
858 * Just zero fill the rest of the valid area.
859 */
860
861 KASSERT(vp->v_size >=
862 uiop->uio_offset + uiop->uio_resid);
863 diff = bp->b_bcount - uiop->uio_resid;
864 len = uiop->uio_resid;
865 memset((char *)bp->b_data + diff, 0, len);
866 uiop->uio_resid = 0;
867 }
868 #if 0
869 if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
870 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
871 mutex_enter(proc_lock);
872 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
873 mutex_exit(proc_lock);
874 #if 0 /* XXX NJWLWP */
875 uiop->uio_lwp->l_proc->p_holdcnt++;
876 #endif
877 }
878 #endif
879 break;
880 case VLNK:
881 KASSERT(uiop->uio_offset == (off_t)0);
882 nfsstats.readlink_bios++;
883 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
884 break;
885 case VDIR:
886 nfsstats.readdir_bios++;
887 uiop->uio_offset = bp->b_dcookie;
888 #ifndef NFS_V2_ONLY
889 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
890 error = nfs_readdirplusrpc(vp, uiop,
891 curlwp->l_cred);
892 /*
893 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
894 */
895 if (error == ENOTSUP)
896 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
897 }
898 #else
899 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
900 #endif
901 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
902 error = nfs_readdirrpc(vp, uiop,
903 curlwp->l_cred);
904 if (!error) {
905 bp->b_dcookie = uiop->uio_offset;
906 }
907 break;
908 default:
909 printf("nfs_doio: type %x unexpected\n", vp->v_type);
910 break;
911 }
912 bp->b_error = error;
913 return error;
914 }
915
916 /*
917 * nfs_doio for write.
918 */
919 static int
920 nfs_doio_write(struct buf *bp, struct uio *uiop)
921 {
922 struct vnode *vp = bp->b_vp;
923 struct nfsnode *np = VTONFS(vp);
924 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
925 int iomode;
926 bool stalewriteverf = false;
927 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
928 struct vm_page **pgs, *spgs[UBC_MAX_PAGES];
929 #ifndef NFS_V2_ONLY
930 bool needcommit = true; /* need only COMMIT RPC */
931 #else
932 bool needcommit = false; /* need only COMMIT RPC */
933 #endif
934 bool pageprotected;
935 struct uvm_object *uobj = &vp->v_uobj;
936 int error;
937 off_t off, cnt;
938
939 if (npages < __arraycount(spgs))
940 pgs = spgs;
941 else {
942 if ((pgs = kmem_alloc(sizeof(*pgs) * npages, KM_NOSLEEP)) ==
943 NULL)
944 return ENOMEM;
945 }
946
947 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
948 iomode = NFSV3WRITE_UNSTABLE;
949 } else {
950 iomode = NFSV3WRITE_FILESYNC;
951 }
952
953 #ifndef NFS_V2_ONLY
954 again:
955 #endif
956 rw_enter(&nmp->nm_writeverflock, RW_READER);
957
958 for (i = 0; i < npages; i++) {
959 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
960 if (pgs[i]->uobject == uobj &&
961 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
962 KASSERT(pgs[i]->flags & PG_BUSY);
963 /*
964 * this page belongs to our object.
965 */
966 mutex_enter(&uobj->vmobjlock);
967 /*
968 * write out the page stably if it's about to
969 * be released because we can't resend it
970 * on the server crash.
971 *
972 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
973 * changed until unbusy the page.
974 */
975 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
976 iomode = NFSV3WRITE_FILESYNC;
977 /*
978 * if we met a page which hasn't been sent yet,
979 * we need do WRITE RPC.
980 */
981 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
982 needcommit = false;
983 mutex_exit(&uobj->vmobjlock);
984 } else {
985 iomode = NFSV3WRITE_FILESYNC;
986 needcommit = false;
987 }
988 }
989 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
990 mutex_enter(&uobj->vmobjlock);
991 for (i = 0; i < npages; i++) {
992 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
993 pmap_page_protect(pgs[i], VM_PROT_READ);
994 }
995 mutex_exit(&uobj->vmobjlock);
996 pageprotected = true; /* pages can't be modified during i/o. */
997 } else
998 pageprotected = false;
999
1000 /*
1001 * Send the data to the server if necessary,
1002 * otherwise just send a commit rpc.
1003 */
1004 #ifndef NFS_V2_ONLY
1005 if (needcommit) {
1006
1007 /*
1008 * If the buffer is in the range that we already committed,
1009 * there's nothing to do.
1010 *
1011 * If it's in the range that we need to commit, push the
1012 * whole range at once, otherwise only push the buffer.
1013 * In both these cases, acquire the commit lock to avoid
1014 * other processes modifying the range.
1015 */
1016
1017 off = uiop->uio_offset;
1018 cnt = bp->b_bcount;
1019 mutex_enter(&np->n_commitlock);
1020 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1021 bool pushedrange;
1022 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1023 pushedrange = true;
1024 off = np->n_pushlo;
1025 cnt = np->n_pushhi - np->n_pushlo;
1026 } else {
1027 pushedrange = false;
1028 }
1029 error = nfs_commit(vp, off, cnt, curlwp);
1030 if (error == 0) {
1031 if (pushedrange) {
1032 nfs_merge_commit_ranges(vp);
1033 } else {
1034 nfs_add_committed_range(vp, off, cnt);
1035 }
1036 }
1037 } else {
1038 error = 0;
1039 }
1040 mutex_exit(&np->n_commitlock);
1041 rw_exit(&nmp->nm_writeverflock);
1042 if (!error) {
1043 /*
1044 * pages are now on stable storage.
1045 */
1046 uiop->uio_resid = 0;
1047 mutex_enter(&uobj->vmobjlock);
1048 for (i = 0; i < npages; i++) {
1049 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1050 }
1051 mutex_exit(&uobj->vmobjlock);
1052 return 0;
1053 } else if (error == NFSERR_STALEWRITEVERF) {
1054 nfs_clearcommit(vp->v_mount);
1055 goto again;
1056 }
1057 if (error) {
1058 bp->b_error = np->n_error = error;
1059 np->n_flag |= NWRITEERR;
1060 }
1061 goto out;
1062 }
1063 #endif
1064 off = uiop->uio_offset;
1065 cnt = bp->b_bcount;
1066 uiop->uio_rw = UIO_WRITE;
1067 nfsstats.write_bios++;
1068 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1069 #ifndef NFS_V2_ONLY
1070 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1071 /*
1072 * we need to commit pages later.
1073 */
1074 mutex_enter(&np->n_commitlock);
1075 nfs_add_tobecommitted_range(vp, off, cnt);
1076 /*
1077 * if there can be too many uncommitted pages, commit them now.
1078 */
1079 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1080 off = np->n_pushlo;
1081 cnt = nfs_commitsize >> 1;
1082 error = nfs_commit(vp, off, cnt, curlwp);
1083 if (!error) {
1084 nfs_add_committed_range(vp, off, cnt);
1085 nfs_del_tobecommitted_range(vp, off, cnt);
1086 }
1087 if (error == NFSERR_STALEWRITEVERF) {
1088 stalewriteverf = true;
1089 error = 0; /* it isn't a real error */
1090 }
1091 } else {
1092 /*
1093 * re-dirty pages so that they will be passed
1094 * to us later again.
1095 */
1096 mutex_enter(&uobj->vmobjlock);
1097 for (i = 0; i < npages; i++) {
1098 pgs[i]->flags &= ~PG_CLEAN;
1099 }
1100 mutex_exit(&uobj->vmobjlock);
1101 }
1102 mutex_exit(&np->n_commitlock);
1103 } else
1104 #endif
1105 if (!error) {
1106 /*
1107 * pages are now on stable storage.
1108 */
1109 mutex_enter(&np->n_commitlock);
1110 nfs_del_committed_range(vp, off, cnt);
1111 mutex_exit(&np->n_commitlock);
1112 mutex_enter(&uobj->vmobjlock);
1113 for (i = 0; i < npages; i++) {
1114 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1115 }
1116 mutex_exit(&uobj->vmobjlock);
1117 } else {
1118 /*
1119 * we got an error.
1120 */
1121 bp->b_error = np->n_error = error;
1122 np->n_flag |= NWRITEERR;
1123 }
1124
1125 rw_exit(&nmp->nm_writeverflock);
1126
1127
1128 if (stalewriteverf) {
1129 nfs_clearcommit(vp->v_mount);
1130 }
1131 #ifndef NFS_V2_ONLY
1132 out:
1133 #endif
1134 if (pgs != spgs)
1135 kmem_free(pgs, sizeof(*pgs) * npages);
1136 return error;
1137 }
1138
1139 /*
1140 * nfs_doio for B_PHYS.
1141 */
1142 static int
1143 nfs_doio_phys(struct buf *bp, struct uio *uiop)
1144 {
1145 struct vnode *vp = bp->b_vp;
1146 int error;
1147
1148 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1149 if (bp->b_flags & B_READ) {
1150 uiop->uio_rw = UIO_READ;
1151 nfsstats.read_physios++;
1152 error = nfs_readrpc(vp, uiop);
1153 } else {
1154 int iomode = NFSV3WRITE_DATASYNC;
1155 bool stalewriteverf;
1156 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1157
1158 uiop->uio_rw = UIO_WRITE;
1159 nfsstats.write_physios++;
1160 rw_enter(&nmp->nm_writeverflock, RW_READER);
1161 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1162 rw_exit(&nmp->nm_writeverflock);
1163 if (stalewriteverf) {
1164 nfs_clearcommit(bp->b_vp->v_mount);
1165 }
1166 }
1167 bp->b_error = error;
1168 return error;
1169 }
1170
1171 /*
1172 * Do an I/O operation to/from a cache block. This may be called
1173 * synchronously or from an nfsiod.
1174 */
1175 int
1176 nfs_doio(struct buf *bp)
1177 {
1178 int error;
1179 struct uio uio;
1180 struct uio *uiop = &uio;
1181 struct iovec io;
1182 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1183
1184 uiop->uio_iov = &io;
1185 uiop->uio_iovcnt = 1;
1186 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1187 UIO_SETUP_SYSSPACE(uiop);
1188 io.iov_base = bp->b_data;
1189 io.iov_len = uiop->uio_resid = bp->b_bcount;
1190
1191 /*
1192 * Historically, paging was done with physio, but no more...
1193 */
1194 if (bp->b_flags & B_PHYS) {
1195 /*
1196 * ...though reading /dev/drum still gets us here.
1197 */
1198 error = nfs_doio_phys(bp, uiop);
1199 } else if (bp->b_flags & B_READ) {
1200 error = nfs_doio_read(bp, uiop);
1201 } else {
1202 error = nfs_doio_write(bp, uiop);
1203 }
1204 bp->b_resid = uiop->uio_resid;
1205 biodone(bp);
1206 return (error);
1207 }
1208
1209 /*
1210 * Vnode op for VM getpages.
1211 */
1212
1213 int
1214 nfs_getpages(void *v)
1215 {
1216 struct vop_getpages_args /* {
1217 struct vnode *a_vp;
1218 voff_t a_offset;
1219 struct vm_page **a_m;
1220 int *a_count;
1221 int a_centeridx;
1222 vm_prot_t a_access_type;
1223 int a_advice;
1224 int a_flags;
1225 } */ *ap = v;
1226
1227 struct vnode *vp = ap->a_vp;
1228 struct uvm_object *uobj = &vp->v_uobj;
1229 struct nfsnode *np = VTONFS(vp);
1230 const int npages = *ap->a_count;
1231 struct vm_page *pg, **pgs, **opgs, *spgs[UBC_MAX_PAGES];
1232 off_t origoffset, len;
1233 int i, error;
1234 bool v3 = NFS_ISV3(vp);
1235 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1236 bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1237
1238 /*
1239 * If we are not locked we are not really using opgs,
1240 * so just initialize it
1241 */
1242 if (!locked || npages < __arraycount(spgs))
1243 opgs = spgs;
1244 else {
1245 if ((opgs = kmem_alloc(npages * sizeof(*opgs), KM_NOSLEEP)) ==
1246 NULL)
1247 return ENOMEM;
1248 }
1249
1250 /*
1251 * call the genfs code to get the pages. `pgs' may be NULL
1252 * when doing read-ahead.
1253 */
1254 pgs = ap->a_m;
1255 if (write && locked && v3) {
1256 KASSERT(pgs != NULL);
1257 #ifdef DEBUG
1258
1259 /*
1260 * If PGO_LOCKED is set, real pages shouldn't exists
1261 * in the array.
1262 */
1263
1264 for (i = 0; i < npages; i++)
1265 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1266 #endif
1267 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1268 }
1269 error = genfs_getpages(v);
1270 if (error)
1271 goto out;
1272
1273 /*
1274 * for read faults where the nfs node is not yet marked NMODIFIED,
1275 * set PG_RDONLY on the pages so that we come back here if someone
1276 * tries to modify later via the mapping that will be entered for
1277 * this fault.
1278 */
1279
1280 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1281 if (!locked) {
1282 mutex_enter(&uobj->vmobjlock);
1283 }
1284 for (i = 0; i < npages; i++) {
1285 pg = pgs[i];
1286 if (pg == NULL || pg == PGO_DONTCARE) {
1287 continue;
1288 }
1289 pg->flags |= PG_RDONLY;
1290 }
1291 if (!locked) {
1292 mutex_exit(&uobj->vmobjlock);
1293 }
1294 }
1295 if (!write)
1296 goto out;
1297
1298 /*
1299 * this is a write fault, update the commit info.
1300 */
1301
1302 origoffset = ap->a_offset;
1303 len = npages << PAGE_SHIFT;
1304
1305 if (v3) {
1306 if (!locked) {
1307 mutex_enter(&np->n_commitlock);
1308 } else {
1309 if (!mutex_tryenter(&np->n_commitlock)) {
1310
1311 /*
1312 * Since PGO_LOCKED is set, we need to unbusy
1313 * all pages fetched by genfs_getpages() above,
1314 * tell the caller that there are no pages
1315 * available and put back original pgs array.
1316 */
1317
1318 mutex_enter(&uvm_pageqlock);
1319 uvm_page_unbusy(pgs, npages);
1320 mutex_exit(&uvm_pageqlock);
1321 *ap->a_count = 0;
1322 memcpy(pgs, opgs,
1323 npages * sizeof(struct vm_pages *));
1324 error = EBUSY;
1325 goto out;
1326 }
1327 }
1328 nfs_del_committed_range(vp, origoffset, len);
1329 nfs_del_tobecommitted_range(vp, origoffset, len);
1330 }
1331 np->n_flag |= NMODIFIED;
1332 if (!locked) {
1333 mutex_enter(&uobj->vmobjlock);
1334 }
1335 for (i = 0; i < npages; i++) {
1336 pg = pgs[i];
1337 if (pg == NULL || pg == PGO_DONTCARE) {
1338 continue;
1339 }
1340 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1341 }
1342 if (!locked) {
1343 mutex_exit(&uobj->vmobjlock);
1344 }
1345 if (v3) {
1346 mutex_exit(&np->n_commitlock);
1347 }
1348 out:
1349 if (opgs != spgs)
1350 kmem_free(opgs, sizeof(*opgs) * npages);
1351 return error;
1352 }
1353